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Preface

The Special Issue you hold in your hands gathers contributions to the MDPI Remote Sensing
Special Issue “Multi-Sensor Systems and Data Fusion in Remote Sensing II.” Recent technological
advances—including the introduction of novel sensors, the development of sophisticated sensor
platforms, and breakthroughs in signal and data processing—offer scientists and engineers the
opportunity to create more capable, integrated multi-sensor systems. Wider frequency bands,
enhanced resolution and data rates, and the widespread deployment of distributed sensors have
substantially increased data volumes in contemporary multi-sensor configurations. Simultaneously,
user demands regarding coverage area, resolution, accuracy, processing speed, and overall system
functionality continue to rise. These trends present fresh challenges for data-fusion algorithms, which
must now leverage the latest methods from big-data analytics, statistical estimation, and artificial
intelligence. The papers collected here provide new insights into recent developments in multi-sensor

systems and data fusion and will be of broad interest to the remote-sensing community.

Piotr Kaniewski, Stefano Mattoccia, and Fabio Tosi
Guest Editors
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Article
A Fast Sequential Similarity Detection Algorithm for
Multi-Source Image Matching

Quan Wu '* and Qida Yu 2

The School of Artificial Intelligence, Nanjing University of Information Science and Technology,
Nanjing 210000, China

The School of Electronic and Information Engineering, Nanjing University of Information Science and
Technology, Nanjing 210000, China; 003550@nuist.edu.cn

Correspondence: wuquan@nuist.edu.cn

Abstract: Robust and efficient multi-source image matching remains a challenging task due to non-
linear radiometric differences between image features. This paper proposes a pixel-level matching
framework for multi-source images to overcome this issue. Firstly, a novel descriptor called channel
features of phase congruency (CFPC) is first derived at each control point to create a pixelwise
feature representation. The proposed CFPC is not only simple to construct but is also highly effi-
cient and somewhat insensitive to noise and intensity changes. Then, a Fast Sequential Similarity
Detection Algorithm (F-SSDA) is proposed to further improve the matching efficiency. Comparative
experiments are conducted by matching different types of multi-source images (e.g., Visible-SAR;
LiDAR-Visible; visible-infrared). The experimental results demonstrate that the proposed method
can achieve pixel-level matching accuracy with high computational efficiency.

Keywords: similarity measurement; multi-source image; image matching

1. Introduction

With the widespread application of computer technology in geographic information
science, image processing techniques have entered the era of multi-resolution [1], multi-
source [2], and multi-spectral images [3]. Since the information contained in images is
complementary, integrating the data collected by different sensors is necessary to improve
the applicability of imagery for Earth observation. Image matching is the process of
transforming a target image into the coordinate system of a reference image of the same
scene by determining the pixel-based mapping relationship between them. Therefore, the
performance of multi-source image matching is crucial for producing image mosaics [4]
and for performing feature fusion [5] and change detection [6]. Especially, we can establish
correspondence between multiple sensor images of drones, solving the limitation of sensing
systems in scene understanding.

After decades of development, automatic image matching has made remarkable
progress, and many methods now enable the direct georeferencing of multi-source data
using navigation devices on platforms and physical sensor models. These techniques
can achieve a matching accuracy of fewer than five pixels [7] and nearly eliminate all
the geometric distortion caused by different scales and rotation angles between multi-
source images.

In general, area-based methods extract matching information by finding the pixels in
the target image that are most similar to the template image, such as mutual information
(MI) [8] and Phase Correlation (PC) [9]. Area -based image matching methods obtain
region description by calculating the response intensity between the region of interest
and surrounding pixels. This type of method is generally applicable to the registration of
images with prominent texture features. However, these matching methods usually expe-
rience heavy computational complexity and are easily affected by nonlinear radiometric

Remote Sens. 2024, 16, 3589. https:/ /doi.org/10.3390/rs16193589 1 https://www.mdpi.com/journal /remotesensing
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differences in multi-source images [10]. The best-buddies similarity (BBS) theoretically
analyzed the effect of cluttered backgrounds, and a patch-based texture was introduced to
enhance robustness and accuracy. The caching scheme was optimized and a batch gradient
descent algorithm was used to reduce the computational overhead and further speed up
the method [11]. Feature-based methods construct an underlying spatial transformation
and establish reliable correspondence between two sets of feature points. Considering
the complexity of feature presentation, particularly for the radiation difference between
multi-source images, it is simple to produce inaccurate or even incorrect matching. Al-
though many excellent algorithms have recently been proposed in this field, it is still
challenging to achieve robust and efficient image matching performance. Therefore, if the
response intensity characteristics and texture feature can be fully utilized, the influence of
complex environment and radiation difference can be effectively solved in multi-source
image matching.

Therefore, the main challenge of multi-source image matching is the handling of
radiometric differences between the target and reference images. Pixel-level matching has
not been achieved to date for multi-source images due to significant radiometric differences.
The first row in Figure 1 shows multi-source images with significant radiometric differences
between objects, which make it more challenging to detect the same features in both images.
However, despite these significant differences, the main structural features are similar. In
the second row of Figure 1, although the reflectance values show substantial differences,
the structural features extracted using phase congruency are almost the same, which
can provide intrinsic structural information and invariant features for transformation
estimation. However, the classical phase congruency method only provides the amplitude
characteristics, and extending it to a directional representation in the presence of noise is
not sufficient [11].

Figure 1. Structural feature extraction for multi-source images.

Phase congruency is an indicator of feature significance, and it has been demon-
strated that the phase congruency model conforms to the characteristics of human visual
cognition [12], i.e., the model considers structural features. However, it was found that
the response intensity of phase congruency is unstable, especially when dealing with
multi-source images.

In this paper, a mixture model that combines the features of oriented gradient and re-
sponse intensity of phase congruency to achieve robust feature description in multi-source
image matching. The proposed descriptor, called channel features of phase congruency,
enables efficient image matching by extending the classical phase congruency model and
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creating a pixel-level feature representation of local features. The CFPC descriptor captures
the structural properties of an image and remains unaffected by radiometric variations
across multiple sources. To reduce computational costs, the feature representation of de-
scriptors is first converted into the frequency domain, followed by similarity measurement.
As a result, the corresponding features can be readily detected in multi-source images. The
primary contributions of this study are summarized follows:

(1) An efficient and robust image matching framework is proposed based on phase
congruency to achieve pixel-level matching. The proposed framework integrates
different types of local features for similarity measurement.

(2) A novel feature descriptor (CFPC) is constructed based on the oriented gradient and
response intensity of phase congruency to capture structure information.

(3) The proposed matching method uses pixel-level feature representation to evaluate
the similarity between multi-source images, and also, a similarity measurement
method (F-SSDA) is established to accelerate image matching. Therefore, the in-
trinsic geometry information is incorporated into the objective function formulation
when computing similarity measurements between multi-source images to improve
matching performance.

The remaining sections of this paper are structured as follows: Section 2 reviews
related work, while Section 3 details the proposed multi-source image matching method,
and Section 4 describes the comparative experiments and results. Finally, conclusions are
drawn and recommendations are provided in Section 5.

2. Related Work
2.1. Area-Based Methods

Area-based methods perform similarity matching by searching for the most similar
gradient or applying a transformation to spatial features in the target window. A rela-
tionship is established between the regions surrounding a spatial feature, or pixel-level
matching is conducted between the reference image and target image. The normalized
correlation coefficient [13] and gradient mutual information [14] are widely used to evalu-
ate the match. Area-based methods are typically used for matching homologous points
in images. However, area-based matching is easily affected by nonlinear radiometric
differences in multi-source image matching. To address this issue, Shechtman et al. [15]
designed a local self-similarity (LSS) descriptor based on texture and gradient informa-
tion to minimize the radiometric differences. The LSS algorithm was later extended to
multi-source image matching due to its excellent performance. Specifically, Liu et al. [16]
developed the FLSS-C and LSS-C algorithms and achieved robust geometric invariance
using a distribution-based representation. Subsequently, Sedaghat et al. [17] used the LSS
for multi-sensor image matching and achieved good performance. Jenkinson et al. [18]
constructed geometric structure information based on self-similarity. However, area-based
methods typically calculate feature similarity by traversing local pixels, which undoubtedly
greatly increases computational consumption. To improve efficiency, a template matching
method has recently been proposed to calculate the number of nearest neighbors [19].
Ye et al. [20] converted the similarity measure into the frequency domain using SSD, greatly
accelerating three-dimensional feature description. However, the template image did not
consider image texture, which will greatly influence the regional representation. If the
image window was in an area with low texture or there were no distinctive features, the
matching results would be unsatisfactory.

2.2. Feature-Based Methods

Feature-based methods typically detect structural features in an image, such as corners,
lines, or texture, rather than spectral information. The selected feature must be distinctive,
robust, simple to detect, and must remain invariant for different radiometric values.

The scale-invariant feature transform (SIFT) [21] is a classical image matching al-
gorithm. It is rotation- and scale-invariant, involving Gaussian pyramid and gradient
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histogram techniques. Rublee et al. [22] proposed the novel oriented fast and rotated (ORB)
directional binary robust independent elementary features (BRIEF) for real-time applica-
tions. This algorithm has low time complexity and is scale-invariant. Morel et al. [23]
simulated two camera orientation parameters and proposed the affine-invariant matching
algorithm (Affine-SIFT), which is scale and rotation-invariant. Significant radiometric dif-
ferences between input images prevent the SIFT algorithm from being used for multi-source
image registration despite its strong affine invariance and benefits for processing images
with different viewing angles. Dellinger et al. [24] proposed a novel gradient definition for
multi-sensor images matching to enhance robustness against speckle noise. Additionally,
Sedaghat et al. [25] devised an adaptive binning histogram strategy for characterizing local
features, specifically tailored to address distortion in multi-source images. However, SIFT
and its extensions lack the computational speed necessary for multi-source image matching
in practical applications. Integral graph methods have been developed to improve the
algorithm’s efficiency.

Generally, deep learning-based methods for multi-source image matching can yield
excellent performance. For instance, Zhu et al. [26] proposed a two-stage generative
adversarial network-based multi-modal brain image registration method. Fu et al. [27] in-
troduced the texture adaptive observation approach for image depth estimation. Tang et al.
utilized the Lovasz-Softmax loss and pre-trained segmentation model to guide the match-
ing network, emphasizing semantic requirements in high-level vision tasks. Tang et al. [28]
proposed a versatile image registration and fusion network with semantic awareness.
Addressing scenario dependency, Yang et al. [29] proposed a knowledge transfer-based
network for multi-source image matching. Sun et al. [30] suggested that the global re-
ceptive field provided by Transformer enables dense matches in low-texture areas, where
traditional feature detectors often struggle to generate repeatable interest points. How-
ever, these methods are sensitive to background clutter and target rotation. They also
exhibit high data dependency and often necessitate a large training dataset to achieve high
matching accuracy.

The performance of multi-source image matching based solely on gradient features is
typically poor because the gradient information of multi-source data is generally sensitive
to nonlinear radiometric differences. It is advantageous to combine textural information
with spectral information for feature extraction, like how people analyze images. Therefore,
many scholars have proposed matching methods based on visual perception to deal with
the significant radiometric differences between multi-source images [31]. Meng et al. [32]
introduced a new descriptor for vein recognition called local directional code (LDC) based
on rich orientation information. Aguilera et al. [33] proposed the edge-oriented histogram
(EOH) to capture edge information surrounding key points. Wu et al. [34] proposed the his-
togram of point-edge orientation (HPEO), a simple and highly robust descriptor to extract
structural features. Image matching based on phase congruency has been widely used for
multi-source image registration recently. This method extracts structural information from
images to obtain invariant features and has achieved better performance than classical
matching methods. These methods assume that structural characteristics are consistent
across multi-source images and are unaffected by intensity differences. Ye et al. [35] pro-
posed HOPC to extract shape features from multi-source images. Wu et al. [36] extended
the phase congruency feature to represent the orientation and constructed a mixed phase
congruency descriptor based on gradient information and orientation. However, how to
balance fusion features and computational efficiency is a problem that needs to be solved.

3. Methodology and Material
3.1. Basic Framework of the Proposed Matching Algorithm

The classical phase consistency model is extended to produce a pixel-wise feature
representation based on the orientation and intensity of phase consistency, enabling robust
mixed feature representation of phase consistency for image matching. To improve match-
ing efficiency, the F-SSDA is applied to solve the sequential similarity objective function.
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Finally, the matching accuracy can be determined according to the affine transformation
model.

3.2. Channel Features of Phase Consistency

The Fourier series expansion of a given signal can be given as follows:

f(x) = ZnAn cos(¢u(x)), 1)

where ¢, and A, indicate the phase at position x and the amplitude of the frequency
component, respectively. Phase congruency can be defined as follows:

;An(x) cos(¢n(x) — ¢(x))
Pat) = L An(%) b @

where ¢(x) indicates the weighted mean in the local region.

Since phase consistency models cannot detect blurred features, some improved meth-
ods that calculate phase congruency using the log-Gabor wavelets at multiple orientations
and scales. This function is defined in the frequency domain as follows:

—(log(w/wy))

2{log(Tw/w0)) ®

8(w) = exp(
where 0, and wy indicate the width parameter and central frequency, respectively. The filter
of the log-Gabor wavelet can be obtained by an inverse Fourier transform. The “imaginary”
and “real” components of the filter are denoted as the log-Gabor odd-symmetric M{, and
M, even-symmetric wavelets, respectively. The convolution results of the input image can
be regarded as the response vector:

[eno(x,), 0n0 (2, y)] = [1(x,y) * Miyo, I(x,y) % My @

where ey,0(x, ) and 0,0 (x,y) indicate the respective responses of the even-symmetric and
odd-symmetric wavelets having o as orientation and 7 as scale. Moreover, the amplitude
and phase are, respectively, given as follows:

Ay = \/eno(x/ ]/)2 + Ono(x/ ]/)2/ 5)
Pno = atan(eno (X, ), 0n0 (X, ¥)), (6)
Considering the blur and noise of multi-source images, the model is defined as fol-

1 [35]:
o S Wo(5,y) + Auo(,1)ABuo(x,y) — T

_no
PCZ(x/y)_ ZZAno(x/y)+£

@)

where W, (x,y) represents the weighting factor for the given frequency spread, T is a
parameter for controlling noise, A,,(x,y) denotes the amplitude, and ¢ is a small constant
that avoids division by zero. The symbol means that the closed quantity is equal to itself
when the value inside the symbol is positive or zero, and Ad,,(x, y) is phase deviation and
it is given as follows:

Ano(x,y)ACDﬂ(x,y) o
= (eno(%,Y)-Pe(x,y) + 0no(x,y)-9o (%, y)) ®)
—leno(x,y)ono (x,y)— ono(x,y).4)g(x,y)|
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where

) =Y Y e )/ ((C, Y eno(xy)* + (X, ¥ ono(x,y) )2 (9)
xy) = Y, Xy ono () / (X, Xy eno(x )" + (1, X, 0n0(x,v))” " o)

However, the phase congruency models given in Equation (7) can only detect response
intensity but not the phase orientation. Therefore, it is not suitable to construct robust
feature descriptors using solely the phase congruency response intensity. However, in
addition to the response characteristic, oriented gradient information was significant for
constructing local feature descriptors.

The log-Gabor odd-symmetric convolutions in multiple directions are employed to
compute phase congruency. The resulting convolution can then be projected onto the
horizontal and vertical axes, yielding the x-direction (horizontal) and y-direction (vertical)
image derivatives.

X = Z 0n0(0) sin(0)), (11)
Y =) (040(8) cos(8)). (12)
0

The orientation and response intensity of the phase congruency, which are multi-
directional projections, respectively, can be defined as:

® = arctan(X,Y), (13)

P =vX2+Y2 (14)

The conventional approach, which builds features based on phase congruency;, is
efficient in capturing the complex texture structures of images and exhibits robust matching
performance for multi-source image. However, using two-dimensional data to represent
image information is still sensitive to noisy images and radiation changes, especially for
multi-source images. Therefore, several feature vectors are constructed from the oriented
gradient information at each pixel and in the Z-direction to construct a 3D pixel-level
descriptor (Dgg};fgd). The feature representation is convolved with a Gaussian filter to
obtain a robust local description. This 3D Gaussian model uses a 2D Gaussian filter in the
horizontal and vertical directions and a [1, 2, 1] T kernel in the Z-direction. The convolution
in the Z-direction smooths the orientated gradients and minimizes geometric distortion
caused by local radiometric differences. The feature description is normalized using (15) to
further reduce the nonlinear radiometric differences:

w w w
Deyim <D;“;X§d/sqrt< 55 (o’ +sl>>/( §5 (pmedjogr( 0 (Db’ +sl>>> as)
x,y,z=1 x,y,z=1 x,y,z=1

where the 1 small constants avoid the zero denominator.

