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Preface

This reprint focuses on exploring and applying the critical roles of fractal and fractional theories
in geotechnical engineering design. It addresses the application of these concepts in geotechnical
engineering and construction materials, covering topics such as rock fracture behavior, elastic wave
propagation, slurry seepage theory, single-particle breakage, artificial frozen soil, tunnel settlement

prediction, and more.

Shao-Heng He, Zhi Ding, and Panpan Guo
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Fractal and Fractional Theories in Advancing Geotechnical
Engineering Practices

Shao-Heng He 12, Zhi Ding 1* and Panpan Guo >*

Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China;
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Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

*  Correspondence: dingz@zucc.edu.cn (Z2.D.); guopanpan@hfut.edu.cn (P.G.)

Fractal and fractional theories have developed over several decades and have gradually
grown in popularity, with significant applications in geotechnical engineering [1,2]. The contours
and pore structures of geotechnical materials often exhibit complex morphologies and scales
that fractal theory can effectively describe. Experimental techniques such as scanning electron
microscopy (SEM), computerized tomography (CT) scanning [3,4], and mercury intrusion
porosimetry (MIP) can be used to obtain pore structure data, which can then be quantitatively
characterized based on fractal dimensions and other parameters to capture the complexity and
connectivity of the pores. For example, because fractal theory can accurately represent the
irregular geometry of natural soils and matches well with their complex structures, it has been
applied in predictive models of the soil-water characteristic curve (SWCC) for unsaturated
soils [5]. Moreover, fractal theory can be applied to study the distribution and complexity of
particle contact networks [6], aiding in understanding the interaction mechanisms between
particles and their influence on the macroscopic mechanical behavior of geotechnical materials.
Furthermore, traditional soil constitutive models often fall short in describing the complex
mechanical behaviors of geotechnical materials. In contrast, fractional-order constitutive models
can more precisely capture the nonlinear and memory effects inherent in these materials [7].
For instance, fractional constitutive models can effectively describe the mechanical behavior of
geotechnical materials under long-term loading [8], thereby providing more reliable tools for
long-term stability analysis in geotechnical engineering.

This Special Issue, “Fractal and Fractional in Geotechnical Engineering”, focuses on
exploring and applying the critical roles of fractal and fractional theories in geotechni-
cal engineering design. This collection features 13 papers addressing the application of
fractal and fractional concepts in geotechnical engineering and construction materials,
covering topics such as rock fracture behavior, elastic wave propagation, slurry seepage
theory, single-particle breakage, artificial frozen soil, and tunnel settlement prediction. An
overview of these papers is provided below.

Shi and Xiao [9] investigated how fractal dimensions affect the mechanical properties
and fracture behavior of multi-mineral rocks using three numerical models, i.e., digital
texture, Voronoi polygon, and Weibull distribution. Particle flow simulations and uniaxial
compression tests were performed on 2D and 3D models, respectively. The results indicated
that the Weibull model had the highest fractal dimension and complexity, while the Voronoi
model had the lowest, as well as a more regular structure. Compressive strength increased
roughly linearly with fractal dimension in all models. Additionally, 3D models showed
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higher strength than 2D models, but the relationship between fractal dimension and
strength followed a similar trend in both cases. This highlights the importance of fractal
dimensions in describing rock geometry and mechanics.

Wang and Zhang [10] conducted a numerical study on elastic wave propagation in
two-dimensional fractional Brownian fields, examining the effects of the Hurst exponent
and standard deviation on wave behavior. Their results demonstrate that higher standard
deviation and lower Hurst exponent increase wavefront roughness, cause asynchronous
arrivals, and amplify energy attenuation due to stronger scattering and greater modulus
variability. This study enhances our understanding of wave propagation in fractal het-
erogeneous media, with significant implications for seismic exploration and subsurface
imaging in complex geological formations.

Gong et al. [11] developed a theoretical penetration grouting model for Bingham
fluids based on fractal theory, incorporating the influence of pore structure on slurry
infiltration. The model was validated experimentally using a custom apparatus simulating
constant flow rate penetration. The results showed strong agreement between theoretical
predictions and experimental data, demonstrating the model’s effectiveness in describing
slurry pressure distribution during grouting. This work provides valuable guidance for
grouting design and related engineering applications.

Lietal. [12] developed a comprehensive framework integrating experiments and numerical
simulations to study single-particle breakage using 3D particle reconstruction based on a
vision foundation model. Their calibrated discrete element method simulations accurately
replicated particle breakage behavior. The study revealed strong correlations between 3D fractal
dimensions and particle size, crushing strength, and morphology, highlighting fractal dimension
as a valuable descriptor of particle properties. This framework advances the understanding of
particle breakage mechanics and provides a robust tool for future research.

Sun et al. [13] analyzed highway slope surface displacement using multifractal detrended
fluctuation analysis (MF-DFA) and developed a particle swarm optimization (PSO)-optimized
long short-term memory (LSTM) model for prediction. Their study revealed multifractal
characteristics in the displacement data and classified the slope warning levels. The PSO-LSTM
model demonstrated high predictive accuracy. These findings support routine monitoring and
provide a strong foundation for improved slope safety management.

Kong et al. [14] investigated the microstructural and fractal characteristics of frozen—
thawed sandy soft soil using nuclear magnetic resonance and uniaxial compression tests.
Their study demonstrated that freezing temperature and sand content significantly affect
pore structure complexity and soil strength, with the fractal dimension serving as a key
indicator. Lower freezing temperatures increase fractal dimension and soil strength, while
higher sand content enlarges pores and reduces strength. These findings offer valuable
insights into freeze-thaw effects on soil stability in soft soil regions.

Liang et al. [15] employed DEM numerical simulations to investigate soil arching
mechanisms in granular materials with varying relative densities. They identified three
zones based on particle displacement and found that soil arching strength and force
chain development are strongly influenced by particle assembly porosity. Denser samples
exhibited stronger arching and more pronounced force chain evolution, particularly in
the intermediate displacement zone. After reaching peak arching, force chains degraded,
leading to a reduction in arching. Ultimately, soil arching at the limit state was found to
be independent of relative density. This study highlights the crucial role of contact force
chains in soil arching behavior.

Yu and Yin [16] investigated the convergence of stiffness operators and viscoelastic
properties in fractal ladder and tree structures. They demonstrated that sequences of
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stiffness operators converge and that finite-level fractal structures beyond the third hier-
archy exhibit behavior similar to infinite-level fractals, simplifying analysis. The study
revealed characteristic ultra-long creep times and relaxation tailing effects, underscoring
the effectiveness of fractal models in capturing complex viscoelastic behavior. Their work
bridges continuous and fractal models, providing valuable insights for materials science
and mechanical engineering.

Wang and Wang [17] conducted in situ industrial CT scans to study crack evolution in
coal under varying confining pressures, using fractal theory to quantitatively describe crack
development. They identified consistent crack evolution stages across pressures and found
that fractal dimension changes correlate well with crack dynamics, showing an initial slight
decrease followed by significant growth. Higher confining pressures limit crack development
and enhance the mechanical strength of coal, primarily leading to shear failure. This study offers
a reliable fractal-based method of assessing coal fracture evolution and predicting instability.

Yang et al. [18] applied multifractal theory and multifractal detrended fluctuation
analysis (MF-DFA) to characterize tunnel deformation data. They integrated Mann—
Kendall analysis to establish dual early warning criteria and employed a particle swarm
optimization—long short-term memory (PSO-LSTM) model to predict tunnel settlement.
The results showed consistent Class II warning levels across sections and demonstrated
that the PSO-LSTM model delivers accurate and stable settlement predictions. This study
supports enhanced monitoring and disaster preparedness through quantitative analysis.

Zhang et al. [19] investigated the optimization of peripheral hole charging structures
and blasting parameters for extra-long hard rock tunnels to enhance the effectiveness of
smooth blasting. By employing laser profiling and multifractal detrended fluctuation anal-
ysis (MF-DFA), they compared bidirectional shaped charge blasting with spaced decoupled
charge blasting. The results demonstrated that bidirectional shaped charge blasting signifi-
cantly improved smooth blasting performance, yielding flatter tunnel contours and more
uniform overbreak and underbreak. Both blasting methods exhibited multifractal character-
istics in overbreak data, with quantitative analyses closely aligning with actual conditions.

Zhang et al. [20] developed an innovative energy calculation method to identify
the key factors contributing to rock bursts by comparing elastoplastic and purely elastic
models. Their study reveals that a deviatoric stress field, which induces a butterfly-
shaped plastic zone, is the primary driver of significant energy release and rock burst
occurrence, with trigger stress playing a secondary role. Laboratory experiments employing
acoustic emission monitoring validate the butterfly-shaped failure pattern and reveal fractal
characteristics in the spatial distribution of events prior to failure. These findings offer a
clearer and more quantifiable understanding of the mechanisms underlying rock bursts.

Li et al. [21] developed a dilatancy equation that accounts for the non-coaxiality
between the stress and strain rate in granular soils by introducing a novel non-coaxial
coefficient grounded in potential theory and material fabric characteristics. This approach
establishes a link between plastic strain and the microstructural fabric, enabling the equa-
tion to reduce to the classical critical state theory under isotropic conditions while effectively
capturing non-coaxial effects under anisotropic conditions. Validation through simple shear
tests demonstrates that the equation reliably predicts dilatancy behavior, particularly under
principal stress rotation and varying stress ratios.

This collection of 13 papers is expected to inspire new ideas in advancing research on
fractal and fractional theories, as well as promoting their broader application in geotechnical
engineering. This will facilitate a better characterization of the complex microstructures and
mechanical properties of soils, rocks, and structures such as tunnels, ultimately supporting
the development of improved design methods and practical tools.
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Fracture Behavior of Multi-Mineral Rock Models with
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Abstract: To study the effects of rock models with different fractal dimensions on their
mechanical properties and fracture behavior, three representative numerical rock models,
including the digital texture model, the Voronoi polygon model, and the Weibull distribu-
tion model, are established in this paper. These models are used to simulate the structure of
multi-mineral rocks and to investigate the influence of fractal dimensions on the mechanical
properties and fracture behavior of rocks. Uniaxial compression numerical tests are carried
out on 2D and 3D intact rocks under different fractal dimensions using the particle flow
simulation method. The relationship between fractal dimensions and uniaxial compression
strength and fracture behavior was analyzed. The results show that the fractal dimension
of the Weibull distribution model is the largest, followed by the digital texture model, and
the fractal dimension of the Voronoi polygon model is the smallest. With the increase in
fractal dimension, the uniaxial compressive strength of intact rocks increases significantly,
and their relationship is approximately linear. The influence of fractal dimension on rock
strength shows a similar trend in both the 2D and 3D models. This study provides a new
perspective for the application of fractal dimensions in multi-mineral rock models.

Keywords: fractal dimension; rock; failure mode; grain-based model; PFC

1. Introduction

Mechanical and failure characteristics are not only important physical properties
of rocks, but also play a key role in engineering applications such as rock breakage [1],
slope protection [2], and deep-ground energy extraction [3]. From a macroscopic point
of view, the mechanical properties and failure modes of rocks are mainly influenced by
external loads and the intrinsic properties of rocks. Regarding the influence of external
loads on mechanics and failure modes, scholars have carried out a large number of physical
experiments and numerical simulations under different confining pressure conditions [4-6]
and have obtained beneficial results. The study of the intrinsic properties of rocks mainly
focuses on the physical properties and geometric characteristics of rocks.

The physical properties of rocks include density, elasticity modulus, Poisson’s ratio,
tensile strength, compressive strength, shear strength, cohesion, internal friction angle,
fracture toughness, and other parameters of intact rock specimens. With the advancement
of computational technology, studies on the effect of rock mesoscopic geometric features on
mechanics and failure behavior have gradually increased over the last two decades [7-11].
These geometric features mainly include the fracture structure and mineral components of

Fractal Fract. 2025, 9, 13 5 https://doi.org/10.3390/ fractalfract9010013
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rocks. For rocks with very low porosity, like granite, the geometric features are mainly con-
trolled by the properties of mineral grains, which include the percentage of the components,
the grain size [12,13], shape [14], orientation [14], and heterogeneity [15,16].

To investigate the influence of structural complexity on the deformation and failure
behavior of rock materials, many researchers have adopted numerical simulation methods
to analyze the influence of mineral grains. Currently, there are three typical numerical mod-
els for describing rock mineral grains: digital image (texture) mapping models, Voronoi
polygon models, and Weibull distribution models. The digital image mapping model
can reproduce complex particle characteristics and interlocking relationships of rocks by
directly mapping the texture pixels of digital rock images to the particles in the numerical
model [17]. The Voronoi polygon model can generate rock models composed of regular
geometric lines by controlling mineral geometric parameters such as grain size [12] and
shape [14]. This kind of model has advantages in computational efficiency, but its reg-
ular polygonal boundary makes it difficult to accurately describe the natural boundary
characteristics of rock mineral grains. The Weibull distribution model adopts a random
method to generate rock models with high heterogeneity and randomness [18]. Although
the reconstruction method of Weibull models is simple, they cannot describe the geometric
characteristics of rock mineral grains. These three models play a critical role in analyzing
rock mechanics and fracture behavior, but a quantitative method to assess the influence of
different numerical models on simulation results is still lacking.

Digital image mapping models, Voronoi polygon models, and Weibull distribution
models have different spatial complexities. In order to quantitatively investigate the
influence of different numerical models on the numerical results, this paper presented
the fractal dimension to describe the three models quantitatively and studied the rock
mechanics and fracture behavior with different fractal dimensions.

2. Materials and Methods
2.1. Rock Samples

In this study, granite was selected as the rock material due to its distinct texture where
each mineral grain is large, densely packed, and displayed in specific colors, without
significant pore or fracture features. The cylindrical sample (as shown in Figure 1a) has a
diameter of 5 cm and a height of 10 cm, and the digital rock sample (as shown in Figure 1b)
has a length of 10 cm and a width of 5 cm. The pixel resolution of this rectangular model is
500 x 250 pixels, with each pixel representing a region of 0.2 mm x 0.2 mm. To calibrate
the numerical simulation results, the uniaxial compression physical experiment described
in this paper was conducted using a cylindrical rock sample of ®5 cm x 10 cm, while the
numerical simulation experiment was performed using the 5 cm x 10 cm rectangular digital
rock model. Both samples were obtained from the same parent rock, sharing identical
geological conditions, similar textural structures, and material properties, resulting in
nearly identical mechanical and deformation characteristics. The granite mainly consists of
four minerals: K-feldspar, plagioclase, quartz and biotite, as shown in Figure 1c.

2.2. Numerical Modeling Methods of PFC with Different Fractal Dimensions

The internal structure of rocks is complex and variable, with remarkable fractal fea-
tures. The different mineral components and their spatial distribution affect the mechanical
behavior and fractal dimensions of rocks. Different numerical modeling methods, such
as those based on digital rock models, Voronoi polygons, and Weibull distributions, are
able to generate granular structures with different fractal dimensions, demonstrating the
complex distribution characteristics of rock mineral components. In this section, three



particle flow modeling methods that can express the characteristics of different particle

fractal dimensions are presented (as shown in Figures 2 and 3).
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Figure 1. Rock samples: (a) cylinder sample; (b) digital rock model; (c) mineral compositions of

Figure 2. 2D numerical model of PFC for multi-mineral rocks: (a) texture model, (b) Voronoi model,

(c) Weibull distribution model.

rock samples.

Figure 3. 3D numerical model of PFC for multi-mineral rocks: (a) texture model, (b) Voronoi model,

(c) Weibull distribution model.
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2.2.1. Construction of Multi-Mineral Particle Flow Numerical Models with Rock Texture

Based on the spatial location mapping method, the steps of constructing a multi-
mineral particle flow numerical model from a digital rock model are as follows: (1) Segment
the digital rock image (as shown in Figure 1b) to extract the mineral component types and
their corresponding spatial coordinates. (2) Create an initial numerical model of particle
flow with the same sizes as the digital rock model, and determine the spatial location of
each particle in the numerical model. (3) Calculate the coordinates of the nearest pixel
in the digital model corresponding to each particle in the numerical model. (4) Map the
mineral attributes of the corresponding pixel to the particle in the particle flow model.
(5) Traverse through all the balls in the numerical model, classify the components according
to the attributes assigned to them. (6) Generate the multi-mineral particle flow numerical
model with the rock texture characteristics (as shown in Figure 2a).

The key to constructing a three-dimensional multi-mineral particle flow numerical
model with rock texture characteristics is to obtain a three-dimensional multi-component
digital rock model. Since the densities of the mineral components of the rock are very
close to each other, it is difficult for the traditional X-ray method to effectively distinguish
the mineral components, as well as 3D reconstruction. To solve this problem, Xiao et al.
proposed a solution based on deep learning and solid texture synthesis technology [19],
which is able to generate a 3D multi-component digital rock model from a single 2D digital
rock image. In this paper, this method was adopted to successfully construct a 3D multi-
mineral digital rock model. Then, a 3D numerical model of multi-mineral components
with rock texture features was generated based on the spatial coordinate mapping method
(similar to the above-mentioned 2D spatial mapping), as shown in Figure 3a.

2.2.2. Construction of Multi-Mineral Particle Flow Numerical Models with
Voronoi Polygons

The steps for constructing a multi-mineral particle flow numerical model with Voronoi
polygons are as follows: (1) Define the geometric dimensions of the numerical model, and
determine the types of mineral components and their volume percentages in the model
to ensure that the percentage of each mineral matches the distribution in the natural rock.
(2) Distribute seed points of Voronoi polygonsrandomly or according to a distribution rule
throughout the whole model space, based on the number and volume percentage of the
mineral components. Importantly, these seed points represent the central positions of each
mineral particle. (3) Divide the whole model space into multiple non-overlapping polygons
(for 2D models) or polyhedra (for 3D models) using Voronoi polygons. Each Voronoi cell
represents the spatial position and shape of a mineral particle, and the boundaries between
the cells simulate the contact and interaction between particles, reflecting the fracture
distribution of mineral particles in rocks. (4) Assign each cell to the corresponding mineral
component type according to the predefined mineral component ratio. Through the above
steps, two-dimensional or three-dimensional multi-mineral particle flow numerical models
based on Voronoi polygons can be generated, as shown in Figures 2b and 3b.

2.2.3. Construction of Multi-Mineral Particle Flow Numerical Models with
Weibull Distribution

The steps for constructing a multi-mineral particle flow numerical model conforming
to the Weibull distribution are as follows: (1) Generate a two-dimensional image matrix
that serves as the total area of the model, with all the pixel points initially set to zero.
(2) Determine the types of mineral components in the model and their volume percentages
in the model, and calculate the number of pixels required for each component based on these
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percentages. (3) Generate random numbers that conform to the Weibull distribution using
function for each mineral component. These random numbers represent the properties of
particles, such as intensity and size. The Weibull distribution is controlled by the shape
parameter (k) and the scale parameter (A), where the smaller the shape parameter k is,
the greater the difference in the properties of the particles, and the larger the value of
k is, the more uniform the particles tend to be. The scale parameter A determines the
average size of the particles. The larger the value of A, the larger the average size of the
generated particles. (4) Randomly order the pixel indexes in the image matrix using a
function to ensure the random distribution of particles in the image. According to the
proportion of each mineral component, randomly selected pixel points are filled with the
corresponding Weibull distribution values, so that the distribution of each group of particles
in the image is random without overlaps. (5) Save the generated image matrix as a 2D
color image, ensuring a clear visual difference in different mineral components. (6) Based
on the spatial position mapping method described in Section 2.2.1, a two-dimensional
or three-dimensional Weibull distribution numerical model can be further generated, as
shown in Figures 2c and 3c.

2.3. Contact Model of PFC-GBM

In PFC, a linearpbond is the most commonly used to generate a bond particle model
(BPM). Therefore, in this paper, the linearpbond is also chosen as a bond contact model
for balls, including both intra- and inter-component contacts of mineral components.
A linearpbond can be imagined as a set of elastic springs uniformly distributed in a
rectangular cross-section on the contact plane, and centered on the point of contact between
the two particles, as shown in Figure 4a. The bond strength of the linearpbond model
depends mainly on the tensile strength, the cohesive force, and the angle of internal friction.
When the bond breaks, the contact will be transformed from peak strength to residual
strength, and the residual strength mainly depends on the friction coefficient and particle
size, as shown in Figure 4b.
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Figure 4. Bonding model between balls in PFC (adapted from [20,21]): (a) particle movements after
breakage of parallel bond (b) linear parallel bond model.

2.4. The Fractal Dimension of Complex Mineral Particles Calculated by the Box-Counting Method

The box-counting method is one of the commonly used techniques for calculating
the fractal dimension of complex geometries and has advantages in characterizing the
complexity of 2D and 3D particles. First, the structure of the rock is meshed layer by layer.
In 2D, the plane is divided into a grid of size € X ¢; in 3D, the whole volume is divided into
a cubic grid of € x ¢ x ¢. Then, at each level of meshing, the number of grids N(e) that are
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filled or occupied in the rock structure is counted. For 2D structures, the grids occupied by
particles are counted; for 3D structures, the cubic grids occupied by mineral particles are
counted. Third, the grid size ¢ is reduced to a finer scale, and the above statistical process
is repeated to continue calculating N(e) at different scales. As the grid shrinks, it typically
occupies more box counts, indicating that the structure shows more detail and complexity
at finer scales. Fourth, the fractal dimension D of the rock structure is calculated by linearly
fitting logN(¢e) and log (1/¢). The calculation formula is as follows:

D = tim J08N(e) (1)

e—0log(1/¢)

where N (¢) is the number of grids occupied when the grid side length is ¢; ¢ is the side
length of the grid.

3. Calibration of Numerical Results

Based on the PFC-GBM modeling method in Section 2.3, the heterogeneous material
structure and contacts of the numerical models were constructed. The micro-parameters
under uniaxial compression test conditions are summarized in Table 1 and applied to
the failure numerical simulation. Young’s modulus, cohesion strength, tensile strength,
and friction angle of parallel bonds are assigned different values across different mineral
components. The calibrated micro-parameters of different minerals are consistent with the
mineral properties proposed by Bass [22]. For instance, quartz has the highest strength,
modulus, and cohesion in both Bass’s study and Table 1. In addition, the contact parameters
between mineral components are lower than those within each mineral because interfaces
between minerals are more prone to instability failure than the intact mineral particles.

Table 1. Micro-parameters of grain-based model.

Micro-Parameters K-Feldspar Plagioclase Quartz Biotite
Mineral grains

Volume composite (%) 32.86 27.42 19.65 20.07
Particles

Minimum particle radius of 2D (mm) 0.2 0.2 0.2 0.2
Minimum particle radius of 3D (mm) 0.6 0.6 0.6 0.6
Ratio of maximum to minimum particle radius 1.5 1.5 1.5 1.5
Young Modulus (GPa) 16.00 14.00 20.00 10.00
Stiffness ratio 1.50 1.50 1.50 1.50
Friction coefficient 1.20 1.20 1.20 1.20
Transgranular contacts

Young Modulus (GPa) 16.00 14.00 20.00 10.00
Cohesion strength (MPa) 98.00 92.00 107.00 66.00
Tension strength (MPa) 98.00 92.00 107.00 66.00
Stiffness ratio 1.50 1.50 1.50 1.50
Friction angle (°) 42.00 40.00 48.00 31.00
Intergranular contacts between different minerals

Young Modulus (GPa) 6.00

Cohesion strength (MPa) 30.00

Tension strength (MPa) 30.00

Stiffness ratio 1.5

Friction angle (°) 19.00

10



Fractal Fract. 2025, 9, 13

Using the above-mentioned model and physical parameters, the stress—strain curves
and fracture patterns of rocks under uniaxial compression conditions were obtained via
numerical simulation, as shown in Figure 5. The experimental and numerical stress—strain
curves show that the elastic moduli are 20.45 GPa and 20.34 GPa, respectively, with a
deviation of 0.54%. The uniaxial compressive strengths are 130.18 MPa and 135.92 MPa,
respectively, with a deviation of 4.41%. However, the stress—strain relations have a large
difference at the initial stage, which is mainly due to micropores or microcracks in nat-
ural rocks, leading to the compression-density stage. In contrast, the rock in numerical
simulation is assumed to be intact without micropores or microcracks, accounting for
this difference.
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Figure 5. Calibration of deformation and failure for experiment and numerical results.

Regarding the final failure patterns, both physical experiments and numerical simula-
tions are dominated by a single main crack extending from the upper left to thelower right,
as shown in Figure 6. Moreover, the failure patterns of the two also exhibit high consistency
in both failure mode and location, validating the reliability of the PFC-GBM model and its
ability to simulate rock physical processes.
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Figure 6. Calibration of failure modes: (a) experiment result, (b) numerical result.
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4. Results and Discussion
4.1. Fractal Dimensions of Different Particle Models
Based on the three types of particle flow model generation methods described in

Section 2.2, the multi-mineral component rock models with rock texture, Voronoi polygon,
and Weibull distribution were constructed, as shown in Figure 7.
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Figure 7. Fractal dimensions of minerals in the 2D texture model, Voronoi model, and Weibull model.

By comparing the texture model in Figure 7 with the digital rock model in Figure 1b, it
is found that the texture-based multi-mineral component rock model can retain the mineral
particle morphology of the original rock and its complex mosaic relationship very well,
and almost completely reproduce the texture characteristics of the rock. The model not
only captures the geometric features of the original rocks but also reflects the characteristics
of their fractal dimensions. The fractal dimensions of K-feldspar, plagioclase, quartz, and
biotite in the texture model are 1.66, 1.64, 1.78, and 1.56, respectively. Quartz has the highest
fractal dimension, which indicates the most complex grain morphology, whereas biotite has
the lowest fractal dimension, indicating the most regular grain morphology. K-feldspar and
plagioclase have similar fractal dimensions, which are between quartz and mica, indicating
that their grain complexity is intermediate.

In contrast, there is a significant difference between the Voronoi model in Figure 7
and the digital rock model in Figure 1b. The Voronoi model is constructed using Voronoi
polygons with regular boundary shapes, which simplify the description of mineral grain
morphology. The contact relationships between its particles are also simplified by the
boundaries of the Voronoi polygons, so it cannot reflect the complex mosaic relationship
between mineral grains of the original rock. The fractal dimensions of K-feldspar, plagio-
clase, quartz, and biotite in the Voronoi model were calculated to be 1.50, 1.50, 1.53, and

12
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1.55, respectively, using the box-counting method in Section 2.4. The fractal dimensions for
the four mineral components are very close to each other, with the difference between the
maximum and minimum values of only 0.05. This similarity is attributed to the fact that all
the mineral components are based on Voronoi polygons with relatively regular shapes.

The Weibull model in Figure 7 is quite different from the digital rock model in Figure 1b.
The mineral percentages in the Weibull model are randomly distributed in two dimensions
according to the proportions from the original rock, showing a high degree of randomness.
Using the box-counting method described in Section 2.4, the fractal dimensions of K-
feldspar, plagioclase, quartz, and biotite in the Weibull model are 1.93, 1.94, 1.94, and 1.94,
respectively. The fractal dimensions of the four mineral components are almost equal
and have large values, which shows the high complexity of their grain morphology. This
result mainly stems from the random distribution of the mineral components in the model,
resulting in their extremely complex morphology.

In summary, the mineral proportions of the three models are consistent with those of
the original rocks, but the shapes of the mineral components show significant differences.
In terms of the average fractal dimension of the three models, the Weibull model has the
largest fractal dimension of 1.94, the Voronoi model has the smallest fractal dimension of
1.52, and the texture model has a fractal dimension between the two models at 1.66. In
addition, the fractal dimensions of the different minerals in the texture model have a large
difference, while the fractal dimensions of the minerals in the Weibull and the Voronoi
models are relatively close. Therefore, the models generated based on the parameterization
methods, such as the Weibull distribution and Voronoi polygon, have some limitations
in reflecting the intergranular complexity compared to the texture models, as well as in
describing the complexity of the mineral shapes.

For 3D models, the fractal dimension is typically between 2 and 3, with larger values
indicating higher complexity. Similarly to 2D models, the 3D Weibull model has the largest
fractal dimension, followed by the texture model, and the Voronoi model has the smallest.
Unlike the 2D models, the difference in fractal dimension between the mineral components
is smaller in 3D models. This may be due to the high computational time cost of the 3D
models, which have a lower pixel resolution than the 2D models. When the pixel resolution
is low, the difference in the fractal dimension between the texture model and the Voronoi
model is smaller in 3D than in 2D (as shown in Figure 8).

4.2. Mechanical Properties and Fracture Behavior of 2D Rock Models with Different
Fractal Dimensions

Among the three models, the stress-strain curves of the texture model show moderate
peak intensities, with peak stresses ranging from 134.80 MPa to 148.99 MPa for the five par-
allel samples with an error rate of 10.53%. The strains corresponding to the peak stresses
range from 0.66% to 0.74% with an error rate of 12.12%. In the elastic deformation stage, the
slopes of the curves are consistent across all samples, indicating that the elastic modulus in
the texture model is relatively consistent. The stress-strain curves of the Voronoi model
exhibit the highest peak strengths ranging from 161.89 MPa to 177.26 MPa with an error
rate of 9.49%. The strains corresponding to the peak stresses ranged from 0.79% to 0.87%
with an error rate of 10.13%. Similarly, the slopes of the curves in the elastic deformation
stage remain consistent for all samples, indicating that the elastic modulus in the model
also has a high degree of consistency. In contrast, the stress-strain curves of the Weibull
model exhibit the lowest peak intensities ranging from 101.41 MPa to 116.95 MPa, with
an error rate of 15.32%. The strains corresponding to the peak stresses range from 0.64%
to 0.75% with an error rate of 17.19%. Nevertheless, the slopes of all the samples remain
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consistent during the elastic deformation stage, indicating that the elastic modulus of the
model has a minimal variation among the samples.

All three models exhibit typical brittle failure characteristics with a rapid decrease in
stress after the peak value, indicating that all three models rapidly lose their load-bearing
capacity after reaching peak stress. The Voronoi model exhibits the highest peak strength
and elastic modulus, with the textured model in the middle, while the Weibull model
has the lowest strength and elastic modulus. This suggests that the regular geometry in
the Voronoi model contributes to the overall load-bearing capacity of the model, while
the randomly distributed mineral components in the Weibull model result in weaker
mechanical properties (as shown in Figure 9).

K-Feldsp Plagioclase Quartz Biotite

3D Voronoi model 3D Texture model

3D Weibull model

2.79 2.78 2.80 2.80

Figure 8. Fractal dimensions of minerals in the 3D texture model, Voronoi model, and Weibull model.
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Figure 9. Stress-strain of 2D models with different fractal dimensions.

In the textural model (as shown in Figure 10), the fracture zones are highly correlated
with the distribution of mineral components, and the fracture paths mainly propagate
along the boundaries of mineral grains. The fracture shows obvious nonlinearity and
is accompanied by relatively large number of fine branching cracks, indicating that the
fracture paths in this model have a high degree of complexity. The fracture features in
each parallel sample maintain a relatively consistent complexity, with the fracture paths
propagating mainly along the grain boundaries, and the number of cracks being high and
interconnected. Despite the similarity in the overall complexity of the fracture paths, the
final fracture morphology in the different parallel samples is variable.

In the Voronoi model (as shown in Figure 10), the facture paths exhibit strong geometric
constraints and mainly propagate along the boundaries of the Voronoi units. Since the
Voronoi cells have regular shapes, the facture bands are mostly straight lines, and the
overall fracture paths are relatively simple with fewer complex branching cracks. The
regularity of the fracture paths remains relatively consistent across each parallel sample,
and the cracks develop along the polygonal boundaries. However, the fracture distribution
locations and final fracture morphology vary considerably among different samples.

In the Weibull model (as shown in Figure 10), the fracture paths present significant
randomness. The fractures mainly propagate along the randomly distributed mineral
components, forming multiple fracture zones that are separated from each other. The
morphology of the fracture zones shows a high degree of randomness and irregularity. The
randomness of the fracture regions in each parallel sample remain relatively consistent,
and the fracture paths are more dispersed, with no obvious regularity in their direction
and expansion mode. The fracture zones between different samples show a certain degree
of randomness consistency, but the specific location and morphology of the fractures are
significantly different.

All three models suggest that the distribution of mineral components plays a key
role in determining where fracture occurs, and the fracture path tends to propagate along
the boundaries of mineral grains. In terms of the complexity of the fracture paths, the
texture model has the highest complexity, with more fracture branches and nonlinear paths;
the fracture paths of the Voronoi model are relatively regular, mainly expanding along
polygonal boundaries. The fracture paths of the Weibull model are the most random,
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with a highly irregular morphology and a variety of directional changes. This suggests
that the texture model can better reproduce the complex rupture patterns within the rock,
while the Voronoi and Weibull models show distinct characteristics in terms of regularity
and randomness.
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Figure 10. Failure modes of 2D models with different fractal dimensions.

The final crack numbers of the different texture models show some variability, as
shown in Figure 11. The texture model has a relatively high number of cracks, ranging from
4031 to 5144 in the five parallel samples. Although the number of cracks varies between
samples, the overall difference is small, and the crack number stays at a high level with
fewer fluctuations. The number of cracks in the Voronoi model is relatively moderate, with
the number of cracks in the five parallel samples concentrating ranging from 3806 to 4766.
The number of cracks in the Voronoi model is overall more uniform compared to the texture
model, with the number of cracks slightly lower than the texture model. The Weibull model
shows significant fluctuations in the number of cracks, with the number of cracks in the
five parallel samples ranging from 2200 to 4943. Compared to the other models, the crack
number of the Weibull model varies the most between samples, reflecting the influence
of the random distribution structure on the crack generation and expansion process. This
large range of variation suggests that the Weibull model is highly influenced by random
factors in the crack development process, resulting in a high degree of instability in the
crack distribution.
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Figure 11. The crack number in 2D models with different fractal dimensions.

4.3. Mechanical Properties and Fracture Behavior of 3D Rock Models with Different
Fractal Dimensions

The stress-strain curves of the three models reflect their different mechanical properties,
as shown in Figure 12. The stress-strain curves of the textured model exhibit moderate peak
stresses ranging from 199.56 MPa to 210.24 MPa with a maximum to minimum error of
5.35%. The strains of peak stresses for this model ranged from 1.06% to 1.12% with an error
of 5.66%. The stress-strain curve for the Voronoi model showed the peak stresses ranging
from 223.93 MPa to 232.09 MPa with an error of 3.64%. The strain level of this model at
the peak stresses is 1.04% to 1.09% with an error of 4.81%. The stress-strain curve of the
Weibull model exhibits relatively low peak stresses ranging from 179.60 MPa to 182.30 MPa
with an error of only 1.50% showing a relatively small fluctuation. Its peak strain ranges
from 1.13% to 1.17% with an error of 3.54%.
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Figure 12. Stress—strain of 3D models with different fractal dimensions.

At the early stage of loading, the stress-strain curves of all three models show linear
characteristics, indicating that each model mainly exhibits elastic deformation in the initial
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stage. With the increase in loading, all three models show significant brittle damage
characteristics after reaching the peak strength, which is manifested by the rapid decrease
of stress after the peak stress, showing the sudden failure characteristics of the material
after losing its load-bearing capacity. However, the three models also show significant
differences in strength and deformation characteristics. The Voronoi model shows the
highest peak strength and elasticity modulus, the strongest compressive capacity, and
the smallest deformation capacity, which is attributed to the limiting effect of its regular
geometric structure on crack development. The textured model has medium strength
and deformation capacity, with moderate strength consistent with the complex mosaic
structure between particles. In contrast, the Weibull model has the lowest strength and
elasticity modulus, which reflects the adverse effect of the random distribution of its
mineral components on the mechanical properties, resulting in a weaker load-bearing
capacity.

For the 3D texture models as shown in Figure 13, the uniaxial compression strengths
are between 199.56 MPa and 210.25 MPa, and the number of cracks range from 69,310 to
85,273 with a minor difference. The stress concentration area inside the sample gradually
propagates into a fracture zone through the sample, which is closely related to the geometric
distribution of the mineral grains and the contact models, showing obvious non-uniformity.
Although all samples present distinct main fracture zones, the location and morphology of
fracture expansion vary among different samples.
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Figure 13. Failure modes of 3D textured rock models.

For the 3D Voronoi models as shown in Figure 14, the average values of uniaxial
compression strength and number of cracks are higher by 30.28 MPa and lower by 14,802
compared to the 3D textured models. The differences in uniaxial compression strength and
number of cracks among the five Voronoi parallel samples are also small. The distribution
of cracks and the final fracture morphology of the five Voronoi parallel models are similar
to those of the textured model and will not be repeated here.
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Figure 14. Failure modes of 3D Voronoi rock models.

For the 3D Weibull models as presented in Figure 15, the average uniaxial compressive
strength and number of cracks are 24.29 MPa lower and 13,992 higher compared to the 3D
textured models. The fracture morphology is similar to the texture model fractures. By
comparing the uniaxial compression strength and number of cracks of the three 3D models,
it was found that greater uniaxial compression strength corresponds to fewer cracks.
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Figure 15. Failure modes of 3D Weibull rock models.

4.4. Uniaxial Compression Strength Relationship Between 2D and 3D Models with Different
Fractal Dimensions

To analyze the effect of the 2D and 3D models on the rock strength, the functional
relationship between the fractal dimension and uniaxial compression strength is fitted
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for the 2D and 3D models, respectively, as shown in Figure 16. For all three models with
different fractal dimensions, the uniaxial compression strengths of the 3D models are
significantly higher than those of 2D models. In terms of uniaxial compression strength,
the 3D texture model is higher than the 2D texture model by 61.73 MPa, the 3D Voronoi
model is higher than the 2D Voronoi model by 64.19 MPa, and the 3D Weibull model is
higher than the 2D Weibull model by 70.22 MPa.
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Figure 16. Relationship between fractal dimensions and uniaxial compression strength.

The fractal dimension of the 2D models has a strong linear relationship with the
uniaxial compression strength with a linear correlation coefficient of 0.97. Similarly, the
linear correlation coefficient in 3D is also 0.97. It is worth noting that the slopes of the
2D and 3D fitted lines are 137.86 and 134.00, respectively, which are very close. These
similarities suggest that the effect of fractal dimension on rock strength follows a similar
trend in two and three dimensions.

5. Conclusions

Through the uniaxial compression tests of the texture model, the Voronoi model, and
the Weibull model, fractal dimensions play an important role in describing the geometrical
characteristics, mechanical properties, and fracture behavior of multi-mineral rocks. Based
on the above study, the conclusions are as follows:

1. The fractal dimension of the Weibull distribution model is the largest, reflecting the
most complex geometric structure; the digital texture model has a moderate fractal
dimension, indicating moderate geometric complexity; and the Voronoi polygon
model has the smallest fractal dimension, with the regular grain structure.

2. As the fractal dimension increases, the uniaxial compression strength of intact rocks
significantly increases, exhibiting an approximately linear relationship. In addition,
the fracture propagation paths vary significantly among models with different frac-
tal dimensions.

3. The uniaxial compression strength of 3D models is significantly higher than that of
2D models. Additionally, in the linear fit between fractal dimension and uniaxial
compression strength, the slope of the fitted line is similar for both 2D and 3D models,
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indicating that the influence of fractal dimension on rock strength follows a similar
trend in both conditions.
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Abstract: The fractional Brownian field is often used to reproduce the fractal properties of complex
heterogeneous media, which closely represent real-world geological materials. Studying elastic wave
transport in this type of heterogeneous media is essential for advancing knowledge in geophysics,
seismology, and rock mechanics. In this paper, we numerically investigate the wavefield evolution
and arrival behavior of elastic wave propagation in a two-dimensional fractional Brownian field
characterized by the standard deviation (') and the Hurst exponent (H). Using a high-fidelity finite
element model, we quantify the influence of these parameters on wavefront morphology, wave arrival
synchronization, and energy decay. Our results reveal that increased matrix heterogeneity with higher
o and lower H values leads to pronounced wavefront roughness, asynchronous arrival phenomena,
and increscent energy decay, attributed to enhanced scattering and modulus variability. For smaller
H values, rougher modulus distributions scatter wave energy more intensely, producing more coda
waves and distorted wavefronts, while smoother fields with larger H fields promote smoother
wave propagation. Higher ¢ amplifies these effects by increasing modulus variability, resulting
in more attenuated wave energy and substantial wavefield disturbance. This study contributes to
a quantitative understanding of how fractal heterogeneity modulates wave transport and energy
attenuation in random media. Our findings hold practical significance for geophysical exploration
and seismic tomography, as well as aiding in subsurface imaging and structural evaluation within
fractured or stratified rock formations.

Keywords: elastic wave; fractional Brownian field; heterogeneous media; wavefield; arrival behavior

1. Introduction

In geological formations, mechanical properties such as Young’s modulus, density,
and porosity often display spatial variability [1-3] that follows fractal distributions [4,5],
impacting the velocity, attenuation, and scattering of elastic waves [6-8]. The propagation
of elastic waves in such heterogeneous media is essential in various geophysical applica-
tions, including seismic exploration, subsurface imaging, and hazard assessment [9]. The
fractional Brownian field (fBm) is commonly used to model such heterogeneous media
due to its ability to represent fractal characteristics observed in natural systems [10,11].
Mandelbrot and Van Ness [10] introduced the concept of fractional Brownian motion,
establishing a foundation for modeling self-affine and self-similar structures observed in
geological formations. Subsequent studies expanded to identify fractal-based heterogeneity
in various geological contexts [4,12]. It has been proven that such fractal characteristics
significantly influence wave behavior by inducing scattering, coda waves, and arrival
delays [6,13-17]. These findings underscore the importance of fBm-based models for
simulating real-world heterogeneity in geological media and understanding how fractal
properties affect wave transport.

The investigation on wave propagation through random and fractal media has evolved
significantly over the decades. Varadan et al. [6] explored wave scattering and attenuation
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in random elastic media, establishing theoretical insights into how fractal heterogeneity
influences wave transport. Shapiro and Kneib [13] developed numerical models to in-
vestigate seismic wave attenuation due to scattering effects in random media. Frankel
and Clayton [18] analyzed wave propagation in random velocity models to characterize
scattering and energy attenuation, providing insights into high-frequency seismic wave
behavior. Aki and Richards [14] quantified the scattering attenuation of wave transport
by introducing the quality factor Q, denoted as the ratio of attenuated energies to incident
ones. Sahimi and Tajer [4] demonstrated that the elastic moduli and density in rocks are
distributed in a self-affine fractal pattern, identifying these properties” influence on seismic
wave velocities. This work underscored the importance of fractional Brownian fields in
capturing the spatial variability of natural rock properties and highlighted the need for a
detailed analysis of wave transport in fractal environments. Allaei and Sahimi [15] ana-
lyzed the shape of wavefronts in heterogeneous media, applying theoretical and numerical
approaches to quantify how randomness affects wave coherence and transport patterns.
Przybilla et al. [19] developed a Monte Carlo scheme to simulate wave transport in 2D
random elastic media with spatially distributed scattering coefficients based on the radia-
tive transfer theory. Sahimi et al. [20] emphasized that the distribution patterns of elastic
moduli (correlated versus uncorrelated) play a crucial role in the elastic wave transport
in heterogeneous solids, leading to the transition between localization and propagation.
Garnier and Selna [21] underlined the relationship between the damping exponent of a
traveling wave and the Hurst parameter of random media, which characterizes the correla-
tion properties of the random field. Hamzehpour et al. [22] simulated wave propagation
in 2D heterogeneous fractured media where cracks were randomly distributed and the
bulk modulus of the matrix was distributed according to fractional Brownian motion.
Zhang et al. [23] employed sensitive kernels to represent the impact of the spatial char-
acteristics of media properties on the wavefield, which is beneficial for fetching new
tomographic inversion approaches to map small-scale heterogeneity using scattered waves.
Wang et al. [17] numerically investigated the competing roles of matrix modulus hetero-
geneity and fracture networks in wave propagation and quantified the dependence of wave
arrival times on the heterogeneity index and fracture stiffness.

Despite these advancements, several unresolved issues and research gaps remain in
the study of wave propagation in fractional Brownian fields. It is essential to build more
complex models that can capture fractal heterogeneity and anisotropic behavior in geologi-
cal materials because such material properties impact wave transport characteristics, such
as the wavefront profile, arrival behavior, and energy attenuation [1,4,24,25]. Moreover,
appropriate indices representing the heterogeneity of fractional Brownian fields should also
be included in the model to quantitatively assess their influence on wave transport. This
study aims to address these gaps by exploring elastic wave propagation in a 2D fractional
Brownian field, which is characterized by Hurst exponent H and standard deviation 0. We
systematically investigate the quantitative dependencies of wave propagation behaviors
on these fractal heterogeneity indices.

The organization of the remainder of this paper is as follows. In Section 2, we elaborate
on the numerical methodology and model setup, detailing how the fractional Brownian
field is constructed and the finite element approach is applied. Section 3 presents the results,
highlighting how variations in heterogeneity influence wavefield evolution, wavefront
roughness, arrival times, and energy decay. Section 4 discusses the implications of these
findings for wave transport in fractal media. Finally, Section 5 concludes with a summary
of key findings and suggests directions for future research in wave propagation modeling
in fractal-based random media.

2. Numerical Methodology
2.1. Model Setup

A squared study domain of size L is built to simulate a plane incident P wave propa-
gating through the heterogeneous media (Figure 1a). The fractional Brownian field (see
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Section 2.3) is placed in this L x L study domain and the elastic wave (see Section 2.2) is
excited at the left boundary (red line in Figure 1a) using a five-cycle Hann windowed tone
burst with a force-type signal (Figure 1b) of wavelength A = L/10. In the study domain, we
record the x-direction displacement, aligned with the propagation direction of the plane
incident wave, using an array of 301 x 301 arranged receivers. The receivers are spaced
at a spatial interval of 6 = L/300. To mimic infinite wide-plane wave propagation, we use
the following two schemes. First, we generate an auxiliary mirrored domain below the
study domain with the same modulus distribution symmetric about the mirror boundary.
Meanwhile, two periodic boundaries are separately applied at the bottom of the mirrored
domain and the top of the study domain. The random fields in these two areas conjointly
constitute a unit cell [26] that is capable of accurately reproducing an infinite plane wave
transporting in the x direction and eliminating boundary effects at both the top and bottom
of the study domain. Second, we place absorbing layers (see Section 2.2) to the left and
right boundaries of the whole model to absorb unwanted reflected waves from these two
boundaries. In the middle region (study and mirrored domains), we use a spatial mesh of
Delaunay triangular elements with an average element size of I, = A/15 (Figure 1c). For
the absorbing layers, mapping elements (Figure 1d) with the same size are generated. To
capture the temporal evolution of the wavefield, the time domain is discretized using a
timestep dt = [e/Vp x CFL, where Vp is the velocity of the incident P wave and CFL is
the Courant-Friedrichs-Lewy (CFL) number [27] (taking 0.1 in our numerical model).

@ 152 1.52
Periodic boundary
T
Mapping elements
—
\ (©
2 [~ Delaunay triangle elements
Z Study domain
<]
5 | =4y 5
E E E lele =A/15
< | €] Bl g loe=A115
A S
€ ~ Mirror boundary =
2 T 21 o
< <
(]
E
Mirrored domain =
g
5
Time
Periodic boundary Hann windowed tone burst

Figure 1. Geometrical model setup for simulating elastic wave transportation in solids: (a) over-
all configuration of numerical model; (b) Hann windowed tone burst of wavelength A = L/10;
(c) Delaunay triangular elements in study and mirrored domains; (d) mapping elements in absorb-

ing layers.

2.2. Governing Equations
The elastic wave propagation in two-dimensional media is governed by the time-
domain equation of dynamic equilibrium as
Maz—u+C*al+K*u—F (1)
ot? ot B
where M is the mass and stiffness matrix, u stands for the displacement, ¢ is the time, F
represents the external force, and C* = yM and K* = ¢K are the damping and stiffness
matrices, respectively. Herein, 77 and ¢ are coefficients representing the mass proportional
damping and stiffness reduction, respectively. When waves transport in the study domain,
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no damping or stiffness reduction is introduced; thus, the damping is set to zero, and
the stiffness matrix remains as K* = K. To mimic wave transport in a boundless domain,
we employ the stiffness reduction method [27] to mitigate a needless reflected wave at
the boundaries of the finite-sized model by implementing absorbing layers at the side
boundaries. The absorbing layer has a thickness of 1.5A. In the absorbing layer, the
mass proportional damping coefficient #(x) is derived as w(x/ (1.51))3, where x stands
for the x-direction distance of a point away from the boundary of the study or mirrored
domain; w denotes the angular frequency of the incident wave. The stiffness reduction
coefficient () is derived as exp(—(x)k)), where k represents the incident wavenumber;
P(X) = Pmax(x/(1.51))% denotes the attenuation factor with Pmax = —In(e/(1.5Ak)) being the
maximum attenuation factor. Here, ¢ is a constant with a small value, usually using 0.01.
In this paper, we use the finite element method with the commercial software COMSOL
version 5.5 [28] to solve the above elastic wave equations. We conducted a thorough
comparison with analytical solutions to assess the validity and precision of our numerical
model for simulating wavefield evolution in unbounded heterogeneous media [17,29].

2.3. Generation of Fractional Brownian Fields

Fractional Brownian motion (fBm) is one of the most useful mathematical models for
representing the random fractals in nature [10,11,30], which is fundamentally important
for understanding wave transport and anomalous diffusion on fractals [31]. Fractional
Brownian motion V(t) is a single value function of ¢, of which the increment Vy(ti1) —
VH(t;) obeys a Gaussian distribution with the following variance [31]:

(IVi(ti2) = Vi ()P o b1 — " @

where the brackets < > represent the average over all the samples of V(t), and H is the
Hurst exponent with a value ranging from 0 to 1. Several methods [31,32] have been
developed to generate fractional Brownian motion in different dimensions. In this paper,
we use the midpoint displacement method [31] to generate 2D fields of fractional Brownian
motion due to it being independent of the grid size. The detailed algorithm of generating
2D fractional Brownian fields is referred to in pages 100-101 by Barnsley et al. [31].

It has been found that material properties, e.g., Young’s modulus, Poisson’s ratio, and
density, may be spatially variable in rock masses [4,33], and the distribution usually follows
a fBm [4]. Here, we consider the spatial variation in Young’s modulus E in our model
(Figure 1a) as a 2D fractional Brownian field, having a mean value E and a standard devia-
tion 0. We assume that the heterogeneous media are a typical limestone with a material
properties list in Table 1. To explore the influence of field heterogeneity on the propagation
of elastic waves, two indices, the standard deviation of Young’s modulus ¢ and the Hurst
exponent H, are included, taking the values listed in Table 1. The spatial variability of
Young’s modulus is presented in each numerical element (Figure 2). The probability density
of Young’s modulus in the random fields is also given in Figure 3. It can be seen that, when
o is smaller, the modulus is more evenly distributed in the field and the magnitudes are
more concentrated at the mean value E. With larger H values, the distribution of E tends to
be smoother while the probability density becomes more dispersive with a more obvious
divergence to the corresponding conventional Gaussian distribution.

Table 1. Material properties in the fractional Brownian fields.

Properties Value Unit
Mean value of Young’s modulus, E 30 GPa
Standard deviation of Young’s modulus, & 1,2,4,8 GPa
Density, p 2700 kg/m?
Poisson’s ratio, v 0.27 -
Hurst exponent, H 0.1,0.3,0.5,0.7,0.9 -

“--" indicates no unit for this parameter.
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Figure 2. Variability of Young’s modulus in the rock matrix characterized by 2D fractional Brownian

fields with different values of standard deviation ¢ and Hurst exponent H.
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2.4. Characterization of Wave Arrival Behavior

We utilize the wave amplitude to identify the leading front of wave energy to describe
the elastic wave arrival behavior, which is called the front of the first arrival wave, abbre-
viated as FFAW [29]. It is constituted by the points farthest from the source line with the
same displacement-to-amplitude ratio, which is denoted as

Ut 2,y _ U0, xi i) |
A(xi,yi) AY(x;, yi)

®)

where U(t, x;, y;) and uo(o, x;, ;) represent the displacements of a receiver denoted as (x;, y;)
at time ¢; in the heterogeneous medium and #° in the homogeneous medium, respectively;
Ax;, y;) are the wave amplitudes recorded by the receiver (x;, y;) in the homogeneous
medium while A(x;, y;) are the ones in the heterogeneous medium. Specially, t° and t;
stand for the times when waves arrive at the receiver (x;, y;) in the homogeneous and
heterogeneous media, respectively. We can use the same time to derive

U (ti, xj, )| _ Ut xi, vi)l
A(x,y)) A(xi, yi)

(4)

and then identify a collection of points to construct the FFAW at a given time ¢; in the
heterogeneous media. In the same way, we can determine the time at which some point
at the right boundary is activated for the first time, i.e., the wave energy reaches the right
boundary for the first time, with the corresponding time defined as the breakthrough time
t». When all the receivers at the right boundary have recorded distinguishable wave signals
for the first time, the corresponding time is called the final arrival time ;.

