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Editorial

New Advances in Distribution Theory and Its Applications

Filippo Domma and Francesca Condino *

Department of Economics, Statistics and Finance, University of Calabria, 87036 Arcavacata, Italy;
filippo.domma@unical.it
* Correspondence: francesca.condino@unical.it

In recent years, the prolific development of new statistical distributions via various
techniques has often led to increased complexity without necessarily enhancing model
flexibility or parameter interpretability, a trend that has sometimes diminished the prac-
tical relevance of distribution theory. This Special Issue therefore features contributions on
meaningful advancements in statistical distribution theory, with a focus on models that are
both flexible and interpretable. By emphasizing these priorities, the Special Issue aims to
connect theoretical developments with practical applications, so that new models are not
only mathematically robust but also accessible and useful for applied work across diverse
fields. This collection presents different contributions reflecting the evolving land-scape
of distribution theory. Balancing theoretical development with real-world rele-vance, the
articles propose models designed to address the challenges of contemporary data analysis,
where applicability emerges as a fundamental aspect.

The Study by Contribution 1 introduces a novel discrete analog of the Hjorth distri-
bution. By transforming this continuous distribution into the discrete domain, the authors
maintain important theoretical properties such as flexibility and tractability, while in-
creasing its applicability to count data commonly encountered in practice, also in the
pres-ence of censored data. The paper thoroughly derives key statistical properties and
com-pares the new distribution with existing discrete models. Moreover, the authors
demon-strate the model’s practical utility through applications to real datasets, highlighting
its ability to provide a better fit and deeper insight into discrete phenomena.

Contribution 2 proposes two bivariate extensions of the weighted discretized Fré-
chet–Weibull distribution. The two proposed models are generated by using minimum
and maximum operators to capture complex dependence structures between two discrete
random variables. The paper rigorously derives the mathematical foundations of the pro-
posed models, exploring their distributional and dependence properties. A comprehen-sive
statistical analysis based on real datasets underscores the practical relevance and flex-ibility
of these models in representing bivariate discrete data.

Contribution 3 introduces a new quantile regression model based on the unit ratio-
Weibull (URW) distribution, aimed at identifying the factors influencing the COVID-19
mortality rate in Latin America. By examining socio-economic, health system, and demo-
graphic variables, the authors identify key factors driving the mortality rate differences.
Their findings provide crucial insights for policymakers aiming to improve public health
preparedness and responses during pandemics, making a significant contribution to the
intersection of statistical modeling and public health analysis.

Contribution 4 develops a novel class of models designed to address the common prob-
lem of count data exhibiting an excess of zeros and ones. The proposed models inte-grate
a continuous–discrete mixture distribution with covariates, allowing them to accurately

Mathematics 2025, 13, 2444 https://doi.org/10.3390/math13152444
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represent the complex dynamics of data. The authors formalize the properties, derive
estimation procedures, and validate the models through applications to empirical datasets.

Contribution 5 develops surveys a wide range of wrapped distributions for modeling
circular data, such as angles or time-of-day measurements. Covering 45 continuous and
10 discrete wrapped distributions, the paper systematically presents their probability
functions, cumulative distributions, trigonometric moments, and key descriptive statistics
including mean direction and resultant length. The review also proposes some applica-
tions obtained by using an R package (version 4.4.1) that facilitates fitting these models,
thus serving as a foundational resource for researchers and practitioners working with
circular data.

Various stochastic representations for the zero–one-inflated Poisson Lindley distri-
bution have been studied by Contribution 6. The authors describe four different stochastic
representations, provide explicit formulas for moments and conditional distributions, and
propose some hypothesis tests to investigate the presence of one-inflation in addition to a
fixed-rate parameter.

A simulation study is used to investigate the hypotheses and its corresponding like-
lihood ratio tests, suggesting that all tests are powerful and able to properly handle type I
error rates, under a reasonable sample size.

A flexible two-parameter distribution to model data bounded within the unit in-
terval is proposed by Contribution 7. Derived from the exponential distribution, the
unit expo-nential distribution can capture both positive and negative skewness. The
paper discusses the mathematical properties, including moments and hazard functions,
and develops maximum likelihood estimation methods. Applications to environmental
and engineer-ing datasets highlight the model’s superior fitting capabilities compared to
existing alter-natives.

Contribution 8 introduces the NODAL G-classes, new flexible families of distribu-tions
useful for modeling a wide variety of hazard shapes—including increasing, decreas-ing,
bathtub, and J-shaped hazards—in both continuous and discrete contexts. The au-thors
provide the theoretical foundation, propose maximum likelihood estimation tech-niques,
and validate their models on diverse real datasets, showing improved fit if com-pared with
well-established competitive models.

Contribution 9 develops a general framework for unit distributions and introduce the
Unit-Dagum models, a class of distributions for data defined on the unit interval. Two
new distributions within this class are obtained by applying different transformations to
Dagum random variable. Moreover, by considering the possibility of reparametrizing the
distributions to express them in terms of indicators of interest, a regression approach for
response variables defined on the unit interval is explored. The resulting models appear to
be highly competitive when compared with the most commonly used regression mod-els
for this type of data, such as Beta regression.

Contribution 10 proposes a novel bivariate Poisson model derived from the bivariate
Bernoulli distribution that facilitates both positive and negative correlations, an advance-
ment over some traditional bivariate Poisson models which typically only capture posi-
tive dependence. The authors explore the statistical properties of this model, develop
maximum likelihood and moment-based estimation methods, and explore its applicabil-ity
on healthcare utilization data. Their results highlight the model’s improved flexibility and
accuracy in capturing dependence structures in correlated count data.

Finally, Contribution 11 introduces the ExpKum-G class, a finite mixture of exponen-
tiated Kumaraswamy-G distributions. Focusing on the exponentiated Kumaraswamy–
Weibull sub-model, the authors derive several statistical properties and propose both
maximum likelihood and Bayesian estimation methods under progressive Type II censoring.

2
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Simulation studies demonstrate the effectiveness of these estimation strategies, showing
good performance in terms of bias and mean squared error. The application to bladder
cancer survival data confirms the usefulness of the proposed model under differ-ent
censoring schemes.

We would like to express our sincere gratitude to all the authors who have contributed
original works in line with the objectives of this Special Issue. Advancing methodological
developments in the field of distribution theory, while pursuing goals such as model
flexibility and parameter interpretability, is by no means a simple task. For this reason, we
deeply appreciate the studies and proposals presented in this Special Issue.

We would also like to extend our thanks to those authors whose manuscripts, though
not accepted through the review process, demonstrated genuine interest in the topics
addressed and showed commendable commitment and active participation.

Conflicts of Interest: The authors declare no conflicts of interest.
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Article

A New Hjorth Distribution in Its Discrete Version

Hanan Haj Ahmad 1,2,* and Ahmed Elshahhat 3

1 Department of Basic Science, The General Administration of Preparatory Year, King Faisal University,
Hofuf 31982, Al-Ahsa, Saudi Arabia

2 Department of Mathematics and Statistics, College of Science, King Faisal University,
Hofuf 31982, Al-Ahsa, Saudi Arabia

3 Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt;
aelshahhat@ftd.zu.edu.eg

* Correspondence: hhajahmed@kfu.edu.sa

Abstract: The Hjorth distribution is more flexible in modeling various hazard rate shapes,
including increasing, decreasing, and bathtub shapes. This makes it highly useful in
reliability analysis and survival studies, where different failure rate behaviors must be
captured effectively. In some practical experiments, the observed data may appear to
be continuous, but their intrinsic discreteness requires the development of specialized
techniques for constructing discrete counterparts to continuous distributions. This study
extends this methodology by discretizing the Hjorth distribution using the survival function
approach. The proposed discrete Hjorth distribution preserves the essential statistical
characteristics of its continuous counterpart, such as percentiles and quantiles, making it a
valuable tool for modeling lifetime data. The complexity of the transformation requires
numerical techniques to ensure accurate estimations and analysis. A key feature of this
study is the incorporation of Type-II censored samples. We also derive key statistical
properties, including the quantile function and order statistics, and then employ maximum
likelihood and Bayesian inference methods. A comparative analysis of these estimation
techniques is conducted through simulation studies. Furthermore, the proposed model
is validated using two real-world datasets, including electronic device failure times and
ball-bearing failure analysis, by applying goodness-of-fit tests against alternative discrete
models. The findings emphasize the versatility and applicability of the discrete Hjorth
distribution in reliability studies, engineering, and survival analysis, offering a robust
framework for modeling discrete data in practical scenarios. To our knowledge, no prior
research has explored the use of censored data in analyzing discrete Hjorth-distributed
data. This study fills this gap, providing new insights into discrete reliability modeling and
broadening the application of the Hjorth distribution in real-world scenarios.

Keywords: discrete Hjorth; likelihood and Bayesian; survival analysis; censoring; order
statistics; simulation; real-world applications

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

In many lifetime experiments, data often seem continuous; however, they are actu-
ally discrete observations. This discrepancy drives the development of techniques that
transform continuous distributions into discrete versions, offering a suitable match to the
observed data. Discrete distributions in statistical modeling are widely encouraged for vari-
ous compelling reasons. They address limitations in data collection methods, measurement

Mathematics 2025, 13, 875 \https://doi.org/10.3390/math13050875
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intervals, or the inherent characteristics of observed phenomena, such as electronic device
failures or maintenance cycles. Discrete distributions represent data with countable or
finite values, such as the number of items tested, people in a queue, coin toss outcomes, or
defective products in manufacturing. These distributions are intuitive and easy to interpret,
corresponding to datasets with a defined range of possible values.

Moreover, many discrete distributions provide explicit expressions for their proba-
bility generating function and/or probability mass function (PMF), simplifying analytical
operations and permitting effective moment and probability calculations without requiring
integration. They are highly adaptable, making them suitable for modeling diverse real-
world phenomena, including ecosystem species distribution, genetic diversity, and network
traffic patterns. Their computational efficiency and versatility make them invaluable tools
in statistical modeling.

Recently, a variety of discrete models have been developed, with applications in
certain fields such as medicine, engineering, reliability studies, and survival analysis. For a
deeper understanding and practical applications of discrete distributions, one can explore
references Roy and Gupta [1] and Roy and Ghosh [2], among others. However, while
these studies have advanced discrete reliability theory and other application areas, they
primarily focus on continuous formulations or general discretization techniques that do
not specifically address the nuances of the Hjorth distribution.

As a result, many scholars have significantly advanced discrete reliability theory,
offering innovative approaches and perspectives. Transforming continuous models into
their discrete counterparts involves various discretization techniques, which are extensively
discussed and documented in academic research. These methods are designed to create
discrete distributions that closely reflect their continuous origins. A range of approaches
to discretization have been explored in the literature; one may refer to Bracquemond and
Gaudoin [3], Lai [4], and Chakraborty [5].

A prominent approach in the development of discrete distributions involves the ap-
plication of the survival function as a discretization technique. Notable contributions in
this area include the derivation of discrete analogs for normal and Rayleigh distributions,
presented by Roy [6,7], respectively, both employing the survival function methodology.
Extending this framework, the discrete formulation of the Burr-II distribution was sys-
tematically examined by Al-Huniti and AL-Dayian [8]. Additionally, Bebbington et al. [9]
provided a comprehensive study on the discrete additive counterpart of the Weibull distri-
bution. Further advancements and examples of discrete transformations across various
distributions are detailed by Haj Ahmad and Almetwally [10] and Chesneau et al. [11],
among others.

This study employs the survival discretization method to transform the continuous
Hjorth distribution into its discrete counterpart. Although the Hjorth distribution is highly
flexible in modeling various hazard rate shapes in a continuous framework, practical
scenarios often involve data recorded in discrete intervals or subject to censoring. Discretiz-
ing the Hjorth distribution using the survival function approach not only preserves key
statistical features—like percentiles and quantiles—but also facilitates the analysis of data
that are subject to constraints such as Type-II censoring. This discrete formulation directly
addresses the practical challenges in reliability and survival analysis, where capturing
the precise timing of failure events in a discrete manner is crucial for accurate modeling
and inference. Unlike other discretization techniques, this method retains the intrinsic
properties of the continuous model while providing a framework that is more robust to
data irregularities.

Admittedly, the DH model’s computational intensity and reliance on numerical tech-
niques are limitations that we address through rigorous simulation studies and method-
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ological refinements. While the DH model has demonstrated superior performance in
our comparative analysis, it may exhibit sensitivity to certain types of data distributions,
particularly when the failure rate does not follow the bathtub or monotonic hazard rate
structures that the model is designed to accommodate.

Consider a scenario where n items undergo a life-testing experiment, and only the first
r failure times, denoted by x1 < x2 < · · · < xr, are observed. The set x = (x1, x2, . . . , xr) is
called a Type-II censored sample. The remaining n − r items are censored and known only
to have more than xr failure times.

Various statistical characteristics, including the quantile function and order statistics,
are derived, and statistical inference methods are explored. These methods utilize the
maximum likelihood estimation approach and the Bayes framework. To assess the esti-
mators, the two estimation techniques for the newly developed discrete distribution are
compared. Simulation studies are conducted using numerical methodologies. To the best of
our knowledge, the existing literature does not address the use of censored data to analyze
discrete data following the Hjorth distribution. Therefore, this study aims to bridge this
gap in distribution theory. Two real-world datasets are analyzed using goodness-of-fit tests
to evaluate the effectiveness of the proposed model compared to other discrete alternatives.
The first example discusses the failure times of some electronic devices, and the second
considers ball-bearing failure analysis.

The rest of this paper is organized as follows: Section 2 introduces the discrete Hjorth
distribution, while Section 3 presents some statistical functions. Sections 4 and 5 calculate
statistical inference, including maximum likelihood and Bayesian estimation, respectively.
Monte Carlo results are presented and commented on in Section 6. Section 7 studies real-world
data illustration examples. Section 8 explores the findings and concluding remarks.

2. Discrete Hjorth Distribution

The Hjorth distribution (by Hjorth [12]) is a continuous distribution that extends the
Rayleigh, exponential, and linear failure rate distributions. Later, this distribution received
some attention in reliability analysis and lifetime experiments. Hence, its statistical prop-
erties, inferential statistics, and reliability analysis have been studied by Guess et al. [13].
Yadav et al. [14] used progressive censoring and estimated the parameters of the Hjorth
model in addition to the hazard rate and the reliability functions. Pushkarna et al. [15]
studied some recurrence relations for the Hjorth moment model under progressive cen-
soring. Pandey et al. [16] used Bayesian inference to estimate Hjorth parameters under
a generalized Type-I progressive censoring sample. Korkmaz et al. [17] presented a new
regression model using the Hjorth model. It is noted for its effectiveness in modeling
datasets with smaller values rather than larger ones. Elshahhat and Nassar [18] examined
survival analysis of the Hjorth model by adaptive Type-II progressive hybrid censoring.

We are motivated to use the Hjorth model because it has increasing, decreasing,
constant, upside-down, unimodal, and bathtub hazard rates. It can also be considered
a suitable model for fitting the bimodal, unimodal, U-shaped, and other-shaped data.
Hence, it was observed in the literature that the Hjorth model outperforms several well-
known lifetime distributions. Its continuous form, however, limits its use for datasets
that are inherently discrete. By converting the Hjorth model into a discrete form, a new
distribution is derived that accommodates count data while preserving Hjorth’s ability to
model tail behavior.

The probability density function of the continuous Hjorth model is expressed as

f (x; θ) = [αx(1 + βx) + γ](1 + βx)−
(

γ
β +1

)
e−α x2

2 , x ≥ 0, (1)

where θ = (α, β, γ)�.

6
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The survival function is written as

S(x; θ) = (1 + βx)−
(

γ
β

)
e−α x2

2 , (2)

in which β and γ are positive shape parameters, and α > 0 is a scale parameter.
Here, α controls the rate of decay in the exponential component. Hence, higher

values of α result in a faster decay of the density. The parameter β influences the shape
of the distribution through the polynomial term (1 + βx). It affects the tail behavior and
the curvature of the density function. A larger β tends to increase the weight in the
tail, which affects how quickly the probability mass of the distribution decreases as x
increases. γ adjusts the baseline level of the polynomial component. It plays a crucial role
in determining the heaviness of the tail and the overall curvature near the origin, thereby
influencing the skewness and the rate at which the distribution transitions from its peak to
the tail. The hazard rate function for the Hjorth model is

h(x; α, β, γ) = [αx(1 + βx) + γ]. (3)

This study aims to develop a novel discrete form of the Hjorth model and perform
the statistical analysis under Type-II censored data for time and cost constraints. This
counterpart, termed the discrete Hjorth (DH) model, is constructed using the survival
discretization approach. In this section, the PMF, cumulative distribution function (CDF),
and associated properties of DH model are outlined.

Roy [6,7] used the survival function to define the PMF for the new discrete distribution,
which is presented in the following form:

P(X=k)=S(k)−S(k+1), k= 0, 1, 2, . . . (4)

where S(x) is provided in Equation (2); hence, the DH PMF is provided by

P(X=k) = Δ(β, γ, k)e−αk0 − Δ(β, γ, k + 1)e−αk1 , (5)

where k0 = k2

2 , k1 = (k+1)2

2 , and Δ(β, γ, i) = (1 + βi)−
(

γ
β

)
.

The DH using the survival discretization method has the next CDF:

P(X<k)=1 − Δ(β, γ, k + 1)e−αk1 . (6)

The hazard rate function for the DH model is written as

hDH(k) =
Δ(β, γ, k)

Δ(β, γ, k + 1)
e

α(2k+1)
2 − 1. (7)

Figure 1 illustrates various shapes of the PMF and HRF for the DH distribution,
generated using different parameter selections. The PMF of the DH model is shown
to exhibit right-skewed or symmetric patterns, while the HRF displays diverse forms,
including decreasing, increasing, and bathtub-shaped patterns. Additionally, the shapes
presented in the figure highlight that the DH model can naturally represent forward or
backward recurrence time patterns within renewal processes.
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Figure 1. The PMF and HRF shapes of the DH distribution.

In the next section, some statistical properties, functions, and characteristics of the DH
model are derived, including quantiles, moments, and ordered statistics.

3. Statistical Functions

This section discusses statistical functions for the DH distribution, including the
quantile function, moments, skewness, kurtosis, and order statistics.

3.1. Quantile Function and Moments

The quantile function (say, Q(p)) for a discrete distribution is the inverse of its CDF. It
is used basically to generate random samples for simulation purposes. To determine the
quantile function, we solve for k in terms of p:

p = 1 − Δ(β, γ, k + 1)e−α
(k+1)2

2 . (8)

Rearranging Equation (8), we obtain

Δ(β, γ, k + 1)e−α
(k+1)2

2 = 1 − p. (9)

Substituting Δ(β, γ, k + 1) into (9), we have

(1 + β(k + 1))−
(

γ
β

)
e−α

(k+1)2
2 = 1 − p, (10)

and its natural logarithm becomes

−γ

β
ln(1 + β(k + 1))− α

(k + 1)2

2
= ln(1 − p). (11)

This equation must be solved numerically for k as an analytical closed-form expression
is generally not feasible due to the combination of logarithmic and exponential terms. The
complexity of the DH’s CDF makes direct algebraic inversion infeasible for deriving
the quantile function, particularly due to the presence of exponential and power terms.
Extracting k from the expression for Δ(θ, k) poses significant analytical difficulties and is

8
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unlikely to yield an exact solution because of the intricate structure and exponential decay
term. As an alternative to an exact analytical form, approximations or numerical techniques
can be employed for practical applications. Moments are a crucial statistical tool, offering
detailed insights into the shape and properties of a probability distribution. They are widely
applied in fields such as quality control, risk assessment, and environmental analysis.

To compute the moments for the DH model, consider a non-negative random variable
l∼DH(θ). The sth moment, say μ′

s, can be expressed as follows:

μ′
s =

∞

∑
l=0

ls
[

Δ(β, γ, l)e−α l2
2 − Δ(β, γ, l + 1)e−α

(l+1)2
2

]
. (12)

An exact expression for the sth moment is not obtainable; thus, numerical methods
are necessary to evaluate the moment. Specifically, take α = (0.25, 0.75, 1.5) and several
choices from β and γ.

Table 1 illustrates the behavior with respect to the mean (M), variance (V), index of
dispersion (ID), coefficient of variation (CV), skewness (S), and kurtosis (K) for the DH
model. As a result, we summarize the following points:

• As α grows (for fixed β and γ), the values of M, V , ID, and K decrease while those
for CV and S increase.

• As β grows (for fixed α and γ), the values of M and V increase while those for ID,
CV , S , and K decrease.

• As γ grows (for fixed α and β), the values of M and V decrease while those for ID,
CV , S , and K increase.

• The DH model is well suited for modeling both under- and over-dispersed data as its
variance can be smaller than the mean for certain parameter values, while the variance
is greater than the mean in other choices regarding parameter values.

• The DH model exhibits flexible dispersion characteristics depending on parame-
ter choices.

• For reliability modeling, higher dispersion (ID > 1) suggests suitability for lifetime
data with higher variability.

• The positive skewness values indicate that this distribution is right-skewed. Addition-
ally, a skewness value approaching zero suggests the possibility of a symmetric curve
for the PMF.

• Elevated kurtosis signifies greater tail risk and the likelihood of outliers relative to a
normal distribution. Changes in the distribution can be observed by adjusting α, β,
and γ.

Table 1. Measurements of DH model using several choices regarding its parameter values.

α β γ M V ID CV S K
0.25 0.5 0.1 1.765 1.819 1.031 0.764 0.667 3.199

0.5 1.082 1.442 1.333 1.110 1.075 4.093
1.0 0.615 0.875 1.522 1.521 1.601 6.421
1.5 0.364 0.507 1.652 1.954 2.153 9.699
2.5 0.139 0.175 1.729 3.008 3.445 19.13

2.5 0.1 1.877 1.858 0.990 0.726 0.616 3.147
0.5 1.440 1.853 1.259 0.945 0.850 3.311
1.0 1.041 1.584 1.287 1.209 1.226 4.164
1.5 0.757 1.250 1.391 1.477 1.579 5.585
2.5 0.408 0.705 1.422 2.059 2.337 10.21

9
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Table 1. Cont.

α β γ M V ID CV S K
0.75 0.5 0.1 0.859 0.636 0.741 0.929 0.671 3.074

0.5 0.584 0.526 0.900 1.241 1.148 3.699
1.0 0.367 0.367 1.001 1.652 1.768 5.261
1.5 0.234 0.244 1.062 2.114 2.363 7.871
2.5 0.098 0.104 1.149 3.291 3.590 17.51

2.5 0.1 0.895 0.649 0.725 0.900 0.636 3.043
0.5 0.715 0.615 0.860 1.097 0.887 3.297
1.0 0.541 0.530 0.981 1.346 1.236 4.073
1.5 0.410 0.436 1.045 1.609 1.645 5.276
2.5 0.238 0.273 1.060 2.198 2.518 8.919

1.5 0.5 0.1 0.480 0.340 0.709 1.215 0.793 2.806
0.5 0.340 0.276 0.812 1.544 1.218 3.582
1.0 0.223 0.199 0.893 2.003 1.772 5.260
1.5 0.146 0.138 0.941 2.536 2.379 7.626
2.5 0.064 0.063 0.986 3.932 3.872 15.69

2.5 0.1 0.497 0.347 0.699 1.186 0.757 2.769
0.5 0.403 0.313 0.777 1.388 1.034 3.212
1.0 0.311 0.265 0.852 1.655 1.384 4.026
1.5 0.240 0.218 0.907 1.944 1.745 5.145
2.5 0.143 0.140 0.976 2.609 2.530 8.638

3.2. Ordered Statistics

Consider W1, W2, . . . , Wn as a random sample following the DH model, and assume
that W1:n, W2:n, . . . , Wn:n represent the related order statistics; hence, the ith order statistics
have a CDF at w, which is

Fi:n(w; θ) =
n

∑
i=1

(
n
m

)
[Fi(w; θ)]m[1 − Fi(w; θ)]n−m. (13)

The negative Binomial theorem can be used as a series representation for the CDF,
which can be written as

Fi:n(w; θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

[Fi(w; θ)]m+j. (14)

Therefore,

Fi:n(w; θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j[
1 − Δ(β, γ, w + 1)e−α

(w+1)2
2

]
. (15)

The ith order statistic under the DH model has PMF that can be expressed as follows

fi:n(w; θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

[Δ(β, γ, w)e−α w2
2 − Δ(β, γ, w + 1)e−α

(w+1)2
2 ]m+j.

Hence, the rth moments of wi:n can be written as follows:

E(wr
i:n) =

∞

∑
w=0

n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

wr
[

Δ(β, γ, w)e−α w2
2 − Δ(β, γ, w + 1)e−α

(w+1)2
2

]m+j
.

10
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4. Maximum Likelihood Estimation

In this section, we estimate the undetermined parameters α, β, and γ for the DH model
by applying the maximum likelihood estimation (MLE) approach. The MLE estimates are
obtained based on the Type-II censoring scheme, and, by using the missing information
principle, the variance–covariance matrix (VCM) of α, β, and γ is obtained. This matrix
is then utilized to construct asymptotic confidence intervals for α, β, and γ. Let x1, . . . , xr

represent a Type-II censored sampling from DH model.
Referring to the PMF in Equation (5) and the CDF in Equation (7), the likelihood and

the log-likelihood functions are explored, respectively, as

L(θ | x) =

[
r

∏
i=1

(
Δ(β, γ, xi)e−α

x2
i
2 − Δ(β, γ, xi + 1)e−α

(xi+1)2

2

)]

×
[

Δ(β, γ, xr)e−α
x2

r
2

]n−r
,

and

�(θ | x) =
r

∑
i=1

log

(
Δ(β, γ, xi)e−α

x2
i
2 − Δ(β, γ, xi + 1)e−α

(xi+1)2

2

)

+ (n − r) log
(

Δ(β, γ, xr)e−α
x2

r
2

)
. (16)

The parameters’ MLEs are obtained by deriving the likelihood function (16) partially
for each parameter such as

∂�

∂α
=

r

∑
i=1

Ai,α

Ai(α, β, γ)
− (n − r)x2

r
2

, (17)

∂�

∂β
=

r

∑
i=1

Ai,β

Ai(α, β, γ)
+ (n − r)ψ(β, xr), (18)

and
∂�

∂γ
=

r

∑
i=1

Ai,γ

Ai(α, β, γ)
− (n − r)

β
ln(1 + βxr), (19)

where

Ai(α, β, γ) = Δ(β, γ, xi)e−
α x2

i
2 − Δ(β, γ, xi + 1)e−

α (xi+1)2

2 ,

Ai,α ≡ ∂Ai
∂α = − x2

i
2 Δ(β, γ, xi)e−

α x2
i

2 + (xi+1)2

2 Δ(β, γ, xi + 1)e−
α (xi+1)2

2 ,

Ai,β ≡ ∂Ai
∂β = e−

α x2
i

2 Δ(β, γ, xi)ψ(β, xi)− e−
α (xi+1)2

2 Δ(β, γ, xi + 1)ψ(β, xi + 1),

Ai,γ ≡ ∂Ai
∂γ = − 1

β ln(1 + βxi)Δ(β, γ, xi)e−
α x2

i
2 + 1

β ln(1 + β(xi + 1))Δ(β, γ, xi + 1)e−
α (xi+1)2

2 ,

and

ψ(β, x) = γ
β2 ln(1 + βx)− γx

β(1+βx) .

The obtained system of nonlinear Equations (17)–(19) is solved by using numerical
techniques to determine the parameter estimates. These calculations can be complex and
computationally intensive, especially when dealing with sums and exponentials. For actual
applications, numerical methods or software packages capable of symbolic differentiation
may be beneficial for accurately computing these derivatives, especially when optimizing
parameters in practical scenarios. Various numerical techniques have been explored in the
literature; in this study, the Newton–Raphson method is employed. This method was
selected primarily due to its quadratic convergence rate that enables rapid refinement of

11
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estimates when the initial guess is reasonably close to the true solution. The results of the
analysis are discussed in Section 6.

To construct the VCM of the DH model parameters θ, we need to use the Fisher
Information Matrix (FIM), which is derived from the second-order partial derivatives of the
log-likelihood function �(θ). The FIM (say, I(·)) is a 3 × 3 symmetric matrix where each
entry corresponds to a second-order partial derivative. The inverse of the FIM provides
the VCM (denoted by Σ(·) ∼= I−1(·)), which is then used to build asymptotic confidence
intervals for the parameters.

The FIM and VCM (at θ = θ̂) are expressed, respectively, as

I(θ) =

⎛⎜⎝Iαα Iαβ Iαγ

Iβα Iββ Iβγ

Iγα Iγβ Iγγ

⎞⎟⎠
and

Σ(θ) =

⎛⎜⎝ Var(α) Cov(α, β) Cov(α, γ)

Cov(β, α) Var(β) Cov(β, γ)

Cov(γ, α) Cov(γ, β) Var(γ)

⎞⎟⎠.

The second-order partial derivatives of the log-likelihood function � are developed
as follows:

∂2�

∂α2 =
r

∑
i=1

[
Ai,αα

Ai
−
(

Ai,α

Ai

)2
]

, (20)

∂2�

∂β2 =
r

∑
i=1

[
Ai,ββ

Ai
−
(Ai,β

Ai

)2
]
+ (n − r)ψ′(β, xr), (21)

∂2�

∂γ2 =
r

∑
i=1

[
Ai,γγ

Ai
−
(

Ai,γ

Ai

)2
]

, (22)

∂2�

∂α∂β
=

r

∑
i=1

[
Ai,αβ

Ai
− Ai,α Ai,β

A2
i

]
, (23)

∂2�

∂α∂γ
=

r

∑
i=1

[
Ai,αγ

Ai
− Ai,α Ai,γ

A2
i

]
, (24)

and

∂2�

∂β∂γ
=

r

∑
i=1

[
Ai,βγ

Ai
− Ai,β Ai,γ

A2
i

]
+ (n − r)

[
1
β2 ln(1 + βxr)− xr

β(1 + βxr)

]
, (25)

where Δ◦ = Δ(β, γ, xi) and Δ• = Δ(β, γ, xi + 1)

Ai,αα =
x4

i
4 Δ◦e−

α x2
i

2 − (xi+1)4

4 Δ•e−
α (xi+1)2

2 ,

Ai,ββ = e−
α x2

i
2 Δ◦

[
ψ(β, xi)

2 + ψ′(β, xi)
]
− e−

α (xi+1)2

2 Δ•
[
ψ(β, xi + 1)2 + ψ′(β, xi + 1)

]
,

Ai,γγ = 1
β2 ln(1 + βxi)

2 Δ◦e−
α x2

i
2 − 1

β2 ln(1 + β(xi + 1))2Δ•e−
α (xi+1)2

2 ,

ψ′(β, x) = − 2γ
β3 ln(1 + βx) + γx

β2(1+βx) +
γx(1+2βx)
[β(1+βx)]2 ,

Ai,αβ = − x2
i

2 e−
α x2

i
2 Δ◦ ψ(β, xi) +

(xi+1)2

2 e−
α (xi+1)2

2 Δ• ψ(β, xi + 1),

Ai,αγ =
x2

i
2β ln(1 + βxi) e−

α x2
i

2 Δ◦ − (xi+1)2

2β ln(1 + β(xi + 1))e−
α (xi+1)2

2 Δ•

and

Ai,βγ = − 1
β e−

α x2
i

2 Δ◦ ψ(β, xi) ln(1 + βxi) +
1
β e−

α (xi+1)2

2 Δ• ψ(β, xi + 1) ln(1 + β(xi + 1)).

12
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Hence, the asymptotic confidence interval for θ = (θ) is provided by θ ± z λ
2

√
Var(θ),

where z λ
2

is the critical value from the standard normal distribution for a given λth confi-
dence level.

5. Bayesian Inference

This section deals with the Bayesian estimation, which is applied to estimate the
unknown parameters of the DH model. This method treats the parameters as random
variables following a certain model, referred to as the prior distribution. Since prior
information is often unavailable, it becomes necessary to choose a suitable prior.

A joint conjugate prior distribution is selected for parameters α, β, and γ, with each
parameter assumed to follow a gamma distribution. Consequently, α ∼ Gamma(a1, b1),
β ∼ Gamma(a2, b2), and γ ∼ Gamma(a3, b3), where ai and bi (for i = 1, 2, 3) represent non-
negative hyper-parameters of the specified distributions. Therefore, the prior distributions
for α, β, and γ are defined as

π1(α) =
b1

a1

Γ(a1)
αa1−1e−b1α, (26)

π2(β) =
b2

a2

Γ(a2)
βa2−1e−b2β, (27)

and

π3(γ) =
b3

a3

Γ(a3)
γa3−1e−b3γ. (28)

Therefore, the joint prior function for α, β, and γ is

π(θ) ∝ αa1−1βa2−1γa3−1e−b1α−b2β−b3γ. (29)

The joint posterior (say, P(·)) of α, β, and γ with data availability is

P(θ | x) =
1
K

L(θ | x)π(θ), (30)

where K =
∫∫∫

L(θ | x)π(θ)dαdβdγ is the normalizing factor.
The parameter estimation for the DH model has been analyzed using the squared

error (SE) loss function. Later, to evaluate the efficiency of the estimation methods and
to examine the impact of parameter values on these techniques, a simulation analysis
is conducted to assess the efficiency of the estimators based on several metrics, namely
average point estimate, mean absolute bias, mean square error, average interval length,
and coverage probability.

Under the SE loss function, Bayesian estimation of a parameter θ (for example) is
defined as the expected value for the joint posterior distribution as

θ̂SE =
1
K

∫
θL(θ | x)π(θ)dθ. (31)

It is necessary to employ numerical approaches for calculating the triple integration
mentioned in Equation (31). To achieve this, we adopted the Markov Chain Monte Carlo
(MCMC) approach. A suitable R code was developed to execute this process.

Applying the survival discretization method leads to the development of the DH
model, whose PMF is defined in Equation (5). The joint posterior density under a Type-II
censored sample is expressed as follows:

13
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P(θ | x) =
1
K

[
r

∏
i=1

(
Δ(β, γ, xi)e−α

x2
i
2 − Δ(β, γ, xi + 1)e−α

(xi+1)2

2

)][
Δ(β, γ, xr)e−α

x2
r
2

]n−r

× αa1−1βa2−1γa3−1e−b1α−b2β−b3γ.

(32)

Bayesian analysis for the parameters α, β, and γ under the SE loss function is beyond
developing their conditional posterior functions, respectively, as

P1(α | β, γ, x) = L(θ | x)αa1 e−b1α, (33)

P2(β | α, γ, x) = L(θ | x)βa2 e−b2β, (34)

and

P3(γ | α, βx) = L(θ | x)γa3 e−b3γ. (35)

The Bayes estimators of α, β, and γ, based on Equations (33)–(35), respectively, cannot
follow any known statistical distribution. To handle this problem, the Metropolis–Hastings
(M–H) sampler, the most important term of the MCMC family of Bayes calculation tech-
niques, is recommended to evaluate the Bayes point estimates and their Bayesian credible
intervals (BCIs). It is useful to remember that the BCI represents a range of values where an
unknown parameter is likely to reside with a specified probability based on the obtained
data and prior beliefs regarding the parameters.

Now, the implementation of the MCMC approach through the M–H sampler is out-
lined as listed below:

Step 1: Start by assuming a basic value (α(0), β(0), γ(0)) = (α̂, β̂, γ̂).
Step 2: Set m = 1.
Step 3: From (33), create α� from N(α(m−1), Var(α)), and then follow the next steps (a)–(d):

(a) Find C1 = P1(α
� |β(m−1) ,γ(m−1) ,x)

P1(α(m−1) |β(m−1) ,γ(m−1) ,x)
.

(b) Obtain Q1 = min{1, C1}.
(c) Generate u1 from U (0, 1).
(d) If u1 < Q1, adopt the proposal and set α(m) = α�; otherwise, set α(m) =

α(m−1).

Step 4: Redo Step 3 for β and γ.
Step 5: Set m = m + 1.
Step 6: Obtain (α(l), β(l), γ(l)) for l = 1, 2, . . . N by redoing Steps 2 to 4 N times.
Step 7: Discard the first iterations (say, N∗) as burn-in, and obtain the Bayes estimates of

α, β, and γ (say, ψj, j = 1, 2, 3) as

ψ̃j =
1

N − N∗
N

∑
m=N∗+1

ψ(m),

where (ψ1, ψ2, ψ3) = (α, β, γ).
Step 8: Sort ψ

(m)
j , j = 1, 2, 3, m = N∗ + 1, N∗ + 2, . . . , N, in ascending order and obtain

the 100 (1 − λ)% BCIs for ψj as(
ψj((N−N∗) λ

2 )
, ψj((N−N∗) (1− λ

2 ))

)
.

14



Mathematics 2025, 13, 875

6. Numerical Comparisons

In this part, to test the efficiency of the acquired estimators of DH’s parameters α,
β, and γ, different comparisons via Monte Carlo experiments are performed. After that,
some comments on the outcomes of the simulation are provided. The numerical part was
performed using the R (64) software package.

6.1. Simulation Scenarios

We now suggest the following steps to gather a Type-II censored dataset from the
proposed model:

Step 1: Fix the number of replications as 2000.
Step 2: Fix the values of DH(α, β, γ); that is, (a) Set-1:DH(0.5,0.8,1) and (b) Set-2:DH(1,1.5,2).
Step 3: Set sample size n as (30, 60, 100, 150, 200).
Step 4: Obtain ui for i = 1, 2, . . . , n as an independent observation from a uniform distri-

bution U(0, 1).
Step 5: Obtain pseudo-random values of size n from the DH distribution as

xi = F−1(ui; α, β, γ), i = 1, 2, . . . , n.

Step 6: Sort the outputs in Step 5; then, for a failure percentage (FP%), determine the
value of r such as r

n × 100 = 40, 80, and 100%. It is important to note that, when
FP%→ 100%, censored (incomplete) sampling reverts to completed sampling.

Step 7: Fix the informative prior sets of ai and bi for i = 1, 2, 3 to develop the Bayes point
and interval estimations, such as

(i) For Set-1:

• Prior-A:(a1, a2, a3) = (2.5, 0.16, 5) and bi = 5 for i = 1, 2, 3;
• Prior-B:(a1, a2, a3) = (5, 0.08, 10) and bi = 10 for i = 1, 2, 3.

(ii) For Set-2:

• Prior-A:(a1, a2, a3) = (5, 0.3, 10) and bi = 5 for i = 1, 2, 3;
• Prior-B:(a1, a2, a3) = (10, 0.15, 20) and bi = 10 for i = 1, 2, 3.

Step 8: Compute the average point estimate (APE) of α (as an example):

APE(ᾰ) =
1

2000 ∑2000
i=1 ᾰ[i],

where ᾰ is the offered estimate of α at ith sample.
Step 9: Compute the mean squared error (MSE) and mean absolute bias (MAB) of α:

MSE(ᾰ) =
1

2000 ∑2000
i=1

(
ᾰ[i] − α

)2
,

and

MAB(ᾰ) =
1

2000 ∑2000
i=1

∣∣∣ᾰ[i] − α
∣∣∣.

Step 10: Compute the average interval length (AIL) and coverage provability (CP) of α:

ACL95%(α) =
1

2000 ∑2000
i=1

(Uᾰ[i] (α)−Lᾰ[i] (α)
)
,
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and

CP95%(α) =
1

2000 ∑2000
i=1 I(L

ᾰ[i]
;U

ᾰ[i]

)(α),
where (L(·),U (·)) refers to the estimated interval limits and I(·) denotes the indi-
cator operator.

The chosen prior distributions reflect reasonable assumptions about parameters α, β,
and γ based on prior research and empirical observations in reliability and survival studies.
Prior-A represents a more informative prior with moderate variance, assuming prior
knowledge about the expected parameter range, whereas Prior-B has greater uncertainty
by enabling higher variance, making it suitable for scenarios where less prior knowledge
is available.

6.2. Simulation Results and Discussion

In Tables 2 and 3, the APEs, MSEs, and MABs of α, β, and γ can be found in the first,
second, and third columns, respectively. Additionally, in Tables 4 and 5, the AILs and CPs
of α, β, and γ can be found in the first and second columns, respectively.

From the facts presented in Tables 2 and 5 and the plots in Figure 2, the statistical
behavior of the proposed estimators for parameters α, β, and γ under various experimental
conditions is summarized as follows:

• As the sample size n increases, the performance of all the estimators improves signifi-
cantly. Specifically, lower MSE, MAB, and AIL values are observed, along with higher
CP values. These results demonstrate the asymptotic consistency of the proposed
estimation methods, reinforcing their reliability for larger datasets.

• Increasing r (or, equivalently, increasing FP%) enhances the precision of the calculated
estimators. This improvement is reflected in reduced MSE, MAB, and AIL values,
while CP values exhibit an increasing trend, indicating stronger inferential accuracy.

• As we anticipate, when FP%→ 100%, the precision of all simulation results of α, β, or
γ behaves better under a complete sampling situation than others.

• When comparing point estimates of α, β, and γ, the Bayesian estimation approach
consistently outperforms the likelihood approach in terms of lower simulated MSE
and MAB values. This suggests that the Bayesian framework provides more stable
and efficient estimators in finite samples.

• Regarding interval estimation, the BCI method demonstrates superior performance
over the ACI method. Specifically, BCI-derived intervals exhibit shorter AIL val-
ues while maintaining higher CP values, emphasizing their greater informativeness
and accuracy.

• The choice regarding the prior distribution significantly influences the Bayesian esti-
mation results. For all three parameters, α, β, and γ, estimates obtained using Prior-B
outperform those derived from Prior-A. This can be attributed to the smaller variance
of Prior-B, which leads to more precise and concentrated posterior distributions.

• The overall estimation accuracy varies depending on the data structure. The results
from Set-1 yield more precise estimates of α, β, and γ compared to Set-2. Moreover,
as the values of these parameters increase, a deterioration in estimation precision is
observed, characterized by higher MSE, MAB, and AIL values and a corresponding
decline in CP values.

• Finally, for analyzing discrete Hjorth data in the presence of censored observations, the
Bayesian framework is strongly recommended due to its robust inferential properties,
particularly in handling incomplete data efficiently.
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Using the simulated values of MSEs and AILs (for example) corresponding to DH
parameters α, β, and γ, Figure 2 provides clearer insights into the simulation results and
confirms all the data presented in Tables 2–5.

Table 2. The point results of α, β, and γ from Set-1.

n FP% Par. MLE Bayes

Prior → A B

30 40% α 0.4595 0.3357 0.5327 0.4399 0.0892 0.2437 0.6927 0.0691 0.2125
β 1.2955 1.1791 1.0403 0.7193 0.6275 0.4825 1.0522 0.1867 0.3960
γ 1.1438 0.5379 0.6113 0.9556 0.3334 0.5583 0.8510 0.1499 0.3706

80% α 0.4691 0.3085 0.4952 0.4802 0.0714 0.2283 0.4713 0.0629 0.2090
β 0.9478 0.9663 0.8685 0.7054 0.5176 0.4365 1.1733 0.1691 0.3778
γ 1.0751 0.5133 0.5963 1.0021 0.2452 0.4660 1.0803 0.1170 0.2934

100% α 0.9581 0.2854 0.4581 0.4886 0.0661 0.2112 0.6242 0.0582 0.1933
β 0.9965 0.8939 0.8033 0.7267 0.4788 0.4038 1.1701 0.1516 0.3495
γ 1.0180 0.4748 0.5452 1.0763 0.2168 0.4311 1.1086 0.1024 0.2714

60 40% α 0.4219 0.2749 0.4831 0.4904 0.0680 0.1995 0.4689 0.0576 0.1895
β 1.2951 0.6072 0.6936 1.8196 0.4526 0.4048 1.4113 0.1578 0.3384
γ 0.9944 0.4727 0.5763 0.8103 0.2444 0.4587 0.9580 0.0931 0.2838

80% α 0.5119 0.2613 0.4792 0.5481 0.0660 0.1952 0.5068 0.0520 0.1827
β 0.9122 0.6063 0.5426 1.6449 0.1853 0.3708 1.2936 0.1378 0.2825
γ 1.2847 0.4236 0.5363 1.2421 0.2334 0.4364 1.2864 0.0900 0.2750

100% α 0.8758 0.2417 0.4433 0.5070 0.0611 0.1805 0.4688 0.0481 0.1690
β 0.8925 0.5609 0.5019 1.5815 0.1714 0.3430 1.1966 0.1275 0.2613
γ 1.2541 0.3918 0.4961 1.1489 0.2159 0.4037 0.8994 0.0833 0.2544

100 40% α 0.4891 0.2569 0.4455 0.4676 0.0628 0.1914 0.4523 0.0517 0.1678
β 1.2951 0.1612 0.4051 1.4877 0.1383 0.3322 0.7992 0.1179 0.2665
γ 1.1676 0.3724 0.5123 0.8201 0.1300 0.2919 0.9716 0.0620 0.2213

80% α 0.5378 0.2450 0.2192 0.5405 0.0611 0.1885 0.6602 0.0503 0.1603
β 0.9293 0.1407 0.3679 1.4782 0.0978 0.2756 0.8528 0.0907 0.1902
γ 1.1275 0.3165 0.4853 1.2888 0.1222 0.2854 1.2627 0.0517 0.1909

100% α 0.8758 0.2267 0.2028 0.4999 0.0565 0.1743 0.6507 0.0465 0.1482
β 0.8925 0.1265 0.3240 1.3674 0.0910 0.2489 0.8881 0.0839 0.1759
γ 1.2541 0.2793 0.4249 1.1921 0.1160 0.2395 1.2680 0.0448 0.1707

150 40% α 0.4803 0.2251 0.1942 0.6836 0.0501 0.1817 0.5732 0.0383 0.1525
β 1.2951 0.1385 0.3390 0.8417 0.0822 0.1833 1.0697 0.0337 0.1548
γ 0.9868 0.2757 0.4275 0.9444 0.1205 0.2725 0.7920 0.0417 0.1708

80% α 0.5174 0.1751 0.1879 0.5085 0.0495 0.1710 0.5407 0.0353 0.1436
β 0.9403 0.1307 0.3130 1.0509 0.0741 0.1741 0.9142 0.0292 0.1484
γ 1.3767 0.2259 0.3968 1.0379 0.1003 0.2597 1.0862 0.0277 0.1462

100% α 0.5174 0.1593 0.1704 0.4704 0.0458 0.1581 0.5002 0.0326 0.1328
β 0.9403 0.1169 0.2896 0.9721 0.0685 0.1561 0.8457 0.0271 0.1354
γ 1.3767 0.2050 0.3567 0.9600 0.0918 0.2402 1.0047 0.0226 0.1305

200 40% α 0.5254 0.1451 0.1778 0.4864 0.0454 0.1390 0.4949 0.0229 0.1241
β 1.2951 0.1249 0.2758 1.0504 0.0617 0.1646 0.8633 0.0185 0.1299
γ 1.0568 0.1973 0.3713 0.9843 0.0905 0.1636 0.9404 0.0201 0.1256

80% α 0.5208 0.1351 0.1668 0.5389 0.0397 0.1217 0.4800 0.0214 0.1099
β 0.9369 0.1187 0.2494 1.0374 0.0565 0.1319 1.0322 0.0139 0.1182
γ 1.3792 0.1822 0.3581 1.0428 0.0775 0.1405 1.1908 0.0179 0.1148

100% α 0.4965 0.1269 0.1543 0.4984 0.0368 0.1125 0.4440 0.0192 0.1016
β 0.8965 0.1076 0.2307 0.9562 0.0522 0.1172 0.9548 0.0128 0.1120
γ 1.1125 0.1569 0.3237 0.9646 0.0716 0.1259 1.1015 0.0165 0.1082
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Table 3. The point results of α, β, and γ from Set-2.

n FP% Par. MLE Bayes

Prior → A B

30 40% α 1.1737 1.0966 0.9495 0.9770 0.6260 0.7776 1.0820 0.5066 0.6748
β 2.1669 1.4447 1.2663 1.8700 0.7929 0.7170 1.3988 0.4136 0.5917
γ 1.8538 0.9218 1.2516 1.8769 0.8264 0.9441 1.8726 0.4612 0.7424

80% α 0.9265 0.8285 0.9006 0.9564 0.6096 0.7260 0.9832 0.4650 0.6317
β 1.8313 1.2496 1.1377 1.5113 0.6358 0.5897 1.8926 0.3733 0.5402
γ 2.1315 0.8859 1.1467 1.9839 0.7323 0.7222 2.1495 0.4286 0.6854

100% α 0.9087 0.7567 0.8244 0.8966 0.5271 0.6806 0.9176 0.4326 0.5923
β 1.6717 1.1671 1.0566 1.4168 0.5796 0.5653 1.5774 0.3450 0.5065
γ 1.8317 0.8231 1.0450 1.8599 0.6965 0.6877 1.9870 0.3984 0.6343

60 40% α 0.9654 0.7529 0.8538 0.9551 0.4540 0.5908 0.8934 0.3848 0.5543
β 1.6969 1.0875 0.9139 1.6998 0.5755 0.5570 2.1598 0.3604 0.4984
γ 1.7585 0.8333 1.0948 1.9571 0.6826 0.6194 1.8390 0.3676 0.5637

80% α 1.0674 0.4009 0.5696 1.0545 0.3752 0.5317 0.9412 0.3502 0.4902
β 2.1337 0.9372 0.8490 1.8577 0.4576 0.5197 1.9307 0.3154 0.4759
γ 2.1798 0.7992 0.8250 2.1503 0.6112 0.5445 2.5056 0.3228 0.5062

100% α 1.1265 0.3758 0.5234 0.9886 0.3518 0.4985 0.8982 0.3308 0.4596
β 1.7550 0.8679 0.7796 1.7416 0.4290 0.4872 1.9781 0.3030 0.4462
γ 1.9808 0.7349 0.7673 1.8665 0.5730 0.5105 2.1490 0.2964 0.4675

100 40% α 1.1365 0.3637 0.5191 1.1271 0.3403 0.4763 1.0304 0.3155 0.4386
β 1.5970 0.8156 0.8346 1.7846 0.4136 0.4969 1.7985 0.2996 0.4597
γ 2.1245 0.7064 0.7892 1.9665 0.5843 0.4941 1.9662 0.2271 0.4634

80% α 0.9541 0.3366 0.4964 1.0945 0.3168 0.4542 1.1486 0.2911 0.4155
β 1.8494 0.7897 0.7556 1.3489 0.3485 0.4526 1.4606 0.1999 0.3945
γ 2.2307 0.5262 0.5429 2.1190 0.3600 0.4599 2.3979 0.2115 0.4166

100% α 1.0448 0.3155 0.4654 1.0261 0.2970 0.4358 1.0769 0.2729 0.3895
β 1.9734 0.7540 0.7084 1.2646 0.3287 0.4143 1.3693 0.1874 0.3698
γ 2.0913 0.4933 0.5134 1.9866 0.3175 0.4231 2.2480 0.1983 0.3905

150 40% α 1.1643 0.2987 0.4520 1.1920 0.2493 0.3800 1.1528 0.1394 0.3367
β 1.7970 0.6886 0.7264 1.6941 0.2998 0.4167 2.0060 0.1849 0.3676
γ 1.9938 0.4749 0.5035 1.7605 0.3181 0.4152 1.9308 0.1753 0.3690

80% α 0.8833 0.2784 0.4221 1.1387 0.2424 0.3674 1.1861 0.1243 0.3116
β 1.8238 0.3184 0.4862 1.4928 0.2754 0.3709 1.5934 0.1658 0.3313
γ 2.1682 0.4368 0.4095 2.5074 0.1682 0.3576 2.1656 0.1541 0.3284

100% α 0.8281 0.2610 0.3957 1.0675 0.2273 0.3445 1.1119 0.1165 0.2922
β 1.7099 0.2985 0.4558 1.3995 0.2582 0.3477 1.6813 0.1595 0.3155
γ 2.0327 0.4095 0.3839 2.3507 0.1577 0.3352 2.0655 0.1445 0.3108

200 40% α 1.1909 0.2637 0.3785 1.0137 0.2002 0.3081 0.9611 0.1173 0.2631
β 1.5970 0.3024 0.4747 1.5268 0.2465 0.3314 1.8722 0.1473 0.3138
γ 2.1364 0.4039 0.3760 1.7792 0.1450 0.3124 1.9750 0.1259 0.2689

80% α 1.0551 0.2451 0.2793 1.1547 0.1754 0.2645 1.1641 0.1063 0.2259
β 1.8140 0.2531 0.3711 1.7848 0.2150 0.3140 1.8269 0.1287 0.2724
γ 2.1482 0.3846 0.3571 2.1201 0.1265 0.2719 2.2701 0.1138 0.2158

100% α 0.9892 0.2298 0.2562 1.0825 0.1645 0.2379 1.0914 0.0987 0.1976
β 1.7807 0.2373 0.3408 1.6732 0.2016 0.2944 1.7127 0.1169 0.2355
γ 1.9045 0.3605 0.3280 1.9876 0.1186 0.2549 2.1283 0.0986 0.1961
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Table 4. The interval results of α, β, and γ from Set-1.

n FP% Par. 95% ACI 95% BCI

Prior → A B

30 40% α 2.583 0.845 1.117 0.902 0.750 0.918
β 1.691 0.899 1.407 0.904 0.336 0.921
γ 1.987 0.876 1.275 0.894 0.616 0.911

80% α 2.302 0.852 0.909 0.907 0.676 0.922
β 1.454 0.902 1.313 0.907 0.310 0.922
γ 1.695 0.882 1.029 0.900 0.577 0.913

100% α 2.190 0.858 0.879 0.909 0.644 0.926
β 1.274 0.908 1.274 0.908 0.288 0.927
γ 1.565 0.900 0.979 0.901 0.524 0.915

60 40% α 2.237 0.857 0.897 0.909 0.637 0.924
β 1.339 0.905 1.237 0.910 0.283 0.924
γ 1.412 0.885 0.981 0.902 0.551 0.914

80% α 2.200 0.860 0.814 0.912 0.536 0.928
β 1.272 0.908 0.893 0.914 0.256 0.928
γ 1.297 0.889 0.977 0.904 0.530 0.915

100% α 1.960 0.873 0.787 0.915 0.516 0.930
β 1.140 0.912 0.818 0.916 0.226 0.931
γ 1.140 0.902 0.876 0.911 0.469 0.920

100 40% α 2.080 0.865 0.768 0.915 0.491 0.931
β 1.233 0.910 0.754 0.918 0.219 0.931
γ 1.094 0.902 0.927 0.905 0.486 0.917

80% α 1.946 0.870 0.720 0.917 0.471 0.933
β 1.201 0.912 0.686 0.923 0.190 0.932
γ 0.933 0.904 0.764 0.910 0.456 0.918

100% α 1.839 0.874 0.680 0.919 0.445 0.937
β 1.135 0.914 0.619 0.926 0.168 0.934
γ 0.882 0.909 0.702 0.913 0.431 0.920

150 40% α 1.688 0.878 0.685 0.919 0.440 0.936
β 1.150 0.914 0.628 0.925 0.168 0.934
γ 0.788 0.907 0.591 0.914 0.447 0.918

80% α 1.467 0.883 0.609 0.922 0.417 0.937
β 1.068 0.915 0.585 0.929 0.147 0.935
γ 0.610 0.909 0.558 0.915 0.427 0.919

100% α 1.372 0.887 0.569 0.925 0.390 0.939
β 0.930 0.918 0.547 0.931 0.124 0.938
γ 0.527 0.912 0.522 0.918 0.359 0.922

200 40% α 1.275 0.887 0.525 0.925 0.371 0.940
β 1.003 0.916 0.548 0.932 0.122 0.936
γ 0.583 0.912 0.517 0.916 0.412 0.919

80% α 1.064 0.893 0.483 0.928 0.318 0.942
β 0.904 0.919 0.518 0.934 0.101 0.938
γ 0.543 0.913 0.467 0.919 0.387 0.920

100% α 0.995 0.896 0.452 0.930 0.297 0.943
β 0.845 0.923 0.484 0.937 0.094 0.940
γ 0.479 0.915 0.436 0.922 0.362 0.921
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Table 5. The interval results of α, β, and γ from Set-2.

n FP% Par. 95% ACI 95% BCI

Prior → A B

30 40% α 3.315 0.832 1.775 0.893 1.167 0.912
β 2.382 0.883 1.348 0.902 0.711 0.916
γ 2.221 0.867 1.487 0.886 0.969 0.893

80% α 3.157 0.837 1.473 0.897 1.018 0.915
β 2.154 0.886 1.279 0.905 0.661 0.919
γ 1.882 0.874 1.433 0.887 0.930 0.895

100% α 2.876 0.842 1.367 0.901 0.982 0.917
β 1.994 0.889 1.212 0.907 0.581 0.921
γ 1.764 0.876 1.317 0.889 0.894 0.893

60 40% α 2.967 0.841 1.341 0.899 0.850 0.918
β 1.818 0.890 1.149 0.908 0.587 0.921
γ 1.643 0.877 1.388 0.890 0.814 0.900

80% α 2.559 0.846 1.190 0.903 0.828 0.920
β 1.756 0.892 1.082 0.910 0.527 0.922
γ 1.533 0.880 1.278 0.892 0.790 0.902

100% α 2.230 0.851 0.895 0.892 0.739 0.923
β 1.365 0.899 0.930 0.893 0.457 0.925
γ 1.297 0.901 0.997 0.888 0.653 0.907

100 40% α 2.233 0.852 0.934 0.906 0.760 0.923
β 1.642 0.895 0.918 0.912 0.467 0.924
γ 1.496 0.882 1.204 0.893 0.762 0.906

80% α 1.993 0.857 0.884 0.909 0.715 0.926
β 1.548 0.897 0.791 0.915 0.425 0.925
γ 1.233 0.885 1.022 0.896 0.735 0.907

100% α 1.883 0.860 0.815 0.912 0.676 0.930
β 1.463 0.901 0.708 0.917 0.401 0.928
γ 1.165 0.888 0.927 0.901 0.664 0.910

150 40% α 1.781 0.863 0.850 0.911 0.690 0.928
β 1.493 0.900 0.769 0.917 0.386 0.928
γ 1.006 0.888 0.859 0.901 0.691 0.909

80% α 1.559 0.868 0.812 0.913 0.628 0.930
β 1.451 0.901 0.732 0.918 0.344 0.929
γ 0.986 0.890 0.814 0.903 0.667 0.910

100% α 1.457 0.872 0.759 0.916 0.587 0.933
β 1.246 0.904 0.685 0.920 0.322 0.931
γ 0.922 0.893 0.761 0.905 0.624 0.913

200 40% α 1.498 0.871 0.796 0.915 0.590 0.932
β 1.390 0.903 0.672 0.920 0.317 0.931
γ 0.925 0.892 0.780 0.907 0.631 0.912

80% α 1.262 0.875 0.755 0.917 0.495 0.935
β 1.323 0.904 0.620 0.921 0.298 0.932
γ 0.887 0.895 0.674 0.910 0.604 0.914

100% α 1.180 0.877 0.706 0.919 0.463 0.937
β 1.237 0.906 0.579 0.923 0.278 0.935
γ 0.829 0.898 0.622 0.912 0.565 0.916
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Figure 2. The simulated MSE (left) and AIL (right) results of α, β, and γ.

7. Real-World Data Analysis

This section analyzes two applications using two separate actual datasets to (i) assess
the offered model’s adaptation and effectiveness to real problems; (ii) show how the
inferential outcomes can be applied to a real-world scenario; and (iii) assess if the suggested

21



Mathematics 2025, 13, 875

model is more appropriate than eight other discrete models in the literature. Now, we
consider the following applications:

• The first application (say, App [A]) examines the failure times of eighteen electronic
devices. These data were first introduced by Wang [19]; see Table 6.

• The second application (say, App [B]) analyzes how many millions of revolutions
each of 22 ball bearings will make before they fail; see Caroni [20]. For computational
purposes, we divide each revolution by ten and list the newly transformed ball-bearing
data in Table 6.

Table 6. Failure time points in the two applications.

Application Time

[A] 0.5 1.1 2.1 3.1 4.6 7.5 9.8 12.2 14.5 16.5 19.6
22.4 24.5 29.3 32.1 33.0 35.0 42.0

[B] 1.788 2.892 3.300 4.152 4.212 4.560 4.880 5.184 5.196 5.412 5.556
6.780 6.864 6.864 6.888 8.412 9.312 9.864 10.512 12.792 12.804 17.340

Briefly, in Table 7, several statistics for applications [A] and [B], namely minimum,
maximum, quartiles (1st, 2nd, and 3rd), mean, mode, standard deviation (St.D.), skewness,
and kurtosis, are evaluated.

Table 7. Failure time statistics in the two applications.

Application Minimum Maximum
Quartiles

Mode Mean St.D. Skewness Kurtosis
1st 2nd 3rd

[A] 0.500 42.00 5.325 15.50 28.10 0.500 17.21 13.15 0.314 1.850
[B] 1.788 17.34 4.640 6.168 9.087 6.864 7.071 3.762 1.066 3.742

Aside from three well-known discrete models, namely negative binomial (NB), geo-
metric (Geom), and Poisson (Pois), based on the above two applications, the DH model
will be compared with eight other comparable models from the literature to demonstrate
the reliability and advantage of the newly developed model. The competitive distributions
include the following:

• Discrete exponentiated-Chen (DEC(α, β, γ)) by Alotaibi et al. [21];
• Exponentiated discrete Weibull (EDW(α, β, γ)) by Nekoukhou and Bidram [22];
• Discrete modified Weibull (DMW(α, β, γ)) by Almalki and Nadarajah [23];
• Discrete Burr Type-XII (DB(α, β)) by Krishna and Pundir [24];
• Discrete Perks (DP(α, β)) by Tyagi et al. [25];
• Discrete generalized-exponential (DGE(α, β)) by Nekoukhou et al. [26];
• Discrete gamma (DG(α, β)) by Chakraborty and Chakravarty [27];
• Discrete Burr–Hatke (DBH(α)) by El-Morshedy et al. [28].

To judge the best model, several metrics are utilized, namely negative log-likelihood
(N-LogL), Akaike (Ak.), consistent-Akaike (C-Ak.), Bayesian (Bayes), Hannan–Quinn (H–
Q), and Kolmogorov–Smirnov (K–S) statistic (with its p-value). From both applications
[A] and [B], the fitted values corresponding to these criteria as well as the MLEs (along
with their standard errors (Std.Ers)) of α, β, and γ are obtained; see Table 8. It is clear from
Table 8 for both analyzed applications that the fitted DH distribution produces the lowest
values for all fitted metrics except the highest p-value among all other fitted competing
models. As a result, the DH probability model is better than others.

Several goodness-of-fit visualization tools are employed, including (i) histogram of
data with fitted probability lines, (ii) fitted reliability lines, (iii) probability–probability (PP),

22



Mathematics 2025, 13, 875

and (iv) total-time-test (TTT) plots for the DH and its competing distributions, as displayed
in Figure 3. Clearly, in Figure 3, we only compared the DH with models with p-values
greater than 5%. It exhibits that the newly proposed DH distribution provides the best fit
for both applications in terms of estimated PMF, RF, and PP curves.

Table 8. Goodness of fit for the DH and its competitive distributions from the two applications.

App. Model
MLE (Std.Er)

N-LogL Ak. Bayes C-Ak. H–Q K–S (p-Value)
α β γ

[A] DH 0.0028(0.0009) 0.3521(0.6590) 0.0683(0.0648) 68.138 142.275 143.990 144.947 142.644 0.106(0.975)
DEC 0.0241(0.0486) 0.4237(0.1062) 0.8808(0.7033) 68.582 143.164 144.878 145.835 143.532 0.113(0.956)
EDW 0.9968(0.0019) 1.7621(0.1801) 0.5609(0.1580) 68.648 143.296 145.010 145.967 143.664 0.113(0.957)
DMW 1.0186(0.0497) 5.0673(11.339) 1.0427(0.0165) 68.407 142.814 144.529 145.485 143.183 0.109(0.973)
DW 1.2421(0.2470) 18.880(3.7583) - 69.186 142.372 144.172 145.153 142.677 0.122(0.924)
DB 13.730(32.516) 0.0298(0.0708) - 78.846 161.693 162.493 163.473 161.938 0.284(0.089)
DP 0.0869(0.0286) 0.5727(0.6924) - 69.025 142.492 144.085 144.983 142.695 0.109(0.971)
DG 0.0723(0.0265) 1.2811(0.3875) - 69.419 142.838 143.999 144.969 143.083 0.109(0.966)
NB 1.2227(0.4391) 17.113(3.7763) - 69.478 142.955 144.736 145.755 143.078 0.136(0.849)
DBH 0.9979(0.0111) - - 92.832 187.664 187.914 188.555 187.787 0.647(0.002)
Geom 0.0552(0.0126) - - 69.631 143.262 144.152 144.951 143.385 0.141(0.819)
Pois 17.111(0.9750) - - 135.56 273.129 274.015 273.380 273.250 0.342(0.022)

[B] DH 0.0609(0.0167) 0.0454(0.0068) 0.1119(0.0407) 55.819 117.639 118.972 120.912 118.410 0.147(0.728)
DEC 0.8106(0.7237) 0.2929(0.1010) 32.879(60.685) 56.971 119.941 121.275 123.214 120.712 0.171(0.541)
EDW 0.5577(0.6397) 0.8308(0.6029) 11.825(27.309) 56.982 119.964 121.297 123.237 120.735 0.149(0.726)
DMW 0.9917(0.0086) 7.9939(9.0815) 1.1866(0.0416) 62.367 130.734 132.067 134.007 131.505 0.237(0.167)
DW 2.1995(0.3484) 8.5805(0.8846) - 58.258 120.516 121.148 122.698 121.030 0.222(0.231)
DB 8.8347(32.276) 0.0594(0.2172) - 78.218 160.436 161.067 162.618 160.950 0.390(0.003)
DP 0.4233(0.1557) 0.0627(0.0906) - 58.861 121.723 122.354 123.905 122.237 0.180(0.473)
DG 0.6151(0.1913) 4.6565(1.3750) - 57.253 118.506 119.137 120.988 119.020 0.199(0.345)
NB 8.8040(5.8286) 7.0904(0.7627) - 57.741 119.483 121.665 120.914 119.997 0.150(0.722)
DBH 0.9868(0.0261) - - 90.521 183.042 183.242 184.133 183.299 0.760(0.004)
Geom 0.1236(0.0247) - - 66.577 135.154 136.245 135.354 135.411 0.366(0.006)
Pois 7.0909(0.5677) - - 60.298 122.596 123.687 122.796 122.853 0.165(0.585)

The estimated TTT lines shown in Figure 3 indicate that the given datasets employed
in applications [A] and [B] provide bathtub and increasing failure rates, respectively. These
failure rate shapes support the same shapes of the DH model represented in Figure 1.
Additionally, all facts shown in Figure 3 support the same numerical findings reported
in Table 8. We can therefore infer from the results presented in Figure 3 (or Table 8) that,
compared to other traditional (or modern) statistical models, the new DH distribution
provides a significantly superior fit.

Type-II censoring is a powerful tool in engineering reliability studies. It enables cost-
effective, efficient, and statistically robust failure data analysis, ensuring better product
design, maintenance, and quality control. As a result, it provides reliable failure estimates
faster and cheaper than complete sampling.

To assess the obtained frequentist and Bayes estimators of α, β, and γ, three artificial
Type-II censored samples are obtained for each dataset based on varying the values of r;
refer to Table 9. In every sample, the MLEs (along with the 95% ACIs) as well as the Bayes
estimation (along with the 95% BCIs) are obtained. All Bayes evaluations are conducted by
running the MCMC sampler 50,000 times and discarding the first 10,000 iterations as burn-
in. Due to the lack of prior information about the DH’s parameters, we set ai = bi = 0.001
for i = 1, 2, 3. In Table 10, the maximum likelihood and Bayes estimates (with their Std.Ers)
as well as 95% ACI/BCI bounds (with their interval widths (ILs)) of α, β, and γ are listed.
It indicates that the point and interval estimation results developed from the Bayes method
outperformed those developed from the likelihood method. When r is increased, all
estimates of α, β, or γ behave well because their Std.Er and IL values decreased.
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Figure 3. Data visualizations of the DH and its competitors from the two applications.
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Table 9. Artificial Type-II censored samples from the two applications.

App. r Data

[A] 8 0.5 1.1 2.1 3.1 4.6 7.5 9.8 12.2
12 0.5 1.1 2.1 3.1 4.6 7.5 9.8 12.2 14.5 16.5 19.6 22.4
18 0.5 1.1 2.1 3.1 4.6 7.5 9.8 12.2 14.5 16.5 19.6 22.4

24.5 29.3 32.1 33 35 42

[B] 10 1.788 2.892 3.300 4.152 4.212 4.560 4.880 5.184 5.196 5.412
15 1.788 2.892 3.300 4.152 4.212 4.560 4.880 5.184 5.196 5.412 5.556

6.780 6.864 6.864 6.888
22 1.788 2.892 3.300 4.152 4.212 4.560 4.880 5.184 5.196 5.412 5.556

6.780 6.864 6.864 6.888 8.412 9.312 9.864 10.512 12.792 12.804 17.340

Table 10. Estimates of α, β, and γ from the two applications.

Data r Par.
MLE Bayes 95% ACI 95% BCI

Est. Std.Er Est. Std.Er Low. Upp. IL Low. Upp. IL

[A] 8 α 0.00135 0.00475 0.00130 0.00026 0.00000 0.01065 0.01065 0.00081 0.00180 0.00099
β 0.12382 0.47007 0.12382 0.00025 0.00000 1.04515 1.04515 0.12333 0.12431 0.00098
γ 0.05994 0.05176 0.05993 0.00025 0.00000 0.16138 0.16138 0.05944 0.06043 0.00099

12 α 0.00187 0.00178 0.00184 0.00025 0.00000 0.00536 0.00536 0.00136 0.00233 0.00097
β 0.18077 0.44236 0.18077 0.00025 0.00000 1.04778 1.04778 0.18028 0.18127 0.00099
γ 0.06241 0.05428 0.06241 0.00025 0.00000 0.16880 0.16880 0.06192 0.06291 0.00099

18 α 0.00274 0.00103 0.00272 0.00024 0.00072 0.00475 0.00403 0.00225 0.00320 0.00095
β 0.31689 0.57888 0.31689 0.00025 0.00000 1.45147 1.45147 0.31641 0.31739 0.00098
γ 0.06686 0.06152 0.06686 0.00025 0.00000 0.18744 0.18744 0.06637 0.06734 0.00098

[B] 10 α 0.50352 0.14345 0.50317 0.00106 0.22236 0.78467 0.56231 0.50118 0.50514 0.00396
β 0.14670 0.00005 0.14669 0.00101 0.14660 0.14679 0.00019 0.14474 0.14868 0.00394
γ 0.12099 0.04284 0.12088 0.00101 0.03702 0.20496 0.16794 0.11891 0.12284 0.00394

15 α 0.28233 0.10461 0.28189 0.00109 0.07729 0.48737 0.41008 0.27993 0.28388 0.00395
β 0.09847 0.00389 0.09855 0.00101 0.09085 0.10608 0.01524 0.09659 0.10053 0.00394
γ 0.49199 0.18261 0.49189 0.00101 0.13409 0.84990 0.71582 0.48991 0.49387 0.00397

22 α 0.06090 0.01667 0.06038 0.00114 0.02823 0.09357 0.06534 0.05833 0.06235 0.00402
β 0.04554 0.00729 0.04554 0.00101 0.03124 0.05983 0.02859 0.04358 0.04749 0.00391
γ 0.11187 0.03987 0.11175 0.00102 0.03373 0.19002 0.15629 0.10979 0.11373 0.00394

Based on the last 40,000 outputs for α, β, and γ obtained from the two applications
when r = 8 and 10 (for example), respectively, Figure 4 shows the trace and density plots
along with their sample averages (in solid lines) and 95% two-bound BCIs (in dashed lines).
It shows that the MCMC sampler converges highly effectively and that the calculated
posteriors for all DH parameters are reasonably symmetric.

Additionally, to explore the convergence and blending of Markovian chains, the
acceptance rates of the M–H proposals are calculated, such as

• For App. [A]: The acceptance rates from r(= 8, 10, 12) are 90.12, 93.40, and 95.38%;
• For App. [B]: The acceptance rates from r(= 10, 15, 22) are 89.63, 92.78, and 97.47%.

As a consequence, the estimated acceptance rates in App. [A] (or App. [B]) confirm
the same facts revealed in Figure 4; that is, the percentage of iterations in which proposals
were approved is significantly higher.

The numerical findings from the two applications employed, among other things,
demonstrate that the suggested model outperformed the other models. As a result, the
methods for applying the newly discrete Hjorth probability model to electrical devices or
ball-bearing datasets provide an adequate explanation.
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(i) App. [A]

(ii) App. [B]

Figure 4. Trace and density plots of α (left), β (middle), and γ (right) from the two applications.

8. Conclusions

Discrete distributions are well suited for representing data confined to a finite or
countably infinite set of data. The straightforward structure, availability of closed-form
expressions, and capacity to capture real-world scenarios make them an ideal option.
Additionally, they are computationally efficient and effectively handle categorical data
modeling. This paper introduced a discrete version of the Hjorth distribution using the
survival discretization method, addressing the gap in the literature regarding the use
of censored data for analyzing discrete models. The proposed distribution preserved
the essential statistical features of the original Hjorth distribution, such as its median,
percentiles, and general structure, while providing a flexible framework for modeling
real-world discrete data. The statistical properties of the DH model, including the quantile
function and order statistics, were thoroughly derived. Maximum likelihood inference
and Bayesian methods were employed for parameter estimation, and their performance
was evaluated through simulation studies. Type-II censored samples were utilized to
demonstrate the practical applicability of the model, with variance–covariance matrices
enabling the construction of asymptotic confidence intervals for the parameters. The
effectiveness of the DH model was further validated using two real-world datasets: one
concerning failure times of electronic devices and another focusing on ball-bearing failures.
The goodness-of-fit measures highlighted the superior performance of the proposed model
compared to the existing discrete alternatives. Overall, the DH model proved to be a
versatile and robust tool for statistical modeling, particularly in reliability and survival
analysis. Its ability to adapt to different data patterns, such as decreasing, increasing, and
bathtub-shaped hazard rates, underscores its potential for broader applications in various
fields, including engineering, medicine, and beyond.

While the proposed DH model demonstrated strong flexibility and effectiveness
in capturing various hazard rate shapes, certain limitations can be acknowledged. The
model’s performance may be less reliable with very small sample sizes due to increased
variability in parameter estimates, necessitating techniques such as Bayesian estimation
with informative priors. Additionally, while the DH model demonstrated flexibility across
various hazard rate trends, its fit may be affected when dealing with datasets exhibiting
extreme variance or strong skewness.

Future research could explore refined model selection criteria to guide practitioners in
choosing between the DH model and alternative approaches based on dataset characteris-
tics. Future work may explore extending this framework to other distributions, different
censoring schemes, and refining the computational methods for enhanced efficiency.
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Abstract: This study introduces two bivariate extensions of the recently proposed
weighted discretized Fréchet–Weibull distribution, termed as bivariate weighted discretized
Fréchet–Weibull (BWDFW) distributions. These models are specifically designed for ana-
lyzing two-dimensional discrete datasets and are developed using two distinct structural
approaches: the minimum operator (BWDFW-I) and the maximum operator (BWDFW-II).
A rigorous mathematical formulation is presented, encompassing the joint cumulative
distribution function, joint probability mass function, and joint (reversed) hazard rate
function. The dependence structure of the models is investigated, demonstrating their
capability to capture positive quadrant dependence. Additionally, key statistical measures,
including covariance, Pearson’s correlation coefficient, Spearman’s rho, and Kendall’s tau,
are derived using the joint probability-generating function. For robust statistical infer-
ences, the parameters of the proposed models are estimated via the maximum likelihood
estimation method, with extensive simulation studies conducted to assess the efficiency
and accuracy of the estimators. The practical applicability of the BWDFW distributions
is demonstrated through their implementation in two real-world datasets: one from the
aviation sector and the other from the security and safety domain. Comparative analyses
against four existing discrete bivariate Weibull extensions reveal the superior performance
of the BWDFW models, with BWDFW-I (minimum operator based) exhibiting greater
flexibility and predictive accuracy than BWDFW-II (maximum operator based). These
findings underscore the potential of the BWDFW models as effective tools for modeling
and analyzing bivariate discrete data in diverse applied contexts.

Keywords: statistical model; bivariate discrete probability distributions; min–max operator
methodology; failure analysis; positive quadrant dependence; simulation; data analysis

MSC: 60E05; 60E10; 62H10; 62H15; 62H20

1. Introduction

The Fréchet and Weibull distributions hold a prominent place in research because of
their versatility and wide-ranging applications. These continuous probability models are
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renowned for their ability to encapsulate the characteristics of various other continuous
distributions, making them highly adaptable to diverse scenarios. Both distributions
are extensively studied as extreme value models, particularly in reliability and survival
analysis, where they effectively model critical phenomena. Their applicability spans a broad
spectrum of disciplines, including physical sciences, chemistry, environmental studies,
medicine, and engineering, where experimental data often exhibit behaviors that align
with their properties. This widespread utility underscores their importance as foundational
tools in statistical modeling and analysis.

In recent years, numerous generalized distributions have been developed and em-
ployed to model a wide range of phenomena. A key characteristic of these generalized
distributions is their inclusion of additional parameters, enhancing their flexibility and
applicability. Teamah et al. [1] introduced the relatively new Fréchet–Weibull (FW) dis-
tribution, which is derived using the T-X method for generating distribution families, as
proposed by Alzaatreh et al. [2]. The authors explored the statistical properties of the FW
distribution and demonstrated its practical utility by applying it to earthquake datasets.
This distribution offers a more adaptable framework for modeling experimental data,
with applications consistently demonstrating its superiority in fitting data compared to
other extensions of the Weibull distribution.

Although continuous probability distributions play significant roles in various fields,
there are numerous practical scenarios where discrete probability distributions are indis-
pensable. In certain cases, measuring the life length of a machine on a continuous scale is
either impractical or impossible. Examples include the on–off switching cycles of machines
or the lifespan of photocopier bulbs. To address such needs, Das and Das [3] introduced
a four-parameter discrete distribution, known as the discretized Fréchet–Weibull (DFW)
distribution, derived as a discrete counterpart of the continuous Fréchet–Weibull distribu-
tion. This novel discrete distribution was constructed using the survival function approach
to discretization, endowing it with a range of flexible properties. The DFW distribution
is capable of modeling data with both positive and negative skewness. Additionally,
its hazard rate function (HRF) exhibits diverse shapes, including increasing, decreasing,
and upside-down bathtub forms, behaviors not commonly observed in many count data
distributions. The probability mass function (PMF) of a random variable (Y), following
the DFW distribution with shape parameters α and k, and scale parameters β and m, is
expressed as follows:

PDFW [Y = y] = exp
{
−βα

(
m

y + 1

)αk}
− exp

{
−βα

(
m
y

)αk}
, (1)

where y ∈ Z+, and the parameters (α, β, m, k) > 0. Let ξ denote the parameter vector of
the DFW distribution, defined as ξ = (α, β, m, k), where ξ ∈ R+ ×R+ ×R+ ×R+. This
construction highlights the versatility of the DFW distribution in modeling discrete data
arising from real-world applications.