3.3. The Frequency Sequential Similarity Detection Algorithm

Multi-feature description has been proven to be effective in improving the matching
accuracy and reducing the impact of radiation differences [10]. The constructed descriptor
contains fused feature information and is represented in the form of 3D data, so the
similarity measurement calculation is very expensive. Therefore, to improve matching
efficiency, a new F-SSDA algorithm is proposed in calculating feature similarity. The
proposed algorithm is used to evaluate the similarity between a pair of signals. Let D1 (1)
and D;(n) represent the corresponding feature representations of control candidate points
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calculated by Equation (15), respectively. The F-SSDA between the constructed feature
presentation within window i is given as

5i(0) = L al(D1(n) = D1(n)) — (Da(n — ) — Do — )] “Ti(n), (16)

where 1 denotes the coordinates of 3D feature representation, T;(x) is the masking function
over Di(n), where T;(n) = 1 within the image window, and 0 otherwise. D (n) is the
average value of feature representation within the template window. S;(v) denotes the
F-SSDA calculation between the 3D feature representations translated by vector v for
template window i. Consequently, the match between Dj(n) and D, (n) can be achieved
by minimizing S;(v). Accordingly, the matching function is given as follows:

v; = arg min{ You
0

where v; indicates an offset vector while matching signals D; (1) and D, (n).

The standard strategy is to calculate the F-SSDA of the feature description for the
region around candidate key points. However, this approach substantially increases the
computational cost as the feature description contains 3D information. Then, the spatial
feature information is converted into the frequency domain to reduce the time consumption.

Herein, the algebraic transformation of similarity function Equation (16) can be present
as follows:

Si(v) = ¥y (D1(n) — D1(n))*T;(n)+¥, (D2(n — v) — Da(n — 0))*T;(n)
=2, (D1(n) — D1(n))(D2(n —v) — Da(n —0))T;(n)

(D100 = Da()) = (Datn =) = Daln =) T}, 47

(18)

Since the first term is a constant, similarity is measured through the minimization of
the functions of the remaining two terms. The spatial domain convolution is equivalently
represented by the dot product in the frequency domain. Therefore, the convolution
operation of the last two terms of Equation (18) can be accelerated using FFT, and the offset
vector v; is given as follows:

v; = arg min{F'[F*(Dyif2) F(Dgif2Ti)] (1)

, 19

~2F ' [F*(Dyip2 ) F(Daiss T3) | (m)} v

where Dy;ry = Di(n) — D1(n), Dgif = Da(n) — Da(n), and F and F~!indicate the FFTs
and its inverse transform, respectively; moreover, F* is the complex conjugate of F.

Through Equation (19), the computational efficiency can be significantly improved.

For instance, given a fixed size of w X w pixels, the corresponding search window is

m x m pixels. The SSD required O (m*w?) operations, while the proposed approach needs

O((m + w)*log(m + w)) operations. Hence, the computational efficiency can be signifi-
cantly improved when applying Equation (19).

The curve of similarity and computational efficiency is evaluated, and the correct
match ratio (CMR) is calculated. Some classical multi-source image data are used for
performance analysis.

3.4. Description of Datasets

Several multi-source image data were selected to evaluate the matching performance.
We evaluated the matching of (1) visible-SAR, (2) LiDAR-visible, (3) visible-infrared, and
(4) visible-map. Various high-resolution and medium-resolution (30 m) images cover-
ing different terrains, including suburban and urban areas, were used. There were no
differences in translation, rotation, and scale between image pairs. However, significant
radiometric differences were unavoidable due to the different sensor wavelengths. Please
refer to Table 1 for detailed data.
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(a) Visible-SAR: Visible-SAR data 1 and 3 were acquired over urban areas with tall
buildings, resulting in significant radiometric differences between them. Visible-SAR
2 is a medium-resolution image in a suburban area. In addition, significant changes
had occurred in this area as the SAR image was taken 14 months after the visible
image in Visible-SAR 2, thereby complicating the matching process.

(b) LiDAR-Visible: LIDAR-Visible images is collected in urban areas. Significant noise
and nonlinear radiometric differences make it more challenging to match LiDAR
image data.

(c) Visible-infrared: Both medium- and high-resolution images were used (Daedalus and
Landsat 5 TM). The medium-resolution data were acquired over a suburban area.

(d) Visible-map: These data were collected from Google Earth. The images had been
rasterized, and there was local distortion between image pairs due to the relief dis-
placement of buildings. In addition, there were radiometric differences between the
map data and visible images. The lack of texture features to construct local descriptors
makes it challenging to match an image to a map.

Table 1. Description of test images.

Category Test Image Pair Size and GSD Date Characteristics
1 Google Earth 528 x 524,3 m 11/2007  These SAR images were collected in urban areas, and
TerraSAR-X 534 x 524,3 m 12/2007 these SAR images contain significant noise.
(a) Visible-SAR » TM band3 600 x 600,30 m 05/2007  There is significant noise in these SAR images. The
a) Visible TerraSAR-X 600 x 600, 30 m 03/2008 images have a temporal difference of 12 months.
3 Google Earth 628 x 618,3 m 03/2009 These SAR images were collected in urban areas and
TerraSAR-X 628 x 618,3 m 01,/2008 have a temporal difference of 12 months.
1 LiDAR height 524 x 524,25 m 06/2012 These SAR images were collected in urban areas, and
Airborne visible 524 x 524,2.5m 06/2012 these SAR images contain significant noise.
(b) LIDAR-visible 2 %&zﬁ{{/ilerxzns;gble 288 i 288’ ; $ }8;;812 Temporal difference of 12 months; urban area.
LiDAR intensity 621 x 617,2m 10/2010 . .
3 WordView? visible 621 x 621.2 m 10,2011 Temporal difference of 12 months; urban area.
1 Daedalus visible 512 x 512,0.5m 04/2000 These images were collected in urban areas with
(c) Visible—inf d Daedalus infrared 512 x 512,0.5m 04/2000 high buildings.
¢) Visibleminirare ” Landsat5 TMband 1~ 1074 x 1080, 30 m 09/2001  These SAR images were collected in urban areas and
Landsat5 TMband 4 1074 x 1080, 30 m 03/2002 have a temporal difference of 6 months.
1 Google Earth 700 x 700, 0.5 m / These images were collected in urban areas, and there
(d) Visible—ma Google Earth 700 x 700, 0.5 m / are some text labels on these SAR images.
p ” Google Earth 621 x 614,1.5m / These images were collected in urban areas, and there
Google Earth 621 x 614,1.5m / are some text labels on these SAR images.

4. Experiments
4.1. Parameters and Evaluation Criteria

Precision, RMSE (Root Mean Square Error), and computational cost were used to eval-
uate the proposed algorithm. Matches with errors below a given threshold are considered
correct matches. Multiple evenly distributed checkpoints were selected in each image to
determine the true value. Generally, checkpoints are determined manually. However, due
to various texture features and radiometric differences, particularly in the visible-SAR and
the LiDAR-visible test, it is difficult to locate the ground truth manually in multi-source
images. HOPCncc was to select 200 control points, which were evenly distributed in the
image; 50 points with the lowest residuals were chosen as checkpoints. Once a checkpoint
was determined, the projective transformation model was used, and the location error
was calculated.

4.2. Tests for Similarity Measurement

The similarity obtained from the proposed CFPC was compared to the HPEO, FHOG,
and NCC to illustrate the proposed method’s advantages for matching multi-source images.
Three groups of typical multi-source images were used to calculate likelihood estimation
maps. Figure 2 shows the likelihood estimation maps of these description methods. The
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maximum likelihood estimate represents the pixels of the target center. As can be seen, all
methods can detect the pixel of interest. However, the NCC’S accuracy is insufficient. The
estimation map calculated by FHOG has multiple peaks, which results in estimation errors.
The HPEO and proposed CFPC produce smooth likelihood estimates and achieve precise
localization for the three cases. However, the proposed CFPC has a more concentrated
location area. The preliminary test results demonstrate that the proposed CFPC is more
robust than other algorithms (HPEO, FHOG, and NCC). A more detailed analysis will be
presented next.

Reference image Target image

Search region

Template jmage

Figure 2. Likelihood estimation obtained from the CFPC and comparison algorithms.

4.3. Precision

To evaluate the matching precision of the proposed algorithm, this section compares
the proposed method with some classical methods in terms of CMR. The selected test data
correspond to LiDAR-visible 1, visible-infrared 1, 2, and visible-map 1, 2 in Table 1. There
are significant radiometric distortions between each pair of images, which will greatly limit
the matching performance. In general, artificially synthesized images are more difficult
to match than other data as they contain fewer texture features. Different template sizes
(ranging from 20 x 20 to 100 x 100 pixels) are also used to analyze the robustness of the
similarity measures.

As seen, Figure 3 gives the test results of the proposed algorithm for the five datasets.
The first two columns show the target and reference images, respectively, whereas the
third column shows the matching results. The points with different colors represent the
corresponding pixels of the matching result. As for matching precision, it is reflected in
the control points’ position. As can be seen, although the radiometric differences between
multi-source images are obvious, the corresponding points are in the correct position, and
the images are therefore correctly matched. As for the quantization accuracy, it will be
shown in Figure 4.

Image matching precision is easily affected by the size of the template window. As its size
increases, the matching performance significantly improves. The matching precision curves
calculated by different template sizes are illustrated in Figure 5. MI, GMI, and MIND are
capable of mitigating nonlinear intensity differences to a certain degree and have been proven
suitable for multi-source image matching. While the matching results of NCC remain relatively

el
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stable, a primary drawback of the method is its disregard for the structural information of
neighboring pixels, leading to a decline in image matching quality. Unlike NCC, CFOG
and FHOG enhance the matching performance using the orientated gradient information
and are invariant to radiation differences. Moreover, the proposed mixture model, CFPC,
which combines both the oriented gradient and the response intensity of phase congruency,
has achieved the best performance in all the test results. More specifically, for visible-map
experiments with insufficient texture features, the proposed algorithm can also extract weak
structural information from images by using the proposed mixed model, as it achieves better
performance compared to the other algorithms in multi-source image matching.

Registration

Reference Image Target Image Result

Figure 3. The matching results of the proposed CFPC. (The point pairs with same color in the
consistency area of two images represent the matching positions).

10
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Figure 4. Image matching precision for different template sizes.
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Figure 5. Image matching precision for different template sizes. The HMPC, FHOG, HOPC, and
CFPC use similarity measures based on the F-SSDA.

The features of HMPC, FHOG, and HOPC were converted to the frequency domain,
and the matching was performed with the proposed F-SSDA technique. Furthermore,
some classical methods were chosen for comparison. Figure 6 shows the results for the
five datasets (visible-SAR 1, 2, 3 and LiDAR-visible 2, 3). The matching results (i.e., HMPC,
FHOG, and HOPC) calculated using the proposed similarity measure are superior to the
classical algorithms (NCC and MI) in almost all cases. Obviously, NCC exhibits the worst
matching performance, indicating that it is not suitable for multi-source image matching.
As for HOPC, it shows better matching precision than NCC and MI because the stable
structural features were extracted to evaluate similarity. Although the HMPC converted
the similarity measure into the frequency domain, the template image does not consider
the image texture, which will greatly influence the regional representation. Contrarily, the
proposed CFPC smooths the oriented gradient and response intensity to minimize feature
distortions caused by local nonlinear radiometric difference between multi-source images.
Added to that, the optimal matching point pair is obtained by calculating the objective
function in the frequency domain to ensure high matching performance. The proposed
algorithm’s matching results are shown in Figure 6, where the matched pixels are shown
in different colors and achieve high consistency. From the registration results, the visual
matching effect of each module has a high degree of continuity. Regarding the quantitative
indicator RMSE, it will be discussed in the next paragraph.

Figure 7 gives the RMSE between the real and measured values. Histograms 1 to
10 illustrate the comparison of test results for all methods on different data, whereas
histogram 11 represents the average value calculated from data 1 to 10. Obviously, the
proposed CFPC outperforms all other methods (MI, GMI, MIND, FHOG, HOPC, LoFTR,
and FLSS), and have the minimum RMSE. This can be attributed to the proposed method
being able to extract structural features, which is invariant between multi-source image
with radiometric differences. Moreover, the average test result is optimal in terms of
RMSE values (histogram 11). The proposed method achieves enhanced robustness due to
substantial radiometric variations among the multi-source images and to notable noise in
the LiDAR and SAR images, posing challenges in feature matching. However, the proposed
method can fully utilize existing information and captures the structural information of

11
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the multi-source image; it can effectively establish congruency relationships between
corresponding regions.

Registration
Result

Figure 6. Matching results of the CFPC. (The point pairs with same color in the consistency area of
two images represent the matching positions).
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Figure 7. RMSE for the ten test cases.

The proposed method has a potential advantage in terms of computational efficiency.
As depicted in Figure 8, GMI and MI stand out as the two most time-consuming techniques
among these similarity measures, given that they necessitate the computation of the joint
histogram for each matched window pair. However, the CFPC presents lower time con-
sumption than other similarity measure methods (FHOG, FLSS, and HOPC) as the Fast
Sequential Similarity Detection Algorithm (F-SSDA) is also developed to accelerate similar-
ity measurement. The proposed matching method uses pixel-wise feature representation
to evaluate the similarity between multi-source images. In addition, compared to other
algorithms, our method has better performance when dealing with small target matching.

40 : : ;
~<-CFPC

35 |-5-HMPC
+FHOG
30 =-HoPC
25|~ FLSS
A-MI
< GMI

Vs

P/

= o -
2y a4 )74
< <
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20 30 40 50 60 70 80 90 100
Template size (pixels)

Figure 8. Time consumption for different template images.

In previous studies, SAR images generally had more noise than other images due to
imaging mechanisms and device interference, so it was challenging for them to achieve
robust matching performance. Then, 40 pairs of SAR-visible images with various Gaussian
noises were used in comparative experiments to verify the robustness of the proposed
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algorithm. As can be seen, Figure 9 shows the matching results of the proposed algorithm.
In terms of visual effects, the matching results are very accurate. The detailed statistical
results are shown in Figure 10 where MI and GMI achieve robust matching performance
under changed noises, but their average precision is lower than EOH and HMPC. For
similarity measures, the matching accuracy of proposed CFPC is significantly better than the
other methods (MI, GMI, EOH, and HMPC), followed by HPEO and FHOG. Furthermore,
compared to HPEO, the proposed CFPC, which constructs robust feature representation
by integrating different types of local features, has reduced the influence of radiometric
differences and achieved better matching performance in multi-source image matching.

Figure 9. Registration results of the proposed algorithm.
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Figure 10. Matching results with increasing noise.
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4.4. Ablation Experiment

Finally, Table 2 reports the experimental results of average running time (RT) and
precision under different template sizes (TS) and noise levels. The template size varies
between 50 and 90 square patches, whereas the noise level from 0.1 to 0.7. The first group
of experimental results shows the matching performance of the original algorithm (FHOG,
HOPC, and HMPC), while the second group presents the performance of these descriptors
using the proposed F-SSDA for similarity measurement. As the size of the template
increases, the operation efficiency decreases. Similarly, as noise increases, the accuracy of
all test results decreases. Using the F-SSDA algorithm to calculate the similarity of features
in FHOG, HOPC, and HMPC, the average matching efficiency was improved by 52.4%,
88.6%, and 11.9%, respectively. Meanwhile, the average matching accuracy was improved
by 3.2%, 5.2%, and 1.4%, respectively. In addition, the proposed algorithm achieves
the highest computational efficiency and matching accuracy. Therefore, our method can
effectively improve matching robustness by constructing a joint feature model, and the
matching efficiency obtained through the F-SSDA algorithm is also significantly improved.

Table 2. Ablation experiment.

Template Size (Pixel) and Running Time (s) Precision (%) and Noise Level

Template, Noise 50 x 50 70 x 70 90 x 90 0.1 0.4 0.7

FHOG 424 5.14 5.93 86.52 76.96 61.35
HOPC 4.75 7.52 10.21 87.13 69.14 56.35
HMPC 0.43 0.79 121 88.19 79.09 64.28
FHOG + F-SSAD 2.73 3.19 421 87.50 78.38 65.34
HOPC + F-SSAD 2.61 3.61 5.77 88.12 70.22 63.54
HMPC + F-SSAD 0.41 0.71 1.01 88.81 79.61 66.21
Our method 0.34 0.56 0.88 89.12 79.89 70.14

5. Conclusions

This paper introduced the CFPC descriptor and the similarity measure F-SSDA for
multi-source image matching. The CFPC extracts structural information from images
using the oriented gradient and response intensity of phase congruency to produce robust
local features and handles radiometric differences between multi-source images. The
proposed CFPC is not only simple to combine but is also highly efficient and somewhat
insensitive to noise and intensity changes. To enhance the matching efficiency, the Fast
Sequential Similarity Detection Algorithm is proposed to perform the matching process.
Experiments conducted with multi-source remote sensing datasets demonstrated that the
proposed method outperformed state-of-the-art methods like MI, GMI, MIND, FHOG,
HOPC, and FLSS.