At a given dimensionless time t, we denote d( , y;) as the distance of a point on the
FFAW from the source line (Figure 1a), where y; is the y-direction coordinate. d(t, i) can be
derived from the seismograms recorded by the receiver array. We calculate the roughness
R(t) of the FFAW (Barabasi and Stanley 1995 [30]) as

R =\ 3 L [¢4Ew) ~ 40 ©

where Ny, is the number of sample points on the y axis (i.e., 301 receivers), and d (f) stands
for the average value of point-to-source distances of the FFAW at . We then normalize the
roughness by dividing the domain size, namely, R= R/L.

2.5. Quantification of Wave Energy

The decay of elastic waves in random fields is identified by the inverse quality factor

Q1 [14] derived as -
a2V (4
Q= wx In ( A0 ) ©)

where V is the mean velocity of elastic waves in heterogeneous media, w is the angular
frequency of incident waves, x is the traveling distance of waves equaling the x-direction
distance between the receiver and source line, and A? and A are wave amplitudes in
homogeneous and heterogeneous media, respectively. The wave velocity is derived from
the seismograms, i.e., the normalized x-direction displacement recorded by the receivers
at the right boundary of the study domain, which is further averaged over the number of
these receivers (301 as indicated in Section 2.1) to determine the mean velocity. We use a fast
Fourier transform analysis to transform wave signals recorded by receivers to the frequency
domain and average the spectral amplitudes of receivers equidistant from the source line
to obtain the mean value, which is then used to derive A. Thus, we can fit a straight line to
derive the slope of the curve determined by In(A/A°) versus source-to-receiver distance x.
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Consequently, the inverse quality factor Q! can be calculated by the mean velocity and
the slope of In(A/AY) versus x.

3. Results
3.1. Spatiotemporal Wavefield Evolution

Herein, the x-direction displacement is normalized by the displacement amplitude
of the incident wave, and the traveling time ¢ of elastic waves in heterogeneous media is
normalized to be dimensionless as = t/ty, where f; is the traveling time of elastic waves
propagating from the source line to the right boundary of a homogeneous study domain,
taking the derivation of ty = L/ Vp. Figure 4 demonstrates the spatial distribution of the
elastic wavefield represented by the normalized x displacement at dimensionless f = 1. The
temporal snapshots during wave propagation from f = 0 to 3 are presented as animations
in. Figure 5 illustrates the seismograms recorded by the receiver column located at the
right side of the study area. When ¢ is small, e.g., 1, the wavefront keeps a planar shape
during the early propagation stage (f < 1 in S1). In cases of smaller H values, the fractional
Brownian field has a rougher surface of modulus distribution (Figure 2), inducing a rougher
profile of the wavefront (Figure 4) and a more fluctuant waveform (Figure 5) in the later
propagation stage (f > 1). Slight coda waves can also be observed behind the frontal wave
(Figure 5 and S1). However, due to such a random E distribution, wave energies arrive
at the right boundary at almost the same time (Figures 4 and 5). As H increases, larger
magnitudes of Young’s modulus are more concentrated in the lower right of the study
domain (Figure 2), generating larger wave velocity in this region. As a result, waves in
the lower region transport faster than those in the upper. Thus, the wavefield becomes
inclined in a counterclockwise way at t=1 (Figure 4) and the following timesteps (S1). In
these larger- cases, the distribution of E is smoother and the induced waveform is barely
perturbed in the later propagation stage (Figure 5); i.e., no obvious coda wave is detected.

1 N /1 | 1 1

Figure 4. Spatial evolution of elastic wavefield according to normalized x displacement at dimension-
less time f = 1.
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Figure 5. Seismograms according to normalized x-direction displacements recorded by the receiver

array at the right boundary of the study domain.

For ¢ = 2, the waveform is distorted even in the early propagation stage (Figure 5
and f < 0.5 in S1) and more wave energies are scattered by the matrix heterogeneity
(Figures 4 and 5). The rough pattern of the wavefront and the asynchronous arrival
phenomenon are more recognizable due to the stronger deviation of E. The distortion of
the waveform and roughness of the wavefront become more obvious with decreasing H,
whereas the skewness of the wavefront (i.e., asynchronous arrival phenomenon) is more
apparent with increasing H. As o becomes larger (>4), the wavefield tends to be rougher
and more waves are scattered into coda (Figures 4 and 5). The dependence of the wavefront
and arrival behavior on the Hurst exponent remain the same as the cases of smaller ¢: small
H generates coda waves and distorts the wavefield; large H separates fast and slow waves
and thus causes different arrival times.

As Figures 4 and 5 illustrate, the wavefield evolution is strongly related to the sta-
tistical parameters of the fractional Brownian field, which dominate the global and local
distribution of E in the field. As shown in Figure 2, a smaller H generates a rougher
distribution of E, like a rough surface with spins (large E) and slots (small E), which are
distributed in a short-range correlation; i.e., only elements with short distance may hold
a similar modulus. As a result, the aggregation of elements with a similar modulus is
infrequent in the field. The spins and slots serve as barriers and scatterers, occupying
the propagation path of elastic waves, producing scattered coda waves and a distorted
wavefield, which is highly different from the wavefield in homogeneous media. On the
contrary, larger H generates a smooth surface with a concentrated region of a contiguous
modulus as the moduli are distributed in a pattern of long-range correlation. The smoothly
distributed E provides an unobstructed and gliding path for elastic wave transport, leaving
few coda waves behind the anterior wave, and more energy can reach the right boundary.
The wave generally keeps its planar shape similar to its incident appearance. However, the
conspicuous concentration region causes a significantly asynchronous arrival phenomenon;
i.e., the wavefront is tilted. The standard deviation of Young’s modulus ¢ is a key factor
influencing the magnitude of the modulus. Larger o generates a wider range of E values,
inducing a greater probability of any two elements in the field having larger differences in
the modulus. Consequently, such higher heterogeneity is more visible to the wave, causing
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a clearer observation of anomalous wave transport, e.g., the generation of coda waves,
rough profile of the wavefront, and asynchronous wave arrival.

3.2. Arrival Behavior of Elastic Wave

To eliminate the randomness caused by different random seeds in generating fractional
Brownian fields, we generated 10 realizations for each combination of ¢ and H; i.e, in
total, 200 fields were created. Figure 6 shows the temporal variation in the dimensionless
roughness R of FEAW versus f for each case, where the red line in the subfigure is a result of
the corresponding fractional Brownian field in Figure 2 and gray lines are the results of the
other nine realizations. It can be clearly seen that the roughness of FFAW generally increases
as the wave propagates through the random field across all realizations and parameter
combinations, which is a consequence of the incremental effect of matrix heterogeneity on
the wave transport due to the increasing propagation distance. When the field variability
is small (o = 1), the roughness evolves slowly and remains relatively low throughout the
wave propagation, suggesting that minor heterogeneity has a limited effect on wavefront
distortion. In addition, changes in H have minimal influence on roughness evolution,
leading to similar roughness curves, which indicates that the spatial correlation of the
modulus (H) plays a minor role in the wave arrival behavior when the field variability is
low. As o increases (o > 2), the roughness evolution becomes significantly steeper with time,
indicating a stronger scattering effect and more prominent wavefront distortion caused
by larger modulus variability. In these cases with higher field variability, the modulus
distribution (H) tends to amplify scattering effects, leading to a faster growth of roughness.
We then plot the profile of FFAW at the breakthrough time #, for each realization in Figure 7.
When ¢ is small (<1), the width and roughness of the profile barely change with H while
FFAW becomes wider and rougher with increasing H when ¢ exceeds 2. As for FFAWs
with the same H, the shape changes more violently with larger ¢
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Figure 6. The temporal evolution of the dimensionless roughness R of FFAW versus the dimensionless
time £. The red line results from the fractional Brownian field in Figure 2, and gray lines result from
the other 9 realizations.
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Figure 7. FFAW at the breakthrough time f;,. The red line results from the fractional Brownian field
in Figure 2, and gray lines result from the other 9 realizations.

We further averaged the data over 10 realizations to show a universal tendency.
Figure 8 gives the dimensionless roughness R of FFAW at £, versus H and ¢. The roughness
of FFAW shows a generally positive relationship with the Hurst exponent H when ¢ > 2,
whereas the dependence in the cases in which o = 1 is not well marked. In Figure 8b, R
is linearly dependent on ¢ and the slope also increases. Such dependent manners are in
accordance with the phenomenon demonstrated in Figures 6 and 7. We then determine
the dimensionless breakthrough time ty, and final arrival time #; versus H and ¢, as plotted
in Figure 9. f, < 1 and £ > 1 for all the cases because the randomly distributed Young's
moduli provide interlaced channels that expedite or slow the wave speed during prop-
agation (Figure 2), resulting in the arrival of some pioneering wave energy at the right
boundary with some slowed energy still remaining in the study region. The opposite
dependencies of tp, and #; on ¢ (and H) also date from the transport patterns of wave
energy in diverse random fields: higher modulus variability and concentricity produce
more of a heterogeneous wavefield (Figure 4), a more fluctuant seismogram (Figure 5), and
a rougher wavefront (Figures 4, 7 and 8), making the asynchronous arrival phenomenon
more significant (Figures 4, 5 and 7). Thus, the difference derived from ti— t, shows a
positive relationship with these two heterogeneity indices, as shown in Figure 10. It should
be noted that this dependence at ¢ = 1 is not evident, similar to Figures 8a and 9a, which is
also consistent with the phenomena demonstrated in Figures 4 and 5.
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Figure 8. Dimensionless roughness R of FFAW at the breakthrough time #, versus (a) H and (b) .
Each marker is the averaged value over 10 realizations.
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Figure 9. Breakthrough time fp (solid lines) and final arrival time f; (dashed lines) as a function of
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(a) H and (b) 0. Each marker is the averaged value over 10 realizations. The horizontal dotted line
represents f,= 1, i.e., the breakthrough time of waves passing through a blank model without Young’s
modulus being randomly distributed.
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Figure 10. Difference in final arrival time f; minus breakthrough time #, as a function of (a) H and
(b) 0. Each marker is the averaged value over 10 realizations.

3.3. Decay of Elastic Wave Energy

According to Equation (6), the relative spectral amplitudes as a function of the nor-
malized traveling distance x/L from the source line are plotted in Figure 11. For a small
o, e.g., 1, the decay of amplitude is not significant and the slope of In(A/ AO) versus x/L
does not change when H changes. For a larger o > 2, the inverse relationship between the
wave amplitude and traveling distance becomes more obvious, showing that the matrix
heterogeneity increasingly alters the wavefield as waves across the random field, leaving
more energy scattered into the coda. This phenomenon agrees well with the wavefield
evolution shown in Figure 4 and S1. We can also see that the decay of wave energy (denoted
by the slope of the curve) exhibits an increasing relationship with ¢, which is a result of the
inducement of the higher variability of random fields with a larger . For the cases with
the same o, the decay of wave energy is negatively dependent on the traveling distance,
showing that a smoother spatial distribution of Young’s modulus is beneficial for energy
transport and may produce less coda waves. We then calculate the inverse quality factor
Q! based on the fitting lines of In(A/ AY) versus x/L and plot its variation with H and
o in Figure 12. Here, we used the range of normalized distance x/L from 0.25 to 0.75 to
derive the slope of In(A/ A% versus x/L because the wave transport observed in Figure 4
and Sl is generally in the propagation regime. It can be seen that Q! linearly decreases
with increasing H showing that wave energies are more attenuated in random fields with
a smaller H, and a smoother modulus distribution with larger H facilitates the transport
of wave energies across the random media. The variability of Young’s modulus o seems
to have no significant effect on the decreasing trend of Q! versus H. The inverse quality
factor Q! is positively dependent on ¢, while H does not change the variation trend. By
comparing the variation patterns of Q! versus H and o, the influence of matrix variability
is more significant than that of the spatial distribution.
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Figure 11. Relative spectral amplitude In(A/ AY) varies with the normalized distance x/L from the
source for different combinations of o and H. Each scatter datum is calculated by averaging the
mean values of data recorded by each column of 301 receivers equidistant from the source over
10 realizations. The black dashed line in each subfigure is the corresponding fitting line of data with
normalized distance x/L from 0.25 to 0.75.
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Figure 12. Inverse quality factor Q! varies with (a) H and (b) ¢. Each marker is the averaged value
over 10 realizations.

The opposite dependencies of Q~! on H and o, i.e., negative and positive, respectively,
give a straightforward revelation for the wavefield evolution shown in Figure 4 and S1.
Higher o induces stronger differences between element moduli, among which the elements
with a smaller modulus slow down and scatter wave energies, intercepting their traveling
paths at the right boundary. When H is small, the modulus distribution is rough and thus
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exacerbates the scattering effect. A smoother distribution with larger H provides more
even channels for wave energies across the field in the pattern of gathering moduli with
similar values in concentration clusters. The smoothness of connecting paths between
clusters is also positively related to H. Such spatial characteristics of fractional Brownian
fields generate fewer codas during waves passing through these smooth paths and clusters.
Therefore, Q! increases and more wave energy decays faster in the fields with increasing
o and decreasing H.

4. Discussion

Our numerical results shed light on the effects of fractal heterogeneity on wavefield
evolution, wavefront roughness, arrival behavior, and energy decay, aligning with and
extending findings in the existing literature. The observed wavefront distortion and
roughness at higher levels of Young’s modulus variability (¢) and lower Hurst exponent
(H) values underline the previous findings that such heterogeneity amplifies scattering
and energy dispersion [4,6]. However, our study further quantifies this relationship by
identifying specific parameter regimes in which wavefront irregularities and asynchronous
arrivals become most pronounced, suggesting that fields with lower H and higher ¢ are
particularly preferential to complex wave behavior.

The asynchronous arrival behavior observed in this study aligns with the demon-
stration of wave scattering in heterogeneous media causing delayed and spatially uneven
arrivals [13] and acceleration in energy decay [22]. Our results further illustrate that, as
H decreases, the heterogeneity becomes increasingly disruptive to wave coherence, pro-
ducing asynchronous arrivals across the leading wave and emphasizing the significant
influence of fractal correlation on wave behavior. This behavior has practical implications
in geophysical applications, such as seismic imaging, where accurate arrival time mea-
surements are crucial for subsurface mapping [34]. Specifically, understanding how fractal
heterogeneity affects arrival behavior could inform strategies to account for scattering-
induced delays, improving the precision of seismic models used in oil exploration [35] and
fault detection [36].

In terms of energy decay, our findings indicate that higher o values lead to increased
attenuation due to scattering, consistent with Aki and Richards [14], who noted that
random media often result in significant energy dissipation, similar to the effect of media
porosity [37]. We expand on this by demonstrating a dual dependency on both ¢ and H:
while high ¢ amplifies scattering and energy decay, higher H values reduce these effects by
producing smoother modulus distributions, allowing more coherent wave transmission
across the field. This relationship between heterogeneity parameters and energy decay is
particularly relevant for rock mechanics and stability analyses, where accurate predictions
of wave energy distribution are essential for assessing material integrity and failure risks
in heterogeneous rock formations [38].

Our results also suggest potential applications in geological tomography. The sen-
sitivity of wavefield evolution and energy decay to fractal characteristics could improve
modeling of wave interactions in complex geological settings, aiding in the reconstruction
of detailed subsurface images. Sahimi and Tajer [4] emphasized that fractal heterogeneity
often dictates transport properties in natural materials; our findings build on this concept
by showing how heterogeneity parameters (¢ and H) jointly influence transport dynamics,
especially wave attenuation patterns. This understanding is vital for accurately imag-
ing subsurface structures in regions with heterogeneous geological compositions, such
as fractured reservoirs or fault zones [39—41]. Numerical models that incorporate these
insights can improve the accuracy of tomographic reconstructions, which rely on the correct
interpretation of wave energy distribution and arrival times.

Furthermore, the dependence of wave behavior on fractal parameters in this study
underscores the importance of characterizing geological heterogeneity for seismic tomogra-
phy. The strong influence of ¢ and H on wavefield distortion and energy decay implies
that highly heterogeneous regions with low H values could pose challenges in predicting
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seismic wave behavior, leading to amplified scattering and energy attenuation that could
impact the accuracy of seismogram recognition. Future studies may benefit from exploring
similar fractal heterogeneity effects in 3D models, as well as investigating additional rock
mechanical properties, to develop more comprehensive frameworks for seismic analyses
in complex media. As the Hurst exponent H is also an index manifesting the correlation
of parameter distribution, another area of focus could be the influence of the correlation
length of random fields [42] on wave transport.

5. Conclusions

To conclude, this study enhances the understanding of elastic wave propagation in het-
erogeneous fractal media by numerically modeling the effects of statistically heterogeneous
parameters (Hurst exponent H and standard deviation ¢) in a 2D fractional Brownian field.
Our findings reveal that higher o values, generating greater variability in Young’s modu-
lus, intensify wave scattering and cause the wavefront to become increasingly distorted.
This effect is particularly notable when combined with lower H values, which produce
rougher modulus distributions that act as barriers to coherent wave transmission. The
asynchronous arrival phenomenon becomes more significant with increasing H and ¢, as
the time difference in leading waves and delayed ones is positively dependent on these
parameters. We also found the strong dependence of energy decay on ¢ and H: higher ¢
leads to more scattered energy and faster decay, while higher H moderates this effect by
providing smoother paths for wave propagation.

These insights contribute to the broader understanding of wave propagation in ran-
dom, fractal-based media and offer a solid basis for potential implications for seismic
analyses and geophysical exploration in heterogeneous geological media. Experimen-
tal verification or comparisons with analytical models are a valuable avenue for future
study, e.g., laboratory-scale experiments or field-scale observations of wave transport in
heterogeneous rocks or geological media. Another future work may extend this model to
three-dimensional configuration and explore additional material parameters to capture a
wider array of wave transport phenomena in naturally heterogeneous media in geological
applications.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ fractalfract8120750/s1, Animation S1: Wavefield evolution from f=0to3.
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Abstract: Penetration grouting is a significant grouting technique. The pore structure has important
impacts on the infiltration mechanism of slurry in porous media. In this study, based on fractal theory,
a theoretical penetration grouting model for Bingham fluid is established. An experimental apparatus
for simulating the penetration process of Bingham fluid with a constant flow rate is developed. A
series of penetration-grouting experiments are conducted to validate the theoretical model established
in this study and analyze the impacts of the water—cement ratio and flow rate on the slurry injection
pressure. The results show that the theoretical values of the slurry pressure along the penetration
direction obtained from the penetration grouting model match the experimental values well. This
indicates that the proposed model can better describe the process of slurry infiltration and provide
valuable support for related grouting projects.

Keywords: fractal theory; Bingham fluid; porous media; penetration grouting

1. Introduction

Permeation grouting is one of the most important techniques used in grouting rein-
forcement engineering. It is widely applied in various fields, such as hydraulic engineering
and highway construction, due to its limited disturbance to the grouted medium [1]. Exten-
sive studies on the permeation-grouting theory have been conducted, including the slurry
permeation and diffusion models for Newtonian fluids, Bingham fluids, and power-law
fluids. Maag formulated the classical theoretical model for Newtonian fluid permeation
grouting [1]. Yang et al. [2,3] investigated the permeation and diffusion mechanisms of
Bingham fluids and power-law fluids in sand layers.

On the basis of these foundational studies, scholars have further extended the perme-
ation grouting theory by considering varies factors such as time-dependent and spatial
variations in slurry viscosity, seepage effects during the diffusion process, and the tortuosity
effects in porous media. With respect to the time-dependent and spatial variability effects
of slurry viscosity, Ruan [4] established time-dependent viscosity diffusion equations for
cement-based and solution-based grouting materials. Yang et al. [5,6] investigated the
permeation and diffusion models of Bingham fluids, considering time-dependent viscosity
for spherical, cylindrical, and column-semi-spherical geometries. The cylindrical perme-
ation grouting mechanisms of power-law cement slurries with time-varying rheological
parameters was also explored [7]. Building on Maag’s classical theory, Zhou [8] optimized
Maag’s formula by substituting the average viscosity with time-dependent viscosity. Ad-
ditionally, Zhang et al. [9] analyzed the permeation and diffusion mechanisms of rapidly
setting grouts, by considering the time-space variations in slurry viscosity. With respect to
the seepage effect on the slurry diffusion process, Saada et al. [10-13] carried out laboratory
experiments to examine the impact of density, consolidation stress, cement concentration,
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and grouting flow rate on the seepage effects of cement slurries. Feng et al. [14] proposed a
theoretical model for calculating the diffusion distance of particulate slurries under laminar
flow conditions. Wang et al. [15] discussed the impact of seepage and proposed an expres-
sion for the spatial distribution of viscosity-decay rate. Li et al. [16] analyzed the impact
of slurry seepage on the porosity and permeability of sandy media during the cement
slurry permeation process. With respect to tortuosity effects, Zhang et al. [17], Lu et al. [18],
and Yang et al. [19] investigated the permeation and diffusion mechanisms for Newtonian
fluids, Bingham fluids, and power-law fluids, through considering the diffusion pathways.
Wang et al. [20] investigated the permeation grouting mechanism of viscous time-varying
fluids, considering the diffusion path.

Fractal theory is a crucial tool for describing the pore characteristics of porous media,
which makes it powerful in representing the influence of microscopic structural parameters
of pores on slurry diffusion during the permeation grouting process. Yu et al. [21] provided
a comprehensive discussion on the application of fractal theory in describing transport
properties in porous media. Yun et al. [22] developed a model to calculate the initiation
pressure gradient for Bingham fluid flow, considering the fractal characteristics of porous
media and capillary pressure. Zhang et al. [23] derived a permeability calculation formula
for power-law fluids, incorporating the fractal features of pore size distribution and the
tortuous flow paths within the porous medium.

In summary, significant research on the permeation and diffusion mechanisms of
Bingham fluids has been conducted. Fractal theory has also been utilized to characterize
the tortuous flow paths of slurries. However, existing theoretical models for the permeation
and diffusion of Bingham fluids still can be further enhanced to reflect the complex pore
characteristics of porous media and their impact on slurry diffusion. Additionally, the
parameters involved in fractal-based slurry permeation models are complex and difficult to
determine from conventional geotechnical tests. This restricts the experimental validation
of the theoretical models, thereby constraining their application.

This study aims to propose a theoretical model of permeation grouting for Bingham
fluids based on fractal theory and validate the model by experiments. Pure cement slurry,
which is widely used in grouting engineering practices, is adopted as the Bingham fluid [24]
in the experiments. This work is organized as follows: Firstly, a theoretical model for
the one-dimensional steady-flow permeation grouting of Bingham fluids is established
based on fractal theory. Subsequently, slurry permeation and diffusion experiments are
conducted with varying water—cement ratios and slurry flow rates. Finally, the theoretical
and experimental results are compared to validate the applicability of the theoretical model.
The spatial and temporal variations in grouting pressure under different water—cement
ratios and grouting rates are also analyzed.

2. Theoretical Model of Permeation Grouting for Bingham Fluid Based on
Fractal Theory

2.1. Assumptions
The assumptions of the permeation grouting theory model include the following;:

1. The slurry is a homogeneous, incompressible Bingham fluid;

The viscosity variation of slurry is not considered;

3. The flow regime of slurry during diffusion is laminar, ignoring the effects of gravity
and filtration;

4.  The pore radius in the porous medium satisfies 7, /*max < 1072.

N

2.2. The Diffusion Model of Bingham Fluid in a Circular Pipe
The rheological equation for Bingham fluid is as follows [25]:

T =T+ Up7Y 1)
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where T is the shear stress, 79 is the yield stress, py, is the plastic viscosity, and 1 is the shear
rate (y = —dv/dr, where v is the fluid velocity and r is the radius of the circular pipe).

In a complex morphology of pore structures in porous media, if the tortuous path
of the slurry flow within the porous medium is not considered, it is often assumed that
the flow channel can be represented as a long straight circular pipe. The flow of slurry in
the porous medium is therefore considered as the superposition of the flow through all
these channels [25]. The flow of the Bingham fluid in a single circular pipe is illustrated in
Figure 1. The radius of the circular pipe is ry. The radius of a small slurry element along
the axis of the pipe is r < rg, while the length is dI. The pressure at the two ends of the
element is p and p + dp, respectively, with a shear stress T acting opposite to the direction
of the flow velocity.

Pipe Wall

p| r p+dp

T
r

[

Fluid Column I
¥

—_— 1)

]

Figure 1. Schematic of Bingham fluid flow in a circular tube.

The force balance equation for the slurry element can be written as follows:
nrdp + 2mtrtdl = 0 )

The shear stress distribution is as follows:

rdp
T=5 3)
Around the axis of the pipe, the fluid experiences a lower shear stress. When v < 1,
there is no relative motion between fluid particles, leading to the existence of a central
stagnant core region 0 < r < r. In this region, fluid velocities are uniform and equal to v).
For rp <r <, fluid particles are in a state of shear motion.
By substituting r = r, and T = 1 into Equation (3), the following is obtained:

d
=20/ (-5 @
By substituting Equation (3) into Equation (1) and simplifying, the following is ob-
tained: p . p
o~ (rer
ar (2 i +T°> ©)

By integrating Equation (5) and applying the boundary condition r = rg, v = 0, the
velocity distribution of the Bingham fluid in a circular pipe can be described as follows:

v= Pllp [— <ZZ> (r(z) - 72) —1(rg — r)} (rp <7 <) (6)
and
vp = I/llp {— <del> (r% - r%) —19(ro — rp)} (0<r<r) (7)
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In a single circular pipe, the flow rate g is the sum of the flow rates in the shear zone
(rp <7 < rp) and the core region (0 < r < r,):

T
q= m’f,vp + /r ’ 27trodr (8)
P

Equations (4)—(7) are then incorporated into Equation (8) to obtain the total flow rate q
for the Bingham fluid in a circular pipe.

2 2 4
17 gu, \ " dl s\ Zdr ) T3\ "
b dl

dl

In order to determine the condition that the flow rate g in the pipe is zero, Equation (9)
is solved: p )
p T
_E_ 20 1
dl 1o 0 ( 0)
where ¢ represents the yield pressure gradient of the Bingham fluid.
Since the pressure gradient —dp/dl is significantly greater than the yield pressure

gradient  during the grouting process, Equation (9) can be simplified as follows:

4 27
_ o (_dpN | _ 4 7
q—SW( dl)ll 3(4;; (”)

The above equation describes the flow rate of the Bingham fluid in a single conduit,
assuming that the fluid flow path in the porous medium can be approximated as a long
and straight circular pipe.

2.3. Fractal Theory-Based Diffusion Model of Bingham Fluid Penetration Grouting

However, due to the complex pore structure of the porous medium, the actual seepage
pathway of the Bingham fluid is tortuous, as illustrated in Figure 2.

The particle of porous media

I

Figure 2. Fluid flow in porous media.

Porous media pores exhibit fractal characteristics [22], and the pore size distribution
conforms to fractal scaling relationships:

N(>r) = (rm”">Df (12)

1o

where N is the number of pores; r( is the pore radius; 7y is the maximum pore radius;
and Dy is the pore fractal dimension, 1 < Dy < 2.
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The length of curved pore channels [; can be expressed in fractal theory [22]:
Iy = I507 (2r) 701 (13)

where I; is the curved length of the channel; [y is the straight length of the channel; and Dt
is the tortuosity fractal dimension, 1 < Dr < 2. When Dt = 1, it indicates that the flow
channel is straight.

By substituting /;, which represents the straight pore channel in Equation (11), with
the actual curved pore channel [ represented by the pore fractal dimension, the following is
obtained:

T 8, \dlg Dr B §( &) (14)

([
~dl

The above equation represents the flow rate of the Bingham fluid flowing through
a pore with radius rg. Therefore, the flow rate Q through the entire cross-section of the
porous medium can be expressed as follows:

T'max
Q=" qan (15)
Tmin

where Q is the total flow rate through the porous medium; ,,;,, is the minimum pore radius;
and 74,4y is the maximum pore radius.
Substituting Equation (14) into Equation (15) and integrating yields the following:

o- (g
8up \ dlo DT(DT—Df+3)

dly

Generally, in porous media, 7, / iax < 10~2. It is considered that 1 < Dy < 2 and
1 < Dy < 2[22]; therefore, (r,m-n/rmax)DT_DfJr3 < 1and (rmin/rmax)3_Df < 1.

Thus, neglecting higher-order terms, the expression for the flow rate of the Bingham
fluid in porous media can be simplified as follows:

Q= NDfr?”tET ( dp) l(])DT_lroDT (DT - Df + 3) a7
y,,lg’rl%—DTDT (DT —Ds+ 3) dly 3(3 B Df)ZDT_41’£gx

According to fractal theory, the cross-sectional area of a unit cell can be represented as
follows [21]:

anrmuxz(l —9)
(2-Dr)e

where S is the cross-sectional area of the unit cell and ¢ is the areal porosity.
The average flow velocity of Bingham fluid can then be expressed as follows:

Toie T (2 - Df) @ dp l(?TflTODT (DT — D¢+ 3)
ypl(l))T*124fDTDT (DT — Dy + 3) (1—9) <_dlo> - 3(3 _ Df)2DT*4r;ZZx

S — (18)

e

6:

where 7 is the average flow velocity on the cross-section of the unit cell.
In porous media, the Darcy seepage velocity V at any point in the unit cell satisfies the
following relationship with the average flow velocity v [25]:

V=¢0 (20)
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where V is the Darcy seepage velocity and ¢ is the volumetric porosity. The relationship
between volumetric porosity ¢ and areal porosity ¢ can be expressed as follows [26]:

¢p=T¢ (21)

where I’ is the tortuosity, I' = 1 indicates that the flow channel is straight, and the areal
porosity and volumetric porosity are equal.

According to the law of mass conservation, the relationship between the grouting
flow rate g, seepage velocity V, and the cross-sectional area A for fluid diffusion can be
expressed as follows:

qg=VA (22)

where g is the grouting flow rate and A is the cross-sectional area for fluid diffusion.
By combining Equations (19)-(22) and simplifying, the following is obtained:

DT(DT - Ds +3)

Hp(T —¢)q n T
11-ProDr—4,D1
0 max

v Arwax (2= Df)¢?  3(3-Dy)

dl 23)

Therefore, the relationship between the grouting pressure p. and the grout diffusion
distance Iy, can be expressed as follows:

zm{ Dr(Dr - Dy +3)
Pc:/o -

IIP(I 4 )11 70
1-D 4 Dt
1 TZDT T

Armax (2 Dy)¢? 3(3-Dy)

}dlo +po (24)

In the case of I, = 0, the grout diffusion distance is zero and the grout pressure
pe = po, where py is the initial grouting pressure.

Under condition of a steady-state Bingham fluid (slurry) flow, the relationship between
the grout pressure and fluid diffusion distance can be expressed as follows:

(Dr - Dy +3)

—4,D
2Dr 4rmgx

Hp(I —¢)g LD

Arnax(2-Dg)¢*  3(3-Dy)

pe=— In” + po (25)

2.4. Parameter Values

In the relationship between the grout pressure and diffusion distance represented by
Equation (25), the slurry viscosity i, and yield stress 1y can be measured using a viscometer.
The slurry flow rate g, fluid diffusion cross-sectional area A, grout diffusion distance I,
and the volumetric porosity ¢ of the porous medium can be obtained through experiments.

The tortuosity I' can be obtained from the volumetric porosity ¢ through the following
expression [26]:

o JI—g (@+1+T=9)\/9-5p-8,/T—¢
r=1--+ +
2 4 8¢
The fractal dimension of porosity Dy can be represented by the maximum and mini-

mum pore radii of the porous medium and the areal porosity ¢ according to the following
relationship [21]:

(26)

Ing

"min
In ( T'max )

Df=2- 7)
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In Equation (27), the areal porosity ¢ can be derived from the measured volumetric
porosity ¢ using Equation (21). The ratio of the minimum to maximum pore radii is related
to the areal porosity ¢ according to the following relationship [21]:

T'min _ Q 1-¢
Fmax A7 \[ 1—0.342¢

(28)

where d* is typically set to 24. Therefore, the fractal dimension of porosity Dy can be
calculated from the volumetric porosity ¢.

The maximum pore radius 7,y is related to tortuosity I', the fractal dimension of
porosity Dy, the areal porosity ¢, and the permeability k according to the following rela-
tionship [26]:

8kr(4 - Df) (1-¢)
(2— Df)(p

where k is the permeability of the porous medium, which can be measured experimentally.
Therefore, the maximum pore radius 7,4y can be calculated from the volumetric porosity ¢
and the permeability k.

The tortuosity fractal dimension Dt can be expressed in terms of the porosity frac-
tal dimension Dy, the maximum and minimum pore radii, and the areal porosity ¢ as
follows [21]:

(29)

Tmax =

1
Df—1 [1(/’ n r
Df% ¢ 4(2-Dy)

/In

(30)

Tmin
Tmax

2
(=
1— 4

DT:1+ln% 1+%M+m 1/7 =

The tortuosity fractal dimension Dt can ultimately be transformed into an expression
involving the volumetric porosity ¢.

To summarize, the theoretical model for the permeation and grouting diffusion of
the Bingham fluid based on fractal theory, developed in this study, relies on the following
parameters: slurry viscosity y, and yield stress 7p; volumetric porosity ¢ and permeability
k of the porous medium; slurry flow rate g; fluid diffusion cross-sectional area A; and
grout diffusion distance /r,. All these parameters can be determined from conventional
geotechnical tests.

2.5. Scope of Application

Equation (25) is proposed based on the assumption of laminar flow; hence, it is not
applicable for turbulent flow. The permeation and diffusion of the Bingham fluid in porous
media can be determined based on its generalized Reynolds number Re. When Re < 2000,
the slurry diffuses in a laminar flow regime. When Re > 2000, the slurry diffuses in a
turbulent flow regime.

The Reynolds number Re can be determined using the following formula:

Re = P°P 31)
Hp

where p is the density of the Bingham fluid and D is the diameter of the pore channel in
the porous medium.

3. Experiments of Permeation Grouting in Porous Media

To analyze the applicability and accuracy of the fractal-based theoretical model for
Bingham fluid permeation grouting, a series of permeation grouting experiments are con-
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ducted. These experiments facilitate a comparative analysis between theoretical predictions
and experimental results.

3.1. Experimental Apparatus

In order to study the diffusion patterns of the Bingham fluid with varying injection
pressures and different fluid properties, a one-dimensional visual permeation grouting
simulation apparatus is designed (Figure 3).

overflow pipe
cylinder
=P
sand samples g =)
@ pressure sensor
grouting pump = —=
bolt-connected
cement Nl L data collection
0 [ ]
ting pi ]
— % Bl =
} T T ﬂ
electromagnetic flow sheet foot

Figure 3. Schematic of experimental apparatus.

The grouting column model employs Polymethyl Methacrylate (PMMA), composed
of four sections of identical dimensions, which enables the slurry flow to be visualized.
Each cylindrical tube section measures ®100 mm x 200 mm, with the total length of the
apparatus reaching 80 cm. The bottom is equipped with adjustable supports. The tubes are
filled with sand (the injected medium). The slurry is injected from the bottom and disperses
upwards along the Polymethyl Methacrylate (PMMA). The inlet and outlet openings are
covered with filter screens to prevent structural damage to the samples.

The slurry pressure measurements are conducted using a DM-YB1820 (Nanjing Danmo
Electronic Technology Co., Ltd, Nanjing, China) static resistance strain gauge connected to
infiltration pressure sensors. The pressure sensors are positioned at distances of 0, 10, 20,
30, 40, 50, 62.5, and 77.5 cm from the slurry inlet. The sensors located from 0 to 50 cm have
a measurement range of 200 kPa, while those at 62.5 cm and 77.5 cm have a measurement
range of 100 kPa, all with an accuracy of 0.3%.

3.2. Experimental Design

P.O 42.5 Portland cement is employed as the grouting material. During the experiment,
the properties of the cement slurry are altered by adjusting the water—cement ratio (w/c
ratio). The w/c ratios tested are 0.80, 1.00, and 1.25. The rheological equations for the
cement slurry at different w/c ratios are shown in Table 1.

Table 1. Rheological equations of three cement grout.

Water—Cement Ratio Rheological Equation
0.80 T = 2.2078 4 0.0201y
1.00 T = 0.8593 + 0.0169y
1.25 T = 0.1136 + 0.0159y

The grouting medium used in the experiment is Chinese ISO standard sand with
particle sizes ranging from 1 to 2 mm. The sand samples are initially in a dry state. Before
each test, the sand samples are cleaned and dried. Based on the specified porosity, the
required mass of sand samples is calculated and filled accordingly. The sand is filled
in increments, with each filling step involving leveling the sand and assessing the filled
height against the scale values on the model wall to ensure compliance. The permeability
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coefficient of the grouting medium is determined through the constant-head permeability
tests [27]. The main parameters of the grouting medium are listed in Table 2.

Table 2. Main parameters of the injected medium.

Bulk Density Particle Size Volumefrlc Permeability
Parameter Range Porosity P
) (m?)
(mm) )
value 2.65 1~2 0.394 2.54 x 1078

In this study, the permeation grouting experiments are conducted with the constant
flow rate grouting method. The slurry flow rates are set at 1 L/min, 2 L/min, and 3 L/min,
respectively. The experiments involve two primary variables: the water—cement ratio (W/C
ratio) of the slurry and the slurry flow rate. To systematically investigate the effects of these
variables on slurry dispersion, five distinct permeation grouting tests were designed (refer
to Table 3).

Table 3. Design of test conditions.

Experimental Grouting Flow Rate Water-Cement Ratio
Condition Number (L/min) )
1 1 1.00
2 2 1.00
3 3 1.00
4 2 0.80
5 2 1.25

In test conditions 1, 2, and 3, the water—cement ratio is held constant, in order to
examine the impact of varying slurry flow rates on the dispersion characteristics of the
slurry. Conversely, in test conditions 2, 4, and 5, the slurry flow rate is held constant, to pre-
dominantly analyze how variations in the water—cement ratio influence slurry dispersion.
Throughout the experimental process, the slurry flow rate is meticulously monitored using
an electromagnetic flowmeter. Simultaneously, the injection pressure and the pressure
distribution along the grout diffusion path within the injected medium are continuously
measured and recorded in real-time via pressure sensors. The duration of each test is
precisely timed with a stopwatch.

3.3. Experimental Results and Analysis
3.3.1. Validation of Experimental Model Effectiveness

In the experimental setup, fluctuations in flow rate during slurry injection are observed.
It is important to validate that the slurry flow rate can remain roughly constant, not strongly
affected by the fluctuation in the slurry injection pump. As illustrated in Figure 4, the
injection time and the volume of injected slurry exhibit a linear relationship, suggesting
a constant flow rate of slurry. The slurry flow rate is approximately 3.18 L/min with an
error within 10% (condition 3 in Table 3), indicating that the experimental conditions are
achieved as designed.
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Figure 4. Changing flow rate with time under condition 3.

3.3.2. Impact of Grouting Parameters on Grouting Pressure

Figures 5 and 6 present the grouting pressure (slurry injection pressure). The results
show that the grouting pressure increases nonlinearly over time. As the grouting process
continues, both the grouting pressure and its rate of increase rise progressively. This
increase in grouting pressure is primarily due to the flow resistance of slurry in the injected
medium. Over time, the resistance builds up, leading to a corresponding increase in
grouting pressure.

40 -

—=&— grouting rate 2L/min, water-cement ratio 0.80
—=e— grouting rate 2L/min, water-cement ratio 1.00

351
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Figure 5. Impact of water-cement ratio on grouting pressure.
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Figure 6. Impact of slurry injection rate on grouting pressure.
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Figure 5 illustrates the effect of the water-cement ratio on the grouting pressure
associated with slurry permeation and diffusion. Across different water-cement ratios,
the grouting pressure consistently increases with grouting time (or the volume of injected
slurry). This means that as the duration of grouting increases, the slurry injection pressure
gradually rises. However, at the same grouting time (or volume), an increase in the water—
cement ratio results in a decrease in the slurry injection pressure. The primary reason for
this trend is that a higher water—cement ratio reduces the plastic viscosity and yield stress
of the slurry. Consequently, the resistance that the slurry encounters during its diffusion
process is lower with a higher water-cement ratio, in turn, leading to a decrease in the
grouting pressure.

Figure 6 shows the impact of the slurry injection rate on the grouting pressure asso-
ciated with slurry permeation and diffusion. Across different slurry injection rates, the
grouting pressure consistently increases with the duration of the grouting process (or the
volume of injected slurry). This indicates that as the grouting time extends, the slurry
injection pressure progressively rises. As the slurry injection rate increases, the distance
that the slurry permeates and diffuses within the same period is greater. This results in a
higher flow resistance that the slurry must overcome, leading to an increase in the slurry
injection pressure.

4. Comparison of Theoretical and Experimental Results

In this section, we conduct a comparative analysis between the results of permeation
grouting experiments under different conditions and the theoretical calculations from
the fractal theory-based diffusion model. This comparison aims to validate the fractal
theory-based model of Bingham fluid permeation and diffusion proposed in this study.
In addition to the model proposed in this study, the analysis also includes other two
theoretical models established in earlier studies: the model for Bingham fluid permeation
and diffusion without considering the permeation and diffusion paths, and the model for
Bingham fluid permeation and diffusion considering the permeation and diffusion paths.
A brief overview of these models is provided as follows.

4.1. The Theoretical Model of Permeation and Diffusion for Bingham Fluid

In the theoretical model of permeation and diffusion for Bingham fluid without
considering the permeation and diffusion paths, the pressure spatiotemporal distribution
is expressed as follows [28]:

2 2
m=<ﬁf+;ﬂ/f>m+m (32)

In the theoretical model considering the permeation and diffusion paths, the pressure
spatiotemporal distribution is expressed as follows [18]:

_ (M, | TP
po= (Lt + 221+ po )

where 77 represents the length ratio of the porous channels, which is related to the areal
porosity ¢ by the following equation:

) = 6in (ﬁ 1—¢ ) 2(1—0.342¢) 7 39
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4.2. Comparative Analysis of Experimental Results and Theoretical Calculations

The calculation parameters for theoretical models corresponding to the permeation
grouting experiments are listed in Table 4. These parameters are substituted into
Equations (25), (32), and (33), respectively, for each experimental condition, yielding the
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relationship curve of slurry pressure with diffusion distance under grouting pressure pg

(Figure 7).

Table 4. Calculation parameters.
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3 3 31.04 46 0.00785
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45 45

s
&)

(9]

[ —=— experimental values
| —e— theoretical values based on fractal theory

—=— theoretical values considering permeation diffusion pathways
[—=+— theoretical values neglecting permeation diffusion pathways

[ —=— experimental values
| —e— theoretical values based on fractal theory
—=&— theoretical values considering permeation diffusion pathways

5 | —v— theoretical values neglecting permeation diffusion pathway

ey

Pressure along distance (kPa)
[ —_ [ ] N @ W
¢ a o a &
Pressure along distance (kPa
G‘ B

7
/

NN

0 100 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 8I0

/

(=}

Diffusion distance (cm) Diffusion distance (cm)

(a) (b)

Figure 7. Comparison of experimental and theoretical results: (a) condition 3 and (b) condition 4.

As shown in Figure 7, taking experimental conditions 3 and 4 as examples, the theo-
retical model that neglecting permeation diffusion pathways exhibit a linear decay with an
increasing slurry diffusion distance. This significantly overestimates the slurry pressure
obtained from experiments. On the other hand, the model that considers both the slurry
permeation path and the fractal theory-based model can capture the general changing trend
over the diffusion distance. The fractal theory-based model can better predict the slurry
diffusion distance under certain grouting pressure, and better describe the slurry pressure
over distance.

In the experiments conducted in this section, the slurry injection stops at the point
at which the slurry is just about to flow out of the overflow pipe. Therefore, the slurry
diffusion distance in all tests is set to 80 cm. Under different experimental conditions, the
calculated slurry diffusion distances from the model neglecting permeation pathways are
3.5 to 6.3 times larger than the experimental values, showing significant discrepancies. The
reason is that the approach assumes slurry diffusion occurs uniformly in a circular pipe,
disregarding the influence of pore structures, thereby causing notable deviations from the
experimental results.

In contrast, considering permeation diffusion pathways reduces the calculated slurry
diffusion distances to 0.4 to 1.4 times of the experimental values, but it overlooks the effects
of porous medium structural parameters on slurry diffusion.

On the other hand, the slurry diffusion distances calculated based on fractal theory
range from 0.8 to 1.1 times of the experimental values (Figure 8), showing the greatest
agreement. Overall, the proposed Bingham fluid permeation diffusion model based on
fractal theory comprehensively characterizes slurry diffusion paths and pore-structure
features. Its theoretical pressure calculations closely match experimental values.
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Figure 8. Diffusion distance at initial grouting pressure under different conditions.

4.3. Error Analysis of Theoretical Results

Figures 9 and 10 show the deviation in slurry pressure between theoretical (frac-
tal theory-based diffusion model) and experiment results under various conditions. As
presented in the figures, the deviation is positively correlated with the slurry diffusion
distance. As the slurry diffusion distance increases, more pores become clogged by the
slurry, resulting in faster pressure attenuation observed in experiments, thereby increasing
the deviation from theoretical values.
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Figure 9. Impact of grouting rate on deviation.
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Figure 10. Impact of water-cement ratio on deviation.
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As presented in Figure 9, the higher the grouting rate (slurry injection rate), the smaller
the deviation between the theoretical and experimental values. One possible reason is that
at a lower grouting rate, the slurry flows for a longer time through the porous medium,
causing a greater difference in the viscosity of the slurry along the diffusion distance. There
is a significant difference in slurry viscosity between the vicinity of the injection point and
the distant areas. However, the theoretical model based on fractal theory proposed in this
study does not account for the temporal variability in slurry viscosity.

Figure 10 reveals that under experimental condition 4 (slurry water-cement ratio of
0.8), the theoretical values of pressure based on the fractal-theory model closely match the
experimental results. As the slurry water-cement ratio increases, however, the deviation
between theoretical and experimental values becomes larger. One possible reason is
the filtration effect when slurry flows through a porous medium. In this process, some
particles in the slurry are retained in pores, which reduces flow resistance at greater
diffusion distances, resulting in lower slurry pressure. Moreover, higher water-cement
ratios enhance the filtration effect [14]. The experimental observations in this study also
confirm significant filtration effects (Figure 11).

Figure 11. Image of the bottom and top of the sample after slurry penetration.

Figure 11 depicts a comparison between the bottom and top sections after the experi-
ment at condition 5 (slurry water—cement ratio of 1.25). The bottom of the sample (inlet)
appears darker and denser, indicating a higher slurry concentration, whereas the top of the
sample (outlet) appears lighter and more diluted, illustrating noticeable slurry filtration
effects. However, the fractal theory-based Bingham fluid permeation diffusion theoretical
model does not consider the filtration effects of the slurry. The theoretical calculations of
the slurry pressure at higher water-cement ratios tend to be larger than the experimental
values, with discrepancies increasing as the water—cement ratio rises.

5. Conclusions

A theoretical penetration grouting model for Bingham fluid based on fractal theory
was proposed in this study and validated by pure-cement slurry diffusion experiments.
The primary conclusions are listed as follows:

(1) Inaddressing the influence of pore structure on the diffusion of Bingham fluid slurry,
this study establishes a theoretical model based on fractal theory. The parameters
involved in the proposed model can be determined from conventional geotechni-
cal tests.

(2) A one-dimensional permeation grouting simulation apparatus was developed. The
experimental setup allows for the comprehensive analysis of the spatiotemporal
pressure variations of the pure-cement slurry under different experimental conditions.

(3) The theoretical model for Bingham fluid permeation grouting based on fractal theory
proposed in this study aligns closely with the experimental results. It comprehensively
considers the pore structure and the tortuosity effect on the pure-cement slurry
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permeation and diffusion. This model provides a significant reference for the design
of grouting operations and can contribute valuable insights to related construction
practices.
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Abstract: The accurate modeling of single-particle breakage based on three-dimensional (3D) images
is crucial for understanding the particle-level mechanics of granular materials. This study aims to
propose a systematic framework incorporating single-particle breakage experiments and numerical
simulations based on a novel 3D particle reconstruction technique for fractal analysis of particle
size and morphology in single-particle breakage. First, the vision foundation model is used to
generate accurate particles from 3D images. The numerical approach is validated by simulating the
single-particle breakage test with multiple Fujian sand particles. Then, the breakage processes of
reconstructed sand particles under axial compression are numerically modeled. The relationship
between 3D fractal dimensions and particle size, particle crushing strength, and morphology is
meticulously investigated. Furthermore, the implications of these relationships on the particle
breakage processes are thoroughly discussed, shedding light on the underlying mechanisms that
govern particle breakage. The framework offers an effective way to investigate the breakage behavior
of single sand particles, which will enhance understanding of the mechanism of the whole particle
breakage process.

Keywords: fractal dimension; 3D pCT images; vision foundation models; particle breakage; numeri-
cal simulation

1. Introduction

Particle breakage is an extremely important phenomenon in nature, industrial pro-
cesses, and geotechnical engineering. For example, particle breakage extensively exists in
soils and exerts a significant influence on soil behavior by changing soil microstructure [1,2].
The interplay between particle breakage and soil response is critical, dictating the need
for a nuanced understanding to ensure the resilience and performance of geotechnical
structures. Furthermore, optimizing the percentage of particle breakage during ball milling
can effectively increase economic benefits. Therefore, the ability to predict particle breakage
in nature or industrial processes has sparked great interest in soil/rock mechanics but
has also been a persistent challenge. The mechanism of particle breakage is still poorly
understood. Complicated interactions among the contributions of the mineral composition,
stress condition, loading rate, particle morphology, and particle distribution will affect or
even lead to particle breakage [3,4]. The most efficient way to investigate particle breakage
is to conduct single-particle breakage loading tests [5,6]. Single-particle breakage loading
tests have been demonstrated to be effective in analyzing energy utilization in comminution
processes and material mechanical responses under different stresses, as well as the effect
of particle size, morphology, and physical properties on the breakage characteristics [7-9].

Apart from experiments, numerical simulations such as the discrete element method
(DEM) have been widely used in investing particle breakage [10,11]. Compared to experi-
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mental investigations, numerical simulations are more flexible, supporting the visualization
of microscopic characteristics, e.g., the interior fractures. Generally, there are two prevalent
approaches utilized in the DEM for breakage simulations. The first one is based on the
premise that parent particles are composed of distinct, bonded, and completely resolved
child particles from the beginning of the simulation [12,13]. The alternative way, called
particle replacement, refers to ways where particles are replaced with child particles, such
as spheres and superquadrics. Once the specific failure threshold is reached, those child
particles will occupy the geometric space of the parent particle to mimic particle break-
age [14,15]. The evolution of grading, anisotropy, energy dissipation, and plastic change
during single-particle breakage have been investigated by the DEM widely [15,16]. The
effect of particle morphology on single-particle breakage is also well summarized and
validated [17,18]. However, most existing studies focus on particles with controlled shapes
instead of realistic morphology. The accurate and reliable modeling of the breakage process
based on single-particle breakage experiments and three-dimensional (3D) uCT images
remains scarce.

In recent years, fractal geometry techniques have found widespread applications
in many fields, including medicine, material science, geography, etc. Relatively, there
have been a few cases of the application of fractal geometry in geotechnical engineering,
especially for single-particle breakage. Research has indicated that the fragmentation of
granular materials can be described by a fractal dimension [19]. Arasan et al. analyzed the
relationship between the fractal dimension and shape properties of particles but only in two-
dimensional (2D) fractals [20]. The investigation of 3D fractal dimensions for single-particle
breakage is still unclear, especially for scenarios that combine experiments and numerical
simulations. Furthermore, there is currently no comprehensive research examining the
effect of particle size and morphology on 3D fractal dimensions.

To this end, this study explores the relationship between fractal dimension and par-
ticle size and morphology in single-particle breakage from in experiments to numerical
simulations based on 3D images. A novel 3D particle reconstruction technique is proposed
and used to obtain the particle morphologies. Furthermore, a series of single-particle
loading tests are conducted to investigate the mechanical behaviors of Fujian sand particles
selected from the sample for reconstruction. Subsequently, the DEM model is established
and calibrated based on experimental results. Finally, a series of numerical simulations are
conducted to explore and analyze the relationship between fractal dimensions and particle
size and morphology.

2. Materials and Methods
2.1. Materials and Equipment

The Tiniusolsen 50ST multi-parameter testing machine was used for conducting the
single-particle crushing tests, as shown in Figure 1a. A variety of load cells are available
for differing test materials and methods, providing precise applied load measurements. A
compression loading cell was employed to crush the particle that was placed between two
load plates, and the loading measuring capacity of the compression loading cell was 5 kN,
with a resolution of 0.01 N. During the tests, the displacement ratio of 0.1 mm/min was
used until the final fracture of the testing particle occurred, and the corresponding force
and displacement were measured for further analysis [21].

The tested material was Fujian sand, known as the Chinese standard sand, which is
widely employed in soil mechanics research. It is characterized by a predominant quartz
composition that imparts high intrinsic strength to the material. Furthermore, the stable
distribution in particle size, shape, and inter-flaw of this material ensures that experimental
results are reproducible. In this study, 30 single-particle crushing tests were conducted
for the statistical analysis of the fragmentation properties, and the origin-tested sand
particles were randomly selected from the following sample used for CT scanning and
reconstruction, as shown in Figure 1b. The particle size range used in the crushing test was
from 1.2 mm to 2.0 mm, and the average particle size was 1.57 mm.
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Figure 1. Illustrations of experiment: (a) loading apparatus; (b) tested sand particles.