In a subsequent development, Das and Das [4] introduced a novel discrete distribution
termed as the weighted discretized Fréchet–Weibull (WDFW) distribution. This distribu-
tion builds upon the CDF of the discrete Weibull (DW) distribution to define the weight
function as follows:

w(y) = 1 − exp
{
−
(

y + 1
m

)k}
, y ∈ Z+,

where (m, k) > 0. The choice of this CDF as the weight function is motivated by its non-
negativity and its asymptotic behavior, w(y) → 1 as k → ∞. This weight function plays a
crucial role in constructing the WDFW model by modifying the probabilities of the parent

30



Mathematics 2025, 13, 625

distribution to capture complex data behaviors. The PMF of Y ∼ WDFWD(α, β, m, k) is
given as follows:

PWDFW [Y = y; ξ] =
q(y; ξ)

∑∞
s=0 q(s; ξ)

=
q(y; ξ)

Q(y; ξ)
. (2)

The corresponding CDF and survival function (SF) are expressed as follows:

FWDFW(y; ξ) =
∑

y
s=0 q(s; ξ)

Q(y; ξ)
=

V(y; ξ)

Q(y; ξ)
, (3)

SWDFW(y; ξ) = 1 − FWDFW(y; ξ) + PWDFW [Y = y; ξ]. (4)

where q(y; ξ) and Q(y; ξ) are defined as follows:

q(y; ξ) = w(y) · P[Y = y],

Q(y; ξ) =
∞

∑
s=0

q(s; ξ),

where q(y; ξ) is computed using the weight function (w(y)) and the PMF of the discretized
Fréchet–Weibull distribution. Although Q(y; ξ) lacks a closed-form expression, it is finite
and can be evaluated numerically. The theory of weighted distributions provides a cohesive
framework for addressing model specification and interpreting diverse datasets. Weighted
distributions are commonly encountered in fields such as survival analysis, intervention
studies, ecology, and biomedicine. A notable aspect of the proposed WDFW distribution is
that the introduction of the weight function does not increase the number of parameters
relative to the parent distribution, maintaining parsimony. Furthermore, this distribution
exhibits diverse hazard rate functions, including increasing, decreasing, and bathtub-
shaped behaviors, which are rarely observed in count data models. With support on the
set of positive integers, the WDFW distribution proves to be a versatile tool for modeling
overdispersed count data, offering a promising alternative for real-world applications
requiring such flexibility.

Research on bivariate distributions has been a focal point for statisticians for decades
because of their relevance in modeling real-life phenomena involving two dimensions.
In statistics, bivariate probability distributions are essential for describing scenarios where
two interdependent variables are present. Univariate distributions are insufficient for
such data, emphasizing the necessity of bivariate models. These models find applications
in diverse fields, such as engineering, reliability, meteorology, drought analysis, sports
(e.g., goals scored by two competing teams), insurance claims for different causes, symptom
types in patients with the same disease, academic performance in two subjects, and many
other areas.

Bivariate data naturally occur in many practical settings, driving the development of
specialized models to analyze such datasets. These models play a critical role in understand-
ing two-dimensional data structures that arise in a variety of disciplines. The literature
contains numerous bivariate extensions of both continuous and discrete univariate distri-
butions. Comprehensive overviews on bivariate distributions are available in the works of
Johnson et al. [5] and Balakrishnan and Lai [6], which focus on discrete and continuous
distributions, respectively. For continuous bivariate distributions, significant contributions
include studies by Kundu and Gupta [7], Sarhan et al. [8], El-Sherpieny [9], Wagner and
Artur [10], Balakrishnan and Shiji [11], and El-Gohary et al. [12]. Recent advancements
include the bivariate Weibull distribution by Hiba [13], the bivariate exponentiated ex-
tended Weibull distribution by Rasool and Akbar [14], the bivariate Gumbel-G family of
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distributions, and the bivariate odd Weibull-G family of distributions introduced by Eliwa
and El-Morshedy [15].

Detailed surveys on discrete bivariate distributions are provided by Kocherlakota
and Kocherlakota [16] and Johnson et al. [5]. Further contributions can be found in the
works of Basu and Dhar [17], Kumar [18], Kemp [19], Lee and Cha [20], and Nekoukhou
and Kundu [21]. Recent developments in discrete bivariate distributions encompass a
range of innovative models: the bivariate discrete exponentiated Weibull distribution by
El-Morshedy et al. [22] and the bivariate discrete Nadarajah and Haghighi distribution
discussed by Ali et al. [23]. Other notable advancements include the bivariate discrete
Weibull distribution proposed by Kundu and Nekoukhou [24] and the bivariate discrete
modified Weibull distribution developed by Shibu and Beegum [25].

This paper introduces a new flexible discrete bivariate distribution called the BWDFW
distribution, designed for application in various data fields. The proposed discrete bivariate
model is constructed using three independent random variables that follow the WDFW
distribution. The development of the BWDFW distribution is based on two techniques: the
minimum operator and the maximum operator, as outlined by Lee and Cha [20]. The model
derived using the minimum operator is denoted as BWDFW-I, while the one based on
the maximum operator is referred to as BWDFW-II. The motivation for introducing the
BWDFW distribution stems from multiple considerations:

1. The proposed distribution is a bivariate extension of the WDFW distribution, offering
a robust framework for modeling dispersion phenomena and addressing complex
real-life discrete datasets.

2. The joint PMF of the proposed model exhibits remarkable flexibility, allowing for
diverse shapes influenced by parameter values. This adaptability makes it suitable for
evaluating asymmetric data under various kurtosis structures.

3. The joint HRF and its marginals of the proposed distribution are WDFW distributions,
enabling the analysis of various hazard rate functions, such as increasing, decreasing,
and bathtub-shaped rates, in discrete settings. This capability supports the compre-
hensive modeling of diverse data types.

4. The BWDFW distribution possesses positive quadrant dependence, a critical property
for modeling interdependencies in bivariate data. This characteristic enhances its
relevance in applications requiring the joint modeling of correlated phenomena.

5. The straightforward generation mechanism of the BWDFW distribution facilitates
simulation studies, while its versatility makes it applicable to a wide range of fields,
including engineering, reliability, and social sciences.

This paper is structured as follows: Section 2 explores the two primary methods
for generating discrete bivariate distributions: the minimum operator and the maximum
operator. Section 3 introduces the BWDFW distributions, derived using both operators,
leading to the BWDFW-I and BWDFW-II models. The examination of positive quadrant
dependence is presented in Section 4. Section 5 derives various moments, using the joint
probability-generating function. The maximum likelihood estimation method for the
model’s unknown parameters is discussed in Section 6, with simulation results presented
in Section 7. In Section 8, the application of the BWDFW-I and BWDFW-II models to
two bivariate count datasets illustrates their superiority over four alternative bivariate
distributions. Finally, Section 9 summarizes the key findings, and Section 10 outlines
potential future research directions.

2. Construction of a Bivariate Distribution

Consider three independent discrete random variables, U1, U2, and U3, with prob-
ability mass functions f1(y), f2(y), and f3(y), respectively. Their corresponding cumula-
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tive distribution functions and survival functions are denoted by F1(y), F2(y), F3(y) and
S1(y), S2(y), S3(y), respectively. The construction of a bivariate distribution can be achieved
using the minimum and maximum operators. Specifically, the minimum operator utilizes
the SF of the baseline distribution, while the maximum operator employs the CDF.

2.1. The Minimum Operator

Now consider the following six mutually exclusive cases that encompass all the
possible outcomes regarding U1, U2, and U3:

Case 1: {U2 < U1 ≤ U3}, Case 2: {U2 < U3 < U1}, Case 3: {U1 < U2 ≤ U3},

Case 4: {U1 < U3 < U2}, Case 5: {U3 ≤ U1, U2}, Case 6: {U2 = U1 < U3}.

Theorem 1. Let U1, U2, U3 be three independent baseline random variables. If Y1 = min{U1, U3}
and Y2 = min{U2, U3} then the joint probability mass function is given by

f (y1, y2) =

⎧⎪⎪⎨⎪⎪⎩
f2(y2)

{
f1(y1) S3(y1 − 1) + f3(y1) S1(y1)

}
; y1 > y2,

f1(y1)
{

f2(y2) S3(y2 − 1) + f3(y2) S2(y2)
}

; y1 < y2,

f3(y) S2(y − 1) S1(y − 1) + f1(y) f2(y) S3(y) ; y1 = y2 = y,

(5)

where fi(.) and Si(.) are the PMF and SF of the baseline random variable.

Proof. To obtain the joint PMF of (Y1, Y2), we need to consider the six mutually exclusive
subcases, as mentioned in Section 2.1.

Case 1: y1 > y2

Here, we focus on the relation Y1 = min{U1, U3}. The value of Y1 can be determined
by U1 or solely by U3. Thus, we follow subcases 1 and 2. Also, these two cases are mutually
exclusive. First, when the value of Y1 is determined by U1, we have subcase 1, therefore

P[Y1 = y1, Y2 = y2] = P(U1 = y1, U2 = y2, U3 ≥ y1)

= f1(y1) f2(y2) S3(y1 − 1). (6)

Second, when the value of Y1 is determined by U3, we have subcase 2, therefore

P[Y1 = y1, Y2 = y2] = P(U3 = y1, U2 = y2, U1 ≥ y1)

= f3(y1) f2(y2) S1(y1). (7)

Because subcases 1 and 2 are mutually exclusive, we obtain the desirable result by combin-
ing Equations (6) and (7).

Case 2: y2 > y1

In this case, we focus on the relation Y2 = min{U2, U3}. The value of Y2 can be
determined by U2 or solely by U3. Here, we follow subcases 3 and 4. Proceeding similarly
as in case 1, we obtain

P[Y1 = y1, Y2 = y2] = P(U2 = y2, U1 = y1, U3 ≥ y2) + P(U3 = y2, U1 = y1, U2 > y2)

= f2(y2) f1(y1) S3(y2 − 1) + f3(y2) f1(y1) S2(y2). (8)
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Case 3: y1 = y2 = y

In this case, the values of Y1 and Y2 can be determined by U3 or solely by (U1, U2).
Here, we follow subcases 5 and 6, such that

P[Y1 = y1, Y2 = y2] = P(U3 = y, U2 ≥ y, U1 ≥ y) + P(U1 = y, U2 = y, U3 > y)

= f3(y) S2(y − 1) S1(y − 1) + f1(y) f2(y) S3(y). (9)

Hence, the result.

The concept of the minimum operator has several applications in statistics. For exam-
ple, in lifetime modeling, an organism may die because of one of two distinct causes: Cause
I or Cause II. Denote the times to death of Organisms 1 and 2 from Cause I by U1 and U2,
respectively. Assume that Cause II represents a shared fatal environmental factor, causing
both organisms to die simultaneously while exposed to the same environment. In such a
scenario, the random variable U3 is typically employed to represent the time to death result-
ing from Cause II. The competing risk models (Y1 = min{U1, U3} and Y2 = min{U2, U3})
then define the lifespans of the organisms.

2.2. The Maximum Operator

The following six mutually exclusive cases encompass all the possible outcomes
regarding U1, U2, and U3:

Subcase 1: {U3 ≤ U2 < U1}, Subcase 2: {U2 < U3 < U1}, Subcase 3: {U1 < U3 < U2},

Subcase 4: {U3 ≤ U1 < U2}, Subcase 5: {U1, U2 ≤ U3}, Subcase 6: {U3 < U1 = U2}.

Theorem 2. For U1, U2, U3 as three independent baseline random variables, if Y1 = max{U1, U3}
and Y2 = max{U2, U3} then the joint probability mass function is given by

f (y1, y2) =

⎧⎪⎪⎨⎪⎪⎩
f1(y1)

{
f2(y2) F3(y2) + f3(y2) F2(y2 − 1)

}
, y1 > y2,

f2(y2)
{

f1(y1) F3(y1) + f3(y1) F1(y1 − 1)
}

, y1 < y2,

f3(y) F2(y) F1(y) + f1(y) f2(y) F3(y − 1), y1 = y2 = y,

(10)

where fi(.) and Fi(.) represent the PMF and CDF of the baseline random variable, respectively.

Proof. The joint probability mass function of (Y1, Y2) is obtained by analyzing the six mu-
tually exclusive subcases outlined in Section 2.2.

Case 1: y1 > y2

The relationship Y1 = max{U1, U3} is considered. The probability P[Y1 = y1, Y2 = y2]

depends on subcases 1 and 2:

P[Y1 = y1, Y2 = y2] = P(U1 = y1, U2 = y2, U3 ≤ y2) + P(U1 = y1, U3 = y2, U2 ≤ y2)

= f1(y1) f2(y2) F3(y2) + f1(y1) f3(y2) F2(y2 − 1). (11)

Case 2: y2 > y1

This case follows subcases 3 and 4. Using a similar approach as that in Case 1:

P[Y1 = y1, Y2 = y2] = P(U1 = y1, U2 = y2, U3 ≤ y1) + P(U3 = y1, U2 = y2, U1 < y1)

= f1(y1) f2(y2) F3(y1) + f3(y1) f2(y2) F1(y1 − 1). (12)
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Case 3: y1 = y2 = y

Subcases 5 and 6 are relevant here, leading to

P[Y1 = y1, Y2 = y2] = P(U3 = y, U1 ≤ y, U2 ≤ y) + P(U1 = y, U2 = y, U3 < y)

= f3(y) F1(y) F2(y) + f1(y) f2(y) F3(y − 1). (13)

This completes the proof.

The maximal-operator-based construct can have meaningful statistical applications.
For example, consider a scenario where an organism dies if its stress level exceeds a
certain threshold. The stress levels U1 and U2 represent the separate, independent stresses
experienced by Organisms 1 and 2. Additionally, both organisms are subjected to a common
stress level (U3). Then, Y1 = max{U1, U3} and Y2 = max{U2, U3} describe the dependent
stress levels of the two organisms. The joint distribution of (Y1, Y2) models the dependent
joint life distribution of these organisms.

3. The Bivariate Weighted Discretized Fréchet–Weibull Distribution

3.1. The BWDFW Model Constructed Using the Minimum Operator

Suppose U1 ∼ WDFW (α, β1, m, k), U2 ∼ WDFW(α, β2, m, k), and U3 ∼ WDFW
(α, β3, m, k), and these random variables are independently distributed. Define Y1 =

min{U1, U3} and Y2 = min{U2, U3}. Then, the bivariate vector Y = (Y1, Y2) follows a
BWDFW distribution with the parameter vector Ω = (α, β1, β2, β3, m, k)�. This bivariate
discrete distribution is denoted by BWDFW(α, β1, β2, β3, m, k). The distribution BWDFW
constructed using the minimum operator is referred to as the BWDFW-I model. The joint
PMF of (Y1, Y2) is expressed as

fY1,Y2(y1, y2; Ω) = P[Y1 = y1, Y2 = y2; Ω]

=

⎧⎪⎪⎨⎪⎪⎩
f1(y1, y2; Ω), y1 > y2,

f2(y1, y2; Ω), y1 < y2,

f3(y; Ω), y1 = y2 = y,

(14)

where the terms are defined as

f1(y1, y2; Ω) = f2(y2)
{

f1(y1) S3(y1 − 1) + f3(y1) S1(y1)
}

,

f2(y1, y2; Ω) = f1(y1)
{

f2(y2) S3(y2 − 1) + f3(y2) S2(y2)
}

,

f3(y; Ω) = f3(y) S2(y − 1) S1(y − 1) + f1(y) f2(y) S3(y),

where fi(·) and Si(·) represent the PMF and SF of Ui ∼ WDFW(α, βi, m, k).

3.1.1. The Joint SF of the BWDFW-I Model

The joint SF of (Y1, Y2) is given by

SY1,Y2(y1, y2; Ω) = P[Y1 > y1, Y2 > y2; Ω]

=

⎧⎪⎪⎨⎪⎪⎩
S1(y1, y2; Ω), y1 > y2,

S2(y1, y2; Ω), y2 > y1,

S3(y; Ω), y1 = y2 = y,

(15)
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where the terms are defined as follows:

S1(y1, y2; Ω) = S1(y1) S2(y2) S3(y1),

S2(y1, y2; Ω) = S1(y1) S2(y2) S3(y2),

S3(y; Ω) = S1(y) S2(y) S3(y).

Si(·) denotes the SF of Ui ∼ WDFW(α, βi, m, k). From the joint SF, the marginal SF is
derived as

SYi (yi) = Si(yi) S3(yi), i = 1, 2. (16)

The corresponding marginal PMF is specified as

fYi (yi) = SYi (yi)− SYi (yi + 1)

= fi(yi) S3(yi + 1) + f3(yi) Si(yi), yi ≥ 0, i = 1, 2, (17)

where fi(·) and Si(·) denote the PMF and SF of Ui ∼ WDFW(α, βi, m, k). Figures 1 and 2
present scatter plots of the joint PMF and joint SF of the BWDFW-I model for various
parameter values (α, β1, β2, β3, m, k).

The PMF of the BWDFW-I model exhibits versatility in addressing and analyzing a
broad range of data types. This model is particularly effective in representing data with
varying distributional characteristics, including unimodal and multimodal structures, while
accommodating asymmetry in the shape of the distribution. Such flexibility is critical in
applications where data do not conform to standard symmetric patterns or exhibit multiple
peaks, which are commonly observed in real-world scenarios across diverse fields.

Figure 1. The scatter plots of the joint PMF of the BWDFW-I model for different parameter values
(α, β1, β2, β3, m, k).

Moreover, the BWDFW-I model provides a robust framework for handling specialized
data scenarios, such as zero-inflated datasets with an excess of zero observations. This
feature is crucial in many practical settings, including medical studies, ecological data,
or quality-control processes, where zero inflation arises naturally because of underlying
phenomena. Additionally, the model is equally adept at analyzing non-inflated datasets,
thereby covering the entire spectrum of possible data structures. Another significant ad-
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vantage of this model is its ability to perform reliably in the presence of outliers or extreme
values. Such outliers often distort traditional analyses, leading to biased or misleading con-
clusions. The BWDFW-I model, with its inherent flexibility and well-defined mathematical
structure, offers robust tools for mitigating the impacts of these anomalies. Consequently,
it serves as an ideal choice for applications requiring robust statistical modeling under
complex conditions, ensuring reliable insights, even in challenging datasets.

Figure 2. The scatter plots of the joint SF of the BWDFW-I model for different parameter values
(α, β1, β2, β3, m, k).

3.1.2. The Joint CDF of the BWDFW-I Model

The joint CDF, (Y1, Y2), of the BWDFW-I model can be expressed using the relation

FY1,Y2(y1, y2) = FY1(y1) + FY2(y2) + SY1,Y2(y1, y2)− 1, (18)

where FY1(y1) and FY2(y2) represent the marginal CDFs Y1 and Y2, respectively, and
SY1,Y2(y1, y2) denotes the joint SF (Y1, Y2) of the BWDFW-I model. The explicit form of the
joint CDF, FY1,Y2(y1, y2), of the BWDFW-I model is given by

FY1,Y2(y1, y2; Ω) =

⎧⎪⎪⎨⎪⎪⎩
F1(y1, y2; Ω), y1 > y2,

F2(y1, y2; Ω), y2 > y1,

F3(y; Ω), y1 = y2 = y,

where F1, F2, and F3 represent different components of the joint CDF, depending on the
relative magnitudes of y1 and y2. The first and second terms in Equation (18), corresponding
to the marginal CDFs Y1 and Y2, are expressed as

FYi (yi) = 1 − SYi (yi) = 1 − {Si(yi) S3(yi)
}

, i = 1, 2,

where Si(·) is the SF of Ui ∼ WDFW(α, βi, m, k).
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3.1.3. The Joint HRF of the BWDFW-I Model

The joint HRF (Y1, Y2), denoted by h(y1, y2), can be expressed in terms of the joint
PMF, f (y1, y2), and the joint survival function (SF), S(y1, y2), as follows:

h(y1, y2) =
f (y1, y2)

S(y1, y2)
.

For the BWDFW-I model, the joint HRF, hY1,Y2(y1, y2; Ω), is defined piecewise based
on the relationship between y1 and y2:

hY1,Y2(y1, y2; Ω) =

⎧⎪⎪⎨⎪⎪⎩
h1(y1, y2; Ω), y1 > y2,

h2(y1, y2; Ω), y2 > y1,

h3(y; Ω), y1 = y2 = y.

(19)

The terms h1(y1, y2; Ω), h2(y1, y2; Ω), and h3(y; Ω) are further specified as follows:

hi(y1, y2; Ω) =
fi(y1, y2; Ω)

Si(y1, y2; Ω)
, (i = 1, 2),

and

h3(y; Ω) =
f3(y; Ω)

S3(y; Ω)
,

where fi(y1, y2; Ω) and Si(y1, y2; Ω) represent the PMF and SF for the corresponding com-
ponents, as defined in Equation (14) and Equation (15), respectively. The various shapes
of the joint HRF of the BWDFW-I model for various selections of model parameters are
visually illustrated as scatter plots in Figure 3. This demonstrates the adaptability of the
BWDFW-I distribution.

Figure 3. The scatter plots of the joint HRF of the BWDFW-I model for different parameter values
(α, β1, β2, β3, m, k).

3.1.4. The Joint Reversed HRF of the BWDFW-I Model

The joint reversed hazard rate function (RHRF), (Y1, Y2), of the BWDFW-I model is
defined as follows:

h∗Y1,Y2
(y1, y2; Ω) =

⎧⎪⎪⎨⎪⎪⎩
h∗1(y1, y2; Ω), y1 > y2,

h∗2(y1, y2; Ω), y2 > y1,

h∗3(y; Ω), y1 = y2 = y.

(20)

The components of the RHRF, h∗1(y1, y2; Ω), h∗2(y1, y2; Ω), and h∗3(y; Ω), are given by

h∗1(y1, y2; Ω) =
f1(y1, y2; Ω)

F1(y1, y2; Ω)
, h∗2(y1, y2; Ω) =

f2(y1, y2; Ω)

F2(y1, y2; Ω)
, and h∗3(y; Ω) =

f3(y; Ω)

F3(y; Ω)
,
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where fi(y1, y2; Ω) and Fi(y1, y2; Ω) are the joint PMF and joint CDF of the BWDFW-I
model, as defined in Equation (14) and Equation (18), respectively. The joint HRF and the
joint RHRF of a bivariate model differ in their conditional interpretations and applications.
The joint HRF measures the likelihood of the event pair (Y1, Y2) occurring at specific values,
given that no event has occurred up to those values, focusing on the “future” conditional
risk. In contrast, the joint RHRF assesses the likelihood of the event pair (Y1, Y2) occurring
at specific values, given that the event has already occurred at or before those values,
emphasizing the “past” conditional risk. The joint HRF is commonly used in survival
analysis and reliability studies to predict future events, while the joint RHRF is relevant in
reversed reliability analysis or retrospective studies to understand the likelihood of past
events. These measures provide complementary perspectives, with the joint HRF focusing
on the forward-looking risk and the joint RHRF on the retrospective likelihood.

3.2. The BWDFW Model Constructed Using the Maximum Operator

This section involves constructing and discussing the BWDFW distribution, using the
maximum operator. Let us define Y1 = max{U1, U3} and Y2 = max{U2, U3}, where
Ui ∼ WDFW(α, βi, m, k) ; (i = 1, 2, 3), are independently distributed. By definition,
the bivariate vector Y = (Y1, Y2) has a BWDFW distribution with the parameter vec-
tor Ω = (α, β1, β2, β3, m, k)T . We denote the BWDFW distribution constructed using the
maximum operator as BWDFW-II. Then, the joint PMF of (Y1, Y2) ∼ BWDFW-II is given by

fY1,Y2(y1, y2; Ω) = P[Y1 = y1, Y2 = y2; Ω]

=

⎧⎪⎪⎨⎪⎪⎩
f1(y1, y2; Ω) ; y1 > y2,

f2(y1, y2; Ω) ; y1 < y2,

f3(y; Ω) ; y1 = y2 = y,

(21)

where

f1(y1, y2; Ω) = f1(y1)
{

f2(y2) F3(y2) + f3(y2) F2(y2 − 1)
}

; y1 > y2,

f2(y1, y2; Ω) = f2(y2)
{

f1(y1) F3(y1) + f3(y1) F1(y1 − 1)
}

; y1 < y2,

f3(y; Ω) = f3(y) F2(y) F1(y) + f1(y) f2(y) F3(y − 1) ; y1 = y2 = y,

where fi(.) and Fi(.) are the PMF and CDF of Ui ∼ WDFW(α, βi, m, k).

3.2.1. The Joint CDF of the BWDFW-II Model

The joint CDF of the (Y1, Y2) ∼ BWDFW-II model is given by

FY1,Y2(y1, y2; Ω) = P[Y1 ≤ y1, Y2 ≤ y2; Ω]

= P[max{U1, U3} ≤ y1, max{U2, U3} ≤ y2; Ω]

=

⎧⎪⎪⎨⎪⎪⎩
F1(y1, y2) ; y1 > y2,

F2(y1, y2) ; y2 > y1,

F3(y) ; y1 = y2 = y.

(22)

F1(y1, y2), F1(y1, y2), and F3(y) are defined as follows:

F1(y1, y2) = F1(y1) F2(y2) F3(y2),

F2(y1, y2) = F1(y1) F2(y2) F3(y1),

F3(y) = F1(y) F2(y) F3(y),
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where Fi(.) is the cumulative distribution function of Ui ∼ WDFWD(α, βi, m, k), as defined
in Equation (3). It is evident that the marginal CDF can be derived from the joint CDF
as follows:

FYi (yi) = Fi(yi) F3(yi) ; i = 1, 2. (23)

The corresponding marginal PMF can be specified as

fYi (yi) = FYi (yi + 1)− FYi (yi)

= Fi(yi + 1) F3(yi + 1) + Fi(yi) F3(yi)

= fi(yi) F3(yi) + f3(yi) Fi(yi + 1) ; yi ≥ 0 (i = 1, 2), (24)

where fi(.) and Fi(.) are the PMF and CDF of Ui ∼ WDFW(α, βi, m, k). Figures 4 and 5
represent the scatter plots of the joint PMF and joint CDF of the BWDFW-II model for
different parameter values (α, β1, β2, β3, m, k). These plots reveal that the joint PMF of
the BWDFW-II model exhibits considerable flexibility, assuming diverse shapes based on
the parameter values (α, β1, β2, β3, m, k). Notably, the joint mass can display both long
left and long right tails, highlighting its adaptability in capturing various distributional
behaviors. This flexibility extends to scenarios involving zero-inflated and non-zero-inflated
structures, accommodating excess zeros or the absence thereof in the data. The plots of the
CDF illustrate the adaptability of the joint CDF through its wide range of possible shapes,
further emphasizing the model’s robustness in handling different data patterns, including
those with and without zero-inflation.

Figure 4. The scatter plots of the joint PMF of the BWDFW-II model for different parameter values
(α, β1, β2, β3, m, k).

3.2.2. The Joint SF of the BWDFW-II Model

The joint SF, (Y1, Y2), of the BWDFW-II model can be derived using the following relation:

SY1,Y2(y1, y2) = 1 − FY1(y1)− FY2(y2) + FY1,Y2(y1, y2). (25)
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Thus, the joint SF of the BWDFW-II model can be formulated as

SY1,Y2(y1, y2; Ω) =

⎧⎪⎪⎨⎪⎪⎩
S1(y1, y2; Ω) ; y1 > y2,

S2(y1, y2; Ω) ; y2 > y1,

S3(y; Ω) ; y1 = y2 = y.

The second and third terms of Equation (25) represent the marginal cumulative distribution
functions (CDFs) Y1 and Y2, respectively, as defined in Equation (23). The fourth term,
FY1,Y2(y1, y2), corresponds to the joint CDF of the BWDFW-II model. Other reliability
characteristics, such as the joint hazard rate function and the joint reversed hazard rate
function of the BWDFW-II model, can be expressed analogously to those of the BWDFW-I
model but are formulated based on Equations (21), (22), and (25), respectively.

Figure 5. The scatter plots of the joint CDF of the BWDFW-II model for different parameter values
(α, β1, β2, β3, m, k).

Figure 6 presents scatter plots that illustrate the joint HRF of the BWDFW-II model
in various parameter configurations. The different shapes of these joint HRF information
graphics highlight the flexibility of the model.

Figure 6. The scatter plots of the joint HRF of the BWDFW-II model for different parameter values
(α, β1, β2, β3, m, k).
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4. Positive Quadrant Dependence

Positive quadrant dependence (PQD) is a concept that characterizes the relationship
between two random variables when they tend to be simultaneously small or large. It
represents a form of dependence where the probability of both random variables being
small or large together is at least as high as it would be if they were independent. PQD
implies that when one variable takes on a higher value, the likelihood of the other variable
also being higher increases. Although PQD indicates positive dependence between the
bivariate random variables Y1 and Y2, it does not necessarily imply that their correlation
is always positive. PQD is particularly important in areas such as finance and reliability
analysis, as it helps in understanding the dependencies between variables, which is crucial
for effective modeling and prediction. In this section, we demonstrate that both the
BWDFW-I and BWDFW-II models exhibit PQD. As a result, a bivariate random pair
((Y1, Y2)) from either the BWDFW-I or BWDFW-II model shows positive dependence.

Theorem 3. If the (Y1, Y2) ∼ BWDFW-I model, with parameters (α, β1, β2, β3, m, k), such that
Y1 = min{U1, U3} and Y1 = min{U1, U3}, where U1, U2, and U3 are the baseline random
variables, then Y1 and Y2 are PQD.

Proof. Let Ui ∼ WDFW (α, βi, m, k) be the baseline distribution for Y1 and Y2, such that
Y1 = min{U1, U3} and Y1 = min{U1, U3}. Then, by definition, (Y1, Y2) ∼ the BWDFW-I
model, with the parameter set (α, β1, β2, β3, m, k). And to prove that Y1 and Y2 are PQD, it
is sufficient to prove the inequality

P(Y1 > y1, Y2 > y2) ≥ P(Y1 > y1) P(Y2 > y2) ; ∀ y1, y2. (26)

Considering the right-hand side of Equation (26),

P(Y1 > y1) P(Y2 > y2) = S1(y1) S2(y2)

= S1(y1) S3(y1) S2(y2) S3(y2). (27)

Now, for the left-hand side of Equation (26), we need to consider two cases as follows:

Case 1: y1 ≥ y2

P(Y1 > y1, Y2 > y2) = SY1,Y2(y1, y2)

∣∣∣∣
y1≥y2

= S1(y1) S2(y2) S3(y1). (28)

Case 2: y1 < y2

P(Y1 > y1, Y2 > y2) = SY1,Y2(y1, y2)

∣∣∣∣
y2>y1

= S1(y1) S2(y2) S3(y2). (29)

It is clearly seen that Equation (28) ≥ Equation (27), and Equation (29) ≥ Equation (27).
Thus, the result.

Theorem 4. If (Y1, Y2) ∼ the BWDFW-II model, such that Y1 = max{U1, U3} and Y1 =

max{U1, U3}, where U1, U2, and U3 are the baseline random variables, then Y1 and Y2 are PQD.
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Proof. If (Y1, Y2) ∼ the BWDFW-II model, with parameters (α, β1, β2, β3, m, k), then, to
prove that Y1 and Y2 are PQD, it is sufficient to prove the inequality

P(Y1 ≤ y1, Y2 ≤ y2) ≥ P(Y1 ≤ y1) P(Y2 ≤ y2) ; ∀ y1, y2. (30)

Considering the right-hand side of Equation (30),

P(Y1 ≤ y1) P(Y2 ≤ y2) = F1(y1) F3(y1) F2(y2) F3(y2). (31)

Now, for the left-hand side of Equation (30), we need to consider two cases as follows:

Case 1: y1 ≤ y2

P(Y1 ≤ y1, Y2 ≤ y2) = F1(y1) F2(y2) F3(y2). (32)

Case 2: y1 < y2

P(Y1 ≤ y1, Y2 ≤ y2) = F1(y1) F2(y2) F3(y1). (33)

It is clearly seen that Equation (32) ≥ Equation (31), and Equation (33) ≥ Equation (31).
Thus, the result.

5. The Joint Probability-Generating Function Along with
Associated Measures

If the bivariate vector, (Y1, Y2),∼ the BWDFW-I model with parameter set
(α, β1, β2, β3, m, k), then the joint probability-generating function (PGF) of Y1 and Y2 for
|t1| < 1 and |t2| < 1 can be written as

GY1,Y2(t1, t2) = E(tY1
1 tY2

2 )

=
∞

∑
j,i=0

P[Y1 = i, Y2 = j] ti
1 tj

2

=
∞

∑
j=0

j−1

∑
i=0

f1(y1, y2; Ω) ti
1 tj

2 +
∞

∑
j=0

∞

∑
i=j+1

f1(y1, y2; Ω) ti
1 tj

2

+
∞

∑
i=0

f3(y; Ω) ti
1 ti

2 ; |t1|, |t2| < 1, (34)

where f1(y1, y2; Ω), f2(y1, y2; Ω), and f3(y; Ω) are the joint PMF of the BWDFW-I model,
as defined in Equation (14).

Similarly, the joint PGF of the BWDFW-II model can also be expressed, where
f1(y1, y2; Ω), f2(y1, y2; Ω), and f3(y; Ω) represent the joint PMF of the BWDFW-II model,
as defined in Equation (21). It is widely recognized that the joint PGF serves as a valuable
tool for deriving various moments and product moments. Utilizing this joint PGF in the
BWDFW-I and BWDFW-II models, different factorial moments, raw moments, and product
moments can be represented as infinite series. For a bivariate vector, (Y1, Y2), taking the
partial derivative of the joint PGF GY1,Y2(t1, t2) with respect to ti for r times gives the rth

factorial moment of Yi (where i = 1, 2). This can be expressed as follows:

μ′
Yi (r)

=
∂r

∂tr
i

GY1,Y2(t1, t2)
∣∣
t1=1,t2=1 ; i = 1, 2, (35)
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where μ′
Yi (r)

is the rth factorial moment of Yi ; (i = 1, 2). Taking the first and second partial

derivatives of Equation (35) with respect to “ti” and substituting in t1 = 1 and t2 = 1,
respectively, yields the following relations:

μ′
Yi (1)

=
∂

∂ti
GY1,Y2(t1, t2)

∣∣
t1=1,t2=1 = E(Yi), (36)

μ′
Yi (2)

=
∂2

∂t2
i

GY1,Y2(t1, t2)
∣∣
t1=1,t2=1.

Similarly, from Equation (35), we can have

E(Y1Y2) =
∂2

∂t1∂t2
GY1,Y2(t1, t2)

∣∣
t1=1,t2=1.

Thus, the variances Yi (i = 1, 2) and the covariance (Y1, Y2) can be obtained using the relations

Var(Yi) = μ′
Yi (2)

+ μ′
Yi (1)

− {μ′
Yi (1)

}2, (37)

Cov(Y1, Y2) = E(Y1Y2)− μ′
Y1 (1)

μ′
Y2 (1)

. (38)

Table 1 presents the descriptive statistics for a randomly selected pair (Y1, Y2) generated
from the BWDFW-I model, including an analysis of covariance, Pearson’s correlation
coefficient, Spearman’s rho (ρ), and Kendall’s tau (τ). Likewise, Table 2 provides the
corresponding values for the BWDFW-II model.

From Tables 1 and 2, it is evident that for both the BWDFW-I and BWDFW-II models,
the values of covariance, correlation, Spearman’s rho, and Kendall’s tau are greater than
zero. This observation directly reflects the property of the PQD.

Table 1. Some descriptive statistics for the BWDFW-I model.

α β1 β2 β3 m k Cov(Y1, Y2) Cor(Y1, Y2) ρ(Y1, Y2) τ(Y1, Y2)

0.5
4.5 2.5 6.4 2.5 7.5

2.39225 0.96608 0.90881 0.87911
0.9 0.46123 0.85967 0.82312 0.80758
1.7 0.13837 0.53373 0.50025 0.49463

0.7
1.7

2.3 6.0 2.7 7.2
1.07347 0.92541 0.85927 0.83332

4.5 1.14286 0.90563 0.81902 0.78072
6.0 1.18204 0.90642 0.78258 0.74836

1.8 4.0
2.5

5.2 3.5 6.5
0.17551 0.61911 0.58162 0.55979

4.5 0.12939 0.79906 0.69577 0.68757
6.0 0.28939 0.82651 0.87992 0.86742

1.5 5.2 2.4
3.8

2.6 5.1
0.11673 0.54648 0.53101 0.51852

4.8 0.12490 0.51522 0.48029 0.46688
5.2 0.17551 0.59312 0.52037 0.50695

1.3 5.4 2.5 3.5
2.4

5.5
0.29918 0.73049 0.66068 0.64165

3.5 0.44898 0.80526 0.74152 0.70841
4.5 0.78928 0.87736 0.82274 0.78307

1.7 4.5 3.2 4.2 2.7
2.5 1.71511 0.96606 0.95796 0.92875
4.0 0.33347 0.72678 0.66341 0.63503
7.2 0.01633 0.14744 0.14744 0.14744
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Table 2. Some descriptive statistics for the BWDFW-II model.

α β1 β2 β3 m k Cov(Y1, Y2) Cor(Y1, Y2) ρ(Y1, Y2) τ(Y1, Y2)

0.6
3.8 5.5 4.2 1.9 5.6

3.04980 0.98617 0.97905 0.96399
1.3 1.56408 0.89377 0.90127 0.89458
1.8 0.53061 0.93037 0.92779 0.92758

0.8
1.5

4.5 3.4 1.5 6.2
0.30082 0.82114 0.80861 0.79306

2.4 0.37755 0.95183 0.96047 0.95197
3.2 0.40735 0.97604 0.96826 0.96753

1.5 0.9
1.5

3.0 2.7 4.1
0.35918 0.75211 0.69959 0.66731

2.7 0.48980 0.88828 0.89514 0.85235
3.2 0.46939 0.90915 0.93774 0.90086

1.2 0.9 2.7
1.3

2.5 4.5
0.18491 0.67127 0.59604 0.58744

2.2 0.22908 0.73535 0.63395 0.61371
2.9 0.23306 0.75522 0.67167 0.65002

2.2 1.8 1.9 2.8
1.5

3.4
0.29918 0.73049 0.66068 0.64165

2.4 0.44898 0.80526 0.74152 0.70841
3.3 0.78928 0.87736 0.82274 0.78307

1.9 1.7 2.3 2.4 2.3
2.7 0.85878 0.88365 0.84753 0.79743
3.5 0.51265 0.82018 0.79669 0.78712
4.4 0.22082 0.75264 0.76424 0.74579

6. The Maximum Likelihood Estimation

Let us consider a bivariate sample of size n of the form {(y11, y21), (y12, y22), ..., (y1n, y2n)}
from the BWDFW-I model. Now, to estimate the values of the unknown parameters
(α, β1, β2, β3, m, k) of the BWDFW-I model, using the maximum likelihood estimation
(MLE) method, let us assume I1 = {y1j < y2j}, I2 = {y1j > y2j}, and I3 = {y1j = y2j = yj},
such that I = I1 ∪ I2 ∪ I3. Also, let the numbers of elements in I1, I2, and I3 be n1, n2, and
n3, respectively, such that n = n1 + n2 + n3. Using these notations, for the parameter vector
Ω = (α, β1, β2, β3, m, k)T , the likelihood function of the BWDFW-I model is given by

L(Ω) =
n1

∏
j=1

f1(y1j, y2j; Ω)
n2

∏
j=1

f2(y1j, y2j; Ω)
n3

∏
j=1

f3(yj; Ω).

Then, the log-likelihood function can be formulated as

l(Ω) =
n1

∑
j=1

ln f1(y1j, y2j; Ω) +
n2

∑
j=1

ln f2(y1j, y2j; Ω) +
n3

∑
j=1

ln f3(yj; Ω), (39)

where f1(y1j, y2j; Ω), f2(y1j, y2j; Ω), and f3(yj; Ω) are the joint PMF cases of the BWDFW-I
model, as defined in Equation (14). The MLE of parameters α, β1, β2, β3, m, and k can be
obtained by solving the partial derivatives of Equation (39) with respect to α, β1, β2, β3, m,
and k and then equating the results to zero. The partial derivatives are expressed as follows:
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∂l
∂α

=
∂l1
∂α

+
∂l2
∂α

+
∂l3
∂α

,

∂l1
∂α

=
n1

∑
j=1

ψ1(y2j; α, β2, m, k)
[{

ψ1(y1j; α, β1, m, k)× ψ2(y1j − 1; α, β3, m, k)
}

+
{

ψ1(y1j; α, β3, m, k)× ψ2(y1j; α, β1, m, k)
}]

,

∂l2
∂α

=
n2

∑
j=1

ψ1(y1j; α, β1, m, k)
[{

ψ1(y2j; α, β2, m, k)× ψ2(y2j − 1; α, β3, m, k)
}

+
{

ψ1(y2j; α, β3, m, k)× ψ2(y2j; α, β2, m, k)
}]

,

∂l3
∂α

=
n3

∑
j=1

[{
ψ1(yj; α, β3, m, k) × ψ2(yj − 1; α, β2, m, k)× ψ2(yj − 1; α, β1, m, k)

}
+
{

ψ1(yj; α, β1, m, k) × ψ1(yj; α, β2, m, k)× ψ2(yj; α, β3, m, k)
}]

.

∂l
∂m

=
∂l1
∂m

+
∂l2
∂m

+
∂l3
∂m

,

∂l1
∂m

=
n1

∑
j=1

Ψ1(y2j; α, β2, m, k)
[{

Ψ1(y1j; α, β1, m, k)× Ψ2(y1j − 1; α, β3, m, k)
}

+
{

Ψ1(y1j; α, β3, m, k)× Ψ2(y1j; α, β1, m, k)
}]

,

∂l2
∂m

=
n2

∑
j=1

Ψ1(y1j; α, β1, m, k)
[{

Ψ1(y2j; α, β2, m, k)× Ψ2(y2j − 1; α, β3, m, k)
}

+
{

Ψ1(y2j; α, β3, m, k)× Ψ2(y2j; α, β2, m, k)
}]

,

∂l3
∂m

=
n3

∑
j=1

[{
Ψ1(yj; α, β3, m, k) × Ψ2(yj − 1; α, β2, m, k)× Ψ2(yj − 1; α, β1, m, k)

}
+
{

Ψ1(yj; α, β1, m, k) × Ψ1(yj; α, β2, m, k)× Ψ2(yj; α, β3, m, k)
}]

.

∂l
∂k

=
∂l1
∂k

+
∂l2
∂k

+
∂l3
∂k

,

∂l1
∂k

=
n1

∑
j=1

Φ1(y2j; α, β2, m, k)
[{

Φ1(y1j; α, β1, m, k)× Φ2(y1j − 1; α, β3, m, k)
}

+
{

Φ1(y1j; α, β3, m, k)× Φ2(y1j; α, β1, m, k)
}]

,

∂l2
∂k

=
n2

∑
j=1

Φ1(y1j; α, β1, m, k)
[{

Φ1(y2j; α, β2, m, k)× Φ2(y2j − 1; α, β3, m, k)
}

+
{

Φ1(y2j; α, β3, m, k)× Φ2(y2j; α, β2, m, k)
}]

,

∂l3
∂k

=
n3

∑
j=1

[{
Φ1(yj; α, β3, m, k) × Φ2(yj − 1; α, β2, m, k)× Φ2(yj − 1; α, β1, m, k)

}
+
{

Φ1(yj; α, β1, m, k) × Φ1(yj; α, β2, m, k)× Φ2(yj; α, β3, m, k)
}]

.
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ψ1(y), ψ2(y), Ψ1(y), Ψ2(y), Φ1(y), and Φ2(y) are defined as follows:

ψ1(y; α, βi, m, k) =
Ei(yj + 1) Fi(yj + 1)− Ei(yj) Fi(yj)

[Gi(yj)]2
,

ψ2(y; α, βi, m, k) = − ψ1(y; α, βi, m, k),

Ψ1(y; α, βi, m, k) = m−1 Ai(yj) Bi(yj)

Di(yj)
+

Ei(yj + 1) Hi(yj + 1)− Ei(yj) Hi(yj)

[Gi(yj)]2
,

Ψ2(y; α, βi, m, k) = − Ψ1(y; α, βi, m, k),

Φ1(y; α, βi, m, k) =
Ai(yj) Bi(yj) Ci(yj)

Di(yj)
+

Ei(yj + 1) Ii(yj + 1)− Ei(yj) Ii(yj)

[Gi(yj)]2
,

Φ2(y; α, βi, m, k) = − Φ1(y; α, βi, m, k),

whereas Ai(y), Bi(y), Ci(y), Di(y), Ei(y), Fi(y), Gi(y), Hi(y), and Ii(y) are defined as follows:

A(yi) = exp
{
−(yi + 1

m
)k
}

, B(yi) =
(yi + 1

m
)k,

C(yi) = loge
(yi + 1

m
)

, D(yi) = 1 − exp
{
−
(

yi + 1
m

)k}
,

E(yi) = exp
{
−βα

(
m
yi

)αk}
, F(yi) =

{
−αβ

(
m
yi

)k} α−1

,

H(yi) = − αkβαmαk−1y−αk, I(yi) = −α2βαk
(

m
yi

)αk−1
,

and

G(yi) = P[Y = yi] = exp
{
−βα

(
m

y + 1

)αk}
− exp

{
−βα

(
m
y

)αk}
.

These equations are not easy to solve. We need a numerical technique for the maximum
likelihood estimators, like the Newton–Raphson method. The log-likelihood function can
similarly be expressed for the BWDFW-II model by considering the cases in the joint PMF,
as given by Equation (21). For both models, we used the statistical package “MLE” in
R-programming software Version 5 to obtain the maximum likelihood estimates.

7. Simulation: Behaviors of Estimators

Bivariate discrete data generation is crucial in statistical modeling, particularly for
real-world applications in medical, engineering, and reliability studies. The BWDFW-I
and BWDFW-II models offer enhanced flexibility in capturing overdispersion, skewness,
and dependency structures in discrete count data. To assess the performances of their MLEs,
a simulation study was conducted using the stats4 package version 5 in R. This section
describes the data generation process for these models, considering various sample sizes
(n = 50, 80, 120, 150, and 200). Parameter values (α, β1, β2, β3, m, and k) were generated
with 1000 replications, demonstrating the models’ practical significance.

7.1. Generation Process of Bivariate Discrete Data

The generation of bivariate discrete data from BWDFW-I and BWDFW-II follows a
structured methodology:

Step 1: Define the marginal distributions. Both BWDFW-I and BWDFW-II versions
define marginal probability mass functions (PMFs) for each variable.
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Step 2: Construct the bivariate joint distribution. To introduce dependency, a copula-
based or conditional sampling approach is applied. The joint probability function can be
modeled as follows:

P(X = x, Y = y) = C(FX(x), FY(y); ρ),

where C(·, ·; ρ) represents a suitable copula function incorporating correlation ρ into the
model dependency.

Step 3: Generate random samples. For various sample sizes (n = 50, 80, 120, 150, and
200), the following steps are executed:

1. Generate uniform random variables U1, U2 from U(0, 1).
2. Transform these uniform variables using the inverse CDF method:

X = F−1
X (U1), Y = F−1

Y (U2),

where F−1
X and F−1

Y are the inverse CDFs of BWDFW-I and BWDFW-II.
3. Apply a copula-based transformation if a dependency structure is required.
4. Repeat this process until the desired sample size is achieved.

7.2. Sample Size Considerations and Importance

The choice of the sample size significantly impacts the accuracy and reliability of the
statistical inference:

• Small samples (n = 50, n = 80) are suitable for preliminary analysis, small samples’
property testing, and exploratory data assessment;

• Medium samples (n = 120, n = 150) provide more stability in parameter estimation
and model validation;

• Large samples (n = 200) allow for robust inferential procedures, including hypothesis
testing and model selection.

7.3. The Accuracy and Precision of the Estimation Method

The accuracy and precision of the estimation method are evaluated using two key criteria:

• Bias:

Bias(δ) =
1

1000

1000

∑
i=1

(δ̂i − δ),

• Mean-squared error (MSE):

MSE(δ) =
1

1000

1000

∑
i=1

(δ̂i − δ)2,

where δ̂ represents the estimated value of the parameter δ obtained using the MLE method.
Choosing parameters for a bivariate model simulation involves selecting the appropri-
ate model type, defining marginal distributions, establishing the dependence structure,
determining the sample size and covariance, testing different parameter combinations,
and validating the results against theoretical or real-world data. Based on the simulation re-
sults presented in Tables 3 and 4, it is observed that as the sample size (n) increases, the bias
approaches zero, and the mean-squared errors (MSEs) decrease to zero as well. These
findings demonstrate the consistency and unbiasedness of the MLE estimates. Furthermore,
for large values of n, the average estimate and the initial values are approximately equal.
From these observations, it can be concluded that the MLE method provides reliable and
effective estimates for parameter analysis in data analysis.

48



Mathematics 2025, 13, 625

Table 3. The average estimates, biases, and MSEs for the BWDFW-I model.

Case I α = 1.5 , β1 = 4.5 , β2 = 2.5 , β3 = 6.4 , m = 2.5 , k = 7.5

Avg. Est.

Size “n” α̂ β̂1 β̂2 β̂3 m̂ k̂
50 1.0788 3.3717 1.8259 7.2105 3.4408 6.8215
80 1.3655 3.3952 1.8259 7.2105 3.4408 6.8215
120 1.7361 4.1145 2.2081 6.7314 2.8126 7.2314
150 1.6221 4.3336 2.4002 6.5121 2.7003 7.4008
200 1.5113 4.5112 2.5013 6.3908 2.5022 7.5040

Bias

50 −0.4212 −0.1283 −0.6741 0.8105 0.9408 −0.6785
80 −0.1345 −0.6048 −0.4774 0.5042 0.7511 −0.5379
120 0.2361 −0.3855 −0.2919 0.3314 0.3126 −0.2686
150 0.1221 −0.1664 −0.0998 0.1121 0.2003 −0.0992
200 0.0113 0.0111 0.0103 −0.0092 0.0022 0.0040

MSE

50 1.0159 1.0047 0.8543 0.9373 1.0049 1.0008
80 0.8241 0.7341 0.5225 0.7714 0.6674 0.4673
120 0.4304 0.5201 0.4927 0.4218 0.5005 0.2155
150 0.2005 0.1404 0.1881 0.1994 0.3117 0.1074
200 0.0541 0.0715 0.0335 0.0392 0.1022 0.0093

Table 4. The average estimates, biases and MSEs for the BWDFW-II model.

Case II α = 1.3 , β1 = 0.6 , β2 = 0.9 , β3 = 1.9 , m = 2.4 , k = 1.8

Avg. Est.

Size “n” α̂ β̂1 β̂2 β̂3 m̂ k̂
50 1.6323 0.8942 1.1347 1.5252 2.1056 2.1104
80 1.5005 0.8095 1.1058 1.6866 2.2217 2.0026

120 1.4702 0.7522 1.0448 1.8014 2.2993 1.9413
150 1.3908 0.6995 1.9213 1.8657 2.3541 1.8522
200 1.3152 0.6092 0.9047 1.8878 2.3982 1.8041

Bias

50 0.3323 0.2942 0.3347 −0.3748 −0.2944 0.3104
80 0.2005 0.2095 0.2058 −0.2134 −0.1783 0.2026

120 0.1702 0.1522 0.1448 −0.0986 −0.1007 0.1413
150 0.0908 0.0995 0.0213 −0.0343 −0.0459 0.0522
200 0.0152 0.0092 0.0247 −0.0122 −0.0018 0.0041

MSE

50 0.8542 1.0243 09747 1.0051 0.9827 0.8073
80 0.5313 0.7204 0.6053 0.8252 0.7224 0.4517

120 0.2252 0.2415 0.1838 0.4107 0.4318 0.1038
150 0.0827 0.1008 0.0172 0.1228 0.1427 0.0574
200 0.0414 0.0342 0.0094 0.0415 0.0219 0.0033

8. Goodness of Fit and Decision Making in Real Data Analysis

This section investigates the practical applicability of the proposed BWDFW-I and
BWDFW-II models using two real-world bivariate datasets. To assess the performances
of these models, comparisons are made with four other competitive distributions: the bi-
variate discretized Fréchet–Weibull (BDFW), bivariate discrete generalized inverse Weibull
(BDGIW), bivariate discrete inverse Weibull (BDIW), and bivariate discrete Weibull (BDW)
distributions. The MLEs of the parameters were computed, and the goodness of fit for
each distribution was evaluated using the Akaike information criterion (AIC), Bayesian
information criterion (BIC), and consistent Akaike information criterion (CAIC). The distri-
bution that yields the lowest AIC, BIC, and CAIC values is considered as the best fit. These
criteria provide a tradeoff between the model’s fit and complexity, helping to mitigate
the risk of overfitting. For a graphical comparison, the observed and estimated bivariate
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frequency plots for BWDFW-I, BWDFW-II, BDFW, BDGIW, BDIW, and BDW are provided
for each dataset.

8.1. Aviation Field: Dataset I

The first dataset considered herein consists of the number of flight aborts by 109 flights
in two consecutive periods of 6 months each. The two successive periods considered for
this dataset are Y1 and Y2 (where Y1 = the first six-month period, and Y2 = the second
six-month period). This dataset is extracted from Barbiero [26] and earlier discussed in the
work of Mitchell and Paulson [27]. The original data consist of 109 pairs of observations
(Y1i , Y2i ), where Y1i represents the number of aborts by flight “i” in the first 6 months, and
Y2i the number of aborts by flight “i” in the second 6 months of one year. The frequency
distribution of bivariate dataset I is presented in Table 5, and the summary statistics for
this dataset are presented in Table 6.

Table 5. Bivariate frequency distribution of dataset I.

������Y1
Y2 0 1 2 3 ≥4 Total

0 34 20 4 6 4 68

1 17 7 0 0 0 24

2 6 4 1 0 0 11

3 0 4 0 0 0 4

4 0 0 0 0 0 0

≥5 2 0 0 0 0 2

Total 59 35 5 6 4 109

Based on the summary values in Table 6, it is evident that both Y1 and Y2 exhibit right
skewness. Additionally, for dataset I, the Pearson’s correlation coefficient, Spearman’s
rho (ρ), and Kendall’s tau (τ) values for Y1 and Y2 are 0.9214558, 0.888931, and 0.8735868,
respectively. These observations indicate a strong positive relationship between Y1 and
Y2. Therefore, these data can be utilized for modeling with the BWDFW-I and BWDFW-
II models.

Table 6. Descriptive statistics for dataset I.

Median Mean Covariance Pearson’s Correlation Spearman’s Rho Kendall’s Tau

Y1 Y2 Y1 Y2 Cov(Y1,Y2) Cor(Y1,Y2) ρ(Y1, Y2) τ(Y1, Y2)

0.00 0.00 0.6239 0.7248 0.96959 0.92146 0.88893 0.87359

In Table 7, the MLEs (SEs in parentheses), 95% confidence intervals, -log l, AIC, BIC,
and CAIC obtained using dataset I are presented for the BWDFW-I, BWDFW-II, BDFW,
BDGIW, BDIW, and BDW distributions.

From Table 7, it can be observed that for dataset I, the values of the -log likelihood, AIC,
BIC, and CAIC are comparatively the lowest for both the BWDFW-I and BWDFW-II models.
However, the lowest values for the BWDFW-I model suggest that it provides the best fit
for dataset I. Figure 7 shows the profiles of the L functions for BWDFW-I, which indicate
that the estimators are unique. In Figure 8, the estimated joint frequency distributions for
the BWDFW-I and BWDFW-II models, along with the BDFW, BDGIW, BDIW, and BDW
distributions, are shown. The graphical representation clearly indicates that the BWDFW-I
model fits dataset I the best.
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Table 7. The MLEs (SEs in parentheses), 95% confidence intervals, −log l, AIC, BIC, and CAIC for
dataset I.

Model Estimate (SE) 95% CI −log l AIC BIC CAIC

BWDFW-I

α̂ = 0.34295 (0.07636) (0.1933, 0.4926)

75.0703 162.1406 170.5477 166.3442

β̂1 = 2.23410 (0.32125) (1.6045, 2.8638)

β̂2 = 0.50341 (0.14022) (0.2286, 0.7782)

β̂3 = 0.85167 (0.29515) (0.2732, 1.4302)

m̂ = 0.12472 (0.02116) (0.0832, 0.1662)

k̂ = 0.02679 (0.00587) (0.0153, 0.0383)

BWDFW-II

α̂ = 0.53243 (0.14004) (0.2580, 0.8069)

103.9928 219.9856 228.3928 224.1892

β̂1 = 1.03863 (0.50223) (0.0543, 2.0230)

β̂2 = 1.12495 (0.53445) (0.0774, 2.1725)

β̂3 = 0.65389 (0.29125) (0.0830, 1.2247)

m̂ = 0.19232 (0.01557) (0.1618, 0.2228)

k̂ = 0.04263 (0.00116) (0.0404, 0.0449)

BDFW

θ̂1 = 0.93438 (0.03144) (0.8728, 0.9960)

202.6919 413.3838 418.9889 416.1862
θ̂2 = 0.79851 (0.04603) (0.7083, 0.8887)

θ̂3 = 0.64339 (0.04776) (0.5498, 0.7370)

λ̂ = 1.77364 (0.21815) (1.3461, 2.2012)

BDGIW

q̂1 = 0.95428 (0.03247) (0.8906, 1.0179)

202.9543 413.9086 419.5133 416.7109
q̂2 = 0.80018 (0.04271) (0.7165, 0.8839)

q̂3 = 0.64235 (0.04590) (0.5524, 0.7323)

α̂ = 1.80019 (0.21268) (1.3833, 2.2170)

BDIW

α̂1 = 0.91438 (0.04139) (0.8333, 0.9955)

207.2054 422.4107 428.9611 425.6859
α̂2 = 0.75121 (0.02448) (0.7032, 0.7992)

α̂3 = 0.54523 (0.06228) (0.4232, 0.6673)

β̂ = 1.47366 (0.30729) (0.8714, 2.0759)

BDW

p̂1 = 0.39143 (0.04539) (0.3025, 0.4804)

249.5335 507.067 512.6718 509.8694
p̂2 = 0.44779 (0.08535) (0.2805, 0.6151)

p̂3 = 0.96749 (0.20109) (0.5734, 1.3616)

α̂ = 1.12852 (0.10729) (0.9182, 1.3388)

Figure 7. The profiles of the L functions obtained using dataset I.
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Figure 8. The observed and estimated joint frequency distribution plots of dataset I.

8.2. Security and Safety Field: Dataset II

The second dataset is accident data from 122 experienced shunters, where random
variables Y1 and Y2 respectively represent the numbers of accidents in 1937–1942 and
1943–1947 (see Zamani et al. [28]). The frequency distribution of bivariate dataset II is
presented in Table 8, and the summary statistics for this dataset are presented in Table 9.

Table 8. Bivariate frequency distribution of dataset II.

������Y1
Y2 0 1 2 3 4 ≥5 Total

0 21 13 4 2 0 0 40

1 18 14 5 1 0 1 39

2 8 10 4 3 1 0 26

3 2 1 2 2 1 0 8

4 1 4 1 0 0 0 6

5 0 1 0 1 0 0 2

6 0 0 1 0 0 0 1

Total 50 43 17 9 2 1 122

From the summary values presented in Table 9, it is clear that Y1 exhibits a left tail,
while Y2 shows a right tail. Moreover, for dataset II, the values of the Pearson’s correlation
coefficient, Spearman’s rho (ρ), and Kendall’s tau (τ) indicate a strong positive correlation
between Y1 and Y2. Therefore, these data are appropriate for modeling using the BWDFW-I
and BWDFW-II models.

Table 9. Descriptive statistics for dataset II.

Median Mean Covariance Pearson’s Correlation Spearman’s Rho Kendall’s Tau

Y1 Y2 Y1 Y2 Cov(Y1,Y2) Cor(Y1,Y2) ρ(Y1, Y2) τ(Y1, Y2)

1.00 1.00 1.2700 0.9754 1.36208 0.93013 0.91082 0.87229
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In Table 10, the MLEs (SEs in parentheses), 95% confidence intervals, −log l , AIC, BIC,
and CAIC obtained using dataset II are presented for the BWDFW-I, BWDFW-II, BDFW,
BDGIW, BDIW, and BDW distributions.

Table 10. The MLEs (SEs in parentheses), 95% confidence intervals, −log l, AIC, BIC, and CAIC for
dataset II.

Model Estimate (SE) 95% CI −log l AIC BIC CAIC

BWDFW-I

α̂ = 1.45323 (0.19872) (1.0637, 1.8427)

118.0931 248.1862 258.6122 253.3992

β̂1 = 2.08623 (0.32629) (1.4467, 2.7258)

β̂2 = 2.22495 (0.38345) (1.4734, 2.9765)

β̂3 = 0.64388 (0.08354) (0.4801, 0.8076)

m̂ = 1.19231 (0.12209) (0.9530, 1.4316)

k̂ = 0.03662 (0.00561) (0.0256, 0.0476)

BWDFW-II

α̂ = 0.21199 (0.03842) (0.1367, 0.2873)

123.6967 259.3934 269.8194 264.6064

β̂1 = 1.61515 (0.38433) (0.8619, 2.3684)

β̂2 = 1.25150 (0.29413) (0.6750, 1.8280)

β̂3 = 1.23137 (0.18540) (0.8680, 1.5948)

m̂ = 1.04923 (0.22088) (0.6163, 1.4822)

k̂ = 0.11366 (0.04613) (0.0232, 0.2041)

BDFW

θ̂1 = 0.53722 (0.05599) (0.4275, 0.6470)

304.4232 616.8464 623.7971 620.3218
θ̂2 = 0.96836 (0.03091) (0.9078, 1.0289)

θ̂3 = 0.42012 (0.04545) (0.3310, 0.5092)

λ̂ = 1.78756 (0.15202) (1.4896, 2.0855)

BDGIW

q̂1 = 0.73722 (0.08495) (0.5707, 0.9037)

324.4139 656.8277 663.7784 660.3031
q̂2 = 0.68359 (0.01927) (0.6458, 0.7214)

q̂3 = 0.44223 (0.03147) (0.3805, 0.5039)

α̂ = 1.55918 (0.12410) (1.3159, 1.8024)

BDIW

α̂1 = 0.61985 (0.07761) (0.4677, 0.7720)

335.704 679.408 686.3587 682.8833
α̂2 = 0.80355 (0.09387) (0.6196, 0.9875)

α̂3 = 0.17942 (0.02531) (0.1298, 0.2290)

β̂ = 1.61787 (0.18622) (1.2529, 1.9829)

BDW

p̂1 = 0.68978 (0.03364) (0.6238, 0.7557)

367.2133 742.4266 749.3772 745.9019
p̂2 = 0.57694 (0.04008) (0.4984, 0.6555)

p̂3 = 0.43879 (0.07138) (0.2989, 0.5787)

α̂ = 1.47306 (0.09988) (1.2773, 1.6688)

Dataset II best fits the suggested BWDFW-I model, as shown in Table 10, where the
values of the -log likelihood, AIC, BIC, and CAIC are the lowest for BWDFWD Model
1. Figure 9 shows the profiles of the L functions for BWDFW-I. Furthermore, Figure 10
presents the estimated joint frequency distributions for the BWDFW-I, BWDFW-II, BDFW,
BDGIW, BDIW, and BDW distributions. The graphical representation also clearly shows
that dataset II is best fitted by the BWDFW-I model.
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Figure 9. The profiles of the L functions obtained using dataset II.

Figure 10. The observed and estimated joint frequency distribution plots of dataset II.

9. Summary of the Key Findings

In this article, we proposed a bivariate extension of the weighted discretized
Fréchet–Weibull distribution (WDFWD) using two different methods of operators. The first
method involved taking the minimum of the two baseline random variables, resulting in
what we called the BWDFW-I model. The second method, on the other hand, considered
the maximum of the two baseline random variables and was referred to as the BWDFW-II
model. Statistical properties, including the joint probability mass function, joint hazard rate,
and joint reversed hazard rate functions, were presented for both distributions. The graphs
illustrated that both the BWDFW-I and BWDFW-II models exhibited long right and left
tails. Additionally, the various shapes of the joint hazard rate functions demonstrated their
flexibility. The proposed models could also be applied to discuss dispersion data under
various shapes of kurtosis. The joint probability-generating function was derived to obtain
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different moments and product moments. Positive quadrant dependence was proven.
The simulation indicated that the MLE could be effectively used in the estimation pro-
cess. To demonstrate the practical applicability of the two proposed models, we analyzed
two real-life bivariate datasets (from the security and safety field and the aviation field)
and compared them to four other discrete bivariate versions of the Weibull and extended
Weibull distributions, namely, BDW, BDIW, BDGIW, and BDFW. It is widely acknowledged
that augmenting the number of parameters enhances the distribution’s flexibility. Moreover,
weighted distribution theory offers a valuable framework for comprehending distributions
and contributes to their increased adaptability. The newly introduced bivariate weighted
discretized Fréchet–Weibull distribution, which extends the weighted DFWD in a bivariate
manner and incorporates six parameters, clearly exhibits greater flexibility than the four
other distributions under consideration. Both BWDFW-I and BWDFW-II showed supe-
rior performances, yielding the lowest values for AIC, BIC, and CAIC. Furthermore, it
was noted that the BWDFW-I model outperformed the BWDFW-II model, as the former
exhibited lower values compared to the latter.

10. Future Directions

Bivariate distributions play a crucial role in modeling complex relationships between
paired data across various disciplines, offering extensive practical applications. In this
context, the BWDFW-I and BWDFW-II models provide a novel framework that can be
effectively applied to real-world bivariate datasets. These models have the potential to
yield a better fit compared to existing discrete bivariate distributions, making them valuable
tools for analyzing dependent data structures in diverse fields.

To enhance the utility and robustness of these models, future research will focus on
developing and implementing various parameter estimation techniques. Specifically, differ-
ent algorithms, including the Expectation–Maximization (EM) algorithm, will be explored
to optimize parameter estimation for datasets exhibiting complex dependency structures.
Additionally, alternative estimation approaches tailored to different data types and distri-
butions will be investigated to improve the accuracy and efficiency of statistical inferences.

Several existing studies have demonstrated the effectiveness of such algorithms in
similar contexts. For instance, the EM algorithm has been successfully applied in a multi-
variate Student-t process model to analyze dependent tail-weighted degradation data (see
Xu et al. [29]). This study highlights the advantages of the EM algorithm in handling com-
plex multivariate structures with heavy tails, making it a promising method for extending
the BWDFW models.

Furthermore, stress–strength reliability models have been widely used in reliability
analysis, particularly in evaluating system performance under stress conditions. A notable
example is the bivariate iterated Farlie–Gumbel–Morgenstern stress–strength reliability
model developed for Rayleigh-distributed margins (see Chandra et al. [30]). This model
provides valuable insights into the reliability properties of dependent systems, reinforcing
the importance of adopting advanced estimation techniques for bivariate models.

Building on these advancements, future research will not only refine the estimation
techniques for BWDFW models but also extend their applicability to a broader range of
real-life bivariate datasets. This will include exploring hybrid approaches that integrate
Bayesian and frequentist methods, leveraging computational techniques, such as Markov
Chain Monte Carlo simulations, and assessing the performances of these models under
different censoring schemes. By addressing these research directions, the proposed models
will contribute significantly to the advancement of discrete bivariate modeling, offering
practical solutions for real-world data analysis and decision making.
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Abstract: Latin America was one of the hotspots of COVID-19 during the pandemic. Therefore,
understanding the COVID-19 mortality rate in Latin America is crucial, as it can help identify at-
risk populations and evaluate the quality of healthcare. In an effort to find a more flexible and
suitable model, this work formulates a new quantile regression model based on the unit ratio-Weibull
(URW) distribution, aiming to identify the factors that explain the COVID-19 mortality rate in Latin
America. We define a systematic structure for the two parameters of the distribution: one represents
a quantile of the distribution, while the other is a shape parameter. Additionally, some mathematical
properties of the new regression model are presented. Point and interval estimates of maximum
likelihood in finite samples are evaluated through Monte Carlo simulations. Diagnostic analysis and
model selection are also discussed. Finally, an empirical application is presented to understand and
quantify the effects of economic, social, demographic, public health, and climatic variables on the
COVID-19 mortality rate quantiles in Latin America. The utility of the proposed model is illustrated
by comparing it with other widely explored quantile models in the literature, such as Kumaraswamy
and unit Weibull regressions.
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological
agent of coronavirus disease 2019 (COVID-19). On 11 March 2020, the WHO declared
COVID-19 a global pandemic [1]. Approximately a year and two months after the WHO
declared the COVID-19 epidemic a global public health emergency, on 23 March 2021, Brazil
reported 3158 deaths in just 24 h. This figure was the highest number of deaths reported
worldwide since the beginning of the pandemic. That same day, Argentina appeared in
the top 10 countries with the highest number of daily infections (9405), and Colombia
occupied the 11th position in total deaths (62,274) since the beginning of the emergency.
Peru was also cataloged as the country in the Latin American region with more deaths per
1000 inhabitants (0.516).

In May 2020, the World Health Organization (WHO) declared that South America had
become the new epicenter of the COVID-19 pandemic, with countries like Brazil,
Argentina, and Peru reporting some of the highest per capita mortality rates worldwide [2].
As the pandemic progressed, Latin America became again an epicenter in September 2020.
Although the United States continued to lead globally in total cases and deaths, Brazil
ranked second, followed by other heavily affected countries in the region, such as Peru,
Chile, Mexico, Colombia, Ecuador, Argentina, and Bolivia [3]. Between March and June
2021, the epicenter shifted back to Latin America, driven by the spread of the Delta variant,
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which quickly became the dominant strain globally [4]. The prevalence of comorbidities
such as diarrhea and diabetes leaves the region in a complex and delicate clinical and
epidemiological environment. The situation worsens with the coexistence of other
epidemics, such as dengue and yellow fever, in addition to the long-term consequences of
chikungunya and Zika [5].

In the context of epidemic modeling, predicting infections and mortality rates at a
regional or national level is essential. [6] discusses the use of compartmental models such
as susceptible-infected-recovered (SIR) and its variants, including susceptible-exposed-
infected-recovered (SEIR) and susceptible-infected-susceptible (SIS), among others. The
SIS model, initially proposed by [7], is a mathematical model developed to describe the
dynamics of epidemics, such as infection rate and population immunity, and quantifies how
an infectious disease spreads over time. These models remain widely used, as demonstrated
by [8], who applied the SIR model to predict the number of cases of COVID-19 in Malaysia
during different pandemic phases.

Considering probabilistic modeling, several authors, such as [9,10], have investigated
how climatic and cultural factors influence the death rate from COVID-19. In such cases,
classic linear regression models have been fitted to explore these associations, accounting
for factors like temperature, humidity, and cultural dimensions. It is common to apply
this methodology to explain mortality rates based on other variables. Additionally, recent
works by [11,12] have utilized regression models to analyze the impacts of factors such as
government effectiveness, testing rates, and public health measures on COVID-19 mortality.
However, this methodology brings some limitations, particularly the assumption of normal
distribution in the response variable. This assumption does not capture the character of
the response variable since the rates are bounded random variables and, most of the time,
asymmetric. The normal distribution cannot represent this characteristic, and we note that
the specialized literature has paid little attention to this fact.

A modeling alternative is to assume a distribution in the exponential family for the
response variable. These are the well-known generalized linear models (GLMs) pioneered
by [13]. However, this assumption remains restrictive. Another class of more general and
flexible models assumes that the response distribution is deliberately left general with no
explicit distribution specified, and its parameters vary as a function of explanatory variables.
They are the Generalized Additive Models for Location, Scale, and Shape (GAMLSS)
framework [14]. Recently, applications and proposals for models based on the GAMLSS
approach have gained prominence. For example, in the study by [15], a variety of models
were used, including beta, simplex, unit gamma (UG), and unit Lindley (UL) regressions,
to identify covariates associated with the proportion of votes in municipal elections.

In this paper, we directly utilize the GAMLSS framework to formulate a new regression
model based on the Weibull distribution, aimed at explaining the COVID-19 mortality rate
in Latin America. We define a structure of systematic components on the two parameters
of the distribution: one of which represents a quantile of the distribution and the other
its dispersion. Modeling on the median is preferable over the mean when the variable
of interest is not symmetric (i.e., skewed), especially in the presence of outliers [16], in
addition to being a more robust measure of central tendency [17].

The main contribution of this paper is to propose a new regression model that
facilitates understanding and quantifying the impact of economic variables, social and
demographic indicators, and public health measures on the quantiles of the COVID-19
mortality rate. Unlike commonly used models for these purposes, this model
accommodates the typical asymmetry and bounded nature of mortality rate data. We hope
that our approach can serve as a valuable tool for policymakers in decision-making. We
focus on the initial mortality rates of the pandemic, as other variables, such as government
responses through public policies promoting mask-wearing, widespread testing, and social
isolation, began to influence these rates as the pandemic advanced. Such initiatives
underscore the importance of government interventions in public health to mitigate the
pandemic’s impacts.
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The model can be effectively applied to analyze mortality rates of diseases with low
fatality rates, such as measles, or other epidemic diseases, such as dengue and yellow fever.
This model can be extended to analyze various economic and engineering applications. In
economics, it can model data like the Gini index and poverty rates, which are proportions
between 0 and 1 and often exhibit positive skewness. In engineering, the model can be used
to analyze failure rates of systems or efficiency metrics, which may also be expressed as
percentages (ranging from 0 to 100%) and are typically skewed. These applications highlight
the importance of using more flexible models to interpret complex, asymmetrical data.

The remainder of the paper is outlined as follows. Section 2 introduces the new
regression model, the unit ratio-Weibull distribution for the COVID-19 mortality rates in
Latin American countries. Further estimation and goodness-of-fit aspects are also presented.
In Section 3, a Monte Carlo simulation study is conducted to evaluate the performance of
the maximum likelihood estimators of the proposed regression model. Section 4 describes
the data preparation and carries out the regression analysis by comparing the novel model
with other quantile regressions in the unit interval. The concluding remarks are addressed
in Section 5.

2. The Unit Ratio-Weibull Regression

This section introduces a new quantile regression for modeling double-bounded
epidemiological data. By focusing on COVID-19 applications, our approach arises as an
alternative to analyze the impact of demographic and epidemiological indicators on the
mortality rate of this disease. The proposed regression is based on the unit ratio-Weibull
(URW) distribution, which belongs to the unit ratio-extended Weibull family and was
pioneered by [18].

A random variable Y has a URW distribution, denoted by Y∼URW(σ, μ), if its
cumulative distribution function (cdf) and probability density function (pdf) are

F(y|σ, μ) = 1 − (1 − τ)yσ(1−μ)σ/[μσ(1−y)σ ], y ∈ (0, 1) (1)

and

f (y|σ, μ) =
σ yσ−1 (1 − μ)σ

μσ (1 − y)σ+1 log
[
(1 − τ)−1

]
(1 − τ)yσ (1−μ)σ/[μσ (1−y)σ ], (2)

respectively, where σ > 0 is a shape parameter, and μ ∈ (0, 1) is the τth quantile of the
distribution. For σ = 2, the unit ratio-Rayleigh (URR) distribution yields a special case.
The corresponding quantile function (qf) is

Q(u|σ, μ) =

[
μσ log(1−u)

(1−μ)σ log(1−τ)

]1/σ

1 +
[

μσ log(1−u)
(1−μ)σ log(1−τ)

]1/σ
. (3)

Since Q(τ|σ, μ) = μ, it follows that μ is a location parameter corresponding to the URW
τth quantile.

The flexibility and advantages of the URW distribution and its special case are
illustrated by numerical experiments in real and simulated data sets [18]. However, the
URW does not accommodate explanatory variables in the modeling. The current paper
overcomes this limitation by introducing the URW regression in which the quantile and
the shape parameters can be related to a linear predictor. The useful parameterization
of the URW allows us to formulate a quantile regression model that consists of two
components, namely:

(i) a random component in which Y1, . . . , Yn is a sample of n independent random
variables, where each Yt, t = 1, . . . , n, follows a URW distribution with quantile
μt and shape parameter σt, that is, Yt∼URW(σt, μt);
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(ii) systematic components through the linear predictors

η1t = g1(μt) = x�t β, (4)

and

η2t = g2(σt) = z�t γ, (5)

where xt = (1, xt2, . . . , xtk)� and zt = (1, zt2, . . . , ztl)� are k × 1 and l × 1 vectors
that contain observations of k and l known covariates (k + l < n), respectively. The
vectors of unknown regression parameters are β = (β1, . . . , βk)

� ∈ Rk and γ =
(γ1, . . . , γl)

� ∈ Rl . Finally, g1 : (0, 1) → R and g2 : R+ → R are strictly monotonic
and twice differentiable link functions that differ on the mapping required. Ref. [13]
provides an overview of some classical link functions under the generalized linear
models approach.

2.1. Parameter Estimation

Several approaches to parameter estimation are explored in the literature. However,
given its desirable and known asymptotic properties, the maximum likelihood method is
the most widely used. In this section, we determine the maximum likelihood estimators
(MLEs) of the parameters of the URW regression. Let θ� = (β�, γ�) be the URW regression
parameter vector, and y� = (y1, . . . , yn) the corresponding sample of n independent
observations. The log-likelihood function for this sample is

�t(σt, μt) =
n

∑
t=1

log
(

σt

yt

)
+

n

∑
t=1

log
[

log(1 − τ)

yt − 1

]
+

n

∑
t=1

log
[

yt(1 − μt)

μt(1 − yt)

]σt

+ log(1 − τ)
n

∑
t=1

[
yt(1 − μt)

μt(1 − yt)

]σt

, (6)

where μt = g−1
1 (η1t), and σt = g−1

2 (η2t), with η1t and η2t given in (4) and (5), respectively.
The score function is obtained by U = (Uβ(β, γ)�, Uγ(β, γ)�)�, where

Uβ(θ) = ∂�(θ)/∂β� = X�Tw,

with X is a n × k matrix whose tth row is x�t , T = diag{1/g′1(μ1), . . . , 1/g′1(μn)}, w =
(w1, . . . , wn) wherein

wt =
σt

μt(μt − 1)
[
1 + log(1 − τ)kσt

t
]
,

kt = yt(μt − 1)/μt(yt − 1), and g′1(μt) is the differentiating of g1(μt) with respect to μt,
and

Uγ(θ) = ∂�(θ)/∂γ� = Z�Su,

wherein Z is a n × l matrix whose tth row is z�t , S = diag{1/g′2(σ1), . . . , 1/g′2(σn)},
u = (u1, . . . , un) with

ut =
1
σt

+ log(kt)
[
1 + log(1 − τ)kσt

t
]
,

and g′2(σt) is the differentiating of g2(σt) with respect to σt.
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The Hessian matrix is given by

K(θ) =
∂2�(θ)

∂θ∂θ�
=

⎛⎝ ∂2�(θ)

∂β2
∂2�(θ)
∂β∂γ�

∂2�(θ)

∂γ∂β�
∂2�(θ)

∂γ2

⎞⎠,

where

∂2�(θ)

∂β2 = X�MX,

∂2�(θ)

∂γ2 = Z�BZ,

∂2�(θ)

∂β∂γ� =
∂2�(θ)

∂γ∂β� = Z�DX,

and M = diag{m1, . . . , mn}, B = diag{b1, . . . , bn}, D = diag{d1, . . . , dn}, wherein

mt =
σt

μ2
t (μt − 1)2

[
1 − 2μt + kσt

t log(1 − τ)(1 − 2μt + σt)
][ 1

g′1(μt)

]2
,

bt =

[
kσt

t log2(kt) log(1 − τ)− 1
σ2

t

][
1

g′2(σt)

]2

and

dt =
1

μt(μt − 1)
{

1 + kσt
t log(1 − τ)[1 + σt log(kt)]

}[ 1
g′1(μt)

][
1

g′2(σt)

]
.

Under regularity conditions, the asymptotic normality property of EMVs ensures that
when the sample size is large,(

β̂
γ̂

)
∼ Nk+l

((
β
γ

)
, [−K(θ)]−1

)
,

approximately. Moreover, [−K(θ)]−1 is the asymptotic variance–covariance matrix of θ̂,
and −K(θ) is the observed information matrix.