Although the test results are encouraging, there is still some additional work to be
done. For instance, there is significant deformation and inconsistent structural features
between the reference image and the target image. Therefore, the deformation factor can
be taken into account when calculating the similarity of phase congruency to solve the
problem of multi-source image deformation.
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Abstract: The main purpose of infrared and visible image fusion is to produce a fusion image that
incorporates less redundant information while incorporating more complementary information,
thereby facilitating subsequent high-level visual tasks. However, obtaining complementary infor-
mation from different modalities of images is a challenge. Existing fusion methods often consider
only relevance and neglect the complementarity of different modalities” features, leading to the
loss of some cross-modal complementary information. To enhance complementary information, it
is believed that more comprehensive cross-modal interactions should be provided. Therefore, a
fusion network for infrared and visible fusion is proposed, which is based on bilateral cross-feature
interaction, termed BCMFIFuse. To obtain features in images of different modalities, we devise a
two-stream network. During the feature extraction, a cross-modal feature correction block (CMFC) is
introduced, which calibrates the current modality features by leveraging feature correlations from
different modalities in both spatial and channel dimensions. Then, a feature fusion block (FFB) is
employed to effectively integrate cross-modal information. The FFB aims to explore and integrate the
most discriminative features from the infrared and visible image, enabling long-range contextual
interactions to enhance global cross-modal features. In addition, to extract more comprehensive
multi-scale features, we develop a hybrid pyramid dilated convolution block (HPDCB). Comprehen-
sive experiments on different datasets reveal that our method performs excellently in qualitative,
quantitative, and object detection evaluations.

Keywords: image fusion; bilateral cross-modal feature interaction; hybrid pyramid dilated convolution;

infrared image; visible image

1. Introduction

Image fusion technology can generate high-quality fusion images containing rich
detail information by integrating two or more source images [1,2]. This technology covers
various image types, including medical image fusion (MIF), multi-exposure image fusion
(MEIF), and infrared—visible image fusion (IVIF). The main goal is to provide a clear
and comprehensive scene representation to enhance scene understanding. Among them,
IVIF is the most widespread and challenging since it requires the effective extraction and
combination of cross-modal features from different sensors. The core goal of IVIF is to retain
the abundant texture details from the visible image and the salient target from the infrared
image [3]. By fusing these two, it can avoid problems caused by the low resolution and
noise of infrared images, and simultaneously overcome the limitations of visible images in
harsh working environments (such as rain, snow, fog, low illumination, etc.). High-quality
fusion images are very helpful for downstream high-level visual tasks, including remote
sensing [4], object detection [5], image segmentation [6], and autonomous driving [7].

Figure 1 demonstrates the fusion and detection results in a typical smoke scenario.
In such conditions, humans and other important targets are often obscured by smoke.
Nonetheless, owing to the unique imaging principles inherent to infrared images, they
can penetrate smoke and distinctly reveal these targets. As illustrated in Figure 1, the
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fusion image significantly enhances the visibility of targets in smoky conditions, thereby
improving detection accuracy. For target detection, visible images fail to detect critical
targets obscured by smoke. The FGAN [8] misses critical target detections, while the
DSF [9] results in false detections. SuperF [10] and the proposed method both successfully
detected these targets, with our method having higher detection accuracy. This indicates
that the proposed method efficiently integrates useful information from infrared and visible
images, enhancing subsequent target detection accuracy. IVIF has tremendous potential
for applications in remote sensing, especially in monitoring complex environments. For
example, in forest fire monitoring, IVIF can help identify fire sources and hotspot areas,
clearly showing the location and range of the fire, which is very helpful for decision-makers
in formulating more effective rescue plans.

Infrared image Visible image FGAN ) SuperF ] Ours

Figure 1. An example of fusion and object detection: (a) fusion results; (b) detection results. The
source images are shown in the first two columns; the fusion and detection results of FGAN, SuperF,
DSF, and our method are in the last four columns.

Existing IVIF methods are primarily divided into traditional and deep learning-based
methods. Traditional fusion methods encompass methods based on saliency [11], sub-
space [12], sparse representation (SR) [13], multi-scale transform (MST) [14], and hybrid [15].
Although the above methods obtain satisfactory results, they still have some obvious lim-
itations: (1) These methods depend on manually designed fusion rules that may not
comprehensively retain the effective features in the source images, especially as source
image complexity increases, necessitating more intricate fusion rules. (2) These methods
usually apply uniform feature extraction for images of different modalities, neglecting
the differences between modalities, which could cause the loss of some unique modality
features in the source images. However, methods based on deep learning exhibit powerful
feature extraction capabilities, overcoming inherent deficiencies in traditional methods and
garnering attention from numerous scholars. Researchers have developed various models
based on deep learning for IVIE, which are generally classified into methods based on the
generative adversarial network (GAN) [5,8,16,17], autoencoder (AE) [18-21], convolutional
neural network (CNN) [22-25], and transformer [26,27].

While the methods mentioned above have achieved satisfactory fusion performance,
several issues remain unresolved. Firstly, most of these methods extract features using a
single network or two parallel networks, without considering the differences in source
image features, thus ignoring the interaction of features from different modalities and
losing some important cross-modal information. It possibly affects the fusion performance
to a certain extent. For example, DenseFuse [18] and FusionDN [28] use a single network
for feature extraction without accounting for the differences between different modalities’
images, which may lead to the loss of some modality-specific information. Secondly,
balancing the discrepancies between the fusion image and the source images is difficult
because IVIF lacks ground truth. Some researchers have introduced GANs to address this
issue, such as FusionGAN [8], DDcGAN [16], and GANMcC [29]. Although GAN-based
methods have achieved acceptable fusion results, it is challenging for GAN to effectively
utilize the unique information in multi-modal images, and GAN-based methods are difficult
to achieve training balance. Finally, they overlook the extraction of diverse features in
the source images and may extract some redundant information or miss some important
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information, thus affecting the fusion performance. For instance, SDNet [30] and PMGI [31]
extract features using a single convolution kernel, which has limited receptive fields and
may ignore some important features. Considering the extraction of multi-scale features,
NestFuse [21] and RFNNest [32] introduce a nested network, which fuses features from
different layers using a fusion strategy, but different layers still use a single convolution
kernel. However, these methods do not sufficiently account for the inherent characteristics
of different modalities, making it challenging to learn diverse feature representations. How
to learn diverse feature representation and effectively use the beneficial characteristics of
bilateral modality to enhance fusion performance is still a challenge.

To tackle the aforementioned problem, we introduce BCMFIFuse, a network that
utilizes bilateral cross-modal feature interaction for IVIE. Firstly, to adequately extract
features from infrared and visible images, we construct a two-stream feature extraction
network. Given that infrared and visible images pertain to different modalities, we design
CMEC to better extract complementary features from these two modalities. CMFC calibrates
the current modality features by combining features from different modalities in the channel
dimension and spatial dimension. Then, we use FFB to effectively integrate the calibrated
features. The FFB is constructed using a cross-attention mechanism to facilitate long-
range context information interaction, thereby enhancing global bilateral modality features.
Finally, to ensure feature continuity and reduce information loss during transmission, skip
connections are utilized between the encoder and decoder. Moreover, to prevent feature
loss from using a single convolution kernel, multi-scale feature extraction is essential.
Dilated convolution is highly effective in capturing multi-scale features and exploring
contextual information. However, regular dilated convolutions detect input features within
a square window, which limits their flexibility in capturing diverse features. Simply using
a large square dilated convolution window is not an effective solution as it tends to extract
redundant features. To tackle this issue, we introduce an HPDCB that integrates rectangular
dilated convolutions to collect more diverse and specific contextual information. To capture
long-range relationships of isolated areas, we employ a combination of long and narrow
kernel shapes in the design of HPDCB. We first employ a long kernel shape with a variable
dilation rate along one spatial dimension; then, a narrow kernel shape is employed in the
other spatial dimension. The key contributions of the proposed method are outlined below:

(a) A bilateral cross-modal feature interaction-based method for IVIF is suggested. The goal
of this method is to provide comprehensive cross-modal interactions and fully leverage
the complementary potential of cross-modal features. In addition, we use a hybrid
pyramid dilated convolution block (HPDCB) to extract multi-scale features, effectively
collect various contextual information, and learn diverse feature representations.

(b) A cross-modal feature correction block (CMFC) is introduced. The module combines
the features from different modalities in spatial and channel dimensions to calibrate
the current modality features. This enables the two feature extraction branches to
better focus on complementary information from both modalities, thereby mitigating
uncertainties and noise effects from different modalities and achieving better feature
extraction and interaction.

(c) A feature fusion block (FFB) is developed. This module effectively integrates cross-
modal features and merges the calibrated features from the CMFC into a single feature
for subsequent image reconstruction. This module considers interaction fusion at
both the channel and spatial dimensions, which is crucial for the generalization of
cross-modal feature combinations.

The remainder of this paper is organized as follows. Section 2 reviews the related
work in the field of image fusion. Section 3 describes the proposed method’s framework in
detail. Section 4 presents the relevant experiments and results. Finally, Section 5 concludes
the main content of this paper and outlines directions for future improvements.
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2. Related Works

This section outlines a thorough overview of current IVIF methods, encompassing
methods based on traditional and deep learning.

2.1. Traditional Image Fusion Methods

Traditional methods vary based on feature extraction, fusion strategy, and feature
reconstruction methods, and are classified as methods based on saliency, subspace, SR,
MST, and hybrid. The methods based on SR and MST are the most commonly employed.

Methods based on MST (e.g., discrete wavelet transform (DWT) [33] and Laplace
pyramid transform (LAP) [34]) primarily decompose the source images into sub-images
of varying scales and orientations. These sub-images are then merged following specific
fusion rules, and an inverse transformation is employed to generate fusion images. These
methods can preserve the source images with their multi-scale features but may lose some
detail information, leading to distortion or edge blur of the fusion image.

Methods based on sparse representation mainly rely on the learning of overcomplete
dictionaries and the decomposition algorithm of sparse coefficients. Initially, an over-
complete dictionary is obtained through learning, followed by sparse coding of the input
images. The obtained sparse coefficients are then fused using various fusion rules, and the
image is finally reconstructed with the dictionary and fusion coefficients. These methods
are able to preserve the details and structure of source images, whereas they have high
computational complexity. Furthermore, the choice of fusion rules and dictionaries is of
utmost importance, as they will affect the fusion results.

2.2. Deep Learning-Based Image Fusion Methods

Generally speaking, methods based on deep learning are mainly divided into four types:
fusion methods based on AE, GAN, CNN, and transformer.

2.2.1. AE-Based Fusion Methods

These methods leverage encoder and decoder networks for feature extraction and
image reconstruction; then, they apply artificially designed fusion rules for fusing features.
Densefuse [18] incorporates dense blocks during the encoding process to effectively ex-
tract and utilize features, and reconstruct the fusion image with a decoder. Subsequently,
Li et al. [32] introduced a residual architecture-based residual fusion network (RFN) to
enhance the performance of image fusion. AUIF [35] is based on the principle of algorithm
expansion and decomposes the source images into high- and low-frequency informa-
tion. In addition, to further enhance the fusion performance, NestFuse [21] integrates
an attention mechanism into the model. SEDRFuse [36] developed a symmetric network
framework with residual blocks and introduced a feature fusion rule based on attention.
Res2Fusion [37] incorporates dense Res2Net into the encoder and develops a dual non-local
attention-based fusion strategy. Despite the significant fusion performance achieved by
these methods, the necessity for manual formulation of fusion rules greatly limits the fusion
performance improvement.

2.2.2. CNN-Based Fusion Methods

To tackle the issues of AE-based fusion methods, a number of CNN-based end-to-
end fusion techniques were introduced, yielding impressive fusion results. For instance,
the PIAFusion [25] network leverages illumination perception for fusing infrared and
visible images. STDFusionNet [24] extracts the background regions from visible images
and the target regions from infrared images using semantic segmentation, while network
optimization is guided by a new loss function. Notably, the key innovation in these
approaches is in the design of the loss function. Long et al. [38] introduced RXDNFuse,
which has a relatively innovative network structure and uses an aggregated residual
dense network to effectively extract and fuse features. To address various image fusion
tasks within a single framework, PMGI [31] is proposed, which emphasizes gradient and
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intensity ratio preservation, enabling multiple image fusion tasks. Additionally, Zhang
et al. [30] introduced SDNet, treating the fusion problem as a task of extracting and
reconstructing gradient and intensity information. Xu et al. [28,39] contributed to the
field with their general image fusion frameworks, U2Fusion and FusionDN. However,
despite the noteworthy results these fusion methods have made, they commonly neglect
the modality differences inherent between visible and infrared images. They utilize the
same network structure for extracting features from different modalities, which limits
their ability to distinguish inherent feature differences between modalities, subsequently
restricting their fusion performance.

2.2.3. GAN-Based Fusion Methods

IVIF lacks ground truth; to address this challenge, researchers have introduced GAN.
FusionGAN [8] is a new beginning in the field of fusion, marking the official application of
GAN in this field. Subsequently, numerous GAN-based fusion methods have emerged. For
example, ResNetFusion [40] tackles the problems of target edge blurring and texture detail
loss in FusionGAN. This method incorporates target edge enhancement loss and detail loss
functions to sharpen target edges and enhance detail information. Furthermore, proposed
by Ma et al. [16], DDcGAN contains a generator and dual discriminators, which can train
the generator more comprehensively and prevent information loss that could occur with
a single discriminator. GANMCcC [29] introduces a multi-class constraint, transforming
the fusion problem into a simultaneous estimation of multiple distributions and achieving
excellent fusion results. TarDAL [5] is a dual adversarial learning network using target
perception and applies to image fusion and downstream object detection tasks. GAN-
FM, proposed by Zhang et al. [41], involves a full-scale skip-connected generator to
leverage multi-scale information during the fusion process. Additionally, many researchers
introduced attention mechanisms in their frameworks. For example, AttentionFGAN [42]
incorporates multi-scale attention into the generator and the discriminator, significantly
enhancing fusion performance. TC-GAN [43] applies squeeze and excitation modules in
the generator to better retain important texture details in the fusion images. However,
achieving training balance in GAN-based methods still poses a challenge.

2.2.4. Transformer-Based Fusion Methods

Models of this kind employ the multi-head self-attention mechanism, exhibiting
remarkable performance in capturing global information and overcoming the limited re-
ceptive field issue of CNNs. Thanks to its exceptional ability to explore the global context,
the transformer model has excelled in computer vision tasks, giving rise to various fu-
sion methods based on transformer [26,27,44]. For instance, SwinFusion [26] introduces a
fusion framework that combines the convolutional neural network and the transformer,
enabling the utilization of both local and global information. YDTR [44] captures local
important information and crucial contextual detail information by utilizing a dynamic
transformer, preserving texture details and salient targets in the source images. How-
ever, transformer-based methods, while delivering outstanding performance, also entail
significant computational costs.

3. Method

In this section, we describe the framework of the BCMFIFuse, which is a method for
IVIF based on bilateral cross-modal feature interaction. First, an outline of the overall
architecture of BCMFIFuse is presented. Next, we introduce network structures of hybrid
pyramid dilated convolution block (HPDCB), cross-modal feature correction block (CMFC),
and feature fusion block (FFB). Finally, we delve into the multiple constraint loss functions
employed in the BCMFIFuse network model.
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3.1. Qwverall Architecture

IVIF aims to maintain essential target information in infrared images while simultane-
ously retaining the abundant texture details in visible images. Extracting and leveraging
complementary features from the visible and infrared images remains challenging on
account of differences in sensor acquisition and imaging mechanisms. Existing fusion
methods suffer from limitations in feature representation, potentially leading to informa-
tion loss and negatively impacting the fusion results. Therefore, achieving comprehensive
cross-modal interaction is crucial for fully leveraging the complementary features from the
infrared and visible images. In this study, we propose BCMFIFuse, an IVIF network based
on bilateral cross-modal feature interaction. Figure 2 demonstrates the overall framework
of BCMFIFuse, which is constructed with a two-stream design for feature extraction from
infrared and visible images. The architecture of BCMFIFuse primarily comprises four key
components: HPDCB, CMFC, FFB, and FR. We use the HPDCB module to extract compre-
hensive multi-scale feature information, then employ the CMFC to calibrate the extracted
features, and subsequently use the FFB to fuse the calibrated features. Additionally, to
ensure feature continuity and reduce information loss during transmission, we implement
residual connections between the encoder and decoder. The FR is primarily employed to
ensure that the reconstructed visible and infrared images contain complete information.

i |
1 Hybrid Pyramid Dilated
— HPDCB Convolution Block
4 M —> — M — o) = a —_ —_ M —
R g 2 g 2 2 g 2
L E = E = E = &~ = e Cross Modal Feature
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FFB Feature Fusion Block
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add Element-wise Summation
Tanh
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:§ | 8 . . | g sl a2l = ﬁ Convolution
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& S & S =) S
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Figure 2. The overall network architecture of our method. vi, ir, and f refer to visible, infrared, and
fusion images, respectively. rf stands for reconstructed visible and infrared images.