2.2. Particle Crushing Strength

Tensile failure is considered the primary cause of particle breakage, and a characteristic
particle crushing strength derived from the tensile stress defined by Jaeger was employed
to analyze the experiment results [22]:

=7 )
where d is the particle diameter and F is the force applied on the tested particle, measured
by the testing machine. In this study, the catastrophic splitting fracture is focused, and the

corresponding peak force Fy is employed in the particle strength analysis:

i

0f = F 2)
where 07 is the particle crushing strength. Therefore, the probability of the survival of a
particle at a given stress level o is defined as Ps:

N 0f > 0c
po= - 3
= ©
where N; is the total number of particles; N | 0y > 0 represents the number of particles
whose strength oy is greater than the given stress ;. Ps can be estimated by the Weibull
distribution [23]:
o
P = exp[— (1)) @
00
where m is the Weibull modulus and oy is the characteristic stress of the particles, at such a
stress level that 37% of the tested particles survived.

2.3. 3D Particle Reconstruction

The Nikon XT H2255T 2X puCT system was used to capture the microstructure of the
Fujian sand particles using 3D uCT images. This system consists of an X-ray beam tub,
a high-voltage generator, a sample manipulator, and a flat panel detector. The generated
X-ray passes through the sample, casting the shadow image on the detector to form one
projection. For high-quality pCT images, 3000 projections were taken in this study for each
scan as the sample rotated 360°. The dimension sizes of the used 3D puCT images were
1400 x 1400 x 90 (width x height x depth) voxels, including 318 separate Fujian sand
particles, as shown in Figure 2a. To reconstruct the 3D Fujian sand particles from the uCT
images accurately, the first vision foundation model, the Segment Anything Model (SAM),
was used [24]. The main components of the SAM are an image encoder, a prompt encoder,
and a mask decoder, as shown in Figure 2b.
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Figure 2. Illustration of (a) 3D uCT images; (b) main components of SAM.

In this study, the n x n regular points were chosen as input prompts to identify all
particles in the image, as shown in Figure 3a. n denotes the number of points in a row or
column, taken as 32 for balancing efficiency and accuracy. All pCT slices along the z-axis
were transformed into a 2D mask map by the SAM, as shown in Figure 3b. These 2D mask
maps were stitched along the z-axis to form a 3D mask map. Finally, the marching cube
algorithm [25] was used to convert all masks into 3D particles, as shown in Figure 3c.

Figure 3. Illustration of (a) input prompts; (b) 2D mask map; (c) 3D reconstructed particles.

2.4. Numerical Simulation

The DEM software particle flow code (PFC3D 7.0) [26] was utilized to conduct numeri-
cal single-particle crushing simulations, leveraging the reconstructed 3D particle geometries.
The common bonded methods employed in the simulation of particle breakage are the
bonded particle method (BPM) and the bonded block method (BBM). In the BPM, the basic
cell is depicted as a rigid spherical ball, whereas the BBM employs rigid polyhedral blocks
to represent the basic cell. Consequently, unexpected voids are inevitably formed between
bonded spheres with only slight overlaps. On the other hand, polyhedral blocks can be
modeled to ensure that adjacent faces align perfectly or slightly overlap, thereby minimiz-
ing the number of voids. Considering the limited inter-flaws and inter-voids in Fujian
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sand, the simulation based on the BBM is more useful than that based on the BPM. The
numerical geometry model was established based on the high-accuracy 3D reconstructed
geometry in Section 2.3. The geometry used in the numerical simulation was also randomly
selected from the sample for reconstruction, and the size range was the same as the tested
particles. In addition, some operations on the movement and rotation of the geometry were
necessary to ensure that the position and orientation during loading were consistent with
the experiment. Firstly, the centroid of the geometry was translated to the origin to ensure
it was centered on the loading plate. Subsequently, the geometry was rotated such that its
principal axes aligned sequentially with the x, y, and z axes in descending order of their
magnitudes, thereby standardizing the orientation.

A refined geometry particle modeling method for the BBM proposed by Fang et al. [27]
was adopted in this study. Firstly, a specified number of balls were generated within the
imported geometric shape, and then the radius of the balls gradually increased until they
filled the geometric space. Furthermore, an equal number of Voronoi cells (rblocks in PFC)
were generated based on the balls. Subsequently, geometry was employed again to cut
the assembly of the Voronoi cells to obtain the precise numerical model. The effect of
the number of cells (N;) on the peak force decreased as the N, increased; therefore, the
N, =500 was adopted in this study, with limited and tolerable discrepancies of peak force
and strength [28].

After the DEM geometry model was established, the linear parallel bond model, a
built-in model in PFC, was applied between the blocks with the specific gap limitation, as
shown in Figure 4a. The detailed behavior is described in PFC documentation [26]. This
contact model provides two types of interface behavior: bonded behavior and frictional
behavior. When the activated contact between the rblocks is in the bonded state, the
interaction behavior is controlled by the microparameters of the parallel bond group;
otherwise, the microparameters of the linear group dominate the interface behavior. If
the normal and shear stress of the bonded contact exceeds the corresponding tensile and
cohesive strength, the bonds of contact break and the bonded contact degenerates into a
friction contact.

Dashpot force (F" ), not shown.

Linear force (F' ), linear elastic

(no tension) and frictional.
Bond load (F and M),
linear elastic & bonded.

F =F +F'+F, M_=M

(@) (b)

Figure 4. Illustration of (a) linear parallel bond model; (b) numerical model of the single-particle
crushing test.

Two circular walls were generated at the top and bottom of the particle model, serving
as the loading platens, as illustrated in Figure 4b. Considering the realistic velocity in the
experiment cannot be employed in the numerical simulation due to the limited calculational
efficiency, a series of numerical tests with different loading rates ranging from 0.01 m/s
to 0.5 m/s were conducted to investigate the dynamic effect, as shown in Figure 5. It was
observed that the peak force decreased as the loading velocity decreased and gradually
stabilized. The variance in the peak force between the loading velocities of 0.4 m/s
and 0.1 m/s was a mere 0.2%, which was deemed inconsequential. Therefore, a constant
velocity of 0.04 m/s was employed in the following numerical model, at which the dynamic
effect decreased. Moreover, to avoid dynamic stress shock in the internal rblocks, the
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velocity of the loading platens was gradually increased to the specified speed at the
start stage.
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Figure 5. Force—displacement curves with different loading rates.

2.5. Shape Indexes and Fractal Dimensions

Particle morphology is generally evaluated by using shape indexes. In this study,
three common shape indexes were used: the elongation index (EI), flatness index (FI), and
sphericity index (SI). The EI and FI were used to quantify the form of the particles and are
defined as follows [29]:

b

El = - 5)
C

FI =5 (6)

where g, b, and c are the major, intermediate, and minor principal dimensions of a particle,
respectively. The SI is defined as the surface area of a sphere, enclosing the same volume V
as the 3D object. This index is commonly used for the measuring of compactness and can
be derived from the classical isoperimetric inequality and calculated as follows:

N4 3
S]— 367tV @)
A
where V and A denote the volume and surface area of the particle, respectively. In this

study, the equivalent volume diameter d of a particle was used to quantify the particle size:

d= ﬁ ®)

The 3D particles or fragments were first converted to voxels (3D images). Then, the 3D
fractal dimension Fp of the particles was calculated by using the box-counting method [30],
expressed as follows:

. log(Nr)

Fp = lim—=>—=
D=1 log(1/ 1)
where r is the cube size, which ranges from the smallest unit in the voxel scale to 1/2 of the
entire volume, and N; is the total number of cubes containing the object of interest in the r
scale. More details about the computation of the 3D fractal dimensions of particles can be
found in [31]. The coefficient of determination (R?) and mean squared error (MSE) were
adopted to evaluate the fitting quality:

©)

SSI‘ES

R?*=1-
SStot

(10)

61



Fractal Fract. 2024, 8, 614

MSE =

S|

i (Yi- 171’)2 (1)
i—1

where SSes and SSior are the sum of the squares of the residuals and the total sum of
the squares, respectively, n denotes the total number, and Y; and Y; are the observed and
predicted values, respectively.

3. Analysis of Experimental and Numerical Simulations
3.1. Experimental Results

Figure 6 presents typical force-displacement curves alongside the corresponding
photographs of the representative tested particles before and after undergoing the crushing
test. Due to the fine engineering properties of Fujian sand, most of the particles exhibit a
smooth (result 1 in Figure 6) or slight sawtooth (result 2 in Figure 6) force-displacement
curve preceding a sudden force decrease as the final catastrophic fracture. The tested
particles tended to break into two to four primary fragments, occasionally accompanied
by a scattering of minor fragments and some fine powder, as shown in Figure 7. This
behavior aligned with the identification of the two fracture mechanisms reported by Nakata
et al. [21]. During compression, localized damage at the contact points or edges led to
the initial sawtooth pattern observed in the force—displacement curves and resulted in the
formation of minor fragments. Subsequently, catastrophic failure occurred, causing the
particle to split into two or three major fragments. These two fracture patterns are defined
as asperity fracture and splitting fracture, respectively. The strength and the probability
of the survival of each particle are depicted in Figure 8a and Figure 8b, respectively. The
characteristic stress oy in the test was 50.65 MPa, consistent with previous studies [21].

120

— Typical result 1
100 -— Typical result 2

80

Force (N)

O i} |\~‘ 1
0.00 005 010 015 020 025
Displacement (mm)

Figure 6. Typical force-displacement curves. The slight sawtooth is marked by the dotted circle.

Figure 7. Representative fragmentations of sand particles.
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Figure 8. Experimental results: (a) single-particle crushing strength; (b) probability of survival.

3.2. Numerical Calibration

The microparameters of the contact model were calibrated by matching the character-
istic strength oy of the particles calculated from the results of the single-particle crushing
test. After finely adjusting the microparameters of the linear parallel bond model, the dis-
tribution of the probability of surviving was similar to the experimental results as shown in
Figure 9a, and the characteristic stress in the simulation was 51.38 MPa, well in agreement
with the 50.65 MPa in the experiment. Furthermore, the typical force-displacement curves
of the simulation results are depicted in Figure 9b, capturing the different fracture patterns
illustrated in Figure 6. This correlation serves as a compelling validation of the numeri-
cal model’s applicability and its capacity to accurately emulate single-particle breakage
behaviors. The calibrated microparameters used in the DEM are listed in Table 1.
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Figure 9. Calibration of numerical simulations: (a) distribution of the probability of surviving;

(b) typical force-displacement curves.

It can be observed from Figure 9a that discrepancies exist between the experimental
and simulated curves, particularly at their extremities, which can be attributed to two
principal factors. Firstly, in the experiment, the radius of the particles was manually
measured using an electronic micrometer caliper, whereas in the simulation, the radius of
the particles was represented by the distance between two loading platens. Overall, the
measurement radius in the simulation was smaller than that in the experiment. Secondly,
the simulation did not account for flaws and incomplete homogeneity within the particles.
As a result, the variation in strength observed in the simulations was less pronounced than
that in the experiments. This disparity is reflected in the Weibull modulus () values, with
an experimentally determined value of m = 2.21 compared to a value of m = 3.15 obtained
from the simulations.
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Table 1. Microparameters used in DEM simulation.

Microscale Parameters Value
Particle density (kg/m?) 2650
Damping 0.5
Frictional coefficient 0.5
Bond effective modulus (GPa) 1.9
Bond normal to shear stiffness ratio 2.5
Bond tensile strength (MPa) 29
Bond cohesive strength (MPa) 28.5
Rblock effective modulus (GPa) 1.9
Rblock normal to shear stiffness ratio 2.5
Wall elastic modulus (GPa) 1.9
Wall normal to shear stiffness ratio 1

Regarding the fragmentations produced by the catastrophic failure of the particle, as
shown in Figure 10, the numerical model yielded a primary fragment count ranging from 2
to 4 pieces, thereby demonstrating a close concurrence with the experimental observations.
Furthermore, within the contact zone, the isolated block marked in navy blue represents
the abrasion and asperity fracture of the particle.

& e
© <

Figure 10. Numerical results of particles before and after breakage. Each color represents a particle.

4. Relations Between Fractal Dimensions, Particle Size, Crushing Strength,
and Morphology

The application of fractal theory to investigate the relationship between 3D fractal
dimensions, particle size, particle crushing strength, and morphology holds significant
practical implications. Understanding these relationships can lead to improved material
performance in various industries. Furthermore, by establishing a quantitative link between
fractal dimensions and mechanical properties, engineers can design materials with tailored
characteristics, optimizing them for specific applications.

4.1. Relations Between Fractal Dimensions and Particle Size

The statistical results of the particle size d before and after the breakage are presented
in Figure 11a and Figure 11b, respectively. It is clear that particle sizes ranged from 1.2 mm
to 1.8 mm before the single-particle breakage. The number of particles with a size between
1.4 mm and 1.5 mm was the highest. The dominant particle size ranged from 0.2 mm to
0.4 mm after the breakage, consistent with the experimental results. Small-size fragments
were mostly observed in single-particle breakage fragments. Notably, the fine fragments
or powder-like particles within the size range of 0 mm to 0.2 mm were excluded from the
statistical analysis, as they were not encompassed within the defined size range for the
blocks under consideration. Therefore, the count in this range was zero.
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Figure 11. Statistical results of particle size d: (a) before breakage; (b) after breakage.

The correlation between the 3D fractal dimension of the particles and the particle
size before and after the particle breakage are presented in Figure 12a and Figure 12b,
respectively. It can be seen that the particle size decreased while the fractal dimension
increased. The particle size before the breakage and the 3D fractal dimension can be fitted
by a straight line with R? = 0.625. The unsatisfactory R? value may be attributed to the
insufficient number of simulations. The fitting results could be improved by incorporating
a greater number of simulations. Moreover, the accuracy of the reconstructed 3D models
also plays a significant role. Inaccurate surface details in the 3D model can introduce noise,
which in turn may lower the R? value. Interestingly, the relation between the particle
size after the breakage and the 3D fractal dimension can be interpreted by an exponential
function with a high R? = 0.931. These results suggest that the fractal dimension after
particle breakage is significantly affected by the particle size. The sizes of many small
fragments are similar, but the individual fractal dimensions exhibit significant variation.
A possible explanation is that smaller particle fragments are more likely to be irregular in
shape, resulting in varying fractal dimensions. The difference in the relation between the
particle size distribution and 3D fractal dimension before and after breakage can be used as
an indicator for identifying the breakage degree.

2.0 2.0
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Figure 12. Relations between 3D fractal dimension and particle size: (a) before breakage; (b) after
breakage.

The relation between the particle crushing strength oy and 3D fractal dimension is
presented in Figure 13. The result indicates that the particle crushing strength ¢ increased
with the 3D fractal dimension. These scatter points can be fitted by a straight line with
MSE = 73.091. It can be concluded that the particles with a higher 3D fractal dimension
resulted in higher particle crushing strength. This provides an auxiliary to predict the
particle crushing strength based on the 3D fractal dimension. However, the data used
in this study are insufficient to obtain an accurate relationship between the 3D fractal
dimension and particle crushing strength. Nevertheless, a more complicated model could
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EI

be established if more experimental data are provided, guaranteeing a better understanding
of the relationship between the 3D fractal dimension and particle crushing strength. More
importantly, in practice, the crushing strength of particles can be quickly estimated by
measuring their 3D fractal dimension, and the macroscopic mechanical properties of
materials can be thereby inferred. This can save a lot of experimental time and costs and
optimize material selection and design processes.
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Figure 13. Relations between 3D fractal dimension and particle crushing strength.

4.2. Relations Between Fractal Dimensions and Morphology

The correlation between the 3D fractal dimension of the particles before the breakage
and particle shape indexes (EI, FI, and SI) of granular materials are shown in Figure 14a,
Figure 14b, and Figure 14c, respectively. It can be observed that the EI and SI increased
as the 3D fractal dimension increased. However, the shape index FI decreased as the 3D
fractal dimension increased. This is an expected result since higher FI values indicate higher
particle shape irregularities, and it is well known that increasing particle irregularities
increase fractal dimension [32]. The MSE value of the fitting line for the SI is the lowest
one, suggesting that the SI is more appropriate to be used for examining the 3D fractal
dimension of intact particles indirectly.

0.8

0.6

13

12 1.2
e Fujian sand e Fujian sand e Fujian sand
Fitting line Fitting line Fitting line
y=1.309x-0.991 y=-0311x+1.301 y=0291x+0.498
FMSE=0107, o 48 LOF MSE=0131 o 1LOF MSE=0.007
° oo « ° %o
.. = . w % o = ,_,.4.———}:“'.‘"
\0‘\..
081 * . :. 08}
e .
o . L.
. . 0.6 . . 0.6 :
1.4 1.5 1.6 1.3 1.4 1.5 1.6 13 1.4 L5
3D fractal dimension 3D fractal dimension 3D fractal dimension
(a) (b) (0)

Figure 14. Relations between 3D fractal dimension and particle shape indexes before breakage: (a)
EL (b) FI; (c) SI.

Similarly, the correlation between the 3D fractal dimension of the particles after the
breakage and particle shape indexes (EI, FI, and SI) of granular materials are shown in
Figure 15a, Figure 15b, and Figure 15¢, respectively. Conversely, the shape indexes EI
and SI decreased as the 3D fractal dimension increased, while the FI increased as the 3D
fractal dimension increased. The relation between the 3D fractal dimension and shape
indexes is completely different before and after breakage. This result may be related to
the change in the particle size distribution, where the irregular small fragments dominate
the fragmented particles. The quick increase in the small irregular fragments alters the
relationship between the 3D fractal dimension and shape indexes. The relationship between
the 3D fractal dimension and shape indexes is extremely different before and after breakage.

66



Fractal Fract. 2024, 8, 614

This result suggests that the 3D fractal dimension can also be a good indicator for describing
particle morphology, thus predicting the mechanical behaviors of particles.
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Figure 15. Relations between 3D fractal dimension and particle shape indexes after breakage: (a) EI;
(b) FI; (c) SI.

5. Conclusions

A systematic framework for investigating single-particle breakage from experiments
to numerical simulations based on three-dimensional (3D) images was developed in this
study. A novel 3D particle reconstruction method utilizing the vision foundation model
was proposed and demonstrated to be effective. This approach provides a novel alternative
for reconstructing particles from 3D images. The reconstructed 3D accurate particles were
calibrated and modeled by the discrete element method (DEM) with the bonded block
method (BBM), based on one-to-one mapping single-particle loading tests. The results
showed that the calibrated numerical simulations were sufficient to mimic the mechanical
behavior of the single-particle breakage. The numerical simulations for the single-particle
loading tests were performed using calibrated parameters. Moreover, fractal theory was
used to investigate the relationship between the 3D fractal dimensions and particle size,
particle crushing strength, and morphology. The relationship between the 3D fractal
dimension and shape indexes changed significantly before and after the breakage. The
results indicate that the particle size decreased as the fractal dimension increased. The
trend of the particles before the crushing can be fitted with a straight line, while the trend
of the particles after the crushing can be fitted with an exponential function. The particles
with a higher 3D fractal dimension had a higher particle crushing strength. After the
particle breakage, the EI and FI exhibited a slight decrease as the 3D fractal dimension
increased. Conversely, the SI decreased as the 3D fractal dimension increased. The 3D
fractal dimension is a good indicator for describing particle morphology and particle
crushing strength. A more comprehensive conclusion can be found if more experimental
data are available.

The proposed framework achieved a robust and accurate simulation for single-particle
breakage, providing an auxiliary approach for investigating particle breakage from exper-
iments to numerical simulations based on fractal theory. However, particle morphology
could be accurately captured but did not consider the scenarios in which particles are
connected. The influence of multi-point contact on single-particle breakage was also not
revealed and will be investigated in future work. Moreover, a model comparing particle
shape, crushing strength, 3D fractal dimension, and macroscopic mechanical properties
can be developed by the physical-informed neural network (PINN) to obtain more accurate
numerical simulation tools and provide reliable prediction results for engineering practice.
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Abstract: The occurrence of landslide hazards significantly induces changes in slope surface displace-
ment. This study conducts an in-depth analysis of the multifractal characteristics and displacement
prediction of highway slope surface displacement sequences. Utilizing automated monitoring de-
vices, data are collected to analyze the deformation patterns of the slope surface layer. Specifically, the
multifractal detrended fluctuation analysis (MF-DFA) method is employed to examine the multifrac-
tal features of the monitoring data for slope surface displacement. Additionally, the Mann—-Kendall
(M-K) method is combined to construct the « indicator and f(«) indicator criteria, which provide
early warnings for slope stability. Furthermore, the long short-term memory (LSTM) model is op-
timized using the particle swarm optimization (PSO) algorithm to enhance the prediction of slope
surface displacement. The results indicate that the slope displacement monitoring data exhibit a
distinct fractal sequence characterized by h(q), with values decreasing as the fluctuation function g
decreases. Through this study, the slope landslide warning classification has been determined to be
Level IIl. Moreover, the PSO-LSTM model demonstrates superior prediction accuracy and stability in
slope displacement forecasting, achieving a root mean square error (RMSE) of 0.72 and a coefficient
of determination (R?) of 91%. Finally, a joint response synthesis of the slope landslide warning levels
and slope displacement predictions resulted in conclusions. Subsequent surface displacements of the
slope are likely to stabilize, indicating the need for routine monitoring and inspection of the site.

Keywords: tunnel deformation; multiple fractal theory; deformation warning; PSO-LSTM

1. Introduction

With the continuous development of transportation infrastructure in China, a sig-
nificant number of highways, railroads, and other projects have been established. Due
to the terrain, many highway and railroad projects must traverse mountainous areas,
making slope engineering crucial in the construction of high-speed infrastructure in these
regions [1,2]. Slopes are common structures in geotechnical engineering, and their sta-
bility is influenced by numerous factors characterized by randomness, ambiguity, and
uncertainty [3-7]. In recent years, the growth of highway transportation, mining, and
related industries in China has heightened the demand for slope engineering, leading to an
increase in slope failure incidents. This trend poses safety risks to the public and generates
substantial economic losses for the country [8-14]. Consequently, accurately determining
the slope warning level is a critical issue in geotechnical engineering.

During the service life of slope engineering, monitoring and controlling surface dis-
placement is a key technological challenge. As such, the evaluation of slope surface dis-
placement stability is particularly important. Current methods for slope stability analysis
include numerical simulation techniques [15-20], cluster analysis [21-27], image recogni-
tion [28-31], and machine learning approaches [32-37]. However, due to the complexity of
the geological environment and various deformation-inducing factors. This leads to the
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time-series curve of slope surface displacement showing obvious volatility and strong non-
linear characteristics. Thus, multifractal detrended fluctuation analysis (MF-DFA) provides
an effective tool for analyzing tunnel deformation.

Analyzing the deformation patterns in slope monitoring data offers technical sup-
port and theoretical guidance for early warning systems, which is vital for enhancing
slope safety. For instance, Yuanfeng Dong et al. [38] investigated the Chongqing Tongnan
orchard landslide, analyzing various monitoring results to grade the landslide warning
levels accurately and issue critical slip warnings, thereby preventing property damage
and casualties. Similarly, Xiaopeng Deng [39] utilized cusp catastrophe theory to evaluate
the stability of the Bazimen landslide in the Three Gorges Reservoir area, achieving a
comprehensive assessment of landslide warning through limit displacement criteria and
V/S analysis. Shuang Zhou et al. [40] employed an intensity reduction finite difference
calculation approach, combined with monitoring data, but did not achieve effective slope
deformation warnings. While previous studies have explored early warning mechanisms
for slopes, they often overlooked the investigation of multifractal characteristics. In con-
trast, Heng Lei et al. [41] and Haoyu Mao et al. [42] applied multifractal theory to slope
deformation warnings, successfully revealing warning signals through displacement data
and micro-seismic signal monitoring, demonstrating the potential of this theory in early
warning applications. Thus, further exploration of multifractal characteristics, based on
slope surface displacement monitoring data and evaluation of early warning classifications,
remains a valuable avenue for research.

Accurate prediction of slope deformation is also crucial for disaster prevention and
warning systems. Machine learning methods have been increasingly employed for slope
deformation prediction. Long short-term memory (LSTM) networks are proven to be
particularly effective due to their ability to capture long-term dependencies and process
temporal information [43]. Jiangbo Xu et al. [44] developed an LSTM model for slope
displacement prediction, leveraging the maximum mutual information coefficient and the
XGBoost algorithm, ultimately concluding that the model demonstrates high reliability.
Haiping Xiao et al. [45] proposed a slope deformation prediction model integrating genetic
algorithms and LSTM, achieving high accuracy and stability. Moreover, swarm intelligence
optimization algorithms, such as particle swarm optimization (PSO), can enhance PSO-
LSTM performance, leading to recent applications of the LSTM model in slope deformation
prediction. Therefore, further application of the PSO-LSTM model for predicting slope
displacements is warranted.

The study of disaster early warning is of paramount importance for disaster prevention
and mitigation. With advancements in science and technology, monitoring and early
warning systems have emerged as crucial tools for the proactive prevention of geological
disasters. Currently, the LSTM models [46-50] and MF-DFA methods [51-55] have been
widely applied in numerous studies focused on early warning for geological disasters. By
utilizing a real-time monitoring and warning model for landslides, we can achieve dynamic
tracking and timely alerts. Based on the grading results of landslide disaster early warnings,
rapid decision-making and appropriate emergency measures can be implemented. This
approach effectively reduces casualties and property losses associated with landslide
disasters.

Building on these findings, research into the early warning predictions of slope land-
slides is essential. This paper utilizes monitoring data of slope surface displacement to
first conduct a MF-DFA and Mann-Kendall (M-K) analysis, focusing on the multifractal
features and early warning classifications of slope landslides. Subsequently, PSO-LSTM is
employed to predict slope surface displacement data, forecasting displacement for the next
112 h. Finally, the results from the multifractal analysis and displacement predictions are
combined to comprehensively evaluate the warning level of slope deformation, providing
essential theoretical guidance for practical slope management.
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2. Materials and Methods
2.1. Projiect Overview and Monitoring Data

This study focuses on a slope located within the Keqiao to Zhuji Expressway Project,
specifically in the bidding section TJ03. This contract section spans Diankou Town and
Yaojiang Town in Zhuji City, Shaoxing District. The slope begins in the middle of Keqiao,
extends southwest through the southern part of Diankou, and terminates in the northern
region of Zhuji City. The topography of the area is characterized by a low elevation at both
ends and a higher elevation in the middle, resulting in a varied landscape.

The slope is part of a hilly terrain, where the section under investigation is an open
quarry. Excavation is clearly defined, revealing medium weathering bedrock with exposed
characteristics. At the summit of the slope, there exists a thin layer of residual slope deposits
containing gravel and powdery clay. The underlying bedrock consists of Aurignacian
Zhitang group tuff sandstone, which exhibits significant joint fissures and a broken rock
structure.

The slope extends from K20 + 415 to K20 + 510, measuring a total length of 111 m,
with a maximum height of 31.3 m. On the left flank of the K20 + 460 section, the slope
is constructed in three tiers, each with a gradient of 1:2, where the third tier is excavated
directly to the top, achieving a maximum excavation height of 30 m. Conversely, the right
side of the slope is excavated with a gradient of 1:1.5, reaching a maximum height of 4 m.
The overall slope configuration is step-like, with each tier height measuring 10 m and a
2-m-wide crumbling platform situated between each tier. Following the completion of the
excavation, the slope configuration is illustrated in Figure 1a.

B

(@) (b)
Figure 1. Site plan of the slope: (a) slopes, (b) monitoring devices.

To ensure the safety and stability of the slope post-excavation, an automatic monitoring
system has been installed. This system monitors surface displacements of the slope at a
frequency of once every 8 h to collect data, as depicted in Figure 1b.

To accurately assess the stability of the slope, continuous monitoring of surface dis-
placement is conducted. Initially, the monitoring area and the locations of appropriate
monitoring points are established. The safety conditions of the slope are evaluated based
on the collected monitoring data. In this study, a total of 440 sets of slope monitoring data,
collected from 29 January 2024 to 24 June 2024, are analyzed. The data from the monitoring
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points are compiled to generate the slope displacement-time diagram, as illustrated in
Figure 2.
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Figure 2. Displacement-time diagram of the surface layer of the slope.

2.2. MF-DFA

In the contexts of stochastic processes, chaos theory, and time series analysis, detrended
fluctuation analysis (DFA) serves as a method for calculating the a (or Hurst exponent)
to assess the statistical self-similarity of a signal. However, traditional DFA computes
only second-order statistical moments and assumes that the underlying process follows
a normal distribution. In contrast, the MF-DFA evaluates all g-order statistical moments
h(q), providing a more comprehensive characterization of nonlinear data and non-smooth
signals compared to traditional DFA. The calculation flow for MF-DFA is illustrated in

Figure 3.
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a=1'(q)
f(a) = qa—1(q)

Calculate the residual series z,(t) to obtain
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Figure 3. Flowchart of MF-DFA calculation.
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2.3. M-K Test Method

The M-K test method is a non-parametric method. The specific calculation steps are as
follows:

Step 1: There is a sample size of {x1,xp,...... , Xy} of time series. For all the k(j <
n and k # j), the distributions of x; and x; are different, and the difference function
Sgn(xj — xi) is computed:

+1, (x] - xk) >0
Sgl’l(Xj - xk) = 0, (x] - xk) =0 (1)
-1, (x] — xk) <0

Step 2: Calculate the test statistic S:

n=1 n
S=1Y. ) Sgn(xj—x) )
k=1 j=k+1

Step 3: S is normally distributed with mean 0. Calculate the variance Var(S):

n(n—1)(2n+5)

Var(s) = 18 ©)]
Step 4: Calculate the standard normal statistical variable Z:
S—1
\/Var(s)” 5>0
Z = 0, §=0 4)
_SHl 5 <

\/Var(s)’

Step 5: The trend characteristics of the evaluation object can be determined by the
magnitude of Z. The Z, value represents the critical threshold at the specified significance
level a. In this study, a significance test is conducted at a 99% confidence level, resulting in
a = 0.01 and ZO.Ol =2.32.

If Z > Z,, it indicates that the indicator criterion has a tendency to increase.

If -Z, < Z < Z,, it indicates that the indicator criterion has a smooth trend.

If Z < —Z,, it indicates that the indicator criterion has a decreasing trend.

2.4. PSO-LSTM Prediction Modeling
24.1. LSTM

The primary advantage of LSTM models over other common machine learning al-
gorithms lies in their unique “gate” structure. This structure allows the LSTM model to
evaluate information based on the “memory” of the network. Information is selectively
retained or discarded by multiplying by 1 or 0. The unitary state effectively solves the gradi-
ent vanishing problem associated with short-term memory by retaining sequence-relevant
information throughout the sequence.

The gate structure employs a sigmoid activation function that compresses values
between 0 and 1, which facilitates the updating of retained information while discarding
less relevant data.

The LSTM model features three main gates:

1. Forgetting Gate: This gate determines whether information should be discarded or re-
tained. It processes relevant information through the sigmoid function, producing an
output between 0 and 1, where values closer to 0 indicate less importance and greater
likelihood of being discarded, while values closer to 1 signify critical information.

2. Input Gate: This gate updates the cell state. After processing by both sigmoid and
hyperbolic tangent (tanh) functions, a final output value closer to 0 indicates less
importance, whereas a value closer to 1 indicates significant information.
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3. Output Gate: Similar to the input gate, the output gate determines the value of the
next hidden state in the cell structure. The processed value from this gate is used to
decide the information the hidden state should carry, which is then passed along with
the new cell state.

fo = o (wylin 1, %] + by) ®)

it = o(wihy_1, xi] + b;) (6)

Ci = tanh(we[hy_1, x¢] + be) )
Ct = fiCr1 +irCe (8)

0r = o(wolly_1, x¢] + bo) ©)

ht = OytanhC; (10)

tanhx = (e¥ —e ¥) /(¥ +e77) (11)

where x represents the input vector, /1 denotes the output vector, and f, i, and o refer to the
forgetting gate, input gate, and output gate, respectively. The variable t indicates the time
step. The activation functions ¢ and tanh are nonlinear. C represents the cell state, while w
signifies the trainable weight matrix, and b refers to the bias matrix.

2.4.2. Improvement of PSO Algorithm

The PSO algorithm was developed by researchers inspired by the foraging behavior
of birds. In this algorithm, each particle simulates the foraging behavior of a bird, with
each particle in the swarm maintaining its own established direction while searching for
the optimal value. Additionally, each particle communicates its current value and position
to the swarm. Consequently, each particle adjusts its search direction based on its own
experience as well as the position of the optimal value recorded by the swarm. The flow of
the PSO algorithm is illustrated in Figure 4.

e )
t . B : . 2
Inpu Particle swarm size, particle dimension, iteration number,
. K 1 inertia weight, learning factor, iteration step size range
Initialize particle swarm parameters |
Randomly initialize the position and velocity Input Individual historical optimal position, group historical
; £ each particl ? optimal position, individual historical optimal fitness
of eac] icle S .
P value, group historical optimal fitness value
Yes Satisfy the end
condition? Input | Maximum number of iterations or minimum difference
No of adaptation value between two iterations is reached

particle

‘ Update the position and velocity of each ‘

Output the optimal solution, draw
a graph and save the result

Calculate adaptation values for each particle

l

End Update the historical optimal fitness value
and position of individual particles

Update the historical optimal fitness value
and position of the population

| Update other parameters }‘

Figure 4. Flowchart of PSO algorithm.
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The mathematical expression for the base element of the PSO algorithm is

kil k k k k k
Vg ' =WV +Ciry (pid,pbest - xid) + Cora (Pid,gbest - xid) (12)

Xt =y vt (13)

where Vl.’;l+1 represents the d-dimensional component of the velocity of particle i at the
k + 1 iteration; W denotes the inertia weight; and Vl’;l is the d-dimensional component of
the particle’s velocity at the k iteration. C; and C; are the acceleration coefficients, while
r1 and rp are random numbers uniformly distributed between 0 and 1. pi‘(d,pb o5t indicates
the d-dimensional component of particle i‘s historical optimal position at the k iteration,
and xi.‘d represents the position of the particle at the k iteration. pé‘d, gbest denotes the d-
dimensional component of the optimal position recorded by the particle swarm throughout
its history at the k iteration. The term C;r; represents the learning weight of the particle’s
own experience, whereas Cpr, represents the learning weight based on the experiences of
the population. Finally, xfjl is the d-dimensional component of the particle’s position at

the k + 1 iteration.

2.4.3. PSO-LSTM

The slope surface displacement data are input into the network structure of the LSTM
model. Initially, the parameters of the LSTM model are established, followed by the
initialization of particle swarm parameters. The positions and velocities of the particles are
generated randomly, and the fitness values are computed. Subsequently, the individual
and collective velocities and positions within the particle swarm are updated. After each
update, the fitness values are recalculated to assess whether the maximum number of
iterations has been reached. Upon reaching the maximum number of iterations, the optimal
parameters are identified. The PSO-LSTM model is then constructed, and the data is both
trained and tested, ultimately yielding the output results and evaluation metrics.

The coefficient of determination (R?), mean absolute error (MAE), and root mean
square error (RMSE) were selected as evaluation criteria for the model. Their respective
expressions are as follows:

R2 = 1 Elalve()-wo(i)?
o Thle@ v
MAE = 5 ¥ ia1ye(i) — yo(i)] (14)

RMSE = \/3E2,[ye(i) = vo (1)

where 1 represents the number of predicted outcomes. y, (i) represents the true outcome.
yc (i) represents the predicted outcome. ¥, represents the mean of the true values.

3. Results and Discussion
3.1. Multifractal Characterization of Slope Surface Displacement

Before calculating the multifractal characteristics of the monitoring data, it is essential
to segment the data into four groups, each containing 110 data points. The groups are
defined as follows: The first group spans from 29 January 2024 to 6 March 2024. The second
group covers the period from 6 March 2024 to 11 April 2024. The third group extends from
12 April 2024 to 18 May 2024. The fourth group ranges from 18 May 2024 to 24 June 2024.

To perform multifractal analysis on each group of surface displacement monitoring
sequences of the slope, we employed a sliding time window optimization method using
the MF-DFA. In this analysis, the fluctuation order g is varied over the range of [—10, 10],
while the scale s is set within the range of [10, 100]. The sliding window step is defined as
1. The resulting double logarithmic scatter plot of logF;(s) — logs is illustrated in Figure 5.
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Figure 5. g-order fluctuation function logF;(s) — logs trend plot of double logarithmic fit: (a) Group
I, (b) Group II, (c) Group III, (d) Group IV.

Using the aforementioned parameters, the four data series were analyzed through
multifractal analysis with Matlab (R2018b) software. The generalized Hurst exponent
and Renyi exponent—specifically, the scalar function—for each group of displacement
sequences were computed across varying values of 7(q). The changes in the indices
corresponding to the measurement point sequences are presented in Figure 6. Furthermore,
the multifractal spectra for each group of displacement sequences are displayed in Figure 7.

As illustrated in Figure 6a, the generalized Hurst exponent of the surface displacement
data series for the slope exhibits a nonlinear decreasing trend as g varies within the range
of [—10, 10]. This trend indicates that the surface displacement data at the monitoring sites
is characterized by multifractal properties. Notably, for different fluctuation orders g, the
generalized Hurst index curves of the second, third, and fourth groups are positioned at
lower fluctuations compared to the first group, suggesting a weaker multifractal feature
in these groups. However, the h(g) values for each group’s displacement series are all
greater than 0.5. Indicating that the displacement sequences possess strong memory and
long-range correlations from the overall structure to local components.
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Additionally, Figure 6b demonstrates a good consistency in the scale functions of the
surface displacement sequences across all groups, with the central part of the scaling func-

tion curve exhibiting a convex shape that satisfies the relationship 7(0)

—1. This finding

further confirms that each group’s unique surface layer sequences exhibit multifractal

characteristics.
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Figure 6. Variation of each index of displacement series: (a) generalized Hurst index, (b) scale
function 7, 4.
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Figure 7. Multiple fractal spectra of surface displacements for each group of side slopes.

As shown in Figure 7, the multifractal spectra for each group of slope surface displace-
ment sequences exhibit a typical single-peak convex distribution, resembling a quadratic
function curve. The local scales of these spectra vary, indicating the diversity of local
variations across different time points. The singularity intensity « of most displacement
sequences is distributed along both sides of the graph, reflecting the uneven distribution
of the fractal structure within each data series. This further underscores the multifractal
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properties of the slope surface displacement sequences. Moreover, the multifractal spectral
curves are generally symmetrical, suggesting a stable overall developmental state.

Utilizing Equation (8), we calculated the multifractal characteristic statistics for each
group of surface displacement sequences. The results of these calculations are presented in
Table 1.

Table 1. Multifractal characterization statistics for surface displacements for each group of slopes.

Eigenvalue (Math.) Group I Group 11 Group III Group IV
A 1.19744 0.67596 0.36077 0.2713
Af(a) 0.06878 —0.1566 —0.1539 0.17519

Table 1 reveals a comparison of the widths of the multifractal spectra for each group
of displacement sequences, denoted as Ax. The multifractal spectral width of the first
group A is significantly greater than that of the other three groups, indicating that the
multifractal intensity of the surface layer displacement sequences in the first group is higher,
and the displacement fluctuations are more complex.

Furthermore, when comparing the proportions of large and small fluctuations (Af(«))
in the displacement series across each group, the fourth group shows a slightly higher
Af(a) compared to the other three groups. This suggests that the displacement sequences
for the fourth group exhibit a greater prevalence of small fluctuations.

These findings indicate that the calculated multifractal eigenvalues of the surface
displacement sequences are more consistent with actual monitoring results. Thus, the
eigenvalues can be utilized for the study of landslide early warning grading in slopes.

3.2. Early Warning Grading Study of landslides on Slopes
3.2.1. Criteria for Classifying the Warning Level of Landslides on Slopes

Building upon the results of existing research on landslide warning levels, we utilized
the surface displacement monitoring data for each group to construct warning criteria based
on the Ax and Af(«) parameters. This framework enables the classification of landslide
warning levels into three categories: Level I, Level II, and Level III.

1.  Level I warnings indicate that slope deformation is trending in an extremely unfa-
vorable direction, posing a significant risk of damage and serving as a precursor
to imminent disaster. In this scenario, it is recommended to implement necessary
disaster prevention and management measures, including evacuation and relocation,
to mitigate potential losses.

2. Level Il warnings indicate that deformation is moving in an unfavorable direction,
presenting a general risk of damage.

3. Level lll warnings suggest that deformation is trending towards stabilization.

The specific criteria for these warning levels are detailed in Table 2.

Table 2. Criteria for classifying the warning level of landslides on slopes.

Warning Level

A« Indicator

- Af(«) Indicator Criterion Treatment Measures
Criterion

II
1

Suspend construction and carry out necessary
Decreasing trend Increasing trend disaster prevention and management or
relocation to avoid disaster damage.
Enhance the frequency of monitoring and patrols
and make disaster preparedness plans.
Steady trend Steady trend Normal monitoring and patrolling.

Increasing trend Decreasing trend
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3.2.2. Slope Landslide Warning Classification

Through the multiple fractal analysis and computations described in Section 2.2, we
obtained the necessary Ax and Af(a) parameter sets, as illustrated in Figure 8.

oL v DK115+290 02 v DKI115+290
0.6 vy v Vv v b T T v
’ v—V vV Vv vy v ¥ v
05F v 02+
04 F
13 i A A 4 —4*— DKI115+280 03k A —a— DK115+280
0+ A —A ’ —aA_ -
L A A A 02 —A A
82 | A A—a ~—a 0.1k S / A A 4‘ ~ ‘/A
S04t e 300
=4
Lo ° o L[* DKIlIsS#270) < 02F e DK115+270
081 .\\ /c”/ e o e glg I /,1 . g O o O o o & ®
N 02F o /
061 ¢ 04 F o
13 i = DK115+261 02 - = DK115+261
OrF 0.0 F
— = - =
0.8 .///' Ll i\F P 02k ~ . m g ==
L g B ‘.\'///—I// —a
06 1 1 1 1 1 1 AT 1 1 1 1 1 04 1 1 1 1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10 11 12 o 1 2 3 4 5 6 7 8 9 10 11 12
Number Number
(a) (b)

Figure 8. Values of slope landslide warning parameters: (a) Ax parameter values, (b) Af(«a) parameter
values.

The trends of the two discriminant indicators were assessed using the M-K test to
establish the early warning grading for tunnel displacement. The results are analyzed as
follows:

From Table 3, the analysis of the Ax indicator criterion yields a calculated Z = —2.0412.
This value falls within the range of —Zy 1 < Z < Zy 1, indicating a stable trend, which
corresponds to warning Level III.

Table 3. Results of landslide early warning analysis.

Indicators Z-Value Growing Trend ~ Warning Level Integratefl Early
Warning
Ax —2.0412 steady trend III I
Af(a) 0.4082 steady trend I

For the Af(a) indicator, the calculated Z = 0.4082, which is positioned at the level of
—Zp01 < Z < Zy - This analysis also confirms a warning level of I1I.

Considering both indicators and applying the principle of unfavorability, the final
warning level is determined to be IIL. This suggests that the slope surface displacement and
deformation are trending towards stabilization, and normal monitoring and inspections
should continue.

3.3. Prediction of Slope Surface Displacements
3.3.1. Optimization of Model Parameters

Matlab (R2018b) software was utilized to develop a program aimed at optimizing the
parameters of the LSTM prediction model using the PSO algorithm. The parameters for
the PSO algorithm were configured as follows: The number of search particles was set
to 4, the maximum number of iterations was set to 300, and the number of optimization
parameters was limited to 4. By systematically adjusting the range of parameter values,
we determined the optimal parameter range, which is as follows: learning rate range:
(1 x 1073,1 x 1072); number of neurons in the hidden layer range: (10, 30); regularization
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coefficients range: (1 x 1074, 1 x 10~ 1); and iteration number range: (100, 200). Each
parameter of the PSO-LSTM prediction model was initialized accordingly. The optimal
parameter values obtained through the PSO optimization procedure were 0.010, 19.227,
0.100, and 183.581, respectively.

3.3.2. Model Predictions

The hyperparameters obtained from the PSO optimization were utilized as inputs for
the LSTM model, which was subsequently trained on the input data. Through multiple
iterations of training, the model’s prediction accuracy was improved to an acceptable level.
The 440 slope surface displacement data presented in Figure 4 were chosen for prediction,
with 70% of the data designated as the training set and the remaining 30% allocated as the
test set. The PSO-LSTM model underwent both training and testing, with the results of the
slope surface displacement prediction illustrated in Figure 9.

‘Training set: R2=0.95‘ ‘Test set: R?=0.91
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Figure 9. Predicted results of slope surface displacements.

As illustrated in Figure 9, the prediction results of the PSO-LSTM model for slope
surface displacement closely align with the actual monitoring results. For the training set,
the model achieved an R? value of 0.95, a MAE of 0.84, and a RMSE of 1.10. For the test set,
the corresponding values were R? = 0.91, MAE = 0.55, and RMSE = 0.72. The prediction
curves indicate that the overall trend of the predicted slope surface displacements mirrors
that of the actual monitoring data, demonstrating the effectiveness of the PSO-LSTM model
in predicting slope surface displacement.

To further assess the discrepancy between the PSO-LSTM model’s predictions and the
true values, the calculated prediction errors for slope surface displacements are presented
in Figure 10.

As shown in Figure 10, a comparison of the sample error calculations from the PSO-
LSTM model for predicting the slope surface displacement indicates that the maximum
errors for the training set and the test set are 4.47 mm and —2.02 mm, respectively. Overall,
approximately 70.7% of the samples exhibited prediction errors within £1 mm, while
about 99.3% of the samples demonstrated errors within +3 mm. Notably, the maximum
prediction error for the model’s test set is significantly smaller than that observed for the
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training set, suggesting that the PSO-LSTM model yields lower sample errors in predicting
slope surface displacement. This finding further underscores the superior performance of
the PSO-LSTM prediction model.
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Figure 10. Error map of slope displacement prediction.

To extend the assessment of slope displacement, the previously constructed PSO-
LSTM prediction model was employed to forecast displacement results for the subsequent
112 h, as illustrated in Figure 11.
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Figure 11. Predicted and fitted slope displacements.

To better visualize the stabilization trend of the data, we applied a fitting method to the
predictions. Among the various fitting techniques available, the Gaussian fitting method is
particularly effective in capturing the overall trend of the data. Given that the predicted
dataset exhibits a single-peaked distribution, the Gaussian fitting method is suitable for
modeling the prediction results.

As illustrated in Figure 11, analysis of the prediction results reveals that the slope
surface displacements initially increase, followed by a decrease, and ultimately fluctuate
around a stable value. Gaussian fitting indicates that the slope surface displacement
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eventually stabilizes, further validating the accuracy of the slope Level Ill warning results
derived from multiple fractal eigenvalue analyses.

In summary, the results from the slope landslide warning levels and the predictions
of slope surface displacements demonstrate a coherent response, indicating that the slope
surface displacement is trending toward stability. Continuous monitoring and inspection
are necessary to ensure the safety and stability of the slope. The slope site inspection is
shown in Figure 12.

Figure 12. Slope site walk-through map.

4. Conclusions

Analyzing and predicting the deformation patterns of slope surface displacements
can provide essential technical support and theoretical guidance for early warning systems
related to slope safety. This paper focuses on a slope in Zhuji, Zhejiang Province, combining
on-site monitoring and measurement with multiple fractal analysis and a PSO-LSTM model
to conduct an in-depth study of slope warning levels and surface displacement predictions.
The main conclusions are as follows:

1. The application of the MF-DFA method reveals that the slope surface displacements
exhibit multiple fractal characteristics, indicating a stable developmental trend toward
stabilization.

2. The PSO-LSTM prediction model was employed to forecast the deformation trends of
slope surface displacements. The results for the test set yielded R? = 0.91, MAE = 0.55,
and RMSE = 0.72. The prediction errors associated with the PSO-LSTM model were
minimal, demonstrating that the model effectively meets the requirements for slope
surface displacement prediction.

3. Synthesis of results from the analysis of multifractal characteristics and deformation
predictions indicates that the current warning level for the slope is III, with subse-
quent deformations trending toward stabilization. Continued routine monitoring and
inspections are recommended.

4. The slopes analyzed in this study were characterized by a homogenous rock body
and limited monitoring point locations. In future studies, a comprehensive fractal
characterization of surface displacement monitoring results across multiple slopes
with varying rock properties will be conducted. Additionally, numerical modeling of
these slopes will be performed to further validate the accuracy of the proposed method.
Additionally, incorporating more influencing factors related to slope deformation
could further enhance the predictive accuracy of the PSO-LSTM model.
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Abstract: In regions with sandy soft soil strata, the subway foundation commonly undergoes freeze—
thaw cycles during construction. This study focuses on analyzing the microstructural and fractal
characteristics of frozen-thawed sandy soft soil to improve our understanding of its strength behavior
and stability. Pore size distribution curves before and after freeze-thaw cycles were examined using
nuclear magnetic resonance technology. Additionally, fractal theory was applied to illustrate the
soil’s fractal properties. The strength properties of frozen remolded clay under varying freezing
temperatures and sand contents were investigated through uniaxial compression tests, indicating
that soil strength is significantly influenced by fractal dimensions. The findings suggest that lower
freezing temperatures lead to a more dispersed soil skeleton, resulting in a higher fractal dimension
for the frozen-thawed soil. Likewise, an increase in sand content enlarges the soil pores and the
fractal dimension of the frozen-thawed soil. Furthermore, an increase in fractal dimension caused by
freezing temperatures results in increased soil strength, while an increase in fractal dimension due to
changes in sand content leads to a decrease in soil strength.

Keywords: freeze-thaw; sandy soft soil; fractal characteristics; NMR; pore distribution; uniaxial
compressive strength

1. Introduction

It is essential to investigate the microstructural characteristics of sandy soft soil for
several reasons [1]. The Yangtze River Delta region in China is characterized by extensive
soft soil strata that have developed into sand interlayers due to repeated wave activity.
The artificial ground freezing method is commonly used in subway construction through
these sandy soft soil layers [2-6], as it minimizes construction disturbance, effectively
isolates groundwater, and prevents sand and water ingress. However, the freeze-thaw
process damages the soil’s microstructure, leading to significant settlement that can affect
subway operation safety. To clarify the effects of freeze-thaw action, Zhou et al. [7,8]
investigated the freeze-thaw properties of soft clay under seepage conditions in composite
strata. Kong et al. [9] examined the pore structures of marine soft soils under various
freezing conditions. Yao et al. [10] conducted uniaxial compressive strength tests on
artificially frozen soft soil, clarifying the impact of freezing temperatures on uniaxial
compressive strength. The results show that freezing damage rearranges the soil’s internal
microstructure, resulting in diminished strength and stability, consequently leading to
uneven foundation settlements [11-16].

The concept of fractals was introduced in 1975 by the American scholar Mandel-
brot, who focused on the study of irregular geometric shapes characterized by their self-
similarity [17,18]. Prior research has confirmed that pore distributions exhibit self-similarity,
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and the pore structures of porous media manifest fractal characteristics, making them
amenable to analysis through fractal theory [19-24]. Currently, the characterization of pore
structures and fractal dimensions is primarily conducted using techniques such as scanning
electron microscopy (SEM) [25], mercury intrusion porosimetry (MIP) [26], transmission
electron microscopy (TEM) [27], X-ray microtomography [28], nitrogen adsorption [29],
and nuclear magnetic resonance (NMR) [30]. Zhu et al. [31] investigated the pore structure
of modified sandy soil using SEM, demonstrating that multiple fractal parameters can ef-
fectively describe the variations in pore characteristics and quantify the features of the pore
structure in modified sandy soils. Kong et al. [32] acquired the pore size distribution (PSD)
of freeze—-thaw soft soil using NMR and SEM, and subsequently employed fractal theory to
clarify the fractal characteristics of the PSD. He et al. [33] performed NMR tests to examine
the influence of grain size on the microstructural pore characteristics and fractal features of
carbonate-based and silicate-based sands, discovering that larger grain sizes correspond
to increased maximum pore sizes and fractal dimensions. Ferreiro et al. [34] used MIP
and nitrogen adsorption to investigate PSD across various equivalent pore size ranges,
proposing that multifractal methods are suitable for characterizing the heterogeneity of the
soil pore system. The integration of multiple methods by researchers not only facilitates a
comprehensive understanding of the soil’s microstructure from diverse perspectives but
also significantly enhances the accuracy and depth of the studies [35,36]. These studies
mainly focus on the fractal characteristics of pure soft soil, providing theoretical support
for subway construction using artificial ground freezing (AGF) in soft soil.

In view of the lack of research on the micro-pore structure of sandy soft soil, this
study focuses on examining sandy soft soil using NMR technology to analyze the pore
size distribution curves and their variations before and after freeze-thaw cycles. Fractal
theory is also applied to characterize the soil’s fractal properties. Additionally, unconfined
compressive strength tests are conducted to determine the impact of fractal dimensions on
the strength properties of frozen remolded clay under different freezing temperatures and
sand contents. The research results can serve as a reliable basis for predicting the structural
damage of frozen and thawed soil under freezing method construction conditions, which
can help to investigate the law of the inhomogeneous settlement of metro lines in the
Yangtze River Delta region.