To determine the MLEs of θ, denoted as θ̂ = (β̂, γ̂)�, is necessary to maximize (6)
by setting the score vector components at zero and solving the system of equations
simultaneously. However, that is a non-linear system, and numerical methods must
be used. Since the proposed model resembles the Generalized Additive Models for
Location, Scale, and Shape (GAMLSS) approach [14,19], we implement the URW regression
as a gamlss class object in R programming language, which is available in the gamlss
package [20,21] and uses the RS algorithm for maximizing the log-likelihood given in (6).
The computational codes for the URW model and the simulation and application studies
can be downloaded from https://github.com/Fernando-code8/URW-Unit-Ratio-Weibull-
Regression- (accessed on 18 October 2024). The cdf (1), pdf (2), and qf (3) can be computed
using the dURW, pURW, and qURW functions, respectively. Samples of the URW model
can be generated using the rURW function.
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2.2. Diagnostic Measures and Model Selection

Diagnostic measures are customarily adopted to check if a fitted regression model
adequately represents the data dynamics. To that end, we perform residual analysis using
the quantile residuals introduced by [22]. For the URW regression, such a residual is given
by rt = Φ−1[F(yt|σ̂t, μ̂t)], where F(·|σ̂t, μ̂t) is obtained from the URW cdf (1) evaluated
at μ̂t = g−1

1

(
x�t β̂

)
and σ̂t = g−1

2
(
z�t γ̂

)
. In the literature, several authors have been

considering the quantile residuals since they are standard normally distributed when the
model is correctly specified [22]. See [17,23,24] for instance.

We also consider the worm plot of the residuals to verify whether the assumed
distribution fits properly for the dependent variable [25]. We expect that 100(1 − α)% of
the points to be inside the two elliptic curves in the middle of the figure. A large proportion
of points outside this region and the occurrence of any specific shape in the points indicate
that the fitted model is inadequate.

The generalized coefficient of determination (R2
G) is considered to measure the

predictive capacity of URW-fitted regressions. Defined by [26], the R2
G is given by

R2
G = 1 − exp{−2/n[�(θ̂)− �(θ̂0)]}, where �(θ̂) is the log-likelihood of the fitted model,

and �(θ̂0) is the log-likelihood of the model without covariates, i.e., the null model. The
higher the R2

G, the better the fitted model to explain the variability of the response variable.
Finally, Akaike information criteria (AIC) are suggested for model selection. The

AIC is widely used to select the more suitable model among a class of candidate models
and is defined by [27] as AIC = 2[m − �(θ̂)], where m = k + l is the number of estimated
parameters. The better model is the one with a smaller AIC.

The model performance was assessed using leave-one-out cross-validation (LOOCV);
see [28] for details. This methodology involves sequentially partitioning the dataset into
two parts. Consider a dataset {(y1, x1), . . . , (yn, xn)} consisting of responses Y and their
associated vectors of k covariates, xi = (xi1, . . . , xik), where i = 1, . . . , n. Let ŷ∗i be the
estimate of the value yi, obtained by excluding the i–th observation from the fit.
Specifically, this involves fitting a regression model to the dataset
{(y1, x1), . . . , (yi−1, xi−1), (yi+1, xi+1), . . . , (yn, xn)} and then substituting xi into the
fitted regression structure to compute the estimate of yi, denoted by ŷ∗i . This procedure is
repeated for all observations in the dataset to obtain y∗1, . . . y∗n.

To compare the predicted values of the fitted models, we use the mean absolute error
(MAE), defined as MAE = 1

n ∑n
i=1 |yi − ŷ∗i |. MAE quantifies the absolute difference

between observed and predicted values. Therefore, a lower MAE indicates better
model performance.

3. Numerical Evidence

In what follows, we report Monte Carlo experiments to explore the performance of
the maximum likelihood method and the assumptions on the empirical distribution of
rt for the proposed methodology. We generate 10, 000 replications of a URW regression
with the systematic components given by (4) and (5) for the quantile and shape parameters,
respectively. The logit link function is used for μ, logit(μ) = log[μ/(1 − μ)], and the log
link function is used for σ. The sample sizes are set at n ∈ {10, 15, 30, 70, 150, 300} and
the values of the covariates are generated from the standard uniform distribution. For the
parameter values, two different scenarios are considered, namely:

• Scenario 1: β1 = −3.75, β2 = 0.25, γ1 = 1.5, and γ2 = 1.5;
• Scenario 2 :β1 = −5, β2 = 1.75, γ1 = 2, and γ2 = 1.25.

For brevity, we will present the results with τ = 0.5, which represents the median of the
response variable. The numerical evidence for other quantiles was quite similar and is
reported in the Appendix A.

The measurements calculated to evaluate the point estimators are the percentage
relative bias (RB%), mean square error (MSE), coefficient of skewness (CS), and kurtosis (K).
We also compute the coverage rate (CR%) for the interval estimators with a nominal level
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at 0.95. The results are summarized in Table 1. Notice the point estimators become more
accurate and precise as the sample size increases; for example, when n = 300, the MSE is
less than 0.15 for all parameter estimates and scenarios. The CS and K coefficients are in
line with the expected since they get closer to 0 and 3, respectively, as n increases. When
analyzing the CR%, we verify values close to the nominal level. The largest difference, of
only 0.1248, occurs for β̂1 with the smallest sample size of n = 10 in Scenario 1. This still
represents a minor discrepancy, particularly given the small sample size.

We evaluate the mean, variance, CS, and K measures to study the empirical distribution
of the quantile residuals. We expect those statistics to be close to 0, 1, 0, and 3, respectively,
since the quantile residual distribution is expected to be approximately standard normal.
In this sense, we also compute the null rejection rates for the Shapiro–Wilk normality test
at the 10%, 5%, and 1% significance levels, which are referred to as NRR10%, NRR5%, and
NRR1%, respectively. Table 2 reports the results for the residual simulations. The calculated
statistics show that the distribution of rt is approximated by its reference distribution. The
normality test corroborates this result since the null rejection rates are close to the test
nominal level for all scenarios.

Table 1. Results of simulation of URW regression with τ = 0.5.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

RB%

10 0.4321 −9.4939 66.3225 −13.6220 0.1536 −2.2519 55.3137 −17.9652
15 0.0532 −5.1174 27.2422 17.6428 0.6361 1.9085 28.6735 7.1978
30 0.0342 −1.0949 13.7665 4.5770 0.0308 −0.0859 13.5165 2.1807
70 0.0036 −0.1549 3.9841 5.0650 0.0000 −0.0153 3.9081 5.8399

150 −0.0048 −0.3322 1.7043 2.5107 −0.0033 −0.0404 1.7326 2.7387
300 −0.0055 −0.5761 1.0077 0.8726 −0.0044 −0.0708 0.9927 0.8967

MSE

10 0.0858 0.4924 9.8697 22.0775 0.0644 0.3705 13.0225 28.6075
15 0.0691 0.2481 1.2178 5.1895 0.1011 0.1814 2.2252 5.8772
30 0.0429 0.1130 0.4112 1.3282 0.0306 0.0827 0.6725 1.8748
70 0.0130 0.0326 0.1368 0.5958 0.0097 0.0246 0.2164 0.8274

150 0.0055 0.0181 0.0391 0.1932 0.0041 0.0134 0.0637 0.2644
300 0.0027 0.0072 0.0232 0.1047 0.0020 0.0054 0.0370 0.1441

CS

10 −0.4821 0.0163 1.3254 −0.0668 −0.4807 0.0217 1.3911 −0.0769
15 −0.3653 −0.0450 1.6770 0.1168 −0.4961 0.2488 1.8602 −0.2006
30 −0.2080 0.0287 1.4250 −0.0677 −0.2165 0.0293 1.2909 −0.1013
70 −0.1485 0.0161 0.6854 0.0520 −0.1490 0.0167 0.6490 0.0402
150 −0.1197 0.0100 0.4637 0.0724 −0.1187 0.0134 0.4418 0.0514
300 −0.1205 0.0032 0.3357 0.0099 −0.1185 0.0037 0.3177 −0.0048

K

10 3.7022 3.4739 6.1684 4.0920 3.6177 3.4202 6.9478 4.2937
15 3.4778 3.3128 7.2405 4.4532 3.6312 3.4633 8.6702 4.8173
30 3.1766 3.2517 6.8859 4.0104 3.1935 3.2596 6.0387 3.9389
70 3.1527 3.1266 3.9511 3.4472 3.1691 3.1243 3.8532 3.4277
150 3.0272 2.9784 3.3380 3.2861 3.0159 2.9739 3.2966 3.2884
300 3.0321 3.0402 3.1597 3.0193 3.0371 3.0379 3.1356 3.0045

CR%

10 0.8371 0.8252 0.9327 0.9308 0.8420 0.8303 0.9334 0.9324
15 0.8709 0.8659 0.9365 0.9261 0.8661 0.8647 0.9404 0.9378
30 0.9101 0.9128 0.9433 0.9374 0.9077 0.9131 0.9443 0.9375
70 0.9360 0.9404 0.9487 0.9475 0.9378 0.9396 0.9474 0.9467
150 0.9446 0.9408 0.9537 0.9505 0.9443 0.9409 0.9531 0.9497
300 0.9479 0.9488 0.9476 0.9467 0.9474 0.9471 0.9482 0.9479

64



Mathematics 2024, 12, 3934

Table 2. Simulation results for the quantile residuals of the URW regression with τ = 0.5.

Scenario n Mean Variance CS K NRR10% NRR5% NRR1%

1

10 0.0086 1.1376 −0.0801 2.2805 0.0747 0.0316 0.0059
15 0.0022 1.0920 −0.0668 2.3691 0.0877 0.0379 0.0036
30 −0.0011 1.0464 −0.0298 2.6328 0.0874 0.0391 0.0050
70 −0.0005 1.0203 −0.0146 2.8228 0.0902 0.0436 0.0073

150 −0.0003 1.0097 −0.0090 2.9047 0.0848 0.0405 0.0075
300 0.0004 1.0050 −0.0054 2.9518 0.0909 0.0420 0.0077

2

10 0.0068 1.1398 −0.0871 2.2747 0.0745 0.0296 0.0047
15 0.0032 1.0946 −0.0764 2.3614 0.0816 0.0340 0.0036
30 −0.0015 1.0471 −0.0304 2.6306 0.0869 0.0389 0.0051
70 −0.0008 1.0206 −0.0148 2.8220 0.0900 0.0428 0.0075

150 −0.0003 1.0099 −0.0091 2.9042 0.0842 0.0410 0.0072
300 0.0003 1.0051 −0.0054 2.9518 0.0904 0.0418 0.0079

4. An Analysis of COVID-19 Mortality Rate

The current section outlines the data preparation employed to investigate the
COVID-19 mortality rate. We consider data from 19 Latin American countries: Argentina,
Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala,
Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Suriname, Uruguay, and
Venezuela. For comparative purposes, the response variable is defined as the initial
mortality rate (MR) per thousand people 90 days after the 20th detected case. We fit the
URW regression concurrently with the Kumaraswamy [29] (KW) and unit Weibull [17]
(UW) quantile regressions. Those are well-known unit regressions that may be alternatives
when the interest lies in modeling the impact of explanatory variables in a quantile of the
mortality rate.

We analyze the impact of pre-existing country characteristics such as social,
demographic, and health indicators in the MR. To this aim, we consider the data from the
most recent year available, which were collected from [30]. The selected explanatory
variables are presented in Table 3. The rest of the section presents a descriptive summary
and correlation analysis for the considered variables and the regression models’ results.
This information can be helpful to reveal epidemiological differences across Latin
American countries, identify the covariates with larger influence in the response variable,
and understand their impact on the initial COVID-19 mortality rate. Finally, the results
may contribute to shaping a direction for predicting regional or national infections and
mortality in future research.

Table 3. Definition of the variables.

Variable Description

CHE Current health expenditure: Level of current health expenditure expressed as a
percentage of the gross domestic product in the year. It includes healthcare goods and
services consumed during each year 2017. This indicator does not include capital health
expenditures such as buildings, machinery, and stocks of vaccines for emergencies
or outbreaks.

DGGHE Domestic general government health expenditure: Public expenditure on health from
domestic sources as a share of the economy as measured by the percentage of the gross
domestic product in 2017.

DP Diabetes prevalence: percentage of people ages 20–79 who have type 1 or type 2 diabetes
in the year 2019.

GDP Gross domestic product per capita: gross domestic product divided by midyear
population in 2019. The exceptions are Cuba and Venezuela, which the more recent
information was for 2018 and 2014, respectively.

HDI Human development index in 2018.
UP Urban population: percentage of the total population of people living in urban areas

in 2019.
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4.1. Descriptive Summary and Correlation Analysis

The COVID-19 mortality rate had an asymmetrical and dispersed behavior among the
Latin American countries; see its skewness and percentage coefficient of variation (CV%)
in Table 4. From Figure 1, notice the MR is mostly concentrated on the left tail, indicating
a right-skewed and decreasing shape on the histogram. Thus, the MR is heterogeneous
among the Latin American countries, which is a typical feature for these kind of data. For
example, [12] reported that the COVID-19 mortality rate varies greatly and has a right-
skewed distribution across countries, and [3] verified that this disease manifests differently
among the various regions of Latin America.

(a) Histogram (b) Box plot

Figure 1. Histogram and box plot of the MR.

Table 4 also shows a descriptive summary for the explanatory variables. The highest
variability is observed for the GDP, which has CV% around 240 and also presents the highest
positive value of skewness. [31] highlights, through the Gini Index, how inequality among
Latin American countries in relation to GDP has persisted over time. The HDI presents
the lower CV% and most of the countries are classified with high, between 0.7–0.799 [32],
or very high, between 0.8–1 [32]. Variables CHE, DGGHE, HDI, and UP have negative
skewness. The variables MR, UP, and HDI, given their negative kurtosis, have light-tailed
distributions. The variables with the heaviest-tailed distributions are PD and GDP.

Table 4. Descriptive summary for the response variable and covariates.

Variable Mean Median Skewness Kurtosis Min. Max. CV (%)

CHE 7.0112 7.2276 −1.1365 1.5606 1.1812 9.4675 28.0252
DGGHE 4.0354 4.3616 −0.4765 0.4420 0.1883 6.6089 37.1126

DP 9.0789 8.6000 1.1076 0.6581 5.5000 17.1000 32.1934
GDP 3.2553 0.0226 2.3576 4.6840 0.0039 29.7482 239.1504
HDI 0.7405 0.7580 −0.2021 −0.9595 0.6230 0.8470 8.4062
MR 0.0793 0.0422 0.7314 −1.0656 0.0014 0.2473 109.1801
UP 72.9568 72.7460 −0.1786 −1.1724 45.8660 95.4260 19.4462

Table 5 presents the correlation matrix for the studied variables. The correlations
presented are those corresponding to the Spearman method. We can observe negative
correlations between the response variable (MR) and the GDP and DP variables. On the
other hand, the highest positive correlation is that associated with the HB variable. Figure 2
displays scatterplots of the MR versus other covariates and provides a visual inspection of
the correlation measure.
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Table 5. Spearman’s correlation coefficient between all variables.

Variables DGGHE DP GDP HDI MR UP

CHE 0.6895 −0.1676 0.8939 0.3549 0.0947 0.2930
DGGHE −0.2255 0.7924 0.4207 −0.1351 0.3842

DP 0.4178 −0.2241 −0.2159 −0.3668
GDP 0.2143 0.3130 0.2143
HDI 0.1880 0.7668
MR 0.0211

(a) MR vs CHE (b) MR vs DGGHE (c) MR vs DP

(d) MR vs GDP (e) MR vs HDI (f) MR vs UP

Figure 2. Dispersion plots of MR as a function of CHE, DGGHE, DP, GDP, HDI and UP.

4.2. Regression Results and Discussion

The COVID-19 mortality rate analysis is performed by taking the MR as the response
variable in the proposed regression. Two competitor unit models are considered and
compared to the URW regression. The Kumaraswamy and UW quantile regressions have
their random components given by the pdfs

f (y|σ, μ) =
log(1 − τ)

σ log(1 − μ1/σ)
y1/σ−1(1 − y1/σ)log(1−τ)/ log(1−μ1/σ)−1,

and

f (y|σ, μ) =
σ

y

(
log τ

log μ

)(
log y
log μ

)σ−1
τ(log y/ log μ)σ

,

respectively, where μ ∈ (0, 1) is the τth quantile, τ ∈ (0, 1) is assumed known, and σ > 0
is a shape parameter. For both competitor models, we define systematic components
analogous to those in Equations (4) and (5) and set τ = 0.5 to model the median of the
response variable.
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After evaluating all possible subsets of regressions through the significance of the
predictors, AIC, and residual analysis, the systematic components for all classes of
regressions are defined by

logit(μt) = β1 + β2GDPt + β3HDIt + β4DPt + β5DGGHEt,

and

log(σt) = γ1 + γ2GDPt + γ3UPt,

where logit(μt) = log[μt/(1 − μt)] is the logit link function.
The final fitted regressions and their goodness-of-fit measures are reported in

Tables 6 and 7, respectively. Table 6 presents the parameter estimates and corresponding
p-values for the KW, URW, and UW models. In the case of the UW regression, many
p-values were not statistically significant at the 5% level, capturing only the effects of UP
on the response variable MR. The adjusted KW and URW models proved competitive, with
all estimates significant at the 5% level, except for the GDP predictor, which was significant
at the 10% level. Table 7 shows the results of the Anderson-Darling (AD) test, which we
performed to verify the null hypothesis that the quantile residuals are normally distributed.
For the UW regression, the AD test rejects the normality hypothesis at the 1% significance
level, suggesting that this model is not adequate to the current data. The URW and KW
remain as competitive regressions. However, it is noteworthy that our model outperforms
the KW for all goodness-of-fit measures. The AIC of the URW regression is the lowest, and
the R2

G is also in favor of the proposed model, indicating that the URW-fitted model is able
to explain about 72.78% of the total variability in the MR. The URW regression model
produced the lowest MAE; however, this difference is minimal when considering the scale
of MR. To address this limitation and derive a unit-independent metric, the MAE-M̄R ratio
was employed, calculated as the quotient of the MAE and the mean MR. The results of this
ratio more distinctly demonstrate the advantage of the URW model over the others,
underscoring its superiority in terms of predictive accuracy.

Figures 3 and 4 present the diagnostic plots based on the quantile residuals for the
fitted URW and KW regressions, respectively. Both fitted regression models, URW and
KW, demonstrate suitable results in the graphical analysis of residuals. In the residual plot,
the quantile residuals are randomly distributed around zero. In the worm plot, all points
lie within the confidence bands and remain close to the central line, with no visible trend.
The QQ plot indicates that the sample quantiles are within the limits of the confidence
envelopes, suggesting an adequate fit to the data.

Overall, these analyses indicate that the URW regression provides superior fit quality,
as evidenced by the lower MAE and MAE-M̄R statistics shown in Table 7, based on the
LOOCV approach. These results suggest that the URW regression yields more accurate
predictions compared to the KW regression. Therefore, we confirm that the URW model is
appropriate and provides better fit quality.

Table 6. Summary of the final fitted regressions for the MR.

KW URW UW

Coefficients Estimate p-Value Estimate p-Value Estimate p-Value

Intercept (for μ) −5.9618 0.0421 −6.0836 0.0332 −5.9614 0.6237
GDP −0.1539 0.0004 −0.1515 0.0006 −0.1520 0.6028
HDI 10.2217 0.0069 10.4728 0.0042 10.4197 0.4536
CHE 0.4216 0.0462 0.4023 0.0468 0.3899 0.6049
DP −0.3115 0.0000 −0.3082 0.0001 −0.3097 0.1822

DGGHE −1.0982 0.0004 −1.0861 0.0003 −1.0808 0.3560
Intercept (for σ) 7.0900 0.0000 6.4348 0.0000 6.4599 0.0013

GDP −0.0431 0.0680 −0.0379 0.0875 −0.0388 0.3108
UP −0.0718 0.0000 −0.0643 0.0001 −0.0641 0.0014
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Table 7. Goodness-of-fit measures for the final fitted regressions.

Regression AIC R2
G

p-Value
(AD)

MAE MAE-MR

KW −69.4907 0.7258 0.7321 0.0556 0.7013
URW −69.9176 0.7286 0.8473 0.0480 0.6054
UW −41.4766 −0.1750 0.0002 0.0401 0.5058

(a) Residual plot (b) Worm plot (c) QQ-plot

Figure 3. Residuals plots for the fitted URW regression.

(a) Residual plot (b) Worm plot (c) QQ-plot

Figure 4. Residuals plots for the fitted KW regression.

The URW model for the median mortality rate due to COVID-19 revealed positive
estimated coefficients for HDI (10.4728) and CHE (0.4023) and negative coefficients for GDP
(−0.1515), DP (−0.3082), and DGGHE (−1.0861). In terms of variation, a one-unit increase
in GDP per capita reduces the median mortality rate by 14.26, while an increase in DGGHE
reduces this rate by 66.2%. The DP variable reduces the median rate by 26.5%. On the other
hand, an increase in HDI is associated with a significant increase in the median mortality
rate, suggesting complex relationships with other factors, while a one-unit increase in
the CHE index is associated with a 49.5% increase in the median mortality rate. For the
submodel, negative estimated coefficients were found for GDP (−0.0379) and UP (−0.0643).
This means that a one-unit increase in GDP per capita and in UP is associated with a
reduction of approximately 3.7% and 6.2% in the value of the parameter σ, respectively.

Based on the fitted URW regression, relevant observations were identified regarding
the modeling of the median mortality rate due to COVID-19 in Latin American countries.
The variables GDP and DGGHE showed negative coefficients, suggesting that increases in
GDP and government spending on health infrastructure are associated with a significant
reduction in the median mortality rate due to COVID-19. That is, a more robust economy
and higher public spending on health seem to enhance resilience against mortality from
the disease.

On the other hand, the variable DP showed unexpected results, indicating a negative
effect on the response variable. The variables HDI and CHE, also yielding unexpected
results, presented positive coefficients, suggesting that increases in the HDI and DGGHE
indicators of countries are associated with a higher median mortality rate due to
COVID-19. This counterintuitive interpretation suggests more complex interactions,
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possibly influenced by other variables such as GDP and DGGHE, which also tend to
correlate with economic development, health investment, and diabetes prevalence
across countries.

In interpreting the coefficients of the submodel for the parameter σ, both GDP and UP
exhibited negative signs, suggesting that increases in GDP and urbanization are associated
with a reduction in σ. This indicates that in regions with higher GDP and urbanization,
the mortality rate due to COVID-19 tends to accelerate less and stabilize more quickly
over time. These results indicate that in areas of higher urban density, the probability
of transmission is naturally greater. However, more developed regions with structured
economies quickly require the implementation of strict measures, such as social distancing,
mask use, and interventions to control the spread of the virus.

5. Concluding Remarks

This article presents a new regression model that explores the relationship between
demographic indicators, economic variables, and public health measures with the COVID-
19 mortality rate among Latin American countries, a region heavily impacted and regarded
as one of the pandemic’s epicenters. It is introduced based on the unit ratio-Weibull
distribution, which is a helpful tool for modeling random variables in the interval (0, 1),
such as rates, proportions, and indices. A general and useful quantile parameterization is
introduced to define the new regression model for double-bounded epidemiological data
modeling. We defined a systematic structure for the two parameters of the distribution:
one represents the quantile of the distribution, and the other, the shape parameter. The
parameters were estimated by maximum likelihood, and the performance of the estimators
was evaluated through Monte Carlo simulations under different scenarios, considering
varying quantile values and finite sample sizes. The URW model was compared with the
Kumaraswamy and unit Weibull regressions, proving to be competitive and providing
the best fit across various selection criteria and predictive accuracy measures. From the
adjusted regression, it was identified that factors such as economic development, Human
Development Index, percentage of the urban population, and government investment in
health infrastructure are associated with lower COVID-19 mortality rates in Latin American
countries. The results indicate that investments in public health and economic infrastructure
are essential to reducing the impact of future pandemics and improving public health
response policies. The URW regression offers a more robust alternative for capturing
the asymmetric and bounded characteristics of mortality rates. This approach provides
valuable insights for more effective public policies, helping to understand the impacts of
economic and demographic variables on mortality. The ability to apply this methodology
to a wide range of fields underscores its versatility, with potential applications in areas
such as health, economics, and engineering. Future research could explore its use in
analyzing mortality rates from diseases like measles in health, inequality indices like the
Gini index and poverty rates in economics, and failure rates or equipment efficiency in
engineering. Furthermore, comparing the performance of the proposed model with other
approaches across these diverse fields would provide valuable insights into its effectiveness
and adaptability.
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Abbreviations

The following abbreviations are used in this manuscript:

COVID-19 Coronavirus Disease 2019
URW Unit Ratio-Weibull
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
GLM Generalized Linear Models
GAMLSS Generalized additive Models for Locarion, Scale, and Shape
MLE Maximum Likelihood Estimators
AIC Akaike information criteria
LOOCV Leave-One-Out Cross-Validation
MAE Mean Absolute Error
RB% Relative Bias
MSE Mean Square Error
CS Coefficient of Skewness
K Kurtosis
CR% Coverage Rate
NRR Null Rejection Rates
MR Mortality Rate
KW Kumaraswamy
UW unit Weibull
CHE Current Health Expenditure
DGGHE Domestic General Government Health Expenditure
DP Diabetes Prevalence
GDP Gross Domestic Product per capita
HDI Human Development Index
UP Urban Population
CV% Coefficient of Variation
AD Anderson-Darling

Appendix A

In the appendix, we provide supplementary results to Section 3. The numerical results
of the Monte Carlo simulations for other quantiles of the proposed URW regression are
explored below.

Table A1. Results of simulation of URW regression with τ = 0.25.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

RB%

10 0.8955 −12.3577 26.1715 −3.9051 0.9435 −0.9402 17.1284 −3.2589
15 0.7920 13.0612 19.6379 −2.8108 0.2532 −0.9762 8.6795 17.4380
30 −0.1949 −2.4211 10.1151 2.8109 0.0268 −0.2949 8.6986 −2.0248
70 −0.1938 −0.6672 3.1095 4.9114 −0.0034 0.1235 2.9153 3.1665
150 −0.0813 −0.2715 1.5041 2.1208 −0.0151 −0.0103 1.6613 0.6487
300 −0.0333 −0.2937 0.6905 1.1025 −0.0036 −0.0082 0.6089 1.0906
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Table A1. Cont.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

MSE

10 0.1127 0.5730 3.4659 9.2046 0.0905 0.4523 4.1580 10.6474
15 0.0980 0.2119 0.6815 2.0895 0.0738 0.1989 0.5999 2.7986
30 0.0515 0.1199 0.2082 0.6609 0.0371 0.0894 0.3144 0.8253
70 0.0140 0.0333 0.0522 0.2487 0.0145 0.0271 0.1081 0.3871

150 0.0069 0.0151 0.0228 0.1185 0.0057 0.0118 0.0399 0.1478
300 0.0038 0.0085 0.0103 0.0524 0.0027 0.0057 0.0195 0.0765

CS

10 −0.4748 −0.0204 1.1914 0.0696 −0.4858 −0.0093 1.1418 0.1661
15 −0.4204 0.1240 1.5304 −0.0829 −0.3588 0.0110 1.2062 0.4756
30 −0.2306 0.0049 1.1835 0.0575 −0.2294 0.0056 0.9943 0.0051
70 −0.1365 −0.0526 0.6925 0.2627 −0.1321 0.0130 0.6636 0.0908

150 −0.0336 −0.0321 0.4305 0.2132 −0.1298 −0.0123 0.3829 0.1229
300 −0.0537 −0.0328 0.2891 0.1429 −0.0664 0.0068 0.3245 0.0706

K

10 3.6347 3.8061 6.3411 4.5570 3.7019 3.8261 6.2545 4.8212
15 3.4237 3.3723 7.6680 4.4074 3.3342 3.2400 6.0103 4.6433
30 3.2373 3.3288 5.4315 3.7133 3.2729 3.3480 4.6430 3.4521
70 3.0450 3.0384 4.0062 3.3648 3.0745 3.1062 3.8198 3.3480
150 2.9745 2.9595 3.3899 3.1429 3.1177 3.1842 3.3017 3.1480
300 2.9697 2.9734 3.1233 3.0300 3.0000 3.0280 3.2266 3.1211

CR%

10 0.9000 0.8699 0.9627 0.9622 0.9031 0.8740 0.9597 0.9668
15 0.9081 0.9019 0.9715 0.9597 0.9229 0.9130 0.9575 0.9632
30 0.9262 0.9216 0.9552 0.9562 0.9329 0.9272 0.9629 0.9601
70 0.9363 0.9358 0.9507 0.9505 0.9400 0.9384 0.9558 0.9524
150 0.9436 0.9446 0.9518 0.9493 0.9499 0.9487 0.9547 0.9525
300 0.9482 0.9480 0.9505 0.9521 0.9484 0.9499 0.9511 0.9500

Table A2. Simulation results for the quantile residuals of the URW regression with τ = 0.25.

Scenario n Mean Variance CS K NRR10% NRR5% NRR1%

1

10 0.0044 1.1585 −0.2039 2.1817 0.0984 0.0390 0.0046
15 0.0071 1.1059 −0.1692 2.3633 0.1034 0.0451 0.0058
30 0.0059 1.0488 −0.0759 2.6334 0.0953 0.0435 0.0059
70 0.0028 1.0210 −0.0354 2.8241 0.0920 0.0442 0.0066

150 0.0018 1.0092 −0.0158 2.9108 0.0824 0.0407 0.0072
300 0.0017 1.0043 −0.0098 2.9532 0.0892 0.0427 0.0078

2

10 0.0020 1.1650 −0.2231 2.1788 0.1058 0.0407 0.0048
15 0.0082 1.1011 −0.1475 2.3926 0.1024 0.0446 0.0061
30 0.0043 1.0514 −0.0816 2.6208 0.0956 0.0447 0.0065
70 0.0029 1.0217 −0.0379 2.8211 0.0950 0.0467 0.0060

150 0.0022 1.0096 −0.0189 2.9110 0.0875 0.0416 0.0081
300 0.0021 1.0038 −0.0095 2.9534 0.0921 0.0440 0.0087

Table A3. Results of simulation of URW regression with τ = 0.75.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

RB%

10 1.5139 7.0198 59.4137 −15.7750 1.0066 1.0272 50.3627 −15.8088
15 0.9394 −5.5294 10.4376 58.9365 0.5469 −0.4434 20.8548 19.1723
30 0.5489 2.1688 12.8607 3.8494 0.3910 0.4465 11.7262 0.5419
70 0.1713 −0.8342 4.3563 3.9296 0.1220 −0.0153 2.9261 8.5480

150 0.0951 0.1653 2.2395 1.1441 0.0606 −0.0033 1.8062 2.2326
300 0.0569 0.2216 0.9944 0.7903 0.0251 −0.0434 0.8836 1.1722
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Table A3. Cont.

Measures n
Scenario 1 Scenario 2

β̂1 β̂2 γ̂1 γ̂2 β̂1 β̂2 γ̂1 γ̂2

MSE

10 0.0762 0.4276 8.8373 19.6653 0.0576 0.3214 12.0601 26.4214
15 0.0596 0.2170 0.9523 8.5802 0.0470 0.1831 1.9961 8.4663
30 0.0388 0.1069 0.4495 1.4973 0.0277 0.0780 0.7014 2.0920
70 0.0097 0.0389 0.1595 0.6060 0.0099 0.0255 0.2353 0.9759

150 0.0048 0.0139 0.0708 0.2595 0.0040 0.0125 0.0886 0.3329
300 0.0027 0.0082 0.0250 0.1098 0.0020 0.0062 0.0406 0.1717

CS

10 −0.5182 0.1293 1.3932 −0.1506 −0.4724 0.0761 1.3552 −0.0990
15 −0.3864 −0.0399 1.1578 0.8260 −0.3172 −0.0624 1.5891 0.0852
30 −0.1942 0.0519 1.2827 −0.1398 −0.2190 0.0562 1.1600 −0.1521
70 −0.1104 −0.0524 0.6154 0.0133 −0.1763 0.0369 0.4554 0.1434
150 −0.1260 0.0217 0.5416 −0.0837 −0.0893 −0.0071 0.4727 0.0027
300 −0.0580 0.0006 0.2772 0.0145 −0.0400 0.0247 0.3023 0.0043

K

10 3.7395 3.5907 6.7588 4.1142 3.6278 3.5253 6.5626 4.1212
15 3.5437 3.3600 5.6210 4.9085 3.3445 3.2608 7.9806 4.1577
30 3.1248 3.1764 6.1000 3.6655 3.2356 3.2399 5.5435 3.6156
70 3.1267 3.1935 3.6814 3.2058 3.1825 3.1104 3.2776 3.2182
150 2.9852 2.9519 3.5492 3.1539 3.0646 2.9997 3.3876 3.1305
300 2.9573 2.9404 3.0739 3.0106 2.9913 3.0221 3.1717 3.0464

CR%

10 0.8427 0.8475 0.9389 0.9402 0.8391 0.8450 0.9386 0.9413
15 0.8503 0.8496 0.9033 0.9073 0.8815 0.8780 0.9191 0.9157
30 0.9100 0.9174 0.9410 0.9389 0.9104 0.9190 0.9408 0.9375
70 0.9372 0.9387 0.9429 0.9465 0.9357 0.9361 0.9443 0.9458
150 0.9393 0.9389 0.9495 0.9474 0.9417 0.9393 0.9462 0.9450
300 0.9494 0.9498 0.9523 0.9526 0.9479 0.9495 0.9504 0.9489

Table A4. Simulation results for the quantile residuals of the URW regression with τ = 0.75.

Scenario n Mean Variance CS K NRR10% NRR5% NRR1%

1

10 −0.0089 1.1467 −0.1145 2.2479 0.0909 0.0422 0.0058
15 −0.0023 1.0776 0.0049 2.4589 0.0862 0.0372 0.0037
30 −0.0034 1.0386 0.0069 2.6568 0.0846 0.0385 0.0053
70 −0.0007 1.0166 0.0052 2.8431 0.0878 0.0398 0.0066
150 −0.0005 1.0080 0.0016 2.9171 0.0863 0.0400 0.0061
300 −0.0003 1.0042 −0.0001 2.9565 0.0921 0.0450 0.0078

2

10 −0.0078 1.1472 −0.1131 2.2581 0.0886 0.0411 0.0061
15 −0.0055 1.0830 −0.0146 2.4164 0.0852 0.0372 0.0043
30 −0.0035 1.0399 0.0018 2.6503 0.0854 0.0374 0.0050
70 −0.0009 1.0173 0.0022 2.8406 0.0879 0.0388 0.0075
150 −0.0004 1.0079 0.0026 2.9179 0.0873 0.0402 0.0071
300 −0.0002 1.0043 −0.0005 2.9567 0.0899 0.0402 0.0071
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Abstract: In this study, we model the rate or proportion of a specific phenomenon using a set of known
covariates. To fit the regression model, which explains the phenomenon within the intervals (0, 1), [0, 1),
(0, 1], or [0, 1], we employ a logit link function. This approach ensures that the model’s predictions
remain within the appropriate range of zero to one. In cases of inflation at zero, one, or both, the logit
link function is similarly applied to model the dichotomous Bernoulli-type variable with a multinomial
response. The findings demonstrate that the model yields a non-singular information matrix, ensuring
valid statistical inference. This ensures the invertibility of the information matrix, allowing for hypothesis
testing based on likelihood statistics regarding the parameters in the model. This is not possible with
other asymmetric models, such as those derived from the skew-normal distribution, which has a singular
information matrix at the boundary of the skewness parameter. Finally, empirical results show the
model’s effectiveness in analyzing proportion data with inflation at zero and one, proving its robustness
and practicality for analyzing bounded data in various fields of research.

Keywords: unit proportional hazard distribution; censoring; proportion data; truncation;
zero-one inflation
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1. Introduction

In recent years, probability distributions have seen significant advancements, particu-
larly through the creation of new families derived from extensions or generalizations of
classical distributions. These innovations aim to overcome the limitations of traditional
models and provide greater flexibility to better fit the complex phenomena observed in
various fields of knowledge. Examples of these distributions include those based on trans-
formations such as the generalized beta distribution by Eugene et al. [1], the family of
generalized distributions based on the Kumaraswamy distribution, referred to as Kw-
distributions and introduced by Cordeiro and De Castro [2] (Kw-normal, Kw-Weibull,
Kw-gamma, Kw-Gumbel, and Kw-inverse Gaussian distribution); and the beta modified
Weibull distribution of Silva et al. [3]. These new distributions not only better capture data
characteristics like skewness and kurtosis but also improve accuracy in modeling extreme
events or phenomena with heavy tails. Furthermore, their implementation has proven
useful in fields such as biomedicine, economics, and engineering, where classical models
fail to adequately describe the reality of the data.

In parallel, truncated distributions have emerged as another essential tool, particularly
when the data are bounded within a specific range. These distributions are modifications
of classical ones, where values outside a certain interval are truncated, improving the
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model’s fit for data restricted by natural or experimental constraints [4]. For example, the
truncated normal distribution is widely used in reliability analysis and survival studies
where negative values are not possible [5,6]. Similarly, the truncated Weibull distribution
has been applied in actuarial sciences to model the time to event data [7], offering greater
flexibility when standard distributions fail to capture the behavior of the tail.

A method for creating new families of distributions involves using a generating distri-
bution as a base. This method has been widely employed by various authors, including
Cordeiro et al. [8,9], Zografos and Balakrishnan [10], Ristić and Balakrishnan [11], Castel-
lares et al. [12], and Cordeiro et al. [13]. In the same context, Mahdavi and Silva [4] introduced
a method for generating families of truncated distributions, producing a two-parameter exten-
sion of the base distribution. This method has been used to derive distributions such as the
truncated exponential-exponential and the truncated Lomax-Exponential. These innovations
in probability distributions have proven to be valuable tools in statistical analysis, providing
more robust and adaptable models for complex data.

The method introduced by Mahdavi and Silva [4] can be summarized as follows:

• Definition of the Truncated Distribution: A random variable U with support in the
interval (a, b), where a ≤ 0 and b ≥ 1, and cumulative distribution function (CDF) F
is considered. The CDF of the truncated random variable U in the interval (0, 1) is
defined as:

FUt(u) =
F(u)− F(0)
F(1)− F(0)

. (1)

• Generation of the New Family of Distributions: Using the truncated CDF, the new
truncated F–G family of distributions is introduced. For each absolutely continuous G
distribution (denoted as the baseline distribution), the TF–G distribution is associated.
The CDF of the TF–G class of distributions is defined as:

GX(x) =
F(G(x))− F(0)

F(1)− F(0)
, (2)

where G is the CDF of the random variable V used to generate a new distribution.

The probability density function (PDF), fX(x), survival function, and hazard rate
function are given, respectively, by:

fX(x) =
g(x) f (G(x))
F(1)− F(0)

, (3)

SX(x) =
F(1)− F(G(x))

F(1)− F(0)
. (4)

and

hX(x) =
g(x) f (G(x))

F(1)− F(G(x))
, (5)

where f and g are the PDF of the random variables U and V, respectively. The extension to
the location-scale case of the model (3) is obtained from the transformation Y = μ + σX,
where X ∼ TF-G, for μ ∈ R y σ ∈ R+; it has PDF given by:

fY(y) =
1
σ

g(x) f (G(x))
F(x1)− F(x0)

, (6)

where
x =

y − μ

σ
, x0 =

a − μ

σ
, x1 =

b − μ

σ
.

Some distributions that have been derived using the generator proposed by [4] are the
truncated exponential-exponential (TEE), the truncated Lomax-Exponential by Enami [14],
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the truncated exponential Marshall Olkin Lomax distribution of Hadi and Al-Noor [15]
and the truncated Nadarajah-Haghighi Exponential by Al-Habib et al. [16]. The generator
proposed by [4] can also be used to derive distributions useful for modeling data in the
interval (0, 1), such as proportions, rates, or indices.

The analysis of phenomena represented by proportion data, confined to values be-
tween zero and one, is essential across various scientific disciplines. These data elucidate
part-to-whole relationships and are prevalent in numerous applications, including the
prevalence of diseases, the distribution of resources in economics, the survival rates of
species, and the utilization of habitats in ecology [17]. Modeling such data can be highly
challenging when there is high zero-to-one inflation in proportion data. Traditional statisti-
cal models, such as the censored normal or censored log-normal models, may not be the
best solution, as they often struggle to accurately characterize the underlying distribution
of proportion data with inflated extremes.

Numerous authors have collaborated to develop more robust models than the censored
normal and censored log-normal models for this type of data. By incorporating distribu-
tions such as the Birnbaum–Saunders [18,19], Student-t [20,21], skew-normal (SN) [22–25],
and power-normal (PN) [26,27] distributions, among others, they offer a framework for ana-
lyzing data with high degrees of skewness and kurtosis compared with traditional models.

Perhaps the beta distribution is the most well-known in the statistical literature and is
commonly used for fitting unit interval data. However, it has limitations when modeling
unit data with zero-one inflation. Recent proposals, such as the zero-one inflated beta mod-
els, have been made to overcome this limitation and have proven to be viable alternatives
for handling data with certain degrees of asymmetry [28–33]. Despite advancements in
modeling data with inflation and asymmetry, there remains a gap in adequately addressing
zero-one inflation in proportion data. Existing models fail to fully capture the unique
distributional characteristics and complexities introduced by these inflations, leading to
biased estimators and imprecise inferences [34,35].

The primary aim of this study is to introduce and develop unit-proportional hazard
zero-one inflated (UPHZOI) models, a novel class of regression models specifically designed
to address the challenges posed by zero-one inflation in proportional data confined to the
unit interval. UPHZOI models combine a continuous-discrete mixture distribution with
covariates, enabling them to effectively capture the complex dynamics of such data.

The remainder of this article is structured as follows: Section 2 provides background
on the asymmetric proportional hazard model and introduces the truncated proportional
hazard model. It also presents the process of parameter estimation, considering a classical
approach using the maximum likelihood method. In Section 3, we introduce new regression
models for unit interval data with inflation, including the model formulation, parameter
estimation, and elements of the Hessian matrix. Section 4 demonstrates the application of
these models through empirical case studies on doubly censored data and zero-inflated
data. Section 5 presents an analysis of the major results, limitations, and future research
directions. The article concludes with Section 6.

2. An Asymmetric Distribution for Skew Data

This section provides background on the proportional hazard (PH) distribution in-
troduced by Martínez-Flórez et al. [36] for modeling data with high or low kurtosis and
a wide range of skewness. Additionally, the unit-proportional hazard distribution is in-
troduced, derived using the truncated method of [4]. The latter serves as the foundation
for formulating the UPHZOI models, from which regression models for proportion data
are developed.

2.1. Proportional Hazard Distribution and Its Modeling

The PDF of the PH distribution is given by

φPH(y; θ) = α f
(

y − ξ

σ

){
1 − F

(
y − ξ

σ

)}α−1
, y ∈ R, (7)
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where θ = (ξ, σ, α), with ξ ∈ R is a location parameter, σ ∈ R+ is a scale parameter, α
is a positive real number and, F is an absolutely continuous distribution function with
continuous density function f = dF. The notation Y ∼ PH(ξ, σ, α) indicates that Y follows
an PH distribution with parameters ξ, σ, and α.

Under the PH model, the hazard function is presented as

hPH(y, α) = αh f (y),

where h f (·) = f (·)/(1 − F(·)) is the hazard function regarding the density f . When the
CDF F in the (7) model corresponds to the CDF of the standard normal distribution, that is,
F = Φ and therefore f = φ, we obtain the model denominated proportional hazard normal
(PHN), whose PDF is given by

φPHN(y; θ) = αφ

(
y − ξ

σ

){
S
(

y − ξ

σ

)}α−1
, y ∈ R, (8)

where S(·) is the survival function of the standard normal PDF. This model also serves as
an alternative for fitting data with much wider ranges of skewness and kurtosis than those
of the normal distribution, which the latter cannot adequately capture. The CDF of the
PHN(μ, σ, α) is given by:

ΦPHN(y; θ) = 1 −
{

S
(

y − ξ

σ

)}α

, y ∈ R. (9)

By considering various values of α, Martínez-Flórez et al. [36] found that the range
of the asymmetry and kurtosis coefficients,

√
β1 and β2, for the variable Y ∼ PHN(0, 1, α)

are the intervals (−1.1578, 0.9918) and (1.1513, 4.3023), respectively. This indicates that the
PHN model is superior to both the SN and PN models in terms of asymmetry and kurtosis.
Furthermore, ref. [36] demonstrate that the information matrix of the PHN distribution
is non-singular. This is advantageous for statistical inference, as it allows for hypothesis
testing based on likelihood ratio statistics.

2.2. Truncated Proportional Hazard Normal Distribution

Based on the TF-G distribution, we define the truncated proportional hazard normal
(TPHN) distribution in the unit interval [0, 1]. Let F(·) be the CDF of the PHN distribution
and G(·) the CDF of a continuous uniform distribution on [0, 1]; then, we have that the
PDF of the TPHN model is

φTPHN(y; ξ, σ, α) =

α
σ φPHN

(
y−ξ

σ

)
{

S
(−ξ

σ

)}α −
{

S
(

1−ξ
σ

)}α , 0 < y < 1, (10)

where φPHN and S are defined in (8). The standardization terms, which facilitate the
normalization of the data within the specified limits, are defined as

z =
y − ξ

σ
, z0 = − ξ

σ
, z1 =

1 − ξ

σ
.

This is denoted by TPHN(ξ, σ, α). It can be seen from (10) that the CDF, survival
function, and hazard function for the TPHN distribution are given by:

ΦTPHN(y; ξ, σ, α) =
{S(z0)}α − {S(z)}α

{S(z0)}α − {S(z1)}α
, (11)

STPHN(y; ξ, σ, α) =
{S(z)}α − {S(z1)}α

{S(z0)}α − {S(z1)}α
, (12)
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and

hTPHN(y; ξ, σ, α) =
α

σ

φ(z){S(z)}α−1

{S(z)}α − {S(z1)}α
= α

{S(z)}α

{S(z)}α − {S(z1)}α
h(y), (13)

respectively, where h(y) is the hazard function of the normal distribution.
The moments of a random variable with TPHN distribution can be obtained using

the expression

E(Yr) =
α ∑r

j=1 ξr−jσjλj

{S(z0)}α − {S(z1)}α , r = 1, 2, . . . (14)

where

λ =
∫ S(z0)

S(z1)
Φ−1(1 − u)uα−1du

being Φ−1(·) the inverse of the function Φ(·).
2.3. Parameter Estimation in the TPHN Model

The TPHN parameters can be estimated using the maximum likelihood (ML) method
by maximizing the log-likelihood function. We consider a random sample of n obser-
vations, Y1, Y2, . . . , Yn from the TPHN(ξ, σ, α) distribution; the log-likelihood function of
θ = (ξ, σ, α)� is obtained by taking the natural logarithm of the joint likelihood func-
tion defined as L(θ, y) = ∏n

i=1 φTPHN(yi; θ), where now θ = (ξ, σ, α). Taking the natural
logarithm in the above expression, we obtain the log-likelihood function established as

�(θ) = n log(α)− n log(σ) +
n

∑
i=1

log(φ(zi))

+(α − 1)
n

∑
i=1

log(S(zi))− n log(W(ξ, σ, α)), (15)

where zi = yi−ξ
σ and W = W(ξ, σ, α) = log

({S(z0)}α − {S(z1)}α). By taking the first
derivatives of the function presented in (15) with respect to the parameters, �̇(θ) = ∂�(θ)/∂θ,
we obtain the score elements. For the location parameter ξ, the score function is formulated as

�̇(α) =
n
α
+

n

∑
i=1

log(S(zi))− n
{S(z0)}α log(S(z0))− {S(z1)}α log(S(z1))

W
. (16)

For the scale parameter σ, the score function is defined as

�̇(μ) =
1
σ

n

∑
i=1

zi +
α − 1

σ

n

∑
i=1

φ(zi)

S(zi)
− n

α

σ

h(z0){S(z0)}α − h(z1){S(z1)}α

W
. (17)

For the shape parameter α, the score is formulated as

�̇(σ) = −n
σ
+

1
σ

n

∑
i=1

z2
i +

α − 1
σ

n

∑
i=1

zi
φ(zi)

S(zi)
− n

α

σ

z0h(z0){S(z0)}α − z1h(z1){S(z1)}α

W
. (18)

The maximum likelihood estimate (MLE) of the parameters is obtained by solving the
system of equations formed by setting (16)–(18) equal to zero. This system is generally
solved using iterative numerical methods, such as the Newton–Raphson or quasi-Newton al-
gorithms, which iteratively refine the parameter estimates to maximize the likelihood function.

2.4. Information Matrix in TPHN Model

The observed information matrix can be approximated by the negative of the Hessian
matrix, which is obtained from the second derivatives of the log-likelihood function. The
second derivatives of the log-likelihood function for ξξ, ξσ, σσ, ξα, σα an αα are given in the
Appendix A.1. To derive the information matrix, it suffices to find the expected value of the
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elements of the observed information matrix. According to [36], the family of proportional
hazard distributions is regular; thus, the information matrix of the PHN model is non-
singular, as demonstrated in Martínez-Flórez et al. [36]. Consequently, the information
matrix of the truncated distribution on [0, 1] is non-singular, and its covariance matrix is
given by

Σ = Σ(ξ, σ, α) = I−1(ξ, σ, α) = (E(J(ξ, σ, α)))−1.

It follows that, for large n, θ̂ is consistent and, furthermore, by the central limit theorem,
θ̂ is asymptotically normally distributed with mean vector θ and covariance matrix Σ, i.e.,

θ̂
D−→ N3(θ, Σ),

Details of this result can be found in [37].
In practice, since the matrix J(θ) is consistent for I(θ), we can take Σ = J−1(θ) as the

covariance matrix of the estimator vector for the TPHN model.

2.5. Unit-Proportional Hazard Regression Model

We now introduce the unit-proportional hazard normal (UPHN) regression model to
fit proportion data from the TPHN distribution by changing the location parameter ξ in (10)
to the linear predictor ξi = x�i β, where xi = (1, x1i, . . . , xpi)

� is an observed covariate
vector for the observation i, and β = (β0, β1, . . . , βp)� is the regression coefficient vector.
The response (dependent) variable Yi can be modeled by

Yi = β0 + β1x1i + · · ·+ βpxpi + εi, i = 1, . . . , n, (19)

where εi ∼ TPHN(0, σ, α). It follows from the natural form that

Yi ∼ TPHN(x�i β, σ, α), i = 1, 2, . . . , n.

Since our focus is on cases where the variable of interest lies within the unit interval
(0, 1), issues may arise with the expected response or predicted value, which could fall
outside this standard unit interval (0, 1), potentially resulting in negative estimates that
lack interpretation and/or meaning. To avoid these issues, we change the assumption
that the response variable Y is a linear function of the vector of explanatory variables
x�i = (x1, x2, . . . , xp) to a nonlinear transformation of this set of variables. This model will
be obtained by assuming that the location parameter of yi can be written as

g(μi) = ξi = x�i β, i = 1, . . . , n, (20)

where g(·) is a strictly monotonic and twice differentiable link function that maps (0, 1) to
R. There are several options for choosing the link function g(·); two commonly used for
this particular case are the logit function g(μi) = log(μi/(1 − μi)), and the probit function
g(μi) = Φ(μi). These two options yield very similar results in predicted values, with some
exceptions for extreme values. Because the logit and probit functions provide very similar
results in terms of model fit, and unlike the probit function, the logit link function allows for
simpler algebraic manipulations and obtaining expressions for the score function, elements
of the information matrix and expectation calculations among others, we opt for the logit
function. Thus, in this case, we write

μi =
exp(x�i β)

1 + exp(x�i β)
, i = 1, 2, . . . , n. (21)

For this model, the parameters are interpreted based on the odds ratio between the
odds of the prediction or mean when one of the variables is increased by m units (while
keeping the other explanatory variables constant) and the odds without this increase. It has
been demonstrated that this odds ratio is given by exp(mβk), where βk is the parameter as-

80



Mathematics 2024, 12, 3566

sociated with the explanatory variable increased by m units. It follows that the distribution
of the variable under study is

yi ∼ TPHN(μi, σ, α), i = 1, 2, . . . , n.

The estimates of the parameters of the UPHN regression model with a logit link func-
tion can be obtained using the ML method. The log-likelihood function for the parameter
vector θ = (β, σ, α) given a sample of n observations is given by

�(θ) = n log(α)− n log(σ) +
n

∑
i=1

log(φ(zi))

+ (α − 1)
n

∑
i=1

log(S(zi))−
n

∑
i=1

log(Wi(μi, σ, α)), (22)

where Wi = Wi(μi, σ, α) = log
({S(z0i)}α − {S(z1i)}α) with

zi =
yi − μi

σ
, z0i = −μi

σ
, z1i =

1 − μi
σ

.

Thus, the score function, defined as the derivative of the log-likelihood function with
respect to each of the parameters, is given for the vector whose components are given by:

�̇(α) =
n
α
+

n

∑
i=1

log(S(zi))−
n

∑
i=1

{S(z0i)}α log(S(z0i))− {S(z1i)}α log(S(z1i))

Wi
,

�̇(β j) =
1
σ

n

∑
i=1

xijziμi(1 − μi) +
α − 1

σ

n

∑
i=1

xijμi(1 − μi)φ(zi)

S(zi)

− α

σ

n

∑
i=1

xijμi(1 − μi)
(
h(z0i){S(z0i)}α − h(z1i){S(z1i)}α)

Wi
,

�̇(σ) = −n
σ
+

1
σ

n

∑
i=1

z2
i +

α − 1
σ

n

∑
i=1

zi
φ(zi)

S(zi)
− α

σ

n

∑
i=1

z0ih(z0i){S(z0i)}α − z1ih(z1i){S(z1i)}α

Wi
.

Setting these expressions to zero, we get the corresponding score equations whose
numerical solution leads to the MLE. The elements of the information matrix are obtained
using the chain rule and are presented in Appendix A.2.

It can be seen that, for large sample sizes, we have

θ̂
D−→ Np+3(θ, IF(θ)

−1).

where, “D” indicates convergence in distribution. In this way, inferences can be made
about the parameters using likelihood ratio statistics.

2.6. MCMC Methods for the PHN Model

Bayesian methods can also be implemented to perform statistical inference within the
PHN distribution family. Although there is limited statistical literature addressing this
issue in power-normal distributions, Sarabia and Castillo [38] provides some initial ideas
on how to approach it. In this section, we do not aim to propose specific Bayesian methods
but rather open the door to exploring these methods within the PHN model class.

We consider the standard case of the PHN(0, 1, α) ≡ PHN(α) model, and, similar
to [38], we assume a gamma distribution for the shape parameter α. The model we
consider is

Y | α ∼ PHN(α) (23)

α ∼ Gamma(δ0, λ0), (24)
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where Gamma(δ0, λ0) denotes a gamma random variable with PDF proportional to sδ0−1e−λ0s

with δ0 and λ0 known. If we denote by m(y) the marginal distribution of Y and by π(α | Y)
the posterior distribution of the shape parameter α, we have that:

m(y) =
∫ ∞

0
αφ(y)[1 − Φ(y)]α−1 λδ0

0
Γ(δ0)

αδ0−1e−λ0αdα

=
λδ0

0
Γ(δ0)

φ(y)
1 − Φ(y)

Γ(δ0 + 1)
{λ0 − log[1 − Φ(y)]}δ0−1 , (25)

from which it follows that:

π(α | Y) =
{λ0 − log[1 − Φ(y)]}δ0+1

Γ(δ0 + 1)
αδ0 e−(λ0−log[1−Φ(y)])α, (26)

which is the PDF of a random variable Gamma(δ1, λ1), where δ1 and λ1 are given by

δ1 = δ0 + 1, λ1 = λ0 − log[1 − Φ(y)]

Inference about the parameter α is carried out based on the posterior distribution given
in (26). For the location-scale case, PHN(ξ, σ, α), prior distributions for the parameters ξ
and σ that can be considered are the normal and inverse-gamma distributions, respectively.

3. UPHN Zero-One Inflated Regression Model

In this section, we present some regression models for unit interval (proportion) data
that account for inflation at values zero and one or any value between zero and one.

3.1. Models for Censored Data

Cragg proposed a two-part model [39], which is a framework for fitting the mixture of
a discrete and a continuous random variable. This model is represented by:

g(yi) = pi Ii + (1 − pi) f (yi)(1 − Ii),

where pi is the probability that determines the relative contribution of the point mass
distribution made by the discrete variable, f (·) is a PDF, and Ii is an indicator variable that
takes values of 0 or 1. This model is optimal in cases where the model is inflated at the
point mass value (for example, yi = a), whose probability at y = a cannot be explained
by the CDF associated with the PDF f (·). Cragg’s model can be extended to the case of a
variable with double censoring or two-point mass values, for example, 0 and 1, in which
case it is given by:

g(yi) = p0i I0i + (1 − p0i − p1i) f (yi)(1 − I0i − I1i) + p1i I1i,

where p0i = Pr(yi = 0), p1i = Pr(yi = 1), I0i is the indicator variable that takes the value 1
if yi = 0 and zero otherwise. Similarly, I1i is the indicator variable for yi = 1. In this model,
the three components are determined by different stochastic processes, thus necessarily
leading to a positive response from f . On the other hand, a zero or a one comes from the
distribution of a point mass.

3.2. Zero-One Inflated PHN Distribution

Based on Cragg’s model, we proposed the zero-one inflated PHN model as a means of

g(y) =

⎧⎪⎨⎪⎩
ρ0, if y = 0,
α
σ (1 − ρ0 − ρ1)φ(z){S(z)}α−1, if 0 < y < 1,
ρ1, if y = 1,

82



Mathematics 2024, 12, 3566

where
z =

y − μ

σ
, ρ0 = Pr(y = 0), ρ1 = Pr(y = 1).

From this model, cases of inflation only at zero follow by taking ρ1 = 0 or inflation
only at one by taking ρ0 = 0.

The CDF is represented by:

G(y) =

⎧⎪⎨⎪⎩
ρ0, if y ≤ 0,
ρ0 + (1 − ρ0 − ρ1)

[{S(z0)}α − {S(z)}α], if 0 < y < 1,
1, if y ≥ 1.

The most interesting case in this new model is when covariates are used to explain the
response both in the censored part (0 and 1) and in the uncensored part (the continuous part
in (0, 1)). Thus, for the discrete part, it is assumed that the responses at zero and one can be
explained by the covariate vectors x(0)i = (1, x0i1, . . . , x0iq)

� and x(1)i = (1, x1i1, . . . , x1ir)
�

respectively. Then, to determine the probabilities ρ0 and ρ1, a logistic model with a polyto-
mous response can be constructed such that:

ρ0i = Pr(yi = 0) =
exp (x�(0)iβ(0))

1 + exp (x�
(0)iβ(0)) + exp (x�

(1)iβ(1))
, (27)

ρ1i = Pr(yi = 1) =
exp (x�(1)iβ(1))

1 + exp (x�
(0)iβ(0)) + exp (x�

(1)iβ(1))
, (28)

ρ01i = 1 − ρ0i − ρ1i = Pr(yi ∈ (0, 1)) =
1

1 + exp (x�
(0)iβ(0)) + exp (x�

(1)iβ(1))
, (29)

where β(0) = (β00, β01, . . . , β0q)
� y β(1) = (β10, β11, . . . , β1r)

� are vectors of unknown
parameters associated respectively with the covariate vectors x(0) and x(1).

Similarly, for the continuous component of the model, a unit model PHN(μi, σ, α) is
still assumed with a logit link function in the mean response, i.e., log(μi/(1 − μi)) = x�i β,
where xi = (xi1, xi2, . . . , xip) is a vector of covariates with associated coefficient vector
β = (β0, β1, β2, . . . , βp)�. For this model, it is easy to verify that the log-likelihood function
for the parameter vector θ = (β�

(0), β�
(1), β�, σ, α)� given X(0), X, X(1) and Y can be written

in the form:
�(θ) = �(β(0), β(1)) + �(β, σ, α),

where

�(β(0), β(1)) = ∑
0

x(0)iβ(0) + ∑
1

x(1)iβ(1) −
n

∑
i=1

log
[
1 + exp (x�(0)iβ(0)) + exp (x�(1)iβ(1))

]
.

and
�(β, σ, α) = ∑

yi∈(0,1)
(log(α)− log(σ) + log(φ(zi)) + (α − 1) log(S(zi))).

Given these characteristics, the MLEs of the model parameters can be obtained sep-
arately for each component of the log-likelihood function. The score function is derived
by differentiating each component of the log-likelihood function. It can be shown that the
Fisher information matrix can be written as a block diagonal matrix in the form:

I(θ) = Diag
{

I(β(0), β(1)), I(β, σ, α),
}

where I(β(0), β(1)) corresponds to the information matrix of the discrete part. The elements
of the observed information matrix for the discrete part are given in the Appendix A.3.
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The respective Fisher information matrix is obtained by calculating the expectation of the
elements of the observed information matrix. Furthermore, since the inverse of a block
diagonal matrix is the block diagonal matrix of the respective inverses, it follows that the
variance-covariance matrix is given by:

Σ = Diag{I−1(
β(0) ,β(1)

), I−1
(β,σ,α)

}.

Here, for large sample sizes it follows that for θ = (β, β(0), β(1), σ, α)�

θ̂
D−→ Np+q+r+3(θ, IF(θ)

−1).

Confidence intervals for θr with of confidence coefficient ω = 100(1 − ψ)% can be

obtained as θ̂r ∓ z1−ω/2

√
σ̂(θ̂r). By talking ρ1i = 0, the zero-inflated model is followed and,

making ρ0i = 0, the zero-inflated model is obtained.

3.3. The Zero-One Inflated UPHN Model

Similarly to how the zero-one inflated PHN model was constructed, a zero and/or
one-inflated UPHN distribution can be proposed, which is given by:

f (yi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ0, if y = 0,

α
σ (1 − ρ0 − ρ1)

φ(z){S(z)}α−1

{S(z0)}α − {S(z1)}α
, if 0 < y < 1,

ρ1, if y = 1.

where z, ρ0 = Pr(y = 0) and ρ1 = Pr(y = 1) are defined as in the zero-one inflated
PHN model.

The CDF of this distribution is represented by

F(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ0, if y ≤ 0,

ρ0 + (1 − ρ0 − ρ1)
{S(z0)}α − {S(z)}α

{S(z0)}α − {S(z1)}α
, if 0 < y < 1,

1, if y ≥ 1.

For the case of covariates in the model, x(0)i = (1, x0i1, . . . , x0iq)
� and

x(1)i = (1, x1i1, . . . , x1ir)
� for the zero- and one-inflated part, with associated coefficient

vector β(0) = (β00, β01, . . . , β0q)
� and β(1) = (β10, β11, . . . , β1r)

�. For the continuous com-
ponent of the model, we connect the response variable with the linear predictor using
the logit link function. As before, we choose this link function because, in addition to
ensuring that the predictions model is within the (0, 1) interval, the logit function allows
for more explicit expressions of the score function elements and the information matrix
compared to the probit function, which depends on the integral of the cumulative distri-
bution function of the standard normal distribution. In this way, we assume relationship
log(μi/(1 − μi)) = x�i β, where xi = (1, xi1, xi2, . . . , xip)

� is a vector of covariates with
vector of coefficients β = (β0, β1, β2, . . . , βp)�.

The proposal again is to use a polytomous logistic model to explain the probabilities
ρ0i and ρ1i. As in the case of the inflated PHN model, we have that the log-likelihood
function is given by

�(θ) = �(β(0), β(1)) + �(β, σ, α),

where �(β(0), β(1)) is the same as the inflated PHN model, while
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�(θ; y) = n01 log(α)− n01 log(σ) + ∑
yi∈(0,1)

log(φ(zi)) + (α − 1) ∑
yi∈(0,1)

log(S(zi))

− ∑
yi∈(0,1)

log(Wi(μi, σ, α)),

where zi, Wi = Wi(μi, σ, α), z0i and z1i are as defined in (22).
The score function is obtained by differentiating each component of the log-likelihood

function and the Fisher information matrix can be written as a diagonal block matrix in
the form:

I(θ) = Diag
{

I(β(0), β(1)), I(β, σ, α)
}

.

The elements of the matrix I(β(0), β(1)) are like those given in the inflated PHN model,
while the elements of the matrix I(β, σ, α) are like those given in the information matrix of
the UPHN regression model.

3.4. Generalized Two-Part PHN Model

Cragg’s two-part model [39] encounters the issue that some censored points may
be values at the boundary of the censoring limit. This is particularly problematic for
a distribution f (·) within the unit interval [0, 1], where a zero or one could either be a
realization from the point mass distribution or a partial observation of f (·) having a critical
value that is not precisely known but is close to (0, T1) or (T2, 1) for small values of the
pre-specified constants T1 and T2. In practice, the values T1 and T2 are, in some cases,
defined as those for which the instruments cannot record measurements below or above,
respectively, and, consequently, are treated as censoring values. In other cases, these
observational limits are defined for ethical or practical reasons. For example, in clinical
studies, it may be unethical to continue observing a patient under certain conditions, or the
costs of prolonged observation may become prohibitive.

To address this issue in the two-part model, Moulton and Halsey [40] propose a new
approach to adjust the mixture of continuous and discrete random variables. This approach
allows for the possibility that some limiting responses result from an interval censoring
of f (·). The model proposed by Moulton and Halsey (1995) for left censoring at point
a is given by: g(yi) = [pi + (1 − pi)F(T)]Ii + (1 − pi) f (yi)(1 − Ii), where F is the CDF
associated to f and, T It is a pre-established constant within the interval (a, T) where some
limiting responses are considered censored. Similarly to how we generalized Cragg’s
model, Moulton and Halsey’s model can also be generalized for left and right censoring or
two boundary inflation points within the definition interval of the pdf f (·). In our case,
for the unit PHN distribution within the interval [0, 1], this generalization of Moulton and
Halsey’s model is given by:

g(yi) =
(

p0i + (1 − p0i − p1i)(1 − {S(z0i)}α)
)

I0i +
α(1 − p0i − p1i)

σ
φ(zi){S(zi)}α−1 I(0,1)i

+
(

p1i + (1 − p0i − p1i){S(z1i)}α)I1i.

It can be observed that this distribution is a model with double censoring (at zero
and one) and, therefore, allows for the fit of datasets with inflation at zero and one. This
represents an alternative to the double-censored Tobit model, where the CDF of the normal
distribution does not efficiently fit the probability of the point mass where double censoring
occurs, i.e., the probability of the inflation points.

Extending this model to the case of covariates in each part of the model, we again
assume that x(0)i = (1, x0i1, . . . , x0iq)

� and x(1)i = (1, x1i1, . . . , x1ir)
� are sets of auxil-

iary covariates for the discrete part at zero and one, respectively; and a set of covariates
xi = (1, xi1, . . . , xip)

′ for the continuous part in the interval (0, 1). Then, denoting by ρ0
the proportion of observations below zero, yi = 0 (lower detection limit), and by ρ1 the
proportion of observations above one, yi = 1 (upper detection limit), the extension of the
Moulton and Halsey model to the double-censored PHN case can be expressed through
the PDF given by
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g(yi) =

⎧⎪⎨⎪⎩
ρ0i + (1 − ρ0i − ρ1i)(1 − {S(z0i)}α), if yi ≤ 0,
α
σ (1 − ρ0i − ρ1i)φ(zi){S(zi)}α−1, if 0 < yi < 1,
ρ1i + (1 − ρ0i − ρ1i){S(z1i)}α, if yi ≥ 1,

where ρ0i and ρ1i are the probability masses at points zero and one, while z0i, z1i, zi are as
defined above; log(μi/(1 − μi)) = x�i β, where β is the set of coefficients associated with
the covariate vector xi = (1, xi1, . . . , xip)

�.
The CDF of this model is represented by

G(yi) =

⎧⎪⎨⎪⎩
ρ0i + (1 − ρ0i − ρ1i)(1 − {S(z0i)}α), if yi ≤ 0,
ρ0i + (1 − ρ0i − ρ1i)

[
1 − {S(zi)}α], if 0 < yi < 1,

1, if yi ≥ 1.

To model the responses at the point masses yi = 0 and yi = 1, a multinomial logistic
model with a logit link function is used again, where β�

(0), β�
(1) are the vectors of coefficients

associated with the sets of covariates x(0)i = (1, x0i1, . . . , x0iq)
� and x(1)i = (1, x1i1, . . . , x1ir)

�.
The log-likelihood function for parameter vector estimation θ = (β�

(0), β�
(1), β�, σ, α)�

conditionally on X(0), X, X(1), is given by:

�(θ) = ∑
0

log
[
exp(x�(0)iβ(0)) + 1 − {S(z0i)}α

]
+ ∑

1
log
[
exp(x�(1)iβ(1)) + {S(z1i)}α

]
+ ∑

i∈(0,1)
(log(α)− log(σ) + log(φ(zi)) + (α − 1) log(S(zi)))

−
n

∑
i=1

log
[
1 + exp (x�(0)iβ(0)) + exp (x�(1)iβ(1))

]
. (30)

The score equations are obtained by performing the first derivatives with respect to
the model parameters θ = (β�

(0), β�
(1), β�, σ, α)� while the information matrix is obtained

by proceeding as in the models studied previously. Models with inflation only at zero or
only at one can be studied by taking ρ0 = 0 or ρ1 = 0, respectively.

4. Empirical Applications

In this section, we illustrate the application of the proposed models and compare
it with other models using real data. We show that the proposed model can be a valid
alternative to some existing regression models in the statistical literature.

4.1. Application 1: Case Study on Students’ Dropout Data

Student dropout is a major problem many Latin American countries face. In some uni-
versities in Colombia, this phenomenon can lead to more than 50% of students who enroll
in a university program abandoning their higher education studies. This phenomenon has
its greatest impact in the first four semesters of undergraduate studies, which is why it is
important to determine the main causes leading to this abandonment of higher education.

This application refers to student dropout in the Faculty of Veterinary Medicine and
Zootechnics (MVZ, by its acronym in Spanish) at the University of Córdoba, Colombia.
The analyzed information corresponds to a sample of students who dropped out during
one of the first four semesters (early dropout) of the programs in the MVZ Faculty at the
University of Córdoba. The data correspond to variables from the SPADIES System of the
Ministry of National Education (MEN by its acronym in Spanish) and the university itself.

The response variable y corresponds to the proportion of subjects passed up to the
point of dropout. The explanatory variables considered were: x1 = Saber 11 test score
(exams taken at the end of secondary education); x2 = age at the time of taking the
Saber 11 test; x3 = variable indicating whether the student received financial support
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(taking values 1 = yes, 0 = no); x4 = mother’s educational level (categorized as 1 if
professional and, 0 otherwise); x5 = number of siblings; x6 = socioeconomic status of the
student (categorized as 1 if from strata 1, 2, or 3, referred to as low and 0, otherwise); and
x7 = student’s gender (categorized as 1 if male and 0 otherwise).

The zero-one inflated model, PHN, UPHN, and Doubly-Censored PHN (DCPHN)
were fitted since some students drop out in the first semester without passing any subjects,
and others drop out in the first four semesters even after passing all enrolled subjects.

The results obtained with the models studied in this article show that in all models,
the significant variables for 0 < y < 1 were the Saber 11 test score (x1), age at the time of
taking the Saber 11 test (x2), and number of siblings (x5). Similarly, the censored part at
zero (y = 0) is not explained by any variable in any of the three models, while the censored
part at one (y = 1) showed significance in variables such as age at the time of taking the
Saber 11 test (directly related to the age of university entry) and number of siblings.

Table 1 shows the results of the best-fitted model for each of the considered models.
To determine which model presents better performance, we used the AIC criteria [41] and
the corrected AIC (AICc) [42]. These criteria are defined as:

AIC = −2�(θ) + 2p and AICc = −2�(θ) +
2n(p + 1)
n − p − 2

,

where p is the number of parameters of the model in question.
The MLEs, with standard errors in parentheses, are given in Table 1. According to

the AIC and AICc criteria, the model that best fits the student dropout data is the UPHN,
followed by the DCPHN model.

Table 1. ML estimates of the indicated parameter and model for the dropout data and their AIC
and AICc.

Estimador PHN UPHN DCPHN

β̂00 −2.1624 −2.1624 −2.4371
(0.2071) (0.2071) (0.3025)

β̂10 2.9392 0.9771 1.3859
(0.0144) (0.0223) (0.6003)

β̂11 0.0142 0.0273 0.0208
(0.0092) (0.0041) (0.0096)

β̂12 −0.3281 −0.2844 −0.2687
(0.0125) (0.0175) (0.0905)

β̂15 0.1295 0.2129 0.1847
(0.0146) (0.0205) (0.0910)

β̂20 14.5124 14.5124 16.0286
(7.9470) (7.9470) (13.6058)

β̂21 0.0208 0.0208
(0.0127) (0.0127)

β̂22 −1.2230 −1.2230 −1.2024
(0.5150) (0.5150) (0.8650)

β̂25 0.4998 0.4998
(0.2509) (0.2509)

σ̂ 0.1064 0.1160 0.1238
(0.0104) (0.0057) (0.0598)

α̂ 0.1538 0.1427 0.1721
(0.0364) (0.0197) (0.1933)

AIC 195.0036 182.4216 183.6414

AICc 198.4687 185.6696 186.6646
Where PHN is proportional hazard normal, UPHN is truncated proportional hazard normal, DCPHN is dou-
bly censored proportional hazard normal, AIC is Akaike information criterion, and AICc is corrected Akaike
information criterion.
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To identify outliers and/or model misspecification, we examined the transformation
of the martingale residual, rMTi, as proposed by Barros et al. [43]. These residuals are
defined by

rMTi = sgn(rMi)
√
−2[rMi + δi log(δi − rMi)]; i = 1, 2, 3, · · · , n,

where rMi = δi + log(S(ei, θ̂)) is the martingal residual proposed by Ortega et al. [44],
where δi = 0, 1 indicates whether the ith observation is censored or not, respectively,
sgn(rMi) denotes the sign of rMi and S(ei; θ̂) represents the survival function evaluated at
ei, where θ̂ are the MLE for θ.

The plots of rMTi with confidence envelope graphs generated for the PHN, UPHN,
and DCPHN models, shown in Figures 1 and 2, indicate that the fitted regression models
PHN, UPHN, and DCPHN, with a logit link function, exhibit a good fit.
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Figure 1. Plots of envelopes for rMTi using: (Left) PHN and (Right) UPHN models and dropout data.
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Figure 2. Plots of envelopes for rMTi using DCPHN model and dropout data.
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4.2. Application 2: Case Study on Periodontal Disease Data

The data motivating this second application come from a clinical study in which the
clinical attachment level (CAL), a key marker of periodontal disease (PD), was measured at
six sites on each tooth of a subject. The primary statistical question is to estimate functions
that model the relationship between the “proportion of diseased sites associated with
a specific tooth type (incisors, canines, premolars, and first molars)” and the covariates
described below. The full dataset was previously analyzed by Galvis et al. [45] and includes
information from 290 individuals. The response variable in this study is the proportion
of diseased sites for the premolars (denoted as Y), with auxiliary covariates being gender
(X1), age (X2), glycosylated hemoglobin (X3), and smoking status (X4).

The dataset exhibits significant inflation at Y = 0, but for certain subjects, we also
observe Y = 1. To account for this, we applied the beta zero-one inflated (BIZU), trun-
cated log-normal zero-one inflated (LNIZU), doubly censored proportional hazard normal
(DCPHN), and the UPHN inflated zero-one (UPHNIZU) regression models. Our analysis
revealed that only the covariates X1 and X2 were statistically significant. For the DCPHN
model, only X2 was significant for both the discrete outcomes.

We used several information criteria to compare the various models, including AIC
and the AICC. We also used the Bayesian Information Criterion (BIC) and the Han-
nan–Quinn Information Criterion, defined as follows:

BIC = −2�(θ) + p log(n), HQC = −2�(θ) + 2p log(log(n)),

where p is the number of parameters of the model in question.
The MLEs, with standard errors in parentheses, are given in Table 2.

Table 2. ML estimates of the indicated parameter and model for the tooth data and their AIC, AICc,
BIC, and HQC.

Estimador BIZU LNIZU DCPHN UPHNIZU

β00 0.6337 0.6337 −7.2205 0.6337
(0.7408) (0.7408) (0.8854) (0.7408)

β02 −0.0376 −0.0376 −0.0935 −0.0376
(0.0135) (0.0135) (0.0161) (0.0135)

β10 −1.3885 −2.8949 −2.4039 −5.2246
(0.3957) (1.1453) (0.6809) (3.1908)

β11 −0.5366 −1.3134 −0.5517 −2.9349
(0.1613) (0.4387) (0.2420) (1.4567)

β12 0.0217 0.0393 0.0363 0.1325
(0.0068) (0.0194) (0.0123) (0.0735)

β20 −8.0316 −8.0316 −12.7261 −8.0316
(2.3153) (2.3145) (1.4938) (2.3153)

β22 0.0788 0.0788 −0.0487 0.0788
(0.0358) (0.0358) (0.0236) (0.0358)

σ 0.0903 0.3096 0.3060 0.6011
(0.0652) (0.0796) (0.0305) (0.1354)

α 1.5871 2.8429
(0.0974) (0.7634)

AIC 311.7097 316.0700 325.2363 308.0793

AICC 314.3525 318.7128 328.3095 310.8678

BIC 341.0687 345.4290 358.2652 341.1082

HQC 323.4723 327.8326 338.4693 321.3123

In Figures 3–6, it can be observed that the best fits correspond to the BIZU and
UPHNIZU models. Additionally, note that in three of the criteria, the UPHNIZU model
performs better than the BIZU model, while for the fourth criterion (BIC), no significant
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differences are found between the two models. It is important to consider that the BIZU
model has one less parameter, which further supports the superior fit of the UPHNIZU
model. This allows us to conclude that the UPHNIZU model is a promising new alternative
for modeling responses within the unit interval [0, 1] with zero-one inflation.

We also generated standardized residual plots to identify the presence of outliers
when fitting the UPHNIZU model. Additionally, we present the cumulative distribution
function (CDF) plot of the UPHN model (Figure 5). From these, the model shows a good
fit, and no outliers are detected. In addition, envelope plots were obtained for the fitted
models BIZU, LNIZU, and DCLPHN, which are presented in Figures 3 and 4. These plots
demonstrate that the BIZU and LNIZU models exhibit a better fit than the DCPHN model.
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Figure 3. Plots of envelopes for rMTi using: (Left) BIZU and (Right) LNIZU models and
periodontal data.
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Figure 4. Plots of envelopes for rMTi using DCPHN model and periodontal data.
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Figure 5. (Left) Empirical CDF of the residuals of the UPHNIZU model (solid line) and fitted CDF
(dashed line). (Right) Plots of the standardized residuals of the UPHNIZU model, periodontal data.
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Figure 6. Plots of envelopes for rMTi using UPHNIZU model and periodontal data.

5. Discussion

In this article, we introduced a broad class of skew regression models designed for
response variables that lie within the unit interval, which may exhibit an excess of zeros
or ones. These models were derived from a continuous-discrete mixture distribution that
incorporates covariates in both its discrete and continuous components. As evidenced
by applications using real data, the models we propose serve as a viable alternative for
modeling rates and proportions that are inflated at either zero or one.
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5.1. Major Results and Implications

Our findings demonstrate that the UPHNIZU model consistently surpassed other
models in terms of AIC, AICc, BIC, and HQC values. These models delivered a superior
fit for the data obtained from the case study on students’ dropout data and the clinical
study on periodontal disease, where the response variable was the proportion of diseased
tooth sites.

Our findings also demonstrate that UPHNIZU models generate a non-singular infor-
mation matrix, allowing valid statistical inferences and outperforming other asymmetric
models like those derived from the skew-normal distribution or the beta distribution.
Empirical results show the models’ effectiveness in analyzing proportional data with zero
and one inflation, highlighting their robustness and practicality in various research fields
such as biomedicine, economics, and engineering. Additionally, they present parame-
ter estimation methods using maximum likelihood and discuss applications in student
dropout studies and periodontal disease. UPHNIZU models are a promising alternative
for analyzing bounded data with extreme inflation, providing a robust and flexible tool to
capture the complex characteristics of such data. The research also emphasizes the impor-
tance of innovations in probability distributions and their application in modeling complex
phenomena, offering an advanced solution for the challenges of modeling proportional
data with zero and one inflation.