3.2. Hybrid Pyramid Dilated Convolution Block (HPDCB)

The size and shape of the convolution kernel can affect the features extracted. As the
scale changes of the target objects in the dataset may not always be regular, to extract a more
comprehensive and richer image feature representation, we need to capture features at
different scales. Conventional dilated convolutions mainly detect input features of square
windows, which may limit their flexibility in capturing features. Relying solely on large
square dilated convolution windows is insufficient to fully tackle this issue and might
even lead to the extraction of redundant features. To tackle this issue, we design a module
named HPDCB, which aims to obtain more specific and diverse contextual information, as
shown in Figure 3. HPDCB is capable of capturing the long-range relationships between
isolated areas. During the design phase of HPDCB, rectangular dilated convolution is
incorporated into the dilated convolution framework and adopts a method combining long
kernel and narrow kernel shapes. First, a long kernel shape with a variable dilation rate
along one spatial dimension is deployed; then, a narrow kernel shape is deployed in the
other spatial dimension. The process mentioned above can be formulated as follows:
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hy = relu(convi 1 (relu(convi 3 (F,))))

hy = relu(conv3xf(relu(conv‘lixg(Fa))))

hs = relu(convi_3 (relu(conviz3(F,)))) , (1)
hy = relu(convsx3(F,))

h=hy+hy+hs+hy

where F; denotes the input feature, d denotes dilation rate, relu stands for ReLU activation
function, conv stands for convolution, / is the output feature, and 3 X 1 and 3 x 1 are the
kernel sizes.

1x3,d=1,R @ 3x1,d=1,R

1x3,d=2, R 3x1,d=2,R

1x3,d=3,R 3x1,d=3,R

input output

3x3,R @ summation

Figure 3. The hybrid pyramid dilated convolution block (HPDCB). d denotes dilation rate. R stands
for ReLU activation function.

3.3. Cross-Modal Feature Correction Block (CMFC)

In our work, we construct two parallel branches for extracting features from the visible
and infrared images, respectively. As is widely recognized, multimodal images often
contain a large amount of noise from different modalities. Nevertheless, infrared and
visible images offer complementary information, with the potential for their features to
calibrate the noise information pertaining to one another. Therefore, we design CMFC to
correct features from different modalities. Figure 4 depicts the structure of CMFC. The
calibrated features are then fed into the subsequent phases for further enhancement and
refinement of feature extraction. Assuming that the inputs of CMFC are f/" and f", the
workflow can be expressed as follows:

@ Sigmoid

@ summation

® multiplication

. 1x1 conv

- global average pooling
- global max pooling

MP max pooling, axis=channel

AP  avg pooling, axis=channel

Mj,, = sig(cono(GMP(f}")))

M;,, = sig(conv(GAP(f]"))) 2)
M 5 = sig(conv(AP(f")))

M;M = sig(conv(MP(f")))
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M, = sig(conv(GMP(f{")))
Ml = sig(conv(GAP(f{"))) @)
m3 = sig(conv(AP(f{"))) '
I, = sig(conv(MP(f77)))

Ml1 = sofifmax(Mir1 + M) @ ff
Mlz - softmax(Mer + sz) ® fu (4)
My = softmax(Mi, + Mp,) @ f7 7
M, = softmax(Mi,, + M.,) © ff

fi = My + M, + Mig + My, ©

where conv stands for convolution, sig denotes the sigmoid function, and ® represents
element-wise multiplication. M; j (a =ir,vi;i,j = 1,2,3,4) signifies the result of the j-th

branch at the i-th layer. j?f represents the calibrated features.

3.4. Feature Fusion Block (FFB)

To extract and integrate the most discriminative features in the infrared and visible
images, facilitating long-range contextual interaction and enhancing global cross-modal
features, we design a feature fusion block (FFB). This module integrates two features
calibrated by CMFC into a feature map, which is then added to the output of different
levels of the decoder to transform into the ultimate output feature. The framework of FFB
is depicted in Figure 5.

. 1x1 conv
P RreLu
@ concatenation

@ Sigmoid

@ summation

® multiplication

Figure 5. The feature fusion block. GMP and GAP indicate global average pooling and global max
pooling. AP and MP stand for average pooling and max pooling.

Assuming the i-th HPDCB of the visible and infrared branches generate f and f/",
respectively, we first adopt GAP and GMP to obtain global features. Subsequently, after
a series of processing, the channel attention weights catt?, (x = ir,vi) generated by the
infrared and visible branches are obtained. These attention weights are then multiplied
with the corresponding input features f7, (i = 1,2,3), aiding the model in suppressing
unimportant scene features and emphasizing crucial ones. Following this, the attention
weights of these two branches are added; then, the softmax function is employed to acquire
the cross-channel attention weight W¢. The multiplication of the input features and weight
Wi of the visible and infrared images yields the cross-channel attention output for both
modalities. Additionally, /" and f” undergo a spatial attention module (composed of MP,
AP, convolution, and sigmoid function), producing the spatial attention output satt¥ for
the visible and infrared images. Subsequent operations are similar to the above process
(see Figure 5). The final cross-modal fusion feature f; is acquired by adding the acquired f{
and f;. The process mentioned above can be formulated as follows:
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gap? = relu(convl x 1(GAP(f})))
gmpY = relu(convl x 1(GMP(f¥)))
catt} = sig(gap¥ + gmpy)
Fi=catt ® ff ‘ ’ ©
W¢ = softmax(ca/t\t;-r + catt}’)
F¥ = Wf® f¥+Fx
f£ = convl x 1(concat(F, F%))
s/fzttf = sig(conv7 x 7(concat(AP(f)), MP(f}))))
FX = sattf @ fF
W = softmax(scit;r + satt?) ’ @
Fi=W;® fi + F}
£ = convl x 1(concat(FI, F%))

st/
fi=(fi +£7) <05, ®)
where relu is the ReLU activation function and softmax denotes the softmax activation

function.

3.5. Feature Reconstruction Module (FR)

To ensure that the reconstructed visible and infrared images incorporate complete
information, we designed the FR module. This module aims to constrain the final recon-
struction features to contain more comprehensive information by reconstructing the visible
and infrared images. Figure 6 depicts the architecture of the FR. Assuming X is the input
feature, the workflow of FR can be expressed as follows:

conv(relu(B(conv(X))))))))
conv(GAP(X))))))

R1 = B(conv(relu
R, = B(conv(relu
R; = Slg(Rl &® Rz) ® X !
R = tanh(conv(B(R3)))

(B
(B

—_— o~

©)

where B denotes batch normalization, conv stands for convolution with kernel size 3 x 3,
relu stands for ReLU activation function, GAP represent global average pooling, and tanh
is Tanh activation function.

| 3x3 conv I ReLU
I /] G l BN Tanh

N @ Sigmoid

Figure 6. The feature reconstruction module (FR). BN denotes Batch Normalization. GAP represent
global average pooling.

3.6. Loss Function

Designing the loss function is pivotal for model training, as it not only guides the
optimization direction of the model but also influences the proportion of various infor-
mation from the source images preserved in the fusion images. The loss function of the
proposed method is formed by five terms: intensity loss (Lint), detail 10ss (Lgetai1), structural
similarity loss (Lssjy,), triplet loss (Ly,;), and reconstruction loss (L;.). We express the total
loss Liyar as follows:

Liotal = &Lint + BLgetail + Lssim + Liri + Y Lre, (10)

where the coefficients «, B, and 7 are employed to harmonize various loss functions.

26



Remote Sens. 2024, 16, 3136

To retain important targets in source images, we introduce a saliency-related intensity
loss, defined as follows:

Lint = MSE(xf/ (Wir @ xiy + Wy ® X)), (11)

where MSE is the mean squared error; x 1 Xois and x;, stand for the fusion, visible, and in-
frared image; W;, and W,; denote weighted maps, W,; = S,/ (Syi — Siy) and Wj, = 1 — Wy;;
and S denotes the saliency matrix, which is computed by [45].

To maintain abundant texture details in the fusion images, we incorporate a detail
loss, defined as follows:

Lgetail = H‘fo‘ *maX(|inr|,|vai|)‘

v (12)
where || - ||; and V denote the /;-norm and Sobel gradient operator; max(-) and | - | stand
for the element-wise maximum values operation and the absolute operation symbol.

In order to achieve an ideal image that possesses rich texture information, prominent
target information, and also retains the overall structure of source images, a modified
structural similarity loss [46] Ly, is introduced into Ly, defined as follows:

1— SSIM(in, xf)
L) i (xe) > 0% (x)
ssim T 7 (13)
1— SSIM(xi,, xf)

if 02 (xj) >= 02 (xy;)

where 02 denotes variance. The use of SSIM provides a metric for quantifying the similarity
between two images, where a higher value corresponds to a stronger similarity between
the images.

Furthermore, to assist the network in learning more discriminative feature representa-
tions and enhance the fusion image quality, we introduce the triplet loss Ly;.

3
L = Y max(d(fy fI™) = d(f, £) + b,0), (19
i=1

where the value of 7 is 3, representing the count of convolutional blocks involved; d(-)
denotes the Euclidean distance; ) stands for summation operator; pos and neg are positive
and negative samples; and b represents a parameter and is set to 1.0.

We design an FR module to ensure that the reconstructed source images contain more
comprehensive information, thereby optimizing the final fusion result. Accordingly, a
reconstruction loss function is introduced, which is defined as follows:

Lre = [[|Vxir| = [V, [[[1 4+ [[[Vxwi] = [V 2ol 1

15
+MSE(xjy, £iy) + MSE (x4 — £4;), 15

where %;, stands for reconstructed infrared image and %; denotes reconstructed visible image.

4. Experiments and Results

We evaluate the fusion performance of our method by conducting various compar-
ative experiments in this section. Firstly, comprehensive details are presented regarding
the experimental datasets, training details, comparison methods, and metrics for evalua-
tion. Then, the exceptional performance of the proposed method is demonstrated through
conducting quantitative and qualitative comparisons on different public datasets. Sub-
sequently, we execute ablation studies on each key module to validate their essentiality.
Finally, we conduct fusion efficiency experiments. Furthermore, we extend the experiments
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to object detection, showing that our method enhances the performance of downstream
high-level visual tasks.

4.1. Datasets and Training Details

(1) Datasets. M3FD: The M3FD dataset [5] contains high-resolution visible and
infrared image pairs of various object types and scenes. The image pairs cover four
typical types in different seasons, daytime, overcast, and night. In our study, we choose
2720 image pairs from this dataset to form our training set. The diversity of M3FD provides
convenience for exploring image fusion algorithms.

TNO: The TNO dataset https:/ /figshare.com/articles/TN_Image_Fusion_Dataset/10
08029 (accessed on 30 January 2024), which contains multi-band nighttime images depicting
military scenarios, is generally applied in the fusion of visible and infrared. We randomly
choose 39 image pairs from it to serve as the test set.

RoadScene: The Roadscene dataset https://github.com/hanna-xu/RoadScene (ac-
cessed on 30 January 2024) is composed of 221 aligned pairs of visible and infrared images.
These image pairs showcase representative traffic scenes, including pedestrians, traffic
signs, vehicles, and roads. The dataset has been formed through careful preprocessing and
image registration of some of the most representative scenes from the FILR dataset.

LLVIP: Most of the images in the LLVIP dataset [47] are taken in very dark scenes,
making it applicable for low-light vision. This dataset can verify the effectiveness of fusion
algorithms under low-light conditions.

(2) Training details. In this work, we utilize 2720 image pairs from the M3FD dataset
for model training. We perform extensive quantitative and qualitative evaluations of our
method and comparison methods on the MBFD, RoadScene, TNO, and LLVIP datasets. To
expand the training data, increase data diversity, and mitigate the risk of overfitting [48],
we employ random horizontal flipping during the training phase and resize the images to
352 x 352. During the training process, the parameter update employs the Adam optimizer,
with a batch size of 16. The learning rate and training epochs are set to 10~ and 100,
respectively. The coefficients « = 50, § = 50, and v = 5 are determined based on extensive
experiments and experience. We employ the PyTorch 1.7 framework to implement our
approach and train it on an NVIDIA A100 GPU (NVIDIA, Santa Clara, CA, USA).

4.2. Comparison Methods and Evaluation Metrics

We will assess the fusion images from subjective and objective perspectives to validate
the fusion performance of our method. For subjective evaluation, the primary factor is
human visual perception. The fusion image’s quality is evaluated by the detail richness
and target salience, which inherently entails a certain level of subjectivity. On the other
hand, objective evaluation methods rely on quantitative metrics to objectively assess
image quality.

Comparison methods. We assess the fusion performance of our method by comparing
it with twelve state-of-the-art (SOTA) fusion methods (GTF [49], FGAN [8], STDF [24],
SwinF [26], TarDAL [5], SeAF [22], SuperF [10], DIDF [19], BDLF [50], SHIP [51], DSF [9],
and TCMoA [52]). To ensure fairness, we adhere to the parameter settings from the
original publications by the authors in our comparative experiments, without modifying
any other configurations.

Evaluation metrics. Given the deficiency of ground truth in IVIF it is insufficient
to rely solely on subjective visual assessments to evaluate the quality of fusion images,
particularly when the two fusion images are nearly indistinguishable visually. To make
the results more convincing, we select twelve quantitative metrics to comprehensively
and objectively evaluate our method, including the sum of the correlation differences
(SCD) [53], correlation coefficient (CC) [54], average gradient (AG) [55], visual information
fidelity (VIF) [56], mean square error (MSE) [57], peak signal-to-noise ratio (PSNR) [58],
edge information (Qgpf) [59], multi-scale structural similarity (MSSSIM) [60], structural
similarity (SSIM) [61], mutual information (based on wavelet feature (FMI,), discrete
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cosine feature (FMIy), and pixel feature (FMI,)) [62]. Except for MSE, higher values
indicate superior fusion performance.

4.3. Comparison Experiment

We proceed with a comprehensive experiment on the M3FD dataset to validate the
superiority of our method in fusion performance. The following will present both qual-
itative and quantitative analyses of the results obtained from our method as well as the
comparison methods.

Qualitative analysis. Figure 7 shows two groups of qualitative experimental results
from the M®FD dataset. In the first group of images, the visible image fails to provide
effective scene details due to contamination. For instance, distinguishing the target person
and the car logo inside the red box is challenging in the visible image but clear in the infrared
image. The fusion images effectively integrate complementary features from visible and
infrared images, but present visual differences across different methods. The results of GTF
and FGAN tend towards the infrared image, while STDF, SwinF, TarDAL, SeAF, SuperF,
DIDEF, and BDLF preserve target information from the source image but lack texture detail.
SHIP, DSE, and TCMOoA retain significant texture detail but overlook contrast information.
Remarkably, the proposed method not only performs well in preserving texture details
and salient targets but also has superior visual effects. According to the analysis of the
results, our method can effectively utilize infrared image information to complement
severely contaminated visible images when they fail to provide scene details. This ability is
attributed to CFMR and FFB, which calibrate and supplement the complementary features
in source images. Furthermore, our method still demonstrates commendable performance
under conditions of low illumination and when targets and backgrounds are similar, as
illustrated in the second group in Figure 7. Overall, our method provides more thorough
scene data and clearer visuals than other comparison methods.

BDLF SHIP ] ) TCMoA

Figure 7. Qualitative analysis of different methods on the MBFD dataset. The regions to focus on
are marked with red and green rectangles, with magnified views of these regions presented in the
lower-left, upper-left, and upper-right corners.
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Quantitative analysis. To enhance the credibility of the evaluation results, we conduct
a quantitative analysis using twelve evaluation metrics, as illustrated in Figure 8. The
testing set comprises 76 image pairs randomly selected from the M?FD dataset. To make
comparison easier, we rank the mean values of the twelve evaluation metrics for different
methods to obtain an average ranking, as indicated in Table 1. According to the ranking
results, our method excels over others in metrics such as PSNR, MSE, VIF, CC, Q,;, s SSIM,
MSSSIM, F MI,, FMIy, and FMI,. Regarding SCD, our results outperform all methods
except DIDF, and we achieve the third-best in AG. Quantitative analysis demonstrates
that our method can ensure the maximum preservation of texture details in visible images
while retaining the prominent target in infrared images.
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Figure 8. Quantitative analysis of multiple evaluation metrics on the MBFD dataset. Within each
box, the green line indicates the median value, and the orange tangle stands for the mean value. Red
serves to highlight the best mean value, blue for the second-best, and green for the third-best. The
rankings of the proposed method for each metric are displayed on the right.

Table 1. The ranking results of different metrics on the M®FD dataset for different methods. Red
serves to highlight the best result, blue for the second-best, and green for the third-best.