2. Materials and Methods
2.1. Experimental Materials

Soft clay samples taken from Zijingang Campus of Zhejiang University, located in
Hangzhou City, Zhejiang Province, China. The basic physical properties of the soft soil and

the incorporated sand were determined through indoor geotechnical testing, as shown in
Tables 1 and 2.

Table 1. Basic physical indices of soft soil.

Natural Density = Dry Density =~ Water Content  Liquid Limit  Plastic Limit = Cohesion Internal Friction

Index (¢ cm—3) (g-cm ) (%) (%) (%) (kPa) Aele
Mean 1.75 1.37 33.96 38.34 20.59 15.18 18.23
Table 2. Basic physical indices of sand.
Particle Size  Particle Size = Maximum Dry Density Minimum Maximum i .
Index Range (mm) Range (mm) (g-em3) Void Ratio Void Ratio Specific Gravity
Mean 0.1~1 1.43 1.73 0.53 0.84 2.63
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2.2. Experimental Design and Sample Preparation

This study examines the impacts of freezing temperature and sand content on the
micro-mechanisms and mechanical properties through a single-factor experimental design,
where all other parameters remain constant, while one variable is changed to assess its
influence. Samples were prepared with varying sand content configurations, as detailed in
Table 3. Reflecting real-world construction conditions, a freezing temperature gradient of
5 °C was established, with soil samples subjected to freezing at —5 °C, —10 °C, —15 °C, and
—20 °C, to investigate the varying impacts of freezing temperatures on soil performance,
as specified in Table 4. In the table, sample identifiers such as SO and T-5 correspond to 0%
sand content and a temperature of —5 °C, respectively, with other identifiers following a
similar notation.

Table 3. Sand content variation experimental plan.

Sample Dimensions (mm x

Sample ID Percentage of Sand Content (%)

mm)
S0 38 x 76 0
S5 38 x 76 5
S10 38 x 76 10
S15 38 x 76 15
S20 38 x 76 20
S25 38 x 76 25
S30 38 x 76 30

Table 4. Temperature variation experimental plan.

Freezin Freezing Duration Melting Temperature Melting Duration
Sample ID Sample ID Temperatureg ©0) %h) 8 o C)P g(h)
WD 38 x 76 - - - -
T-5 38 x 76 -5 24 20 24
T-10 38 x 76 -10 24 20 24
T-15 38 x 76 -15 24 20 24
T-20 38 x 76 -20 24 20 24

“WD” denotes samples not subjected to freezing.

Soft sandy soils with varying sand content were prepared according to the test program
and sealed for one day to ensure thorough mixing and stabilization. Vaseline was uniformly
applied to the inner wall of the three-valve membrane fixture, and the prepared soil samples
were placed into the mold in layers to ensure consistent density and homogeneity, as shown
in Figure 1. The specimen diameter and height were set to 38 mm and 76 mm, respectively.
As shown in Figure 2, the three-valve membrane specimen was placed into the vacuum
saturator. The cover seam was coated with petroleum jelly to prevent air leakage. The
instrument was started, pumped for 2 h, then filled with water until the specimen was
completely submerged, and then turned off to stand for 10 h. To ensure sample saturation,
the triaxial instrument was used for re-saturation. The sample was considered saturated
when the B-value exceeded 97 and was maintained for 15 min. We removed the specimen
and the film apparatus to ensure the specimen’s integrity. We wrapped the demolded
specimen (Figure 3) with plastic film and placed it into the air freezing and thawing box to
freeze for 24 h. The frozen specimen is shown in Figure 4.

As shown in Figures 5 and 6, before freezing and thawing, the SEM images of sandy
soft soil demonstrate large continuous flocculent structures and typical honeycomb struc-
tures. The soil structure is dense with few pores. After freezing and thawing, the breaking
of large particles and the aggregation of small particles occur simultaneously, resulting in
a lamellar interlocking particle aggregate structure. The framework becomes looser, the
proportion of pores increases, and the connectivity rate also rises, adding complexity to the
soil structure.
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Figure 2. Vacuum saturation.

e ,
:

Figure 3. Demolded sample.

90



Fractal Fract. 2024, 8, 393

Figure 5. Scanning electron microscope (SEM) images of soft soil at a magnification of 3000x:
(a) unfrozen soil, (b) frozen—thawed soil.

Figure 6. Pore morphology of soft soil at 3000 x magnification, with images processed through
binarization: (a) unfrozen soil, (b) frozen-thawed soil.

2.3. Test Methods
2.3.1. Basic Principles of Nuclear Magnetic Resonance

The experimental apparatus used in this study is the MesoMR23-060H-I model low-
field NMR instrument developed by Shanghai Niumag Corporation (Shanghai, China).
This instrument autonomously maintains the magnetic field temperature at 35 £ 0.01 °C,
with the maximum homogeneity in magnetic field dimensions being 60 x 60 mm. NMR
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clarifies the microstructural characteristics of substances by observing the changes in
the spin states of atomic nuclei, which possess spin magnetic moments, as they absorb
electromagnetic waves at specific frequencies in the presence of an external magnetic
field [37].

This study primarily utilizes transverse relaxation time (T,) values measured by nu-
clear magnetic resonance to estimate water content by quantifying the number of hydrogen
atoms in the sample. The cutoff values in the T, relaxation spectra facilitate the differentia-
tion between movable and bound fluid types in the soil [38]. For the frozen-thawed sandy
soft soil discussed in this paper, the relaxation spectrum is dominated by a single peak, with
the main peak occurring at less than 10 ms. Therefore, an empirical method was adopted,
using the midpoint of the right half of the main peak as the T, cutoff value. As shown in
Figure 7, the T, cutoff value was determined to be 2.31 ms. Fluids in pores with T, values
greater than 2.31 ms were considered movable fluids, whereas fluids with T, values less
than 2.31 ms were regarded as bound. The formula for T, relaxation is as follows:
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Figure 7. Determination of cutoff values for T, relaxation spectra (T, cutoff value is 2.31 ms, SO to
S30 represent sand contents of 0% to 30%).

In the equation, p, denotes the surface relaxation rate (um/ms), which is associated
with the properties of the sample’s pore surfaces and binders. For the soft soil discussed
here, p, is approximated at 27 pm/ms. « signifies the pore shape factor, with assigned
values of 1, 2, and 3, corresponding to flat, cylindrical, and spherical pores, respectively. R
denotes the equivalent pore radius, and S/V represents the pore-specific surface area.

2.3.2. Fractal Dimension Principle

Fractal dimension is a quantitative parameter used to characterize fractal features,
reflecting the complexity and irregularity of fractals. Previous studies have confirmed
that pore distributions exhibit self-similarity, and the pore structures of porous media
demonstrate fractal features, which can be analyzed using fractal theory [39]. Currently,
fractal theory is widely applied in quantifying and analyzing the geometric properties of
PSD [33]. Below is the distribution of smaller pore sizes, calculated as a mass percentage:

M(R > Ra)/ppCon = (R/Ryax)* ", @)
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In the equation, R represents the aperture, while R, denotes the aperture that
constitutes the largest percentage. M represents the mass of pores larger than the measured
size R;. Cy is a constant associated with the shape and size of pores, and p, represents
the density of pores under assumed conditions. Due to the fractal characteristics of soil
pore distribution, the fractal dimension D is strictly confined to the range 0 < D < 3 [40].
The fractal dimension D can be derived when the percentage of cumulative pore volume
falls below a specified threshold. Given the linear relationship between the T value and
pore size R, and using the fractal dimension calculation formula for movable fluid space
developed by Zhou et al. [39], the corresponding fractal geometric approximation for pore
size R is expressed as follows:

SV = (Rmax/R)D_S/ (3)

In the equation, Sy (%) represents the percentage of the total pore volume composed
of pores smaller than the aperture R. D denotes the fractal dimension, and R,y represents
the maximum aperture size. Upon a logarithmic transformation of the formula, the nuclear
magnetic resonance-derived fractal dimension D model corresponding to the PSD for
aperture R is as follows:

lgSV = (3 - Db)lgR + (Db - 3)1ngax (Bond ﬂuid), (4)

lgSy = (3 — Dy)IgR + (Dy, — 3)1gRyax (Movable fluid), )

In the equation, Dy, represents the fractal dimension of the bound fluid, while D,;,
denotes the fractal dimension of the movable fluid.

3. Analysis of Experimental Results
3.1. Quantitative Analysis of the Microstructure of Frozen—Thawed Sandy Soft Soil
3.1.1. Impact of Freezing Temperature on Pore Distribution

As shown in Figure 8a, as the temperature decreases, the freezing effect on pore expan-
sion becomes more pronounced, leading to an overall increase in pore size. Concurrently,
the peak value of the main peak shows a decreasing trend as the temperature lowers.
Particularly in the —10 °C to —15 °C range, the peak value of the main peak after freezing
drops more significantly, decreasing by approximately 20%. However, the peak value of
the secondary peak exhibits an upward trend as the temperature decreases; this indicates
that some small pores in the soil structure connect with nearby pores to form larger ones
due to the freezing and expansion of pore water, thereby leading to a decrease in the main
peak value and an increase in the secondary peak value.
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Figure 8. Effect of freezing temperature on pore distribution. (a) Pore distribution at different freezing
temperatures. (b) Change in pore distribution at different freezing temperatures. (“WD” denotes
samples not subjected to freezing. T-5 to T-20 represent freezing temperatures of —5 °C to —20 °C).
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Considering the change in pore percentage, within the 0.001-0.025 um range, the
number of pores decreases as the temperature decreases, forming a distinct “concave
area”. These pores, originally in the “concave zone”, shift to a larger aperture zone after
freezing. Concurrently, the number of pores in the 0.025-0.4 um range gradually increases,
forming the “main convex area”. According to the principle of the ice expansion of pore
water, small pores expand upon freezing to form slightly larger pores. The diagram clearly
shows that the “main convex area”, which has increased in proportion, originates from the
“concave area” which has decreased. Additionally, between 0.4 and 2 pm, a “secondary
convex area” forms, potentially due to some pores from the “main convex area” further
expanding during freezing or medium-sized pores merging under the effect of freezing,
thereby increasing the number of pores in this larger pore size range. In conclusion, after
freezing, the sandy soft soil shows a general tendency to expand. The small pore size
increases by about 10 times and the percentage of larger pores grows dramatically.

3.1.2. Impact of Sand Content on Pore Distribution

According to the pore distribution curves for soft soils with varying sand contents shown
in Figure 9, it is evident that the proportion of the main peak pores is negatively correlated
with the sand content. At a constant temperature, the peak value of the main peak diminishes
with increasing sand content, while the peak value of the secondary peak rises. This suggests
that a higher sand content correlates with fewer small-sized pores and more large-sized pores,
primarily due to the formation of more irregular large pore structures.
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Figure 9. Changes in pore distribution of sandy soft soil at different sand contents: (a—d) represent

temperatures of —5 °C, —10 °C, —15 °C, —20 °C, respectively. (SO to S30 represent sand contents of
0% to 30%).
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According to Figure 10, observing the changes in pore size percentage, when the
temperature ranges from —5 °C to —15 °C, the curve displays a “concave area” and
two “convex areas”. Within the 0.001 um to 0.05 um “concave area”, the number of
pores decreases with an increase in sand content, showing a significant percentage change.
Concurrently, the number of pores in the 0.05 pm to 0.4 pm range gradually increases,
forming the first “convex area”, and a second “convex area” emerges above 0.4 um. Ata
temperature of —20 °C, the pore distribution curve exhibits distinct characteristics. Within
the 0.001 pm to 0.1 um range, a wider “concave area” forms compared to the “concave area”
at —5 °C to —15 °C, suggesting that at lower temperatures, more small pores are reduced
due to frost heave effects. Additionally, only one “convex area” forms above 0.1 um, as
the more intense freezing at lower temperatures results in the more pronounced expansion
and merging of larger pores.
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Figure 10. Changes in soft soil pore distribution relative to the initial distribution at different sand
contents: (a—d) represent temperatures of —5°C, —10 °C, —15 °C, —20 °C, respectively. (SO to S30
represent sand contents of 0% to 30%).

3.2. Analysis of Fractal Characteristics in Frozen—Thawed Sandy Soft Soil
3.2.1. Analysis of Fractal Dimensions of Sandy Soft Soil at Various Freezing Temperatures

Freezing influences the distribution of soil pores, consequently altering the fractal
dimensions of these pores. Based on Equations (5) and (6), fractal dimensions across various
freezing temperatures are calculated, as summarized in Table 5. Figure 9 displays the study
results on the relationship between freezing temperatures and fractal dimensions in sandy
soft soil.
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Table 5. Fractal dimension statistics for sandy soft soil at various freezing temperatures.

Sample ID Dy, R? D,, R?
T-5 0.583 0.82 2.944 0.94
T-10 0.634 0.76 2.948 0.95
T-15 0.888 0.83 2.951 0.96
T-20 0.927 0.81 2.958 0.98

According to Figure 11 and Table 5, sandy soft soil displays distinct regular changes
in the fractal dimensions of pore structures as revealed by nuclear magnetic resonance
after undergoing various freezing temperatures. As temperatures decrease from —5 °C
to —20 °C, the fractal dimensions of both bound and movable fluids gradually increase,
exhibiting an upward trend. This suggests that the soil’s pore structure becomes increas-
ingly complex during the freezing process. Further comparisons reveal that the fractal
dimensions of movable fluids are more significantly correlated with temperature changes,
with correlation coefficients ranging from 0.94 to 0.98. Conversely, the fractal dimensions of
bound fluids exhibit weaker correlations with temperature, with correlation coefficients be-
tween 0.76 and 0.83, indicating that freeze-up and thaw-sinking mainly affect the sample’s
larger pore structures.
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Figure 11. Pre-freezing 1g(SV)-1gR curves of soft soil at different freezing temperatures: (a-d) repre-

sent temperatures of —5 °C, —10 °C, —15 °C, —20 °C, respectively.
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3.2.2. Analysis of Pre-Freezing Fractal Dimensions of Soft Soil at Various Sand Contents

According to Figure 12 and Table 6, the variations in fractal dimensions of soft soils
with different sand contents before freezing adhere to fractal laws. Specifically, with
increasing sand content, the fractal dimensions of both bound and free fluids exhibit a
consistent upward trend. This observation indicates that an increase in sand content results
in the enhanced complexity of pore distribution. Comparing the fractal dimensions of
bound fluid (Dj, 0.82-0.89) and free fluid (D,, 0.89-0.99), it is clear that the fractal features
of the free fluid are more pronounced than those of the bound fluid, primarily due to the
irregular sands forming more branched and complex large void structures.

Table 6. Pre-freezing fractal dimension statistics for soft soil at various sand contents.

Sample ID Dy, R? D, R?
SO 0.757 0.83 2919 0.89
S5 0.774 0.82 2.932 0.90
510 0.848 0.84 2.944 0.93
S15 0.866 0.85 2.953 0.97
520 0.907 0.87 2.962 0.98
525 0.984 0.84 2977 0.99
S30 1.013 0.89 2.985 0.99
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Figure 12. Cont.
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Figure 12. Pre-freezing Ig(SV)-IgR curves of soft soil at different sand contents: (a—g) represent sand
contents of 0%, 5%, 10%, 15%, 20%, 25%, 30%, respectively.

3.2.3. Analysis of Post-Freeze-Thaw Fractal Dimensions of Soft Soil at Various
Sand Contents

According to Figure 13 and Table 7, the fractal dimensions of soft soil with varying
sand contents continue to follow pre-freezing fractal laws even after undergoing freeze—
thaw effects. Fractal dimensions increase gradually with rising sand content, and the fractal
characteristics of movable fluid are more pronounced than those of bound fluid. Changes in
fractal dimensions before and after freezing correspond to the complexity of pore distribution,
illustrating the internal damage process in sandy soft soil under freeze—thaw conditions.
For bound fluid, the fractal dimensions of smaller pores slightly decrease post freeze—thaw,
primarily because small pore water freezes and expands into larger pores, reducing the
quantity of smaller pores. Consequently, the number of larger pores increases, thereby
enhancing the fractal dimensions of movable fluid post freeze—thaw.

98



Fractal Fract. 2024, 8, 393

-3

Table 7. Post-freeze—thaw fractal dimension statistics for soft soil at various sand contents.

Sample ID Dy, R? Dy, R?
SO 0.706 0.8 2.93 0.94
S5 0.725 0.82 2.95 0.96
510 0.775 0.8 2.96 0.97
S15 0.818 0.87 297 0.98
520 0.837 0.84 2.979 0.99
525 0.916 0.86 2.984 0.99
S30 1.035 0.87 2.994 0.99
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Figure 13. Post-thaw 1g(SV)-IgR curves of soft soil at different sand contents: (a—g) represent sand
contents of 0%, 5%, 10%, 15%, 20%, 25%, 30%, respectively.

3.3. Analysis of the Unconfined Compressive Strength of Frozen Sand—-Clay Mixtures

As shown in Figure 14 and Table 8, unconfined compressive strength tests were
conducted on frozen sandy soft soil with sand content rates of 0%, 5%, 15%, 20%, 25%, and
30% at freezing temperatures of —5 °C, —10 °C, —15 °C, and —20 °C. The resulting graph
illustrates the relationship between unconfined compressive strength, sand content rate,
and freezing temperature, described by the following equation:

o =1.182—0.116T — 0.04S, R* = 0.96 (6)
where ¢ is the unconfined compressive strength, T is the freezing temperature, and S
is the sand content. As the sand content in the frozen sand—clay increases, its strength
exhibits a decreasing trend. This is because the increase in sand particles reduces the soil’s
cohesion. Furthermore, as the sand content increases, the soil’s permeability improves,
enhancing water mobility. This increased water mobility hinders the freezing of water,
thereby reducing the soil’s freezing capacity and subsequently affecting its post-freezing
structural strength.

As the temperature decreases, the strength of the frozen sandy soft soil increases. This
occurs because, under low-temperature conditions, the liquid phase water in the soil transi-
tions to solid ice. The solid ice bonds the loose soil particles together, forming a much more
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stable frozen soil compared to non-frozen soil. As the temperature continues to decrease,
the rate of phase transition of water in the soil increases, reducing its deformation capacity
and making it more rigid and stable. This, in turn, leads to an increase in unconfined

compressive strength.
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Figure 14. The relationship between compressive strength, sand content, and freezing temperature.

Table 8. Unconfined compressive strength of frozen sand-clay mixtures under various test conditions.

Unconfined Compressive Strength (MPa)

Sample ID

T-5 T-10 T-15 T-20
S0 1.60 2.35 3.12 3.41
S5 1.47 222 2.95 3.16
S10 1.20 1.95 2.76 2.95
S15 0.99 1.80 2.58 2.80
520 0.88 1.69 2.37 2.61
525 0.69 1.38 2.02 2.32
S30 0.62 1.31 1.71 2.13

4. Discussion
Figure 15a,b illustrate the relationship between fractal dimensions and freezing tem-

peratures, vividly showing the extent of damage to pore structures due to freezing. Both
bound and movable fluids’ fractal dimensions show a notable correlation with freezing
temperatures, with the correlation being more significant for movable fluid. This occurs
because the freezing process entails an energy exchange and lower freezing temperatures
have greater energy to break chemical and physical bonds between pore water. Conse-
quently, lower freezing temperatures lead to a looser skeletal structure and higher fractal
dimensions. Additionally, since larger pore waters have higher volumes and their water
molecules exhibit greater freedom of movement, they are more susceptible to freezing than
smaller pore waters, further substantiating the stronger correlation of fractal dimensions
with temperature in movable fluids compared to bound fluids.

Figure 16a,b show the relationship between the fractal dimensions of sand-containing
soft soils before freezing and the sand content, clearly illustrating the impact of sand content
on pore structures. The fractal dimensions of both bound and free fluids exhibit a linear
correlation with sand content. In soils with a higher sand content, pores are larger and
distributed more irregularly and unevenly, contributing to an increase in fractal dimensions.
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The fractal dimension of the free fluid has a stronger correlation with the sand content
because the sand has large particles, which form more irregular and large voids.
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Figure 15. Fractal dimensions of sandy soft soil at different freezing temperatures: (a) fractal dimen-

sion for bound fluid; (b) fractal dimension for movable fluid.
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Figure 16. Fractal dimension of sandy soft soil before freezing: (a) fractal dimension for bound fluid;
(b) fractal dimension for movable fluid.

Figure 17a,b show the relationship between the post-freeze—thaw fractal dimensions
of sandy soft soil and sand content, showing clear correlations for both bound and movable
fluids’ fractal dimensions with sand content. However, these correlations are diminished
compared to pre-freezing, primarily because sand resists deformation. After freezing, the
specimen’s freezing and thawing are “suppressed” by the sand, weakening the correlation
between the fractal dimension and sand content.

Figure 18a,b depict the relationship between the fractal dimension, freezing tempera-

ture, and unconfined compressive strength of frozen-thawed sand-clay. It is evident that
the fractal dimension significantly influences the unconfined compressive strength. The
fractal dimensions of both bound fluid and movable fluid exhibit a linear correlation with
freezing temperature. From the previously discussed conclusions, it is known that when
only the freezing temperature is lowered, it leads to a larger fractal dimension and the
creation of a large number of pores with an irregular distribution and a high degree of
inhomogeneity, and the structurally complex pores created in this case lead to a higher
degree of freezing of the soil and consequently to a greater compressive strength of the
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frozen soil. At this point the change in fractal dimension is positively correlated with the
strength of the permafrost.
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Figure 17. Fractal dimension of sandy soft soil after freeze—thaw: (a) fractal dimension for bound
fluid; (b) fractal dimension for movable fluid.
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Figure 18. The relationship between compressive strength, freezing temperature, and fractal dimen-
sion. (a) The relationship between bound fluid fractal dimension and compressive strength. (b) The
relationship between movable fluid fractal dimension and compressive strength.

Figure 19a,b illustrate the relationship between fractal dimension, sand content, and
unconfined compressive strength of frozen—-thawed sand—clay. It is clear that the fractal
dimension has a significant impact on the unconfined compressive strength. The fractal
dimensions of both bound fluid and movable fluid show a linear relationship with sand
content. As previously discussed, it is known that when only the sand content is increased,
it leads to a larger fractal dimension, and the structurally complex pores produced in this
case lead to a lower degree of freezing of the soil and consequently to a lower compressive

strength of the frozen soil mass. At this point, the change in the fractal dimension is
negatively correlated with the strength of the frozen soil.
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Figure 19. The relationship between compressive strength, sand content, and fractal dimension.
(a) The relationship between bound fluid fractal dimension and compressive strength. (b) The
relationship between movable fluid fractal dimension and compressive strength.

5. Conclusions

Artificial freezing methods are commonly used in water-rich sandy areas, but frost
heave during construction can severely damage the soil’s structure. Nuclear magnetic reso-
nance technology enables the observation of microscopic pore changes and the calculation
of fractal dimensions in frozen—-thawed sandy soil through pore distribution curves. This
reveals the complexity and regularity of pore structures, providing a new perspective on
the microstructural characteristics of soft soil. Uniaxial compression tests were conducted
on frozen remolded clays at various freezing temperatures and sand contents to analyze
the effect of freezing on the strength of remolded clays from the perspective of fractal
dimension. The following conclusions have been drawn:

(1) Pore distribution shows self-similarity, indicating fractal characteristics. Higher fractal
dimensions in pore size distribution suggest more complex pore structures. Pore
fluids are categorized based on the T, cutoff value: fluids with T, < 2.31 ms are
considered bound, while those with T, > 2.31 ms are considered movable. Fractal
characteristics are more pronounced in movable fluids compared to bound fluids.

(2) Both pre- and post-freeze—thaw pore distributions follow a bimodal pattern, with the
main peak representing smaller pores and the secondary peak larger pores. After
freezing, there is a trend towards increasing pore size, which becomes more pronounced
as temperatures decrease. This indicates that as pore water expands during freezing,
some smaller soil pores connect with adjacent pores to form larger pores or fissures.

(3) Variations in sand content affect pore distribution. As sand content increases, the
number of smaller pores decreases, and the largest pores in the soil structure tend to
expand. This trend occurs because irregular sands form more branched and complex
large void structures, altering the local soil structure.

(4) Variations in sand content and freezing temperature both affect the unconfined com-
pressive strength of frozen sand—clay. A higher sand content leads to a lower uncon-
fined compressive strength of the frozen soil. Conversely, lower freezing temperatures
result in higher unconfined compressive strength.

(5) As the freezing temperature decreases, the skeletal structure becomes more loosely
arranged, leading to an increase in fractal dimension. This indicates that lower
temperatures exacerbate the damaging effects of freezing on soil structure.

(6) The fractal dimensions of bound and free fluids show significant correlations with
sand content both before and after freeze-thaw cycles, with these correlations be-
ing more pronounced before freezing. A higher sand content leads to larger, more
irregularly and unevenly distributed pores, thereby increasing the fractal dimension.
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(7) A larger fractal dimension signifies more complex pores and a looser skeletal structure
when the freezing temperature changes. This indicates a higher degree of freezing
and results in greater unconfined compressive strength.

(8) When sand content varies, a larger fractal dimension indicates an increase in large
voids and a more complex pore structure, making it harder for water to freeze. This
results in a lower degree of freezing and reduced unconfined compressive strength.

This paper investigates the strength and fractal characteristics of artificial frozen—
thawed sandy soft soil, providing a reliable basis for predicting structural damage under
freezing method construction conditions. It also aids in exploring the uneven settlement
laws for underground lines in the Yangtze River Delta region. However, there are limita-
tions. Firstly, this study was conducted in a closed system without external water influence.
In actual engineering environments, soil typically exists in an open system, which may
cause discrepancies between the experimental results and real-world conditions. Sec-
ondly, the study only conducted strength tests, making it difficult to fully understand the
deformation and settlement mechanisms of artificially frozen and thawed sandy soft soil.

In future research, further studies should be conducted in an open system to better
align with actual engineering conditions. Additionally, measurements of frozen—-thawed
soil deformation and other physical parameters should be included to better investigate
the impact of freeze—thaw soil structural damage on the uneven settlement of metro lines.
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Abstract: Soil arching is significantly influenced by relative density, while its mechanisms have barely
been analyzed. A series of DEM numerical simulations of the classical trapdoor test were carried
out to investigate the multi-scale mechanisms of arching development and degradation in granular
materials with different relative density. For analysis, the granular assembly was divided into three
zones according to the particle vertical displacement normalized by the trapdoor displacement J. The
results show that before the maximum arching state (corresponding to the minimum arching ratio),
contact forces between particles in a specific zone (where the vertical displacement of particles is
larger than 0.16 but less than 0.96) increase rapidly and robust arched force chains with large particle
contact forces are generated. The variation in contact forces and force chains becomes more obvious
as the sample porosity decreases. As a result, soil arching generated in a denser particle assembly is
stronger, and the minimum value of the arching ratio is increased with the sample porosity. After
the maximum arching state, the force chains in this zone are degenerated gradually, leading to a
decrease in particle contact forces in microscale and an increase in the arching ratio in macroscale.
The recovery of the arching ratio after the minimum value is also more significant in simulations
with a larger relative density, as the degeneration of contact force chains is more obvious in denser
samples. These results indicate the importance of contact force chain stabilities in specific zones for
improving soil arching in engineering practice.

Keywords: soil arching; discrete element modeling; persistent homology; multi-scale analysis;
relative density

1. Introduction

Soil arching in geotechnical engineering, investigated by Terzaghi [1], has attracted
increasing attention in recent years as it is a general phenomenon in sandy soil and other
granular materials. Soil arching is developed when a soil mass yields. The shear resistance
developed at the interface between the yielded portion and the adjoining stationary portion
will result in stress transformation and redistribution. The degree of soil arching can be
assessed through the arching ratio (p),defined as the ratio of the stress within a certain
area to the overburden stress at the same location [2]. The variation in the arching ratio
with the increase in relative displacement of soil mass can be described by the ground
reaction curve (GRC), as presented in Figure 1 [3]. GRC is very important in describing
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soil arching because it can clearly illustrate the four stages of soil arching: initial arching,
maximum arching, load recovery, and the ultimate state. The applicability of the GRC to
describe the load—displacement relationship in a trapdoor test has been investigated by
several authors [4-6].

A Arching Arching Ultimate
development degeneration state
1.0 | | |
[ [ |
=]
=
<
-
on
=
T'E Maximum
< arching
| | |
Initial | Load [Ultimate !
arching recovery state
0.0 >

Relative displacement

Figure 1. General ground reaction curve (GRC).

Recently, to further analyze the mechanisms of soil arching evolution as shown in GRC,
many researchers have also conducted single trapdoor tests [7,8] and multiple trapdoor
tests [9,10]. According to these studies, soil arching evolution is related to the progressive
development of slip surfaces induced by relative displacement of soil mass. Triangular
slip surfaces are observed at the maximum arching stage, while vertical slip surfaces
are generally observed at the ultimate state. The test results also show that soil arching
evolution is significantly influenced by the relative density (RD), which is defined as:

RD = (max — 1)/ (max — "min), (1)

where 1max, min, 1 Tepresent the maximum porosity, the minimum porosity and the poros-
ity of the granular materials, respectively. In the trapdoor tests with different sample
densities, the arching ratio for the test at a lower relative density is higher than that for the
test at higher relative density, indicating that soil arching is less mobilized in the backfill
at a lower relative density [10]. PIV results of the shear strain field in trapdoor tests show
that triangular slip surfaces also cannot be formed when the relative density of soil mass
is low [11]. On the other hand, DEM simulation results of the trapdoor test also indicate
that the stick—slip behavior of the arching ratio is more obvious for the case with a higher
density at a given fill height [12,13], and the failure mechanisms of dense sand and medium
dense sand in the trapdoor simulations are different [14]. However, previous studies have
not explicitly explained why soil arching shows different development and degradation
processes with different soil relative densities. Since soil arching is widely encountered in
tunnels, pile-supported embankments, retaining structures, etc., and the relative densities
of granular soil in engineering are different from each other, understanding the evolution
mechanisms of soil arching in granular materials with different densities is critical for
geotechnical engineering practices. Actually, the evolution of soil arching is a macroscopic
reflection of the mechanical properties of soil particles in microscale. At present, the load
transfer mechanisms [15] and deformation patterns [16,17] of soil arching in macroscale
have been well examined. In microscale, the particle—particle interaction during the evo-
lution of soil arching [18,19] has been considered extensively, and some effort has also
been made to describe and analyze the particle behaviors in the fill with different particle
sizes [20] and particle shapes [21,22], but how the particle behaviors in microscale influence
the variation in the arching ratio in macroscale is still largely unknown.

In order to bridge the gap between microscale particle behaviors and macroscale
arching effect, mesoscale behaviors related to the force network in soil arching should be
quantitatively analyzed, because the force chains always play a key part in load transfer [23].
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Recently, significant progress has been made toward developing a better understanding
of force networks using a variety of tools [24-27]. In this paper, we focus on the topolog-
ical analysis method—persistent homology (PH) [28,29]—for the analysis of mesoscale
structures in 2D granular material. Persistent homology is a fractal method that performs
multi-scale analysis on fractional complex networks and identifies their topological struc-
tures such as clusters, holes and cavities. Such an approach has been used to discuss
the mesoscale structure of force networks in granular systems that were compressed [30],
vibrated [31,32], sheared [33] and used for the analysis of the yielding of a granular system
during pullout of a buried intruder [34]. Therefore, it allows for formulation of simple
but informative measures describing the force networks, and for comparison of different
networks during the evolution of soil arching.

According to the literature review presented above, a series of 2D DEM simulations
of the trapdoor test were conducted to investigate the soil arching development and
degradation in granular materials with different porosity. Persistent homology (PH) was
adopted in this study to quantitatively analyze the features of force networks at different
arching stages that related, in a broad sense, to so-called force chains. The main objects
of this paper are: (i) Identifying the different development and degeneration processes
of soil arching in granular materials with different relative densities; (ii) Identifying the
corresponding particle behaviors in the different processes; (iii) Specifying how the particle
behaviors in microscale influence the variation in arching ratio in macroscale.

2. Materials and Methods

PFC2D 5.0 is adopted in this study to simulate the trapdoor test procedure and analyze
the multi-scale mechanisms of soil arching. Figure 2 presents the DEM model of the 2D
trapdoor test. In this model, the trapdoor is simulated by a rigid wall at the bottom with
width B = 0.6 m. The height of the granular sample is denoted as H. The distance between
the trapdoor and the two side walls is equal to B. This boundary distance is comparable to
that in the literature [12,20,21,35,36] (range from 0.5B to 2B). A wider boundary distance
would provide more accurate results. However, it would also increase the simulation time
and have little effect on the behaviors of soil arching with different relative densities of
granular material.

Rigid walls

Trapdoor
| : : |
600mm B=600mm 600mm

Figure 2. Schematic representation of the DEM model.

The particle size of DEM sample is based on the purely two-dimensional trapdoor
test conducted by Xu et al. [37], in which Taylor-Schneebeli soil analogues with perfect
disk cross-sections were used to simulate soil. Circular disks with three different diameters
(3 mm, 4 mm and 5 mm) mixed at a mass ratio of 1:1:1 are randomly rained into the
rectangular region (1.8 m x H) with different initial frictional coefficients (yp = 0.1, 0.3,
0.5) layer-by-layer using the Grid-Method [38] to generate the simulation sample with
different porosity (n = 0.16, 0.18, 0.20). After all particles have been settled down, pipp
is reset as 0.5 and the assembly is cycled to equilibrium for later simulation. During the
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simulation of trapdoor test, the trapdoor is moved downward and the movement speed is
controlled at 1 x 10~* m/s so that the simulation process satisfies the quasi-static condition.
As listed in Table 1, six simulations with different sample porosity and buried depth ratio
(H/B) are planned to be conducted in this study. For example, “H1-n0.16” represents a

simulation with H/B =1 and n = 0.16.

Table 1. General configuration of DEM simulation.

Simulation Name H1-n0.16 H1-n0.18 H1-n0.20 H2-n0.16 H2-n0.18 H2-n0.20
H/B 1 1 1 2 2 2
n 0.16 0.18 0.20 0.16 0.18 0.20
Particle number 82,000 80,000 78,000 164,000 160,000 156,000

The Hertz-Mindlin contact model between particles is adopted in this study. The
micromechanical parameters of particles were determined and calibrated from numerical
biaxial tests and numerical trapdoor tests. In the numerical biaxial tests, particles were
randomly generated and then confined to different confining pressures (50 kPa, 100 kPa,
150 kPa) for biaxial compression test simulation. pyp-p is adjusted to different values during
the confining process so that the porosity of the particle assembly is controlled at 0.17 before
loading. These parameters are totally the same as the model test conducted by Xu et al. [37].
The comparison between the simulation results and test results is presented in Figure 3,
with the micromechanical properties listed in Table 2. In general, the numerical results are
in good agreement with the experimental results. The maximum deviation between the
numerical and test results of deviatoric stress and arching ratio is around 10%. A relatively
larger deviation is observed in the comparison of volume strain, but these comparisons
show that the micro-mechanical parameters adopted in this study can still capture the basic

variation trend of the volume strain during the shear process.

6=

0,=50kPa  ® test ——DEM
0,=100kPa = test ——DEM
0,=150kPa m test ——DEM

Volume strain (%)
N

-

0,=50kPa = test
0,=100kPa = test
0,=150kPa = test

—— DEM
—— DEM
——DEM

Arching ratio

] 0.0

0 L . . . ) )
0.00 0.03 0.06 0.09 0.12 0.15 0.00
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(a)

Figure 3. Comparison between the simulation results and test results [33]: (a) Deviatoric stress in biax-
ial compression test; (b) Volume strain in biaxial compression test; (c) Arching ratio in trapdoor test.

0.06 0.09
Axial strain
(b)

0.12

Table 2. Micro-mechanical parameters used in DEM analyses.

0.15 0

Normalized trapdoor displacement (%)

2

4

(©)

Parameters Values
Particle density, pp 2650 kg/m?>
Particle shear modulus, G 2.5 x 10" N/m?
Particle Poisson’s ratio, v 0.3
Friction coefficient between particles, jip-p 0.5
Friction coefficient between walls and particles, 0.0

Hp-w
Sample porosity, n

0.16,0.18, 0.20
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3. Results
3.1. Macroscale Results Analysis
3.1.1. GRCs with Different Sample Porosity

In order to gather insights into the multi-scale mechanisms of soil arching development
and degradation, as well as the impacts of different sample porosity (n = 0.16, 0.18 and 0.20)
through DEM simulations of this study, the macro phenomena of soil arching, including
variation in the arching ratio and the displacement field evolution during the simulations,
are firstly analyzed.

In all simulations, the trapdoor is moved downward until 6/B = 0.1 (corresponding to
a trapdoor displacement of 60 mm), as 0.1 is recommended as the normalized displacement
(6/B) corresponding to an ultimate arching ratio [6] according to the present trapdoor test
results. Figure 4a presents the GRCs of the simulations with H/B = 1. The arching ratio
o =P/Py (P is the pressure on the trapdoor and Py is the overburden stress on the trapdoor)
of H1-n0.16 and H1-n0.18 both decrease to the minimum value at around 6/B = 0.02,
and then increase to a steady ultimate value with the increase in normalized trapdoor
displacement. The minimum values of p in H1-n0.16 and H1-n0.18 are 0.55 and 0.62,
respectively, while the steady ultimate values of p in these two simulations are almost the
same (around 0.80). This indicates that the soil arching is initially gradually mobilized
by the trapdoor movement, but then degenerated as the trapdoor displacement increases
continuously. The minimum arching ratio increases with the increase in sample porosity,
meaning that the maximum soil arching is stronger in denser samples. However, the GRC
of H1-n0.20 is different. During the whole simulation, p continuously decreases to the
steady ultimate value that is identical with the ultimate values in the other two simulations.
As a result, no significant degradation process of soil arching can be observed in loose
samples. This phenomenon indicates the influence of relative density on soil arching. In
view of engineering, soil arching is highly correlated with the shear behaviors of soil. For
loose soil, no obvious strain softening stage can be observed in the stress—strain curve, and
therefore the degradation of soil arching is also insignificant in loose soil.
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Figure 4. GRCs in different simulations: (a) H/B=1; (b) H/B = 2.

Figure 4b presents the GRCs of the simulations with H/B = 2. The variation trends of
the GRCs in Figure 4b are similar to that in Figure 4a. /B corresponding to the minimum
arching ratio p in the scenario of H/B = 2 is almost identical with that when H/B = 1.
This phenomenon means that the relative displacement needed to fully motivate the
initial maximum soil arching in particle assemblies with different depths is identical. The
soil arching in the simulations with H/B = 2 is observed to be stronger than that in the
simulations with H/B =1, as the minimum arching ratio on the GRCs of H/B =1 is smaller
than that on the GRCs of H/B = 2. Therefore, the relative soil movement required to fully
motivate soil arching in the ultimate state when H/B = 2 is larger, so that the normalized
trapdoor displacement corresponding to the steady ultimate value of p in the scenario of
H/B =2 is quite larger than that in the simulations with H/B = 1.
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3.1.2. Displacement Field and the Arching Zones

The soil arching development and degradation process as reflected by GRC can be
attributed to the gradual transformation of the movement patterns of soil mass within the
zone of arching [14]. Although many DEM numerical simulations [21,35,36,39], PIV analy-
ses [7,8,40] and X-ray CT scans [41] have been conducted to investigate the displacement
of soil mass in a trapdoor test, the “arching zone” that dominates soil arching has not been
clearly defined because the deformation patterns of soil mass at different soil arching stages
are complex.

Figures 5 and 6 show the particle vertical displacement fields at different stages of
the simulations with H/B =1 and 2, respectively. The particle displacement is normalized
by the trapdoor displacement to compare the displacement field at different stages. For
analysis, the DEM sample can be artificially divided into three zones according to the
vertical displacement: (a) “Zone-1” (marked as blue) with vertical displacement of particles
less than 0.19; (b) “Zone-I1” with vertical displacement of particles less than 0.9 but larger
than 0.16; (c) “Zone-II1" (marked as red) with vertical displacement of particles larger than
0.96. The area ratios of the different zones denoted in these figures are calculated by dividing
the particle area of a certain zone into the whole particle area of the sample. According to
Figure 5, the boundaries of zone-III are similar to the triangular slip surfaces observed in
the model tests [5,7,9]. The area of zone-IIl is influenced little by sample porosity, while
zone-I and zone-II are observed to be significantly influenced by sample porosity. The
area of zone-II expands with the increase in sample porosity, leading to the reduction
in the area of zone-I. On the other hand, the area ratios of zone-I and zone-III are both
increased with the increase in trapdoor displacement, while the area of zone-II is decreased.
This phenomenon is more obvious when H/B = 2 (Figure 6). In the simulation results of
H2-n0.16, the area of zone-II decreases by around 19% when ¢ increases from 10 mm to 60
mm, while these values in H2-n0.18 and H2-n0.20 are 17% and 13%, respectively. Therefore,
significant shear localization is generated in zone-II as the trapdoor displacement increases.
According to these results, the shear localization induced by the gradual development of
particle motion in zone-II is supposed to have a significant influence on the evolution of
soil arching.
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Figure 5. Normalized vertical displacement field of granular assemblies with H/B = 1: (a) n = 0.16;
(b) n=0.18; (c) n = 0.20.
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Figure 6. Normalized vertical displacement field of granular assemblies with H/B = 2: (a) n = 0.16;
(b) n=0.18; (c) n = 0.20.

3.2. Microscale Results Analysis
3.2.1. Coordination Number

According to the displacement field analysis, the relative displacement of particle
assemblies will lead to a variation in sample porosity. However, precisely calculating the
porosity in a zone of a DEM sample is quite difficult. Alternatively, the coordination number
is another parameter for evaluating the variation in sample density and the evolution of
microstructure in granular materials. The coordination number represents the average
number of contacts per particle, and it is highly correlated to the volume strain of granular
material and more sensitive than porosity [42]. The coordination number in a zone can be
calculated by:

Z=2C/N, 2

where C and N are the total contact number, and the particle number in the zone, re-
spectively. Figure 7 shows the variation in Z in different zones during the trapdoor test
simulations. According to these figures, variation in Z in zone-II is most significant among
the three zones. It decreases with the trapdoor displacement during the whole process
of soil arching development and degradation, and finally reaches a constant value at the
ultimate state when the arching ratio is no longer varied as trapdoor displacement increases,
indicating that the porosity of particle assemblies in zone-II increases continuously during
the evolution of soil arching (including development and degradation). According to a
previous study on the evolution of the coordination number in simulated granular materi-
als, the reduction in the coordination number is generally induced by shear dilation [43].
Therefore, the decrease in Z in zone-1I may be largely attributed to the shear dilation of
particle assembly in this zone. As shear dilation is more significant in denser samples, the
reduction in Z in zone-II is reduced with sample porosity. Figure 8 shows the comparison
of Z in zone-II with different sample porosities. It is observed that although Z in zone-II is
initially different in the simulations with different sample porosities, they all decrease to a
consistent ultimate value at the end of the simulation. This ultimate constant value of Z
when H/B = 2 is a little larger than that in the simulations with H/B = 1 because the stress

113



Fractal Fract. 2024, 8, 247

level of the particle assembly is increased with buried depth so that a lower decrease in Z
is induced by shear dilatancy when H/B = 2.
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Variation in Z in both zone-I and zone-III is less significant than in zone-II. And,
different to zone-II during the whole simulation process, Z values in both these two zones
are decreased with the increase in sample porosity. For zone-I, the average coordination
number increases during the development process of soil arching, because the upper load
is transferred toward zone-I under the arching effect, leading to the compression of particle
assembly in zone-I. Therefore, as soil arching is degenerated by the continuous increase in
particle relative displacement, it is observed that Z decreases gradually under the lateral
unloading effect and finally reaches a constant value. Especially in the simulations of
H1-n0.20 and H2-n0.20, no obvious decrease in Z is observed in Figure 7e,f, because the
degradation of soil arching in these two simulations is slight. The variation trend of Z in
zone-11I is similar to that in zone-I. The maximum value of Z in zone-1II is observed to
be larger than the maximum Z in zone-I because the stress level of the particle assembly
in zone-1II (at the bottom of the model) is much larger, compared with the stress level in
zone-1 at the beginning of the simulation. However, at the end of the simulation, the stress
level in zone-III is decreased under the influence of soil arching so that the ultimate Z value
in zone-IlII is less than that in zone-I.

3.2.2. Particle Contact Force

Variation in the coordination number of granular assemblies will change the contact
state between particles. The particle contact force, f, in microscale can be resolved into
two components:

f=fox+fsy ©)

where f, and fs are the normal contact force and the tangential contact force between
particles, respectively. The average values of f, and fs in a certain zone are denoted as <fn>
and <fs>, respectively.

Figure 9 shows the variation in <f,> in different zones during the simulation. Since
the analysis of tangential contact forces evolution leads to similar results with normal
contact forces, it is not discussed here. As we can see in the figures, <f,> in zone-II is
supposed to be important in the development and degradation of soil arching. During the
initial arching stage, <f,,> increases rapidly because of the large particle relative movement
and interlocking in zone-II, leading to the sharp decrease in the <f,> in zone-III. Because
the arching ratio is correlated with the contact force acting on the trapdoor, a decrease in
the arching ratio is observed in this process, indicating the gradual development of soil
arching. As a result, the upper load is transferred toward two sides so that the particle
contact force in zone-I increases. Then, <f,> in zone-II decreases gradually with é because
of the continuous decrease in the coordination number as indicated in Figure 7. As a result,
<fn>in zone-l is also decreased. Meanwhile, a recovery of the arching ratio, representing
soil arching degradation, is observed, according to Figure 9. The variation in <f,> in
different zones tends to be more significant as the sample porosity decreases, which is
coincident with the fact that the development and degradation process of soil arching is
much more obvious in granular assemblies with lower porosity. It is also observed that
the decrease in <fn> in zone-II after the maximum value when H/B =1 is more significant
than that in the scenario of H/B = 2, and therefore, degradation of soil arching in H1-n0.16
and H1-n0.18 is more obvious than that in H2-n0.16 and H2-n0.18. On the other hand,
it is noted that the evolution of <f,>in H2-n0.20 shows a different tendency comparing
with other simulations. The <f,,> in the three zones all decrease gradually as § increases.
According to Figure 6¢, zone-II extends to the rigid boundaries in this simulation. The
different evolutionary tendency of <f,> may be attributed to the boundary effect.
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The mobilization of friction between two contact particles can be mathematically
evaluated by the friction mobilization index I, [44]:

Im = |fs|/(.ufn) (4)

where y is the friction coefficient between particles. When local failure occurred between
two particles, I, = 1 and particle sliding occurred at the contact. In this study, sliding is
believed to occur when Iy, is larger than 0.9999, and a slip ratio is defined as the number
of sliding points divided by the total contact numbers. Figure 10 presents the slip ratios
in different zones. According to the figures, the slip ratios of different zones in different
simulations all increase sharply during the same initial stage. Then, they decrease sub-
stantially and maintain nearly constant with increases in trapdoor displacement. In all
simulations, it is observed that the slip ratio in zone-II is obviously larger than that in the
other two zones, and the slip ratios in zone-I and zone-III are generally identical. Therefore,
the friction mobilization degree in zone-II is the highest among the three zones. The slip
ratio of zone-II increases rapidly during soil arching development, indicating that the
friction between particles in zone-II is fully mobilized in this process. Comparing with
Figure 9, it is interesting to find that the slip ratio in zone-II reaches the maximum value at
a similar trapdoor displacement, corresponding to the maximum value of <f,> and the
minimum arching ratio value. Then, as soil arching is degenerated gradually, the slip ratio
in zone-II also decreases and reaches a constant value at the end of the simulation. As
presented in Figure 11, the maximum sliding ratios in zone-II decreased with the initial
porosity. However, they tend to the same residual value at the end of the simulation. The
decreases in the sliding ratio in zone-II may be attributed to the continuous decreases in
the coordination number. The sliding contact fades away as the porosity increases, leading
to particle rearrangement and a decrease in the sliding ratio. On the other hand, it can also
be observed that the sliding ratios in zone-I and zone-III also initially increase because of
the particle dislocation induced by trapdoor movement, but then they decrease rapidly to
a low level (less than 30% of the sliding ratio in zone-II) with soil arching evolution and
load redistribution.
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Figure 11. Comparison of sliding ratio in zone-II of different simulations: (a) H/B =1; (b) H/B = 2.

3.3. Mesoscale Results Analysis

Variations in particle contact force and the coordination number mean that the
mesoscale behaviors related to the force network, spanning roughly 10-15 particles, are
also influenced by soil arching. In order to analyze the mesoscale cluster structure of force
networks’ evolution during soil arching development and degradation, the topological
analysis method—persistent homology (PH) [23,24]—is adopted in this study. PH could
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be thought of as a tool for describing the weighted force networks between particles in
the form of diagrams, so called persistent diagrams (PDs), which are obtained by filtering,
or thresholding, the strength of the interactions between the particles. For example, con-
sidering a normal contact force network between particles in Figure 12, the numbers in
Figure 12a represent the magnitude of particle contact force, and the simplest persistence
diagrams in Figure 12b, called PDpy, encode how distinct connected components in the
force network appear and then merge as the threshold 6 (denoted the normal contact force
value here) decreases. Each point (called a generator) in this diagram has two coordinates:
‘birth” and ‘death’. A birth in PDS occurs when an edge not connected to any existing edge
is added to the contact force network, or a set of all contacts, and a death occurs when a
newly added edge connects two existing force networks. Each point (b, d) (where b denotes
the birth coordinate and d denotes the death coordinate) in PDfj describes a feature of
the network, and the lifespan of a point (defined as b—d) can be interpreted as the notable
degree of the feature. Therefore, PDfj can essentially trace how ‘force chains” appear as the
filtration level is decreased, or disappear as two structures merge. The reader is referred
to [24] for a more in-depth presentation of this method.
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Figure 12. Toy example illustrating contact force network and persistence diagrams: (a) Normal
contact force network; (b) Persistence diagrams PDJ.

In order to analyze the mesoscale cluster structure of force networks” evolution during
soil arching development, the persistence diagrams of the normalized force networks (all
contact forces are normalized by the corresponding <f,> in different zones) are computed.
according to the DEM simulation results. Figures 13 and 14 show the corresponding
diagrams of the H1-n0.16 and H2-0.16 simulations, respectively. In the analysis of these
results, it is important to remember that the points (generators) that are close to the diagonal
represent features that persist over only a small range of thresholds and, therefore, are
not significant for the purpose of identifying robust features. According to Figure 4, soil
arching develops gradually when ¢ increases from 0 mm to around 10 mm. During this
process, a lot of generators with large ‘birth’ coordinates can be observed away from the
diagonal of PDpj, meaning that robust contact force chains with large normal contact
force are generated. And these arched force chains are mostly within zone-II. Then, as soil
arching is degenerated gradually, the robust cluster structures disappear and the generators
in zone-II gradually shrink to the diagonal of PDfy. This phenomenon can be observed in
both Figures 13 and 14.

On the other hand, information about the variations in the contact structure within
zone-I and zone-III is not readily available from the point clouds in Figures 13 and 14.
Hence, the average lifespans of all points within different zones are then calculated and
presented in Figure 15. Generally, long lifespan represents robust force chains in the contact
force network. As shown in the figures, in the simulations with n = 0.16 (H1-n0.16 and H2-
n0.16), the average lifespan of generators in zone-II increases with trapdoor displacement
during the initial arching stage (§ < 10 mm), meaning that robust force chains with large
normal contact force are formed in this zone. Under the influence of this arched force chain,
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the particle contact force acting on the trapdoor is decreased, leading to the decrease in the
arching ratio in this process. Then, the average lifespan of generators in zone-II decreases
gradually with trapdoor displacement (6 > 10 mm), meaning that the arched structure
of the force chain is weakened and destroyed. As a result, load recovery is observed on
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Figure 13. PDf of the contact force networks in different zones (H1-n0.16): (a) § = 0 mm (K condi-
tion); (b) 6 =5 mm; (c) § = 10 mm (maximum arching); (d) § = 20 mm; (e) 6 = 40 mm; (f) § = 60 mm.
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Figure 14. PDf of the contact force networks in different zones (H2-n0.16): (a) § = 0 mm (K condi-
tion); (b) 6 =5 mm; (c) § = 10 mm (maximum arching); (d) § = 20 mm; (e) § = 40 mm; (f) § = 60 mm.

Similar trends can also be observed in the simulations of n = 0.18 and n = 0.20, but
the variation in the average lifespan of the generators tends to be less significant with the
increase in sample porosity, which corresponds to the variation in the arching ratio and
<fn> in different simulations. Figure 16 presents the comparison of the average lifespan
of generators in zone-II of different simulations. The maximum average lifespan value is
decreased with the initial porosity, but, similar to the average coordination number and
the slip ratio, the residual values of the average lifespan at the end of the simulations
with different initial porosities are identical to each other. According to these results, the
variation in average lifespan may be attributed to the particle motion with increasing
trapdoor displacement. In dense samples, during the initial arching stage, particle contact
in zone-1I decreases because of sliding and the coordination number decreases sharply,
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too. With this effect, particle contact force is increased, and arched force chains are formed
gradually in this stage so that the average lifespan is increased. Under the shield of these
arched force chains, the arching ratio is decreased. Then, as relative displacement between
particles in zone-II continues to increase, particles separate with each other gradually,
the coordination number continuous decreases and <f,> starts to decrease. As a result,
the arched force chains are degenerated, leading to the soil arching degradation. In loose
samples, a smaller decrease in the coordination number means that contact particles in zone-
II would not separate further. Force chains are gradually formed in zone-1I, as indicated by
the average lifespan, and no obvious load recovery stage is observed in this case.
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Figure 15. Variation in average lifespan of PDpj in different zones during the simulations:
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Figure 16. Comparison of average lifespan in zone-II of different simulations: (a) H/B = 1;

(b) H/B =2.