5.2. Model Limitations

Although the results are encouraging, our study has several limitations. First, the
models’ complexity and reliance on iterative numerical methods for parameter estimation
can lead to high computational demands. Second, while the models showed strong perfor-
mance with the datasets utilized in this research, additional validation on different types of
data is required to ensure their applicability in broader contexts.

5.3. Prospects for Further Investigation

Future research may explore several avenues, including the creation of more efficient
algorithms to lessen the computational demands of fitting these models. Furthermore, ap-
plying these models in fields like economics or environmental studies could offer additional
validation and reveal new applications.

Given the importance of model performance in our analysis, while the methods
employed—such as AIC, AICc, BIC, HQC, and martingale residuals—are effective for
evaluating model adequacy, there is room for improvement. Future research could in-
vestigate additional goodness-of-fit tests specifically designed for bounded and inflated
data, which could offer a more thorough evaluation of model performance and robustness.
Additionally, exploring Bayesian inference methods for unit interval data with inflation
could provide valuable insights and enhance the analytical framework.

An intriguing avenue for future research involves adapting these models to accommo-
date longitudinal or hierarchical data structures. This would require methods to manage
correlations within subjects or groups, often present in practical datasets. Additionally,
examining the robustness of these models in various misspecification scenarios could lead
to more resilient modeling strategies.

6. Conclusions

Analyzing proportion data, particularly when values are inflated at zero and one,
presents significant challenges across various scientific disciplines. Conventional models, such
as beta and Tobit regression models, frequently fail to accurately capture the complexities asso-
ciated with such data. This underscores the need for more sophisticated modeling techniques
capable of addressing the unique distributional characteristics of zero-one inflation.

This work tackled these challenges by introducing the proportional hazard normal
zero-one inflated models. These models incorporate a continuous-discrete mixture distri-
bution with covariates in both components, offering an advanced framework for analyzing
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proportion data with specific inflation points. Consequently, the proportional hazard
normal zero-one inflated models provide a robust and flexible method for capturing asym-
metrically distributed data and mixed discrete-continuous characteristics, prevalent in
fields such as medicine, sociology, humanities, and economics.

Our applications, which pertain to two case studies on student dropout and periodon-
tal data, demonstrated that the proportional hazard normal zero-one inflated models with
the logit link function are an excellent alternative to traditional models. The transformation
of martingale residuals and the generation of simulated envelopes further validated the
robustness of our models, underscoring their effectiveness in identifying model misfits
and outliers. The proposed models address a critical gap in statistical modeling, providing
valuable insights and reliable estimators for handling bounded and inflated data. The
flexibility and robustness of the proportional hazard normal zero-one inflated models make
them a viable alternative for describing proportion data that are inflated at zero or one.

In conclusion, the proportional hazard-normal zero-one inflated models signify a
significant advancement in statistical modeling techniques for proportion data exhibiting
zero-one inflation. These models provide a robust and adaptable framework for analyzing
such data, yielding deeper insights and more reliable estimators.
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Appendix A. Elements of the Observed Information Matrix

Appendix A.1. Truncated Proportional Hazard Normal Model
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Appendix A.2. Unit-Proportional Hazard Normal Regression Model
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Appendix A.3. UPHN Regression Model Inflated at Zero and/or One

For the discrete part, the elements of the observed information matrix are given by:

�̈(β(0)rβ(0)r′) =
n

∑
i=1

x(0)ipx(0)ip′ exp(x�(0)iβ(0))
[
1 + exp(x�(1)iβ(1))

]
(

1 + exp(x�
(0)iβ(0)) + exp(x�

(1)iβ(1))
)2 ,

�̈(β(1)qβ(0)r) = −
n

∑
i=1

x(0)ipx(1)iq exp(x�(0)iβ(0)) exp(x�(1)iβ(1))(
1 + exp(x�

(0)iβ(0)) + exp(x�
(1)iβ(1))

)2 ,

�̈(β(1)qβ(1)q′) =
n

∑
i=1

x(1)iqx(1)iq′ exp(x�(1)iβ(1))
[
1 + exp(x�(0)iβ(0))

]
(

1 + exp(x�
(0)iβ(0)) + exp(x�

(1)iβ(1))
)2 ,

95



Mathematics 2024, 12, 3566

while the elements for the continuous part are given by:
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Abstract: The wrapped method is the most widely used method for constructing distributions for
circular data. In this paper, we provide a review of all known wrapped distributions, including
45 distributions for continuous circular data and 10 distributions for discrete circular data. For
each wrapped distribution, we state its nth trigonometric moment, mean direction, mean resultant
length, skewness, and kurtosis. We also discuss data applications and limitations of each wrapped
distribution. This review could be a useful reference and encourage the development of more
wrapped distributions. We also mention an R package available for fitting all of the reviewed
distributions and illustrate its applications.
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1. Introduction

Circular data, also known as directional data, refer to measurements where the values
are cyclical and repeat over a defined interval. This kind of data arises naturally in situations
where the end of the scale reconnects with the beginning, such as angles, time, and compass
directions. For example, angles measured in degrees or radians are circular because 0 is
the same as 360, and similarly, 0 radians equates to 2π radians. This cyclical nature poses
unique challenges for statistical analysis because traditional linear methods are not suitable
for data that wrap around.

Practical examples of circular data abound in various fields. In meteorology, wind
directions recorded over time create circular datasets, as the direction can be anywhere
between 0 and 360. In biology, the study of animal movement, such as the migratory
patterns of birds or the rotational behavior of certain animals, often involves circular data.
Time-related data are another common example; for instance, the times of day at which
certain events occur (like sleep cycles or peak traffic hours) are inherently circular because
they repeat every 24 h. Analyzing such data requires careful consideration of its circular
nature to avoid misinterpretation and to uncover meaningful patterns and insights.

There have been many distributions proposed for circular data. Refs. [1–6] provide
excellent reviews. Most of the distributions for circular data are based on the method of
wrapping. Hence, we feel it is appropriate to provide a review of all known wrapped
distributions to date, which is the aim of this paper. No such review is known to date.
Such a review could be a useful reference for those interested in both the theory and
applications of wrapped distributions. It could also enhance the development of more
wrapped distributions.
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The method of wrapping can be described as follows. Suppose g is a valid probability
density function (PDF). If g is defined on the positive real line, then the PDF of the wrapped
distribution is

f (θ) =
∞

∑
k=0

g(θ + 2kπ) (1)

for 0 ≤ θ < 2π. If g is defined on the entire real line, then the PDF of the wrapped
distribution is

f (θ) =
∞

∑
k=−∞

g(θ + 2kπ) (2)

for 0 ≤ θ < 2π.
On the other hand, now suppose g is a valid probability mass function (PMF). If g is

defined on the positive real line, then the PMF of the wrapped distribution is

Pr
(

Θ =
2πr
m

)
=

∞

∑
k=0

g(r + km) (3)

for r = 0, 1, . . . , m − 1, and m ≥ 1. If g is defined on the entire real line, then the PMF of the
wrapped distribution is

Pr
(

Θ =
2πr
m

)
=

∞

∑
k=−∞

g(r + km) (4)

for r = 0, 1, . . . , m − 1, and m ≥ 1.
The most important properties of a circular random variable, say Θ, are its nth trigono-

metric moment denoted by mn, mean direction denoted by μ, mean resultant length denoted
by ρ, skewness denoted by γ1, and kurtosis denoted by γ2, defined by

mn = E[cos(nΘ)] + iE[sin(nΘ)], (5)

μ = arcsin
E[sin(Θ)]√

{E[cos(Θ)]}2 + {E[sin(Θ)]}2
, (6)

ρ =

√
{E[cos(Θ)]}2 + {E[sin(Θ)]}2, (7)

γ1 =
exp(−2μ)

(1 − ρ)
3
2

E[sin(2Θ)], (8)

and

γ1 =
exp(−2μ)

1 − ρ2 E[cos(2Θ)]− ρ4

1 − ρ2 , (9)

respectively. For each reviewed distribution, we list expressions for (5)–(9) as well as
expressions for the cumulative distribution function (CDF) corresponding to (1)–(4), if they
are available. We also discuss data applications as well as the limitations of each reviewed
distribution. Section 2 lists all known expressions corresponding to (1)–(2). Section 3
lists all known expressions corresponding to (3)–(4). The properties (5)–(9) not listed in
Sections 2 and 3 could provide readers with avenues for future work.
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The expressions listed in Sections 2 and 3 involve several special functions, including
the Lerch function defined by

Φ(z; s, a) =
∞

∑
k=0

zk

(a + k)s ;

the gamma function defined by

Γ(a) =
∫ ∞

0
ta−1e−tdt;

the lower incomplete gamma function defined by

γ(a, x) =
∫ x

0
ta−1e−tdt;

the upper incomplete gamma function defined by

Γ(a, x) =
∫ ∞

x
ta−1e−tdt;

the standard normal probability density function defined by

φ(x) =
1√
2π

e−
x2
2 ;

the standard normal cumulative distribution function defined by

Φ(x) =
∫ x

−∞

1√
2π

e−
t2
2 dt;

and the modified Bessel function of the second kind defined by

Kν(x) =

⎧⎪⎪⎨⎪⎪⎩
πcsc(πν)

2
[I−ν(x)− Iν(x)], if ν �∈ Z,

lim
μ→ν

Kμ(x), if ν ∈ Z;

the modified Bessel function of the first kind of order ν defined by

Iν(x) =
∞

∑
k=0

1
Γ(k + ν + 1)k!

( x
2

)2k+ν
.

The properties of these special functions can be found in [7,8]. We also set i =
√−1

throughout.
An R software package (version 4.4.1) for fitting of all of the reviewed distributions has

been created by the second author [9]. Three data applications illustrating the R package
are given in Section 4.

2. A Review of Continuous Wrapped Distributions

In this section, we review wrapped Akash, wrapped Aradhana, wrapped binormal,
wrapped Birnbaum–Saunders, wrapped Cauchy, wrapped chi-square, wrapped exponen-
tial, wrapped exponentiated inverted Weibull, wrapped gamma, wrapped generalized
geometric stable, wrapped generalized Gompertz, wrapped generalized normal Laplace,
wrapped generalized skew normal [10], wrapped generalized skew normal [11], wrapped
half-logistic, wrapped half-normal, wrapped [12]’s skew Laplace, wrapped hypoexpo-
nential, wrapped Ishita, wrapped Laplace, wrapped length-biased weighted exponential,
wrapped Levy, wrapped Lindley, wrapped Linnik, wrapped Lomax, wrapped modified
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Lindley, wrapped new Weibull–Pareto, wrapped normal, wrapped Pareto, wrapped quasi-
Lindley, wrapped Rama, wrapped Richard, wrapped Shanker, wrapped skew Laplace,
wrapped skew normal, wrapped stable, wrapped Student’s t, wrapped transmuted ex-
ponential, wrapped two-parameter Lindley, wrapped two-sided Lindley, wrapped vari-
ance gamma, wrapped weighted exponential, wrapped Weibull, wrapped XGamma and
wrapped XLindley distributions.

2.1. Wrapped Akash Distribution

Ref. [13] took g to be the PDF of the Akash distribution to obtain the wrapped Akash
distribution. Its PDF and CDF are

f (θ) =
λ3e−λθ

[(
1 + θ2)(1 − e−2πλ

)2
+ 4πe−2πλ

(
θ + π + πe−2πλ − θe−2πλ

)]
(λ2 + 2)

(
1 − e−2πλ

)3

and

F(θ) =
4πλe−2πλ

{[
1 − (1 + λθ)e−λθ

](
1 − e−2πλ

)
+ πλ

(
1 − e−λθ

)(
1 + e−2πλ

)}
(λ2 + 2)

(
1 − e−2πλ

)3

+

(
1 − e−λθ

)(
λ2 + 2

)− λθ(2 + λθ)e−λθ

(λ2 + 2)
(
1 − e−2πλ

) ,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is

mn =
λ3

λ2 + 2
λ2 − 2inλ − n2 + 2

(λ − in)3

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 3 arctan
(

1
λ

)
− arctan

(
2λ

λ2 + 1

)
,

ρ =
λ3

λ2 + 2

√√√√ (λ2 + 1)2 + 4λ2

(λ2 + 1)2 ,

γ1 =

λ3

λ2+2

√
(λ2−2)2

+16λ2

(λ2+4)3 sin(κλ,2)[
1 − λ3

λ2+2

√
(λ2+1)2

+4λ2

(λ2+1)3

] 3
2

,

and

γ2 =

λ3

λ2+2

√
(λ2−2)2

+16λ2

(λ2+4)3 cos(κλ,2)−
[

λ3

λ2+2

√
(λ2+1)2

+4λ2

(λ2+1)3

]4

[
1 − λ3

λ2+2

√
(λ2+1)2

+4λ2

(λ2+1)3

]2 ,

respectively, where κλ,2 = 3 arctan
( 2

λ

) − arctan
(

4λ
λ2−2

)
− 6 arctan

(
1
λ

)
+ 2 arctan

(
2λ

λ2+1

)
.

The wrapped Akash distribution was used on a dataset from [1] regarding the long-axis
orientations of 60 feldspar laths in basalt rock. It demonstrated a better fit to the data
compared to the wrapped exponential distribution and the wrapped Lindley distribution.

101



Mathematics 2024, 12, 2440

Despite having only one parameter, the wrapped Akash distribution proved to be a flexible
model. Additionally, it allows for closed form expressions for both its PDF and its CDF.

2.2. Wrapped Aradhana Distribution

Ref. [14] took g to be the PDF of the Aradhana distribution to obtain the wrapped
Aradhana distribution. Its PDF and CDF are

f (θ) =
λ3e−λθ

λ2 + 2λ + 2

[
(1 + θ)2

1 − e−2πλ
+

4(θ + 1)πe−2πλ(
1 − e−2πλ

)2 +
4π2e−2πλ

(
1 + e−2πλ

)(
1 − e−2πλ

)3

]

and

F(θ) =
1 − e−λθ

1 − e−2πλ
− λθ(λθ + 2λ + 2)e−λθ

(λ2 + 2λ + 2)
(
1 − e−2πλ

) + 4πλe−2πλ
[
(1 + λ)

(
1 − e−λθ

)− λθe−λθ
]

(λ2 + 2λ + 2)
(
1 − e−2πλ

)2

+
4π2λ2(1 − e−λθ

)(
1 + e−2πλ

)
e−2πλ

(λ2 + 2λ + 2)
(
1 − e−2πλ

)3 ,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is given by

mn =
λ3[λ2 + 2λ − n2 + 2 − 2in(1 + λ)

]
(λ2 + 2)(λ − in)3

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 3 arctan
(

1
λ

)
− arctan

[
2(1 + λ)

λ2 + 2λ + 1

]
,

ρ =
λ3

λ2 + 2λ + 2

√√√√ (λ2 + 2λ + 1)2 + 4(1 + λ2)

(λ2 + 1)3 ,

γ1 =

λ3

λ2+2λ+2

√
(λ2+2λ−2)2

+16(1+λ2)

(λ2+4)3 sin(μ2 − 2μ)[
1 −
√

(λ2+2λ+1)2
+4(1+λ2)

(λ2+1)3

] 3
2

,

and

γ2 =

λ3

λ2+2λ+2

√
(λ2+2λ−2)2

+16(1+λ2)

(λ2+4)3 cos(μ2 − 2μ)−
[

λ3

λ2+2λ+2

√
(λ2+2λ−2)2

+16(1+λ2)

(λ2+4)3

]4

[
1 −
√

(λ2+2λ+1)2
+4(1+λ2)

(λ2+1)3

]2 ,

respectively, where μ2 = 3 arctan
( 2

λ

)− arctan
(

4(1+λ)
λ2+2λ−2

)
. The wrapped Aradhana distribu-

tion has only one parameter, which might restrict its versatility and relevance to real-world
datasets. However, it does have closed form expressions for the PDF and CDF.
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2.3. Wrapped Binormal Distribution

Ref. [15] took g to be the PDF of the binormal distribution to obtain the wrapped
binormal distribution. Its PDF is

f (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞

∑
k=−∞

√
2
π

1
σ1 + σ2

e
− (θ+2kπ−μ)2

2σ2
1 , θ ≤ μ,

∞

∑
k=−∞

√
2
π

1
σ1 + σ2

e
− (θ+2kπ−μ)2

2σ2
2 , θ > μ

for 0 ≤ θ < 2π, θ > μ, and σ > 0. The nth trigonometric moment is

mn = 2[bn cos(pμ)− cn sin(pμ)] + 2i[bn sin(pμ) + cn cos(pμ)],

where

bp =
1
2

(
σ1

σ1 + σ2
e
−p2σ2

1
2 +

σ2

σ1 + σ2
e
−p2σ2

2
2

)
and

cp = − 1√
π

σ1

σ1 + σ2
e
−p2σ2

1
2

∞

∑
n=1

(
pσ1√

2

)2n−1

(2n − 1)(n − 1)!
+

2√
π

σ2

σ1 + σ2
e
−p2σ2

2
2

∞

∑
n=1

(
pσ2√

2

)2n−1

(2n − 1)(n − 1)!
.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
[

b1 sin(μ) + c1 cos(μ)
b1 cos(μ)− c1 sin(μ)

]
,

ρ = 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2,

γ1 =

√
[b2 cos(2μ)− c2 sin(2μ)]2 + [b2 sin(2μ) + c2 cos(2μ)]2 sin(μ2 − 2μ)[

1 − 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

] 3
2

,

and

γ2 =
2
√
[b2 cos(2μ)− c2 sin(2μ)]2 + [b2 sin(2μ) + c2 cos(2μ)]2 sin(μ2 − 2μ)[

1 − 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]2

−

[
2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]4

[
1 − 2

√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]2 ,

respectively, where μ2 = arctan
[

b2 sin(2μ)+c2 cos(2μ)
b2 cos(2μ)−c2 sin(2μ)

]
. The wrapped binormal distribution

lacks practicality due to its non-closed-form PDF.
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2.4. Wrapped Birnbaum–Saunders Distribution

Ref. [16] took g to be the PDF of the Birnbaum-Saunders distribution to obtain the
wrapped Birnbaum–Saunders distribution. Its PDF and CDF are

f (θ) =
e

δ
2
√

δ + 1
4
√

πμ

∞

∑
k=0

θ + 2kπ + δμ
δ+1

(θ + 2kπ)
3
2

e−
δ
4

[
(θ+2kπ)(δ+1)

δμ +
δμ

(θ+2kπ)(δ+1)

]

and

F(θ) =
∞

∑
k=0

Φ

(√
δ

2

[√
(θ + 2kπ)(δ + 1)

δμ
−
√

δμ

(θ + 2kπ)(δ + 1)

])

−
∞

∑
k=0

Φ

(√
δ

2

[√
2kπ(δ + 1)

δμ
−
√

δμ

2kπ(δ + 1)

])
,

respectively, for 0 ≤ θ < 2π, 0 ≤ μ < 2π, and δ > 0. The nth trigonometric moment is

mn =
1
2

[
1 +

√
δ + 1√

δ + 1 − 4niμ

]
e

δ[
√

δ+1−√δ+1−4niμ]
2
√

δ+1

for n = 1, 2, . . .. The wrapped Birnbaum–Saunders distribution was used on a dataset
examined by [1] and originally gathered by [17]. The dataset includes 100 ant directions in
reaction to a uniformly lit black target. The wrapped Birnbaum–Saunders distribution fit
the data better than both symmetric and asymmetric von Mises distributions.

2.5. Wrapped Cauchy Distribution

Ref. [18] took g to be the PDF of the Cauchy distribution to obtain the wrapped Cauchy
distribution. Its PDF is

f (θ) =
∞

∑
k=−∞

γ

μ(γ2 + (θ − μ + 2πn)2)
=

1
2π

sinh γ

cosh γ − cos(θ − μ)

for 0 ≤ θ < 2π, γ > 0, and −∞ < μ < ∞. The nth trigonometric moment is

mn = einμ−nγ

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ,

ρ = e−γ,

γ1 = 0,

and

γ2 =
e−2γ − e−8γ

(1 − e−γ)2 ,

respectively. Notably, the wrapped Cauchy distribution has a closed-form expression for
its PDF. However, it is a symmetric distribution and, as such, has limited applicability to
skewed datasets.
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2.6. Wrapped Chi-Square Distribution

Ref. [19] took g to be the PDF of a chi-square distribution to obtain the wrapped
chi-square distribution. Its PDF is

f (θ) =
e− θ

2 π
k
2−1

2Γ
(

k
2

) Φ
(

e−π ; 1 − k
2

,
θ

2π

)

for 0 ≤ θ < 2π and k > 0. The nth trigonometric moment is

mn = (1 − 2in)−
k
2

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ =
k
2

arctan(2),

ρ = 5−
k
4 ,

γ1 =
17− k

4 sin
[

k
2 arctan(4)− k arctan(2)

]
(

1 − 5− k
4

) 3
2

,

and

γ2 =
17− k

4 cos
[

k
2 arctan(4)− k arctan(2)

]
− 5−k(

1 − 5− k
4

)2 ,

respectively. The wrapped chi-square distribution faces limitations due to its non-closed-
form PDF, as defined in terms of the Lerch function.

2.7. Wrapped Exponential Distribution

Ref. [20] took g to be the PDF of the exponential distribution to obtain the wrapped
exponential distribution. Its PDF and CDF are

f (θ) =
λe−λθ

1 − e−2πλ

and

F(θ) =
1 − e−λθ

1 − e−2πλ
,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is

mn =
λ

λ − in

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
(

1
λ

)
,
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ρ =
λ√

1 + λ2
,

γ1 =
−2λ

(1 + λ2)
1
4 (4 + λ2)

(√
1 + λ2 − λ

) 3
2

,

and

γ2 =
3λ2

(1 + λ2)(4 + λ2)
(√

1 + λ2 − λ
)2 ,

respectively. The wrapped exponential distribution adequately fits various real-life distri-
butions, as reported by [1]. It offers straightforward closed-form expressions for the PDF
and CDF. Nevertheless, its limitation lies in being a one-parameter distribution, restricting
its flexibility.

2.8. Wrapped Exponentiated Inverted Weibull Distribution

Ref. [21] took g to be the PDF of the exponentiated inverted Weibull distribution to
obtain the wrapped exponential inverted Weibull distribution. Its PDF is

f (θ) = c
∞

∑
k=0

λ(θ + 2πk)−(c+1)
[
e−(θ+2πk)−c

]λ

for 0 ≤ θ < 2π, c > 0, and λ > 0. The nth trigonometric moment is

mn =
∞

∑
k=0

(
itλ

1
c

)k

k!
Γ
(

1 − k
c

)
= bt + ict

for n = 1, 2, . . ., where

bn =
∞

∑
k=0

(−1)k
(

nλ
1
c

)2k

(2k)!
Γ
(

1 − 2k
c

)
and

cn =
∞

∑
k=0

(−1)k
(

nλ
1
c

)2k+1

(2k + 1)!
Γ
(

1 − 2k + 1
c

)
.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
(

c1

b1

)
,

ρ =
√

b2
1 + c2

1,

γ1 =

√
b2

2 + c2
2 sin(μ2 − 2μ)(

1 −
√

b2
1 + c2

1

) 3
2

,
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and

γ2 =

√
b2

2 + c2
2 cos(μ2 − 2μ)−

(√
b2

1 + c2
1

)4

(
1 −
√

b2
1 + c2

1

) 3
2

,

respectively, where μ2 = arctan
(

c2
b2

)
. The wrapped exponential inverted Weibull distribu-

tion was used to analyze the orientation data of 76 turtles post egg-laying, as documented
by [1]. This distribution exhibited a superior fit compared to the wrapped new Weibull–
Pareto distribution. Nonetheless, a limitation is noted due to the absence of a closed-form
PDF.

2.9. Wrapped Gamma Distribution

Ref. [22] took g to be the PDF of the gamma distribution to obtain the wrapped gamma
distribution. Its PDF is

f (θ) =
λr

Γ(r)
e−λθ(2π)r−1Φ

(
e−2λπ ; 1 − r,

θ

2π

)
for 0 ≤ θ < 2π, r > 0, and λ > 0. The nth trigonometric moment is

mn = λr(λ − in)−r

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = r arctan
(

1
λ

)
,

ρ = λr
(

λ2 + 1
)− r

2 ,

γ1 =
λr(λ2 + 4

)− r
2 sin(μ2 − 2μ)[

1 − λr(λ2 + 1)−
r
2
] 3

2
,

and

γ2 =
λr(λ2 + 4

)− r
2 sin(μ2 − 2μ)−

[
λr(λ2 + 1

)− r
2
]4

[
1 − λr(λ2 + 1)−

r
2
]2 ,

respectively, where μ2 = r arctan
( 2

λ

)
. The wrapped gamma distribution is constrained by

its non-closed-form PDF, expressed in terms of the Lerch function.

2.10. Wrapped Generalized Geometric Stable Distribution

Ref. [23] took g to be the PDF of the generalized geometric stable distribution to obtain
the wrapped generalized geometric stable distribution. Its PDF and CDF are

f (θ) =
1

2π

{
1 + 2

∞

∑
k=1

[αk cos(kθ) + βk sin(kθ)]

}
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and

F(θ) =
1

2π

{
1 + 2

∞

∑
k=1

[
αk
k

sin(kθ) +
βk
k

− βk
k

cos(kθ)

]}
,

respectively, for 0 ≤ θ < 2π, where

αk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
(1 + σαkα)2 +

[
σαkαβ tan

(πα

2

)
+ μ∗k

]2
}− λ

2
cos

{
λ arctan

[
σαkαβ tan

(
πα
2
)
+ μ∗k

1 + σαkα

]}
, if α �= 1,

{
(1 + σαkα)2 +

[
μ∗k − 2σαkαβ

π
log | k |

]2
}− λ

2

cos

{
λ arctan

(
μ∗k − 2σαkα β

π log | k |
1 + σαkα

)}
, if α = 1

and

βk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
(1 + σαkα)2 +

[
σαkαβ tan

(πα

2

)
+ μ∗k

]2
}− λ

2
sin

{
λ arctan

[
σαkαβ tan

(
πα
2
)
+ μ∗k

1 + σαkα

]}
, if α �= 1,

{
(1 + σαkα)2 +

[
μ∗k − 2σαkαβ

π
log | k |

]2
}− λ

2

sin

{
λ arctan

(
μ∗k − 2σαkα β

π log | k |
1 + σαkα

)}
, if α = 1

for 0 < α ≤ 2, λ > 0, σ > 0, −1 ≤ β ≤ 1, −∞μ < ∞, and μ∗ = μ mod 2π. The nth
trigonometric moment is

mn = αn + iβn

for n = 1, 2, . . .. The mean direction and mean resultant length are

μ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ arctan

[
μ∗ + σαβ tan

(
πα
2
)

1 + σα

]
and 2π, if α �= 1,

λ arctan
[

μ∗

1 + σα

]
and 2π, if α = 1

and

ρ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
(1 + σα)2 +

[
μ∗σαβ tan

(πα

2

)]2
}− λ

2
, if α �= 1,

{
(1 + σ)2 + (μ∗)2

}− λ
2 , if α = 1,

respectively. The wrapped generalized geometric stable distribution was used to analyze
hourly wind direction data collected over three days at a location on Black Mountain, ACT,
Australia, as reported by [24] and discussed by [1]. Although the distribution was found
to fit the data effectively, its drawback lies in its high number of parameters. Simplified
distributions with fewer parameters might prove more practical.
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2.11. Wrapped Generalized Gompertz Distribution

Ref. [25] took g to be the PDF of the generalized Gompertz distribution to obtain the
wrapped generalized Gompertz distribution. Its PDF and CDF are

f (θ) =
1

bΓ(c)

∞

∑
k=−∞

exp
(

c
θ + 2πk − a

b
− e

θ+2πk−a
b

)
and

F(θ) =
∞

∑
k=−∞

1
Γ(c)

[
Γ
(

c, e
2πk−a

b

)
− Γ
(

c, e
θ+2πk−a

b

)]
,

respectively, for 0 ≤ θ < 2π, 0 ≤ a < 2π, b > 0, c > 0, and θ + 2πk > a. The nth
trigonometric moment is

mn = eina Γ(inb + c)
Γ(c)

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = a,

ρ =
Γ(ib + c)

Γ(c)
,

γ1 = 0,

and

γ2 =

Γ(2ib+c)
Γ(c) −

[
Γ(ib+c)

Γ(c)

]4

[
1 − Γ(ib+c)

Γ(c)

]2 ,

respectively. The wrapped generalized Gompertz distribution was used to analyze the
orientations of 50 noisy scrub bird nests along a creek bank, as reported by [1]. While this
distribution was found to fit the data effectively, it involves several parameters. Thus, there
might be alternative distributions with fewer parameters that offer a better fit to the data.

2.12. Wrapped Generalized Normal Laplace Distribution

Ref. [26] took g to be the PDF of the generalized normal Laplace distribution to obtain
the wrapped generalized normal Laplace distribution. Its PDF is

f (θ) =
1

2π

{
1 + 2

∞

∑
k=1

[αk cos(kθ) + βk sin(kθ)]

}

for 0 ≤ θ < 2π, where

αk =

[
e−τ2k2

(1 + a2k2)(1 + b2k2)

] ζ
2

cos

{
arctan

[(
1 + abk2) cos(ηk) + (b − a)k sin(ηk)
(1 + abk2) sin(ηk) + (b − a)k cos(ηk)

]}
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and

βk =

[
e−τ2k2

(1 + a2k2)(1 + b2k2)

] ζ
2

sin

{
arctan

[(
1 + abk2) cos(ηk) + (b − a)k sin(ηk)
(1 + abk2) sin(ηk) + (b − a)k cos(ηk)

]}

for −∞ < η < ∞, −∞ < τ < ∞, a > 0, b > 0, and ζ > 0. The nth trigonometric moment is

mn =

⎡⎣ eiηn− τ2n2
2

(1 − ian)(1 − ibn)

⎤⎦ζ

for n = 1, 2, . . .. The mean direction and mean resultant length are

μ = ζ

[
η + arctan

(
a − b

1 + ab

)]
mod 2π

and

ρ =

[
e−τ2

(1 + a2)(1 + b2)

] ζ
2

,

respectively. The wrapped generalized normal Laplace distribution was used to analyze
a dataset containing 1827 flight headings of migrating birds, as documented by [27]. It
was found that this distribution offers a superior fit compared to a five-parameter mixture
of two von Mises distributions but that it is not as effective as a four-parameter mixture
incorporating circular uniform and skew normal components.

2.13. Wrapped Generalized Skew Normal Distribution [10]

Ref. [10] took g to be the PDF of the generalized skew normal distribution to obtain
the wrapped generalized skew normal distribution. Its PDF is

f (θ) =
2

σ(α + 2)

∞

∑
k=−∞

φ

(
θ + 2πk − μ

σ

)[
1 + αΦ

(
λ

σ
(θ + 2πk − μ)

)]
for 0 ≤ θ < 2π, −∞ < μ < ∞, σ > 0, −∞ < λ < ∞, and α ≥ −1. The nth trigonometric
moment is

mn = eiμn

⎧⎪⎪⎨⎪⎪⎩
γ[

α2 − (β + in)2
] 1

2

⎫⎪⎪⎬⎪⎪⎭
2λ

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
sin μ + α

α+2 G(δσ) cos μ

cos μ − α
α+2 G(δσ) sin μ

,

ρ = ηe−
σ2
2 ,

γ1 =
e−

p2σ2
2
{

sin[p(2μ − ω)] + α
α+2 G(pδσ) cos[p(2μ − ω)]

}
(

1 − ηe− σ2
2

) 3
2

,
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and

γ2 =
e−

p2σ2
2
[
cos pω − α

α+2 G(δσp) sin pω
]− η4e−2σ2(

1 − ηe− σ2
2

)2 ,

respectively, where η =
√

1 + α
2+α G(δσ), G(d) =

√
2
π ∑∞

n=0
d2n+1

2nn!(2n+1) for d real, and ω =

μ − sin μ+ α
α+2 G(pδσ) cos μ

cos μ− α
α+2 G(pδσ) sin μ

. The wrapped generalized skew normal distribution is hindered by

its non-closed-form PDF and excessive parameters, potentially outperformed by simpler
models.

2.14. Wrapped Generalized Skew Normal Distribution [11]

Ref. [11] took g to be the PDF of the generalized skew normal distribution to obtain
the wrapped generalized skew normal distribution. Its PDF is

f (θ) =
2
w

∞

∑
k=−∞

φ

(
θ + 2πk − μ

w

)
Φ

(
α

(
θ + 2πk − μ

w

)
+ β

(
θ + 2πk − μ

w

)3
)

for 0 ≤ θ < 2π, −∞ < μ < ∞, w > 0, −∞ < α < ∞, and −∞ < β < ∞. No properties
were derived for this distribution. The wrapped generalized skew normal distribution was
utilized to analyze wind direction data from a meteorological station in Villena, Alicante,
Spain. The data, collected in June 2009 using an Oregon Scientific WMR928NX automatic
weather station, were split into sea breeze and mountain breeze subsets. The wrapped
generalized skew normal distribution appeared to be the most suitable fit for both the
entire dataset and the mountain breeze period. However, for the sea breeze period, the
Jones and Pewsey sine-skewed distribution demonstrated the best fit.

2.15. Wrapped Half-Logistic Distribution

Ref. [15] took g to be the PDF of the half-logistic distribution to obtain the wrapped
half-logistic distribution. Its PDF is

f (θ) =
∞

∑
k=−∞

1
2σ

sech2
(

θ + 2kπ − μ

2σ

)
for 0 ≤ θ < 2π, 0 ≤ μ < 2π, and σ > 0. The nth trigonometric moment is

mn = 2[bn cos(pμ)− cn sin(pμ)] + 2i[bn sin(pμ) + cn cos(pμ)],

where

bn =
∫ a

0
cos(pσy)

e−y

(1 + e−y)2 dy +
∞

∑
n=1

(−1)n−1 ne−na

n2 + p2σ2 [n cos(pσa)−pσ sin(pσa)]

and

cn =
∫ a

0
sin(pσy)

e−y

(1 + e−y)2 dy +
∞

∑
n=1

(−1)n−1 ne−na

n2 + p2σ2 [n sin(pσa)+pσ cos(pσa)].

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
[

b1 sin(μ) + c1 cos(μ)
b1 cos(μ)− c1 sin(μ)

]
,
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ρ = 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2,

γ1 =
2
√
[b2 cos(2μ)− c2 sin(2μ)]2 + [b2 sin(2μ) + c2 cos(2μ)]2 cos(μ2 − 2μ)[

1 − 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

] 3
2

,

and

γ2 =
2
√
[b2 cos(2μ)− c2 sin(2μ)]2 + [b2 sin(2μ) + c2 cos(2μ)]2 sin(μ2 − 2μ)[

1 − 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]2

−

[
2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]4

[
1 − 2

√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]2 ,

respectively, where μ2 = arctan
[

b2 sin(2μ)+c2 cos(2μ)
b2 cos(2μ)−c2 sin(2μ)

]
. The utility of the wrapped half-logistic

distribution is restricted by its non-closed-form PDF.

2.16. Wrapped Half-Normal Distribution

If g is the pdf of the half-normal distribution we obtain the wrapped half-normal
distribution. Its pdf is

f (θ) =
∞

∑
k=0

1
2σ

sech2
(

θ + 2kπ − μ

2σ

)
for 0 ≤ θ < 2π and σ > 0. The nth trigonometric moment is

mn = 2[bn cos(pμ)− cn sin(pμ)] + 2i[bn sin(pμ) + cn cos(pμ)],

where

bn =
∫ a

0
cos(pσy)

e−y

(1 + e−y)2 dy +
∞

∑
n=1

(−1)n−1 ne−m

n2 + p2σ2

(
n cos(pσa)
−pσ sin pσa

)
and

cn =
∫ a

0
cos(pσy)

e−y

(1 + e−y)2 dy +
∞

∑
n=1

(−1)n−1 ne−m

n2 + p2σ2

(
n sin(pσa)
pσ cos pσa

)
.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
[

b1 sin(μ) + c1 cos(μ)
b1 cos(μ)− c1 sin(μ)

]
,

ρ = 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2,

γ1 =
2
√
[b2 cos(2μ)− c2 sin(2μ)]2 + [b2 sin(2μ) + c2 cos(2μ)]2 sin(μ2 − 2μ)[

1 − 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

] 3
2
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and

γ2 =
2
√
[b2 cos(2μ)− c2 sin(2μ)]2 + [b2 sin(2μ) + c2 cos(2μ)]2 sin(μ2 − 2μ)[

1 − 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]2

−

[
2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]4

[
1 − 2

√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2

]2 ,

respectively, where μ2 = arctan
[

b2 sin(2μ)+c2 cos(2μ)
b2 cos(2μ)−c2 sin(2μ)

]
.

2.17. Wrapped [12]’s Skew Laplace Distribution

Ref. [28] took g to be the PDF of [12]’s skew Laplace distribution to obtain the
wrapped [12]’s skew Laplace distribution. Its PDF and CDF are

f (θ) =
pcec(β+2π−2βπ−θ) + (1 − p)ec+(2π−1)cβ

e2πc − 1

and

F(θ) =
pec(β+2π−2βπ)

(
1 − e−cθ

)
+ (1 − p)e(2π−1)cβ

(
ecθ − 1

)
e2πc − 1

,

respectively, for 0 ≤ θ < 2π, −∞ < β < ∞, c > 0, and 0 < p < 1. The nth trigonometric
moment is

mn = αn + iβn

for n = 1, 2, . . ., where

αn =
c2

n2 + c2

[
ne(1−2π)βc + (1 − n)e(2π−1)βc

]
and

βn =
nc

n2 + c2

[
(n − 1)e(2π−1)βc − ne(1−2π)βc

]
.

The distribution was tested on the Black Mountain wind direction dataset [1]. It showed
a superior fit compared to other distributions, specifically the wrapped variance gamma
distribution and the generalized von Mises distribution, which have more parameters.

2.18. Wrapped Hypoexponential Distribution

Ref. [29] took g to be the PDF of the hypoexponential distribution to obtain the
wrapped hypoexponential distribution. Its PDF is

f (θ) =
λ1λ2

λ2 − λ1

(
e−λ1θ

∞

∑
k=0

e−2kπλ1 − e−λ2θ
∞

∑
k=0

e−2kπλ2

)

for 0 ≤ θ < 2π, λ1 > 0, and λ2 > 0. The nth trigonometric moment is

mn =
λ1λ2

(λ1 − in)(λ2 − in)
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for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
(

1
λ1

+
1

λ2

)
,

ρ =
λ1λ2√(

1 + λ2
1
)(

1 + λ2
2
) ,

γ1 =

λ1λ2√
(4+λ2

1)(4+λ2
2)

sin
[
arctan

(
2

λ1
+ 2

λ2

)
− 2 arctan

(
1

λ1
+ 1

λ2

)]
[

1 − λ1λ2√
(1+λ2

1)(1+λ2
2)

] 3
4

,

and

γ2 =

λ1λ2√
(4+λ2

1)(4+λ2
2)

sin
[
arctan

(
2

λ1
+ 2

λ2

)
− 2 arctan

(
1

λ1
+ 1

λ2

)]
− λ4

1λ4
2

(1+λ2
1)

2
(1+λ2

2)
2[

1 − λ1λ2√
(1+λ2

1)(1+λ2
2)

]2 ,

respectively, The wrapped hypoexponential distribution has a PDF that can be recast into a
closed form. It also offers additional flexibility compared to one-parameter models.

2.19. Wrapped Ishita Distribution

Ref. [30] took g to be the PDF of the Ishita distribution to obtain the wrapped Ishita
distribution. Its PDF and CDF are

f (θ) =
λ3e−λθ

λ + 2

[
λ + θ2

1 − e−2πλ
+

4πθe−2πλ(
1 − e−2πλ

)2 +
4π2e−2πλ

(
1 + e−2πλ

)(
1 − e−2πλ

)3

]

and

F(θ) =
1

λ3 + 2

{
λ3 + 2 − [λ3 + 2 + λθ(λθ + 2)

]
e−λθ

1 − e−2πλ

+
4πλ

[
1 − (λθ + 1)e−λθ

]
e−2λπ(

1 − e−2πλ
)2

+
4π2λ2(1 − e−λθ

)(
1 + e−2πλ

)
e−2λπ(

1 − e−2πλ
)3

}
,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is

mn =
λ3

λ3 + 2
λ3 − n2λ + 2 − 2inλ2

(λ − in)3

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 3 arctan
(

1
λ

)
− arctan

(
2λ2

λ3 − λ + 2

)
,
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ρ =
λ3

λ3 + 2

√√√√ (λ3 − λ + 2)2 + 4λ4

(λ2 + 1)3 ,

γ1 =

λ3

λ3+2

√
(λ3−4λ+2)2

+16λ4

(λ2+4)3 sin(κλ,2)[
1 − λ3

λ3+2

√
(λ3−λ+2)2

+4λ4

(λ2+1)3

] 3
2

,

and

γ2 =

λ3

λ3+2

√
(λ3−4λ+2)2

+16λ4

(λ2+4)3 cos(κλ,2)−
[

λ3

λ2+2

√
(λ2−λ+2)2

+4λ2

(λ2+1)3

]4

[
1 − λ3

λ2+2

√
(λ2−λ+2)2

+4λ2

(λ2+1)3

]2 ,

respectively, where κλ,2 = 3 arctan
( 2

λ

)− arctan
(

4λ2

λ3−4λ+2

)
− 6 arctan

(
1
λ

)
+ 2 arctan

(
2λ2

λ3−λ+2

)
.

The wrapped Ishita distribution, despite having closed-form expressions for PDF and CDF,
might be unsuitable for some real-life datasets, as its flexibility is restricted by the fact it only
has one parameter.

2.20. Wrapped Laplace Distribution

Ref. [31] took g to be the PDF of the Laplace distribution to obtain the wrapped Laplace
distribution. Its PDF and CDF are

f (θ) =
λκ

1 + κ2

(
e−λκθ

1 − e−2πλκ
+

e
λθ
κ

e
2πλ

κ − 1

)

and

F(θ) =
1

1 + κ2
1 − e−κλθ

1 − e−2πκλ
+

κ2

1 + κ2
e

λθ
κ −1

1 − e− 2πλ
κ

,

respectively, for 0 ≤ θ < 2π, κ > 0, and λ > 0. The nth trigonometric moment is

mn =
1(

1 − in
λκ

)[
1 + in

( λ
κ )

]
for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arctan

(
1

λκ

)
− arctan

( κ

λ

)
, for κ ≤ 1,

2π + arctan
(

1
λκ

)
− arctan

( κ

λ

)
, for κ > 1,

ρ =
λ2√

1 + (λκ)2
√

λ2

κ2 + 1
,
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γ1 =
−2λ

(1 + λ2)
1
4 (4 + λ2)

(√
1 + λ2 − λ

) 3
2

,

and

γ2 =
3λ2

(1 + λ2)(4 + λ2)
(√

1 + λ2 − |λ|
)2 ,

respectively. The ant orientation data from [17] were analyzed using the wrapped Laplace
distribution, which demonstrated a superior fit compared to the von Mises distribution.
However, the scope of conclusions is constrained by the limited number of distributions
considered. To better evaluate the goodness of fit, it is essential to compare the wrapped
Laplace distribution against a broader range of distributions.

2.21. Wrapped Length-Biased Weighted Exponential Distribution

Ref. [32] took g to be the PDF of the length-biased weighted exponential distribution
to obtain the wrapped length-biased weighted exponential distribution. Its PDF and CDF
are

f (θ) =
[λ(α + 1)]2

α(α + 2)
e−λβ

{
1

1 − e−2πλ

(
β +

2πe−2πλ

1 − e−2πλ

)
− e−αβλ

1 − e−2πλ(1+α)

[
β +

2πe−2πλ(1+α)

1 − e−2πλ(1+α)

]}

and

F(θ) =
1

α(α + 2)

{
(1 + α)2[1 − (1 + β)e−β

]
1 − e−2π

+
(1 + α)22π

(
1 − e−β

)
e−2π

(1 − e−2π)
2

+
e−β(1+α)[1 + β(1 + α)]− 1

1 − e−2π(1+α)
+

2π(1 + α)e−2π(1+α)
[
e−β(1+α) − 1

]
[
1 − e−2π(1+α)

]2
}

,

respectively, for 0 ≤ θ < 2π, α > 0, λ > 0, and 0 < β ≤ 2π. The nth trigonometric moment
is

mn =
(1 − in)−2(1 − in

1+α

)−2(
1 − 2in

2+α

)−1

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan(1) + arctan
(

1
1 + α

)
− arctan

(
2

2 + α

)
,

ρ =

√
1 + (2 + α)−2

2[1 + (1 + α)−2]
,

γ1 =
sin(μ2 − 2μ)

5
{

1 − [1+(2+α)−2]
− 1

2

2[1+(1+α)−2]

} 3
2

[1 + 4(1 + α)−2]

√
1 +
(

4
2+α

)2
,
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and

γ2 =
cos(μ2 − 2μ)

5
{

1 − [1+(2+α)−2]
− 1

2

2[1+(1+α)−2]

}2

[1 + 4(1 + α)−2]

√
1 +
(

4
2+α

)2
−

{
[1+(2+α)−2]

− 1
2

2[1+(1+α)−2]

}4

{
1 − [1+(2+α)−2]

− 1
2

2[1+(1+α)−2]

}2 ,

respectively, where μ2 = arctan(2) + arctan
( 2

1+α

)− arctan
(

4
2+α

)
. The wrapped length-

biased weighted exponential distribution was used to analyze the feldspar laths dataset
obtained from [33] and published by [1]. Watson’s U2 test indicated a good fit of the
distribution to the data. No comparisons with other distributions were performed.

2.22. Wrapped Levy Distribution

Ref. [1] took g to be the PDF of the Levy distribution to obtain the wrapped Levy
distribution. Its PDF is

f (θ) =
∞

∑
k=−∞

√
c

2π

e− c
2 (θ+2πn−μ)

(θ + 2πn − μ)
3
2

for 0 ≤ θ < 2π, the summand is zero if θ + 2πn − μ ≤ 0, c > 0, and −∞ < μ < ∞. The nth
trigonometric moment is

mn = einμ−
√

c|n|[1−i sgn(n)] = einμ−√
cn(1−i)

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ +
√

c,

ρ = e−
√

c,

γ1 =
e−

√
2c sin

(√
2c − 2

√
c
)

(
1 − e−

√
c
) 3

2
,

and

γ2 =
e−

√
2c cos

(√
2c − 2

√
c
)
− e−4

√
c(

1 − e−
√

c
)2 ,

respectively. The practical utility of the wrapped Levy distribution is hampered by its
non-closed-form PDF.

2.23. Wrapped Lindley Distribution

Ref. [34] took g to be the PDF of the Lindley distribution to obtain the wrapped Lindley
distribution. Its PDF and CDF are

f (θ) =
λ2

1 + λ
e−λθ

[
1 + θ

1 − e−2πλ
+

2πe−2πλ(
1 − e−2πλ

)2

]

117



Mathematics 2024, 12, 2440

and

F(θ) =
1

1 − e−2πλ

(
1 − e−λθ − λθ

λ + 1
e−λθ

)
− 2πλ

λ + 1
e−2πλ

(
1 − e−λθ

)(
1 − e−2πλ

)2 ,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is given by

mn =
λ2

1 + λ

(1 + λ − in)
(λ − in)2

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 2 arctan
(

1
λ

)
− arctan

(
1

λ + 1

)
,

ρ =
λ2
√
(λ + 1)2 + 1

(1 + λ)(λ2 + 1)
,

γ1 =
λ2
√

4 + (1 + λ)2 sin(μ2 − 2μ)

(1 + λ)(4 + λ2)

{
1 − λ2[1+(1+λ)2]

1
2

(1+λ)(1+λ2)

} 3
2

,

and

γ2 =

λ2
√

4 + (1 + λ)2 cos(μ2 − 2μ)−
[

λ2
√

1+(1+λ)2

(1+λ)(1+λ2)

]4

(1 + λ)(4 + λ2)

[
1 − λ2

√
1+(1+λ)2

(1+λ)(1+λ2)

]4 ,

respectively, where μ2 = 2 arctan
( 2

λ

)− arctan
(

2
λ+1

)
. The wrapped Lindley distribution

was used to analyze a dataset concerning the orientations of 76 turtles after laying eggs, as
documented by [1]. This distribution seemed to match the data effectively and performed
better than the alternative distribution it was contrasted with, the wrapped exponential
distribution.

2.24. Wrapped Linnik Distribution

Ref. [35] took g to be the PDF of the Linnik distribution to obtain the wrapped Linnik
distribution. Its PDF and CDF are

f (θ) =
1

2π

[
1 + 2

∞

∑
k=1

cos(kθ)

1 + σkα

]

and

F(θ) =
1

2π

[
θ + 2

∞

∑
k=1

sin(kθ)

k(1 + σkα)

]
,

respectively, for 0 ≤ θ < 2π, σ > 0, and 0 < α ≤ 2. The nth trigonometric moment is

mn =
1

1 + σ | n |α
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for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 0,

ρ =
1

1 + σ
,

γ1 = 0,

and

γ2 =
(1 + σ)4 − (1 + 2ασ)

σ2α(1 + 2ασ)(1 + σ)2 ,

respectively. The wrapped Linnik distribution was used to analyze the frequency of traffic
accidents throughout the day in Srinagar, India, in 2016, sourced from reports from the
National Crime Records Bureau, India. This distribution was also applied to ant data
collected by [17]. Results indicated that the wrapped Linnik distribution provided a better
fit for both datasets compared to the wrapped stable distribution.

2.25. Wrapped Lomax Distribution

Ref. [36] took g to be the PDF of the Lomax distribution to obtain the wrapped Lomax
distribution. Its PDF and CDF are

f (θ) =
α

σ

∞

∑
k=0

(
1 +

θ + 2kπ

σ

)−α−1

and

F(θ) =
∞

∑
k=0

(
1 +

2kπ

σ

)−α

−
∞

∑
k=0

(
1 +

θ + 2kπ

σ

)−α

,

respectively, for 0 ≤ θ < 2π, σ > 0, and α > 0. The wrapped Lomax distribution faces
limitations due to its non-closed-form PDF.

2.26. Wrapped Modified Lindley Distribution

Ref. [37] took g to be the PDF of the modified Lindley distribution to obtain the
wrapped modified Lindley distribution. Its PDF and CDF are

f (θ) =
λe−λθ

1 − e−4λπ

{
1 + e−2λπ +

e−λθ

1 + λ

[
2λθ − 1 +

4λπe−4λπ

1 − e−4λπ

]}
and

F(θ) =
1 − e−λθ

1 − e−2λπ
+

2λπe−4λπ
(
1 − e−2λθ

)
(1 + λ)

(
1 − e−4λθ

)2 − λθe−2λθ

(1 + λ)
(
1 − e−4λθ

) ,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is

mn =
λ

λ − ni
+

λni
(1 + λ)(2λ − ni)2
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for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π + arctan
(

β1

α1

)
, if α1 < 0, β1 ≥ 0,

π

2
, if α1 < 0, β1 > 0,

arctan
(

β1

α1

)
, if α1 > 0,

undefined, if α1 = 0, β1 = 0

and

ρ = λ2

√
16λ4 + 32λ3 + 24λ2 + 16λ + 10

(1 + λ)2(λ2 + 1)(4λ2 + 1)2 ,

respectively, where

α1 =
λ2

λ2 + 1
+

4λ2

(1 + λ)(4λ2 + 1)2

and

β1 =
λ

λ2 + 1
+

4λ3

(1 + λ)(4λ2 + 1)2 − λ

(1 + λ)(4λ2 + 1)2 .

The wrapped modified Lindley distribution was used on two real-life datasets from [1].
The first set involves 76 turtles’ egg-laying orientations, while the second set has 133 mea-
surements of feldspar lath orientations in basalt. This distribution was compared with
the wrapped exponential distribution, transmuted wrapped exponential distribution, and
wrapped Lindley distribution for goodness of fit. The wrapped modified Lindley distribu-
tion provided a competitive fit for both datasets. It offered the best fit for the turtle dataset
but did not outperform the transmuted wrapped exponential distribution for the feldspar
lath dataset.

2.27. Wrapped New Weibull–Pareto Distribution

Ref. [38] took g to be the PDF of the new Weibull–Pareto distribution to obtain the
wrapped new Weibull–Pareto distribution. Its PDF is

f (θ) =
∞

∑
k=−∞

1
4σ

sech2
(

θ + 2kπ − μ

2σ

)
for 0 ≤ θ < 2π, θ > μ, and σ > 0. The nth trigonometric moment is

mn =
πσn

sinh πσn
einμ

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ,

ρ =
πσp

sinh πσp
,
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γ1 = 0,

and

γ2 =

2πσ
sinh(2πσ)

−
[

πσ
sinh(πσ)

]4

[
1 − πσ

sinh(πσ)

]2 ,

respectively. The wrapped new Weibull–Pareto distribution and the wrapped exponenti-
ated inverted Weibull distribution were tested on the turtle dataset from [1]. Both models
fit the data well, but the wrapped exponentiated inverted Weibull distribution slightly
outperformed the wrapped new Weibull–Pareto distribution.

2.28. Wrapped Normal Distribution

Ref. [39] took g to be the PDF of the normal distribution to obtain the wrapped normal
distribution. Its PDF and CDF are

f (θ) =
1√
2πσ

∞

∑
k=−∞

e−
(θ−μ+2πk)2

2σ2

and

F(θ) =
∞

∑
k=−∞

[
Φ
(

θ + 2πk − μ

σ

)
− Φ

(
2πk − μ

σ

)]
,

respectively, for 0 ≤ θ < 2π, −∞ < μ < ∞, and σ > 0. The nth trigonometric moment is

mn = einμ− n2σ2
2

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ,

ρ = e−
σ2
2 ,

γ1 = 0,

and

γ2 = 0,

respectively. The wrapped normal distribution, commonly used in literature, adequately
fits real-life data but is restricted by its non-closed-form PDF.

2.29. Wrapped Pareto Distribution

Ref. [40] took g to be the PDF of a Pareto distribution to obtain the wrapped Pareto
distribution. Its PDF is

f (θ) =
α− 1

α

Γ
(

1
α

) ∫ ∞

0

λse−λsθ

1 − e−2πλs s
1
α −1e−

s
α ds
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for 0 ≤ θ < 2π, λ > 0, and α > 0. The nth trigonometric moment is

mn =
α− 1

α

Γ
(

1
α

) ∫ ∞

0

(
1 − in

λs

)−1
s

1
α −1e−

s
α ds

for n = 1, 2, . . .. The wrapped Pareto distribution is constrained by its non-closed-form
PDF.

2.30. Wrapped Quasi-Lindley Distribution

Ref. [41] took g to be the PDF of the quasi-Lindley distribution to obtain the wrapped
quasi-Lindley distribution. Its PDF is

f (θ) =
be−bθ

a + 1

[
a + bθ

1 − e−2πb +
2πbe−2πb(
1 − e−2πb

)2

]

for 0 ≤ θ < 2π, a > 0, and b > 0. The nth trigonometric moment is

mn = αn + iβn

for n = 1, 2, . . ., where

αn =

√
b4(a + 1)2 + n2a2b2
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cos
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2 arctan
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b
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]}
and
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√
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sin
{
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(n

b

)
− arctan

[
na

b(1 + a)

]}
.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = 2 arctan
(

1
b

)
− a arctan

[
a

b(1 + a)

]
,

ρ =

√
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,
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β2

ρ
3
2

,

and

γ2 =
α2 − ρ4

ρ2 ,

respectively, where
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√
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(

2
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√
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.
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2.31. Wrapped Rama Distribution

Ref. [42] took g to be the PDF of the Rama distribution to obtain the wrapped Rama
distribution. Its PDF and CDF are

f (θ) = Ae−λθ
(

θ3 + Bθ2 + Cθ + D
)

and

F(θ) =
A
λ4

[
γ(4, λθ) + Bλγ(3, λθ) + Cλ2γ(2, λθ) + Dλ3γ(1, λθ)

]
for 0 ≤ θ < 2π and λ > 0, where

A =
λ4

(λ3 + 6)
(
1 − e−2λπ

) ,

B =
6πe−2λπ

1 − e−2λπ
,

C =
2π
(
e−2λπ + 1

)
B

1 − e−2λπ
,

and

D = 1 +
8π3e−2λπ

(
e−4λπ + 4e−2λπ + 1

)(
1 − e−2λπ

)3 .

The nth trigonometric moment is

mn =
A

(λ2 + n2)
4

[(
c0 + c2n2 + c4n4 + c6n6

)
+ i
(

d1n + d3n2 + d5n5 + d7n7
)]

for n = 1, 2, . . ., where
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λ6Bπ(
eπλ
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− λ6C
e2πλ

− 6
λ4

e2πλ
− 12

π2λ6

e2πλ

− 8
π3λ7

e2πλ
− 12

πλ5
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e2πλ
+ 2λ5B,

c2 = − λ4C
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+ 4
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e2πλ

+ 24
πλ3

e2πλ
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π2λ4
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− 24
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+ λ4C − 3
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− 4λ3B − 36λ2

+ 36
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λ5Cπ
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+ 4

Bπλ2
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,

c6 = 4
Bπ
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− 8

π3λ
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− λ
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+

C
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λCπ
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,
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d1 = 2λ5C − λ6

e2πλ
+ 6λ4B − 6

λ4B
e2πλ
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e2πλ

− 24
π2λ5

e2πλ
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λ
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,
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e2πλ
− 3

λ2
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− 2

λC
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π2λ

e2πλ
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π3λ2
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π

e2πλ
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− 6
λ2Cπ
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e2πλ
− 8

λBπ

e2πλ
,

and

d7 = 1 − 2
Cπ

e2πλ
− 4

Bπ2
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− 8

π3
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− 1

e2πλ
.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arcsin

⎡⎣ d1 + d3 + d5 + d7√
(c0 + c2 + c4 + c6)

2 + (d1 + d3 + d5 + d7)
2

⎤⎦,

ρ =
A

(λ2 + 1)4

√
(c0 + c2 + c4 + c6)

2 + (d1 + d3 + d5 + d7)
2,

γ1 =
Ae−2μ

v
3
2 (λ2 + 4)4 (2d1 + 4d3 + 32d5 + 128d7),

and

γ2 =
Ae−2μ

(1 − ρ2)(λ2 + 4)4 (c0 + 4c2 + 16c4 + 64c6)− ρ4

1 − ρ2 ,

respectively. The wrapped Rama distribution boasts closed-form expressions for its PDF
and CDF. This feature, coupled with its good fit to various datasets, makes it a compelling
choice for statistical analysis. In fact, it outperformed six other widely used distributions
(with up to three parameters) when applied to two specific datasets. The first dataset,
initially obtained by [33] and later published by [1], consists of long-axis orientation
measurements for 60 feldspar laths in basalt, recorded in degrees. The second dataset, also
reported by [1], comprises horizontal axis values for 100 outwash pebbles collected from a
late Wisconsin outwash terrace near Cary, Illinois, along the Fox River.

2.32. Wrapped Richard Distribution

Ref. [43] introduced a wrapped distribution based on the Richard link function. Its
PDF is

f (θ) =
∞

∑
k=0

ke−k(θ+2πn)

1 − m
1

1−m

[
1 + (m − 1)e−k(θ+2πn)

] m
1−m
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for 0 ≤ θ < 2π, m ≥ 1, and n ≥ 1. The wrapped Richard distribution is limited by its
non-closed-form PDF.

2.33. Wrapped Shanker Distribution

Ref. [44] took g to be the PDF of the Shanker distribution to obtain the wrapped
Shanker distribution. Its PDF and CDF are

f (θ) =
λ2

λ2 + 1
e−λθ

[
λ + θ

1 − e−2πλ
+

2πe−2πλ(
1 − e−2πλ

)2

]

and

F(θ) =
1

1 − e−2πλ

(
1 − e−λθ − λθe−λθ

λ2 + 1

)
+

2πλ
(
1 − e−λθ

)
e−2πλ

(λ2 + 1)
(
1 − e−2πλ

)2 ,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is

mn =
λ2(1 − e−2πλ

)(
e2π(in−λ) − 1

)
[λ(in − λ)− 1] + 2πλ2(in − λ)e2π(in−λ)

(λ2 + 1)
(
1 − e−2πλ

)2
(in − λ)2

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 2 arctan
(

1
λ

)
− arctan

(
λ

λ2 + 1

)
,

ρ =
λ2
√
(λ2 + 1)2 + λ2

(λ2 + 1)2 ,

γ1 =

λ2
√
(λ2+1)2

+4λ2

(λ2+1)(λ2+4) sin κ2,λ[
1 − λ2

√
(λ2+1)2

+λ2

(λ2+1)2

] 3
2

,

and

γ2 =

λ2
√
(λ2+1)2

+4λ2

(λ2+1)(λ2+4) cos κ2,λ −
[

λ2
√
(λ2+1)2

+λ2

(λ2+1)2

]4

[
1 − λ2

√
(λ2+1)2

+λ2

(λ2+1)2

]2 ,

respectively, where κλ,2 = 2 arctan
( 2

λ

) − arctan
(

2λ
λ2+1

)
− 4 arctan

(
1
λ

)
+ 2 arctan

(
λ

λ2+1

)
.

The wrapped Shanker distribution has closed-form expressions for the PDF and CDF, but
it might have limited utility for real-life data modeling due to the fact it only has one
parameter.
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2.34. Wrapped Skew Laplace Distribution

Ref. [45] took g to be the PDF of a skew Laplace distribution to obtain a wrapped skew
Laplace distribution. Its PDF is

f (θ) =
1

2σ

[
e−

|θ−μ|
σ +

e
θ−μ

σ + e
μ−θ

σ

e
2π
σ − 1

+ A(θ; λ1, λ2, λ3)

]

for 0 ≤ θ < 2π, −∞ < λ1 < ∞, λ2 > 0, −∞ < λ3 < ∞, −∞ < μ < ∞, and σ > 0, where

A(θ) =
∞

∑
k=−∞

e−
|θ+2πk−μ|

σ

[
1 − e−

∣∣∣g( θ+2πk−μ
σ

)∣∣∣] sign
[

g
(

θ + 2πk − μ

σ

)]
and

g(x) =
λ1x + λ3x3√

1 + λ2x2
.

The nth trigonometric moment is

mn = αn + iβn

for n = 1, 2, . . ., where

αn =
cos(nμ) + 2∇e−ξ sin(nμ)ξn

n2σ2 + 1
− Δnσ sin(nμ)

n2σ2 + 1
− Δ2Cn,

βn =
sin(nμ)− 2∇e−ξ cos(nμ)ξn

n2σ2 + 1
− Δnσ cos(nμ)

n2σ2 + 1
− Δ2Sn,

∇ =

⎧⎨⎩
sign(λ1), if λ1λ3 < 0,

0, if λ1λ3 ≥ 0,

Δ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if λ1 = λ3 = 0,

sign(λ3), if λ1 = 0, λ3 �= 0,

sign(λ1), if λ1 ≥ 0,

Cn =
1

2σ

∞

∑
k=−∞

∫ 2π

0
cos(nθ)e−

|θ+2πk−μ|
σ e−

∣∣∣g( θ+2πk−μ
σ

)∣∣∣ sign
[

g
(

θ + 2πk − μ

σ

)]
dθ,

Sn =
1

2σ

∞

∑
k=−∞

∫ 2π

0
sin(nθ)e−

|θ+2πk−μ|
σ e−

∣∣∣g( θ+2πk−μ
σ

)∣∣∣ sign
[

g
(

θ + 2πk − μ

σ

)]
dθ,

ξn = sin(ξnσ) + nσ cos(ξnσ),
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and

ξ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
−λ1

λ3
, if λ1λ3 < 0,

0, if λ1λ3 ≥ 0.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
[

1
σΔ − Δ2S1(1 + σ2)− 2∇e−ξ ξ1

]
,

ρ =

(
σΔ

σ2 + 1
− Δ2S1 − 2∇e−ξξ1

σ2 + 1

)
sin μ +

cos μ

σ2 + 1
,

γ1 =

[
2σΔ − Δ2S2

(
4σ2 + 1

)− 2∇e−ξξ2
]

cos(2μ)− sin(2μ)

(4σ2 + 1)(1 − ρ)
3
2

,

and

γ2 =

[
2σΔ − Δ2S2

(
4σ2 + 1

)− 2∇e−ξ ξ2
]

sin(2μ)− cos(2μ)− (4σ2 + 1
)
ρ4

(4σ2 + 1)(1 − ρ)2 ,

respectively. The wrapped skew Laplace distribution was used on the turtle and ant
datasets discussed by [1]. It was observed that this distribution provided a better fit for
the first dataset compared to the wrapped Lindley, exponential, transmuted wrapped
exponential, and non-negative trigonometric sums distributions [46]. Similarly, for the
second dataset, the wrapped skew Laplace distribution outperformed the symmetric
wrapped Laplace and non-negative trigonometric sums distributions.

2.35. Wrapped Skew Normal Distribution

Ref. [47] took g to be the PDF of the skew normal distribution to obtain the wrapped
skew normal distribution. Its PDF is

f (θ) =
2
η

∞

∑
k=−∞

φ

(
θ + 2πr − ξ

η

)
Φ
(

λ

(
θ + 2πr − ξ

η

))
for 0 ≤ θ < 2π, −∞ < ξ < ∞, η > 0, and −∞ < λ < ∞. The nth trigonometric moment is

mn = einξ− 1
2 n2η2

[1 + iJ (δηn)]

for n = 1, 2, . . ., where

J (x) =
∫ x

0
be

u2
2 du

and δ = λ√
1+λ2 . The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
[

sin ξ + J (δη) cos ξ

cos ξ −J (δη) sin ξ

]
,

ρ = e−
η2
2

[
1 + J 2(δη)

] 1
2 ,
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γ1 =

ω4{J (2δη)[1−J 2(δη)]−2J (δη)}
1+J 2(δη){

1 − e−
η2
2 [1 + J 2(δη)]

1
2

} 3
2

,

and

γ2 =

ω4[1−J 2(δη)+2J (δη)J (2δη)]
1+J 2(δη)

−
{

e−
η2
2
[
1 + J 2(δη)

] 1
2

}4

{
1 − e−

η2
2 [1 + J 2(δη)]

1
2

}2 ,

respectively. The wrapped skew normal distribution was used to analyze bird heading
data from the autumn migration of 1987 [27]. Although it fit the data well, its PDF does not
have a simple mathematical expression, which might restrict its practical utility.

2.36. Wrapped Stable Distribution

Ref. [48] took g to be the PDF of the stable distribution to obtain the wrapped stable
distribution. The nth trigonometric moment is

mn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−γαnα

{
1 + iβ

[
(γn)1−α − 1

]
tan
(πα

2

)}
+ iδ∗0 n, if α �= 1,

e−γn
[

1 +
2βi
π

log(γn)
]
+ iδ∗0 n, if α = 1

for n = 1, 2, . . ., where 0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, −∞ < δ0 < ∞, and δ∗0 = δ0 mod 2π.
The mean direction, mean resultant length, skewness, and kurtosis are

μ =

⎧⎪⎪⎨⎪⎪⎩
δ∗0 + β(γα − γ) tan

(πα

2

)
mod 2π, if α �= 1,

δ∗0 − 2βγ

π
log γ mod 2π, if α = 1,

ρ = e−γα
,

γ1 =
β2

(1 − ρ)
3
2

,

and

γ2 =
α2 − ρ4

(1 − ρ)2 ,

respectively, where

α2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ2α

cos
[

βγα(2α − 2) tan
(πα

2

)]
, if α �= 1,

ρ2α
cos
(
−2βγ log 2

π

)
, if α = 1
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and

β2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ2α

sin
[

βγα(2α − 2) tan
(πα

2

)]
, if α �= 1,

ρ2α
sin
(
−2βγ log 2

π

)
, if α = 1.

The wrapped stable distribution demonstrated a slightly superior fit compared to a mixture
distribution incorporating circular uniform and wrapped skew normal components when
analyzing the bird heading data from [27].

2.37. Wrapped Student’s t Distribution

Ref. [49] took g to be the PDF of the Student’s t distribution to obtain the wrapped
Student’s t distribution. Its PDF is

f (θ) =
c
λ

∞

∑
k=−∞

[
1 +

(θ + 2πk − μ0)
2

λ2ν

]− ν+1
2

for 0 ≤ θ < 2π, 0 ≤ μ < 2π, λ > 0, and ν > 0, where

c =
Γ
(

ν+1
2

)
Γ
(

ν
2
)√

πν
.

The nth trigonometric moment is

mn =
K ν

2

(
n
√

ν
)(

n
√

ν
) ν

2

Γ
(

ν
2
)
2

ν
2 −1

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ,

ρ =
K ν

2

(
λ
√

ν
)(

λ
√

ν
) ν

2

Γ
(

ν
2
)
2

ν
2 −1

,

γ1 =
e−

√
2c sin(

√
2c − 2

√
c)(

1 − e−
√

c
) 3

2
,

and

γ2 =
e−

√
2c cos

(√
2c − 2

√
c
)
− e−4

√
c(

1 − e−
√

c
)2 ,

respectively. The wrapped Student’s t distribution was used on a dataset of 104 cross-bed
measurements from Himalayan molasse in Pakistan, as discussed by [1]. The wrapped
Student’s t distribution yielded a better fit to this dataset compared to the von Mises
distribution.

129



Mathematics 2024, 12, 2440

2.38. Wrapped Transmuted Exponential Distribution

Ref. [50] took g to be the PDF of the transmuted exponential distribution to obtain the
wrapped transmuted exponential distribution. Its PDF and CDF are

f (θ) =
2λΛe−λθ

(
e−θλ − 1

)
c2 − λe−λθ(Λ + 1)

c

and

F(θ) =
(
e−λθ − 1

)[
c + Λ

(
1 + c − e−λθ

)]
c2 ,

respectively, for 0 ≤ θ < 2π, λ > 0, |Λ| ≤ 1, and c = e−2πλ − 1. The nth trigonometric
moment is

mn =
λ(λ + in)(2Λ + c + cΛ)

[
(c + 1)e2πni − 1

]
c2(λ2 + n2)

− 2λΛ(2λ + in)
[
(c + 1)2e2iπn − 1

]
c2(4λ2 + n2)

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
c − 2Λ + 4λ2Λ + 4cλ2 − cΛ + 2cλ2Λ

λ(4cλ2 − 6Λ + c − 3cΛ)
,

ρ =

√
λ2(2Λ − c + cΛ)2 + 4c2λ4

c2(4λ2 + 1)(λ2 + 1)
,

γ1 = −
λ(λ sin 2μ−2 cos 2μ)(2Λ+c+cΛ))

c(λ2+4) − λΛ(c+2)(cos 2μ−λ sin 2μ)
c(λ2+1)[

1 −
√

λ2(2Λ−c+cΛ)2+4c2λ4

c2(4λ2+1)(λ2+1)

] 3
2

,

and

γ2 =

λ2(2Λ+2c+Λc)+2c(1−Λ)−4Λ
c(λ4+5λ2+4)

λ sin 2μ +
cλ(1+λ2−3Λ)−6λΛ

c(λ4+5λ2+4)
λ cos 2μ − [(2Λ−c+Λc)2+4λ4c2]

2

c4(4λ2+1)2
(λ2+1)2[

1 −
√

λ2(2Λ−c+cΛ)2+4c2λ4

c2(4λ2+1)(λ2+1)

]2 ,

respectively. The transmuted wrapped exponential distribution was used on the turtle
dataset from [1]. It outperformed the wrapped exponential and wrapped Lindley distri-
butions. It offers closed-form expressions for the PDF and CDF. Additionally, it is more
flexible than commonly used one-parameter distributions.

2.39. Wrapped Two-Parameter Lindley Distribution

Ref. [51] took g to be the PDF of the two-parameter Lindley distribution to obtain the
wrapped two-parameter Lindley distribution. Its PDF and CDF are

f (θ) =
(

ξ2

ξ + α
e−ξθ

)[
1 + αθ

1 − e−2πξ
+

2παe−2πξ(
1 − e−2πξ

)2

]
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and

F(θ) =
1

1 − e−2πξ

(
1 − e−ξθ − αξθ

α + ξ

)
+

2παξ

α + ξ

(
1 − e−ξθ

) e−2πξ(
1 − e−2πξ

)2 ,

respectively, for 0 ≤ θ < 2π, ξ > 0, and α > −ξ. The nth trigonometric moment is

mn =
ξ2(ξ + α − in)
(ξ + α)(ξ − in)

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 2 arctan
(

1
ξ

)
− arctan

(
1

ξ + α

)
,

ρ =
ξ2[(ξ + α)2 + 1

] 1
2

(ξ + α)(ξ2 + 1)
,

γ1 =

ξ2
√

(α+ξ)2+4
(α+ξ)(4+ξ2)

sin(μ2 − 2μ)[
1 − ξ2

√
(α+ξ)2+1

(α+ξ)(1+ξ2)

] 3
2

,

and

γ2 =

ξ2
√

(α+ξ)2+4
(α+ξ)(4+ξ2)

cos(μ2 − 2μ)−
[

ξ2
√

(α+ξ)2+1
(α+ξ)(1+ξ2)

]4

(
1 − ξ2

√
(α+ξ)2+1

(α+ξ)(1+ξ2)

]2 ,

respectively, whereμ2 = 2 arctan
(

2
ξ

)
− arctan

(
2

α+ξ

)
. The two-parameter wrapped Lind-

ley distribution was used for analyzing two datasets: the feldspar lath dataset from [1],
Appendix B5, and a dataset on wind directions observed at Gorleston, England, during
summer Sundays in 1968 [52]. It was found that this distribution provided a better fit
for the first dataset compared to the wrapped exponential distribution and the wrapped
Lindley distribution. Additionally, for the second dataset, it was observed that the wrapped
two-parameter Lindley distribution outperformed the wrapped Lindley distribution in
terms of fitting.

2.40. Wrapped Two-Sided Lindley Distribution

Ref. [53] took g to be the PDF of the two-sided Lindley distribution to obtain the
wrapped two-sided Lindley distribution. Its PDF and CDF are

f (θ) =
e−αθ

2ΛαΛβ

{
α2e2παΛβ

[
(θ + 1)e2πα − θ + 2π − 1

]
+ β2eθ(α+β)Λα

[
(2π + 1 − θ)e2πβ + θ − 1

]}
and

F(θ) =
eα(2π−θ)

2Λα

{
(α + 1)eα(θ+2π) + [(2π − 1)α − 1]eαθ + α(θ − 2π + 1)− e2πα(αθ + α + 1) + 1

}
+

1
2Λβ

{
eβθ [β(θ − 1)− 1] + β − e2πβ(2πβ + β + 1) + eβ(θ+2π)(−βθ + 2πβ + β + 1) + 1

}
,
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respectively, for 0 ≤ θ < 2π, α > 0, and β > 0, where Λα =
(
e2πα − 1

)2
(α + 1) and

Λβ =
(
e2πβ − 1

)2
(β + 1). The nth trigonometric moment is

mn =
α2(n + iα)2

2Λα
e2iπn

(
e2πα − 1

)[
2πα − e2π(α−in) − 2iπn + 1

]
+

α2

2(n + iα)Λα

(
e2πα − e2ipn

)(
2π + e2πα − 1

)
+

β2

2Λβ(β + in)2

(
1 − e2πβ

)[
1 + e2π(β+in)(2πβ + 2iπn − 1)

]
+

β2

2(β + in)Λβ

[
1 − e2π(β+in)

][
1 − (1 + 2π)e2πβ

]
for n = 1, 2, . . .. The wrapped two-sided Lindley distribution has been applied to the ant
dataset discussed by [1] and was shown to provide a good fit to this dataset.

2.41. Wrapped Variance Gamma Distribution

Ref. [54] took g to be the PDF of the variance gamma distribution to obtain the wrapped
variance gamma distribution. Its PDF is

f (θ) =
γ2λeβ(θ−μ)

√
πΓ(λ)(2α)λ− 1

2

∞

∑
m=−∞

e2πmβKλ− 1
2
(α|θ + 2mπ − μ|)

|θ + 2mπ − μ|λ− 1
2

for 0 ≤ θ < 2π, α > 0, β > 0, 0 ≤ |β| < α, and λ ∈ R. The nth trigonometric moment is

mn = eiμn

(
γ√

α2 − (β + in)2

)2λ

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ,

ρ =

[
γ

(α2 − (β + i)2)
1
2

]2λ

,

γ1 = 0,

and

γ2 =

[
γ

(α2−(β+2i)2

]2λ −
[

γ
(α2−(β+i)2)

]8λ

[
1 −
{

γ
[α2−(β+i)2]

}2λ
]2 ,

respectively. The wrapped variance gamma distribution was used to analyze the Black
Mountain wind direction dataset from [1]. It fit the data well, but its practical utility is
limited because it lacks a closed-form PDF or CDF.
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2.42. Wrapped Weighted Exponential Distribution

Ref. [55] took g to be the PDF of the weighted exponential distribution to obtain the
wrapped weighted exponential distribution. Its PDF is

f (θ) =
α + 1

α
λe−λθ

∞

∑
k=0

e−2kπλ
[
1 − e−αλ(θ+2kπ)

]
for 0 ≤ θ < 2π, α > 0, and λ > 0. The nth trigonometric moment is

mn = αn + iβn,

where

αn =
λ2 cos

[
arctan

( n
λ

2+α
1+α

)]
√
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√

λ2 + n2

(1+α)2
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βn =
λ2 sin

[
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( n
λ

2+α
1+α

)]
√

λ2 + n2
√

λ2 + n2

(1+α)2

.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
[

2 + α

λ(1 + α)

]
,

ρ =
λ2

√
λ2 + 1

√
λ2 + 1

(1+α)2

,
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[
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( 2
λ
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(

1
λ

2+α
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)]
√

λ2 + 4
√

λ2 + 4
(1+α)2 (1 − ρ)

3
2

,

and

γ2 =
λ2 cos

[
arctan

( 2
λ

2+α
1+α

)− 2 arctan
(

1
λ

2+α
1+α

)]
− ρ4

√
λ2 + 4

√
λ2 + 4

(1+α)2 (1 − ρ)2
,

respectively. The wrapped weighted exponential distribution is a flexible model with a
PDF that can be recast into a closed form.

2.43. Wrapped Weibull Distribution

Ref. [40] took g to be the PDF of the Weibull distribution to obtain the wrapped Weibull
distribution. Its PDF is

f (θ) =
∞

∑
k=0

1
2σ

sech2
(

θ + 2kπ − μ

2σ

)
for 0 ≤ θ < 2π and c > 0. The nth trigonometric moment is

mn =
∞

∑
k=0

iknk

k!
Γ
(

1 +
k
c

)
= bn + icn,
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where

bn =
∞

∑
k=0

(−1)kt2k

(2k)!
Γ
(

1 +
2k
c

)
and

cn =
∞

∑
k=0

(−1)kt2k+1

(2k + 1)!
Γ
(

1 +
2k + 1

c

)
.

The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan
(

c1

b1

)
,

ρ = 2
√
(b1 cos μ − c1 sin μ)2 + (b1 sin μ + c1 cos μ)2,

γ1 =

√
b2

1 + c2
1 sin(μ2 − 2μ)(

1 −
√

b2
1 + c2

1

) 3
2

,

and

γ2 =

√
b2

1 + c2
1 cos(μ2 − 2μ)−

(√
b2

1 + c2
1

)4

(
1 −
√

b2
1 + c2

1

)2 ,

respectively, where μ2 = arctan
(

c2
b2

)
. The wrapped Weibull distribution is limited by the

fact that it does not admit a closed-form PDF.

