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Preface

This collection is dedicated to presenting the current state of the art in UAV research. It explores

the application of advanced methods, algorithms and technologies, based on tools such as artificial

intelligence, neural networks and sensors.

This Special Issue Reprint provides a platform for scientists and engineers to present the latest

advances, challenges and opportunities in the development of UAV sensor systems.

Its main goal is to emphasize the potential of integrating numerical simulations and design

methods to achieve improved autonomous unmanned flying platforms that are suitable for a range

of applications, and to foster knowledge exchange and innovative research on effective UAV design,

control and exploitation.

The Editors would like to thank the authors of the nine papers featured in the Special Issue “New

Methods and Applications for UAVs” for their contributions to UAV advancement.
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Abstract: Unmanned aerial vehicle (UAV) usage is increasing drastically worldwide as UAVs are
used in various industries for many applications, such as inspection, logistics, agriculture, and many
more. This is because performing a task using UAV makes the job more efficient and reduces the
workload needed. However, for a UAV to be operated manually or autonomously, the UAV must
be equipped with proper safety features. An anti-collision system is one of the most crucial and
fundamental safety features that UAVs must be equipped with. The anti-collision system allows the
UAV to maintain a safe distance from any obstacles. The anti-collision technologies are of crucial
relevance to assure the survival and safety of UAVs. Anti-collision of UAVs can be varied in the
aspect of sensor usage and the system’s working principle. This article provides a comprehensive
overview of anti-collision technologies for UAVs. It also presents drone safety laws and regulations
that prevent a collision at the policy level. The process of anti-collision technologies is studied
from three aspects: Obstacle detection, collision prediction, and collision avoidance. A detailed
overview and comparison of the methods of each element and an analysis of their advantages and
disadvantages have been provided. In addition, the future trends of UAV anti-collision technologies
from the viewpoint of fast obstacle detection and wireless networking are presented.

Keywords: anti-collision methods; detection system; sensors; unmanned aerial vehicle

1. Introduction

General Visual Inspection (GVI) is a typical approach for quality control, data collec-
tion, and analysis. It involves using basic human senses such as vision, hearing, touch,
smell, and non-specialized inspection equipment. Unmanned aerial systems (UAS), also
known as UAVs, are being developed for automated visual inspection and monitoring
in various industrial applications [1]. These systems consist of UAVs outfitted with the
appropriate payload and sensors for the job at hand [2].

Sensor and measurement reliance is crucial for UAV operations and functionality, as
they serve as indispensable resources to ensure the safety and security of UAVs. Since UAVs
operate autonomously without a pilot’s input, a series of sensors and systems are required
for the UAVs to position themselves. Usually, UAVs use a global positioning system (GPS)
to position themselves. However, GPS input will not always be accurate, especially when

Sensors 2023, 23, 6810. https://doi.org/10.3390/s23156810 https://www.mdpi.com/journal/sensors1
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the UAV has to be equipped with sensors such as rangefinders, which are very useful
when the UAV flies at low altitudes. The investigation of the quadcopter control problem
came to a standstill until relatively recently, since the control of four separate motor-based
propulsion systems was nearly impossible without modern electronic equipment. These
technologies have only become increasingly sophisticated, versatile, quick, and affordable
in the past several decades.

Due to the intricacy of the issue, controlling a quadcopter is a topic that is both
intriguing and important. The fact that the system has just four inputs (the angular
velocity of the propellers) despite having six degrees of freedom (three rotational axes and
three transnational axes) gives the system the quality of being under-actuated [3]. Even
though some of them have more than six inputs, they all have the same number of axes to
manipulate, meaning they are all under-actuated. This is because all those inputs can only
directly control the three rotation axes, not the translation axis [4].

Additionally, the dynamics on which this form of UAV operates give freedom in
movement and robustness towards propulsion problems. This sort of UAV is ideal for
reconnaissance missions. As an illustration, control algorithms may be programmed so
that a UAV can keep its stability even if fifty percent of the propellers that control one axis
of rotation stop working correctly. On the other hand, since it is an airborne vehicle, the
frictions of the chassis are almost non-existent, and the control algorithm is responsible for
handling the damping.

A UAV’s level of autonomy is defined by its ability to perform a set of activities without
direct human intervention [5]. Different kinds of onboard sensors allow unmanned vehicles
to make autonomous decisions in real time [6–8]. Demand for unmanned vehicles is rising
fast because of the minimal danger to human life, enhanced durability for more extended
missions, and accessibility in challenging terrains. Still, one of the most difficult problems
to address is planning their course in unpredictable situations [9–11]. The necessity for an
onboard system to prevent accidents with objects and other vehicles is apparent, given their
autonomy and the distances they may travel from base stations or their operators [12,13].

Whether a vehicle is autonomous or not, it must include a collision avoidance system.
Several potential causes of collisions include operator/driver error, machinery failure, and
adverse environmental factors. According to statistics provided by planecrashinfo.com,
over 58% of fatal aviation crashes occurred due to human mistakes between January 1960
and December 2015 [14]. To reduce the need for human input, the autopilot may be
upgraded with features like object recognition, collision avoidance, and route planning.
Methods of intelligent autonomous collision avoidance have the potential to contribute to
making aircrafts even safer and saving lives.

The exponential growth in UAVs using in public spaces has made a necessity for
sophisticated and highly dependable collision avoidance systems evident and incontestable
from the public safety perspective. UAVs can access risky or inaccessible locations without
risking human lives. Therefore UAVs should be built to operate independently and avoid
crashing into anything while in flight [15]. Precision agriculture is an application of UAVs
that has been increasing rapidly worldwide. Precision agriculture is expanding quickly
in commercial goods and research and development applications. In order to correctly
account for the geographical and temporal fluctuations of crop and soil components, this
revolutionary trend is redefining the crop management system and placing a higher focus
on data collecting and analysis, whether in real-time or offline.

Figure 1 shows the basic architecture of an anti-collision system that will be imple-
mented in a vehicle. Anti-collision systems consist of two major parts: the input and
output [15]. These parts can also be recognized as perspective and action. Any sys-
tem designed to prevent accidents from happening must begin with perception, or more
specifically, obstacle detection [16]. At this stage, sensors gather information about the
surrounding area and locate any hazards. However, the active part comes after the per-
spective, where once the threat has been detected, the situation will be analyzed by the
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computation of the control system of the UAVs. As a result, the actuators will implement
proper countermeasures to avoid the hazard [17].

Figure 1. Anti-collision system general architecture.

Sensors come in a wide variety, but they may be broken down into two broad cate-
gories: active and passive. The backscatter is measured by an active sensor with its own
source that sends out a beam of light or a wave. On the other hand, passive sensors can
only estimate the energy emitted by an item, such as sunlight reflected off the object. Anti-
collision systems use a total of four different approaches in detecting the hazards, which
are geometric (using the UAV’s and obstacles’ positions and velocities to reformat nodes,
typically via trajectory simulation), force-field (manipulating attractive and repulsive forces
to avoid collisions), optimized (using the known parameters of obstacles to find the most
efficient route), and sense-and-avoid (making avoidance decisions at runtime based on
sensing the environment) [18,19].

The complexity of collision avoidance systems may vary from as simple as alerting
the vehicle’s pilot to be involved to wholly or partly taking control of the system on its
own to prevent the accident [20]. For an unmanned vehicle to travel without direct human
intervention, it must be equipped with several specialized systems that identify obstacles,
prevent collisions, plan routes, determine their exact location, and implement the necessary
controls [21]. Multiple UAVs provide substantial benefits over single UAVs. They are in
high demand for a wide range of applications, including military and commercial usage,
search and rescue, traffic monitoring, threat detection (particularly near borders), and
atmospheric research [22–24]. UAVs may struggle to complete missions in a demanding
dynamic environment due to cargo restrictions, power constraints, poor vision due to
weather, and difficulties in remote monitoring. To ensure unmanned vehicles’ success and
safe navigation, the robotics community is working tirelessly to overcome these difficulties
and deliver the technical level fit for challenging settings [25–28].

One of the most challenging problems for autonomous vehicles is detecting and
avoiding collisions with objects, which becomes much more critical in dynamic situations
with several UAVs and moving obstacles [29]. Sensing is the initial process in which
the system takes data from its immediate environment. When an impediment enters the
system’s field of view, the detection stage performs a risk assessment. To prevent a possible
collision, the collision avoidance module calculates how much of a detour has to be made
from the original route. Once the system has completed its calculations, it will execute the
appropriate move to escape the danger safely.

2. Obstacle Detection Sensors

The drone needs a “perspective model” of its environment to avoid crashing into
obstacles [30,31]. To do this, the UAV must have a perception unit consisting of one or more
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sensors [32]. Sensors, like imaging sensors of varying resolutions, are crucial components
of remote sensing systems. Sensors may be used in a wide variety of contexts. LiDAR,
visible cameras, thermal or infrared cameras, and solid-state or mechanical devices are all
examples of sensors that may be used for monitoring [27,33]. The sensors that have been
used for the anti-collision system are majorly categorized into two, which are active sensors
and passive sensors. In Figure 2, the categorization of the anti-collision system sensors
is shown.

Obstacle Detection
Sensors

Active SensorsActive Sensors Passive SensorsPassive Sensors

UltrasonicUltrasonicRadarRadar LiDARLiDAR Optical camerasOptical cameras IR camerasIR cameras SpectrometersSpectrometers

Figure 2. Categorization of anti-collision system sensors.

2.1. Active Sensors

Sensing using active sensors involves emitting radiation and then detecting the re-
flected radiation. All the necessary components, including the source and the detector,
are built within an active sensor. A sensor works by having a transmitter send out some
signal (light, electricity, sound) that then gets reflected off of whatever it is being used to
detect [34,35]. Most of these sensors operate in the spectrum’s microwave range, allowing
them to penetrate the atmosphere under most circumstances. The metrics of interest of
the obstacles, such as distance and angles, may be adequately returned by such sensors
since they have a short reaction time, need less processing power, can scan more significant
regions quickly, and are less impacted by weather and lighting conditions. In [36], the
authors use MMW radar. In their setup, things are detected and followed by watching
radar echoes and figuring out how far away they are from the vehicle. Different distances
and weather conditions are also used to conclude the performance. Despite the allure,
radar-based solutions are either too costly or too heavy to be practical on more miniature
robots, such as battery-powered UAVs [37,38].

2.1.1. Radar

A radar sensor transmits a radio wave that will be reflected back to the sensor after
hitting an object. The distance between the object and the radar is determined by timing
how long it takes the signal to return. Despite their high cost, airborne radar systems are
often used for their precision to provide data. Both continuous-wave and pulsed-wave
radars exist, with the former emitting a steady stream of linearly modulated (or frequency-
modulated) signals and the latter emitting intense but brief bursts of signals; however, both
types have blind spots [39]. As a bonus, radars could also track the objects’ speeds and
other motion data. For instance, the radar may determine an object’s velocity by measuring
how much the frequency of its echo or bounced-off signal changes as it approaches the
radar [40].

Using a compact radar, the authors of [40] could get range data in real time, regardless
of the weather. The system incorporates a compact radar sensor and an OCAS (obstacle
collision avoidance system) computer. OCAS utilizes radar data such as obstacle velocity,
azimuth angles, and range to determine avoidance criteria and provide orders to the flight
controller to execute the appropriate maneuver to prevent collisions. The findings indicated
that with the set safety margins, the likelihood of successfully avoiding a crash is more
than 85%, even if there is an inaccuracy in the radar data.
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The benefits of integrating radar sensors into UAVs for obstacle identification and for
detecting and calculating additional aspects of the observed obstruction, such as the velocity
of the obstacle and the angular information utilizing multichannel radars, are thoroughly
explored by the authors in [41]. Experiments reveal that with forward-looking radars, with
the radar’s simultaneous multi-target range capabilities, it is possible to identify targets
across an extensive angular range of 60 degrees in azimuth. For their suggested autonomous
collision avoidance system, the authors of [41] used Ultra-Wideband (UWB) collocated
MIMO radar. Radar cognition’s capacity to modify the waveform of ultra-wideband
multiple-input multiple-output radar transmissions for better detection and, by extension,
to steer the UAV by giving an estimate of the collision locations is a significant advantage.

2.1.2. LiDAR

One may compare the operation of a light detection and ranging (LiDAR) sensor to
that of a radar. One half of a LiDAR sensor fires laser pulses at the surface(s), while the
other half scans their reflection and calculates distance based on how long each pulse takes
to return. Rapid and precise data collection is achieved using LiDAR. LiDAR sensors have
shrunk in size and shed weight over the years, making it possible to put them on mini
and small UAVs [42,43]. LiDAR-based systems are more cost-effective than radar systems,
particularly those using 1D and 2D LiDAR sensors.

The designed system was successfully field tested by the authors of [44] using a variety
of laser scanners installed on a vehicle, which are laser radars ranging in three dimensions.
Regarding 3D mapping and 3D obstacle detection, 3D LiDARs are as standard as it gets in
the sensor world [45,46]. Since LiDAR is constantly being moved and ranged, the gathered
data is prone to motion distortion, which makes using these devices challenging. To get
around this, as proposed by the authors of [45], additional sensors may be used with
LiDAR. Only 3D LiDARs allow for precise assessment of an object’s posture.

2.1.3. Ultrasonic

To determine an item’s distance, ultrasonic sensors transmit sound waves and then
analyze the echoes they receive [47]. The sound waves produced are outside the range hu-
mans can hear (25 to 50 kilohertz) [48]. Compared to other types of range sensors, ultrasonic
sensors are both more affordable and widely accessible. The object’s transparency does not
affect ultrasonic sensors, unlike LiDARs. Unlike ultrasonic sensors, which are color-blind,
LiDARs have trouble identifying transparent materials like glass. However, the sonic
sensor will not provide accurate readings if the item reflects the sound wave in the opposite
direction than the receiver or if the substance has the properties of absorbing sound.

Like radars and LiDARs, this method relies on emitting a wave, waiting for the
reflected wave to return, and then calculating the distance based on the time difference
between the two. Compared to other types of range sensors, ultrasonic sensors are both
more accessible and more affordable. Since each sensor in Table 1 has its advantages and
disadvantages compared to the others, it is clear that more than one sensor can be employed
to provide complete protection against the collision avoidance issue. Multiple sensors may
be utilized to cover a greater area and eliminate blind spots, or different kinds of sensors
can be fused to create a super sensor whose weaknesses cancel out those of its components.

Table 1. Comparison between the active sensors of the anti-collision system.

Sensor
Sensor

Size
Power

Required
Accuracy Range

Weather
Condition

Light
Sensitiv-

ity
Cost

Radar Large High High Long Not
Affected No High

LiDar Small Low Medium Medium Affected No Medium

Ultrasonic Small Low Low Short Slightly
Affected No Low
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According to Table 1, the LiDAR and ultrasonic sensors, which can be used in the
UAV’s anti-collision system, are smaller than radar. This makes the ultrasonic and LiDAR
the ideal method of obstacle sensing for small UAVs, as they are less in weight, reducing the
UAV’s payload. In addition, the power consumption by ultrasonic and LiDAR is also low
compared to radar. However, the accuracy and range of the radar are highest compared
to ultrasonic and LiDAR, which makes the radar suitable for use in large UAVs that fly
at high altitudes. On the other hand, the radar is not affected by weather conditions, but
the LiDAR is affected, while ultrasonic is slightly affected by the weather condition. Last
but not least, the cost of an ultrasonic sensor is the lowest compared to radar and LiDAR,
which makes it more affordable.

2.2. Passive Sensors

The energy the seen items or landscape gives off is measured using passive sensors.
Optical cameras, infrared (IR) cameras, and spectrometers are the most common types
of passive sensors now used in sensing applications [49]. Wide varieties of cameras,
each optimized for a specific wavelength, exist. The authors of [50] offer a system for
acoustic signal tracking and real-time vehicle identification. The result is obtained by
isolating the resilient spatial characteristics from the noisy input and then processing them
using sequential state estimation. They provide empirical acoustic data to back up the
suggested technique.

In contrast, thermal or infrared cameras operate in the infrared light range and have a
larger wavelength than the visible light range. Therefore, the primary distinction between
the two is that visual cameras use visible light to create a picture, while thermal cameras
use infrared radiation. Ordinary cameras struggle when light levels are low, while IR
cameras thrive [51]. It takes more computational resources since an additional algorithm is
required to extract points of interest in addition to the algorithm already needed to calculate
the range and other characteristics of the barriers [52]. Vision cameras are susceptible to
environmental factors, including sunlight, fog, and rain, in addition to the field-of-view
restrictions imposed by the sensor being employed [53,54].

2.2.1. Optical

Taking pictures of the world around us is the foundation of visual sensors and cameras,
which then utilize those pictures to extract information. There are three main types of
optical cameras: monocular, stereo, and event-based [55–57]. Using cameras has several ad-
vantages, including their compact size, lightweight, low power consumption, adaptability,
and simple mounting. Some drawbacks of employing such sensors include their sensi-
tivity to lighting and background color changes and their need for clear weather. When
any of these conditions are present, the recorded image’s quality plummets, significantly
influencing the final product.

According to [58], a monocular camera may be used to identify obstacles in the path
of a ground robot. Coarse obstacle identification in the bottom third of the picture is
achieved by an enhanced Inverse Perspective Mapping (IPM) with a vertical plane model;
however, this method is only suitable for slow-moving robots. Using stereo cameras is one
method proposed by the authors of [59]. In stereo cameras, absolute depth is determined
by combining internal and external camera characteristics, unlike in monocular cameras.
The amount of processing power needed rises when stereo images are used. Because of
the high processing cost and the need to accommodate highly complex systems with six
degrees of freedom, like drones, the authors solve this problem by dividing the collected
pictures into nine zones.

2.2.2. Infrared

Sensors operating in the infrared spectrum, such as those used in infrared (IR) cameras,
are deployed when ambient light is scarce. They may also be used with visual cameras
to compensate for the latter’s lackluster performance, particularly at night. Data from a
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thermal camera may be analyzed by automatically determining the image’s orientation by
extracting fake control points due to the thermal camera’s output being hazy and distorted
with lesser resolution than that of an RGB camera [60].

3. Obstacle Detection Method

Both reactive and deliberative planning frameworks may be used for collision avoid-
ance. During management by reaction, the UAV is equipped with onboard sensors to collect
data about its immediate environment and behave accordingly. It facilitates instantaneous
responses to changing environmental conditions. An alternative navigational strategy may
be necessary if reactive control leads to a local minimum and becomes trapped there. The
method of decision-making used by autonomous commercial cars will determine their
level of safety and sanity. By dynamically connecting rear anti-collision elements, a driving
decision network built on an actor-critic architecture has been developed to ensure safe
driving. To interpret sensor data efficiently, this network considers the effects of different
elements on collision prevention, such as rearward target detection, safety clearance, and
vehicle roll stability. This has been accomplished by creating an improved reward function
that considers these factors inside a multi-objective optimization framework. The network
attempts to improve collision avoidance skills and guarantee the safety and stability of
the vehicle by thoroughly examining these parameters. The force-field method, geometry,
optimization-based methods, and sense-and-avoid techniques are the four main approaches
to collision avoidance algorithms, as shown in Figure 3.

Obstacle Detection 
Methods

GeometricForce-field Sense and Avoid Optimization
 

Figure 3. The main approaches to collision avoidance algorithms.

3.1. Force-Field Method

Using the idea of a repulsive or attractive force field, force-field techniques (also called
potential field methods) may steer a UAV away from obstruction or draw it closer to a tar-
get [61,62]. Instead of using physical barriers, the authors of [63] propose using a potential
field to surround a robot. In order to determine the shortest route between two places, the
authors of [64] suggest using an artificial potential field. The points that create repulsive
and attractive pressures for the robot are the obstacles and the targets, respectively.

The authors of [65] suggested a new artificial potential field technique to generate
optimum collision-free paths in dynamic environments with numerous obstacles, where
other UAVs are also treated as moving obstacles. This method is dubbed an improved
curl-free vector field. Although simulations confirmed the method’s viability, more val-
idation in 3D settings with static and dynamic factors is required [66]. Regarding UAV
navigation in 3D space, the authors of [67] describe an artificial potential field technique
that has been improved to produce safe and smooth paths. By factoring in the behavior of
other UAVs and their interactions, the proposed optimized artificial potential field (APF)
algorithm improves the performance of standard APF algorithms. During route planning,
the algorithm considers other UAVs to be moving obstacles.

A vehicle collision avoidance algorithm is provided in [68], using synthetic potential
fields. The algorithm considers the relative velocities of the cars and the surrounding traffic
to decide whether to slow down or speed up to pass another vehicle. This decision is
based on the size and the form of the potential fields of the barriers. Too big of a time step
might lead to collisions or unstable behavior, so getting it exactly right is essential. A 1D
virtual force field approach is proposed for moving obstacle detection [69]. They argue
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that the inability to account for the barriers’ mobility causes the efficiency loss seen with
conventional obstacle force field approaches.

3.2. Sense and Avoid Method

In order to control the flight path of each UAV in a swarm without information about
the plans of other drones, with fast response time, sense-and-avoid techniques focus on
reducing the computational power required by simplifying the collision avoidance process
to individual detection and avoidance of obstacles. Methods based on “Sense and Avoid”
The speed with which collision avoidance can respond makes it a good tool for complex
contexts. A robot or agent is outfitted with several sensing technologies, including LiDAR,
sonar, and radar. Although it cannot distinguish between different objects, radar can
quickly respond to anything that enters its field of view [69–71].

In [72], the authors suggest a technique for categorizing objects as static or dynamic
using 2D LiDAR data. Additionally, the program can provide rough estimates of the speeds
of the moving obstructions. In [73], the authors use a computer vision method to implement
an animal detection and collision-avoidance system. The team has trained its system with
over 2200 photos and tested it with footage of animals in traffic. In [74], the authors
implement a preset neural network module in MATLAB to operate with five ultrasonic
(US) sensors to triangulate and determine objects’ exact location and form. They use three
distinct shapes in their evaluations. To accomplish object recognition and avoidance, the
inventors of [75] fused a US sensor with a binocular stereo-vision camera. Using stereo
vision as the primary method, a new route is constructed via an algorithm based on the
Rapidly Explored Random Tree (RRT) scheme.

3.3. Geometric Method

To ensure that the predetermined minimum distances between agents, such as UAVs,
are not violated, geometric techniques depend on studying geometric features. The UAVs’
separation distances and travel speeds have been used to calculate the time remaining
until a collision occurs. In [76], the authors provide an analytical method for resolving
the planar instance of the issue of aircraft collision. We can find closed-form analytical
solutions for the best possible sets of orders to end the dispute by analyzing the trajectories’
geometric properties.

In [77], conflict avoidance in a 3D environment is accomplished by using information
such as the aircraft’s coordinates and velocities in conjunction with a mixed geometric
and collision cone technique. However, the authors depend on numerical optimization
techniques for the most common scenarios and only get analytical conclusions for specific
circumstances. The paper [78] investigates UAV swarms that use geometry-based collision
avoidance techniques. The suggested method integrates line-of-sight vectors with relative
velocity vectors to consider a formation’s dynamic limitations. Each UAV may assess if the
formation can be maintained while avoiding collisions by computing a collision envelope
and using that information to determine the potential directions for avoiding collisions.

In [79], the authors combined geometric avoidance and the selection of start time from
critical avoidance to provide a novel approach to collision avoidance based on kinematics,
the risk of collisions, and navigational constraints. Instead of trying to avoid all of the
barriers simultaneously, FGA may prioritize which obstacles must be avoided first, de-
pending on how much time must pass before they can be safely passed. The authors of [80]
developed a way to safely pilot UAVs from the beginning of a mission to its completion
while ensuring that the vehicles stay on their intended course and avoid potential hazards.
The authors offer a solution that individually tackles the system’s collision avoidance
control and trajectory control and then merges them via a planned movement strategy.

3.4. Optimization Method

Methods based on optimization need geospatial data for the formulation of the avoid-
ance trajectory. Probabilistic search algorithms aim to offer the most productive locations
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to conduct a search, given the level of uncertainty associated with that information. Dif-
ferent optimization techniques, such as those inspired by ants, genetic algorithms, gradi-
ent descent-based approaches, particle swarm optimization, greedy methods, and local
approximations, have been developed to handle the enormous computing demands of
these algorithms.

For instance, to successfully calculate optimum collision-free search pathways for
UAVs under communication-related limitations, the authors of [81] use a minimum time
search method with ant colony optimization. The authors of [82] provide a prediction
technique for the next UAV coordinates based on the set of probable instructions the UAV
will execute in the near future. After considering the destination coordinates and the UAV’s
current location, the algorithm generates a cost function for the best trajectory. Using
particle swarm optimization, a novel technique for autonomous vehicle route planning in
the wild. This strategy uses the sensor data by giving various kinds of territory different
weights, then using those weights to categorize the possible paths across the landscape.

3.5. Summary of Object Detection Method

Table 2 summarizes previous research studies on detection and anti-collision system.
From Table 2, it can be concluded that the geometric detection and force field methods
are suitable for long-range UAVs. However, the sense and avoid method is suitable for
short-range UAVs. The compatibility of real-time detection in four detection methods
allows the UAVs to analyze the surroundings and be more varied about the surrounding.
The 3D compatibility in geometric, optimization, and sense-and-avoid methods allows the
system to generate a 3D mapping around the surroundings, allowing the maneuvering to
be more precise in the UAVs.

Table 2. Previous studies of detection and anti-collision system.

Geometric
Sense and

Avoid
Force Field Optimization

[78,79] [80] [83] [72] [74] [69] [65] [82]

Multiple UAV
Compatibility / / / / / / O /

3D Compatibility / / / / / O O /
Communication O / / / / O O /
Alternate Route

Generation / / / / O / / /

Real-time
Detection / / / / / / / /

/—Available. O—Not Available.

Other than these obstacle detection methods, which involve their implementation,
many obstacle detection methods are being developed around the world. One obstacle
detection method is neural network-based navigation. Human decisions about these types
of motions may be observed in various situations, including those with randomly produced
barriers and pertinent environmental data [84]. In comparison to human decision-making,
the simulation results showed that the suggested method had a high estimation accuracy
rate of almost 90%. In contrast to the adaptive project framework (APF) method, the
neural network methodology demonstrated its usefulness by successfully navigating over
obstacles without running into the local minimum problem, hence emphasizing the strength
of neural network decision-making.

4. Conclusions

Analyzing this short review on the sensor type and detection method of anti-collision
systems of UAVs, the selection of sensors and detection method mainly depends on the
UAV type and the objective of the UAV mission. The table below presents the research gap
and the stigmatization of the research review identified through the literature review.
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In this context, the recommended method of detection in an anti-collision system in
a UAV depends on the UAV’s specification and the UAV’s mission objective. Methods
of obstacle detection using geometric are considered effective, where they are capable
of 3 dimensions projection alternate route generation, and multiple UAV compatibility.
However, they cannot communicate with ground control. The geometric object detection
method basically uses input from GPS in order to position the UAV itself. This detection
method is suitable in urban areas, where there will be strong GPS signals. However, strong
GPS signals may not be found in rural areas, especially in plantation areas, where UAVs’
applications have rapidly increased in agricultural applications. When the GPS signal
strength is low, the UAV cannot position itself accurately. Hence, optimization and sense
and avoid methods will be more suitable in this case than geometric object detection
methods. More specifically, optimization and sense-and-avoid detection methods are
suitable for UAVs that fly at low altitudes; however, the geometric is ideal for high-altitude
and long-range UAVs.

On the other hand, the force field detection method is more suitable in an environment
consisting of multiple UAVs, where the UAV can sense the electromagnetic emission from
other UAVs. However, although the force field method is the same as the geometric method,
where it is suitable for long-range UAVs, it is not suitable for urban areas because there will
be a lot of electromagnetic wave interference, eventually affecting the force field detection
method. This literature review gives a better understanding of the anti-collision system
within a UAV. It allows the optimization of anti-collision systems according to the UAV in
which the anti-collision system will be implemented.
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Abstract: Over the past few years, with the rapid increase in the number of natural disasters, the need
to provide smart emergency wireless communication services has become crucial. Unmanned aerial
Vehicles (UAVs) have gained much attention as promising candidates due to their unprecedented
capabilities and broad flexibility. In this paper, we investigate a UAV-based emergency wireless
communication network for a post-disaster area. Our optimization problem aims to optimize the
UAV’s flight trajectory to maximize the number of visited ground users during the flight period. Then,
a dual cost-aware multi-armed bandit algorithm is adopted to tackle this problem under the limited
available energy for both the UAV and ground users. Simulation results show that the proposed
algorithm could solve the optimization problem and maximize the achievable throughput under
these energy constraints.

Keywords: unmanned aerial vehicle; trajectory optimization; reinforcement learning; multi-armed
bandit; cost subsidy; post-disaster

1. Introduction

Across the globe, large-scale natural disasters are known for their severe casualties
damage to property. Besides thousands of deaths and injuries resulting from various types
of natural disasters around the world, there has been additional increase in material losses
of about 100–150% [1]. The first few hours after a catastrophe are regarded as the “golden
hours” of relief because rescue workers have a high probability of evacuating people from
the damaged region during this period. Keep in mind that the wireless infrastructure in
the disaster area might not be functional or even might be ravaged after the disaster. What
makes the situation even more complicated is the paralysis of the power transmission lines
after the disaster. The most powerful earthquake ever recorded in Japan, with a magnitude
of 9.1, triggered a tsunami on the northeastern shore in March 2011. In the region of the
catastrophe, around 6000 base stations (BSs) were wrecked, and the remaining BSs were
highly overloaded with tremendous amounts of voice and data traffic. As a result of the
high call block rate, communication services were suspended for roughly four days [2]. As
a result, it is critical to develop an emergency wireless network that is completely indepen-
dent of the conventional broadband network as soon as possible in order to preserve those
valuable human lives. Unmanned aerial vehicles (UAVs) are well-known for their distinct
characteristics, such as flexible deployment and rapid reaction. Thus, they can be deployed
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as temporary mobile BSs to establish this type of temporary emergency wireless network [3].
UAVs are now employed for a variety of emergency wireless communication applications,
such as disaster management, surveillance, early warnings, post-disaster fusion centers,
damage assessment, and supply-aid drop, in addition to temporary emergency wireless
networks [4].

Notwithstanding the advantages of utilizing UAVs for establishing emergency wireless
communication networks in a post-disaster area, there are a number of issues that need to
be neutralized. In this tough environment induced by a natural disaster, the UAV must
first design and optimize its flying route. This necessitates a quick online optimization
procedure to accommodate the dramatic shift in the geographical field [5]. Secondly, the
available energy for victims is ephemeral due to the limited battery capacity of their UEs
and the destruction of the power supply infrastructure as a result of the natural disaster [6].
Thirdly, the UAV’s operating duration is restricted by the onboard battery’s capacity. The
UAV should return to its base for recharging before it is completely depleted [7]. Therefore,
while constructing an emergency wireless communication network, all of these concerns
should be addressed. In addition, since this is a crucial mission, the UAV must assist as
many people as possible in the disaster zone before its battery dies. Consequently, it is vital
to seek out a robust mathematical tool capable of tackling such novel challenges.

Machine learning (ML) algorithms, and more precisely, reinforcement learning (RL)
algorithms, are leveraged to tackle these kinds of optimization problems. Since RL algo-
rithms are capable of achieving superb results in terms of efficiency and generalization,
and due to their ability to deal with optimization problems with conflicting parameters,
researchers have been inspired to utilize them in dealing with real-time issues in the field
of wireless communications networks [8]. In this context, modern UAVs are equipped
with wireless communications, ML, and image processing techniques. These techniques
can support a UAV’s trajectory optimization while avoiding obstacles and dealing with
a limited battery capacity, which leads to serving more spots and enhancing the whole
mission’s energy efficiency. Recently, “follow me” drones have boomed in market value [9].
These drones are capable of filming a moving person with intelligent target-tracking and
obstacle-avoidance algorithms, resulting in fabulous camera footage. Furthermore, novel
UAV-related applications such as area surveillance, disaster relief, and traffic control are
just a few applications that can be intelligently developed for future cities [10].

Multi-armed bandit (MAB) algorithms are considered one of the RL algorithms which
are preferred in dealing with online optimization problems [11]. MAB algorithms can be
defined as a set of arms, i.e., actions, of a bandit machine. At any given moment, pulling an
arm leads to an instantaneous reward that is sampled from a certain distribution. A player
wants to maximize his accumulated reward over the playing period by choosing an arm
to pull during each moment of playing. Nevertheless, this player has no idea about the
instantaneous reward behind each arm, since it will be revealed when the player decides to
choose it. Therefore, some amount of the reward could be missed out due to this hidden
setting. This loss is denoted by the term regret [12,13]. Thus, a player should develop a
strategy to choose the arm that leads to the highest reward. On the other hand, this strategy
should keep an eye on balancing between playing with the previously discovered arms
that have high rewards or playing with the still-undiscovered ones that might have higher
rewards. This is a common MAB dilemma, and it is called the exploration–exploitation
trade-off [14,15]. Aiming to bolster disaster resilience, this paper describes a method of
leveraging the latest advances in MAB algorithms and UAV wireless communications
networks to improve the functionality of emergency wireless communication services for
post-disaster response and assessment.

1.1. Prior Works and Motivations

One of the main benefits of deploying UAVs in emergency wireless communication
networks is their capability of gathering extensive data from scattered ground devices,
such as ground BSs, ground users, and even ground sensors [16]. The paper just cited gives

15



Sensors 2023, 23, 1402

a broad overview of different techniques but does not dive deeply in a specific direction.
Furthermore, a UAV can operate as a flying edge server or a BS to support various traffic
offloading scenarios [17], but it has a limited size of state action space. Due to its mobility,
the planning and optimization of the UAV’s trajectory and radio resource management
of its wireless network are crucial issues. Researchers conducted many investigations
on this topic during the past few years [18]. The UAV’s speed and the location of its
waypoints were used in [19] to design an optimal trajectory. However, the discussion was
limited to cases where UAVs are used as relay stations in ad hoc networks. Minimizing
the total energy consumption was studied in [20] using UAV speed control and a UAV
data-scheduling-based heuristic algorithm, but it can be considered a theoretical approach
only due to its large approximation factors. The authors of [21] considered UAVs with
small cell capabilities to work as UAV-BSs. Particularly, the UAV movement, charging, and
coverage action are considered in terms of jointly optimizing the energy and throughput
through revenue and cost components. The UAV task scheduling was investigated in [22],
where a mathematical framework for the optimization of UAV-aided video monitoring of a
set of points of interest (PoI) distributed in a large urban area was proposed. Using this
framework, which is based on mixed integer linear programming (MILP) techniques and
real experimental data, particular energy-constrained UAVs are selected for recharging
using public transportation buses, which also transfer the UAVs to desired PoIs in order to
increase reliability and coverage.

UAV trajectory optimization may be carried out using traditional optimization ap-
proaches when realistic models of UAV wireless networks, including their flight dynamics,
are available. Still, building these realistic network models is quite challenging; thus,
model-free machine-learning methods can be used to manage the operation of UAVs that
utilize wireless communication networks. By utilizing data gathered from prior experi-
ences, machine learning algorithms are able to create autonomous control policies [23].
The authors of [24] studied the optimal deployment of UAVs equipped with directional
antennas, using circle packing theory, where the 3D locations of the UAVs are determined
such in a way that the total coverage area is maximized. The policy gradient approach
for trajectory optimization used by the authors of [25] was able to maximize the overall
distance covered by the UAV. However, this method took a lot of time and effort to find
the best answer due to the large number of possible trajectories that the UAV must fly.
The authors of [26] used the deep Q-learning method to optimize the UAV’s flight path
to maximize data rate during the flight period in an unknown environment. One major
limitation of this proposed Q-learning approach for trajectory optimization is the long
learning time, which makes it unfeasible even for moderate state spaces. By planning the
UAV’s flight trajectory, the authors of [27] were able to maximize the uplink transmission
rate in a UAV cellular network. The deterministic policy gradient (DPG) approach was
used to solve the optimization problem after it was converted into a Markov decision
process (MDP). However, the characteristics of mmWave channels and beamforming were
not taken into consideration during the optimization process.

Despite the existence of numerous excellent studies on UAV wireless communication
networks, there are only a few works that focus on UAV-assisted emergency wireless
communication networks. In our earlier studies [28,29], we investigated the radio resource
allocation for a UAV emergency wireless communication network using a dynamic spec-
trum access system. The purpose of the deployment of UAVs as a cognitive radio network
(CRN) was to maximize the downlink data rate in a post-disaster environment. Moreover,
the limited transmission power of each UAV was used to control the constructed two multi-
player MAB-based optimization problems called the power budget aware upper confidence
bound (PBA-UCB) algorithm and the power budget aware Thompson sampling (PBA-TS)
algorithm. The problem of gateway selection in a post-disaster area was addressed in [30],
where a decentralized MAB algorithm was adapted to each UAV to let it maximize its
data throughput by optimally choosing a suitable gateway. However, the optimization
algorithm encountered some data loss due to not choosing the optimal strategy at the be-
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ginning of the optimization process. The authors of [31] built a system of a re-configurable
intelligent surface (RIS) attached to a UAV. With the aid of a modified version of the MAB
algorithm, the optimization problem aimed to find the optimum trajectory of the UAV that
maximizes the total throughput while reducing the consumed flying power of the UAV.
For a UAV with a limited battery capacity, the maximization problem for the number of
served users was studied in [32] using two MAB algorithms called the ε-greedy algorithm
and the D-UCB algorithm. The UAV trajectory optimization problem was studied in [33] to
maximize the accumulated data volume from ground sensors under unknown network
information. The optimization problem was transformed into a finite MDP and solved
using two Q-learning-based UAV trajectory optimization frameworks called SUTOA and
QUTOA. A Lyapunov-based deep Q-learning framed work called Safe-DQN was pro-
posed in [34] to study the UAV trajectory optimization problem in a UAV-based emergency
wireless communication network. The joint optimization problem aimed to maximize the
total system rate under the constraints of the limited flight time of the UAV, the power
capacity of the ground user, and the need to avoid obstacles in the disaster area. All the
previous research was controlled by the limited capacity of the attached onboard battery
for each UAV.

All of these studies on UAV emergency wireless communication networks focused
on the optimization issue under a single power restriction, either a restricted UAV battery
capacity or a limited amount of energy accessible to ground users (i.e., ground UE or
ground sensors). We argue that these two elements together should be taken into account
while constructing a UAV emergency wireless communication network. This is because
the natural disaster destroys or at least renders the power supply network inoperable.
Therefore, the goal of our suggested framework is to solve the UAV trajectory optimization
problem under these two limited power constraints. In order to do this, our goal was to
investigate a dual constraint optimization problem that might increase the UAV emergency
wireless network’s reliability in comparison to earlier studies. It should be noted that, to
the best of our knowledge, our earlier work in [35] was the first study to investigate this
sort of optimization issue with dual constrained energy capacity for both UAV and UEs
at the same time. Furthermore, in the research, we extend our problem formulation by
deeply evaluating the performance of our proposed framework against different benchmark
methods. This evaluation was conducted in terms of the accumulated long-term uplink
throughput of all UEs, the energy consumed by all UEs during the data-offloading process,
and the energy efficiency of the UEs.

1.2. Contributions and Organization

According to the discussion in the preceding subsection, the majority of recent research
on UAV emergency wireless communication networks concentrated primarily on the
limited battery energy capacity of UAVs; just a small number of studies took into account
the restricted energy capacity of ground users, i.e., ground users’ equipment (UEs). We
created a suggestion to fill this gap by examining an optimization scenario with constrained
energy capacity for both UEs and UAVs. UAVs are seen as flying BSs that provide a wireless
connection to ground UEs in the disaster-affected region from the sky. The information
gathered from the UEs is deemed critical for estimating the status of the victims and
assessing the damage in the post-disaster area. As a result, this critical data may be
processed to help rescue crews save these precious lives. Our major goal is to acquire
as much data from ground UEs as possible given the restricted power capacity of both
the UAV and the ground UEs. However, since UAV coverage is somewhat limited in
comparison to terrestrial BSs, our goal is to optimize the UAV flight trajectory to maximize
the number of ground UEs visited before the battery runs out. Considering this limited
battery capacity, another interesting idea is to have the UAVs maximize the scanned area
while capturing photos to aid the rescue teams or to estimate the damage caused by the
natural disaster. This goal was kept for our future work. The primary contributions of this
work can be summarized as follows:
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• In our situation, a UAV would gather user data in a disaster-affected region as part of
a wireless emergency communication network. Ground BSs fail as a consequence of
natural catastrophe damage, but ground UEs in the UAV coverage area may upload
data using an alternate mode of connection from the sky thanks to the assistance
of the UAV emergency wireless communication network. We propose an online
optimization problem to optimize the uplink throughput for the UAV emergency
wireless communication network by optimizing the flight trajectory of the UAV under
these assumptions, taking into consideration the limited available energy for both the
UAV and ground UEs in the post-disaster region.

• The optimization problem is adapted into a constrained MAB problem, with action,
reward, and cost defined as the flight direction, uploaded data throughput, and
dissipated energy for both the UAV and UEs, respectively.

• The numerical analysis of our proposed framework shows a considerable increase in
long-term throughput and a slight increase in the energy consumption of the UEs in
the post-disaster area, resulting in better energy efficiency for our proposed framework
compared to other benchmark UAV trajectory optimization methods.

The rest of this paper is organized as follows. Section 2 presents the network architec-
ture and formulates the online optimization problem for the long-term uplink throughput
maximization problem. In Section 3, the general MAB framework is illustrated, followed by
our proposed MAB-based framework for UAV trajectory optimization under dual energy
constraints. Simulation results and numerical analysis are given in Section 4, and finally,
the paper is concluded in Section 5.

2. Network Architecture and Problem Formulation

In this section, we discuss the architecture for the UAV-assisted emergency wireless
communication network, including the flying model used for the UAV, the channel model
for data uploading, and the optimization problem formulation.

2.1. UAV Flying Model

The system architecture for the UAV-assisted emergency wireless communication
network is shown in Figure 1. In this scenario, a natural disaster, such as an earthquake
or flood, strikes a specific location and causes the power grid and wireless network to fail.
Our plan is to use the UAV to enable wireless access from the sky in this post-disaster area.
In this approach, wireless connectivity may be enabled for victims, i.e., ground UEs, in this
devastated region, allowing them to offload data that will be useful in guiding rescue crews
and evaluating the damage. We assumed that there are M UEs trapped in this post-disaster
area, denoted by M = {1, . . . , M}. Each of them has a fixed position designated by the
following in Cartesian coordinates lm = (xm, ym). The UEs locations are supposed to be
known to the UAV through self-reported global positioning system (GPS) coordinates.
The discussion on how these data are transferred to the UAV is beyond the scope of this
paper. It is assumed that the UAV will begin flying from the center of the post-disaster area,
i.e., the center of the simulation area, which is denoted by l0 = (x0, y0). Additionally, it
flies according to a constant speed of ν and an altitude of H. We assume that this altitude is
relatively high and that the data transmission duration is reasonably short and denoted by
τ. As a result, the UAV is regarded immobile when uploading the UE data.

2.2. Wireless Communication Channel Model

For the convenience of designing an emergency wireless communication network,
our designed system should utilize a channel in the unlicensed band, i.e., 2.4 GHz. In
such a way, this system can be easily integrated with the hardware of modern UEs. Hence,
the utilized channel model is expounded at [34], in accordance with the 3rd Generation
Partnership Project (3GPP) specification in the technical report presented in [36]. This
channel model represents the wireless communication link between the UAV and each
of the served UEs into two components, i.e., the line-of-sight (LOS) component and the
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non-line-of-sight (NLOS) component, according to their corresponding probabilities, and
can be calculated by (1).

Lm =

{
30.9 + (22.25− 0.5 log10 H) log10 dm + 20 log10 f , if LOS link
max

(
LLOS

m , 32.4 + (43.2− 7.6 log10 H) log10 dm + 20 log10 f
)
, if NLOS link

(1)

where H denotes the UAV flight altitude, f is the carrier frequency, and dm is the distance
between the UAV and any corresponding UE m, which can be calculated as follows:

dm =
√

H2 + ‖lm − l0‖2, ∀m ∈ M (2)

UE

UAV starting point

UAV serving UE 

Failed BS

Post-disaster area

Figure 1. UAV emergency wireless communication network.

Since the calculation of path loss due to the NLOS component is a function of the path
loss due to the LOS component LLOS

m , the term LLOS
m should be calculated prior to estimate

the path loss of the NLOS component. The probability of the LOS link is denoted by PLOS
m

and given in (3).

PLOS
m =

⎧⎨⎩1, if
√

d2
m − H2 ≤ d0

d0√
d2

m−H2
+ exp

{(
−
√

d2
m−H2

p1

)(
1− d0√

d2
m−H2

)}
, if

√
d2

m − H2 > d0
(3)

d0 = max
(
294.05 log10 H − 432.94, 18

)
(4)

p1 = 233.98 log10 H − 0.95 (5)

Furthermore, the probability of NLOS can be obtained naturally for the probability of LOS
as follows:

PNLOS
m = 1−PLOS

m (6)

The channel gain between the UAV and any connected UE can be calculated as follows:

gm = PLOS
m

(
10LLOS

m /10
)−1

+ PNLOS
m

(
10LNLOS

m /10
)−1

(7)

where LLOS
m and LNLOS

m are the path loss for the LOS and NLOS, respectively, and can be
calculated from (1).
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2.3. Data Transmission Model

For the sake of simplicity, we assumed that the UAV emergency wireless communi-
cation network can be established between the UAV and only one UE at any certain time.
Hence, there are no simultaneous wireless connections from different UEs to the UAV. The
effective radiation angle of the UAV antenna is denoted by ϕ, so the maximum distance
between the UAV and any UE that permits the establishment of a wireless communica-
tion link is H/ cos(ϕ). Additionally, it can be observed that the relationship between the
channel gain gm in (7) and the distance dm in (2) is an inverse relationship. Therefore, our
definition of the effective radiation angle ϕ is used as a parameter to make sure that this
distance is suitable for establishing a wireless communication link. This can be done by
evaluating the signal-to-noise ratio (SNR) value for a covered UE. When it reaches a certain
threshold that permits the establishment of a wireless communication link, this covered UE
can access the UAV to offload its data. Additionally, the value of ϕ can be chosen to be very
narrow to shrink the UAV coverage. In such a way, the simultaneous transmission from
different UEs can be easily eliminated. Hence, a UE can be within the UAV coverage if and
only if it belongs to the following set:

Mcov = {m ∈ M : dm ≤ H/ cos(ϕ)} (8)

It is assumed that each UE in the post-disaster area has an amount of data equal to Ψ bits.
Then, a UE access indicator, denoted by αm, is used to show whether the m-UE is connected
to the UAV or not. This access indicator depends on two factors, i.e., the distance from
the UAV, dm, and the total uploaded bits from the m-UE to the UAV, Ωm. Thus, αm can be
expressed as follows:

αm(t) =

{
1, if m ∈ Mcov, Ωm(t) < Ψ
0, otherwise

(9)

where t ∈ T , T = {1, . . . , T} is the time elapsed while the UAV flies over the post-disaster
area. The total uploaded bits from the m-UE to the UAV can be calculated as:

Ωm(t) =
t

∑
i=1

ωm(i) (10)

where ωm is the instantaneous uploaded data size at time t and can be calculated as follows:

ωm(t) = Rm(t) τ (11)

where Rm is the transmission data rate from the m-UE to the UAV and can be calculated
according to Shannon’s theorem as follows:

Rm(t) = αm(t) B log2

(
1 +

gm PTx
m

σ0

)
(12)

where B is the available wireless channel bandwidth, PTx
m is the transmission power from

m-UE, and σ0 denotes the power of the additive white Gaussian noise (AWGN) at the
UAV receiver.