On the contrary, the average lifespan of generators in zone-I and zone-III show adverse
variation trends. This phenomenon indicates that the force chains in zone-I and zone-III
are degenerated when the force chains in zone-II are reinforced during the development of
soil arching. Then, the force chains in zone-I and zone-III develop gradually as the force
chains in zone-II are degenerated by the decreasing particle contact force when 6 > 10 mm.
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4. Discussion

In this work, multi-scale analysis on the mechanisms of soil arching development and
degradation in granular materials with different relative density was conducted through a
series of DEM simulations of the trapdoor test. Analysis of results indicates that the evolu-
tion of force chains and particle contact forces in zone-II is important in the development

and degradation of soil arching. The main results are summarized in Table 3.

Table 3. Summary of the main analysis results.

Arching State
Factors - - Influence of Relative Density
Development Degradation Ultimate State
The minimum value is increased
Arching ratio Sharply decreased Slowly increased Constant value with density, while the ultimate
value is little influenced by density
Coordination The variation is more significant in
) Sharply decreased Slowly decreased Constant value denser samples, while the ultimate
number in zone-II .. . .
value is little influenced by density
Average particle The variation is more significant in
contact force in Sharply increased Slowly decreased Constant value denser samples, while the ultimate
zone-I1 value is little influenced by density
The maximum value is increased
Slip ratio in zone-II Sharply increased Slowly decreased Constant value with density, while the ultimate
value is little influenced by density
Average lifespan of The maximum value is increased
force network in Sharply increased Slowly decreased Constant value with density, while the ultimate

zone-II

value is little influenced by density

Careful analysis of the mesoscale network structure through PH in this study provides
new insight into the development and degeneration of soil arching. According to the analy-
sis results in zone-II, before the maximum arching state (corresponding to the minimum
arching ratio), robust arched force chains with large normal contact forces are generated
because of the interlocking between particles. As a result, contact forces between particles
in zone-II increase rapidly. After the maximum arching state, the arched force chains are
degenerated gradually with the continuous increase in trapdoor displacement, leading
to the continuous decrease in particle contact forces and an increase in the arching ratio.
The arched force chains are more easily generated in denser samples, leading to a stronger
maximum arching in the cases with higher density. However, as the slip ratio, the average
particle contact force and the average lifespan of the force network all reach the same value
at the ultimate state of soil arching, regardless of relative density, the ultimate arching ratio
is also little influenced by porosity.

In practical engineering, such as pile embankments, soil arching will be degenerated
gradually with the continuous increase in relative settlement between the pile and the
sub-soil, leading to the decrease in the pile—soil stress ratio and pile efficacy, which is not
favorable to the whole structure. A higher compaction degree can improve the perfor-
mance of the embankment, but it should also be noticed that soil arching degeneration
is more significant in denser fills. According to this study, soil arching development and
degradation can be attributed to the evolution of arched force chains in specific zones.
Therefore, improvement of the stability of force chains in this specific zone, such as adding
geotextiles, is supposed to be considered in the measures to improve the persistence of soil
arching and performance of pile-supported embankments. On the other hand, the method
and results presented in this study can also provide guidance for studies of soil arching
under complex conditions, such as surcharge loading, suffusion influence, etc.

However, it is noted that the DEM simulations in this paper are conducted under 2D
conditions with circle particles, so it cannot capture the influence of particle shape and
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particle size on the multi-scale mechanisms of soil arching development and degradation
in real 3D conditions, which also needs further analysis.

5. Conclusions

In this study, two-dimensional DEM numerical analysis was conducted to investigate
the multi-scale mechanisms of soil arching development and degradation in granular
materials with different relative density. Six DEM simulations, considering two different
buried depth ratios of granular assemblies with three different porosities of particle as-
sembly, were conducted. For analysis, the particle sample is artificially divided into three
zones according to the normalized vertical displacement field: (a) “Zone-1" with vertical
displacement of particles less than 0.16; (b) “Zone-II” with vertical displacement of particles
less than 0.96 but larger than 0.19; (c) “Zone-III” with vertical displacement of particles
larger than 0.96. The evolution of the mesoscale structure of contact force networks during
the evolution of soil arching is quantitatively analyzed through persistence homology. The
influence of force network evolution on the macroscopic and mesoscopic phenomena of
soil arching are carefully evaluated. The major conclusions are summarized according to
the analysis results:

1. The porosity of particle assembly has a significant influence on the development and
degradation of soil arching. According to the ground reaction curves (GRC), soil
arching generated in a denser particle assembly is stronger as the minimum value of
the arching ratio is increased with the initial porosity. However, the arching ratios at
the end of simulations with different initial porosities are identical. The recovery of
the arching ratio after the minimum value is more significant in the simulation with a
denser particle assembly, which indicates a more obvious degeneration of soil arching.
In macroscope, the development and degradation of soil arching can be attributed to
the shear localization generated in zone-II at different arching stages according to the
normalized vertical displacement fields.

2. According to the microscale analysis accounting for the coordination number and the
slip ratio of contact, particle friction is mobilized and dilatancy is generated during
the initial arching stage, leading to the rapid development of soil arching in a granular
assembly. The granular fills in zone-II undergo the most significant shearing during
the simulations. As a result, soil arching is highly correlated to the particle contact
forces” evolution in zone-II. In all cases, the average normal contact forces in zone-II
increase during the development of soil arching. Then, they decrease gradually after
the maximum arching stage, accompanied with soil arching degradation.

3. Quantitative network analysis results indicate that the force chains show different
evolution in simulations with different sample densities. The force chains in zone-II
influence both the particle behaviors in microscale and the arching ratio in macroscale.
Before the maximum arching state (corresponding to the minimum arching ratio),
robust force chains with large normal contact forces are generated in zone-II. Stronger
force chains are generated in denser samples at the maximum arching state. After
the maximum arching state, the arched force chains are degenerated gradually with
relative displacement between particles, leading to the decrease in normal particle
contact forces in microscope and the increase in the arching ratio in macroscope. In
loose samples, force chains are gradually generated with relative soil displacement
until the ultimate state of soil arching, so no obvious degradation of soil arching
is observed.

4. The slip ratio, the average particle contact force and the average lifespan of the force
network in zone-II undergo similar evolution processes during the development and
degradation of soil arching, but all reach the same value at the ultimate state of soil
arching regardless of relative density. As a result, the arching ratio at the limit state of
soil arching is also independent with the relative density.
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Abstract: This study delves into the convergence of operators and the viscoelastic properties of fractal
ladder and tree structures. It proves the convergence of fractal stiffness operators through operator
algebra, revealing a fundamental connection between operator sequence limits and fractal operator
algebraic equations. Our findings demonstrate that, as the hierarchical levels of these structures
increase, their viscoelastic responses increasingly align with the fractional viscoelastic behavior
observed in infinite-level fractal structures. We explore the similarity in creep and relaxation behaviors
between fractal ladders and trees, emphasizing the emergence of ultra-long characteristic times in
steady-state creep and pronounced tailing effects in relaxation curves. This research provides novel
insights into the design of fractional-order viscoelastic structures, presenting significant implications
for materials science and mechanical engineering.
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1. Introduction

This paper delves into the viscoelastic mechanics of fractal structures, prompted
by the growing use of polymers [1-3], rubber [4], hydrogels [5], biological tissues [6],
and composite materials [7]. These advancements have spurred deeper analysis of these
materials’ mechanical properties and the evolution of viscoelastic mechanical theories.

Kelvin’s mid-19th-century discovery of zinc’s viscoelastic properties marked the be-
ginning of viscoelastic theory [8]. Maxwell’s subsequent introduction of viscosity for all
bodies [9], along with the efforts of Meyer [10] and Boltzmann [11], laid the foundations of
linear viscoelasticity. The early 20th century saw further advancements by Volterra [12],
who developed a mathematical theory for anisotropic solids, propelling viscoelastic me-
chanics forward.

Viscoelastic materials are commonly divided into two broad categories: linear and
nonlinear. Linear viscoelastic materials exhibit a combination of elastic and ideal viscous
behaviors, acting as an intermediate state between the elastic Hookean solid and the ideal
viscous Newtonian fluid [13]. In these materials, the relationship between stress and
strain changes over time, yet the stress—strain relationship remains linear at any given
moment. In contrast, the mechanical behavior of nonlinear viscoelastic materials is much
more complex, encompassing nonlinear elasticity, non-Newtonian fluid behavior, or a
combination of both. Since the mid-20th century, there has been rapid progress in the
development of constitutive theories and rheology for nonlinear viscoelastic materials [14].

The complexity of nonlinear viscoelastic behavior led researchers to propose self-similar
viscoelastic models, comprising infinite elements [15], such as Schiessel et al. [16,17] and
Heymans et al. [18,19]. In analyzing these models, two main approaches are predominantly
used: one involves studying the complex modulus of the model within the complex do-
main [18,19], and the other establishes stress—strain relationships at each node, solving them
with the help of matrix operations [20]. Both methods, while computationally intensive, often
do not directly convey structural information. Recently, scholars introduced the theories of
operational calculus and operator algebra, achieving succinct and direct results [21].
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Nevertheless, prior studies [13,21-26] have proceeded under the unverified assump-
tion that the physical fractal entities under investigation exhibit self-similarity throughout
their structure, thus guiding the computation of the overall response through the formula-
tion of stiffness operator algebraic equations. Such dependence on fractal-based reasoning,
however, lacks theoretical validation of its accuracy. To enhance and refine this methodol-
ogy, the present paper leverages the operational calculus and operator algebra theories to
rigorously demonstrate its suitability.

Moreover, the nascent stage of operator algebra theory previously left researchers
unable to fully interpret operator expression outcomes, compelling them to rely on approx-
imation techniques, such as asymptotic expansions in Ref. [23], for their research. We have
advanced the theories of operational calculus and operator algebra, integrating them with
integral transforms to devise the operator kernel function (OKF) method [27]. This ap-
proach has allowed us to revisit fractional viscoelastic models, develop algebraic equations
for stiffness and compliance operators for self-similar fractal structures, and finally derive
functional expressions.

By comparing the OKF with Boltzmann'’s superposition principle, we have established
a link between the kernel function and quasi-static behavior, i.e., the relaxation function
and the creep function, thus offering new insights into the viscoelastic behavior of fractal
structures and highlighting the significant potential of fractal operators in simplifying the
computational complexity associated with analyzing viscoelastic materials.

The organization of this paper is as follows: Section 2 utilizes operator algebra to
prove the convergence of operators in fractal trees and ladders. Section 3 delineates
the transformational relationships between fractal operators and the creep function or the
relaxation function, highlighting the differences that set operator theory apart from classical
viscoelasticity. Section 4 explores the discretization of continuous media, illustrating
the standard approach to resolving fractal stiffness operators. Through this structured
exposition, we bridge the gap between the fractal mechanics and conventional viscoelastic
principles, offering a holistic framework that enriches our grasp and application of fractal
operator theory within materials science.

2. Convergence Analysis of Viscoelastic Fractal Operators
2.1. Stiffness Operator Method and Compliance Operator Method

Linear viscoelastic materials, representing synergy between elasticity and perfect
viscosity, serve as a transitional phase bridging the gap between the elastic behavior of
Hookean solids and the ideal viscosity of Newtonian fluids, with several classic viscoelastic
models illustrated in Figure 1.

(@) (b)

Maxwell Kelvin-Voigt © General Kelvin-Voigt

U n
n FE E,
—EH NV E E,

Figure 1. Some typical viscoelastic models. (a) The Maxwell model. (b) The Kelvin—Voigt model.
(c) The General Kelvin—Voigt (GKV) model.

Establishing a structure’s total constitutive relationship demands the amalgamation of
stress-based equilibrium equations, strain-based compatibility equations, and the distinct
constitutive relations for each element. The methodology for solving this comprehensive
set of differential equations to ascertain the constitutive equation in a unidimensional
framework is elaborated upon in Appendix A.

This method is viable for viscoelastic models constituted by a finite ensemble of
elements. Nonetheless, with an increase in the number of elements, there is a proportional
rise in the number of unknowns and equations, consequently amplifying computational
complexity. In scenarios involving models with an infinite array of elements, the infinite
count of unknowns renders this computational strategy untenable.
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Hu et al. [13] pioneered the application of operator algebra to non-Newtonian fluid
dynamics, utilizing force—electricity analogies to elucidate the stress—strain relationships
inherent in viscoelastic materials. This innovative methodology has since been adopted by
various researchers to explore a wide range of topics, including the viscoelastic properties
of ligaments [22], the spiking and propagation of neural electrical signals [23], the complex
dynamics of blood flow within the infinite elastic cavity model [25], and the intricate
mechanical behaviors of bone [26]. Herein, we offer a concise review of this method.

Leveraging the concept of the force—electricity analogy, the integration of two mechani-
cal elements in series results in a combined stiffness analogous to the parallel configuration
of electrical resistors within a circuit. Similarly, their cumulative compliance corresponds
to the series arrangement of resistors. Conversely, the parallel coupling of mechanical
elements yields a composite stiffness akin to resistors in series, whereas their collective com-
pliance mirrors the parallel arrangement of resistors. This correlation is visually depicted
and clarified in Figure 2.

(a) Mechanical Stiffness ~ Electrical Resistors (b) Mechanical Stiffness Electrical Resistors
E E R & R R
VMWW = o o O—m_o = o N —Emm-o
it,1 l:L+L E=E+E R=R +R
E E E R R R b b

Figure 2. Schematic of the force—-electricity analogy. (a) The stiffness interaction among mechanically
series-connected elements is similar to the behavior of electrical resistors in a parallel configuration;
(b) conversely, the stiffness of mechanically parallel-connected elements corresponds to electrical
resistors arranged in series.

In the subsequent sections, we will adopt an operator-based framework where stiffness
is expressed through operators, termed the stiffness operator method (SOM), and compli-
ance is articulated in a similar manner, denoted as the compliance operator method (COM).
This paper primarily focuses on thoroughly exploring and elucidating the stiffness operator
methodology.

This study explores the viscoelastic behavior of models comprising energy-storing
components, symbolized by springs, and energy-dissipating components illustrated by
dashpots, as demonstrated in Figure 3. The stiffness operators for the springs T and for
the dashpots T, are represented as

T, =E, T, = np. 1)

where p = % denotes the Heaviside operator, E denotes the elastic module of the spring,
and 7 denotes the coefficient of viscosity.

(@) Elastic Element (b) Dashpot Element
E oW\ o—=}—o 7
L= T, =np

Figure 3. The stiffness operators of (a) elastic element and (b) dashpot element.

Utilizing this method enables the swift calculation of the stiffness operator for the
Maxwell model as follows:

E
T Maxwen = E _:]:;p 2)
The stiffness operator for the Kelvin-Voigt model is defined as
Txkv =E+1p. ®)
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Similarly, the stiffness operator for the GKV model is determined as

T _ (E1+1np)E2
GKV

== 17/ 4
Ei +Ey+1p @

Appendix A provides a guide to employing stiffness operators for determining the
functional relationship between stress and strain in these models.

2.2. Algebraic Equations of Stiffness Operators for Fractal Cells

This section revisits the application of the SOM to fractal cells, as depicted in Figure 4.
The figure demonstrate that a fractal tree or ladder, viewed in its entirety, matches a single
fractal cell (as depicted on the left-hand side in Figure 4a,b); similarly, these structures can
also be equated to a fractal element (as shown on the right-hand side in Figure 4a,b). Utiliz-
ing this equivalence, algebraic equations for stiffness operators are formulated. Solving
these equations yields precise operator expressions for both fractal ladders and trees, thus
providing a structured approach for analyzing their mechanical properties.

@) (b) [:ﬁ
O—E—J-\/\/\I‘*?:O—-—O = oo

Figure 4. Schematic diagram of fractal structure cells. (a) Fractal ladder structure. (b) Fractal
tree structure.

For the fractal ladder structure, see Figure 4a; based on the equivalence of compliance,
we have

1 1 1

T E T ®

In Equation (5), the left side represents the compliance operator of the fractal element,
while the right side corresponds to the compliance operator of the fractal cell. Equation (5)
forms a quadratic algebraic equation of operators. Solving Equation (5) and considering
the condition for positive stiffness [24,28-30], we obtain the operator for the fractal ladder:

(np)* 1
T=\|-"“"*~+Enp— -
4 TEIP— (6)
For the fractal tree structure, see Figure 4b; based on the equivalence of stiffness,

we have

ET npT

T=_—= ,
TH+E T+np

@)

In Equation (7), the left side represents the stiffness operator of the fractal element,
while the right side corresponds to the stiffness operator of the fractal cell. Equation (7)
is a quadratic algebraic equation of operators. Solving Equation (7) and considering the
condition for positive stiffness [24,30] yields the operator for the fractal tree:

T = \/Eyp. )

Remark 1. From a mathematical perspective, both Equations (5) and (7) are expected to have two
radical results [28-30]. Indeed, earlier research by Yin et al. [24] has shown that an nth-order
operator algebra equation should have at least n solutions in more general circumstances. However,
for the specific issue considered in this paper, the relationship between stress and strain is represented
as o(t) = Te(t), indicating that an increase in positive strain applied to the structure should cause
increased stress in the same direction. Given that the action of operators is realized through the
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convolution of the operator kernel function with the input, it necessitates that the structure’s kernel
function be positive, which also implies that the stiffness operator must be positive. Therefore, only
the positive roots of Equations (6) and (8) have been retained.

This section delves deeper into the operator expressions for fractal ladders and trees,
with a focus on Equations (6) and (8). We unravel how these structures respond to a given
stimulus, revealing a fundamental similarity in their behavior: both are characterized
by quadratic radical operators, underscoring their non-rational nature. Yet, a striking
divergence emerges in their complexity. The operator for the fractal tree is remarkably
straightforward, a reflection of its symmetrical topology. In contrast, the operator for the
fractal ladder exhibits greater complexity due to the disruption of this symmetry. This
contrast not only highlights the distinctive architectural influences on their mechanical
responses but also enriches our understanding of their intrinsic properties, offering a
nuanced perspective on the dynamics of fractal-based structures.

2.3. The Logical Foundation of the Equivalence Postulate

In the preceding analysis, an implicit assumption of equivalence was introduced
such that

fractal elements = fractal trees or ladder ~ fractal cells.

This perception, more intuitive than deductive, lays the groundwork for formulating
algebraic equations specific to fractal operators. Closer scrutiny of these equations unveils
an underlying presumption: the existence of stiffness operators for fractal ladders and trees.
Our approach progresses by first positing the existence of fractal operators, then using this
equivalence to derive the relevant algebraic equations, and finally solving these equations
to construct the fractal operators. This methodology combines intuitive reasoning with
analytical rigor to unravel the intricacies of fractal mechanics.

While this approach is standard for structures with a finite hierarchy, the premise
becomes less clear when dealing with fractal structures of infinite levels. Appendix B
explores the generalized Maxwell model, which is derived by arranging infinitely many
Maxwell models in parallel. This approach results in paradoxes, rendering the model
unsolvable. Hence, this indicates that methodologies effective for finite structures may not
extend straightforwardly to infinite ones, highlighting the need for a logical and robust
theoretical basis for their existence.

Our investigation primarily concentrates on two pivotal structures: fractal trees and
fractal ladders. The former embody symmetric fractal topology, whereas the latter illustrate
a fractal topology characterized by disrupted symmetry. This distinction not only informs
our understanding of fractal mechanics but also enriches our comprehension of the diversity
within fractal structures.

2.4. Fractal Ladder

The basic unit of the fractal ladder structure is the Maxwell element, which consists
of a spring and a dashpot connected as shown in Figure 5. Due to the entire topology
presenting a ladder-like configuration, when the number of structural levels approaches
infinity, a fractal topology is formed; hence, the term “fractal ladder” is used. The fractal
ladder is not a traditional geometric fractal exhibiting self-similarity but rather a self-similar
physical fractal composed of identical elements.

(@) (b) (©

n=1 n=2 n=0 Fractal Ladder

Figure 5. Schematic diagram of fractal ladder structures from level 1 and level 2 to infinite level.
(a—c) The first, the second and the infinite level of fractal ladder. (d) Fractal ladder cell.
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In Figure 5, according to operator algebra, the stiffness operator of adjacent nth level
structures and (n + 1)th level structures satisfies the following recursive relationship:

1 1 1
74—— = . 9
TV1+77P E Tn+1 ( )

Upon simplification, we can obtain

(Tw+1yp)E

. 10

Ty =
Similar to the fractal tree structure, we will now prove that the sequence of operators
constituting the fractal ladder structure converges to a limit.

Proof. The stiffness operators for the first- and second-level structures are, respectively,
represented as

nEp Enp(2E + py)
T, = , T, = . 11
YT p+E 27 B2+ 3Enp + 1%p? ()

Equation (11) can be derived to yield

Enp
T, — T, = > 0. 12
2N (E+qp) (B2 +3Enp +17p?) (42

We thus proved that Ty > Tq. Assuming T, > T,,_1, we next prove that T,, ;1 > T). Let
the function f(x) be

2
f(x):£i—;ZIQISE=E—x+77Ep+E. 13)
Differentiating Equation (13) with respect to x yields
f(x) = E—zz > 0. (14)
(E4+x+1np)

Therefore, the function is monotonically increasing, implying(x, — x1)[f (x2) — f(x1)] > 0.
Given that T,, > T,,_1, it follows that

f(Tn) > f(Tp-1). (15)
Combining Equations (10), (13) and (15), we arrive at
Tyi1> Ty (16)

Note that the fractal ladder, formed by connecting a spring on the outermost side
in series with other structures, inherently has an equivalent stiffness lower than that of a
single spring. This proposition’s validity is further supported by Equation (13):

EZ

x)=E—- ——= <L 17
O =E- 17)
Therefore, the sequence of stiffness operators for the fractal ladder structure is a
monotonically increasing and bounded sequence of operators. Consequently, this sequence

of operators must have a limit, and lim T,y = lim T, =T . O
n—o0 n—o0

Remark 2. Mikusitiski rigorously defined the concept of operator sequence convergence in Ref. [30]:
If there exists T # 0 such that the sequence of operators {T,/T} has a uniformly convergent
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sequence of kernel functions, then the sequence of operators {Ty } is said to converge. Furthermore,
it is denoted by 1i_rg1 T,=T li_r)n T,/ T. In fact, the above proof process can be viewed as setting
n—oo n—o0

T = I, where I represents the identity operator.

Taking the limit of both sides of Equation (9) yields the fractal operator algebraic
Equation (5). As mentioned previously, this is a quadratic algebraic equation for the fractal
operator, with a radical solution (see Equation (6)). Clearly, for the fractal ladder, the fractal
operator is of a non-rational type. Its non-rationality still stems from the infinity of the
fractal ladder’s structural levels.

It is verifiable that a finite-level self-similar ladder structure, once the number of
structural levels exceeds three, can be replaced by an infinite-level self-similar fractal ladder.
Therefore, the use of fractal operators enables not only the attainment of concise and direct
results but also ensures sufficient accuracy within the characteristic time.

2.5. Fractal Tree

Figure 6 illustrates the generative process of a fractal tree, depicting the evolution
from a finite-level structure to an infinite-level structure. According to the operator stiffness
method, the stiffness operator of the nth level structure is related to that of the (n + 1)th
level structure through the following recursive relation:

ET, n npTy
Tw+E Ty+yp

(a) (b) (©) ? (d)
T
mﬁzm N
mEMZEh

Figure 6. Schematic diagram of fractal tree structures from level 1 and level 2 to infinite level.

Ty = (18)

n=1 n=2 Fractal Tree

(a—c) The first, the second and the infinite level of fractal tree. (d) Fractal tree cell.

Given that the stiffness operator and the compliance operator are inversely related,
taking the reciprocal of both sides of Equation (18) yields the recursive relation for the
compliance operator:

1 (T, +E)(Ty + 11p)
Tyy1  ETw(Tu+np)+npTu(Ty+E)

(19)

Leveraging the principle of monotonic boundedness for operator sequences, we prove
the existence of a limit for the sequence of operators, specifically 1i£n T,=T.
n—o0

Proof. Firstly, we establish the boundedness of the operator sequence. During the loading
process, the applied stress (strain) induces an increasing strain (stress), ensuring that the
stiffness operator remains positive and, consequently, has a lower bound.

Utilizing mathematical induction, we will prove that the sequence of stiffness operators
is decreasing. For the first-level structure, we have

T = E +yp. (20)
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Substituting Equation (20) into Equation (18) yields

ET, npT1 ( E np )
T, = = (E . 21
2 T1+E+T1+17p (E+p) 2E—|—17p+E+277p @1

Subtracting Equation (20) from Equation (21), we obtain

E EZ E 2.2
1, — +up) (B + Eqp+7p?) _ o 22)

(2E+np)(E+2np)

We thus proved that T, < T;. Assuming T, < T,,_1, we next prove that T,, ;1 < T),. Let
the function f(x) be

Ex xnp
Cx+E x+yp’

(23)

Differentiating Equation (23) results in

oo E? np
f(x) = Ear T o > 0. (24)

Therefore, the function is monotonically increasing, implying (x2 — x1)[f(x2) — f(x1)] > 0.
Given that T,, < T,,_1, it follows that

f(Tn) < f(Ty—1). (25)
Combining Equations (18), (23) and (25), we arrive at
Ty <Th. (26)

By immediate application of mathematical induction, it is evident that the stiffness
operator decreases as the structural level n increases. Given that the stiffness operator is
monotonically decreasing and bounded below, it necessarily converges to a limit as follows:
lim Ty = lim T, =T. O
n—oo n—o00

Since the sequence of linear operators converges and has a unique limit, taking the
limit of both sides of Equation (18) simultaneously yields the fractal stiffness operator
Equation (7) mentioned earlier by Guo and Yin et al. [23]. As discussed, this is a quadratic
algebraic equation for the fractal operator, with a radical solution. As mentioned, the radical-
type fractal operator in Equation (8) is a non-rational operator.

At this point, we can make a fundamental judgment: for finite-level self-similar
structures, the operator is rational; for infinite-level self-similar fractal structures, the fractal
operator is non-rational. Clearly, the non-rational nature of the fractal operator arises
from the infiniteness of the structural levels. The properties of rational and non-rational
operators differ significantly. As outlined in Mikusinski’s work [30], kernel functions
for rational operators typically manifest as elementary functions. Our earlier research
confirms that kernel functions associated with non-rational operators are typically non-
elementary functions.

Figure 7 illustrates the creep response of structures from levels 1 to 3 compared to an
infinite-level structure. With the increase in structural levels, the multi-level structure’s
creep curves rapidly converge to the fractal tree within a characteristic time range, as indi-
cated by the red dashed line. The findings suggest that, as the hierarchy of a finite-level
structure extends beyond three levels, its mechanical behavior within the characteristic
time can be represented by an infinite-level structure. Additionally, the analytical process
for determining the behavior of an infinite-level structure proves to be simpler than for
a finite-level structure, thus enhancing the model’s practical applicability in viscoelastic
investigations. Moreover, the level-1 Voigt model entirely lacks the long-term relaxation
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effect. The greater the number of structural levels, the more pronounced the long-term
relaxation effect becomes. An infinite-level fractal structure exhibits the most pronounced
characteristics of ultra-long relaxation time. This discovery holds significant importance
for understanding the mechanical behavior of complex viscoelastic materials.

4 — : : : 4
3.5 - “35
— =3
3 | Fractal-Tree 13
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0H—— : : : 0
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Figure 7. Creep response functions to step stress for structures at various levels. T = #/E denotes
the characteristic time. The red dashed line represents the response at the characteristic time 7 = 1.

3. Viscoelastic Response Curves of Fractal Structures
3.1. Correspondence between Operator Kernel Functions and Relaxation and Creep Functions

This section establishes a direct and intrinsic link between fractal operators and
the functions governing relaxation and creep. This correlation renders fractal operators
exceptionally apt for delving into the dynamics of creep and relaxation behaviors. Systems
constituted by linear physical elements inherently display linearity, aligning with the
Boltzmann superposition principle:

o(t) = e Y(t) + o Y(t—17) T dt. (27)
t _do(T) .
) =ool(1)+ [ J(t -5 ar. (28)

In the equations, Y (t) represents the material’s relaxation function, and J(t) denotes the
material’s creep function. Utilizing integration by parts, Equations (27) and (28) can be
rewritten in a convolution form:

o(t) = Y(t) x&(t) = e(t) * Y(¢). (29)

e(t) = J(£) %o (t) = o(t) « J(t). (30)

Notice that both Equations (29) and (30) are convolution expressions. In fact, in Mikusin-
ski’s monograph [30], operators are defined through convolution. This implies that con-
volution expressions in creep and relaxation theories often correspond to a certain fractal
operator. Specifically, in Equation (29), we can consider strain as the input signal and
stress as the output signal, making the creep function J(t) necessarily the kernel function
of some fractal stiffness operator. Similarly, the relaxation function Y (¢) in Equation (30) is
undoubtedly the kernel function of a fractal compliance operator.
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Let the stiffness operator of the viscoelastic material be denoted as T and its compliance
operator as +. Then, the viscoelastic stress—strain relationship expressed in terms of

operators is

o(t) = T(pe(t), o () = Z(p)oh). (31)

Based on the operator kernel function theory previously discussed [27], operator operations
are defined through the convolution integral of their corresponding kernel functions
(generalized functions), namely

o(t) = 2 TP (1) *<(t). (32)
e(t) = 27 [ (p)(0) * o (t). (33)

Comparing Equations (29) and (30) with Equations (32) and (33) yields

LTI =V, or Y0 = [ 2T mar en
2N =10, or I = [ 2 e @)

Equations (34) and (35) indicate that, once the stiffness or compliance operator of a
structure is known, the OKF can be obtained through the inverse Laplace transform, thereby
deriving the relaxation or creep function. It is important to note that the above operations
only require manipulation of the stiffness or compliance operator, without involving the
input and output signals.

As mentioned, the stiffness and compliance operators characterize the intrinsic proper-
ties of self-similar fractal structures themselves. By understanding the intrinsic properties
within the physical fractal space, one can determine the creep and relaxation functions.
This facilitates research into creep and relaxation phenomena.

3.2. Comparison of Mechanical Behavior between Several Classical Viscoelastic Models and Fractal
Tree, Fractal Ladder Structures

As discussed earlier, we now summarize the relaxation and creep functions, along
with the response curves under cyclic loading, for classical viscoelastic models and fractal
tree and ladder structures in Figure 8.

Figure 8a—e display the schematic diagrams and corresponding stiffness/compliance
operator expressions for the classical Maxwell model, Voigt model, generalized Kelvin—
Voigt model, fractal tree model, and fractal ladder model. Comparing the creep response to
step stress in Figure 8fj, it is evident that fractal models significantly differ from classical
models. Upon instantaneous loading, the fractal ladder structure’s end has a series spring
element that produces instantaneous elastic deformation, similar to the Maxwell and three-
parameter GKV models. In contrast, the fractal tree model and Voigt model, lacking an
independent load-bearing structure, do not exhibit instantaneous strain. During the steady
creep stage, models with a finite number of elements rapidly stabilize in deformation rate,
indicating transfer of all viscous forces to the elastic el’'ements. In comparison, the elements
of the infinite-level fractal model continuously transmit stress, leading to ongoing creep
with a characteristic time far exceeding that of finite-level structures.

Figure 8k—o show the stress relaxation behavior to step strain. These curves reveal
that the behavior of fractal structures is significantly different from finite-level models.
In terms of instantaneous behavior, the fractal tree model and Voigt model exhibit a sharp
increase in stress, whereas the Maxwell, GKV, and fractal ladder models, which contain
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independent load-bearing elastic elements, predominantly absorb instantaneous strain
through these elements. For long-term relaxation, fractal structures exhibit characteristics
of decaying over time and eventually tending to zero, with a gradually decreasing rate of
decay, similar to the Maxwell model. Notably, fractal structures more distinctly exhibit the
tailing or dragging phenomenon, prevalent in rock creep tests, indicating that fractional
viscoelastic models are more effective in describing such materials.
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Figure 8. Quasi-static responses of classical viscoelastic models and fractional viscoelastic models.
(a—e) Schematic diagrams and operator expressions of classical linear viscoelastic models and fractal
viscoelastic models. (f—j) Creep function curves of the structures, with black line segments indicating
applied step stress, loaded at time t/7 = 1 and unloaded at time t/7 = 5. The horizontal axis
represents dimensionless time, while the vertical axis represents the dimensionless creep function.
(k—o) Relaxation function curves, with black line segments indicating applied step strain, loaded at
time t/7 = 1. The vertical axis is dimensionless stress. (p—t) Creep curves under multiple loading
cycles, with black line segments indicating applied step stress, loaded at time t/7 = 1.

Figure 8p-t present the response curves of the models under multiple loading condi-
tions. From these curves, it can be observed that, due to their prolonged characteristic times,
fractal models cannot disperse external forces promptly within one loading cycle and thus
enter the next cycle. This characteristic indicates that the mechanical behavior exhibited
by fractal structures under periodic loading more closely resembles rheological properties.
This behavior reveals the uniqueness of fractal structures in handling dynamic loads, which
is significant for understanding the response of such structures in practical applications.
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4. Discretization of Continuous Viscoelastic Bodies into Fractal Topological Structures

Discrete fractal models, built from physical elements, showcase the intriguing ability
to transition between discretization and continuity. Peng et al. [25] investigated the infinite
elastic cavity model of arterial blood flow, transforming the continuous vascular wall into a
myriad of microelastic cavities, crafting a physical fractal model that mirrors blood flow
dynamics. Similarly, Mario Di Paola et al. [31] explored fractional viscoelastic theory, adopt-
ing the strategy of breaking continua into discrete segments. This section, as illustrated by
Figure 9, elucidates the process of discretizing an elastic body with distributed viscous con-
straints and illustrates how this approach leads to the fractalization of force transmission
pathways, thereby offering a novel perspective on modeling complex physiological and
material behaviors.
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Figure 9. Schematic diagram of the discretization process from a continuous model to a physical

fractal model. (a) Elastic body subjected to distributed viscous constraints. (b) Discretization of
continuous structure. (c) Schematic diagram of force transmission paths. (d) Renormalization to
fractal ladder structure. (e) Equivalent relationship between fractal ladder cells and elements.

Figure 9a,b depict an elastic body under lateral forces at its upper boundary, experienc-
ing shear deformation that initiates force transmission from top to bottom. By dividing the
body vertically (z-direction) into thin slices (each with thickness Az), it transitions from a
continuous entity (Figure 9a) to a discrete system (Figure 9b), where slices are linked by elas-
tic elements and to boundaries by viscous elements, allowing force to propagate through
springs and dashpots. This setup leads to the multi-level self-similar model in Figure 9c:
applied forces traverse internal elastic components, bifurcating at each level—one path
through dashpots to boundaries and the other to subsequent elastic layers. This repeti-
tive sequence crafts a layered mesh of elastic and viscous connections. Drawing on this
model, Schiessel and Blumen [16,17], Heymans et al. [18,19], and Mario Di Paola et al. [31]
introduced a pivotal transformation relationship, correlating the body’s internal elastic
constants with the external viscous constraints” viscosity coefficients by

f— L _T(B) Tlk+1-p)

T 2&—1T(1-B)T(k—1+p) " (36)
[(g) Tk+1-p)
=2 . 37
This leads to the derivation of a fractional relationship between stress and strain:
ds
o(t) = @s(t). (38)

It is important to note that the constraint relations between physical constants
(Equations (36) and (37)) are artificially designed with the purpose of deriving the frac-
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tional viscoelastic constitutive as in Equation (38). Such an operation is not natural. Below,
we provide a more intuitive explanation.

In this scenario, we imagine a structure where each level is composed of identical
elements, ensuring uniform elastic constants and equal viscosity coefficients for all viscous
constraints. By applying the principle of self-similarity, we can transform the model in
Figure 9c into a fractal ladder configuration, as shown in Figure 9d. Remarkably, this fractal
ladder mirrors the topology of the ladder in Figure 5 exactly. Moving forward, we abstract
the fractal cell from the ladder, and, by developing and resolving the algebraic equation
for the fractal stiffness operator (mirroring Equation (5)), we arrive at the fractal operator
expression (aligned with Equation (6)). This illustrates that the fractal ladder, while an
abstract and idealized structure, accurately represents the physical reality of viscoelastic
bodies. Thus, the fractal operator, a conceptual entity derived from logical reasoning,
ubiquitously characterizes the viscoelastic domain.

Although the fractal operators on the fractal ladder and the fractional derivatives in
the viscoelastic constitutive equations (Equation (38)) appear different, this discrepancy
is only superficial. At their essence, they are fundamentally identical; that is, the fractal
operator (Equation (6)) inherently operates as a fractional operator. This unity is further
evidenced when analyzing Figure 8i,j, where the elimination of the outermost independent
spring element from the fractal ladder aligns the creep and relaxation behaviors of both
models closely. Such parallels emphasize the inherent similarity across these mathemati-
cal formulations.

In Section 2, we detailed the convergence attributes of the fractal ladder structure.
Focusing on the imagery in Figure 9, as Az — 0, the level of the structure moves towards
infinity, i.e., n — oo. At this juncture, the discrete model transitions from discrete to a
coherent fractal ladder form. On the other hand, as Az — 0, the discrete model again
converges to the continuous form depicted in Figure 9a. This transformative process,
described as continuum — discrete — fractalize, fascinatingly facilitates the fractalization
of the force transmission imagery and unveils the source of fractional-order effects in
viscoelastic bodies.

The derivation of fractional-order effects in viscoelastic substances is traced back to
fractal operators. The intrinsic non-rationality of radical-type fractal operators signifies a
root cause of fractional-order dynamics. Appendix C shows that the kernel functions for
radical-type fractal operators are typically non-elementary functions. This suggests that
accurately depicting fractional-order effects and the characteristic tail effect in viscoelastic
bodies requires the use of non-elementary functions. This approach not only encapsu-
lates the sophisticated dynamics of these systems but also offers a fresh perspective on
understanding and modeling viscoelastic behavior.

5. Conclusions

This paper delves into the convergence of operators in the viscoelastic theories per-
taining to fractal ladder and tree structures, highlighting the robustness and predictability
of these models in complex mechanical settings. We have rigorously demonstrated that the
sequences of stiffness operators for both structures are monotonically bounded, thereby
establishing definitive limits. This groundwork allows us to assert that, beyond a third-level
hierarchy, the mechanical behavior of finite-level structures can effectively be represented
by an infinite-level fractal framework. This insight offers a significant reduction in compu-
tational complexity, streamlining the analyses that involve structural stiffness operators.

During steady-state creep and relaxation, forces within fractal structures are transmit-
ted in a tiered manner, resulting in characteristically prolonged durations. This behavior,
prevalent in rock rheology, underscores the superiority of fractal models in capturing the
nuanced rheological properties of materials.

Furthermore, we explore the transformative linkage between continuous medium
models and their discrete fractal counterparts. Increased granularity in structural subdivi-
sion and level augmentation leads to fractalization of internal force pathways, culminating

138



Fractal Fract. 2024, 8, 200

in a seamless transition to a fractal model. This process not only bridges the gap between
continuous and fractal representations but also reinforces fractal operator theory as a potent
tool for addressing intricate mechanical challenges, promising wide-ranging applications
in the field.

This paper investigates the utilization of SOM and COM to characterize the quasi-static
mechanical properties of materials, such as relaxation and creep. In real-world engineering
applications, materials frequently undergo cyclic alternating loads, highlighting the impor-
tance of understanding the dynamic mechanical responses of viscoelastic materials. In our
future work, we aim to further develop SOM and COM, broadening their application to
the dynamic mechanical characterization of materials. This initiative is directed towards
providing new insights into the dynamic mechanical behaviors of viscoelastic materials.
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Appendix A

Focusing on the three-parameter General Kelvin—Voigt (GKV) model as a case study,
the structure is formed by paralleling a viscous element with an elastic element, followed
by their serial connection to another elastic element. To ascertain the structure’s compre-
hensive constitutive relationship, it involves the simultaneous solution of two stress-based
equilibrium equations:

{022 o (A1)
c=0y+0
two strain-based compatibility equations:
& =8 (AZ)
e=¢1+ée
and the constitutive relationships of each element:
o1 = E1eq
oy = Eyep . (A3)
——
Iy =N

Addressing this set of seven differential equations with eight unknowns unravels the
constitutive equation for a one-dimensional system:

t(E1+Ep)
o(t) = Ea | 8(t) — ’f;e—lv :

*e(t). (A4)

While this approach is viable for models with a finite number of elements, the rapid
increase in the number of elements escalates both the number of unknowns and the
computational complexity. For models composed of an infinite number of elements, leading
to an endless count of unknowns, this computational strategy becomes unfeasible.
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Based on the stiffness operator from Equation (4) and the operator kernel function
method proposed by Yu et al. [27], the formula for converting the stress—strain relation-
ship of the GKV model, as represented by operators, into a functional relationship is the
following:

o) = 2 Taw (p)] e(t) = 27 | LI ) (A5)

Simplifying Equation (A5) yields the same result as Equation (A4). This process does not
require solving any differential equations, and all steps are algebraic manipulations.

Based on the outcomes of Equations (34) and (35), this approach does not require
assuming any form of input to directly determine the model’s relaxation function:

b 1] (B +77P)E2} -\ 37
Y(t) = E7l [t N i d A6
() /0+ {E1+E2—|—17p (T)dt, (A6)
and the creep function:
b a[Ei+Ea+np] o -
t:/xl{l 7)dt. A7
= J CEInE (A7)

Throughout this process, we consistently engage in various algebraic operations rather
than solving systems of linear differential equations.

Appendix B

Consider the generalized Maxwell model derived from an infinite parallel connection
of Maxwell elements, as illustrated in Figure A1.

(@) (b) (©)

Figure Al. Schematic diagram of general Maxwell model. (a) Fractal cell. (b) General Maxwell
model. (c) Fractal element.

Utilizing a calculation method analogous to that for fractal trees and fractal ladders,
the model must fulfill the following stiffness operator algebraic equation:

1
il T +T=T. (A8)
E " qp
Thus, we have
Eip_ _ . (A9)
E+np

The paradox presented by Equation (A9) arises because, as the number of levels in the
structure increases, the stiffness of the generalized Maxwell model also increases. When
the structure approaches an infinite number of levels, the stiffness becomes infinitely large,
failing to converge to a specific stiffness operator T. Therefore, the aforementioned method
is no longer applicable.
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Appendix C

The expression for the stiffness operator of the fractal ladder structure is the following:

/1,2 [ 4
E A+ TiT - +E17p <p2+ p p>, (A10)

where T = £ represents the relaxation characteristic time. The kernel function correspond-
ing to the fractal operator is

_2t

; ’ 11(%) +ES(t), (A11)

T=2"'T(p) =~

wherein I,(%) denotes the nth-order modified Bessel function and J(t) represents the Dirac
function. Similar kernel functions also appear in the study of stress relaxation effects in the
hemodynamics of small arteries by Peng et al. [25]. Applying a step strain ¢(t) = ¢oH(t) to
the fractal structure yields the stress expression as follows:

o(t) = Te(t)
_ [Eff 11(2t) + Eé(t)] « [eoH (1))
— e ¥ [1(2) 12, (A12)

where H(t) denotes the Heaviside step function.
The expression for the compliance operator of the fractal ladder structure is

1 2 1 T 4p 1 4p
N 2 4 2P 2 4 P
( p-+ +p> 2Ep< p-+ p- +p>. (A13)

T 2
Nty 200

Equation (A13) can be further simplified such that

L_1dnf /o, 4 _ 11 _ i1y 1
T UEP2< p+T p+2p>_;7EP(T+17p)—UEpT+E. (A14)

The kernel function corresponding to the compliance operator is

1 1 1 o 2t 2t
Applying step stress o(t) = oypH(t) to the fractal ladder results in the creep response
as follows:
e(t) = 70(t)
1 1 2t

{300+ 7 ¥ [0+ 1D |+ ook

_ o[ UAYRELPNEI A

“ 0 [ e E+(6t+E)IO(T)+6t11(T) + £

O POV AT 207 3%

= 4 [(6t+E)I( )6t (T)| + 2 (A16)
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Abstract: To study the dynamic crack evolution process of loaded coal from the perspective of
fractals, we carried out in situ industrial CT scanning tests of loaded coal under different confining
pressures, visualizing loaded coal fracturing. Combined with fractal theory, the temporal and
spatial evolution law of coal cracks is described quantitatively. The results provide two findings:
(1) from the perspective of two-dimensional images and three-dimensional space, the evolution
characteristics of cracks in coal under different confining pressures were basically the same in each
loading stage. During the loading stages, the cracks exhibited a change rule of a slow reduction,
initiation/development, rapid increase, expansion, and penetration. (2) The fractal dimension of
coal was calculated by introducing fractal theory, and its change law was in good agreement with
the dynamic changes of the cracks, which can explain the influence of the confining pressure on the
loaded coal. The fractal dimension showed three stages: a slight decrease, a stable increase, and then
a significant increase. The larger the confining pressure, the more obvious the limiting effect. Thus,
our approach provides a more accurate method for evaluating the spatial and temporal evolution of
cracks in loaded coal. This study can be used to predict the instability failure of loaded coal samples.

Keywords: fractal theory; fractal dimension; CT scanning; image analysis; fissure evolution; confining
pressure

1. Introduction

Coal is a heterogeneous natural porous medium and geological material, which
is mainly composed of a coal matrix, a large number of randomly distributed natural
fissures and defects, and other minerals. The random distribution of these components
determines the structural characteristics of the coal. The analysis of the dynamic evolution
process of internal crack initiation, development, and expansion to the penetration of
coal under external triaxial loads can help us better understand the failure process of coal
fracturing [1-3], which is of great practical significance for the safe production of coal
mines.

In the actual excavation process of projects, the confining pressure is constantly
changing [4]. By setting different confining pressure levels in the analysis, rock stress
conditions at different occurrence depths can be simulated. In recent years, scholars
have conducted significant research on the mechanical properties of coal rock mass under
different confining pressure conditions. For example, Jiang has shown, through triaxial
compression tests, that the confining pressure and buried depth have a significant effect on
the physical and mechanical properties and failure modes of shale [5]. Alejano conducted
a triaxial compression test on granite and studied the influence of confining pressure on
the peak strength and deformation modulus of massive granite [6]. The above research
focused on the macroscopic mechanical properties of coal rock mass. Furthermore, the
macroscopic fracturing of rock is closely related to the spatial and temporal evolution of
its microstructure.
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Rock fracture is a process of crack initiation, propagation, and evolution until penetra-
tion. Studying the crack propagation process and instability failure mechanism of cracked
coal rock mass is helpful for understanding the stress variation law of the surrounding rock
in coal roadways and working faces. Scanning electron microscopy, nuclear magnetic reso-
nance, and computed tomography (CT) scanning are the primary methods used to describe
the microscopic pore structure of coal rock mass [7-12]. CT scanning technology (also
known as computer tomography recognition technology) can enable the non-destructive
scanning of a test sample, and allow for the obtaining of a CT image sequence of the sample
for display in the form of high-resolution digital three-dimensional images after three-
dimensional reconstruction. With the steady advancement of industrial CT, its application
in coal rock mass is becoming more extensive. Using CT technology to study the fracture
structure of coal rock mass failure has unique advantages [13-15] and can facilitate the
visualization of coal rock mass during loading. For example, Wang used CT data combined
with three-dimensional visualization software for the quantitative characterization of the
pore and fracture structure of coal and established a three-dimensional model as well as a
simplified model of the pore network and its topological structure, effectively describing
the pore size, pore volume, porosity, and other properties of coal [16]. Kumari carried out
CT scanning tests on granite during loading and studied the propagation path of granite
cracks; their results show that the crack propagation path is mainly controlled by the stress
state and the heterogeneity of the rock matrix [17].

The evolution process of cracks in rock masses under loading is dynamic and involves
the initiation, propagation, evolution, and penetration of cracks. Using CT scanning
technology, we can observe the spatial distribution of cracks in rock masses during loading
but cannot quantitatively study the rock mass fracture structure at different stages of
loading. There is a lack of digital indicators reflecting the differences in the rock mass
structure. The emergence of fractal theory helps solve this problem.

Fractal theory is often used to study the laws behind various complex, disorderly, and
chaotic phenomena in nature, and fractal dimensions are the most important concept within
fractal theory. Because the fracture distribution in coal rock mass shows good self-similar
fractal characteristics, fractal dimensions can be used to quantitatively describe the degree
of fracture evolution, which could facilitate the application of fractal theory in the field of
rock mechanics. By extracting the fractal information from the scanning results, we can
describe the development and distribution of fractures in the loaded rock mass effectively,
evaluate the complexity of the overall fracture structure inside the rock mass accurately,
strengthen our understanding of the evolution of rock mass pores and fracture structures,
and visualize and finely and quantitatively characterize the loaded coal rock mass.

Xie [18], Zhao [19], and others have studied the fractal characteristics of cracks in
coal rock mass. Zhang used industrial CT to observe and scan the rock fracture process in
different stages and constructed a three-dimensional fracture model of rock with which to
study the dynamic propagation and evolution process of internal cracks when the loaded
rock is deformed and destroyed. The author found that the fracture propagation process can
be effectively quantified using characteristic parameters, such as fracture volume, surface
area, and fractal dimension [20]. To further verify the reliability of the fractal dimension in
three dimensions, Wang used CT to scan six coal samples with different pore structures and
reconstruct them three-dimensionally. The fractal dimension Dy of the total pore structure
was calculated using the three-dimensional box-counting method. The results show that
the three-dimensional fractal dimension can accurately describe the fractal characteristics of
coal. The larger the Dy, the greater the porosity of the coal samples [21]. However, previous
CT scanning experiments have not used real-time scanning during the loading process.
Therefore, to study the temporal and spatial evolution laws of internal cracks in coal, one
must capture the dynamic damage and failure process of loaded coal samples in real time.
More importantly, a method for accurately describing the evolution of internal cracks in
coal is required.
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This study assesses the whole process of the in situ failure of coal samples under
four confining pressure states using an industrial CT scanning system. We analyze the
evolution law of internal cracks within coal samples from loading to failure and propose
a new method with which to describe the quantitative crack evolution of coal samples
during the loading process based on fractal theory. As a result, the fractal characteristics of
cracks in loaded coal samples are detailed.

2. Test Scheme and System
2.1. Sample Introduction

The coal samples used in the test were core drilling samples taken from the same area
(Huainan mining area), having the same internal structure, a uniform texture, no obvious
joints, cracks, etc., and very similar mechanical properties. After cutting and coring, the
coal samples were processed into a standard cylinder of @25 x 50 mm. To achieve evenly
stressed coal samples during the test and high accuracy of the test results, the upper and
lower surfaces of each sample were polished to obtain flatness within 0.05 mm. The non-
parallelism of the two ends was less than 0.02 mm, thus meeting the requirements of the
International Society of Rock Mechanics test [22]. In addition, basic physical indicators,
such as quality, were measured, and the samples with basic physical indicators exceeding
the average value of 10% were removed. The processed coal samples are shown in Figure 1.

Figure 1. Coal samples.

2.2. Testing Equipment

This research used the V [ tome | x L300 high-precision CT triaxial loading test system to
carry out triaxial and scanning testing, as shown in Figure 2a. This comprised an industrial
CT scanning system and a triaxial loading system that could facilitate the uniaxial and
triaxial loading of the sample, with a maximum axial pressure of 100 kN and a maximum
confining pressure of 30 MPa.

Figure 2. High-precision CT three-axis loading experimental system. (a) Industrial CT system, (b) CT
scanning principle, (c) internal structure of the CT system, and (d) Phoenix Datos | x2 interface.
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The industrial CT scanning system can display the internal structure and defect status
of the measured object clearly, accurately, and intuitively in the form of two- and three-
dimensional images without damage to the object. The scanning principle involves use
of the high penetration capacity of X-rays to irradiate the different layers of the sample.
Because some photons are absorbed by the sample, the light intensity is attenuated, and
this information is received by the detector. After the data are converted by the computer,
a digital image of the coal sample can be reconstructed. The micro-focus CT scanning
system is equipped with two X-ray tubes—a high-power micron-scale ray tube and a
high-resolution nano-scale ray tube. Its unique micro-focus ray source scanning system
can effectively reduce ghosting and achieve a good display. The specific parameters are
listed in Table 1.

Table 1. CT system parameters.

Ray Tube System Maximum Maximum Tube Detail
Model Parameter Power Voltage Resolution
Micron-sized ray 500 W 300 KV <2 um
tube
Value
Nano-scale ray 15W 180 kV <0.5 um

tube

The principle of industrial CT scanning is shown in Figure 2b. Figure 2c shows
the internal structure of the industrial CT scanning system. Here, the sample was in-
stalled and fixed on the base holder for X-ray detection and scanning. The CT scan data
to be reconstructed were opened using the CT data setting software Phoenix Datos | x2
(version 2.6.1-RTM) (Figure 2d). Firstly, we determined the region of interest for digi-
tal reconstruction. Next, to achieve the best compensation effect and derive the clearest
three-dimensional digital image of the coal core, we performed the following series of
processes on the scanned image: geometric correction, beam hardening correction, and
reverse color processing.