2.44. Wrapped XGamma Distribution

Ref. [56] took g to be the PDF of the XGamma distribution to obtain the wrapped
XGamma distribution. Its PDF and CDF are

f (θ) =
λ2e−θλ

(λ + 1)
(
1 − e−2πλ

){1 +
λθ2

2
+ 2πλ

[
(π − θ)e−2πλ + (θ + π)

] e−2πλ(
1 − e−2πλ

)2

}

and

F(θ) =

[
1 − 1 + λ(1 + θ) + θ2λ2

2
λ + 1

e−θλ

]
1

1 − e−2πλ
+

2πλ

λ + 1

[
1 − (1 + θλ)e−θλ

] e−2πλ(
1 − e−2πλ

)2

+
2π2λ2

λ + 1

(
1 − e−θλ

) e−2πλ
(
1 + e−2πλ

)(
1 − e−2πλ

)3 ,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is

mn =
λ2[λ2 + λ(1 − 2in)− n2]

(λ + 1)(λ − in)3
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for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = 3 arctan
(

1
λ

)
− arctan

(
2λ

λ2 + λ − 1

)
,

ρ =
λ2

λ + 1

√√√√ (λ2 + λ − 1)2 + 4λ2

(λ2 + 1)3 ,

γ1 =

λ2

λ+1

√
(λ2+λ−4)2

+16λ2

(λ2+4)2 sin(κλ,2)[
1 − λ2

λ+1

√
(λ2+λ−1)2

+4λ2

(λ2+1)3

] 3
2

,

and

γ2 =

λ2

λ+1

√
(λ2+λ−4)2

+16λ2

(λ2+4)2 cos(κλ,2)−
[

λ2

1+λ

√
(λ2+λ−1)2

+4λ2

(λ2+1)3

]4

[
1 − λ2

λ+1

√
(λ2+λ−1)2

+4λ2

(λ2+1)3

]2 ,

respectively, where κλ,2 = arctan
( 2

λ

)− 6 arctan
(

1
λ

)
+ 2 arctan

(
2λ

λ2+λ−1

)
− arctan

(
4λ

λ2+λ−4

)
.

The wrapped XGamma distribution was used to analyze the feldspar lath dataset from [1].
It demonstrated superior fit compared to the wrapped exponential and the wrapped
Lindley distributions.

2.45. Wrapped XLindley Distribution

Ref. [57] took g to be the PDF of the XLindley distribution to obtain the wrapped
XLindley distribution. Its PDF and CDF are

f (θ) =
λ2e−θλ

(λ + 1)2
(
1 − e−2πλ

)2

[(
1 − e−2πλ

)
(λ + θ + 2) + 2πe−2πλ

]
and

F(θ) =
1 − e−θλ

(
1 + λθ

(λ+1)2

)
1 − e−2πλ

+
2πλe−2πλ

(
1 − e−θλ

)
(λ + 1)2

(
1 − e−2πλ

)2 ,

respectively, for 0 ≤ θ < 2π and λ > 0. The nth trigonometric moment is

mn =
λ2

(λ + 1)(λ − in)
+

λ2(1 + λ − in)
(λ + 1)2(λ − in)2

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness and kurtosis are

μ = 2 arctan
(

1
λ

)
− arctan

(
λ + 2

(λ + 1)2

)
,

ρ =
λ2
√
(λ + 1)4 + (λ + 2)2

(λ + 1)2(λ2 + 1)
,
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γ1 =
λ2
√

4(λ2 + 2)2 + (λ + 1)4 sin(μ2 − 2μ)

(λ + 1)2(λ2 + 4)
[

1 − λ2
√

(λ+1)4+(λ+2)2

(λ+1)2(λ2+1)

] 3
2

,

and

γ2 =

λ2
√

4(λ2+2)2
+(λ+1)4 cos(μ2−2μ)

(λ+1)2(λ2+4) − λ8[(λ+2)2+(λ+1)4]
2

(λ+1)8(λ2+1)4[
1 − λ2

√
(λ+1)4+(λ+2)2

(λ+1)2(λ2+1)

]2 ,

respectively, where μ2 = 2 arctan
( 2

λ

)− arctan
[

2(λ+2)
(λ+1)2

]
. The wrapped XLindley distribu-

tion was used to analyze two datasets: one consisted of sun directions recorded from
50 starhead topminnows under overcast conditions [1], and the other included 349 trans-
actions occurring between 1 January 2020 and 29 July 2020 [58]. Although the wrapped
XLindley distribution outperformed some distributions based on certain goodness-of-fit
measures, it was not consistently superior in all cases.

3. A Review of Discrete Wrapped Distributions

In this section, we review wrapped binomial, wrapped discrete Cauchy, wrapped
discrete exponential, wrapped discrete Mittag–Leffler, wrapped discrete skew Laplace,
wrapped geometric, wrapped negative binomial, wrapped Poisson, wrapped Poisson–
Lindley, and wrapped zero-inflated Poisson distributions.

3.1. Wrapped Binomial Distribution

Ref. [59] took g to be the PDF of the binomial distribution to obtain the wrapped
binomial distribution. Its PMF is

P
(

Θ =
2πr
m

)
=

[ n−r
m ]

∑
k=0

(
n

r + km

)
pr+km

1 qn−r−km
1

for 0 ≤ θ < 2π, r = 0, 1, . . . , m − 1, m ≥ 1, n ≥ m − 1, 0 < p1 < 1, and q1 = 1 − p1. The
nth trigonometric moment is

mn =

[
q1 + p1 cos

(
2nπ

m

)
+ ip1 sin

(
2nπ

m

)]n

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = n arctan

[
p1 sin

( 2π
m
)

q1 + p1 sin
( 2π

m
)],

ρ =

[
p2

1 + q2
1 + 2p1q1 sin

(
2π

m

)] n
2
,

γ1 =
β2 cos(2μ)− α2 sin(2μ)

(1 − ρ)
3
2

,

and

γ2 =
α2 cos(2μ) + β2 sin(2μ)− ρ4

(1 − ρ)2 ,
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respectively, where

α2 =

[
p2

1 + q2
1 + 2p1q1 cos

(
4π

m

)] n
2

cos

⎧⎨⎩2 arctan

⎡⎣ p1 sin
(

4π
m

)
q1 + p1 cos

(
4π
m

)
⎤⎦⎫⎬⎭

and

β2 =

[
p2

1 + q2
1 + 2p1q1 cos

(
4π

m

)] n
2

sin

⎧⎨⎩2 arctan

⎡⎣ p1 sin
(

4π
m

)
q1 + p1 cos

(
4π
m

)
⎤⎦⎫⎬⎭.

The wrapped binomial distribution faces practical limitations due to its non-closed-form
PMF.

3.2. Wrapped Discrete Cauchy Distribution

Ref. [60] introduced the wrapped discrete Cauchy distribution. Its PMF is

P
(

Θ =
2πr
m

)
=

(
1 − a2)[1 + a2m − 2am cos(mμ)

]
m(1 − a2m)[1 + a2 − 2a cos(θ − μ)]

for 0 < a < 1, 0 ≤ θ < 2π, r = 0, 1, . . . , m − 1, and m is a positive integer. The nth
trigonometric moment is

mn =

(
1 − a2)[1 + a2m − 2am cos(mμ)

]
m(1 − a2m)

m−1

∑
r=0

enθ

1 + a2 − 2a cos(θ − μ)

for n = 1, 2, . . .. The wrapped discrete Cauchy distribution has the advantage of having a
closed-form PMF.

3.3. Wrapped Discrete Exponential Distribution

Ref. [61] introduced the wrapped discrete exponential distribution. Its PMF and CDF
are

P
(

Θ =
2πr
m

)
=

e−λθ

1 − e−2πλ

(
1 − e−

2πλ
m

)
and

F(Θ ≤ k) =
1 − e−

2πλ(k+1)
m

1 − e−2πλ
, k = 0, 1, . . . , m − 1,

respectively, for λ > 0, r = 0, 1, . . . , m− 1, and m is a positive integer. The nth trigonometric
moment is

mn =
1 − e− 2πλ

m

1 − e−2πλ

(
1 − e−2πλ+2πin

1 − e− 2πλ
m + 2πin

m

)
for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan

[
e− 2πλ

m sin
( 2π

m
)− e− 4πλ

m sin
( 2π

m
)

1 − e− 2πλ
m cos

( 2π
m
)− e− 2πλ

m + e− 4πλ
m cos

( 2π
m
)
]

,
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ρ =

√√√√√√
[
1 − e− 2πλ

m cos
( 2π

m
)− e− 2πλ

m + e− 4πλ
m cos

( 2π
m
)]2

+
[
e− 2πλ

m sin
( 2π

m
)− e− 4πλ

m sin
( 2π

m
)]2

[
1 + e− 4πλ

m − 2e− 2πλ
m cos

( 2π
m
)]2 ,

γ1 =

√√√√√√
[

1−e− 2πλ
m cos( 4π

m )−e− 2πλ
m +e− 4πλ

m cos( 4π
m )
]2
+

[
e− 2πλ

m sin( 4π
m )−e− 4πλ

m sin( 4π
m )
]2

[
1+e− 4πλ

m −2e− 2πλ
m cos( 4π

m )
]2 sin(μ2 − 2μ)

⎧⎪⎪⎨⎪⎪⎩1 −

√√√√√√
[

1−e− 2πλ
m cos( 2π

m )−e− 2πλ
m +e− 4πλ

m cos( 2π
m )
]2
+

[
e− 2πλ

m sin( 2π
m )−e− 4πλ

m sin( 2π
m )
]2

[
1+e− 4πλ

m −2e− 2πλ
m cos( 2π

m )
]2

⎫⎪⎪⎬⎪⎪⎭
3
2

,

and

γ2 =

√√√√√√
[

1−e− 2πλ
m cos( 4π

m )−e− 2πλ
m +e− 4πλ

m cos( 4π
m )
]2
+

[
e− 2πλ

m sin( 4π
m )−e− 4πλ

m sin( 4π
m )
]2

[
1+e− 4πλ

m −2e− 2πλ
m cos( 4π

m )
]2 cos(μ2 − 2μ)

⎧⎪⎪⎨⎪⎪⎩1 −

√√√√√√
[

1−e− 2πλ
m cos( 2π

m )−e− 2πλ
m +e− 4πλ

m cos( 2π
m )
]2
+

[
e− 2πλ

m sin( 2π
m )−e− 4πλ

m sin( 2π
m )
]2

[
1+e− 4πλ

m −2e− 2πλ
m cos( 2π

m )
]2

⎫⎪⎪⎬⎪⎪⎭
2

−

⎧⎪⎨⎪⎩
[

1−e− 2πλ
m cos( 2π

m )−e− 2πλ
m +e− 4πλ

m cos( 2π
m )
]2
+

[
e− 2πλ

m sin( 2π
m )−e− 4πλ

m sin( 2π
m )
]2

[
1+e− 4πλ

m −2e− 2πλ
m cos( 2π

m )
]2

⎫⎪⎬⎪⎭
2

⎧⎪⎪⎨⎪⎪⎩1 −

√√√√√√
[

1−e− 2πλ
m cos( 2π

m )−e− 2πλ
m +e− 4πλ

m cos( 2π
m )
]2
+

[
e− 2πλ

m sin( 2π
m )−e− 4πλ

m sin( 2π
m )
]2

[
1+e− 4πλ

m −2e− 2πλ
m cos( 2π

m )
]2

⎫⎪⎪⎬⎪⎪⎭
2 ,

respectively. The wrapped discrete exponential distribution is a simple model with a
closed-form PMF. For this reason, some may consider it more practical than competing
distributions.

3.4. Wrapped Discrete Mittag–Leffler Distribution

Ref. [62] introduced the discrete Mittag–Leffler distribution. Its nth trigonometric
moment is given by

mn =

[
1 +

1 − δ

δ

(
1 − e

2πin
m

)α
]−1

for n = 1, 2, . . ., where 0 < δ < 1, 0 < α < 1, and m = 1, 2, . . .. The wrapped discrete
Mittag–Leffler distribution has the disadvantage of having a non-closed-form PMF.

3.5. Wrapped Discrete Skew Laplace Distribution

Ref. [63] obtained the wrapped discrete skew Laplace distribution. Its PMF and CDF
are

P
(

Θ =
2πr
m

)
=

(1 − p)(1 − q)
1 − pq

[
qm−r(1 − pm) + pr(1 − qm)

(1 − pm)(1 − qm)

]
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and

F(Θ ≤ s) =
(1 − p)(1 − q)

(1 − pq)(1 − pm)(1 − qm)

{
(1 − pm)(qm − sm)q

q − s
+

[1 − (ps)m](1 − qm)

1 − ps

}
, s = 0, 1, . . . , m − 1,

respectively, for m ∈ N, r = 0, 1, . . . , m − 1, and λ > 0. The nth trigonometric moment is
given by

mn =
(1 − p)(1 − q)(

1 − pe
i2πn

m

)(
1 − qe− 2iπn

m

)
for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan

[
(p − q) sin

( 2π
m
)

1 + pq − (p + q) cos
( 2π

m
)],

ρ =
(1 − p)(1 − q)√[

1 + pq − (p + q) cos
( 2π

m
)]2

+
[
(p − q) sin

( 2π
m
)]2 ,

γ1 =

(1−p)(1−q)√
[1+pq−(p+q) cos( 4π

m )]
2
+[(p−q) sin( 4π

m )]
2 sin(μ2 − 2μ)

{
1 − (1−p)(1−q)√

[1+pq−(p+q) cos( 2π
m )]

2
+[(p−q) sin( 2π

m )]
2

} 3
2

,

and

γ2 =

(1−p)(1−q)√
[1+pq−(p+q) cos( 4π

m )]
2
+[(p−q) sin( 4π

m )]
2 cos(μ2 − 2μ)− ((1−p)(1−q))2

[1+pq−(p+q) cos( 2πn
m )]

2
+[(p−q) sin( 2πn

m )]
2{

1 − (1−p)(1−q)√
[1+pq−(p+q) cos( 2π

m )]
2
+[(p−q) sin( 2π

m )]
2

}2 ,

respectively, where μ2 = arctan
[

(p−q) sin( 4π
m )

1+pq−(p+q) cos( 4π
m )

]
. The wrapped discrete skew Laplace

distribution may be considered more practical than certain other models due to it having a
closed-form PMF.

3.6. Wrapped Geometric Distribution

Ref. [62] obtained the wrapped geometric distribution. Its PMF and CDF are

P
(

Θ =
2πr
m

)
=

δ(1 − δ)r

1 − (1 − δ)m

and

F(Θ ≤ y) =
y

∑
r=0

δ(1 − δ)r

1 − (1 − δ)m , y = 0, 1, . . . , m − 1,

respectively, for m ∈ N, r = 0, 1, . . . , m − 1, and δ > 0. The nth trigonometric moment is

mn =
δ

x − iy
,
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where x = 1 − (1 − δ) cos 2πn
m and y = (1 − δ) sin 2πn

m for n �= 0 (mod m), n = 1, 2, . . .. The
mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan

[
(1 − δ) sin 2π

m

1 − (1 − δ) cos 2π
m

]
,

ρ =
δ√

δ2 + 2(1 − δ)
(
1 − cos 2π

m
) ,

γ1 =
δ sin(μ2 − 2μ)√[

1 − (1 − δ) cos
(

4π
m

)]2
+
[
(1 − δ) sin

(
4π
m

)]2
{

1 − δ√
δ2+2(1−δ)[1−cos( 2π

m )]

} 3
2

,

and

γ2 =

δ cos(μ2−2μ)√
[1−(1−δ) cos( 4π

m )]
2
+[(1−δ) sin( 4π

m )]
2 − δ4

{δ2+2(1−δ)[1−cos( 2π
m )]}2{

1 − δ√
δ2+2(1−δ)[1−cos( 2π

m )]

}2 ,

respectively, where μ2 = arctan
[

(1−δ) sin 4π
m

1−(1−δ) cos 4π
m

]
. The wrapped geometric distribution is a

simple discrete circular model with the practical advantage of having a closed-form PMF.

3.7. Wrapped Negative Binomial Distribution

Ref. [64] introduced the wrapped negative binomial distribution. Its PMF and CDF
are

P
(

Θ =
2πr
m

)
=

∞

∑
k=0

(
r + km + n − 1

n − 1

)
pn

1 qr+km
1

and

F(Θ ≤ y) =
y

∑
r=0

(
r + km + n − 1

n − 1

)
pn

1 qr+km
1 , y = 0, 1, . . . , m − 1,

respectively, for p1 ∈ [0, 1], p1 + q1 = 1, and n ∈ Z+. The nth trigonometric moment is

mn =

{
p1
[
1 − q1 cos

( 2πn
m
)]

+ ip1q1 sin
( 2πn

m
)

1 + q2
1 − 2q1 cos

( 2πn
m
) }n

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = n arctan

{
p1q1

( 2π
m
)

p1
[
1 − q1 cos

( 2π
m
)]},

ρ =

⎡⎣ p1√
1 + q2

1 − 2q1 cos
( 2π

m
)
⎤⎦n

,
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γ1 =

[
p1√

1+q2
1−2q1 cos( 4π

m )

]n

sin(μ2 − 2μ)

{
1 −
[

p1√
1+q2

1−2q1 cos( 2π
m )

]n} 3
2

,

and

γ2 =

[
p1√

1+q2
1−2q1 cos( 4π

m )

]n

cos(μ2 − 2μ)−
[

p1√
1+q2

1−2q1 cos( 4π
m )

]4n

{
1 −
[

p1√
1+q2

1−2q1 cos( 2π
m )

]n}2 ,

respectively, where μ2 = n arctan
{

p1q1 sin( 4π
m )

p1[1−q1 cos( 4π
m )]

}
. The wrapped negative binomial

distribution does not have a closed-form PMF.

3.8. Wrapped Poisson Distribution

Ref. [39] obtained the wrapped Poisson distribution. Its PMF and CDF are

P
(

Θ =
2πr
m

)
=

∞

∑
k=0

e−λλr+km

(r + km)!

and

F(Θ ≤ y) =
y

∑
r=0

P
(

θ =
2πr
m

)
, y = 0, 1, . . . , m − 1,

respectively, for m ∈ N, r = 0, 1, . . . , m − 1, and λ > 0. The nth trigonometric moment is

mn = e−λ[1−cos( 2πn
m )]+i sin( λ2πn

m )

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = λ sin
(

2π

m

)
,

ρ = e−λ[1−cos( 2π
m )],

γ1 =
e−λ[1−cos( 4π

m )] sin
[
λ sin

(
4π
m

)
− 2μ

]
{

1 − e−λ[1−cos( 2π
m )]
} 3

2
,

and

γ2 =
e−λ[1−cos( 4π

m )] cos
[
λ sin

(
4π
m

)
− 2μ

]
− e−4λ[1−cos( 2π

m )]{
1 − e−λ[1−cos( 2π

m )]
}2 ,

respectively. The wrapped Poisson distribution lacks a closed-form PMF, limiting its
practical usefulness.
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3.9. Wrapped Poisson–Lindley Distribution

Ref. [65] obtained the wrapped Poisson–Lindley distribution. Its PMF and CDF are

P
(

Θ =
2πr
m

)
=

θ2(1 + θ)m{(r + θ + 2)[(1 + θ)m − 1] + m}
(1 + θ)r+3[(1 + θ)m − 1]2

and

F(Θ ≤ y) =
(1 + θ)m−y−3

[(1 + θ)m − 1]2

[
1 − (1 + θ)m − θ{m + (3 + y + θ)[(1 + θ)m − 1]}

+ (1 + θ)1+y
[
−1 − 2θ + mθ − θ2 + (1 + θ)2+m

]]
, y = 0, 1, . . . , m − 1,

respectively, for m ∈ N and r = 0, 1, . . . , m − 1. The wrapped Poisson–Lindley distribution
was used to analyze the turtle dataset and the Gorleston wind direction dataset discussed
by [1]. Additionally, it was applied to a dataset consisting of arrival directions of low
showers of cosmic rays, with declination and right ascension as the coordinate system [66].
The goodness of fit of the wrapped Poisson–Lindley distribution was compared to that of
the wrapped geometric distribution. The wrapped Poisson–Lindley distribution showed
the best fit for the first and third datasets, but not for the second dataset.

3.10. Wrapped Zero-Inflated Poisson Distribution

Ref. [67] introduced the wrapped zero-inflated Poisson distribution. Its PMF and CDF
are

P
(

Θ =
2πr
m

)
=

∞

∑
k=−∞

p(r + km)

and

F(Θ ≤ y) =
y

∑
r=0

P
(

θ =
2πr
m

)
, y = 0, 1, . . . , m − 1,

respectively, for m ∈ N, r = 0, 1, . . . , m − 1, λ > 0, and w ∈ [0, 1], where

p(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w + (1 − w)e−λ, if x = 0,

(1 − w)e−λλx

x!
, if x = 1, 2, . . . .

The nth trigonometric moment is

mn = w + (1 − w)e−λ+λein

for n = 1, 2, . . .. The mean direction, mean resultant length, skewness, and kurtosis are

μ = arctan

{
(1 − w)e−λ[1−cos( 2π

m )] sin
[
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( 2π
m
)]
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[
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m
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,
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√
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[
1−cos

(
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m

)]
+ 2w(1 − w)e−λ

[
1−cos

(
2πp

m

)]
cos
[

λ sin
(

2πp
m
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,
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γ1 =
w sin 2μ + (1 − w)e−λ[1−cos( 4π

m )] sin
[
λ sin

(
4π
m

)
− 2μ

]
{

1 −
√

a2
1 + b2

1 + 2a1b1 cos
[
λ sin

( 2π
m
)]} 3

2
,

and

γ2 =
w cos 2μ + (1 − w)e−λ[1−cos( 4π

m )] cos
[
λ sin

(
4π
m

)
− 2μ

]
− {a2

1 + b2
1 + 2a1b1 cos

[
λ sin

( 2π
m
)]}2{

1 −
√

a2
1 + b2

1 + 2a1b1 cos
[
λ sin

( 2π
m
)]}2 ,

respectively, where a1 = w and b1 = (1 − w)e−λ[1−cos( 2π
m )]. The wrapped zero-inflated

Poisson distribution, a more flexible alternative to the one-parameter wrapped Poisson
distribution, is useful for directional data with a high number of zero counts.

4. Data Applications

All of the distributions reviewed in Sections 2 and 3 can be fit by using the package
Wrapped due to [9]. The package computes the PDF, CDF, quantile function, random sam-
ples, maximum likelihood estimates, standard errors, confidence intervals, and measures of
goodness of fit associated with (1)–(2) for any specified g. In this section, we illustrate three
data applications by fitting all of the reviewed distributions using Wrapped. In each data
application, the following distributions gave the best fits: wrapped exponential, wrapped
gamma, wrapped Weibull, wrapped Pareto, wrapped normal, wrapped Cauchy, wrapped
Laplace and, wrapped t distributions. Hence, the tables and figures will be limited to
these distributions.

4.1. Dataset 1

This data taken from [1] contain arrival times on a 24 h clock of 254 patients at an
intensive care unit over a period of about 12 months. The maximized log-likelihood values
as well as the corresponding values of AIC and BIC are given in Table 1.

Table 1. Fitted distributions and values of log L, AIC, and BIC for dataset 1.

Distribution log L AIC BIC

Wrapped exponential −468.6 939.2 942.8
Wrapped gamma −436.9 877.8 884.9
Wrapped Weibull −441.0 886.1 893.1
Wrapped Pareto −446.1 896.2 903.3
Wrapped normal −438.5 881.1 888.1
Wrapped Cauchy −443.6 891.2 898.2
Wrapped Laplace −443.4 890.8 897.9

Wrapped t −438.5 883.1 893.7

We see that the wrapped gamma distribution gives the best fit in terms of AIC and
BIC. The wrapped exponential distribution gives the worst fit in terms of AIC and BIC.
These findings are confirmed by the density plots shown in Figure 1.
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Figure 1. Histogram of the data and fitted densities for dataset 1.

4.2. Dataset 2

These data taken from [1] contain measurements of the directions taken by 76 turtles
after treatment. The maximized log-likelihood values as well as the corresponding values
of AIC and BIC are given in Table 2.

Table 2. Fitted distributions and values of log L, AIC, and BIC for dataset 2.

Distribution log L AIC BIC

Wrapped exponential −122.3 246.7 249.0
Wrapped gamma −119.6 243.2 247.9
Wrapped Weibull −120.6 245.3 249.9
Wrapped Pareto −135.9 275.8 280.5
Wrapped normal −125.1 254.1 258.8
Wrapped Cauchy −113.9 231.9 236.6
Wrapped Laplace −116.7 237.3 242.0

Wrapped t −113.7 233.5 240.5

We see that the wrapped Cauchy distribution gives the best fit in terms of AIC and
BIC. The wrapped Pareto distribution gives the worst fit in terms of AIC and BIC. These
findings are confirmed by the density plots shown in Figure 2.
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Figure 2. Histogram of the data and fitted densities for dataset 2.

4.3. Dataset 3

These data taken from [1] contain measurements of long-axis orientation of 133
feldspar laths in basalt. The maximized log-likelihood values as well as the corresponding
values of AIC and BIC are given in Table 3.

Table 3. Fitted distributions and values of log L, AIC, and BIC for dataset 3.

Distribution log L AIC BIC

Wrapped exponential −243.9 489.8 492.6
Wrapped gamma −243.9 491.8 497.5
Wrapped Weibull −243.9 491.8 497.5
Wrapped Pareto −247.6 499.2 505.0
Wrapped normal −242.4 488.7 494.5
Wrapped Cauchy −242.7 489.5 495.3
Wrapped Laplace −243.9 491.9 497.6

Wrapped t −242.4 490.7 499.4

We can see that the wrapped normal distribution gives the best fit in terms of AIC,
whereas the wrapped exponential distribution gives the best fit in terms of BIC. The
wrapped Pareto distribution gives the worst fit in terms of AIC and BIC. These findings are
confirmed by the density plots shown in Figure 3.
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Figure 3. Histogram of the data and fitted densities for dataset 3.

5. Conclusions

In this paper, we have reviewed 45 wrapped distributions for continuous circular
data and 10 wrapped distributions for discrete circular data by listing their probability
density/mass functions, cumulative distribution functions, trigonometric moments, mean
directions, mean resultant lengths, skewness, and kurtosis (whenever they are available).
We have also discussed data applications and limitations of the reviewed distributions.
This paper could be a source of reference and may encourage further developments in the
area of wrapped distributions.

Future work may provide similar reviews for wrapped bivariate distributions, wrapped
multivariate distributions, wrapped matrix variate distributions, and wrapped complex
variate distributions. Another future possibility is to write R packages for fitting wrapped
bivariate distributions, wrapped multivariate distributions, wrapped matrix variate distri-
butions, and wrapped complex variate distributions.
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1. Introduction

One common phenomenon in statistics is the presence of excess zeroes only. This
phenomenon happens when there are more zero-valued observations than explained by
the Poisson distribution. There have been numerous studies conducted in analysing count
data with zero-inflation such as zero-inflated models [1–4], hurdle models [4], zero-altered
models [3] and others. Young et al. [5] has provided a comprehensive review on the use of
the zero-inflated models and its associated regression models. The zero-inflated models are
commonly used to explain the excess zeroes by introducing an inflation parameter known
as zero-inflation parameter.

Recently, the presence of excess zeros and ones in count data have been gaining
attraction by researchers as they are also common in statistics. This phenomenon happens
when there is an abundance of observed events that are not happening and happening only
once. This phenomenon arises quite naturally depending on the questions we would like
to answer. Lin and Tsai [6] have provided a list of questions that will ultimately give the
observations inflated at zero and non-zero. For inflation at zero and one, asking questions
about a memorable event that happened in one’s life such as the number of marriages [6]
will certainly yield results that have a huge spike at zero and one because it is natural and
common across time for mankind to either stay single or get married to one person at a
time or in life. The phenomenon of excess zeros and ones can also be found in various
fields such as medicine [6] as well as quantitative criminology [7,8].

Introducing two inflation parameters into an existing distribution to describe ex-
cess zeros and ones, respectively, is normal and extensively researched [6–10]. Although
the zero–one-inflated Poisson distribution (ZOIP) was introduced in the late 20th cen-
tury by Melkersson and Olsson [9], its stochastic representations were not explored until
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17 years later by Zhang et al. [10]. The study by Zhang et al. [10] interrelates the ZOIP
distribution with other known Poisson distributions such as the zero-inflated Poisson,
the zero-truncated Poisson and the one-truncated Poisson distributions. Following the
idea of Zhang et al. [10], this paper examines and discusses some notes on the stochastic
representations for the zero–one-inflated Poisson Lindley distribution (ZOIPL) developed
by Tajuddin et al. [8]. Likelihood ratio tests are also developed to investigate whether the
presence of one-inflation and fixed parameters is significant.

The probability mass function (pmf) for a random variable Y following the ZOIPL
distribution [8] is given as:

Pr(Y = y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω0 + (1 − ω0 − ω1)
θ2(θ+2)
(θ+1)3 ; y = 0

ω1 + (1 − ω0 − ω1)
θ2(θ+3)
(θ+1)4 ; y = 1

(1 − ω0 − ω1)
θ2(θ+y+2)
(θ+1)y+3 ; y ≥ 2

, (1)

where ω0 and ω1 explain the excess zeroes and ones, respectively, and θ is the parameter of
the Poisson Lindley, PL distribution [11]. The PL distribution has been shown to provide
a better fit than the Poisson distribution due to its ability to handle overdispersion in the
data [11,12]. The parameter θ in the PL distribution plays a crucial role in determining
the variation in the distribution. As θ increases, the variance and the mean of the PL
distribution approach to an identical value, a phenomenon known as equidispersion
(see [12], 2009 for further explanation). Similarly, the ZOIPL distribution has also been
shown to provide better model fittings over the ZOIP distribution due to its ability to
handle extra dispersion, of which cannot be single-handedly described by the inflation
parameters in the ZOIP distribution [8].

Note that, if ω0 = 0, the ZOIPL distribution reduces to a one-inflated Poisson Lindley,
OIPL distribution with parameters ω1 and θ, which have not been studied yet. Readers
are advised to not be confused with a one-inflated-positive Poisson Lindley distribution,
which was developed to cater for inflation in one-valued data in positive count data [13]. If
ω1 = 0, the ZOIPL distribution reduces to the zero-inflated Poisson Lindley distribution
(ZIPL) with parameters ω0 and θ [14]. If both ω0, ω1 = 0, the ZOIPL distribution reduces
to the standard PL distribution with parameter θ. From the special cases, we can already
identify the relationship between these distributions. Based on this idea, the stochastic
representations of the ZOIPL distribution can be studied.

Before proceeding with the stochastic representations, we first adopt the definition of
a degenerate distribution from Zhang et al. [10] to obtain an identical but compact repre-
sentation for the pmf of the ZOIPL distribution. Let ξc ∼ Degen(c) be a random variable
which follows a degenerate distribution at a single constant point c with Pr(ξc = c) = 1.
Let ξ0 ∼ Degen(0), ξ1 ∼ Degen(1) and X ∼ PL(θ) be mutually independent. Therefore,
the pmf of the ZOIPL can be written as

Pr(Y = y) = ω0Pr(ξ0 = y) + ω1Pr(ξ1 = y) + ω2Pr(X = y)

=

[
ω0 + ω2

θ2(θ+2)
(θ+1)3

]
I(y=0) +

[
ω1 + ω2

θ2(θ+3)
(θ+1)4

]
I(y=1) +

[
ω2

θ2(θ+y+2)
(θ+1)y+3

]
I(y≥2),

(2)

where I(·) refers to the indicator function, 0 ≤ ω0, ω1, ω2 < 1, ω2 = 1 − ω0 − ω1 and
ω0, ω1 refers to the inflation parameters for excess zeroes and ones, respectively.

The paper is organized as follows: Section 2 describes various stochastic representa-
tions of the ZOIPL distribution. Section 3 describes the derivations of nth moments based
on the different stochastic representations. Section 4 describes the derivations of conditional
distributions for selected stochastic representations. Section 5 presents several likelihood
ratio tests to assess the presence of inflating parameters as well as fixed θ. Section 6 ex-
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amines the performance of the likelihood ratio tests through a simulation study. Section 7
concludes the study.

2. Stochastic Representation (SR)

Several stochastic representations are discussed to highlight the relationship between
the ZOIPL distribution with the zero-inflated Poisson Lindley (ZIPL), the zero-truncated
Poisson Lindley ( ZTPL) and the Poisson Lindley, PL distributions. Table 1 provides the
probability mass functions for the remaining three distributions.

Table 1. The probability mass functions for the ZIPL, PL and the ZTPL distributions.

Distribution Probability Mass Function

ZIPL
Pr(Y∗ = y|ω0, ω1, θ) =

⎧⎪⎨⎪⎩
ω0 + ω1

θ2(θ+2)
(θ+1)3 ; y∗ = 0

ω1
θ2(θ+y∗+2)
(θ+1)y∗+3 ; y∗ ≥ 1

where ω1 = 1 − ω0 and ω0 refers to the inflation parameter for
the excess zeroes.

PL Pr(X = y∗|θ) = θ2(θ+y∗+2)
(θ+1)y∗+3 ; y∗ ≥ 0

ZTPL Pr(V = v|θ) = θ2(θ+v+2)
(θ2+3θ+1)(θ+1)v ; v ≥ 1

Before the stochastic representations for the ZOIPL distribution is discussed, we
adapt some notations from Zhang et al. [10] and present them in Table 2 to facilitate the
understanding of the stochastic representations.

Table 2. Notations and their descriptions.

Notation Description

A ∼ Q(τ) Random variable A follows a Q distribution with parameter τ.
A Vector A.

AT Transpose of vector A.
A B C Random variables A, B and C are mutually independent.

A d
= B + C Random variables A and B + C have the same distribution.

2.1. First Stochastic Representation (SR1)

Let Z = (Z0, Z1, Z2)
T ∼ Multinomial(1; ω0, ω1, ω2) and X ∼ PL(θ), such that Z X.

The first SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= Z0(0) + Z1(1) +

Z2X = Z1 + Z2X, or equivalently, Y =

⎧⎨⎩
0; with probability ω0
1; with probability ω1
X; with probability ω2

. Since Z0 + Z1 + Z2 = 1

with Pr(Zi = 1) = ωi where i = 1, 2, 3, the pmf of Y can be written as:

Pr(Y = 0) = Pr(Z0 = 1) + Pr(Z2 = 1, X = 0) = ω0 + ω2
θ2(θ+2)
(θ+1)3

Pr(Y = 1) = Pr(Z1 = 1) + Pr(Z2 = 1, X = 1) = ω1 + ω2
θ2(θ+3)
(θ+1)4

Pr(Y = y) = Pr(Z2 = 1, X = y) = ω2
θ2(θ+y+2)
(θ+1)y+3 , y ≥ 2.

(3)

From the first SR, the pmf is identical as the pmf of the ZOIPL distribution. There-
fore, the random variable Y ∼ ZOIPL(ω0, ω1, θ) can be denoted as the mixture of
ξ0 ∼ Degen(0), ξ1 ∼ Degen(1) and X ∼ PL(θ) distributions.
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2.2. Second Stochastic Representation (SR2)

Let Z ∼ Bernoulli(1 − w), H ∼ Bernoulli(p) and X ∼ PL(θ), such that Z H X.

The second SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= (1 − Z)H+ ZX,

or equivalently,

Y =

{
H; with probability w
X; with probability 1 − w

.

Thus, the pmf of Y is given as

Pr(Y = 0) = Pr(Z = 0, Y = 0) + Pr(Z = 1, Y = 0) = Pr(Z = 0, H = 0) + Pr(Z = 1, X = 0)

= w(1 − p) + (1 − w)
θ2(θ+2)
(θ+1)3

Pr(Y = 1) = Pr(Z = 0, Y = 1) + Pr(Z = 1, Y = 1) = Pr(Z = 0, H = 1) + Pr(Z = 1, X = 1)

= wp + (1 − w)
θ2(θ+3)
(θ+1)4

Pr(Y = y) = Pr(Z = 1, X = y) = (1 − w)
θ2(θ+y+2)
(θ+1)y+3 ; y ≥ 2

(4)

Using the reparameterizations ω0 = w(1 − p) and ω1 = wp, it can be obtained that
w = ω0 + ω1 and p = ω1/(ω0 + ω1). In other words, the random variable
Y ∼ ZOIPL(ω0, ω1, θ) can be denoted as the mixture of Bernoulli(ω1/(ω0 + ω1)) and
PL(θ).

2.3. Third Stochastic Representation (SR3)

Let Z ∼ Bernoulli(1 − w), ξ1 ∼ Degen(1) and Y* ∼ ZIPL
(
w*, θ

)
, such that Z ξ1 Y*.

The third SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= (1 − Z)ξ1 + ZY*,

or equivalently,

Y =

{
1; with probability w
Y∗; with probability 1 − w

.

Thus, the pmf of Y is given as

Pr(Y = 0) = Pr(Z = 1, Y∗ = 0)

= (1 − w)

[
w∗ + (1 − w∗) θ2(θ+2)

(θ+1)3

]
= w∗(1 − w) + (1 − w)(1 − w∗) θ2(θ+2)

(θ+1)3

(5)

Pr(Y = 1) = Pr(Z = 0) + Pr(Z = 1, Y∗ = 1)

= w + (1 − w)(1 − w∗) θ2(θ+3)
(θ+1)4

(6)

Pr(Y = y) = Pr(Z = 1, Y∗ = y) = (1 − w)(1 − w∗)
θ2(θ + y + 2)

(θ + 1)y+3 ; y ≥ 2 (7)

Using the reparameterizations ω0 = w∗(1 − w), ω1 = w and ω2 = (1 − w)(1 − w∗),
one can obtain that w = ω1 and w∗ = ω0/(1 − ω1). In other words, the random variable
Y ∼ ZOIPL(ω0, ω1, θ) can be denoted as the mixture of Degen(1) and ZIPL(ω0/(1 − ω1), θ).
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2.4. Fourth Stochastic Representation (SR4)

Let V ∼ ZTPL(θ), Z* =
(
Z*

0, Z*
1, Z*

2
)T ∼ Multinomial

(
1; ω*

0, ω*
1, ω*

2
)
, such that V Z*.

The fourth SR for random variable Y ∼ ZOIPL(ω0, ω1, θ) is given as Y d
= Z*

0(0) + Z*
1(1) +

Z*
2V = Z*

1 + Z*
2V, or equivalently,

Y =

⎧⎨⎩
0; with probability ω∗

0
1; with probability ω∗

1
V; with probability ω∗

2

.

Thus, the pmf of Y is given as

Pr(Y = 0) = Pr(Z∗
0 = 1) = ω∗

0

Pr(Y = 1) = Pr
(
Z∗

1 = 1
)
+ Pr(Z∗

2 = 1, V = 1)

= ω∗
1 + ω∗

2
θ2(θ+3)

(θ2+3θ+1)(θ+1)4

Pr(Y = y) = Pr(Z∗
2 = 1, V = y) = ω∗

2
θ2(θ+y+2)

(θ2+3θ+1)(θ+1)y+3 ; y ≥ 2

(8)

Using the reparameterizations ω*
0 = ω0 + ω2θ2(θ + 2)/(θ + 1)3, ω*

1 = ω1 and
ω*

2 = ω2
(
θ2 + 3θ + 1

)
, one can obtain that ω1 = ω*

1, ω2 = ω*
2/
(
θ2 + 3θ + 1

)
and

ω0 = ω*
0 − ω*

2θ2(θ + 2)/
[(

θ2 + 3θ + 1
)
(θ + 1)3

]
. Therefore, Y ∼ ZOIPL(ω0, ω1, θ) can be

denoted as the mixture of Degen(0), Degen(1) and ZTPL(θ).

3. The nth Moments

In this section, the nth moments for the ZOIPL distribution using the four stochastic
representations, explained in Section 2, will be utilized. Usually, the nth moments for any
zero–one-inflated distributions are obtained directly as

E(Yn) =
∞

∑
y=0

ynPr(Y = y) = Pr(Y = 1) +
∞

∑
y=2

ynPr(Y = y). (9)

With the help from the four stochastic representations, new forms of the nth moments
will be developed. The nth moments are important in obtaining the mean, variance,
skewness, and kurtosis of the distribution. Here, we only show the derivation of the nth
moments using different stochastic representations.

3.1. First Stochastic Representation

Referring to SR1, Y d
= Z1 + Z2X. Therefore, the nth moment of Y is derived as follows:

E(Yn) = E
[
(Z1 + Z2X)n] = E

[
n

∑
k=0

(
n
k

)(
Z1

kZ2
n−k
)

Xn−k

]
. (10)

Zhang et al. [10] has mentioned that for any integers i and j, Zi
kZj

n−k ∼ Degen(0) for
i �= j. Furthermore, it is trivial to show that E(Zi

n) = E(Zi). Therefore, the nth moment of
Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
(

Z1
kZ2

n−k
)

E
(

Xn−k
)

= E(Z2
n)E(Xn) +

n−1
∑

k=1

(
n
k

)
E
(

Z1
kZ2

n−k
)

E
(

Xn−k
)
+ E(Z1

n)

= ω1 + ω2E(Xn).

(11)
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3.2. Second Stochastic Representation

Referring to SR2, Y d
= (1 − Z)H + ZX. Therefore, the nth moment of Y is derived as

follows:

E(Yn) = E
{
[(1 − Z)H + ZX]n

}
= E

{
n

∑
k=0

(
n
k

)[
(1 − Z)kZn−k

]
HkXn−k

}
. (12)

The nth moment of Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
[
(1 − Z)kZn−k

]
E
(

Hk
)

E
(

Xn−k
)

= E(Zn)E(Xn) +
n−1
∑

k=1

(
n
k

)
E
[
(1 − Z)kZn−k

]
E
(

Hk
)

E
(

Xn−k
)
+ E
[
(1 − Z)n]E(Hn)

= wp + (1 − w)E(Xn).

3.3. Third Stochastic Representation

Referring to SR3, Y d
= (1 − Z)ξ + ZY∗. Therefore, the nth moment of Y is derived as

follows:

E(Yn) = E
{
[(1 − Z)ξ + ZY∗]n

}
= E

{
n

∑
k=0

(
n
k

)[
(1 − Z)kZn−k

]
ξkY∗n−k

}
. (13)

The nth moment of Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
[
(1 − Z)kZn−k

]
E
(

ξk
)

E
(

Y∗n−k
)

= E(Zn)E(Y∗n) +
n−1
∑

k=1

(
n
k

)
E
[
(1 − Z)kZn−k

]
E
(

ξk
)

E
(

Y∗n−k
)
+ E
[
(1 − Z)n]E(ξn)

= w + (1 − w)E(Y∗n).

3.4. Fourth Stochastic Representation

Referring to SR4, Y d
= Z1

∗ + Z1
∗V. Therefore, the nth moment of Y is derived as

follows:

E(Yn) = E
[
(Z1

∗ + Z2
∗V)n] = E

{
n

∑
k=0

(
n
k

)[
Z1

∗kZ2
∗n−k

]
Vn−k

}
. (14)

The nth moment of Y can be simplified as

E(Yn) =
n
∑

k=0

(
n
k

)
E
[

Z1
∗kZ2

∗n−k
]

E
(

Vn−k
)

= E(Z2
∗n)E(Vn) +

n−1
∑

k=1

(
n
k

)
E
[

Z1
∗kZ2

∗n−k
]

E
(

Vn−k
)
+ E(Z1

∗n)

= ω1
∗ + ω2

∗E(Vn).

4. Conditional Distributions

In this section, the conditional distributions based on the first two stochastic represen-
tations will be discussed.

4.1. First Stochastic Representation

Recall that in SR1, Y d
= Z1 +Z2X where Z = (Z0, Z1, Z2)

T ∼ Multinomial(1; ω0, ω1, ω2)
and X ∼ PL(θ), such that Z X. We would like to find the conditional distribution for Z|Y
and X|Y . The conditional distributions are given in the following theorems.
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Theorem 1. The joint conditional distribution for Z|Y is given as

Z|(Y = y) ∼

⎧⎪⎨⎪⎩
Multinomial(1; β1, 0, 1 − β1) ; if y = 0,
Multinomial(1; 0, β2, 1 − β2) ; if y = 1,
Multinomial(1; 0, 0, 1) ; if y ≥ 2,

(15)

where
β1 =

ω0

ω0 + ω2
θ2(θ+2)
(θ+1)3

and β2 =
ω1

ω1 + ω2
θ2(θ+3)
(θ+1)4

.

Proof. Recall that Z can take on (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T and Pr(Z = z|Y = y) =
Pr(Z0 = z0, Z1 = z1, Z2 = z2, Y = y)/Pr(Y = y). For Y = 0,

Pr
(

z = (1, 0, 0)T
∣∣∣Y = 0

)
= β1,

Pr
(

z = (0, 1, 0)T
∣∣∣Y = 0

)
= 0,

Pr
(

z = (0, 0, 1)T
∣∣∣Y = 0

)
= 1 − β1.

(16)

Therefore, Z|(Y = 0) ∼ Multinomial(1; β1, 0, 1 − β1). For Y = 1,

Pr
(

z = (1, 0, 0)T
∣∣∣Y = 1

)
= 0,

Pr
(

z = (0, 1, 0)T
∣∣∣Y = 1

)
= β2,

Pr
(

z = (0, 0, 1)T
∣∣∣Y = 1

)
= 1 − β2.

(17)

Therefore, Z|(Y = 1) = Multinomial(1; 0, β2, 1 − β2) . Finally, for Y ≥ 2,

Pr
(

z = (1, 0, 0)T
∣∣∣Y = 1

)
= 0,

Pr
(

z = (0, 1, 0)T
∣∣∣Y = 1

)
= 0,

Pr
(

z = (0, 0, 1)T
∣∣∣Y = 1

)
= 1.

(18)

Therefore, Z|(Y = y) = Multinomial(1; 0, 0, 1) for y ≥ 2. �

Corollary 1. The marginal conditional distribution Zi|Y based on SR1 is

Z0|(Y = y) ∼
{

Bernoulli(β1) ; y = 0,
Degen(0) ; y �= 0,

Z1|(Y = y) ∼
{

Bernoulli(β2) ; y = 1,
Degen(0) ; y �= 1,

Z2|(Y = y) ∼

⎧⎪⎨⎪⎩
Bernoulli(1 − β1) ; y = 0,
Bernoulli(1 − β2) ; y = 1,
Degen(1) ; y ≥ 2.

(19)

Theorem 2. The conditional distribution for X|Y is given as

X|(Y = y) ∼

⎧⎪⎨⎪⎩
ZIPL(1 − β1, θ) ; if y = 0,
OIPL(1 − β2, θ) ; if y = 1,
Degen(y) ; if y ≥ 2.

(20)
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Proof. Recall that X ∼ PL(θ) and Pr(X|Y = y) = Pr(X = x, Y = y)/Pr(Y = y). For Y = 0,

Pr(X=x,Y=0)
Pr(Y=0) = Pr(X=0,Z1=0)

Pr(Y=0) I(X=0) +
Pr(X=x,Z0=1)

Pr(Y=0) I(X �=0)

=

θ2(θ+2)
(θ+1)3

(1−ω1)

ω0+ω2
θ2(θ+2)
(θ+1)3

I(X=0) +

θ2(θ+x+2)
(θ+1)x+3 ω0

ω0+ω2
θ2(θ+2)
(θ+1)3

I(X �=0)

=

[
1 − β1 + β1

θ2(θ+2)
(θ+1)3

]
I(X=0) +

[
β1

θ2(θ+x+2)
(θ+1)x+3

]
I(X �=0).

(21)

Therefore, X|(Y = 0) ∼ ZIPL(1 − β1, θ). For Y = 1,

Pr(X=x,Y=1)
Pr(Y=1) = Pr(X=1,Z0=0)

Pr(Y=1) I(X=1) +
Pr(X=x,Z1=1)

Pr(Y=1) I(X �=1)

=

θ2(θ+3)
(θ+1)4

(1−ω0)

ω1+ω2
θ2(θ+3)
(θ+1)4

I(X=1) +

θ2(θ+x+2)
(θ+1)x+3 ω1

ω1+ω2
θ2(θ+2)
(θ+1)3

I(X �=1)

=

[
1 − β2 + β2

θ2(θ+3)
(θ+1)4

]
I(X=1) +

[
β2

θ2(θ+x+2)
(θ+1)x+3

]
I(X �=1).

(22)

Therefore, X|(Y = 1) ∼ OIPL(1 − β2, θ). Note that the OIPL distribution has not
been explored yet. For Y ≥ 2,

Pr(X = x, Y = y)
Pr(Y = y)

=
Pr(X = y, Z2 = 1)

Pr(Y = y)
= 1. (23)

Therefore, X|(Y = y) ∼ Degen(y) for y ≥ 2. �

4.2. Second Stochastic Representation

Recall that in SR2, Y d
= (1 − Z)H+ZX where Z ∼ Bernoulli(1 − w), H ∼ Bernoulli(p)

and X ∼ PL(θ), such that Z H X.

Theorem 3. The conditional distribution Z|Y is given as

Pr(Z|Y = y) =

⎧⎪⎨⎪⎩
Bernoulli(λ1) ; if y = 0,
Bernoulli(λ2) ; if y = 1,
Degen(1) ; if y ≥ 2,

(24)

where

λ1 =
(1 − w)

θ2(θ+2)
(θ+1)3

w(1 − p) + (1 − w)
θ2(θ+2)
(θ+1)3

and λ2 =
(1 − w)

θ2(θ+3)
(θ+1)4

wp + (1 − w)
θ2(θ+3)
(θ+1)4

,

or equivalently, λ1 = 1 − β1 and λ2 = 1 − β2.

Proof. Recall that Pr(Z = z|Y = y) = Pr(Z = z, Y = y)/Pr(Y = y) and Z can take on the
values of either 0 or 1. For Y = 0,

Pr(Z = z, Y = 0)
Pr(Y = 0)

=
Pr(Z = 1, X = 0)

Pr(Y = 0)
= λ1. (25)

Therefore, Z|(Y = 0) ∼ Bernoulli(λ1). For Y = 1,

Pr(Z = z, Y = 1)
Pr(Y = 1)

=
Pr(Z = 1, X = 1)

Pr(Y = 1)
= λ2.
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Therefore, Z|(Y = 1) ∼ Bernoulli(λ2). For Y ≥ 2,

Pr(Z = z, Y = y)
Pr(Y = y)

=
Pr(Z = 1, X = y)

Pr(Y = y)
= 1.

Therefore, Z|(Y = y) ∼ Degen(1) for y ≥ 2. Using the reparameterization in SR2, the
conditional distribution Z|Y can be written as

Pr(Z|Y = y) =

⎧⎪⎨⎪⎩
Bernoulli(1 − β1) ; if y = 0,
Bernoulli(1 − β2) ; if y = 1,
Degen(1) ; if y ≥ 2,

(26)

or equivalently,

Pr(Z|Y = y) =

⎧⎪⎨⎪⎩
Bernoulli(λ1) ; if y = 0,
Bernoulli(λ2) ; if y = 1,
Degen(1) ; if y ≥ 2.

�

Theorem 4. The conditional distribution H|Y is given as

Pr(H|Y = y ) =

⎧⎪⎨⎪⎩
Bernoulli(λ3) ; if y = 0,
Bernoulli(λ4) ; if y = 1,
Bernoulli(p) ; if y ≥ 2,

(27)

where

λ3 =
p(1 − w)

θ2(θ+2)
(θ+1)3

w(1 − p) + (1 − w)
θ2(θ+2)
(θ+1)3

and λ4 =

p
[

w + (1 − w)
θ2(θ+3)
(θ+1)4

]
wp + (1 − w)

θ2(θ+3)
(θ+1)4

,

or equivalently, λ3 = pλ1 = p(1 − β1) and λ4 = 1 − (1 − p)λ2 = 1 − (1 − p)(1 − β2).

Proof. Recall that Pr(H = η|Y = y) = Pr(H = η, Y = y)/Pr(Y = y) and H = η can take
on the values of either 0 or 1. For Y = 0,

Pr(H = η, Y = 0)
Pr(Y = 0)

=
Pr(H = 1, Z = 1, X = 0)

Pr(Y = 0)
= λ3. (28)

Therefore, H|(Y = 0) ∼ Bernoulli(λ3). For Y = 1,

Pr(H = η, Y = 1)
Pr(Y = 1)

=
Pr(H = 1, Z = 1, X = 1) + Pr(H = 1, Z = 0)

Pr(Y = 1)
= λ4.

Therefore, H|(Y = 1) ∼ Bernoulli(λ4). For Y ≥ 2,

Pr(H = η, Y = y)
Pr(Y = y)

=
Pr(H = 1, Z = 1, X = y)

Pr(Y = y)
= p.

Therefore, H|(Y = y) ∼ Bernoulli(p). Using the reparameterization in SR2 and from
Theorem 3, the conditional distribution H|Y can be written as

Pr(H|Y = y ) =

⎧⎪⎨⎪⎩
Bernoulli(p(1 − β1)) ; if y = 0,
Bernoulli(1 − (1 − p)(1 − β2)) ; if y = 1,
Bernoulli(p) ; if y ≥ 2,

(29)
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or equivalently,

Pr(H|Y = y ) =

⎧⎪⎨⎪⎩
Bernoulli(pλ1) ; if y = 0,
Bernoulli(1 − (1 − p)λ2) ; if y = 1,
Bernoulli(p) ; if y ≥ 2,

or equivalently,

Pr(H|Y = y ) =

⎧⎪⎨⎪⎩
Bernoulli(λ3) ; if y = 0,
Bernoulli(λ4) ; if y = 1,
Bernoulli(p) ; if y ≥ 2.

�

Theorem 5. The conditional distribution for X|Y is given as

X|(Y = y) ∼

⎧⎪⎨⎪⎩
ZIPL(1 − β1, θ) ; if y = 0,
OIPL(1 − β2, θ) ; if y = 1,
Degen(y) ; if y ≥ 2.

Proof. Similar to the proof for Theorem 2. �

5. Hypotheses Testing

This section presents two hypotheses involving the presence of one-inflation and a
fixed θ. The hypothesis about the presence of one-inflation is examined using a likelihood
ratio test, while the hypothesis about a fixed θ involves a two-sided test. The hypothesis
about the presence of zero–one-inflation cannot be examined with the likelihood ratio
test because the parameter values are situated at the boundary of the confined parameter
space [10].

5.1. The Presence of One-Inflation

To investigate the existence of excess ones in the observations, the following null and
alternative hypotheses are considered.

H0 : ω1 = 0 vs H1 : ω1 > 0.

The likelihood ratio (LR) test statistics is given as

S1 = −2
{

l
(
ω̂0,H0 , 0, θ̂H0

)− l
(
ω̂0, ω̂1, θ̂

)}
,

where l(·) refers to the log-likelihood function. This hypothesis tests whether the ZIPL
distribution is sufficient to describe the data compared to the ZOIPL distribution. Zhang
et al. [10] investigated a similar test, but their study refers to the zero–one-inflated Poisson
distribution. The authors mentioned that H0 results in ω0 being on the edge of the parame-
ter space. Moreover, the appropriate null distribution is a mixture of Degen(0) and χ2

(1)
with equal proportion [10,15]. The same conclusion can be drawn for this distribution since
the nature of Poisson and ZOIPL distributions is similar to that of the zero–one-inflated
Poisson distribution. Therefore, H0 is rejected if Pr(S1 > s1) =

1
2 Pr
(

χ2
(1) > s1

)
is smaller

than the significance level, which is set at α = 0.05. For more information on the asymptotic
properties of likelihood ratio tests, see [16].

158



Mathematics 2024, 12, 778

5.2. For Fixed θ = θ0

To investigate the existence of excess ones in the observations, the following null and
alternative hypotheses are considered.

H0 : θ = θ0 vs H1 : θ �= θ0.

The likelihood ratio (LR) test statistics is given as

S2 = −2
{

l
(
ω̂0,H0 , ω̂1,H0 , θ0

)− l
(
ω̂0, ω̂1, θ̂

)}
.

This hypothesis investigates if a fixed θ0 but varying ω0 and ω1 are adequate in de-
scribing the data with comparison to the ZOIPL distribution with three varying parameters.
The H0 is rejected if Pr(S2 > s2) = Pr

(
χ2

(1) > s2

)
is less than the significant level, which

is set at α = 0.05.

6. Simulation Studies

In this section, the hypotheses and its corresponding likelihood ratio tests will be
investigated via simulation studies. The simulation studies aim to compare the type I error
rates under H0 and the powers under H1.

6.1. Data Generation

To generate random data which follow the ZOIPL distribution, first, recall the SR1.
We independently draw z(m)

1 , . . . , z(m)
n ∼ Multinomial(1; ω0, ω1, ω2) for m = 1, 2, . . . , M,

where z(m)
i =

(
Z(m)

0i , Z(m)
1i , Z(m)

2i

)T
for i = 1, 2, . . . , n. We also draw X(m)

1 , . . . , X(m)
n ∼ PL(θ)

independently. Then, we set Y(m)
i = Z(m)

1i + Z(m)
2i × X(m)

i for i = 1, 2, . . . , n and
m = 1, 2, . . . , M, where M = 1000.

6.2. General Algorithm for Hypothesis Testing

Let r be the number of rejecting the H0. The type I error rate is obtained by computing
r/M when H0 is true, whereas the power of the test is obtained by computing r/M when
we fail to reject H0. For the type I error and the power of the test, the sample sizes are set
to be n = 200 (200) 1000. The procedure to determine the type I error rate and the power
of the test is repeated 1000 times. The adjusted Wald technique [17] is used to obtain the
95% confidence interval for the type I error rates. Bradley’s liberal criterion [18] has outlined
that if the type I error rates are in the interval α± 0.05α, the test is robust. In this case, α = 0.05,
so the test is considered robust when type I error rates are between 0.025 and 0.075.

6.3. The Presence of One-Inflation

Recall that the H0 : ω1 = 0 and H1 : ω1 > 0. For this simulation study, the value of θ
is fixed at 1.0, while the value of ω0 varies: ω0 = 0.6, 0.7, 0.8, 0.9. These different values
of ω0 were selected based on previous studies [8] for the ZOIPL distribution. These ω0s
are used to study the type I error rates. The results of the simulation studies are shown
in Figure 1. Figure 1 shows the type I error rate plots for varying ω0. When ω0 = 0.60, a
sample size of 400 is sufficient to make the type I error rate fall below 0.05. On the other
hand, when ω0 = 0.70, 0.90, at least a sample size of 800 is needed to make a type I error
rate fall below 0.05. Surprisingly, when ω0 = 0.80, even 200 samples are sufficient. It can be
observed that for each value of ω0, the type I error rates decrease with increasing sample
size n and fall below 0.05. Zhang et al. [10] mentioned that the smaller the type I error rate,
the better the performance of the likelihood ratio test in controlling the error rates.
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Figure 1. Type I error rates for different values of ω0 and N.

To assess the power of the test, the values of ω1 under H1 are set at 0.02, 0.04, 0.06, 0.08,
0.10, 0.12 with θ = 1.0. Let r be the number of rejections of H0. The power of the test
is obtained by calculating r/M when ω1 > 0. The results of the simulation studies are
shown in Figure 2. Figure 2 shows the plots for the power of the test when ω1 varies. It can
be observed that the power of the test increases when ω1 and the sample size n increase.
Achieving at least 80% power can be carried out for ω1 ≥ 0.06 with at least a sample size
of 800. For ω1 < 0.06, a large sample size is required for the test to obtain 80% power.
This means that when ω1 is small and close to zero, the test cannot accurately identify the
existence of excess ones in the data. Generally, the larger the value of ω1, the quicker the
power of the test increases as the sample size increases.

6.4. Fixed θ = θ0

Recall that the H0 : θ = θ0 and H1 : θ �= θ0. For this simulation study, the value of θ0
varies: θ0 = 0.5, 1.0, 1.5, 2.0 for the study of Type I error rates. The values for ω0 = 0.75
and ω1 = 0.10 are fixed. Figure 3 shows the simulation results of the test. From Figure 3,
when θ = 0.5, 1.0, a sample size of 600 is sufficient to make a type I error rate fall below
0.05. When θ = 1.5, at least a sample size of 800 is needed to make a type I error rate fall
below 0.05. Furthermore, a total of 1000 samples are required when θ = 2.0. Generally, the
larger the value of θ, the larger the sample size required so that the type I error becomes
smaller than 0.05.
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Figure 2. Power of the likelihood ratio test for different values of ω1 and N.

To investigate the power of the test, data are generated assuming that θ = 1.5, 2.0, 2.5,
3.0, and let θ0 = 1.0. Figure 4 shows the simulation results of the test. From Figure 4, it
can be noted that as the sample size increases, the power of the test increases. The further
the distance between the assumed θ0 = 1.0 from the true θ, the more powerful the test
becomes. To achieve 80% power with 1000 samples, the true θ must be at least equal to 3.0
when θ0 = 1.0.
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Figure 3. Type I error rates for different values of θ and N.

Figure 4. Power of the likelihood ratio test for different values of θ and N.
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7. Conclusions

In this paper, various stochastic representations for the zero–one-inflated Poisson
Lindley distribution have been studied extensively. The stochastic representations allow
for us to view the zero–one-inflated Poisson Lindley distribution in different ways by
combining several established distributions such as multinomial, degenerate, Poisson
Lindley and other distributions. When handling data with excess zeroes and ones, as
well as dispersion, these stochastic representations can be exploited. For example, if
we are interested in studying positive count data distributions (observed) but we are
presented with a full set of data containing both observed and unobserved values, instead
of separating the full set of data into both observed and unobserved values, which may
incur unnecessary costs, one may use the full set of data and use the fourth stochastic
representation to identify the estimated parameter which describes the distribution of the
unobserved data.

Besides that, some hypothesis tests have been conducted to investigate the presence
of one-inflation in addition to fixed-rate parameters. The extensive simulation studies
conducted investigate the ability of the test to handle both type I error and type II error
rates in terms of errors as well as powers. All tests, which involve likelihood ratios, are
found to be able to handle type I error rates and are found to be powerful as the sample
sizes increases; hence, are found to be useful. It is suggested that a sample size of at least
1000 is sufficient for the tests to be useful.
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Abstract: Distributions with bounded support show considerable sparsity over those with un-
bounded support, despite the fact that there are a number of real-world contexts where observations
take values from a bounded range (proportions, percentages, and fractions are typical examples). For
proportion modeling, a flexible family of two-parameter distribution functions associated with the
exponential distribution is proposed here. The mathematical and statistical properties of the novel
distribution are examined, including the quantiles, mode, moments, hazard rate function, and its
characterization. The parameter estimation procedure using the maximum likelihood method is
carried out, and applications to environmental and engineering data are also considered. To this end,
various statistical tests are used, along with some other information criterion indicators to determine
how well the model fits the data. The proposed model is found to be the most efficient plan in most
cases for the datasets considered.

Keywords: unit distribution; statistical model; hazard function; characterizations; estimation;
simulation; application

MSC: 60E05; 62E15; 62F10

1. Introduction

Proportional variables are often encountered in data science, where they are used as
stochastic models that describe, for instance, the number of successes divided by the num-
ber of attempts, party votes, the proportion of money spent on a cause, or the attendance
rate of public events. Therefore, proportion analysis is necessary in various fields such as
healthcare, economics, and engineering. Usually, to model the behavior of such random
variables (RVs), distributions defined on a unit interval are used, which are highly valuable
in modeling proportions and percentages. It is conceivable to model and forecast such
variables, but one must look outside the traditional model because the data are limited to
the range (0, 1). For further study, readers are referred to [1–3].

In this context, the beta model was proposed by Bayes [4], which in many fields of
statistics is a convenient and helpful model widely used for modeling percentages and pro-
portions. However, there are a number of scenarios where it seems to not be a suitable one.
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Therefore, alternatively, several distributions have been developed for modeling bounded
variables like proportions, indices, and rates, such as the unit distribution studied in [5],
the unit Johnson distribution proposed in [6], the four-parameter distribution introduced
in [7], the distribution proposed in [8], the Topp–Leone distribution studied in [9], and the
unit gamma distribution introduced in [10]. More recently, many other unit interval distri-
bution functions have been introduced, such as the cumulative distribution function (CDF)
quantile distribution [11], new unit interval distribution [12], the unit-inverse Gaussian
distribution [13], the log-xgamma distribution [14], unit Gompertz, unit Lindley, and unit
Weibull distributions [15–17], the log-weighted exponential distribution [18], the unit John-
son SU distribution [19], the unit log–log distribution [20], the new unit distribution [21],
the unit–power Burr X distribution [22], and the unit Teissier distribution [23], while in [24],
the unit interval distribution via the conditional distribution approach was studied. Notice
that all of these distributions are potential candidates for describing proportions. It is worth
noting that the approaches mentioned above are mainly based on conventional strategies,
namely the following:

(i) Log transformation approaches;
(ii) The CDF and quantile methodology;
(iii) Reciprocal transformation;
(iv) Exponential transformation;
(v) The conditional distribution methodology;
(vi) The T-X family approach.

However, all of the earlier models and others seem to be casual ways of generating
unit interval distributions. In the current study, our motivational strategies begin with
recalling the epsilon function examined in [25], which is defined as

ελ,a(x) =

⎧⎪⎨⎪⎩
(

a + x
a − x

) λa
2

, −a < x < a

0, otherwise,

(1)

where λ ∈ R \{0} and a > 0. For comprehensive details about the above and its bounded
version, readers are referred to [25]. The function y = ελ,a(x) is the solution of an epsilon
differential equation of the first order:

y′ = λ a2y
a2 − x2 ,

In addition, it satisfies the following property of the exponential limit:

lim
a→+∞

ελ,a(x) = eλx, ∀x ∈ (−a,+a).

Furthermore, it is also related to the CDF class proposed in [7], which is based on
the exponential function. However, the unit interval variants thus proposed differ from
the design of our CDF. As will be seen, the distribution proposed here is much more
flexible and exhibits both positive and negative skewness. Moreover, as will be seen below,
the hazard rate function (HRF) of the proposed model purely yields an increasing failure
rate (IFR) behavior, or all values of λ > 0 thus belong to the decreasing mean residual life
(DMRL) class.

The rest of the manuscript is organized as follows. In the next section, the basic
stochastic properties of the proposed distribution are presented. The mode, quantiles,
HRF, and characterization of the new distribution, among other properties, are examined.
Section 3 shows the procedure for estimating the parameters of the proposed distribution
using the maximum likelihood (ML) method, along with a Monte Carlo simulation study.
Applications to a number of real-world datasets are given in Section 4, while the last section
provides some concluding remarks.
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2. The Proposed Unit Exponential Distribution

Let X be a bounded RV, and without loss of generality, it is convenient that values of
X belong to the unit interval [0, 1]. Also, suppose that the CDF of the RV X is defined by
the following equality:

F(x) =

⎧⎨⎩ 1 − exp
[

α

(
1 −
(

1+x
1−x

)β
)]

, 0 ≤ x < 1;

1, x = 1;
(2)

where α, β > 0. The CDF given by Equation (2) is called the unit exponential distribution
(UED) (with the parameters α and β) and referred to as the UED (α, β). Note that the UED
is related to the epsilon function defined in Equation (1). Indeed, when taking a = 1 and
β = λ/2, Equation (2) becomes

F(x) = 1 − exp
[
α
(
1 − ε2β,1(x)

)]
,

when 0 ≤ x < 1. Note that in this form, the function F(x) represents the composition of
the CDF of the so-called one-shifted exponential distribution [26] and the epsilon function
mentioned above. At the same time, it is obvious that F(x) approaches 0 and 1 when x → 0
and x → 1, respectively, and thus represents a valid unit CDF. Graphical representations of
the CDFs of the UED for different parameters α and β are shown in Figure 1. It portrays
that for α → 0 and β ≥ 3, the CDF curve is concave (bent inward), while for α → 1, the
CDF curve is convex (bent outward).

Figure 1. Plots of the CDFs of the UED for varying parameters.

By differentiating the CDF given by Equation (2), the probability density function
(PDF) of the UED when 0 ≤ x < 1 can be easily obtained as follows:

f (x) =
2αβ

1 − x2

(
1 + x
1 − x

)β

F(x). (3)

Here, F(x) = 1 − F(x) is the tail of the CDF F(x). Notice that the UED has two parameters
α, β > 0, where one is like a dispersion and the other is like a shape parameter. Also, this
PDF structure is similar to one of the simpler forms of the so-called proper dispersion
models introduced in [7], but it does not belong to that class.
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2.1. Properties of the Model
In practice, it is required that the proposed UED, whose PDF is defined by Equation (3),

presents flexibility to describe the data adequately. In this regard, it exhibits negative and
positive skewness for all values of α > 0 and β > 0. The flexibility property of the
UED can be visualized as in Figure 2, where the various cases of the appropriate PDF are
shown, depending on the parameter values α and β > 0. These plots show the different
skewness possibilities and the existence of modes of the UED that can be used to fit some
real-world datasets.

Figure 2. Plots of the PDFs of the UED for varying parameters.

2.1.1. Quantile
As a first property, the quantile function of the UED is quite manageable. By inverting

the CDF F(x), given by Equation (2), the quantile function is determined as follows:

Q(y) = F−1(y) =
(1 − ln(1 − y)/α)1/β − 1

(1 − ln(1 − y)/α)1/β + 1
, y ∈ (0, 1).

Thanks to this function, the median of the UED is given by

Me = Q(1/2) =
(1 + ln 2/α)1/β − 1

(1 + ln 2/α)1/β + 1
.

Using Q(y), we are able to define various measures of skewness and kurtosis, as well as
important actuarial measures (see, for example, [2,27]).

2.1.2. Mode
Note that Figure 2 shows that the PDF of the proposed model can have (at most) one

mode. To identify this property, we should prove the following result, which collects these
findings and their implications:
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Proposition 1. The PDF f (x), given by Equation (3), has a unique mode if and only if 0 < α < 1.
Otherwise, the UED does not have any modes.

Proof. The mode of the PDF f (x) is a solution of the equation f ′(x) = 0, which after
certain calculations and simplification becomes

x + β − αβ

(
1 + x
1 − x

)β

= 0. (4)

If we denote by ψ(x) the left-hand side of Equation (4), then the following is easily obtained:

lim
x→1−

ψ(x) < 0 and lim
x→0+

ψ(x) = β(1 − α).

Obviously, the inequalities 0 < α < 1 and β > 0 give β(1 − α) > 0. Then, Equation (4)
has real solutions, which guarantee that f (x) has at least one mode. Next, the function
ψ(x) defined above has the derivative

ψ′(x) = 1 − 2αβ2

1 − x2

(
1 + x
1 − x

)β

.

Note that ψ′(x) is strictly decreasing because

ψ′′(x) = −4αβ2(x + β)

(1 − x2)2

(
1 + x
1 − x

)β

< 0.

This fact then implies that the previously detected mode is unique.

2.1.3. Behavior of the PDF at x → 0+ and x → 1−

The behavior of the PDF f (x) at the ends of the unit interval (i.e., when x → 0+ and
x → 1−) indicates how f (x) converges or not in these limits. In terms of data modeling,
these facts would reflect the empirical limits on the extremes that the data show. At the
limit x → 0+, according to Equations (2) and (3), the following is easily obtained:

lim
x→0+

f (x) = 2αβ.

On the other hand, to analyze the limit of f (x) at x → 1−, we observe the function
ln f (x), which can be written as

ln f (x) = ln(2αβ) + (β − 1) ln(1 + x)− (β + 1) ln(1 − x) + α

(
1 −
(

1 + x
1 − x

)β
)

=
1

(1 − x)β

(
(1 − x)β(ln(2αβ) + (β − 1) ln(1 + x)− (β + 1) ln(1 − x) + α)

−α(1 + x)β
)

.

Hence, we obtain
lim

x→1−
(1 − x)β ln f (x) = −α 2β,

which implies that in a data representation, the data would decay at exponential rates
when x → 1−.
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2.1.4. Moments
Let X be an RV with the CDF given by Equation (2). Then, the rth moment of X, using

partial integration, can be expressed as follows:

E(Xr) =
∫ 1

0
xrdF(x) =

∫ 0

1
xrd(1 − F(x)) = r

∫ 1

0
xr−1(1 − F(x))dx

= r exp(α)
∫ 1

0
xr−1 exp

[
−α

(
1 + x
1 − x

)β
]

dx.

This integral can be determined numerically with the use of many pieces of software, such
as R, MATHEMATICA, and MATLAB. The following result proposes a series expansion of
E(Xr) that can be used for numerical approximation:

Proposition 2. The rth moment of X can be expanded as follows:

E(Xr) =
2rα1/β exp(α)

β

r−1

∑
k=0

+∞

∑
�=0

(
r − 1

k

)(−(r + 1)
�

)
(−1)kα(k+�+1)/βΓ

(
− k + �+ 1

β
, α

)
,

where Γ(a, x) denotes the upper incomplete gamma function (i.e., Γ(a, x) =
∫ +∞

x ta−1 exp(−t)dt).

Proof. By applying the change in the variable y = (1 + x)
/
(1 − x), we have

E(Xr) = 2r exp(α)
∫ +∞

1

(y − 1)r−1

(y + 1)r+1 exp(−αyβ)dy. (5)

Then, using the “generalized version” of the binomial formula two times in a row, since
y > 1, we find

(y − 1)r−1

(y + 1)r+1 = y−2 (1 − 1/y)r−1

(1 + 1/y)r+1

= y−2

[
r−1

∑
k=0

(
r − 1

k

)
(−1)ky−k

][
+∞

∑
�=0

(−(r + 1)
�

)
y−�

]

=
r−1

∑
k=0

+∞

∑
�=0

(
r − 1

k

)(−(r + 1)
�

)
(−1)ky−(k+�+2). (6)

Also, with the change in the variable z = αyβ, the following is obtained:

∫ +∞

1
y−(k+�+2) exp(−αyβ)dy =

α(k+�+1)/β

β

∫ +∞

α
z−(k+�+1)/β−1 exp(−z)dz

=
α(k+�+1)/β

β
Γ
(
− k + �+ 1

β
, α

)
. (7)

Therefore, by substituting Equations (6) and (7) into Equation (5), as well as by inverting
the sign of the integral and the sum, the desired result is obtained.

2.1.5. Failure (Hazard) Rate Function
The HRF of the UED is given by

h(x) =
f (x)
F(x)

=
2αβ

1 − x2

(
1 + x
1 − x

)β

. (8)

When x → 0+, the limit of h(x) is 2αβ > 0, and when x → 1−, the limit is +∞. Thus, this
function is strictly increasing, as can be seen in Figure 3, meaning that when x increases,
the frequency at which an engineered system or component fails also increases.
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Figure 3. Plots of the HRFs of the UED for varying parameters.

2.2. Characterizations
To interpret the HRF realistically, we shall try to characterize Equation (3) with hazard

and mean residual life functions. Characterization in general terms implies that under
certain conditions, a family of distributions is the only one possessing a designated property.
Researchers can identify the actual probability distribution with the help of characterization.
For detailed study, readers are referred to the works of Ahsanullah et al. [28,29] and
Hamedani [30]. In this regard, we characterize the proposed model with the HRF and
truncated moments, and the characterizing conditions are defined as follows:

Proposition 3. The RV X : Ω −→ (0,+∞) has a continuous PDF f (x) if and only if the HRF
h(x) satisfies the following equation:

f ′(x)
f (x)

=
h′(x)
h(x)

− h(x). (9)

Proof. According to the definition of the HRF, given by the first equality in Equation (8), it
follows that

h′(x)
h(x)

=
f ′(x)F(x) + f 2(x)

F2
(x)

· F(x)
f (x)

=
f ′(x)
f (x)

+ h(x).

Thus, the statement of proposition immediately follows.

Proposition 4. The RV X : Ω −→ (0,+∞) has a UED (α, β) if and only if the HRF h(x),
defined by Equation (8), satisfies the following equation:

h′(x)
(h(x))2 =

x + β

αβ

(
1 − x
1 + x

)β

. (10)

Proof. Necessity: Assume that X ∼ UED(α, β), with the PDF f (x) defined by Equation (3).
Then, the logarithm of this PDF, in the same way as in Section 2.1.3, can be expressed as:

ln( f (x)) = ln(2αβ) + (β − 1) ln(1 + x)− (β + 1) ln(1 − x) + α

(
1 −
(

1 + x
1 − x

)β
)

.

By differentiating both sides of this equality with respect to x, we obtain

f ′(x)
f (x)

=
β − 1
1 + x

+
β + 1
1 − x

− 2αβ

(1 − x)2

(
1 + x
1 − x

)β−1
=

2
1 − x2

(
x + β − αβ

(
1 + x
1 − x

)β
)

. (11)

Thus, according to Equations (8) and (9), it follows that

h′(x)
h(x)

=
f ′(x)
f (x)

+ h(x) =
2(x + β)

1 − x2 ,

which after certain simplification yields Equation (10).
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Sufficiency: Suppose that Equation (10) holds. After integration, it can be rewritten as
follows: ∫ h′(x)

(h(x))2 dx =
∫ x + β

αβ

(
1 − x
1 + x

)β

dx,

That is, we have

− 1
h(x)

=
x2 − 1

2αβ

(
1 − x
1 + x

)β

.

From the above equation, we obtain the HRF h(x) as shown in Equation (8). Furthermore,
by replacing this function in Equation (9), and after integration, we obtain

∫ f ′(x)
f (x)

dx = 2
∫ [ x + β

1 − x2 − αβ

1 − x2

(
1 + x
1 − x

)β
]

dx + C1

= (β − 1) ln(1 + x)− (β + 1) ln(1 − x)− α

(
1 + x
1 − x

)β

+ C1,

that is, we have

f (x) =
exp
[

C1 − α
(

x+1
1−x

)β
]

1 − x2

(
1 + x
1 − x

)β

.

Another integration implies that

F(x) =
∫

f (x)dx + C2 = −
exp
[

C1 − α
(

x+1
1−x

)β
]

2αβ
+ C2,

whereby from the conditions F(0) = 0 and F(1) = 1, the constants C1 = α + ln(2αβ) and
C2 = 1 are obtained. Thus, the function F(x) is indeed the CDF from UED(α, β), which
completes the proof.

The following theorem was used in [31] as well as [28,29] in order to characterize
different univariate continuous distributions:

Theorem 1. Let (Ω; F; P) be a given probability space, and let H = [a, b] be an interval for some
a < b, where a = −∞ and b = +∞ might as well be allowed. Also, let X : Ω → H be a continuous
RV with the CDF F(x) and g(x) and t(x) be two real functions defined on H and such that

E
[
g(X)

∣∣X ≥ x
]
= ξ(x)E

[
t(X)

∣∣X ≥ x
]
, x ∈ H

is defined with some real function ξ(x). Assume that g(x), t(x) ∈ C1(H), ξ(x) ∈ C2(H), and
F(x) is a twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation t(x)ξ(x) = g(x) has no real solution in the interior of H. Then, F(x) is
uniquely determined by the functions g(x), t(x), and ξ(x) as follows:

F(x) = C
∫ x

0

∣∣∣∣ ξ ′(u)
ξ(u)t(u)− g(u)

∣∣∣∣e−s(u)du, (12)

where the function s(x) is a solution of the differential equation

s′(x) =
ξ ′(x)t(x)

ξ(x)t(x)− g(x)
,

and C is a constant such that
∫
H

dF(x) = 1.

Now, we discuss the characterization of the UED based on Theorem 1 and some simple
relationship between two functions and the RV X ∼ UED(α, β).
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Proposition 5. Let X : Ω → [0, 1) be a continuous RV and

t(x) = 3 exp

[
2α

(
1 −
(

1 + x
1 − x

)β
)]

, x ∈ [0, 1)

g(x) = 2 exp

[
α

(
1 −
(

1 + x
1 − x

)β
)]

, x ∈ [0, 1).