PSNRT MSE| VIFt AGT CCt SCDt Quff SSIMT  MSSSIMT FMI, FMI;+  FMI, 1

GTF 10 10 12 9 13 10 8 8 9 8 3 4
FGAN 4 4 13 13 11 12 13 13 13 11 5 10
STDF 6 6 8 7 9 11 7 10 12 9 4 3
SwinF 12 12 4 6 6 3 4 3 4 4 2 2
TarDAL 7 8 9 8 8 8 12 12 11 13 13 12
SeAF 13 13 6 5 7 4 5 2 3 6 12 11
SuperF 5 5 10 11 5 7 10 9 6 10 9 5
DIDF 8 7 7 4 3 1 9 7 5 12 8 7
BDLF 2 2 11 12 2 6 11 11 8 7 7 9
SHIP 11 11 2 1 10 9 3 6 7 2 11 8
DSF 9 9 5 2 12 13 2 4 10 3 6 6
TCMoA 3 3 3 10 4 5 6 5 2 5 10 13
Ours 1 1 1 3 1 2 1 1 1 1 1 1
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4.4. Generalization Experiment

Generalization assessment plays a vital role in evaluating fusion algorithms. We
perform comprehensive experiments on the TNO, RoadScene, and LLVIP datasets to
additionally validate the generalization and scalability of our method. The following
will present a detailed analysis of the qualitative and quantitative experimental results of
different methods on these three datasets.

4.4.1. Results on TNO Dataset

Qualitative analysis. We compare our method against twelve SOTA fusion methods
to assess its generalization performance and robustness. Figure 9 presents the fusion results
of two representative scenes: one is a smoke scene and the other is a daytime scene with
low illumination. To facilitate the observation of the fusion results, we use red and green
rectangles to mark some significant targets and texture detail information, respectively, in
Figure 9. As observed in Figure 9, all methods can complete the basic fusion task. However,
our method exhibits remarkable performance in subjective visual quality and retaining the
crucial features in the source image. The fusion images generated by GTF and FGAN tend
to infrared images, preserving the significant targets from the infrared images; nevertheless,
they fail to integrate the texture detail from the visible images. STDF, SwinF, TarDAL, SeAF,
SuperF, DIDE, BDLEF, SHIP, and DSF can retain plentiful texture details from the visible
images but insufficiently maintain significant targets from the infrared images. TCMoA can
maintain the prominent targets from the infrared images and the texture details from the
visible images but suffers from low contrast. In comparison, our method has satisfactory
visual quality while retaining abundant texture detail from visible images and significant
targets from infrared images.

Infrared image Visible image

- 4
BDLF SHIP TCMoA Ours

Figure 9. Qualitative analysis of different methods on the TNO dataset. The regions to focus on
are marked with red and green rectangles, with magnified views of these regions presented in the
lower-right or lower-left corners.
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Quantitative analysis. Figure 10 and Table 2 demonstrate the quantitative results
of different methods. It is apparent from the results that our method excels over others
in terms of PSNR, MSE, CC, SCD, Qg fr SSIM, MSSSIM, FM1;, and FMI,, and ranks
second only to MPCF on FMI,. The analysis of these metrics indicates that our fusion
results are extremely similar to the source images—with low noise, rich details, and high
contrast—and demonstrate excellent visual effects.

Table 2. The ranking results of different metrics on the TNO dataset for different methods. Red serves
to highlight the best result, blue for the second-best, and green for the third-best.

PSNRT MSE| VIF{ AGT CCT SCDT ab SSIM MSSSIM 1 FMI FM1, FMI, 1
f P

GTF 10 11 13 12 13 13 12 12 11 9 13 13
FGAN 13 9 12 13 10 12 13 13 13 12 4 6
STDF 8 8 2 4 11 11 7 11 12 10 3 2
SwinF 12 13 5 3 8 5 4 6 7 8 2 3
TarDAL 6 5 6 7 6 6 10 10 8 11 12 10
SeAF 9 10 1 1 4 3 6 7 4 5 10 12
SuperF 4 7 11 11 7 8 8 3 6 7 5 4
DIDF 7 4 8 8 2 2 11 8 3 13 7 5
BDLF 2 2 9 10 3 4 9 9 5 6 6 8
SHIP 11 12 3 2 9 9 3 5 9 1 11 9
DSF 3 3 10 6 12 10 2 2 10 4 8 7
TCMoA 5 6 4 9 5 7 5 4 2 3 9 11
Ours 1 1 7 5 1 1 1 1 1 2 1 1
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Figure 10. Quantitative analysis of multiple evaluation metrics on the TNO dataset. Within each
box, the green line indicates the median value and the orange tangle stands for the mean value. Red
serves to highlight the best mean value, blue for the second-best, and green for the third-best. The
rankings of the proposed method for each metric are displayed on the right.

4.4.2. Results on RoadScene Dataset

Qualitative analysis. IVIF is instrumental in various traffic applications. Therefore, we
choose to test twelve SOTA methods and our method on the RoadScene dataset. Figure 11
displays two sets of the most representative image pairs. The first set is a daytime scene
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and the second is a night scene with strong light illumination. The details of the utility
poles are clearly depicted in our fusion results for the first group of images, while in the
second group, even the details of a person concealed in darkness are clearly visible from
our result. In comparison, the fusion results from GTF and FGAN are relatively blurry and
lose important salient target information, such as the person within the green rectangle
of the second set. DIDF, BDLF, and DSF suffer from low contrast, while STDF, SwinF,
TarDAL, SeAF, and SuperF lose some texture detail information, marked in red rectangles
in Figure 11. While SHIP, TCMoA, and our method retain salient target information and
sufficient texture details, SHIP and TCMOoA still have some artifacts. Generally, our method
maintains essential features from the source images while mitigating interference from
useless information, conforming to human visual perception.

Quantitative analysis. Quantitative analysis was conducted on 110 image pairs ran-
domly selected from the RoadScene dataset. Figure 12 and Table 3 present our quantitative
results, which reveal that our method excels in multiple evaluation metrics. Specifically,
our method excels in MSE, CC, Qg fr SSIM, MSSSIM, and FMIy, achieving the highest
scores, while ranking second in PSNR, SCD, FMI,, and FMI;. In general, the proposed
method exhibits excellent generalization performance and can still achieve satisfactory
fusion results even in environments with small differences between the background and
the target and insufficient lighting.

. sl
U L
%

,a“/‘-’f*\ﬁ 1
§ ~al

BDLF SHIP DSF TCMoA Ours

Figure 11. Qualitative analysis of different methods on the RoadScene dataset. The regions to focus
on are marked with red and green rectangles, with magnified views of these regions presented in the
lower-left or lower-right corners.
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Figure 12. Quantitative analysis of multiple evaluation metrics on the RoadScene dataset. Within
each box, the green line indicates the median value and the orange tangle stands for the mean value.
Red serves to highlight the best mean value, blue for the second-best, and green for the third-best.
The rankings of the proposed method for each metric are displayed on the right.

Table 3. The ranking results of different metrics on the RoadScene dataset for different methods. Red
serves to highlight the best result, blue for the second-best, and green for the third-best.

PSNRT MSE| VIFt AGt CCt SCDT  Quyt  SSIMt MSSSIMT FMI,t  FMI;t  FMI,t
GTF 9 10 11 113 13 12 11 11 6 4 10
FGAN 13 13 13 131 11 13 13 12 11 6 13
STDF 12 11 1 2 7 6 10 12 13 7 7 4
SwinF 11 12 5 10 5 4 8 9 7 9 8 5
TarDAL 4 5 9 8 9 9 9 10 9 12 13 9
SeAF 8 8 3 1 6 5 5 6 4 10 9 6
SuperF 6 6 7 9 8 8 6 4 5 5 1 3
DIDF 5 4 8 6 2 1 7 2 3 13 3 2
BDLF 1 2 10 12 3 7 11 8 6 8 5 8
SHIP 10 9 2 3 10 10 3 7 10 3 12 11
DSF 7 7 12 5 12 12 2 5 8 1 11 12
TCMoA 3 3 4 7 4 3 4 3 2 4 10 7
Ours 2 1 6 4 1 2 1 1 1 2 2 1

4.4.3. Results on LLVIP Dataset

Qualitative analysis. Compared to the fusion of daytime scenes, the low illumina-
tion image fusion presents more challenges. When visible images are affected by strong
illumination sources and fail to provide sufficient scene information, high-performance
fusion methods can effectively utilize infrared images for supplementation. To additionally
confirm the superiority of our method, a fusion test on the LLVIP dataset is conducted,
with qualitative results depicted in Figure 13. The first group depicts scenes with insuffi-
cient illumination at night, while the second group shows nighttime scenes with strong
illumination interference. From the displayed results, our method preserves significant
targets from the infrared image and the abundant texture details from the visible image
while also effectively resisting strong illumination interference to generate high-quality
fusion images.
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Quantitative analysis. We conduct a quantitative analysis using 96 image pairs
randomly selected from the LLVIP dataset. As depicted in Figure 14 and Table 4, the quan-
titative results demonstrate that our method outperforms others on multiple evaluation
metrics. Specifically, it excels in PSNR, MSE, VIF, CC, SCD, Q,, fr SSIM, MSSSIM, FMI,,, and
FMI;. On the AG metric, our method is ranked second. On the FM]I;, metric, our method
ranks fourth. Overall, the proposed method exhibits good generalization ability and ro-
bustness, efficiently accomplishing image fusion tasks in various complex environments.

Infrared image

TCMoA

Ours

Figure 13. Qualitative analysis of different methods on the LLVIP dataset. The regions to focus on

are marked with red and green rectangles, with magnified views of these regions presented in the

lower-left or lower-right corners.

Table 4. The ranking results of different metrics on the LLVIP dataset for different methods. Red
serves to highlight the best result, blue for the second-best, and green for the third-best.

PSNRT MSE| VIFT AG? CCtT SCDT  Qur? SSIM 1 MSSSIMt  FMI, 1 FMI; t FMI, 1

GTF 10 10 8 6 13 11 8 7 9 10 3 1
FGAN 5 5 13 13 10 13 13 13 13 13 11 13
STDF 4 4 11 9 12 12 7 9 12 8 4 7
SwinF 7 7 3 4 3 2 3 2 3 3 2 3
TarDAL 13 13 10 8 9 8 11 11 10 12 13 11
SeAF 11 12 5 5 2 3 5 4 5 5 9 2
SuperF 6 6 9 11 5 7 9 8 7 6 8 10
DIDF 12 11 12 10 6 5 12 12 11 11 10 12
BDLF 2 2 6 12 8 9 10 10 8 9 5 9
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Table 4. Cont.

PSNRT MSE| VIFT AG?t CCt SCDt Quyt SSIMT  MSSSIMT FMI,t FMI;+  FMI, 1
SHIP 9 9 4 1 7 6 2 3 4 2 7 8
DSF 3 3 7 3 11 10 4 5 6 4 6 5

TCMoA 8 8 2 7 4 4 6 6 2 7 12 6
Ours 1 1 1 2 1 1 1 1 1 1 1 4
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Figure 14. Quantitative analysis of multiple evaluation metrics on the LLVIP dataset. Within each
box, the green line indicates the median value and the orange tangle stands for the mean value. Red
serves to highlight the best mean value, blue for the second-best, and green for the third-best. The
rankings of the proposed method for each metric are displayed on the right.

4.5. Ablation Experiment

We will evaluate the effectiveness of each module in this section. The proposed
method comprises three crucial modules, namely, CMFC, FFB, and HPDCB. In our ablation
experiments, we verify different combinations of these modules. Additionally, we perform
ablation experiments related to FR and /,; loss.

Quantitative analysis. As detailed in Table 5, seven groups of ablation experiments
were executed to assess the necessity of our proposed modules. According to the quantita-
tive indicators from Table 5, our method exhibits excellent performance in VIF, AG, CC,
SCD, and FMI,, and ranks second in Qg  FMIp, and FMI,. Overall, every module we
proposed contributes to improving the quality of the fusion result.

Qualitative analysis. Figure 15 presents the qualitative results of two groups of
ablation experiments. It is evident from the displayed results that the fusion results of
M1, M2, M3, and M4 exhibit some blurring, while the contrast of M5 and M6 is also lower
compared to our method. Generally speaking, our method excels in maintaining high
contrast and complete information while also demonstrating excellent clarity compared to
other incomplete combination modules.
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Table 5. The quantitative analysis of various modules on the MBED dataset. Red serves to highlight
the best result, blue for the second-best, and green for the third-best.

Model M1 M2 M3 M4 M5 M6 M7 (Ours)
CMEFC X X v v v v v
FFB X v X v v v v
HPDCB X v v X v v v
FR X v v v X v v
Ly X v v v v X v
PSNR 1 63.6507  63.4210 63.5573 63.4941  63.3877 63.4001 63.3531
MSE | 0.0329 0.0341 0.0334 0.0336 0.0342 0.0342 0.0346
VIF 1 0.7298  0.8480 0.7603 0.7797  0.8410 0.8491 0.8977
AG T 5.9649 6.0204 5.9805 5.9546 5.9800 5.9264 6.0230
cCt 0.5946 0.5807 0.5930 0.5984 0.5883 0.5880 0.5995
SCD 1 1.6584 1.6623 1.6962 1.7565 1.7076 1.7179 1.7835
Qupr T 0.6147  0.6857 0.6160 0.6248  0.6766  0.6697 0.6803
SSIM 1 0.9804 0.9812 0.9800 0.9800 0.9809 0.9801 0.9797
MSSSIM 1 0.9643 0.9642 0.9674 0.9678 0.9640 0.9638 0.9638
FMI, t 0.8886  0.8988 0.8877 0.8883  0.8973  0.8970 0.8977
FMI; 1 0.3684 04158  0.3871 0.3804  0.4236  0.4337 0.4317
FMI, 1 0.3832 0.4246 0.3920 0.3991 0.4264 0.4301 0.4341

Infrared image

Visible image

M7(Ours)

M7(Ours) .~

Figure 15. The qualitative results of ablation experiments.

4.6. Efficiency Comparison

The average runtime of various fusion methods on the TNO dataset is presented in
Table 6. We conduct all experiments on the same device to ensure fairness. The result
from Table 6 reveals that the proposed method surpasses GTE, FGAN, STDF, SwinF, BDLE,
TarDAL, SuperF, DIDF, SHIP, and TCMoA in runtime. Overall, the proposed method
demonstrates high fusion efficiency while ensuring fusion performance.

Table 6. The average runtime of various fusion methods on the TNO dataset.

Methods GTF FGAN STDF SwinF TarDAL SeAF SuperF
time (s) 2.8868 0.4853 0.3270 2.4847 0.7605 0.0989 0.2218
Methods DIDF BDLF SHIP DSF TCMoA Ours -
time (s) 1.4027 0.2110 0.4293 0.1614 1.0688 0.2025 -
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4.7. Fusion for Object Detection

IVIF lacks ground truth, often necessitating qualitative and quantitative analyses to
assess algorithm performance. However, it remains uncertain as to whether fusion images
enhance performance in downstream visual tasks (e.g., object detection). To explore this
question, experiments were conducted on the M3FD dataset. To ensure fairness, we employ
the YOLOV5 framework to perform object detection on visible, infrared, and fusion images.

Qualitative analysis. To facilitate the observation of differences in object detection
performance between various fusion images and source images, two groups of visualized
object detection examples are presented (see Figure 16). In the first scenario, YOLOv5
can accurately detect people in the images. However, the results suggest that our fusion
results significantly enhance the image clarity and the prominence of the person, leading to
higher detection accuracy compared to other fusion images and the source image. In the
second scenario, YOLOV5 loses some important target information, such as people, when
detecting the source images and the fusion images from other SOTA methods. Our fusion
images detect more comprehensive targets, demonstrating that our method effectively
integrates useful information from source images, thereby improving the precision of target
detection. Our method achieves higher detection precision relative to the twelve SOTA
fusion methods.

Infrared image Visible image

BDLF SHIP TCMoA Ours

Figure 16. Visualization of object detection results for different images on the M3FD dataset.

Quantitative analysis. As indicated in Table 7, we calculate the average precision for
each fusion method to further assess their detection performance. The results demonstrate
that our method obtains the best detection accuracy. This further validates that the proposed
method positively impacts practical object detection tasks.
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Table 7. The detection precision of different images. Red serves to highlight the best result, blue for
the second-best, and green for the third-best. VI and IR represent the visible and infrared images.