2.4. Energy Model

From the perspective of the limited energy capacity, the consumed energy can be
classified as follows: (1) the energy consumed by each m-UE while it is idle and during
the data offloading period; (2) the energy consumed by the UAV while it is flying over the
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post-disaster area to provide the wireless connectivity for the trapped UEs. Thus, at any
time t, these two consumed terms of energy can be denoted as follows:

em(t) =

{
αm(t) PTx

m τ, if m-UE at Tx mode
(1− αm(t)) eidle, if m-UE at idle mode

(13)

E(t) = Ξ t (14)

where eidle is the energy consumed by each of m-UE during the idle mode, and Ξ is the
UAV’s flying power. Of course, there are many factors that control the UAV’s energy
consumption, such as the flying speed, acceleration, and mass of the UAV. However, we
tried to simplify the notation of the energy consumption to be averaged per unit of time.
In such a way, we can study the ability of our proposed solution to handle this dynamic
energy consumption over time. Furthermore, the energy consumed by the UAV’s receiver
circuit and signal processing are relatively low compared to the energy consumed during
flying, so it can be neglected. To expand this research to more detailed power consumption,
the work presented in [3] is a straightforward extension, and it will be considered for our
future work.

2.5. Problem Formulation

The ultimate goal of the post-disaster surveillance system is to improve the rescue
success rate of victims and also to reduce casualties. This goal can be achieved by maxi-
mizing the data uploaded from the trapped victims in the post-disaster area over the UAV
trajectory. At the same time, we must take into account the valuable limited energy of both
UEs and the UAV. Mathematically speaking, our optimization problem can be expressed
as follows:

max
m∈M

1
T

T

∑
t=1

M

∑
m=1

ωm(t) (15)

s.t.
T

∑
t=1

em(t) ≤ e0, ∀m ∈ M (16)

T

∑
t=1

E(t) ≤ E0 (17)

The optimization problem shown in (15) is considered an online optimization problem
that aims to maximize the long-term throughput of the whole network by optimizing
the UAV’s flight trajectory. Since there is an unlimited number of routes that can be
existed by changing the order of how the UAV serves the UEs, our optimization prob-
lem is an NP-hard problem. However, by considering energy constraints introduced in
Equations (16) and (17), the optimization problem can be viewed as an NP-complete prob-
lem. The whole optimization process is done not only in an online manner but also in
a decentralized way where there is no information exchange between different network
elements. Furthermore, for any conventional programming solvers, all information should
be gathered at one centralized entity to solve the optimization problem, which cannot be sat-
isfied while designing an emergency wireless communications network for a post-disaster
surveillance system. In such a case, we suggest using a reinforcement-learning-based
algorithm to deal with this kind of online optimization problem.

The decision variables can be defined as the accumulated instantaneous throughput
ωm(t) for all the M UEs throughout the UAV’s flight time T. The constraint (16) shows that
the maximum energy available for each UE is limited by e0, and the other constraint (17)
limits the energy available for the UAV by E0; both are considered the feasibility constraints
of the optimization problem. Furthermore, the right-hand sides of constraints (16) and (17)
are also long-term cumulative variables related to the UAV flight trajectory. Hence, the
whole flight-trajectory process should be taken into account when solving the position of
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the UAV at any time t. Therefore, this optimization problem becomes difficult to figure
out using conventional optimization methods. Additionally, sharing information on the
remaining battery capacity for every UE in the post-disaster area is quite a changeling,
especially when the commercial mobile network has malfunctioned. Therefore, for the sake
of simplicity and without loss of generalization, our optimization problem was designed
for the worst-case scenario for the available battery capacity for each UE. This value was
chosen to be around 10% of modern UE’s average total battery capacity [37]. In the next
section, we introduce an MAB-based framework to tackle this issue.

3. Dual-Energy-Aware MAB-Based UAV Trajectory Optimization Approach

In this section, we explain the general MAB framework and then illustrate how
the proposed dual-energy-aware MAB approach could address our previously described
optimization problem.

3.1. General MAB Framework

Generally speaking, in any MAB-based framework, a player aims to maximize his long-
term reward while playing with a set of arms of the bandit machine, j ∈ {1, . . . , J}. This
can be performed in a sequential way by selecting an arm at time t, i.e., j(t), and observing
their corresponding reward, i.e., rj(t). In the first few moments, the player tries to explore
candidate arms as much as possible and observes their corresponding rewards. After that,
the player exploits the arm with the highest reward, based on the gathered information
from the already explored arms, to maximize the cumulative reward over the episode.
This dilemma is quite well-known in the world of the MAB framework and is known
as the exploration–exploitation trade-off [15]. The MAB framework can be classified as
stochastic or adversarial based on the distribution of the rewards [14,15]. For the stochastic
MAB framework, the rewards behind each arm are drawn from independent and identical
distribution (i.i.d); however, for the adversarial MAB framework, rewards are selected
arbitrarily with no prior distribution. For these two types of MAB frameworks, extensive
research has been done to deal with these kinds of problems, resulting in the introduction
of different algorithms, such as the ε-greedy algorithm [38], the upper confidence bound
(UCB) algorithm [39], the Thompson sampling (TS) algorithm [40], and the exponential-
weight algorithm for exploration and exploitation (EXP3) [41]. Furthermore, in real-world
optimization problems, choosing an arm with a higher reward will have a high cost as well.
Thus, cost-effective and budget-constrained MAB algorithms are introduced to deal with
these kinds of scenarios [42,43].

3.2. The DEA-MAB Approach

To address the online optimization problem with the dynamic energy consumption
over time that is given in (15), and which constrained by conditions (16) and (17), an
MAB-based framework that is dual-energy-aware called DEA-MAB is proposed. Our DEA-
MAB approach is inspired by the cost-subsidized explore-then-commit algorithm proposed
in [43], where the chosen arm is accompanied by a certain cost. One of the traditional ways
to optimize this reward/cost is to directly deduct the cost from the reward in the control
formula. However, this is not usually meaningful in real-world problems, especially when
the reward and the cost are defined in different quantities [43], such as the achievable
throughput and the energy consumed, as illustrated in our problem formulation. Hence,
it is necessary to find a better way to optimize for both the reward and the cost. In other
words, the algorithm should avoid incurring an excessive cost for just a marginal increase
in the reward. This may be done by building a feasible set of arms which is an estimate of
all arms with a mean reward greater than the least tolerable value in each round, based on
the upper confidence bound (UCB) and lower confidence bound (LCB) of the reward of
each arm. Then, the arm with the lowest cost in this feasible set is selected to be played
by it.
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Though the cost-subsidized explore-then-commit algorithm is considered a good
solution for separating the reward and the cost functions, it still needs some adaptation to
tackle our optimization problem that is given in (15). Precisely speaking, our optimization
problem considers two different energy costs, so the DEA-MAB algorithm adds a further
step for checking the second cost. Thus, some controlling functions were added in the
proposed algorithm to precisely address this issue.

Algorithm 1 summarizes how the DEA-MAB algorithm works. The DEA-MAB al-
gorithm’s input attributes are the state spaces of all available M UEs, including their
corresponding locations lm ∀ m ∈ M; the total flight time T; tuning parameters δ and ε; the
available energy for each piece of UE e0; and the total flight time of the UAV till its battery
is completely depleted, T. At each time period t of the total flight time T, the UAV should
select one of M UEs distributed in the post-disaster area via the DEA-MAB algorithm; then
it will fly towards it to offload its data. In the beginning, the algorithm is initialized at t = 0
by setting the number of times each m-UE is selected, Qm(t), and their average achievable
throughput, ωm(t), to 0. The DEA-MAB algorithm is divided into two phases, i.e., the
pure exploration phase and the selection phase. During the exploration phase, the UAV
randomly selects a UE to visit as follows:

m∗(t) = t mod M (18)

Then, the corresponding throughput ωm∗(t) is observed, and the selection number, Qm(t),
and the average throughput, ωm(t), are updated as in the following equations:

Qm∗(t) = Qm∗(t− 1) + 1 (19)

ωm∗(t) =
1

Qm∗(t)

Qm∗ (t)

∑
i=1

ωm(i) (20)

The exploration phase is performed for a time period equal to M π, where π = (T/M)2/3

is as given in [43]. After that, the DEA-MAB algorithm goes for the selection phase during
each time t ∈ [Mπ + 1, T], where both the UCB and LCB are calculated as follows:

γUCB
m (t) = ωm(t) +

√
2 ln(t)/Qm(t), ∀ m ∈ M (21)

γLCB
m (t) = ωm(t)−

√
2 ln(t)/Qm(t), ∀ m ∈ M (22)

Then, the UE index corresponding to the maximum value of the γLCB
m (t) is calculated

as follows:
ηt = arg max

m
γLCB

m (t) (23)

Afterwards, the feasibility region of all UEs having γUCB
m (t) ≥ (1− δ)γLCB

ηt (t) is enumerated
as follows:

F(t) =
{

m : γUCB
m (t) ≥ (1− δ)γLCB

ηt (t)
}

(24)

For this set of UEs, F(t), the dissipated energy for each of the m-UE contained in this
F(t) list is obtained. Then, a control set, C(t), is constructed out of all UEs in F(t). A check
is performed for the UEs’ energy consumption; then priority is given to all UEs in the F(t)
list in case they exceed their energy consumption with a value of 1− ε of the total available
energy e0. Otherwise, C(t) is set to be equal to F(t). This can be illustrated as follows:

C(t) =

{
m : ∑t

i=1 em(i) ≥ (1− ε)e0, ∑t
i=1 em(i) ≥ (1− ε)e0

F(t), otherwise
(25)
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Out of this list, C(t), the UE corresponding to the minimum UAV energy cost, E(T), is
selected as a next-served UE for data offloading in the UAV flight trajectory as follows:

m∗(t) = arg min
m∈C(t)

E(t) (26)

Afterwards, values of the selection number, Qm(t), and the average throughput, ωm∗(t),
are updated for the selected UE, m∗(t), as given in Algorithm 1. Since the UAV should
accomplish the whole data offloading task and ensure flying back to its base before the
battery is used up, the UAV should confirm that there is enough remaining battery energy
for returning. Otherwise, the UAV could be lost or damaged if it cannot arrive at its base
before the battery becomes empty. Therefore, a checking step is provided to confirm this
critical condition at each time before deciding to choose the next UE to be served. In this
way, the DEA-MAB algorithm can optimize the UAV’s flight trajectory considering limited
energy of both the UAV and the UEs.

Algorithm 1: The proposed algorithm: DEA-MAB.

Output: m∗(t)
Input: M, lm ∀ m ∈ M, T, δ, ε, e0, ν, Ξ, E0
Initialization: at t = 0, Set Qm(0) = 0, ωm(0) = 0, ∀m ∈ M
Exploration Phase:

Explore available UEs and calculated the corresponding throughput
for t = 1 to Mπ do

1 m∗(t) = t mod M
2 Fly towards a UE m∗(t) and obtain ωm∗(t)
3 Qm∗(t) = Qm∗(t− 1) + 1

4 ωm∗(t) = 1
Qm∗ (t)

∑
Qm∗ (t)
i=1 ωm(i)

end for

Selection Phase:

for t = Mπ + 1 to T do

1 γUCB
m (t)← ωm(t) +

√
2 ln(t)/Qm(t), ∀ m ∈ M

2 γLCB
m (t)← ωm(t)−

√
2 ln(t)/Qm(t), ∀ m ∈ M

3 ηt = arg max
m

γLCB
m (t)

4 F(t) =
{

m : γUCB
m (t) ≥ (1− δ)γLCB

ηt (t)
}

5 Obtain em ∀ m ∈ F(t)
if ∑t

i=1 em(i) ≥ (1− ε)e0 then

6 C(t) =
{

m : ∑t
i=1 em(i) ≥ (1− ε)e0

}
else

7 C(t) = F(t)
end if

8 m∗(t) = arg min
m∈C(t)

E(t)

9 The UAV fly towards UE m∗(t) and obtain ωm∗(t)
10 Qm∗(t) = Qm∗(t− 1) + 1

11 ωm∗(t) = 1
Qm∗ (t)

∑
Qm∗ (t)
i=1 ωm(i)

if E0 −∑t
i=0 E(i) < 2 Ξ

√
‖lm∗ − l0‖2 ν−1 then

12 Break the data offloading loop and the UAV returns to its base
end if

end for
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3.3. Complexity Analysis of the Proposed Approach

In the previous section, the task of the UAV finding the best trajectory in the post-
disaster area is spotlighted. This is accomplished by finding the optimal policy to choose
the next UE to be served through the learning process in Algorithm 1. In the beginning, the
uplink throughput that can be achieved while the UAV connects to this UE is examined.
Then, a higher priority is given to UEs whose batteries are nearly depleted. The consumed
energy during UAV flying is also minimized. Moreover, it is assumed that the action space
is deterministic; i.e., all actions are well-known to the UAV. Hence, the fundamental source
of the computational complexity of the DEA-MAB algorithm comes from calculating both
the UCB and the LCB. Then, other parameters are updated according to this selection.
It should be mentioned that these parameters have the same computational complexity
order as UCB or LCB. Hence, the overall computational complexity order of our proposed
algorithm is a polynomial of M + 1, and can be expressed as O(M + 1) [43].

4. Simulation Results

In this section, the performance of the DEA-MAB algorithm is evaluated. In the
simulation, it was assumed that the UAV will provide wireless connectivity for a previously
allocated area where there are M trapped UEs which are randomly distributed. However,
for a large post-disaster area, more than one UAV can be deployed to support the data
offloading while considering the coordination between UAVs to facilitate rescue operations.
This larger system is left for future work.

Table 1 shows the simulation parameters used in verifying our proposed algorithm. In
order to investigate the effectiveness of our proposed framework, two trajectory optimiza-
tion methods were used as benchmarks for the sake of comparison. These two methods
can be described as follows:

1. The post-disaster area spiral scanning (PASS) method: This method is designed to
scan the whole area using the spiral path where the UAV starts to fly from the center of
the post-disaster area. With respect to the UAV antenna’s radiation angle, a projected
circle is created on the ground. This circle scans the whole post-disaster area from the
center to the borders.

2. Shortest flight path (SFP) method: In this method, the UAV starts to fly from the
center of the post-disaster area and then selects the UE with the shortest path. Then,
the UAV flies toward this UE and hovers above it to offload its data. After that, the
UAV searches for the next close UE and flies toward it. This operation is performed
till the last UE.

In the following, the performance of the proposed framework is evaluated by compar-
ing it with benchmark algorithms during the varying of both the number of trapped UEs
in the post-disaster area and the UAV’s battery capacity. For the sake of accuracy, and due
to the randomness in UEs’ distributions, all simulations were performed for a long enough
time, i.e, 104 iterations. The average value of each case is provided for a better estimation
of the result.

Figure 2 shows a sample of the UAV’s flight trajectory in the post-disaster area. To
visualize how our DEA-MAB algorithm could optimize the UAV’s flight trajectory consid-
ering its available battery power, three different values were used, i.e., E0 = 20, 30, 40 Wh,
while keeping the number of UEs equal to 40. Obviously, increasing available UAV battery
power increases the chance of serving more UEs in the post-disaster area.
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Table 1. Simulation parameters.

Parameter Value

Simulation area 500 m × 500 m

Number of UEs in the simulation area (M) 20, 30, 40, 50

UAV flight speed (ν) 20 km/h

UAV flight altitude (H) 100 m

UAV antenna radiation angle (ϕ) π/8 rad

Carrier frequency ( f ) 2.4 GHz

Channel bandwidth (B) 10 MHz

Data transmission duration (τ) 1 s

UE Transmission power (PTx
m ) 23 dBm

AWGN spectral density (σ0) −130 dBm/Hz

UAV battery capacity (E0) 20, 30, 40 Wh

UAV flying power (Ξ) 120 W

UE battery capacity (e0) 1 Wh

UE energy dissipation in idle mode (eidle) 0.01 J

Data rate feasibility region factor (δ) 0.6

Critical power feasibility region factor (ε) 0.5
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Figure 2. A sample of the UAV flight trajectory using the DEA-MAB algorithm.

Figure 3 gives the long-term throughput for the data uploaded from UEs in the
emergency wireless communication network. It is clearly visible that regardless of the
value of the UAV’s battery capacity or the algorithm used, as the number of UEs trapped in
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the post-disaster area increases, the uplink data throughput increases as well. Nevertheless,
this upward trend gradually decreases, and all curves would saturate at a certain number
of UEs. This is because the maximum capacity of a communication system with a fixed
bandwidth is fixed. Hence, while the number of UEs increases, the accumulated uplink
throughput of the emergency wireless network continues to approach this maximum
capacity. When comparing the throughput performance of the DEA-MAB algorithm with
other benchmark methods at various values of UAV battery capacity, it is clear that our
proposed algorithm can achieve more uplink throughput than the PASS method, and much
higher than the SFP method. For example, when (E0 = 20 Wh, M = 30), (E0 = 30 Wh,
M = 40), and (E0 = 40 Wh, M = 50), the DEA-MAB algorithm achieved higher throughput
performance by 26%, 28%, and 24% compared to the PASS method, and high performance
by 113%, 188%, and 184% than the SFP method, respectively.

(a) E0 = 20 Wh (b) E0 = 30 Wh

(c) E0 = 40 Wh

Figure 3. The DEA-MAB algorithm’s throughput versus the number of users.

In Figure 4, the normalized total energy consumption of all UEs trapped in the post-
disaster area is compared among the three methods. It can be seen clearly that regardless of
the used method, as the number of UEs increases, the total normalized energy consumption
of UEs increases as well. Furthermore, for the same method with a certain number of
UEs, the higher the UAV’s battery capacity, the more energy consumed per UE. This
can be justified, as when the UAV has a higher battery capacity, it can have a higher
chance to offload data from a larger number of UEs before its battery becomes depleted.
Additionally, since PTx

m τ >> eidle, more UEs tend to consume energy in the data-offloading
process rather than just staying in idle mode. When comparing the normalized energy
consumption performance of the DEA-MAB algorithm with other benchmark methods at
the same values of UAV battery capacity, it can be shown that the DEA-MAB algorithm
always has higher energy consumption than the PASS method, and much higher than the
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SFP method. This can be explained by the overall system throughput being increased at the
cost of more energy consumption by the UEs. For the sake of comparison, let us observe the
same points at (E0 = 20 Wh, M = 30), (E0 = 30 Wh, M = 40), and (E0 = 40 Wh, M = 50):
the total energy consumption of all UEs using the DEA-MAB algorithm was increased by
11%, 24%, and 23% compared to the PASS method, and by 73%, 109%, and 169% compared
to the SFP method.
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Figure 4. Normalized total energy consumption versus the number of users.

As observed from the analysis of results in Figures 3 and 4, it can be concluded that
the DEA-MAB algorithm can achieve a considerable increase in the uplink throughput
of UEs with a reasonable increase in the UEs energy consumption. Hence, for a better
understanding of the advantages of using the DEA-MAB algorithm, the UEs’ energy
efficiency (μ) is compared using our proposed algorithm against benchmark methods. μ
can be defined as the ratio of the long-term UEs uplink throughput over the total UEs
energy consumption in bit/Joule as follows:

μ =
∑T

t=1 ∑M
m=1 ωm(t)

∑T
t=1 ∑M

m=1 em(t)
(27)

In the energy efficiency performance shown in Figure 5, it is observed clearly that whatever
the UAV’s battery capacity or the number of UEs trapped in the post-disaster area, the
DEA-MAB algorithm can surpass benchmark methods in terms of energy efficiency, which,
of course, means enhancing the overall performance of the emergency wireless communica-
tion network. It should be mentioned that, when increasing the UAV’s battery capacity to
40 Wh, as in Figure 5c, the PASS method achieved a performance that is very close to that of
the DEA-MAB algorithm. This can be justified, as the UAV’s battery at this point becomes
quite enough to accomplish the spiral scanning for a major part of the post-disaster area.
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(a) E0 = 20 Wh (b) E0 = 30 Wh

(c) E0 = 40 Wh

Figure 5. UEs’ energy efficiency versus the number of users.

5. Conclusions

In this paper, the trajectory optimization for a UAV-assisted emergency wireless
communication network was investigated. The UAV is deployed as a temporary BS to
provide wireless connectivity from the sky for trapped UEs in a post-disaster area where
all BSs are damaged or have malfunctioned due to a natural disaster. The UAV’s target
is to optimize its flying trajectory to maximize the long-term uplink throughput from
UEs. However, due to the malfunctioning of the power supplies in the disaster area as
well, this optimization problem is performed with limited battery capacity of not only
the UAV but also UEs in the post-disaster area. We proposed an MAB-based algorithm
constrained with these two energy limitations to address this optimization problem. The
proposed algorithm can solve the trajectory optimization problem with respect to this
dynamic energy consumption over time. Simulation results showed that our algorithm
outperforms benchmark methods in terms of long-term uplink throughput and energy
efficiency. Furthermore, it could increase the energy consumption of the UEs during the
data offloading process, which reflects success in maximizing the UEs served in a post-
disaster area and accomplishing the task of information collection in the post-disaster area.
A straightforward extension could be to expand the simulation area to be served with
more than one UAV. In such a case, each UAV would have to develop a strategy to not
only maximize the objective function but also to avoid collisions with other UAVs. One of
these strategies would be to keep a certain operating distance between each pair of UAVs.
This distance could be designed using optical sensors attached to the UAV to recognize
the surrounding UAVs, or by detecting a low-power beacon signal transmitted from each
operating UAV. A detailed system design was kept for our future work. Additionally,
for a more realistic scenario, UEs might be considered as moving objects, and the UAV
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should consider an accurate methodology for estimating the location of each UE that should
be served.
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Abbreviations

The following abbreviations are used in this manuscript:

BS Base station
UAV Unmanned aerial vehicle
ML Machine learning
RL Reinforcement learning
MAB Multi-armed bandit
DPG Deterministic policy gradient
MDP Markov decision process
CRN Cognitive radio network
UCB Upper confidence bound
TS Thompson sampling
RIS Re-configurable intelligent surface
SUTOA state-action-reward-state-action based UAV-trajectory optimization algorithm
QUTOA Q-learning based UAV-trajectory optimization algorithm
UE User equipment
GPS Global positioning system
3GPP 3rd generation partnership project
LOS Line-of-sight
NLOS Non-line-of-sight
SNR Signal-to-noise ratio
AWGN Additive white Gaussian noise
EXP3 The exponential-weight algorithm for exploration and exploitation
LCB Lower confidence bound
DEA Dual-energy aware
PASS Post-disaster area spiral scanning
SFP Shortest flight path
PoI Points of interest
MILP Mixed Integer Linear Programming
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Abstract: Cross-axis sensitivity is generally undesirable, and lower values are required for the
accurate performance of a thermal accelerometer. In this study, errors in devices are utilized to
simultaneously measure two physical quantities of an unmanned aerial vehicle (UAV) in the X-,
Y-, and Z-directions, i.e., where three accelerations and three rotations can also be simultaneously
measured using a single motion sensor. The 3D structures of thermal accelerometers were designed
and simulated in a FEM simulator using commercially available FLUENT 18.2 software Obtained
temperature responses were correlated with input physical quantities, and a graphical relationship
was created between peak temperature values and input accelerations and rotations. Using this
graphical representation, any values of acceleration from 1g to 4g and rotational speed from 200 to
1000◦/s can be simultaneously measured in all three directions.

Keywords: thermal accelerators; unmanned aerial vehicle; motion sensor; cross-axis sensitivity;
microelectromechanical system

1. Introduction

Unmanned aerial vehicles (UAVs) offer a cost-effective and time-saving method for
performing various functions, providing safety and convenience compared to traditional
methods. They have a wide range of applications and are crucial to multiple industries.
They can be useful in search and rescue operations [1], including disaster relief and emer-
gency response. They can be used to deliver packages and goods to remote areas or places
where road access is impossible. Additionally, UAVs can be used to inspect infrastructures
such as buildings and bridges, provide high-quality images for making the right monitoring
decisions [2], and monitor landslides [3].

Microelectromechanical system (MEMS)-based sensor–actuator applications continue
to develop in various industries due to their improved sensitivity, accuracy, and reliability
of operations, as well as their low power consumption [4]. The use of MEMS sensors for
vehicular sensing is gradually increasing [5]. MEMS accelerometers have been extensively
utilized in UAVs owing to their compactness, lightweight, low power consumption, and
high sensitivity. Piezoelectric, capacitive, and thermal accelerometers are among the most
commonly used MEMS accelerometer types in UAVs. Stephan [6] conducted a performance
analysis of different accelerometer types using data sheets of 118 accelerometers from
27 different manufacturers. It was found that piezoelectric accelerometers have the highest
measurement range, which can be greater than 10,000g. Thermal accelerometers, however,
have outstanding shock limits of 50,000g with a low measurement range of 5g. Jiang [7]
provides an extensive overview of piezoelectric accelerometers and mentions how these
are effective for high-temperature applications, such as those encountered in aerospace,
aircraft, automotive and energy industries. Thermal accelerometers, however, do not have
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a solid-proof mass; hence, their fabrication is simpler, and the integration of the sensor
with a signal conditioning circuit is easier, resulting in improved device durability and
measurement consistency [8].

UAV states are generally estimated via fusing data from accelerometers, gyroscopes,
and global navigation satellite systems (GNSS) to determine pitch, yaw, and roll, as shown
in Figure 1. The common types of MEMS gyroscopes used in UAVs include ring lasers, fiber
optics, MEMS vibrating structures, and Coriolis vibratory types. Environmental thermal
fluctuations are major issues in such devices. Several researchers have presented a tempera-
ture compensation method that changes the structure of a gyroscope to decrease frequency
variation under different temperatures [9,10]. This limitation of MEMS gyroscopes remains
a challenge. In this study, a novel concept is proposed that involves the measurement of
rotational speed in addition to acceleration, achieved by modifying a conventional thermal
accelerometer that can only measure acceleration.

Figure 1. A drone’s pitch, roll, and yaw.

Thermal-based accelerometers offer several advantages over conventional proof-mass
accelerometers. They exhibit no measurable resonance, delivering immunity to vibration;
no temperature hysteresis; and excellent zero g offset stability with the added shock
resistance, increasing their reliability [11]. This enhances the sensing range of the device
while avoiding failure or vibrational limitations. The working principle is that a heating
source creates a thermal profile inside a cavity, and a set of temperature sensors placed
equidistant from the heater measures the temperature. When acceleration occurs, the
sensors’ temperature values change, corresponding to the applied acceleration. This
phenomenon is illustrated in Figure 2. As shown in the figure, sets of isotherms were
created around the heating source, and isotherms near the heater had higher temperatures.
A consistent temperature profile was obtained without applying any motion, as shown in
Figure 2(left). However, when acceleration was applied in the right direction, the sets of
isotherms shifted to the right (Figure 2(right)). This temperature change was detected by
sensors placed on both sides of the heater and correlated with applied acceleration.

Different numerical and experimental studies have been conducted to optimize
multiple-axis thermal accelerometers. Novel triple-axis thermal accelerometers were intro-
duced by [12] and improved by [13]. However, their sensitivities were still insufficient and
required further improvement. Mukherjee [14] modified the cavity structure of the device
to achieve better sensitivity. Jiang [15] showed that increasing heater power enhanced
the sensitivities along the X-, Y-, and Z-axes. Wang [16] achieved improved sensitivity
and a wider ambient temperature measurement range in a recent study. This design can
precisely detect a range of temperatures in various environments. In this study, we aimed to
select the parameters with high sensitivity and resolution, as reported in previous studies.
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Figure 2. Changes in isotherms with no acceleration (left) and acceleration applied to the right
side (right).

For a dual-axis thermal accelerometer, two sets of temperature sensors are required
around the two axes. In contrast, three sets of temperature sensors are required to detect
temperatures around the X-, Y-, and Z-axes for a triple-axis thermal accelerometer. To
reduce installation and maintenance costs, Ogami’s concept [17], which uses cross-axis
sensitivity (CAS), can be used. Due to CAS, when motion is applied to a single axis, a cor-
relating temperature change is observed on the other two perpendicular axes. According
to Farahani [18], CAS is a good measure of sensor performance in response to external
factors. Therefore, for high-accuracy applications, a lower CAS is expected. However,
a computational study presented by Siddique [19] showed that multiple physical quantities
could be measured using CAS. In this study, using X- and Y-sensor outputs, acceleration in
the X-direction and rotational speed on the Z-axis were measured.

With the development of technology, multiple sensors have been incorporated into en-
gineering devices. In micro- and insect-scaled UAVs, multiple sensors from accelerometers
to magnetic sensors have been installed [20]. The installation and maintenance of a con-
siderable number of sensors can be expensive and time-consuming. Therefore, this study
introduces a method for simultaneously measuring three accelerations and three rotations
in UAVs using a single-motion sensor. The measurement of rotational speed, including
pitch, roll, and yaw, is crucial for controlling the flight of the device. Using fluid flow and
thermodynamic principles and leveraging CAS, we derived three inverse functions from
a set of axial accelerations and the rotational speeds perpendicular to them. The inverse
functions could then be implemented in the computing unit of a real motion sensor.

2. Materials and Methods

In this study, ANSYS FLUENT 18.2 was employed to perform computational analyses.
The temperature response was obtained via the simultaneous application of acceleration
and rotation around the axis perpendicular to the other axis, on which the direction of
acceleration was applied to the computational model. The design of a triple-axis thermal
accelerometer was considered, and heating sources were incorporated into the model
using C-programmed user-defined functions (UDFs). Additionally, the positions of the
temperature sensors were determined using UDFs by tracking their cell IDs, which are
unique to every mesh element.

The thermal accelerometer is based on heat transfer and especially on free convection
heat transfer in a closed chamber. This phenomenon is governed by a Navier–Stokes
equation based on the principle of conserving mass, momentum, and energy, as follows:

∂ρ

∂t
+∇(ρu) = 0

ρ

[
∂u
∂t

+ (u · ∇)u
]
= −∇p +∇I + f

35



Sensors 2023, 23, 5265

ρCp

(
∂T
∂t

+ u · ∇T
)
= k∇2T

where u is the flow velocity vector field, ∇ is the spatial divergence operator, p is the
pressure, I is the total stress tensor, and f is the body forces acting on the fluid. The
parameters Cp, ρ, and k are the specific heat, density, and thermal conductivity of the fluid
in the cavity, respectively.

In FLUENT, a pressure-based transient solver was used along with an energy model
because the flow characteristics were not highly compressible. The DEFINE_CG_MOTION
UDF was applied to define linear and rotational motions. Carbon dioxide (CO2) was
selected as a gas medium because of its high density and low kinematic viscosity. The low
viscosity of CO2 enables a more efficient flow and results in greater sensitivity than gases
with higher viscosities because high viscosity impedes gas flow [21].

The steps involved in measuring multiple physical quantities using a motion sensor are
shown in Figure 3. The first step was to generate a cylindrical model of the motion sensor
with a diameter of 2 cm and depth of 1.3 cm, in which heaters and sensors were placed.
Next, a mesh that served as an input to ANSYS FLUENT was developed. The next step was
to input different values of acceleration and rotation and the temperature–time curves were
generated. Analysis of these curves revealed the maximum and minimum temperature
values, which were then linked to input acceleration and rotation values. Finally, a three-
dimensional graph was drawn to visually represent the relationship between acceleration,
rotation, and extreme temperature values (Tmax and Tmin).

Figure 3. Methodology flow.

In thermal accelerometers, a heating source that generates temperature contours must
be defined. The temperature response is generally greater when the heating power is high
and the ambient temperature is low. Therefore, the differences in peak values increase.
However, this results in higher temperatures inside the cavity, which can lead to the heating
of the motion sensor walls. In our previous study [19], a heating power of 70 mW was
considered for applications in small-scale UAVs and robots. In this study, we reduced the
heating power from 70 to 40 mW, so that it can be applied to significantly smaller UAVs.
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For the simulations, a time step size of 0.0042 s was considered with regard to incre-
ment velocities. The acceleration and rotation ranges were set to 1–4g and 250–1000◦/s,
respectively. For the case of acceleration, the maximum velocity for a flow time of 3 s was
117.72 m/s with an increment velocity of 0.164808 m/s at 4g. In contrast, for rotational ve-
locities, a maximum linear speed of 0.174533 m/s was practically the same as the maximum
increment velocity at 4g. The values are listed in Table 1 for comparison.

Table 1. Maximum and increment velocities at different accelerations and rotations.

Maximum Velocity at 3 s (m/s) Increment Velocity (m/s)

Acceleration

1g 29.43 0.0412

2g 58.86 0.0824

3g 88.29 0.1236

4g 117.72 0.1648

Rotation (◦/s)

250 0.0436 0.0436

500 0.0873 0.0873

750 0.1309 0.1309

1000 0.1745 0.1745

To validate the reliability and independence of computational simulation results,
a grid-independence test was conducted because no experimental or theoretical models
were available for comparison. The velocity, pressure (at sensor X11), and temperature
variables were evaluated at 500◦/s around the Z-axis, and 2g was applied to the device in
the X-direction using five different meshes with varying numbers of elements. The velocity
and pressure distributions (viewed from the top plane of the motion sensor) of a mesh
with 166,675 elements are shown in Figure 4. It can be observed that the velocity of CO2
molecules was practically the same throughout the motion sensor cavity with a maximum
velocity of 49.23 m/s2 at the instant of t = 2.5 s. Furthermore, the temperature change with
respect to time for all five meshes is shown in Figure 5. The maximum values in this graph
were extracted and used for comparison.

Figure 4. Velocity (left) and pressure distribution (right) at t = 2.5 s for the mesh with 166,675 elements.
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Figure 5. Temperature response at 500◦/s around the Z-axis and 2g applied in the X-direction for
different mesh sizes.

The results of the grid-independence test, which compare the Tmax values with respect
to the number of mesh elements, are presented in Table 2 and illustrated in Figure 6.

Table 2. Changes in variables with different numbers of mesh elements.

S No. of Mesh Elements Vmax (m/s) P_X11min (Pa) P_X11max (Pa) Tmax (K)

1 13,002 49.23 −0.497392 −0.168213 433.7

2 36,930 49.23 −0.509235 −0.167053 411.0

3 166,675 49.235 −0.508066 −0.181941 429.8

4 322,586 49.235 −0.513125 −0.183977 427.5

5 554,001 49.24 −0.518651 −0.185735 426.0

6 752,760 49.16 −0.523673 −0.186014 421.6

Figure 6. Tmax vs. number of mesh elements.
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As shown in Figure 6, a significant increase of 4.6% in the Tmax value can be observed
between the second and third meshes. However, from the third mesh onwards, the
difference in Tmax values between the meshes was approximately 1%, which was minimal
compared to the differences between the first three meshes. Therefore, a mesh with
166,675 elements was selected for future calculations because it provides a reliable solution
with minimal computational requirements such as CPU time. The placement of the heaters
and sensors is shown in Figure 7, and the meshing structure used in the computational
study is shown in Figure 8. Four heaters (H1–H4) were placed on all four axes, 40 mm
from the center of the cavity. Heaters H1 and H3 on the X-axis are surrounded by pairs
of X-sensors: X21 and X22, and X11 and X12, respectively. Similarly, H2 and H4 on the
Y-axis are bounded by Y-sensor pairs: Y21 and Y22, and Y11 and Y12, respectively. On the
Z-axis, each heater constitutes a temperature sensor located 10 mm away from the heater
in the Z-direction. The notation of the Z-sensors is such that the number denotes the heater
number (e.g., Z1 around H1).

Figure 7. Position of heaters and sensors; cross-sectional (left) and side views (right).

Figure 8. Computational mesh; top view (left) and isometric view of the inside of the mesh (right).

To define the relationship between two input physical quantities (PQ) and two output
variables, the following equation was established:

(Output 1, Output 2) = (PQ 1, PQ 2)

Once this relationship was established, the next step was to find the inverse function
of this relationship, which is represented as:

(PQ 1, PQ 2) = −1(Output 1, Output 2)
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Using the above equation, any two PQs can be measured simultaneously. In this study,
this relationship is calculated for two quantities in three directions. Therefore, three inverse
functions must be obtained, and the data can be installed in the computing unit of the
motion sensor. This is illustrated in Figure 9.

Figure 9. Schematic of obtaining three inverse functions for the measurement of acceleration and
rotation in all three directions.

3. Results and Discussions

A numerical study was conducted using computational simulations to measure
two physical quantities (acceleration and rotation) in all three directions. As described in
Section 2, three inverse functions were obtained via computational fluid dynamics (CFD)
simulations using the ANSYS Fluent 18.2 software, and each inverse function measured
one acceleration (a) and one rotation (ω) perpendicular to a particular acceleration value.
The inverse functions can be described as follows:

(ax, ωz) = f−1(Txmax, Txmin)(
ay, ωx

)
= f−1(Tymax, Tymin

)
(
az, ωy

)
= f−1(Tzmax, Tzmin)

Cross-axis sensitivity (CAS) is a significant issue in thermal devices, including those
examined in this study. To measure acceleration and rotation simultaneously, we can
evaluate the peak temperature values at the axis where acceleration is applied. A previous
study [12] demonstrated that temperature data from both the X- and Y-axes can be simulta-
neously utilized to measure the X-acceleration and Z-rotation. Therefore, we can extract
data from the axis where only acceleration is applied by accounting for the CAS influence.

As indicated in Figure 3 of Section 2, temperature–time curves were generated via
simulations using FLUENT software. Acceleration and rotation were simultaneously
applied to the cylindrical model, and the temperature graphs were analyzed to extract
maximum and minimum values. To illustrate this process, Figure 10 shows the data
acquired by the Y12 sensor at a rotational velocity of 500◦/s and 1–4g accelerations. The
identified peak values are listed with respect to physical input quantities (Tables 3–5).
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Figure 10. Temperature–time curve for Y12 sensor at 500◦/s with varying accelerations from 1 to 4g.

Table 3. Data for T_X11max and T_X11min.

T_X11max

a

ω
250 500 750 1000

1g 477.9 488.9 488.3 489.7

2g 495.0 502.6 501.1 500.7

3g 500.9 504.8 501.4 501.4

4g 498.4 503.3 495.5 496.7

T_X11max

a

ω
250 500 750 1000

1g 407.1 415.7 417.3 415.7

2g 359.1 373.2 379.5 380.1

3g 328.3 338.5 346.1 348.9

4g 312.7 316.4 320.3 322.1

Table 4. Data for T_Y12max and T_Y12min.

T_X11max

a

ω
250 500 750 1000

1g 497.3 507.0 512.6 514.3

2g 499.4 519.3 529.5 536.2

3g 495.6 516.1 527.1 534.8

4g 496.1 512.2 523.5 533.2

T_X11max

a

ω
250 500 750 1000

1g 425.9 435.8 440.6 440.0

2g 381.3 393.7 404.0 408.1

3g 353.7 355.9 361.3 361.0

4g 337.6 333.4 332.3 329.3
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Table 5. Data for T_YZ4max and T_Z4min.

T_X11max

a

ω
250 500 750 1000

1g 483.1 490.3 497.3 500.2

2g 471.4 475.5 486.3 494.3

3g 452.8 454.8 471.9 486.9

4g 438.9 426.8 444.1 457.3

T_X11max

a

ω
250 500 750 1000

1g 442.4 440.6 438.4 444.8

2g 388.2 398.6 401.7 399.7

3g 350.7 354.8 360.0 360.2

4g 332.2 329.4 333.2 334.0

This research study explores accelerations ranging from 1 to 4g (9.81–39.24 m/s2) and
rotations ranging from 200 to 1000◦/s in all three directions. As described in Section 2 and
Figure 7, four heaters and four pairs of temperature sensors were positioned in all three
directions. Owing to the symmetry of the structure, identical results were obtained for X11
and X21, and X12 and X22. Similarly, Y11 and Y21, and Z1 and Z3 had similarly extreme
temperature values. Therefore, to obtain these extreme values, the maxima and minima of
X11, Y12, and Z4 were considered. These values were then recorded for all accelerations
and rotations in all three directions and correlated with the applied physical quantities of
acceleration and rotation.

Because we obtained results from the computational simulation for only four data
points of acceleration and rotation, we had to employ the interpolation technique to obtain
more data between the upper and lower limits of input physical quantities. This was
performed in MATLAB using a cubic interpolation technique, which required four data
points to compute a polynomial. In this method, no constraints were present in the
derivatives, unlike other interpolation techniques such as spline interpolation.

The Tmax and Tmin values for all three axes are listed in Tables 3–5, and the inverse
functions used to obtain acceleration and rotational speed in all three directions corre-
sponding to the measured maximum and minimum temperature values are shown in
Figures 11–13. Node values indicate each data point. These inverse functions were installed
in the computing unit of a real thermal motion sensor.

Figure 11. Graphs for X-acceleration (left) and Z-rotation (right) values from Xmin and Xmax mea-
sured around heater 1.
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Figure 12. Graphs for Y-acceleration (left) and X-rotation (right) values from Ymin and Ymax measured
around heater 2.

Figure 13. Graphs for Z-acceleration (left) and X-rotation (right) values from Zmin and Zmax mea-
sured around heater 4.

Using the data from Figures 11–13, a real thermal motion sensor can simultaneously
measure all three accelerations at any value between 1 and 4g and rotation speeds between
200 and 1000◦/s. The range of acceleration and rotational speeds can be further increased
by conducting additional simulations. Furthermore, to obtain more accurate results, more
data should be extracted using simulations rather than relying on interpolation techniques.

The main issue encountered in the aforementioned inverse functions is in the region of
multiple solutions. In this region, two identical combinations of maximum and minimum
temperature values generated different input physical quantities. This yielded inaccurate
results. This region can be viewed by drawing a vertical line from the XY-plane parallel to
the input physical quantity axis. The Y-acceleration was measured using Ymax and Ymin,
and this region is represented by an ellipse in Figure 14. Therefore, the results should be
verified, and the parameters that generate unique solutions should be determined. This
problem can be reduced by either altering the cavity shape of the sensor or changing the
positions of heaters and sensors.
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Figure 14. Region of multiple solutions indicated on the graph to obtain Y-acceleration using Ymax

and Ymin.

As mentioned in Section 2, no experimental or theoretical model is presented in this
study to support or validate numerical simulations. Our future research will involve
the manufacturing of a real thermal device based on the results presented in this study.
However, the technique presented in this study may provide a cost-effective and time-
saving method in the field of UAV sensor technology.

This method has the disadvantage of requiring both acceleration and rotation. How-
ever, considering both rotary-wing and fixed-wing UAVs, the pitch motion along the
transverse or lateral axis is effective throughout the flight of the device. Furthermore, study
in which more than two quantities can be measured using a single inverse function must
be conducted. The idea for this is proposed below and will be explored in future research.

In future studies, a mapping method (2D or 3D) could be utilized to measure multiple
physical quantities without using an inverse function. In our study, taking the examples of
Y-acceleration and X-rotation for the 2D method, input data, i.e., acceleration and rotational
speeds, were first plotted in a graph, as shown in the mapping of input data in Figure 15a
(red lines). Similarly, Figure 15b (red lines) shows the output data (Tmax and Tmin) extracted
from Table 4. For real measurements, if the output (measured) values of the sensor can
be obtained (plotted in Figure 15b (purple circle)), the input values for the output values
can be approximately and geometrically calculated without using an inverse function, as
shown in the blue circle in Figure 15a. If quadrilateral shapes overlap with each other for
the output data, it will indicate multiple solutions. This technique can also be utilized in
3D to simultaneously measure three physical quantities.
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Figure 15. A 2D mapping of input data (a) and output data (b).
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4. Conclusions

In this study, we propose a concept using a computational simulation in which accel-
eration and rotational speeds of unmanned aerial vehicles (UAVs) can be simultaneously
measured in all three directions using a single device. Cross-axis sensitivity, which is an
error in accelerometers and gyroscopes, was utilized to achieve this goal. For X-acceleration
and Z-rotation, maximum and minimum temperature values from X-sensor data were
extracted and from these output values, and input quantities were measured. In a similar
manner, Y-axis output data were considered for Y-acceleration and X-rotation, and Z-sensor
data were considered for Z-acceleration and Y-rotation. Six graphical plots are presented
for each quantity, by which any acceleration from 1 to 4g and rotational speed between 200
and 1000◦/s can be measured in the X-, Y-, and Z-directions. The inverse function plots
can then be installed in the computing unit of a real thermal motion sensor to measure
the quantities.

We also proposed a new technique of 2D or 3D mapping, which we can use to
effectively measure multiple physical quantities numerically from the plots of output
values corresponding to their input values. This may be a better approach than using
inverse function and will be a focus of our future research.

Validation using theoretical and experimental models is absent in this study and will
also be a focus of our future research. A microelectromechanical system (MEMS)-based
motion sensor, as described in this study, will be manufactured, and using the same flow
conditions and parameters, simulation results will be validated in the future. Overall, this
methodology provides a robust framework for measuring multiple physical quantities
and enables researchers to gain deeper insights into their experimental data. This study
provides an excellent solution for challenges faced by sensor technology in UAVs.
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Abstract: Future UAV (unmanned aerial vehicle) operations in urban environments demand a PNT
(position, navigation, and timing) solution that is both robust and resilient. While a GNSS (global
navigation satellite system) can provide an accurate position under open-sky assumptions, the
complexity of urban operations leads to NLOS (non-line-of-sight) and multipath effects, which in
turn impact the accuracy of the PNT data. A key research question within the research community
pertains to determining the appropriate hybrid fusion architecture that can ensure the resilience
and continuity of UAV operations in urban environments, minimizing significant degradations of
PNT data. In this context, we present a novel federated fusion architecture that integrates data
from the GNSS, the IMU (inertial measurement unit), a monocular camera, and a barometer to cope
with the GNSS multipath and positioning performance degradation. Within the federated fusion
architecture, local filters are implemented using EKFs (extended Kalman filters), while a master filter
is used in the form of a GRU (gated recurrent unit) block. Data collection is performed by setting
up a virtual environment in AirSim for the visual odometry aid and barometer data, while Spirent
GSS7000 hardware is used to collect the GNSS and IMU data. The hybrid fusion architecture is
compared to a classic federated architecture (formed only by EKFs) and tested under different light
and weather conditions to assess its resilience, including multipath and GNSS outages. The proposed
solution demonstrates improved resilience and robustness in a range of degraded conditions while
maintaining a good level of positioning performance with a 95th percentile error of 0.54 m for the
square scenario and 1.72 m for the survey scenario.