The RV X has a PDF defined by Equation (3) if and only if there exists a function ξ(x), defined as
in Theorem 1, that satisfies the differential equation

ξ ′(x)
ξ(x)t(x)− g(x)

=
2αβ

1 − x2

(
1 + x
1 − x

)β

exp

[
−2α

(
1 −
(

1 + x
1 − x

)β
)]

, 0 ≤ x < 1. (13)

Proof. Necessity: For the RV X ∼ UED(α, β), with the CDF and PDF given by
Equations (2) and (3), respectively, after a certain computation, we obtain

(1 − F(x))E
[
t(X)

∣∣X ≥ x
]
= 3 eαr(x;β)

∫ 1

x

2αβ

1 − u2

(
1 + u
1 − u

)β

e3αr(u;β)du

= exp

[
4 α

(
1 −
(

1 + x
1 − x

)β
)]

,

(1 − F(x))E
[
g(X)

∣∣X ≥ x
]
= 2 eαr(x;β)

∫ 1

x

2αβ

1 − u2

(
1 + u
1 − u

)β

e2αr(u;β)du

= exp

[
3 α

(
1 −
(

1 + x
1 − x

)β
)]

,

where 0 < x < 1 and r(x) := 1 −
(

1+x
1−x

)β
. This implies that

ξ(x) :=
E(g(x)|X ≥ x)
E(t(x)|X ≥ x)

= exp

[
−α

(
1 −
(

1 + x
1 − x

)β
)]

, 0 < x < 1, (14)

that is, we have

ξ(x)t(x)− g(x) = 3 eαr(x;β) − 2 eαr(x;β) = exp

[
α

(
1 −
(

1 + x
1 − x

)β
)]

> 0, 0 < x < 1.

Hence, Equation (13) clearly holds.
Sufficiency: If the function ξ(x) satisfies the differential Equation (13), then it follows

that

s′(x) =
ξ ′(x)t(x)

ξ(x)t(x)− g(x)
=

6αβ

1 − x2

(
1 + x
1 − x

)β

, 0 < x < 1,

Therefore, one can take

s(x) = −3α

(
1 −
(

1 + x
1 − x

)β
)

.

Using Equation (12), it is easy to obtain that the RV X has a PDF given by Equation (3).

According to the previous proposition, one immediately obtains the following:

Corollary 1. Let X : Ω → [0,+∞) be a continuous RV and functions t(x) and g(x) be given as
in Proposition 5. Then, X ∼ UED(α, β), with the PDF as shown in Equation (3) if and only if the
function ξ(x) has the form in Equation (14).
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3. Estimation and Simulation Procedures

Let us assume that x1, . . . , xn are observed values of the sample of size n taken from
the UED(α, β). We propose the maximum likelihood method for estimating the pair of
parameters (α, β). This means that the estimates of those parameters are the ones that
maximize the likelihood function

L
(
α, β|x1, . . . , xn

)
=

n

∏
i=1

f (xi).

As is known, this solution also corresponds to the one that maximizes the log-likelihood
function; in other words, it maximizes

l = l
(
α, β|x1, . . . , xn

)
=

n

∑
i=1

ln f (xi).

By differentiating the function l with respect to each parameter, the estimators of α
and β can be obtained by solving the coupled equations

∂l
∂α

=
n
α
+

n

∑
i=1

(
1 −
(

1 + xi
1 − xi

)β
)

= 0

∂l
∂β

=
n
β
+

n

∑
i=1

ln
(

1 + xi
1 − xi

)
− α

n

∑
i=1

(
1 + xi
1 − xi

)β

ln
(

1 + xi
1 − xi

)
= 0.

From the first equation, we obtain

α =

[
1
n

n

∑
i=1

(
1 + xi
1 − xi

)β

− 1

]−1

,

and by replacing this output in the second coupled equation, we obtain

n
β
+

n

∑
i=1

ln
(

1 + xi
1 − xi

)
+

∑n
i=1

(
1+xi
1−xi

)β
ln
(

1+xi
1−xi

)
1 − 1

n ∑n
i=1

(
1+xi
1−xi

)β
= 0.

Obviously, the last equation has only β as an unknown parameter. Now, by denoting
zi = (1 + xi)/(1 − xi) > 1, i = 1, . . . , n, and

L(β) =
n
β
+

n

∑
i=1

ln zi +
∑n

i=1 zβ
i ln zi

1 − 1
n ∑n

i=1 zβ
i

,

then by applying the L’Hopital’s rule, one obtains

lim
β→0+

L(β) =
n

∑
i=1

ln zi + n lim
β→0+

∑n
i=1

(
1 − zβ

i + βzβ
i ln zi

)
β ∑n

i=1

(
1 − zβ

i

)
=

n

∑
i=1

ln zi + n lim
β→0+

∑n
i=1

(
−zβ

i ln zi + ln zi

)
∑n

i=1

(
1 − zβ

i − βzβ
i ln zi

)
=

n

∑
i=1

ln zi + n lim
β→0+

∑n
i=1

(
−zβ

i ln2 zi

)
∑n

i=1

(
−zβ

i ln zi − ln zi

)
=

n

∑
i=1

ln zi +
n
2
· ∑n

i=1 ln2 zi

∑n
i=1 ln zi

> 0.
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On the other hand, assuming that z1 > max{z2, . . . , zn}, it follows that

lim
β→+∞

L(β) =
n

∑
i=1

ln zi + lim
β→+∞

ln z1 + ∑n
i=2

(
zi
z1

)β
ln zi

z−β
1 − 1

n − 1
n ∑n

i=2

(
zi
z1

)β

=
n

∑
i=1

ln zi − n ln z1 < 0.

Hence, equation L(β) = 0 has at least one solution, and it can be solved numerically,
for instance, by using the Newton–Raphson algorithm. This task may be performed using
the function “uniroot” available in the statistical programming software “R” (version
4.3.1). Once β is estimated, this output can be used for estimating α.

For computing the interval estimators for θ = (α, β)′ and testing hypotheses with
these parameters, we find the observed matrix information:

I(θ) = −

⎛⎜⎜⎜⎜⎜⎜⎝

∂2l(θ)
∂α2

∂2l(θ)
∂α∂β

∂2l(θ)
∂β∂α

∂2l(θ)
∂β2

⎞⎟⎟⎟⎟⎟⎟⎠,

where

∂2l(θ)
∂α2 = − n

α2

∂2l(θ)
∂α∂β

=
∂2l(θ)
∂β∂α

= −
n

∑
i=1

(
1 + xi
1 − xi

)β

ln
(

1 + xi
1 − xi

)
∂2l(θ)

∂β2 = − n
β2 − α

n

∑
i=1

(
1 + xi
1 − xi

)β

ln2
(

1 + xi
1 − xi

)
.

Note that I(θ̂) is a consistent estimator of the expected Fisher information matrix
E[I(θ)] (see, for example, [32]). Under some suitable conditions, the approximation to a
normal distribution θ̂ ≈ N (θ, I(θ̂)−1) holds, and more generally, we have

a′θ̂ ≈ N (a′θ, a′ I(θ̂)−1a),

for any vector a = (a1, a2)
′. By choosing a = (1, 1)′, we find the 100× (1− δ) % confidence

interval:
θi ± zδ/2

√
(I(θ̂)−1)ii,

where 0 < δ < 1 and zδ/2 is the 1 − δ/2 quantile of the standard normal distribution.

Simulation Study
In this part, we shall discuss the effectiveness of the proposed MLE procedure,

which will be used in application for better predictions of a phenomenon. In this re-
gard, we considered four sets of parameters and conducted a Monte Carlo simulation with
20,000 replications in order to generate samples of various sizes (i.e., n = 25, 50, 150, 350, 500)
from the UED (α, β). The parameter combinations are listed below:

Set-I: α = 0.9856 , β = 0.2178;
Set-II: α = 1.8986 , β = 0.3218;
Set-III: α = 2.4390 , β = 2.5145;
Set-IV: α = 0.4390 , β = 1.5145.
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For all of them, the MLE estimates were obtained by using MATHEMATICA 13.0
software. The simulation results are portrayed in Tables 1–4, where they are compiled
according to the following definitions:

Bias := E(Θ̂)− Θ;

Mean square error (MSE) := E((Θ̂ − Θ)2);

Lower Confidence Limit := LCL = Θ̂ − z δ
2

√
Var(Θ̂)

n
;

Upper Confidence Limit := UCL = Θ̂ + z δ
2

√
Var(Θ̂)

n
,

where Θ = (α, β). From these tables, there is evidence that both the bias and MSE of
the MLE estimates tended toward zero as the sample sizes increased, whereas the 95%
confidence limits became compact as the sample size increased.

Table 1. Mean, bias, MSE, LCL, and UCL for Set-I.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 0.9417 −0.0439 0.0111 0.9335 0.9499
β 0.2180 0.0013 0.00008 0.2172 0.2189

n = 50 α 0.9511 −0.0344 0.0068 0.9479 0.9544
β 0.2189 0.0012 0.00007 0.2186 0.2193

n = 150 α 0.9655 −0.0200 0.0032 0.9648 0.9663
β 0.2192 0.0014 0.00004 0.2192 0.2192

n = 350 α 0.9685 −0.0171 0.0022 0.9683 0.9688
β 0.2194 0.0016 0.00003 0.2194 0.2194

n = 500 α 0.9729 −0.0126 0.0015 0.9728 0.9732
β 0.2194 0.0016 0.00002 0.2194 0.2194

Moreover, Table 1 shows a downward bias for α̂ and an upward one for β̂. Similarly,
the MSE approached zero as the sample size increased.

Table 2. Mean, bias, MSE, LCL, and UCL for Set-II.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 1.8547 −0.0438 0.0472 1.8376 1.8717
β 0.3140 −0.0077 0.0004 0.3125 0.3155

n = 50 α 1.8902 −0.0084 0.0230 1.8843 1.8962
β 0.3149 −0.0068 0.0003 0.3143 0.3156

n = 150 α 1.9204 0.0217 0.0117 1.9161 1.9246
β 0.3167 −0.0050 0.0001 0.3163 0.3172

n = 350 α 1.9346 0.0359 0.0071 1.9341 1.9352
β 0.3171 −0.0046 0.0001 0.3172 0.3172

n = 500 α 1.9337 0.0351 0.0063 1.9334 1.9342
β 0.3171 −0.0047 0.00008 0.3170 0.3171

Also, Table 2 portrays a downward bias for α̂ and β̂ when the sample sizes were less
than or equal to 50, while there was an upward bias for α̂ when the sample size increased.
However, the MSE approached zero as the sample size increased.
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Table 3. Mean, bias, MSE, LCL, and UCL for Set-III.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 2.3256 −0.1133 0.0578 2.307 2.3445
β 2.4995 −0.0149 0.0126 2.4908 2.5084

n = 50 α 2.3539 −0.0850 0.0316 2.3472 2.3620
β 2.4871 −0.0274 0.0136 2.4826 2.4916

n = 150 α 2.3915 −0.0475 0.0123 2.3900 2.3929
β 2.5121 −0.0023 0.0048 2.5113 2.5132

n = 350 α 2.4044 −0.0345 0.0065 2.4040 2.40491
β 2.5155 0.0010 0.0028 2.5152 2.5158

n = 500 α 2.4051 −0.0338 0.0052 2.4048 2.4055
β 2.5180 0.0035 0.0023 2.5179 2.5183

In the case of Set-III, shown in Table 3, the bias was downward for α̂ for all sample
sizes. On the contrary, it was upward for β̂ when the sample sizes were higher, usually for
those greater than 150. Notice that all biases were negligibly small and approached zero as
the sample size increased.

Table 4. Mean, bias, MSE, LCL, and UCL for Set-IV.

Sample Size Parameter Estimate Bias MSE LCL UCL

n = 25 α 0.4173 −0.0217 0.0024 0.4134 0.4212
β 1.5168 0.0023 0.0037 1.5120 1.5215

n = 50 α 0.4251 −0.0138 0.0013 0.4237 0.4264
β 1.5166 0.0021 0.0027 1.5146 1.5186

n = 150 α 0.4285 −0.0105 0.0007 0.4281 0.4288
β 1.5205 0.0060 0.0015 1.5200 1.5210

n = 350 α 0.4314 −0.0076 0.0004 0.4313 0.4315
β 1.5236 0.0091 0.0009 1.5234 1.5238

n = 500 α 0.4332 −0.0058 0.0003 0.4332 0.4333
β 1.5203 0.0058 0.0009 1.5202 1.5203

Similarly, Table 4 shows a downward bias for α̂ and an upward bias for β̂, but all biases
were negigibly small and approached zero as the sample size increasd, and the same is
true for the MSE. In summary, the above results show that the MLE is a suitable estimation
method for realistic forecasting.

4. Model Compatibility and Its Application to Real-World Data

Here, the possibility of applying the UED model in terms of modeling empirical
distributions of some real-world processes is discussed in more detail. To that end, by using
several typical statistical indicators, the quality of fitting with the UED was also checked.
The obtained results were also compared with the results of fitting using some of the
previously known unit interval probability distributions, which additionally checked the
possibility of applying the UED.

4.1. Measures of Goodness-of-Fit
In order to test the null hypothesis H0 : Fn(x) = F0(x), where Fn(x) is the empirical

CDF and F0(x) is the CDF of some specified (theoretical) distribution, usually some well-
known statistical tests are used. In order to test the hypothesis that some real-world data are
taken from the UED (i.e., from some other stochastic distribution), the following statistical
tests are used here:
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• The Kolmogorov–Smirnov (KS) test, whose test-statistics are defined by

KS = max
1≤i≤k

{
i
k
− zi, zi − i − 1

k

}
,

where k denotes the number of classes and zi represents the values of the theoretical
CDF.

• The Anderson–Darling (AD∗
0) test, which usually attaches more mass to the distribu-

tions tails and whose test-statistics are

A∗
0 =

(
2.25
k2 +

0.75
k

+ 1
){

−k − 1
k

k

∑
i=1

(2i − 1) ln(zi(1 − zk−i+1))

}
.

• The Cramér–von Mises (CVM∗
0)-test is a derived version of the KS test, with test-

statistics defined by

W∗
0 =

K

∑
i=1

(
zi − 2i − 1

2k

)2
+

1
12k

.

Additionally, in order to check the quality of fitting certain real-world data using the
UED (i.e., some other distribution), the following indicators were used:
• The Akaike information criterion (AIC), defined as

AIC = 2m − 2�(Θ̂),

where m denotes the number of parameters.
• The corrected Akaike information criterion (AICc), expressed as

AICc = AIC +
2m(m + 1)
n − m − 1

.

• The Bayesian information criterion (BIC), which is defined as

BIC = m ln(n)− 2�(Θ̂).

• The Hannan–Quinn information criterion (HQIC), expressed as

HQIC = −2�(Θ̂) + 2m ln(ln(m)).

• The consistent Akaike information criterion (CAIC), given as

CAIC = −2�(Θ̂) + m(ln(n) + 1).

• The Vuong test was also used for model selection purposes.
For comprehensive details about these measures, readers may refer to Akaike [33],

Hussain et al. [34], Murthy et al. [35], and Vuong [36], respectively.

4.2. Comparative Models
We also compared the proposed UED model with well-known unit interval models

defined by the following PDFs:
• The beta distribution (BD) [4]:

f BD
α (x) =

1
B(α, β)

xβ−1(1 − x)α−1, α, β > 0, 0 < x < 1,
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• The Johnson SB distribution (JSBD) [6]:

f JSBD
α,β (x) =

β exp
[
− 1

2 (α + β ln( x
1−x ))

2 − βx
]

√
2πx(1 − x)

, α, β > 0, 0 < x < 1,

• The Kumaraswamy distribution (KwD) [8]:

f KwD
α,β (x) = α βxα−1(1 − xα)β−1, α, β > 0, 0 < x < 1,

• The unit Gompertz distribution (UGoMD) [15]:

f UGoMD
α,β (x) = αβx−α−1e−β(x−α−1), α, β > 0, 0 < x < 1.

In order to compare the fitting results, we considered four different real-world datasets
classified into two sections: (1) environmental and (2) engineering. The results obtained
from the statistical analysis of these datasets are discussed below.

4.3. Environmental Datasets
Datasets I and II. The first two datasets were reported by Maiti [37], and they represent

the following measured values:
- Soil moisture (Dataset I): 0.0179, 0.0798, 0.0959, 0.0444, 0.0938, 0.0443, 0.0917, 0.0882,

0.0439, 0.049, 0.0774, 0.0171, 0.0305, 0.0757, and 0.0468;
- Permanent wilting points (PWP) (Dataset II): 0.0821, 0.0561, 0.0202, 0.051, 0.0041,

0.0226, 0.0556, 0.0829, 0.0062, 0.0695, 0.0557, 0.0243, 0.0083, 0.0532, and 0.0118.
In this regard, we compiled both the descriptive and theoretical (UED) statistics, which

are listed in Tables 5 and 6, respectively. Note that the descriptive statistics of all datasets
include the sample size (SS), mean, median, standard deviation (SD), skewness (SK), and
kurtosis (KU).

Table 5. Descriptive statistics for Datasets I and II.

Dataset SS Mean Median SD SK KU

I 15 0.0598 0.0490 0.0277 −0.1083 1.6247
II 15 0.0402 0.0510 0.0277 0.1083 1.6247

Table 6. Theoretical statistics from the UED.

Dataset SS Mean Median SD SK KU

I 15 0.0606 0.0621 0.0254 −0.2107 2.3825
II 15 0.0406 0.0384 0.0247 0.2942 2.3050

In addition, the total test time (TTT) plot, introduced in [38], is portrayed in Figure 4
for both datasets. Notice that, in particular, the TTT plot indicates the empirical HRF,
portraying an IFR. Tables 5 and 6 also reveal that the theoretical UED statistics as well
as the observed descriptive statistics showed remarkable closeness to each other, and it
appears that both sets of data can be simulated by the proposed model. Furthermore, it is
evident from Figure 5 that neither dataset contained any outliers.

Table 7 portrays that the model proposed by the UED is the best strategy for analyzing
the observed dataset (Dataset I) in relation to all other distributions of unit intervals.
Namely, although the p value of the KS statistics for the KwD was the highest, the other
nonparametric tests, CVM∗

0 and AD∗
0, indicate that for the UED, the minimum tested values

were obtained. Also, based on the estimated values of the Vuong statistics, given in Table 8,
the KwD and UED had an indecisive status. Thus, the UED is the best strategy, which is
also confirmed by Figure 6. Similarly, Table 9 portrays that the proposed UED model is
also one of the best strategies for the analysis of Dataset II in all aspects.Namely, the test

179



Mathematics 2023, 11, 4207

statistics, including the KS test, CVM∗
0, and AD∗

0, had the lowest values compared with all
the selected, previously known interval models. In addition, the Vuong statistic, which
compares models based on the likelihood ratio phenomenon, openly supported the UED.
Finally, Figure 6 also confirms our claim that the UED is the best strategy. Moreover,
Tables 10 and 11 yield the lowest information criterion values for the UED compared with
the competing models.
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Figure 4. TTT plots of Datasets I and II.

Figure 5. Box plots for datasets I and II.

Table 7. ML estimates and goodness-of-fit statistics for Dataset I.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 18.4218 0.0773 0.6239 0.1026 0.2079 0.5361

BD 3.8233 60.2492 0.6858 0.1041 0.2099 0.5232

KwD 719.3842 2.4408 0.6887 0.1109 0.2003 0.5844

JSBD 4.9859 1.7279 0.7751 0.1117 0.2128 0.5056

UGoMD 1.6525 0.0048 1.0587 0.1613 0.2353 0.3769

Table 8. Vuong test statistics for Datasets I and II.

Models Dataset I Suitability Dataset II Suitability

UED-BD 1.4601 UED 2.5935 UED

UED-KwD 0.9738 Indecisive 3.4585 UED

UED-JSBD 1.5427 UED 1.6793 UED

UED-UGoMD 2.2142 UED 1.5955 UED

180



Mathematics 2023, 11, 4207

Table 9. MLE and goodness-of-fit statistics for Dataset II.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 11.8676 0.4607 0.6239 0.1096 0.1960 0.6118

BD 1.5370 36.8071 0.6869 0.1199 0.2481 0.3142

KwD 78.9162 1.4011 0.7074 0.1224 0.2409 0.3487

JSBD 3.5837 1.0177 0.8112 0.1364 0.2619 0.2549

UGoMD 0.9497 0.0219 0.9011 0.1499 0.2386 0.3603

Table 10. Estimates of the maximum log-likelihood and information criteria for Dataset I.

Distribution −l AIC AICC BIC HQIC CAIC

UED 33.8617 −63.7233 −62.7233 −62.3072 −63.7384 −60.3072

BD 32.8026 −61.6052 −60.6052 −60.1891 −61.6203 −58.1891

KwD 33.3796 −62.7592 −61.7592 −61.3431 −62.7743 −59.3431

JSBD 32.0631 −60.1262 −59.1262 −58.7101 −60.1413 −56.7101

UGoMD 29.6463 −55.2925 −54.2925 −53.8764 −55.3076 −51.8764

Table 11. Estimates of the maximum log-likelihood and information criteria for Dataset II.

Distribution −l AIC AICC BIC HQIC CAIC

UED 35.2604 −66.5208 −65.5208 −65.1047 −66.5359 −63.1047

BD 34.1097 −64.2194 −63.2194 −62.8033 −64.2345 −60.8033

KwD 34.3392 −64.6784 −63.6784 −63.2623 −64.6935 −61.2623

JSBD 33.0448 −62.0896 −61.0896 −60.6735 −62.1047 −58.6735

UGoMD 31.1648 −58.3296 −57.3296 −56.9135 −58.3447 −54.9135

Figure 6. Datasets I and II (given by histograms) fitted via unit interval distributions (given by lines).

4.4. Engineering Datasets
Datasets III and IV. The third and fourth datasets were first introduced and studied

in [39] for Burr measurements on iron sheets. For the third dataset of 50 observations of
the Burr measurements (in the unit of millimeters), the hole diameter was 12 mm, and the
sheet thickness was 3.15 mm. For the fourth dataset of 50 observations, the hole diameter
and sheet thickness were 9 mm and 2 mm, respectively. Hole diameter readings were
taken for jobs with respect to one hole and then selected and fixed as per a predetermined
orientation. These two datasets refer to two different machines being compared, and one
can see [39] for the technical details of measuring the datasets. Note that both datasets
were also analyzed in [19,40–42].The descriptive statistics of these datasets, as well as
the corresponding theoretical statistics for the UED, are presented in Tables 12 and 13,
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respectively. The TTT plot and box plots of the observed data are given in Figures 7 and 8,
respectively. It can be observed that Datasets III and IV were positively skewed and
platykurtic in nature, which is confirmed by Tables 12 and 13. In addition, from Figure 8,
it is evident that the empirical and theoretical aspects of these datasets, in terms of the
absence of outliers, are in close agreement and indicate that the proposed model can be used
effectively. Such findings are also consolidated within Tables 14 and 15, which show that
the UED exhibited minimal values in the almost all cases for the goodness-of-fit statistic,
which ensures that the UED is one of the best strategies.

Table 12. Descriptive statistics for Datasets III and IV.

Dataset SS Mean Median SD SK KU

III 50 0.1632 0.1600 0.0810 0.0723 2.2166

IV 50 0.1520 0.1600 0.0785 0.0061 2.3012

Table 13. Theoretical statistics from the UED.

Dataset SS Mean Median SD SK KU

III 50 0.1633 0.1641 0.0809 0.0259 2.2511

IV 50 0.1519 0.1521 0.0777 0.0262 2.2521
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Figure 7. TTT plots of Datasets III and IV.

Figure 8. Box plots for Datasets III and IV.

182



Mathematics 2023, 11, 4207

Table 14. MLEs and goodness-of-fit statistics for Dataset III.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 4.7879 0.1756 0.3274 0.0419 0.1242 0.9881

BD 2.6824 13.8640 0.1538 0.9120 0.1414 0.5555

KwD 1.0746 0.0925 12.2879 2.3943 0.7222 0.0000

JSBD 2.3767 1.3175 0.2495 1.4647 0.1740 0.0968

UGoMD 0.0924 1.0747 0.5213 3.0810 0.2046 0.0304

Table 15. MLEs and goodness-of-fit statistics for Dataset IV.

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-Value

UED 4.8518 0.1996 0.3224 0.0339 0.1239 0.9928

BD 2.4003 13.5218 0.2871 1.5649 0.1981 0.7340

KwD 1.9606 31.3769 0.2093 1.2683 0.1691 0.8825

JSBD 2.3682 1.2374 0.4145 2.2458 0.2285 0.5579

UGoMD 0.0916 1.0250 0.6091 3.4278 0.2312 0.5426

However, the likelihood aspects and information criterion values also favor the pro-
posed UED model, which can be seen in Tables 16 and 17, respectively. Furthermore,
the shape of our proposed model, as shown in Figure 9, matched the data in a better way
compared with the other competing models. Finally, the Vuong statistic, as depicted in
Table 18, also shows the capability of the proposed model.

Table 16. Estimates of the maximum log-likelihood and information criteria for Dataset III.

Distribution −l AIC AICC BIC HQIC CAIC

UED −57.0712 −110.142 −109.887 −106.318 −108.686 −104.318

BD −54.6066 −105.213 −104.958 −101.389 −103.757 −99.3892

KwD −56.0686 −108.137 −107.882 −104.313 −106.681 −102.313

JSBD − 51.3231 −98.6462 −98.3909 −94.8222 −97.19 −92.8222

UGoMD −40.672 −77.344 −77.0887 −73.52 −75.8878 −71.52

Table 17. Estimates of the maximum log-likelihood and information criteria for Dataset IV.

Distribution −l AIC AICC BIC HQIC CAIC

UED −59.3536 −114.707 −114.452 −110.883 −113.251 −108.883

BD −55.9312 −107.862 −107.607 −104.038 −106.406 −102.038

KwD −57.5214 −111.043 −110.788 −107.219 −109.587 −105.219

JSBD − 52.305 −100.61 −100.355 −96.786 −99.1538 −94.786

UGoMD −42.6099 −81.2198 −80.9645 −77.3957 −79.7636 −75.3957
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Figure 9. Datasets III and IV (given by histograms) fitted via unit interval distributions (given by
lines).

Table 18. Vuong test statistic for Datasets III and IV.

Models Dataset III Suitability Dataset IV Suitability

UED-BD 0.4137 Indecisive 3.5339 UED

UED-KwD −2.3203 KwD 3.9633 UED

UED-JSBD 2.1336 UED 3.4202 UED

UED-UGoMD 4.9679 UED 4.0306 UED

5. Concluding Remarks

We introduced a two-parameter bounded model called the unit exponential distri-
bution (UED), which is appropriate for modeling skewed and IFR data. Some of its
mathematical properties were studied, including the moments, quantiles, and other distri-
butional behavior. A characterization of the UED via the HRF was made, which provided
the identification requirements of the distribution and thus provided a reliable prediction
compared with the well-known unit domain models. The model parameters were esti-
mated with the MLE method. We also provided a guide line to choose the best model by
using various goodness-of-fit statistics. Applications of the newly defined distribution
showed that the proposed models have better modeling abilities than competitive models.
For this purpose, we used four datasets in two different disciplines, namely environmental
and engineering, and it was found that the proposed strategy was the best one in the
unit interval domain. Moreover, in a further study, the proposed model could also be
generalized over the interval [0, s) by introducing the function

F(x) = 1 − exp

[
α

(
1 −
(

s + x
s − x

)βs
)]

.

where, obviously, F(x) = 0 when x = 0 and F(x) = 1 when x = s.
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Abstract: In this paper, we define a new generator to propose continuous as well as discrete families
(or classes) of distributions. This generator is used for the DAL model (acronym of the last names of
the authors, Dimitrakopoulou, Adamidis, and Loukas). This newly proposed family may be called
the new odd DAL (NODAL) G-class or alternate odd DAL G-class of distributions. We developed
both a continuous as well as discrete version of this new odd DAL G-class. Some mathematical and
statistical properties of these new G-classes are listed. The estimation of the parameters is discussed.
Some structural properties of two special models of these classes are described. The introduced
generators can be effectively applied to discuss and analyze the different forms of failure rates
including decreasing, increasing, bathtub, and J-shaped, among others. Moreover, the two generators
can be used to discuss asymmetric and symmetric data under different forms of kurtosis. A Monte
Carlo simulation study is reported to assess the performance of the maximum likelihood estimators
of these new models. Some real-life data sets (air conditioning, flood discharges, kidney cysts) are
analyzed to show that these newly proposed models perform better as compared to well-established
competitive models.

Keywords: statistical model; odd G-class; discrete generators; failure analysis; dispersion phenomena;
estimation; computer simulation; comparative study; statistics and numerical data

MSC: 60E05; 62E10; 62E15; 62F10

1. Introduction

There is an increasing trend in modern distribution theory by which new flexible
models are being tested in different fields through modifications, extended versions, and,
most preferably, through generalized classes (G-classes). Suppose that W[G(·)] is a mathe-
matical function that helps in developing G-classes. In modern distribution theory, this
function is described as a generator (i.e., a function which generates a G-class after fulfilling
the desired criterion). Let T be a random variable (rv); then, the generator is basically a
function of a baseline (or parent) cumulative distribution function (cdf) or survival function
(sf) Ḡ(t) = 1 − G(t). F(t) and f (t) are the cdf and probability density function (pdf) of
a new model or a G-class, and very few generators have been reported in the literature
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for developing new G-classes for an rv T ∈ [(0, 1), (0, ∞), (−∞, ∞)]. In the literature the
following probability classes/generators have been listed so far for any rv T:

(i) G(t) for range T ∈ (0, 1);
(ii) − log Ḡ(t), − log G(t), G(t)/Ḡ(t) (odds) and [− log Ḡ(t)]/Ḡ(t) for range T ∈ (0, ∞);
(iii) log[− log Ḡ(t)] and log{G(t)/Ḡ(t)} (log-odds) for range T ∈ (−∞, ∞)].

The main objective of this article is to present a new G-class of distributions through
some odds ratio (or function).

For a lifetime rv T, let G(t)/Ḡ(t) be the basic odds function criterion, which nat-
urally turns into ratio λ(t)/h(t) (reversed hazard rate function divided by the hazard
rate function), as a useful measure for lifetime assessment of component(s) (or human
organ(s)). Moreover, the probabilities of a uni-variate continuous rv spread over the range
of the cdf and sf, that is, G(t) + Ḡ(t) =

∫ ∞
−∞ g(t) dt = 1. So, the ratio between these two

alternatives (G(t) and Ḡ(t)) is very useful in investigating changes occurring within a
model or a phenomenon. Furthermore, these two alternatives are also the key elements
for the order statistics, entropies, and records (upper and lower) density functions. The
other odds function measures can be chosen as the ratio of the identities in upper and
lower records [− log Ḡ(t)]/[− log G(t)] (cumulative hazard rate function divided by the
cumulative reversed hazard function), for instance:

(i) Ratio of Lehmann alternatives (Gα(t)/[1 − Ḡα(t)]), where α > 0 is the power param-
eter (see Gupta et al. [1]);

(ii) Log odds function (log[G(t)/Ḡ(t)]) (see Al-Aqtash et al. [2]);
(iii) Logit function [log(t/(1 − t)] (see Torabi and Montazeri [3] and Zubair et al. [4]).

Based on the difference of the two log-odds functions, a well-established tool in
survival analysis is the proportional odds model, say log[G(t)/Ḡ(t)] = h0(t) + z′iβ, where
h0(t) = log[G0(t)/Ḡ0(t)] is the baseline log odds function and G0(t) is the probability of
failure by time t for an individual with z = 0.

Furthermore, Cooray [5] pioneered the concept of the odd function while dealing
with probability models, and then he established the odd Weibull model. Gleaton and
Lynch [6], while modeling the “strength distribution of an inhomogeneous bundle of brittle
elastic fibers under equal load sharing and for checking implementation of the maximum
entropy principal (MEP)”, proposed the generalized log-logistic transformation, which led
to the odd log-logistic G-class. These two pioneering works motivated researchers and
practitioners to develop odds-based G-classes, and to investigate special models from them.
Some G-classes based on odd ratio G(t)/Ḡ(t), presented in the statistical literature, are
included in Table 1. For more details about G-class, see Alzaatreh et al. [7].

Table 1. Odd ratio for G-classes of distributions.

No. G-Class Year Authors

1 Odd log-logistic-G (OLL-G) 2006 Gleaton and Lynch [6]
2 Odd Gamma-G (OGa-G) 2012 Torabi and Montazeri [8]
3 Odd Weibull-G (OW-G) 2014 Bourguignon et al. [9]
4 Odd generalized-exponential-G (OGE-G) 2015 Tahir et al. [10]
5 Odd additive Weibull-G (OAddW-G) 2016 Hassan and Hemeda [11]
6 Odd Lindley-G (OLind-G) 2017 Gomes-Silva et al. [12]
7 Odd half-Cauchy-G (OHCa-G) 2017 Cordeiro et al. [13]
8 Odd half-Logistic-G (OHL-G) 2017 Affify et al. [14]
9 Odd Burr III-G (OBr3-G) 2017 Jamal et al. [15]
10 Odd Burr X-G (OBrX-G) 2017 Yousof et al. [16]
11 Odd Burr-XII-G (OBr-G) 2018 Cordeiro et al. [17]
12 Odd Frechét-G (OFr-G) 2018 Haq et al. [18]; Hassan and Nassr [19]
13 Odd power-Cauchy-G (OPCa-G) 2018 Alizadeh et al. [20]
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Table 1. Cont.

No. G-Class Year Authors

14 Odd Xgamma-G (OXGa-G) 2018 Maiti and Pramanik [21]
15 Odd power-Lindley-G (OPLind-G) 2019 Hassan and Nassr [22]; Korkmaz et al. [23]
16 Odd Lomax-G (OLx-G) 2019 Cordeiro et al. [24]
17 Odd Hyperbolic Cosine-G (OHC-G) 2019 Kharazmi et al. [25]
18 Odd flexible Weibull-H (OFW-H) 2019 El-Morshedy and Eliwa [26]
19 Odd inverse Pareto-G (OIPa-G) 2019 Aldahlan et al. [27]
20 Odd Nadarajah-Haghighi-G (ONH-G) 2019 Nascimento et al. [28]
21 Odd Chen-G (OChen-G) 2020 El-Morshedy et al. [29]; Anzagra et al. [30]
22 Odd DAL-G (ODAL-G) 2020 Ahmad et al. [31]
23 Odd Stacy’s Gamma-G (OStGa-G) 2020 Nasir et al. [32]
24 Odd Maxwell-G (OMax-G) 2020 Ishaq and Abiodun [33]

2. Background

Several authors have suggested modifications and enhancements to both the expo-
nential and Weibull models in the recent past, with the aim of enhancing their empirical
performance and increasing their flexibility. The most peculiar ones are the Lomax exponen-
tiated Weibull model (Ansari and Nofal [34]), extended exponential (ExtE) or generalized
exponential(GE) (see Gupta and Kundu [35]), and Nadarajah–Haghighi (NH) (see, Nadara-
jah and Haghighi [36]). The cdfs of the GE and NH models are

FGE(x) = (1 − exp{−λ x})α, x > 0 (1)

and
FNH(x) = 1 − exp

{
1 − (1 + λ x)α}, x > 0, (2)

respectively, where λ > 0 is a scale parameter and α > 0 is a power (or shape) parameter.
Clearly, these two models reduce to the exponential model when α = 1.

Dimitrakopoulou, Adamidis, and Loukas [37] presented an extension of the Weibull
model, in the so-called DAL. The cdf and its corresponding pdf of the DAL distribution
can be formulated as

FDAL(x) = 1 − exp
{

1 −
(

1 + λ xβ
)α}

, x > 0 (3)

and
fDAL(x) = λαβ xβ−1

(
1 + λ xβ

)α−1
exp
{

1 −
(

1 + λ xβ
)α}

, (4)

where the scale parameter is denoted by λ > 0, while the shape (or power) parameters
are indicated by α > 0 and β > 0. For α = 1, the DAL model reduces to the Weibull,
and for α = β = 1, the DAL distribution becomes the exponential model. Nowadays, the
DAL model has also been reported as the power generalized Weibull (PGW) distribution
(Nikulin and Haghighi [38,39]). However, there is some difference in parametrization of
the DAL and PGW models, which is apparent from the cdf of the PGW model, as follows:

FPGW(x) = 1 − exp
{

1 −
[
1 + (x/λ)β

]1/γ
}

, x > 0, (5)

where λ > 0 is a scale parameter and α > 0 and β > 0 are shape (or power) parame-
ters. Some generalizations/modifications of the DAL model were derived and discussed
in the literature. See, for example, exponentiated-DAL (Peña-Ramírez et al. [40]), half-
logistic-DAL (Anwar and Bibi [41]), DAL-Logarithmic (Tafakori et al. [42]), MO-DAL
(Afify et al. [43]), and transmuted-DAL (Khan [44]).

In the literature, some odd-based G-classes have been discussed as extensions of
the exponential or Weibull models, for instance, Bourguignon et al. [9], Tahir et al. [10],
Nascimento et al. [28], El-Morshedy et al. [26], El-Morshedy and Eliwa [29], and Ahmad
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et al. [31] proposed the OW-G, odd generalized Weibull-G (OGW-G), OGE-G, ONH-G,
OFW-H, OChen-G, and ODAL-G classes of distributions.

Recently, Hussain et al. [45] defined two new generators (i) H1(x) = G(x) exp{Ḡ(x)}
and (ii) H2(x) = Ḡ(x) exp{G(x)} for bounded unit interval (0, 1) and then introduced two
new Kumaraswamy G-classes of distributions from them. In this paper, we develop a new
generator W[G(x)] = [1 − H2(x)]/H2(x) for T ∈ [0, ∞), which seems less complicated in
comparison to earlier published generators, but it performs better when compared with
other models.

On the other hand, from the last two decades, discretizing continuous probability models
has received wider attention in distribution theory. The phenomenon of discretization occurs
when measuring the lifespan of a product or device becomes impractical or impossible on a
continuous scale. In such cases, it may be necessary to record lifetimes on a discrete scale rather
than a continuous one. This has led to the study of several discrete distributions in the litera-
ture. See, for example, Roy [46], Krishna and Pundir [47], Gómez-Déniz [48], Jazi et al. [49],
Gómez-Déniz and Calderín-Ojeda [50], Hussain and Ahmad [51], Hussain et al. [52], Para
and Jan [53,54], El-Morshedy et al. [55], Eliwa at al. [56], Eliwa and El-Morshedy [57], Eliwa
et al. [58], among others. Despite the existence of several discrete probability models in the
literature, there is still space for deriving new discretized probability distributions that are
appropriate for various areas. To address this, our paper presents a flexible generator of
discrete distributions, known as the discrete new odd DAL-G (DNODAL-G) family, which
can cater to various conditions. Our proposal for introducing new G-classes is as follows:

• Generate probability models (ProM) with asymmetric “negatively-skewed, positively-
skewed” or symmetric shapes;

• Define special ProM with all kinds of risk/failure rate functions;
• Propose ProM suitable for analyzing and discussing both over- and under-dispersed data;
• Develop ProM for modeling/analyzing both lifetime and counting data sets;
• Provide ProM that consistently produces a better fit than other ProM built using the

same underlying model, in addition to other ProM known in the literature.

The article is organized as follows. A new odd G-class of distributions is introduced
in Section 3. Some mathematical properties of a new G-class such as a linear representation
for the density, moments, generating function, and estimation of the model parameters
are addressed in Section 4. A new model (a special case of the newly proposed G-class for
continuous rv) is studied in Section 5 along with a Monte Carlo simulation study. The new
discrete odd G-class along with a sub-model is defined, and a Monte Carlo simulation study
is investigated in Section 6. Empirical investigation of the proposed models is reported
in Section 7 by means of real-life data sets. In Section 8, we conclude our paper with
some remarks.

3. The New Odd DAL G-Class

Let T be an rv representing the lifetime of a stochastic system having a baseline G(x)
distribution. If the rv X represents the odd ratio, then the risk that a system will not be
working at time x is given by [1 − H2(x)]/H2(x). Therefore, the randomness of X can be
modelled by the cdf

F(x; λ, α, β, ξ) = Pr(X ≤ x) = Π
(

1 − H2(x; ξ)

H2(x; ξ)

)
, (6)

where Π is the cdf of T, H2(x; ξ) = Ḡ(x; ξ) exp{G(x; ξ)} and then W[G(x; ξ)] = [1 −
H2(x; ξ)]/H2(x; ξ). The cdf of the odd DAL-G (NODALG) class is defined as
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F(x; λ, α, β, ξ) =
∫ [1−H2(x)]/H2(x)

0
λαβ tβ−1 (1 + λ tβ)α−1 exp{1 − (1 + λ tβ)α} dt

= 1 − exp

{
1 −
[

1 + λ

(
1 − Ḡ(x; ξ) exp{G(x; ξ)}

Ḡ(x; ξ) exp{G(x; ξ)}
)β
]α}

, x > 0, (7)

where λ > 0 is a scale parameter, α > 0 and β > 0 are shape parameters, and ξ is the vector
of the baseline parameters. The pdf corresponding to Equation (7) can be expressed as

f (x; λ, α, β, ξ) = αβλ g(x; ξ)G(x; ξ) exp{G(x, ξ)}[1 − Ḡ(x; ξ) exp{G(x; ξ)}]β−1

×[Ḡ(x; ξ) exp{G(x; ξ)}]−β−1
[

1 + λ

(
1 − Ḡ(x; ξ) exp{G(x; ξ)}

Ḡ(x; ξ) exp{G(x; ξ)}
)β
]α−1

× exp

{
1 −
[

1 + λ

(
1 − Ḡ(x; ξ) exp{G(x; ξ)}

Ḡ(x; ξ) exp{G(x; ξ)}
)β
]α}

. (8)

Henceforth, the rv X with density (7) is denoted by X ∼ NODALG(λ, α, β). The hazard

rate function (hrf) h(x) of X has the form

h(x) = αβλ g(x; ξ)G(x; ξ) exp{G(x, ξ)}[1 − Ḡ(x; ξ) exp{G(x; ξ)}]β−1

×[Ḡ(x; ξ) exp{G(x; ξ)}]−β−1

[
1 + λ

(
1 − Ḡ(x; ξ) exp{G(x; ξ)}

Ḡ(x; ξ) exp{G(x; ξ)}
)β
]α−1

.

Here, we let G(x; ξ) = G(x), Ḡ(x; ξ) = Ḡ(x) and g(x; ξ) = g(x) to omit the dependence of
the parameters.

Proposition. Following [37], if X ∼ NODALG(λ, α, β), then the subsets of our pro-
posed G-class are

(i) If Y = G(x), then FY(y) = 1 − e1−
[

1+λ
(

1−(1−y) exp(y)
(1−y) exp(y)

)β]α

, for 0 < y < 1;

(ii) If Y = log
(

G(x)
1−G(x)

)
, then X ∼ ODAL(λ, α, β);

(iii) If Y = log
(

G(x)
1−G(x)

)β
, then X ∼ ONH(λ, α);

(iv) If Y =
1−Ḡ(x) exp[G(x)]

Ḡ(x) exp[G(x)] , then X ∼ DAL(λ, α, β);

(v) If Y =
(

1−Ḡ(x) exp[G(x)]
Ḡ(x) exp[G(x)]

)β
, then X ∼ NH(λ, α);

(vi) If Y =
[
1 +
(

1−Ḡ(x) exp[G(x)]
Ḡ(x) exp[G(x)]

)]α − 1, then X ∼ Wei(λ, β);

(vii) If Y =

[
1 +
(

1−Ḡ(x) exp[G(x)]
Ḡ(x) exp[G(x)]

)β
]α

− 1, then X ∼ Exp(λ);

(viii) If Y = log
[

1 +
(

1−Ḡ(x) exp[G(x)]
Ḡ(x) exp[G(x)]

)β
]

, then X ∼ Modified Extreme Value(α);

(ix) If Y =

{
log
[

1 +
(

1−Ḡ(x) exp[G(x)]
Ḡ(x) exp[G(x)]

)β
]}1/β

, then X ∼ Power exponential(α);

where Y is a random variable that can take different forms of probability generators.

4. Properties of the NKw-G Family

A G-class or a model is known from some important characteristics which they exhibit
mathematically or graphically. In this segment, some mathematical and statistical features
of the NKw-G class are derived, which will be useful for the readers.
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4.1. Quantile Function

The quantile function (qf) is a useful statistical measure that is helpful in obtaining
some useful properties, including simulation study. The qf of the NODAL-G class can be
expressed as

Q(u) = G−1

⎡⎣1 + W

⎛⎝−e−1

[
1 +
{ 1

λ

[
{1 − log(1 − u)} 1

α − 1
]} 1

β

]−1
⎞⎠⎤⎦,

where the u follows a uniform distribution over an interval (0, 1), G−1 is the inverse function
of base line cdf, and the Lambert-W function is the inverse function of F(w) = w ew. The
power series expansion for F(z) = ProductLog[z] using the software Mathematica 12 yields
the principal solution for w in F(w) = w ew = z

W(z) = z− z2 +
3z3

2
− 8z4

3
+

125z5

24
− 54z6

5
+

16807z7

720
− 16384z8

315
+

531441z9

4480
− 156250z10

567
,

where ProductLog[z] is used as Lambert-W function in the software Mathematica.

4.2. Linear Representation

Here, a useful expansion for Equation (8) is derived. By utilizing the exponential
power series in Equation (7), we can write

F(x) = 1 − e
∞

∑
i=0

(−1)i

i!

{
1 + λ

[
1 − Ḡ(x; ξ) exp[G(x; ξ)]

Ḡ(x; ξ) exp[G(x; ξ)]

]β
}α i

. (9)

For a real non-integer, the generalized binomial expansion holds (1+ z)a = ∑∞
j=0 (

a
j) zj,

and then applying in Equation (9) gives

F(x) = e
∞

∑
i=0

∞

∑
j=1

λj(−1)i+1

i!

(
α i
j

)
[Ḡ(x; ξ) exp{G(x; ξ)}]−β j

[1 − Ḡ(x; ξ) exp{G(x; ξ)}]β j.

Using the previous expansion and the exponential power series, we obtain after some algebra

F(x) =
∞

∑
p=0

∞

∑
r=0

Vp,r G(x; ξ)p+r, (10)

where

Vp,r =
∞

∑
i,m=0

∞

∑
j=1

eλj(−1)i+m+p+r+1

i!p!

(
α i
j

)(
βj
m

)(−βj + m
r

)
.

By differentiating Equation (10), the G-class density follows as

f (x) =
∞

∑
p=0

∞

∑
r=0

Vp,r (p + r) g(x; ξ) G(x; ξ)p+r−1. (11)

Equation (11) reveals that the NODAL-G family density is a linear combination of exponentiated-
G (exp-G) densities. Then, some statistical properties of X can be obtained from Equation (11)
and well-established properties of the exp-G distributions.
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4.3. Moments

In this segment, the ordinary moment (om), lower incomplete moment (lincm), and
moment generating function (mgf) are derived. Let Yp,r be an rv having the exp-G family
with power parameter (p + r). First, the sth om of X, say E(Xs) =

∫ ∞
−∞ xs f (x) dx, can be

expressed from Equation (11) as

E(Xs) =
∞

∑
p,r=0

Vp,r E(Ys
p,r) =

∞

∑
p,r=0

(p + r)Vp,r τs,p+r, (12)

where τs,p+r =
∫ ∞
−∞ xs G(x; ξ)p+r−1 g(x; ξ) dx =

∫ 1
0 QG(u; ξ)s up+rdu, and QG(u; ξ) is qf of

baseline G. The well-known relationships can be used to derive the central moments and

cumulants of X from Equation (12). Second, the sth lincm of X, say ms(y) =
∫ y
−∞ xs f (x) dx, is

ms(y) =
∞

∑
p,r=0

Vp,r

∫ y

−∞
xs hp+r(x) dx =

∞

∑
p,r=0

(p + r)Vp,r

∫ G(y;ξ))

0
QG(u; ξ)s up+rdu. (13)

For most G distributions, it is possible to numerically evaluate the last two integrals in
the equation. The first lincm, m1(y), is useful in constructing popular measures such as
Bonferroni and Lorenz curves in various fields such as demography, economics, reliability,
medicine, and insurance. In addition, it can also be applied to determine the sum of the
deviations from the mean and median of X. Furthermore, the mgf MX(t) = E(et,X) of X
can be derived from (11).

MX(t) =
∞

∑
p,r=0

Vp,r Mp,r(t) =
∞

∑
p,r=0

(p + r) Vp,r ρp,r(t), (14)

where Mp,r(t) is the mgf of Yp,r and ρp,r(t) =
∫ 1

0 exp[t QG(u; ξ)] up+rdu. Therefore, we can
derive the mgfs of several particular NODAL-G models directly from Equation (14) and
exp-G generating functions.

4.4. Maximum Likelihood Estimation

Uncensored maximum likelihood estimation, in which all of the data are observed
without any censoring, is a technique for estimating the parameters of a probability distri-
bution based on a sample of data. This segment deals with the estimation of the unknown
NODAL-G class parameters via the maximum likelihood (ML) approach. The ML esti-
mation refers to a method of estimating unknown parameters by selecting values that
maximize the likelihood of observing a given set of data. This technique is often used in
various types of statistical modeling, such as regression and classification. It is a popular
approach due to its simplicity and the fact that it is easy to implement. At its core, ML
estimation is a mathematical approach for finding the probability distribution of a un-
known variable based on a given sample of data. This is achieved by finding the maximum
value of the likelihood function, which is based on the probability distribution of the given
data. The likelihood function is computed by taking the product of the probability of the
observations in the data set. Max likelihood estimation is used in many areas of study,
including economics, biology, engineering, and computer science. As an example, in eco-
nomics, it is used to make predictions about the probability of future events based on past
observations. In biology, it is used to estimate gene frequencies and relationships between
genes. For more details about the ML approach and its statistical properties, see Casella
and Berger [59]. The log-likelihood function �(Θ) for the parameter vector Θ = (λ, α, β, ξ)′
can be derived from n observations/notes x1, . . . , xn.
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�n = n log α + n log β + n log λ +
n

∑
i=1

log g(xi ; ξ) + (β − 1)
n

∑
i=1

log[1 − Ḡ(xi ; ξ) exp{G(xi ; ξ)}]

+
n

∑
i=1

log[G(xi ; ξ) exp{G(xi , ξ)}] + (α − 1)
n

∑
i=1

log

[
1 + λ

(
1 − Ḡ(xi ; ξ) exp{G(xi ; ξ)}

Ḡ(xi ; ξ) exp{G(xi ; ξ)}
)β
]

−(β + 1)
n

∑
i=1

log[Ḡ(xi ; ξ) exp{G(xi ; ξ)}] +
n

∑
i=1

{
1 −
[

1 + λ
(

1−Ḡ(xi ;ξ) exp{G(xi ;ξ)}
Ḡ(xi ;ξ) exp{G(xi ;ξ)}

)β
]α}

.

One way to find the maximum likelihood estimate (MLE) Θ̂ of Θ is to maximize the
likelihood function �(Θ). There are several numerical optimization routines available in
different programming languages such as R, SAS, and Ox that can be used to maximize
�(Θ). For instance, the optim function in R, the PROC NLMIXED in SAS, and the (sub-routine
MaxBFGS) Ox can be used for this purpose.

5. The NODAL-Weibull Distribution

In this Section, we consider a special model of the NODAL-G class, the NODAL-
Weibull (NODALW) distribution, by taking the Weibull as a baseline model. The cdf and
pdf of Weibull distributions are G(x) = 1 − e−k xc

and g(x) = c k xc−1 e−k xc
, respectively,

where k > 0 is a scale parameter and c > 0 is a shape parameter. By setting λ = 1, the cdf
of the NODALW distribution reduces to

F(x) = 1 − exp

⎧⎪⎨⎪⎩1 −

⎡⎢⎣1 +

⎛⎝1 − e−kxc
exp
(

1 − e−k xc
)

e−kxc exp
(
1 − e−kxc)

⎞⎠β
⎤⎥⎦

α⎫⎪⎬⎪⎭. (15)

The pdf corresponding to Equation (15) is

f (x) = αβ c k xc−1e−k xc
[
1 − e−k xc

exp
(

1 − e−k xc
)][

1 − e−k xc
exp
(

1 − e−k xc
)]β−1

×
[
e−k xc

exp
(

1 − e−k xc
)]−β−1

⎡⎢⎣1 +

⎛⎝1 − e−k xc
exp
(

1 − e−k xc
)

e−k xc exp
(
1 − e−k xc)

⎞⎠β
⎤⎥⎦

α−1

× exp

⎧⎪⎨⎪⎩1 −

⎡⎢⎣1 +

⎛⎝1 − e−k xc
exp
(

1 − e−kxc
)

e−k xc exp
(
1 − e−k xc)

⎞⎠β
⎤⎥⎦

α⎫⎪⎬⎪⎭. (16)

Henceforth, let X ∼ NODALW(α, β, k, c) be the rv with density (16). The hrf of X is

h(x) = αβ c k xc−1e−kxc
[
1 − e−kxc

exp
(

1 − e−kxc
)][

1 − e−kxc
exp
(

1 − e−kxc
)]β−1

×
[
e−kxc

exp
(

1 − e−kxc
)]−β−1

⎡⎢⎣1 +

⎛⎝1 − e−kxc
exp
(

1 − e−kxc
)

e−kxc exp
(
1 − e−kxc)

⎞⎠β
⎤⎥⎦

α−1

.

The sketches of the density and failure rate of X are plotted in Figure 1 for some parameter
values. Figure 1a displays the uni-modal (right-skewed and left-skewed) and reversed-J
shapes of the density of X. Figure 1b exhibits the failure rate shapes of X such as increasing,
decreasing, and bathtub.
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(a) (b)

Figure 1. Sketches of (a) the densities, and (b) the hrf of the NODALW model.

5.1. Linear Representation of NODALW Model

The NODALW density follows from Equation (11) as

f (x) =
∞

∑
p=0

∞

∑
r=0

Vp,r k (p + r) c xc−1e−k xc
(

1 − e−k xc
)p+r−1

. (17)

Using the generalized binomial expansion in Equation (17), we obtain

f (x) =
∞

∑
τ=0

ωτ k(τ + 1) c xc−1 e−k(τ+1) xc
, (18)

where ωτ = (−1)τ

τ+1 (p+r−1
τ ) ∑∞

p,r=0 (p + r)Vp,r. Equation (18) reveals that the NODALW density

has a linear representation in terms of Weibull densities. So, several of its structural properties can
be obtained from the Weibull density. The qf of the NODALW distribution is

Q(u) =

{
−1

k
log

[
−W

(
−e−1

[
1 +
{
[1 − log(1 − u)]

1
α − 1

} 1
β

]−1)]} 1
c

, 0 < u < 1. (19)

5.2. Properties of NODALW Model

Let Zp be an rv with Weibull density π(x; p, c). Then, some quantities of X can follow
from those of Zp. First, the sth om of X can be expressed as

μ′
s = Γ

( s
c
+ 1
) ∞

∑
τ=0

ωτ

[k(τ + 1)]s/c , (20)

where Γ(a) =
∫ ∞

0 ta−1e−tdt. Using Equation (20), we can recursively calculate the cumulants

(κs) of X. Specifically, the sth cumulant is determined by subtracting the sum of products of
previous cumulants (κk) and raw moments (μ′

s−k), where the products are taken over all k
from 1 to s − 1, inclusive. The formula is expressed as

κs = μ′s − ∑ k = 1s−1
(

s − 1
k − 1

)
, κk, μ′

s−k

The first cumulant, κ1, is equal to the first raw moment, μ′
1. The skewness, γ1, and kurtosis,

γ2, of X can be obtained by dividing the third and fourth standardized cumulants by the
square of the second standardized cumulant, respectively. Some plots of skewness (sk) and
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kurtosis (ku) for X are presented in Figure 2. It can be seen that the proposed class can be
used to discuss the different forms of kurtosis.

(a) (b)

Figure 2. Plots of the (a) sk and (b) ku of the NODALW model.

The sth incomplete moment of X, denoted by ms(y) = E(Xs | X ≤ y) =
∫ y

0 xs f (x)dx,
is easily obtained by changing variables from the lower incomplete gamma function
γ(s, x) =

∫ ∞
0 xs−1 e−xdx when calculating the corresponding moment of Zp. Then, we

obtain

ms(z) =
∞

∑
τ=0

ωτ
γ
( s

c + 1, k(τ + 1)xc)
(k(τ + 1))s/c . (21)

5.3. Simulation Study: NODALW Model

Simulation studies are a popular and effective method of testing estimator performance
in a variety of scenarios. By running several simulations, it is possible to approximate real-
world performance and gain insight into how well the estimator will function in the field.
The first step of a simulation study is to establish the parameters of the experiment. This
involves setting up criteria for the data to be sampled, including number of samples, sample
size, and the sampling process. Once the parameters have been established, the next step
is to generate a simulated dataset that matches the specified criteria. This dataset should
have features that are as close as possible to the features of the real-world data. Once the
dataset has been generated, the estimator can be applied to the data. Depending on the type
of estimator, different metrics may be used to measure the performance of the estimator.
These metrics may include root mean squared error, mean absolute error, and R-squared.
In this Section, we conduct a Monte Carlo simulation study to assess the performance of
the MLEs of the parameters α, β, c, and k. The random numbers of size 50, 100, 200, and 500
are generated by the inversion method and are repeated N = 1000 times for each sample
size. The sample average biases (Bias), coverage probabilities (CPs), and mean-squared
errors (MSEs) of the estimates are calculated. The following formulas are used:

Bias(θ̂) =
N

∑
i=1

θ̂i
N

− θ and MSE(θ̂) =
N

∑
i=1

(θ̂i − θ)2

N

and

CP(θ̂) =
1
N

N

∑
i=1

I
(

θ̂i − 1.9599sθ̂i
< θ < θ̂i + 1.9599sθ̂i

)
,

where I(.) is the indicator function and sθ̂i
=
(

sα̂i , sβ̂i
, sĉi , sk̂i

)
are the standard errors of the

MLEs. These quantities for some values of α, β, c, and k are reported in Tables 2–4. The
figures in these tables reveal that the MLEs perform well for estimating the parameters of
the NODALW distribution.
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Table 2. Biases, MSEs, and CPs for α = 0.2, β = 0.5, c = 0.5, and k = 1.

n = 50 n = 100

Bias MSE CP Bias MSE CP

α 0.246 0.134 0.98 0.227 0.104 0.95
β 0.078 0.245 0.93 0.222 0.106 0.97
c 0.072 0.040 0.99 0.054 0.021 0.99
k −0.413 0.340 0.73 −0.405 0.296 0.76

n = 200 n = 500

α 0.144 0.053 0.98 0.075 0.016 0.99
β 0.007 0.008 0.96 0.004 0.003 0.98
c 0.026 0.006 0.99 0.008 0.001 0.98
k −0.329 0.194 0.79 −0.216 0.097 0.86

Table 3. Biases, MSEs, and CPs for α = 0.2, β = 0.6, c = 1.8, and k = 1.5.

n = 50 n = 100

Bias MSE CP Bias MSE CP

α 0.231 0.125 0.98 0.219 0.117 0.98
β 0.158 0.591 0.89 0.033 0.201 0.92
c 0.243 0.627 1.00 0.203 0.319 0.99
k −0.563 0.633 0.80 −0.555 0.571 0.80

n = 200 n = 500

α 0.186 0.095 0.98 0.125 0.051 0.98
β 0.003 0.077 0.94 −0.007 0.005 0.95
c 0.118 0.138 0.99 0.056 0.036 0.98
k −0.475 0.464 0.82 −0.372 0.314 0.82

Table 4. Biases, MSEs, and CPs for α = 0.4, β = 1.5, c = 0.9, and k = 1.

n = 50 n = 100

Bias MSE CP Bias MSE CP

α 0.128 0.827 0.78 0.095 0.383 0.80
β 0.853 3.935 0.89 0.758 3.219 0.94
c 0.151 0.472 0.95 0.033 0.255 0.93
k 0.229 0.260 0.92 0.222 0.199 0.95

n = 200 n = 500

α 0.030 0.137 0.82 −0.007 0.050 0.84
β 0.524 1.745 0.96 0.349 1.203 0.91
c 0.022 0.163 0.91 0.017 0.107 0.93
k 0.218 0.152 0.97 0.157 0.070 0.98

6. Discrete NODAL-G Family

According to a survival discretization approach, the rv X is said to have the discrete
NODAL-G (dNODAL-G) class if its cdf can be formulated as

V(x; λ, α, β, ξ) = 1 − exp

{
1 −
[

1 + λ

(
1 − G(x + 1; ξ) exp{G(x + 1; ξ)}

G(x + 1; ξ) exp{G(x + 1; ξ)}
)β
]α}

, x ∈ N0, (22)

where λ > 0 is a scale parameter, α > 0 and β > 0 are shape parameters, ξ is the vector of
the baseline parameters, and N0 = {0, 1, 2, . . .}. The probability mass function (pmf) and
hrf corresponding to Equation (22) are
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v(x; λ, α, β, ξ) = exp

{
1 −
[

1 + λ

(
1 − G(x; ξ) exp{G(x; ξ)}

G(x; ξ) exp{G(x; ξ)}
)β
]α}

− exp

{
1 −
[

1 + λ

(
1 − G(x + 1; ξ) exp{G(x + 1; ξ)}

G(x + 1; ξ) exp{G(x + 1; ξ)}
)β
]α}

, (23)

and h(x; λ, α, β, ξ) = v(x;λ,α,β,ξ)
1−V(x−1;λ,α,β,ξ) , respectively, where x ∈ N0.

6.1. The DNODAL-Geometric (DNODALGeo) Distribution

Consider the cdf of the geometric (Geo) model. Then, the pmf of the DNODALGeo
distribution is

V(x; λ, α, β, p) = exp

⎧⎨⎩1 −
⎡⎣1 + λ

(
1 − px+1 exp

{
1 − px+1}

px+1 exp{1 − px+1}

)β
⎤⎦α⎫⎬⎭, x ∈ N0, (24)

where λ > 0, α > 0, β > 0, and 0 < p < 1. For convenience, let λ = 1 in Equation (24).
Figures 3 and 4 display the pmf and hrf of the DNODALGeo distribution for some param-
eter values.

Figure 3. The pmf of the DNODALGeo model.
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Figure 4. The hrf of the DNODALGeo model.

PMF can be either monomodal or bimodal and can be used to analyze different types
of data (positively skewed, negatively skewed, as well as symmetric). Moreover, hrf can be
either an increment, a fixed increment, a J-shape, or a bathtub.

6.2. Simulation

We generate a random variable X from the DNODALGeo distribution by generating
the value Z from the continuous model and then discretize X = [Z], which is the largest
integer less than or equal to Z. We generate 1, 000 samples of size n = 20, 22, 24, . . . , 150
from the DNODALGeo(0.5, 0.9, 0.8) and DNODALGeo(1.5, 1.5, 0.5) models, respectively.
The empirical results are given in Figures 5 and 6, respectively.

It is clear from Figures 5 and 6 that the biases and MSEs always tend to zero when n
increases, which shows the consistency of the estimators.
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Figure 5. The biases and MSEs for the DNODALGeo(0.5, 0.9, 0.8) model.

Figure 6. The biases and MSEs for the DNODALGeo(1.5, 1.5, 0.5) model.
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7. Applications

In this Section, we illustrate the empirical importance of the NODALW and DNODAL-
Geo models by means of three real-life data sets. First, two data sets are utilized to illustrate
the flexibility of the NODALW distribution. Second, a third data set is used to test the
usefulness of the DNODALGeo distribution.

7.1. Empirical Illustration of the NODAL-G Family

Here, we compare the NODALW distribution with some well-established competi-
tive models: Kumaraswamy–Weibull (KwW) (see Cordeiro et al. [60]), beta-Weibull (BW)
(see Lee et al. [61]), exponentiated-generalized Weibull (EGW) (see Oguntunde et al. [62]),
McDonald-Weibull (McW) (see Cordeiro et al. [63]), gamma-Weibull (GaW) (see
Cordeiro et al. [64]), and Weibull (W) to prove the flexibility of the new family. The cdf and
pdf of NODALW distribution are, respectively, given as

F(x) = 1 − exp

⎧⎪⎨⎪⎩1 −

⎡⎢⎣1 +

⎛⎝ 1 − e−kxc
exp
(

1 − e−k xc
)

e−kxc exp
(
1 − e−kxc )

⎞⎠β
⎤⎥⎦

α⎫⎪⎬⎪⎭.

and

f (x) = αβ c k xc−1e−k xc
[
1 − e−k xc

exp
(

1 − e−k xc
)][

1 − e−k xc
exp
(

1 − e−k xc
)]β−1

×
[
e−k xc

exp
(

1 − e−k xc
)]−β−1

⎡⎢⎣1 +

⎛⎝ 1 − e−k xc
exp
(

1 − e−k xc
)

e−k xc exp
(
1 − e−k xc )

⎞⎠β
⎤⎥⎦

α−1

× exp

⎧⎪⎨⎪⎩1 −

⎡⎢⎣1 +

⎛⎝ 1 − e−k xc
exp
(

1 − e−kxc
)

e−k xc exp
(
1 − e−k xc )

⎞⎠β
⎤⎥⎦

α⎫⎪⎬⎪⎭.

Data Set 1. Air Conditioning Data. The data are taken from Kus [65] representing the numbers
of the successive failures for an air conditioning system. The shape of the data can be
discussed through Figure 7. The data were found to be asymmetric and some extreme
observations were reported.
Data Set 2. Precipitation Data. The data are taken from Katz et al. [66] and Asgharzadeh et al. [67]
representing the maximum annual flood discharges (in units of 1000 cubic feet per second) of the
North Saskachevan River at Edmonton, over a period of 48 years. The shape of the data can be
displayed in Figure 8.

The NODALW model and other competitive models are fitted to these two data sets
using the AdequacyModel package for the R statistical computing environment written by
Marinho et al. [68].

The MLEs (�̂) are used to evaluate the log-likelihood function, while various goodness-of-fit
statistics (“GoFS”), such as Akaike-information-criterion (“AIC”), Bayesian-information-criterion
(“BIC”), Hannan-Quinn-information criterion (“HQIC”), Anderson–Darling (AD), Cramér–von
Mises (CvM), and Kolmogrov–Smirnov (KS), are employed to compare models. A good fit is
indicated by lower values of these statistics and higher P-values of the KS statistic.

The values of the GoFS in Tables 5 and 7 show that the NODALW model gives small
values for these statistics and then it provides the best fit as compared to other fitted distri-
butions (KwW, BW, EGW, McW, GaW, and W) to the two data sets. Tables 6 and 8 report
the MLEs and their standard errors (SEs) for the NODALW model and other competitive
models. The plots in Figures 9 and 10 also support our claim. To establish the unique
property of the maximum likelihood estimators, the profile log-maximum likelihood func-
tion (pllf) was plotted for each parameter for the first and second datasets. It can be noted
that the values of the estimators gave the maximum likelihood function the largest value;
see Figures 11 and 12. As can be seen, the form of the maximum likelihood function is
unimodal for each parameter.
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Table 5. Some statistics and p-value for the fitted models to data set 1.

KS

Distribution �̂ AIC BIC HQIC AD CvM KS p-Value

NODALW 976.1618 1960.3240 1973.0730 1965.4940 0.1640 0.0196 0.0311 0.9951
KwW 978.2675 1964.5350 1977.2850 1969.7050 0.2925 0.0313 0.0388 0.9501
BW 977.0803 1962.1610 1974.9100 1967.3300 0.2001 0.0219 0.0391 0.9470
EGW 978.7362 1965.4720 1978.2220 1970.6420 0.5620 0.0878 0.0420 0.9100
McW 976.2409 1962.4820 1978.4190 1968.9440 0.1628 0.0202 0.0321 0.9928
GaW 979.8445 1965.6890 1975.2510 1969.5660 0.7633 0.1219 0.0504 0.753
W 981.1477 1966.2950 1972.6700 1968.8800 0.9755 0.1577 0.0567 0.6123

Table 6. MLEs and their SEs (in parentheses) for the fitted models to data set 1.

Distribution α β c k θ

NODALW 0.1454 2.9036 0.4762 0.0914 –
(0.0580) (0.6640) (0.0970) (0.0151) –

KwW 0.44370 0.64040 6.98780 0.13710 –
(0.00330) (0.00260) (0.06740) (0.01040) –

BW 0.36620 0.65660 3.86960 0.14360 –
(0.00470) (0.00630) (0.74020) (0.01240) –

EGW 0.01280 0.70890 1.36590 1.60630 –
(0.01030) (0.11060) (0.83440) (0.48390) –

McW 0.04510 0.91630 0.18380 0.25040 9.685
(0.03280) (0.23770) (0.1420) (0.12550) (4.51590)

GaW 0.01740 0.78540 1.28540 – –
(0.00820) (0.12730) (0.35230) – –

W 0.01180 0.90570 – – –
(0.0010) (0.05120) – – –

Table 7. Some statistics and p-value for the fitted models to data set 2.

KS

Distribution �̂ AIC BIC HQIC AD CvM KS p-Value

NODALW 215.1079 438.2157 445.7005 441.0442 0.2023 0.0286 0.0827 0.8981
KwW 215.5195 439.0389 446.5238 441.8675 0.2495 0.0347 0.0834 0.8924
BW 216.1573 440.3147 447.7995 443.1432 0.3387 0.0477 0.0973 0.7538
EGW 218.1801 444.3601 451.8449 447.1887 0.6147 0.0913 0.0973 0.7543
McW 215.7566 441.5132 450.8692 445.0489 0.2699 0.0374 0.0837 0.8895
GaW 219.4700 444.9401 450.5537 447.0615 0.8278 0.1250 0.1176 0.5203
W 225.7065 455.4131 459.1555 456.8273 1.7286 0.2765 0.1399 0.3048

Table 8. MLEs and their SEs (in parentheses) for the fitted models to data set 2.

Distribution α β c k θ

NODALW 0.0686 16.0368 0.4969 0.0568 –
(0.0379) (9.1204) (0.2109) (0.0363) –

KwW 0.16090 1.02520 54.78250 0.20410 –
(0.01530) (0.02760) (0.13580) (0.03820) –

BW 0.13200 1.10800 23.06020 0.19400 –
(0.00730) (0.00680) (8.79410) (0.03240) –

EGW 0.00900 0.77740 5.59660 10.54930 –
(0.00410) (0.13700) (2.04580) (5.68210) –

McW 0.16080 1.00490 14.50780 0.22100 2.5180
(0.03400) (0.04660) (9.82270) (0.07570) (0.08950)

GaW 4.61440 0.49830 14.72250 – –
(0.15180) (0.02170) (1.72390) – –

W 0.01710 1.77190 – – –
(0.00150) (0.17760) – – –
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Figure 7. Non-parametric visualization plots for data set I.

Figure 8. Non-parametric visualization plots for data set II.
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Figure 9. Plots of estimated density, cdf, Kaplan–Meier (K-M), and hrf plots for data set 1.

Figure 10. Plots of estimated density, cdf, Kaplan–Meier (K-M), and hrf plots for data set 2.

Figure 11. The pllf of data set 1.

Figure 12. The pllf of data set 2.

7.2. Empirical Illustration of the DNODAL-G Family

Here, we illustrate the usefulness of the DNODALGeo model by means of an applica-
tion to real count data. The data set represents the count of kidney cysts using steroids (see
Chan et al. [69]). The shape of the data can be seen in Figure 13. The fitted distributions are
compared using the AIC, CAIC, HQIC, and Chi-square (χ2), having a degree of freedom
(df) and its p-value. The competitive fitted models are reported in Table 9.
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The MLEs and their corresponding SEs are listed in Table 10, whereas Tables 11 and 12
give the GoFS, expected frequencies (ExFr), and observed frequencies (ObFr), respectively.

Table 9. The competitive models.

No. Distribution Year Author(s)

1 Geometric (Geo) - -
2 Generalized geometric (GGeo) 2010 Gómez-Déniz [48]
3 Discrete Rayleigh (DR) 2004 Roy [46]
4 Discrete inverse Rayleigh (DIR) 2014 Hussain and Ahmad [51]
5 Discrete inverse Weibull (DIW) 2010 Jazi et al. [49]
6 One parameter discrete Lindley (DLi-I) 2011 Gómez-Déniz and Calderín-Ojeda [50]
7 Two parameters discrete Lindley (DLi-II) 2016 Hussain et al. [52]
8 Three parameters discrete Lindley (DLi-III) 2020 Eliwa at al. [56]
9 Negative Binomial (NeBi) - -
10 Poisson (Poi) 1837 Poisson [70]
11 Discrete Pareto (DPa) 2009 Krishna and Pundir [47]
12 Discrete Burr type XII (DB-XII) 2016 Para and Jan [54]
13 Discrete log-logistic (DLogL) 2016 Para and Jan [53]
14 One parameter discrete flexible (DFx-I) 2020 Eliwa and El-Morshedy [57]
15 Discrete Lomax distribution (DLo) 2016 Para and Jan [54]

Table 10. The MLEs and their SEs for data set 3.

Parameter −→ p α β

Model ↓ MLE SE MLE SE MLE SE

DNODALGeo 0.711 0.130 1.587 0.392 0.240 0.034
Geo − − − − 0.582 0.030
DR − − − − 0.901 0.009
DIR − − − − 0.554 0.049
DLi-I 0.436 0.026 − − − −
DFx-I 0.623 0.031 − − − −
Poi 1.390 0.112 − − − −
DPa 0.268 0.034 − − − −
GGeo − − 0.188 0.089 0.800 0.064
DIW − − 1.049 0.146 0.581 0.048
DLo 0.152 0.098 1.830 0.952 − −
DBX-II 0.278 0.045 1.053 0.167 − −
NeBi 0.812 0.045 0.322 0.074 − −
DLogL 0.780 0.136 1.208 0.159 − −
DLi-II 0.581 0.045 0.001 0.058 − −
DLi-III 0.582 0.005 358.728 11863.37 0.001 20.698

The DNODALGeo model performs better than all other tested models based on the
numbers in Tables 11 and 12. Figure 14 supports the claims from these tables, and it is
noted that data set 3 is explained by this model. Figure 15 shows the contour plot of
log-Likelihood function of the DNODALGeo for the third data set.
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Table 11. The GoFS for data set 3 “part I”.

X ObFr ExFr

DNODALGeo Geo DR DIR DLi-I DFx-I Poi DPa

0 65 64.97 45.98 10.89 60.89 40.29 45.26 27.39 65.84
1 14 14.69 26.76 26.62 33.99 29.83 29.09 38.08 18.27
2 10 8.46 15.58 29.45 8.12 18.36 16.51 26.47 8.16
3 6 5.73 9.06 22.29 3.00 10.34 8.89 12.26 4.51
4 4 4.19 5.28 12.63 1.42 5.52 4.70 4.26 2.82
5 2 3.18 3.07 5.54 0.78 2.85 2.49 1.19 1.91
6 2 2.44 1.79 1.91 0.47 1.44 1.34 0.27 1.37
7 2 1.87 1.04 0.53 0.31 0.71 0.73 0.05 1.02
8 1 1.41 0.61 0.12 0.21 0.35 0.41 0.01 0.79
9 1 1.04 0.35 0.02 0.15 0.17 0.23 0.01 0.63
10 1 0.74 0.21 0.00 0.11 0.08 0.14 0.01 0.51
11 2 1.28 0.27 0.00 0.55 0.06 0.21 0.00 4.17

Total 110 110 110 110 110 110 110 110 110

−l 166.48 178.77 277.78 186.55 189.11 182.29 246.21 171.19
AIC 338.96 359.537 557.56 375.09 380.22 366.58 494.42 344.38

HQIC 342.25 360.63 558.65 376.19 381.32 367.67 495.52 345.48
CAIC 339.19 359.577 557.59 375.13 380.26 366.61 494.46 344.42

χ2 0.59 19.11 306.52 40.46 34.64 31.70 89.28 3.43
df 2 4 4 2 4 4 3 4

p-value 0.750 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.489

Table 12. The GoFS for data set 3 “part II”.

X ObFr ExFr

DNODALGeo GGeo DIW DLo DBX-II NeBi DLogL DLi-II DLi-III

0 65 64.97 62.74 63.91 61.62 64.74 56.52 63.19 46.03 46.01
1 14 14.69 19.67 20.69 21.02 19.18 15.89 20.10 26.77 26.77
2 10 8.46 9.44 8.05 9.69 8.48 9.17 8.64 15.57 15.57
3 6 5.73 5.44 4.23 5.28 4.63 6.20 4.66 9.06 9.06
4 4 4.19 3.46 2.59 3.19 2.86 4.50 2.86 5.27 5.27
5 2 3.18 2.35 1.75 2.09 1.92 3.40 1.92 3.06 3.07
6 2 2.44 1.66 1.26 1.44 1.37 2.64 1.37 1.78 1.78
7 2 1.87 1.21 0.95 1.04 1.01 2.08 1.02 1.04 1.08
8 1 1.41 0.90 0.74 0.77 0.78 1.66 0.79 0.60 0.60
9 1 1.04 0.69 0.59 0.59 0.61 1.34 0.62 0.35 0.35
10 1 0.74 0.53 0.49 0.46 0.49 1.09 0.50 0.20 0.20
11 2 1.28 1.91 4.75 2.81 3.93 5.51 4.33 0.27 0.24

Total 110 110 110 110 110 110 110 110 110 110

−l 166.48 168.56 172.94 170.48 171.14 168.54 171.72 178.77 178.77
AIC 338.96 341.11 349.87 344.96 346.28 340.09 347.43 361.53 363.53

HQIC 342.25 343.30 352.06 347.15 348.47 343.28 349.62 363.72 366.82
CAIC 339.19 341.23 349.98 345.07 346.39 344.49 347.55 361.65 363.76

χ2 0.59 2.44 6.45 3.24 2.59 4.29 4.033 19.09 19.09
df 2 3 3 3 2 4 3 3 2

p-value 0.750 0.485 0.092 0.356 0.274 0.369 0.258 0.0003 <0.0001
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Figure 13. Non-parametric visualization plots for data set III.

Figure 14. The fitted PMFs to data set 3.
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Figure 15. Contour plot of pllf for data set 3.

8. Concluding Remarks and Future Work

In this article, a new odd DAL-G family of models is presented from a new class/generator
W[G(x)] = (1− Ḡ(x; ξ) exp{G(x; ξ)})/[Ḡ(x; ξ) exp{G(x; ξ)}] for T ∈ (0, ∞). The new probability
family W[G(·)] involves a different function of the cdf instead of existing generators. We obtain
some structural properties of this new continuous and discussed discrete odd DAL-G family, and
also studied some properties of the special models called the new odd DAL-Weibull (NODALW)
and discrete new odd DAL-geometric (DNODALGeo) distributions. Both of two sub-models can
be used to discuss asymmetric and symmetric data under different kinds of kurtosis. Furthermore,
the two sub-models can be applied to discuss several shapes of risk/hazard rates. We compared
the NODALW distribution with the well-known extended Weibull models (KwW, BW, EGW, McW,
GaW, W) via six popular test statistics. Similarly, we compare the DNODALGeo distribution with
the well-known extended models’ (Geo, GGeo, DR, DIR, DIW, DLi-I, DLi-II, DLi-III, NeBi, Poi,
DPa, DB-XII, DLogL, DFx-I, DLo) distributions using these test statistics. We found that the new
generated distributions provide better estimates and minimum values of the test statistics. The new
NODALW and DNODALGeo models outperform the above-described competitive models on the
basis of numerical and graphical analysis. We foresee that the new family/class will be able to
attract readers and applied statisticians. As a future work, the bivariate extension of the proposed
generators with its applications will be discussed. Furthermore, some prediction models will be
analyzed based on these generators.
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Abstract: In this work, we propose a general framework for models with support in the unit interval,
which is obtained using the technique of random variable transformations. For this class, the general
expressions of distribution and density functions are given, together with the principal characteristics,
such as quantiles, moments, and hazard and reverse hazard functions. It is possible to verify that
different proposals already present in the literature can be seen as particular cases of this general
structure by choosing a suitable transformation. Moreover, we focus on the class of unit-Dagum
distributions and, by specifying two different kinds of transformations, we propose the type I and
type II unit-Dagum distributions. For these two models, we first consider the possibility of expressing
the distribution in terms of indicators of interest, and then, through the regression approach, relate
the indicators and covariates. Finally, some applications using data on the unit interval are reported.