Precision AP@0.5 mAP@[0.5:0.95]

VI 0.6737 0.5979 0.3916
IR 0.6027 0.5305 0.3003
GTF 0.5351 0.5492 0.3411
FGAN 0.5338 0.5117 0.3148
STDF 0.5760 0.5632 0.3512
SwinF 0.5984 0.5783 0.3716
TarDAL 0.6236 0.5997 0.3820
SeAF 0.5835 0.5772 0.3659
SuperF 0.5699 0.5365 0.3367
DIDF 0.6256 0.5941 0.3774
BDLF 0.6124 0.5751 0.3597
SHIP 0.5619 0.5316 0.3347
DSF 0.6596 0.6421 0.4279
TCMoA 0.6220 0.5890 0.3752
Ours 0.6995 0.6533 0.4341

5. Conclusions

In this study, we propose BCMFIFuse—a network based on bilateral cross-modal
feature interaction for IVIF. Firstly, to effectively extract features from the source image,
we construct a dual-stream feature extraction network. Next, a CMFC is introduced to
calibrate the features of the current modality to better extract complementary features from
different modalities. Subsequently, we employ an FFB to effectively integrate the calibrated
features. The FFB is built using a cross-attention mechanism, which can realize long-range
contextual interaction, thereby enhancing global bilateral modal features. Finally, to ensure
the continuity of features and minimize feature loss during transmission, we use shortcut
connections between the encoder and decoder. Additionally, for gathering specific and
diversified context information and capturing long-range dependencies in isolated areas,
we design an HPDCB. Comparison and generalization experiments on multiple datasets
indicate that our method has certain advantages in quantitative and qualitative aspects.
Furthermore, the evaluation of object detection performance can also reflect the superiority
of our method. In upcoming research, we plan to continue optimizing our algorithm
to improve fusion efficiency. Moreover, we consider integrating fusion tasks with other
high-level visual tasks or modal information (e.g., text information).
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Abstract: Images acquired by different sensors exhibit different characteristics because of the varied
imaging mechanisms of sensors. The fusion of visible and infrared images is valuable for specific
image applications. While infrared images provide stronger object features under poor illumination
and smoke interference, visible images have rich texture features and color information about the
target. This study uses dual optical fusion as an example to explore fusion detection methods at
different levels and proposes a multimodal decision-level fusion detection method based on category
probability sets (CPROS). YOLOv8—a single-mode detector with good detection performance—was
chosen as the benchmark. Next, we innovatively introduced the improved Yager formula and
proposed a simple non-learning fusion strategy based on CPROS, which can combine the detection
results of multiple modes and effectively improve target confidence. We validated the proposed
algorithm using the VEDAI public dataset, which was captured from a drone perspective. The results
showed that the mean average precision (mAP) of YOLOvVS8 using the CPROS method was 8.6%
and 16.4% higher than that of the YOLOVS8 detection single-mode dataset. The proposed method
significantly reduces the missed detection rate (MR) and number of false detections per image (FPPI),
and it can be generalized.

Keywords: improved Yager formula; category probability set; fusion strategy; multimodal

1. Introduction

Target detection is a typical computer vision problem, and because of their broad
application potential in image processing and pattern recognition, target detectors have
been widely used in various safety systems over the past few decades, such as safe autopilot
and drone detection [1-3]. To overcome the impact of smoke interference and illumination
damage during the detection of ground targets by UAV [4,5], we studied the use of visible
and infrared dual-light pods for multimodal target detection as they can provide stronger
object features in the case of smoke interference and insufficient illumination [6].

The core problem of multimodal detection is multimodal information fusion, which
can be divided into pixel-, feature-, and decision-level fusion according to different mul-
timodal fusion stages [7], as shown in Figure 1. Pixel-level fusion forms a four-channel
output by superimposing three-channel RGB and one-channel IR, which then produces the
detection result through the detector [8]. Feature-level fusion involves inputting visible
and infrared images into the feature extractor and then merging the extracted features
into the subsequent detection network [8,9]. Decision-level fusion refers to the fusion of
detection results obtained by separately detecting visible and infrared modalities using a
fusion decision based on mathematical theorems [10].
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Figure 1. Schematic diagram of fusion in different stages.

In practical applications, pixel- and feature-level fusion often require a large number
of image pairs of different modes with high alignment accuracy for training, which results
in a significant workload [11,12], and the advantages of non-learning decision-level fusion
are self-evident. Figure 2 illustrates the fusion strategy for multimodal detection by fusing
the detection results of the single-mode detector. (a) A simple method involves averaging
the scores of overlapping tests; however, this results in lower confidence scores for the
test results [13]. (b) To avoid score degradation, non-maximum suppression (NMS) can be
applied to suppress overlapping detections from different modes, which always obtains
the detection with the highest confidence. Although NMS is a simple and effective fusion
strategy, it can only avoid a reduction in confidence scores and cannot effectively improve
it [14]. (c) A strategy that can effectively enhance confidence scores is the D-S evidence the-
ory, which can improve the multimodal detection and detection accuracy of targets [15,16].
However, D-S can only improve the scores of test results with high confidence and cannot
be applied to test results with low confidence. (d) Therefore, a simple fusion strategy—
CPROS—is derived in this study; it fuses a set of category probabilities of the test results to
improve the scores for tests with strong evidence from multiple modes.

The aim of this study is to obtain detection results under different modes through
efficient single-mode detectors trained on different modal datasets and to fuse the detection
results of different modes according to fusion strategies designed by mathematical theorems
to obtain optimal decision results. Our non-learning CPROS is not only more interpretable
than fusion algorithms that need to be learned but also better than previous work. Although
this concept is simple, its effectiveness is good.

The main contributions of this study are summarized below. (1) A multimodal
decision-level fusion detection method (CPROS) based on category probability sets is
proposed. Experimental results on benchmark datasets prove the effectiveness of CPROS.
(2) Ablation studies were conducted to verify the superiority of the CPROS by combining
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different confidence and detection box fusion methods. The experimental results show
that CPROS can achieve higher detection accuracy than the three most advanced fusion
decisions. (3) The proposed decision-level fusion method, CPROS, is applied to different
single-mode detectors, and it is found that the multimodal detector using CPROS has better
detection performance than the single-mode detector, proving the generality of CPROS.
The remainder of this article is organized as follows. The second section describes the
recent progress of research on decision-level fusion. In the third section, the two aspects
of probability fusion and box fusion are discussed. In the fourth section, the validity,
superiority, and generality of the proposed CPROS method are verified using the VEDAI
dataset. Finally, the fifth section presents conclusions and prospects for future work.

(a)Average (b)NMS (c)D-S V (d)CPROS

Figure 2. Illustration of various fusion strategies. (a) Average; (b) NMS; (c) D-S; and (d) CPROS. A
single-mode detector is used to detect visible and infrared images separately, obtaining detection
results (category, confidence, and detection box). They are then fused through different fusion
strategies to output the final result. Different colors represent various categories.

2. Related Works
2.1. Multimodal Fusion

Currently, research on multimodal fusion mainly focuses on pixel- and feature-level
fusion, with relatively little research on decision-level fusion, which requires strict logic.
Pixel-level fusion can achieve fine operations on an image in image processing, but the
information of each pixel needs to be considered. Therefore, it requires high computational
resources and processing power and is easily affected by noise, resulting in unstable results.
Additionally, pixel-level fusion uses relatively little spatial information, which may result in
a lack of visual coherence and structure in processed images [17]. Feature-level fusion can
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better capture the abstract information of an image, reduce data dimensions, and improve
computational efficiency. Additionally, the semantic information of the images can be better
retained, making subsequent image recognition and classification tasks more accurate and
reliable [18]. Most importantly, feature-level fusion can better adapt to inputs of different
sizes and shapes, has greater generalization ability, and is suitable for a broader range of
image-processing tasks [19].

Pixel- and feature-level fusions based on deep learning require a large amount of align-
ment data for training to achieve good results in practical image-processing tasks [20,21].
Pixel-level fusion involves the consideration of the information of each pixel; therefore, it
requires training data that contain rich image details and data samples from various scenes
to ensure that the model can accurately capture and fuse pixel-level information. This
means that large-scale image datasets are required for training pixel-level fusion models,
and it is necessary to ensure the diversity and representativeness of datasets to improve
the generalization ability and adaptability of the models. Although feature-level fusion can
reduce the data dimension compared with pixel-level fusion, large-scale image data are
still needed to train the feature extractor or feature fusion model [22].

In actual situations, the amount of data in different modes is often unequal, sometimes
not even of the same order of magnitude, and the need to obtain image pairs of different
modes with high alignment accuracy brings more significant challenges to the training of
pixel- and feature-level fusion, and the advantages of non-learning decision-level fusion
are self-evident.

2.2. Decision-Level Fusion

Decision-level fusion is the fusion of single-mode detection results, which have been
the subject of few research studies and are currently difficult to achieve. For multisen-
sor systems, information is diverse and complex; therefore, the basic requirements for
decision-level fusion methods are robustness and parallel processing capabilities. Other
requirements include the speed, accuracy, and information sampling capabilities of the
algorithm. Generally, mathematical methods based on nonlinear systems can be used
as decision-level fusion methods if they exhibit fault tolerance, adaptability, associative
memory, and parallel processing capabilities [23]. The following mathematical methods
are commonly used.

1. Weighted average method [13,24]: The most straightforward and intuitive method is
the weighted average method, which weighs the redundant information provided by
a group of sensors, and the result is used as the fusion value. This method operates
directly utilizing a data source.

2. Multi-Bayesian estimation method [25,26]: Each sensor is regarded as a Bayesian
estimator, and the associated probability distribution of each object is synthesized
into a joint posterior probability distribution function. By minimizing the likelihood
function of the joint distribution function, the final fusion value of the multisensor
information is obtained, and a prior model of the fusion information and environment
is developed to provide a feature description of the entire environment.

3. D-Sevidence reasoning method [27]: This method is an expansion of Bayesian reason-
ing; its reasoning structure is top-down and divided into three levels. The first level
is the target synthesis, and its role is to synthesize the observation results from the
independent sensor into a total output result. The second stage is inference, whose
function is to obtain the observation results of the sensor, make inferences, and expand
the observation results to the target report. The third level is updated, and the sensors
are generally subject to random errors. Therefore, a set of successive reports from the
same sensor that is sufficiently independent in time is more reliable than any single
report. Therefore, before inference and multisensor synthesis, it is necessary to update
the sensor observation data.

Additionally, fuzzy set theory [28,29], rough set theory [30], Z-number theory [31],
and D-number theory [32] have been proposed. Among the various decision-level fusion
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methods using mathematical theory proposed at the present stage, a more straightforward
decision-level fusion method is used to aggregate the detection of each mode and then
weight the average scores of overlapping detection rather than the less inhibited detection,
such as non-maximum suppression; however, this operation will inevitably reduce the re-
ported scores compared with NMS. Intuitively, if two patterns agree on candidate detection,
the score of one should improve [13,14,24]. For this reason, Chen et al. introduced the D-S
evidence theory into fusion decision-making [33]. When detectors of different modes detect
the same object, D-S can gracefully deal with the missing information and significantly
improve multimodal detection and the detection accuracy of the target. However, D-S can
only improve the scores of detection results with high confidence and is not applicable
to detection results with low confidence. Moreover, when the categories detected by the
detector are inconsistent, no concrete or feasible decision methods are provided.

In summary, all the fusion decision methods mentioned above use only confidence
information in the detection results, focus more on the fusion of confidence, and do not
provide effective fusion strategies for categories. Additionally, confidence fusion is less
effective at low confidence levels. Accordingly, a decision-level fusion method based on a
category probability set is proposed in this study, aiming to make full use of the output of a
single-mode detector to provide more efficient and interpretable detection results.

3. Fusion Strategies for Multimodal Detection

An overview of the detection pipeline using CPROS is presented in Figure 3. First, the
visible and infrared images and their corresponding labels were input into the YOLOvS8
detection network for training, and a single-mode detector suitable for different modes with
good detection performance was developed. In subsequent practical tasks, the detector
can obtain detection results based on the characteristics of the target in various modes, and
then we can apply our decision-level fusion method to achieve more accurate detection.

Images
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Figure 3. Overall framework of CPROS.
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We derive our fusion method, CPROS, from multiple theorems and rules, which
combine the advantages of various fusion decisions proposed at this stage and innovatively
introduce the improved Yager formula to solve the problem of poor fusion effects under
low-confidence conditions [34,35]. Importantly, CPROS can gracefully handle “missing
detection” through probabilistic integration. Because the CPROS is a non-learning strategy
based on mathematical rules, it does not require multimodal data for training. Therefore,
the CPROS is a general-purpose technology used for integrated detectors.

3.1. Fusion Strategy for Detection Boxes

We explored four methods for fusing the detection boxes, as shown in Figure 4. The
first method, “NMS”, eliminates redundant detection results by comparing the confidence
scores of targets in the overlapping region, but it is not applicable to the problem of box
size imbalance, which may lead to missing detection of small targets. The second method,
“average”, is equivalent to simply averaging bounding box coordinates, which can reduce
the bias of a single detection box and improve the overall position estimation accuracy,
but it ignores the differences between different detection boxes. For detection boxes with
low overlap or significant size differences, the averaging method may not be applicable.
The third method, “union”, can cover the overall position and size of the target more
comprehensively, but it will lead to the final detection box being too large, and the box is
selected not to belong to the target area. The fourth method, “intersection”, can determine
the location and size of the target more accurately but results in the final detection box
being too small to cover the entire area of the target entirely. Different methods are suitable
for different detection scenarios, so we created a plug-and-play module to obtain the most
accurate detection results.

| I——h
| | | I
| | [ |
| I [ |
| |

1

|

o
T T

\
\
\
\/

(a) NMS (b) Average (c) Union (d) Intersection

Figure 4. Different fusion strategies for detection boxes. The blue and green boxes represent the
detection boxes of other detectors, while the red box represents the final detection box selected for
different decisions. (a) NMS, (b) average, (c) union, and (d) intersection.

3.2. Fusion Strategy for Category Probability Set (CPROS)

The decision-level fusion method of CPROS proposed by us is mainly aimed at solving
four problems: (1) the single-mode detector has serious missed detections, (2) we hope to
obtain higher confidence for the detection results with high confidence, (3) the existing
fusion methods have poor fusion effect for the detection results with low confidence, and
(4) we aim to solve the category conflict detected by the single-mode detector. In the
previous discussion, we knew that when using D-S evidence theory to identify targets by
multimodal fusion, there may be abnormal recognition results; that is, it is considered that
highly conflicting evidence cannot make a reasonable decision. Therefore, we introduced
the improved Yager formula and proposed a more effective fusion decision.

Suppose that mq,mjy, - - - ,m; is a detector of different modes, and the corresponding
evidence set (probability distribution) is Fy, F, - - - , F;, then A; represents the decision result
of Ay (single category) in the evidence set F;, and m;(A;) is the mass function of A;. To
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quickly describe the degree of conflict in the detection results of different mode detectors,
we defined the conflict factor k as follows:

k=1- Y my(Aq) - ma(Az) - - mi(Ay). ey
AiEPi,ﬂleAﬁé¢

The magnitude of the conflict between the detection results of the modes m; and m; is:

kij =1- Z mi(Al-) m](A]) (2)
A,'QFI',A]'GF]',A,'QA]'#(P
Here, ¢ is defined as evidence credibility and ¢ = e~ k where k = W Y kl-]-,
i<j<t

i,j <t,and t are the number of pieces of evidence. k is the average sum of the ¢ evidence
sets, reflecting the degree of conflict between evidence pairs. ¢ is a decreasing function of

k , reflecting the credibility of the evidence; that is, the credibility of the evidence decreases
as the conflict between the pieces of evidence increases.

When a conflict is detected between categories, we believe that the statement “a%
belongs to category A, (1 —a)% belongs to category B” is unreasonable because there
should be a portion of the probability that is wavering, which we call uncertainty probability.
Therefore, the statement should be changed to “a% belongs to category A, b% belongs to
category B, (1 —a — b)% is the uncertainty probability, and other decision rules need to
be introduced to determine which category this part of the probability belongs to”. The
uncertainty probability depends on the degree of conflict and credibility of the evidence
and is calculated as follows:

Confidence,ncertainty =k X (1 —e). (3)

In addition to calculating the uncertainty probability, we must also calculate the
certainty probability, which is the a% and b% in “a% belongs to category A, b% belongs
to category B”. It depends on two parts. Part of this is the agreement of the evidence of
the different modes in category A; we define it as p(A), and the calculation formula is
as follows:

p(A) = Y my(Ar) - ma(Az) - - - mi(Ap). (4)
A€RNL_ A=A

Part is the average support of the evidence for different modes for category A; we
define it as q(A), and the calculation formula is as follows:

1 t
9(A) = 1Y mi(A). ©
i=1
Then, the certainty probability is calculated as follows:
: CRAY 1C)
Confidencecertainty = (1 — k)7 ’ +hkxexqg(A),A#¢ X (6)

The first item that can be found, p(A)/(1 — k), is precisely the D-S evidence theory
synthesis formula. Thus, the new composition formula is actually a weighted sum form,
where 1 — k and k are the weighting coefficients. In the first term of the formula, the result
of synthesis is similar to that of D-S synthesis. When k = 0, the new synthesis formula is
equivalent to the D-S synthesis formula. When k — 1, the evidence is highly conflicting,
and the resultant result will be determined mainly by A. Therefore, for highly contradictory
evidence, the consequent results are primarily determined by the evidence confidence
€ x g(A) and the mean support of the evidence g(A).
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The uncertainty probability is not discarded, and its attributes depend on the size
of different categories of certainty probability. The uncertainty probability belongs to the
category with the largest certainty probability. Therefore, the final confidence calculation
formula is

Confidencefing = Confidence pcertainty + Max (Confidencecertainty)- 7)

3.3. Fusion

After determining the fusion method, we combined the detection results of the
two modalities. We assume that the detection results for the different modalities are
(x1,y1, w1, h1,a1,a2,- - - ay) and (x2,y2, wp, hy, by, by, - - - by). In order to make the proba-
bility sum of detection result categories for each detector equal to 1, we introduce the
“background” category, as shown in Table 1.