Keywords: UAV; urban air mobility; computer vision; multipath; resilient navigation; hybrid fusion;
GRU; EKF

1. Introduction

The emergence of the UAM (urban air mobility) concept necessitates more stringent
requirements and regulations to ensure safe operations between manned and unmanned
vehicles within the same airspace. Authorities such as EASA (European Union Aviation
Safety Agency), CAA (Civil Aviation Authority), and FAA (Federal Aviation Administra-
tion) have already established specific requirements for regulating the air traffic in urban,
semi-urban, and rural environments for UAVs, as specified in [1–3]. In this context, to en-
sure the safety of operations in urban environments, the PNT solutions provided by UAVs
operating in the proximity of buildings and obstacles must be continuous, robust, and
resilient. In addition, as it can be seen from [4], UAVs can play a key role in multi-spectral
mapping applications and other civil applications [5], where the need for a stable PNT
system is crucial to fulfilling all the mission requirements.

Given that the GNSS receivers serve as the primary source of PNT data for UAVs,
which can provide good accuracy in open-sky conditions as presented in [6], where an
RTK (real-time kinematics) system is implemented, external disturbances can quickly
degrade their accuracy. Due to the nature of urban and semi-urban environments, NLOS
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(non-line-of-sight) and multipath signal propagation can decrease the quality of the GNSS
signals, leading to erroneous localization. As the GNSS receivers are low-powered, low-cost
jamming devices can easily emit electromagnetic interference over the same frequencies
used by the GNSS receivers, resulting in an untrustworthy PNT solution. Spoofing is
another threat affecting the PNT integrity, where false GNSS signals are broadcasted to
deliberately degrade the PNT data. Thus, considering all the potential threats to the GNSS
receivers, A-PNT (alternative position, navigation, and timing) sensors should be used
to achieve better navigation performance, even when the GNSS is not able to provide a
reliable PNT solution.

An IMU serves as an A-PNT sensor, typically formed by three accelerometers and
three gyroscopes, providing data regarding the linear acceleration and angular velocity
of the carrier in each direction of the body frame. Usually, UAVs are equipped with
MEMS (microelectromechanical system) IMU sensors to derive the position and attitude
using an INS (inertial navigation system) mechanization process. Unfortunately, the INS
mechanization leads to positioning drift over time as specified in [7,8], making the IMU
unreliable when used in a standalone mode for long flight operations.

A-PNT sources, including sensors such as stereo or monocular optical cameras, are
alternative methods of improving positioning accuracy and precision in situations when
the GNSS is unavailable. Motion estimation for optical A-PNT sources can be classified
into two categories: RVL (relative visual localization) or AVL (absolute visual localization).
RVL is computed through the application of VO (visual odometry) [9,10] and SLAM
(simultaneous localization and mapping) algorithms, as presented in [11–13]. VO methods
involve the analysis of the frames captured by an optical sensor to estimate its motion
through the environment. Instead, the SLAM (simultaneous localization and mapping)
approach represents a more intricate navigation algorithm capable of estimating the relative
motion of the UAV while simultaneously building the surroundings on the map. Therefore,
VO can be regarded as a subset of SLAM-based navigation. However, it is important to
note that in challenging environments characterized by low light conditions or scarcity of
distinctive features, both VO and SLAM algorithms can cause divergence in their motion
estimation due to drift. Instead, for estimating the UAV’s absolute position, the VPS
(visual positioning system) algorithm can be used, as presented in [14,15]. To successfully
implement the VPS, it is essential to have a proper dataset with georeferenced aerial images
that covers the AoI (area of interest). Additionally, the tilt angle of the camera during
the flight should align with the used dataset in order to enhance its overall performance.
Positioning accuracy can be affected by additional factors, such as seasonal changes and
the ongoing construction of new buildings and roads, potentially causing mismatches with
the dataset in use. Therefore, updated and recurrent datasets are required.

Although it is possible to extract PNT information from various sensors, a fusion
approach is required in order to combine all the advantages offered by each A-PNT sensor.
Multi-sensor fusion frameworks can be categorized into either CF (centralized fusion) or
DF (decentralized fusion) frameworks. Even if a CF architecture can provide a reliable
PNT solution, its high computational cost can lead to the so-called ‘computational disaster’
effect, as described in [16]. To mitigate computational costs and enhance the robustness of
the fusion framework, a DF approach can be used. Instead of using only one filter, as in the
CF architecture, the DF framework implements multiple local filters in parallel, fusing their
output into a final master filter. Thus, the computational cost can be divided among all the
local filters, and multiple A-PNT sensors can be added easily as subsystems. This method
results in a federated DF framework suitable for real-time applications, as described in [17],
where KFs (Kalman filters) were implemented. While the FF (federated fusion) architecture
with KFs demonstrates good performances, it is important to note that in the real world,
A-PNT sensors are susceptible to external noise, as discussed in [18], which can negatively
impact the accuracy of KFs. In addressing non-linear systems, various solutions such as
EKFs (extended Kalman filters), UKFs (unscented Kalman filters), and PFs (particle filters)
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have been widely used before, as specified in [19]. Their effectiveness is contingent upon
prior knowledge of the measurement noise and processing noise.

Instead, fusion frameworks based on RNNs (recurrent neuronal networks) have
demonstrated good performance in modeling and predicting the behavior of A-PNT
sensors in real-world testing scenarios, as presented in [20], by fusing the INS and GNSS to
cope during GNSS outages. This approach has demonstrated a notable 60% improvement
against a traditional EKF (extended Kalman filter). However, there are certain drawbacks to
using RNNs, including their high computational cost and the challenge of long-term data
storage, which can introduce errors over extended periods of time. Moreover, if the weights
are too small, the learning rate becomes slow, and managing data over time can decrease the
performance of the RNN, leading to the so-called ‘vanishing gradient’ effect. Conversely, if
the weight is too large, the output can diverge, leading to an ‘exploding gradient’ effect.
Hence, to improve the performance of RNNs, LSTM (long short-term memory) and GRUs
(gated recurrent units) introduce gates that aid in the longer-term memory capability of the
RNN. As it can be seen in [21,22], LSTM models are used to enhance positioning accuracy
in urban environments. Even better performances were obtained by implementing a GRU
model to cope with GNSS outages, as presented in [23,24].

Thus, to assess the performance of combining GRUs with traditional fusion methods
such as EKFs, this paper introduces a hybrid federated fusion architecture for 3D posi-
tioning. The federated architecture uses two EKFs as local filters and a GRU model as a
master filter to predict the position of the UAV during a flight mission performed in an
urban environment. The system gathers data from various A-PNT sensors, including a
GNSS receiver, a MEMS IMU sensor, a monocular camera, and a MEMS barometer. To
enhance the realism of the data collected, a HIL (hardware in the loop) set-up is used,
which involves using Spirent’s GSS7000 simulator tools (SimGEN and SimSENSOR) along
with OKTAL-SE (Sim3D) to gather GNSS data with multipath and MEMS IMU data. At the
same time, a virtual environment in Unreal Engine is used to integrate a monocular camera
to be used by a VO algorithm in order to estimate the UAV’s ego motion through the urban
environment. In addition, the MEMS barometer readings from the virtual UAV in Unreal
Engine are integrated into the federated fusion framework to cope with the instabilities
introduced by the VO on the z axis during the flight mission. The paper’s key contributions
can be summarized as follows:

1. The research introduces, in a three-dimensional scenario, a hybrid fusion architecture
that integrates GRU (gated recurrent unit) and EKF (extended Kalman filter) systems.
This study offers a detailed comparison of the new hybrid approach against the
traditional FF (federated fusion) architecture.

2. To evaluate the performance of the proposed hybrid FF architecture using a range of
realistic trajectories with the aim of mimicking real-world UAV operations, including
multipath and GNSS outages.

3. To assess the influence of the optical part of the fusion algorithm by introducing
various weather conditions, including dust and fog. In addition, the VO algorithm
was tested during different light intensities, both in the afternoon and in the evening,
using realistic photogrammetry data.

The reminder of the paper is structured as follows: In Section 3, the proposed hybrid
federated fusion architecture is presented; in Section 4, the HIL configuration is detailed; in
Section 5, the trajectories, the camera calibration steps, and the performances of the hybrid
federated fusion architecture are discussed; and in Section 6, the conclusions and future
work are given.

2. Related Works

Multi-sensor fusion frameworks have been widely used to assure a robust and resilient
position and navigation for autonomous systems. With the advent of ML, hybrid fusion
frameworks have been increasingly adopted in recent times by combining KFs and ML
models. Standalone ML fusion models can be used without the integration of any KF, but
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their performance is limited when used with MEMS IMU sensors, as presented in [25].
The main disadvantage of implementing standalone ML models used to fuse GNSS and
MEMS IMU sensors without KFs is represented by the absence of feedback to update the
measurement model of the MEMS IMU inertial sensor, which is crucial due to its rapid
change in dynamics over time. Thus, hybrid fusion methods can combine the advantages
of KFs and ML models, which can be divided into three categories, as specified in [26].

In the first category, ML models are used as aids to tune KFs, as presented in [27],
where a RBFN (radial basis function network) and a PSO (particle swarm optimization) are
used as aids to cope with the non-linearities of the system. On the other hand, in [28], the
authors developed a NN (neuronal network) as an aid to an AKF (adaptive Kalman filter)
to adjust the system noise parameters.

Instead, in the second category, hybrid fusion methods are used in combination with
ML models to predict INS errors, while GNSS signals are not available. As presented in [29],
an UKF is used with a BP (back propagation) neuronal network to cope with GNSS outages.
When the GNSS receiver is not affected by external disturbances, the BP model is trained
using the position errors provided by the UKF as input, and when there are GNSS outages,
the BP-trained model is used to enhance the positioning output by correcting the INS data.
Although the solution proposed by the authors improves the position output during GNSS
outages, the BP model has inferior performance compared to the UKF model during normal
operations when the GNSS is available. Meanwhile, better results are presented in [30],
where the authors implemented a GRU model along with an AKF to cope with GNSS
outages. The GRU model is trained with GNSS data when available and used to predict
GNSS position measurements during GNSS disturbances, measurements that are used as
input for an AKF with INS data. Results showed a reduction in root mean square error of
83.03% and 75.39% during the 180 and 120 seconds of GNSS outages, respectively, proving
the efficiency of the GRU-trained model in combination with an AKF. As a drawback, the
solution presented by the authors considers only one scenario, and further data collection
is required to better evaluate the presented hybrid fusion framework.

In the third category, ML models can be used to enhance fusion methods in combi-
nation with fault detection approaches for real-time applications and in complex environ-
ments. As presented in [31], a RBFNN (radial basis function neuronal network) is used
to predict pseudo-GNSS measurements when faulty GNSS data is detected, aiming to
improve fault isolation and system reconfiguration in a tightly coupled approach. The main
challenge in the solution proposed by the authors is to optimally tune the POP (precision
of positioning) and RDOP (relative differential precision of positioning) thresholds, which
define the filter precision.

Hybrid fusion methods have been widely used to predict errors related to GNSS/IMU
fusion configurations. Considering the complexity of urban environments, it is unlikely
that UAVs will rely solely on GNSS and MEMS IMU sensors to cope with all the external
disturbances. Hence, the proposed fusion framework is investigating the performance of a
hybrid federated fusion framework in a complex urban environment, relying solely on a
GNSS, a MEMS IMU, an optical camera, and a MEMS barometer.

3. Proposed Hybrid Federated Fusion Solution

The proposed hybrid federated fusion architecture involves the fusion of four different
sensors, formed by a GNSS receiver, a MEMS IMU sensor, a monocular camera, and a
MEMS barometer sensor, to enhance the PNT solution, even in proximity to urban and
sub-urban areas. The proposed fusion architecture adopts a hybrid approach, combining
machine learning techniques using a GRU with traditional fusion architectures such as the
EKF, as can be seen in Figure 1. The hybrid approach is used to improve the accuracy of the
final positioning output, particularly when dealing with GNSS data affected by multipaths
and outages.
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Figure 1. Proposed hybrid federated multi-sensor fusion architecture.

3.1. Trained INS GRU

To cope with the INS drift over time, which leads to an erroneous position estimation,
a GRU model is used to enhance the INS positioning output by predicting the INS behavior
in time, as can be seen in the left part of Figure 2. During the training part, the GRU gathers
raw MEMS IMU data as the input, formed by readings from the MEMS accelerometer and
the MEMS gyroscope. As depicted in the right part of Figure 2, the input layer of the GRU
block, which takes data from the provided dataset, is formed by the following components:
a representing the linear acceleration and ω representing the angular velocity. For the
training part, 80% of the dataset was used, while the other 20% was used for the testing
part. As output, the GRU model provides INS corrections by comparing the estimated
INS corrections against the ground truth, where δPN

INS, δPE
INS, and δPD

INS represent the
position error in the NED frame without using the input block called ‘time since last GNSS’,
as presented in [24].

 

Figure 2. INS/GRU corrections—left; GRU diagram—right.

Once the GRU model has been trained, the estimated INS data are utilized to provide
input to the federated fusion architecture, feeding the output into the two local filters, as
can be seen in Equation (1). As a result, the impact of INS drift on the local filters diminishes
over time.

PNED
INS/GRU = PNED

INS − δPNED
INS (1)

3.2. GNSS/INS EKF

The first local filter fuses data from the GRU block, presented in the previous section,
and the GNSS in a loosely coupled approach. To fuse the output from the two sensors, both
have to share the same navigation frame, as defined in Appendix B. Thus, GNSS data must
be converted from the LLA (latitude, longitude, and altitude) frame to a NED coordinated
frame as it can be seen in Figure 3. To set the conversion, an LLA reference base is
defined as:

ϕREF = 43.604441◦ λREF = 1.4427133◦ hREF = 0 m (2)
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where ϕREF, λREF, and hREF are the initial altitude, longitude, and altitude, respectively.
With the initial starting point coordinates, it is possible to realize the conversion from
geodetic coordinates to geocentric coordinates. To begin, it is necessary to convert the data
from the WGS84 (World Geodetic System 1984) to an ECEF (Earth-centered, Earth-fixed)
coordinate system, as presented in [32]. After that, the ECEF position is converted to a NED
coordinate frame, as specified in [33] and in Appendix B. Once the GNSS data is converted
to NED coordinates, it can be fused with the GRU output. The state vector for the EKF is
defined as follows:

xk =

⎡⎣PxN
PyE
PzD

⎤⎦ (3)

Figure 3. UAV in a NED frame.

The initialization step of the EKF is given by the UAV base position in the NED
frame along the initial covariance matrix. Furthermore, the prediction step has the aim of
estimating future states and is defined as follows:

x̂−k = g
(

x̂−k−1, uk−1

)
x̂−k = x̂−k−1Fk−1

P−k = Fk−1Pk−1FT
k−1 + Gk−1Qk−1GT

k−1

(4)

where x̂−k−1 is the initial UAV position, uk−1 is the control input given by the INS GRU
source, Fk−1 is the dynamic covariance matrix, P−k is the priori covariance matrix, Gk−1
is the noise covariance matrix, and Qk−1 is the process noise covariance matrix. The last
step is represented by the update step (correction step). The number of states dictates the
number of columns of the measurement matrix, and the number of measurements dictates
the size of the rows. Once the measurement matrix is defined, the measurement residual,
or innovation, can be defined as:

yk = z− h
(

x̂−k
)

(5)

where yk is the measurement residual, z is the observation vector, and h
(

x̂−k
)

is the measure-
ment equation based on the predicted states. Once the measurement residual is obtained,
the Kalman gain can be calculated, as defined in Equation (6). If its value is low (closer to
0), the predicted values are closer to the actual states; otherwise, the value will be closer to
1, meaning that the predicted values have more errors.

Kk = P−k HT
k

(
HkP−k HT

k + Rk−1

)−1
(6)
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The measurement update from the GNSS is defined as:

zGNSSk =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦⎡⎣PxN
PyE
PzD

⎤⎦+ ϑ1,k

zGNSSk =

⎡⎣PxN_GNSS
PyE_GNSS
PzD_GNSS

⎤⎦ (7)

where zGNSS_k is the measurement vector, HGNSS is the measurement matrix for the GNSS
measurements, and ϑ1,k is the Gaussian noise related to the measurements formed by a
covariance matrix defined as RGNSS

k . Finally, the predicted state vector and the predicted
matrix are defined as:

xk = x̂−k + Kk
(
z− h

(
x̂−k
))

Pk = (I − Kk Hk)P−k
(8)

3.3. INS/VO/Barometer EKF

The second local filter relies on positioning data from the trained INS GRU block and
the positioning data generated by the VO algorithm along the MEMS barometer sensor. The
VO algorithm is a visual-based technique widely implemented in robotics that can be used
to estimate user motion from a sequence of images, especially when a GNSS solution cannot
be provided. VO algorithms can be divided into two main categories: appearance-based
and feature-based.

The appearance-based approach estimates the robot’s motion by analyzing pixel
intensity information obtained from the output of an optical camera, as defined in [34].
Based on this approach, it is possible to derive two additional methods. The first method
consists of using a template matching method, which can provide a motion solution by
aligning two consecutive frames and measuring local unchanged similarities. The second
method implements an optical flow algorithm that directly analyzes the changing intensity
of pixels in two consecutive frames, computing a field of vectors from which motion can
be estimated.

The second category is formed by feature-based methods, which do not track all the
data from two consecutive frames but only key features such as lines or corners, which
are effective in environments rich in details. From a computational point of view, the
feature-based methods are more effective than the appearance-based methods.

Considering that urban and sub-urban environments are characterized mainly by a
multitude of details, the authors implemented a feature-based approach.

Different feature-based algorithms can be implemented, each having different perfor-
mances, such as the Harris-Corner detector [35], Shi-Tomasi corners [36], FAST (features
from accelerated segment test) corners [37], SURF (speeded-up robust features) features [38],
SIFT (scale invariant feature transform) features [39], and ORB (oriented FAST and rotated
BRIEF) features [40]. In a more detailed analysis, as specified in [41], ORB shows the best
performance in terms of computational load; thus, an ORB approach is chosen to deal
with real-time missions. Furthermore, the ORB feature detector algorithm can be utilized
without the requirement for a license. In contrast, other methods such as SIFT and SURF
are subject to patents and, as a result, entail associated costs for usage.

The first step in using the ORB algorithm is to detect features using the FAST corners
approach. The FAST algorithm begins by selecting a reference pixel to serve as the center
and then considers all the pixels within a radius. After that, a threshold based on pixel
intensity is calculated, and the position of features can be determined. Although the
features can be detected, the FAST approach does not provide any direction information.
Thus, as specified in [40], the intensity centroid (IC) approach is used to find and define the
orientation vector, as specified in [42]. This solution increases the robustness of the detected
features during rotatory movements, as specified in [40]. Furthermore, a steered BRIEF
(binary robust independent elementary feature) descriptor is used, as defined in [40].
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To match the descriptors between two frames, a matcher algorithm is needed. Thus, the
FLANN (Fast Library for Approximate Nearest Neighbors) [43] is used for its real-time features
and matching performance when many features occur against the BFmatcher algorithm.

After the feature matching step, a motion estimation method is needed to compute
the ego motion of the camera, which is rigidly attached to the UAV. There are mainly three
methods to estimate the ego motion of the camera, as follows [44]:

- 2D to 2D (both features are specified in 2D image coordinates between two frames)
- 3D to 3D (both features are specified in 3D image coordinates between two frames)
- 3D to 2D (previous features are specified in 3D coordinates and the current features in

2D image coordinates)

Considering that a single monocular camera is used, a 2D–2D method is adopted.
Furthermore, the essential matrix is required in order to extract the ego motion of the
camera, defined in [9] as follows:

E = [t]xR (9)

where R is the rotational matrix and t is the translational vector. From the estimated
essential matrix, it is possible to extract the rotational matrix and the translation vector.
Usually, four solutions are provided, but with triangulation, one single solution is extracting
the ego motion of the monocular camera. In addition, to increase the accuracy of the
estimated trajectory, the authors implemented the RANSAC (random sample consensus)
algorithm, as specified in [45]. To utilize the VO data accurately, it is necessary to execute a
conversion from the camera frame to the navigation frame, as specified in [46,47] and in
Equation (A1). ⎡⎣pn

t,N
pn

t,E
1

⎤⎦ = λK−1[TNED
camera; TNED

camerarn
nc
]−1

⎡⎣u
v
1

⎤⎦ (10)

where TNED
camera is the transformation from camera to the navigation frame, K is the intrinsic

camera matrix, rn
nc is the position of the camera in the navigation frame, and λ is the scale

factor. In comparison to the previous EKF presented in Section 3.2, a barometer is used
to provide altitude information to cope with the instabilities provided by the monocular
camera on the z axis. Thus, the N and E positioning coordinates are provided by the
monocular camera using the VO algorithm, and the D positioning coordinate is provided
by the barometer. Furthermore, the output from the VO and barometer is fused with the
NED positioning output from the GRU model, which provides an enhancement of the INS
output, as presented in Section 3.1.

3.4. Master Filter

The final section of the fusion framework is represented by three GRU models, used
to enhance the output from the two EKFs as depicted in Figure 4. Since only the N, E, and
D positions are considered, the first GRU model is used to process only the N position data,
while the second and third GRU models are used to process only the E and D position
data, respectively.

Each GRU model is formed by a layer consisting of 128 GRUs, a RELU activation layer,
and a dense layer, followed by the final output layer. Each GRU model was trained using
80% of the dataset and tested using the remaining 20% of the dataset. After the training
phase, the final output is defined as follows:

PNED = P̂N + P̂E + P̂D (11)
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Figure 4. Master filter architecture.

4. Hardware in the Loop Configuration

To enhance the realism of the dataset used by the hybrid sensor fusion architecture, a
HIL configuration is established, as can be seen in Figure 5. For the HIL set-up, a Pixhawk
2.4.8 board is used and configured in the HIL mode by running the px4fmu-v2_default
firmware, which represents the main FCU (flight control unit) of the UAV responsible for
the navigation, control, and stability of the flying device.

Figure 5. HIL set-up.

Furthermore, once the connection is established with the hosting computer, the Pix-
hawk is calibrated properly by using the QGroundControl interface. After the calibration
step, on the same hosting computer, Unreal Engine 4.27.2, Cesium v2.0.0, and AirSim
1.7.0 are launched with the HIL configuration file (required by AirSim), starting the HIL
simulation. Unreal Engine is a 3D graphics interface that can be used to model specific
simulation environments, such as urban, semi-urban, and rural environments. The hosting
computer is equipped with an Intel Keon CPU E5-1650 v4, 32 GB of RAM, and an NVIDIA
GeForce GTX 1080Ti 11 GB GPU (Lenovo, Bratislava, Slovakia). In addition, with the aid
of Google Earth and Cesium, photogrammetry data can be easily imported into the UE
interface, and the UAV dynamics and sensors are included using the AirSim plugin.

Once the set-up is finalized, a Python v3.6.0 file is used to establish a UDP connection
between the Spirent GSS7000 hardware (Spirent PLC, Paignton, UK), and the hosting
computer. Thus, a link between AirSim and the GSS7000 allows the recording of IMU data
using the SimGEN v7.02 software. At the same time, RF signals are generated and sent
further to the C009-F9P Ublox board (u-blox AG, Zürcherstrasse, Switzerland), which is
responsible for processing the GNSS signals. By using OKTAL-SE Sim3D v4.7 in conjunction
with Spirent’s GSS7000 hardware, the generated RF GNSS signals also include multipath
effects. More details regarding the IMU and U-Blox F9P GNSS receiver can be viewed in
Table 1.
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Table 1. INS and U-Blox specifications.

Sensor Specifications

Accelerometer Gyroscope U-Blox F9P GNSS Receiver Specification

Scaling factor (ppm) 500 Scaling factor (ppm) 500 Pseudo-range accuracy (m) 3
Bias (mg) 0.1 Bias (deg/h) 0.001 Pseudo-range rate accuracy (m/s) 0.5

ARW (m/s/sqrt(h)) 0.003 GRW (deg/sqrt(h)) 0.003 Update rate (Hz) 1
Update rate (Hz) 100 -

5. Evaluation

5.1. Scenario Definition

To evaluate the hybrid FF architecture, Unreal Engine is implemented along with
AirSim, as specified in Section 3. For this specific simulation, real photogrammetry data
from the city center of Toulouse is integrated into Unreal Engine to replicate an urban
environment. To further assess the fusion framework, two trajectories are used, as can be
seen in Figure 6. The first trajectory is formed by different waypoints covering a larger
area, while the second trajectory is limited to a 150-meter square area. Both trajectories are
replicating a survey mission conducted in an urban environment. The simulation aims to
test the VO algorithm while assessing the influence of multipath on the GNSS and the drift
introduced by the MEMS IMU over time.

  

Figure 6. Waypoint survey trajectory—left (a); waypoint square trajectory—right (b).

5.2. Light and Weather Evaluation

In addition, both fusion architectures are tested under different light and weather
conditions. The first scenario simulates the flight of the UAV during normal daylight
conditions at 14:51 p.m. local time in Unreal Engine, while the second flight is at 18:00 p.m.,
as can be seen in Figure 7. Additionally, to further evaluate the accuracy of the VO
algorithm, two more scenarios are considered, performing the two trajectories under fog
and dust conditions, as can be seen in Figure 8.

5.3. Camera Calibration Set-Up

Considering the realism introduced into the simulation, before evaluating both fusion
architectures, the monocular camera, rigidly fixed on the UAV and pointing downward, is
configured in AirSim with an image width of 752 pixels and an image height of 480 pixels.
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Figure 7. Toulouse in UE during the afternoon—left; Toulouse in UE during the evening—right.

  

Figure 8. The UAV during fog operations—left; the UAV during dust operations—right.

Before using the monocular camera with the VO algorithm, a chessboard is introduced
into Unreal Engine in order to calibrate the camera by finding the intrinsic matrix, defined
as K, formed by the focal lengths fx and fy and by the optical centers cx and cy. The
chessboard is characterized by 10 rows and 10 columns, featuring alternating white and
black squares, as can be seen in Figure 9. Each block has a dimension of 2 m in both
length and width on the defined chessboard. Furthermore, in Unreal Engine, the UAV
performed a small square trajectory over the chessboard at a cruise altitude of 70 m while
recording all the camera frames. Then, the 220 frames extracted from Unreal Engine are
processed using the MATLAB 2023b ‘Camera Calibrator’ toll, obtaining the intrinsic matrix,
as defined in Equation (A3). Thus, the intrinsic matrix is used to enhance the realism of the
VO algorithm.

K =

⎡⎣ fx 0 cx
0 fy cy
0 0 1

⎤⎦ =

⎡⎣378.6062 0 376.2584
0 378.6560 240.4231
0 0 1

⎤⎦ (12)

 

Figure 9. Calibration process for the monocular camera used in Unreal Engine.
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5.4. Conventional Federated Filter Architecture

To compare the advantages of the proposed hybrid FF architecture, a conventional
FF architecture formed only by EKFs is used, as can be seen in Figure 10, in a loosely
coupled approach.

Figure 10. FF architecture with EKFs.

Thus, the INS block does not have any GRU model that predicts the IMU drift over
time, and the master filter is only formed by a conventional EKF that fuses the positioning
output from the two local filters. To further evaluate the FF, the same architecture is used,
but while using the trained GRU model to enhance the INS position output.

5.5. Evaluation of the Square Trajectory

To evaluate the performance of both fusion architectures, various metrics are imple-
mented, including 3D positioning, horizontal and vertical error, and RMSE (root mean
square error) on each axis, as specified in Appendix B.

Although the pseudo-range accuracy of the GNSS receiver is 3 m as it can be seen
in Table 1, the multipath introduced is consistently affecting the position accuracy of the
first local filter when no GRU correction are used. As it can be seen in Table 2, for the
square trajectory, significant positioning improvements can be observed in the first EKF by
fusing the output from the GRU aid, which enhances the INS position output, with GNSS
data, obtaining an equivalent horizontal error of 0.59 m (95th percentile). In contrast, the
EKF without the GRU model shows a higher horizontal error of 9.76 m (95th percentile).
Analysing the vertical error in both local filters, it can be observed that the filter without
GRU corrections has the worst performance against the local filter with GRU corrections.

Table 2. Positioning performance for Toulouse under different light conditions—square trajectory.

Toulouse—Afternoon

Position Source

3D Position
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 10.40 9.76 3.5 4.49 1.35 3.36 5.77
EKF2 IMU/VO/BO (no GRU aid) 9.09 9.03 1.58 4.17 1.60 0.78 4.54

Master EKF filter (no GRU aid) 9.09 9.03 1.50 4.18 1.35 0.77 4.46
EKF1 IMU/GNSS (with GRU aid) 0.64 0.59 0.29 0.20 0.17 0.13 0.30

EKF2 IMU/VO/BO (with GRU aid) 4.57 4.57 1.48 1.32 1.45 0.76 2.11
Master GRU filter (with GRU aid) 0.58 0.54 0.27 0.16 0.14 0.12 0.25
Master EKF filter (with GRU aid) 0.76 0.73 0.29 0.21 0.21 0.13 0.33

Toulouse—Evening

EKF2 IMU/VO/BO (no GRU aid) 9.16 9.00 2.54 4.17 1.64 1.40 4.68
Master EKF filter (no GRU aid) 9.13 8.95 2.44 4.15 1.63 1.37 4.58

EKF2 IMU/VO/BO (with GRU aid) 5.07 4.92 1.63 1.52 1.58 1.00 2.35
Master GRU filter (with GRU aid) 0.59 0.54 0.27 0.16 0.14 0.12 0.25
Master EKF filter (with GRU aid) 0.77 0.75 0.29 0.22 0.21 0.13 0.34

58



Sensors 2024, 24, 981

On the other hand, the second local filter, which fuses the output from the IMU with
the VO and barometer data, shows slightly better performance with a horizontal error of
9.03 m (95th percentile) without relying on any corrections from the GRU model. Instead,
when the IMU/GRU corrections are implemented, the horizontal error tends to achieve an
equivalent positioning output of 4.57 m (95th percentile), with an improvement in the N, E,
and D coordinates with an equivalent RMSE of 1.32 m, 1.45 m, and 0.76 m, respectively.
The overall RMSE, considering all the NED coordinates, equals 2.11 m against the filter
without GRU corrections, which equals 4.54 m. By analyzing the output of the master
filters, it is possible to notice an enhancement in positioning, shifting from a horizontal
error of 9.03 m (95th percentile) to 0.54 m (95th percentile) when employing the GRU model
as the master filter instead of the master EKF. If a master EKF is considered with a GRU aid,
slightly worse performances can be observed, maintaining a sub-meter horizontal error.
By changing the light conditions from a daylight flight to an evening flight, in Table 2, it is
possible to notice the influence of the VO over the output of the EKF. Despite the change in
light conditions while executing the same trajectory, comparable performances are attained,
as can be seen in Figure 11. Although comparable positioning performances are achieved
during both afternoon and evening flights, a degradation in positioning is evident when
weather conditions change from clear-sky conditions to the presence of fog and dust effects.

 

  

Figure 11. Horizontal error comparisons during different light conditions considering a square trajectory.

From Figure 11, it is possible to notice that the distribution of the horizontal error
under fog and dust conditions is greater compared to the horizontal error observed in
flights conducted during the afternoon and evening conditions. By analyzing the outputs
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of the second local EKF, which uses VO for positioning, from Table 3, it is possible to
highlight that fog, in comparison to dust, degrades the EKF positioning output more,
leading to a horizontal error of 14.25 m (95th percentile). In comparison, the dust effect
leads to a horizontal error of 13.62 m (95th percentile). On the one hand, processing both
fog and dust outputs with a master EKF leads to similar results due to the fusion with
the output from the first local filter. On the other hand, the aid of the master GRU filter
substantially improves the positioning output, decreasing the horizontal error to 0.57 m
during fog conditions and 0.55 m during dust conditions. On the one hand, the master
GRU model does cope with all the additional instabilities introduced by the VO during
adverse and challenging weather conditions. In contrast, if a master EKF is used with a
GRU aid, comparable results are obtained, as in the previous cases, during afternoon and
evening flights. Thus, the VO algorithm can increase the overall position of an UAV in an
urban environment during normal conditions, up to good light and weather conditions.

Table 3. Positioning performance for Toulouse under different weather conditions—square trajectory.

Toulouse—Fog

Position Source

3D Positioning
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF2 IMU/VO/BO (no GRU aid) 14.63 14.25 3.00 6.34 5.07 1.60 8.28
Master EKF filter (no GRU aid) 9.44 8.96 2.98 4.12 1.71 1.60 4.74

EKF2 IMU/VO/BO (with GRU aid) 8.63 8.63 3.25 2.80 2.53 1.48 4.07
Master GRU filter (with GRU aid) 0.61 0.57 0.28 0.17 0.17 2.30 0.27
Master EKF filter (with GRU aid) 0.89 0.87 0.29 0.25 0.24 0.13 0.37

Toulouse—Dust

EKF2 IMU/VO/BO (no GRU aid) 13.74 13.62 4.90 6.54 3.90 2.54 8.03
Master EKF filter (no GRU aid) 9.65 8.82 4.85 4.09 1.57 2.50 5.06

EKF2 IMU/VO/BO (with GRU aid) 6.00 5.51 2.50 1.77 1.61 1.45 2.80
Master GRU filter (with GRU aid) 0.60 0.55 0.27 0.16 3.07 0.12 0.25
Master EKF filter (with GRU aid) 0.79 0.77 0.29 0.22 0.22 0.13 0.34

5.6. Evaluation of the Survey Trajectory

If a more complex trajectory is considered, it can be observed from Table 4 that
the second local filter introduces more errors into the fusion system. This correlates to
the drift introduced into the second EKF filter over time by the VO algorithm and INS.
Considering that the survey trajectory covers a larger area, green areas such as parks
decrease the efficiency of the VO algorithm due to the lack of features. Although slightly
better performances are achieved when the VO output is fused with the output from the
MEMS barometer and MEMS IMU with GRU corrections, the horizontal error is higher in
comparison to the values presented in both Tables 2 and 3. Although the perturbances of
the VO algorithm are higher, it can be observed that both the master EKF and master GRU
models substantially reduce the final positioning error.

As can be seen in Figure 12, the master EKF has better performance during the
afternoon flight, while the master EKF with data collected during evening conditions has
more errors. In contrast, the master GRU model shows better performance, boasting a
horizontal error of 1.72 m (95th percentile) and a vertical error of 0.28 m (95th percentile).
Considering the effects of weather on the VO algorithm, as presented for the square
trajectory, it can be seen from Figure 12 and Table 5 that more errors are introduced into the
fusion framework during foggy conditions. However, in both situations, the trained GRU
model, by filtering both fusion outputs and considering all the NED coordinates, achieves
an RMSE of 0.83 m.
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Table 4. Positioning performance for Toulouse under different light conditions—survey trajectory.

Toulouse—Afternoon

Position Source

3D Positioning
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 11.37 10.19 4.05 1.77 4.52 3.77 6.15
EKF2 IMU/VO (no GRU aid) 22.92 22.90 5.00 9.38 7.36 1.60 12.03

Master EKF filter (no GRU aid) 10.44 10.19 2.11 1.94 4.48 1.80 5.21
EKF1 IMU/GNSS (with GRU aid) 1.86 1.85 0.26 0.76 0.49 0.16 0.92

EKF2 IMU/VO (with GRU aid) 11.74 11.74 4.10 4.79 4.63 1.27 6.79
Master GRU filter (with GRU aid) 1.72 1.72 0.28 0.67 0.44 0.12 0.81
Master EKF filter (with GRU aid) 1.93 1.93 0.26 0.77 0.53 0.16 0.95

Toulouse—Evening

EKF2 IMU/VO (no GRU aid) 23.43 23.43 5.53 10.00 7.55 1.64 12.64
Master EKF filter (no GRU aid) 10.57 10.40 5.31 2.71 4.48 1.57 5.47
EKF2 IMU/VO (with GRU aid) 13.38 13.32 3.99 5.27 5.46 1.73 7.79

Master GRU filter (with GRU aid) 1.73 1.73 0.28 0.67 0.16 0.12 0.82
Master EKF filter (with GRU aid) 1.97 1.96 0.26 0.78 0.54 0.16 0.97

  

 

Figure 12. Horizontal error comparisons during different light and weather conditions considering a
survey trajectory.
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Table 5. Positioning performance for Toulouse under different weather conditions—survey trajectory.

Toulouse—Fog

Position Source

3D Positioning
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF2 IMU/VO (no GRU aid) 23.76 23.76 10.44 9.10 7.95 3.01 12.50
Master EKF filter (no GRU aid) 11.36 10.21 10.31 1.80 4.52 3.10 5.77
EKF2 IMU/VO (with GRU aid) 25.22 25.19 8.34 10.39 9.92 2.80 14.64

Master GRU filter (with GRU aid) 1.74 1.73 0.29 0.67 0.46 0.13 0.83
Master EKF filter (with GRU aid) 2.22 2.21 0.26 1.07 0.87 0.60 1.07

Toulouse—Dust

EKF2 IMU/VO (no GRU aid) 36.78 36.75 8.04 14.83 10.24 2.77 18.24
Master EKF filter (no GRU aid) 11.32 10.18 3.97 1.84 4.5 3.71 6.12
EKF2 IMU/VO (with GRU aid) 22.51 22.12 5.95 8.73 9.12 4.08 13.27

Master GRU filter (with GRU aid) 1.74 1.73 0.29 0.67 0.46 0.13 0.83
Master EKF filter (with GRU aid) 2.53 2.53 0.26 10.03 0.56 0.16 1.18

5.7. Evaluation of the Square and Survey Trajectories Considering GNSS Outages

To further investigate the performance of the proposed hybrid fusion architecture,
GNSS outages are introduced into the simulation. For the square trajectory, two small
outages lasting 15 seconds each are considered, along with the introduction of a more
extended outage lasting 50 seconds. As can be seen from Table 6, the local EKF fusing data
from the GNSS and IMU have an equivalent horizontal error of 12.16 m (95th percentile),
which is higher in comparison to the previous scenario where outages were not considered,
as can be seen in Figure 13. On the one hand, when the GNSS data are fused with the
second local filter and the master EKF, an improvement in position can be seen, leading
to a horizontal error of 9.44 m (95th percentile). Although the GNSS data is affected by
multipaths and outages, it can be observed that the VO algorithm along the barometer from
the second local EKF contains the errors introduced by GNSS outages. On the other hand,
the GRU model used to predict INS errors substantially reduces the GNSS errors, leading
to a horizontal error of 0.82 m (95th percentile), while the master GRU filter further reduces
the horizontal error, improving it by 32%. Although similar performances are obtained
during the evening flight scenario, it can be observed that due to the VO degradation in
foggy and dusty conditions, the master EKF leads to a higher position error. In contrast,
the trained master GRU filter achieves a sub-meter position error, despite the disturbances
introduced during the simulation. Similar results are obtained using a master EKF with
GRU corrections, leading to sub-meter accuracy with a horizontal error of 0.75 m (95th
percentile) and a vertical error of 0.31 m (95th percentile).

Instead, for the survey trajectory, two short GNSS outages lasting 15 seconds and two
extended GNSS outages lasting 50 seconds are introduced into the simulation, as can be
seen from Figure 14. The horizontal and vertical errors are degraded in comparison to
the scenario where outages are not considered. At the same time, in the square scenario,
the IMU, monocular camera, and MEMS barometer sensor reduce the errors introduced
by the GNSS trying to cope with all the outages. It can be observed from Table 7 that
even if a federated multi-sensor fusion framework is implemented, the master EKF cannot
guarantee a reliable and stable flight in a multipath environment with outages. However, if
a master GRU filter is used, the horizontal error tends to be within 2 m (95th percentile)
despite all the external instabilities. Instead, if a master EKF filter is implemented with INS
GRU corrections, the horizontal error tends to be within 4 m (95th percentile).
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Table 6. Positioning performance for Toulouse under different light conditions with GNSS outages—
square trajectory.

Toulouse—Afternoon

Position Source

3D Position
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 15.81 12.16 11.73 5.19 5.51 7.22 13.92
Master EKF filter (no GRU aid) 9.48 9.44 1.52 4.03 2.23 0.82 6.01

EKF1 IMU/GNSS (with GRU aid) 0.98 0.82 0.59 0.34 0.33 0.34 1.01
Master GRU filter (with GRU aid) 0.60 0.55 0.27 0.17 0.18 0.12 0.28
Master EKF filter (with GRU aid) 0.80 0.75 0.31 0.23 0.23 0.17 0.37

Toulouse—Evening

Master EKF filter (no GRU aid) 9.81 9.59 2.74 4.43 4.04 1.49 6.18
Master GRU filter (with GRU aid) 0.60 0.56 0.28 0.18 0.17 0.15 0.29
Master EKF filter (with GRU aid) 0.81 0.76 0.31 0.23 0.23 0.17 0.37

Toulouse—Fog

Master EKF filter (no GRU aid) 19.66 19.44 2.94 8.29 7.59 1.65 11.36
Master GRU filter (with GRU aid) 0.86 0.81 0.43 0.28 0.17 0.16 0.37
Master EKF filter (with GRU aid) 0.92 0.88 0.31 0.25 0.26 0.17 0.40

Toulouse—Dust

Master EKF filter (no GRU aid) 19.29 19.07 2.94 8.14 7.40 1.65 11.12
Master GRU filter (with GRU aid) 0.62 0.58 0.28 0.19 0.17 0.15 0.30
Master EKF filter (with GRU aid) 0.73 0.83 0.31 0.23 0.23 0.17 0.37

Figure 13. Horizontal error in time for the survey trajectory with multipath and outages over
the EKF1.

Figure 14. Horizontal error in time for the square trajectory with multipath and outages over
the EKF1.
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Table 7. Positioning performance for Toulouse under different light conditions with GNSS outages—
survey trajectory.

Toulouse—Afternoon

Position Source

3D Position
Error (95th
Percentile)

[m]

Horizontal Error
(95th Percentile)

[m]

Vertical Error
(95th

Percentile)
[m]

RMSE N
[m]

RMSE E
[m]

RMSE D
[m]

RMSE
NED
[m]

EKF1 IMU/GNSS (no GRU aid) 17.83 17.83 13.16 6.34 8.91 10.85 15.41
Master EKF filter (no GRU aid) 17.82 17.78 4.99 6.35 8.88 1.59 11.03

EKF1 IMU/GNSS with GRU aid 3.39 3.35 0.60 1.71 0.83 0.49 1.98
Master GRU filter (with GRU aid) 1.77 1.77 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.42 3.37 0.60 1.68 0.87 0.49 1.96

Toulouse—Evening

Master EKF filter (no GRU aid) 17.79 17.75 5.51 6.38 8.85 1.63 11.03
Master GRU filter (with GRU aid) 1.77 1.76 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.43 3.39 0.60 1.69 0.87 0.49 1.96

Toulouse—Fog

Master EKF filter (no GRU aid) 17.87 17.74 10.64 6.35 8.85 3.20 11.36
Master GRU filter (with GRU aid) 1.76 1.76 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.50 3.46 0.60 1.69 0.89 0.49 1.98

Toulouse—Dust

Master EKF filter (no GRU aid) 18.01 17.81 8.02 6.50 8.89 2.77 11.36
Master GRU filter (with GRU aid) 1.76 1.76 0.27 0.49 0.69 0.13 0.86
Master EKF filter (with GRU aid) 3.48 3.44 0.60 1.69 0.89 0.49 1.97

5.8. Performance Comparison

To evaluate the results obtained for the second local filter, which fuses the position
output from the VO algorithm, the altitude from the MEMS barometer, and the position
from the MEMS IMU, the following paper [48] is used as a benchmark. The paper im-
plements a VINS-mono [49] algorithm that gathers real data from a monocular camera
mounted on a UAV pointing downward. It can be observed that the output from the second
local filter shows significant improvements at 60 m while considering both the square and
survey trajectories, with an equivalent improvement of 61.78% for the square scenario and
17.89% for the survey trajectory. It can be observed that with longer trajectories, the errors
introduced by the VO accumulate over time, decreasing the position accuracy.

Instead, to compare the overall performances obtained by the proposed hybrid fed-
erated fusion architecture, the solution presented in [50] is used as a comparison. The
paper presents a robust adaptive Kalman filter for gathering data from a GNSS sensor, an
IMU MEMS sensor, and an optical camera. As observed in Table 8, the proposed solution
with an ML aid shows better performances considering both scenarios during normal VO
operations and with multipaths.

Table 8. Benchmark analysis.

Algorithm
MAE N

[m]
MAE E

[m]
MAE D

[m]
RMSE NED

[m]
Square Scenario Survey Scenario

Mono-VIO [48] - - - 16.54 61.78% 17.89%

Robust Adaptive
Kalman filter [50] 0.06 0.07 0.06 -

N 193% N 188%

E 180% E 192%

D 187% D 199%

6. Conclusions

In this study, the authors presented and demonstrated the following:
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- A novel hybrid sensor fusion framework based on a federated approach was devel-
oped and tested in a loosely coupled set-up, integrating data from diverse sources, in-
cluding a GNSS receiver, a MEMS IMU sensor, a monocular camera, and a
MEMS barometer.

- A virtual environment was developed in UE, along with AirSim, Cesium, and pho-
togrammetry data imported from Google Earth, allowing the authors to test and
validate the effects of the VO algorithm over the hybrid fusion framework under
different light and weather conditions. To further validate the framework, the hybrid
FF architecture was compared to a classic FF framework. GNSS data were enhanced
using the Spirent GSS7000 simulator with the OKTAL-SE Sim 3D software stack, intro-
ducing multipath during the data collection phase, and collected using a C009-F9P
Ublox board. At the same time, IMU data were gathered using the Spirent GSS7000.
In addition, GNSS outages were considered for both scenarios.

- Based on the performance metrics presented in Tables 2 and 3 for a square trajectory
and Tables 4 and 5 for a survey trajectory, it is evident that the corrections offered
by the master GRU model surpass those of the master EKF filter. The master GRU
model demonstrates the capability to achieve a sub-meter positioning error in terms
of horizontal and vertical error for the square trajectory and below 2 m for the survey
trajectory, under different weather and light conditions.