2.3. Test Scheme

The triaxial compression testing of coal samples under different confining pressures
was carried out. According to the natural state of coal as found at the considered depths
in the mining area, as well as data from previous research [23,24], the confining pressures
used in the triaxial compression test were 5.0, 10.0, 15.0, and 20.0 MPa. The loaded coal
sample was wrapped with a special leather sleeve and placed in the loading device. An
initial axial load of 2500 N was applied to fix the coal sample. Then, different confining
pressures were applied (5, 10, 15, 20 MPa). After the confining pressure had stabilized,
the axial pressure was controlled by displacement, and the loading rate was 0.3 mm/min.
During the test, a constant confining pressure was maintained, and the axial pressure was
gradually increased until the coal sample was destroyed.

We determined the scanning point in the CT scanning test stage based on the full stress—
strain curve of the whole process of deformation of the raw coal under compressive loading.
The deformation process is divided into the in situ stage I, initial pore compaction stage II,
stable development of elastic deformation fracture III, unstable fracture development
stage IV, post-fracture stage V, and residual stage VI. Internal failure of the coal sample was
assessed via scanning at six points. The experimental conditions were as follows: a voltage
of 170 kV, current of 180 uA, resolution of 25 um, exposure time of 1000 ms, projection
number of 1500, and scanning time of 94 min. In addition, the same scanning conditions
were maintained for six repetitions (the first scan to the sixth scan corresponded to A-F).
The specific test steps are as follows:

(1) CT system initialization. The system is heated, and the ray tube is vacuumized. Then,
the mechanical shaft is reset. The specimen is fixed to the specimen holder with an
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@)
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electronic jack, and then the holder is placed in the axial pressure loading cylinder.
The assembly is installed and fixed to the CT mechanical turntable, and the pipeline
is connected for exhaust extraction.

The CT scanning and triaxial loading parameters are set, with those such as voltage,
current, exposure time, and the number of pictures set according to the imaging effect,
resolution, and gray value. The triaxial loading equipment is set up with the loading
parameters required for this experiment. Multiple scans can be performed before the
coal sample breaks. During the scanning process, the pressure remains unchanged,
and the number of scans is associated with the stress—strain curve for adjustment.
At the end of the experiment, the data are processed. Firstly, the mechanical pa-
rameters are exported from the three-axis software database for analysis. Secondly,
the original image is corrected using the CT data reconstruction software Phoenix
Datos | x2 (version 2.6.1-RTM). Finally, the image is reconstructed in three dimensions
using the image processing software.

The above steps are repeated, carrying out triaxial tests with confining pressures of
10, 15, and 20 MPa.

3. Analysis of Fracture Evolution Law
3.1. Qualitative Analysis of Two-Dimensional Fracture Evolution Characteristics

The CT scanning system can collect real-time scanning information of each section
layer of the coal sample, from top to bottom. In determining the fracture propagation
characteristics of coal under different confining pressures, we applied CT scanning technol-
ogy to reveal the spatial fracture morphological characteristics of the coal samples under
different loading conditions and the influence of intermediate principal stress on their
failure. Figure 3 shows the stress—strain curve of the raw coal under different confining
pressures and the two-dimensional CT images of different deformation stages, in which
the gray represents the coal matrix and white and black indicate the presence of minerals
and pores/fissures, respectively.
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Figure 3. Two-dimensional CT images of stress—strain curves at different deformation stages under
different confining pressures. (a) 5 MPa; (b) 10 MPa; (c) 15 MPa; (d) 20 MPa.

147



Fractal Fract. 2024, 8, 159

In the triaxial compression experiment, under different confining pressures, the in-
ternal crack trends in the coal sample are roughly the same—slowly decreasing at first
and then gradually increasing. In the initial state, the fracture distribution of the sample
under different confining pressures is anisotropic. As the confining pressure is applied,
some of the original fractures are closed; furthermore, when a greater confining pressure is
set, the closure effect is more obvious. When the axial stress begins to increase, internal
cracks develop in the coal sample. As the axial stress continues to increase, the main
crack propagation process is accompanied by the initiation of new cracks. The cracks are
gradually connected with those surrounding them, and coal ruptures gradually develop
from a state of diffuse and disorderly damage to local and orderly damage. Under the
confining pressure of 5 MPa, the final damage degree of the sample is the greatest. The
main crack is an oblique bending crack that runs through the sample. This is located in
the lower part of the slice section, oriented from left to right. In summary, the greater the
confining pressure, the greater the limitation of fracture development.

3.2. Quantitative Analysis of Two-Dimensional Fracture Evolution Characteristics

The term “fractal” was first proposed and used by Mandelbrot in the 1970s. The fractal
dimension is the most important concept in fractal geometry. “Fractal” is a mathematical
term, and its theory has fractal characteristics as its main research focus. It uses the
fractal dimension to describe irregular and regular patterns in nature and reveals the
laws of self-similarity, which nature follows at deep levels. Many scholars have developed
different formulae for calculating the fractal dimension according to the basic theory [25,26].
Among these, the most widely used is the box-counting dimension, also known as the
box dimension, which is a calculation method used for measuring the fractal dimension
over distance. The principle of the box-counting dimension is to imagine the fractal S on a
uniformly divided grid and calculate the minimum number of squares required to cover the
fractal S completely. By continuously refining the grid size, the number of squares required
at different scales can be reviewed. The fractal dimension of coal samples is assessed via
the box-counting dimension. The approximate calculation of the box-counting dimension
Db is

by — _tim BN _ JgN(S)
s—0 1g(s) lg(1/s)
where, in R? space, N(s) is the minimum number of squares of length s required to cover

this non-empty subset. The slope of the linear regression equation formed by plotting
IgN(s) with Ig(1/s) is the fractal dimension, which obeys the following linear equation:

IgN(s) = lg(c1) + Dylg(1/s)

where, ¢ is a constant.

Figure 4 shows a two-dimensional fracture network diagram, which can be used
in a box-counting method for determining the fractal dimension. To obtain the fractal
dimension of the fracture distribution inside the coal sample, we binarized the CT scan
image. After binarizing using the Image]J (version 1.53c) software program—because of the
instability of the CT detector when collecting photons, the negative working conditions of
the transmission cable, or the extreme aging of the bulb tube—concentric ring artifacts that
do not belong to the coal itself might arise in some scan images. Replacing the adjacent
gray values and removing the ring artifacts from the image better visualizes the fracture
structure that developed during the loading process of the selected coal sample section.
The processed CT image strongly retains the fracture distribution characteristics inside the
coal sample. After binarization and artifact removal, only black and white remain on the
CT image, where black represents the fracture and all other features are white.
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Figure 4. Schematic diagram of the two-dimensional fracture network and the box-counting method
used for assessing the fractal dimension. (a) Coal sample original slice, (b—d) Refinement process
of grids.

Image] (version 1.53c) software was used to calculate the data of two-dimensional CT
cross-section images taken for different stages of the coal sample. According to their specific
sizes (2 X 2,4 x 4,8 x 8,16 x 16,32 x 32, and 64 x 64 mm), the processed slice images
were divided into several small grids, that is, the grid was semi-divided and refined into a
denser square grid. The number of grids that the cracks pass through at different scales was
counted, and the box-counting dimension D, of the internal cracks of the coal sample were
obtained by fitting the linear relationship between the double logarithmic coordinates.

In the coal, the fractal dimension of the two-dimensional section is between 1 and 2.
The closer the fractal dimension is to 1, the fewer pores and fissures on the coal slice surface,
the smaller the area, and the simpler the distribution of pores and fissures in the section.
The closer the fractal dimension is to 2, the greater the number of pores and fissures on the
coal slice surface, the larger the area, and the more complex the distribution of pores and
fissures on the section. The calculation results regarding the fractal dimension of the coal
sample section cracks that develop during the loading process are shown in Table 2. With
the increase in fracture development, the fractal dimension becomes larger. During this
time, in the case of the same fracture area, the fractal dimension of the fracture structure
differs. The more complex the fracture structure, the larger the fractal dimension. Therefore,
the fractal dimension can better describe the characteristics of the fracture structures of coal
samples [27]. Moreover, the fractal dimension can be used to effectively characterize the
complexity of different fracture structures in surrounding fracture areas. In two dimensions,
the larger the fractal dimension, the more sufficient the fracture development and the more
complex the distribution, and vice versa.

Table 2. Calculation results of two-dimensional fractal dimension of coal sample.

Confining Pressure (MPa) 5 10 15 20
First scan 1.3631 1.2817 1.1865 1.1148
Second scan 1.3188 1.2113 1.0475 1.0217
Fractal Third scan 1.3531 1.2217 1.0868 1.0275
dimension Fourth scan 1.4104 1.2709 1.1391 1.0807
Fifth scan 1.5237 1.3728 1.2468 1.1541
Sixth scan 1.5869 1.4842 1.3491 1.3258

The results show that the overall development processes of cracks in the coal samples
under different confining pressures were roughly the same, with obvious stage characteris-
tics, as shown in Figure 5. Taking the analysis of all layers subjected to 5 MPa confining
pressure as an example, this process can be divided into four stages:

Stage I—Initially, several primary cracks of different sizes and lengths are present in the
coal samples (as shown in Figure 5a). At this time, the two-dimensional fractal dimension
is 1.3631. With the increase in confining pressure, some primary cracks gradually close (as
shown in Figure 5b), and the cracks decrease. At this time, the fractal dimension decreases
to 1.3188.
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Stage II—The primary cracks gradually close until the confining pressure reaches its
specified value, and then, with the increase in axial pressure, the coal sample begins to
fail. The primary crack shows a trend of expanding with the increase in axial pressure (as
shown in Figure 5¢,d). The fractal dimension increases to 1.3531, as shown in Figure 5¢, and
the crack develops slightly further. With the increase in axial pressure, obvious penetrating
cracks develop, as shown in Figure 5d. At this time, the fractal dimension begins to increase
from 1.4104 because of the gradual expansion of cracks.

Stage III—Under the external force, the cracks continue to evolve and extend and
intersect with each other to form larger penetrating cracks. New cracks appear at the edge
of the coal sample. At the same time, because of the distribution of pores and microcracks,
the direction of crack propagation deviates temporarily. The main crack gradually expands
along the edge and at the center of the coal sample. The coal sample deforms macroscopi-
cally, and its internal cracks begin to constitute a complex network. As the axial pressure
increases, the crack expands and evolves (as shown in Figure 5e). At this time, the fractal
dimension becomes larger because of the crack penetration, reaching 1.5237.

Stage IV—At this time, the post-peak residual stress stage commences, and the loaded
coal sample undergoes complete deformation and failure. The internal macro-cracks
converge and eventually form a complex crack network (Figure 5f). At this time, the fractal
dimension maximizes at 1.5869.

Throughout the fracture process, the two-dimensional fractal dimension of the coal
sample shows an overall trend of a small decrease to a large surge, which effectively reflects
the overall fracture expansion process of the coal sample under confining pressure.

b C d ,‘

Figure 5. Coal sample slice binary graphics at 5 MPa from (a,b) Stage I, (c,d) Stage 1II, (e) Stage III,
and (f) IV.

a

The internal fracture structures of each coal sample in the in situ state are different.
In the initial compaction stage, cracks are almost invisible in the binary images under
higher confining pressures, and the cracks become almost completely closed under high
confining pressures. With the increase in axial pressure, isolated pores and micro-cracks
are gradually generated inside the coal, and the spatial distribution of cracks and pores
intensifies the inhomogeneity of stress distribution inside the coal rock mass, which, in
turn, significantly influences the crack development in the coal rock until penetration and
complete deformation and failure. The fractal dimension is calculated from the compaction
stage to the final failure. Under the confining pressure of 5 MPa (Figure 5), the sixth scan’s
fractal dimension is 1.20 times that of the compaction stage, and the sixth scanning fractal
dimension under the confining pressure of 10 MPa (Figure 6a) is 1.22 times that of the
second scan’s fractal dimension. The sixth scan’s fractal dimension under a confining
pressure of 15 MPa (Figure 6b) is 1.28 times that measured in the second scan, and the sixth
scan’s fractal dimension under a confining pressure of 20 MPa (Figure 6c¢) is 1.29 times
that derived in the second scan. The increase in confining pressure is beneficial to the
improvement in the ability of the sample to resist external loads. The internal crack structure
network in coal under the application of low confining pressure is more complex; that is,
the damage is more serious.
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()

Figure 6. Binarized graph of coal sample slices at confining pressures of (a) 10, (b) 15, and (c) 20 MPa.

3.3. Three-Dimensional Fracture Evolution Characteristics

The CT image of a coal sample reflects the two-dimensional development of cracks
to a certain extent, but only local information regarding the cracks inside the coal. To
identify the complete distribution of cracks in space more clearly, study the crack evolution
process in the coal sample, and characterize the three-dimensional morphology of cracks,
the original two-dimensional slice must be reconstructed in three dimensions, and the
cracks need to be extracted and analyzed using image analysis and processing software.

Figure 7 shows the results regarding the evolution and distribution of three-dimensional
cracks in the coal samples from the first to the sixth scan under different confining pressures,
where the blue area represents the cracks. The image obtained via scanning was processed,
including selecting the region of interest (ROI) and filtering out the noise [28]. Using the
professional CT image software VG Studio Max (version 3.3.0.165821), the noise level in
each original CT image could be reduced, along with its adverse effects on image quality
and the subsequent quantitative analysis. In addition, the original CT image was imported
into the image processing software for rapid data acquisition, three-dimensional model
reconstruction, and data processing analysis.

As shown in Figure 7, the structural diagram of coal samples obtained via three-
dimensional reconstruction reflects the development of the fracture network clearly and
effectively. Under triaxial compression, the coal shows obvious characteristics in five
stages—fracture closure, the initial formation of fracture, the stable growth of fracture
and local penetration, the accelerated growth of fracture, and comprehensive penetration
and failure—which are consistent with the findings of the two-dimensional analysis of
the fracture.

Before reaching peak stress, energy gradually accumulates inside the coal. When
the stress concentration reaches the critical value for crack initiation, the crack expands
rapidly, the fracture scale and the energy released by the fracture increase, and the fracture
volume increases sharply. After the peak stress is reached, brittle failure quickly occurs as a
result of the overall instability of the coal, and the volume of the stress fracture shows no
obvious change. The stage characteristics of each coal sample under different confining
pressures are basically the same. From the in situ state to the compaction stage, the fracture
volume of the coal sample is obviously reduced. From the initial formation of the fracture
to the complete destruction of the sample, the fracture volume of the coal sample increases
gradually but significantly, and the growth trend changes from slow to rapid. A three-
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dimensional assessment thus more effectively characterizes the evolution of the overall
fracture network in coal samples under different confining pressures.
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Figure 7. Fracture morphology and distribution during coal sample loading for confining pressures
of (a—f) 5 MPa, (g-1) 10 MPa, (m-r) 15 MPa, and (s—x) 20 MPa.
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3.4. Quantitative Analysis of Three-Dimensional Fracture Evolution Characteristics

Under loading, with differences in stress, the internal pore cracks within coal samples
undergo a process of continuous change. The relationship between the internal crack
volume in coal and the stress offers the most intuitive reflection of the dynamic evolution
process of the cracks in loaded coal. The in-depth quantitative study of the general digital
indicators extracted from the three-dimensional crack images can effectively strengthen
our intuitive understanding of the evolution of pore crack structures in coal and rock. To
further characterize the law of crack propagation in coal, the parameters of crack volume
were calculated and extracted, as shown in Figure 8.

3000
—=&— 5 MPa
2500 —e— 10 MPa
"% —+—15MPa
£ 2000} ——20MPa
<
2 1500 |
E
=}
= 1000 |
=4
2
S s00f
0 E

CT scanning stage
Figure 8. Relationship between fracture volume and confining pressure.

The research shows that the fractal dimension method of calculating the three-
dimensional fracture structure in a material is similar to that of the two-dimensional
fracture structure. Each three-dimensional image is covered with a series of grids of de-
creasing size. The three-dimensional fracture network is covered with a cube, which is
constructed to cover the point set. By changing the side length ¢ of the small cube box,
several small cube boxes can be formed, and the corresponding box number N(e) con-
taining the point set can be calculated [29]. After multiple scale changes, a series of data
for € and N(¢) can be obtained. The least-squares method is used to fit the scatter plot
of the relationship between lg(1/¢) and lg N(¢), and the slope of the fitted line gives the
three-dimensional fractal dimension. The box-counting dimension D is defined as

IgN(e) .. IgN(e)
I el M1/

The three-dimensional fractal dimensions of the fracture, when the specimens were de-
stroyed under four confining pressures, were calculated. Table 3 shows that the compaction
effect in the initial stage becomes more significant with the increase in confining pressure,
and that the fractal dimension of the fracture structure in the coal specimen decreases
gradually with the closure of the fracture. The reason for this is that the confining pressure
reduces the internal fracture surface of coal-rock specimens; that is, the degree of damage
is weakened and the corresponding fractal dimension Dy is reduced, indicating that an
increase in confining pressure additionally and effectively inhibits the development of
internal cracks in coal-rock.
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Table 3. Calculation results of the three-dimensional fractal dimension of coal samples.

Confining Pressure (MPa) 5 10 15 20
First scan 2.2046 2.1770 2.1312 2.1058
Three- Second scan 2.1056 2.0714 2.0221 2.0016
dimensional Third scan 2.1429 2.1252 2.1093 2.0672
fractal Fourth scan 2.2046 2.1785 2.1633 2.1162
dimension Fifth scan 2.3277 2.3004 2.2578 2.2041
Sixth scan 2.4141 2.3982 2.3327 2.2984

Coal is a natural, heterogeneous, porous material containing a large number of natu-
rally occurring micropores. Particularly when the coal is forced into a stress state, its pores
and fissures expand and extend with the external force and the accumulation of energy,
a process that is complex and random. The three-dimensional fractal dimensions of the
samples at each scanning stage under different confining pressures are shown in Figure 9.
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Figure 9. Relationship between three-dimensional fractal dimension and confining pressure.

In the above study, triaxial compression experiments of coal under different confining
pressures were performed, with six scans taken at different stages, and the results are
shown in Figure 9. Under the same confining pressure, the three-dimensional fractal
dimension shows a trend of decreasing first and then increasing; however, with the increase
in confining pressure, the fractal dimension values at the same stage are different, though
they are all between 2 and 3. The closer the fractal dimension is to 2, the fewer the pores
and fissures inside the coal, the smaller their volume, and the simpler their distribution.
The closer the fractal dimension is to 3, the greater the number of pores and fissures inside
the coal, the larger their volume, and the more complex their distribution.

The damage deformation processes of loaded coal under different confining pressures
are similar in each stage. The damage process can be roughly divided into the following
stages: compaction, elastic deformation, plastic yield, post-peak failure, and residual. In this
study, the range of fracture surfaces inside the coal samples in their initial states is not large.
Different numbers and scales of micro-cracks and pores inside the coal exhibited a point-like
discrete distribution, and the degree of pore fracture development was low. The total crack
volumes in the samples before being subjected to 5, 10, 15, and 20 MPa were 618.83 (Figure 7a),
169.87 (Figure 7g), 220.75 (Figure 7m), and 244.19 (Figure 7s) mm?, respectively.

During the compaction stage, under the continuous application of confining and
axial pressure, the initial cracks in the coal gradually closed, and the volume of the coal
decreased continuously. At this stage, the fracture volume and fractal dimension of the
coal took their lowest values in the whole compression process. The fracture volumes were
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108.30 (Figure 7b), 61.40 (Figure 7h), 20.42 (Figure 7n), and 65.51 (Figure 7t) mm?3, and the
fractal dimensions were 2.1056, 2.0714, 2.0221, and 2.0016 for the samples before being
subjected to 5, 10, 15, and 20 MPa, respectively. The deformation generated at this stage is
plastic and cannot be restored after axial compression unloading. After the second scan,
the compaction stage ended, the elastic deformation stage began, and the fracture volume
and fractal dimension of the coal increased.

In the third scan, the change in the three-dimensional fractal dimension was smaller
than that in the compaction stage, and the degree of damage was lower. The main reason
for this was that the third scan focused on the elastic deformation stage of coal. In this
stage, the stress—strain curve presents a mostly linear relationship under the action of
axial compression, and the mechanical properties are relatively stable. We see a minor
initiation of internal pores and cracks, with almost no damage. In the fourth scan, the
elastic deformation stage basically ended, and the plastic yield stage was about to begin.
Compared with the third scan, the increase in fractal dimension was still not large. The
damage in this stage is still elastic. A small number of pores and cracks were generated,
and the coal was less damaged.

The fifth scanning point was located after the stress peak point, which entailed the
reaching of the compressive strength of the coal. A large number of the micropores in the
coal began to expand and interconnect, and macroscopic cracks appeared. The crack vol-
umes in the coal samples increased rapidly, reaching 1651.89 (Figure 7e), 601.37 (Figure 7k),
601.69 (Figure 7q), and 884.88 (Figure 7w) mm? for the samples before being subjected
to 5, 10, 15, and 20 MPa, respectively. The growth rates of the three-dimensional fractal
dimension were also large, rising to 2.3277, 2.3004, 2.2578, and 2.2041, respectively. At this
time, the coal gradually lost its bearing capacity and became damaged; however, because
of the interaction between internal friction within the coal and confining pressure, the coal
retained some strength after reaching the peak of the stress—strain curve.

With the further development of deformation, in the sixth scan, the fracture volume
and fractal dimension of the coal under different confining pressures were maximized. At
this time, the coal samples were almost completely destroyed, and their bearing capacities
were basically lost. The macroscopic fractures expanded across a large range, and some
fractures began to penetrate the fracture surface. Soon after this, the fracture surfaces
began to slip. With the accumulation of energy inside the coal, this slippage of the fracture
surface was accompanied by a large release of energy, resulting in a small-scale rock burst
phenomenon, scattering broken coal blocks around.

In summary, the evolution characteristics of loaded coal under different confining
pressures are consistent. They can be separated into three stages of development—slight
decrease, stable increase, and significant increase—determined by the confining pressure.
The ranges of variation in each are different. The fractal dimension can be used to elucidate
the differences in fracture structure in the loaded coal under different confining pressures,
i.e., changing the confining pressure can reduce the damage suffered by the coal.

4. Discussion

In this paper, to explore the damage- and failure-related mechanical properties of coal
under different confining pressures, triaxial compression tests under confining pressures
of 5, 10, 15, and 20 MPa were performed. The stress—strain curve is shown in Figure 10.
The mechanical parameters were also extracted, as shown in Table 4. The peak strain, peak
stress, and elastic modulus of the coal are proportional to the confining pressure produced
under loading. The increase in confining pressure improves the compressive strength
of coal.
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Figure 10. Stress—strain curves under different confining pressures.

Table 4. Triaxial compression test results.

Confining Pressure (MPa) Peak Strength (MPa) Peak Strain Elastic Modulus (MPa)
5 30.79 0.47 64.13
10 38.99 0.51 76.59
15 52.93 0.60 82.08
20 80.24 0.78 92.06

The conventional triaxial compression test is an essential experimental method used
to verify the mechanical parameters of coal and rock. Using different strength theories, we
can obtain different strength parameters of coal and rock failure. At present, four strength
theories are widely used in underground engineering. In this paper, the main failure mode
of coal studied under different confining pressures is shear. The Mohr—Coulomb yield
criterion is valuable in the maximum shear stress theory.

Figure 11 shows a Mohr stress circle diagram. According to the Mohr-Coulomb
strength criterion [30], in this study, setting different initial confining pressures of 2 (the
intermediate principal stress) = ¢3 (the minor principal stress) during the loading process
of coal destroys coal rock mass when the shear stress in a certain section reaches the failure
value. At this time, if the size and direction of the minimum principal stress are known,
then the size and direction of the maximum principal stress in the coal rock mass can be
inferred accordingly. The functional relationship of the Coulomb strength curve is

T=c+0- -tanw

where c is the cohesion between the internal materials of the coal, « is the internal friction
angle of the coal, the radius of the Mohr circle is (c1 — ¢3)/2, and the coordinate of the
center of the Mohr circle is [(¢1 + ¢3)/2, 0]. When a certain section of the coal sample
reaches a critical value, the Mohr circle is tangential to the Coulomb strength curve; that is,
the distance from the center of the Mohr circle to the Coulomb strength curve is equal to
the radius of the Mohr circle. At this time, according to the formula for the distance d from
the point to the straight line

kxo —yo+c

VK2 +1
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where, k is the slope of the slash, and the circle center coordinates are (xg, o). Additionally,
we can infer that 0’1 and 03 have the following relationship:
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Figure 11. Mohr’s stress circle.

Thus, with the increase in confining pressure, o1 and ¢3 become linear, and the slope

of the curve increases. Additionally, a certain proportional relationship exists between the
elastic modulus of coal and the confining pressure. The development of confining pressure
also helps to improve coal’s mechanical parameters and ability to resist damage [31]. The
lateral application of confining pressure closes the primary cracks in the coal sample to a
certain extent and strengthens the structure within the coal.

5. Conclusions

@

@)

®)
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The coal samples tested under different confining pressures all showed stage char-
acteristics. The five stages are as follows: compaction, elastic, plastic, post-peak
failure, and residual. The internal pores and fissures of coal underwent closure in the
initial compaction stage under loading, followed by a gradual increase in the elastic
stage and a sudden increase in the failure stage. Under the confining pressure, the
coal’s ability to resist failure was enhanced, and the development of fractures in coal
samples was limited. The greater the confining pressure, the greater the limitation to
fracture development.

Via two-dimensional images and three-dimensional analyses, the dynamic changes
in cracks emerging in loaded coal under different confining pressures can be quanti-
tatively analyzed. The method for accurately quantifying the evolution of internal
cracks within coal samples via fractal theory has good reliability. Based on the changes
in the fractal dimension and fracture volume, the two- and three-dimensional fracture
evolution characteristics shown within the scanning results are consistent. For coal
under different confining pressures, the fracture evolution law is highly consistent,
showing a small decrease first and then a large increase. The application of confining
pressure can reduce damage in coal.

In the triaxial compression tests, the main failure mode of the coal samples was shear
failure. Using the Mohr—Coulomb yield criterion, the relationship between mechanical
parameters and confining pressure can be obtained. The results of the experiment
verify the theory, confirming that the confining pressure improves the mechanical
properties of the coal to a large extent. In addition, greater confining pressures result
in an increased compressive strength and elastic modulus of the coal.

In this paper, the whole process of coal mass failure is elucidated through laboratory

. Based on fractal theory, we propose a method for quantifying the fracture structure

of coal. Furthermore, when this method is extended to catastrophic circumstances at an
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engineering site, it can be effectively used to evaluate the failure state of the coal mass and
facilitate the prediction of the possible extent of the disaster. In addition, confining pressure
refers to the pressure exerted by the rock mass surrounding deep coal; it is intrinsic to the
stress environment of coal rock mass. At different depths of coal, the confining pressure
differs, increasing with depth. This paper aims to provide a theoretical basis for projecting
instability disasters in coal rock mass at different depths or in different environments; this
substantiates the engineering application value of this method.
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Abstract: To better analyze the fluctuation characteristics and development law of tunnel deformation
data, multifractal theory is applied to tunnel deformation analysis. That is, the multifractal detrended
fluctuation analysis (MF-DFA) model is first utilized to carry out the multifractal characterization
of tunnel deformation data. Further, Mann-Kendall (M-K) analysis is utilized to construct the
dual criterion (Ax indicator criterion and Af(«) indicator criterion) for the tunnel deformation early
warning study. In addition, the particle swarm optimization long-short-term memory (PSO-LSTM)
prediction model is used for predicting tunnel settlement. The results show that, in reference to the
tunnel warning level criteria and based on the Z-value results of the indicator criterion, the warning
level of all four sections is class II. At the same time, through the analysis of tunnel settlement
predictions, the PSO-LSTM model has a better prediction effect and stability for tunnel settlement.
The predicted results show a slow increase in tunnel settlement over the next 5 days. Finally, the
tunnel warning level and the predicted results of tunnel settlement are analyzed in a comprehensive
manner. The deformation will increase slowly in the future. Therefore, monitoring and measurement
should be strengthened, and disaster preparedness plans should be prepared.

Keywords: tunnel; MF-DF: deformation warning; settlement prediction; PSO-LSTM

1. Introduction

With the continuous development of transportation construction in China, the scale
and technical level of tunnel construction have reached new heights [1]. By the end
of 2022, the national railroad operating mileage reached 155,000 km, boasting 17,873
operational railroad tunnels with a cumulative length of approximately 22,000 km. Of these,
259 extra-long railroad tunnels and 12 tunnels exceeding 20 km in length are in operation [2].
Notably, over the past five years, railroad tunnel development has experienced remarkable
acceleration. This surge is attributed to the rapid growth of the high-speed railroad industry
and the consistent enhancement of tunnel trimming technology, resulting in the emergence
of numerous tunnels traversing diverse types of special strata [3]. However, concurrent
with this progress, there exist design and construction irregularities in high-speed railroad
tunnels that may lead to deformation, water leakage, cracking, and other issues [4-8].

In tunnel construction, the control of tunnel deformation stands out as pivotal tech-
nology [9]. Consequently, the monitoring and stability evaluation of tunnel deformation
are paramount. Current methods for deformation monitoring and analysis encompass
numerical simulation methods [10-13], time series analysis methods [14-17], fuzzy com-
prehensive evaluation methods [18-21], and machine learning methods [22-25]. Yet, the
complexity of the geological environment and deformation-inducing factors introduce a
nonlinear characteristic to the tunnel deformation monitoring time-course curve, causing
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fluctuations [26]. Therefore, the multifractal detrended fluctuation analysis (MF-DFA)
method presents an effective approach for tunnel deformation analysis.

Fractal theory, pioneered by the French mathematicians Mandelbrot et al. [27], de-
scribes chaotic, complex, and self-similar systems with regularity. Researchers, such as
Zuo et al., have applied fractal theory to analyze and predict tunnel surface settlement,
evaluating surface settlement stability [28]. Ye et al. established a model based on fractal
theory to study the interaction between microstructure evolution and tunnel leakage be-
havior, offering insight into the tunnel leakage mechanism [29]. Additionally, MF-DFA,
initially proposed by Grassberger [30], finely describes the volatility of tunnel deformation
monitoring data at different levels. At present, the multifractal theory has been widely
used. Lei et al. used multifractal theory and subcomponent combination prediction to
synthesize the warning level of landslides [31]. Mao et al. revealed early warning signals
of rock slope deformation based on the multiple fractal time-varying response character-
istics of micro-seismic waveforms associated with rock rupture [32]. Zhou et al. applied
multifractal theory to the deformation pattern analysis of dams and utilized MF-DFA,
multivariate multifractal detrended fluctuation analysis (MV-MFDFA), and asymmetric
multifractal detrended fluctuation analysis (A-MFDFA) to resolve the multiple fractal
features of deformation states and their asymmetry [33].

Accurate prediction of tunnel deformation is crucial for disaster prevention and
early warning. Currently, soil settlement prediction methods include empirical meth-
ods [34-36], theoretical methods [37-40], modeling methods [41-44], and machine learning
methods [45-48]. Long short-term memory (LSTM) is particularly effective in handing
time-related information and is widely used in temporal tunnel settlement prediction [49].
Li et al. employed three machine learning algorithms (LSTM, RF, and GRU) to forecast sur-
face settlement. Their findings indicated that the LSTM algorithm demonstrated superior
accuracy in predicting maximum surface settlement and effectively anticipated settlement
progression in various strata [50]. Cao et al. proposed the complete ensemble empirical
mode decomposition with adaptive noise long short-term memory (CEEMDAN-LSTM)
model, combining high prediction accuracy with acceptable computational efficiency [51].
Duan et al. utilized the auto regressive integrated moving average (ARIMA) and LSTM
models for predicting structural deformation trends during tunnel operation, determining
that LSTM performs better with high data quality and sufficient samples [52].

From the above research results, it can be concluded that research on tunnel defor-
mation analysis and early warning prediction is necessary. Therefore, this paper analyzes
tunnel deformation data. Firstly, the deformation rate and the deformation of the tunnel
are investigated by multiple fractal characterizations using MF-DFA. Secondly, the Mann-
Kendall (M—K) analysis method [53,54] is used to evaluate the early warning classification
of tunnel deformation. Furthermore, the prediction of tunnel deformation is realized by
the particle swarm optimization LSTM (PSO-LSTM) prediction model. Finally, the results
of tunnel deformation early warning classification and the tunnel deformation prediction
results are jointly addressed. The tunnel deformation law is evaluated comprehensively to
provide theoretical guidance for its monitoring, measurement, and prevention. This study
calculates and analyzes the multifractal features of tunnel monitoring data by integrating
the M—K method to determine the tunnel’s warning level. Furthermore, the PSO-LSTM
model is found to exhibit high accuracy in predicting tunnel deformation, offering a novel
perspective for advancing research on tunnel early warning prediction.

2. Materials and Methods

The process of tunnel deformation analysis and early warning prediction, established
in this paper based on multiple fractal theory, is illustrated in Figure 1. The steps can be
summarized as follows:

First, tunnel deformation monitoring and measurement are conducted to obtain tunnel
deformation data. Second, the monitoring data are segmented into 12 groups, and multi-
fractal eigenvalues are calculated and analyzed using the M-K method. The warning level
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is then determined in conjunction with the warning level criteria. Third, the parameters of
the LSTM prediction model are optimized using the PSO optimization algorithm, and the
PSO-LSTM prediction model is formulated for predicting tunnel settlement. Fourth, the
warning level and prediction results are jointly analyzed to obtain the warning outcomes.
Finally, corresponding preventive measures are implemented based on the results of the
warning level.

Tunnel monitoring and measurement

v v
MF-DFA eigenvalue calculation PSO optimization algorithm
\ 4 A 4
M-K analysis LSTM prediction model
A 4 A 4
Early warning level PSO-LSTM prediction results
7'y [ | 7y
Warning Level Optimized
Criteria parameters
A

Joint Response Warning Result

I

Take corresponding measures

Figure 1. Flow chart of tunnel deformation analysis and early warning prediction.

This comprehensive approach provides a systematic framework for tunnel deforma-
tion analysis, early warning prediction, and subsequent preventive action.

2.1. Project Overview and Monitoring Data

The high-speed rail tunnel has a total length of 254.9 m, with the starting and ending
mileage marked as DK115 + 133.0~DK115 + 387.9. It is positioned between the Sangujian
No. 1 Tunnel and the Xikeng bridge. Geographically, it is situated on the western side of
the mountain, in Tamkou Village, Xidi Town, Yixian County, Huangshan City. The surface
vegetation on the mountain is characterized by bamboo forests, low shrubs, trees, and low
weeds. The terrain is steep, with a natural slope ranging from 30° to approximately 55°.
The tunnel is surrounded by dense mountain vegetation, and the entrance and exit are
marked by ravine confluence, making traffic inconvenient. The perimeter rock grade is
classified as IV, and the excavation employs the three-step method.

The tunnel is situated in the low hills, originating from Huangshan Mountain. It is
characterized by undulating terrain with mountain elevations ranging from 250 m to 325 m
and a maximum elevation difference of approximately 75 m. The mountain exhibits a
monoclinic structure, with steeper south and north slopes. The tunnel primarily traverses
carbonaceous mudstone of the Cambrian Hotang formation, with a maximum tunnel depth
of about 65 m. (Refer to Figure 2 for a visualization of the tunnel cross-section.)

To ensure the safety of tunnel construction operations, a total station is utilized for
manual measurement of tunnel settlement and convergence. This paper involves monitor-
ing the settlement of the tunnel vault and tunnel convergence utilizing the rear rendezvous
method and the opposite side measurement method, respectively. For arch settlement
monitoring, a single monitoring point is positioned at the arch of each section. In contrast,
for tunnel convergence monitoring, two monitoring points are symmetrically arranged on
both sides of the tunnel, employing the opposite side measurement method. Consequently,
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three monitoring points are allocated in each section, with a monitoring frequency of
2 times/day. Further details are depicted in Figure 3.

Elevation (m) PP e = Nt Gravelly Soil
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285 ]

278 ] < Topographic line of a structure
2654 Chizhou Z NS Yixian East
—\Z Nixias

4 57 Left line rail surface elevation
255 -M
145 ==

00

4

/ / Carbonaceous mudstone

DK115+387.900

D

Figure 2. Tunnel section.

3
1

Figure 3. Tunnel deformation monitoring and measurement: (a) tunnel monitoring point layout, (b)
manual monitoring and measurement.

As shown in Figures 4 and 5, this paper examines the monitoring data regarding tunnel
settlement and convergence in the section from DK115 + 261~DK115 + 290. Additionally,
the data from monitoring points are counted. The cumulative deformation-time diagram
and deformation rate-time diagram of tunnel settlement and convergence are obtained,
respectively.

In Figure 4, it is evident that both the cumulative tunnel settlement deformation and
the cumulative tunnel convergence deformation exhibit an increasing trend over time.
Notably, after 1000 h, the growth of these deformation measures reaches a turning point,
transitioning into a slower growth trend. Throughout the monitoring period, the data
display both significant and minor fluctuations, which can be effectively analyzed using
multiple fractal theory.

Looking at Figure 5, it is apparent that both the tunnel settlement deformation rate and
the tunnel convergence deformation rate demonstrate significant and minor fluctuations,
displaying the characteristic traits of multiple fractals. These fluctuations can be effectively
analyzed using multiple fractal theory.
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Figure 4. Tunnel cumulative deformation-time diagrams: (a) tunnel cumulative settlement-time
diagram, (b) tunnel cumulative convergence—time diagram.
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Figure 5. Tunnel deformation rate-time diagrams: (a) tunnel settlement rate—time diagram, (b) tunnel
convergence rate-time diagram.

165




Fractal Fract. 2024, 8, 108

2.2. MF-DFA

The MF-DFA model, which belongs to the multiple non-uniform fractal method, not
only reveals the multiple fractal characteristics within the deformation sequence but also
effectively evaluates their deformation trends [55]. The calculation steps are as follows:

Step 1: the data presented in Figures 4 and 5, respectively, are set as a time series x(t)
with a series length of N, a series mean of ¥, and a series of cumulative deviations of x(t)

with respect to ¥ as y/(t):
t

y(t) =} (x() = x) 1)
i=1

Step 2: Set a time scale s. Equalize the sequence y(t) in terms of s, dividing it into a
total of m equal-length consecutive and non-overlapping sub-intervals, m = int(N/s).

In practical arithmetic, N may not necessarily be divisible, resulting in potential tail
data redundancy. Thus, alongside positive-order division, a reverse-order processing
method is also employed simultaneously. The division operation is repeated from the end
of the sequence to obtain 2m subintervals.

Step 3: Fit a trend to each subinterval and subtract the trend portion from the original.
Obtain the corresponding residual series denoted as z,(t):

zo(t) = yo(t) — P5 (1) 2)

where y,(t) represents the subinterval, and p%(t) is a kth order fitting polynomial to the vth
subinterval. v ranges from 1 to 2 m, and ¢ ranges from 1 to s.
Step 4: calculate the mean square deviation F2 (s, v) of the residual sequence z, ()

F2(s,0) = t_i1<zv<t>>2 3

Step 5: Optimize the traditional MF-DFA division by employing a sliding window,
which involves moving the values through a window of a specific length along the sequence
at a defined step size. This helps to minimize pseudo-fluctuations in the data and maximize
the utilization of data information.

The window length is denoted as s, the sequence length as N, and the sliding step
is set to 1. The number of subintervals obtained in one runis N — S + 1, and the g-order
fluctuation function is calculated according to Equation (4):

N—s+1 1/q
{leﬂ L [Fz(srv)}q/z} 470

Fyls) = U:leerl @)
exp{ ol L In[F(0)] fa =0

Step 6: Repeat the previous steps to generate a series of point values for s-F;(s). If this
time series exhibits a long-range correction, then F,(s) has a power-law relationship with s,
as shown in Equation (5):

Fy(s) sh) (5)

By taking the logarithms of both sides of the previous equation, we obtain Equation (6):

IgFy(s) = h(q)lgs +Igb (6)

where F;(s) represents the g-order fluctuation function of the series, /(q) is the correspond-
ing generalized Hurst exponent, and b is a constant coefficient.

A plot of IgF;(s)-Igs was created and fitted to determine the generalized Hurst ex-
ponent h1(q). A fixed h(g) suggests a mono-fractal sequence without multifractal features.
When h(q) < 0.5, the data sequence behaves as a memory process with inverse persistence.
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A value of h(g) = 0.5 indicates uncorrelated stochastic behavior. For h(g) > 0.5, the data
sequence behaves as a memory process with positive persistence. Values of () > 1
indicate long-range positively correlated processes with strong non-stationarity.

Step 7: the multifractal spectrum f (), which characterizes the fractal intensity and
singularity of the time series, can typically be determined using Equation (7):

T(q) = qh(q) — 1
a=1(q) )
fla) =ga —7(q)

where 7(g) is the Renyi index, also known as the scalar function. If it is a nonlinear up-

convex function of g, the displacement sequence exhibits multifractal characteristics. If it is

a linear function of ¢, the displacement sequence exhibits single fractal characteristics.
Step 8: calculate the multifractal spectral parameter Aw and Af(«).

A = Qmax — Qpin
{Af () = Af (@max) — Af (&in) ®)

where the Ax parameter is mainly used to evaluate the width of the multifractal spectrum
of the data deformation sequence. As the value of A« increases, the intensity of multiple
fractals becomes stronger, leading to more intense fluctuations. The Af(«) parameter is
mainly used to evaluate the proportion of large and small fluctuations in the waveform of
the data deformation sequence. As the value of Af(«) decreases, the proportion of large
fluctuation waveforms increases.

2.3. M-K Test Method

The M—K test method is a non-parametric method. Non-parametric tests are also
known as non-distributional tests. It has the advantage that the sample does not have to
follow a particular distribution and is not affected by a few outliers. It is suitable for type
and order variables, and it is relatively simple to calculate [56]. The specific calculation
steps are as follows:

Step 1: The 12 sets of eigenvalues obtained from each set of data by the formula
in 2.2 are set as a time series of 12 sample sizes {x1,x,...... ,X12}. For all k(j < n and
k # j), the distributions of x and x; are different and the difference function Sgn (x]- — xk)
is computed:

+1, (xj—x) >0
Sgn(xj—x) =40, (xj—x)=0 ©)
-1, (x] — xk) <0

Step 2: calculate the test statistic S:

n=1 n
S=1Y. ) Sgn(xj—x) (10)
k=1 j=k+1

Step 3: S is normally distributed with mean 0. Calculate the variance Var(S):

n(n—1)(2n+5)

= 11
Var(s) 13 (11)
Step 4: calculate the standard normal statistical variable Z:
S—1
Ok 5$>0
Z = 0 §=0 (12)

5+/1 S<0

\/Var(s)’
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Step 5: The trend characteristics of the corresponding evaluation object can be judged
by the size of Z. The Z, value is the critical value under the condition of corresponding
significant level a. In this paper, the significance test with 99% confidence level is selected.
That is, for a significance level & = 0.01, then Zyy; = 2.32.

If Z > Z,, it means that the evaluation object has an increasing trend, and if it is larger,
it indicates a stronger trend.

If —-Z, < Z < Z,, it means that the evaluation object has a smooth trend.

If Z < —Z,, it means that the evaluation object has a decreasing trend, and if it is
smaller, it indicates a stronger trend.

2.4. PSO-LSTM Prediction Modeling
24.1. LSTM

LSTM, a special variant of recurrent neural networks, was introduced by Hochreiter
in 1997 [57]. It incorporates temporal memory units capable of learning dependency
information across various time periods in a time series. This network is particularly
effective at processing and predicting intervals and delayed events within time series data.
The specific calculation steps are as follows:

Step 1: tunnel monitoring statistics are normalized and calculated by the formula:

2
I

1 n
S = Y. Sgn(xj— xi) (13)
k=1 j=k+1

where x(i, j) represents the original data, (i, j) denotes the normalized data, and Xy, (f)
and x,,i;, (j) are the maximum and minimum values of the parameters of the jth model,
respectively.

Step 2: LSTM consists of multiple cells, and the formulae for the forgetting gate, input
gate, and output gate in each cell are:

ft = O'(tht—l + fot + bf)
ir = oc(Wihi—1 + Wixe + ;) (14)

where hi;_1 represents the hidden state from the previous moment, and ¢ denotes the
sigmoid function. f;, iy, and O; are the outcomes of the state settlements for the oblivious
gate, the input gate, and the output gate, respectively. Wy, W;, and W, are the weight
matrices for the oblivious gate, the input gate, and the output gate, respectively. by, b;, and
b, represent the biases for oblivious gate, the input gate, and the output gate, respectively.

Step 3: C; is a vector of candidate values, and the product of the input values and the
vector of candidate values is used to update the cell state, calculated as:

C = tanh(Wcht,1 + Wexy + bc)
Ct = fiCi1 +1C
hy = ostan h(C;) (15)
f(x) = 1;?
f(x) = tanh(x)
where W, represents the weight matrix for the input unit state, while b, is the bias term for

the input unit state. The activation function is tan . o; denotes the neuron output value. /;
is the current moment’s hidden state.

2.4.2. PSO

PSO is inspired by the behavior of birds foraging in nature. In this algorithm, each
optimization problem is referred to as a “particle”, and the process of particle swarm
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optimization is likened to the foraging behavior of a bird flock. These particles are equipped
with a memory function to store optimization information, which is then shared within the
flock. The optimal position information is subsequently selected as the optimal position
information of the entire flock [58].

During each iteration, the position information of each particle is updated. The
change in the position information x;‘d for the ith evolutionary example consists of a linear

summation of the previous position information xf.‘dfl and the previous velocity information
k-1,
e k k—1
=V (16)

Furthermore, each particle possesses a velocity vector that dynamically changes
in real time due to various factors. It includes the example velocity information Vl’; of

the ith evolution, with the previous velocity WVI.’ZI_l, the individual optimal position
Cin (pbestld k 1) and the population optimal position Cyr; (gbestid - xi.‘dfl). The for-
mula is as follows.

Vld = WVilffl +Cin (pbest — xld ) + Corp (gbest - xkd 1) 17)
where Cy and C, are acceleration constants, and r; and r, are random functions.

2.4.3. PSO-LSTM

LSTM demonstrates exceptional feature extraction capabilities from data exhibiting
spatial and temporal correlation. This study applies the LSTM model for predicting tunnel
settlement data. In order to further reduce the model error, PSO is employed to optimize
the LSTM parameters and establish the PSO-LSTM model.

The LSTM model is constructed and trained using the training set. Subsequently,
the prediction results and the actual values are compared and analyzed for error in the
test set. The accuracy of the model is assessed using three indicators: the coefficient of
determination (R?), the mean absolute error (MAE), and the root mean square error (RMSE).
The calculation formula is:

R2—1— ?’:1[yc(i)*yo(i)]2
T [yo (i) 7]
MAE = 37 ye(i) = yo(i)| (18)

RMSE—¢ S0 [ye (i) — yo ()2

where 1 represents the number of predicted outcomes, y, (i) represents the true outcome,
yc(i) represents the predicted outcome, and ¥, represents the mean of the true values.

3. Results and Discussion
3.1. Multifractal Characterization of Tunnel Deformation Rates
3.1.1. Characterization of Tunnel Deformation Rate Data

Before investigating the multifractal characteristics of the deformation rate of tunnel
settlement and convergence, the basic statistical characteristics of the sample data should
be understood. Here, the descriptive statistics of the monitoring data in Figure 2 are shown
in Table 1.

According to the K-S criterion [59,60], the four evaluation indexes for average, stan-
dard deviation, skewness, and kurtosis are considered:

1. From the average: the average tunnel deformation rate of each cross-section is greater
than 0, which shows positive deformation.

2. From the standard deviation: The standard deviation values of the tunnel deformation
rate at each cross-section are close. In the deformation rate of tunnel settlement, the
standard deviation at DK115 + 280 is the largest, which can be visualized in Figure 2a.
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In the deformation rate of tunnel convergence, the standard deviation at DK115 + 270
is the largest, which can be visualized in Figure 2b. The standard deviations are all
close to or greater than the mean, indicating a greater degree of dispersion in the data.

3. From the skewness: The skewness value of each cross-section is greater than 0,
indicating that the data distribution is right-skewed. That is, the dispersion on the
right side of the mean is stronger than that on the left side, showing a certain degree
of long tail on the right side. All skewness values are greater than the mean and
standard deviation, indicating a greater degree of skewness in the data distribution.

4. From the kurtosis: the kurtosis value for each cross-section is greater than 0, indicating
that the peaks of the data are steeper than the peaks of the normal distribution
resulting in a spiky state.

Table 1. Descriptive statistics of monitoring data.

Typology Cross-Section Average Standard Deviation Skewness  Kurtosis J-B Statistic
(mm) (mm)

DK115 + 261 0.2611 0.4294 0.5138 0.2869 7.3987

Tunnel settlement DK115 + 270 0.2343 0.4292 0.8202 0.6275 20.6918
deformation rate DK115 + 280 0.3354 0.4405 0.7564 0.7089 13.7218
DK115 + 290 0.3454 0.4327 0.7001 0.9317 13.0826

DK115 + 261 0.2711 0.3971 0.4901 0.3564 7.0700

Tunnel convergence DK115 + 270 0.2509 04171 0.3174 0.0704 2.7189
deformation rate DK115 + 280 0.3469 0.3950 0.7898 1.5932 24.7456
DK115 + 290 0.3686 0.3523 0.8295 1.7593 27.0453

In summary, the combined Jarque-Bera (J-B) statistic results are all significantly greater
than 0. Under the joint effect of kurtosis and skewness, the deformation rate of each cross-
section does not follow a normal distribution. This means that the deformation rate of
the tunnel has obvious fractal characteristics, which can be investigated by the relevant
methods of fractal theory.

3.1.2. Multifractal Analysis
1.  MEF-DFA key parameter settings

The values of the parameters in multifractal theory affect the calculation results
in different ways. The features of the non-stationary time series differ significantly in
various scenarios, including the length of the signal time window and the fluctuation
trend. Therefore, the key parameters need to be tried and predicted to estimate more
reliable results.

In order to effectively use multiple fractal theory to analyze the fractal characteristics of
the tunnel displacement deformation rate, a double logarithmic scatterplot of [gF,(s) — Igs
is plotted by varying the fluctuation order g (g € [-10, 10]). Least squares fitting was
used with the slope of the generalized Hurst exponent /(q). Taking a set of multifractal
features of tunnel settlement deformation rate and tunnel convergence deformation rate
as an example, Figure 6 shows the trend of the g-order fluctuation function IgF q(s) —lgs
through double logarithmic fitting.

The curve-fitting for the tunnel section settlement rate in Figure 6a shows better results
when the value of Igs ranges from 1.5 to 1.65. At this time, the multifractal time length s is
set as smin = 32 and smax = 45.

The curve-fitting for the tunnel section convergence rate in Figure 6b demonstrates
improved performance when the value of Igs ranges from 1.1 to 1.4. At this time, the
multifractal time length s is set as smin = 13 and smax = 25.
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Figure 6. Trend plot of g-order fluctuation function IgF q (s) — Igs double logarithmic fit: (a) settlement
rate of section DK115 + 261, (b) convergence rate of section DK115 + 261.

2. Multifractal characterization of tunnel deformation rates

According to the settings of the above parameters, the data series for tunnel settlement
deformation rate and tunnel convergence deformation rate were subjected to multifractals
using MATLAB software (R2018b), respectively. The variation of the generalized Hurst
index of the tunnel deformation rate data series is shown in Figure 7. The variation of the
scalar function 7(g) of the tunnel deformation rate data series is shown in Figure 8. The
multifractal spectrum of the tunnel deformation rate data series is shown in Figure 9.

1.1 0.8
' DK115+261 —— DK115+261
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Figure 7. Variation of generalized Hurst index: (a) tunnel settlement rate; (b) tunnel convergence rate.
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Figure 9. Multifractal spectrum: (a) tunnel settling rate; (b) tunnel convergence rate.

As can be seen from Figure 7, as g ranges from —10 to 10, the generalized Hurst index
of each section measured data is non-constant. Rather, it exhibits a nonlinear decreasing
trend with the change of g, suggesting that the measured data of each cross-section display
clear multifractal characteristics. When h(g) < 0.5, the data series exhibits a memory
process with inverse persistence, while /1(g) > 0.5 indicates a memory process with positive
persistence.

As can be seen from Figure 7a, at different fluctuation orders g, the generalized Hurst
exponent curves of tunnel settlement rate at DK115 + 290 are concentrated in the lower
fluctuations of the other sections. This indicates a weak multifractal nature.

As can be seen from Figure 7b, at different fluctuation orders g, the generalized Hurst
exponent curves of the tunnel convergence rate of DK15 + 261 concentrate in the lower
fluctuations of the other sections. This indicates a weak multifractal nature.