Table 1. Category probability set.

0 1 .. n Background
RGB ag | e a, Ap+1
IR bo by o by bpsq

n+1 n+1
Among them, ) a; =1and ) b; = 1. In practical situations, the detection probabili-
i=0 i=0
ties of specific categories are extremely low. To simplify the calculation process, we kept all

probabilities to two decimal places. The specific implementation process of the algorithm
is shown in Algorithm 1.

Algorithm 1. Fusion Strategies for Multimodal Detection

Input: detections from multiple modes. Each detection d = (pro, box, cls, conf) contains
1 category probability set pro = (p1, p2. . .pn), box coordinates box = (x, y, w, h), tag cls =
(0/1/.../n) and confidence conf = (x).
Integrate the detection results of the same image corresponding to different modes. Set

2 Doy, ... dy.
Traverse the set and place boxes with IOU greater than the threshold together to form a
3 . ..
detection set at the same position. Set H = {D1, D5, ..., Dy}.
4 iflen(D;) > 1:
5 Take the two elements with the highest confidence in D;
6 Fusion strategy for detection boxes
7 Fusion strategy for category probability set(CPROS)
8 iflen(D;) = 1:
9 No need for fusion

10 return set F of fused detections

4. Experiments

In this section, we briefly introduce the evaluation metrics used to measure the algo-
rithm performance, dataset, and experimental settings. The single-mode detector YOLOv8
with good detection performance was selected as the baseline to validate the effectiveness
and generalization ability of the proposed CPROS on the public dataset VEDAI, which was
captured from a drone perspective [36]. A series of ablation studies were conducted under
the same conditions for evaluation.

4.1. Evaluating Indicator

The accuracy of the prediction depends on whether the IoU between the predicted and
actual boxes is greater than 0.5. The calculation method for the IoU is shown in Figure 5,
which illustrates the intersection union ratio between the predicted and actual boxes. The
subsequent calculations of the evaluation metrics were based on this.
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Intersection areas
ToU =

Union areas

Figure 5. Schematic diagram of intersection and union ratio calculation.

For the proposed decision-level fusion method, we calculated the mAP, missed detec-
tion rate, and false detections per image FPPI for each image based on the final detection
results and label files, which is different from typical evaluation index calculation methods.
We used the 11-point interpolation method to calculate the average precision (AP) using
the following formula:

AP = 1 Y MAX;.35,P(?) (8)

1 re{0,0.1,0.2,...1.0}

The 11-point interpolation calculation method selects 11 fixed thresholds {0,0.1,0.2,
-+-,1.0} because only 11 points are involved in the calculation, V' = 11, and v is the
threshold index. The MAX;.;>,P(#) is the maximum value in the sample after the sample
point corresponding to the vth threshold.

Assuming that the detection results contain TP (true positives), FN (false negatives),
TN (true negatives), and FP (false positives),

EN
MR = 1PN ©)
FP
FPPl = —F 1
Num(Images) (19)

4.2. Experiment Settings and Datasets

In this study, we employed VEDAI, a well-known dataset for vehicle detection in
aerial imagery, as a tool for benchmarking automatic target recognition algorithms in an
unconstrained environment. The VEDAI dataset is a dual-mode image dataset containing
1246 pairs of 512 x 512 pixel visible and infrared remote sensing images, which are divided
into 935 pairs of training set images and 311 pairs of validation set images. The VEDAI
dataset for a single mode contains six categories of vehicle targets that, in addition to their
small size, exhibit various variabilities such as multiple orientations, lighting/shadow
changes, specular reflection, and occlusion. The number of targets in each category is
shown in Figure 6.

Number of categories

pickup

vans e

camping cars
tractors

trucks

car

0 200 400 600 800 1000 1200 1400 1600

Figure 6. Statistical chart of the number of targets for six types of vehicles.
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The system environment of this study was Ubuntu 22.04LTS, and the software envi-
ronments were CUDA 11.7 and cuDNN 8500. All models were trained on the PyTorch 2.0.1
framework using a single GPU and an NVIDIA GeForce RTX 3070. The number of epochs
was set to 300, and the batch size to 4. SGD was used as the optimizer with a learning rate
of 0.01.

4.3. Experimental Results

In this section, we present comparative experiments on single-mode detection, pixel-
level fusion detection, feature-level fusion detection, and decision-level fusion detection to
evaluate the effectiveness of fusion detection at different stages. Meanwhile, the evaluation
of the proposed CPROS and several existing fusion strategies was mainly conducted in
the form of ablation studies on the VEDAI using YOLOvVS, which has good detection
performance and was selected as the baseline method. Finally, we applied the proposed
CPROS method to different single-mode detectors to verify its generality. In the tables, the
best results for each column are highlighted in bold orange, the second best in bold blue,
and the third best in bold green. The decision-level fusion detection results obtained using
the proposed method are highlighted in gray in the tables.

4.3.1. Comparative Experimental Results

From Tables 24, it can be seen that the mAP of YOLOv8 using the CPROS method was
8.6% and 16.4% higher than that of YOLOVS in detecting single-mode datasets. The missed
detection rates were reduced by 3.6% and 8.4%, respectively. The number of false detections
per image was reduced by 0.032 and 0.019 (32 and 19 false detections per 1000 frames).
From a single-category perspective, our method significantly reduced the missed detection
rate, with a maximum reduction of 35.8%. Meanwhile, for most categories, our method can
also improve the mAP and reduce the number of false positives per image (the maximum
improvement in average detection accuracy can reach 35.1%, and the maximum reduction
in false positives per image can reach 0.061). Additionally, by comparing the effects of
single-mode detection, pixel-level fusion detection, feature-level fusion detection, and
decision-level fusion detection, we found that pixel-level and feature-level fusion detection
were only effective for certain specific targets. Overall, the detection effect was not as good
as decision-level fusion detection, and the generalization ability was also not as good as
decision-level fusion detection.

Table 2. Comparison of experimental results between fusion detection and non-fusion detection in
different stages based on the VEDAI dataset (mAP).

I0U =0.5
AP/mAP ] ;
Car Trucks Tractors Camping Cars Vans Pickup All
RGB 37.5% 51.4% 58.0% 64.8% 51.6%
IR 62.0% 36.3% 17.0% 39.4% 45.4% 62.9% 43.8%
SeAFusion 57.0% 44.1% 38.7% 55.3% 44.2% 57.2% 49.4%
MMIF-CDDFuse 69.9% 30.8% 55.8%
RFN-Nest 56.9% 33.3% 19.4% 45.4% 53.2% 44.2%
YDTR 49.7% 23.4% 15.4% 40.7% 49.2% 52.8% 38.5%
CPROS (ours) 71.8% 47.1% 52.1% 50.4% 70.0% 69.7% 60.2%

However, as shown in Figure 7, when we focus on the category of camping cars, we
find that single-mode detectors generate numerous false alarms when detecting visible and
infrared images in the VEDAI dataset. On this basis, if we apply our method again, only
the false alarms will increase. In this regard, our algorithm is not as effective as some pixel-
or feature-level fusion detection algorithms such as SeAFusion and YDTR. We found a high
similarity in shape and color between real shopping car targets and house targets that were
falsely detected as camping cars in some VEDAI datasets, which was not conducive to
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distinguishing between the two. Moreover, there are few camping car targets available for
training single-mode detectors in the dataset, and the detectors have not learned enough
features, which may lead to an insufficient generalization ability of the model. In practical
applications, in addition to improving the detection performance of single-mode detectors,
solving such problems can also be considered using Kalman filtering to eliminate false
alarms, thereby achieving better fusion results.

Table 3. Comparison of experimental results between fusion detection and non-fusion detection in
different stages based on the VEDAI dataset (missed detection rate).

I0U =0.5
MR
Car Trucks Tractors Camping Cars Vans Pickup All
RGB 25.0% 36.7% 21.3%
IR 23.2% 48.7% 65.6% 41.5% 43.3% 29.6%
SeAFusion 27.6% 36.7% 35.3% 28.6% 40.0% 25.9% 29.0%
MMIF-CDDFuse 18.0% 44.2% 50.0% 28.9% 26.7% 18.8% 23.7%
RFN-Nest 27.9% 45.9% 67.7% 26.7% 24.9% 30.2%
YDTR 30.6% 52.7% 77.4% 41.8% 33.3% 23.4% 34.1%
CPROS (ours) 17.7% 34.9% 29.8% 19.1% 19.7% 21.2%
Table 4. Comparison of experimental results between fusion detection and non-fusion detection in
different stages based on the VEDAI dataset (the number of false detections per image).
IOU = 0.5
FPPI1 . _
Car Trucks Tractors Camping Cars Vans Pickup All
RGB 0.186 0.055 0.096 0.006 0.167
IR 0.170 0.080 0.048 0.196 0.585
SeAFusion 0.273 0.051 0.074 0.023 0.678
MMIEF-CDDFuse 0.077 0.048 0.096 0.029 0.196 0.624
RFN-Nest 0.238 0.103 0.029 0.141 0.032 0.222 0.765
YDTR 0.257 0.132 0.023 0.061 0.026 0.222 0.720
CPROS (ours) 0.164 0.129 0.006 0.135 0.566

Figure 8 shows a visualization of the real labels and the results of our algorithm.

The yellow line represents the fusion of low-confidence detection results, the green line
represents the fusion of high-confidence detection results, the blue line represents the
fusion of detection results with missed detections, and the red line represents the fusion of
detection results with category conflicts. This corresponds to the four issues mentioned in
Section 3.2, which must be addressed. From the graph, it can be observed that our method
can significantly improve confidence when the categories detected by the detector are
identical. When the categories detected by the detector are different, the proposed method
eliminates the impact of erroneous detection and improves confidence. Meanwhile, our
method can elegantly handle “missing detection” through probability integration.

Figure 9 shows a visualization of the results of the fusion detection algorithms for
each stage. Comparing the visualization of real labels in Figure 8, it can be seen that our
algorithm has fewer missed detections and false positives than the other algorithms, and
overall has a higher confidence in object detection.

53



Remote Sens. 2024, 16, 2745

SeAFusion MMIF-CDDFuse RFN-Nest Ours
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Figure 8. Realistic labels and visualization of results from our algorithm.
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SeAFusion ~ MMIF-CDDFuse RFN-Nest YDTR "~ Ours

Figure 9. Visualization of the results of fusion detection algorithms in each stage.

4.3.2. Results of Ablation Experiment

To verify the superiority of CPROS, we conducted ablation studies by combining four
confidence fusion methods and four detection box fusion methods. From Table 5, it can be
seen that when the detection box fusion method is fixed, the mAP of the detection results
using the four probability fusion methods of average, max, D-S, and our CPROS improves
overall in sequence. Taking the averaging method for detection box fusion as an example,
the CPROS method for confidence fusion increased by 1%, 0.8%, and 0.6% compared to the
average, maximum, and D-S methods, respectively. However, Tables 6 and 7 show that
when the detection box fusion method is fixed, changes in the probability fusion method
do not affect the MR and FPPL The reason behind this is that among the three indicators of
mAP, MR, and FPPI, only mAP was affected by changes in confidence. The experimental
results show that the proposed CPROS is a reliable decision-level fusion method that
improves the detection accuracy of objects compared to the other three methods.

Table 8 presents the comparison results of different single-mode detectors before and
after using the CPROS method. The results indicate that the experimental results using
the CPROS decision-level fusion method are superior to that of single-mode detectors for
all indicators. Specifically, by using CPROS to fuse the results obtained from YOLOVS for
detecting visible images with those obtained from YOLOVS for detecting infrared images,
the mAP was 8.6% and 16.4% higher, the MR was 3.6% and 8.4% lower, and the FPPI was
0.032 (reduced by 32 false positives every 1000 frames) and 0.019 lower, respectively. Using
CPROS to fuse the results obtained from YOLOVS detection of visible images with those
obtained from YOLOV5 detection of infrared images, the mAP was 6.8% and 12% higher, the
MR was 2.1% and 7.7% lower, and the FPPI was 0.045 and 0.051 lower, respectively. Using
CPROS to fuse the results obtained from YOLOVS in detecting visible images with those
obtained from YOLOVS in detecting infrared images, the mAP was 6.8% and 12.3% higher,
the MR was 4.1% and 8.9% lower, and the FPPI was 0.003 and 0.067 lower, respectively.
The experimental results show that the proposed CPROS is a reliable decision-level fusion
method with plug-and-play capabilities and can be widely used for fusion processing
between different mode detectors, significantly improving detection performance.
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box fusion methods.

Table 5. Comparison of mAP between fusion methods with different confidence levels and detection

AP/mAP (IOU = 0.5)

Score Box
-Fusion -Fusion Car Trucks Tractors Camping Cars Vans Pickup All
NMS 73.3% 45.7% 43.7% 49.4% 66.9% 70.7% 58.3%
Av Avg 71.5% 46.2% 51.7% 49.4% 66.9% 69.2% 59.2%
& Max 61.5% 46.2% 51.7% 49.4% 66.9% 61.2% 56.2%
Min 73.6% 45.7% 43.7% 49.4% 66.9% 70.1% 58.2%
NMS 73.4% 46.0% 43.9% 50.2% 66.9% 70.9% 58.6%
M Avg 71.5% 46.8% 51.8% 50.2% 66.9% 69.4% 59.4%
ax Max 61.5% 46.8% 51.8% 50.2% 66.9% 61.3% 56.4%
Min 73.6% 46.0% 43.9% 50.2% 66.9% 70.4% 58.5%
NMS 73.7% 46.4% 44.0% 50.2% 66.9% 71.1% 58.7%
D-S Avg 71.9% 47.1% 51.8% 50.2% 66.9% 69.7% 59.6%
B Max 61.9% 47.1% 51.8% 50.2% 66.9% 61.6% 56.6%
Min 73.8% 46.4% 44.0% 50.2% 66.9% 70.6% 58.7%
NMS 73.6% 46.4% 44.2% 50.4% 70.0% 71.0% 59.3%
Avg 71.8% 47.1% 52.1% 50.4% 70.0% 69.7% 60.2%
CPROS (ours) -y po 61.9% 47.1% 52.1% 50.4% 70.0% 61.7% 57.2%
Min 74.0% 46.4% 44.2% 50.4% 70.0% 70.5% 59.3%
Table 6. Comparison of missed detection rates between fusion methods with different confidence
levels and detection box fusion methods.
SCOre BOX MR (IOU = 0-5)
-Fusion -Fusion Car Trucks Tractors Camping Cars Vans Pickup All
NMS 15.7% 36.1% 31.9% 20.2% 28.1% 18.5% 20.4%
Av Avg 17.7% 34.9% 29.8% 19.1% 28.1% 19.7% 21.2%
& Max 20.3% 34.9% 29.8% 20.2% 28.1% 20.2% 22.5%
Min 15.1% 36.1% 31.9% 20.2% 28.1% 18.9% 20.3%
NMS 15.7% 36.1% 31.9% 20.2% 28.1% 18.5% 20.4%
M Avg 17.7% 34.9% 29.8% 19.1% 28.1% 19.7% 21.2%
ax Max 20.3% 34.9% 29.8% 20.2% 28.1% 20.2% 22.5%
Min 15.1% 36.1% 31.9% 20.2% 28.1% 18.9% 20.3%
NMS 15.7% 36.1% 31.9% 20.2% 28.1% 18.5% 20.4%
D-S Avg 17.7% 34.9% 29.8% 19.1% 28.1% 19.7% 21.2%
B Max 20.3% 34.9% 29.8% 20.2% 28.1% 20.2% 22.5%
Min 15.1% 36.1% 31.9% 20.2% 28.1% 18.9% 20.3%
NMS 15.7% 36.1% 31.9% 20.2% 28.1% 18.5% 20.4%
Avg 17.7% 34.9% 29.8% 19.1% 28.1% 19.7% 21.2%
QEtosEns) v 20.3% 34.9% 29.8% 20.2% 28.1% 20.2% 22.5%
Min 15.1% 36.1% 31.9% 20.2% 28.1% 18.9% 20.3%
Table 7. Comparison of false positives per image using fusion methods with different confidence
levels and detection box fusion methods.
Score Box FPPI (IOU = 0.5)
-Fusion -Fusion Car Trucks Tractors Camping Cars Vans Pickup All
NMS 0.135 0.090 0.048 0.129 0.006 0.122 0.531
Av Avg 0.164 0.087 0.045 0.129 0.006 0.135 0.566
& Max 0.196 0.087 0.045 0.129 0.006 0.141 0.605
Min 0.125 0.090 0.048 0.129 0.006 0.125 0.524
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Table 7. Cont.