- The presented feature-based VO algorithm does improve the position accuracy of the
UAV, as can be seen in Tables 2 and 3 under good weather and light conditions. If
more complex and longer missions are considered, the VO algorithm does not provide
major position correction.
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Appendix A. Coordinate Systems Definition and Transformations

Appendix A.1. Body Frame

The first coordinate system is defined by the body frame having its origin in the UAV’s
center of gravity, where the x axis points ahead, the z axis downwards, and the y axis
on the right side of the flying vehicle, while rotation on the x axis is defined as ϕ (roll),
rotation on the y axis as θ (pitch), and rotation on the z axis as ψ (yaw), as can be seen in the
figure below.

Appendix A.2. ECEF (Earth-Centered Earth-Fixed Frame)

The Earth-Centered Earth-Fixed Frame has its origin at the Earth’s center, and it is
fixed and rotates with the Earth. The x axis points to the prime meridian, the z axis points
towards the North Pole, and the y axis completes the right-hand frame.

Appendix A.3. Inertial Frame

The inertial frame aligns with the Earth’s center, similar to the ECEF frame, except its
rotation is independent. The x axis points towards the mean vertical equinox, the z axis is
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parallel with the Earth’s rotation, and the y axis completes the right-handed frame, similar
to the ECEF frame.

 

Figure A1. UAV’s body frame definition in AirSim.

Appendix A.4. Navigation Frame

A NED (North, East, and Down) [51] navigation coordinate frame attached to the
vehicle is adopted by the author. Thus, the x axis points towards north (N), the z axis points
downwards (D), and the y axis points east (E), considering a WGS84 ellipsoid Earth model.

Appendix A.5. Conversion from WGS84 to ECEF

xECEF = (N + h)cos ϕcos λ
yECEF = (N + h)cos ϕsin λ

zECEF =
[
N
(
1− e2)+ h

]
sin ϕ

(A1)

N = a√
1−e2sin ϕ2

e2 = 2 f − f 2

f = a−b
a

PECEF =

⎡⎣xECEF
yECEF
zECEF

⎤⎦
where xECEF, yECEF, and zECEF are the positions in the ECEF frame; ϕ, λ, and h are the
initial altitude, longitude, and altitude, respectively; N is the radius curvature in prime
vertical; a is the semi-major Earth axis; b is the semi-minor Earth axis; e2 is the eccentricity
of Earth; and f is the flattening.

Appendix A.6. Conversion from ECEF to NED

PNED = R(PECEF − PREF) (A2)

R =

⎡⎣−sinϕREFcosλREF − sinϕREFsinλREF cosϕREF
−sinλREF cosλREF 0

−cosϕREFcosλREF −cosϕREFsinλREF −sinϕREF

⎤⎦
xREF = (N + hREF)cos ϕREFcos λREF
yREF = (N + hREF)cos ϕREFsin λREF

zREF =
[
N
(
1− e2)+ h

]
sin ϕREF

where PREF represents the vector with the initial LLA coordinates in an ECEF coordinate system.
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Appendix A.7. Coordinate Frame Transformations

To convert the body frame defined previously to the NED frame, a DCM (direction
cosine matrix) is used, as follows:

Cn
b =

⎡⎣cosθ cosψ − cosϕ sinψ + sinϕ sinθ cosψ sinϕ sinψ + cosϕ sinθ cosψ
cosθ sinψ cosϕ cosψ + sinϕ sinθ sinψ −sinϕ cosψ + cosϕ sinθ sinψ
−sinθ sinϕ cosθ cosϕ cosθ

⎤⎦ (A3)

where Cn
b is the DCM matrix and θ , ψ, and ϕ are the pitch, yaw, and roll angle in radians,

respectively.

Appendix B. Metrics

To assess the two fusion architectures, the following metrics were used:

Vertical error =
√(

Di − D̂i
)2 (A4)

Horizontal error =
√(

Ni − N̂i
)2

+
(
Ei − Êi

)2 (A5)

3D error =
√(

Ni − N̂i
)2

+
(
Ei − Êi

)2
+
(

Di − D̂i
)2 (A6)

RMSEN =

√
1
n

n
∑
i

(
Ni − N̂i

)2
=

√
1
n

n
∑
i

ΔNi
2

RMSEE =

√
1
n

n
∑
i

(
Ei − Êi

)2
=

√
1
n

n
∑
i

ΔEi
2

RMSED =

√
1
n

n
∑
i

(
Di − D̂i

)2
=

√
1
n

n
∑
i

ΔDi
2

(A7)

RMSENED =

√
RMSEN

2 + RMSEE
2 + RMSED

2 =

√
1
n

n

∑
i

(
ΔNi

2 + ΔEi
2 + ΔDi

2
)

(A8)

where Ni, Ei, and Di are the ground truth positioning output from Unreal Engine in NED
coordinates, while N̂i, Êi, and D̂i are the estimated NED position.
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Abstract: The high-altitude real-time inspection of unmanned aerial vehicles (UAVs) has always
been a very challenging task. Because high-altitude inspections are susceptible to interference from
different weather conditions, interference from communication signals and a larger field of view
result in a smaller object area to be identified. We adopted a method that combines a UAV system
scheduling platform with artificial intelligence object detection to implement the UAV automatic
inspection technology. We trained the YOLOv5s model on five different categories of vehicle data
sets, in which mAP50 and mAP50-95 reached 93.2% and 71.7%, respectively. The YOLOv5s model
size is only 13.76 MB, and the detection speed of a single inspection photo reaches 11.26 ms. It is a
relatively lightweight model and is suitable for deployment on edge devices for real-time detection.
In the original DeepStream framework, we set up the http communication protocol to start quickly to
enable different users to call and use it at the same time. In addition, asynchronous sending of alarm
frame interception function was added and the auxiliary services were set up to quickly resume video
streaming after interruption. We deployed the trained YOLOv5s model on the improved DeepStream
framework to implement automatic UAV inspection.

Keywords: UAVs; YOLOv5; object detection; DeepStream; route planning

1. Introduction

Real-time object detection is not only a challenging task in computer vision, but also
a hot topic in industrial applications, for example, in object tracking [1], autonomous
driving [2], medical image processing [3], agricultural machine vision applications [4], etc.
Real-time detection requires lightweight convolutional neural networks and equipment
that can process floating point operations faster. Equipment that implements real-time
detection usually includes mobile GPU or CPU servers and various neural processing
units (NPUs). Different edge processing machines focus on the acceleration of different
modules. In this paper, we propose a real-time detection system mainly applied to cloud or
mobile devices.

In recent years, different real-time detection models have been proposed, suitable for
different edge devices. MCUNet [5] and NanoDet [6] are mainly designed to produce lower-
power microcontrollers and improve edge CPU inference speed. The You Only Look Once
(YOLO) series of algorithms have better accuracy and faster reasoning speed, and are widely
used in the industrial field. YOLOv1 [7] is a typical one-stage object detector, and based
on this, a series of improvements were made, resulting in YOLOv2 [8], and YOLOv3 [9],
which have faster detection speeds and higher detection accuracy. YOLOv4 [10] redesigns
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the three independent architectures of the trunk, neck and head to make them better
trained on a single GPU. At present, YOLOv5 [11], YOLOX [12], PPYOLOE [13], etc., have
extremely competitive performance in real-time detection and deployment. More recently,
real-time object detectors have mainly focused on simple and efficient structural design,
so that real-time detection effects can be achieved when used on the CPU [14–16]. The
simple framework design with good performance is mainly based on MobileNet [17–19],
ShuffleNet [20,21], or GhostNet [22]. However, real-time detectors developed based on
GPU [23,24] mostly use ResNet [25] or DLA [26], combined with the CSPNet [27] strategy
to optimize the architecture and improve detector performance.

With the continuous development of lightweight real-time detection models, some
types of industrial application equipment accompanied by algorithms are also constantly
being introduced. The development and application of UAVs have made many fields
more intelligent, such as industrial inspection [28], intelligent substation inspection [29],
agricultural applications [30], etc. Running convolutional neural networks on embedded
systems has become a reality, and when combined with the application innovation of UAVs,
there will be new ways of application in various fields. Tijtgat et al. [31] designed a system
based on NVIDIA Jetson TX2 edge computing device running YOLOv2 to achieve real-time
object detection with UAVs. Abdulghafoor et al. [32] proposed a method of combining
edge computing devices with a DeepStream software development kit (DS-SDK) 4.0.2 [33]
to implement a convolutional network model that can process video streams with high
performance. In order to improve the practicality of a real-time video stream detection
system, Guo et al. [34] proposed a novel region of interest detection (ROIDet) algorithm and
designed a bandwidth-efficient multi-camera video streaming system for deep learning
video analysis. Hossain et al. [35] proposed the joint implementation of the application of
deep learning technology with a computer system integrated with the UAV, which can track
and detect objects in real time. Vandersteen et al. [36] proposed a multi-data set learning
strategy to optimize the real-time performance of detection on embedded hardware devices
and improve detection efficiency. Haq et al. [37] deployed the DeepStream framework on
the NVIDIA Jetson single-board computer to run deep learning algorithms, especially the
YOLO algorithm. The study also verified that the DeepStream framework can run well in
virtual machines, especially using Docker, which can further improve the performance of
the model and the portability during the deployment process. Huu et al. [38] proposed a
method based on the NVIDIA DS-SDK architecture, using multiple surveillance camera
detection methods to implement the application of deep learning-based algorithms for
vehicle monitoring. Ghaziamin et al. [39] deployed the object detection model to Nvidia
Jetson devices and designed a passenger counting system. And after edge deployment
through Nvidia DeepStream, it improved efficiency while saving the use of hardware
resources. Smink et al. [40] used edge devices combined with the detection and tracking
system of the NVIDIA DeepStream framework to implement a set of real-time tag-reading
applications. Qaraqe et al. [41] designed an end-to-end security intelligent monitoring
system that used the DeepStream software development kit (SDK) for real-time inference,
which can have a significant impact on public safety and crowd management.

In summary, their method cannot simultaneously ensure detection accuracy and must
also maintain detection speed. Especially in the UAV inspection process, the requirements
for hardware robustness are relatively high. Existing real-time inspection technology,
especially the use of fixed camera equipment for monitoring, will result in a small field of
view, poor mobility of the equipment, the inability to realize real-time switching between
different areas, and the existence of large monitoring blind spots and other problems. UAV
high-altitude inspection can only solve the problems of vision and flexibility. Therefore, this
article proposes a method that combines UAVs and artificial intelligence real-time detection
to implement an automatic UAV real-time inspection system. The main contributions of
this article are as follows:

1. The integration of UAV inspection, YOLOv5s object detection, and DeepStream frame-
work realizes a new real-time object detection method.
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2. The DeepStream service can be quickly started using the http communication protocol,
and can be called and used by different users at the same time.

3. The asynchronous sending of the alarm frame interception function is implemented,
making the real-time video stream smoother.

4. Auxiliary services can be set up to quickly resume video streaming after interruption.

2. Methods

2.1. DeepStream Software Development Kit

DS-SDK [42] is an intelligent video analysis suite assembled based on NVIDIA tech-
nology. It introduces deep neural networks and other complex processing tasks into stream
processing pipelines to achieve near real-time analysis of video and other sensor data. The
application framework has hardware-accelerated processing building blocks, so developers
do not need to design an end-to-end solution from scratch and need only to focus on
building the core deep learning network and video stream processing modules. Moreover,
it builds an end-to-end video stream detection pipeline based on gstream, which simplifies
the development and application of video streams. Algorithm personnel can quickly con-
vert other video stream processing capabilities while focusing on the development of all
components. The original DeepStream flow chart is shown in Figure 1.

Figure 1. DeepStream architecture diagram. First, the back-end server calls the DeepStream com-
mand line to start, and then after a series of flow operations, it finally pushes alarm information to
the platform.

In Figure 1, the basic workflow of DeepStream’s original architecture is shown. First,
we need to start a DeepStream video streaming service on the backend of the platform, im-
mediately start creating the DeepStream pipeline, and determine the pipeline initialization
status. If the pipeline initialization verification is successful, then the pipeline status is set
to the playing state, which is the pipeline starting working status. Secondly, the pipeline
starts to push the stream, and the algorithm performs video stream data pre-processing
including normalization and scaling. Then, the video stream will be input into the YOLOv5
model for inference, and finally the DeepSORT [43,44] tracking algorithm is used to track
the corresponding object. Add alarm logic to the object that needs to be identified, push
the processed video stream to the platform service, and finally display the identification
results in real time on the platform software 2.5.9.

The original DeepStream framework is connected to a UAV inspection video, and
users cannot call different services and different recognition algorithms at any time during
use. The communication protocol does not support UAV video streaming communication
services. Therefore, we improved DeepStream, as shown in Figure 2.

As shown in Figure 2, this shows the improved workflow of the DeepStream architec-
ture. First, the platform starts the DeepStream service command by sending an http request.
Currently, once the algorithm service receives the platform request to start the command, it
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immediately starts the DeepStream service, starts parsing the request command parameters,
determines whether the parameters meet the requirements, and generates a configuration
file according to the corresponding task. Secondly, after the configuration is successful, start
creating a sub-process to perform the task and create a DeepStream pipeline. Determine
whether the pipeline is initialized. After the initialization is successful, set the pipeline
status to the playing state. The pipeline starts pushing and the algorithm starts working,
including pre-processing, reasoning, tracking, and other operations. After the object is
detected, alarm logic is added. Finally, the video stream is pushed to the platform service,
and the platform interface displays the stream inferred by the algorithm. In addition, we
also added an auxiliary service, whose purpose is to monitor whether the DeepStream
service is disconnected. If a disconnection occurs, the auxiliary service will immediately
kill the task and restart the task immediately.

Figure 2. Improved DeepStream architecture diagram. First, start the backend service, then go
through more judgment initialization and other operations, and finally go through the backend
service feedback.

2.2. The YOLO Algorithm

The YOLOv5 algorithm is an outstanding object detection algorithm and has good
robustness to UAV inspection images. YOLOv5 contains five network models of different
sizes, namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. This article
verifies the performance of different YOLOv5 models and selects the most suitable detector
for deploying the DeepStream architecture. The algorithm structure flow chart is shown in
Figure 3.

As shown in Figure 3, there are two extremely important elements, data processing and
data training. The first is the data processing stage. In the process of collecting data, we
need to plan the UAV inspection route. In the areas that need to be inspected, let the UAVs
automatically inspect and collect photos or videos according to the planned route. During
the process of collecting images with a UAV, we flew in different time periods, different
weather, and different lighting conditions to achieve a better performance of the model. To
make the model more robust to the complex background of high-altitude inspections, we

73



Sensors 2024, 24, 3862

planned the flight area to include different areas such as villages, water bodies, and towns.
The collected UAV inspection videos need to be manually edited and the required object
information retained and extracted into images. Images were manually filtered and labeled
using LabelImg software 1.8.6. Finally, the data were divided into a training set and a test set.

Figure 3. Algorithm training architecture diagram. It consists of two stages: data preprocessing and
data training.

The second stage is that of model training. In the first stage of data processing,
the processed data were divided into a training set and test set. We were in the data
collection phase. Effectively planning routes for different scenarios and collecting data
under different conditions fully ensures the richness of model training samples and can
effectively prevent over-fitting during the training process. We evaluated the performance
of YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x models in the process of
UAV high-altitude inspection. The performance was evaluated on the training set and
test set divided from the same data set. Finally, we selected a model with strong robust
performance for real-time detection based on its real-time detection effect.

Since UAVs fly at a high altitude, they will keep shaking, the field of view when
flying at high altitude is large, and the shooting area is also large, resulting in a smaller
target to be detected. There are difficulties in using object detection algorithms to detect
smaller objects. This article mainly used YOLOv5s, a lightweight object detection model,
combined with DeepStream architecture to achieve real-time video stream detection. To
better implement a complete set of real-time target detection system architecture, we
made a series of improvements to the original DreamStream and combined with the
YOLOv5s model to achieve target detection. YOLOv5s is designed to detect the goals that
require inspection. It is designed to achieve automatic detection capabilities. The main
improvement part is the design of the overall logical architecture of DeepStream, and the
improved experimental results are also very effective.

2.3. Evaluation Indicators

Due to the high-altitude inspection of UAVs, as the height of the UAV flight increases,
the inspection field of view becomes wider. It is easily affected by the complex low-altitude
environment, causing certain false and missed detections. Therefore, we used precision
and recall measuring to assess whether a detector had good performance. The precision
and recall formulas are shown in (1) and (2):

P =
TP

TP + FP
(1)
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R =
TP

TP + FN
(2)

where P and R represent precision and recall, respectively. TP represents the true positives;
FP represents the false positives; and FN represents the false negatives.

The F1 value combines the two indicators of precision and recall to comprehensively
evaluate the effect of the model. As shown in Formula (3).

F1 =
2PR

P + R
(3)

In order to further obtain a better real-time video stream detection model, two evalua-
tion indicators, AP (average precision) and mAP (mean average precision), were used. The
Formulas (4) and (5) of AP and mAP are shown as follows:

AP =
∫ 1

0
P(R)dR (4)

mAP =
∑Q

q=1 AP(q)

Q
(5)

where Q represents the number of categories.

3. Experiment and Results

3.1. Experimental Conditions
3.1.1. Data Acquisition and Transmission

This article mainly collected the data we needed through UAV inspection. A UAV can
achieve automatic flight collection through the automatic command and dispatch platform.
The command and dispatch interface are shown in Figure 4.

 

Figure 4. UAV command and dispatch platform. This is a UAV ready to take off displayed on the
UAV monitoring platform.

It can be seen from Figure 4 that the flight of a UAV realizes automatic inspection
through the dispatch of the command and dispatch system. Through the command and
dispatch system interface, the status of the UAV and its slot can be monitored in real time.
We can see a white drone nest, the drone nest door has been opened, the platform has been
raised, and a black UAV is waiting to fly on it. There are three buttons available on the
left side of the command and dispatch system. The main functions include UAV control,
landing control, system functions, power control, emergency control, etc. It can not only
command the takeoff and landing of the drone, but also control the angle and focus of the
gimbal. When the drone is flying, the battery power can be monitored in real time. When
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an emergency occurs, such as low battery or automatic hovering, it can also return to home
with one click.

The data used in this article mainly use images or videos collected during UAV
inspections to annotate them. The annotated original image is shown in Figure 5. This
article used LabelImg to label five different categories of vehicle models. The labels are
sjc, hc, wjj, dzj, and dc. Where sjc represents a car, hc represents a truck, wjj represents an
excavator, dzj represents a pile driver, and dc represents a crane. To ensure the effectiveness
of model training in this article, we increased the richness of samples as much as possible.
Therefore, in the process of collecting images, we planned routes in different areas and
different route altitudes. While ensuring flight safety, the drone’s flight speed and different
flight mileage were set.

   

   

Figure 5. Original image of the data set. Images of different scenes collected by UAV from a
high-altitude perspective.

Figure 6 shows the data set used for training in this article, with a total of 3208 images.
There were 2887 images in the training set and 321 images in the test set. We divided the
training set and the test set at a ratio of 9:1. To ensure the effectiveness of the training
model, the divided data sets were independent of each other.

Figure 6. Dataset statistics. In the process of training, the data set, the data set is divided into a
training set and a test set.
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3.1.2. Inspection Routes

To realize the automatic take-off and landing flight of a UAV, you first need to plan an
inspection route. We planned four different UAV inspection routes as shown in Figure 7,
and the parameters of UAV inspections on different routes are shown in Table 1.

  
(a) route one (b) route two 

  
(c) route three (d) route four 

Figure 7. Different route planning. The flight routes of UAV include different areas such as towns
and water bodies. The blue line is the planned UAV route.

Table 1. Flight parameters of different routes.

Routes Flight Length/m Flight Minutes
Route

Altitude/m

Taking off and
Landing

Height/m

Round Trip
Speed/m/s

Route Speed
/m/s

One 4150.8 11.07 127 129 10 8
Two 4314.8 17.95 127 131 10 5

Three 4912.8 18.93 150 155 10 5
Four 4728.6 19.42 127 131 10 5

It can be concluded from Figure 7 that in order to realize automatic UAV inspection,
we planned four inspection routes on the UAV command and dispatch platform. Among
them, the blue linear area is the area where the UAV needs to fly according to the route.

The routes are all included in a yellow circular area, which is displayed on a map
interface. We can clearly see that there are residential areas and river areas next to the
planned routes. To increase the richness of the sample, our routes span multiple regions to
collect images. Table 1 shows the flight parameters of four different inspection routes, such
as flight length, flight duration, route altitude, round-trip speed, route speed, take-off and
landing altitude, etc.
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3.1.3. Experiment Platform

Server-side: Ubuntu 18.04, Intel® Silver 4210 CPU@2.20 GHz, NVIDIA GeForce RTX
A100(80 GB) GPU. The model framework is Pytorch 1.10.0, and the related software is
CUDA11.1, CUDNN 8.0.5 and Python 3.8.

Ubuntu 20.04, Intel® Xeon® Gold 6278C CPU@2.60 GHZ, NVIDIA Tesla T4(16G) GPU.
The related software is CUDA 11.6, CUDNN 8.4.0.

3.2. Experimental Results
YOLOv5 Detection Results

After the model training was completed, to verify the detection effects of different
models, we used images containing five different categories to test the detection perfor-
mance of five different models. The detection results of different models are displayed in
Figure 8.

(a) YOLOv5n

(b) YOLOv5s

(c) YOLOv5m

Figure 8. Cont.
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(d) YOLOv5l

(e) YOLOv5x

Figure 8. YOLOv5 detection results. The prediction of (a) YOLOv5n; (b) YOLOv5s; (c) YOLOv5m;
(d) YOLOv5l; and (e) YOLOv5x. It shows the detection results of the YOLOv5 model on this data set.

From Figure 8, we can obtain the detection results of five different YOLOv5 models. By
comparing the results, it can be concluded that YOLOv5n can, to a certain extent, identify
five different categories of vehicles. However, the roof of the building was misidentified.
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x can all produce better detection results.
We can clearly see that different YOLOv5 detection models can detect five different types
of objects, namely, car, truck, excavator, pile driver, and crane. This experiment shows
the effectiveness of the training method in this paper and its ability to accurately detect
different types of vehicles.

3.3. Comparative Requirements

In order to further verify the robust performance of this model, we compared two
different models, mAP50 and mAP50-95, as shown in Tables 2 and 3, respectively.

Table 2. Comparison of mAP50 detection results of different models.

sjc/% hc/% wjj/% dc/% dzj/% mAP50/%

Yolov5n 85.8 71.6 96.7 96.8 99.5 90.1
Yolov5s 91.2 80.9 97.7 96.6 99.5 93.2
Yolov5m 91.8 83.4 96.7 97.3 99.5 93.7
Yolov5l 93.1 83.7 97.2 97.6 99.5 94.2
Yolov5x 93.2 86.1 96.9 97.8 99.5 94.7

Table 3. Comparison of mAP50-95 detection results of different models.

sjc/% hc/% wjj/% dc/% dzj/% mAP50–95/%

Yolov5n 51.7 42.0 67.6 75.1 86.0 64.5
Yolov5s 62.2 54.7 74.7 78.5 88.6 71.7
Yolov5m 66.3 61.1 77.4 79.6 89.6 74.8
Yolov5l 68.9 63.1 79.2 81.3 90.3 76.6
Yolov5x 69.7 65.3 79.3 82.4 91.1 77.6
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It can be seen from Table 2 that the mAP50 of YOLO5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x reached 90.1%, 93.2%, 93.7%, 94.2%, and 94.7%, respectively.
Among them, the mAP50 detection accuracy of the YOLOv5s model is 3.1% higher than
that of YOLOv5n, but the difference in mAP50 accuracy with YOLOv5m, YOLOv5l, and
YOLOv5x is minimal.

It can be seen from Table 3 that the mAP50-95 of YOLO5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x reached 64.5%, 71.7%, 74.8%, 76.6%, and 77.6%, respectively.
Among them, the detection accuracy of mAP50-95 of the YOLOv5n model is extremely low.
This experiment shows that YOLOv5n is less robust than the other four trained models.

To train a better real-time object detector, we must not only compare its detection
accuracy but also its detection speed. Therefore, the detection speeds of different models
are shown in Table 4.

Table 4. Comparison of the inference speed of different models.

Yolov5n Yolov5s Yolov5m Yolov5l Yolov5x

Model
Size/MB 3.7 13.76 40.27 88.57 165.13

Speed/ms 11.1 11.26 15.77 17.44 20.29

Table 4 shows the detection speed of YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x on NVIDIA A100 GPU, which are 11.1 ms, 11.26 ms, 15.77 ms, 17.44 ms, and
20.29 ms, respectively. The model sizes of YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x are 3.7 MB, 13.76 MB, 40.27 MB, 88.57 MB, and 165.13 MB, respectively.
Compared with YOLOv5n, the inference speed of YOLOv5s is 0.16ms slower, but the
inference speed is faster than YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. To verify
the performance of a model during the training process, you can observe whether the
model’s loss gradually converges. The training loss and the verification loss of this model
are shown in Figure 9.

 
(a) training loss (b) validation loss 

Figure 9. YOLOv5 model loss curve.

It can be concluded from Figure 7 that during the training period of 500 epochs, the
training loss and verification loss of YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x gradually decreased and reached a certain degree of convergence. At the same
time, the effectiveness of the training method in this article is verified.

The accuracy of a model in detecting objects is measured during the training process,
and the mAP50 and mAP50-95 of the model can be tested during the iteration process. The
performance of mAP50 and mAP50-95 of the YOLOv5 model during the training iteration
process is shown in Figure 10.

It can be concluded from Figure 10 that the mAP50 detection accuracy of the YOLOv5s
model trained in this article is significantly higher than the YOLOv5n model in 500 epochs
of training but is not much different from the mAP50 performance of the YOLOv5m,
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YOLOv5l, and YOLOv5x models. However, the mAP50-95 performance of the YOLOv5s
model is significantly better than the YOLOv5n model, but lower than the YOLOv5m,
YOLOv5l, and YOLOv5x models.

 
(a) mAP50 (b) mAP50-95 

Figure 10. YOLOv5 model accuracy curve.

The confusion matrix is a common visualization tool for measuring the performance of
object detectors. You can clearly see the performance of the various indicators in Figure 11.
It shows the confusion matrix diagrams of the five different models, YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x, respectively.

It can be seen from Figure 11 that the data in each grid of the confusion matrix are
the result of normalization. We can measure the performance capability of a model only
by comparing the size of the diagonal value. The five category values of YOLOv5s are
0.92, 0.80, 0.97, 0.99, and 1.00, respectively. The results of the YOLOv5n model tested in
five different categories were 0.87, 0.71, 0.96, 0.98, and 0.99, respectively. Therefore, the
YOLOv5s model performance is significantly better than YOLOv5n. At the same time,
it can also be concluded that compared with YOLOv5m, YOLO v5l, and YOLOv5x, the
performance gap is not obvious.

(a) YOLOv5n 

Figure 11. Cont.
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(b) YOLOv5s 

(c) YOLOv5m 

Figure 11. Cont.
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(d) YOLOv5l 

(e) YOLOv5x 

Figure 11. Confusion matrixes.

The precision and recall curves are a basic indicator of the robustness of a model.
During the process of training and testing the model, when the precision is close to zero,
the recall is close to 1. When the recall is close to 0, the precision is close to 1, as shown in
Figure 12.
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(a) YOLOv5n (b) YOLOv5s

 
(c) YOLOv5m (d) YOLOv5l 

 
(e) YOLOv5x 

Figure 12. The precision and recall curves.

Figure 12 shows the precision and recall curves of five different models. It can be
clearly seen from Figure 12 that the fitting curves of five different models of YOLOv5 all
show good results. This experiment shows the effectiveness of the training method in
this article.

In order to combine precision and recall performance metrics, this paper also shows
the F1 value to measure the performance of the detector, and the confidence level to measure
the probability of a object prediction. The F1 value and the confidence curve are shown in
Figure 13.
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(a) YOLOv5n (b) YOLOv5s 

 
(c) YOLOv5m (d) YOLOv5l 

 
(e) YOLOv5x 

Figure 13. F1 value and confidence curve.

It can be seen from Figure 13 that the F1 values of five different models change as the
confidence level changes. It shows the F1 score performance under different confidence
classification thresholds. It can be seen from the figure that the model in this article also
has a higher F1 value at a higher confidence level, indicating that the model trained in this
article has higher robustness.

We trained and tested five different YOLOv5 models on the same data set, and finally
selected the YOLOv5s model, which is relatively lightweight. to the correct selection of a
data set is extremely important for model training. Therefore, in order to further verify the
effectiveness of the design of this article, Figure 14 shows the correlation of labels.
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Figure 14. The correlation of labels.

Figure 14 shows the correlation distribution diagram of the data set labels we used.
From the figure, we can clearly see the distribution of the center point, width, and height of
the image annotation target. It shows that the labeled data samples used by this algorithm
are diverse and the samples are very rich. It is effective for model training.

3.4. UAV Inspection Interface Display

During the flight inspection process of the UAV, the object detection algorithm service
is called to deploy the trained model on an NVIDIA Tesla T4 GPU cloud server. We
deployed a set of vehicle detection methods on this server using a set of algorithms called
by the DeepStream framework. When the UAV conducts inspections along the designated
route, we can clearly see the detection results processed by the UAV in real time on the
dispatch platform. Figure 15 shows the real-time detection results of the UAV during
automatic inspection according to the planned route.

Figure 15. UAV inspection interface. It shows a scene diagram of real-time detection and tracking of
high-altitude inspections, and the UAV flight route can be seen in the lower right corner.
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In Figure 15, a display of real-time inspection pictures is shown. During this type
of high-altitude inspection by drones, the drones are looking down at the ground angle.
Information such as buildings, ponds, and vehicles on the ground can be clearly seen. It
can also be clearly seen that the YOLOv5s model trained in this article can automatically
detect the required targets during the automatic drone inspection process, and correctly
distinguish the target area and the background area. In the lower right corner of the image,
you can obtain the inspection route of the drone and the specific location information of
the drone flying on this route.

3.5. Mathematical Analysis of DeepStream Service Resources and Startup Time

To verify the quality of a framework, we not only consider its algorithm detection
capabilities, but also consider its reasonable utilization of effective resources. Therefore, it
is necessary to compare the real-time video streams before and after the improvement to
check the resource overhead of the system architecture. The main comparison before and
after improvement is as follows:

1. Before the improvement, it was necessary to bind drone equipment and specify
execution tasks. In terms of resource consumption, a Telsa T4 GPU, 16G graphics card
server can only bind up to six devices and tasks to be executed. That is, the binding of
tasks limits the reasonable utilization of GPU and memory resources and cannot be
dynamically adjusted according to task requirements. In short, the performance of
the hardware before the improvement was very poor.

2. After improvement, our real-time video stream detection system does not need to
bind devices and tasks; tasks are no longer bound, and resource allocation can be
dynamically adjusted according to real-time needs. Not only can multiple devices
be controlled at the same time, but different tasks can be switched freely. Therefore,
after the improvement, the flexibility and the scalability of the system have been
greatly improved.

DeepStream startup time mainly consists of two time elements. One is the time
from the request to the pipeline initialization, and the other is the time from the pipeline
initialization to the pipeline state switching to the playing state. The sum of the two is
the startup time. The initial application of the DeepStream service has a startup time of
approximately 7 s. Therefore, there is huge room for improvement. Based on this, we
tested the startup of video streams in different definitions. The definition is divided into
five levels, namely ultra-high definition (Ultra HD), ultra definition (UD), high definition
(HD), standard definition (SD), and smooth, as shown in Table 5.

Table 5. Startup time test.

The First Stage/s The Second Stage/s Total/s Clarity

1 2.21 0.60 2.81 Ultra HD
2 2.24 0.28 2.52 Ultra HD
3 2.27 1.24 3.51 UD
4 2.27 0.50 2.77 UD
5 2.19 3.52 5.71 HD
6 2.21 3.42 5.63 HD
7 2.21 3.03 5.24 SD
8 2.29 3.24 5.53 SD
9 2.23 3.40 5.63 Smooth

10 2.22 3.51 5.73 Smooth

As shown in Table 5, during the first test, the first-stage startup time of UHD was 2.21 s,
and the second-stage startup time was 0.60 s. The total time consumed is 2.81 s. The total
time for the second test of UHD video is 2.52 s. The overall consumption time is significantly
faster than other low-definition videos. Moreover, the startup time of the optimized model
architecture is significantly faster than the original DeepStream processing time.
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4. Conclusions

In this paper, we trained the YOLOv5s model to detect five different types of vehicles,
and combined UAV automatic inspection technology to achieve the automatic real-time
detection of UAVs. The main contributions of this article are as follows:

1. The integration of UAV inspection, YOLOv5s object detection, and the DeepStream
framework realizes a new real-time object detection method.

2. The DeepStream service can be quickly started using the http communication protocol,
and can be called and used by different users at the same time.

3. The asynchronous sending of the alarm frame interception function is implemented,
making the real-time video stream smoother.

4. Auxiliary services are set up to quickly resume video streaming after interruption.

5. Future Work

The main contribution of this article is to combine UAV automatic inspection tech-
nology and artificial intelligence technology to achieve real-time video stream detection.
However, how to design a more complete and efficient UAV video stream detection system
still requires more research and also faces huge challenges. For example, more complex
backgrounds, how to effectively remove background interference, high-altitude UAVs
with smaller viewing angle objects, how to improve the performance of small object de-
tectors, how to make models more lightweight and more suitable for deployment to edge
devices, etc.
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Abstract: This paper presents a novel methodology to localise Unmanned Ground Vehicles (UGVs)
using Unmanned Aerial Vehicles (UAVs). The UGVs are assumed to be operating in a Global
Navigation Satellite System (GNSS)-denied environment. The localisation of the ground vehicles is
achieved using UAVs that have full access to the GNSS. The UAVs use range sensors to localise the
UGV. One of the major requirements is to use the minimum number of UAVs, which is two UAVs
in this paper. Using only two UAVs leads to a significant complication that results an estimation
unobservability under certain circumstances. As a solution to the unobservability problem, the
main contribution of this paper is to present a methodology to treat the unobservability problem.
A Constrained Extended Kalman Filter (CEKF)-based solution, which uses novel kinematics and
heuristics-based constraints, is presented. The proposed methodology has been assessed based on the
stochastic observability using the Posterior Cramér–Rao Bound (PCRB), and the results demonstrate
the successful operation of the proposed localisation method.

Keywords: constrained Kalman Filter; posterior Cramér–Rao bound; UAV–UGV collaboration; GNSS
denied localisation

1. Introduction

Quite often, ground vehicles operate in GNSS-denied environments. In such cases,
methodologies are required to enable the localisation of ground vehicles. This paper
presents a method to accurately localise the ground vehicles using UAVs. It is assumed
that sufficiently accurate GNSS locations of the UAVs are available, and that the UAVs
always operate above the tree canopies; for example, localising a UGV that travels under a
forest tree canopy can be localised using some UAVs which are flying above the forest tree
canopy. In such situations, UAVs can be deployed to collaboratively estimate the location
of the UGVs in real time.

The motivations behind developing the research outputs presented in this paper are
(1) to develop a UGV localisation method that uses a minimum number of UAVs for
UGV localisation; (2) to avoid unobservabilities, which may arise when UAVs are used
for UGV localisation; (3) to use the proposed UAV–UGV collaborative system in adverse
environment/field conditions. Such UAV–UGV collaborative systems can be used to
localise UGVs in battlefields and disaster zones. For example, a UGV can be sent to a
high-priority rescue mission where the GNSS reception is weak, and the environment has
thick smoke and flames. Moreover, in a rescue scenario during bushfires, such a system
can be used to rescue people who are surrounded by bushfires. In such an unfortunate
situation, the firetrucks must be operating autonomously, since the firefighters cannot
be sent to rescue and the field conditions are adverse. Similarly, UGVs that are used for
farming may need the assistance of UAVs for their localisation when their GNSS reception
is poor. For example, if a farm is covered by a tall tree canopy, the farming UGVs operating
under such a tall tree canopy will not have sufficient GNSS reception. Thereupon, UAVs
with sufficient GNSS reception, which hover/fly over the tree canopy, can be used to
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collaboratively localise farming UGVs operating under the tall tree canopy. Henceforth,
a robust localisation method, which has been presented in this paper, is a necessity to
navigate such UGVs.

Since there is a motivation to use the proposed UAV–UGV collaborative system in
adverse environment/field conditions, sensing methods must be robust against dust,
smoke, darkness, high heat, glare, etc. RADAR, LIDAR, Vision Camera, IR camera, and
ultrasonic ranging are prospective remote sensing methods. The vision cameras are unable
to perform the localisation properly in smoke and also during the night time. Due to the
high heat fluxes present, IR cameras will jam the localisation if the localisation is supposed
to be performed on a hostile battlefront with frequent glares. Ultrasonic ranging can have
accuracy problems due to the impracticality of distinguishing the UGVs clearly from the
other sound disturbances. LIDAR seems to show a promising ranging solution, even in
vegetation clutter [1], but the inability to penetrate through the dense smoke makes it
unsuitable for sensing during a situation like a forest fire [2].

However, RADAR technology shows promising results, as it is not affected by adverse
environmental conditions such as bad weather [3] or smoke [4]. RADAR image process-
ing is very cumbersome, and requires expert human intervention to interpret the RADAR
scan images. Ultra Wide Band (UWB) sensing is also a RADAR range-finding technique.
Unlike RADAR, it does not have to choose a location where surroundings induce mini-
mal clutter, since UWB signals can sense through clutter [5]. In UWB sensing, the large
bandwidth enhances reliability as the sensing signal contains different frequencies, which
increases the possibility that at least a handful of the emitted signal can go through/around
obstacles, and the high bandwidth offers improved ranging accuracy [6]. Moreover, UWB
sensors are capable of delivering range measurements at Non-Line-of-Sight (NLOS) situations
(e.g., ranging through a forest canopy) without significant degradation of the range measure-
ments [5,7]. Often, UWB sensors can be operated in RADAR mode or range sensing mode.
Again, if the UWB sensors are used in the RADAR mode, sensing data processing is very
complex, e.g., identifying a UGV travelling under a tree canopy using RADAR mode UWB
images, which are acquired from a UAV that is flying above the tree canopy. On the contrary,
when UWB sensors are used in the range sensing mode, such data processing complexities
do not arise, while the sensing robustness is also safeguarded. Therefore, the proposed
UAV–UGV collaborative localisation method is a UWB range-only localisation method.

In UWB ranging, Time of Arrival (TOA) techniques are providing less complex,
reliable and cost-effective solutions. There are three commonly used TOA techniques,
namely: (i) basic two-way ranging TOA, (ii) synchronous two-way TOA, and (iii) asyn-
chronous two-way TOA. The basic two-way TOA expects ideal instrumentation, which
results in low accuracy [6]. In the synchronous two-way TOA method, the time delay
in returning back the response to the initial signal sender has been compensated [8]. In
addition to the advantages of the synchronous two-way TOA method, the asynchronous
two-way TOA method has compensated for frequency and/or phase mismatches between
the UWB transceivers [9]. Concerning the aforementioned advantages, UWB range sensing
is assumed to be performed by an asynchronous two-way TOA ranging algorithm. Most
modern UWB sensors that use the asynchronous two-way ranging method have achieved
ranging accuracy up to ±2 cm [7,10]. Henceforth, the observer model in the localisation al-
gorithm does not have to account for either the time delay in range sensing or the frequency
and/or the phase mismatches between the UWB transceivers [9].

In a practical application of collaboratively localising a UGV using UAVs, reducing
the number of UAVs that have to be utilised for the task is equally important. By reducing
the number of UAVs, the capital cost that has to be spent can be reduced. Furthermore, the
operational costs can also be reduced since the electricity power cost is low when a lesser
number of UAVs are to be airborne. Due to the limited flight time of UAVs, additional
UAVs are kept by users to run UAV operations without interruption. The additional UAVs
are utilised for the operation while the battery swapping is performed. In that regard, if
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the number of UAVs required for a UAV operation is minimised, the additional number of
UAVs that have to be purchased for the application can also be reduced.

However, as the number of drones is reduced to a minimum of two, processing of
the range data for UGV localisation faces substantial challenges. The main problem to be
addressed is the ambiguity of the localisation due to the loss of system observability. This
paper addresses this problem, and shows the successful localisation of ground vehicles
using the proposed method. In the literature, the aforementioned problem is known as
the “flip ambiguity phenomenon”, and it has been researched in Wireless Sensor Networks
(WSN) and in tracking/localisation. In [11], flip ambiguity has been overcome by using a
high number of location anchors/nodes in the WSN so that the ambiguously localised nodes
can be identified, and their localisation is supposed to be refined to avoid the flip ambiguity.
Since two UAVs are used as anchors in this research, identification of the ambiguous
localisation using many UAVs is not possible. In [12], flip ambiguity in intra-localisation
of UAVs in a UAV swarm has been addressed, along with the measurement errors. The
solution is based on geometric constraints in a 2D plane like in a WSN, which are based
on the range measurement constraints, communication range constraints and kinematic
information constraints. In [13], an Extended Kalman Filter (EKF) has been designed to
localise a GNSS unavailable UAV in a UAV swarm, and the flip ambiguity in localisation
has been overcome by estimating the angular velocity of the UAV. However, UAVs have
low process noise in their motion. Nevertheless, in a noisy process situation, such as in a
UGV motion on a farm/forest ground, angular velocity estimations will have significant
deviations, so that granting the angular velocity estimation as crisp information to address
the flip ambiguity in localisation will not be a reliable solution to a UGV localisation.
Therefore, in this research, a constrained state estimation-based method is developed to
address the localisation issues arising from the flip ambiguity.

The system observability was analysed in a deterministic approach to identify the
unobservable situations in the proposed localisation method. Based on that, a methodology
was developed to successfully avoid the localisation errors caused by the unobservability.
In this research, constrained stochastic estimation has been used for localisation. The
constraints mitigate the challenges that arise when only two UAVs are utilised for localisa-
tion. In order to check the ambiguity aversion performance while using the constrained
stochastic location estimation, stochastic observability has been analysed during temporary
unobservable scenarios using simulations and experiments.

Due to the strictly/narrowly focused operational scenario considered in this research,
the authors did not find comparable past research works/methods that possess similar
system implementations. Therefore, the authors believe that the system design of this
UAV–UGV collaborative localisation is novel. In the constrained state estimation-based
localisation method, all of the kinematics-based constraints are newly formulated for
localisation ambiguity aversion. Moreover, when the UGV localisation is performed by
UAVs in real time, a method has to be developed to validate the efficacy of the CEKF-based
localisation method presented. Thereupon, a novel analytical method is formulated to
show the efficacy of the CEKF-based localisation method using the Constrained Posterior
Cramér–Rao Bound (CPCRB).

The rest of this paper is organised as follows: Section 2 describes the preliminaries of
the motion model, observation model and the EKF-based localisation. Section 3 describes the
unobservability identification method of the EKF-based localisation. Sections 4 and 5 explain
the proposed method of overcoming localisation unobservabilities and how the presented
unobservability aversion techniques assure the unobservability aversion, respectively. Finally,
Sections 6 and 7 present simulation results and experiment results, respectively.

2. Problem Statement

Localisation of a UGV that is travelling on a horizontal planar terrain is supposed to
be carried out using two multi-rotor UAVs using range measurements. The overall vehicle
and sensor arrangement is as depicted in Figure 1. Since the heading of the UGV is also
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an important aspect in real-time navigation, two UWB sensors are attached to the ground
vehicle at two different locations along the centreline of the ground vehicle at a constant
height from the ground. In this paper, the UWB sensors that are attached to the UGV will
be named as UWB tags, and are located at (x f , y f ) and (xr, yr). Furthermore, UWB range
sensors are mounted on each of the drones to obtain the range measurements to two range
sensors mounted on the back and on the front of the UGV. UWB sensors that are mounted
on each UAV will be named as UWB anchors, and are located at (x1, y1, z1) and (x2, y2, z2).
The UWB anchors that are fixed in the drones fetch the range readings R1 f , R1r, R2 f and
R2r between both of the UWB tags on the UGV. For this UGV localisation task, the global
positions of the drones are to be known with sufficiently high accuracy. In the next section,
the system models that are associated with the localisation are presented.

x2, y2, z2

x1, y1, z1

R1 f

R1rR2 f

R2r

x f , y fxr, yr

X

Y

Z

Figure 1. 2D localisation of a UGV using drones.

2.1. System Models
2.1.1. Motion Model for UGV Motion Simulation

Taking xa = [xa ya θa]
T as the state of the UGV in the real world (i.e., simulated actual

state), where xa and ya are the geometric centroid’s coordinates of the UGV and θa is the
heading angle of the UGV in radians, the reduced model of the UGV, by assuming the
steering angle (v2), speed (v1), step time (T), and vehicle length (l) are known, can be
formulated as [14]: ⎡⎣xa

ya
θa

⎤⎦
k+1

=

⎡⎣T 0 0
0 T 0
0 0 T

⎤⎦⎡⎣ v1 cos(θa)
v1 sin(θa)

(v1/l) tan(v2)

⎤⎦+

⎡⎣xa
ya
θa

⎤⎦
k

(1)

This motion model will be used to simulate the motion of the UGV when validating
the presented localisation method using numerical simulations. The forward UWB tag and
the rear UWB tag are fixed right on the centreline of the UGV, in the front and in the rear of
the UGV. Therefore, the middle position of the forward and the rear UWB tags coincides
with the exact midpoint of the UGV on the horizontal plane. Hence, the real-world forward
UWB tag’s position (x f , y f ) and the real-world rear UWB tag’s position (xr, yr) can be
found, if xa, ya and θa are known. Using the solution of (1), xa, ya and θa can be calculated

94



Sensors 2024, 24, 4629

when simulation parameters v1, v2, l and T are known. Therefore, simulating the motion
of the UWB tags based on the simulated motion of the UGV can be performed.

2.1.2. Motion Model for Localisation and Heading Estimation

For the location and the heading estimation problem, a Continuous Velocity (CV)
model [15] can be assumed for a 2D localisation scenario depicted in Figure 1. The CV
model has been used by assuming that the localised vehicles are not highly manoeuvred
in both linear and angular movements. Let the tag positions’ state vector x be defined

as
[

x f ẋ f y f ẏ f xr ẋr yr ẏr

]T
. Hence, when considering the UGV state with respect to the

earth-fixed inertial frame, the kinematic equation of the estimation model is given by:

x̂−k+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 T 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 T 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 T 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x̂+k + ν

x̂−k+1 = A x̂+k + ν

(2)

where ν is the process noise. The hat notation depicts that the respective variable is
estimated from the localisation algorithm. The subscript k denotes the time step, and
superscripts “+” and “−” are used to denote the a posteriori estimation and the a priori
estimation, respectively.

Since the observations are taken as the ranges between UWB tags on the UGV and
UWB anchors on the drones, the equation of the state dynamics should have to be written
relative to the UAVs. Nevertheless, the state dynamics in (2) have not been written relative
to the UAVs. By projecting the state of UAVs to the ground plane (as the altitude of the
UGV is not used), the following derivation justifies why it is not necessary to use a system
dynamics equation written related to UAV frames.