On the basis of h(g), the Renyi index, i.e., the scaling function 7(g), is calculated. As
can be seen from Figure 8, the consistency of the scalar function of the monitoring data of
each cross-section is good, and the central part is up-convex, which satisfies T7(0) = —1.
Additionally, there is an overall nonlinear relationship, which further confirms that the
monitoring data of each section have multifractal characteristics.

As can be seen from Figure 9, each image of the multifractal spectrum shows a single-
peak convex distribution, which resembles a quadratic function curve. The local scales of
the multiple fractals of the deformation rate of the tunnel in each section are not constant,
reflecting the diversity of local variations at different moments. The singularity intensity a
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is mainly concentrated on the two sides of the image, reflecting the uneven distribution
of the fractal structure of the data series. The uneven distribution of « also confirms the
multifractal characteristics of the measured point series; f(a) characterizes the fractal
dimension of the subintervals of the data series with the same singularity index «, which is
correlated with the distributional characteristics and fractal intensity of the data series. The
statistics of the multifractal features of the tunnel settlement rate and tunnel convergence
rate measurement data sequences are calculated from Equation (8), as shown in Table 2.

Table 2. Multifractal characterization statistics.

Cross-Section 311154261 DK115+270 DK115+280 DKI115 + 290

Feature
Tunnel settlement rate Aw 0.4829 0.3946 0.4187 0.5547
Af () —0.4415 —0.3198 —0.2551 —0.2704
Tunnel convergence rate A 0.5042 0.5411 0.5069 0.3674
Af(w) —0.4360 0.3663 0.3860 —0.0455

As can be seen from Figure 9a, the fractal spectrum of the tunnel settlement rate
measurement data series for each section shows a clear right hook, indicating that the
influence of small fluctuations is dominant. The results indicate that the tunnel settlement
rate primarily exhibits minor fluctuations throughout the entire monitoring process. During
the tunnel construction process, the settlement of the tunnel vault is minimally impacted by
excavation and other external influences, remaining within the normal range of settlement
changes.

As can be seen from Figure 9b, the sequence fractal spectrum of the tunnel convergence
rate measurement data of DK115 + 290 is basically symmetrical, with good overall synergy
and a stable development state. The sequence fractal spectrum of the tunnel convergence
rate measurement data of DK115 + 261 shows an obvious right hook, indicating that the
influence of small fluctuations is dominant. The fractal spectrum of the sequence of the
tunnel convergence rate measurement data of DK115 + 270 and DK115 + 280 shows an
obvious left hook, indicating that the influence of large fluctuations is dominant.

The fluctuation of the tunnel convergence rate in section DK115 + 290 remains stable
throughout the entire monitoring process. During the tunnel construction process, the
tunnel convergence in this section is minimally affected by excavation and other external
influences, remaining within the normal range of convergence changes. Similarly, in section
DK115 + 261, the tunnel convergence rate primarily exhibits minor fluctuations, with
the tunnel convergence being less affected by excavation and other external influences,
and remaining within the normal range of convergence changes. However, in sections
DK115 + 270 and DK115 + 280, the tunnel convergence rate predominantly displays sig-
nificant fluctuations. During the tunnel construction process in these sections, tunnel
convergence is greatly affected by excavation and other external influences, leading to
sudden changes. Consequently, it is imperative to reinforce monitoring in these areas.

Comparison of multifractal spectral width (Ax). For the tunnel settlement rate mea-
surement data series, the multifractal spectral width Ax = 0.5547 for DK115 + 290 is the
maximum value. It shows that its multifractal intensity is larger, and the fluctuation is
more intense and complex. The multifractal spectral width Ax = 0.3946 of DK115 + 270 is
the minimum value. It shows that its multifractal intensity is smaller, and the fluctuation
is smoother. For the tunnel convergence rate measurement data series, the multifractal
spectrum width Ax = 0.5411 for DK115 + 270 is the maximum value. It shows that its
multifractal intensity is larger, and the fluctuation is more intense and complex. The multi-
fractal spectral width Ax = 0.3674 of DK115 + 290 is the minimum value. It shows that its
multiple fractal intensity is smaller, and the fluctuation is smoother. The results suggest
that a larger Aa corresponds to more dramatic and intricate fluctuations, while smaller
data changes indicate that tunnel deformation is less affected by external influences such
as excavation. Overall, the multiple fractal spectral widths of the measured data series
of the tunnel settlement rate and tunnel convergence rate of the same section show an
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inverse change relationship, and the sum of the two is stable between 0.9 and 1, as shown
in Figure 10a.
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Figure 10. Plot of multifractal feature statistics: (a) multifractal spectral width Ax; (b) proportion of
size fluctuations Af («).

Compare the proportions of large and small fluctuations (Af(«)). For the tunnel
settlement rate measurement data series, the Af(a) in DK115 + 280 is Af(a) = —0.2251,
which is the maximum value. This indicates that the proportion of small fluctuations is
larger. The Af(a) for DK115 + 261 is Af («) = —0.4415, which is the minimum value. This
indicates that the proportion of small fluctuations is small. For the tunnel convergence
rate measurement data series, the Af(«) for DK115 + 280 is Af(«) = 0.3663, which is the
maximum value. This indicates that the proportion of small fluctuations is larger. The
Af(a) for DK115 + 261 is Af (¢) = —0.4360, which is the minimum value. This indicates
that the proportion of small fluctuations is small. The findings suggest that a larger Af(«)
corresponds to small data changes, indicating that tunnel deformation is less affected by
external influences such as excavation. Overall, the Af(«) in the measured data series of
the tunnel settlement rate and tunnel convergence rate of the same section shows the same
directional change relationship, as shown in Figure 10b.

3.2. Tunnel Deformation Warning Classification Study
3.2.1. Tunnel Deformation Warning Level Classification Criteria

Based on the research results in the literature [31,61,62], the tunnel displacement
monitoring criterion is constructed through the Ax and Af(a) parameters derived from the
tunnel displacement monitoring data in order to realize the tunnel displacement warning
level classification. The specific criteria are set as shown in Table 3.

Table 3. Tunnel warning level classification criteria.

Warning Level Aw Indicator Criterion  Af(«) Indicator Criterion Treatment Measures

Suspend construction. Use additional temporary
Decreasing trend Increasing trend support, grouting, and other measures to
reinforce the deformed section.

I

Conduct a comprehensive evaluation of design

and construction measures, reinforce monitoring
Other trend combinations and measurement protocols, develop disaster
prevention plans, and implement appropriate
engineering countermeasures when necessary.

1

Steady trend Steady trend Normal construction.
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3.2.2. Warning Classification of Tunnel Deformation

The trends of the two indicators need to be satisfied at the same time. In case of
inconsistency in warning levels, the final warning level is determined according to the
most unfavorable principle.

The tunnel displacement monitoring data in Figure 4 are used to obtain the required
sets of Ax and Af(a) parameters. In order to realize the trend judgment of the two
discriminant indicators, 100 groups of tunnel displacement monitoring data are divided
into one group. Synthesizing the actual situation and monitoring data, a total of 12 groups
are divided. Additionally, calculate Ax and Af(«x) parameters for each group of tunnel
displacement monitoring data, as shown in Figure 11.
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Figure 11. Calculated values of Ax and Af(a) parameters: (a) Ax parameter values for tunnel

settlement, (b) Af(x) parameter values for tunnel settlement, (c) Ax parameter values for tunnel

convergence, (d) Af («) parameter values for tunnel convergence.

The trends of the two discriminant indicators were judged using the MK test to
achieve the early warning grading of tunnel displacement. The results are analyzed
as follows:

The analysis of Ax index criterion results: Through calculations and statistical analysis,
the results of the Aa index criterion are obtained (see Table 4). In the cross-section
settlement monitoring data, the Z values for DK115 + 261 and DK115 + 270 fall within
the range [—2.32, 2.32], which is a steady trend. The Z value for DK115 + 280 is less
than —2.32, which is a decreasing trend. The Z value for DK115 + 290 is more than 2.32,
which is an increasing trend. In the cross-section convergence monitoring data, the Z
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value for DK115 + 280 falls within the range [-2.32, 2.32], which is a steady trend. The
Z values for DK115 + 261 and DK115 + 290 are less than —2.32, which is a decreasing
trend. The Z value for DK115 + 270 is more than 2.32, which is an increasing trend.
The analysis of Af(«) index criterion results: Through statistical calculations, the
results of Af(«) index criterion are obtained (see Table 5). In the section settlement
monitoring data, the Z value for DK115 + 261 falls between the ranges [—2.32, 2.32],
which is a steady trend. The Z value for DK115 + 270 is greater than 2.32, which is an
increasing trend. The Z values for DK115 + 280 and DK115 + 290 are less than —2.32,
which is a decreasing trend. In the section convergence monitoring data, the Z values
for DK115 + 261, DK115 + 270, and DK115 + 280 fall within the range [—2.32, 2.32],
which is a steady trend. The Z value for DK115 + 290 is less than —2.32, which is a
decreasing trend.

The analysis of final warning results: On the basis of the results for the Ax indicator
criterion and A f(«) indicator criterion, the final warning results of the four monitoring
cross-sections are analyzed (see Table 6). In the section settlement, the warning level
for DK115 + 261 is level 111, and all other sections are at level II. In section convergence,
the warning level of DK115 + 280 is grade III, and all other sections are grade IL
Therefore, according to the most unfavorable principle of synthesis, the final warning
level of the four sections are all level II. That is, monitoring and measurement should
be strengthened, and corresponding engineering countermeasures should be taken
if necessary.

Table 4. Results of the Ax indicator criterion.

Section Settlement Section Convergence
Cross-Section
Z-Value Growing Trend Z-Value Growing Trend
DK115 + 261 —1.3540 Steady trend —2.5849 Decreasing trend
DK115 + 270 —0.8616 Steady trend 5.0468 Increasing trend
DK115 + 280 —2.5849 Decreasing trend —0.8616 Steady trend
DK115 + 290 5.5391 Increasing trend —2.8311 Decreasing trend

Table 5. Results for the Af(«) indicator criterion.

Section Settlement

Section Convergence

Cross-Section

Z-Value Growing Trend Z-Value Growing Trend
DK115 + 261 2.0926 Steady trend 1.6002 Steady trend
DK115 + 270 2.8311 Increasing trend —0.3693 Steady trend
DK115 + 280 —2.5849 Decreasing trend —0.8616 Steady trend
DK115 + 290 —4.3082 Decreasing trend —5.2929 Decreasing trend
Table 6. Final warning results of tunnel displacement.
Cross-Section DK115 + 261 DK115 + 270 DK115 + 280 DK115 + 290
Section settlement I I II I
Section convergence I I I I
Combined warning levels II II 1I II

3.3. Tunnel Settlement Prediction
3.3.1. Prediction Model Selection

In order to select the tunnel settlement prediction model, the performance of the PSO-
LSTM and Back Propagation Neural Network (BP-ANN) prediction models is compared
and analyzed. The monitoring data of section DK115 + 261 is used as the sample data to
establish the settlement prediction model of PSO-LSTM and BP-ANN. 80% of the data is
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used as the sample training set, and 20% of the data is allocated to the test set. The delay
step of prediction model is set to 6, and the prediction is carried out across 1 time point.
The adaptation change curve of PSO-LSTM and BP-ANN are shown in Figure 12.
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Figure 12. Adaptation change curves for different prediction models: (a) PSO-LSTM adaptation
change curve; (b) BP-ANN adaptation change curve.

The tunnel section settlement is predicted, and the prediction results of the two models
are compared. The tunnel settlement prediction results for different models are shown in
Figure 13. Further, the performance of each model is evaluated using the model evaluation
index. The calculation results of the evaluation indexes for the model test set are shown in
Table 7. PSO-LSTM predicts significantly better than BP-ANN. Consequently, PSO-LSTM
was selected for predicting tunnel settlement data.
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Figure 13. Tunnel settlement prediction results for different prediction models: (a) PSO-LSTM
prediction results; (b) BP-ANN prediction results.

Table 7. Results of calculated performance evaluation for the model.

Prediction Model R? MAE RMSE
PSO-LSTM 0.98 0.05 0.06
BP-ANN 0.71 0.16 0.18
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3.3.2. Optimization of PSO-LSTM Parameters

To make the forecast results more concise, subsequent forecasts will be conducted
daily. A program was written using Python software (3.9.5) to optimize the parameters
of the LSTM prediction model using the PSO algorithm program. The parameters in PSO
are set and a range is delineated for the optimization parameters in LSTM: the number of
neurons ranges from 10 to 200, the number of training rounds ranges from 10 to 100, and
the batch size ranges from 1 to 10. Initialize each parameter of the PSO-LSTM prediction
model. Since the total amount of monitoring data is different for each section, after each
set of data is input into the PSO program and finishes running, the optimal number of
neurons, the number of training rounds, and the batch size of the model are obtained for
the 4 groups. The details are shown in Table 8.

Table 8. PSO-LSTM optimal parameters.

Optimal Parameter =~ Number of Neurons Training Rounds Batch Size
DK115 + 261 77 72 1
DK115 + 270 82 72 1
DK115 + 280 11 99 6
DK115 + 290 20 81 2

3.3.3. PSO-LSTM Prediction Results

In this study, the PSO-LATM prediction model was constructed using the Python
software platform to complete the prediction analysis of cumulative tunnel settlement. The
parameters for the LSTM neural network were calculated by PSO. Eighty percent of the
data from each section was used as a sample training set and 20% as a test set. R?>, MAE,
and RMSE were used as evaluation indexes for predicting accuracy. Tunnel settlement was
predicted for the next 5 days, and the prediction results are shown in Table 9.

Table 9. Predicted cumulative tunnel settlement values.

Test Set Evaluation Metrics Predicted Results
Cross-Section
R? MAE RMSE Day 1 Day 2 Day 3 Day 4 Day 5
DK115 + 261 0.96 0.28 0.06 18.80 18.81 18.81 18.82 18.82
DK115 + 270 0.97 0.10 0.01 18.31 18.32 18.34 18.35 18.36
DK115 + 280 0.98 0.04 0.04 17.50 17.51 17.51 17.51 17.52
DK115 + 290 0.98 0.02 0.02 16.52 16.54 16.55 16.57 16.59

For the test set results of settlement prediction for four cross-sections, the test set R
values for the prediction model are 0.96, 0.97, 0.98, and 0.98. The MAE values are 0.28, 0.10,
0.04, and 0.02. The RMSE values are 0.06, 0.01, 0.04, and 0.02. Among these, the closer the
R? values for prediction result converge to 1, the smaller the MAE and RMSE become, and
the higher the model prediction accuracy is. Therefore, the settlement prediction results of
the PSO-LSTM settlement prediction model for the four sections are analyzed. The model’s
predictions for the tunnel section settlement are in good agreement with the measured
data.

Analyzing the prediction results, the future settlements of the four sections generally
show a slowly increasing trend. The accuracy of tunnel warning classification is further
verified, and, based on the evaluation indexes, the PSO-LSTM model demonstrates high
accuracy in predicting tunnel settlement.

4. Conclusions

In this study, the multifractal theory was utilized to the analyze tunnel deformation,
and the sliding time window was employed to enhance the segmentation of traditional
multifractal subintervals. Furthermore, the M—K analysis method was utilized to ascertain
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the multifractal feature trends and establish the warning level for the tunnel section. Subse-
quently, the accuracy of the warning level was validated by predicting tunnel settlement
using the PSO-LSTM prediction model. The following conclusions were drawn:

1. The tunnel settlement and convergence rates of the four sections exhibit distinct fractal
sequence characteristics. The width of the multifractal spectra in the measured data
series of tunnel settlement rate and tunnel convergence rate within the same section
shows an inverse relationship, with the sum of the two remaining stable between 0.9
and 1. Additionally, the proportion of size fluctuations in the measured data series of
the tunnel settlement rate and the tunnel convergence rate within the same section
demonstrate a consistent trend.

2. The analysis of tunnel settlement prediction indicates that the PSO-LSTM prediction
model delivers superior predictive performance and stability in tunnel settlement
forecasts.

3. A comprehensive analysis of the tunnel warning level and tunnel settlement predic-
tion results reveals a class II tunnel deformation warning level, which aligns with the
actual tunnel conditions. This approach, leveraging quantitative data as a reference,
enables a more precise determination of the tunnel warning level.
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Abstract: With the development of infrastructure construction in mountainous areas, the number of
new extra-long tunnels is increasing. However, these tunnels often face the challenge of complex and
variable surrounding rock grades, resulting in a large number of overbreak and underbreak due to
the untimely adjustment of smooth blasting parameters. This study focuses on the optimization of the
peripheral hole charging structure and blasting parameters for extra-long hard rock tunnels, aiming
to improve the effectiveness of smooth blasting technology. The results of this study demonstrate a
significant improvement in the effect of smooth blasting after implementing bidirectional polymer-
ization blasting in the tunnel. A comparison between the bidirectional shaped charge and spaced
decoupled charge blasting reveals that the former yields better results. To obtain accurate data on the
tunnel section profile during excavation, a laser cross-section meter is used for measurement. Fur-
thermore, this study quantitatively compares the optimization effect of smooth blasting parameters.
The multifractal characteristics of the tunnel profile overbreak point sequences are analyzed under
different smooth blasting schemes using the multifractal detrended fluctuation analysis (MF-DFA)
method. It is found that both the spaced decoupled charge and the bidirectional shaped charge
blasting exhibit multifractal features in the overbreak measurement point sequences. The calculation
results of the multifractal features of the tunnel profile under different smooth blasting plans are in
line with the actual situation.

Keywords: extra-long tunnel; smooth blasting; laser profiler; overbreak and underbreak; multifractal
detrending fluctuation analysis

1. Introduction

With the rapid development of economic globalization, the scale and quantity of
railroad tunnel construction in China have significantly increased. China has the largest
number of tunnels, the fastest development speed, and the most complex geological and
structural forms in the world [1]. By the end of 2022, the total mileage of China’s railroads
reached 155,000 km, with over 42,000 km of high-speed railroads in operation. Among
them, 4178 high-speed railroad tunnels, totaling 7032 km, have been constructed, including
105 tunnels longer than 10 km, with a total length of approximately 1339 km. In recent
years, the construction of extra-long railroad tunnels in China has rapidly advanced. With
the gradual expansion of the construction scale of railroad tunnels, tunnel construction
technology is also in constant development [2].

In the process of constructing extra-long tunnels, excavation is the most critical and
time-consuming process, which significantly impacts the construction period. Long tunnels
have limited working faces, large project volumes, complex hydrogeological conditions,
and numerous uncontrollable factors [3,4]. As a result, the construction period of extra-long
tunnels is typically the determining factor for the overall project. With the development of
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infrastructure construction in mountainous areas, the number of new extra-long tunnels is
on the rise. This increase in tunnel construction complexity, longer construction periods,
and higher construction risks pose challenges for dealing with complex geological condi-
tions [5]. Blasting is the first and most crucial process in tunnel excavation, and subsequent
processes such as mucking and support are based on successful blasting operations [6].
The effectiveness of blasting has a significant impact on project progress, quality, and
cost [7], particularly in long hard rock tunnels where smooth blasting plays a critical role in
maintaining the construction schedule [8,9]. Therefore, how to ensure the effects of smooth
blasting in extra-long tunnels will be a difficult problem in tunnel construction.

The effectiveness of smooth blasting in extra-long tunnels is influenced by various
complex factors. In addition to the blasting parameters (perimeter hole spacing, charge,
decoupling coefficient, and minimum burden), the surrounding rock conditions (degree of
fissure development, rock properties, and rock strength) and drilling accuracy also play
important roles [10-13]. Therefore, in tunnels with complex geological conditions and
variable surrounding rock grades, the untimely adjustment of blasting parameters often
leads to a large number of overbreak and underbreak, resulting in project delays [7,14-17].
Relevant project data indicate that the time spent on dealing with construction quality
issues such as overbreak accounts for 30% of the total construction period of the tunnel [18].
Overbreak not only increases the amount of concrete required for the initial support or
even the secondary lining, but also affects the safety of the tunnel cavity [19]. Addressing
underbreak is also a critical aspect of tunnel construction. If underbreak is treated using
drill and blast methods, it can be time-consuming, and dynamite blasting to address
undercutting may lead to overbreak.

It is well-known that new blasting methods such as supercritical carbon dioxide,
soundless chemical demolition agents, and high-pressure gas expansion have the advan-
tages of safety and environmental protection [20,21]. These new blasting methods can
effectively control the overbreak and underbreak problems of tunnel blasting. However,
due to the high cost of new blasting, it cannot be widely used in extra-long hard rock tun-
nels. Traditional blasting is widely used in extra-long tunnels due to its mature technology
and economic benefits. Currently, the optimization of blasting parameters and improve-
ment of blasting equipment are the main focus in the research of extra-long hard rock
tunnel blasting technology [10,22]. The efficiency of blasting construction is a crucial factor
that determines the progress of the entire project. To optimize the drilling and blasting
technology for rapid tunnel boring in hard rock tunnels, scholars have conducted research
on explosive selection, drilling accuracy, trenching program, blasting footage, detonation
network, and other aspects [3,10,23]. Through the improvement of blasting parameters and
blasting equipment, the efficiency of extra-long hard rock tunnel boring projects has signifi-
cantly improved. Some scholars have optimized the blasting parameters using evaluation
and prediction models [24-27]. For instance, Jang et al. [28] predicted the distribution of the
fragmentation size of the debris after blasting using a neural network model, obtained the
relationship between the rock fragmentation size and blasting parameters, and optimized
the blasting parameters accordingly. Ma et al. [29] conducted a series of bursting tests in
the tunnel excavation face to improve the construction efficiency of large section tunnels
and reduce production costs. They determined the critical distance of emulsified explosives
under the bursting hole constraint and proposed the bare surface blasting technology
without a detonating cord. Pan et al. [30] determined the peripheral hole parameters by an
eccentric charging structure and studied the blasting effect of different charging structures
based on the Riedel-Hiermaier-Thoma (RHT) model. They concluded that the eccentric
charging structure has an obvious eccentric pressure and optimized the parameters of
surface blasting to control the phenomenon of under-excavation. Numerous scholars
at home and abroad have conducted extensive research on the quality control of tunnel
smooth blasting, which mainly involves repeated tests and the optimization of blasting
parameters [22,31], computer simulation [32-36], three-dimensional laser scanning [37,38],
and other techniques [39,40], thus proposing reasonable control techniques.
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Multifractals were introduced by Grassberger in the 1980s [41]. The multifractal theory
uses geometric probability to describe the local singularities of measures and functions. It
utilizes generalized information dimensions and multifractal spectra to describe fractal
objects and is an important development in fractal theory [42,43]. Compared with sin-
gle fractal methods, multifractal methods describe the fractal structure through spectral
functions, which can more finely characterize the volatility of fractal objects at different
levels [44]. In recent years, some researchers have applied multifractals to the field of
geotechnical engineering [45-47]. There are a large number of studies in the characteriza-
tion of structural surface features of rock bodies and the characterization of rock acoustic
emission signals [48-50]. In the field of tunnel blasting, Yin et al. [51] calculated the fractal
dimension of tunnel blasting contour lines. The indicator levels and weights were obtained
by cluster analysis and the combined assignment method. An unconfirmed metric model
was established and applied to the tunnel blasting evaluation. Li et al. [52] carried out
explosion tests on granite specimens under different stress states and analyzed the mor-
phology and fractal characteristics of radial fracturing on the rock surface after blasting.
In addition, a large number of scholars have studied the multifractal characteristics of
undesirable geological bodies such as rock bursts, faults, and karsts that may exist in
tunnel construction [53-55]. Therefore, the multifractal theory can be used to analyze the
characteristics of overbreak and underbreak of tunnel blasting contour lines and evaluate
the construction effect of tunnel smooth blasting.

In previous studies on the drilling and blasting method for extra-long tunnels, the
focus has primarily been on optimizing the blasting parameters and improving the drilling
accuracy. The objective of this approach is to reduce the problem of overbreak and under-
break during tunnel excavation and enhance the effectiveness of smooth blasting. However,
for long tunnels with complex and variable surrounding rock grades, the untimely adjust-
ment of blasting parameters often results in significant overbreak and underbreak issues.
To address this challenge, this study employs a combination of theoretical analysis, field
tests, and multifractal analysis to conduct an in-depth investigation into the technology of
smooth blasting in extra-long hard rock tunnels. The main areas of research encompass
the following aspects: (1) Optimizing the peripheral hole charging structure and blasting
parameters to enhance the effectiveness of smooth blasting in tunnels. (2) Measuring the
actual excavation contour line of the tunnel section using a laser section meter. This enables
the acquisition of specific data on the overbreak and underbreak of the tunnel profile
line, facilitating a quantitative comparison of the optimization effect of smooth blasting
parameters. (3) Utilizing the multifractal detrending fluctuation analysis method to analyze
the multifractal characteristics of the sequence of measurement points for overbreak and
underbreak in the tunnel profile under different smooth blasting schemes. The calculated
results are subsequently compared with the actual situation.

2. Materials and Methods
2.1. Overview of the Tunnel Project
2.1.1. Tunnel Project Introduction

A high-speed railway tunnel, classified as an extra-long tunnel, spans a total length of
10.8 km. The tunnel’s inlet mileage is DK102+727.765, while the exit mileage is DK113+573.89,
resulting in a total length of 10,846.125 m. The elevation of the inlet track stands at 460.2 m,
whereas the exit track’s elevation is 264.0302 m. Positioned within the middle mountainous
region of the tectonic structure, the tunnel traverses the mountain range, characterized
by significant terrain undulations. The mountain’s elevation ranges from 250 m to 885 m,
with a maximum difference of approximately 635 m. The mountain slopes are steep, with a
natural gradient of 40° to 55°, and local areas reaching a steepness of around 500 m. The
tunnel itself reaches a maximum depth of approximately 500 m. The surface vegetation
along the tunnel route is dense, primarily consisting of tall trees with weeds and shrubs
interspersed. The tunnel project roadmap and layout plan can be observed in Figure 1.
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Total length: 10.85 km
Maximum burial depth: 500 m

No. Starting Mileage Ending Mileage Length | Rock Levels
1 DK 107+530.000 DK108+033.000 503 111
2 DK 108+033.000 DK 108+424.000 391 II
3 DK 108+424.000 DK 108+524.000 100 111
4 DK108+524.000 DK 108+983.000 459 111
5 DK108+983.000 DK109+710.000 727 11
6 DK109+710.000 DK110+009.000 299 111 Smooth blasting
7 DK110+009.000 DK110+149.000 140 v
8 DK110+149.000 DK110+900.000 751 111
9 DK110+900.000 DK112+220.000 1320 111
10 DK112+220.000 DK112+528.000 308 111
11 DK112+528.000 DK112+776.000 248 v
12 DK 112+776.000 DK113+071.000 295 111
13 DK113+071.000 DK113+201.000 130 v
14 DK113+201.000 DK113+573.890 372.89 \4 4 .
Tunnel entrance Tunnel exit
& Division II construction length 6.04 km —

Horizontal cave

7.765

320m 1370m 1353, 89m

Vi

DK10:

. . <=
\ Tunneling direction Tunneling derCIIOIL Tunneling directi
DK105+500 DK107+530 g DK 1104850 d DK112+220 _

D00 e

\Horizontal cave
Tunnel length 10.85 km

Figure 1. The tunnel project roadmap and layout plan.

The tunnel incorporates two transverse holes, with this study focusing on the section
between tunnel DK107+530 and exit DK113+574. The cross-hole is positioned on the right
side of the line’s forward direction and intersects with the main tunnel at DK110+850. The
angle between the cross-hole and the line mileage direction is 60°, and the overall slope
is 1.3%. The cross-hole’s mileage is PKHDKO0+945, Outilizing double lanes for trackless
transportation, with a length of 945 m.

The mountain structure of the tunnel area predominantly consists of a backward
sloping structure from north to south, primarily exhibiting monoclinic terrain. The slopes
on both sides of the tunnel are steeper. The rock formation at the tunnel entrance is relatively
fragmented, posing risks of dangerous rocks and rockfall incidents. The surrounding rocks
of the mountain consist mainly of metasedimentary siltstone, sandstone, kyanite siltstone,
and Aurignacian siltstone. The tunnel site area contains a fracture zone and several joints.
Three types of parent materials were selected and sent to the Testing Center of Geological
Engineering Survey Institute for rock and mineral identification. The analysis revealed
that the surrounding rock lithology composition is primarily quartz, followed by rock
chips, feldspar, and black mica. Laboratory testing of exploration core samples and cave
slag samples yielded the compressive strength values of the perimeter rock, as shown in
Table 1, with an average value of 118.6 MPa. The study focuses on the work area of the

185



Fractal Fract. 2023, 7, 842

tunnel, which has a total length of 3320 m, and the perimeter rock is classified as grade III,
necessitating the use of the full cross-section construction method.

Table 1. Perimeter rock compressive strength test results.

Specimen Number Specimen 1 Specimen 2 Specimen 3 Specimen 4 Average Value

Compressive strength 106.0 MPa 119.1 MPa 129.1 MPa 120.3 MPa 118.6 MPa

2.1.2. Original Tunnel Excavation Design

The study focuses on an extra-long tunnel with a length exceeding 10 km. Smooth
blasting method has been employed to enhance efficiency. Firstly, auxiliary cross-holes have
been installed to increase the excavation working surface, facilitating the construction of a
long tunnel with shorter strikes. Additionally, large-scale machinery such as three-arm rock
drilling carts, hydraulic trestle bridges, and intelligent lining carts have been utilized for
support operations, enabling mechanized and rapid construction of the extra-long tunnel.
However, certain engineering challenges have arisen during construction, significantly
impacting efficiency. For instance, the drilling and blasting method employed exhibits poor
blasting effects, and difficulties arise in the construction of auxiliary cross-holes, resulting
in low efficiency. Furthermore, issues regarding the adaptability of large-scale machinery to
construction conditions are prevalent. Figure 2 illustrates the blasting effect of the drilling
and blasting method employed in construction.

Figure 2. Blasting effect of the original design drill and blast method of construction.

The original design utilizes conventional blasting parameters, with a peripheral hole
distance of approximately 0.6 m and a distance of 0.8 m between the auxiliary hole and
the tunnel excavation contour line. The hole spacing ranges from 1 m to 1.4 m. However,
during the initial stages of construction, these parameters prove to be poorly adaptable
to the peripheral rock conditions of the long and hard rock tunnel. Insufficient precision
in the drilling and charging operations results in significant overbreak and underbreak
in the tunnel blasting peripheral rock cross-section profile. The charging structure of
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the peripheral holes is located at the bottom, with no utilization of smooth blasting for
construction. As depicted in Figure 2, the half-hole trace rate on the tunnel wall after
blasting is low, resulting in an uneven wall surface and evident overbreak and underbreak.
The maximum value of overbreak at the measuring point of the tunnel section is close to
0.8 m. A significant portion of the explosive energy during blasting is concentrated at the
bottom of the hole, leading to pronounced local crushing after blasting. This particularly
damages the surrounding rock, posing potential risks to the safety, stability, and quality
control of the surrounding rock.

Consequently, it is crucial to promptly adjust and optimize the parameters of smooth
blasting to effectively control the overbreak and underbreak during tunnel blasting. Addi-
tionally, the fractal characteristics of the tunnel profile before and after the optimization
of smooth blasting are analyzed using multifractal theory. The flowchart of the study is
presented in Figure 3.

Research background

Overview of the extra-long hard rock tunnel
project

!

Original tunnel excavation design

Optimization of tunnel

smooth blasting Smooth blasting with spaced decoupled

charges
]
Smooth blasting with bidirectional
shaped charge blasting
1

Tunnel profile measurement

: 'A":u - 4 i ‘,_,,,,V,L l
i Evaluation of section profile overbreak
and underbreak

: Multifractal characterization of
overbreak and underbreak MF-DFA key parameters determination

L

Multifractal spectrum

L

Multifractal characterization of
overbreak measurement point sequences

Figure 3. Flowchart of this study.

2.2. Optimization of Tunnel Smooth Blasting

To address the issue of overbreak and underbreak, the smooth blasting coefficients
were preliminarily optimized and determined. This involved considering factors such as
the number of holes, hole spacing, charge amount, and detonation method, using smooth
blasting theory. The design of the smooth blasting parameters took into account the physical
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and mechanical properties of the surrounding rock, as well as the development of internal
joints and fissures in the rock mass.

2.2.1. Spaced Decoupled Charge Blasting

The peripheral hole blasting parameters and charging structure are crucial factors
influencing the smooth blasting effect. The original peripheral hole blasting parameters for
the tunnel are as follows.

1  Blasting equipment

The explosives are No. 2 emulsified explosives. The length and diameter of the
cartridge are 200 mm and 32 mm, respectively, and the weight of a single cartridge is 200 g.
The detonator is a millisecond differential time-delay detonator with a detonating cord.

2. Parameters of hole arrangement

The layout of smooth blasting holes with spaced decoupled charging is depicted in
Figure 4. The excavation method employed at the site is one-time blasting in full section
with invert arch. A total of 65 peripheral holes were set up, with a spacing of 50-60 cm and
a hole depth of 420 cm. The auxiliary holes adjacent to the peripheral holes were positioned
80 cm away from the tunnel excavation contour line, resulting in a light blasting layer
thickness of 76 cm. The parameters of the blast holes are presented in Table 2.

Peripheral
hole

Auxiliary
hole

Cut hole

65
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W
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‘65 65 65

120

Figure 4. Arrangement of blast holes.
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Table 2. Parameter settings of the shell hole.

Number of

Blasthole Number Rolls .Charge of Subtotal Total Total Amount
Event Single Hole Number .
Depth (m) of Holes per Hole (kg/Hole) Dosage (kg) of Holes of Explosives (kg)
(Rolls/Hole)
Cut hole 44 34 14.5 2.9 98.6
Auxiliary hole 4.2 139 10 2 278
Peripheral hole 42 65 25 05 325 252 437.1
Floor hole 4.2 14 10 2 28

3. Charge structure

The decoupled charging structure is employed for the peripheral hole blasting. Each
hole has a loading capacity of 0.5 kg, with a loading concentration of 0.2 kg/m and an
interval of 55 cm. The uncoupling coefficient is 1.31. The plugging material used is a
pre-mixed flexible mortar, with a plugging length of 60 cm. The spacing and uncoupling
loading structure are depicted in Figure 5. The other holes are loaded continuously.

Detonator Sludge /, Explosive Millisecond

T i / detonator
|le—60cm |

l.S5cm |

| 400cm |

Figure 5. Spaced decoupled charge structure.

For the peripheral holes of the decoupled charging method, smooth blasting is con-
ducted based on the characteristics of the surrounding rock. Detonating cord connection
is utilized, and the spacing of the peripheral holes is strictly controlled. The holes are
detonated using multi-stage detonators, with a detonation order of hollowing holes, aux-
iliary holes, base plate holes, and smooth blasting perimeter holes. The detonation time
difference between adjacent holes is not less than 50 ms. The detonation time difference
control between the holes in a row and the surrounding hole is between 100 to 150 ms.
The quality of hole plugging is an important factor that affects the smooth blasting effect.
To maximize the explosive energy and extend the effective action time of the blast gas, a
mixture of clay and fine sand with good viscosity is used for plugging the holes. This aims
to improve rock fragmentation and the effect of smooth blasting on peripheral holes.

2.2.2. Bidirectional Shaped Charge Blasting

In the 1970s, shaped charge blasting was applied in geotechnical engineering. Shaped
charge blasting fully utilizes the high compressive and low tensile properties of rocks to
form tangential tensile stress. The coupling effect between the shaped charge tank and the
explosive charge is perpendicular to the direction of the shaped charge [56,57]. Tangential
tensile stress causes initial cracks on the wall of the blast hole. When the radial tensile
stress generated by the explosion stress wave acts on the rock between two adjacent main
cracks, the rock can be pulled apart to form a circumferential crack, which can connect with
each other, thus forming rock fracture. The remaining gas pressure ejects the rock mass,
separating it from the parent rock and maximizing the conversion of detonation pressure
into tensile action on the surrounding rock.

Due to the complex geological conditions of the extra-long hard rock tunnel project,
the smooth blasting effect is not ideal in many instances. To achieve the best smooth
blasting effect, the bidirectional shaped charge blasting technology is introduced into the
smooth blasting construction of the tunnel. The peripheral hole blasting parameters are
reasonably adjusted. The bidirectional shaped charge blasting hole program and the order
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of detonation are similar to the spaced decoupled charging smooth blasting technology.
This study focuses on adjusting the peripheral hole parameters and charge structure.

1. Peripheral hole parameters

Peripheral hole depth is 420 cm, the number of peripheral holes is adjusted to 51,
the hole spacing is adjusted to 60~70 cm, and the thickness of the light explosion layer is
adjusted to 60 cm.

2. Charge structure

The structure of the glossy blasting charge for bidirectional shaped charge blasting is
shown in Figure 6. The peripheral hole is continuously loaded with bidirectional shaped
tube charge. Considering that the bottom of the hole is subject to greater rock entrapment,
the charge is reinforced at the bottom of the hole. In order to improve the utilization rate
of blasting energy, water bags were added at the bottom of the hole and the hole opening.
The incompressibility of water is utilized to increase the time of action of the blasting load.
The length of the poly energy pipe is 250 cm, its equivalent diameter is 23.5 cm, the charge
of a single hole is 0.6 kg, the concentration of the charge is 0.15 kg/m, the non-coupling
coefficient is 1.79, and the length of the blast mud blockage is 40 cm. The other holes are
loaded in the same structure as the conventional smooth blasting.

Water bottle

Sludge  Water bottle Bidirectional shaped tube charge Dynamite tablet

(Bottom-hole reinforced charge)

Figure 6. Bidirectional shaped charge structure (physical drawing of shaped charge tube and
water bag).

The blasting test utilized a specialized PVC pipe with symmetrical grooves on both
sides, resulting in an equivalent diameter of 23.5 cm. For tunnel blasting, conventional
water bags were employed, filled with water, with a diameter of 3.5 cm and a length of
25 cm.

2.3. Tunnel Profile Measurement

The laser profilometer, also known as the laser tunnel limiter, is widely used in tunnel
section measurement due to its simplicity, high accuracy, and intuitive image. It operates
based on the polar co-ordinate method, which combines polar co-ordinate measurement
with computer technology and specialized graphic post-processing software. This allows
for the convenient acquisition of the actual excavation contour line of the measured tunnel
section and a comparison with the design contour line to obtain overbreak and underbreak
data. The laser profiler can be used to measure both the current section and the forward
section, with the current section primarily used for measuring overbreak and underbreak.
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The distance between each measuring site should be selected based on the specific
conditions of the tunnel site. To facilitate subsequent statistical analysis of the overbreak
and underbreak data, 120 uniformly distributed measurement points are typically used for
each measurement section. Figure 7 illustrates the design and field implementation of the
tunnel profile overbreak and underbreak measurement.

\ /

®Left arch girdle  (NO.1 ~NO.30) © Right arch shoulder (NO.71~N0.90)

©Left arch shoulder (NO.31~NO.50) ®Right arch girdle ~ (NO.91~N0.120)
© Tunnel vault (NO.51~N0O.70)

(a) | | (b)

Figure 7. Measurement of overbreak and underbreak of the tunnel section: (a) measurement design

drawing; and (b) field implementation drawing.

2.4. Multifractal Detrended Fluctuation Analysis Methodology

Fractal theory can be categorized into geometric self-similarity or uniform fractals, and
statistical self-similarity or non-uniform fractals, also known as multifractals. Geometric
self-similarity is often described using a simple fractal dimension (D), while statistical
self-similarity requires the multifractal spectrum f(a) — a to characterize it. The multi-
fractal spectrum, also known as the singularity spectrum, is a mathematical tool used to
describe the nature of multifractals [58]. It is utilized to analyze data with a multifractal
structure, such as images and time series. The multifractal property refers to the existence of
several different fractal dimensions in a system, where physical quantities exhibit different
fractal characteristics at different scales. The multifractal spectrum measures the fractal
dimensions at these different scales by dividing the fractal body into several small intervals.
The singularity index a represents the fractal dimension of each subinterval, and the corre-
sponding f(«) values represent the fractal dimension of each subinterval. Intervals with
the same « value form a subset of the fractal, resulting in an infinite sequence of different a
values. The multifractal spectral function, f(«), is obtained from this infinite sequence.

The MF-DFA is an extension of detrended fluctuation analysis (DFA) that effectively
reveals the dynamic behaviors in nonlinear and nonsmooth signals. Compared to tradi-
tional multifractal computation methods, MF-DFA utilizes the length of the sequence data
and divides the sequence into equal time lengths in both directions [59]. The polynomials
are fitted to each segment using the least squares method to eliminate the influence of
the non-stationary trend of the time series. MF-DFA analyzes the scalar behavior of the
series at different levels using different orders of fluctuation functions, allowing for a fine
characterization of the fractal features and revealing the multifractal features hidden in
non-stationary time series [60].

The calculation of ME-DFA involves five steps. The detailed calculation process is
shown in Figure 8.
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3

Sequence of over-undercut measurement points x(t)
{x(t),t=1,2,T}, N

Cumulative deviation series y(t)

y() = Bio (x(@) — %)

Divide 2m equal-length subintervals
m = int(N/s)

Calculate the residual sequence z,,(t)
2,(t) = y,(t) — P5(t)

Calculate the mean square deviation of the residual series F2(s,v)

F2(s,v) = 1384 (2,(®))°

Compute the g-order fluctuation function of the sequence F,(s)
1
. 2y Va
Fo(s) = [ 2m 25, )] 7

4

Plot the double logarithmic relationship to determine
the generalized Hurst exponent h(q)

L 1

Estimating multiple fractal spectra of overdigging measurement point
sequences
W@ =qgh(—1: a=7(g : f(a)=qga-1(q9)

Figure 8. Flowchart of MF-DFA calculation.

Step 1: Given a nonlinear, nonsmooth time series x(t) with a sequence length of N
and a sequence mean of X, calculate the cumulative deviation series y(t) with respect to the

mean X:
t

y(t) =} (x() = %) ©)
i=1
Step 2: The sequence is y(t), equalized in terms of time scale s and divided into m
equal-length continuous and non-overlapping subintervals:

m = int(N/s) 2)

Since the length of the time series, N, may not be an integer multiple of s, there will be
residual values in the division process. To fully utilize the data information, a reverse-order
processing method is applied. This means that, after the initial positive-order division,
the same operation is repeated starting from the end of the sequence. As a result, 2 m
equal-length subintervals are obtained.

Step 3: A trend is fitted to each subinterval and subtracted from the original time
series. The residual series obtained is denoted as z,(f):

zo(t) = yo(t) = p5(1) ®)

Specifically, y,(t) represents the v-th subinterval, while pX(t) represents a k-th-order
fitting polynomial for the v-th subinterval. Here, v takes values in the range [1, 2 m] and ¢
takes values in the range [1, s].
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Step 4: The residual sequence, z,(t), is calculated for each subinterval v. This forms
the F%(s,v) dataset:

S

Y (zo(t))? 4)

t=1

FZ(s,v) =

[

Step 5: The mean value of the F2(s,v) dataset is calculated, and the g-order volatility
function of the series, F, (s), is obtained using Equation (4):

om o /g
Fys) = {;ﬂ Y. [Fs0)]” } 6)

v=1

The value of g can be any non-zero real number and is related to the degree of exposure
to fluctuations in F,(s). It is worth noting that, when g = 2, the MF-DFA degenerates to the
standard DFA. Additionally, when g = 0, there is a limiting form of Equation (4):

2m
Fo(s) = exp{éin leln {Fz(s, v)} } (6)

Conventional ME-DFA is prone to pseudo-fluctuations in the division of intervals,
causing interference in the subsequent analysis. In addition, the timing length may not be
able to rectify the sub-interval length, resulting in redundancy of data. If the redundancy is
ignored, it will cause the loss of data information. If the reverse-order processing method
is adopted, the order of the original data will be disturbed, affecting the acquisition of
information. In view of this, considering the special characteristics of the over-undercut
data of the tunnel profile, a sliding window is used here to optimize the way of dividing
subintervals of the traditional MF-DFA. A window of a certain length is used to slide the
values on the sequence according to a certain step size to reduce the pseudo-fluctuation
of the data and make full use of the data information. Let the length of the window be
s, the length of the sequence be N, and take the sliding step to be 1; then, the number of
sub-intervals obtained in one run is N — s + 1, and we replace Equations (5) and (6) with
Equation (7):

N—s+1 1/a
{va L 1P} a0
Fy(s) = = e )
exp{z(N_lerl) vgl In[F?(s,0)] } ,q=0

The g-order fluctuation function corresponding to a certain scale s can be obtained
by the above steps. By varying the values of s and repeating the above steps, a series of
s — F4(s) point values are obtained. If there is long-range correlation in this time series,
there will be a power law relationship between s and F;(s) as shown in Equation (8):

Fy(s) o sh) (8)
Taking logarithms on both sides of the above equation gives the form of Equation (9):
IgF;(s) = h(q)lgs +1gb ©)

where F;(s) is the g-order volatility function of the series, /(q) is the corresponding gener-
alized Hurst exponent, and b is a constant coefficient.

By creating a double logarithmic scatterplot of IgF;(s) — lgs and fitting it, the slope
can be determined as the generalized Hurst exponent, h(q). If h(g) is a constant, this
indicates that the sequence is unifractal without multifractal features. However, if 11(g) is a
nonlinear subtractive function of g, this suggests that the sequence exhibits multifractal
characteristics. Specifically, when h(g) < 0.5, the sequence demonstrates a memory process
with inverse persistence. When h(g) = 0.5, the sequence behaves as an uncorrelated
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stochastic process. When £(q) > 0.5, the sequence exhibits a memory process with positive
persistence. Moreover, when /(q) > 1, the sequence behaves as a long-range positively
correlated process with strong non-stationarity.

The fractal intensity and fractal singularity of a time series can usually be character-
ized by the multifractal spectrum f(«) to be characterized by solving Equations (10)-(12)

as follows:
T(q) = qh(q) —1 (10)
& =7(q) (1)
f(a) =qa —1(q) (12)

The Renyi index T(g) is a scalar function that can be used to determine whether a
sequence exhibits multifractal characteristics. If T(g) is a nonlinear up-convex function of g,
this suggests that the sequence is multifractal. On the other hand, if 7(g) is a linear function
of g, this indicates that the sequence has a single fractal feature. Therefore, the Renyi index
is often used as a criterion to determine the multifractality of a sequence. The singular
intensity «, and the multifractal spectrum f(«), are also important in characterizing the
multifractal properties of a sequence. When the plot of & — f(a) is convex with a single
peak and resembles a quadratic function, this suggests that the sequence has a multifractal
feature. On the other hand, when « — f(«) clusters around a point, this indicates that the
sequence is unifractal.

In addition, the fractal spectral width Ax and the fractal intensity Ak are commonly
used to quantitatively characterize the multifractal properties of a sequence. Ax mainly
reflects the singularity of the over-undercut data of the tunnel profile and the spatial
variability of the sequence. On the other hand, Al mainly reflects the fractal intensity of
the sequence and is proportional to the parameter values:

Ah = max(h(q)) — min(h(q)) (13)
Aw = max(a(q)) — min(a(q)) (14)

3. Results and Discussion
3.1. Analysis of the Optimized Effect of Tunnel Smooth Blasting
3.1.1. Smooth Blasting with Spaced Decoupled Charge

Based on the theory of spaced decoupled charge smooth blasting technology, the
aforementioned decoupled charge blasting design was applied in the test section of tunnel
excavation. The resulting effect of the smooth blasting is depicted in Figure 9.

As can be seen from Figure 9, the tunnel profile was basically shaped after blasting.
However, the tunnel wall exhibits unevenness, and the traces of half-hole marks on the
tunnel wall are not clearly visible. The rate of half-hole marks on the tunnel wall is 56%, and
the maximum unevenness exceeds 30 cm, indicating a noticeable occurrence of overbreak
and underbreak. Upon analysis, it was found that, although the compressive strength of
the tunnel rock reached 118.6 MPa, the integrity of the surrounding rock was poor, with
certain joints and fissures. Additionally, the deep surrounding rock of the peripheral holes
experienced a significant clamping force, resulting in insufficient blasting effectiveness.
Consequently, the incomplete separation of the light blasting layer of rock led to overbreak
and underbreak.
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(a) (b)
Figure 9. The effect of spaced decoupled charge of smooth blasting: (a) overall diagram of half-hole
trace; and (b) detail diagram of half-hole trace.

3.1.2. Smooth Blasting with Bidirectional Shaped Charge

To address this issue, the design scheme of bidirectional shaped charge blasting, based
on the theory of smooth blasting technology, was implemented in the test section of tunnel
excavation. After blasting the peripheral hole with a bidirectional shaped charge, the
improved smooth blasting effect is shown in Figure 10.

I
=
'-'h
=
=)
ok
(¢
-
=
M)
(@)
(¢

Figure 10. Bidirectional shaped charge blasting effect of smooth blasting diagram: (a) overall diagram
of half-hole trace; and (b) detail diagram of half-hole trace.

As can be seen in Figure 10, the glossy smooth effect was significantly enhanced after
the tunnel was loaded with the bidirectional shaped charge. The excavation contour line of
the tunnel appeared flat after blasting, and the traces of half-hole marks on the tunnel wall
were clearly visible. The rate of half-hole marks on the tunnel wall reached 89%, and the
maximum unevenness was less than 10 cm. Laser sectional meter measurements confirmed
that the tunnel section profile was nearly free of overbreak and underbreak phenomena.

3.1.3. Overbreak and Underbreak of Tunnel Profile of Smooth Blasting

For the long hard rock tunnel perimeter rock section, two different smooth blasting
technologies, namely, spaced decoupled charging and bidirectional shaped charge, were
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tested. Multiple groups of field tests were conducted using distinct smooth blasting
programs. A laser profiler was utilized to scan the tunnel profile after blasting, and the
scanning results are presented in Figure 11. Based on the scanning results, data on tunnel
overbreak and underbreak were extracted. The distribution curves of the overbreak and
underbreak of the tunnel profile are depicted in Figure 12.

12,000

10,000

8000

4000

2000

-2000

-4000
-8000

6000 10,000 8000 -2000

(b)

Figure 11. Scanning results of tunnel profile after blasting with two charge methods: (a) spaced
decoupled charge, and (b) bidirectional shaped charge.
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Figure 12. Distribution curve of overbreak and underbreak of the profile of the blasting tunnel section
for two charge methods: (a) spaced decoupled charge, and (b) bidirectional shaped charge.

According to the scanning results shown in Figure 11, the overbreak and underbreak
area of the interval decoupled charge blasting section is calculated to be 13.01 m?, while the
bidirectional shaped charge blasting only resulted in an overbreak and underbreak area
of 4.61 m?. This indicates that the bidirectional shaped charge blasting has a significantly
better smooth blasting effect compared to the interval decoupled charge blasting. As
depicted in Figure 12, the average overbreak value for each measurement point in the
interval decoupled charge blasting is 4.21 cm, with a maximum overbreak value of 7.91 cm
occurring at the right arch shoulder. The overbreak at the right arch shoulder and arch
waist is more pronounced in the interval decoupled charge blasting. On the other hand, for
the bidirectional shaped charge blasting, the average overbreak value at each measurement
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point is 1.99 cm, with a maximum overbreak value of 4.58 cm occurring at the left arch
shoulder. The overbreak values of each area of the tunnel section after bidirectional shaped
charge blasting are not significantly different, indicating that the smooth blasting effect is
better than that of the interval decoupled charge blasting.

To further compare the blasting effects of the two charging methods in extra-long hard
rock tunnels, statistical analysis was conducted, as shown in Table 3.

Table 3. Comparison of the effects of spaced decoupled faceted blasting and bidirectional shaped
charge blasting technology.

Spaced Decoupled Charge Bidirectional Shaped Charge

Sports Event Smooth Blasting BSmooth Blasting Efficiencies
Number of smooth holes 65 51 Decrease 21.5%
Semi-porous trace rate/% 56 89 Increase 59.9%

Peripheral hole explosives/kg 32.5 30.6 Decrease 5.8%
Maximum unevenness/cm 30 10 Decrease 66.7%
Amount of concrete m?/m 13.01 4.61 Decrease 64.6%

It can be observed from Table 3 that the bidirectional shaped charge blasting resulted
in a decrease of 14 smooth blasting holes compared to the interval decoupled charge
blasting, with a 21.5% decrease in the number of holes around the optimized blasting
scheme. Additionally, the half-hole trace rate on the tunnel wall increased from 56% to
89%, improving the utilization rate of the shell hole. The explosive dosage of peripheral
holes was reduced by 5.8%, leading to an improved utilization rate of blasting energy.
These improvements effectively addressed the issue of overbreak and underbreak in the
tunnel and saved 8.4 m3 of concrete cubic meters for each meter of advance. As a result,
the optimized smooth blasting scheme ensured the safe and efficient completion of the
extra-long hard rock tunnel.