Keywords: transformations; bounded support; flexible shape

MSC: 62J02

1. Introduction

In statistical literature, several authors have focused their attention on developing
new and more flexible statistical distributions by using suitable transformation techniques
(see, for example, [1–3]). Most of the obtained distributions deal with continuous random
variables with unbounded support. Only in recent years has attention been devoted to
filling the existing gap with respect to distributions with bounded support, in order to
meet the need to describe empirical phenomena whose realizations cover limited ranges.
Indeed, these kinds of data naturally arise in different contexts, such as rates, propor-
tions, percentages, and so on, but just a few models, such as the widely used beta dis-
tribution model, the Kumaraswamy model [4], the Topp–Leone model [5], the arcsine
model [6], the standard two-sided power model [7], and a few more (see [8,9]) were
available in the past to describe them. Many others are very recent proposals. In par-
ticular, in the last decade, there have been many works in this field, for the most part,
on models belonging to the class of so-called unit distributions. These models describe
data with support in unit intervals and are often obtained by applying transformations
to random variables. These include the unit-Burr III [10,11], unit-Lindley [12], unit-
Gompertz [13], unit-Burr XII [14], unit inverse Gaussian [15], the arcsecant hyperbolic
normal model [16], and logit slash [17], to name a few, as well as some new families of
distributions [18,19].

The first aim of this work is to describe a general structure based on the random
variable transformation technique, which includes most of the distributions for data on
unit intervals already present in the literature. Moreover, other members of this class
were obtained, considering different transformations. Particular attention is placed on
building regression models, starting with unit distributions; this allows us to evaluate the
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impact of covariates on response variables with bounded support and consider alternative
approaches to the most used regression models for unit data.

In a recent paper, [20] proposed a unified procedure to construct distribution func-
tions in the (0,1) interval from the composition of two random variables with the same
support, which turned out to be a special case of the T − X family introduced by [21]. Our
approach differs from the one just mentioned in that it does not require the knowledge of a
second distribution function or a second quantile function. Furthermore, we envisaged a
reparameterization and construction of the regression models on the indicators of interest.

The rest of the paper is organized as follows. In Section 2, we define the general
class of distributions and derive the expressions for distribution and probability density
functions. Quantiles, moments, and general expressions for the hazard and reverse hazard
rate are given. A particular case of distributions belonging to the general class is described
in Section 3, starting with the Dagum random variable and considering two particular
kinds of transformations. The maximum likelihood estimation is discussed in Section 4.
Section 5 is devoted to showing the possibility of employing the proposed models according
to a regression perspective. Finally, in Section 6, two different examples of applications
are shown.

2. General Framework

Many of the recently suggested distributions, proposed for modeling data belonging
to the unit interval, can be described by resorting to a single probabilistic structure based
on a simple technique of a random variable transformation.

To this end, let Y be a random variable (rv) with a distribution function (pdf ) FY(y; θ)
and probability density function (df ) FY(y; θ), where θ is the parameter vector and y ∈ SY ⊂
�, SY = [SY, S̄Y]. Let C : SY �−→ JV be the application that identifies the transformation of
Y rv in a new variable V, assuming values V ∈ JV = [JV , J̄V ]. In general, the distribution of
V could also be characterized by a vector of parameters a, i.e., V := C(Y; a).

In the present paper, in order to simplify the discussion, we assume that the boundaries
of the support of V are finite, i.e., limy→SY

C(y; a) = JV > −∞ and limy→S̄Y
C(y; a) = J̄V <

∞, and we assume that the function C(y; a) is continuous, differentiable, and monotone
over SY. Consequently, C(y; a) is invertible and its inverse C−1(·) is differentiable on JV :(

C−1(v; a)
)′

=
1

C′(C−1(v; a))
. (1)

Knowing the distribution function of Y and considering the transformation C(·), it
is easy to obtain the distribution function of V and its characteristics, such as quantiles
and moments. Moreover, it is typical in the literature to study the behavior of the hazard
function hY(y; θ) (hf ) and the reverse hazard function (rhf ) rhY(y; θ), with the aim of
evaluating the flexibility of a distribution. Therefore, in the following, we obtain some
general expressions of characteristics and properties for distributions belonging to this
class. In doing this, we distinguish two cases, depending on whether C(·) is an increasing
or a decreasing monotonic function.

(1) C(·) is an increasing monotonic function:

the d f of V is given by:

FV(v; θ, a) = P(V ≤ v) = P
(

Y ≤ C−1(v; a)
)
= FY

(
C−1(v; a); θ

)
(2)

and, by (1), we can obtain the pd f of V as

fV(v; θ, a) =
∂FY
(
C−1(v; a); θ

)
∂C−1(v; a)

× ∂C−1(v; a)

∂v
=

fY
(
C−1(v; a); θ

)
C′(C−1(v; a))

. (3)
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Moreover, let y(p) = F−1
Y (y; θ) be the p-th quantile of Y, with p ∈ (0, 1). It is easy to

verify that, from (2), the q-th quantile of V is as follows:

v(q; θ, a) = C(y(q; θ); a), (4)

with q ∈ (0, 1).
The general expressions for hr and rhr functions are, respectively, given by:

hV(v; θ, a) =
fV(v; θ, a)

1 − FV(v; θ, a)
=

hY(C−1(v; a); θ)

C′(C−1(v; a))
(5)

rhV(v; θ, a) =
fV(v; θ, a)

FV(v; θ, a)
=

rhY(C−1(v; a); θ)

C′(C−1(v; a))
. (6)

(2) C(.) is a decreasing monotonic function.
In this case, with little algebra, we can determine the quantities previously considered.
In particular, the df and pdf of V, respectively, are as follows:

FV(v; θ, a) = 1 − FY

(
C−1(v; a); θ

)
,

fV(v; θ, a) = − fY
(
C−1(v; a); θ

)
C′(C−1(v; a))

and the quantile of order q is as follows:

v(q; θ, a) = C(y(1 − q; θ); a).

The hf and rhf are calculated accordingly.

We can use different methods, known in the literature, to determine the moment of
order r.

We should note that most of the proposals in the literature can be thought of as
particular cases of the comprehensive framework described earlier. For example, the most
used transformations in the cases of positive rvs are as follows: V = Y

1+Y and V = e−Y.
On the other hand, the most common transformation, when Y assumes a real value, is
V = 1

1+e−Y , as in the case of the logit slash model. Moreover, V = 2
e−Y+eY was used in the

context of non-monotonic rv transformations to obtain the arcsecant hyperbolic normal
model, which, strictly speaking, does not belong to the general framework proposed here,
but it can be used in every case with small mathematical expedients. We should note that,
in general, any distribution function G(·) can be used to transform Y rv in a new variable
V = G(Y). Table 1 summarizes a classification of some unit distributions proposed in the
literature, according to the used transformation.
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In many application contexts, researchers often focus on specific aspects when charac-
terizing a distribution, such as quantiles, location measures (mode, median, mean), vari-
ability indicators, etc. For this reason, when possible, it is useful to express the distribution
as a function of such characteristics. The utility derives from the fact that, with appropriate
methodological tools, it is possible to construct regressive models on the characteristics of
interest with the aim of inspecting the possible determinants of the phenomenon under
investigation (see [28,29]). Each characteristic and/or indicator is, in general, a function of
the vector of the distribution parameters, let us say I = I(θ), with reference to the unit’s
distribution function (2). If θ is a vector of dimension p and the system

Ij = Ij(θ1, θ2, ..., θp) f or j = 1, ..., p

has a unique finite solution, say,

θj = θj(I1, I2, ..., Ip) f or j = 1, ..., p

then the unit-distribution function

FV
(
v; I1, I2, ..., Ip

)
= FV(v; θ1(I1, I2, ..., Ip), θ2(I1, I2, ..., Ip), ..., θp(I1, I2, ..., Ip))

represents a reparameterization in terms of indicators and/or characteristics of interest of
the distribution in (2).

3. Two Kinds of Unit-Dagum Distributions

In this section, two different transformations of the widely used Dagum rv [30,31] will
be described. Given the ability of the Dagum model in fitting real data, the resulting new
models may potentially be more flexible than unit distributions that have already appeared
in the literature.

The df and pdf of Dagum rv Y are given, respectively, by:

FDa(y; β, λ, δ) =
(

1 + λy−δ
)−β

, (7)

and

fDa(y; β, λ, δ) = βλδy−δ−1
(

1 + λy−δ
)−β−1

, (8)

with y > 0 and β, λ, δ > 0. In particular, the vector of parameters of Dagum distribution
(hereafter, Da(β, δ, λ)) is θ = (β, λ, δ), where λ represents a scale parameter and β and δ
are shape parameters.

The Dagum model is positively skewed and it can be unimodal or zero-modal, de-
pending on βδ > 1 or βδ ≤ 1. In particular, the mode is given by

ym = λ
1
δ

(
βδ − 1
δ + 1

) 1
δ

. (9)

It is easy to verify that the q-th quantile is

y(q) = F−1
Da (q; β, λ, δ) = λ

1
δ (q−

1
β − 1)−

1
δ , (10)

therefore, the expression of the median is explicit:

me = λ
1
δ (2

1
β − 1)−

1
δ . (11)

It is also possible to obtain the expression of the r-th moment, as follows

μr
Da = E(Yr; β, λ, δ) = βλ

r
δ B
(

β +
r
δ

, 1 − r
δ

)
, (12)
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which exists for δ > r. Here, B(·, ·) indicates the complete beta function.

3.1. The First Kind of Unit-Dagum Distribution

In this section, we consider the hyperbolic secant transformation:

V := C(Y) =
2eY

1 + e2Y .

In particular, it is simple to verify that, for Y > 0, it is a monotonic decreasing function

with limy→0+ C(y) = 1, limy→+∞ C(y) = 0 and C′(y) = 2ey(1−e2y)

(1+e2y)
2 < 0. Furthermore, it is

known that the inverse hyperbolic secant is given by y = C−1(v) = log 1+
√

1−v2

v .
Taking into account the characteristics of the proposed transformation, the distribution

function of the new rv V is given by

FI−UDa(v; β, λ, δ) = 1 − FDa(log
1 +

√
1 − v2

v
; β, λ, δ)

= 1 −
⎧⎨⎩1 + λ

[
log

1 +
√

1 − v2

v

]−δ
⎫⎬⎭

−β

(13)

with v ∈ (0, 1) and β, λ, δ > 0 (hereafter, I − UDa(β, δ, λ)). From (1), after simple algebra,
we obtain the first derivative of the inverse of C(y; a):(

C−1(v; a)
)′

=
−1

v
√

1 − v2

and, consequently, the pdf of I − UDa(β, δ, λ) rv:

f I−UDa(v; β, λ, δ) =
βλδ

v
√

1 − v2
[log(v∗)]−δ−1

{
1 + λ[log(v∗)]−δ

}−β−1
(14)

where v∗ = 1+
√

1−v2

v .
Figure 1 shows various behaviors of the pdf for the type I unit-Dagum model, accord-

ing to different values of parameters.
The q-th quantile of the I − UDa(β, δ, λ) distribution, by (10), is

v(q; β, λ, δ) =
2e

λ
1
δ

(
(1−q)

− 1
β −1

)− 1
δ

1 + e
2λ

1
δ

(
(1−q)

− 1
β −1

)− 1
δ

. (15)

In the following proposition, we show that the r-th moment of the type I unit-Dagum
distribution can be expressed in terms of moments of the Dagum distribution.

Proposition 1. The r-th moment of V ∼ I − UDa(β, δ, λ) has the following expression:

E[Vr] = β2r
+∞

∑
j=0

(−r
j

) +∞

∑
s=0

(−1)s

s!
(2j + r)sλsB

(
β +

s
δ

, 1 − s
δ

)
. (16)

Proof. See Appendix A.1.
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The hf and rhz are given, respectively, by

h fI−UDa(v; β, λ, δ) =
βλδ

v
√

1 − v2[log(v∗)]
{

λ + [log(v∗)]δ
} (17)

and

rh fI−UDa(v; β, λ, δ) =
βλδ[log(v∗)]−δ−1

{
1 + λ[log(v∗)]−δ

}−β−1

v
√

1 − v2

[
1 −
{

1 + λ
[
log 1+

√
1−v2

v

]−δ
}−β

] (18)

The hazard rate function of the type I unit-Dagum model for some values of parameters
is shown in Figure 2.
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Figure 1. Pdf of the type I unit-Dagum model for different values of parameters.

217



Mathematics 2023, 11, 2888

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

v

h I
_U
D
a(
0.
2,

 2
, 1
.1

)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

v

h I
_U
D
a(
2,

 1
, 0
.6

)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

v

h I
_U
D
a(
0.
5,

 0
.5

, 5
)

0.3 0.5 0.7 0.9

0
50

10
0

20
0

v

h I
_U
D
a(
0.
5,

 1
, 2
0)

Figure 2. Hazard rate of the type I unit-Dagum model for different values of parameters.

We propose a possible reparametrization of the type I unit-Dagum distribution in
terms of the median and the q − th quantile. It is possible to verify that the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 =
1
β

me =
2e

λ
1
δ

[
0.5

− 1
β −1

]− 1
δ

1 + e
2λ

1
δ

[
0.5

− 1
β −1

]− 1
δ

v(q) =
2e

λ
1
δ

[
(1−q)

− 1
β −1

]− 1
δ

1 + e
2λ

1
δ

[
(1−q)

− 1
β −1

]− 1
δ

(19)

presents the following unique solution:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β =
1
β1

λ =
[
0.5−β1 − 1

][
log
(

1+
√

1−me2

me

)]δ∗
= λ∗

δ =
log
[
0.5−β1 − 1

]− log
[
(1 − q)−β1 − 1

]
log
[

log
(

1+
√

1−v(q)2

v(q)

)]
− log

[
log
(

1+
√

1−me2

me

)] = δ∗
(20)
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The corresponding distribution function is

FR−I−UDa(v; β1, me, v(q)) = 1 −
⎧⎨⎩1 + λ∗

[
log

1 +
√

1 − v2

v

]−δ∗
⎫⎬⎭

− 1
β1

(21)

with β1 > 0, me ∈ (0, 1) and v(q) ∈ (0, 1) for q ∈ (0, 1).

3.2. A Second Kind of Unit-Dagum Distribution

In this section, we consider the monotonic decreasing transformation V := C(Y) =
e−Y, with limy→0+ C(y) = 1, limy→+∞ C(y) = 0 and C′(y) = −e−y < 0, ∀y. The inverse is
given by y = C−1(v) = − log(v).

The distribution function of V is given by

FII−UDa(v; β, λ, δ) = 1 − FDa(− log v; β, λ, δ)

= 1 −
{

1 + λ[− log(v)]−δ
}−β

(22)

with v ∈ (0, 1) and β, λ > 0, δ > 0 (hereafter, I I − UDa(β, δ, λ)). From (1), after simple
algebra, we obtain the first derivative of the inverse of C(y; a):(

C−1(v; a)
)′

= −1
v

and, consequently, the pdf of I I − UDa(β, λ, δ) rv:

f I I−UDa(v; β, λ, δ) =
βλδ

v
[− log(v)]−δ−1

{
1 + λ[− log(v)]−δ

}−β−1
. (23)

It is worth noting that the distribution in (23) can be viewed as an extension of the
unit-Burr III obtained by [11], using the same transformation. Indeed, the Dagum model
has one more parameter than Burr III, that is a scale parameter, thus, by putting λ = 1,
the unit-Burr III is obtained. Although the unit-Burr III is already studied in the literature,
for the purposes of this work, as will be seen later, the λ parameter is essential for carrying
out the reparameterization and building the regression model; therefore, here, we consider
the type II unit-Dagum distribution, also considering the scale parameter.

Figure 3 shows various behaviors of the pdf for the type II unit-Dagum model accord-
ing to different parameter values.

The q-th quantile of the I I − UDa(β, δ, λ) distribution, by (10), is

v(q; β, λ, δ) = e−λ
1/δ[(1−q)−1β−1]

−1/δ

. (24)

It can be readily verified that the r-th moment of the type II unit-Dagum distribution
coincides with the Laplace transform of the Dagum distribution and it can be expressed in
terms of moments of the Dagum distribution.

Proposition 2. The r-th moment of V ∼ I I − UDa(β, δ, λ) has the following expression:

E[Vr] = β
+∞

∑
s=0

(−r)s

s!
λ

s
δ B
(

β +
s
δ

, 1 − s
δ

)
. (25)

Proof. See Appendix A.2.
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Figure 3. Pdf of II-UDa for different values of parameters.

The hf and rhf are given, respectively, by

hII−UDa(v; θ, a) =
βλδ[− log(v)]−δ−1

v{1 + λ[− log(v)]−δ} (26)

and

rh fI I−UDa(v; β, λ, δ) =
βλδ[− log(v)]−δ−1{1 + λ[− log(v)]−δ}−β−1

v[1 − {1 + λ[− log(v)]−δ}−β]
(27)

The hazard rate function of the type II unit-Dagum model for some values of parame-
ters is shown in Figure 4.

It is easy to verify that a possible reparametrization of the type II unit-Dagum distri-
bution in terms of the median and the q − th quantile can be obtained as a solution of the
following system: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

β1 = 1
β

me = e
−
[

0.5−1/β−1
λ

]−1/δ

v(q) = e
−
⎡⎣ (1 − q)−1/β − 1

λ

⎤⎦−1/δ
(28)
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that presents the following unique solution⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
β =

1
β1

λ =
[
0.5−β1 − 1

] · [− log(me)]δ̄ = λ̄

δ =
log
[
(1 − q)−β1 − 1

]− log
[
0.5−β1 − 1

]
log[log(me)/ log(v(q))]

= δ̄

(29)

The corresponding distribution function is as follows:

FR−I I−UDa(v; β1, me, v(q)) = 1 −
{

1 + λ̄[− log(v)]−δ̄
}− 1

β1 (30)

with β1 > 0, me ∈ (0, 1) and v(q) ∈ (0, 1) for q ∈ (0, 1).

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

v

h I
I_
U
D
a(
0.
2,

 2
, 1
.1

)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

v

h I
I_
U
D
a(
2,

 1
, 0
.6

)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

15
0

v

h I
I_
U
D
a(
0.
5,

 0
.5

, 5
)

0.2 0.4 0.6

0
20

40
60

80

v

h I
I_
U
D
a(
0.
5,

 1
, 2
0)

Figure 4. Hazard rate of II-UDa for different values of parameters.

4. Inference

In this section, we use the maximum likelihood (ML) method to estimate the parame-
ters of type I and type II unit-Dagum distributions under the hypothesis of homogeneity of
the statistical units, i.e., assuming that there are no systematic factors (covariates), which
make the observations heterogeneous. To this end, we first rewrite the probability density
functions (14) and (23), in a single expression as follows

f I−I I−UDa(v; β, λ, δ) =

βλδ
[
C−1(v)

]−δ−1
{

1 + λ
[
C−1(v)

]−δ
}−β−1{

−∂C−1(v)
∂v

}
(31)
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where C−1(v) = log 1+
√

1−v2

v in the case of the type I unit-Dagum distribution or C−1(v) =
− log v in the case of the type II unit-Dagum distribution. Let v = (v1, ..., vn) be a random
sample of size n from (31), the log-likelihood function for θ = (β, λ, δ) is as follows:

�I−I I−UDa(θ; v) ∝ n log(βλδ)− (δ + 1)
n

∑
i=1

log C−1(vi)

− (β + 1)
n

∑
i=1

log
{

1 + λ
[
C−1(vi)

]−δ
}

(32)

Differentiating �I−I I−UDa(θ; v) with respect to β, λ, and δ, respectively, we obtain the
components of vector score U(θ) = (Uβ(θ), Uλ(θ), Uδ(θ)), where

Uβ(θ) =
∂�I−I I−UDa(θ; v)

∂β
=

n
β
−

n

∑
i=1

log
{

1 + λ
[
C−1(vi)

]−δ
}

(33)

Uλ(θ) =
∂�I−I I−UDa(θ; v)

∂λ
=

n
λ
− (β + 1)

n

∑
i=1

[
C−1(vi)

]−δ

1 + λ[C−1(vi)]
−δ

(34)

Uδ(θ) =
∂�I−I I−UDa(θ; v)

∂δ
=

n
δ
−

n

∑
i=1

log C−1(vi)

+ (β + 1)
λ[C(vi)]

−δ log
[
C−1(vi)

]
1 + λ[C−1(vi)]

−δ
(35)

and setting the components of the score vector equal to zero, we obtain the system of
likelihood equations, whose solution gives the ML estimates θ̂ = (β̂, λ̂, δ̂) of the parameter
vector θ = (β, λ, δ). The system does not admit any explicit solution; therefore, the ML
estimates θ̂ can only be obtained by means of numerical procedures.

Confidence intervals and hypothesis tests for θ can be constructed using the usual
asymptotic properties of the maximum likelihood estimators. In particular, we highlight
that the expected Fisher information matrix of the parameter vector θ coincides with the
expected Fisher information matrix of θ of the Dagum distribution (see Appendix A.3). This
means that when constructing confidence intervals and hypothesis tests for the parameters
of type I and II models of the unit-Dagum distribution, we can use the asymptotic variance
and covariance matrix calculated in [32,33].

5. Unit-Dagum Regression Models

An important aspect to investigate is how heterogeneity among statistical units im-
pacts possible measures of interest, such as median and extreme quantiles, simultaneously
and directly. Given the particular nature of the dependent variable, this leads us to consider
a regression approach where the response variable is defined on the unit interval.

The literature on this theme is wide and often deals with two different possibilities:
properly transforming data to map the (0,1) interval to the real line and then using a
common regression analysis, or choosing a suitable distribution and defining the relations
among distribution parameters and covariates. Regarding the first kind of approach, vari-
ous transformations are possible, and the logit is the most popular, but as [34] underlines,
transformations can be inappropriate since the heteroscedasticity and skewness in data
are not properly handled; moreover, the interpretation of results is possible only on the
transformed scale. On the other hand, the second approach is nowadays preferred and
widely explored, with different existing proposals based on various distributions and
response variables. For example, when the attention is focused on the mean, the most
popular distribution is the beta [35], but other possibilities are represented by simplex [36],
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log-Bilal [27], log-Lindley [37], log-weighted exponential [38], and unit gamma [39], to cite a
few. When the focus is on the median or, in general, on the distribution quantiles, regression
models can be based on Kumaraswamy [40], Johnson-t [41], log-extended exponential-
geometric [42], L-logistic [43], or unit-type distributions (see, for example, [14,22,44]). Our
proposal fits into the latter approach.

Specifically, given a sample of n observations, for each statistical unit i (i = 1, . . . , n),
we observe the individual dependent variable value vi and the sets of individual covariates
supposedly related to indicators and summarized in the vectors, xj,i, for j = 1, 2, 3. The three
sets of covariates x1,i, x2,i, and x3,i are not necessarily the same, and, even if equal, their
impact on the corresponding indicator may be different.

The vectors xji = (xji1, xji2, . . . , xjipj) for i = 1, . . . , n, j = 1, 2, 3, define the rows of
three block n × pj matrices Xj of X. Each one refers to the pj covariates affecting the j − th
indicator Ij.

Each indicator, analogous to generalized linear models, is then related to the covariates,
through an appropriate link function hj(·), as follows:

Ij,i = hj(xj,i, γj). (36)

The link functions are chosen to guarantee suitable restrictions on the parameter space,
considering if Ij,i is positive or varies on (0, 1). The elements of the vector
γj = (γj,1, γj,2, . . . , γj,pj)

′ are the unknown regression coefficients related to the pj individ-
ual characteristics to be estimated, applying the maximum likelihood method. By using
the reformulation of unit-Dagum models in terms of indicators of interest, as shown in
expressions (20) and (29), it is possible to relate the new parameters, such as the median
and q-th quantile, to individual characteristics. In particular, observing that the solutions
given in (20) and (29) are functions of the indicators of interest, i.e., λ∗ = λ∗(β1, me, v(q)),
δ∗ = δ∗(β1, me, v(q)) for the type I unit-Dagum distribution and λ̄ = λ̄(β1, me, v(q)),
δ̄ = δ̄(β1, me, v(q)) for the type II unit-Dagum distribution, and specifying the indica-
tors of interest as functions of the covariates β1,i = h1(x1,i, γ1), mei = h2(x2,i, γ2) and
v(q)i = h3(x3,i, γ3), from (21) and (30), for the i-th observation, we can rewrite the pdfs
as functions of the regression coefficients γ1, γ2, and γ3. Similar to what was done previ-
ously, we use a single structure to represent type I and type II unit-Dagum distributions,
simultaneously, as follows:

fR−I−I I−UDa(vi; γ1, γ2, γ3) =
λ̃i δ̃i

β̃1,i

[
C−1(v)

]−δ̃i−1
{

1 + λ̃i

[
C−1(v)

]−δ̃i
}− 1

β̃1,i
−1

×
{
−∂C−1(v)

∂vi

}
(37)

where λ̃i = λ∗
i , δ̃i = δ∗i in the case of the type I unit-Dagum, and λ̃i = λ̄i, δ̃i = δ̄i in the

type II unit-Dagum distribution. Putting γ = (γ
′
1, γ

′
2, γ

′
3)

′
, by (37), the i-th element of the

log-likelihood function is

�(γ; v, X) ∝ log(λ̃i) + log(δ̃i)− log(β̃1,i)− (δ̃i + 1) log
[
C−1(vi)

]
−

(
1

β̃1,i
+ 1

)
log
(

1 + λ̃i

[
C−1(vi)

]−δ̃i
)

. (38)
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Remembering that the parameters β̃1,i, λ̃i, and δ̃i are functions of the vector γ of the
dimension p = p1 + p2 + p3, the jrj − th equation of the likelihood system is given by

∂�(γ; v, X)

∂γj,rj

=
1
λ̃i

(
∂λ̃i

∂γj,rj

)
+

1
δ̃i

(
∂δ̃i

∂γj,rj

)
− 1

β̃1,i

(
∂β̃1,i

∂γj,rj

)

− log
[
C−1(vi)

]( ∂δ̃i
∂γj,rj

)
+

1(
β̃1,i
)2

(
∂β̃1,i

∂γj,rj

)
log
(

1 + λ̃i

[
C−1(vi)

]−δ̃i
)

−
(

1
β̃1,i

+ 1

)( ∂λ̃i
∂γj,rj

)
− λ̃i

(
∂δ̃i

∂γj,rj

)
log
[
C−1(vi)

]
[C−1(vi)]

δ̃i + λ̃i

= 0 (39)

for j = 1, 2, 3 and rj = 1, 2, .., pj. The partial derivatives in system (39) are given in
Appendix A.4.

The system of the likelihood equations does not admit any explicit solution; therefore,
the ML estimates γ̂j,rj for j = 1, 2, 3 and rj = 1, 2, ...pj can only be obtained by means of
numerical procedures. Under the usual regularity conditions, the known asymptotic prop-

erties of the maximum likelihood method ensure that
√
(n)(γ̂n − γ)

d−→ N(0, Σγ), where
Σγ = [limn→∞ I(γ)/n]−1 is the (p1 + p2 + p3) × (p1 + p2 + p3) asymptotic variance–
covariance matrix and I(γ) is the Fisher information matrix, given by I(γ) = −E(H),
where H is the Hessian matrix of the second partial derivatives of the log-likelihood func-

tion, i.e., ∂2�(γ;v,X)
∂γj,rj

γh,rh
. Elements of the I(γ) matrix are not reported here for space purposes,

but are available upon request.

6. Applications

In order to show the potentiality of the proposed models, we consider two famous
and widely used datasets, referred to data that fall into the unit interval and contained in
the R package, betareg, namely household food expenditures and reading skills. In particular,
the household food expenditure data regard the proportion of income spent on food for
38 households living in a large U.S. city and contain information on the perceived income
and the number of persons living in the household. The reading skills dataset refers to the
scores obtained in a test on reading accuracy involving 44 Australian children, including
19 dyslexic subjects and 25 non-dyslexic subjects. Moreover, the status of each child, and
information regarding the nonverbal intelligent quotient (iq), are available.

These datasets were used by [34] to describe the implementation of the beta regression
in the R system and to underline the advantage of this kind of regression with respect to
the linear one when data belong to the unit interval. Therefore, as a further aim of this
section, we will compare the performance of the unit-Dagum regression models with that
of the widely used beta regression. Indeed, both methodologies give us the possibility
to evaluate, among other aspects, the impact of some covariates on measures of central
tendency, namely the mean in the case of the beta regression, and the median in the case of
the unit-Dagum regression. It is worth noting that when data exhibit skewness, the median
should be preferred as the centrality measure. Therefore, the proposed regression could be
more appropriate in some cases.

6.1. Modeling Food/Income and Accuracy Data

In this section, we consider the proportion of income spent on food and the scores
regarding reading accuracy. The corresponding empirical distributions are shown in
Figure 5. To evaluate the adequacy of the proposed models in describing the considered
data, the maximum likelihood estimates (MLEs) of the parameters for the I-UDa and II-Da
densities reported in (14) and (23) are obtained, along with the corresponding standard
errors and the values for the Akaike information criterion (AIC). Moreover, we compare
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the obtained results with the analogs for the beta and Kumuraswamy (KW) models, which
are likely the most used models for data on bounded support. Table 2 presents the obtained
results. Both the AIC values and the inspection of Figure 5 suggest that the proposed
models better describe the considered data if compared with the beta and KW distribu-
tions. In particular, the lower value of the AIC for food expenditure data is obtained in
correspondence with the type II unit-Dagum model, while, for reading skills data, the type
I unit-Dagum reaches the lower result, far from the beta and KW ones. We should note that
the chosen data are very different from each other in terms of the distribution shape, so
these examples give us the possibility of testing the flexibilities of our models and their abil-
ity to properly reproduce different characteristics of the phenomena, such as unimodality,
increasing density, presence of asymmetry, fat tails, and so on.
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Figure 5. Empirical and fitted distributions for I-Da, II-Da, beta, and KW models.

Table 2. MLEs, corresponding standard errors (in brackets), and AIC values for I-Da, II-Da, beta, and
KW models in food expenditure and reading skills data.

I-UDa II-UDa Beta KW

Food Expenditures

β 0.484 (1.618) 0.410 (1.631) 6.070 (1.358) 2.954 (0.309)
λ 30,279.37 (34.380) 62.520 (6.985) 14.819 (3.398) 26.964 (8.700)
δ 13.457 (1.326) 10.056 (1.360)

AIC −67.337 −67.400 −66.693 −62.978

Reading Skills

β 0.044 (1.661) 0.038 (1.670) 2.514 (0.578) 2.694 (0.589)
λ 529.384 (29.316) 0.004 (15.152) 0.675 (0.123) 0.665 (0.121)
δ 24.287 (1.604) 14.917 (1.617)

AIC −65.366 −64.134 −48.841 −49.218

6.2. Considering the Covariates: The Regression Models

In this section, we consider both type I and type II unit-Dagum distributions according
to a regressive perspective and we compare their performances with results from the
well-known beta regression.

To this end, we also take into account data regarding covariates and results reported
in [34], corresponding with the best beta regression model for each dataset. We should
note that, as can be viewed from Figure 5, both the income/food proportions and the
reading accuracy scores show an asymmetric distribution; therefore, attention is placed on
the median rather than the mean of the distribution, and it could be more appropriate to
analyze the central tendency.

Food expenditure data
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For the first dataset, information on household income and the number of peo-
ple living in the household are available. Starting with the reparameterization data
reported in (19) and (28), we consider the effect of these covariates on the median and
90th quantile, according to the regression models described in Section 5. Since both
the indicators assume values in the unit interval, a logit-link function is used to re-
late the median and 90th quantiles to the covariates. Moreover, we consider an inter-
cept term related to the β1 indicator through a log-link function, which is suitable for
positive indicators. The ML estimates of the coefficients, their standard errors, and re-
sults from the Wald test are reported in Table 3. In both models, we find that the me-
dian and 90th quantiles of the proportions spent on food decrease as income increases,
while the number of persons living in a household shows a positive significant effect
on the 90th quantile, ceteris paribus. Moreover, both models outperformed the beta
regression in terms of AIC (−88.37 for beta regression), with the best results obtained
for II-UDa regression. A comparison between empirical and fitted curves reported in
Figure 6 confirms these results. In particular, here, two different curves are shown for each
model. Indeed, through the regression approach and the resulting estimates, it is possible
to consider the behaviors of density functions for different covariate values. The depicted
curves refer to the median and v(0.9) indicators for the I-Da and II-Da model, and to
the mean and dispersion parameters for the beta model, when income and the number
of persons are equal to the average level observed for v ≤ 0.5 and v > 0.5, respectively
(μinc = 60.65; μpers = 3.37 vs. μinc = 32.65; μpers = 6). This allows us to evaluate the ability
of the models to describe the right distribution tail, as well as the central tendency.

Reading skills data
In the reading skills dataset, in addition to information regarding the presence of

dyslexia, z scores for the nonverbal intelligent quotient (iq) test are available. Therefore,
we can consider the effects of these characteristics on the median and 90th quantiles
of reading accuracy scores, by specifying a logit-link function to relate indicators and
covariates. In particular, as suggested by [34], we consider an interaction term between
iq and dyslexia. Once again, we relate an intercept term to β1, using a log-link function.
Similar to that obtained by [34] for regression on the mean indicator, we find a significant
main and interaction effect on the median for dyslexia and iq, for both I-Da and II-Da
models. Specifically, results reported in Table 4 confirm the positive effect of iq and the
negative effect for dyslexia and the interaction term. Moreover, we also find a significant
negative effect of dyslexia on the 90th quantile.

In this case, the model with the best performance in terms of AIC is the I-Da one,
but both of the proposed models show lower values than the beta regression
(AIC = −117.8). Figure 7 shows the comparisons among empirical and fitted distribu-
tions for dyslexic and non-dyslexic subjects, considering an average iq level that is equal to
−0.653 for dyslexic subjects and 0.4966 for control subjects.
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Table 3. MLEs, corresponding standard errors, and Wald test results for the I-Da and II-Da regression
models for food expenditure data.

I-UDa
Estimate SE z p-Value

I1 = β1 (log-link)
Intercept −0.333 0.506 −0.659 0.51

I2 = me (logit-link)
Intercept −0.544 0.016 −33.974 <0.001
income −0.009 0.001 −16.758 <0.001

I3 = v(0.9) (logit-link)
Intercept −0.727 0.022 −33.362 <0.001
income −0.008 0.000 −21.604 <0.001
persons 0.167 0.022 7.425 <0.001

AIC = −92.29

II-UDa
Estimate SE z p-Value

I1 = β1 (log-link)
Intercept −3.672 4.586 −0.801 0.423

I2 = me (logit-link)
Intercept −0.552 0.015 −36.371 <0.001
income −0.009 0.000 −18.971 <0.001

I3 = v(0.9) (logit-link)
Intercept −0.724 0.014 −50.203 <0.001
income −0.008 0.000 −25.635 <0.001
persons 0.160 0.015 10.351 <0.001

AIC = −97.25

Table 4. MLEs, corresponding standard errors, and Wald test results for the I-Da and II-Da regression
models for reading skills data.

I-UDa
Estimate SE z p-Value

I1 = β1 (log-link)
Intercept −0.9626 0.9008 −1.069 0.285

I2 = me (logit-link)
Intercept 1.593 0.175 9.107 <0.001
dyslexia −1.119 0.167 −6.707 <0.001
iq 0.504 0.093 5.389 <0.001
dyslexia × iq −0.512 0.094 −5.451 <0.001

I3 = v(0.9) (logit-link)
Intercept 2.69045 0.03643 73.85 <0.001
Dyslexia −1.914 0.03643 −52.544 <0.001

AIC = −139.32

II-UDa
Estimate SE z p-Value

I1 = β1 (log-link)
Intercept −0.7247 0.80705 −0.898 0.369

I2 = me (logit-link)
Intercept 1.60156 0.18082 8.857 <0.001
dyslexia −1.1376 0.17224 −6.605 <0.001
iq 0.49774 0.09663 5.151 <0.001
dyslexia × iq −0.5047 0.09701 −5.202 <0.001

I3 = v(0.9) (logit-link)
Intercept 2.69356 0.03759 71.648 <0.001
dyslexia −1.9168 0.03768 −50.873 <0.001

AIC = −137.41
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Figure 6. Empirical and fitted distributions for I-Da, II-Da, and beta models. The solid lines and the
dotted lines refer to the average values of covariates obtained, respectively, for v ≤ 0.5 and v > 0.5.
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Figure 7. Empirical and fitted distributions for I-Da, II-Da, and beta models. Different curves refer to
dyslexic and non-dyslexic subjects, considering the average iq level for each group.

7. Concluding Remarks

In this paper, we show that many of the existing proposals on probability distributions
for data in the unit interval can be viewed as particular cases of a general class of models,
obtained using the techniques of rv transformations. In the present paper, expressions on
the distribution and density functions of the class are given and the principal characteristics
are furnished. Through the proper transformation choice, it is possible to obtain new
distribution functions on bounded support, whose characteristics are easy to derive. Indeed,
two new distributions are proposed, starting with the Dagum model, and considering two
different transformations. The resulting models are particularly flexible, as is evident by
choosing different sets of parameter values and by looking at the behavior of their densities
and hazard functions.

We also considered the possibility of reparameterizing the distributions in order to
express them in terms of the indicators of interest. In particular, we obtained models that
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depend on the median and quantile; this gave us the opportunity to relate these quantities
to covariates, according to a regressive perspective. Given the particular nature of the
involved variables, this led us to consider the regression approach, where the response
variable was defined on the unit interval. Therefore, the proposed methodology can be
considered as an alternative to other approaches that are often employed when the response
variable represents proportions, rates, or percentages. Furthermore, considering regression
on the median could be more appropriate in the presence of asymmetry. The applications
on two different datasets allowed us to evaluate the behaviors of the suggested models and
compare their performances with the most widely used approach in this context, namely
the beta regression. The obtained findings are encouraging since both models seem to be
very competitive.
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Appendix A

Appendix A.1. Proof of Proposition 1

First, in the following expression
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substituting this last result in the rth moment, we obtain
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Putting y = (2j + r)λ
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Appendix A.2. Proof of Proposition 2

Given the considered transformation V := C(Y) = e−Y, it is evident that the r-th
moment of the type II unit-Dagum distribution coincides with the Laplace transform of the
Dagum distribution, i.e.,

E[Vr] = E
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Substituting expression (12) into the s-th moment of the Dagum distribution in the
previous equation, we obtain the expression for the r-th moment of the type II unit-Dagum dis-
tribution.

Appendix A.3. Fisher Information Matrix

In order to compute the expected Fisher information matrix, we consider the following
elements of the Hessian matrix:
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The elements of the expected Fisher information matrix are functions of the following
expectation, with respect to the density function of the rv V

Ej1,j2,j3 = EV

⎧⎪⎨⎪⎩
[
C−1(V)

]−j1δ(ln[C−1(V)
])j2(

1 + λ[C−1(V)]
−δ
)j3

⎫⎪⎬⎪⎭ (A7)

We now observe that for a generic function h(.) of C−1(V), by a simple transformation of
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Using the successive derivatives of the beta function, the expectations for determining the
elements of the Fisher information matrix are
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where

A1(p, q) = B(p, q){ψ(p)− ψ(p + q)}
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In order to compute the expected Fisher information matrix, we compute the elements
of the Hessian matrix, which, after some algebraic manipulation, for j, s = 1, 2, 3 and
rj = 1, 2, ..., pj and rs = 1, 2, ..., ps, turn out to be
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∂γj,rj ∂γs,rs

)
,

k6 =
1

β̃2
1,i

(
∂β̃1,i

∂γj,rj

)(
∂λ̃i

∂γs,rs

)
−
(

1
β̃1,i

+ 1

)(
∂2λ̃i

∂γj,rj ∂γs,rs

)
and

k7 = k5

(
1

β̃1,i
+ 1

)
− λ̃i

β̃1,i

(
∂β̃1,i

∂γj,rj

)(
∂δ̃i

∂γs,rs

)
.

The elements of the expected Fisher information matrix are functions of the following
expectations:

E

⎧⎨⎩
[
C−1(V)

]−δ̃i(
1 + λ̃i[C−1(V)]

−δ̃i
)
⎫⎬⎭ = E1,0,1 ; E

⎧⎨⎩
[
C−1(V)

]−δ̃i ln
[
C−1(V)

](
1 + λ̃i[C−1(V)]

−δ̃i
)
⎫⎬⎭ = E1,1,1 (A15)

E

⎧⎪⎨⎪⎩
[
C−1(V)

]−δ̃i ln
[
C−1(V)

](
1 + λ̃i[C−1(V)]

−δ̃i
)2

⎫⎪⎬⎪⎭ = E1,1,2 ; E

⎧⎪⎨⎪⎩
[
C−1(V)

]−2δ̃i(
1 + λ̃i[C−1(V)]

−δ̃i
)2

⎫⎪⎬⎪⎭ = E2,0,2 (A16)

E

⎧⎪⎨⎪⎩
[
C−1(V)

]−δ̃i
(
ln
[
C−1(V)

])2(
1 + λ̃i[C−1(V)]

−δ̃i
)2

⎫⎪⎬⎪⎭ = E1,2,2 (A17)

E2,1,2 = E

⎧⎪⎨⎪⎩
[
C−1(V)

]−2δ̃i ln
[
C−1(V)

](
1 + λ̃i[C−1(V)]

−δ̃i
)2

⎫⎪⎬⎪⎭ = EY

⎧⎪⎨⎪⎩ Y−2δ̃i ln(Y)(
1 + λ̃iY−δ̃i

)2

⎫⎪⎬⎪⎭
=

1
β̃1,i δ̃iλ̃

2
i

{
ln(λ̃i)B(

1
β̃1,i

, 5 +
2
δ̃i
) + A1(

1
β̃1,i

, 5 +
2
δ̃i
)− A2(

1
β̃1,i

, 5 +
2
δ̃i
)

}
(A18)

and finally

EV

{
ln
(

1 + λ̃i

[
C−1(V)

]−δ̃i
)}

= EY

{
ln
[(

1 + λ̃iY−δ̃i
)]}

= − 1
β̃1,i

A1(
1

β̃1,i
, 3 +

2
δ̃i
). (A19)

Appendix A.4. Partial Derivatives Of System (39)

Evidently, in system (39), the partial derivatives are given by

∂β̃1,i

∂γ1,r1

=
∂h1(x1,i, γ1)

∂γ1,r1

for r1 = 1, ..., p1

∂λ̃i
∂γ1,r1

=
∂λ̃(β1,i, mei, v(q)i)

∂γ1,r1

=
∂λ̃(β1,i, mei, v(q)i)

∂β1,i

(
∂β1,i

∂γ1,r1

)
for r1 = 1, ..., p1
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∂λ̃i
∂γ2,r2

=
∂λ̃(β1,i, mei, v(q)i)

∂γ2,r2

=
∂λ̃(β1,i, mei, v(q)i)

∂mei

(
∂mei
∂γ2,r2

)
for r2 = 1, ..., p2

∂λ̃i
∂γ3,r3

=
∂λ̃(β1,i, mei, v(q)i)

∂γ3,r3

=
∂λ̃(β1,i, mei, v(q)i)

∂v(q)i

(
∂v(q)i
∂γ3,r3

)
for r3 = 1, ..., p3

∂δ̃i
∂γ1,r1

=
∂δ̃(β1,i, mei, v(q)i)

∂γ1,r1

=
∂δ̃(β1,i, mei, v(q)i)

∂β1,i

(
∂β1,i

∂γ1,r1

)
for r1 = 1, ..., p1

∂δ̃i
∂γ2,r2

=
∂δ̃(β1,i, mei, v(q)i)

∂γ2,r2

=
∂δ̃(β1,i, mei, v(q)i)

∂mei

(
∂mei
∂γ2,r2

)
for r2 = 1, ..., p2

∂δ̃i
∂γ3,r3

=
∂δ̃(β1,i, mei, v(q)i)

∂γ3,r3

=
∂δ̃(β1,i, mei, v(q)i)

∂v(q)i

(
∂v(q)i
∂γ3,r3

)
for r3 = 1, ..., p3

Moreover, by specifying the appropriate link functions of indicators of interest

β̃1,i = ex
′
1,iγ1 , mei =

ex
′
2,iγ2

1 + ex
′
2,iγ2

, v(q)i =
ex

′
3,iγ3

1 + ex
′
3,iγ3

,

we have
∂β1,i

∂γ1,r1

= ex
′
1,iγ1 x1,r1,i,

∂mei
∂γ2,r2

=
ex

′
2,iγ2(

1 + ex
′
2,iγ2

)2 x2,r2,i and
∂v(q)i
∂γ3,r3

=
ex

′
3,iγ3(

1 + ex
′
3,iγ3

)2 x3,r3,i.

References

1. Alzaatreh, A.; Famoye, F.; Lee, C. A New Method for Generating Families of Continuous Distributions. Metron 2013, 71, 63–79.
[CrossRef]

2. Eugene, N.; Lee, C.; Famoye, F. Beta-normal distribution and its application. Commun. Stat. Theory Methods 2002, 31, 497–512.
[CrossRef]

3. Jones, M. Families of distributions arising from the distributions of order statistics. Test 2004, 13, 1–43. [CrossRef]
4. Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 46, 79–88.

[CrossRef]
5. Topp, C.; Leone, F. A family of J-shaped frequency functions. J. Am. Stat. Assoc. 1955, 50, 209–219. [CrossRef]
6. Arnold, B.; Groeneveld, R. Some properties of the arcsine distribution. J. Am. Stat. Assoc. 1980, 75, 173–175. [CrossRef]
7. Van Dorp, R.; Kotz, S. The standard two-sided power distribution and its properties. Am. Stat. 2002, 56, 90–99. [CrossRef]
8. Kotz, S.; Van Dorp, J.R. Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications; World

Scientific Publishing Co.: Singapore, 2004.
9. Marshall, A.W.; Olkin, I. Life Distributions; Springer: New York, NY, USA, 2007.
10. Modi, K.; Gill, V. Unit Burr III distribution with application. J. Stat. Manag. Syst. 2019, 23, 579–592. [CrossRef]
11. Singh, D.P.; Jha, M.; Tripathi, Y.; Wang, L. Reliability estimation in a multicomponent stress-strength model for unit Burr III

distribution under progressive censoring. Qual. Technol. Quant. Manag. 2022, 19, 605–632. [CrossRef]
12. Mazucheli, J.; Menezes, A.; Chakraborty, S. On the one parameter unit-Lindley distribution and its associated regression model

for proportion data. J. Appl. Stat. 2019, 46, 700–714. [CrossRef]
13. Mazucheli, J.; Menezes, A.; Dey, S. Unit-Gompertz distribution with applications. Statistica 2019, 79, 26–43.
14. Korkmaz, M.; Chesneau, C. On the unit Burr-XII distribution with the quantile regression modeling and applications. Comput.

Appl. Math. 2021, 40, 29. [CrossRef]
15. Ghitany, M.; Mazucheli, J.; Menezes, A.; Alqallaf, F. The unit-inverse Gaussian distribution: A new alternative to two-parameter

distributions on the unit interval. Commun. Stat. Theory Methods 2018, 48, 3423–3438. [CrossRef]
16. Korkmaz, M.; Chesneau, C.; Korkmaz, Z. On the arcsecant hyperbolic normal distribution. Properties, quantile regression

modeling and applications. Symmetry 2021, 13, 117. [CrossRef]
17. Korkmaz, M. A new heavy-tailed distribution defined on the bounded interval: The logit slash distribution and its applications.

J. Appl. Stat. 2019, 473, 2097–2119. [CrossRef]

234



Mathematics 2023, 11, 2888

18. Arslan, T. A new family of unit-distributions: Definition, properties and applications. Twms J. Appl. Eng. Math. 2023, 13, 782–791.
19. Ferreira, A.; Mazucheli, J. The zero-inflated, one and zero-and-one-inflated new unit-Lindley distributions. Braz. J. Biom. 2022,

40, 291–326. [CrossRef]
20. Rodrigues, J.; Bazán, J.; Suzuki, A.K. A flexible procedure for formulating probability distributions on the unit interval with

applications. Commun. Stat. Theory Methods 2020, 49, 738–754. [CrossRef]
21. Aljarrah, M.; Lee, C.; Famoye, F. On generating T − X family of distributions using quantile functions. J. Stat. Distrib. Appl. 2014, 1, 2.

[CrossRef]
22. Bakouch, H.; Nik, A.; Asgharzadeh, A.; Salinas, H. A flexible probability model for proportion data: Unit-half-normal distribution.

Commun. Stat. Case Stud. Data Anal. Appl. 2021, 7, 271–288. [CrossRef]
23. Haq, M.; Hashmi, S.; Aidi, K.; Ramos, P.F.L. Unit Modified Burr-III Distribution: Estimation, Characterizations and Validation

Test. Ann. Data Sci. 2023, 10, 415–449. [CrossRef]
24. Mazucheli, J.; Leiva, V.; Alves, B.; Menezes, A. A New Quantile Regression for Modeling Bounded Data under a Unit

Birnbaum–Saunders Distribution with Applications in Medicine and Politics. Symmetry 2021, 13, 682. [CrossRef]
25. Mazucheli, J.; Menezes, A.; Dey, S. The unit Birnbaum-Saunders distribution with applications. Chil. J. Stat. 2018, 9, 47–57.
26. Nasiru, S.; Abubakari, A.; Angbing, I. Bounded Odd Inverse Pareto Exponential Distribution: Properties, Estimation, and

Regression. Int. J. Math. Math. Sci. 2021, 2021, 9955657. [CrossRef]
27. Altun, E.; El-Morshedy, M.; Eliwa, M. A new regression model for bounded response variable: An alternative to the beta and unit

Lindley regression models. PLoS ONE 2021, 16, e0245627. [CrossRef] [PubMed]
28. Domma, F.; Condino, F.; Giordano, S. A New Formulation of the Dagum Distribution in terms of Income Inequality and Poverty

Measures. Physica A Stat. Mech. Its Appl. 2018, 511, 104–126. [CrossRef]
29. Domma, F.; Condino, F.; Franceschi, S.; De Luca, D.; Biondi, D. On the extreme hydrologic events determinants by means of

Beta-Singh-Maddala reparameterization. Sci. Rep. 2022, 12, 15537. [CrossRef]
30. Dagum, C. A New Model of Personal Distribution: Specification and Estimation; Springer: New York, NY, USA, 1977; pp. 413–437.
31. Dagum, C. The Generation and Distribution of Income, the Lorenz Curve and the Gini Ratio. 1980. Available online:

https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL8130438924 (accessed on 23 June 2023).
32. Latorre, G. Proprieta’ campionarie del modello di Dagum per la distribuzione dei redditi. Statistica 1988, 48, 15–27.
33. Kleiber, C.; Kotz, S. Statistical Size Distributions in Economics and Actuarial Science; Wiley Series in Probability and Statistics; Wiley

Interscience, John Wiley and Sons Inc.: Hoboken, NJ, USA, 2003.
34. Cribari-Neto, F.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2020, 34, 1–24.
35. Ferrari, S.; Cribari Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [CrossRef]
36. Song, P.; Tan, M. Marginal models for longitudinal continuous proportional data. Biometrics 2000, 56, 496–502. [CrossRef]

[PubMed]
37. Gómez-Déniz, E.; Sordo, M.; Calderín-Ojeda, E. The log-Lindley distribution as an alternative to the beta regression model with

applications in insurance. Insur. Math. Econ. 2014, 54, 49–57. [CrossRef]
38. Altun, E. The log-weighted exponential regression model: Alternative to the beta regression model. Commun. Stat. Theory

Methods 2021, 50, 2306–2321. [CrossRef]
39. Mousa, A.; El-Sheikh, A.; Abdel-Fattah, M. A gamma regression for bounded continuous variables. Adv. Appl. Stat. 2016,

49, 305–326. [CrossRef]
40. Mitnik, P.; Baek, S. The Kumaraswamy distribution: Median-dispersion re-parameterizations for regression modeling and

simulation-based estimation. Stat. Pap. 2013, 54, 177–192. [CrossRef]
41. Lemonte, A.; Moreno-Arenas, G. On a heavy-tailed parametric quantile regression model for limited range response variables.

Comput. Stat. 2020, 35, 379–398. [CrossRef]
42. Jodrá, P.; Jiménez-Gamero, M. A quantile regression model for bounded responses based on the exponential-geometric

distribution. Revstat 2020, 4, 415–436.
43. Paz, R.; Balakrishnan, N.; Bazán, J. L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications.

Braz. J. Probab. Stat. 2019, 33, 455–479.
44. Mazucheli, J.; Menezes, A.; Fernandes, L.; de Oliveira, R.; Ghitany, M. The unit Weibull distribution as an alternative to the

Kumaraswamy distribution for the modeling of quantiles conditional on covariates. J. Appl. Stat. 2020, 47, 954–974. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

235



mathematics

Article

Zero-Dependent Bivariate Poisson Distribution
with Applications

Najla Qarmalah 1,* and Abdulhamid A. Alzaid 2

1 Department of Mathematical Sciences, Princess Nourah bint Abdulrahman University,
Riyadh 84428, Saudi Arabia

2 Department of Statistics and Operations Research, King Saud University, Riyadh 145111, Saudi Arabia
* Correspondence: nmbinqurmalah@pnu.edu.sa; Tel.: +966-118236238

Abstract: The bivariate Poisson model is the most widely used model for bivariate counts, and in
recent years, several bivariate Poisson regression models have been developed in order to analyse
two response variables that are possibly correlated. In this paper, a particular class of bivariate
Poisson model, developed from the bivariate Bernoulli model, will be presented and investigated.
The proposed bivariate Poisson models use dependence parameters that can model positively and
negatively correlated data, whereas more well-known models, such as Holgate’s bivariate Poisson
model, can only be used for positively correlated data. As a result, the proposed model contributes to
improving the properties of the more common bivariate Poisson regression models. Furthermore,
some of the properties of the new bivariate Poisson model are outlined. The method of maximum
likelihood and moment method were used to estimate the parameters of the proposed model.
Additionally, real data from the healthcare utilization sector were used. As in the case of healthcare
utilization, dependence between the two variables may be positive or negative in order to assess
the performance of the proposed model, in comparison to traditional bivariate count models. All
computations and graphs shown in this paper were produced using R programming language.

Keywords: Poisson; Bernoulli; count data; maximum likelihood; moment method; regression;
bivariate models
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1. Introduction

Bivariate count models have received increasing scholarly attention in recent years,
mainly because they offer flexibility for fitting across a wide variety of random phenomena.
For instance, applications based on discrete bivariate models are often used in the fields
of health sciences, traffic accidents, economics, actuarial science, social sciences, environ-
mental studies, and so forth [1]. For more information about bivariate count models, the
reader is directed to [2–8]. The most widely used model for bivariate counts is the bivariate
Poisson model, which was developed by [9]. The bivariate Poisson model, which was
developed by [9], is considered the limit of a bivariate contingency table model. The
literature outlines the main contributions and applications of bivariate Poisson models.
For instance, the bivariate Poisson model can be used in modelling data in sports [10,11],
health [12–14], econometrics and insurance [15,16], and so forth. Furthermore, the use of
the bivariate Poisson model is not unique in its different methodological applications. One
of the methods is the trivariate reduction, which was studied by [17] and developed by [18].
Bivariate Poisson models have been developed based on the method of trivariate reduction
using convolutions of independent Poisson random variables. These models allow for only
non-negative correlation between variables. For a comprehensive review of the bivariate
Poisson model and its applications, the reader is directed to references [4,19–21].
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More recently, researchers have developed bivariate Poisson regression models. These
models analyse two response variables that are possibly correlated, and they allow the
two response variables to be affected by different predictive factors. This means that
bivariate Poisson regression models can be used for inference and prediction purposes.
Early studies of the use of bivariate count regression models to analyse correlated count
events include those by [3], who use a bivariate Poisson regression in a labour mobility
study. Furthermore, using a bivariate Poisson regression model, [22] study the relationship
between types of health insurance and various responses that measure the demand for
health care. Only recently have bivariate regression models been compared and their
application in different fields analysed in depth. A study by [13] examines bivariate
and zero-inflated bivariate Poisson regression models using the conditional method, as
compared with the standard method, using a joint probability distribution (j.p.d). Therefore,
bivariate Poisson regression models play a vital role in modeling, analyzing, and improving
the fit results when two dependent variables in a data set are highly correlated [1,12,23].

Although the bivariate Poisson regression model offers useful properties for modeling
paired count data that exhibits correlations, some models have major drawbacks. One
drawback is that some models can only model data with positive correlations [24]. For
instance, a bivariate Poisson model based on the trivariate reduction method studied
by [17] lacks generality, because it shows a positive correlation only. A few previous
studies have explored and developed bivariate Poisson regression models that allow for
negative correlations, including bivariate Poisson distribution as a product of Poisson
marginals with a multiplicative factor [5]. In addition, [25] have proposed a bivariate
Poisson distribution that allows for negative correlations by using conditional probabilities.
This current paper will consider a class of bivariate Poisson models generated from the
bivariate Bernoulli model, which can model positively and negatively correlated data. This
is a progression on from other bivariate Poisson models already proposed in previous
research, including the well-known Holgate [17] bivariate Poisson model. One of the merits
of the proposed model is that its structure is relatively simple. The proposed models seek
to contribute to improving the properties of commonly used bivariate Poisson models. In
this paper, the statistical properties of the new model are studied, and the parameters of
the proposed model are estimated using the maximum likelihood and moment methods.
In this respect, a simulation study was carried out to investigate the performance of the
parameter estimation ability of the proposed model using the maximum likelihood and
moment method. Finally, applications of the proposed model will be presented in the
healthcare sector, and the model’s performance will be compared against well-known
bivariate Poisson models.

This paper is organized into sections as follows: Section 2 will detail the proposed
bivariate Poisson model and the relevant estimation methods used. Section 3 will present
relevant application of this model, using data drawn from different fields and will compare
the results with well-known models. Finally, a conclusion will be presented in Section 4.

2. Zero-Dependent Bivariate Poisson Model (ZDBP)

Different methods have been used to construct bivariate Poisson distributions, with
specified marginal distributions. Most of the well-known bivariate Poisson models use the
popular reduction method [4]. However, this method has two main drawbacks. Firstly,
it does not support negative correlation values and secondly, it does not cover the entire
range of feasible correlations. In the current study, the construction of a developed bivariate
Poisson model is presented, without the aforementioned drawbacks as follows:

If we consider that (B1, B2) has Bernoulli marginals, then it has only four possible
values (1, 1), (1, 0), (0, 1), and (0, 0) with the probabilities p11, p10, p01, and p00, which are
pij = P(B1 = i, B2 = j), i, j = 0, 1. If the marginal probability discrete random variables
are independent of (B1, B2), and have a probability mass function of zero-truncated Poisson
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distribution with the parameters θ1 and θ2, respectively, then the probability mass function
can be defined as follows:

P(Xi = j) =
e−θi

1 − e−θi

θi
j

j!
, j = 1, 2, . . . , i = 1, 2

.
Here, set Yi = BiXi, i = 1, 2, where pi = 1 − e−θi , i = 1, 2. Then, Yi has a Poisson

distribution with the parameter θi. The j.d.f of the two random variables, Y1 and Y2, can be
expressed as follows:

P(Y1 = y1, Y2 = y2) =
1

∑
i,j=0

P(Y1 = y1, Y2 = y2|B1 = i, B2 = j)pij

Then:

P(Y1 = y1, Y2 = y2)

= θ1
y1

y1!
θ2

y2
y2!

(
1−p1

p1

)1−δ(y1)
(

1−p2
p2

)1−δ(y2)
p00

δ(y1)δ(y2)p10
(1−δ(y1))δ(y2)p01

δ(y1)(1−δ(y2))p11
(1−δ(y1))(1−δ(y2))

(1)

for y1, y2 = 0, 1, . . . where δ(x) = 1 if x = 0 and 0 is otherwise.
Generally, Y1 and Y2 are dependent and therefore (1) defines a new bivariate Poisson

distribution, which will be called the zero-dependent Bivariate Poisson Model (ZDBP)
model. Since bivariate Bernoulli distribution is completely determined by the three param-
eters p1, p2, and p11, then, the above shows that the ZDBP model is completely determined
by the three parameters θ1, θ2, and p11. Therefore, the ZDBP (θ1, θ2, p11) model can be used
whenever the parameters matter and as a result, (1) can be rewritten as follows:

P(Y1 = y1, Y2 = y2)

= θ1
y1

y1!
θ2

y2
y2!

(
e−θ1

1−e−θ1

)1−δ(y1)
(

e−θ2

1−e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y1)δ(y2) (1 − e−θ1

−p11)
δ(y2)(1−δ(y1))

(
1 − e−θ2 − p11

)δ(y1)(1−δ(y2))p11
(1−δ(y1))(1−δ(y2))

(2)

To visualize the j.p.d for the ZDBP model in (2), the representative j.p.d plots for
different parameter choices are shown in Figures 1–3, where negative dependence is
apparent in Figures 1 and 3. The package “plot3D” in R is needed to represent the plots in
Figures 1–3.

Figure 1. The j.p.d of the ZDBP model for θ1 = 0.79, θ2 = 0.79 and p11 = 0.19 with cor = −0.3.
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Figure 2. The j.p.d of the ZDBP model for θ1 = 1.96, θ2 = 1.96 and p11 = 0.85 with cor = 0.3.

Figure 3. The j.p.d of the ZDBP model for θ1 = 0.84, θ2 = 0.58 and p11 = 0.15 with cor = −0.3.

2.1. Statistical Properties

The ZDBP model has statistical properties that can be easily proven. These properties
are shown as follows:

Theorem 1. The conditional probability function of Y1 given Y2 is

P(Y1 = y1| Y2 = y2) =

{
P0(y2) y1 = 0

(1 − P0(y2))
θ1

y1
y1!

(
e−θ1

1−e−θ1

)
y1 = 1, 2, . . .

,

where,

P0(y2) = eθ2

(
e−θ2

1 − e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y2)
(

1 − e−θ2 − p11

)(1−δ(y2))

Proof . Dividing (2) by θ2
y2

y2! e−θ2 one gets

P(Y1 = y1| Y2 = y2) = eθ2
θ1

y1

y1!

(
e−θ1

1 − e−θ1

)1−δ(y1)( e−θ2

1 − e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y1)δ(y2)

(
1 − e−θ1 − p11

)δ(y2)(1−δ(y1))
(

1 − e−θ2 − p11

)δ(y1)(1−δ(y2))
p11

(1−δ(y1))(1−δ(y2)).

Therefore, for y1 = 0, we have

P(Y1 = 0| Y2 = y2) = eθ2

(
e−θ2

1 − e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y2)
(

1 − e−θ2 − p11

)(1−δ(y2))
= P0(y2).
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In addition, for y1 �= 0, we have

P(Y1 = y1| Y2 = y2) = eθ2
θ1

y1

y1!

(
e−θ1

1 − e−θ1

)(
e−θ2

1 − e−θ2

)1−δ(y2) (
1 − e−θ1 − p11

)δ(y2)
p11

(1−δ(y2))

From the two cases y2 = 0 and y2 �= 0, we conclude that

eθ2

(
e−θ2

1 − e−θ2

)1−δ(y2) [(
e−θ1 + e−θ2 + p11 − 1

)δ(y2) (
1 − e−θ2 − p11

)(1−δ(y2))
+ eθ2

θ1
y1

y1!

(
1 − e−θ1 − p11

)δ(y2)
p11

(1−δ(y2))
]
= 1,

As a result, we get

eθ2

(
e−θ2

1 − e−θ2

)1−δ(y2) (
1 − e−θ1 − p11

)δ(y2)
p11

(1−δ(y2)) = 1 − P0(y2).

This completes the proof. �

From the above, it is clear that Theorem 1 implies that the conditional distribution
of Y1 given Y2 is mixture of degenerated distribution at zero and zero-truncated Poisson
distribution with mixing probabilities dependent on the value of y2. In other words, we can
write Y1

∣∣∣Y2 =d I(Y2)R, where I(Y2) is the Bernoulli random variable with failure proba-
bility as P0(Y2) independent of the zero-truncated Poisson random variable R. Therefore,
we have the following corollary.

Corollary 1.

E[Y1|Y2 = y2] =
θ1

1 − e−θ1
[1 − P0(y2)] =

θ1

1 − e−θ1

{
eθ2
(
1 − e−θ1 − p11

)
, y2 = 0

p11
1−e−θ2

, y2 �= 0

Theorem 2. The covariance of Y1 and Y2 is cov(Y1, Y2) =
θ1θ2
p1 p2

(p11 − p1 p2)

Proof . The covariance of Y1 and Y2 according to the assumption Yi = BiXi, i = 1, 2 can be
defined as follows:

cov(Y1, Y2) = cov(B1X1, B2X2) = E(B1X1B2X2)− E(B1X1)E(B2X2)

Since X1 and X2 are independent of (B1, B2), then

cov(Y1, Y2) = E(X1)E(X2)E(B1B2)− E(X1)E(X2)E(B1)E(B2) = E(X1)E(X2)[E(B1B2)− E(B1)E(B2)]

=
θ1θ2(

1 − e−θ1
)(

1 − e−θ2
) cov(B1, B2)

Since cov(B1, B2) = p11 − p1 p2 and pi = 1 − e−θi , therefore we get the result

cov(Y1, Y2) =
θ1θ2

p1 p2
(p11 − p1 p2)

�

From Corollary 1, it is clear that Y1 and Y2 will be independent variables when
p11 = p1 p2.

Corollary 2. The correlation of Y1 and Y2 is cor(Y1, Y2) =
√

θ1θ2(1−p1)(1−p2)
p1 p2

cor(B1, B2) .
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Proof . The correlation of Y1 and Y2 according to the assumption Yi = BiXi, i = 1, 2 is
defined as follows:

cor(Y1, Y2) = cor(B1X1, B2X2) =
cov(Y1, Y2)

σ(Y1)σ(Y2)

From Corollary 1 and since Yi ∼ Poisson(θi), i = 1, 2, then

cor(Y1, Y2) =

√
θ1θ2

p1 p2
(p11 − p1 p2)

Since cor(B1, B2) =
p11−p1 p2√

p1(1−p1)p2(1−p2)
, then the equation above can be written as

cor(Y1, Y2) =

√
θ1θ2(1 − p1)(1 − p2)

p1 p2
cor(B1, B2)

�

From Corollary 2, we can conclude that the correlation of Y1 and Y2 allows the ZDBP
model to be positively or negatively correlated since it depends on cor(B1, B2), which can
be a negative or a positive correlation.

2.2. Parameter Estimation

An estimation of the ZDBP model parameters was obtained using the maximum like-
lihood estimation (ML) and moment methods (MM). The ZDBP model has six parameters
that can be estimated based on three parameters, which are θ1, θ2, and p11. If we consider n
as the independent vectors (yi1, yi2), where the i-th vector is the ZDBP model shown in (2),
then the estimators can be expressed as follows:

2.2.1. Maximum Likelihood Estimation (ML)
The likelihood function of (2) is shown below as

L(θ1, θ2, p11, p00, p10, p01, p11; y1i , y2i)

=
n
∏
i=1

θ1
y1i

y1i !
θ2

y2i
y2i !

(
e−θ1

1−e−θ1

)1−δ(y1i)
(

e−θ2

1−e−θ2

)1−δ(y2i)(
e−θ1 + e−θ2 + p11 − 1

)δ(y1i)δ(y2i)(1 − e−θ1

−p11)
δ(y2i)(1−δ(y1i))

(
1 − e−θ2 − p11

)δ(y1i)(1−δ(y2i))p11
(1−δ(y1i))(1−δ(y2i))

It is worth mentioning that θ1, θ2, and p11 are sufficient to be used with ML method
in order to estimate the other parameters. This is because of the dependent relationship
between the parameters. The corresponding log likelihood can be given as follows:

� = logL(θ1, θ2, p11; y1i , y2i)

=
n
∑

i=1
[y1i log(θ1)− log(y1i!) + y2i log(θ2)− log(y2i!)− (1 − δ(y1i))

(
θ1 + log

(
1 − e−θ1

))
−(1 − δ(y2i))

(
θ2 + log

(
1 − e−θ2

))
+ δ(y1i)δ(y2i) log

(
e−θ1 + e−θ2 + p11 − 1

)
+δ(y2i)(1 − δ(y1i))log

(
1 − e−θ1 − p11

)
+ δ(y1i)(1 − δ(y2i))log(1 − e−θ2 − p11)

+(1 − δ(y1i))(1 − δ(y2i)) log(p11)]

Furthermore, the corresponding likelihood equations are shown below:

∂�

∂θ̂1
= 0,

∂�

∂θ̂2
= 0 and

∂�

∂ p̂11
= 0 (3)
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These equations can be solved numerically to estimate the parameters θ1, θ2, and p11.
Following on from this, other parameters were estimated using the following equations:

p̂1 = 1 − e−θ̂1

p̂2 = 1 − e−θ̂2

p̂10 = 1 − e−θ̂1 − p̂11

p̂01 = 1 − e−θ̂2 − p̂11

p̂00 = e−θ̂1 + e−θ̂2 + p̂11 − 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4)

2.2.2. Moment Method Estimation (MM)

Using the MM, the following equations were considered in order to estimate the
parameters θ1, θ2, and p11 as follows:

y1 = θ̂1
y2 = θ̂2

p̂11 =
(

1 − e−θ̂1
)(

1 − e−θ̂2
)[

γ̂

θ̂1 θ̂2
+ 1
]
⎫⎪⎬⎪⎭

Following on from this, other parameters were estimated using (4).

2.2.3. Simulation Study

A simulation study was conducted to assess the performance of the ML method and
MM used for the estimation of ZDBP’s parameters. The simulation was executed according
to the steps outlined below:

1. A total of 1000 data sets with sizes of 20, 50, 200, and 1000, relating to each data set,
were generated from the ZDBP model using four different theoretical parameters
values, with varying positive and negative correlations as follows:

(a) Case 1: Model ZDBP (0.30, 1.57, 0.05) with cor = −0.5;
(b) Case 2: Model ZDBP (0.54, 0.89, 0.07) with cor = −0.5;
(c) Case 3: Model ZDBP (0.44, 0.37, 0.19) with cor = 0.3;
(d) Case 4: Model ZDBP (0.17, 0.19, 0.13) with cor = 0.7.

2. Calculating the ML estimates of θ1, θ2, and p11 and considering that 1 − e−θ̂1 − e−θ̂2 ≤
p̂11 ≤ min

{
1 − e−θ̂1 , 1 − e−θ̂2

}
, the obtained estimates by step 1 were ignored.

3. The bias and mean square error (MSE) were calculated for all considered models.

In Step 1, packages “mipfp”, “VGAM”, and “actuar” in R were used in order to
generate data from the ZDBP model. In addition, in Step 2, Equation (3) is solved numeri-
cally using the function “optim” in R. The method “BFGS”, a quasi-Newton method, was
chosen for the optimization problem among other methods in optim function because it is
relatively quick. Tables 1–4 below show the performance of the ML method and the MM
used for estimation of the ZDBP’ parameters, taking into account the MSE and bias relating
to the cases shown in Step 1 of the simulation study. In general, the results revealed the
superiority of the ML method for the estimation of positive and negative correlations in
comparison with the MM, taking into account the MSE. In addition, the ML results of θ1, θ2,
and p11 were better than the MM results of these parameters based on the MSE for n = 20,
except for the ML results of θ1, θ2, when θ1 > θ2, as shown in Table 1.

It can be seen that the performance using the ML method for the estimation of the
parameters θ1, θ2, and p11 is similar to that generated by the MM for 1000, especially for
positive correlations. See Table 3.

The MSE of ML for θ1 and θ2 are the same as the MSE of MM estimates of these
parameters when n = 50 for θ2 only, and when n = 200 for both parameters. Moreover,
Table 4 shows that the MSE of ML for θ1 and p11 are the same as the MSE of MM estimates
of these parameters when n = 200. For n = 1000, the performance of ML in general is the
same as MM for the estimation of θ1, θ2, and p11, according to the MSE when either the
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correlation is positive or negative. As a result, it can be concluded that the ML estimates
of the ZDBP model’s parameters are useful for estimation, in comparison with the MM
estimates, especially for small samples and for when θ1, θ2 < 1.

Figure 4 shows the MSE results using the ML of θ1, θ2, where cor related to the cases is
shown in Step 1 of the simulation study. It is clear from Figure 4a–d that using the MLE, as
the sample size increases, the MSE for θ1, θ2 and cor decreases simultaneously. Using the
ML method, the MSE for θ1 and θ2 is less than the MSE for cor in relation to the positive
correlation, as shown in Figure 4c,d. On the other hand, using the ML method, the MSE for
cor, as shown in Figure 4a,b, is less than the MSE for θ1 and θ2 for the large sample sizes
and for the negative correlation.

Table 1. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 for the ZDBP (0.30, 1.57, 0.05) model with cor = −0.5.

n 20 50 200 1000

Method ML MM ML MM ML MM ML MM

θ̂1
MSE 0.0038 0.0022 0.0101 0.0014 0.0002 0.0017 0.0002 0.0004
bias 0.0467 0.0468 0.2867 0.0368 0.0092 0.0393 0.0087 0.0138

θ̂2
MSE 0.1937 0.1092 0.0002 0.0271 0.0090 0.0096 0.0007 0.0004
bias −0.4347 −0.2630 −0.0138 0.1570 0.0948 0.0970 −0.0254 −0.0205

p̂11
MSE 0.0027 0.0047 0.0001 0.0001 0.0005 0.0006 0.0001 0.0001
bias −0.0329 −0.0600 0.0075 0.0010 0.0213 0.0204 0.0010 −0.0031

ˆcor
MSE 0.0165 0.0682 0.0004 0.0088 0.0016 0.0010 0.0001 0.0007
bias −0.1118 −0.2447 0.0145 −0.0809 0.0397 −0.0034 −0.0032 −0.0257

Table 2. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 for the ZDBP (0.54, 0.89, 0.07) model with cor = −0.5.

n 20 50 200 1000

Method ML MM ML MM ML MM ML MM

θ̂1
MSE 0.0227 0.0251 0.0082 0.0097 0.0022 0.0027 0.0004 0.0005
bias −0.0048 0.0192 0.0026 0.0135 −0.0047 −0.0037 0.0001 0.0002

θ̂2
MSE 0.0390 0.0415 0.0149 0.0162 0.0040 0.0043 0.0008 0.0009
bias −0.0061 0.0132 0.0012 0.0090 0.0006 0.0009 0.0005 0.0011

p̂11
MSE 0.0021 0.0040 0.0010 0.0017 0.0003 0.0005 0.0001 0.0001
bias −0.0155 −0.0163 0.0017 0.0018 −0.0003 0.0006 0.0005 0.0006

ˆcor
MSE 0.0123 0.0290 0.0045 0.0100 0.0012 0.0027 0.0002 0.0005
bias −0.0600 −0.0900 −0.0048 −0.0164 0.0006 0.0021 0.0008 0.0007

Table 3. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 for the ZDBP (0.44, 0.37, 0.19) model with cor = 0.3.

n 20 50 200 1000

Method ML MM ML MM ML MM ML MM

θ̂1
MSE 0.0194 0.0200 0.0091 0.0093 0.0023 0.0023 0.0004 0.0004
bias 0.0161 0.0125 −0.0026 −0.0036 −0.0013 −0.0016 −0.0001 −0.0003

θ̂2
MSE 0.0175 0.0181 0.0073 0.0073 0.0019 0.0019 0.0004 0.0004
bias −0.0068 −0.0108 0.0020 0.0002 −0.0016 −0.0018 −0.0004 −0.0003

p̂11
MSE 0.0060 0.0070 0.0027 0.0032 0.00070 0.0008 0.0001 0.0001
bias 0.0157 0.0178 0.0024 0.0006 −0.0007 −0.0008 0.0003 0.0003

ˆcor
MSE 0.0275 0.0415 0.0131 0.0209 0.0031 0.0054 0.0007 0.0011
bias 0.0375 0.0524 0.0010 −0.0031 −0.0012 −0.0015 0.0011 0.0012
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Table 4. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 from the ZDBP (0.17, 0.19, 0.13) model with cor = 0.7.

n 20 50 200 1000

Method MLE MM MLE MM MLE MM MLE MM

θ̂1
MSE 0.0070 0.0081 0.0029 0.0033 0.0007 0.0007 0.0002 0.0002
bias −0.0356 −0.0403 −0.0069 −0.0100 −0.0002 −0.0007 0.0001 0.0001

θ̂2
MSE 0.0072 0.0079 0.0035 0.0037 0.0008 0.0009 0.0002 0.0002
bias −0.0219 −0.0264 0.0014 −0.0006 0.0010 0.0005 0.0001 −0.0001

p̂11
MSE 0.0034 0.0035 0.0019 0.0020 0.0005 0.0005 0.0001 0.0001
bias 0.0119 0.0099 0.0075 0.0070 0.0012 0.0008 0.00003 −0.00002

ˆcor
MSE 0.0599 0.0662 0.0153 0.0191 0.0030 0.0047 0.0006 0.0010
bias 0.2130 0.2143 0.0664 0.0736 0.0051 0.0048 −0.0006 −0.0008

Figure 4. Summary of the results provided by lines of MSE of the estimates θ̂1, θ̂2, and ˆcor for the
different simulated data sizes n = 20, 50, 200, 1000 relating to the models (a) ZDBP (0.30, 1.57, 0.05),
(b) ZDBP (0.54, 0.89, 0.07), (c) ZDBP (0.44, 0.37, 0.19), and (d) ZDBP (0.17, 0.19, 0.13).

2.2.4. Applications

Real data examples were studied to investigate the performance of the ZDBP model
for fitting positively and negatively correlated bivariate data compared to other models.
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Health and Retirement Study (HRS) Data

The first data set used to illustrate the application of the ZDBP model was drawn from
the tenth wave of the Health and Retirement Study (HRS). A summary of the descriptive
statistics of dependent variables for this data are provided by Islam and Chowdhury [26].
In the same study, bivariate Poisson-Poisson (BP-P) and bivariate right-truncated Poisson-
Poisson (BRTP-P) models are fitted to the data from the Health and Retirement Study. The
variables comprise the number of conditions a patient has ever had, as noted by doctors, X1,
and the utilization of healthcare services, where the services derive from hospitals, nursing
homes, doctors, and home care assistants, X2. The sample size is 5567 and the correlation
between X1 and X2 is 0.06.

For the current study, the proposed ZDBP model was fitted to the same data and
compared with the models in [26]. Table 5 summarises results for the fittings for the ZDBP
model, the bivariate Poisson model with independent marginals (BP), and the BP-PR and
the BRTP-P models. These results are shown in terms of the number of parameters used,
and according to the Akaike Information Criteria (AIC), Bayesian Information Criteria
(BIC), and loglikelihood estimate (�). The results show the superiority of the ZDBP model
for fitting the Health and Retirement Study (HRS) data in comparison with the other models,
based on AIC and BIC, show the ability of the ZDBP model to fit positively correlated data.
An analysis of the ML estimates derived for the ZDBP model is presented in Table 6.

Table 5. Comparison between models from the Health and Retirement Study data.

Model AIC BIC �

ZDBP 31,727.26 31,747.14 −15,860.63

BP 32,707.61 32,720.86 −16,351.81

BP-P 33,419.33 33,432.58 −16,707.66

BRTP-P 33,196.42 33,209.67 −16,596.21

Table 6. Fitting Results for the ZDBP model from the Health and Retirement Study data.

Model Parameter Estimate SE

Parameter

p11 0.582 0.006

θ1 2.768 0.023

θ2 0.545 0.013

cor 0.588

Australian Health Data (1977–1978)

The data discussed in this example comes from the Journal of Applied Econometrics
1997 Data Archive [27]. The data covers 5190 single-person households, and provides
healthcare service utilization information from the 1977–1978 Australian Health Survey. A
study by [28] uses this data in their analysis of various measures of health-care utilisation.
A detailed summary of the statistics for the dependent and explanatory variables of this
data is provided in [28]. We consider the number of consultations with doctors during
the two-week period prior to the survey (Y1) and the number of prescribed medicines
used in the past 2 days (Y2). The mean and the standard deviation of Y1 are 0.302 and
0.798, respectively. The corresponding values for Y2 are 0.863 and 1.415 and the correlation
between Y1 and Y2 is 0.31.