The state of a given UAV, projected on to the ground plane, is defined as gun,k;
n ∈ {1, 2}, representing either of the UAVs by the subscript n. Therefore,

gun,k =
[
xn,k ẋn,k yn,k ẏn,k xn,k ẋn,k yn,k ẏn,k

]T

If the UGV states are written relative to the ground projected body fixed frames of
the UAVs by assuming that the evolution of UAV states can be modelled using a discrete
nonlinear/linear transition bn( · ) of the current state, based on the exact UAV motion
model, then Equation (2) can be written as:

x̂−k+1 = A x̂+k + gu1,k+1 − b1(gu1,k)
x̂−k+1 = A x̂+k + gu2,k+1 − b2(gu2,k)

(3)

since the UAV coordinates are known with high accuracy. In gun,k, it can be seen that
the first four elements are identical to the last four elements. This is because, when the
UGV states are written relative to the ground projected body-fixed frames of a specific
UAV, both front tag elements and rear tag elements in x have to be written relative to that
specific UAV.

Based on the assumption that the UAV states’ evolution can be modelled using
a discrete nonlinear transition bn( · ) of the current state based on the exact UAV motion
model, the relative state transition of the UGV in (3) reduces to its initial form as in (2). In
other words, it is justifiable to use (2) to represent the discrete state transition of the UGV
for this range-based localisation, without writing (2) relative to each UAV.
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2.1.3. Measurement Model

The measurement model for the EKF is formulated by getting expressions for the
squared range measurements using the coordinates of both UAVs and UGVs.

The state of either of the UAVs will be taken as un,k = [xn,k yn,k zn,k]
T ; n ∈ {1, 2},

elements of which will be used in later sections. For simplicity, the time step subscript will
be omitted whenever it is insignificant. The observation vector is h(x) = [h1 h2 h3 h4]

T ,
where h1, h2, h3 and h4 are the squared range measurements.

If Rnm =
√

z2
n + (xn − xm)2 + (yn − ym)2 and m ∈ { f , r}, which is the range between

the UGV tag m and the UAV anchor n, then the overall observation equation can be
written as:

y = h(x) =

⎡⎢⎢⎢⎣
R2

1 f
R2

1r
R2

2 f
R2

2r

⎤⎥⎥⎥⎦ + η (4)

where η is the measurement noise of the range sensors. Since this measurement equation
is nonlinear, the Jacobian with respect to the estimation state vector has to be calculated
when implementing the EKF using the backward numerical differentiation. Thereupon, the
Jacobian of the measurement function h(x), evaluated at a priori is given by Equation (5).

H=
∂h(x)

∂x

∣∣∣∣
x̂−k

(5)

2.2. Localisation Using the Kalman Filter

Due to the nonlinearity in the observation/measurement model, and also because the
localisation is performed sequentially in real-time, the discrete-time version of the EKF [16]
is used. In order to use an EKF, the initial x̂+k−1 and the initial P+

k−1, which is the error
covariance associated with the a posteriori estimates x̂+k−1, has to be provided to the EKF
algorithm. A random point near the vicinity of the UGV can be given as the initial x̂+k−1 for
the UGV. Initially, a diagonal matrix, which has fairly high values in the diagonal elements,
can be given for P+

k−1 for all UGVs, indicating the initial value of x̂+k−1 is substantially
uncertain. In the following sections, EKF-related symbols have the usual notation.

Following the estimation from the EKF, the forward UWB tag position estimate (x̂ f , ŷ f )
and the rear UWB tag position estimate (x̂r, ŷr) can be used to find the location (i.e.,
geometrical centroid) of the UGV and its heading using:

(x̂a, ŷa) =

[ x̂ f + x̂r

2
,

ŷ f + ŷr

2

]
(6)

θ̂a = tan−1

(
ŷ f − ŷr

x̂ f − x̂r

)
(7)

as previously mentioned in Section 2.1. In (6), it is assumed that the UWB range sensors
are mounted on the UGV centreline from an equal distance from the centre of the UGV.

3. Unobservability in Localisation

When observability lapses in a system, the optimal estimators fail in state estimation.
If such a situation occurs in localisation, it is defined as an unobservability in localisation.
Therefore, a thorough observability analysis is essential in order to guarantee a fail-safe
state estimation during the localisation. The next two sections will explain how to identify
the localisation singularities/unobservabilities in the UAV–UGV collaborative localisation
scenario based on deterministic observability.
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3.1. Deterministic Observability

The deterministic observability analyses and checks whether the state of a system can
be determined without any ambiguity, based on the system’s outputs [17], where a state
estimator cannot give an accurate estimate about the system state at a deterministic observ-
ability lapsed situation. Nevertheless, the observability of a nonlinear system is not a global
attribute in the entire state space as the relationship between the measurement space, and
the state space is not one-to-one [18]. Thereupon, deterministic local observability has been
defined as: “A system is locally observable at a state x0, if there exists a neighbourhood N
of x0 such that every state, which belongs to N , other than x0 is distinguishable from x0.
Finally, the system is locally observable if it is locally observable at each state” [19].

For a generic affine continuous-time nonlinear system:

ẋ = f (x) +
ϑ

∑
�=1

u�g�(x)

y = h(x)

(8)

where x ∈ R
ζ is the system state vector, y ∈ R

ϑ is the output (observation) vector,
g1(x), g2(x), . . . , gϑ(x) are known vector fields, and the control input is u = [u1 . . . uϑ]

T ;
if the current state (x0) is given and the expression(

∇Lzs Lzs−1 . . . Lz1 hj
)
(x0)

s ≥ 0 zi ∈ { f , g1, g2, ... , gϑ }
(9)

is calculated at x0, where L(·) is the Lie derivative, then System (8) is locally observable in
the neighbourhood of x0 if there are n linearly independent row vectors in this set (i.e., full
in rank).

Since the proposed localisation method is used for real-time sequential state estimation,
achieving deterministic local observability all the time is a requirement to maintain an
accurate state estimation without any singularities/ambiguities.

3.2. Identification of Singularities

Since our aim is to localise a non-manoeuvring UGV, u in (8) is not known to the
estimation algorithm. Henceforth, the expression in (9) reduces to an observability matrix,

O(x) =

⎡⎣∂L 0
f h(x)

∂x
· · · · · · · · ·

∂L ζ−1
f h(x)

∂x

⎤⎦T

(10)

where L f h(x) is the Lie derivative of the function h(x) by the function f (x) and L ζ
f h(x) is

the (ζ + 1)th Lie derivative of the function h(x) by the function f (x).
If the system is locally observable at every time, the rank of O(x) should be equal to

n (i.e., full rank) [18,19]. In this localisation scenario, O(x) for our system, when written
as in (10), is a 32× 8 matrix that uses (4) as the observation equation h(x) and the linear
continuous form of the difference equation (2) as the system equation f (x) for UGV dy-
namics. To find the singularities, O(x)T is used for mathematical convenience instead of
O(x) using the identity rank(O(x)) = rank

(
O(x)T). By analysing at which UGV states

result in loss of full rank of O(x)T , the singularities can be identified. The upper triangular
matrix of the LU-decomposed O(x) is in the row echelon form [20], therefore if any of its
diagonal elements is zero at any system state, O(x) cannot be a full rank matrix, and hence
the system becomes locally unobservable.
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By analysing the diagonal elements of the upper triangular matrix of the LU-decomposed
O(x)T, the singularity is identified to be taking place when UGV states satisfy either

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(y2 − y1)
0

(x1 − x2)
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

· x̂k = x1y2 − x2y1 (11)

or ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

(y2 − y1)
0

(x1 − x2)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

· x̂k = x1y2 − x2y1 (12)

Hence, the location where the localisation ambiguity/singularity of the observer
occurs according to (11) or (12) is the vertical shaded blue surface in Figure 2, which
intercepts both UAV positions.

X

Y

Z

Figure 2. Ambiguity region of the location observer.

What happens due to this localisation singularity during a real-time localisation is that
when a UGV range sensing tag intercepts the shaded blue surface in Figure 2, the optimal
estimator fails to estimate the UGV location, i.e., the optimal estimator cannot determine in
which side of the shaded blue surface, the intercepted UGV range sensing tag is at.

4. Aversion of Ambiguities

Based on the identified singularities in Section 3, avoiding ambiguity will be of interest
in accurately localising the UGVs in real time. Nevertheless, the motion of the UGV and
UAVs is subjective to the mission objectives that cannot be altered due to observability
issues. Therefore, developing a method which enables a UGV to successfully pass through
the ambiguity region in Figure 2 is the key to eradicating the ambiguity errors in localisation.
Thereupon, CEKF has been utilised by imposing constraints based on heuristics, covariance-
based accuracy margins and inter-dependency of state variables.
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Even if the system model depicts the real system to a greater extent, KFs with con-
straints [21–24] have been used in estimation problems to improve the estimation accuracy
by avoiding the unrealistic state estimates irrespective of the system nonlinearities [21].

In this CEKF-based UAV–UGV collaborative localisation method, the estimation
projection method has been used for the state estimation, where the unconstrained a
posteriori estimate of the EKF x̂+k is projected into the constrained space and obtaining the
constrained estimate x̃+k by:

x̃+k = argminx(x− x̂+k )
T

W(x− x̂+k ) (13)

such that
D x = d and/or D x ≤ d

are the linear equality constraints and linear inequality constraints, respectively.
The nonlinear constraints can also be handled in the same way by linearising the

nonlinear constraints using the first-order Taylor expansion of the constraints [21,25].
In (13), the matrix W is the weighting matrix. The value of W is equal to the inverse of
the a posteriori covariance matrix of estimation if the projection is based on the maximum
probability approach. If the projection is based on the least-squares approach, the matrix
W is equal to the identity matrix. In the proposed localisation method, the maximum
probability state projection method is followed (∴ W =

(
P+

k
)−1). Due to the maximum

probability constraining approach, and also because the EKF is unbiased, the overall
CEKF state estimation process is still a minimum variance estimation approach. Figure 3
illustrates the difference between the two projection approaches intuitively.

Figure 3. An example which shows the difference between the Maximum Probability (MP) approach
and the Least Squares (LS) approach in projecting the estimate into the constraint space [25].

In Figure 3, the least squares method has been followed to calculate x̃LS by project-
ing the estimate x̂ onto the constraint space. In that method, there is no concern about
safeguarding the minimum variance objective of the estimator when imposing constraints.

Imposing constraints to an EKF (i.e., CEKF) is a quadratic optimisation problem as
formulated in (13). Active set-based quadratic programming can be utilised to find the con-
strained estimate x̃+k , by identifying the active constraints in each step of the optimisation.
Hildreth’s quadratic programming procedure, which is simple and reliable in real-time
implementation can be utilised to solve this quadratic optimisation problem [26–28].

In the following three sections, the novel constraints, which are the main contributions
of this paper, have been formulated with derivations. The symbol σχ depicts the standard
deviation of the a posteriori estimation of a variable χ.
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Note: The constraints of the CEKF, explained in this section, are to be imposed
only after the EKF’s covariance matrix of estimation is sufficiently converged. All of the
constraints are formulated based on ±3σ uncertainty (i.e., 99.73% confidence level).

4.1. The Position Constraint

Assuming that the UGV motion can be successfully modelled by the CV motion model,
a position constraint can be imposed on the UGV state estimation based on the ±3σ uncer-
tainty of the position caused by the uncertainty of the velocity. For instance, if the estimated
position along x-direction x f ,k−1 and the estimated velocity along x-direction ẋ f ,k−1 of the
UGV’s front UWB tag at the previous time step is known, then the position of that tag at
this time step can be kinematically anticipated as x f ,k−1 + ẋ f ,k−1 T. However, x f ,k−1 and
ẋ f ,k−1 are stochastic variables. Therefore, deterministic anticipation is inappropriate, and
have to take σẋ f ,k−1 to stochastically anticipate the position of that tag. Hence, a compound
inequality can be written for that tag as:

ẋ f ,k−1 T − 3σẋ f ,k−1 T ≤ x f ,k − x f ,k−1 ≤ ẋ f ,k−1 T + 3σẋ f ,k−1 T (14)

and a kinematic constraint can be formulated at the x f ,k estimation step based on this
compound inequality. In such a kinematically constrained EKF-based estimator, x f ,k−1 and
ẋ f ,k−1 are constrained estimates, and have to be written as x̃ f ,k−1 and ˙̃x f ,k−1, respectively.
Then, x f ,k will be the free variable for the optimisation in the CEKF, which was explained
in Section 4. Hence, (14) can be modified as:

˜̇x f ,k−1 T − 3σẋ f ,k−1 T ≤ x f ,k − x̃ f ,k−1 ≤ ˜̇x f ,k−1 T + 3σẋ f ,k−1 T (15)

The constraints in (15) can be extended to all the other position variables (xr,k, y f ,k
and yr,k) of the UGV tag positions’ state vector (x) by writing another three compound
inequalities analogous to (15). Altogether, all four compound inequalities should be
imposed simultaneously in the CEKF, and also, the compound inequalities have to be
re-arranged as inequalities such that the consolidated inequality becomes:

L x ≤ M x̃k−1 + N diag
(

P+
k−1

)◦1/2
(16)

where the 8× 8 diagonal matrices L, M and N independently have the matrices L0, M0 and
N0 as their block diagonal matrices, respectively, where

L0 =

[
1 0
−1 0

]
, M0 =

[
1 T
−1 −T

]
, N0 =

[
0 T
0 T

]
,

and ( · )◦ 1/2 is the element-wise square root of a matrix.
Further derivations have to be performed to (16) in order to implement its constraints

in the form of D1x ≤ d1. First, (16), must be re-arranged such that (16) can be obtained
as a nonlinear inequality in the form of gi(x) ≤ bi, where the bi vector consists of all
the variables in (16), which are independent of x. In order to linearise (16), a first-order
Taylor expansion at the a priori estimate can be used [25]. Hence, the Jacobian of (16) can be
written as
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gi
′(x) =

∂gi(x)

∂x

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

Using the techniques presented in [21,24,25], (16) can be written as a linear inequality as

g′i( x̂−k ) x ≤ bi − gi( x̂−k ) + g′i( x̂−k )x̂−k (18)

in the form of D1x ≤ d1.

4.2. The Heading Constraint

Assuming that the UGV motion can be modelled by the CV motion model, a heading
constraint can be imposed based on the 3σ uncertainty of the heading of a UGV range sensing
tag, based on a UGV tag’s velocity triangle. This is a constraint which is based on the
kinematics of the UGV on a planar terrain. For simplicity, first, the subsequent derivation was
performed by considering a given UWB tag on the UGV as a particle moving on a Cartesian
plane. In Figure 4, the position plane is the Cartesian coordinate frame, relative to which a
UGV tag’s positions are denoted. Moreover, the velocity plane is the Cartesian coordinate
frame, relative to which a UGV tag’s velocity vectors are denoted. The velocity plane is an
instantaneous coordinate frame, the origin of which is placed on the respective UGV tag’s
estimated position (x̃k−1, ỹk−1) at the previous time step. The velocity of a UGV tag is drawn
in a solid black arrow, as shown in Figure 4 on the velocity plane.

tan−1

(˜̇yk−1 − 3σẏk−1˜̇xk−1 + 3σẋk−1

)
≤ tan−1

(
yk − ỹk−1
xk − x̃k−1

)
≤ tan−1

(˜̇yk−1 + 3σẏk−1˜̇xk−1 − 3σẋk−1

)
(19)

˜̇yk−1 − 3σẏk−1˜̇xk−1 + 3σẋk−1

≤ (yk − ỹk−1)/T
(xk − x̃k−1)/T

≤
˜̇yk−1 + 3σẏk−1˜̇xk−1 − 3σẋk−1

˜̇yk−1 − 3 σẏk−1˜̇xk−1 + 3 σẋk−1

≤ ẏk
ẋk
≤
˜̇yk−1 + 3 σẏk−1˜̇xk−1 − 3 σẋk−1

(20)
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(0, 0)
ẋ

y

(˜̇xk−1 + 3 σẋk−1 , ˜̇yk−1 − 3 σẏk−1)

˜̇xk−1

˜̇yk−1

(˜̇xk−1 − 3 σẋk−1 , ˜̇yk−1 + 3 σẏk−1)

x

ỹk−1

x̃k−1

velocity
plane

(0, 0)
position
plane

ẏ

Figure 4. Illustration of the heading constraint.

When x, y, ẋ and ẏ denote the x-position of a tag, y-position of a tag, the velocity
of a tag along the x-axis and the velocity of a tag along the y-axis, respectively; if an
assumption is made (for simplicity) that the direction of a UGV tag’s velocity is in the first
quadrant of the velocity plane as shown in Figure 4, then the compound inequality (19) can
be obtained. In the compound inequality (19), the expression

tan−1
(

yk − ỹk−1
xk − x̃k−1

)
denotes the direction angle of the relative position vector of the current tag position estimate
with respect to the previous tag position estimate. Nevertheless, this direction angle cannot
be a deterministic variable due to the uncertainty of the velocity estimates. Referring to the
velocity plane in Figure 4, the maximum and the minimum angle of the estimated velocity
vector at the previous time step can be easily identified based on the velocity estimation
uncertainties’ 3σ edge limits. Hence, the left-hand side expression and the right-hand side
expression of the compound inequality (19) can be formulated. Furthermore, (19) can be
simplified to (20), where a compound inequality can be obtained, which can be used to
impose as a constraint on the UGV state’s velocity variables in the EKF-based localisation.

If the compound inequality constraint in (20) is generalised such that the constraint
can be imposed while the UGV tag’s velocity is in any quadrant of the velocity plane, then
a common pattern can be observed. Hence, a consolidated inequality expression for the
front UGV tag can be written as

Wf

⎡⎢⎢⎢⎣
x fk
ẋ fk
y fk
ẏ fk

⎤⎥⎥⎥⎦ <

[
0
0

]
(21)

where

Wf =

[
0 w f12 0 w f14

0 w f22 0 w f24

]
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and the elements of Wf are:

w f12 = − ( ˜̇y f ,k−1 + 3σẏ f ,k−1 sgn(˜̇x f ,k−1))

w f22 = ( ˜̇y f ,k−1 − 3σẏ f ,k−1 sgn(˜̇x f ,k−1))

w f14 = ( ˜̇x f ,k−1 − 3σẋ f ,k−1 sgn(˜̇y f ,k−1))

w f24 = − ( ˜̇x f ,k−1 + 3σẋ f ,k−1 sgn(˜̇y f ,k−1))

If (21) is extended to both tags of the UGV, a linear inequality in the form of D2 x ≤ d2
can be obtained, which can be written as

[
Wf 0
0 Wr

]
x <

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ (22)

where Wr is the equivalent weight matrix in (21) written for the rear tag of the UGV.

4.3. Node Separation Constraint

Since the UGV is a rigid body and the localisation sensor nodes are rigidly attached to
the UGV in a specific separation distance, a heuristic equality constraint can be imposed
based on this aspect. If the localisation tag positions’ coordinates are taken from the UGV
state, the equality constraint can be formulated as

( x f − xr)
2 + ( y f − yr )

2 = l2 (23)

in the form of ge( x ) = be, where l is the sensor node separation distance. In this research,
it is assumed that the vehicle length is equal to the sensor node separation. In order to
linearise (23), first-order Taylor expansion at the a priori estimate can be used, such that

g ′e( x ) =
∂ge

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
(

x f − xr

)
0

2
(

y f − yr

)
0

−2
(

x f − xr

)
0

−2
(

y f − yr

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Hence, the linearised equality constraint can be obtained in the form of De x = de
as follows:

g′e( x̂−k ) x = be − ge( x̂−k ) + g′e( x̂−k ) x̂−k

In order to successfully localise the UGV without undergoing any localisation sin-
gularities/ambiguities, the three constraints which are discussed have to be imposed
concurrently in the CEKF-based UAV–UGV collaborative localisation, where the final
expression encompassing all the constraints will be:[

D1
D2

]
x ≤

[
d1
d2

]
Dex = de

(24)

5. Observability Enhancement of the CEKF

Tolerance to the singularities should be an essential feature in the proposed CEKF,
in order to maintain the accuracy of localisation. Therefore, observability improvement
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has to be analysed while the proposed constraints in the previous subsection are imposed
in an EKF-based localisation. Apart from the deterministic observability, which is used
to analyse fully deterministic systems (or by assuming a system is fully deterministic),
stochastic observability is used to analyse the reliability in CEKF for localisation in this
particular system as the system is deterministically unobservable.

Stochastic observability: different to a deterministic system, a system can be observ-
able, theoretically at least, if an appropriate random process is driving the system [29]. The
random process can also be influenced by a reverse effect [29].

Stochastic observability implies that there exists a state estimator/filter of which the
state estimation variance is bounded [30]. Hence, we can accept the state estimation of the
CEKF if the error covariance bound of the proposed CEKF is sufficient in eradicating the
state ambiguity in estimation.

Stochastic observability of the CEKF is analysed in real-time using the posterior
Cramér–Rao bound. The most common version of the posterior Cramér–Rao bound in the
context of Kalman filters is the bound, which is computed using the Fisher information
matrix. However, calculating the estimation error covariance bound using the Fisher
information matrix is incorrect as the state estimation is constrained in the CEKF. Therefore,
the posterior Cramér–Rao bound must be computed in real-time, and then compensation
must be made to the result to reflect the effects of the CEKF constraints on the estimation
error covariance bound.

5.1. Posterior Cramér–Rao Bound

The information of a given estimator is defined as the inverse of the covariance matrix
of estimation [31]. Hence, the information matrix Jk of a given estimator is defined as the
inverse of the estimation error covariance matrix [32]:

Jk = (Pk)
−1 (25)

On the other hand, PCRB has been defined as

PCRB = E
{
[g(y)− x][g(y)− x]T

}
≥ J−1

k (26)

where g(y) is a function of the observation vector y, which delivers the output of a state
estimator. The output vector of the function g(y) is an estimate of the state vector x.
From (25) and (26), it can be seen that the covariance matrix of estimation that can be
obtained using an estimation algorithm is bounded by the PCRB. Moreover, for an unbiased
estimator such as the Kalman filter, Equation (26) becomes an equality [31].

In a real-time estimation process, calculating the PCRB directly using the expected
values in (26) cannot be performed, because x is not available. Therefore, PCRB should be
calculated using the probability distribution functions of the state and the estimation of the
state instead. If py,x(y, x) is the joint probability density of y and x, then the elements of
the information matrix at a given time step are such that [32]:

Jij = E

[
− ∂2 log py,x(y, x)

∂xi∂xj

]
i, j = 1, · · · , n (27)

provided that the expectations and derivatives exist.
To calculate PCRB at time step k, if we define state vector xk = [x1, . . . , xk] and the

observation vector yk = [y1, . . . , yk], where x1, . . . , xk and y1, . . . , yk are a sequence of states
and a sequence of measurements/observations of a non-linear state estimation process,
respectively; then, the joint probability distribution p(x, y) in (27) can be expressed as:

pxk ,yk
(xk, yk) = p(x0)

k

∏
j=1

p(yj|xj)
k

∏
i=1

p(xi|xi−1) (28)
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From (28), it is apparent that the pxk ,yk
(xk, yk) expression is expanding as the time

increases. Hence, if pxk ,yk
(xk, yk) is used directly to calculate J, the computational cost will

increase as the time passes [31,32]. If there is a recursive calculation method to calculate
the PCRB at the kth time step, using the PCRB of the time step k − 1, it will be a more
computationally efficient way than the aforementioned way of calculating the PCRB.

In [31], a Riccati-like information matrix calculation method has been proposed, which
is a great achievement since the method helps the sequential calculation of the PCRB
efficiently with lower computational power in real-time estimation processes. Based on
the recursive PCRB calculation methods presented in [31], the information matrix J can be
calculated for a nonlinear time-invariant system with additive Gaussian noises (υ and η),
such as:

xk+1 = fk(xk) + υ

yk = hk(xk) + η
(29)

using

Jk+1 =
(

Qk + AkJ−1
k AT

k

)−1
+ HT

k+1R−1
k+1Hk+1

where

A =
∂ f (·)

∂x

H =
∂h(·)

∂x

(30)

when A and B are evaluated at the a posteriori estimate.

5.2. Constrained Posterior Cramér–Rao Bound

The constrained EKF method, which is used in this research (estimation projection),
which has been explained in Section 4, is a minimum variance and unbiased method [22,33].
In the CEKF, the a posteriori state estimate is projected into the state space, which is feasible
with respect to the constraints. Hence, the information addition during both the a posteriori
estimation and constrained estimation have to be evaluated at the CEKF state estimation
update. In [34], it has been shown that the classical PCRB is invalid for the constrained
state estimation and, therefore, a modified PCRB has been derived for constrained state
estimations. Moreover, it has been shown in [34,35] that only the active constraints are
contributing to the decrement of the constrained PCRB. The constraints are functions of
state variables and system parameters. If an estimator has c number of active equality
constraints at a given time step, such that

Gc =

⎡⎢⎢⎢⎣
g1(·)
g2(·)

...
gc(·)

⎤⎥⎥⎥⎦ = 0 (31)

where only the active constraints are denoted by g1(·), g2(·), . . . , gc(·), then the CPCRB for
any unbiased constrained state estimator is defined as

CPCRB = Cc J−1 (32)

where
Cc = I− J−1[∇Gc]

T
{
[∇Gc]J

−1[∇Gc]
T
}+

[∇Gc] (33)

Note: In (33), {·}+ is the pseudo-inverse of a matrix and the gradient ∇ has to be
calculated with respect to the state vector. In this research, the constraints G1, G2 and G3
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are taken as the sensor node separation-based constraint, position constraint and heading
constraint, respectively, whenever they become active constraints.

5.3. Observability Analysis of the Proposed CEKF-Based Localisation

Using the CPCRB, the variance of a given UWB tag’s estimated travel direction θ can
be calculated so that reliable navigation can be ensured if

3σθ < (α− θ) (34)

at every time step since the CEKF itself restricts the state estimation to ±3σθ as explained in
Section 4 (see Figure 5). A safer operation can be ensured by incorporating a safety factor
ks f > 1 into this condition, such that Equation (34) will become:

3ks f σθ < (α− θ)

by providing the CEKF more robustness against uncertainties.

(x1, y1)Y

X
(0, 0)

θ α

(x2, y2)

Figure 5. Plan view of the UAV–UGV system.

From (34), it is apparent that calculating σθ is the first step to assess the ambiguity
aversion capability of the CEKF. For this purpose, we adopt the following relationship:

σ2(tan(θ)) = σ2

(˜̇y+˜̇x+
)

(35)

where σ2(·) is the variance.
Using the series expansion for tan(θ) when |θ| ≤ 45◦, (35) can be approximated by

σ2
(

θ +
θ3

3

)
≈ σ2

(˜̇y+˜̇x+
)

(36)

where the tan(·) approximation function behaves as shown in Figure 6.
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Figure 6. tan(θ) approximation function.

Assuming the heading angle estimation’s probability distribution is a Gaussian distri-
bution, the LHS of Equation (36) can be estimated using the moment generating functions
(non-central). The mean value of θ (i.e., μθ), which has to be known to be able to follow this
method, can be calculated by

μθ = tan−1

(˜̇y+˜̇x+
)

using the constrained a posteriori estimates. The RHS of (36) can be calculated using the
Taylor series approximated variance of ratios [36]:

σ2

(˜̇y+˜̇x+
)

=

(˜̇y+˜̇x+
)2
⎡⎢⎣σ2

(˜̇y+)(˜̇y+)2 +
σ2
(˜̇x+)(˜̇x+)2 − 2

cov
(˜̇y+, ˜̇x+)˜̇x+ · ˜̇y+

⎤⎥⎦ (37)

The value of σ2
(˜̇y+/˜̇x+) in (37) can be calculated using the constrained estimations

of the CEKF.
After calculating the LHS of (36) using moment-generating functions, (36) can be

written as:
5
3

σ6(θ) +
(

2 + 4μ2
θ

)
σ4(θ) + (1 + μ2

θ)
2 σ2(θ) ≈ σ2

(˜̇y+˜̇x+
)

(38)

Hence, the solution to Equation (36) is a cubic equation, roots of which are σ2
θ .

Solving Equation (38) as a cubic polynomial equation, σ2
θ can be calculated by only

taking the positive real roots for granted. The value of σθ can be used to prove the efficacy of
this CEKF-based localisation methodology, as mentioned earlier in this section. Moreover,
σθ can be used as a safety indicator to alarm the UAVs to adjust the α angle by moving
appropriately if α− θ ≤ 3σθ , which can lead to an erroneous localisation.

Caveat: Since the approximation in Equation (36) is not valid when 45◦ < |θ| ≤ 90◦,
an intermediate coordinate transformation must be used in order to solve Equations (35)–(38),
which can be reversed after obtaining the equations’ solutions without affecting the CEKF/
EKF algorithms.
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6. Simulation Results

The numerical simulations were performed to localise a UGV from UAVs using the
CEKF method. Furthermore, the ambiguity aversion efficacy is tested for the simulated
scenarios. In the simulations and experiments, the algorithmic workflow explained in
Algorithm 1 was executed:

Algorithm 1 CEKF-based UAV–UGV collaborative localisation algorithm
initialise the EKF;
do

obtain range measurements;
estimate the UGV location using the EKF;

while EKF estimation covariance matrix is not converged
loop

obtain range measurements
estimate the UGV location using the EKF;
calculate the constrained location estimation;
calculate σθ ;
if (α− θ) ≤ 3ks f σθ then

move the UAVs to adjust α;
end

end loop

The simulation results are presented in the next two subsections.

6.1. Ambiguity Aversion by CEKF Method

Numerical simulations were carried out to assess a UGV localisation scenario on
a two-dimensional plane using two stationary UAVs. The UGV is supposed to drive
through the unobservable boundary in Figure 2.

Unconstrained EKF shows an error in localisation at the unobservable boundary
(Figure 7), which ultimately results in a substantial localisation error, i.e., the mirror image
of the actually traversed trajectory is given as the EKF estimated location. This happens be-
cause the range readings are identical for the real trajectory and its mirror image trajectory.

Figure 7. Unconstrained localisation of the UGV.
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In an identical situation, the state-constrained localisation from CEKF does not show
an error in localisation at the line of unobservability (Figure 8). Figure 9 shows the heading
angle (θ) estimation result, which affirms that there have not been any singularities occurred
during the CEKF-based localisation.

Another numerical simulation was performed where the UGV travels along a lengthy
two-dimensional random path requiring the UAVs to move, i.e., the UAVs are also moving
while the UGV localisation is carried out. CEKF is used to estimate the location of the UGV.
In this simulation, the UGV successfully traverses across the line of unobservability twice
without any erroneous localisation due to singularities.

Location estimation plot of the UGV, ground truth locations of the UGV and the
respective UAV positions are shown in Figure 10. Root Mean Squared Error (RMSE) has
been calculated while the UGV is travelling along the random path and the RMSE vs. time
for both x and y coordinates is shown in Figure 11.

The sampling time of the simulation is 50 ms, which is typically an attainable step time
in field vehicles’ (e.g., unmanned fire truck) onboard computers while other peripheral
devices are also operated/controlled by the same onboard computer. In order to mea-
sure the real-time performance of the CEKF localisation algorithm, the code was run in
MATLAB2018b software and the physical time was measured for each time-step of the
simulation using the inbuilt stopwatch timer facility (MATLAB commands: tic, toc). At
the beginning of each iteration of the simulation, the tic command is called to record the
physical time, and at the end of each iteration, the toc command is called to record the
physical time. Using the time difference of the recorded physical timings, the iteration
execution time is calculated. Based on performance results, which are plotted in Figure 12,
it can be seen that the physical real-time calculations can be performed without any time
lags to successfully localise a UGV using the presented CEKF-based localisation algorithm.

Figure 8. Constrained localisation of the UGV.
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Figure 9. Estimated heading of a tag, which is fixed on the UGV.

Figure 10. Constrained localisation of the UGV along a random path using the CEKF-based localisa-
tion method.
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Figure 11. RMSE along the random travel path when the UGV is localised using the CEKF-based
localisation method.

Figure 12. Real-time performance of the CEKF localisation algorithm.

6.2. Observability of CEKF

The diagonal of the CPCRB consists of the lower bounds of state estimation error
variances for each and every element in the estimated state vector. Hence, the trace of the
CPCRB matrix is an indicator of stochastic observability, i.e., smaller the trace value, the
higher the stochastic observability and vice versa. The trace of the CPCRB calculated for
the EKF localisation and for the CEKF localisation shows a difference in the trace of the
covariance matrix of estimation error lower bound (i.e., CPCRB), as shown in Figure 13. Two
peaks shown in blue show the increment of stochastic unobservability when the two UWB

111



Sensors 2024, 24, 4629

tags intercept the unobservable blue-coloured vertical plane shown in Figure 2. In contrast,
the CEKF method has successfully minimised the adverse effects of unobservability.

Figure 13. Trace of the CPCRB in unconstrained EKF and constrained EKF.

In this simulation, α was kept constantly at 26.6◦ by keeping the UAVs still, and θ
was also kept constant at 45◦ by driving the UGV with a constant heading for simplicity.
Figure 9 and 14 show a more steady θ estimated value despite the unobservability when the
CEKF method is used for the localisation. However, when the unconstrained EKF is used
for the localisation, a drastic deviation of the heading estimation is notable at 9.5 s when we
observe the red curve of Figure 9. It happens at the same time when the UGV undergoes
unobservability, as we can see that the first unobservability peak in Figure 13 has also
taken place at 9.5 s. Moreover, when CEKF is used, σθ is significantly low without any
sudden changes, even at/after the instance when the unobservability occurs. According to
Figure 14, σθ is 31.1◦ before encountering the unobservability, and 23.9◦ after encountering
the unobservability when using the unconstrained EKF. On the other hand, σθ is steadily
maintained around 0.05◦; when using the CEKF. Since σθ is around 0.05◦, the condition
for ambiguity aversion: α− θ > 3σθ (in (34)) is also strongly satisfied in this simulation.
Hence, we can conclude that the CEKF has mitigated the ambiguities in localisation and
contributed to increasing the localisation accuracy.
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Figure 14. Estimated σθ , which is derived from the CPCRB.
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7. Experiment Results

An experiment was performed to validate the CEKF-based UAV–UGV collaborative
localisation method. Two DJI-M600Pro hexacopters (UAVs) were used for range measure-
ment, position estimation and heading estimation of a stationary Antonio Carraro farm
tractor (UGV). In Figure 15, an image of the overall experiment is shown. The experiment
was performed on a farmland in Menangle, NSW, Australia.

Figure 15. UAV–UGV range-based collaborative localisation experiment.

The TREK-1000 range sensors manufactured by Decawave, Ireland were mounted on
the front side of the vehicle and on the rear side of the UGV, as shown in Figure 16. The
range sensors were mounted underneath the UAVs, as shown in Figure 17. Data logging
and processing in each UAV were performed in Intel NUC onboard computers, which were
fixed on each UAV as shown in Figure 17.

Range sensors

Figure 16. Range sensors on the UGV.
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Intel NUC

Range
sensor

Figure 17. Range sensors on the UAV.

The next two sub-sections will discuss the results of a static UGV localisation experi-
ment and a dynamic UGV localisation experiment.

7.1. Stationary UGV Localisation

While the UGV was stationary on the ground, the two UAVs were airborne, and
the localisation began while the vehicles were maintaining their positions. While the
localisation is in progress, the ground truth location and the heading of the UGV were
recorded by the onboard computer of the UGV using an RTK GPS unit. The accuracy of
the RTK GPS unit was ±2 cm. Figure 18 shows the estimated positions of the UGV during
the experiment.
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Figure 18. Position estimation plot of the CEKF-based UAV–UGV collaborative localisation when the
UGV is not moving.

The green cross in Figure 18 is the ground truth middle position of the UGV, where
the estimated middle position of the UGV is shown by the black cross marks. Actually, the
middle position of the UGV was calculated at each iteration after estimating the positions
of the front UWB tag and the rear UWB tag. The heading of the UGV was also estimated in
the same way as shown in Figure 19, from which the heading estimation accuracy can be
deduced as ±4◦. The UGV positioning error during the experiment is shown in Figure 20,
which shows the positioning error of the localisation is less than 14 cm.
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Figure 19. Heading estimation plot of the CEKF-based UAV–UGV collaborative localisation.
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Figure 20. Error of the position estimation.

7.2. Non-Stationary UGV Localisation

This is a continuation of the experiment discussed in the previous section; thus same
experimental instruments have been used. Initially, the UGV was stationary for 105 s, while
the UAVs are airborne. Thereafter, the UGV started moving along the path marked by
green dots in Figure 21. During the UGV movements, the UGV intercepted the line of
unobservability several times, during which the CEKF-based localisation algorithm was
able to successfully deal with the unobservability problem that was described earlier in
Section 3. The CEKF-based localisation algorithm has localised the UGV from its starting
position (49.88, 2.11) until its final location, which is marked by the green cross in Figure 21.

At the interceptions of the unobservable boundary, the CEKF constraints that are acti-
vated prevent the localisation algorithm from producing unrealistic location estimations
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which are against the kinematics of the UGV. For example, if the location estimation algo-
rithm delivers a false location estimation due to the unobservability (as shown in Figure 7),
where the false location estimation is on the mirror image path of the actual trajectory, then
the constrains will identify it as an erroneous result and deliver the kinematically feasible
correct location estimation. Hence, there have not been any erroneous localisation taken
place during field experiments. Nevertheless, if the unconstrained EKF is used, erroneous
location estimations will not be rectified as such.
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Figure 21. Position estimation plot of the CEKF-based UAV–UGV collaborative localisation when the
UGV is moving.

The estimated UGV headings and the positions are as depicted in Figures 22 and 23,
respectively. By observing Figures 22 and 23, we can deduce that the heading estimation
accuracy is ±4◦ and the position estimation accuracy is ±23 cm.

Figure 22. Heading estimation plot of the CEKF-based UAV–UGV collaborative localisation when
the UGV is moving.
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Figure 23. Error of the position estimation when the UGV is moving.

8. Conclusions and Future Works

In a UAV–UGV collaborative localisation with range-only observations, severe locali-
sation errors can occur due to the unavailability of UAVs to be deployed to make sufficient
range observations. It is well known that a unique global localisation to track a vehicle
on a 2D terrain is possible when three or more drones are deployed to make range-only
observations. However, when only two UAVs are deployed, there exists an unobservable
region within which it is difficult to localise the UGVs using range-only observations when
EKF is used.

The presented CEKF-based localisation method successfully avoids the ambiguity in
localisation due to the unobservability. Successful numerical simulations and field experi-
ments show the efficacy in localisation despite the localisation unobservability/ambiguity
arising when only two UAVs are deployed for the collaborative localisation task.

The presented CEKF-based localisation method successfully localise a UGV travelling
on a 2D terrain, using only two UAVs if an initial position guess (fairly close enough to the
UGV) is provided. Nevertheless, the initial position guess must be in the same side where
the actual UGV is at; with respect to the unobservability boundary (in Figure 2). After this
initial position guess is provided, the subsequent location estimations will converge to the
UGV location. Localising a UGV travelling on a 2D terrain, using less than three UAVs
cannot be done due to the estimation singularities/ambiguities which may occur during
localisation. While the location estimation is ongoing, the ambiguity aversion features
of the presented localisation algorithm will rectify any localisation errors whenever the
UGV encounters a localisation ambiguity. Because of that, localising a UGV travelling
on a 2D terrain, using less than three UAVs is possible with the CEKF-based localisation
method presented.

The stochastic observability analysis, which has been presented in this paper, gives
solid evidence of how the CEKF-based UAV–UGV collaborative localisation method can
overcome estimation singularities. CEKF-based localisation increases the stochastic ob-
servability of the localisation more than the EKF-based localisation method. Furthermore,
the kinematic constraints, which take the state variables’ variances, give an assurance of
successful localisation despite the localisation singularity almost all the time.

However, there can be quite a few instances where UAVs must be slightly re-positioned
to ensure a successful localisation. The CPCRB-based stochastic observability analysis
framework, discussed in Section 5.3 can be used to identify the instances when the UAVs
must be slightly re-positioned.
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In conclusion, a UGV which is travelling on a horizontal plane can be localised (and
the heading can also be estimated) by only two UAVs using the presented CEKF-based
range-only localisation method.

In future works, the proposed system can be further researched to analyse localisation
efficacy (1) for different range measurement sensitivities, (2) when occasional range sensing
occlusions occur, and (3) in localising UGVs travelling in hilly terrains.
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Abstract: Detection of unmanned aerial vehicles (UAVs) and their classification on the basis of
acoustic signals recorded in the presence of UAVs is a very important source of information. Such
information can be the basis of certain decisions. It can support the autonomy of drones and their
decision-making system, enabling them to cooperate in a swarm. The aim of this study was to classify
acoustic signals recorded in the presence of 17 drones while they hovered individually at a height of 8
m above the recording equipment. The signals were obtained for the drones one at a time in external
environmental conditions. Mel-frequency cepstral coefficients (MFCCs) were evaluated from the
recorded signals. A discriminant analysis was performed based on 12 MFCCs. The grouping factor
was the drone model. The result of the classification is a score of 98.8%. This means that on the basis
of acoustic signals recorded in the presence of a drone, it is possible not only to detect the object but
also to classify its model.

Keywords: unmanned aerial vehicle; discriminant analysis; drone classification

1. Introduction

Drones, also known as unmanned aerial vehicles (UAVs), have become one of the
most dynamically developing areas of aviation technology in recent years. Their versatility
and ability to perform a variety of tasks have contributed to a wide range of applications in
many fields and areas of the economy [1–14]. From agriculture and rescue operations to
infrastructure inspection and transportation, drones contribute significantly to the efficiency
and safety of many processes. Drones are widely used in precision agriculture [1,2]. Using
drones, farmers can monitor the conditions of crops, identify farm areas that require
irrigation or fertilization, and assess plant health [3]. Drones generate high-resolution
images and maps, which enable optimization and efficient management of farms, thereby
increasing crop yield. Drones are used to inspect hard-to-reach or dangerous locations such
as high-voltage power lines, pipelines, telecommunication towers, and bridges [4–7]. In
rescue operations, drones can quickly reach disaster sites, detect fires, provide first aid, and
monitor situations in real time [8]. In security, drones are used for surveillance and border
patrol [9,10]. Drones can be used in transport, especially medical transport [11–13], thus
speeding up the delivery process, especially in urban areas with heavy traffic. However,
to take full advantage of drones, it is necessary to effectively address issues related to
autonomy, regulation, security and privacy protection [14].

Drones are equipped with a number of advanced technologies. These solutions not
only increase their functionality but enable their autonomous or remotely controlled op-
eration [15,16]. They include navigation systems for precise position tracking and flight
stability, data analysis and mission planning, sensors and cameras for collecting visual and
topographic data, and real-time data transmission via radio and satellite systems [17]. Arti-
ficial intelligence and machine learning can be applied to boost the autonomy of drones [18].
Machine learning, particularly deep learning, is the foundation of autonomous systems.
Neural networks enable real-time analysis of large sensory data sets, allowing for object
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recognition, navigation in complex environments, and decision-making. The integration
of sensors and the fusion of data obtained from these sensors allow for information to be
obtained, inferences to be made, and specific decisions to be reached, making it possible
for drones to independently map out optimal routes without obstacles [19]. Machine
learning algorithms analyze power consumption patterns and adjust flight parameters
to minimize battery consumption. Drones equipped with appropriate image processing
and data analysis algorithms can autonomously map areas and inspect infrastructure such
as bridges [20], power lines, and buildings without human intervention. Detection and
classification of unmanned aerial vehicles based on acoustic signals could play a key role
in the development of autonomous systems for drones.

A very important direction in the development of drones is the cooperation of drones,
or the so-called “work in a swarm”. Here, it is important to avoid collision, recognize
neighboring objects, detect the directions of approaching objects, achieve full autonomy of
flight, and map out the path in real time. Acoustic systems can be useful for this particular
application, as they can boost the autonomy of the drone. Using acoustic signals, it is
possible to detect drones in natural environments even at a distance of 1 km and to indicate
their exact distances, thus enhancing drone detection systems [21]. If it is possible to detect
the direction of an incoming object acoustically, which is still being researched, acoustic
sensors could resolve collision problems and enable drones to cooperate in a swarm. In
addition, the classification of environmental signals in the presence of drones could improve
their decision-making and autonomy.

When the drone is the carrier of the acoustic sensor, its noise may constitute a problem.
To deal with this problem, it is necessary to discard the redundant components of the carrier
from the signals and thus obtain the signals from the environment. This study carried out
an acoustic analysis based on the acoustic signals obtained in the presence of various drones
in order to classify the drones according to their UAV models. Following this classification,
it may be possible to separate the noisy components of the drones from the useful signals.
This, in turn, will make it easier to obtain signals from the environment, which will not
only enable more accurate applications of drones in various fields—e.g., ecology (listening
to birds), precision agriculture (acoustic observation of plantations), rescue systems, voice
control of drones [22–24]—but will allow drones to cooperate.

Acoustic classification of UAVs can be valuable in Unmanned Ground Vehicle (UGV)-
UAV cooperation in scenarios where direct communication is not possible or in environ-
ments where GNSS (Global Navigation Satellite System) signals are unavailable [25]. In
such cases, the ability of UGVs to identify and interact with UAVs using acoustic signals
would be a robust alternative, enhancing operational effectiveness in challenging conditions.

Despite the many advantages of drones, their use also comes with some challenges,
such as regulation, security, and privacy protection [26–28]. The dynamic development of
drone technology requires appropriate and safe legal regulations. The widespread use of
drones can lead to privacy violations; thus, it requires proper regulation and protective
measures. Detection of drones plays a very important role in security. A variety of sensing
techniques have been proposed for drone detection, including acoustic, optical, radar
detection systems and passive radiofrequency sensing [29]. Detection of small-sized drones
can be very challenging [30]. Deep learning techniques, particularly the You Only Look
Once (YOLO) algorithm, have been extensively explored and have shown promising results
in UAV detection [31]. Privacy protection may be provided by acoustic sensors that can
detect and classify objects at different heights and distances [21,32–34]. Acoustic systems for
drone detection and classification may significantly boost security and privacy protection
as well as the autonomy of drones.

The aim of this paper is to perform acoustic analysis and discriminant function analysis
of acoustic signals recorded in the presence of UAVs hovering at a height of 8 m above the
recording equipment in external environmental conditions. Seventeen different UAVs were
used in the experiment. The acoustic analysis included the analysis of the characteristic
frequencies of the background sound levels in the presence of the UAVs. Discriminant
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function analysis was used to investigate differences between the UAV models based on the
acoustic signals recorded in the presence of each UAV. This research provides information
on the classification accuracies of UAV models based on acoustic signals.