3.2. Multifractal Characteristics of Tunnel Profile Overbreak
3.2.1. MF-DFA Key Parameters Determination

The characteristics of the non-stationary time series obtained under different com-
putational parameters vary significantly, including the signal time window length and
fluctuation trend. Therefore, it is necessary to try different key parameters and preset
them to obtain more reliable results. The parameter values have different effects on the
calculation results. In order to analyze the fractal characteristics of the overbreak and
underbreak of the tunnel profile before and after the optimization of smooth blasting more
efficiently using multifractal theory, multifractal analysis is conducted on the overbreak
characteristics of the tunnel profile. The fluctuation order 4 is taken in the range of [-10, 10],
and a double logarithmic scatter plot of IgF;(s) — Igs is plotted. Least squares fitting is
used, and the slope of the fitting line is the generalized Hurst exponent /(q). Taking a set
of overbreak characteristics of the tunnel profile after spaced decoupled faceted blasting
and bidirectional shaped charge blasting as an example, the g-order fluctuation function
F;(s) — s is fitted using double logarithmic scale, as shown in Figure 13.
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Figure 13. g-order wave function F;(s) — s double logarithmic fitting trend image: (a) spaced
decoupled charge, and (b) bidirectional shaped charge.
3.2.2. Multifractal Characterization of Overbreak Section Profile
A sliding time window optimization MF-DFA is then used to perform a multifractal
analysis on the sequence of overbreak points of the tunnel profile. The fluctuation order g is
in the range of [-10, 10], the scale s is in the range of [10, 100], and the sliding window step
is 1. The changes of the generalized Hurst exponent of the sequence of overbreak points
are shown in Figure 14. The variation of the scalar function 7(g) of the overbreak point
sequence is shown in Figure 15. The multifractal spectrum of the overbreak measurement
point sequence is shown in Figure 16.
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Figure 14. Variation of the generalized Hurst index: (a) spaced decoupled charge, and (b) bidirectional
shaped charge.

It can be observed from Figure 14 that the generalized Hurst exponent of each over-
break measurement point sequence is not constant for both spaced decoupled charging and
bidirectional shaped charge blasting when g varies between [—10, 10]. Instead, it shows a
nonlinear decreasing trend with g, indicating that each sequence of overbreak measurement
points exhibits obvious multifractal characteristics. It is not sufficient to describe them
with a single fractal theory. Under different fluctuation orders g, the generalized Hurst
exponent curves of partially spaced decoupled charge blasting are concentrated in the
lower fluctuation range compared to bidirectional shaped charge blasting, indicating a
weaker multifractal nature. However, the values of the spaced decoupled charge and

198



Fractal Fract. 2023, 7, 842

Sl

bidirectional shaped charge blasting are significantly larger than 0.5. These (q) values
indicate that the sequence of overbreak measurement points exhibits good memory and
long-range correlation from the whole to the local components, combining non-stationarity

and randomness.

—— Cross-section 1
—— Cross-section 2
—— Cross-section 3

—— Cross-section 4
—— Cross-section 5

—=— Cross-section 6

q q
(a) (b)
Figure 15. Variation of the scalar function 7(g): (a) spaced decoupled charge, and (b) bidirectional
shaped charge.
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Figure 16. Multifractal spectra: (a) spaced decoupled charge, and (b) bidirectional shaped charge.

Based on the %(g), the scaling function 7(g) is calculated. From Figure 15, it can be
observed that the scalar function of each overbreak measurement point sequence shows
good consistency for both spaced decoupled charging and bidirectional shaped charge
blasting. The function is up-convex, satisfying 7(7) = —1 and exhibiting an overall non-
linear relationship. This further confirms the multifractal characteristics of the overbreak
measurement point sequence.

Figure 16 shows the multifractal spectra of the overbreak point sequence of the tun-
nel profile under different smooth blasting plans. The spectra display a single convex
distribution, similar to a quadratic function curve. The local scales of the multifractals in
the overbreak point sequences vary, indicating the diversity of local changes at different
moments. The singular intensities & are mainly concentrated on the two sides of the image,
reflecting the uneven distribution of the fractal structure in the overbreak point sequence.
This uneven distribution further confirms the multifractal characteristics of the measure-
ment point sequence. The multifractal spectra of the spaced decoupled charge blasting and
bidirectional shaped charge blasting show good overall synergy and stable development
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status. The spectra of the overbreak point sequences in cross-section 4 and cross-section 5
exhibit obvious right hooks, indicating that small fluctuations have a slightly dominant
influence in the overbreak point sequences of these sections. The fractal dimension of the
sub-intervals that characterize the overbreak point sequence with the same singularity
index « is the same. The fractal dimension of the sub-intervals in the overbreak point
sequence is related to the distribution characteristics and fractal strength of the overbreak
point sequence.

In Figure 16, Ax represents the multifractal spectral width, which characterizes the
multifractal strength of the sequence at the measurement point and the complexity of
the fluctuations. A larger Ax indicates a stronger multifractal strength and more intense
and complex fluctuations. The opposite is also true. Af(a) represents the proportion of
large and small fluctuations in the sequence. A larger proportion of small and medium
fluctuations in the sequence leads to a larger Af(«a). The calculation method for & and
Af(a) can be expressed as follows:

Ax = Qpgx— iy (15)

Af(a) = Af (amax) — Af (@min) (16)

Combining Figures 14 and 16, it can be observed that the fractal intensity Al and the
width of the multifractal spectrum Aw of the fractal spectrum of the overbreak measurement
point sequence in cross-section 1 are minimized. This is because the overbreak measurement
point sequences in the same section are not independent of each other but are related to each
other to some extent. Overall, the values of the six cross-section overbreak point sequences
are close to each other, and the fluctuations have similar odd values. The Aa values are close
to each other, indicating the similar singularity and spatial variability of the fluctuations.
The probability distribution ranges of the fluctuations at each measurement point are
relatively close to each other, but the fractal intensity Al values show slight differences.
The fractal strength of the overbreak sequence in the tunnel section after the bidirectional
shaped charge blasting is slightly stronger than that of the spaced decoupled charge
blasting. Based on the actual situation, it can be initially inferred that the optimization
of the tunnel smooth blasting significantly reduces the phenomenon of overbreak in the
tunnel profile, leading to differences in the multifractal characteristics of the measurement
points in each cross-section.

The statistics of multifractal features for the over-undercut sequence of the tunnel
profile under different smooth blasting plans are calculated, and the results are shown
in Table 4.

Table 4. Multifractal characterization statistics.

Cross-Section

Cross- Cross- Cross- Cross- Cross- Cross-
Index Section 1 Section 2 Section 3 Section 4 Section 5 Section 6
A 0.559 0.695 0.746 0.734 0.737 0.818
Af(a) 0.133 0.196 0.137 0.222 0.292 0.644

Comparing the widths of the multifractal spectra Ax of the cross-section profile over-
break point sequences, it can be observed that the width of the multifractal spectrum for the
spaced decoupled charge blasting is slightly smaller than that for the bidirectional shaped
charge blasting. This indicates that the bidirectional shaped charge blasting results in a
larger multifractal intensity in the overbreak point sequence and slightly more complex
fluctuations. Furthermore, comparing the proportion of large and small fluctuations Af («)
in the profile undercut point sequences, it can be seen that the bidirectional shaped charge
blasting results in a larger proportion of small and medium fluctuations.

These findings align more closely with the actual situation and indicate that the
optimization of tunnel smooth blasting through bidirectional shaped charge blasting sig-
nificantly reduces the phenomenon of overbreak in the tunnel profile. The intensity of
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the multifractals in the measurement point sequence is larger, and the fluctuation of the
cross-section profile overbreak data is slightly more complex, with a larger proportion of
small fluctuations.

4. Conclusions

For extra-long tunnels with complex and variable perimeter rock grades, the untimely
adjustment of smooth blasting parameters often leads to a significant number of overbreak
and underbreak, resulting in project delays. Therefore, this paper focuses on conducting
in-depth research on smooth blasting technology for extra-long hard rock tunnels in the
context of a high-speed rail project. The research approach combines theoretical analysis,
field tests, and multifractal analysis to provide comprehensive insights. The main research
conclusions are as follows:

1.  The peripheral hole charging structure and blasting parameters are improved and
optimized to enhance the effect of tunnel smooth blasting. The implementation of
the bidirectional shaped charge significantly improves the smooth blasting effect.
After blasting, the tunnel excavation contour line becomes flat, and the half-hole trace
marks on the tunnel wall become more distinct. In comparison to spaced decoupled
charging blasting, the smooth blasting effect with a bidirectional shaped charge is
notably superior.

2. Thelaser profiler is utilized to measure the actual excavation contour line of the tunnel
section, obtaining specific data on overbreak and underbreak. A further quantitative
comparison of the optimization effect of smooth blasting parameters is conducted. It
is observed that the overbreak and underbreak value of each area of the tunnel section
after bidirectional shaped charge blasting does not differ significantly, and the smooth
blasting effect is evidently better than that of spaced decoupled charge blasting.

3. MF-DFA is employed to analyze the multifractal features of the overbreak point
sequences of the tunnel profile under different smooth blasting plans. It is concluded
that both spaced decoupled charge and bidirectional shaped charge blasting result in
measurement point sequences with multifractal features in the overbreak area. The
statistical calculation results of the multifractal features of the tunnel profile under
different smooth blasting plans align more closely with the actual situation.

The smooth blasting tests conducted in this study were carried out in a single surround-
ing rock grade. Future studies can focus on optimizing the smooth blasting parameters and
conducting the multifractal characterization of the sequence of overbreak and underbreak
points for different surrounding rock grades of tunnels.
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Abstract: The research on the formation factors of rock burst is one of the main research directions
of rock mechanics in recent years, which is helpful to solve the problem of rock burst accidents. So,
in this study, the calculation method of energy released during rock burst is first obtained by using
different medium models, and then, the formation factors of rock bursts are obtained by comparing
the calculation energy with the actual accident energy. The method of energy calculation utilizes
the difference between elastoplastic and pure elastic models to innovatively quantify the specific
values of energy released before and after the occurrence of the rock burst. It is considered that
the stress and plastic zone state before the occurrence of rock burst have an important influence
on the occurrence of the accident and are one of the formation factors, while the deviatoric stress
field and butterfly-shaped plastic zone create conditions for greater energy release. In addition, the
trigger stress constitutes another formation factor. The plastic zone state before rock failure is verified
by the experimental test; the location distribution shape of acoustic emission (AE) events during
the later stage of compression failure is approximately the same as theoretical result. The results
also preliminarily indicated the fractal characteristics of acoustic emission events distribution before
sample failure. The study obtained the formative factors of rock burst accident, which provides a
new ideas and references for the research on the formation of rock bursts.

Keywords: formative factors of rock burst; released energy calculation method; rock mass;
experimental verification; rock burst

1. Introduction

The dynamic disasters of rock engineering perplex safe construction in many engi-
neering fields. The so-called dynamic disasters mainly include rock burst occurring in
tunnels [1], rock burst occurring in non-coal mines [2], rock burst occurring in coal mines
(different from the disasters occurring in non-coal mines, the medium is coal, and the
mining impact is greater) [3], coal and gas outbursts occurring in coal mines [4], slope
collapses occurring during metro engineering [5], etc. The common point of these dynamic
disasters is the instantaneous dynamic failure of coal or rock, which is often related to
the medium state and human construction activities [6]. In terms of dynamic disasters,
coal mine rock burst accidents have occurred more frequently in China in recent years,
bringing huge pressure to safety production. The study of the mechanism of geotechnical
engineering disasters is a fundamental work that can provide direction for subsequent
monitoring [7,8], warning [9], and evaluation [10].
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In view of the frequent occurrence of rock burst accidents in coal mines, scholars have
also carried out a lot of research, mainly focusing on their occurrence mechanism [11],
monitoring and early warning indicators [12] and methods [12,13], and risk treatment
measures [11,14]. The research on the mechanism of rock burst dynamic disaster is the
most important, which has attracted more scholars to study. In recent decades, various
mechanisms have been formed, such as early energy theory [15], early strength theory [16],
early stiffness theory [17], early rock burst tendency theory [18], intermediate instability
theory [19], intermediate three-factor theory [20], intermediate three-criteria theory [21],
later dynamic and static load theory [20], later rock burst initiation theory [22], later
butterfly rock burst theory [23,24], etc. Some of these mechanisms or theories have put
forward some concepts and descriptions, while others have established models and carried
out strict mechanical derivation. which may be more scientific.

For the research methods of rock bursts, some studies focus on a specific condition,
such as fault influence [25,26], high-strength mining faces [27,28], stress anomaly partic-
ularity [29], large vibration interference [30], periodic movement of hard roofs [31], etc.
Other studies are conducted only from a certain angle, for example rock strength [32], stress
analysis [33], energy analysis [34], special rock properties [20], gas coupling [35]. Some use
theoretical reasoning and calculation [36,37], some use laboratory research [38,39], some
use numerical simulation [40,41], and some only use a conceptual expression. Rigorous
mathematical and mechanical reasoning is highly recommended for scientific and engineer-
ing problems, and numerical simulation can be used to reflect or verify regular problems.
If the simplest calculation method and the simplest model can be established to explain the
common problems for geotechnical engineering, the rock burst mechanism will be easier to
reveal (like the famous Oakham criterion [42]: if there are two or more different hypotheses
about the same phenomenon, the simpler or falsifiable one should be adopted).

As for the stress state when rock burst occurs, it is clear that it must be a situation
with certain characteristics, and then the smaller triggering stress leads to the accident [43].
How the energy changes before and after the occurrence is directly related to the root
cause of the occurrence mechanism. In order to study the mechanism of rock burst more
scientifically, the energy conversion before, after, and during its occurrence is calculated
from an energy perspective, which is an important research content in the field of rock
dynamics. This study first proposes a method to calculate the system energy, and then
obtains which mechanical state is more likely to reach the accident energy through this
method. The results show that the butterfly-shaped plastic zone state caused by the bias
stress field is more dangerous. Finally, the whole process AE monitoring of a loaded sample
is carried out from the laboratory scale to verify the butterfly mode before failure. The
experiment fully considered the specific situation of the original waveform, and adopted a
more appropriate event location method, and finally obtained the butterfly-shaped plastic
zone. The energy calculation method, rock burst mechanism, and its verification obtained
in this study provide a new idea for the study of the rock burst mechanism.

2. Numerical Methodology

Rock burst accidents occur in rock masses, but rock masses are often relatively large
and difficult to study via mechanical models and analysis. So, this study narrowed down
the scope of the study and reflected big problems through small models. Due to the fact that
regular knowledge is only obtained through model establishment and energy calculation,
and the stress and situation of small model are less different from the actual environment in
which the tunnel is located, the research method of the small model is considered feasible.
In addition, considering the feasibility of the calculation, the method proposed in this study
is completed by means of FLAC®P numerical simulation and theoretical calculation, the
rock mass (total volume is ) involved in the rock burst accident is picked out separately
as the research object in the numerical simulation, and a hole is set in the middle of it
to respect mining space. The rock mass is subjected to an isotropic force, which can be
simplified as a three-dimensional stress of (P1, P, P3), where Py, P, and Pj are the main
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force. The rock mass is composed of many units (f(X, y, z)), and the force of these units can
also be simplified as (01i, 02, 031), where 04;, 0pj, and o3; are the main stress. The energy of
each element in this mechanical state can be calculated by Equation (1) [32].

f(x,y,z) = % {01124-0212-#0312 — 24 (015095 + 02034 + 611031)} 1)
1

where E; is the elastic modulus of the corresponding element and y; is the Poisson ratio of

the corresponding element.

The stress state before the rock burst accident is named as pre-state stress field (PSSF),
after being affected by a trigger stress field (named TSF; a high probability arises from
roof fracture or coal rock fracture [44]), the stress state after being applied is named as
the later state stress field (LSSF). During FLAC3D numerical simulation, in the model, the
loaded media can be pure elastic or elastoplastic, and the energy of the two media under
the named PSSF and LSSF states are Upssr, Upssg’, Urssp, and Uy ssy/, respectively. When
the model is purely elastic, whether it is PSSF or LSSE, all elements are purely elastic, and
the formula can be expressed as Equation (2), However, when the model is elastoplastic,
under the action of PSSF, some elements will become elastoplastic ((2c). Under LSSE, a part
of elastoplastic elements (AQ)) will be added compared with PSSF, so the energy under
Upssr’ and Uy sgr’ states can be expressed as Equations (3) and (4), respectively.

Upssr/LssF = IIIQ(PSSF /LSSF)f(X’ y,z)dV )
I _
Upssr' = Hjﬂe (PSSF)f(X, y,z)dVe + jﬂop(PSSF)f(X’ y,z)dVp (3)
I — —
Vrssr = jjf(ﬂe*AQp)(LSSF)f(X' y:2)d(Ve—AVe) + fff(ﬂpmnp)(LssF)f(X’ y,2)d(Vp+AVp) )

where V represents all units of the rock mass. Ve and V, represent the units of pure elastic
and elastoplastic, respectively.

Under the action of PSSF and LSSE, the energy difference (Dpssg/1ssr) between the
pure elastic model and elastic—plastic model rock mass is expressed as Equation (5). The
difference of energy difference between PSSF and LSSF is the total energy in the process
of mechanical state change. However, the elastic wave energy (W) [45] needs to be multi-
plied by f (elastic wave energy conversion coefficient, the value is 1~10% [27,46]), as in
Equation (6).

Dpssr/1ssF = Upsse/1ssF — Upssk/LSSF ®)

W= B(DLSSF - DPSSF) (6)

The calculation chart process of energy release during the mechanical state change
process of rock mass from PSSF to LSSF is denoted in Figure 1. Firstly, calculate the energy
difference between the pure elastic and elastic-plastic models under the mechanical state of
PSSF (Dpssr), and then calculate the energy difference under the mechanical state of LSSF
(Drssr)- The difference between Dpggp and Dy sgF is the released energy from PSSF to LSSE.
When calculating the release energy, it is not simply the difference between Upssr and Uy ssp
when it is the elastic—plastic model, but the stored energy under the pure elastic model
also needs to be considered in order to calculate the accurate release energy value. This
study comprehensively considered the differences between pure elastic and elastic—plastic
models under two mechanical states, and eliminated the influence of model size. The
obtained energy calculation process and results can be compared with the actual energy
release of on-site accidents, which can be used to infer the most likely occurrence condition
of rock burst, and is of great significance to reveal the mechanism of rock burst.
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Figure 1. Calculation chart process of energy release during the mechanical state change process of
rock mass from PSSF to LSSF.

3. Results

An example model of 200 x 200 x 1 m (the model and force application direction are
shown in Figure 2, the diameter of the hole is 5.6 m, and the application direction of P
is front and rear) was taken to calculate the rock mass energy under different mechanical
states (PSSF as (P; = 20 MPa, P, = 20 MPa, P3 = 20 MPa), AP as 1 MPa, and only added
to P1) and different model conditions, according to the proposed method and the final
energy release result. The shear strength, cohesion, friction angle, and tensile strength of
the used medium are 1.3 GPa, 3 MPa, 25°, and 1.77 MPa, respectively.
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Figure 2. Example model and its external force state.

From the numerical simulation results, it can be seen that under the conditions of the
elastoplastic model, the shape of the plastic zone presents a butterfly shape when Py is
bigger than 50 MPa (n bigger than 2.5, similar as the results in [47]); a more pronounced
butterfly shape (extending further) has emerged when P; = 55 MPa (at this time, n = 2.75).
The concentration phenomenon of plastic zone and stored energy distribution around the
hole is closely related to the existence of hole. At the same time, the energy difference
also continues to increase and expand with the increase in drilling Pq, as in Figure 3
(Drssr distribution when P; = 40 MPa, 50 MPa, 55 MPa, 58.6 MPa). Another interesting
point is that some unit bodies do not release energy when subjected to changes in force, but
instead absorb energy (it may be due to the fact that certain unit bodies tend to be subjected
to more uniform forces, or the occurrence of tensile phenomena leads to a decrease in the
calculated energy value). As the vast majority of unit bodies release energy, the final energy
result of the entire sample is releasing state.

The change curve of the storage and different-value of energy are denoted in Figure 4;
it can be seen intuitively from the figure that both storage energy of pure elastic medium
and elastoplastic medium are increasing with the increase in P, but the increasing speed
is different (only describing the change in P; is because the values of P, and P3 have not
changed in all mechanical states). The different-value of energy increases and acceleration
are various with the increase in P;, and mainly divided into three stages. The obvious
critical points of the three stages are P; = 50 MPa, P; = 55 MPa, and P; = 58.6 MPa,
respectively. Interestingly, P; = 50 MPa is the starting point of the “early butterfly”,
Py =55 MPa is the starting point of the “late butterfly”, and Py = 58.6 MPa is the value of
the “final butterfly”. The n values corresponding to the three critical points are 2.5, 2.75
and 2.93, respectively. The above fact shows that the shape of plastic zone is closely related
to the different-value of energy, the butterfly shape is strengthened with the increase in P;
and, meanwhile, the different-value of energy is also increased.

Divide the energy of the unit body by the volume of the unit body to obtain the energy
release density map of the rock mass, and the release energy density map of butterfly
related mechanical states are shown in Figure 5. The results show that the distribution of
energy release density and plastic zone has a strong management, and has experienced a
process from small butterfly to large butterfly. From the value of energy distribution, the
greater the force, the greater the density value, and the more concentrated the distribution.
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Figure 5. Release energy density map of butterfly related mechanical states (the horizontal and
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The calculation results of the released energy of rock mass are shown in Figure 6,
from which it can be seen that the phased characteristics are obvious. The entire process
shown in the figure can be divided into three stages: the pregnant period, growth period,
and upheaval period, representing the phenomenon of releasing energy from small to
large, respectively, and then rapidly increasing. Results show that even with the same TSE,
different PSSFs have a great impact on the results of the energy release. When the shape of
the plastic zone caused by the PSSF (when there is deviatoric loading [48], and P; /P3 is
mostly >2.5) of rock mass is butterfly, the change in the released amount forms an inflection
point, and the corresponding 1 values are 2.5 MPa, 2.75 MPa, and 2.93, respectively, the
released energy is increased by 12.5 times formn = 2.5 ton = 2.93.

The calculated energy of the rock burst can be compared with the actual energy. It can
be seen that the released energy of the accident is matched with the calculated energy from
the above energy change results, and the formation factors of rock burst are the butterfly
plastic zone caused by PSSF and appropriate TSF in addition to the basic conditions (mining
space and force relation are easily satisfied). The PSSFs are related to the protolith stress,
mining stress, roadway layout, surrounding rock, coal properties, etc. The TSFs are related
to the roof breakage event, coal fracture event, blasting vibration, etc. Further, these factors
are finally reflected in PSSF and TSF, otherwise it is difficult to meet the energy conditions.

211



Fractal Fract. 2023, 7, 829

When the energy release reaches the critical value, the energy conditions for the accident
can be met, as in Figure 7.
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Figure 7. The formation factors of rock burst based on energy calculation.

4. Discussion

The formation factors of rock burst have been obtained in the Section 3. In fact, the
conclusive key factor of large ratio PSSF is based on less requirements of TSF under “late
butterfly shape” or “final butterfly shape” of the plastic zone, so the required minimum
TSF to reach the critical energy value under different stage based on a total energy of 107 J is
indicated in Figure 8. The results show that in the non-butterfly stage (P; less than 50 MPa),
the minimum TSF required is 1~14 MPa, while in the butterfly stage (P; more than 50 MPa
and less than 55 MPa), the value is reduced to 0.2 MPa, and in the late butterfly stage
(Pq more than 55 MPa), the value is even reduced to 0.1 MPa, which is easy to achieve
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in realistic data. The above facts confirm the key factor role of a large ratio PSSF for a
rock burst, which is similar to the result of rock bursts caused by larger difference existing
between horizontal and vertical stresses in [49].
15
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Figure 8. Required minimum TSF to reach the critical energy value under different stage.

In fact, the implicit equation of the plastic zone boundary under the condition of the
uniform medium model is obtained in a previous study [24]. The plastic zone distribu-
tions of typical mechanical states obtained by Equation (7). The results show that when
P =40 MPa, the shape of plastic zone is not butterfly, but when Py = 50 MPa, the butterfly
state is more obvious. When P; = 55 MPa, the maximum radius of the plastic zone Rmax
extends to 15 m, and when P; = 58.6 MPa, the Rnax extends to 90 m. The plastic zone
results of previous theoretical calculations are the same as those in this study, while this
study focuses more on the variation law of energy corresponding to plastic zone.
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<1 n) sin (p(1+n+P3sin(p

Another index of the plastic zone is the area of plastic zone, which not only represents
the depth of the plastic zone, but also comprehensively reflects the volume of the plastic
zone. Therefore, the variation curves of plastic zone Rmay, area S, and released energy
with the increase in P are compared in Figure 9. From the comparison results, the three
indicators all formed a certain inflection point whenn = 2.5,2.75, and 2.93, but the difference
is the rate and degree of change. The most drastic change is the released energy index,
followed by Rmax index, and finally S. Although the change degree of the three indexes
is different, they all reflect the mutation phenomenon, which shows that the rock burst
mechanism relying on large ratio PSSF and butterfly shape plastic zone is reasonable.
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The above analysis obtained the important influence of butterfly plastic zone based
on theoretical calculation and numerical simulation. An experimental verification is more
reliable; therefore, the whole process of AE monitoring of sample loading process is
implemented. The equipment is denoted in Figure 10a, which mainly includes a universal
tester and its control system, an AE acquisition system, and a rock sample. The sample
is a kind of sandstone with a rock burst tendency (shown in Figure 10b), and the size
is 200 cubic millimeters (a 20 mm diameter central hole is set in the axial direction to
represent the roadway, and the direction is assumed to be in the Y direction). The uniaxial
loading method is adopted for the experiment, until the sample is completely crushed.
The sampling frequency of AE system is 6 MHz, and a total of eight sensors are used for
signal acquisition, as in Figure 10c. The study focuses more on the positioning of AE events
within the few seconds before rock failure, so as to verify the shape of plastic zone area
before failure.

The study should focus on the failure distribution form in the XZ plane (perpendicular
to the Y direction) during 1990~1995s, and the influence of boundary conditions should
be removed as far as possible. Therefore, the statistical AE event scatter plot and heat
map during 1990~1992s and 1993~1995s are stated in Figure 11. The number of AE events
during 1990~1992s is less than that during 1993~1995s. The distribution pattern of event
points is not obvious, but the heat map results can basically show the butterfly shape. The
distribution of each butterfly leaf is not very regular in the heat map results, which may
be caused by the heterogeneity of the sample or the influence of force transmission. The
AE event scatter plot and heat map during the whole period of 1990~1995s are shown
in Figure 12, which shows a more obvious butterfly shape, and is basically consistent
with the results of theoretical calculation and numerical simulation. The formation of
butterfly-shaped plastic zones not only reflects the morphology before failure, but also
indicates that events are concentrated in certain specific areas (fractal characteristics) and
may cause large-scale damage after reaching a certain level.

This study reveals the shape of butterfly-shaped plastic zone of the sample in a
specific state, which is caused by a large ratio of the stress field (like the state described
in [50,51], the influence of some large ratio of foundation ground stress or geological
structure often results in deviatoric stress field, which increases the probability of rock
bursts), and resulting in a large amount of concentrated energy release. Based on the
initial stress state of the rock, the study considers that a small TSF may lead to a huge
release under specific stress conditions, and gives the minimum TSF required to form
disasters under different states. It considers that the probability of the occurrence of rock
burst is the butterfly-shaped plastic zone shape caused by deviatoric stress field. This can
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also be demonstrated from the actual size of TSF; in fact, TSF is unlikely to become the
dominant factor in most cases, which has been already demonstrated in [52]. In addition,
this study also preliminarily discovered the fractal characteristics of acoustic emission
events distribution before sample failure.

Tester control Rock sample - Display
system AE acquisition  computer
mstrument

(a) Equipment layout

Sensor

Rock sample  AFE sensor

=y

(b) Test rock sample and the AE sensor (c) AE sensors layout
Figure 10. Equipment used for experimental verification.

The results of this study are based on a calculation method of energy to obtain the
energy value before and after the change in the rock mass mechanical state, and the specific
expression of dangerous stress state is obtained; that is, when the ratio of maximum
principal stress to minimum principal stress reaches the 2.5/2.75/2.93 critical point. In
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addition, an experimental test was used to preliminarily verify the shape of the butterfly-
shaped plastic zone on the eve of sample failure. Although the form of uniaxial compression
was used for the convenience of the test, this form also showed butterfly shape in numerical
simulation and theoretical calculation, which proved to be basically effective, but the
butterfly shape under triaxial loading should be obtained more in later experiments. In
addition, it is necessary to try measuring vibration signals in more directions, such as three
axes [53]. The experimental verification has been preliminarily completed, and the on-site
verification should be carried out later, and a warning method using the three-dimensional
stress field or butterfly plastic zone state can also be studied in future. Furthermore, more
detailed three-dimensional stress states [54,55] and anisotropy [56], or particle breakage [57]
should also be considered, and the effects of deformation and cracks [58,59] can also be
comprehensively considered.
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Figure 11. Scatter plot and heat map of AE events occurred during the period of 1990~1992s and
1993~1995s. (a) Scatter plot of AE events occurred during the period of 1990~1992s. (b) Heat map of
AE events occurred during the period of 1990~1992s. (c) Scatter plot of AE events occurred during
the period of 1993~1995s. (d) Heat map of AE events occurred during the period of 1993~1995s.

This study obtained the energy values before and after the occurrence of rock burst
through the innovative energy calculation method proposed. By comparing them with
the actual accident energy, the energy cloud maps of different mechanical states and the
relationship between released energy were obtained. From an energy perspective, the
formation factors of rock bursts were clarified, and the importance of deviatoric stress in
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PSSF was emphasized. The minimum triggering stress value required to reach the critical
value under different PSSFs was obtained, and the butterfly-shaped plastic zone formed
by a deviatoric stress field was preliminarily verified at the laboratory scale. This study
provides a new approach for studying the mechanism of rock dynamic disasters and lays a
certain foundation for monitoring and warning of butterfly-shaped plastic zones.
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Figure 12. Scatter plot and heat map of AE events occurred during the whole period of 1990~1995s.
(a) Scatter plot of AE events occurred during the whole period of 1990~1995s. (b) Heat map of AE
events occurred during the whole period of 1990~1995s.

5. Conclusions

In this study, the released energy of rock burst accident is obtained by means of
energy calculation, the formation factors of rock bursts are obtained by means of the
calculation method, and the formation factors of butterfly-shaped plastic zone are obtained
and verified by means of laboratory tests. It is easier to achieve quantification and accuracy
from the perspective of energy, and the obtained factors of rock burst formations are clearer,
which has certain scientific value. The main conclusions are as follows: (1) The energy
conditions of rock burst accidents are obtained, which lays the foundation for determining
the formation factors of rock bursts. (2) The formation factors of rock burst are the butterfly
plastic zone caused by PSSF and appropriate TSE, and PSSF plays a leading role, which
determines the possibility of rock burst accidents. The PSSF that leads to the butterfly-
shaped plastic zone represents a dangerous state of deviatoric stress field, in which a small
triggering stress can lead to large-scale energy release and rock failure. (3) The butterfly
failure mode has been preliminarily verified at the laboratory scale through the location
of AE events, and the rock sample shows a butterfly-shaped plastic zone before uniaxial
loading failure. (4) This study also preliminarily discovered the fractal characteristics of
acoustic emission events distribution before the sample failure.
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Abstract: The dilatancy equation ignores the noncoaxiality of granular soil for the coaxial assumption
of the direction of the stress and strain rate in conventional plastic potential theory, which is incon-
sistent with extensive laboratory tests. To reasonably describe the noncoaxial effects on dilatancy,
the energy dissipation of plastic flow is derived based on the property-dependent plastic potential
theory for geomaterials and integrates the noncoaxiality, the potential theory links the plastic strain
of granular materials with its fabric, and the noncoaxiality is naturally related to the mesoscopic
properties of materials. When the fabric is isotropic, the dilatancy equation degenerates into the form
of the critical state theory, and when the fabric is anisotropic, it naturally describes the effects of
noncoaxiality. In the plane stress state, a comparison between a simple shear test and prediction of
the dilatancy equation shows that the equation can reasonably describe the effect of noncoaxiality on
dilatancy with the introduction of microscopic fabric parameters, and its physical significance is clear.
This paper can provide a reference for the theoretical description of the macro and micro mechanical
properties of geomaterials.

Keywords: geomaterials; plastic potential theory; microscopic fabric; noncoaxiality; dilatancy

1. Introduction

Dilatancy is the variation of soil porosity due to the particle rearrangement under shear
stress and is an essential mechanical property to distinguish geomaterial from other non-
granular materials and to establish the constitutive model. Based on the energy principle,
studying dilatancy is reasonable, and energy function at the critical state is usually used to
describe dilatancy, such as Rowe’s dilatancy equation in previous research [1]. Researchers
gradually realized that the dilatancy of granular soil is also related to the material state
in a later study [2]. Although Rowe also pointed out that the influence of material state
should be considered in the dilatancy theory [1], after many scholars performed similar
research, the stress dilatancy theory was successfully applied to the constitutive model
of granular materials [3-5], and many scholars studied the particle breakage of rockfill
from the perspective of energy [6-8]. Stress-dilatancy theory is widely used in the study of
mechanical properties and the constitutive model of soil.

With the deepening of research, noncoaxiality has gradually attracted attention, which
was first found by De Josselin de Jong [9] and has a significant effect on the mechanics and
deformation of geomaterials. Therefore, based on the conventional plastic potential theory
to derive dilatancy equations, there are some limitations in describing noncoaxiality due
to the theory implying the coaxial assumption of direction between the stress and plastic
strain rate. Researchers have conducted deeper research on noncoaxiality in subsequent
theoretical and experimental studies [10,11]. Several scholars conducted simple shear
tests to investigate noncoaxiality, such as the simple shear test of sand [12] and aluminum
rod accumulation [13]. Lade [14] also found noncoaxial phenomena on the deviatoric
plane in the true triaxial test of sand, where the direction of the stress and strain rate is
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coaxially under triaxial compression and tension tests and noncoaxial under other stress
paths. Li [15] designed a similar true triaxial test, and although ideal spherical glass beads
with a single particle size were used, obvious noncoaxiality was still observed. Xiong [16]
found that noncoaxiality would cause the dilatancy curve to deviate from Rowe’s line,
which has a significant effect on sand dilatancy. Ignoring the noncoaxiality to deduce the
dilatancy equation is unreasonable. Therefore, some scholars have integrated noncoaxiality
into the research on dilatancy. Gutierrez [17] introduced the noncoaxial constant into the
plastic theory and further analyzed plastic work and dilatancy. However, the noncoaxial
angle seems to always exist in the whole stress space after the noncoaxial constant is set,
which is inconsistent with the test results of Lade and Ducan [14]. Rudnicki [18] proposed
a noncoaxial model for calculating the plastic deformation of the fractured rock mass.
Xiong [16] modified Rowe’s dilatancy equation by introducing Gutierrez’s noncoaxial
coefficient. Lashkari [19] proposed a dilatancy equation in the noncoaxiality constitutive
model, and the noncoaxial coefficient is consistent with Gutierrez’s previous research [20].
Tsegaye [21] established noncoaxial stress-dilatancy frames for axisymmetric, plane-strain,
and general stress states, and presented a mechanism for establishing noncoaxial angular
development in axisymmetric and plane-strain states. Pouragha [22] explored dilatancy
aspects. The above research introduces corresponding parameters to improve the dilatancy
equation based on the noncoaxial test phenomenon. At the microscopic level, noncoaxiality
is a result of anisotropy [23] from the perspective of fabric properties described as a
reasonable method.

To reasonably describe the stress—strain of granular materials, several researchers
turned their theoretical studies to microscopic soil mechanics. Oda [24] used fabric tensors
to describe the microscopic structure of granular materials and explored the connection be-
tween the initial fabric and the mechanical properties. Experiments by Wong [25] confirmed
the connection between fabric anisotropy and the noncoaxiality of granular materials. Li
and Dafalias [26] studied the anisotropy of sand from a microscopic perspective. In a
study on microscopic soil mechanics, some researchers used fractal theory to describe the
microstructure of granular materials [27]. The fractal dimension is used to characterize
the particle breakage, and the fractal dimension before and after shearing is introduced
into the constitutive model to simulate the influence of the change in the microscopic mor-
phology of the particles on the stress—strain relationship [28,29]. Based on consideration
of the microscopic characteristics of materials, Li [30] carried out relevant research work,
established the anisotropic failure criterion of sand from the perspective of the combination
of macro and micro, analyzed the noncoaxial characteristics of the simple shear test [31],
and proposed the property-dependent plastic potential theory for geomaterials (potential
theory for short) [32]. The theory connects the plastic deformation of materials with its
microscopic fabric and describes the plastic strain rate related to material properties.

Dilatancy equations are usually derived according to the plastic flow rule and energy
relation of materials. Therefore, from the perspective of the macro-micro combination,
based on the potential theory, the dilatancy equation will be modeled combined with
the idea of the energy transformation relation and the critical state of the soil. In the
dilatancy equation, the microstructure of particles will be described by the long axis of
particles and employed to define the noncoaxial coefficients. The noncoaxial coefficients
will be introduced into the dilatancy equation to describe the effect of noncoaxiality on the
geomaterials’ dilatancy from a microscale perspective. Finally, the results of a simple shear
test will be used to verify the rationality of the dilatancy equation.

2. Dilatancy Equation Based on the Potential Theory
2.1. Establishment Method

The dilatancy equation is established according to the energy transformation relation in
plastic deformation and the critical state of the soil. In the potential theory, the plastic strain
rate is shown in Equation (1), where g represents the plastic potential function to describe
the direction of plastic flow, dA represents the plastic scalar factor, the derivation process
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can be referred to in reference [32], f,]» is the direction tensor of the fabric tensor F;, Pr is
the size of the fabric tensor, and Pr=1/(3 + a,+az+4a3). According to the characteristics
of the direction tensor, F;; can be decomposed into two parts, such as Equation (2) and
Equation (3). J;; in the equation is the Kronecker tensor, and when i = j, 611 = 62 = d33=1,
it represents isotropy. s;; represents the anisotropic part, and a; (i1 Tepresents anisotropy
in the main direction of the fabric. When the material is isotropic, a1 = a; = a3= 0 and
Fjj = §)j, the expression of plastic strain increment is consistent with the conventional
plastic potential theory. When the material is anisotropic, the anisotropic parameter a; (=123)
is nonzero, and the plastic strain rate is naturally decomposed into two parts, isotropic and
anisotropic, as shown in Equation (4).

09 —
def = d/\%ﬁl @)
1
Fj = Pr (51]‘ +§z]’) = Pr (Flj) 2)
100 a7 0 0
(5,']‘2 01 0,’Sv1']‘: 0 a O (3)
0 01 0 0 a3
og 09 -
= 2o 4 o3 4
del] dA (aaij + anl Szl) ( )
According to Equations (1)—(4), the plastic dissipated work can be written in the form
of Equation (5):
0g g -
dWP= gjidel.= op; | dA S +dA =25
7198 9lj ( 30'1']'+ aoy; Sll) ©)

where dW? is the plastic dissipated work, d/\% is the isotropic part of the plastic strain

rate, and dA ;7%5,'1 is the anisotropic part of the plastic strain rate. The plastic dissipated
work can be written as Equation (6) in the principal stress space, and stress ¢j; and strain
increments dslr} are 0y and def instead, respectively. oy is the principal stress expressed by
stress invariants, which can be written as Equation (7).

d d
_ Po_ P_ g 8
dwp— 0'1]‘ delj = O dek = O (dAM+dAM5k> (6)
2 2(2 —k
0= p‘i‘gq sin[@a =+ 7-[(3):| (7)

According to Equation (1), the principal plastic strain increment def can be written
by strain rate invariants as shown in Equation (8), where dv” is the plastic shear strain
rate. The stress invariants in Equation (7) and strain increment invariants in Equation
(8) are substituted into Equation (6) to obtain the energy relation based on the potential
theory, as shown in Equation (9). In Equation (7), p = (07 + 02 + 03)/3 represents the

average principal stress, ¢ = \% \/ (01 — 02)* + (05 — 03)% + (07 — 03)? is the generalized
shear stress, and the stress lode angle 6, represents the stress direction, which is defined on
the deviatoric plane; the calculation formula is shown in Equation (12). del and dv* are
the increments of the plastic volumetric strain and shear strain, respectively, and the angle

64 represent the direction of the strain rate, 64, = arctan [i (2 ‘318821 :‘38833 —1)} .

V3

2(2 g k)n}

def = %dsé’ +d~? sin [edg + (8)
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3
dWP= pdel + % kgl sin [90 + 27T(237*k)} sin [Gde n w}
= p deb+q dy? cos(6s — 04;)

©)

According to the critical state theory, when the soil reaches the critical state, the stress
and volumetric strain rate hold. Under the action of shear stress, shear deformation occurs
continuously, and the stress ratio reaches the critical stress ratio 7.. At this point, the energy
relation based on the potential theory can be simplified to Equation (10) in the critical
state, and the three-dimensional dilatancy equation shown in Equation (11) based on the
potential theory can be obtained.

dWP= p def +q dyF cos(0, — O4e) = 17c p dy? (10)
deh
g = Nle— 050 — )] 1

where the stress lode angle is shown in Equation (12), which is consistent with Equation
(7). The strain increments lode angle can be redefined in Equation (13) according to the
potential theory and a detailed analysis process can be found in reference [32].

1 0y — 03 ):|
0,= arctan| —— | 2 —1 12
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‘ dey — des V3\ T dAEF - dAE T

V3

According to Equation (10), when the stress lode angle is equal to the strain lode angle,
it is coaxial. The analysis combined with Figure 1 and Equation (13) shows that when the
material with the transversely isotropic fabric, F, = F3, and under triaxial compression,
o1 > 0y = 03, the principal stress acts in the three directions of Fq, Fp and Fj3, respectively,
0 = 04, and the stress and strain increments are coaxial. In the triaxial tensile state,
o1 = 0p > 03, the principal stress acts on Fy, F3, and Fy, respectively, the stress lode angle
is equal to the strain lode angle, and the stress and strain increment are coaxial. In other
stress states of the deviatoric plane, 8, # 64.. Accordingly, the description of noncoaxiality
under different stress states is associated with the meso-fabric properties of materials,
which is different from the noncoaxial coefficients commonly used in previous research,
has clearer physical significance, and is consistent with the experimental phenomenon in
reference [14].

g1 F1

Figure 1. Stress and fabric relation.
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2.2. Description of Dilatancy under Plane Stress State

To verify the rationality of the dilatancy equation in this paper, we first derived the
dilatancy equation under the plane stress state. Mohr’s circle under plane stress is shown in
Figure 2, where ¢g45s and ¢, are the friction angle and the peak friction angle, respectively.
The relation between stress components oy, 0y, 0z, normal stress s, and shear stress t is
shown in Equation (14). Similarly, the relation between the strain component increments
dey, dey, and de;, volumetric strain, and shear strain in the strain Mohr’s circle can be
written as Equation (15).

0y= 5 — tcos(2a), oy= s+ tcos(2a), Tyy= tsin(2a«) (14)

def = 1del — 1dvPcos(2B)
de}, = 3del) + 3dvy"cos(2B) (15)
dek, = 3dy’sin(2B)
where « is the stress direction angle (as shown in Figure 2) and f is the strain increment

direction angle in the strain space. Assuming the elastic strain is negligible, stress invariants
and strain invariants can be written as:

2
_Oxto0y _ oty 4 Ix—0y 2 _ 01—03
S=—p =3, t= ) Ty =7 (16)

del)= del +de}, dy¥= de] —deb
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R (o, ™xy)
direction

Figure 2. Stress Mohr circle.

In the plane stress state, the plastic dissipation work can be written as Equation (17).
The stress component and strain component of Equation (14) and Equation (15) are sub-
stituted into Equation (17), respectively, and the incremental expression of the plastic
dissipation work shown in Equation (18) is further determined. According to critical state
soil mechanics, the volumetric strain increment of soil reaches zero and the stress ratio
reaches the critical stress ratio 7. under the plane stress state, and the plastic dissipation
work increment described in Equation (18) can be written the form of Equation (19) while
the dilatancy equation under plane stress can be obtained through further modifications as
Equation (20). Here, del and d+” are the volume strain and shear strain increments, and s
and t are the average principal stress and shear stress, respectively.

dWP= s deb +t dyPcos(2A) (18)
dWP= s deb+t dyPcos(2A) = s y7.dy” (19)
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def t
W =MNc—C¢ S (20)
In Equation (17), ¢ = cos(2A) = cos(2a — 2f), as shown in Figure 2, & can be writ-
ten as Equation (21) according to the geometric relation, and j can also be written as
Equation (22) in the strain space. 7. can be regarded as different parameters for sand with

different densities.

2
o zlarctan Ty (21)
2 0y — Oy
1 2d+P
=—arctan—— 22
P 2 ds’y7 — def (2)

In the strain space, according to the idea of strain distribution in the potential theory,
the strain increment in Equation (22) is expressed by Equation (1) and resubstituted into
Equation (22), and the expression of strain rate direction angle Equation (23) based on the
potential theory is obtained. It should be noted that in most cases, geomaterials are trans-
versely isotropic, so the transversely isotropic fabric is adopted in the strain distribution by
Equation (1). The specific components of the fabric are shown in Equation (24), and two
components of the fabric direction tensor in Equation (4) can be written as Equation (25)
where g represents the plastic potential function and a represents the anisotropic parameter
of transversely isotropic fabric. The value of a2 is measured by the method proposed by

Li [33], where a; (i—123 Tepresents the amplitude parameter of the orthorhombic anisotropy

as shown in Equation (26) and the physical meanings of % and a® are shown in Figure 3.
When a(K)= 71/4, sin(a ©) = cos(a ®), 4, = a5, which is transversely isotropic, and the
value of a is shown in Equation (27). In Equations (26) and (27), N is the particle number of
the sample, and it represents the number of contact fabrics when F;; is employed to describe
the contact of particles.
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X2

Figure 3. Particle direction diagram.

We then introduce two directional angles of Equations (21) and (23) into Equation (20),
and the expression form of the dilatancy equation based on the potential theory under
plane stress can be obtained. The plastic potential g can be obtained by integrating the

equation D = — dt/ds; in the critical state, the plastic volumetric strain increment and
P
shear stress are constant, which means dpde}, + dgdy? = 0. Welet D = 3;% = - g—g =— %,

and introducing the dilatancy equation (Equation (28)) into the expression of the critical
state obtains the plastic potential ¢ by the integral as shown in Equation (29).

Tdyr T O\

D

g=t

do#es s
+doC -1 [(SO

e

(28)

(29)

where sy represents the initial average principal stress. It can be seen that the dilatancy
equation can reflect the noncoaxiality of stress and plastic strain increments in the plane
stress state and also reflect the coaxiality when a = 0. According to Equation (23), the more
obvious the anisotropy is, the more significant the noncoaxiality is. The dilatancy and stress
ratio under plane stress are shown in Figure 4, which is drawn by setting different model
parameters, in which dy was defined by Li [2] and anisotropic parameter a was under the
same stress condition. With the gradual increase in the stress ratio, dilatancy presents as
shear contraction followed by dilatancy. With the increase in the fabric parameter 4, the
difference in dilatancy is more significant with different anisotropy. With the decrease in
material coefficient d, the volume contraction is lower, and the difference in dilatancy

is lower.
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Figure 4. Stress dilatancy relation in plane stress state: (a) dy = 0.8; (b) dy = 0.6; (c) dg = 0.4.
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3. Model Verification

To verify the dilatancy equation, Equation (20) is compared with the results of the
simple shear test [34]. First, the simple shear test is introduced. The principal stress
rotation in the loading process is the noticeable feature of the simple shear test, and the
position of the failure plane is uncertain, as shown in Figure 5. The black line is the initial
stress unit, and the blue line is the stress unit after deformation. In the laboratory test,
Cambridge University’s Mark 5 DSS apparatus was used to shear the sample prepared
by Leighton-Buzzard sand. The consolidation of the sample is loaded under the normal
stress oy = 400 kPa. After the loading starts, shear is carried out at a constant shear rate
until the peak value is reached. The test can reflect the rotation of principal stress and
the noncoaxiality between the stress direction and strain increment direction, which is
consistent with the research goal of this paper.

Ty

Figure 5. Stress-state diagram of a simple shear test.

3.1. Noncoaxiality Verification

The predicted and tested values of principal stress rotation are shown in Figure 6a.
In this paper, the critical stress ratio sin ¢, of loose sand, medium dense sand, and dense
sand in relevant tests are extracted from [17], which was performed by Cole [34]. The
experimental results show an extremely small difference in the principal stress rotation
angle among the samples, the simulation results are close to the experimental values, and
the model’s principal stress rotation angle is consistent with the experiment. Figure 6b—d
shows the variation in noncoaxial angles, which decrease with the increase in the stress
ratio (Tyy /0y) under different densities, gradually close to the coaxial state. When the stress
ratio of loose and medium-dense sand is close to 0.6, the noncoaxial angle is close to zero.
When the stress ratio of dense sand reaches 0.8, the noncoaxial angle is approximately 5°.
The dilatancy equation can aptly predict this law, which shows that the dilatancy equation
in this paper is reasonable.

3.2. Verification of Dilatancy

Noncoaxiality has a significant effect on the dilatancy of sand [35] and the critical stress
ratio with three densities is set to a fixed value in this section (sin ¢.= 0.5), the dilatancy
coefficient D is calculated by different anisotropic parameters g, the effect of noncoaxiality
on dilatancy is analyzed, and the predicted and experimental values(—dv/dy) are shown
in Figure 7. When the fabric parameter a in the dilatancy equation takes different values,
the dilatancy of prediction shows the same law with three densities, and the law of first
contraction and then dilatancy is consistent with the experiment. The loose sand test results
show significant volume contraction, which is closer to the predicted value and is consistent
with the findings that noncoaxiality can lead to more significant volume contraction than in
reference [16], indicating that the noncoaxial coefficient modified by the dilatancy equation
from the mesoscopic perspective can reasonably reflect the influence of noncoaxiality on
dilatancy. Meanwhile, under the low-stress ratio, the deformation is greatly affected by the
material properties [36-38], and the different noncoaxiality values with different a values
lead to the curves of dilatancy not coinciding. When reaching the high-stress ratio, the
effect of material properties is weak, the stress—strain tends to be coaxial, and the dilatancy
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curves of different a values are less affected by noncoaxial and gradually coincide, which is
consistent with the existing consensus.

60

30
o loose

&3 o o251 B experiment value
= =) predicted value
S wf 8§20
2b - 2
& af E1s
g =
g B Dense ?é
8 R0 ® Medium o 10
é A A 1oose g

10 /m 7,,/0,~sing tana 2 5

i . 0 L L L ! .h_._
Yo oz o1 os o5 1o 0.1 02 03 04 05 06 0.7
stress ratio T,,/c, stress ratio Ty,/cy,
(@) (b)

w
1=

w

S

medium dense
B experiment value
predicted value

)
3

&)

il

predicted value

)
S

[N

S

o
o

Noncoaxialitity angle(°)

Noncoaxialitity angle(°)
&

=

bl
0 L I " , 0 1 ! I i . .
0.1 0:2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8
stress ratio rxy/ o, stress ratio 7, /o,
(c) (d)

Figure 6. The predicted and tested values of principal stress direction and noncoaxial angle: (a) direction
of principal stress; (b) loose sand; (c¢) medium dense sand; (d) dense sand.

0.6

Figure 7. Comparison of predicted dilatancy values with test values: (a) loose sand; (b) medium
dense sand; (c) dense sand.

4. Conclusions

To integrate the effect of noncoaxiality and describe the dilatancy of geomaterials
reasonably, the strain increment lode angle 64, defined in the potential theory by macro-
micro combination is used to define the noncoaxial coefficient, introducing noncoaxiality
to the dilatancy equation. It can reflect the influence of noncoaxiality on dilatancy and
comprehensively considers the material properties. Finally, the rationality of the dilatancy
equation is verified by a simple shear test, and the following conclusions are drawn:

(1) For noncoaxial conditions, calculation using stress invariants and strain increment
invariants will overestimate the energy dissipated during loading. The energy trans-
formation relation based on the potential theory introduces a new noncoaxial coeffi-
cient with values of 0-1, which can reasonably correct the influence of noncoaxiality
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on energy dissipation. Meanwhile, the influence of material microscopic properties
on energy dissipation is introduced, which is closer to the actual condition.

(2) The new noncoaxial coefficient is different from previous research, which is not
only related to the stress level and stress direction but also related to the material
microscopic fabric characteristics. The potential theory can be used to calculate the
newly defined noncoaxial coefficient to provide a dilatancy equation considering
noncoaxiality. When the microscopic fabric is isotropic, the noncoaxial coefficient
is naturally 1, and the dilatancy equation can be reduced to the form of the critical
state theory. When the fabric is anisotropic, the noncoaxial angle is related to the
material anisotropy, the geometric relation between the fabric and the stress direction.
The dilatancy equations can naturally describe noncoaxial effects, and the physical
meaning is clearer.

(3) Under the simple shear stress state, after introducing the noncoaxial coefficient, the
dilatancy equation can naturally reflect the influence of noncoaxiality on the dilatancy
under the condition of principal stress rotation. At the low-stress ratio, the generation
of noncoaxiality depends on the material properties and has a significant effect on
dilatancy. When the stress ratio is high, the influence of material properties on stress
and strain is not obvious, the stress and strain naturally tend to be coaxial, and the
influence on dilatancy is weakened. The experimental results verify the effectiveness
of the proposed dilatancy equation.
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