The ZDBP model was fitted to the data and compared with the BP model. Table 7
presents a summary of results for the ZDBP and BP models, in terms of the number of
parameters, AIC, BIC, and �. The results show the superiority of the ZDBP model compared
with the BP model for fitting the Australian Health data, based on AIC and BIC. An analysis
of the ML parameter estimates derived for the ZDBP model is shown in Table 8. In addition,
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we consider the dependent variables, Y2, and the number of non-prescribed medications
used in past two days, Y3. The mean and the standard deviation of Y2 are 0.863 and 1.42,
the corresponding values for Y3 are 0.356 and 0.71, and the correlation between Y2 and Y3
is −0.04. Table 9 presents a summary of the results for the ZDBP and BP models, in terms of
the number of parameters, AIC, BIC, and �. The results show that the ZDBP model appears
to be competitive with the BP model for fitting the Australian Health data in comparison
with the other models, based on AIC and BIC. Therefore, this example emphasises the
ability of the ZDBP model to fit positively and negatively correlated data. An analysis of
the ML estimates derived for the ZDBP model is provided in Table 10.

Table 7. Comparison between the ZDBP and BP models from the Australian Health data.

Model AIC BIC �

ZDBP 22,498.39 22,518.05 −11,246.19

BP 23,176.13 23,189.24 −11,586.07

Table 8. Fitting results for the ZDBP model from the Australian Health data.

Model Parameter Estimate SE

Parameter

p11 0.261 0.006

θ1 0.367 0.009

θ2 0.891 0.013

cor 0.252

Table 9. Comparison between ZDBP and BP models from the Australian Health data.

Model AIC BIC �

ZDBP 23,543.50 23,563.16 −11,768.75

BP 23,541.73 23,554.84 −11,768.86

Table 10. Fitting results for the ZDBP model from the Australian Health data.

Model Parameter Estimate SE

Parameter

p11 0.172 0.006

θ1 0.862 0.013

θ2 0.354 0.009

cor −0.01

3. Zero-Dependent Bivariate Poisson Regression Model (ZDBPR)

In this section, the Bivariate Bernoulli Poisson Regression Model will be considered. In
this context, αk = zT

i βkl , k = 1, 2, and 3 is where zi denotes a vector of explanatory variables
of length l for the i-th observation related to the k-th parameter. This means that βkl is the
corresponding vector of regression coefficients. In this respect, the ZDBPR model can take
the following form:

(Y1i, Y2i) ∼ ZDBPR(θ1i, θ2i, p11i)

p11i =
eα1i
D , p10i =

eα2i
D , p01i =

eα3i
D , p00i =

1
D

}
(5)

where D = 1+ eα1i + eα2i + eα3i , P
(

Bj = 0
)
= p01i + p00i = e−θji , j = 1, 2, and i = 1, 2, · · · , n

and n denotes the observation number.
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The ZDBPR model uses two response variables that are positively and negatively
correlated. In addition, this model can be compared with other models to show that it has
identical AIC, BIC, and parameter estimates.

3.1. Applications
3.1.1. Health and Retirement Study (HRS) Data

In this example, the same dependent variables used by [26] were considered, as
outlined in “Health and Retirement Study (HRS) Data” Section. A study by [26] fit this
data using bivariate right-truncated Poisson-Poisson regression (BRTP-PR), and bivariate
Poisson-Poisson regression (BP-PR) models. They found that the BRTP-PR model appears
to be significantly better than the BP-PR model for fitting the data.

For the purpose of this research, the ZDBPR model was used to fit the data, and was
compared with the model used by [26]. Furthermore, the ZDBPR model was compared with
the joint bivariate Poisson regression (JBPR) model used by [13], in which the covariates
are gender (1 male, 0 female), age (in years), race (1 Hispanic, 0 others), and veteran status
(1 yes, 0 no). Table 11 shows the results for the ZDBPR, JBPR, BPR, BP-PR, and BRTP-PR
models in terms of the number of parameters, i.e., AIC, BIC, and �. The results show
the superiority of the ZDBPR model for fitting the Health and Retirement Study data in
comparison with the other models, based on AIC and BIC. This suggests that the ZDBPR
model is able to fit positively correlated data. An analysis of the ML estimates derived for
this model is provided in Table 12.

Table 11. Comparison between models for the Health and Retirement Study data.

Number of Parameters AIC BIC �

ZDBPR 15 31,982.88 32,082.25 −15,976.44

JBPR 15 32,524.53 32,623.90 −16,247.26

BPR 15 32,514.53 32,580.77 −16,247.26

BP-PR 15 33,192.13 33,258.38 −16,586.07

BRTP-PR 15 33,021.41 33,087.66 −16,500.71

Table 12. Fitting results for the ZDBPR model from the Health and Retirement Study data.

Parameter Covariate Coefficient SE

α1

constant −0.471 0.591

gender 0.014 0.063

age 3.265 0.804

Hispanic −0.107 0.090

Veteran 0.209 0.072

α2

constant −2.295 0.655

gender −0.528 0.072

age 5.716 0.889

Hispanic 0.201 0.093

Veteran −0.011 0.088

α3

constant −15.164 135.930

gender −2.239 706.157

age 2.519 19.098

Hispanic −0.166 417.107

Veteran −1.296 1572.270
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3.1.2. Australian Health Data (1977–1978)

In this example, the same dependent variables as used by [13] are used, namely Y1
and Y2. The covariates used are gender (1 female, 0 male), age in years divided by 100
(measured as midpoints of age groups), and the annual income in Australian dollars
divided by 1000 (measured as midpoint of coded ranges). In the study by [13], model
(A) was fitted as a JBPR model, where the covariates were gender, age, income, and age
multiplied by gender, with gender as a covariate on the covariance scale. In addition, model
(B) was fitted as a JBPR model, where the covariates were gender, age, and income, with a
constant covariance term. A study by [13] concludes that the JBPR model performs better
than the other models examined in their study. For the purposes of this current research,
Model A and B have been fitted for the ZDBPR model. Table 13 shows the results for the
ZDBPR and JBPR models, relating to the number of parameters, AIC, BIC, and �. These
results show the superiority of the ZDBPR model for fitting the Health Care Australia data
in comparison with the JBPR model, based on AIC and BIC. This suggests that the ZDBPR
model can positively fit the correlated data. An analysis of the ML estimates derived for
this model is provided in Table 14.

Table 13. Comparison between ZDBPR and JBPR models from the Health Care Australia data.

Model Number of Parameters AIC BIC �

ZDBPR
A

15 19,856.41 19,954.73 −9913.21

JBPR 12 19,912.90 19,991.55 −9944.45

ZDBPR
B

12 19,910.80 19,989.45 −9943.40

JBPR 11 19,942.16 20,014.26 −9960.08

Table 14. Fitting results for the ZDBPR model from the Health Care Australia data using Model A.1
and B.1.

Model A B

Parameter Covariate Coefficient SE Coefficient SE

constant −3.161 0.170 −2.670 0.127

gender 5.980 0.298 4.780 0.177

age 1.621 0.184 0.762 0.073

income −0.531 0.110 −0.509 0.106

Age∗gender −1.963 0.361

α2

constant −2.302 0.212 −2.202 0.188

gender 0.894 0.491 0.430 0.324

age 0.547 0.263 0.254 0.123

income −0.133 0.167 −0.105 0.167

Age∗gender −0.974 0.657

α3

constant −3.371 0.158 −2.798 0.116

gender 6.031 0.286 4.589 0.162

age 2.065 0.167 1.139 0.069

income −0.101 0.089 −0.076 0.091

Age∗gender −2.196 0.341

This current study also considered the same dependent variables used by Zamani et.al. [29],
which are Y2 and Y3. Furthermore, [29] fit their data using a bivariate Poisson regression
model, whereby the j.p.d is proposed by [5]. The bivariate Poisson model developed by [5]
is defined from the product of two Poisson marginals with a multiplicative factor parameter.
For ease of notation, the current study will refer to the Zamani et al. model as BPR [29].
Table 15 shows that the ZDBPR model performs better than the BPR [29] model in terms
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of AIC and BIC. This suggests that the ZDBPR model can fit negatively correlated data.
Table 16 provides an analysis of the ML estimates derived for this model.

Table 15. Comparison between ZDBPR and BPR [29] models from the Health Care Australia data.

Number of Parameters AIC BIC �

ZDBPR 39 19,025.4 19,281.03 −9473.70

BPR [29] 26 19,097.2 19,267.60 −9522.59

Table 16. Results from fitting the ZDBPR model to the Health Care Australia data.

Parameter Covariate Coefficient SE

α1

constant −5.791 0.349

gender 1.383 0.110

age 6.083 1.785

agesq −4.448 1.970

income 0.323 0.152

levyplus 0.442 0.126

freepoor −0.036 0.293

freerepa 0.243 0.173

illness 0.695 0.032

actdays 0.097 0.014

hscore 0.080 0.020

chcond1 1.217 0.118

chcond2 1.569 0.155

α2

constant −3.278 0.251

gender 0.949 0.071

age 1.737 1.343

agesq 1.674 1.481

income 0.052 0.110

levyplus 0.225 0.089

freepoor −0.165 0.205

freerepa 0.277 0.122

illness 0.463 0.032

actdays 0.077 0.014

hscore 0.056 0.017

chcond1 1.098 0.077

chcond2 1.541 0.114

α3

constant −2.422 0.283

gender 0.348 0.084

age 5.403 1.671

agesq −6.079 1.946

income 0.083 0.122

levyplus −0.145 0.089

freepoor −0.083 0.179

freerepa −0.449 0.167

illness 0.344 0.032

actdays −0.010 0.020

hscore 0.054 0.020

chcond1 0.312 0.089

chcond2 0.067 0.164
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4. Conclusions

This paper has presented new bivariate Poisson models that can be fitted to bivariate
and correlated count data with and without covariates. The main advantage of the ZDBP
model and the ZDBPR model is their ability to fit positively and negatively correlated count
data. This advantage is valuable for fitting different kinds of data in the healthcare field, as
in the case of healthcare data, dependence between the two variables may be positive or
negative. The statistical properties of the ZDBP model were discussed, and some properties
of this model were proven, which shows that the pair of ZDBP variables can be positively
or negatively correlated. Estimation for the ZDBP model was achieved using the ML and
the MM methods, with different parameters, and with positive and negative correlations.
In the simulation, the ML method showed good performance for estimation in comparison
with the MM. Real data were used to examine the performance of the ZDBP model and the
ZDBPR model for fitting positive and negative correlated count data, in comparison with
other models. The applications for both models show the superiorities of these models
in comparison with other models. This suggests that the ZDBP model and the ZDBPR
model can allow the correlation structure to be positive or negative. Finally, although the
proposed model was applied in two healthcare data sets, the model can be generalized and
utilized in the other areas of research as well.
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Abstract: A new family of distributions called the mixture of the exponentiated Kumaraswamy-G
(henceforth, in short, ExpKum-G) class is developed. We consider Weibull distribution as the base-
line (G) distribution to propose and study this special sub-model, which we call the exponentiated
Kumaraswamy Weibull distribution. Several useful statistical properties of the proposed ExpKum-G
distribution are derived. Under the classical paradigm, we consider the maximum likelihood esti-
mation under progressive type II censoring to estimate the model parameters. Under the Bayesian
paradigm, independent gamma priors are proposed to estimate the model parameters under pro-
gressive type II censored samples, assuming several loss functions. A simulation study is carried out
to illustrate the efficiency of the proposed estimation strategies under both classical and Bayesian
paradigms, based on progressively type II censoring models. For illustrative purposes, a real data set
is considered that exhibits that the proposed model in the new class provides a better fit than other
types of finite mixtures of exponentiated Kumaraswamy-type models.

Keywords: Kumaraswamy-G distribution; Bayesian approach; finite mixture; exponentiated Kumaraswamy
Weibull distribution; loss function; progressive type II censoring

MSC: 65C20; 60E05; 62P30; 62L15

1. Introduction

The utility of mixture distributions during the last decade or so have provided a
mathematical-based strategy to model a wide range of random phenomena effectively.
Statistically speaking, the mixture distributions are a useful tool and have greater flexibility
to analyze and interpret the probabilistic alias random events in a possibly heterogenous
population. In modeling real-life data, it is quite normal to observe that the data have come
from a mixture population involving of two or more distributions. One may find ample
evidence(s) in terms of applications of finite mixture models not limited to but including
in medicine, economics, psychology, survival data analysis, censored data analysis and
reliability, among others. In this article, we are going to explore such a finite mixture
model based on bounded (on (0,1)) univariate continuous distribution mixing with another
baseline (G) continuous distribution and will study its structural properties with some
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applications. Next, we provide some useful references related to finite mixture models
that are pertinent in this context. Ref. [1] introduced the classical and Bayesian inference
on the finite mixture of exponentiated Kumaraswamy Gompertz and exponentiated Ku-
maraswamy Fréchet (MEKGEKF) distributions under progressively type II censoring with
applications and it appears that this MEKGEKF distribution might be useful in analyzing
certain dataset(s), for which either or both of its component distributions will be inadequate
to completely explain the data. Consequently, this also serves as one of the main purposes
for the current work.

In recent years, there has been a lot of interest in the art of parameter(s) induction
to a baseline distribution. The addition of one or more extra shape parameter(s) to the
baseline distribution makes it more versatile, particularly for examining the tail features.
This parameter(s) induction also improved the goodness-of-fit of the proposed general-
ized family of distributions, despite the computational difficulty in some cases. Over
two decades, there have been numerous generalized G families of continuous univari-
ate distributions that have been derived and explored to model various types of data
adequately. The exponentiated family, Marshall–Olkin extended family, beta-generated
family, McDonald-generalized family, Kumaraswamy-generalized family, and exponenti-
ated generalized family are among the well-known and widely recognized G families of
distributions that are addressed in [2]. Some Marshall–Olkin extended variants and the
Kumaraswamy-generalized family of distributions are proposed. For the exponentiated
Kumaraswamy distribution and its log-transform, one can refer to [3]. Refs. [4,5] defined
the probability density function (pdf) of exponentiated Kumaraswamy G (henceforth, in
short, EKG) distributions, which is as follows:

f (x) = abcg(x)Ga−1(x)[1 − Ga(x)]b−1
{

1 − [1 − Ga(x)]b
}c−1

(1)

where a, b, c are all positive parameters and x > 0.
The associated cumulative distribution function (cdf) is given by

F(x) =
{

1 − [1 − Ga(x)]b
}c

, x > 0.

If u ∈ (0, 1), the associated quantile function is given by

x(u) = G−1
{

1 −
[
1 − u

1
c

] 1
b
} 1

a

(2)

In this paper, we consider a finite mixture of two independent EKW distributions
with mixing weights and consider an absolute continuous probability model, namely the
two-parameter Weibull, as a baseline model.

The rest of this article is organized as follows. In Section 2, we provide the mathe-
matical description of the proposed model. In Section 3, some useful structural properties
of the proposed model are discussed. The maximum likelihood function of the mixture
exponentiated Kumaraswamy-G distribution based on progressively type II censoring is
given in Section 4. Section 5 deals with the specific distribution of the mixture of exponen-
tiated Kumaraswamy-G distribution when the baseline (G) is a two parameter Weibull,
henceforth known as EKW distribution. In Section 6, we provide a general framework for
the Bayes estimation of the vector of the parameters and the posterior risk under different
loss functions of the exponentiated Kumaraswamy-G distribution. In Section 7, we consider
the estimation of the EKW distribution under both the classical and Bayesian paradigms
via a simulation study and under various censoring schemes. For illustrative purposes,
an application of the EKW distribution is shown by applying the model to bladder cancer
data in Section 8. Finally, some concluding remarks are presented in Section 9.
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2. Model Description

A density function of the mixture of two components’ densities with mixing propor-
tions p ∈ [0, 1] and q = 1 − p of EKG distributions is given as follows:

f (x) = p f1(x) + q f2(x),

where
f j(x) = ajbjcjg(x)Gaj−1(x)[1 − Gaj(x)]bj−1

{
1 − [1 − Gaj(x)]bj

}cj−1

for x > 0, with ajbjcj > 0, and j = 1, 2, the j-th component and the pdf of the mixture of the
two EKG distributions is given by

f (x) = pa1b1c1g(x)Ga1−1(x)[1 − Ga1(x)]b1−1
{

1 − [1 − Ga1(x)]b1
}c1−1

+ qa2b2c2g(x)Ga2−1(x)

[1 − Ga2(x)]b2−1
{

1 − [1 − Ga2(x)]b2
}c2−1

I(0 < x < ∞),
(3)

meaning the associated cdf of the distribution is

F(x) = pF1(x) + qF2(x)

i.e., F(x) = p
{

1 − [1 − Ga1(x)]b1
}c1

+ q
{

1 − [1 − Ga2(x)]b2
}c2

, x > 0.
(4)

The component wise cdf can be obtained as

Fj(x) =
{

1 − [1 − Gaj(x)]bj
}cj

, x > 0.

For the density in Equation (3), (a1, b1), (a2, b2), are all playing the role of shape
parameters. Consequently, for the varying choices of a1, b1, a2 and b2 one may obtain
various possible shapes of the pdf, as well as for the hrf function.

3. Structural Properties

We begin this section by discussing the asymptotes and shapes of the proposed mixture
model in Equation (3).

• Result 1: Shapes. The cdf in Equation (3) can be obtained analytically. The critical
points of the pdf are the roots of the following equation:

∂
∂x

[
pa1b1c1g(x)Ga1−1(x)[1 − Ga1 (x)]b1−1

{
1 − [1 − Ga1 (x)]b1

}c1−1
+ qa2b2c2g(x)Ga2−1(x)[1 − Ga2 (x)]b2−1

{
1 − [1 − Ga2 (x)]b2

}c2−1
]
= 0,

= pa1b1c1[A1(x)] + (1 − p)a2b2c2[A2(x)] = 0,
(5)

where

A1(x) = ǵ(x)Ga1−1(x)[1 − Ga1 (x)]b1−1
{

1 − [1 − Ga1 (x)]b1
}c1−1

+ g(x)(a1 − 1)Ga1−2(x)g(x)[1 − Ga1 (x)]b1−1
{

1 − [1 − Ga1 (x)]b1
}c1−1

,

= a1(b1 − 1)g(x)Ga1−1(x)[1 − Ga1 (x)]b1−2g(x)
{

1 − [1 − Ga1 (x)]b1
}c1−1

+ g(x)Ga1−1(x)g(x)[1 − Ga1 (x)]b1−1(c1 − 1)
{

1 − [1 − Ga1 (x)]b1
}c1−2{

b1[1 − Ga1 (x)]b1−1
}

a1

g(x)Ga1 (x),

= Ga1−1(x)[1 − Ga1 (x)]b1−1g(x)
{

1 − [1 − Ga1 (x)]b1
}c1−1

{
(a1 − 1)

g2(x)
G(x)

− a1(b1 − 1)g2(x)Ga1−1(x)
[1 − Ga1 (x)]

+
a1b1(c1 − 1)g2(x)Ga1−1(x)[1 − Ga1 (x)]b1−1

1 − [1 − Ga1 (x)]b1

}
,

Similarly,

A2(x) = Ga2−1(x)[1 − Ga2(x)]b2−1
{

1 − [1 − Ga2(x)]b2
}c2−1{

(a2 − 1) g2(x)
G(x) −

a2(b2−1)g2(x)Ga2−1(x)
[1−Ga2 (x)] + a2b2(c2−1)g2(x)Ga2−1(x)[1−Ga2 (x)]b2−1

1−[1−Ga2 (x)]b2

}
,
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There may be more than one root to the Equation (5). If x = x* is the root of the
equation, it corresponds to a local maximum, or a local minimum or a point of inflexion
depending on ξ(x∗)< 0, ξ(x∗) = 0, or ξ(x∗) >0, where ξ(x∗) = ∂2

∂x2 [ f (x)]|x = x∗ .

• Result 2: Mixture Representation

A random variable is said to have the exponentiated-G distribution with parameter
a > 0 if y ∼ Exp − G(a) and if its pdf and cdf is given by f (y) = a g(x)Ga(x) and
F(y) = Ga(x), as shown in [6,7].

If one considers the following, we have the following equations:

f1(x) = a1b1c1g(x)Ga1−1(x)[1 − Ga1(x)]b1−1
{

1 − [1 − Ga1(x)]b1
}c1−1

= a1b1c1g(x)Ga1−1(x)[1 − Ga1(x)]b1−1 ∞
∑

j1=0
(−1)j1

(
c1 − 1

j1

)
[1 − Ga1(x)]j1b1

= a1b1c1
∞
∑

j1=0
(−1)j1

∞
∑

j2=0
(−1)j2

(
c1 − 1

j1

)(
b1(j1 + 1)− 1

j2

)
g(x)Ga1−1(x)Ga1 j2(x),

= a1b1c1
∞
∑

j1=0

∞
∑

j2=0
(−1)j1+j2

(
c1 − 1

j1

)(
b1(j1 + 1)− 1

j2

)
a1(j2+1) Ga1(j2+1)(x).

Likewise,

f2(x) = a2b2c2 ∑∞
j1=0 ∑∞

j2=0(−1)j1+j2

(
c2 − 1

j1

)(
b2(j2 + 1)− 1

j2

)
a2(j2 + 1)

Ga2(j2+1)(x).

Therefore,

f (x) = p(a2b2c2)
−1 ∑∞

j1=0 ∑∞
j2=0 Ψ1(j1, j2, b1, c1)Ga1(j2+1)(x) + q(a2b2c2)

−1 ∑∞
j1=0 ∑∞

j2=0 Ψ2(j1, j2, b2, c2)Ga2(j2+1)(x)

where Ψ1(j1, j2, b1, c1) =
(−1)j1+j2

a1(j2+1)

(
c1 − 1

j1

)(
b1(j1 + 1)− 1

j2

)
and Ψ2(j1, j2, b2, c2) =

(−1)j1+j2

a2(j2+1)

(
c2 − 1

j1

)(
b2(j2 + 1)− 1

j2

)
.

Note that if b1, c1, b2, c2 are integers, then the repective sums will stop at b1, c1, b2 and c2.
The above expression shows the fact that the pdf of the finite mixture of EKG can be

represented as the finite mixture of infinite exponentiated-G distribution with parameters
a1(j2 + 1) and a2(j2 + 1), respectively.

Therefore, structural properties, such as moments, entropy, etc., of this model can be
obtained from the knowledge of the exponentiated-G distribution and one can refer to [8]
for some pertinent details.

• Result 3: Simulation Strategy

Method 1. Direct cdf inversion method
Step 1: Generate U ∼ Uni f orm (0, 1).

Step 2: Then, set Xi = pi

⎧⎨⎩1 −
[

1 − U
1
ci
i

] 1
bi

⎫⎬⎭
1
ai

, ∑2
i=1 pi = 1, f or(ai, bi, ci) > 0

∀ i = 1, 2.
Method 2. Via acceptance-rejection sampling plan
This will work if a ≥ 1, b ≥ 1, c ≥ 1.

One must define D1 =
ab1c1

1 b1(a1 − 1)1− 1
a1 (b1 − 1)b1−1(c1 − 1)c1−1

(a1b1c1 − 1)
c1− 1

a1b1
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and D2 =
ab2c2

2 b2(a2 − 1)1− 1
a2 (b2 − 1)b2−1(c2 − 1)c2−1

(a2b2c2 − 1)
c2− 1

a2b2

.

M = max{D1, D2}. Then, the following scheme will work:

(i) Simulate X = x from the pdf in Equation (3).
(ii) Simulate Y = UMg(x), where U ∼ Uni f orm (0, 1).
(iii) Accept X = x as a sample from the target density if y < f (x). If y ≥ f (x), one must

go to step (ii).

One may obtain an expression of the reliability function of mixture EKG, which takes
the following form:

R(x) = pR1(x) + qR2(x)

where the component-wise reliability function of the mixture model is given by

Rj(x) = 1 −
{

1 − [1 − Gaj(x)]bj
}cj

, x > 0.

The density in Equation (1) is flexible in the sense that one can obtain different shapes
of hazard rate function (hrf) of the mixture model, which is given by

hj(x) =
ajbjcjg(x)[1 − Gaj(x)]bj−1

{
1 − [1 − Gaj(x)]bj

}cj−1

1 −
{

1 − [1 − Gaj(x)]bj
}cj

.

The quantile function of the mixture model is given by

q(x) = pG−1

{
1 −
[

1 − U
1
c1 (x)

] 1
b1

} 1
a1

+ qG−1
{

1 −
[
1 − U

1
c2 (x)

] 1
b2

} 1
a2

.

For example, the median, xm, of f (x) for U = 0.5 will be

xm = pG−1

{
1 −
[

1 − 0.5
1
c1 (x)

] 1
b1

} 1
a1

+ qG−1
{

1 −
[
1 − 0.5

1
c2 (x)

] 1
b2

} 1
a2

,

The various shapes of the pdf and the hrf when the baseline distribution (G) is Weibull
is provided in Figure 1. In the next section, we discuss the maximum likelihood estimation
strategy for the finite mixture of exponentiated Kumaraswamy-G (EKG) distribution under
the progressive type-II censoring scheme. For more details, one can refer to [9]. The
necessary and sufficient conditions for identifiability and identifiability properties are
discussed in the Appendix A.
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Figure 1. The pdf and hrf of the MEKW model for different values of its parameters.

4. Maximum Likelihood Estimation of EKG Distribution under Progressive
Type-II Censoring

One must suppose that n units are put on life test at time zero and the experimenter
decides beforehand the quantity m, the number of failures to be observed. At the time of
first failure, R1 units are randomly removed from the remaining n-1 surviving units. At
the second failure, R2 units from the remaining n − 2 − R1 units are randomly removed.
The test continues until the mth failure. At this time, all remaining Rm = n − m − R1 −
R2 − . . . − Rm−1 units are removed. In this censoring scheme, Ri and m are prefixed.
The resulting m is ordered. Values, which are obtained as a consequence of this type of
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censoring, are appropriately referred to as progressive type II censored ordered statistics.
One must note that if R1 = R2 = . . . = Rm−1 = 0, so that Rm = n − m, this scheme reduces
to a conventional type II on the stage right censoring scheme.

One must also note that if R1 = R2 = . . . = Rm = 0, so that m = n, the progressively
type II censoring scheme reduces to the case of a complete sample (the case of no censoring).

One must allow (X1:m:n, X2:m:n, . . . , Xm:m:n) to be a progressively type II censored
sample, with (R1, R2, . . . , Rm) being the progressive censoring scheme. The likelihood
function based on the progressive censored sample of EKG distributions is given by

L
(
x
∣∣aj, bj, cj, sj, rj, p, q

)
= K ∏m

i=1 g(Xi:m:n)[1 − G(Xi:m:n)]
Ri

where k = n(n − 1 − R1)(n − 1 − R2) . . . (n − m + 1 − R1 . . . − Rm), g(x) and G(x) are given
in Equations (3) and (4) and we obtain the log likelihood function without the constant
term, which is is given by

L
(
x
∣∣aj, bj, cj, sj, rj, p, q

)
∝ ∏m

i=1 gj(Xi:m:n)
[
1 − Gj(Xi:m:n)

]Ri

To simplify, we take the logarithm of the likelihood function, ı, and for illustration
purposes, let gj(Xi:m:n) = f j(Xi:m:n) and Gj(Xi:m:n) = Fj(Xi:m:n) as follows:

ı ∝ ∑m
i=1 log

[
f j(Xi:m:n)

]
+ Rilog

[
1 − Fj(Xi:m:n)

]
Next, for illustrative purposes, we consider the baseline (G) distribution to be a two

parameter Weibull distribution on the EKG distribution and discuss its estimation under
both the classical and Bayesian set up.

5. Finite Mixture of Exponentiated Kumaraswamy Weibull Distribution

Exponentiated Kumaraswamy Weibull (EKW) distribution is a special case that can be
generated from exponentiated Kumaraswamy -G distributions. The EKW distribution is
found by taking G(x) of the Weibull distribution in Equation (1). One of the most important
advantages of the EKW distribution is its capacity to fit data sets with a variety of shapes,
as well as for censored data, compared to the component distributions. One must let G be
the Weibull distribution with the pdf and the cdf are given by

g(x) =
r
s

( x
s

)r−1
exp
[
−
( x

s

)r]
,x > 0,

and
G(x) =

(
1 − exp

[
−
( x

s

)r])
.

The inverse of the cdf is given by

s(−ln(1 − G(u)))
1
r = Q(u)

The pdf of a mixture of two component densities with mixing proportions, (pj, j = 1, 2)
for q = 1 − p of the exponentiated Kumaraswamy Weibull distribution (henceforth, in short
is MKEW) is given by

f (x) = p a1b1c1r1
s1

(
x
s1

)r1−1
exp
[
−
(

x
s1

)r1
][

1 − exp
(
−
(

x
s1

)r1
)]a1−1

[
1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1−1

[
1 −
[

1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1−1

+q a2b2c2r2
s2

(
x
s2

)r2−1
exp
[
−
(

x
s2

)r2
][

1 − exp
(
−
(

x
s2

)r2
)]a2−1

[
1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2−1
[

1 −
[

1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2
]c2−1

, x > 0

(6)
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For the pdf in Equation (6), the following is noted:

(i) s1 and s2 are the scale parameters and r1 and r2 are the shape parameters for the
Weibull component.

(ii) a1, a2, b1 and b2 are the shape parameters arising from the finite mixture pdf in
Equation (4);

(iii) p, and q are the mixing proportions , where p + q = 1.

Depending on the different values of the parameters, different shapes of the pdf
and the hrf of the MEKW distribution are shown in Figure 1. From Figure 1 (left panel),
it appears that the MEKW pdf can include symmetric, asymmetric, right-skewed, and
decreasing shapes, depending on the values of parameters. From Figure 1 (right panel),
one can observe that the hrf may assume shapes with constants and that are down-upward
and increasing.

The associated cdf is given by

F(x) = p

⎡⎣1 −
[

1 −
[

1 − exp
(
−
(

x
s1

)r1
)]a1

]b1
⎤⎦c1

+ q

⎡⎣1 −
[

1 −
[

1 − exp
(
−
(

x
s2

)r2
)]a2

]b2
⎤⎦c2

The hazard rate function of MEKW, hr(x), model is flexible, as it allows for different shapes,
which is given by

hr(x) =
f (x)
S(x)

=
p f1(x) + q f2(x)
pS1(x) + qS2(x)

.

The quantile function is given by

Qj(u) = pG−1

{
1 −
[

1 − u
1
c1

] 1
b1

} 1
a1

+ qG−1
{

1 −
[
1 − u

1
c2

] 1
b2

} 1
a2

. (7)

In the next section, by using a quantile function-based formula for skewness and
kurtosis, we plot the coefficients of skewness and kurtosis for the MEKW distribution for
different values of the parameters, as shown in Figure 2. From Figure 2, one can observe
that the distribution can be positively skewed, negatively skewed, and could also assume
platykurtic and mesokurtic shapes.

 

  
Figure 2. Coefficients of skewness and kurtosis for EKW distribution.
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In the next section, we discuss a strategy of estimating parameters for the EKG model
under the Bayesian paradigm using independent gamma priors.

5.1. Bayesian Estimation Using Gamma Priors for the Finite Mixture of Exponentiated
Kumaraswamy-G Family

In this section, we consider the Bayes estimates of the model parameters that are
obtained under the assumption that the component random variables for the random
vector Φ = [aj,bj,cj, sj, rj, p, q, ], f or j = 1, 2, have independent gamma priors with hyper
parameters ak and ∅k , k = 1, 2, 3, 4, 5, 6, 7, which is given by

f (Φ; a, ∅) =
∅k

ak

Γak
Φak−1e−∅kΦ, Φ > 0, (8)

By multiplying Equation (6) with the joint posterior density of the vector Φ, given the
data, we can obtain the following:

π(Φ|x ) ∝ L(x|Φ) f (Φ; ak, ∅k)

∝
m
∏
i=1

[a1b1c1 pg(Xi:m:n)Ga1−1(Xi:m:n)

[1 − Ga1−1(Xi:m:n)]
b1−1

{
[1 − Ga1−1(Xi:m:n)]

b1−1
}c1−1[

1 −
[
[1 − Ga1−1(Xi:m:n)]

b1−1
]}c1

]Ri

+qa2b2c2 pg(Xi:m:n)Ga2−1(Xi:m:n)[1 − Ga2−1(Xi:m:n)]
b2−1

[
[1 − Ga2−1(Xi:m:n)]

b2−1
]c2−1[

1 −
[
[1 − Ga2−1(Xi:m:n)]

b2−1
]c2
]Ri
]

∅k
ak

Γak
Φak−1e−∅kΦ, I(Φ > 0).

(9)

Marginal posterior distributions of Φ can be obtained by integrating out the nuisance
parameters. Next, we consider the loss function that will be used to derive the estimators
from the marginal posterior distributions.

5.2. Bayes Estimation of the Vector of Parameters and Evaluation of Posterior Risk under Different
Loss Functions

This section spotlights the derivation of the Bayes estimator (BE) under different
loss functions and their respective posterior risks (PR). For a detailed study on different
loss error functions, one can refer to [10]. The Bayes estimators are evaluated using
the squared error loss function (SELF), weighted squared error loss function (WSELF),
precautionary loss function (PLF), modified (quadratic) squared error loss function (M/Q
SELF), logarithmic loss function (LLF), entropy loss function (ELF), and K-Loss function.
The K-loss function proposed by [11] is well fitted for a measure of inaccuracy for an
estimator of a scale parameter of a distribution defined by R+ = (0, ∞); this loss function
is called the K-loss function (KLF). Table 1 shows the Bayes estimators and the associated
posterior risks under each specific loss functions considered in this paper.

Next, we derive the Bayes estimators of the model parameters under different loss
functions. They were originally used in estimation problems when the unbiased estimator
of Φ was being considered. Another reason for its popularity is due to its relationship to
the least squares theory. The SEL function makes the computations simpler. Under the
SEL, WSEL, Q

M SEL, PL, LL, EL and KL functions in Table 1, the Bayesian estimation for the
random vector Φ =

(
aj, bj, cj, sj, rj, p, q

)
, for j = 1, 2, and under various loss functions, it

can be obtained as follows.

Φ̂SEL = E(Φ|x ) =
∫

Φ

(
Φ − Φ̂

)2
π(Φ|x )dΦ.

Φ̂WSEL = E(Φ|x ) =
∫
Φ

(
Φ − Φ̂

)2

Φ
π(Φ|x )dΦ.
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Φ̂ Q
M SEL = E(Φ|x ) =

∫
Φ

(
1 − Φ̂

Φ

)2

π(Φ|x )dΦ.

Φ̂PL = E(Φ|x ) =
∫

Φ

(
Φ − Φ̂

)2

Φ̂
π(Φ|x )dΦ.

Φ̂LL = E(Φ|x ) =
∫

Φ

(
logΦ − logΦ̂

)2
π(Φ|x )dΦ.

Φ̂KL = E(Φ|x ) =
∫

Φ

⎛⎝√ Φ̂
Φ

−
√

Φ
Φ̂

⎞⎠2

π(Φ|x )dΦ. (10)

It is evident that each of the integrals in the above section have no closed form for the
resulting joint posterior distribution as given in Equation (9). Therefore, they need to be
solved analytically. Consequently, the MCMC technique is proposed to generate samples
from the posterior distributions and then the Bayes estimates of the parameter vector Φ
are computed under progressively type II censored samples. Next, we provide the general
form of the Bayesian credible intervals.

Table 1. Bayes estimator and posterior risk under different loss functions.

Loss Function Bayes Estimator (BE) Posterior Risk (PR)

L1 = SEL =
(

Φ − Φ̂
)2 E(Φ|X ) V(Φ|X )

L2 = WSEL =
(Φ−Φ̂)

2

Φ

[
E
(

Φ−1|X
)]−1

E(Φ|X )−
[

E
(

Φ−1|X
)]−1

L3 = Q
M SEL =

(
1 − Φ̂

Φ

)2 E(Φ−1|X )
E(Φ−2|X ) 1 − E(Φ−1|X )

2

E(Φ−2|X )

L4 = PL =
(Φ−Φ̂)

2

Φ̂

√
E
(

Φ2|X
)

2
[√

E
(

Φ2|X
)
− E(Φ|X )

]
L5 = LL =

(
logΦ − logΦ̂

)2 exp[E(logΦ|X )] V(logΦ|X )

L6 = EL =
(

Φ̂
Φ − log Φ

Φ̂
− 1
) [

E
(

Φ−1|X
)]−1

E(logΦ|X )− logE
(

Φ−1|X
)

L7 = KL =

(√
Φ̂
Φ −

√
Φ
Φ̂

)2 √
E(Φ|X )

E(Φ−1|X )
2
[

E(Φ|X )E
(

Φ−1|X
)
− 1
]

5.3. Credible Intervals

In this subsection, asymmetric 100(1 − τ )% two-sided Bayes probability interval
estimates of the parameter vector Φ, denoted by [LΦ, UΦ], are obtained by solving the
following expression:

p[L(t) < Φ < U(t)] =
∫ U(t)

L(t)
π(θ,β, λ|t )dΦ = 1 − τ. (11)

Since it is difficult to find the interval LΦ and UΦ analytically, we apply suitable
numerical techniques to solve Equation (11).

6. Bayesian Estimation of the Exponentiated Kumaraswamy Weibull Distribution

G is assumed to be the Weibull distribution with pdf and cdf, which are given by

g(x) =
r
s

( x
s

)r−1
exp
[
−
( x

s

)r]
,
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where r is the shape parameter (r > 0), and s is the scale parameter (s > 0) and

G(x) =
(

1 − exp
[
−
( x

s

)r])
,x > 0.

The joint posterior density for the parameter vector Φ, given the data, becomes
the following:

π(Φ|x ) ∝ L(x|Φ) f (Φ; ak, ∅k)

∝
m
∏
i=1

[
a1b1c1 p r1

s1

(
x
s1

)r1−1
exp
[
−
(

x
s1

)r1
][

1 − exp
[
−
(

x
s1

)r1
]]a1−1

[
1 −
[
1 − exp

[
−
(

x
s1

)r1
]]a1−1

]b1−1
]{[

1 −
[
1 − exp

[
−
(

x
s1

)r1
]]a1−1

]b1−1
}c1−1

[
1 −
[[

1 −
[
1 − exp

[
−
(

x
s1

)r1
]]a1−1

]b1−1
]c1
]Ri

+qa2b2c2
r2
s2

(
x
s2

)r2−1
exp
[
−
(

x
s2

)r2
][

1 − exp
[
−
(

x
s2

)r2
]]a2−1

[
1 −
[
1 − exp

[
−
(

x
s2

)r2
]]a2−1

]b2−1
[[

1 −
[
1 − exp

[
−
(

x
s2

)r2
]]a2−1

]b2−1
]c2−1

[
1 −
[[

1 −
[
1 − exp

[
−
(

x
s2

)r2
]]a2−1

]b2−1
]c2
]Ri

∅k
ak

Γak
Φak−1e−∅kΦ, I(Φ > 0)

(12)

Marginal distributions of the parameter vector Φ can be obtained by integrating the
nuisance parameters. Next, we consider the loss function that will be used to derive the
estimators from the marginal posterior distributions.

7. Simulation Study

In this section, we evaluate the performance of the maximum likelihood and the
Bayesian estimation methods to estimate the parameters using Monte Carlo simulations.
We conduct the simulations using the (Maxlik) package in R software, as shown in [12].
The values of the biases, and the relative mean square errors (RMSEs) in the results indicate
that the maximum likelihood and the Bayesian estimation methods performs quite well to
estimate the model parameters.

Simulation Study for MEKW

In this subsection, we evaluate the performance of the maximum likelihood method
and Bayesian estimation method to estimate the parameters for the MEKW model using
Monte Carlo simulations. Based on progressively type II censored samples selected from
the MEKW pdf in Equation (3), a total of eight parameter combinations, and assuming
the sample sizes n = 25, 50, censored at 60% and 80% of the sample size, are considered.
The process is repeated 1000 times and the biases (estimate–actual), RMSEs and length
of confidence intervals (CI) of the estimates are reported in Tables 2–7. In computing the
length of CI, we obtain length asymptotic CI (LACI) for the likelihood estimators, and also
obtain the length credible CI (LCCI) for the Bayesian estimators. In addition, we compared
the performance of the estimation by considering the following schemes.

Scheme 1. Rkı = 0, ı = 1, . . . , nk − mk

Scheme 2. Rkı =

{
nk − mk, ı = 1

0, ı = 2, . . . , mk

Scheme 3. Rkı =

{
nk − mk, ı = mk

0, ı = 1, . . . , mk−1

MLE, average bias Abs(Bias) and the RMSE for the MLE of the parameters are pre-
sented for different sample sizes and different sampling schemes
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For Case 1, the selected initial values are as follows: a1 = 1.4, b1 = 1.5, c1 = 1.35, r1 = 1.7,
s1 = 1.2, a2 = 1.4, b2 = 1.5, c2 = 1.35, r2 = 1.5, s2 = 1.3; p = 0.7.

For Case 2, the initial values are a1 = 1.8, b1 = 0.2, c1 = 3.5, r1 = 1.2, s1 = 1.5, a2 = 4,
b2 = 0.1, c2 = 0.65, r2 = 1.5, s2 = 1.3, p = 0.6.

Table 2. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different sample sizes: Scheme 1 (complete sample), Case 1.

MLE Bayesian

n Bias RMSE LACI Bias RMSE LCCI

25

a1 0.1363 0.7467 2.8809 0.0743 0.2569 0.9628

b1 −0.2161 0.7758 2.9236 0.1091 0.2275 0.7848

c1 0.1374 0.9482 3.6814 0.0941 0.2920 0.9927

r1 0.6883 1.2519 4.1030 0.1441 0.2783 0.8962

s1 −0.1083 0.3819 1.4369 0.0243 0.1426 0.5350

a2 0.2119 0.8836 3.3659 0.1080 0.2499 0.8166

b2 −0.2985 0.8408 3.0842 0.1432 0.3119 1.0558

c2 0.2908 1.0364 3.9034 0.0380 0.2224 0.8259

r2 0.7734 1.4002 4.5801 0.1438 0.2855 0.9685

s2 −0.2023 0.5034 1.8088 0.0052 0.0335 0.1289

p −0.0112 0.0952 0.3710 −0.0342 0.0885 0.3028

50

a1 0.0325 0.6253 2.4502 0.0364 0.1648 0.6325

b1 −0.1865 0.6440 2.4185 0.0602 0.1333 0.4764

c1 0.0006 0.7457 2.9259 0.0262 0.1634 0.6277

r1 0.5867 0.9923 3.1401 0.1102 0.1835 0.5522

s1 −0.0360 0.3025 1.1784 0.0103 0.0898 0.3480

a2 0.1064 0.7523 2.9225 0.0364 0.1389 0.5130

b2 −0.1927 0.6604 2.4784 0.1101 0.2216 0.7209

c2 0.1501 0.8913 3.4475 0.0396 0.1470 0.5468

r2 0.6011 1.0677 3.4625 0.0978 0.1756 0.5552

s2 −0.1098 0.4171 1.5790 0.0000 0.0219 0.0854

p −0.0012 0.0648 0.2540 −0.0146 0.0622 0.2353

100

a1 −0.0776 0.5013 1.9434 0.0156 0.1205 0.4462

b1 −0.1608 0.5400 2.0228 0.0506 0.1193 0.4208

c1 −0.1454 0.5745 2.1809 0.0136 0.1412 0.5552

r1 0.6321 0.9161 2.6022 0.1030 0.1609 0.4740

s1 0.0369 0.2611 1.0143 −0.0010 0.0701 0.2702

a2 0.0565 0.6470 2.5289 0.0162 0.1004 0.3790

b2 −0.1245 0.6024 2.3128 0.0673 0.1583 0.5709

c2 0.0053 0.7704 3.0230 0.0203 0.1138 0.4199

r2 0.5095 0.9132 2.9741 0.0713 0.1396 0.4697

s2 −0.0214 0.3687 1.4443 −0.0005 0.0179 0.0671

p 0.0019 0.0521 0.2043 −0.0050 0.0497 0.1896
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Table 3. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 1 and n = 25.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

2

25, 15

a1 0.2086 0.6935 2.5950 0.1157 0.2775 0.9395

b1 −0.3516 0.7858 2.7576 0.0911 0.2282 0.7983

c1 0.1511 0.7569 2.9101 0.0765 0.2676 0.9211

r1 0.5921 1.1801 4.0056 0.1478 0.3511 1.1950

s1 −0.2418 0.4328 1.4085 0.0366 0.2240 0.8323

a2 0.3463 0.9475 3.4605 0.0217 0.2295 0.8224

b2 −0.4146 0.9381 3.3021 0.2170 0.4221 1.4613

c2 0.2505 0.8901 3.3515 0.0471 0.2519 0.9327

r2 1.1189 1.5792 4.3727 0.1465 0.2942 0.9666

s2 −0.4516 0.6420 1.7906 −0.0091 0.0436 0.1606

p 0.0232 0.2115 0.8248 −0.0054 0.1803 0.5545

25, 20

a1 0.1707 0.6897 2.5622 0.0455 0.1439 0.5135

b1 −0.3438 0.7705 2.7060 0.0500 0.1341 0.4665

c1 0.0316 0.7494 2.9038 0.0436 0.1566 0.5762

r1 0.6538 1.0314 3.3474 0.0571 0.2067 0.7663

s1 −0.1799 0.4067 1.3144 0.0404 0.1491 0.5154

a2 0.2747 0.8731 3.2521 0.0371 0.1507 0.5460

b2 −0.3155 0.8002 2.8854 0.1040 0.2557 0.8661

c2 0.2094 0.8093 3.0556 0.0354 0.1428 0.5314

r2 0.9609 1.2634 3.0120 0.0999 0.1988 0.6814

s2 −0.2952 0.5144 1.6531 −0.0030 0.0250 0.0908

p 0.0099 0.1339 0.5238 −0.0169 0.1143 0.4068

3

25, 15

a1 0.1161 0.7157 2.7713 0.0909 0.2582 0.9175

b1 −0.3936 0.7869 2.6737 0.0994 0.2208 0.7204

c1 0.1617 0.8577 3.3051 0.0683 0.2632 0.9451

r1 0.6209 1.2826 4.4038 0.1023 0.2885 0.9627

s1 −0.1745 0.4339 1.5587 0.0754 0.1732 0.6193

a2 0.2977 0.8905 3.2933 0.0859 0.2325 0.8070

b2 −0.3494 0.8102 2.8682 0.1131 0.3168 1.0870

c2 0.3593 0.9570 3.4806 0.0930 0.2529 0.8532

r2 0.7486 1.2881 4.1132 0.1310 0.2876 0.9885

s2 −0.2523 0.5078 1.7293 0.0091 0.0347 0.1240

p −0.0110 0.2158 0.8458 −0.0355 0.1884 0.5606

25, 20

a1 0.1607 0.7128 2.7250 0.0563 0.1489 0.5512

b1 −0.2165 0.7084 2.5194 0.0502 0.1247 0.4392

c1 0.1249 0.8100 3.0788 0.0470 0.1634 0.6065

r1 0.5943 1.0322 3.6334 0.0650 0.1916 0.6970

s1 −0.1554 0.4023 1.4562 0.0235 0.1069 0.4019

a2 0.1888 0.8684 3.2622 0.0552 0.1365 0.4698

b2 −0.2937 0.8115 2.6968 0.0614 0.1984 0.6992

c2 0.2993 0.8063 3.0035 0.0473 0.1400 0.5285

r2 0.5807 1.0457 4.0757 0.0732 0.1829 0.6418

s2 −0.1663 0.5084 1.4885 0.0048 0.0200 0.0761

p −0.0107 0.1419 0.5554 −0.0354 0.1267 0.4211
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Table 4. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 1 and n = 50.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

2

50, 30

a1 0.1740 0.6464 2.4428 0.0985 0.2686 0.9424

b1 −0.2839 0.6850 2.4461 0.1049 0.2627 0.9051

c1 0.0535 0.6684 2.6143 0.0815 0.2862 0.9613

r1 0.4536 1.0329 3.6413 0.1323 0.3722 1.2898

s1 −0.1768 0.3914 1.3701 0.0462 0.2367 0.8292

a2 0.1538 0.7803 3.0018 −0.0047 0.2490 0.9586

b2 −0.3140 0.7485 2.6661 0.3206 0.5488 1.6380

c2 0.0664 0.7585 2.9649 0.0245 0.2544 0.9684

r2 1.1236 1.6130 4.5412 0.2103 0.3669 1.1379

s2 −0.3536 0.5499 1.6526 −0.0264 0.0637 0.2052

p 0.0273 0.1937 0.7527 0.0109 0.1774 0.5251

50, 40

a1 0.1385 0.6058 2.3526 0.0378 0.1515 0.5607

b1 −0.3216 0.6863 2.3792 0.0357 0.1402 0.5168

c1 0.0496 0.5807 2.5146 0.0318 0.1757 0.6541

r1 0.4528 0.9119 3.5998 0.0671 0.2231 0.7929

s1 −0.1435 0.3782 1.3732 0.0488 0.1514 0.5324

a2 0.1669 0.7759 2.9731 0.0134 0.1514 0.5693

b2 −0.1764 0.7496 2.5859 0.1789 0.3302 0.9973

c2 −0.0199 0.7398 2.9020 0.0129 0.1412 0.5300

r2 1.0421 1.5571 4.5399 0.1420 0.2564 0.8151

s2 −0.2003 0.4252 1.4718 −0.0121 0.0342 0.1166

p 0.0261 0.1170 0.4475 0.0095 0.1047 0.3537

3

50, 30

a1 0.1031 0.6498 2.5174 0.0779 0.2654 0.9538

b1 −0.2174 0.6665 2.4724 0.0968 0.2433 0.8425

c1 0.1599 0.7887 3.0306 0.0804 0.3027 1.0356

r1 0.3891 0.9908 3.5757 0.0807 0.2552 0.9065

s1 −0.1131 0.3722 1.3915 0.0546 0.1587 0.5932

a2 0.2047 0.7134 2.6817 0.0921 0.2352 0.7769

b2 −0.1824 0.6974 2.6414 0.0814 0.2837 0.9804

c2 0.2089 0.8528 3.2443 0.0572 0.2373 0.8509

r2 0.4022 0.9146 3.2231 0.1108 0.2715 0.9205

s2 −0.1485 0.4358 1.6076 0.0124 0.0368 0.1380

p −0.0058 0.2060 0.8079 −0.0190 0.1904 0.5459

50, 40

a1 0.1919 0.6064 2.4934 0.0457 0.1469 0.5373

b1 −0.1360 0.6266 2.4002 0.0501 0.1353 0.4797

c1 0.2024 0.6306 2.9215 0.0371 0.1646 0.6183

r1 0.2577 0.8736 3.2753 0.0444 0.1767 0.6505

s1 −0.1101 0.3609 1.3485 0.0333 0.0997 0.3671

a2 0.1838 0.7048 2.5844 0.0389 0.1382 0.5167

b2 −0.1898 0.6913 2.6081 0.0503 0.1826 0.6657

c2 0.2209 0.8492 3.1514 0.0355 0.1405 0.5139

r2 0.4817 0.9032 3.1583 0.0666 0.1764 0.6511

s2 −0.1363 0.4060 1.5724 0.0040 0.0233 0.0878

p −0.0106 0.1194 0.4667 −0.0238 0.1120 0.3631
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Table 5. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different sample sizes: Scheme 1 (complete sample), Case 2.

MLE Bayesian

n Bias RMSE LACI Bias RMSE LCCI

25

a1 0.4950 1.2585 5.9078 0.1046 0.2725 0.9632

b1 0.0025 0.0974 0.3819 0.0691 0.0811 0.3175

c1 0.3392 1.2556 4.7436 0.0663 0.1757 0.6258

r1 0.1166 0.2492 0.8640 −0.0189 0.1458 0.5568

s1 0.1338 0.4568 1.7138 0.1819 0.2823 0.8286

a2 0.0850 1.9085 7.4814 0.0398 0.1079 0.3711

b2 0.0461 0.1245 0.4540 0.0312 0.0675 0.2063

c2 0.2599 0.5643 1.9656 0.0475 0.2313 0.7513

r2 0.0984 0.3444 1.2950 −0.0534 0.1993 0.7545

s2 −0.0048 0.3695 1.4497 0.0216 0.0382 0.1283

p −0.0035 0.0920 0.3607 −0.0116 0.0816 0.3071

50

a1 0.2532 1.0781 4.9156 0.0615 0.1727 0.6082

b1 0.0039 0.0774 0.3032 0.0425 0.0778 0.2230

c1 0.3267 1.0900 4.0806 0.0339 0.1189 0.4407

r1 0.0774 0.1588 0.5440 −0.0128 0.1009 0.3987

s1 0.1067 0.4314 1.6401 0.0985 0.1755 0.5609

a2 −0.1625 1.4809 5.7759 0.0299 0.0781 0.2910

b2 0.0457 0.1183 0.4281 0.0296 0.0515 0.1509

c2 0.2415 0.4634 1.8299 0.0410 0.1641 0.5968

r2 0.0369 0.2309 0.8944 −0.0655 0.1306 0.4482

s2 0.0314 0.3073 1.4569 0.0157 0.0265 0.0823

p −0.0036 0.0692 0.2712 −0.0094 0.0648 0.2451

100

a1 0.1000 0.9519 3.7145 0.0397 0.1558 0.5863

b1 0.0054 0.0522 0.2037 0.0249 0.0539 0.1661

c1 0.2833 0.7983 2.9286 0.0349 0.1158 0.4385

r1 0.0534 0.1129 0.3903 0.0063 0.0776 0.3142

s1 0.0688 0.3142 1.2030 0.0658 0.1410 0.4920

a2 −0.1731 1.1550 4.4811 0.0199 0.0732 0.2684

b2 0.0396 0.0985 0.3541 0.0233 0.0381 0.1088

c2 0.1359 0.3042 1.0677 0.0174 0.1019 0.3844

r2 0.0006 0.1304 0.5117 −0.0566 0.0978 0.3237

s2 0.0363 0.2320 1.2465 0.0114 0.0254 0.0740

p −0.0014 0.0485 0.1903 −0.0031 0.0472 0.1834
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Table 6. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 2 and n = 25.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

2

25, 15

a1 0.3219 1.5006 5.7511 0.0890 0.2609 0.9529

b1 −0.0140 0.1061 0.4125 0.0409 0.1046 0.3430

c1 0.2475 1.3018 5.0149 0.0303 0.1680 0.6187

r1 0.3045 0.6054 2.0533 0.1003 0.2511 0.8449

s1 0.1760 0.5871 2.1980 0.1423 0.2544 0.7830

a2 −0.1057 2.0364 7.9800 0.0373 0.1059 0.3868

b2 0.0533 0.2103 0.7982 0.0260 0.0679 0.2227

c2 0.2514 0.6190 2.2198 0.0491 0.2189 0.7067

r2 0.2421 0.5800 2.0680 −0.0026 0.2304 0.9165

s2 0.1230 0.5706 2.1865 0.0203 0.0362 0.1182

p −0.0230 0.1544 0.5992 −0.0320 0.1371 0.5096

25, 20

a1 0.4450 1.2772 4.7292 0.0502 0.1432 0.5073

b1 −0.0071 0.1040 0.4072 0.0391 0.0990 0.3048

c1 0.2764 1.2067 4.6092 0.0235 0.1010 0.3778

r1 0.1954 0.4030 1.3830 0.0309 0.1768 0.6555

s1 0.1461 0.5049 1.8965 0.0819 0.1589 0.5218

a2 0.1944 2.0450 7.9880 0.0235 0.0627 0.2217

b2 0.0341 0.1379 0.5242 0.0239 0.0581 0.1891

c2 0.2256 0.6054 2.2044 0.0551 0.2044 0.7016

r2 0.1582 0.4093 1.4811 −0.0506 0.1708 0.6461

s2 0.0712 0.4372 1.6925 0.0127 0.0223 0.0712

p −0.0200 0.1178 0.4557 −0.0314 0.1056 0.3854

3

25, 15

a1 0.3756 1.5466 5.8871 0.0977 0.2491 0.8675

b1 0.0086 0.1149 0.4497 0.0728 0.1016 0.3220

c1 0.2402 1.1652 4.4740 0.0407 0.1576 0.6094

r1 0.1513 0.2897 0.9695 −0.0267 0.1492 0.5809

s1 0.2196 0.5639 2.0382 0.1517 0.2645 0.8215

a2 0.0220 1.8220 7.1490 0.0473 0.1138 0.3973

b2 0.0456 0.1589 0.5971 0.0289 0.0658 0.2128

c2 0.2686 0.6084 2.1420 0.0957 0.2510 0.8332

r2 0.2490 0.4789 1.6053 −0.0177 0.2134 0.8030

s2 0.1015 0.4697 1.7995 0.0246 0.0406 0.1244

p −0.1750 0.2005 0.3840 −0.1599 0.1814 0.3204

25, 20

a1 0.3345 1.4388 5.4909 0.0556 0.1509 0.5303

b1 0.0026 0.1035 0.4058 0.0504 0.0942 0.2754

c1 0.3566 1.0276 4.2807 0.0291 0.1015 0.3685

r1 0.1413 0.2619 0.8653 −0.0160 0.1250 0.4882

s1 0.1898 0.5521 2.0346 0.0960 0.1626 0.5275

a2 0.2065 1.7882 5.3390 0.0242 0.0622 0.2171

b2 0.0523 0.1422 0.5190 0.0218 0.0566 0.1773

c2 0.3228 0.5461 2.0235 0.0667 0.2028 0.7112

r2 0.1509 0.4165 1.5231 −0.0344 0.1565 0.5786

s2 0.0576 0.4180 1.6247 0.0128 0.0232 0.0730

p −0.0859 0.1294 0.3797 −0.0773 0.1171 0.3043
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Table 7. Bias, RMSE and length of CI for the MLE and Bayesian estimates of the parameters are
presented for different schemes: Case 2 and n = 50.

MLE Bayesian

Scheme n, m Bias RMSE LACI Bias RMSE LCCI

I

50, 30

a1 0.1607 1.1624 4.5175 0.0950 0.2756 0.9877

b1 −0.0156 0.0926 0.3583 0.0425 0.1156 0.3975

c1 0.1410 0.9550 3.7064 0.0340 0.1804 0.7061

r1 0.3582 0.6997 2.3586 0.1390 0.3104 1.0253

s1 0.1687 0.6128 2.3115 0.1347 0.2730 0.8936

a2 −0.3925 1.4224 5.3648 0.0466 0.1148 0.4057

b2 0.0444 0.1538 0.5779 0.0233 0.0643 0.2126

c2 0.1707 0.4040 1.4368 0.0621 0.2132 0.7099

r2 0.2614 0.6599 2.3776 0.0353 0.2589 0.9918

s2 0.1804 0.6739 2.5479 0.0192 0.0394 0.1334

p −0.0440 0.2016 0.7719 −0.0479 0.1859 0.5668

50, 40

a1 0.1322 1.0365 4.2045 0.0616 0.1823 0.6517

b1 −0.0061 0.0903 0.3536 0.0218 0.0800 0.2685

c1 0.1406 0.9028 3.6985 0.0214 0.1105 0.4222

r1 0.1619 0.3606 1.2642 0.0606 0.1810 0.6664

s1 0.1229 0.4318 1.6243 0.0673 0.1532 0.5163

a2 −0.2044 1.3552 4.5038 0.0219 0.0698 0.2580

b2 0.0286 0.1166 0.4435 0.0224 0.0498 0.1704

c2 0.1682 0.3741 1.4034 0.0500 0.1703 0.5965

r2 0.1231 0.3405 1.2457 −0.0294 0.1568 0.6370

s2 0.0647 0.4849 1.8859 0.0107 0.0238 0.0771

p −0.0117 0.1050 0.4094 −0.0171 0.0996 0.3911

II

50, 30

a1 0.3428 1.2479 4.7083 0.1173 0.3037 1.1006

b1 0.0019 0.0856 0.3357 0.0651 0.1078 0.2946

c1 0.2610 1.0548 4.0104 0.0631 0.1839 0.6537

r1 0.1252 0.2271 0.7435 −0.0133 0.1284 0.5061

s1 0.1625 0.4028 1.4461 0.1708 0.2807 0.7910

a2 −0.0189 1.2375 4.8553 0.0595 0.1238 0.4057

b2 0.0300 0.0986 0.3684 0.0344 0.0626 0.1887

c2 0.1687 0.3744 1.3115 0.1112 0.2300 0.7343

r2 0.1328 0.3041 1.0733 −0.0624 0.1694 0.5980

s2 0.0893 0.3474 1.3174 0.0302 0.0480 0.1460

p −0.2414 0.2501 0.2563 −0.2261 0.2345 0.2025

50, 40

a1 0.1323 0.9504 4.6244 0.0602 0.1719 0.6060

b1 0.0084 0.0855 0.3337 0.0488 0.0886 0.2672

c1 0.2795 0.8144 3.8352 0.0355 0.1176 0.4267

r1 0.0950 0.1849 0.6223 −0.0175 0.1077 0.4235

s1 0.1539 0.3912 1.4114 0.0958 0.1742 0.5624

a2 −0.1510 0.9435 4.5993 0.0280 0.0748 0.2571

b2 0.0406 0.0914 0.3440 0.0239 0.0483 0.1573

c2 0.1276 0.3428 1.2532 0.0524 0.1699 0.6015

r2 0.1008 0.2956 1.0090 −0.0475 0.1378 0.4887

s2 0.0880 0.3042 1.2462 0.0133 0.0258 0.0864

p −0.1212 0.1366 0.2472 −0.1148 0.1298 0.1923
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8. Application on Bladder Cancer Data

In this section, we provide a real data analysis to illustrate some practical applications
of the proposed distributions. The data are from [13], which correspond to the remission
times (in months) of a random sample of n = 128 bladder cancer patients. These data are
given as follows:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40,
2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54,
3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88,
5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23,
5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54,
8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Before proceeding further, we fitted the mixture EKW distribution to the complete
data set. Table 8 reports the ML and Bayesian estimates for the parameters for the complete
bladder cancer data. Figure 3 represents the overall fit of EKW for these data.

Table 8. ML estimates of the EKW parameters with the corresponding bladder data.

a b c r s KSD PVKS CVM AD

Estimates 3.6537 3.1179 1.1311 0.4578 5.2873 0.0443 0.9629 0.0408 0.2700

Figure 3. ML estimates of the EKW parameters for the complete bladder cancer data.

The validity of the fitted model is assessed by computing the Kolmogorov–Smirnov
distance (KSD) statistics with p-Value KS (PVKS) in Table 8. In addition, we plotted the
fitted cdf and the empirical cdf, as shown in Figure 3. This was conducted by replacing the
parameters with their ML (in red) estimates, as shown in Figure 3. The KSD statistics for
ML are 0.0443 and the corresponding p-value is 0.9629. Therefore, the KS test, along with
Figure 3, indicate that the EKW distribution provides the best fit for this data set.

Next, we fitted the MEKW distribution to the complete data set. Table 9 reports the
ML and Bayesian estimates for the parameters for the complete bladder cancer data.
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Table 9. ML estimates of the MEKW parameters for the complete sample of the bladder data.

MLE Bayesian

Estimates SE Lower Upper Estimates SE Lower Upper

a1 8.2459 0.0171 8.2125 8.2794 8.3297 0.0075 8.2310 8.2601

b1 0.1491 0.0123 0.1250 0.1733 0.1866 0.0008 0.1477 0.1506

c1 27.6825 7.5314 12.9208 42.4441 27.2578 0.1975 27.5327 27.8240

r1 1.1925 0.0015 1.1896 1.1954 1.1456 0.0015 1.1800 1.1984

s1 4.4770 0.0014 4.4742 4.4798 4.3029 0.0003 4.4620 4.4911

a2 12.2492 0.0079 12.2337 12.2648 12.2200 0.0075 12.2343 12.2634

b2 0.1526 0.0126 0.1279 0.1773 0.2207 0.0008 0.1511 0.1540

c2 22.6763 5.8063 11.2960 34.0567 22.6720 0.0754 22.5266 22.8179

r2 1.2810 0.0024 1.2763 1.2858 0.3040 0.0014 1.2661 1.2952

s2 5.6261 0.0026 5.6210 5.6313 0.1922 0.0025 5.6115 5.6406

p 0.5004 0.0347 0.4325 0.5684 0.6039 0.0075 0.4858 0.5149

In Figures 4 and 5, we provide the trace plots of the MCMC results, showing the
MCMC procedure converges. Figures 6 and 7 show the MCMC density and HDI intervals
for the results of the Bayesian estimation of the MEKW model for the complete sample.
Therefore, we will use the estimate for the mixing parameter ρ̂ = 0.5004 in computing the
ML and Bayesian estimates for other parameters when using complete samples.

Figure 4. MCMC trace for results of Bayesian estimation of model for complete Bladder data for first
9 parameters.
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Figure 5. MCMC trace for results of Bayesian estimation of model for complete Bladder data for the
last two parameters.

Two different sampling schemes are used to generate the progressively censored
samples from the bladder cancer data with m = 100, which are as follows:

Strategy 1: (99*0,28); Rkı =

{
nk − mk, ı = 1

0, ı = 2, . . . , mk
(type II censoring scheme).

Strategy 2: (28,99*0); Rkı =

{
nk − mk, ı = mk

0, ı = 1, . . . , mk−1
.

In both cases, we have considered the optimization algorithm to compute the ML
estimates. Table 10 shows the ML estimates for these two schemes.

Figure 6. MCMC density and HDI intervals for results of Bayesian estimation of model for complete
Bladder data for 9 parameters.
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Figure 7. MCMC density and HDI intervals for the Bayesian estimation of model for complete
Bladder data for the last two parameters.

Table 10. ML estimates of the MEKW parameters for different censoring schemes of the bladder data.

MLE Bayesian

m Estimates SE Estimates SE Lower Upper

100

I

1 0.7798 0.6666 2.3379 0.1443 2.0831 2.5781

2 0.3701 0.2945 1.4005 0.1141 1.1089 1.5987

3 1.5890 1.5642 1.0217 0.0929 0.8747 1.2007

4 1.0476 0.3145 0.6716 0.0607 0.5607 0.8075

5 2.5998 1.4655 6.1628 0.1388 5.9327 6.4243

6 0.3585 0.4015 0.4015 0.0689 0.2564 0.5199

7 0.0910 0.1559 0.3354 0.0565 0.2526 0.4543

8 2.2788 1.9297 4.1502 0.1257 3.9216 4.3922

9 0.8801 0.2630 0.6598 0.0461 0.5720 0.7408

10 0.3263 0.4107 0.7023 0.1030 0.4812 0.8705

11 0.4996 0.0312 0.4978 0.0307 0.4320 0.5622

II

1 3.1095 1.2115 2.9865 0.8578 1.3865 4.5300

2 5.4366 1.2115 5.5720 0.5985 4.7450 7.8209

3 1.6154 1.5705 2.0721 0.9825 0.4263 3.9153

4 0.3895 0.5488 0.3989 0.0817 0.2433 0.5639

5 9.4701 3.0546 10.1271 2.1945 5.8077 14.0496

6 3.1391 0.2030 3.2203 0.1536 2.1766 3.9201

7 5.3816 4.7374 6.0417 2.5953 1.8477 11.4996

8 1.6035 1.5762 1.8511 1.1209 0.4448 4.2545

9 0.3891 0.3544 0.4127 0.1405 0.1992 0.7092

10 9.2241 5.6376 11.1351 4.8638 3.1418 19.6341

11 0.5000 0.0312 0.5031 0.0245 0.4146 0.5892

For Case 1, where m = 100 and under the Scheme 1, the following can be noted: 0.08
0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46
2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88
4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62
5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93 8.26
8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06 10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02
12.03 12.07.
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For Case 2, where m = 100 and under the Scheme 2, the following can be noted: 0.08
0.20 0.40 0.50 0.90 1.05 1.19 1.35 1.40 1.46 1.76 2.02 2.09 2.23 2.26 2.46 2.64 2.69 2.69 2.75 2.83
3.02 3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64 3.82 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98
5.06 5.09 5.17 5.32 5.32 5.41 5.41 5.49 5.62 5.71 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.28 7.32 7.39
7.59 7.62 7.63 7.66 8.37 8.53 8.65 9.02 9.47 9.74 10.06 10.66 10.75 11.25 11.64 11.79 11.98 12.02
12.07 12.63 13.29 14.24 14.77 16.62 17.12 17.36 18.10 19.13 20.28 22.69 23.63 25.74 25.82 26.31
34.26 36.66 43.01 46.12 79.05.

In addition, Bayesian credible interval estimates of the parameters are obtained numer-
ically using Markov chain Monte Carlo (MCMC) techniques. That is, samples are simulated
from the joint posterior distribution in Equation (12) using the Metropolis–Hasting algo-
rithm to obtain the posterior mean values of the estimates of the parameters by MCMC.
Table 10 reports the estimates of the MEKW parameters with the corresponding SE and
credible confidence intervals using the HDI algorithm of the Bayesian estimators.

9. Concluding Remarks

Finite mixture models under both the continuous and the discrete domain have
received considerable attention over the last decade or so due to its flexibility of modeling an
observed phenomenon when each component cannot adequately explain the entire nature
of the data. In this paper, we have developed and studied a finite mixture of exponentiated
Kumaraswamy-G distribution under a progressively type II censored sampling scheme,
when the baseline distribution (G) is a two parameter Weibull. The efficacy of the proposed
model has been established through applying it to model data from the healthcare domain.
From the simulation study as well as from the application, it has been observed that,
depending on the censoring scheme, either of the two estimation methods (i.e., maximum
likelihood and the Bayesian estimation under independent gamma priors) could be useful.
Among the various loss functions assumed for the Bayesian estimation, the results based
on the small simulation study are inconclusive as to which loss function will be the most
suitable for this type of finite mixture models. Most likely, a full-scale simulation study with
varying parameter choices and a wide range of censoring schemes would give us an idea.
Currently, we are working on this and it will be published when it is ready for submission.

Author Contributions: Conceptualization, R.A., L.A.B., E.M.A., M.K., I.G. and H.R.; Data curation,
R.A.; Formal analysis, R.A., L.A.B., E.M.A., M.K. and H.R.; Funding acquisition, R.A.; Investigation,
I.G.; Methodology, R.A., L.A.B., E.M.A., M.K., I.G. and H.R.; Resources, R.A.; Software, L.A.B., M.K.
and H.R.; Supervision, L.A.B. and E.M.A.; Validation, L.A.B., E.M.A., I.G. and H.R.; Visualization,
R.A., M.K., I.G. and H.R.; Writing—original draft, R.A., L.A.B., E.M.A., M.K., I.G. and H.R.; Writing—
review & editing, I.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R50), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included within
the article.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R50), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia).

Conflicts of Interest: The authors declare no conflict of interest.

273



Mathematics 2022, 10, 2800

Appendix A

A parameter point ε0 in A is said to be identifiable if there is no other ε in A, which is
observed to be equivalent, as shown in [14].

Appendix A.1. Necessary and Sufficient Conditions for Identifiability

(i) Assumption 1: The structural parameters space A is an open set inRm; R = (−∞,+∞).
This true in our case, as for Equation (3), the mixture model density. The associated

parameter vector,
→
Δ = (a1, b1, c1, a2, b2, c2, r1, r2, s1, s2, p, q ), with the parameter space

→
Ψ = {(a1, a2) ≥ 1; (bi, ci) ∈ (0, 1]∀i = 1, 2, (ri, si) ∈ R+; (p, q) ∈ (0, 1]} and the asso-

ciated support parameters space show that
→
Ψ is an open set in R12. Then, the function

f is a proper density.

(ii) Assumption 2: Functions for every
→
Ψ. In particular, f is non-negative and the equation∫

f
(

y;
→
Δ
)

dy = 1, holds for all
→
Δ in

→
Ψ. This is true for the density in Equation (3).

(iii) Assumption 3: The sample space of y, say B, for which f is strictly positive, is the

same for all
→
Δ in the parameter space

→
Ψ. This is also true and immeditely holds for

the density in Equation (3).

(iv) Assumption 4: For all
→
Δ in a convex set containing

→
Ψ and for all y in the sample space

B, the functions f
(

y;
→
Δ
)

and loge

[
f
(

y;
→
Δ
)]

are continuously differentiable, with

respect to each element in
→
Δ. This is also true for the density in Equation (3).

(v) Assumption 5: The elements of the information matrix (FIM) (in this case, the ob-

served Fisher information matrix), R
(→

Δ
)
=

⎡⎣∂log f

∂
→
Δi

,
∂log f

∂
→
Δj

⎤⎦, exists and are contin-

uous functions of
→
Δ everywhere in

→
Ψ for the density in Equation (3); the associated

log-likelihood function will be (for a single observation)

log
[

f
(

x;
→
Δ
)]

= log
[

p a1b1c1r1
s1

(
x
s1

)r1−1
exp
[
−
(

x
s1

)r1
][

1 − exp
(
−
(

x
s1

)r1
)]a1−1

]
[

1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1−1
[

1 −
[

1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1−1

+q a2b2c2r2
s2

(
x
s2

)r2−1
exp
[
−
(

x
s2

)r2
][

1 − exp
(
−
(

x
s2

)r2
)]a2−1

[
1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2−1
[

1 −
[

1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2
]c2−1

⎤⎦
For illustrative purposes, we will discuss one element from the observed FIM of

dimension 12 × 12. The proof of existence of the remaining elements and continuity can
be similarly established. For brevity, the complete details are avoided. It is available upon
request to the authors. Next, one must consider

∂2log f
∂a1∂a2

=
−D1

D2
(A1)

where

274



Mathematics 2022, 10, 2800

D1 =

[
b1b2c1c2exp

[(
x
s1

)r1

+
(

x
s2

)r2
][

1 − exp
(
−
(

x
s1

)r1
)]a1[

1 − exp
(
−
(

x
s2

)r2
)]a2

[
1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1−2

[
1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2−2
[

1 −
[

1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1−1

[
1 −
[

1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2
]c2−2

pqr1r2

(
x
s1

)r1
(

x
s2

)r2

(
−1 +

[
1 − exp

(
−
(

x
s1

)r1
)]a1

)(
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[
1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1
)

+a1

(
1 −
[

1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1
)

+b1

[
1 − exp

(
−
(

x
s1

)r1
)]a1(

−1 + c1

[
1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1
)

log
[
1 − exp

(
−
(

x
s1

)r1
)]

(
−1 +

[
1 − exp

(
−
(

x
s2

)r2
)]a2

)(
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[
1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2
)

a2b2(
1 −
[

1 −
[
1 − exp

(
−
(

x
s2

)r2
)]a2

]b2
)

+log
[
1 − exp

(
−
(

x
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)r2
)](

−1 + c2

[
1 −
[
1 − exp

(
−
(

x
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)r2
)]a2

]b2
)]

,

D2 =
(
−1 + exp

(
−
(

x
s1

)r1
))

(
−1 + exp

(
−
(

x
s2

)r2
))[

pr1a1b1c1

[
1 − exp

(
−
(

x
s1

)r1
)]a1−1

[
1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1−1
[

1 −
[

1 −
[
1 − exp

(
−
(

x
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)r1
)]a1

]b1
]c1−1(

x
s1

)r1

+qr2a2b2c2

[
1 − exp

(
−
(

x
s2

)r2
)]a2−1

[
1 −
[
1 − exp

(
−
(

x
s2

)r2
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1 −
[
1 − exp

(
−
(

x
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]b2
]c2−1(

x
s2

)r2

⎤⎦2

From Equation (A1), it is obvious that these derivatives exist for all possible choices

of the parameter vector
→
Δ and for the parameter space

→
Ψ, as well as for all possible

values of x ∈ (0, ∞). This derivative function is also continuous. The proof is simple, and
thus excluded.

• Identifiability of the MEKW Model

Before considering the aspect of estimation and associated inference and classification
of random variables, which are based on observations from a mixture, it is necessary to
address the subject of identifiability of the mixture(s) and possibly its components. We
suggest our readers to refer to the following pertinent reference: [14] for more information
on the identifiability of mixture distributions. The identification of a mixture for two EK
(with the same baseline G’s as given in (2)) components will now be explored.
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We begin with the combination of two survival functions. One must consider a
linear combination of two separate distributions, one of which is EKW(a1, b1, c1, s1, r1)
distribution, and the other distribution is EKW(a2, b2, c2, s2, r2), as shown below.

2

∑
i=0

piSi(x) = 0,

where S1(x) = 1 −
[

1 −
[

1 −
[
1 − exp

(
−
(

x
s1

)r1
)]a1

]b1
]c1

, 0 < x< ∞, a1, b1, c1, s1, r1 >0,

S2(x) = 1 −
{

1 −
[

1 −
(

1 − exp
[
−
(

x
s2

)−r2
])a2

]b2
}c2

, 0 < x< ∞, a2, b2, c2, s2, r2 >0,

and p1 and p2 are the mixing weights, such that p1 + p2 = 1 and 0 < pi < 1 ∀ i = 1, 2.
The finite mixture of EKW (a1, b1, c1, s1, r1), and EKW (a2, b2, c2, s2, r2) distributions are
identifiable, if S1(x), S2(x) are linearly independent. This means, if (a1, b1, c1, s1, r1) �=
(a2, b2, c2, s2, r2), this implies p1 = p2 = 0.

If x = 0, then S1(0) = S2(0) = 1 → p1 + p2 = 0 → p1 = −p2.
Then,

1 −
⎡⎣1 −

[
1 −
[

1 − exp
(
−
(

x
s1

)r1
)]a1

]b1
⎤⎦c1

= 1 −
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[
1 −
(

1 − exp

[
−
(

x
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)−r2
])a2

]b2
⎫⎬⎭

c2

,
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1 −
[
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(
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(

x
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)r1
)]a1

]b1
⎤⎦c1

=
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(
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])a2
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∞
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)b1i1

=
∞

∑
i2=0

(
c2
i1

)
(−1)i1

(
1 −
(

1 − exp
(
−
(

x
s2

)r2
))a2

)b2i1

,

∞

∑
i1=0

(
c1
i1

) ∞

∑
i2=0

(
b1i1
i2

)
(−1)i1+i2

(
1 − exp

(
−
(

x
s1

)r1
))a1i2

=
∞

∑
i1=0

(
c2
i1

) ∞

∑
i2=0

(
b2i1
i2

)
(−1)i1+i2

[
exp

(
−
(

x
s2

)−r2
)]a2i2

,

∞
∑

i1=0

(
c1
i1

)
∞
∑

i2=0

(
b1i1
i2

)
(−1)i1+i2

∞
∑

i3=0

(
a1i2
i3

)
(−1)i1+i2+i3

(
exp
(
−
(

x
s1

)r1
))

=
∞
∑

i1=0

(
c2
i1

)
∞
∑

i2=0

(
b2i1
i2

)
(−1)i1+i2

∞
∑

i3=0

(
a2i2
i3

)
(−1)i1+i2+i3

(
exp
(
−
(

x
s2

)r2
))

,

∞

∑
i1=0

(
c1
i1

) ∞

∑
i2=0

(
b1i1
i2

)
(−1)i1+i2

∞

∑
i3=0

(
a1i2
i3

)
(−1)i1+i2+i3

(
x
s1

)r1

=
∞

∑
i1=0

(
c2
i1

) ∞

∑
i2=0

(
b2i1
i2

)
(−1)i1+i2

∞

∑
i3=0

(
a2i2
i3

)
(−1)i1+i2+i3

(
x
s2

)r2

where i1! = i1(i1 − 1)(i1 − 2) . . . .3.2.1, i1 = i2 = i3, and the coefficients of x on both sides
are compared and it is discovered that a1 = a2, b1 = b2, c1 = c2, s1 = s2 , r1 = r2, and
p1 = p2 = 0.

S1(x) and S2(x) are, thus, linearly independent. As a result, the EKW(a1, b1, c1, s1, r1)
and EKW (a2, b2, c2, s2, r2) distributions can be identified as a finite mixture.
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