Drone detection and classification can significantly enhance security, privacy protec-
tion, and the autonomy of drones. This work investigates how acoustic signals acquired
in presence of unmanned aerial vehicles can be classified. The analysis will demonstrate
whether sound signals obtained in the drone regions show significant differences. The
remainder of this article is organized as follows: Section 2 presents the materials and meth-
ods used in this study, the results are shown and discussed in Sections 3 and 4, respectively,
and the conclusions and future steps are presented in Section 5.

2. Materials and Methods

The materials and methods used in this experiment are described in the following
subsections.

2.1. UAVs Used in the Experiment

Seventeen UAVs were used for the experiment. Their structures and models are
presented in Table 1.

Table 1. The UAVs used in the experiment.

UAV Number UAV Structure UAV Model

D1 X4 MATRICE 300
D2 X4 Mavic 3
D3 X4 Mavic Air 2S
D4 X4 Mavic Air 2
D5 X4 Mavic Mini 2
D6 X4 Mavic 2 Pro
D7 X4 Mavic 2 Pro
D8 X4 Mavic 3
D9 X4 Phantom 4

D10 X4 Mavic 2 Zoom
D11 X4 Mavic Mini 2
D12 X6 Yuneec H520
D13 X6 Yuneec H520E RTK
D14 X6 S900 1

D15 X6 X6D 1

D16 X6 Y6 1

D17 X4 Phantom 4
1 Non-commercial construction of UAV.

Twelve of the drones used in the experiment have an X4 structure (four rotating
propellers) while five have an X6 structure (six rotating propellers). Several drones of the
same models were used in the experiment. Drones D5 and D11 are two different drones of
the model Mavic Mini 2, drones D6 and D7 are two different drones of the model Mavic
2 Pro, drones D9 and D17 are two different drones of the model Phantom 4, and drones
D2 and D8 are two different drones of the model Mavic 3. Each drone was observed
separately while hovering at a height of 8 m above the recording equipment. The X4 UAVs
are presented in Figure 1. The X6 UAVs are presented in Figure 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. The X4 UAVs used in the experiment (a) D1; (b) D2; (c) D3; (d) D4; (e) D5; (f) D6; (g) D7;
(h) D8; (i) D9; (j) D10; (k) D11; (l) D17.
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(a) (b)  

   
(c) (d) (e) 

Figure 2. The X6 UAVs used in the experiment (a) D12; (b) D13; (c) D14; (d) D15; (e) D16.

2.2. Measurement and Recording of Acoustic Signals

Recordings of acoustic signals in the presence of UAVs took place in four different
places: in two Polish cities, Kielce and Gdańsk, and in two places in the vicinity of the
city of Gdańsk. The recordings were taken separately for the seventeen UAVs. During the
recording, the UAV hovered at a height of 8 m directly over the recording equipment, as
shown in Figure 3.

Figure 3. Measurement of acoustic signal. (a) Real environmental conditions; (b) illustration.
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Recordings were taken with Olympus LS-11 digital recorder and Norsonic 140 sound
analyzer. The recording equipment was placed 1.7 m above the ground. For each UAV, five
(5) one-minute-long recordings were taken with Olympus LS-11 at a frequency of 44.1 kHz.
Five recordings were also taken for each UAV using Norsonic 140 sound analyzer.

The measurement schedule, including dates, places, weather conditions, and the UAVs
recorded that day, is presented in Table 2.

Table 2. Measurement schedule: places, dates, weather conditions, and the UAVs [35].

Day Date Place Conditions UAVs

Day 1 15 March 2023 Kielce

Temperature: 5 ◦C
Air Pressure: 1014 hPa

Humidity: 51%
Wind: 22 km/h

D1, D2

Day 2 15 April 2023 Gdańsk

Temperature: 10 ◦C
Air Pressure: 1015 hPa

Humidity: 78%
Wind: 25 km/h

D3, D4, D5, D6

Day 3 16 April 2023 Dębogórze,
vicinity of Gdańsk

Temperature: 6 ◦C
Air Pressure: 1022 hPa

Humidity: 93%
Wind: 18 km/h

D7, D8, D9

Day 4 17 April 2023 Dębogórze,
vicinity of Gdańsk

Temperature: 7 ◦C
Air Pressure: 1030 hPa

Humidity: 80%
Wind: 22 km/h

D10, D11, D12, D13

Day 5 18 April 2023 Łapalice,
vicinity of Gdańsk

Temperature: 8 ◦C
Air Pressure: 1033 hPa

Humidity: 90%
Wind: 25 km/h

D14, D15, D16, D17

2.3. Acoustic Analysis of Signals

Acoustic analysis of signals obtained using a Norsonic 140 sound analyzer consisted
of frequency analysis of characteristic high background sound levels (peaks) and analysis
of A-weighted sound levels obtained in the presence of the unmanned aerial vehicles.

2.4. MFCC Extraction from Recordings

Twelve Mel-Frequency Cepstral Coefficients (MFCCs) were extracted from record-
ings of signals in the presence of UAVs obtained with Olympus LS-11 recorder. MFCCs
were used because of their efficient classification in previous experiments in which dis-
criminant function analysis was applied to analyze sounds recorded in the presence of
UAV [33]. These coefficients are also efficient in recognition systems where they provide
high recognition accuracy.

2.5. Discriminant Analysis of MFCC

Discriminant function analysis of the 12 MFCCs was performed to investigate the
differences between the UAV models. The UAV models were taken as the grouping
variables and the MFCCs as the independent variables.

The discriminant analysis consisted of the discrimination stage and the classification
stage. It was performed using STATISTICA software version 13.3 [36]. In the discrimination
stage, the maximum number of discriminant functions evaluated was equal to the number
of discriminant variables minus one. A canonical analysis was used to determine the
successive functions and their canonical roots. The standardized coefficients were esti-
mated for each discriminant function. The contribution of the variable to the discrimination
between groups becomes greater as the standardized coefficients become larger. Chi-square
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tests with successive roots removed were investigated. The coefficient of the canonical
correlation (canonical-R), which ranges between 0 (no association) and 1 (very high associa-
tion), is a measure of the association between the i-canonical discriminant function and the
group. Wilks’ lambda statistic, which ranges between 0 (excellent discrimination) and 1
(no discrimination), is used to determine the statistical significance of discrimination.

The classification stage followed the determination of the variables that discriminate
the UAV groups. Because there were thirteen model groups, thirteen classification functions
were created according to Equation (1), viz.:

Ki(h) = ci0 + wi1mfcc1 + wi2mfcc2 + . . . + wi12mfcc12 (1)

where h is the UAV considered as a group (mavic2zoom, mavicmini2, phantom4, ma-
trice300, mavic3, mavicair2s, mavicair2, mavic2pro, yuneech520, yuneech520ertk, s900,
x6d, y6), the subscript i denotes the respective group, ci0 is a constant for the i-th group,
wij is the weight of the j-th variable in the computation of the classification score for the
i-th group, and mfccj is the observed Mel-frequency cepstral value for the respective case.
The classification functions were used to determine to which group each case most likely
belongs. A case was classified as belonging to the group for which it had the highest
classification score, or more precisely, for which Ki(h) assumed the highest value. The
classification matrix was used to present the number of cases that were correctly classified
and the number that were misclassified.

3. Results

The following results of the acoustic analysis and discriminant function analysis of
signals detected in the presence of the UAVs in external environmental conditions were
obtained in the experiment.

3.1. Results of Acoustic Analysis

The A-weighted sound levels of the UAVs obtained with the Norsonic 140 sound
analyzer in external environmental conditions are presented in Figure 4:

 
Figure 4. The A-weighted sound levels obtained for drones.

The background sound levels of the UAVs recorded with the Norsonic 140 sound
analyzer in external environmental conditions are presented in Figure 5.

In Figure 5, the background sound levels obtained in the absence of UAVs in environ-
mental conditions of the city of Kielce (BG) are also presented. The characteristic peak of
the BG appeared at 25 Hz. The acoustic analysis showed that the X4 model resulted in
smaller A-weighted and background sound levels than the X6 model. Characteristic peaks
of the UAVs and their frequencies, according to Figure 5, are presented in Table 3.
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Figure 5. The background sound levels obtained for UAVs.

Table 3. The characteristic frequencies of peaks (ˆ—normal, ˆ—high) of the UAVs.

UAV D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

12.5 Hz ˆ

16 Hz ˆ ˆ

20 Hz ˆ ˆ ˆ

25 Hz ˆ ˆ ˆ

31.5 Hz ˆ ˆ ˆ

40 Hz ˆ ˆ

50 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

63 Hz ˆ ˆ ˆ ˆ ˆ

80 Hz ˆ ˆ ˆ

100 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

125 Hz ˆ

160 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

200 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

250 Hz ˆ ˆ

315 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

400 Hz ˆ ˆ ˆ ˆ ˆ

500 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

630 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

800 Hz ˆ ˆ ˆ ˆ ˆ ˆ ˆ

1 kHz ˆ ˆ ˆ ˆ ˆ

1.25 kHz ˆ ˆ ˆ

1.6 kHz ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2.5 kHz ˆ ˆ ˆ ˆ ˆ ˆ ˆ

4 kHz ˆ ˆ ˆ ˆ ˆ
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According to Table 3, the presented peaks and their associated frequencies characterize
the acoustic background obtained in the presence of the drones. The background sound
levels are a combination of the UAV signals and the surrounding sounds. Maximum large
peaks, marked in red in Table 3, show very high and easily visible peaks. Same models of
drones showed similar characteristic frequencies. For example, the pair D2 and D8 showed
characteristic peaks at 50 Hz, 160 Hz, 315 Hz, and 630 Hz; the pair D5 and D11 showed
characteristic peaks at 315 Hz and 630 Hz; the pair D9 and D17 showed characteristic peaks
at 50 Hz, 160 Hz, 200 Hz, 315 Hz, 500 Hz, and 800 Hz; and the pair D6 and D7 showed
characteristic peaks at 50 Hz, 100 Hz, 200 Hz, 400 Hz, and 630 Hz. The most common
characteristic frequencies for the UAVs were 50 Hz, 200 Hz, and 315 Hz.

3.2. Results of Discriminant Function Analysis

Discriminant function analysis was performed with 12 MFCCs as the independent
variables and the UAV models as the grouping variables. The analysis showed significant
main effects used in the model (Wilks’ lambda: 0.0000009; approx. F(144, 540) = 15.34;
p < 0.00001). Eleven discriminant functions (Root0, Root1, Root2, Root3, Root4, Root5,
Root6, Root7, Root8, Root9, and Root10) were created. Chi-square tests performed at the
canonical stage with successive roots removed are presented in Table 4.

Table 4. Chi-square tests with successive roots removed.

Roots Removed Canonical R Wilks’ Lambda Chi-Square p-Value

0 0.984 0.0000 995.17 0.00000
1 0.968 0.0000 749.98 0.00000
2 0.948 0.0004 551.43 0.00000
3 0.907 0.0044 387.49 0.00000
4 0.868 0.0251 263.53 0.00000
5 0.774 0.1015 163.55 0.00000
6 0.695 0.2537 98.08 0.00000
7 0.543 0.4903 50.96 0.00162
8 0.475 0.6951 26.01 0.05395
9 0.304 0.8971 7.76 0.55816

10 0.106 0.9884 0.83 0.93388

According to Table 4, chi-square tests with successive roots removed were signifi-
cant for all discriminant functions used in the model (R = 0.984; Wilks’ lambda = 0.0000;
p < 0.00000). The removal of the first discriminant function resulted in a high canonical-
R between groups and discriminant functions (R = 0.968). The removal of the second,
third, fourth, fifth, sixth, seventh, and eight discriminant functions also resulted in a
high canonical-R.

After the canonical stage and derivation of discriminant functions with 12 MFCC
features that mostly discriminate between groups, the classification stage followed. The
coefficients of the classification functions were determined. The classification functions
were used to establish to which group each case most likely belongs. The classification
matrix was obtained to show the number of cases that were correctly classified and those
that were misclassified.

The coefficients of the classification functions obtained for the groups are presented in
Table 5.

The results of classification of the UAV model groups using the classification functions
K(h) are presented in Table 6.

The value five in Table 6 means that for five considered records of the UAV model,
five were correctly classified as belonging to the considered group using the respective
classification function K(h). The value 10 means that for 10 considered records of the UAV
model, 10 were correctly classified. The value 9 means that for 10 considered records,
9 were correctly classified and 1 was misclassified. The value zero (0) means that no record
was classified as belonging to the considered group using the function K(h). The Total
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row (besides the first column) contains the number of all cases classified under the given
function K(h). The value 11 means that for 10 considered records of the UAV model, 10 were
correctly classified and 1 record was additional and misclassified. The percentage values
are the average values of correctly classified cases.

Table 5. The coefficients of classification functions.

ci
K(Mavic
2 Zoom)

K(Mavic
Mini 2)

K(Phantom
4)

K(Matrice
300)

K(Mavic
3)

K(Mavic
Air 2S)

K(Mavic
Air 2)

K(Mavic
2 Pro)

K(Yuneec
H520)

K(Yuneec
H520E RTK)

K(S900) K(X6D) K(Y6)

wi1 78.68 72.36 125.46 131.42 116.42 83.64 83.56 84.21 130.48 134.29 128.93 72.83 85.57
wi2 −27.42 −52.07 −64.47 −70.11 −48.30 −45.95 −24.60 −33.13 −70.16 −69.48 −60.50 −64.23 −45.68
wi3 136.73 101.03 96.68 70.82 119.72 116.44 139.50 140.17 103.73 96.45 147.69 84.23 85.31
wi4 −140.46 −208.73 −176.03 −94.83 −150.06 −200.34 −152.54 −188.17 −183.64 −182.19 −151.99 −160.93 −139.35
wi5 188.23 246.56 279.98 253.03 247.08 234.93 187.79 209.62 303.74 303.28 321.99 185.94 208.90
wi6 −66.20 109.61 −123.52 −221.46 −151.74 38.25 −78.20 −3.50 −93.66 −107.68 −183.84 15.65 −76.86
wi7 −67.45 −112.55 −99.88 −43.51 −74.61 −103.67 −65.22 −81.71 −92.31 −103.93 −135.60 −29.11 −56.70
wi8 55.20 −20.30 125.69 122.23 94.47 45.06 58.55 44.72 133.24 153.70 118.96 55.67 58.10
wi9 −129.30 −109.27 −123.04 −135.49 −152.85 −97.02 −125.01 −162.71 −132.91 −114.35 −211.17 −77.91 −98.97

wi10 −52.32 57.16 −96.49 −147.66 −105.03 5.49 −57.61 −33.90 −100.15 −98.34 −95.28 −35.94 −44.19
wi11 304.85 340.06 359.10 268.74 372.54 318.73 314.04 367.75 337.62 324.41 409.87 129.89 197.51
wi12 −168.27 −371.09 −120.45 36.67 −66.37 −306.44 −119.78 −186.34 −208.51 −206.46 −119.42 −137.74 −74.97
ci0 −379.01 −443.49 −579.10 −496.55 −526.51 −459.50 −403.43 −466.95 −639.39 −635.76 −734.34 −379.69 −352.66

Table 6. The classification matrix.

Group %
K(Mavic
2 Zoom)

K(Mavic
Mini 2)

K(Phantom
4)

K(Matrice
300)

K(Mavic
3)

K(Mavic
Air 2S)

K(Mavic
Air 2)

K(Mavic
2 Pro)

K(Yuneec
H520)

K(Yuneec
H520E RTK)

K(S900) K(X6D) K(Y6)

Mavic 2 Zoom 100.0 5 0 0 0 0 0 0 0 0 0 0 0 0
Mavic Mini 2 100.0 0 10 0 0 0 0 0 0 0 0 0 0 0

Phantom 4 90.0 0 0 9 0 1 0 0 0 0 0 0 0 0
Matrice 300 100.0 0 0 0 5 0 0 0 0 0 0 0 0 0

Mavic 3 100.0 0 0 0 0 10 0 0 0 0 0 0 0 0
Mavic Air 2S 100.0 0 0 0 0 0 5 0 0 0 0 0 0 0
Mavic Air 2 100.0 0 0 0 0 0 0 5 0 0 0 0 0 0
Mavic 2 Pro 100.0 0 0 0 0 0 0 0 10 0 0 0 0 0
Yuneec H520 100.0 0 0 0 0 0 0 0 0 5 0 0 0 0

Yuneec H520E RTK 100.0 0 0 0 0 0 0 0 0 0 5 0 0 0
S900 100.0 0 0 0 0 0 0 0 0 0 0 5 0 0
X6D 100.0 0 0 0 0 0 0 0 0 0 0 0 5 0
Y6 100.0 0 0 0 0 0 0 0 0 0 0 0 0 5

Total 98.8 5 10 9 5 11 5 5 10 5 5 5 5 5

Classification of the UAV models was very accurate, as shown by the 100% value
obtained for correctly classified cases, except for the Phantom 4 model, whose accuracy
percentage was 90%. One record from the ten Phantom 4 drones was misclassified as a
Mavic 3 model.

According to Table 6, the classification was accurate (98.8%). Discriminant analysis
showed significant differences between drones of different models but no significant
differences between those of the same models.

4. Discussion

The acoustic analysis yielded higher A-weighted sound levels and background sound
levels for the X6 UAVs than for X4 UAVs. The A-weighted sound levels of the drones with
an X4 structure were above 50 dB(A), while the A-weighted sound levels of the X6 drones
were above 60 dB(A). The highest A-weighted sound level of 75.7 dB(A) was exhibited
by the D14-X6-S900 model. The D1-X4-Matrice 300 model, also showed an A-weighted
sound level above 70 dB(A) value. The background sound levels presented in Figure 5
resulted in peaks that could be characteristic for UAVs hovering at 8 m over the recording
equipment, but also for other sounds in the surroundings. When investigating the BG, the
surrounding factors may have a minor effect on the recordings of UAVs in this experiment.
The characteristic peaks presented in Table 3 were similar for drone pairs of the same
models, viz.: D2 and D8, D5 and D11, D9 and D17, and D6 and D7. The most common
frequencies, which were obtained for almost all the UAV models, were 50 Hz, 200 Hz, and
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315 Hz. To specify the characteristic peaks, more data records of same UAV models need to
be analyzed.

Discriminant analysis based on MFCC showed significant differences between the
different UAV model groups, but no significant differences between UAVs of the same
models. One out of ten records of the Phantom 4 model was incorrectly classified as a
Mavic 3 model, resulting in a 90% classification accuracy for the Phantom 4 group. In
general, the mean classification accuracy for all of the UAV models was 98.8%. This high
classification accuracy shows that UAV models can be classified based on acoustic signals.
An acoustic system can serve as an additive system for other systems, e.g., vision and radar
systems, to detect and classify drones. Previous research on drones shows that acoustic
systems can accurately detect drones even from a distance of 1 km. Some acoustic systems
can detect drones as well as the drone models. Such systems work even at night, enhancing
privacy area protection. In the current study, the drones were observed and analyzed at
four different places, but this had no influence on the classification accuracies.

Future research should focus on extracting features that will provide more accurate
information about drones and obtaining classification scores of UAV models from other
altitudes and distances. The surrounding factors may affect the accuracy of classification
when increasing the distance between the UAV and recording equipment, which will be the
subject of further research. Previous research on drones has shown that the acoustic signals
of selected drones can be used to determine the altitudes and distances at which the drones
are hovering [33]. Other information that can be obtained from drone acoustic signals may
include the structure of the drone (X4 vs. X6 vs. X8 vs. X3) and its loading. Initial listening
tests showed that information about the loading of a model can be obtained from the
acoustic signal. The sound of the same drone with and without loading shows differences
in the sound signal during listening tests. Future research should aim to numerically
confirm the listening tests and obtain information about the structure of the drone and
loading from acoustic signals. Such information obtained from an acoustic signal may
allow us to detect an object, classify it, determine its loading, distance and height, and
understand the nature of the signal. This, in turn, makes it possible to develop an acoustic
sensor for an unmanned acoustic system that can perform the above activities directly
from the unmanned platform. It will therefore be necessary to reject the components of the
sensor carrier and acquire environmental signals. Such an operation is possible only after
the nature of the drone signals has been understood, thus allowing the rejection of carrier
components and the acquisition of environmental signals.

5. Conclusions

The aim of this study was to perform acoustic analysis and discriminant function
analysis of acoustic signals recorded in the presence of UAVs hovering at a height of 8 m
above the recording equipment in external environmental conditions. Seventeen different
UAVs were used in the experiment.

Acoustic analysis was based on A-weighted sound levels and background sound
levels in the presence of the UAVs. The acoustic analysis showed that drones of X4 model
yielded smaller A-weighted and background sound levels than those of X6 model. The
most common frequencies of background sound levels (peaks) obtained for almost every
UAV model were 50 Hz, 200 Hz, and 315 Hz.

Discriminant function analysis showed significant differences between different UAV
models, but no significant differences between the same UAV models. Classification of the
UAV models was 98.8% accurate. Discriminant analysis and MFCC features showed very
accurate classification results for the models.

Future research should evaluate the impact of other hovering distances of UAVs
from the recording equipment on the efficiency of classification and concentrate on the
classification of the structure of the drone (X4 vs. X6 vs. X8 vs. X3).
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33. Mięsikowska, M. Analysis of signal of X8 unmanned aerial vehicle. In Proceedings of the Signal Processing-Algorithms,
Architectures, Arrangements, and Applications Conference Proceedings, SPA, Poznan, Poland, 20–22 September 2017; pp. 69–72.
[CrossRef]

34. Satish, A.; Medda, A. Acoustic UAV Detection using Spherical Array Beamforming. Conference Record. In Proceedings of the
Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October–2 November 2022; pp. 446–450.
[CrossRef]
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Abstract: This paper presents a comprehensive survey of state-of-the-art UAV–based antennas and
propagation measurements. Unmanned aerial vehicles (UAVs) have emerged as powerful tools for
in situ electromagnetic field assessments due to their flexibility, cost-effectiveness, and ability to
operate in challenging environments. This paper highlights various UAV applications, from testing
large–scale antenna arrays, such as those used in the square kilometer array (SKA), to evaluating
channel models for 5G/6G networks. Additionally, the review discusses technical challenges, such as
positioning accuracy and antenna alignment, and it provides insights into the latest advancements in
portable measurement systems and antenna designs tailored for UAV use. During the UAV–based
antenna measurements, key contributors to the relatively small inaccuracies of around 0.5 to 1 dB
are identified. In addition to factors such as GPS positioning errors and UAV vibrations, ground
reflections can significantly contribute to inaccuracies, leading to variations in the measured radiation
patterns of the antenna. By minimizing ground reflections during UAV–based antenna measurements,
errors in key measured antenna parameters, such as HPBW, realized gain, and the front-to-back
ratio, can be effectively mitigated. To understand the source of propagation losses in a UAV to
ground link, simulations were conducted in CST. These simulations identified scattering effects
caused by surrounding buildings. Additionally, by simulating a UAV with a horn antenna, potential
sources of electromagnetic coupling between the antenna and the UAV body were detected. The
survey concludes by identifying key areas for future research and emphasizing the potential of UAVs
to revolutionize antenna and propagation measurement practices to avoid the inaccuracies of the
antenna parameters measured by the UAV.

Keywords: absorbers; broadcasting systems; knife edge diffraction (KED); parabolic reflector;
path loss; propagation measurements; square kilometer array (SKA); UAV-based measurements;
unmanned aerial vehicles (UAVs)

1. Introduction

Unmanned aerial vehicles (UAVs) or remotely piloted aircraft systems, simply known
as drones, are in high demand for in situ measurements because of their mobility, low
cost, hovering capability, and low maintenance expenses. Advances in technology, such
as software–defined radios (SDRs), have facilitated the utilization of UAVs for antenna
and propagation measurement [1,2]. UAVs are an effective antenna measurement solution
for projects such as the square kilometer array (SKA) [3], broadcasting systems [4], large
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biconical antennas [5], such as those of the French aerospace research center Office National
d’Etudes et de Recherches Aérospatiales (ONERA) [6], and parabolic reflector antennas [7],
because of their in situ electromagnetic field measurement capabilities. UAV measurements
can also help to identify multipath–related propagation losses. In radar applications that
use antenna arrays, UAV measurements are useful for the final calibration after the antennas
are enclosed in radomes and deployed. This is particularly crucial in cases in which the
RF system is large. Climatic conditions, such as rain, snow, or harsh weather, degrade the
antenna radiation performance in terms of side–lobe level (SLL) and ripples in the beam
peak. The degradation of these antenna parameters can eventually lead to a deterioration
of the antenna gain and cross-polarization levels [8]. Conventional methods may not be
feasible in such situations, making UAV–based measurements a viable alternative.

In practice, antenna measurements with UAVs can be performed either in the Fresnel
region (also known as the radiative near field) or in the Fraunhofer region (also known as the
far field). For example, in shortwave communications, an antenna operating at 20–30 MHz
can achieve very long communication distances owing to ionospheric propagation. Nev-
ertheless, in this frequency range, the antenna size is large. To avoid large separation
distances between the antenna under test (AUT) and the UAV, near–field measurements
are an appropriate and practical alternative, whereby the near–field measurements are
mathematically transformed into far–field radiation patterns. In this paper, the utilization
of UAVs to perform near–field measurements is presented and involves the UAV following
a specific spatial path [9–11] to collect measurements of the AUT using an SDR.

Measuring antenna performance using the traditional outdoor method [12] involves
measuring the antenna in the far–field region. Accordingly, these measurements require
several pieces of expensive and heavy equipment. The AUT is in the receiving mode and is
connected to a mixer and microwave receiver [13], which can retrieve the amplitude and
phase information of the AUT. Supported by model towers, the AUT is placed on a multi-
axis rotary positioner, such as an azimuth–over–elevation-over-azimuth positioner [14].
These positioners can rotate the AUT by 360◦ in the azimuth plane and provide limited
motion in the elevation plane.

Unlike traditional outdoor measurements, UAV–based measurements do not rely on
large or heavy equipment. For example, instead of a heavy spectrum analyzer, an SDR,
which is compact and lightweight, can be used. In addition, these SDRs can be controlled
from ground level. Taking advantage of UAVs’ capability to hover and perform circular
trajectories would make them free from the positioners and controllers used in the tradi-
tional measurement methods. In addition to the UAV–based antenna measurements, UAVs
can also be used for propagation measurements. UAVs equipped with SDRs can be used to
perform propagation measurements, which involve estimating signal strength as a function
of frequency and time. These measurements are then post–processed to extract the channel
coefficients, such as path loss and angle of arrival, which are used to model the channel.
The channel model can then be used to design an air–to–ground (ATG) communication
system [15] and evaluate its performance under different operating conditions. UAVs are
used to evaluate the performance of existing ATG communication systems and to identify
potential sources of interference or signal degradation [16]. Propagation measurements
can be conducted by mounting a transmitting antenna and lightweight transmitter with
a built–in battery on a UAV and a standard calibrated antenna acting as a receiver con-
nected to a spectrum analyzer at the ground level. A critical issue is airframe shadowing,
which obstructs the line–of–sight (LOS) path between the transmitter and receiver caused
by the UAV body. In this regard, it is important to verify that the transmitting antenna
mounted on the UAV is in direct LOS with the receiver before performing any propagation
measurements [17].

This article describes how UAVs equipped with an antenna and an SDR configured
as a receiver can be used to measure antenna and propagation characteristics in various
practical cases. In contrast, previous studies have emphasized only one specific case each
time. The main contributions of this study are in the following topics:
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• A comprehensive review of the latest advancements in UAV–based antenna and
propagation measurements encompassing various techniques and applications.

• Implementation of both near–field and far–field measurement techniques, emphasiz-
ing the practical advantages, including a discussion on the use of SDRs in UAV–based
measurements.

• Exploration of a wide range of applications, from the SKA and large–scale biconical
antennas to 5G/6G network evaluations.

• Illustration of practical implementations and effectiveness of UAV–based measure-
ment systems, presented using real–world test cases, such as measurements of parabolic
reflector systems and large–scale propagation channel effects.

The remainder of this paper is organized as shown in Figure 1. Section 2 focuses on
UAV–based measurements. In this section, we provide design recommendations for UAV–
based measurements. By following the design recommendations, we describe how UAV–
based measurements can be performed in the far– and near–field regions. For UAV–based
antenna measurements in the far–field region, we describe the procedure for measuring
base station antennas (BASTAs) and digital television (DTV) stations deployed in the field.
To measure antennas operating at lower frequencies, a larger distance between the AUT
and UAV is required, owing to the large dimensions of the AUT. To overcome these large
separation distances, antenna measurements can be performed in the near–field region.

 
Figure 1. Organization of the paper.

We explain UAV–based near–field measurements for structurally large antennas, such
as low–frequency aperture arrays (LFAAs) and biconical antennas. UAV–based propagation
measurements are presented in Section 3. In this section, a detailed explanation of the
simulation results for large–scale and small–scale propagation measurements is presented.
Based on the UAV–based antenna and propagation measurements, we explain the design
considerations for selecting the UAV probe, and the conclusions are provided in Section 4.
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2. UAV–Based Measurements

Characteristics such as the matching impedance, polarization, radiation efficiency,
directivity, gain, and radiation patterns are used to ascertain the antenna performance. For
radar systems with stringent specifications, such as polarimetric weather radar, calibration
of the systems after deployment in the field is crucial. Figure 2 describes the methodology
adopted for UAV–based measurements, in which the UAV is equipped with an antenna at a
height huav that serves as a signal source, while the AUT is at a height haut from the ground
plane. An antenna mounted on a UAV can act as either a transmitting (TX) or a receiving
(RX) antenna. As shown in Figure 2, the AUT and the TX antenna mounted on the UAV
were separated by distance R. Here, α denotes the half–power beam width (HPBW) of the
TX antenna mounted on the UAV, and αh denotes the plane angle subtended at the antenna
mounted on the UAV by the AUT height [18].

Figure 2. Measurement configuration of the UAV system.

In the process of measuring the radiation pattern of an AUT using a UAV, several
factors, such as the phase curvature of the incident wave, ground reflections, and ampli-
tude taper of the source antenna, affect the measurement accuracy. To avoid measurement
inaccuracies, caution should be exercised regarding the variations in the phase and ampli-
tude of the incident field and the interference from ground reflections. For UAV–based
measurements, as a rule of thumb, the TX antenna is selected such that it has a wider HPBW
than the AUT to prevent measurement errors. Similarly, the phase curvature of the incident
field on the AUT affects the accuracy of the measured SLL. To overcome these errors, the
phase deviation over the planar test aperture is maintained below 22.5◦. To achieve this
phase deviation, it is necessary to have a separation distance greater than 2D2/λ, where
D is the maximum dimension of the antenna and λ is the operating wavelength [19]. The
other factors that affect the accuracy of the measurements are ground reflections.

Ground reflections can often cause signals to be added constructively/destructively,
resulting in apparent gain values that are higher or lower than expected. Also, maintaining
a sufficient distance between the TX and RX antennas prevents the distortion of the patterns
caused by ground reflections. Different approaches have been used to reduce ground
reflections, including diffraction screening and absorbers between the TX and RX antennas.
The use of a TX antenna with a low SLL can also prevent ground reflections [20]. At the
same time, aligning the beam peak of the TX antenna with the AUT is essential. This can
be achieved in a couple of iterations, which involve measuring the power received at the
AUT when a UAV is carrying the TX antenna that flies at different altitudes. At a particular
height, the UAV can further vary its altitude slightly to detect the position corresponding
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to the maximum received power of the AUT. At this height, the beam peak from the TX is
appropriately aligned with the AUT. With the TX aligned with the AUT and by maintaining
a low SLL, ground reflections can be avoided to a certain extent.

2.1. UAV–Based Far–Field Measurements

To perform far–field measurements, it is essential to maintain a minimum distance of
2D2/λ, as discussed previously. A UAV equipped with high–precision controller boards
and RF measurement equipment, such as an SDR [21] with directional antennas, can be
used for far–field measurements. For instance, in the inspection of reflector systems [7]
and structurally large antennas, UAV–based measurements are cost–effective and reliable.
The measurement techniques proposed here have several advantages over conventional
methods, such as the use of helicopters equipped with RF payloads [22], in terms of cost
and maneuverability. A compact and lightweight design allows UAVs to easily reach any
location for measurements. They can also hover at a specific location, which enhances their
ability to conduct RF measurements, with improved results. Various techniques, such as
fast Fourier transform (FFT) [23], angular deconvolution [24], spatial mode filtering [25],
frequency impulse response, and Hilbert transform, can be used to filter noise when
measurements are conducted outdoors in a noisy environment. Considering that the
above methods are not generic and cannot be applied to all environmental conditions, [26]
proposed a filtering technique referred to as locally weighted regression and dispersion
smoothing, which can be used to filter out high–frequency noise.

To validate this methodology, measurements were conducted in an anechoic chamber
as well as an outdoor environment using the proposed filtering technique on a Yagi–Uda
antenna operating at 2.4 GHz and a horn antenna at 5.3 GHz. An analysis of the HPBW
measured in an anechoic chamber and an outdoor environment showed that they were in
good agreement, with a difference of only 1◦. In the far–field measurements, the far–field
patterns on a sphere of a constant radius were estimated. The elevation and azimuth angles,
denoted by θ and ψ, were the variables used to identify the location on the sphere. The
phase information of the AUT was obtained using a vector network analyzer (VNA), and
the two-dimensional amplitude information may be calculated using the total electric field:

|E| =
√
(Eθ)

2 +
(
Eψ

)2, (1)

where Eθ , Eψ are the electric field in the elevation and azimuth planes, respectively.
In UAV–based far–field measurements, the AUT is placed on a tripod and the UAV

follows a vertical and horizontal path around the AUT. The UAV carries an RX antenna
while moving and collecting data points. The AUT is stationary in this scenario, unlike the
conventional outdoor ranges, which can be either elevated or elevated slant ranges, and
requires the AUT to rotate by means of positioning commands operated by a computer.An
example of a conventional elevated slant range is shown in Figure 3, in which a TX antenna,
such as a quad–ridged horn, is mounted on a tall structure, and an AUT, such as an offset–
fed parabolic reflector system, is mounted on an azimuth positioner. To eliminate errors
caused by ground reflection, absorbers are placed between the source antenna and the
AUT. Generally, a TX antenna is designed to have a low SLL, and the height at which the
source antenna is mounted should be selected such that the main beam illuminates the
AUT. Traditional measurements are performed using a stationary source antenna, and the
radiation pattern can be obtained in both the elevation and azimuth cuts by rotating the
AUT placed on the positioner. However, in UAV–based measurements, the UAV carrying
the antenna follows a trajectory and the AUT is stationary. The advantage of this setup is
that it does not require heavy and expensive positioners to obtain AUT radiation patterns.
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Figure 3. Conventional elevated slant test range.

As shown in Figure 4, a UAV with a quad-ridged dual–polarized horn operating at
6–24 GHz was used as a far–field transmitting antenna [27] to measure the microwave vi-
sion group (MVG) SR40 parabolic reflector system. During the outdoor measurements, the
UAV and AUT were maintained at 350 and 750 m, respectively. The TX antenna mounted
on the UAV was supported by a gimbal, which was used to detect radiation patterns in the
elevation plane, and the rotation of the UAV around the parabolic antenna was performed
to measure the radiation patterns in the azimuth plane. All the measurements were per-
formed at 14.5 GHz. During UAV measurements, errors may occur because of external
winds, reflections from surfaces, and misalignment between the probe and the AUT caused
by UAV propeller vibrations. To minimize these errors, various methods are employed,
such as measurement of the AUT under additional conditions, such as rotating the device
at 180◦, conducting measurements with different separation distances, and taking multiple
measurements at a time in one cut and averaging them.

 
Figure 4. UAV–based in situ measurement for a parabolic reflector antenna system.

Figure 5 illustrates how UAVs can measure the performance of antennas mounted on
ships. In [28], a UAV carrying a vertically polarized ground plane monopole antenna and
three vertical radials was used as an RX antenna to measure an X–band vertically polarized
reflector antenna mounted on a ship that resonates at 9.5 GHz. Throughout the UAV flight,
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the antenna mounted on the UAV is directed towards the AUT; however, the variance in
the pitch and roll axes while the UAV is in motion creates a polarization mismatch. Based
on the experiments conducted in [28], a loss of 0.2 dB is observed in the measured radiation
pattern due to polarization mismatch. Traditionally, to measure the performance of an
antenna installed on a ship, an RX antenna connected to a spectrum analyzer is required
to collect the signals. The RX antenna is placed at the ground level on the shore. The
reflector antenna, which is the AUT installed on the ship, continuously transmits signals.
To measure the radiation pattern of the AUT in the azimuth plane, the ship carrying the
reflector antenna should follow a circular trajectory in the sea, while the receiver collecting
the signals is static at ground level. Conversely, for UAV–based measurements, an SDR
mounted on the UAV is used to receive the signals. A reflector antenna installed on the
ship transmits signals. Here, the ship carrying the TX is static, and the UAV carrying the
RX antenna follows a circular trajectory with a constant radius around the ship situated at
the center of the circle. When measuring an antenna installed on a ship, it is essential to
meet specific criteria to ensure that there are no losses due to polarization mismatches [29]
or multipath reflections from seawater [30]. Considering that the AUT has a maximum
diameter of 1 m and operates at 9.5 GHz, it is imperative to maintain a far–field distance
(Fraunhofer distance) greater than 60 m, and no obstacles should block the first Fresnel
zone between the ship and the UAV.

 
Figure 5. UAV–based measurement for a parabolic reflector antenna system placed on a ship.

2.1.1. Aerial Measurement of Base Station Antennas

To establish communication, a mobile BASTA [31] is essential and serves as a com-
munication hub for wireless devices. Owing to the exponential increase in the number
of devices connected to wireless networks, BASTAs are being deployed at an unprece-
dented rate to provide connectivity to users. Certain errors may occur when BASTAs are
deployed in the field. These errors include undesired antenna twists, antenna tilts, errors
in antenna alignments, and the effects of adjacent objects and towers on radiation patterns.
In such cases, performing an in–situ measurement allows one to identify faults and repair
the system, thereby improving its performance. In traditional airborne measurements, a
helicopter is used to measure the radiation pattern. However, these methods are expensive
and require heavy equipment. Advancements in UAVs and the miniaturization of RF com-
ponents, such as portable spectrum analyzers, have enabled the measurement of mobile
BASTA systems using UAVs [32].

UAV–based measurements for BASTAs involve measuring vertical and horizontal
radiation patterns. The vertical radiation pattern is determined using the procedure shown
in Figure 6. To ensure optimal reception from the AUT, the UAV should be positioned at an
appropriate height to maintain LOS with the BASTA. Once the optimal vertical location
is determined, the UAV follows a vertical path and reconstructs the radiation pattern.
Typically, a BASTA consists of several antenna elements, such as dipoles, arranged in an
array. Each of these elements has its own radiation pattern. The resultant radiation pattern
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is formed by combining all the elements in an array. Therefore, the UAV must follow a
vertical path to reconstruct its vertical radiation pattern. The electrical down–tilt and null
fill can be determined by obtaining the vertical radiation pattern of the BASTA. Electrical
down–tilt [33] and null fills are significant parameters that affect the base station coverage
area. Ground users experience maximum signal strength when the main lobe is directed
towards their area, whereas they do not receive any signal when a null fill is directed
towards them. In [31], a UAV programmed with a mask R–CNN was used to automatically
determine the base station orientation. R–CNN is an object detection algorithm used
to detect specific regions in an image. The proposed method in [31] involves creating a
database named UAV–antenna, which consists of 19,715 communication BASTA images.
This is achieved by the capturing of BASTA images by UAVs. Secondly, mask R–CNN
applies a selective search scheme to identify the pixel coordinates of the BASTA. These pixel
coordinates are used to measure the BASTA’s tilt angle. Based on the proposed method,
after completing the measurements it was found that the actual tilt angle of the antenna
system deviated by 1◦–2◦ from the intended tilt angle.

Figure 6. Vertical radiation pattern of a BASTA using a UAV.

Figure 7 illustrates the procedure followed to obtain the horizontal radiation pattern
of a BASTA deployed in the field, which was measured using a UAV with an RX antenna.
Based on the optimum height, at which the RX antenna mounted on the UAV receives
the maximum power from the AUT, which is determined during the vertical pattern
measurements, the UAV follows a trajectory in a circular path around the AUT. Obtaining
a horizontal radiation pattern enables one to determine azimuth HPBW, sector power ratio
(SPR), and front-to-back ratio (FBR). SPR is the ratio of power outside the desired sector to
power inside the desired sector. This helps to improve the antenna design, which requires
the SPR to be as low as possible to achieve lower co–channel interference and better call
quality. Ideally, a BASTA should have an SPR less of than 3% and an FBR greater than
25 dB [34].
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Figure 7. Horizontal radiation pattern of a BASTA using a UAV.

2.1.2. Aerial Measurement of Broadcasting Antennas

In [35], a SixArms custom-built hexacopter with a log–periodic antenna was used to
perform broadcasting antenna measurements in the far-field region. It was used to measure
the effective radiated power (ERP) and horizontal radiation pattern (HRP), as well as the
vertical radiation pattern (VRP). As shown in Figure 8, high–power broadcast antennas can
experience certain deviations in their performance, leading to a degradation in the overall
coverage area. The feeding mechanism of a broadcast antenna [36] plays a significant role,
and these systems are vulnerable to changes. Upon performing the in–situ measurements
and comparing the measured VRP with the design specifications, it was observed that
there was a 1◦ deviation in the tilt in the test case of [32]. Similarly, a change of 0.5◦ in the
electrical tilt was observed owing to the change in the mechanical lean of the broadcast
antennas. By measuring the HRP, other common errors, such as incorrect panel orientation
and inverted panels, could be identified and eliminated, thereby enhancing the overall
performance of the broadcast antenna [37]. By comparing the HRP of the broadcasting
antenna measured with the UAV with the design specifications, it became apparent that a
10◦ deviation arose in this test case from an incorrect panel orientation after the panel was
installed on the tower. Similarly, measuring the HRP of the broadcast antenna, when there
was a taller tower at just 650 ft, showed a 3 dB notch in the plots, which implies that the
adjacent tower impacts the measured system.

Figure 8. Common errors in broadcasting systems.
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Ideally, when amplitude–only measurements are performed, UAVs carrying transmit-
ters/receivers are in the far–field region (the Fraunhofer region) to measure the radiation
pattern [20]. To validate the theoretical concept of far–field regions, the SixArms Airborne
Radio Measurement Systems (ARMS-RFX) UAV was used to measure a DTV station at
720 m and 2025 m from the AUT. DTV broadcasting antennas are composed of antenna
arrays formed by similar elements. The total height of a DTV broadcasting antenna with all
the elements in an array is typically 20 m, with a maximum antenna dimension of 20 m and
a frequency of operation at 515 MHz (UHF channel 21 in the USA). Far–field measurements
with UAVs can be performed by maintaining at least 1450 m from the AUT. As shown
in Figure 9, ARMS–RFX UAVs equipped with an ARMS receiver comprising a real–time
spectrum analyzer and an embedded PC [38] were used to measure the DTV transmitter
station at 720 m and 2025 m from the AUT. Log–periodic antennas (LPDA) mounted on
top of the UAV received signals from the AUT. The radiation pattern of the AUT was
calculated instantly for every 0.1◦, as the UAV took a vertical path. Using a telemetry link,
the measured radiation patterns were transmitted to the ground user for quick verification.

Figure 9. SixArms airborne measurements for broadcasting systems.

The elevation patterns taken at 720 m, which should have been 1450 m according to
the theoretical far–field distance calculations, and at a far–field distance of 2025 m from the
AUT, are depicted in Figure 10. In Figure 10a, the red dashed lines represent the elevation
pattern of the AUT according to the manufacturer’s data sheet, and the solid black line
represents the measurements performed with the UAV at 720 m. Similarly, Figure 10b
represents the measurements performed at 2025 m from the AUT. From the elevation
patterns measured at 720 and 2025 m, it was observed that the measurements do not always
have to be in the far–field region. UAV–based measurements can be performed closer
to the AUT and are still valid. From the two cases depicted in Figure 10, it is evident
that when measurements are performed at 720 m from the AUT, the null fill and null
depths vary slightly compared to measurements performed at 2025 m from the AUT. In the
following sections, we discuss UAV–based antenna measurements in near–field regions.
This technique enables the assessment of antennas that are significantly large. Additionally,
conducting measurements in the near–field offers the advantage of reducing the flight
times required for UAV operations. In Table 1, we present an overview of the reflector and
broadcasting antennas measured in far–field regions using UAVs.
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(a) 

(b) 

Figure 10. (a) UAV–based measurements at 720 m and (b) UAV–based measurements at 2025 m.

Table 1. Far–field measurements.

Reference Frequency of Operation Far–Field Distance AUT

[27] 14.5 GHz 350 m Parabolic reflector.
[28] 9.5 GHz 60 m Reflector mounted on ship.
[35] 515 MHz 2025 m Broadcasting antenna.

2.2. UAV–Based Near–Field Measurements

To meet the far–field criteria, low–frequency antennas require a considerable distance
between the AUT and UAV carrying the antenna. Such long distances may result in
excessive free–space path loss, which can reduce overall system accuracy. In such cases,
near–field measurements can be useful for EM wave measurements in the radiative near–
field region. It is easy and quick to conduct near–field measurements with a UAV and
does not require heavy and complicated equipment. In [39], a biconical antenna operating
at 110 MHz was measured using a UAV under indoor conditions. Time domain gating
techniques were applied to avoid ground reflections and UAV motion. Similarly, in [40],
navigation systems were measured in the near–field region. The measurement results
from [39,40] prove that UAV–based near–field measurements can be performed accurately
with low–cost equipment.

As shown in Figure 11, UAV–based measurements were performed at radiating near–
field regions beginning at 2.5 m for a grid reflector with a maximum diameter of 1 m that
operates at 4.65 GHz [41]. Because the accuracy of UAV–based near–field measurements
depends on UAV coordinates, [42] used dual–band real–time kinematics (RTK), which
made it possible to obtain UAV coordinates within 10 arcseconds. The UAV was equipped
with two monopoles operating in the 4–7 GHz frequency band that were separated from
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each other by a space of 80 cm. This setup measured a reflector system operating at 4.65
GHz fed by a circularly polarized helix antenna. The monopoles were mounted on a
UAV using three–dimensional (3D) printed components, which are highly resistant to
mechanical vibrations and transparent to EM waves. Near–field measurements were
performed by obtaining the equivalent current distribution over the surface of the AUT.
A phase–less retrieval technique was utilized to plot the radiation pattern based on the
integral equation method [43], in which the simulated AUT was modeled with equivalent
electric and magnetic fields on a closed surface. After obtaining the radiation patterns
for the reflector system deployed in the field, measurements were conducted in anechoic
chambers. Comparisons between the results obtained from the UAV–based near–field
measurements and the measurements in anechoic chambers indicate that when the reflector
system is deployed in the field, there is an offset in the beam position and the main beam is
widened owing to misalignment errors and ground reflections.

 

Figure 11. UAV–based measurements in radiating near field.

In Figure 12, a UAV carrying a monopole is used to characterize an antenna operating
at 3–30 MHz. The AUT is a Nostradamus ONERA system [44] consisting of a set of 288
biconical antennas arranged along a branch separated by 120◦. Biconicals are omnidirec-
tional, and each has a height of 7 m and a width of 6 m. To validate the accuracy and
functionality of UAV–based near–field measurements for characterizing the high–frequency
(HF) antenna by ONERA, ref. [6] used a Dà-Jiāng Innovations (DJI) Matrice 600 Pro carrying
an antenna to measure a monopole that was 6 m high when placed on a ground plane. The
measured data were compared with simulated data, and good agreement was achieved,
thus proving that UAV–based near–field measurements are a cost–effective solution for
characterizing HF antenna systems.

When selecting the appropriate material for mounting the antenna on the UAV, it is
important to ensure that the UAV body does not degrade the performance of the antenna.
In [45], a Mikrokopter equipped with a signal generator and a short monopole was em-
ployed to measure a 6 m parabolic dish fed by a dual–polarized LPDA operating in the
frequency range of 300 MHz to 3 GHz. In this UAV model, the ground plate was made of
aluminum, and to minimize the impact of the UAV body on the antenna, a mesh structure
was placed between the frame of the UAV and the antenna. Similarly, the UAV propellers
can generate harmonics that are influenced by the propellers’ rotations per minute (RPM)
and their dimensions. The Doppler spectrum and harmonics [46] generated by the pro-
pellers can be studied using the double–edge diffraction model [47]. It was observed that
when an antenna mounted on a UAV transmits signals while the propellers rotate, the
signal received by the AUT exhibits a Doppler effect. The Doppler effect, harmonics, and
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scattering experienced by EM waves from an antenna lead to a drop in the power received
by the AUT, which affects the radiation pattern of the AUT. The effects of propellers can be
avoided by placing the antenna on the UAV at a location which is far from the propellers.
Other approaches, such as using fiber glass material instead of carbon fiber for the pro-
pellers, are validated in [48,49]. All the measurements of the radiation patterns in this case
were performed at 328.5 MHz.

Figure 12. UAV–based measurements for an array of HF wire biconical antennas.

Aerial Measurements of Low–Frequency Antennas

The SKA is an array of telescopes that operates based on the principle of aperture
synthesis and is designed for excellent spatial and angular resolution. A square kilometer
array log–periodic antenna (SKALA) is a very large structure, and measuring such a
large structure in the far–field region requires a large measurement distance. Performing
UAV–based far–field measurements for these antennas is not economical owing to the
battery limitations of UAVs. Sometimes, the UAV altitude needs to be more than 120 m,
which is not possible owing to UAV flying guidelines. In such cases, the antennas are
measured in near–field regions. One such case is the SKALA; it consists of 256 LPDAs with
a diameter of 38 m. In the SKALA, each LPDA comprises a bowtie dipole for impedance
matching. In [50], a pre–aperture array verification system for SKA was measured with
UAVs in the near field. The AUT consisted of 16 active elements. All the elements were
designed to feature a dual–polarization operation in the frequency range of 50–350 MHz, a
minimum directivity of 8 dBi, and an intrinsic cross–polarization ratio exceeding 15 dB. An
inter–element spacing of λ/2 was maintained to achieve better control over beam steering.
However, maintaining an inter–element spacing of λ/2 is subject to mutual coupling [3].

The pre–aperture array verification system of SKA, which is the AUT, has an overall
size of 9.2 m over a 16 m ground plane mesh. The metallic grid ground plane improved
the overall directivity of the system and provided protection from humidity, weather, and
terrain conditions. The UAV was equipped with a portable signal generator and a dipole
resonating at 175 MHz. The main challenge in these measurements is obtaining accurate
phase values. In [50], to address this problem, an additional reference antenna with a
known phase [51] was used. This reference antenna was placed 12 λ (20 m) from the center
of the array, as shown in Figure 13. The UAV was equipped with a dipole and followed a
quasi–planar trajectory at an altitude of 24 m. With an average speed of 3 m/s, the UAV
took 15 min to complete the trajectory.
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Figure 13. UAV with monopole flying over the LPDA array.

When the UAV follows the trajectory, the receiver system connected to the AUT at
the ground level acquires voltages corresponding to the horizontal and vertical directions.
The time stamps of the global navigation satellite systems (GNSSs) on the UAV and the
time stamps of the GNSS at the ground level are synchronized at the receiver connected
to the AUT. Finally, with the complex voltages and phase values, the embedded element
patterns are reconstructed by performing a near–field to far–field transformation. The
measured data from the UAV were compared with the simulated data, and the simulations
were performed in the CST studio suite. From these comparisons, it was observed that the
UAV–based near–field measurements were accurate. A deviation of 1 dB was observed
in the amplitude. Thus, UAVs can be used to measure large structures such as the SKA in
the near–field region. Thus, UAV–based measurements for the SKALA can help to identify
areas where design improvements are required to improve the efficiency of the entire
system. Table 2 presents a summary of large antennas, such as reflector antennas, ground
plane antennas, ONERA biconicals, and SKALA LPDAs measured by UAV near–field
techniques.

Table 2. Near–field measurements.

Reference
Frequency of

Operation
Near–Field Distance AUT

[41] 4.65 GHz 3.4 m Offset reflector

[52] 20 MHz 4 m Ground plane
antenna

[50,51] 175 MHz 15 m SKALA

3. UAV–Based Propagation Measurements

With advancements in technology and the demand for wireless connectivity, especially
for UAVs and other applications, there is a great demand for wireless networks with
low latency. These networks require a latency as low as 1 ms, which is a significant
improvement over the 40 ms latency of fourth–generation (4G) networks. Transmission
needs to be moved to millimeter wave (mmWave) or even terahertz (THz) frequencies
to achieve such low latency. EM waves experience higher propagation losses at such
high frequencies, owing to diffraction [53] and scattering from rough surfaces. Therefore,
understanding the propagation environment through propagation measurements [54] is
essential. The propagation of EM waves in an environment can be evaluated by using UAV–
based propagation measurements. In addition, UAV–based propagation measurements
enable the measurement of key performance indicators (KPIs), such as reference signal
received quality (RSRQ) and reference signal received power (RSRP). In [55], a hexacopter
carrying a smartphone, sensors, and guided autonomous flight paths was used to measure
RSRP and RSRQ. During the transmission, the signal was attenuated by various factors
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before it reached the receiver. The most common reasons for signal attenuation are path
loss, shadowing, and multipaths. Shadowing and multipath components, such as reflection,
refraction, diffraction, and scattering, are primarily caused by obstacles. In sub-Section 3.1,
we discuss large–scale and small–scale propagation in detail.

3.1. UAV–Based Large–Scale Propagation Measurements

UAVs can be used to measure large–scale propagation effects that occur mainly owing
to path loss and shadowing. To estimate the path loss, the commonly used models are
the free–space path loss (FSPL), two–ray, basic log–distance, and modified log–distance
models. For the path loss calculation, the FSPL requires information about the transmitter
antenna gain (Gt), receiver antenna gain (Gr), operating wavelength (λ), and separation (d)
between the UAV and receiver. On the other hand, when the UAV is at a lower altitude
and ground reflections are present between the UAV and receiver, two–ray models can be
utilized to estimate the path loss. In [56], a DJI Mavic 2 Enterprise UAV equipped with a
LoRa sleeve dipole operating at 868 MHz was used for propagation measurements between
a UAV and a wireless sensor network (WSN) and between a UAV and an unmanned
surface vehicle (USV). The results of the UAV–based propagation measurements for a
scenario in which the UAV moved vertically up to 30 m, and another scenario in which
the UAV moved horizontally away from the receiver (WSN or USV), were compared with
path loss estimations from two–ray models. Based on the comparison, the two–ray model
underestimated the path loss, resulting in a mean difference of 6.45 dB between the UAV
and USV and 15.5 dB between the UAV and WSN. These findings demonstrate the necessity
of improving the two–ray model to increase the accuracy of path loss measurements. A
higher level of precision is required for mmWave [57–59] and for situations in urban
areas [60], which are surrounded by multiple buildings and obstacles.

Log–distance path loss models are more general and appropriate for calculating path
loss [61]. In evaluating the path loss for a channel between a UAV and a receiver, the
log–distance method considers the path loss exponent (α). An improvement in the log–
distance model is the modified log–distance model. According to the modified log–distance
model [62,63], we can determine the path loss by

PL(dB) = PL0(dB) + 10αlog10

(
d
d0

)
− 10log10

(
Δh
hopt

)
+ Cp + 10log10

(
1 +

Δ f
fc

)
, (2)

When estimating the path loss, the modified log–distance model considers an addi-
tional parameter known as the height of the UAV from the ground (hgnd), the minimum
height of the UAV (hopt) that provides the lowest path loss, and a constant loss factor Cp,
representing the losses due to the antenna orientation on the UAV and carrier frequency
fc. PL0 (dB) is the path loss at the reference distance d0, Δf is the Doppler variation in
frequency, and Δh is the difference between hgnd and hopt.

To determine the extent to which the various factors discussed above attenuate the
signals, we created a scenario with a UAV carrying the transmitting antenna. The propaga-
tion measurements [64], as described in Figure 14, consisted of a car and horn antenna that
was identical to that mounted on a UAV. The ground–level antenna worked in the receive
mode and was mounted on a 2 m mast in front of a 10 m building. The horn antenna was
mounted on the UAV hovering 12 m above ground level. Modeling and simulations were
performed using commercially available EM software, CST Studio suite 2023 [65] at 5 GHz.
Part of the signal was diffracted by the corners of the buildings at a height of 10 m and by
metallic components of masts and obstacles, such as cars, before reaching the receiver at
ground level.
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Figure 14. Scattering effect in a semi–urban area simulated in CST.

In [66], a UAV equipped with a dipole and scanner capable of measuring RSRP was
utilized to calculate the path loss, with the UAV’s altitude varying from 1.5 m to 120 m
above ground level. To understand the influence of LOS and non–line–of–sight (NLOS)
conditions on the path loss calculations in [67], the path loss was measured in an area of
500 m × 500 m. As part of this experiment, propagation measurements were performed
in an urban area in Greece, which consists of buildings and trees. Measurements were
conducted at 2.12 GHz for both LOS and NLOS scenarios, with the UAVs operating at
an altitude of 6 to 200 m above ground level. The attenuation caused by reflections and
diffractions from buildings and obstacles was also considered for the path loss calculations
using the log–distance path loss model. The calculations were based on the uniform
theory of diffraction (UTD) and geometric optics (GO). The path loss calculations varied
for the LOS and NLOS conditions. The UAV flew at 100 m above the ground; for the LOS
condition, α was as low as 2.6; however, at the same altitude, for the NLOS condition, α
was 7.2, indicating that the path loss values differed depending on the test conditions.

The polarization mismatch of the antenna mounted on the UAV also affects the
accuracy of the path loss measurements. In [68], a DJI Phantom 4 UAV with a vertically
polarized dipole working in the 3.1–4.8 GHz range was used for propagation measurements
in three different scenarios. Initial measurements were performed between the UAV and
receiver, assuming that no obstacles were present between the UAV and receiver. During
this experiment, the receiver antenna at ground level was vertically polarized in one case
and horizontally polarized in the other. By always leaving the transmitter located on the
UAV vertically polarized, the VV and VH cases were produced. For the VV condition,
a path loss of 72 dB and a path loss of 80 dB were observed for the VH condition. This
indicates that there was an additional path loss resulting from the polarization mismatch.
For ATG propagation measurements, EM waves are attenuated by multipath components,
such as reflections, diffractions, and scattering. To estimate these losses, using the FSPL,
two–ray [69], and log–distance path loss models may not be accurate in certain scenarios.
Alternatively, empirical models, such as multi–slope log–distance path loss models [70],
height–dependent two-ray models [71], and excess path loss models [72], are more reliable.

The models that have been addressed so far are all deterministic. These models do not
consider the dielectric properties of obstacles that attenuate the signals. In such instances,
statistical models such as log–normal shadowing are used to calculate the attenuation
of signals due to random variations. There are two crucial variables in a log–normal
shadowing expression, μψB: the mean of the random variable, and σψB: its standard
deviation. A DJI N3 UAV, in combination with a λ/4 monopole, was used in [73] to
measure path loss while the UAV moved from 0 to 24 m in height. In the context of path
loss measurements, [73] proposed an altitude–dependent propagation loss model based
on a zero-mean-behavior random variable. Under NLOS conditions, after performing
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propagation measurements at 1 GHz and 4 GHz, the σψB [74] value increased with the
frequency and distance of the UAV from the receiver. The typical range of σψB is 5–12 dB
for terrestrial macrocells and 4–13 dB for terrestrial microcells. For aerial wireless channels,
σψB ranges from 1.2 to 5.24 dB, and it is observed that when UAVs fly at high altitudes, σψB
can be as low as 1.2 dB [75].

3.2. UAV–Based Small–Scale Propagation Measurements

In [76], to investigate the dependence of small–scale fading on the altitude of a UAV, a
hexacopter was equipped with a circularly polarized cloverleaf wire antenna, as shown in
Figure 15. The receiving system consisted of a magnetic mount wideband high–frequency
(MGRM–WHF) antenna, which is independent of the ground plane and was installed on
a mast at the ground station, 1.5 m above the ground. The test environment consisted of
multiple buildings and metal containers with the UAV taking a vertical path ranging from
0 to 100 m in height and a horizontal path maintaining 20–60 m from the receiver at ground
level. The path loss exponents (PLEs) were estimated by varying the height of the UAVs to
determine the relationship between small–scale fading and the UAV altitude. Furthermore,
small–scale fading calculations are categorized into LOS and NLOS conditions. The Rician-
K factor was utilized in the LOS case to explain the fading behavior. Adding the height
parameter of a UAV to the Rician–K factor provided a better understanding of the small–
scale fading. At lower altitudes, multipath components [77] from buildings and metallic
containers combined vectorially at the receiver, causing fading. The cumulative distribution
functions (CDF) [78] estimated small–scale fading in both the LOS and NLOS conditions.

Figure 15. Hexacopter carrying cloverleaf wire antenna.

In [75], a DJI N3 six–rotor UAV, equipped with a λ/4 monopole, was used to determine
the fading depth, using UAVs by varying their vertical paths from 0 to 24 m in height,
with a receiving station positioned 25 m away from the UAV. A λ/4 monopole with
a ground plane and gain of 5.2 dBi, connected to a portable signal generator, enabled
the continuous transmission of signals. We note from the measurements that the fading
depth was independent of the operation frequency, which was more evident for the LOS
conditions than for the NLOS conditions. A distribution function, such as the Nakagami,
Rayleigh, Weibull, or Gaussian function, can describe the fading amplitude. By maintaining
a root mean square error (RMSE) as low as 0.02 dB for both the LOS and NLOS scenarios, the
log–logistic function [79] is the best distribution function among the available distribution
functions.

In [80], to investigate the scattering effect of the buildings, ATG propagation mea-
surements were conducted using a custom–built UAV equipped with a mmWave conical
horn antenna (operating in the 26–40 GHz range) configured as the receiver and a planar
elliptical dipole ultra–wideband (UWB) antenna (operating in the 3.1–5.3 GHz range) con-
figured as the transmitter. In contrast, the ground station featured an mmWave conical horn
antenna as the transmitter and a UWB antenna as the receiver. These ATG propagation
measurements were instrumental in understanding the propagation characteristics of urban
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environments. This study presented power angle profiles for ATG propagation, which
showed that in urban areas the presence of building rooftops causes a reduction in signal
strength due to scattering. Additionally, the power elevation profile results indicated that
when the UAV was at a higher altitude (50 m), the dominant propagation mechanism was
due to reflections from buildings located behind the ground station. Measurements of
outdoor–to–indoor coverage, conducted with the UAV hovering outside a building and
the ground station positioned inside the building, revealed significant losses as the signals
propagated through the building walls at both mmWave and UWB frequencies.

In ATG channels, which consist of a wireless channel between the UAV and the ground
system, knife–edge diffraction (KED) is a commonly employed method for estimating the
signal strength attenuation caused by diffraction. In KED, the EM wave diffracted by
the building corners is determined by considering the obstacles to be thin and perfectly
absorbing. The magnitude of the diffraction losses is calculated using mathematical for-
mulas that consider Fresnel diffraction parameters. According to the UTD, diffraction
losses are estimated using wedge geometry, which involves the wedge angle and reflection
coefficient of obstacles and empirical models such as the linear regression model and the
creeping wave linear model [81]. In [82], to understand the accuracy of KED and the
empirical models, diffraction loss measurements were performed over a roof top in urban
environments at 28 GHz. The measurement setup consisted of a transmitter antenna with
a beamwidth of 10◦ and a receiver antenna with a beamwidth of 30◦. The measurements
were conducted at two sites to understand the influence of the TX distance from the LOS
boundary and the RX distance from the LOS/NLOS boundary. The study found that the
diffraction losses increased when the distance from the diffraction edge increased and
decreased when the distance between the TX and the building decreased. The loss was
shown to be proportional to the diffraction angle.

Using UAV–based propagation measurements, we can estimate the attenuation of the
signal when the transmitter follows vertical and horizontal paths. In contrast, conventional
methods fail to evaluate diffraction losses and multipath components from the corners and
edges of buildings, which are typically between 10 m and 25 m in height. In [83], horn
antennas with a gain of 20 dBi and an HPBW of 17◦ were used indoors and outdoors for
propagation measurements. The indoor measurements were analyzed using three types of
wall construction: plastic boards, wooden walls, and dry walls. During the measurements,
the receiving and transmitting horns were placed at a 1.4 m height above the corner of
the wall. The measurements were performed at 10 GHz, 20 GHz, and 26 GHz. The
measured data were compared with the theoretical estimates using the KED model. The
practical measurements were in good agreement with the theoretical calculations for a dry
wall. However, the KED overestimated losses by 2–4 dB in the case of wooden walls and
plastic boards. For outdoor measurements, it was found that KED accurately calculated
the diffraction losses for sharp edges, whereas linear models using a minimum mean
square error (MMSE) linear fit derived from actual measured data were more accurate for
rounded edges.

To investigate the scattering effects of buildings, we created an ATG propagation
scenario. In this setup, two buildings with heights of 10 m and 20 m were modeled using
CST Studio Suite. Building 1 was modeled with a height of 20 m while Building 2 was
modeled with a height of 10 m. A horn antenna configured as a receiver was mounted on a
mast placed on top of Building 2 to identify potential scattering regions. In the simulation
environment, we modeled a UAV equipped with a horn antenna flying at a height of 17 m
above ground level. The complete simulation setup, including the scattered rays, is shown
in Figure 16. The two buildings were positioned 30 m apart in this scenario. The structure
was analyzed using an asymptotic solver based on the shooting and bouncing ray (SBR)
technique, which allowed us to observe how signals were diffracted at the corners of the
buildings. The SBR technique provides an initial estimation of ATG propagation. However,
to accurately understand scattering effects in real–world scenarios, practical UAV–based
propagation measurements are necessary. In such measurements, a UAV equipped with
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a transmitter antenna and a portable signal generator would be used. On the ground, a
receiver setup consisting of a horn antenna mounted on a mast and a spectrum analyzer
connected to the antenna would be used to calculate the power levels of the received signal.

 

Figure 16. Scattering effect in an urban area simulated in CST Studio Suite.

Several propagation measurements were carried out in [84] using a hexacopter equipped
with a narrowband antenna resonating at 440 MHz and a wideband antenna operating
between 1 GHz and 6 GHz. The measurements were performed in a suburban area at
440 MHz and 1 GHz. The UAV flew in a vertical path with an altitude of 0–25 m over
two buildings of 15 m and 25 m in height. Although there were other obstacles, such as
trees and cars, in addition to the two main buildings, the diffraction losses owing to other
obstacles were minimal at high altitudes. A comparison was made between UAV–based
propagation measurements and theoretical modeling, such as the KED model. In general,
the measurements by UAVs and the theoretical calculations are in good agreement at lower
frequencies; however, at higher frequencies, the diffraction losses are more significant, and
the theoretical calculations underestimate these losses.

3.3. Selecting the UAV Antenna

Choosing an appropriate antenna for UAV–based measurements is essential before
conducting measurements. To ensure that the UAV–based in situ measurements are accu-
rate, it is important to calibrate the antenna before mounting it on the UAV. Several factors
are considered when selecting a UAV antenna: it should be compact, lightweight, mechan-
ically stable, unaffected by wind, and electromagnetically insensitive to the structure of
the UAV. Because of the several metallic components on the body of the UAV, directional
antennas are likely to experience EM coupling with the UAV body, which can degrade its
performance.

To understand the EM behavior of the antenna [85] mounted on the UAV, we simulated
a complete UAV structure using the CST Studio Suite. Figure 17 depicts a DJI F450 UAV
equipped with a pyramidal horn antenna simulated at 8 GHz using the SBR technique.
Apart from the main beam from the horn, there is a portion of signals scattered from the
UAV body, which can create errors in antenna measurements. This explains the necessity
for care to be taken before selecting an antenna and understanding its behavior after mount-
ing [86] it on the UAV [87]. There are several ways to mitigate the effects of scattering,
including changing the antenna design [87,88], optimizing the antenna location [89], and
using RF absorbers in areas where the UAV body exhibits potential reflections. Whenever
we choose antennas for UAVs, there is always a tradeoff between an antenna with a narrow
beamwidth and an antenna with wider beamwidth. Antennas with a wider beamwidth
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cover wide angles, which means that small deviations in the alignment of the UAV relative
to the AUT have a less pronounced effect. The signal remains closer to the intended polar-
ization, minimizing the introduction of unwanted cross–polarized components. However,
with an antenna with a wider beamwidth, there will be high scattering from UAVs, affecting
the co–polarization and cross–polarization patterns.

 

Figure 17. Fields scattered by the UAV body.

On the other hand, antennas with narrow beam widths have an advantage in terms
of low scattering from the UAV body. However, they have some limitations as well. The
major challenge for these antennas is alignment between the antenna mounted on the UAV
and the AUT. In the case of an antenna with a narrow beamwidth, vibrations from the
UAV body can create a misalignment between the antenna mounted on the UAV and the
boresight of the AUT. To minimize misalignment errors, additional efforts must be made to
maintain the antenna’s beam peak at the AUT’s boresight throughout its trajectory.

Table 3 presents the different antennas used in the literature. An omnidirectional or
directional antenna was used depending on the area of application. These antennas are
specially designed for UAV applications, considering beamwidth and radiation pattern con-
straints. In cases such as dipole [90] and helix [91] antennas, the ground plane is included
as part of the antenna. The commonly used antennas with directional or omnidirectional
patterns have limitations. Directional antennas are prone to misalignment errors; hence,
additional precautionary steps are required to overcome them. Omnidirectional antennas
have the limitations of low gain. On the other hand, in [92], an array of half-bowtie an-
tennas was designed to cover all hemispherical regions. This design has better coverage
with an HPBW of 240◦ in the azimuth and 98.6◦ in elevation, similar to an omnidirectional
antenna; with a gain of around 5.9 dBi.

Table 3. State–of–the–art antennas for UAV applications.

Reference Antenna Frequency Range (GHz) Radiation Pattern

[21] Micro–Strip Patch 1.8–2.7 Directional
[87] Micro–Strip Patch 2.4–5.2 Directional

[93] Log–periodic meandered
dipole array 0.85–2.2 Directional

[94] Vivaldi 1.5–4.5 Directional
[95] Horn 7.5–18 Directional
[90] Dipole 0.55–1.6 Omnidirectional
[96] Surface Wave 6.1–18 Directional
[91] Helix 0.6–1.1 Omnidirectional
[97] Quasi–Yagi 23–28.5 Directional
[92] Half–bowtie antenna 4.1–5.6 Directional
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3.4. Accuracy Analysis of UAV–Based Antenna Measurement

The accuracy of the UAV-based antenna measurements mainly depends on the accu-
racy of the RF equipment mounted on the UAV, the amount of vibration experienced by the
UAV, the accuracy of the GPS positioning, and the external environmental conditions. To
understand how these aspects affect the measurements, Table 4 describes the variations in
the radiation patterns measured by the UAV. All these measurements were performed by
a UAV to characterize an antenna installed outdoors. After characterizing the antenna in
terms of the radiation pattern, the same antenna was measured in anechoic chambers, and
in some cases, it was simulated using commercially available EM solvers. As described in
Table 4, it can be understood that due to the UAV vibrations, external environmental condi-
tions, and drifting in the UAV positions, a maximum error of 1 dB in the peak amplitude
is noticed. These results indicate that UAV measurements are an accurate and a reliable
solution for characterizing an antenna.

Table 4. Accuracy of UAV–based antenna measurements.

Reference Frequency (GHz)
Difference Between UAV
and Anechoic Chamber

Measurements

Difference Between UAV
and Simulation Results

[1] 0.75 NA 0.5 dB in peak amplitude

[4] 0.47 to 0.7 NA 0.6 to 1 dB in peak
amplitude

[7] 0.7 to 0.8 NA 0.5 to 1 dB in peak
amplitude

[27] 14.5 0.38 dB in peak amplitude NA

[42] 4.65 Widening in radiation
pattens NA

[50] 0.175 NA <1 dB in peak amplitude

[98] 0.05 to 0.35 NA 0.5 to 1 dB in peak
amplitude

[99] 8 to 12 0.5 dB in peak amplitude,
0.06◦ in HPBW NA

[100] 0.05 to 0.32 NA <0.1 dB in peak amplitude
and 1 dB in SLL

[101] 44 1 dB in peak amplitude NA
[102] 4 to 6 3 dB in peak amplitude NA

In UAV–based antenna measurements, the radiation patterns of the antenna in either
the azimuth or elevation plane were obtained by following a predefined trajectory. For
the UAV to follow this predefined trajectory, the UAV path planning is achieved through
software tools such as QGroundControl v1.3.8 [103]. The accuracy with which the GPS
follows the defined waypoints depends on the accuracy of the GPS used on the UAV.
Based on the frequency of operation, GPS systems such as differential RTK (D–RTK), RTK,
differential GNSS, and real–time differential GPS are used. These high–precision systems
are particularly used for UAV measurement applications, which can provide centimeter and
sub–meter accuracy. Based on the UAV–based antenna measurements conducted in [27], it
is evident that a total deviation of 0.38 dB between the UAV–based measurements and the
measurements in the anechoic chamber is observed. Out of the 0.38 dB variation in the peak
amplitude of the radiation patterns, 0.36 dB is due to the external environmental conditions;
small inaccuracies in D-RTK positioning result in a 0.01 dB variation, and variations in RF
component behavior due to outdoor temperature result in a 0.02 dB variation. In [7], the
horizontal deviation between the trajectory followed by the UAV and the trajectory planned
in the software was less than 2 m. These deviations were due to environmental conditions
such as wind; in any case, these effects resulted in an angular deviation of less than 0.38◦

in the UAV measurements. In [101], small deviations in the trajectory followed by the
UAV resulted in a deviation of 0.02 dB, and the variations in the relative orientation of the
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UAV could produce an uncertainty of ±2%, producing a variation of 0.005 dB in the UAV
measured results. Similarly, in [50], differential GNSS, which can provide an accuracy of
only sub–meter level accuracy, was used. Although a centimeter–level accuracy GPS such
as D-RTK was not used here, a deviation of 0.03◦ was observed in the UAV measurements
due to the deviations in the UAV positioning. This is because the measurements were
performed at 175 MHz; in this case, such low frequencies do not demand centimeter–
level accuracy in UAV positioning. In [99], where UAV measurements were performed at
8–12 GHz, D–RTK was used for UAV positioning, and deviations in the UAV positioning
resulted in a variation of ±0.01◦ in the UAV measurements.

From these analyses of the accuracy of UAV–based antenna measurements, it is evident
that factors such as GPS positioning, vibrations in UAV, and changes in UAV alignment due
to external environmental conditions result in relatively small deviations in the radiation
pattern of the antenna. However, in [42,102], major deviations in UAV measurements
and measurements from anechoic chambers were observed. This is due to the ground
reflections that account for deviations in the antenna parameters, such as side-lobe level
and HPBW, and, in certain scenarios, in the peak gains. Ground reflections create multipath
interference, where signals add constructively or destructively before reaching the receiver
antenna [104]. Based on the constructive or destructive interference, ground reflections
lead to either an increase or decrease in the measured antenna gain.

To mitigate the effects of ground reflections, strategies such as those using radiation-
absorbent material or diffraction fencing can be employed. Radiation–absorbent material,
simply known as an absorber, is used in anechoic chambers, which helps to reduce interfer-
ences due to reflection from the ground. However, several absorbers would be required
for outdoor measurements to mitigate the ground reflections; this is impractical and costly.
Another approach is to use a metallic diffraction fence to block the ground–reflected waves.
This approach is applicable and used in elevated slant measurement ranges [105].

To overcome ground reflections, we propose the use of two UAVs, which allows
the AUT and receiving antenna mounted on the UAV to maintain higher altitudes from
the ground level. In the two proposed UAV antenna measurements, one of the UAVs is
configured as a transmitter consisting of a portable signal generator and an AUT. Similarly,
the second UAV, which is configured as a receiver, consists of a real–time spectrum analyzer
and an antenna to receive signals from the transmitter UAV. The proposed solution enables
non–tethered UAV operation, allowing UAVs to maintain a higher altitude from the ground
level, thus avoiding the effects of ground reflections. By adopting two UAV antenna
measurements and placing the antennas at appropriate locations on the UAV to avoid
electromagnetic coupling, antenna measurements with good accuracy can be performed in
outdoor environments.

4. Conclusions

In this article, we presented a comprehensive review of UAV–based antenna and
propagation measurements, offering a detailed analysis of the various factors influencing
these measurements. The study provides a set of guidelines for selecting the UAV antennas,
ensuring higher levels of measurement accuracy. Additionally, we compared traditional
slant–range methods with innovative, low–cost UAV test setups and explored the extension
of path loss models by incorporating UAV altitude as a critical parameter.

The discussion included several practical test cases, such as the use of parabolic
reflector systems on ships, BASTAs, LFAAs, one of the world’s largest radio telescopes, and
ONERA’s Nostradamus system, which features 288 biconical antennas operating in the HF
range (3–30 MHz). We also examined propagation measurements for both large–scale and
small–scale channel effects.

The findings suggest that advancements in portable devices like SDRs, high–precision
positioning systems with centimeter–level accuracy, custom antenna designs, and UAVs
constructed from lightweight and durable materials such as carbon fiber have significantly
expanded the potential for UAV–based antenna and propagation measurements. For

154



Sensors 2024, 24, 7395

applications in 5G/6G, where accuracy is paramount, UAV–based test setups have emerged
as the preferred measurement solution.

In conclusion, we anticipate that this review will serve as a valuable reference for
the further development of UAV–based measurement solutions, driving innovation and
precision in the field.
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Abstract: The currently observed development of time-sensitive applications also affects
wireless communication with the IoT carried by UAVs. Although research on wireless low-
latency networks has matured, there are still issues to solve at the transport layer. Since there
is a general agreement that classical transport solutions are not able to achieve end-to-end
delays in the single-digit millisecond range, in this paper, the use of WebRTC is proposed as
a potential solution to this problem. This article examines UAV-borne WebRTC-based IoT in
an outdoor environment. The results of field experiments conducted under various network
conditions show that, in highly reliable networks, UAV and WebRTC-based IoT achieved
stable end-to-end delays well below 10 ms during error-free air-to-ground transmissions,
and below 10 ms in the immediate vicinity of the retransmitted packet. The significant
advantage of the WebRTC data channel over the classic WebSocket is also demonstrated.

Keywords: IEEE 802.11ac; internet of things; low latency; real-time transmissions;
unmanned aerial vehicle; WebRTC; WebSocket

1. Introduction

Unmanned aerial vehicles (UAVs) are currently one of the fastest developing multi-
role carrier technologies. These ubiquitous devices now have a multitude of economic,
commercial, leisure, military, and academic uses [1], and their uses range from individuals
flying them for recreation to large commercial package and medical supply companies [2].
They can be used to transport parcels and people between locations [3–5]. Equipped
with on-board cameras and Internet of Things (IoT) systems, UAVs are used to monitor
pollution [6,7], weather [8,9], road traffic [10], and crop production [11,12]. An important
part of these UAV applications is the communication and computing support, including a
flying range extender [13], a flying router [13,14], and a flying computer for aerial mobile
edge computing (AMEC) purposes [15].

These and other UAV applications can be time-sensitive in a broad sense, i.e., they may
have arbitrary time constraints imposed. These can be relatively large if they are related
to the delivery of parcels or people. Such deliveries may have to be completed within a
specific time window [3,4] or as soon as possible. It is estimated that, in a large city, the
time needed for transporting parcels or people by air may be a few dozen percent shorter
than the time for land transport [5]. Time constraints may also be relatively small when
they concern the provision of real-time or near-real-time information: either to detect and
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locate the source of pollution [6,7], or for disaster response purposes [13,14]. The need
for real-time information may also arise in the case of observations of weather [8,9], crop
production [11,12], and road traffic [10], etc., if data are sent from the UAV to a ground
station, where they are used for analysis, real-time visualization, and decision-making.

Time-sensitive UAV-IoT applications may also involve collecting and processing data
from sensors located in a given area. For example, the integration of UAVs with the internet
of medical things (IoMT) was reported in [15]. This UAV-enabled system implements
AMEC functionality. In the proposed solution, communication delays were reduced from a
range of 17 ms to 30 ms to a range of 12.5 ms to 24 ms. The freshness of data is expressed in
the so-called age of information (AoI), i.e., the time that has passed since the generation
of the most recently received data [16]. AoIs known from the literature include UAV
flight time, hover time, and maintenance time, and range from less than 600 s to less than
1800 s [16] or from almost 1400 s to less than 2200 s [17], with low-AoI systems starting
with an AoI of 70–80 s [18,19]. AoI improvement methods are based on optimizing the
UAV trajectory [16–19], and the transmission delay for such large times is negligible.

Currently, the main challenge in the field of wireless communication with UAVs is
time-sensitive applications that require low latency, defined as end-to-end delays measured
in single-digit milliseconds at the application level. Examples of such applications are
presented in Table 1. The traffic generated by these applications is deterministic, meaning
hard real-time with no jitter, or non-deterministic, where low jitter can be observed. A high
reliability of transmission is required, and in the case of deterministic traffic, ultra-high
reliability is needed. This approach breaks with the classic division of telecommunica-
tions traffic into elastic and inelastic, where only inelastic traffic had to meet stringent
time requirements and only elastic traffic had to be characterized by a high transmission
reliability [20].

Table 1. Selected time-sensitive applications with stringent time constraints related to both UAVs
and IoT that can be carried by UAVs.

Application Time Constraint Paper

Connecting autonomous vehicles below 1 ms [21]
Transport industry 3 or 7 ms [22]

Intelligent transportation system 5 to 10 ms [23]
Internet of drones (remote control) 5 to 50 ms [23]

Approaching autonomous navigation infrastructure 10 ms [24]
Mobile robots: video-operated remote control 10 to 100 ms [25]

Command and control of UAV networks 10, 40, or 140 ms [22]

It is important to note here that using a low-latency network does not guarantee low
end-to-end delays at the application level. This state of affairs is blamed on the mechanisms
of classic transport protocols, which are unable to effectively meet the requirements of low
delays [23]. Another problem is the socket application programming interface (API) for
these protocols, which is too low-level, simple, and inflexible [23]. The authors believe
that a solution to the above problems, at least in the case of time-sensitive UAV-borne IoT,
could be the use of web real-time communications (WebRTC), which, as the name suggests,
provides native real-time communication on the Web. The World Wide Web Consortium
(W3C) in the document in [26] announced the general need for building a WebRTC-based
IoT. Requirement N15 included in [26] states that a WebRTC-based IoT should be able to
provide low and consistent latency under varying network conditions.
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Main Contributions and Organization of This Paper

In our previous paper, we proposed a WebRTC-based application capable of operating
like the classic IoT [27], intended for use in UAV-borne monitoring systems. This application
was a part of our UAV- and WebRTC-based open universal framework [28]. In this paper,
we present the results of field experiments aimed at verifying whether, and to what extent,
a UAV-borne IoT based on the current WebRTC standard is able to provide low and

consistent latency under varying network conditions. The main contributions of this paper
are as follows:

• Supplementing the application in [27], working as an element of the framework [28],
with high-resolution time measurement and timer synchronization procedures.

• Carrying out delay measurements at the level of the transport protocol and at the
level of the web logical channel during air-to-ground IoT transmissions under varying
network conditions, and then performing a statistical analysis of these delays.

• For the completeness of the results, a comparison of the obtained results with the
results obtained for IoT transmission via a classic web logical channel, i.e., WebSocket,
in the same circumstances.

The rest of this paper is organized as follows: Section 2 analyzes related work. Section 3
discusses the materials and methods used during the experiments. Section 4 describes the
field experiments, including post-selection of the measurement series for further analysis.
Section 5 presents and discusses the measures of the location of the selected series of
end-to-end delays, while Section 6 compares the transmissions carried out with the use of
WebRTC and WebSocket in terms of the measures of location, as well as the measures of
variation derived from these measures of location. Section 7 summarizes our experiences.

2. Related Work

While Section 1 provides a broad background, Section 2 discusses both real-time
alternatives and the authors’ prior application solutions that formed the basis of this
paper. The review of existing solutions covers time-sensitive applications that generate
non-deterministic traffic. Although real-time transmission is usually associated with
multimedia streaming (as are IoT real-time transmissions [29]), the paper only discusses the
transmission of non-media data, usually data coming from sensors. The discussion focuses
on aspects of the transport layer, i.e., transport protocols and interfaces. The criterion for
selecting literature was the various non-media real-time transmission techniques found in
the literature, preferring papers that explicitly provided transmission times in a local area
network. Most references concern IoT communication between UAVs and ground stations.

Non-deterministic traffic generated by time-sensitive applications is most often trans-
mitted air-to-ground using wireless local networks (WLANs), usually built using the
Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard [27,28,30–40], but
also using standards for broadband cellular networks: the long-term evolution (LTE) stan-
dard [40,41], also known as the fourth-generation (4G) technology standard, and the fifth-
generation (5G) technology standard [15,30,40]. Among IEEE 802.11 [42] networks, popular
versions of the physical layer are used, such as 802.11g [31,32] and 802.11n [33–35,40], as
well as the 802.11p version intended for the vehicular environment [30]. The works [27,28]
employed the 802.11ac version, which is able to provide latencies below 10 ms, including
providing handover latencies below 10 ms thanks to the fast roaming service [43].

The 802.11 standard was also used in [44], where a time-sensitive application, in-
tended to work on board a UAV, was tested using a laptop and an unmanned ground
vehicle (UGV). Another time-sensitive application in which the sensor system was car-
ried on board a UGV was presented in [45]. The network used in [45] was based on
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software-defined radio (SDR) working with software-defined networking (SDN). In [46],
a stationary robot communicated via both 802.11 WLAN and evolved high-speed packet
access (HSPA+), also known as the 3.75G technology standard. As a side note, refs. [44,46]
also tested transmissions between stationary end systems over longer distances using the
public infrastructure of an Internet service provider (ISP). These are not the subject of this
article, because current networks, including those built using 5G technology [47], are only
able to provide low-latency services locally, using dedicated low-latency solutions with
limited range.

Time-sensitive applications typically send sensor data using the classic transmission
control protocol (TCP), which provides reliable congestion- and flow-controlled trans-
mission. Applications use the TCP transport protocol directly [41] or via the WebSocket
web logical channel [30,34–36,38,39,44–46]. The works in [31–33] used a multipath version
of the TCP protocol, i.e., the multipath transmission control protocol (multipath TCP or
MPTCP), which allows multi-homed senders to increase transmission efficiency. The use
of MPTCP has been shown to reduce latency under certain conditions [48], although the
protocol is sensitive to path asymmetry, especially if the paths are built with different
technologies (e.g., 4G and 802.11) [49]. In the works in [31,32], MPTCP was modified to
meet the requirements of time-sensitive networking (TNS). In [33], to deal with network
stability in the face of high UAV mobility, the MPTCP scheduling algorithm was modified.

While the TCP protocol has been typically used for transmission of non-media data,
another classic transport protocol, i.e., the user datagram protocol (UDP), is used for
audio/video transmission, due to its simple structure and mechanisms reduced to an
absolute minimum, including the lack of window-based control. Currently, the UDP is
most often used as an underlay protocol for other transport protocols, where it occupies
a lower sublayer of the transport layer. The most popular solution is to use the real-time
transport protocol (RTP) in the upper sublayer. A RTP/UDP protocol stack is typically used
for multimedia communications. This solution is also used in the WebRTC video channel.
In [27,28,34,35,46], a WebRTC video channel was used to transmit video from a camera.
In [44], it was used to transmit data from lidar. WebRTC uses the RTP protocol implemented
in a WebRTC-capable browser and the UDP protocol implemented in an operating system.

UDP can also be used as a transport protocol for transmitting non-media data.
In [41], a low-latency reliable transmission (LRT) application layer protocol operating
directly over UDP was proposed to reduce the delay during ground-to-UAV transmission
through a cellular network. In the abovementioned work [31], control data were sent via the
UDP protocol, while the remaining data were sent via the MPTCP protocol. The WebRTC
data channel used the stream control transmission protocol (SCTP) over UDP. To ensure
reliable transmission, the SCTP uses error control and congestion control mechanisms simi-
lar to those of TCP. In the works in [27,28,46], the SCTP protocol was used to transmit data
from sensors. Similarly to the RTP, the SCTP is always implemented in a WebRTC-capable
browser, regardless of the operating system’s implementation of the SCTP. This is due to the
need to use the new version of the SCTP standard intended for WebRTC [50]. However, the
implementation of the SCTP in the operating system can also be used for IoT data transmis-
sion [37]. The UDP transport protocol implemented in the operating system is also the basis
for the quick UDP internet connections (QUIC) protocol [51], initially intended for web ap-
plications and now proposed for low-latency communication in the next-generation IoT [52].
The papers in [38,39] presented the results of evaluations of a real IoT transmitted using
the QUIC in an emulated [38] or simulated [39] wireless environment.

Applications, including web browsers, use the TCP and UDP transport protocols
implemented in the operating system, communicating with them via the socket interface.
In [31–33], applications communicated with the MPTCP protocol in the operating system
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via a classic stream socket. The WebSocket web logical channel uses the TCP protocol
in the operating system, also communicating with it via a stream socket. Applications
that send data via WebSocket, such as [30,34,44,45], use the high-level WebSocket API.
WebRTC offers separate web logical channels for media and non-media transmission, each
of which is associated with a separate high-level API used by WebRTC applications such
as [27,28,34,35,44,46]. The RTP and SCTP protocols are implemented in WebRTC-capable
browsers and communicate with the UDP protocol in the operating system via classic
datagram sockets. WebRTC does not use the SCTP in the operating system and therefore
does not use an SCTP socket.

A comparison of related work is presented in Table 2. Our WebRTC-based UAV-borne
IoT application is presented in [27,28]. In this work, data were not transmitted in the
web of things (WoT) architecture [53], using an intermediate server, but in the classic IoT
manner, using a peer-to-peer WebRTC architecture. In [44], transmissions of lidar data via
the WebRTC video channel and via Websocket were compared. In [34,35], IoT data were
transmitted via Websocket, and only video was transmitted via WebRTC. In [46], WoT data
were transferred from a robot to a WoT server over WebSockets, and then from the server
to the recipient over WebRTC. In [40], WebRTC data channel was used to control a UAV
and transmit telemetry. The remaining papers did not use WebRTC. In [30,36,45], only a
WebSocket logical channel was used, while, in [15,31–33,37–39,41], a web logical channel
was not used at all.

Table 2. Related work.

Paper Carrier Network Technology Transport Protocol Web Logical Channel API

[15] UAV 5G n/a 1,5 n/a 1,5 n/a 1,5

[27,28] UAV 802.11ac RTP, SCTP WebRTC WebRTC
[30] UAV 5G, 802.11p TCP 4 WebSocket n/a 1,5

[31,32] UAV 802.11g MPTCP n/a 1 socket
[33] UAV 802.11n MPTCP n/a 1 socket

[34,35] UAV 802.11n RTP 4, TCP 4 WebRTC, WebSocket WebRTC, WebSocket
[36] UAV 802.11 TCP 4 WebSocket WebSocket

[41] UAV 4G UDP n/a 1 n/a 1,5

TCP n/a1 n/a 1,5

[44] n/a 1,3, UGV 3 802.11 TCP 4 WebSocket WebSocket
RTP 4 WebRTC WebRTC

[45] UGV SDR TCP 4 WebSocket WebSocket
[46] n/a 1,2 802.11, 3.75G TCP 4, RTP 4, SCTP 4 WebSocket, WebRTC WebSocket, WebRTC

[38,39] n/a 1 802.11, Cellular QUIC ,TCP n/a 1,5 socketSatellite
[37] n/a 1 802.11 SCTP, TCP n/a 1,5 n/a 1,5

[40] UAV 802.11n, 4G, 5G SCTP WebRTC WebRTC

this paper UAV 802.11ac SCTP WebRTC WebRTC
TCP WebSocket WebSocket

1 not applicable, 2 stationary robot, 3 the target application is UAV, 4 stated implicitly, 5 simulation.

WebRTC applications are web-based equivalents of classic, standalone multimedia
applications based on the session initiation protocol (SIP). The management plane protocol
stack [54] and the production plane protocol stack for media streaming [55] are similar
to their legacy SIP architecture counterparts. WebRTC applications are loaded from web
servers as part of web pages and use web browsers as run-time environments. This makes
them highly portable and secure, as detected browser vulnerabilities are eliminated on an
ongoing basis. What distinguishes WebRTC from other web techniques, such as WebSocket,
is its dual protocol stack, the idea of which was taken from the SIP architecture. As an
effect, WebRTC can be used to transmit both media streams and non-media flows. Streams
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and flows are cryptographically protected and congestion-controlled. Since both the media
stream and non-media flow use TCP-friendly congestion control, in the event of poor
network conditions, data are protected at the expense of video [56]. If necessary, WebRTC
applications can use more sophisticated streaming media congestion control methods,
such as RTP translators or simulcast, and both RTP streams and SCTP flows can use
differentiated services (DiffServ) to ensure quality of service (QoS).

3. Materials and Methods

This section introduces the flying monitoring system used in the field experiments,
highlighting the time-sensitive aspects; defines the end-to-end delays measured at both the
logical channel level and transport protocol level; shows the method for creating of a series
of end-to-end delays; and finally describes the extreme values and measures of location
calculated from these series.

3.1. System

In all experiments, a flying monitoring system built on the basis of the framework
in [28] was used. Structurally, the system consists of an air station and a ground station,
and functionally of an IoT system and an IoT carrier. The air station was an unmanned
quadcopter, operating as the IoT carrier, with an IoT system on board, i.e., environmental
sensors connected to a single-board computer (SBC) Raspberry Pi 4 Model B running
the authors monitoring application. The environmental sensors included four weather
sensors previously used to build a mobile weather station [9] and a gas sensor used in a
pollution monitoring system [7], which allowed for the reuse of existing sensor-dependent
code. The monitoring application was written in the JavaScript language as part of a web
page, and its runtime environment was the Chromium browser in headless mode and
run on the Raspberry Pi OS operating system. The authors’ analysis of the Chromium
browser implementation showed that the browser has a limited send buffer, which allows
transmissions to reduce buffering times, and the stream socket was set to disable Nagle’s
algorithm, so there was no need to additionally set these parameters.

The monitoring application included the WebRTC video service, positioning service,
and sensor service. The WebRTC video service was built as a classic WebRTC video
application. The positioning service and the sensor service were built in a browser-driven
manner [27], typical for IoT systems. In the experiments presented in this paper, the video
service was turned off, the positioning service sent its data to the sensor service, and only
the sensor service sent its data to the ground. Data from sensor service were transmitted in
message queuing telemetry transport (MQ telemetry transport, or MQTT) messages bearing
the MQTT topic, which identified each datum. Example topics used in the experiments
and the method of creating them were described in the authors previous paper [7]. MQTT
messages were transmitted over a web logical channel, using both the WebRTC data
channel and the WebSocket. In the latter case, to improve the time properties of the TCP,
the PUSH option was set in each TCP packet carrying the MQTT message, which means
immediate pushing of the received data to the application. Because the correct operation
of the monitoring application required that the central processing unit (CPU) always had
a sufficient reserve of resources, this had to be monitored during the performance of
all tests.

Unlike the air station, which was one device, the ground station was divided into two
separate devices (Figure 1): the command and control console (CCC), and the WebRTC
multimedia and monitoring station (WMMS). The CCC was used to pilot the IoT carrier.
It was connected to the UAV via the control network (yellow lightning in Figure 1). The
WMMS is designed for IoT purposes. It was connected to the monitoring software via
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the IEEE 802.11ac production network (red lightning in Figure 1), which was built as a
heterogeneous extended service set (ESS). As an effect, the transmission between the air
station and the WMMS was carried out both in a wireless environment and in a mixed
wired/wireless one, in which the access points were connected to each other via a gigabit
Ethernet (IEEE 802.3ab) network. The intermediate devices used in the ESS were NETGEAR
Nighthawk X4 R7500 AC2350 access points (AP1, AP2, and AP3) and an HP 3500-24G-PoE+
yl Switch (SW1). The AP1 and the SW1 were placed close to the corners of a rectangular
70 m × 70 m parking lot, which was the test area. The AP2 and the AP3 were located at
50 m from the AP1 and the SW1, respectively.

Figure 1. The testbed.

3.2. Series of End-to-End Delays

During the flights, time parameters were collected, both at the air station and at the
ground station. These parameters were used to determine a pair of delays: one at the
transport level, the other at the level of the web logical channel.

Definition 1. The end-to-end delay dt
i of the i-th IoT datum transmitted between the air station

and the ground station, measured at the transport level, is defined as

dt
i = tt

i − tilc
i (1)

where tt
i is the reception time from the transport protocol and tilc

i is the entry time into the logi-
cal channel.

Definition 2. The end-to-end delay dt
i of the i-th IoT datum transmitted between the air station

and the ground station, measured at the logical channel level, is defined as

dlc
i = tolc

i − tilc
i (2)

where tolc
i is the reception time from the logical channel.

In the case of transmissions carried out over the WebRTC Data Channel, the times tilc
i ,

tt
i and tolc

i were measured for each transmitted IoT datum, where i was the sequence number
of this datum. From these times, the delays dt

i and dlc
i were then calculated according to

Formulas (1) and (2), respectively. The difference between corresponding delays resulted
from the processing of the payload of the SCTP packet (MQTT message) placed in the
receive buffer of the logical channel. In the case of transmissions conducted over the
WebSocket logical channel, performed for comparison purposes, for each transmitted
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IoT datum, the times tilc
i and tolc

i were measured, from which the delays dlc
i were then

determined, according to Formula (2).
Let tilc

1 be the starting time, defined as the instant of time when the air station was
directly above the ground station, Dlc be the series of N = 40, 000 end-to-end delays
measured at the logical channel level, starting at time tilc

1 , and Dt be the corresponding
series of end-to-end delays of the same amount measured at the transport level, starting
at time tilc

1 . The N value of 40,000 provided a high delivery rate of 0.999975 for a single
error. After each pair of flights, one series of delays measured at the transport level, Dt

WRTC,
and two series of delays measured at the logical channel level, Dlc

WRTC and Dlc
WS, were

generated. The times tilc
1 , at which the series Dlc

WRTC and Dlc
WS started, were shifted relative

to each other by the time of the first flight of the pair and the service time of the second
flight. The WebRTC and WS indexes indicate which web logical channel was used in a
given measurement series (WebRTC data channel and WebSockets, respectively). The series
Dt

WRTC, Dlc
WRTC and Dlc

WS were subjected to statistical processing.
For the analysis of the impact of single outliers, in particular the impact of the delay of

IoT datum conveyed in the retransmitted packet, truncated measures were used. For this
purpose, the series Dt

WRTC, Dlc
WRTC, and Dlc

WS of end-to-end delays di, i = 1, 2, . . . , 40, 000
were sorted in non-decreasing order. Then, the two extreme delays (minimum and max-
imum delay) were discarded from the series of end-to-end delays. This resulted in new,
shorter series DTt

WRTC, DTlc
WRTC, and DTlc

WS of end-to-end delays dj, j = 1, 2, . . . , 39, 998.
These series were subjected to the same statistical processing as the series from which they
were derived.

3.3. Statistics

For time-sensitive applications, the main key performance indicator (KPI) is latency,
defined as the end-to-end transmission delay. As a result, of all the related works, only
Ref. [41] took latency and jitter into account, while the rest only focused on latency. Follow-
ing this lead, extremes and measures of location were calculated in statistical processing.
In particular, after each flight achieved

• the minimum value in each series: min(Dt
WRTC), min(Dlc

WRTC), min(Dlc
WS),

• the maximum value in each series: max(Dt
WRTC), max(Dlc

WRTC), max(Dlc
WS).

From the measures of location, both the classic measure of location, namely arithmetic
mean, and the measures of position were calculated:

• arithmetic mean: μ(Dt
WRTC), μ(Dlc

WRTC), μ(Dlc
WS):

μ(D) =
1

card(D)

card(D)

∑
i=1

di, di ∈ D (3)

• median: med(Dt
WRTC), med(Dlc

WRTC), med(Dlc
WS),

• mode: mod(Dt
WRTC), mod(Dlc

WRTC), mod(Dlc
WS),

• lower quartile: Q1(Dt
WRTC), Q1(Dlc

WRTC), Q1(Dlc
WS),

• upper quartile: Q3(Dt
WRTC), Q3(Dlc

WRTC), Q3(Dlc
WS).

The same statistics, calculated from the truncated series of end-to-end delays, namely
DTt

WRTC, DTlc
WRTC and DTlc

WS, produced truncated statistics, such as the truncated mini-
mum min(DTt

WRTC), truncated maximum max(DTt
WRTC), truncated mean μ(DTt

WRTC), etc.
These statistics were used to assess whether and to what extent a single retransmission
affected the statistical properties of the analyzed end-to-end delays.
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4. Experiments

Document [26] introduces a number of requirements that a WebRTC-based IoT must
meet. The aim of the experiments described in this section was to check whether and
to what extent the UAV-borne IoT, based on the current WebRTC standard, was able to
meet the N15 requirement of [26], i.e., was able to provide low and consistent latencies
under varying network conditions. As mentioned in Section 1, the challenge is in time-
sensitive applications that require end-to-end delays measured in single-digit milliseconds
at the application level. To meet this challenge, a WebRTC-based UAV-borne IoT should
communicate with the ground station through a highly reliable, low-latency network. Since
a delivery rate of 99.99% to 99.999% is considered high reliability, at most 1 packet error
detected in the transport layer per 40,000 IoT data sent was assumed, i.e., a minimum
packet delivery rate of 99.9975%.

The second assumption was that variable network conditions should result from
both deterministic and random factors. Classic deterministic factors include the network
heterogeneity (wired and wireless links), handovers, signal strength decrease with distance
from access points, and UAV behavior (moving, hovering). Random factors include the
different weather conditions and the different times of conducting experiments, which
results in different user activities in co-existing networks in the same area, which in turn
results in different loads on co-existing networks. The source of any transmission errors
should be random factors.

The rest of this section presents the location of the field experiments and the course of
the experiments; and discusses the flight days and sessions, network operating conditions,
and the number of errors detected in the medium access control (MAC) sublayer. Finally,
the measurement series selected for statistical analysis and the reasons why these series
were selected and not others are described.

4.1. Location of the Experiments

The field experiments were carried out in a square parking lot 70 m long and 70 m
wide, located on the campus of the AGH University of Krakow, Poland. The location of
the experiment site between the university’s teaching buildings and the dormitory made it
possible to conduct experiments at times of the day when the students’ Internet activity
was low and high, generating low and high loads on the wireless networks coexisting
with the air-to-ground production network in the test area. The high load on co-existing
networks was a factor contributing to the occurrence of single transmission errors in the
transport layer.

4.2. Course of Experiments

During the experiments, the air station performed automatic flights, sweeping the
same 70 m × 70 m test area, zigzagging over the parking lot along the same flight path, at
the same speed (1.67 m/s), and at the same altitude of 15 m. Air-to-ground transmissions
were conducted both on the fly and hovering, and flight phases were intertwined with
hovering phases. The summary flight time was about 460 s, and the summary hover time
was about 280 s. This gave a total of just over 740 s (about 12.5 min) mission duration.
The hover point locations and hover times were always the same. As the air station
swept the entire test area, it switched between access points transmitting data through
the 802.11ac production network described in the previous section. To ensure a seamless
handover, the production network used the fast handover technique, which is part of the
IEEE 802.11ac standard.

The source of the IoT data was the five environmental sensors that the air station was
equipped with. During each flight, the sensors cyclically performed 9 measurements of the
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environmental parameters in a given time interval (0.5 s). Since each measurement datum
was accompanied by two metadata (time and position), the air station sent a burst of
27 packets to the ground every half a second. This was over 1480 bursts, i.e., over
40,000 data packets, per flight. During each flight, the entry times into the logical channel,
the reception times from the transport protocol (only IoT transmissions over WebRTC), and
the reception times from the logical channel were collected.

During the experiments, data were sent over a web logical channel. In order to
compare the IoT transmission over the WebRTC data channel with the classic solution, each
evaluation flight in which IoT data were transmitted over the WebRTC data channel was
followed without undue delay by a comparison flight in which IoT data were transmitted
via WebSockets. This required developing a procedure for quickly replacing the web pages
that included the monitoring applications, which were downloaded from a web server and
run in the Chromium browser environment, which is the web server run at the WMSS. The
use of a buffer power supply for both the SBC and the flight controller made it possible to
change the software and replace the battery in parallel. As a result, the total elapsed time
for maintenance between the evaluation flight and the next comparison flight was about
1 min.

4.3. Flight Days, Flight Sessions, and Pairs of Flights

The experiments were conducted from the end of January to the end of May, on
separate days, on average every two weeks with an interval of at least one week, and on
the same day of the week. The separation of experiments into individual days allowed the
authors to run tests under different environmental conditions, such as the temperature,
relative humidity, and time of day. Because the experiments started in midwinter and
ended at the turn of spring to summer, transmissions were carried out from mild winter
days, when the temperature rose above 1 degree Celsius, to warm late spring days, when
the temperature rose to 25 degrees Celsius, and from dry weather, with a relative humidity
above 40%, to rainy weather, with a relative humidity below 90%.

Experiments were organized into flight sessions. Before each session, the clocks at the
air station and the ground station were synchronized. After each flight session, check-ups
were performed to check for time drift, detected as a mismatch between the air and ground
station clocks after the end of the session. Due to the detection of a time drift, the results
collected during one flight session were rejected. Each flight session lasted up to two hours.
Morning flight sessions began after 6:00 a.m. and ended before the start of classes at the
University, no later than approximately 7:50 a.m. Midday flight sessions started around
noon, and the evening ones started around 5 p.m. Since the experiments were conducted
during the semester on campus, the time of day was related to the degree of load on the
IEEE 802.11 networks coexisting with the production network on the AGH University
campus and using the 5 GHz band.

The flight sessions were organized into pairs of test flights, with the evaluation flight
(IoT transmission over WebRTC) immediately followed by a comparison flight (IoT trans-
mission over WebSocket). Breaks between test flights belonging to the same pair could
not be longer than would result from normal operation of the monitoring system. On a
flight day, one flight session was conducted, and at least three pairs of test flights were
performed during each flight session.

4.4. Network Conditions

Network conditions can be roughly expressed by the number of errors in the MAC
sublayer: the fewer errors, the better the network conditions. The environmental conditions,
especially the time of day, affected the network conditions, which were manifested in the

169



Sensors 2025, 25, 524

different numbers of lost IEEE 802.11 frames per 40,000 transmitted IoT data. The number of
errors in the MAC sublayer was reported by the network interface during the experiments.

Based on the number of frames lost, the network conditions were divided into good,
medium, and poor. Less than two-fifths of the transmissions took place under good
conditions, with just over 30 MAC frames lost per 40,000 IoT data sent. More than two-
fifths were carried out under medium conditions, with more than 40 and no more than
about 95 frames lost. More than one fifth of the transmissions took place under poor
network conditions, when approximately 100 frames or more were lost per 40,000 IoT
data transmitted.

The IEEE 802.11ac error control mechanism successfully retransmitted almost all lost
frames detected by the MAC sublayer. Under both good and medium network conditions,
the MAC sublayer was always able to correct the transmission errors. As an effect, no
errors were detected at the transport layer. In poor network conditions, the underlying
network was always unable to successfully retransmit one lost frame. As a result, a single
transmission error (one lost packet per 40,000 IoT data sent) was detected at the transport
layer. Errors in the transport layer usually appeared during both flights from a given
pair. There was only one registered exception to this rule, when the transmission of IoT
data over the WebRTC data channel was error-free at the transport layer, while during the
transmission of IoT data over the WebSocket, the TCP detected a single transmission error.

4.5. Selection of Measurement Series

Out of 35 pairs of flights, we selected five, conducted on five different flight days,
when transmissions were carried out under the three different network conditions (good,
medium, poor):

• On day 1, transmissions were carried out in good network conditions. No errors were
detected in the transport layer for both IoT data transmission over the WebRTC Data
Channel and over the WebSocket. Thus, the packet error rate (PER) in the transport
layer was PERWRTC = PERWS = 0.

• On day 2, network conditions were on the border between medium and poor. During
the first flight, the exception described in previous section occurred: no errors were
detected in the transport layer when transmitting IoT data over the WebRTC data
channel, and one error was detected during transmission over WebSocket. PERWRTC

was 0 and PERWS was 0.0025%.
• On day 3 transmissions were again carried out under good network conditions. No

errors were detected in the transport layer during both transmissions (PERWRTC =

PERWS = 0).
• On the fourth day, transmissions took place under poor network conditions. Each

transport protocol detected one transmission error (PERWRTC = PERWS = 0.0025%).
• On day 5, transmissions were conducted under medium network conditions. No errors

were detected in the transport layer during both transmissions (PERWRTC = PERWS = 0).

The five selected pairs of flights were conducted during different flight sessions (a
morning session, a midday session, and an evening session) and under different weather
conditions: from cold days to warm days (1.5 to 25 degrees Celsius), during dry, wet, and
just after rainy weather (relative humidities from 46% up to 85%).

5. Results

This section presents and discusses the results of the field experiments, to verify
whether a UAV and WebRTC-based IoT is suitable for time-sensitive applications operating
in a highly mobile outdoor environment when the underlying network is capable of
providing a reliable, low-latency communication service.
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5.1. WebRTC Data Channel: Minimum and Maximum of the End-to-End Delays Measured at the
Transport Level

Table 3 includes the minimum min(Dt
WRTC) and maximum max(Dt

WRTC) of the end-
to-end delays measured at the transport level when the IoT data were transmitted over
the WebRTC data channel, and the truncated maximum max(DTt

WRTC), calculated after
discarding the extreme values from the series of end-to-end delays Dt

WRTC. Day 4 was the
only day on which the PER was not equal to zero, and the large maximum delay recorded
on that day was the retransmitted packet delay.

Table 3. Minimum and maximum of the end-to-end delays measured at the transport level when the
IoT data were transmitted over the WebRTC data channel.

Days min(Dt
W RTC) max(Dt

W RTC) max(DTt
W RTC)

1

day 1 3394 μs 3469 μs 3469 μs

day 2 3384 μs 3469 μs 3469 μs

day 3 3404 μs 3469 μs 3469 μs

day 4 3181 μs 10,120 μs 3497 μs

day 5 3377 μs 3469 μs 3469 μs
1 Maximum of the series of end-to-end delays truncated by the extremes.

During the IoT transmissions over the WebRTC data channel carried out on day 1 to
day 3 and day 5, where no transmission errors were detected at the transport layer, the
maximum end-to-end delay measured at the transport level always achieved a single-digit
millisecond value (Table 3). Each of the four transmissions achieved a maximum end-to-
end delay of 3.5 ms (3469 μs). The maxima of the truncated series were also 3469 μs. This
extremely high repeatability of the values of maxima and truncated maxima obtained on
different days, when the values were repeated with an accuracy of one microsecond, may
indicate an exceptionally high stability of the transmissions conducted under good and
average network conditions.

The end-to-end delay minima did not show such outstanding stability, in the sense
of the repeatability of results, over the different experiments carried out in the lossless
environment. But even here, when the PER was zero, the differences between the results
obtained on the different days did not exceeded 30 μs (values from 3377 μs to 3404 μs),
which is less than 1% of the minimum values. As an effect, compared to the extremes
calculated for the transmission error experiment conducted on day 4, both the maximum
and the minimum can be considered stable across the error-free experiments carried out on
the same network, but under different network conditions.

The single transmission error that occurred in the experiment conducted on day 4
affected both the maximum value of end-to-end delay measured at the transport level and
the minimum value. Because the transmission error led to the retransmission of the lost
packet, the maximum end-to-end delay was 10,120 μs, which is more than three times
higher than the maxima obtained during the error-free transmissions (Figure 2a). When
the delay of the retransmitted packet was discarded from the series of end-to-end delays,
the maximum value dropped to 3497 μs. This is less than 1% above the maximum obtained
during the error-free transmissions (Figure 2b). This shows that, at the transport level, this
large increase in delay was local and its impact was limited to a single error correction
via selective retransmission. The SCTP packets, except the retransmitted packet, were
transmitted with delays suitable for time-sensitive applications.
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(a) (b)

Figure 2. The range of end-to-end delays (in ms) measured at the transport level when the IoT data
were transmitted over the WebRTC data channel: (a) full series Dt

WRTC; (b) truncated series DTt
WRTC.

The occurrence of an error not only increased the maximum, but also lowered the
minimum (Figure 2). For day 4, the minimum was 3181 μs, which is about 10% (300 μs)
less than on the other days. Analysis of the instantaneous values (in some publications,
e.g., Ref. [37], also called real-time values) of the end-to-end delay shows that the delay
of the next burst after the packet loss decreased, then started to increase, and after a
few seconds returned to the level observed before the transmission error. The truncated
minimum, calculated after discarding the minimum and the maximum delay from the
series of delays, was the same as the minimum (i.e., 3181 μs).

5.2. WebRTC Data Channel: Minimum and Maximum of the End-to-End Delays Measured at the
Logical Channel Level

While delays measured at the transport level refer to the moment at which the MQTT
message decapsulated from the SCTP packet is placed in the receive buffer of the logical
channel, delays measured at the logical channel level refer to the moment at which the
MQTT is informed that the MQTT message is ready for reception. Table 4 includes the
minimum min(Dlc

WRTC), maximum max(Dlc
WRTC), and truncated maximum max(DTlc

WRTC)

of the end-to-end delays measured at the logical channel level when the IoT data embedded
in MQTT messages were transmitted over the WebRTC data channel.

Table 4. Minimum, maximum, and truncated maximum of end-to-end delays measured at the logical
channel level when the IoT data were transmitted through the WebRTC data channel.

Days min(Dlc
W RTC) max(Dlc

W RTC) max(DTlc
W RTC)

1

day 1 3396 μs 3471 μs 3471 μs

day 2 3386 μs 3471 μs 3471 μs

day 3 3406 μs 3471 μs 3471 μs

day 4 3183 μs 10,122 μs 9187 μs

day 5 3379 μs 3471 μs 3471 μs
1 Maximum of the series of end-to-end delays truncated by the extremes.

The difference of two microseconds between almost all of the statistics listed in Table 3,
except the truncated maximum, and the corresponding statistics listed in Table 4 is the
processing time of WebRTC data channel that processed the payload of the SCTP packet
buffered in the receive buffer.
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A large difference is visible on day 4 between the maxima of the truncated end-to-end
delay series measured at the transport level and at the logical channel level. While, at
the transport level, the truncated maximum was about 3.5 ms (precisely: 3497 μs), at the
logical channel level, it was about 9 ms (9187 μs). The truncated maximum calculated at
the logical channel level (Figure 3b) was more than two and a half times larger than the
truncated maximum obtained at the transport level (Figure 2b), and only about 10% less
than the end-to-end delay of the retransmitted packet (10,122 μs), as presented in Figure 3a.
Such a large difference resulted from the fact that the packets already received, but sent
after the lost packet, were waiting for the retransmission of the lost packet. Only when the
retransmitted packet was transferred to the receive buffer of the logical channel did the
MQTT protocol receive information that these packets were ready.

(a) (b)

Figure 3. The range of end-to-end delays (in ms) measured at the logical channel level when the
IoT data were transmitted over the WebRTC data channel: (a) full series Dlc

WRTC; (b) truncated
series DTlc

WRTC.

5.3. WebSocket: Minimum and Maximum of End-to-End Delays Measured at the Logical
Channel Level

Table 5 lists the minimum min(Dlc
WS), maximum max(Dlc

WS), and the truncated maxi-
mum max(DTlc

WS) values of the end-to-end delays measured at the logical channel level
when the MQTT messages were transmitted over the WebSocket. The end-to-end delays of
the transmission of IoT data over the WebSocket, measured during experiments conducted
on days 1 to 5, had relatively small minima (2515 μs to 2550 μs), smaller than minima of the
delays of transmissions over WebRTC (Table 4). However, the maxima were very large, at
65,723 μs to 87,145 μs.

Table 5. Minimum and maximum of the end-to-end delays measured at the logical channel level
when the IoT data were transmitted through the WebSocket logical channel.

Days min(Dlc
WS) max(Dlc

WS) max(DTlc
WS)

1

day 1 2550 μs 69,865 μs 69,854 μs

day 2 2520 μs 83,652 μs 83,649 μs

day 3 2545 μs 65,723 μs 65,489 μs

day 4 2515 μs 87,145 μs 87,143 μs

day 5 2538 μs 74,722 μs 74,549 μs
1 Maximum of the series of end-to-end delays truncated by the extremes.

The occurrence of packet loss on days 2 and 4 slightly (by 20–30 μs) lowered the mini-
mum and significantly (by 10–20 ms) increased the maximum compared to the experiments
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in which PER was equal to 0. Unlike the end-to-end delays measured during transmissions
over WebRTC (Figure 3), discarding the extreme delays from the series of delays did not
lower the maximum value enough to be practical (Figure 4). When the PER was non-zero,
the truncated maximum was 2 μs (day 4) to 13 μs (day 2) less than the maximum, and when
the PER was zero, the truncated maximum was 11 μs (day 1) to 234 μs (day 3).

(a) (b)

Figure 4. The range of end-to-end delays (in ms) measured at the logical channel level when the IoT
data were transmitted over the WebSocket: (a) full series Dlc

WS; (b) truncated series DTlc
WS.

5.4. WebRTC: Measures of Location

Tables 6 and 7 present the mean μ(Dt
WRTC) and μ(Dlc

WRTC), median med(Dt
WRTC)

and med(Dlc
WRTC), mode mod(Dt

WRTC) and mod(Dlc
WRTC), upper quartile Q3(Dt

WRTC) and
Q3(Dlc

WRTC), and lower quartile Q1(Dt
WRTC) and Q1(Dlc

WRTC) of the end-to-end delays
measured at the transport level and at the logical channel level, respectively, when
the MQTT messages were transmitted over the WebRTC data channel. The results in
Tables 6 and 7 differ by 2 microseconds. This was a delay resulting from the processing in
the receive buffer of the logical channel.

Table 6. Measures of location (mean, median, mode, upper quartile, and lower quartile) of end-to-end
delays measured at the transport level when the IoT data were transmitted through the WebRTC
data channel.

Days μ(Dt
W RTC) med(Dt

W RTC) mod(Dt
W RTC) Q3(Dt

W RTC) Q1(Dt
W RTC)

day 1 3460 μs 3467 μs 3468 μs 3468 μs 3458 μs

day 2 3459 μs 3466 μs 3468 μs 3468 μs 3454 μs

day 3 3460 μs 3466 μs 3468 μs 3468 μs 3455 μs

day 4 3492 μs 3495 μs 3496 μs 3496 μs 3486 μs

day 5 3460 μs 3467 μs 3468 μs 3468 μs 3457 μs

Because for days 1–3 and day 5, when PER = 0, the maxima of end-to-end delays
were less than 10 ms, the measures of location for these days were also less than 10 ms
(Tables 6 and 7). Because the non-zero PER that occurred on day 4 was small (one packet
lost per 40,000 packets sent), a single outlier (transport level) or a small group of outliers (logical
channel level) were unable to influence either the arithmetic mean or measures of position. As
an effect, all measures of location presented in Tables 6 and 7 are one-digit milliseconds.
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Table 7. Measures of location of end-to-end delays measured at the logical channel level when the
IoT data were transmitted over the WebRTC data channel.

Days μ(Dlc
W RTC) med(Dlc

W RTC) mod(Dlc
W RTC) Q3(Dlc

W RTC) Q1(Dlc
W RTC)

day 1 3462 μs 3469 μs 3470 μs 3470 μs 3460 μs

day 2 3461 μs 3468 μs 3470 μs 3470 μs 3456 μs

day 3 3462 μs 3468 μs 3470 μs 3470 μs 3457 μs

day 4 3494 μs 3497 μs 3498 μs 3498 μs 3488 μs

day 5 3462 μs 3469 μs 3470 μs 3470 μs 3459 μs

In the case of error-free transmission in the transport layer (PER equal to 0), which
was carried out on day 1 to 3 and day 5, the measures of location calculated both at the
transport level and at the logical channel level showed similar extremely high repeatability
as the maximums of error-free transmissions shown in the previous section. At the logical
channel level, the arithmetic mean of the end-to-end delays was 3461 to 3462 μs (i.e.,
3461.5 ± 0.5 μs), the median was 3468 to 3469 μs (i.e., 3468.5 ± 0.5 μs), the mode was
3470 μs and equaled the upper quartile, and the lower quartile was 3456 to 3460 μs (i.e.,
3458 ± 2 μs). At the transport level, the measures of location were reduced by 2 μs, and the
abovementioned numerical relationships between the statistical measures were the same.

The stability of the measures of location over the different experiments, observed for
PER = 0, was accompanied by very small differences between the measures (Figure 5b).
The upper quartile was 1–2 microseconds greater than the median, and the lower quartile
was about 10 ms lower than the median. The differences between the maximums and
medians were also of a few microseconds. At the logical channel level, the maximum end-
to-end delay was 3471 μs, while the median of these delays was 2 to 3 μs smaller. Because
the above numerical relationships were preserved at the transport level, at least 50% of the
end-to-end delays were maximum at both considered levels (within 3 microseconds). This
indicated a strong stability for the transmissions performed on days 1–3 and day 5, with a
very small jitter.

(a) (b)

Figure 5. The five-number summary of the end-to-end delays (in ms) measured at the logical channel
level when the IoT data were transmitted over WebRTC: (a) all experiments (PER >= 0); (b) the
transport layer considered the transmission to be error-free (PER = 0). For PER = 0, the arithmetic
mean and the mode are also shown.

The poor network condition on day 4 caused a single transmission error that was
detected by the transport protocol, and then the lost packet was retransmitted. The end-
to-end delays measured on this day had higher values for all measures of location, both
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the mean and quartiles, by about 30 μs in relation to the measures calculated for error-free
transmissions. Due to this uniform shift, the numerical relationships between measures of
position were the same as observed in the case of error-free transmissions: the mode was
equal to the upper quartile, the upper quartile was 1–2 microseconds (here, 1 μs) greater
than the median, and the lower quartile was about 10 microseconds (here, 9 μs) below the
median (Table 6 and 7). Since the maximum end-to-end delay was the delay of the IoT
datum sent in the retransmitted packet, the difference between the median and the maxi-
mum value was more than 6.5 ms (Figure 5a). The values of the maximum and the median
end-to-end delay cannot therefore be considered close. However, in the case of delays mea-
sured at the transport level, the truncated median (3495 μs) and the truncated maximum
(3497 μs) were close to each other, differing by only 2 μs. In the case of delays measured at
the logical channel level, due to the long waiting time for packets to be sorted out in the
receive buffer after retransmitting a lost packet, the truncated median (3.497 μs) and the
truncated maximum (9.187 μs) differed by 5.690 μs.

5.5. WebSockets: Measures of Location

Table 8 summarizes the measures of location: mean μ(Dlc
WS), median med(Dlc

WS),
mode mod(Dlc

WS), upper quartile Q3(Dlc
WS), and lower quartile Q1(Dlc

WS) of the end-to-end
delays measured at the logical channel level when MQTT transmissions were carried
out over the WebSocket. While all measures of the location of end-to-end delays of IoT
data transmitted over WebRTC satisfied the single-digit millisecond requirements of time-
sensitive applications (Table 7, Figure 5a), the lower quartile and the mode were the only
measures of location that always met this requirement when transmissions were carried
out over the classic web logical channel (Table 8, Figure 6a). The median only met this
requirement on days 1, 3, and 5, when the underlying IEEE 802.11 network was able to
ensure reliable transmission in the transport layer. The arithmetic mean and upper quartile
only met it when the error rate in the MAC sublayer was not greater than 0.1 percent (day
1 and day 2).

The comparison of the results presented in Tables 7 and 8 shows that the mode was
the only measure of location in terms of which the IoT transmissions over WebSocket
were superior to IoT transmissions over WebRTC Data Channel. Two such measures were
therefore found: the mode and minimum (see previous sections). In IoT transmissions
using WebSocket, the mode was not equal to the upper quartile, as in the IoT transmissions
using WebRTC (Figure 5b), but to the minimum (Figure 6b). However, the relatively small
number of delays whose value was a modal value (WebRTC: 12–15 thousand on days 1–3
and 5, over 10 thousand on day 4; WebSocket: about 1 thousand on days 1, 2, and 5, about
500 on day 2, no modal value on day 4) shows that this modal superiority of transmissions
over WebSocket does not matter much in practice.

Table 8. Measures of location (mean, median, mode, upper quartile, and lower quartile) of end-to-end
delays measured at the logical channel level when the IoT data were transmitted over the WebSocket.

Days μ(Dlc
WS) med(Dlc

WS) mod(Dlc
WS) Q3(Dlc

WS) Q1(Dlc
WS)

day 1 7947 μs 5235 μs 2550 μs 8247 μs 4431 μs

day 2 17,605 μs 12,233 μs 2520 μs 26,445 μs 4721 μs

day 3 7260 μs 5123 μs 2545 μs 6919 μs 4403 μs

day 4 22,584 μs 16335 μs - 32,448 μs 8833 μs

day 5 13,030 μs 9563 μs 2538 μs 19,389 μs 4537 μs
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(a) (b)

Figure 6. The five-number summary of end-to-end delays (in ms) measured at the logical channel
level when IoT data were transmitted over WebSocket: (a) all experiments (PER >= 0); (b) the
transport layer considered the transmission to be error-free (PER = 0). For PER = 0 the arithmetic
mean and the mode are also shown.

6. Discussion

The previous section presented and analyzed the minimum, maximum, arithmetic
mean, mode, and quartiles (upper, median, and lower quartile) of the end-to-end delays of
air-to-ground IoT transmissions carried out using the WebRTC data channel or WebSocket.
Table 9 contains a comparison of the statistics collected at the logical channel level, in the
form of the ratio of the value of a given statistical measure calculated for IoT transmission
via WebSocket (Tables 5 and 8) to the value of the same measure calculated for IoT transmis-
sion via WebRTC (Tables 4 and 7). If the values of the same statistical measure calculated
for transmissions using WebRTC Data Channel and WebSocket are equal, the ratio will be 1.
In such a situation, it will not matter, from the point of view of a given statistical measure,
through which of the web logical channels the IoT transmission is carried out between the
UAV and the ground. This is a purely hypothetical case and does not appear in Table 9.

Table 9. Comparison of extremes (minimum and maximum) and measures of location (mean, median,
mode, upper quartile, and lower quartile) of the end-to-end delays measured at the logical channel
level when the IoT data were transmitted using WebRTC data channel and WebSocket.

Days
min(Dlc

WS)

min(Dlc
W RTC)

max(Dlc
WS)

max(Dlc
W RTC)

μ(Dlc
WS)

μ(Dlc
W RTC)

med(Dlc
WS)

med(Dlc
W RTC)

mod(Dlc
WS)

mod(Dlc
W RTC)

Q3(Dlc
WS)

Q3(Dlc
W RTC)

Q1(Dlc
WS)

Q1(Dlc
W RTC)

day 1 0.75 20.14 2.3 1.51 0.74 2.38 1.28

day 2 0.74 24.11 5.09 3.53 0.73 7.62 1.37

day 3 0.75 18.95 2.1 1.48 0.73 1.99 1.27

day 4 0.79 8.61 6.47 4.67 - 9.28 2.53

day 5 0.75 21.54 3.77 2.76 0.73 5.59 1.31

A ratio of statistical measures less than 1 indicates the superiority of the WebSocket
web logical channel over the WebRTC data channel. This ratio appears in Table 9 twice: for
minimum values and for modal values. The ratio of minima, min(Dlc

WS) to min(Dlc
WRTC),

ranged from 0.74 for day 2 to 0.79 for day 4. This means that, when using WebRTC, the
minimum end-to-end delays were approximately one third greater under good and medium
network conditions and approximately a quarter greater under poor network conditions
than the minimum delays achieved when transmitting using WebSockets. The ratio of
modal values, mod(Dlc

WS) to mod(Dlc
WRTC), amounted to 0.73–0.74 for IoT transmissions
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under good and medium network conditions. Under the poor network conditions, no
modal value was observed during transmission using WebSockets. However, the relatively
small number of minimally delayed packets made this advantage of WebSockets over
WebRTC relatively minor.

Figures 7 and 8 show scatter plots drawn for the end-to-end delay statistics calculated
at the logical channel level and presented in the previous section. The values obtained
for transmissions using WebSockets (Tables 5 and 8) are plotted as a function of the cor-
responding values obtained for the transmissions using WebRTC (Tables 4 and 7). The
markers denote statistics calculated for transmissions under good (x), average (+), and poor
(o) network conditions. The diagonal of each plot (dashed line) illustrates the hypothetical
case of a ratio of a given statistical measure equal to 1. Below the diagonal, there were only
minimum and mode markers (Figure 7a). The values of these statistics for transmissions
using WebRTC were higher than for transmissions using WebSockets, so the ratio given
in Table 9 is less than 1. The highest minimum latencies and highest latency modes were
observed under good network conditions. As the network conditions deteriorated, the
minimum and mode began to decrease, although the observed differences were small, and
when using WebRTC, there was no difference between the modes calculated under good
and medium network conditions. The lowest minimum delay occurred under poor network
conditions, but only in the case of WebRTC was the reduction in the minimum significant.

(a) (b)

Figure 7. Scatter plots for the statistics of the end-to-end delays (in ms) measured at the logical
channel level during air-to-ground transmissions using the WebRTC data channel and using the
WebSocket logical channel: (a) minimum and mode; (b) mean and median.

A ratio of statistical measures greater than 1 indicates the superiority of the WebRTC
data channel over WebSocket. This ratio appears in Table 9 for the arithmetic mean,
quartiles, and maximum value. Except for the latter, unlike the case of ratios smaller
than 1, the least ratios greater than 1 were obtained under good network conditions, and
as the network conditions deteriorated, the ratio value increased. As an example, the
ratio of arithmetic means, μ(Dlc

WS) to μ(Dlc
WRTC), ranged from 2.1 for day 3 to 6.47 for day

4. Under good network conditions, the mean delay of air-to-ground IoT transmissions
using WebSockets was more than twice the mean delay of transmissions using WebRTC.
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Under medium network conditions, it was almost four times greater. When the network
conditions were on the verge of medium to poor, the mean delay of transmissions using
WebSocket was just over five times greater, and when the network conditions were poor,
it was well over six times greater than the mean delay of transmissions using WebRTC
(Table 9, Figure 7b). In addition, in the case of the ratio of quartiles, the greater the distance
(in the number of samples, or position) of a given measure from the minimum, the greater
the ratio values. The ratio of lower quartiles, Q1(Dlc

WS) to Q1(Dlc
WRTC), ranged from 1.27 for

day 3 to 2.53 for day 4 (Table 9, Figure 8a). The ratio of medians, med(Dlc
WS) to med(Dlc

WRTC)

ranged from 1.48 for day 3 to 4.67 for day 4 (Table 9, Figure 7b). The ratio of upper quartiles,
Q3(Dlc

WS) to Q3(Dlc
WRTC), ranged from 1.27 for day 3 to 9.28 for day 4 (Table 9, Figure 8a).

(a) (b)

Figure 8. Scatter plots for statistics of end-to-end delays (in ms) measured at the logical channel level
during air-to-ground transmissions using WebRTC data channel and using the WebSocket logical
channel: (a) lower quartile and upper quartile; (b) maximum.

In the case of end-to-end delay maxima ratios, max(Dlc
WS) to max(Dlc

WRTC), the above
observations were true for days 1 to 3 and day 5, when transmission at the transport layer
was error-free. Under good network conditions, the maximum delay of transmission using
WebSocket was approximately 20 times greater than the maximum delay of transmission
using WebRTC. When the network conditions were medium, it was about 22 times greater,
and when the network conditions were between medium and poor, it was more than
24 times greater than the maximum delay of transmission using WebRTC. In the case of
a single transmission error (day 4), the ratio of maxima dropped to over 8 (Table 9), due
to the large increase in the maximum delay in transmission using WebRTC caused by
packet retransmission. As with all other measures for which the ratio was greater than 1
(Figures 7b and 8a), the maximum transmission delay using the WebSocket was the highest
under poor network conditions (Figure 8b).

When comparing the obtained results with those reported in related works, the delay
introduced by the implementation of the MQTT protocol should be taken into account.
Additional laboratory experiments showed that the classic Eclipse Paho JavaScript Client
implementation of the MQTT protocol introduced delays averaging approximately 1.5 ms.
For WebSocket-based IoT, this resulted in average application-level end-to-end delays of
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approximately 9 ms to 24 ms. Taking into account that similar delays during transmission
from the UAV to the ground station in systems using WebSocket have been reported in
the literature (e.g., 23 ms [30], 20 ms to 25 ms in the IEEE 802.11 network [34]), it can be
concluded that that the end-to-end delay values for UAV-borne IoT using WebSocket were
comparable to those reported in related works.

In the case of solutions other than WebSocket, but still based on the TCP protocol, the
situation is similar. In [32], replacing single-path transmission using TCP with a multi-path
transmission using the improved MPTCP reduced the latency from 920.4 ms to 568.1 ms (i.e.,
1.62 times). This was achieved at the expense of the parallel transmission of cloned packets.
However, in this paper, the use of WebRTC provided a greater relative improvement
than [32] and without as much computational and energy cost. Significantly, modifying
the MPTCP so that the UDP was used as the underlying protocol instead of the TCP
[31] allowed for a relative improvement similar to that shown in this paper, and at lower
computational costs than in [32] due to the simplicity of the UDP mechanisms. However,
the energy cost of the solution proposed in [31] remained significant. Moreover, since the
STCP implements multihoming, multipath transmissions of cloned sensor data can also be
used in WebRTC-based IoT.

It can be expected that the advantages of the WebRTC data channel used in UAV
communication may be comparable to those of using any other UDP-based solution.
Comparing the results of experiments on MQTT over WebRTC data channel presented in
this work with the results of the experiments on MQTT over QUIC presented in [38], it can
be seen that, in the case of error-free transmissions, the results were approximately similar.
If the latencies introduced by the underlying IEEE 802.11 networks (2 ms in this article
and 25 ms in [38]), as well as the estimated delays introduced by the Paho implementation
of the MQTT protocol (1.5 ms), are subtracted from the average results, the approximate
average delays obtained in this paper and in [38] are the same and equal 1.5 ms. However,
the spread of end-to-end delay values was much larger in [38] than in this work. Due to the
significant differences in the test environment (in this paper, a mobile and highly variable
real-world environment using a low-latency network was employed; a static environment
using an emulated high-latency network was employed in [38]), it is impossible to say
with certainty how beneficial it would be to use a WebRTC data channel in UAV-IoT
communication instead of QUIC.

The second example of a UDP-based solution is presented in [37], which compared
IoT transmissions over SCTP with IoT transmissions over TCP. The results of simulation
experiments showed the better performance of SCTP and better stability of TCP in hetero-
geneous networks (wired and wireless). During error-free transmissions, the performance
difference between SCTP and TCP shown in [37] was not as large as the performance
difference estimated from the results presented in this paper. The issue of stability was also
different: in this paper, the SCTP was extremely stable, and much more stable than the TCP.
It is worth emphasizing here that, in [37], an older version of the SCTP was discussed, and
the research conducted in this paper used a new, WebRTC-oriented version of the SCTP
that is currently implemented in web browsers.

7. Conclusions

In recent years, wireless communication for time-sensitive IoT applications has become
a hot research topic, including applications that require end-to-end delays measured in
single-digit milliseconds. One of the problems encountered in these applications is the
processing in higher network layers: even if the underlying network is capable of providing
highly reliable, low-latency communications, the delays introduced at the transport layer
and above may prove too great to meet stringent time requirements. The aim of this paper
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was to show that, in the case of IoT carried by UAV, the use of WebRTC can help solve
this problem.

The paper used high-resolution time measurement procedures and timer synchroniza-
tion to perform delay measurements at the level of the transport protocol and at the level of
the network logical channel of the WebRTC IoT application, run on board the UAV. During
the field experiments, air-to-ground IoT transmissions were carried out under various
network conditions, followed by statistical analysis of these delays, focusing on extreme
values and location measures. The obtained results were compared with those obtained for
IoT transmission via the WebSocket logical channel, under the same circumstances.

The statistical characteristics of the end-to-end delays showed that, during air-to-
ground transmission, the WebRTC-based IoT was able to achieve single-digit-millisecond
end-to-end delays on both the transport protocol level and the logical channel level. When
the WebRTC transmission was error-free, stable end-to-end delays well below 10 ms were
achieved. When a single transmission error occurred, higher end-to-end delays were
observed in the immediate vicinity of the retransmitted packet, although they were still
below 10 ms. Only the delay of the retransmitted packet slightly exceeded 10 ms.

The results of the same IoT transmissions performed via WebSocket under the same
circumstances showed that the WebRTC-based UAV-borne IoT had 8.5 to 24 times lower
maximum delays and 2 to 6.5 times lower mean delays than the same IoT using WebSocket.
The smallest differences between the maximum values and the largest differences between
the arithmetic means were associated with the occurrence of a transmission error. The
results therefore indicated the superiority of the WebRTC logical channel over the classic
web logical channel.

Future research will focus on analyzing WebRTC-based UAV-borne IoT transmissions
in Wi-Fi 6e and Wi-Fi 7 networks, as well as UAV swarm tests in a 5G test network.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations

4G Fourth-generation (technology for broadband cellular networks)
5G Fifth-generation (technology for broadband cellular networks)
AMEC Aerial mobile edge computing
AMQP Advanced Message Queuing Protocol
API Application programming interface
CPU Central processing unit
CCC Command and control console
DiffServ Differentiated Services
ESS Extended Service Set
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HSPA+ Evolved High Speed Packet Access (Evolved HSPA, HSPA Evolution)
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
ISP Internet service provider
KPI Key performance indicator
LRT Low-latency Reliable Transmission
LTE Long Term Evolution
MAC Medium access control
MPTCP Multipath Transmission Control Protocol (Multipath TCP)
MQTT Message Queuing Telemetry Transport (MQ Telemetry Transport)
PAV Personal air vehicle
PER Packet error rate
QoS Quality of Service
QUIC Quick UDP Internet Connections
RTP Real-time Transport Protocol
SBC Single-board computers
SCTP Stream Control Transmission Protocol
SDN Software-defined networking
SDR Software-defined radio
SIP Session Initiation Protocol
TCP Transmission Control Protocol
TNS Time-Sensitive Networking
UAV Unmanned aerial vehicle
UDP User Datagram Protocol
W3C World Wide Web Consortium
WebRTC Web real-time communication
WLAN Wireless local network
WMMS WebRTC multimedia and monitoring station
WoT Web of Things
XMPP Extensible Messaging and Presence Protocol
Indexes

i i-th IoT datum
j j-th IoT datum
ilc input of logical channel
lc logical channel level
olc output of logical channel
t transport level (output of transport protocol)
WRTC WebRTC’s web logical channel (Data Channel)
WS WebSocket web logical channel
Symbols

d end-to-end delay
dlc end-to-end delay measured at the logical channel level
dt end-to-end delay measured at the transport level
D series of end-to-end delays
Dlc series of end-to-end delays at the logical channel level
Dt series of end-to-end delays at the transport level
DT truncated series of end-to-end delays
DTlc truncated series of end-to-end delays at the logical channel level
DTt truncated series of end-to-end delays at the transport level
t time
t1 starting time
tilc entry time into the logical channel
tolc reception time from the logical channel
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tt reception time from the transport protocol
(D) arithmetic mean of the time series D
(DT) truncated arithmetic mean of the time series D
max(D) maximum value in series D
max(DT) truncated maximum value in series D
med(D) median of the time series D
med(DT) truncated median of the time series D
min(D) minimum value in series D
min(DT) truncated minimum value in series D
mod(D) mode of the time series D
mod(DT) truncated mode of the time series D
Q1(D) lower quartile of the time series D
Q1(DT) truncated lower quartile of the time series D
Q3(D) upper quartile of the time series D
Q3(DT) truncated upper quartile of the time series D
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