FPPI (IOU = 0.5)

Score Box
-Fusion -Fusion Car Trucks Tractors Camping Cars Vans Pickup All
NMS 0.135 0.090 0.048 0.129 0.006 0.122 0.531
M Avg 0.164 0.087 0.045 0.129 0.006 0.135 0.566
ax Max 0.196 0.087 0.045 0.129 0.006 0.141 0.605
Min 0.125 0.090 0.048 0.129 0.006 0.125 0.524
NMS 0.135 0.090 0.048 0.129 0.006 0.122 0.531
D-S Avg 0.164 0.087 0.045 0.129 0.006 0.135 0.566
B Max 0.196 0.087 0.045 0.129 0.006 0.141 0.605
Min 0.125 0.090 0.048 0.129 0.006 0.125 0.524
NMS 0.135 0.090 0.048 0.129 0.006 0.122 0.531
Avg 0.164 0.087 0.045 0.129 0.006 0.135 0.566
CEROSes) 0.196 0.087 0.045 0.129 0.006 0.141 0.605
Min 0.125 0.090 0.048 0.129 0.006 0.125 0.524

Table 8. Comparison of performance between different single-mode detectors before and after using
the CPROS method.

10U =0.5
Detector

mAP MR FPPI
YOLOVS8(RGB) 51.6% 24.8% 0.598
YOLOVS(IR) 43.8% 29.6% 0.585
YOLOvV8(RGB) YOLOVS(IR) 60.2% 21.2% 0.566
YOLOvV5(RGB) 51.3% 24.0% 0.656
YOLOV5(IR) 46.1% 29.6% 0.662
YOLOV5(RGB) YOLOvV5(IR) 58.1% 21.9% 0.611
YOLOvV8(RGB) 51.6% 24.8% 0.598
YOLOV5(IR) 46.1% 29.6% 0.662
YOLOvV8(RGB) YOLOV5(IR) 58.4% 20.7% 0.595

5. Conclusions

This study followed the approach of first detection and then fusion. The performance

of a single-mode detector directly affects the fusion performance in multimodal detection.

Based on this, we first explored different fusion strategies for multimodal detection in
visible and infrared images using highly tuned YOLOVS trained on large-scale single-mode
datasets and proposed a multimodal decision-level fusion detection method based on
category probability sets (CPROS). Numerous experimental results show that our proposed
decision-level fusion method based on CPROS is significantly better than a single-mode
detector without the decision-level fusion method in terms of detection accuracy. Moreover,
it gracefully handles the missed detections of specific modes, significantly reducing the
MR and FPPL

Second, to prove the superiority and generality of the proposed decision-level fusion
method, we combined different confidence and detection box fusion methods to perform
ablation experiments. We also applied the proposed method to different single-mode
detectors to compare detection performance before and after decision-level fusion. The
results show that the proposed CPROS is significantly superior to previous methods in
terms of detection accuracy. Compared to the single-mode detector, the mAP of multimodal
detection using the fusion strategy was improved considerably, and the MR and FPPI were
significantly reduced.

In the future, our goals are to (1) study object association methods so that the proposed
decision-level fusion method can be applied to unaligned multimodal detection datasets;
(2) mount the proposed algorithm framework on the UAV edge computing platform and
apply it to real-time target detection tasks; (3) research accurate positioning methods to
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enable the UAV platform to achieve high positioning performance; and (4) use the Kalman
filter algorithm to eliminate noise and improve the detection performance of the algorithm.
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Abstract: Infrared-visible image fusion is valuable across various applications due to the complemen-
tary information that it provides. However, the current fusion methods face challenges in achieving
high-quality fused images. This paper identifies a limitation in the existing fusion framework that
affects the fusion quality: modal differences between infrared and visible images are often overlooked,
resulting in the poor fusion of the two modalities. This limitation implies that features from different
sources may not be consistently fused, which can impact the quality of the fusion results. Therefore,
we propose a framework that utilizes feature-based decomposition and domain normalization. This
decomposition method separates infrared and visible images into common and unique regions. To
reduce modal differences while retaining unique information from the source images, we apply
domain normalization to the common regions within the unified feature space. This space can
transform infrared features into a pseudo-visible domain, ensuring that all features are fused within
the same domain and minimizing the impact of modal differences during the fusion process. Noise in
the source images adversely affects the fused images, compromising the overall fusion performance.
Thus, we propose the non-local Gaussian filter. This filter can learn the shape and parameters of
its filtering kernel based on the image features, effectively removing noise while preserving details.
Additionally, we propose a novel dense attention in the feature extraction module, enabling the
network to understand and leverage inter-layer information. Our experiments demonstrate a marked
improvement in fusion quality with our proposed method.

Keywords: infrared and visible image fusion; unified feature space; dynamic instance normalization;
non-local Gaussian filter; dense attention

1. Introduction

Recently, infrared and visible image fusion (IVIF) has gained considerable attention,
owing to its extensive applications in various fields [1-3]. Single-modal images typically
contain limited scene information and cannot fully reflect the true environment. Therefore,
fusing information from different imaging sensors helps to enhance the informational
richness of the images. Infrared and visible images have strong complementarity, i.e.,
infrared cameras capture thermal radiation but may not provide detailed information, while
visible images are not sufficient in detecting hidden objects. Due to the complementarity
and advantages of these two modalities, IVIF is widely applied in fields such as nighttime
driving, military operations, and object detection.

In recent years, researchers have proposed various methods for IVIF, which can
be categorized into traditional and deep learning-based methods. Traditional methods
aim to design optimal representations across modalities and formulate fusion weights.
These methods include multi-scale decomposition (MSD)-based methods [3-6], other
transformation-based methods [7-9], and saliency-based methods [10-12]. The advance-
ments of deep learning have significantly accelerated the evolution of IVIF. Researchers
have proposed sophisticated modules or structures [13-18] for the integration of features
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from both infrared and visible images. Autoencoders [19-24] have also been introduced
into the IVIF process due to their powerful feature extraction capabilities. Additionally,
generative adversarial networks (GANs) [25-28] have been employed to enhance the fusion
performance. However, existing research often neglects the differences between infrared
and visible images, as well as the noise present in source images.

There are still some challenges that need to be tackled. Firstly, there is a significant
difference between infrared and visible images. This difference leads to the inconsistent
fusion of features when they come from these different sources. As a result, the quality of the
fusion results is often affected. The differences between the infrared and visible modalities
can be attributed to variations in wavelength, sources of radiation, and acquisition sensors.
These modal differences lead to variations in images, such as texture, luminance, contrast,
etc., subsequently affecting the fusion quality. Although decomposition representation-
based methods can reduce the impact of modal differences, they often require complex
decomposition and fusion rules. Secondly, low luminance may result in noisy source
images. These images often impact the performance of image fusion, leading to suboptimal
results. Thirdly, many methods neglect essential information from the middle layers, which
are crucial in the fusion process. While dense connections [22] have been introduced into
the fusion network, these connections lead to higher computational costs.

To address these challenges, we propose a novel method (UNIFusion) for IVIE, which
includes cosine similarity-based image decomposition, a unified feature space, and dense
attention for feature extraction. To obtain high-quality fused images, our method reduces
the differences between infrared and visible features through the unified feature space,
while also preserving their unique information. We first decompose the infrared and
visible images into common and unique regions, respectively. Then, the features extracted
from common regions are fed into the unified feature space to obtain fused features
without modal differences. Specifically, we first obtain unique and common regions
based on the cosine similarity between the embedded features of infrared-visible images.
The unique regions contain private information that should be preserved in the fusion
process, while the common regions in both infrared and visible images contain similar
content. Secondly, to obtain fusion results with more information, we design a unified
feature space to eliminate the differences between common features. In the space, infrared
features are transformed to the pseudo-visible domain, thereby eliminating the differences
between modalities. Thirdly, we propose a dense attention to enhance the feature extraction
capabilities of the encoder, particularly focusing on improving the model’s ability to capture
important information from the input data. By applying an attention weight across all
layers of the encoder, this method ensures that the model focuses on important features,
which helps the model to perform fusion tasks better. Moreover, we propose the non-local
Gaussian filter to enhance the fusion results. This filter can learn the shape and kernel
parameters, enabling it to remove noise while retaining details.

As demonstrated in Figure 1, our method outperforms current fusion algorithms like
FusionGAN [26], PMGI [29], and U2Fusion [15]. It is apparent that we can obtain better
results through the unified feature space. Even the current state-of-the-art methods for
IVIF cannot obtain satisfactory fused images. For example, FusionGAN generates blurred
fused images, while PMGI and U2Fusion lead to fusion artifacts. Conversely, our method
can improve the fusion performance by fusing multi-modal features in a consistent space.

The main contributions of this paper are summarized as follows.

¢  To eliminate the modal difference, we propose a domain normalization method based
on the unified feature space, which enables the transformation of infrared features
to the pseudo-visible domain, ensuring that all features are fused within the same
domain and minimizing the impact of modal differences during the fusion process.

*  We propose a feature-based image decomposition method that separates images into
common and unique regions based on the cosine similarity. This approach eliminates
the need to manually craft intricate decomposition algorithms, offering an adaptive
solution that simplifies the process.
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*  We design a dense attention to allow the encoder to focus on more relevant features
while ignoring redundant or irrelevant ones. Moreover, the Non-local Gaussian filter
is incorporated into the fusion network to reduce the impact of noisy images on the
fusion results.

Infrared Visible FusionGAN

PMGI U2Fusion Ours

Figure 1. A comparison of the fused images generated by our UNIFusion and other state-of-the-art
fusion methods.

2. Related Works

In this section, we review various IVIF methods, categorizing them into traditional,
AE-based, and GAN-based approaches. Additionally, related works on image-to-image
translation are briefly presented to obtain a deeper understanding of the proposed models.

2.1. Traditional-Based Methods

In the study of traditional methods for IVIF, various techniques have been proposed,
which include multi-scale decomposition, saliency detection, etc. Multi-scale decomposi-
tion methods [4,5,7] decompose and reconstruct the features of infrared and visible image
at various levels to better fuse details, structures, etc. These approaches align the process
of scale information with the human visual system. Saliency detection methods [10-12]
can enhance the fusion performance on important targets by assigning higher weights to
salient regions or objects. Sparse representation techniques [30] use dictionaries learned
from a large set of images to encode and preserve essential information from the source
images during the fusion process. These traditional approaches provide a foundation for
IVIE, which can retain the image details and improve the visual effect.

2.2. CNN-Based Methods

The introduction of convolutional neural networks (CNN) has revolutionized the field
of infrared and visible image fusion (IVIF). Specifically, Liu et al. [13] were pioneers in this
area, applying a Siamese CNN structure to effectively generate a weight map from the
source images. Over time, the architectures of CNNs in IVIF have continuously evolved.
Early CNN architectures included single-branch and dual-branch configurations. For in-
stance, Li et al. [14] incorporated residual connections to enhance the fusion capabilities.
Xu et al. [31] developed a multi-scale unsupervised network based on joint attention mech-
anisms, significantly improving the detail preservation in the fused images. Moreover,
the research by Ma et al. [17] presents a fusion technique anchored in the Transformer
framework, equipped with an attention module to integrate global information. Alongside
this, the impact of the lighting conditions in fusion tasks is noteworthy. PIAFusion [18]
tries to improve the fusion performance based on an illumination-aware module, but its
model is not successful in handling complex lighting scenarios.
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2.3. Autoencoder-Based Methods

Autoencoders are effective in infrared-visible image fusion as they are adept at encod-
ing and decoding image features. This capability is essential to effectively fuse infrared
and visible information. Li et al. introduced the DenseFuse method [22], which marked a
significant advancement in IVIF tasks. This approach efficiently fuses visible and infrared
images, paving the way for further research and development in this area. After the in-
troduction of DenseFuse, AE-based methods for IVIF received significant development,
which can be categorized as single-branch-based methods [19,20] and dual-branch-based
methods [21-24]. The advancements of autoencoders have played a crucial role in im-
proving both the efficiency and performance of the image fusion process. Additionally,
the introduction of innovative modules has significantly enhanced the quality of the fused
images. These modules include residual connections, channel attention, and self-attention.

Autoencoder-based methods can significantly enhance the fusion performance due to
their strong capacity for feature extraction and reconstruction. This ability allows for the
more comprehensive fusion of source image information, leading to superior fusion results.

2.4. GAN-Based Methods

In the IVIF task, generative adversarial networks (GANSs) have been employed to gener-
ate fused images that contain rich information from the source images. Liao et al. [25] lever-
aged the powerful generative capabilities of GANs to produce realistic and information-rich
fused images, demonstrating the advantages of GAN-based methods in infrared and visible
image fusion. Furthermore, Xu et al. [27] developed a conditional GAN featuring dual
discriminators, each trained on infrared and visible images. This approach effectively
balances features from both types of images, thereby enhancing the fusion performance.

The architectural innovation in GAN-based methods is noteworthy. Researchers have
experimented with multiple discriminators to improve the fusion performance. For exam-
ple, Song et al. [28] introduced a novel GAN-based method with a triple discriminator for
IVIF, which produces detailed fused images. In addition, researchers are focusing on the
design of loss functions and architectures. For example, Li et al. [32] and Yuan et al. [33]
used the Wasserstein distance and group convolution in GAN architectures, respectively,
which led to better fusion results.

2.5. Image-to-Image Translation Methods

The objective of image-to-image (I2I) translation is to convert an image from a source
domain to a target domain, ensuring that the essential characteristics of the input image
are retained. Various generative adversarial network (GAN)-based frameworks have been
proposed to align the output image distribution with that of the target domain. For instance,
in 2016, Isola et al. introduced Pix2Pix [34], a conditional GAN model capable of translating
images across domains using paired training data. Subsequently, Pix2PixHD [35] was
developed to address high-resolution image translation. However, a significant challenge
with these paired 121 translation methods is their dependence on paired datasets, which can
be challenging and expensive to acquire, and sometimes even unattainable. Consequently,
various approaches [36-39] have been explored to overcome the limitation for paired
datasets. For instance, Bousmalis et al. [40] proposed an 121 translation method based on
unsupervised training that applies domain adaptation in the pixel space. In our approach,
we design a unified feature space to transform infrared features into the pseudo-visible
domain. This ensures that all features exist within the same domain, eliminating the impact
of modality differences on the fusion process.

3. Methods
3.1. Qverview

Our proposed UNIFusion is an autoencoder structure, which consists of image de-
composition, feature extraction, fusion, and reconstruction modules. The feature extraction
module is a three-branch network based on dense attention, consisting of encoders E",
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EY and E*, which are used to extract unique and unified features. The fusion and recon-
struction module is devised to fuse features and generate fusion results, while employing
a non-local Gaussian filter to reduce the adverse impact of noise on the fusion quality.
The complete architecture is depicted in Figure 2, providing a detailed overview. Specifi-
cally, we decompose infrared-visible images into common regions (C* and C'") and unique
regions (P” and P'"). The dense attention is leveraged to effectively extract features from
the common and unique regions. To eliminate modal differences, we propose the unified
feature space to transform infrared features into the pseudo-visible domain. As noisy
source images may degrade the fusion quality, we design a non-local Gaussian filter to
minimize the impact of noise on the fusion results while maintaining the image details.
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Figure 2. The overall framework of the proposed method. The method consists of (a) image decom-
position, (b) feature extraction module, and (c) fusion and reconstruction module. (a) decomposes
source images into common and unique regions, respectively. (b) is a three-branch network, consist-
ing of encoders E" EY and E*. The encoders based on dense attention are used to extract unique
and unified features. (c) is devised to fuse features and generate fusion results, while employing a
non-local Gaussian filter to reduce the adverse impact of noise on the fusion quality.

During the training phase, we use the S*SIM and MSE loss functions to evaluate
the similarity between the fused image and the original inputs. This helps to refine the
network parameters.

3.2. Image Decomposition Based on Cosine Similarity

To obtain the common regions (C? and C") and unique regions (P and P") of the
source images, we embed the infrared and visible images into a shared parameter space Z
to obtain consistent feature representations. By comparing the similarity of these features
using cosine similarity, we can capture the directional similarity of the image features
without being affected by the absolute luminance. The size of the feature map is h x w
and the dimension is d, which leads to the definitions (1) and (2) for feature representation.
Elements within these feature maps are denoted by the lowercase z, which are vectors in the
d-dimensional space. The superscript of z indicates the modality (with vi for visible light
and ir for infrared), and its subscript denotes the position of the element. The definitions
are shown below:

2y 2,
AL /sz c Rdxhxw’ (1)

vi L. vi
Zh,l Zh,w hxw
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Zir _ /er c ]Rdxhxw, (2)
ir . ir
Zha Zhw A pxw

where zf} is the element in the i-th row and j-th column of the visible feature matrix. zi’] is
the element in the i-th row and j-th column of the infrared feature matrix.

The cosine similarity (denoted as cs in the Equation (3)) is used to decompose infrared
and visible images into common and unique regions. This is because the cosine similarity
captures the structural similarity between infrared and visible images, which is more
important for image fusion than absolute luminance. Two types of masks for source image
decomposition are derived by computing the cosine similarity (denoted as c), namely M,
(common mask) and M, (unique mask), as detailed in Equations (4) and (5):

CS(Z§’f1/Z§r,1) Y CS(Zlefw'Zlir,w)
S =cs(z%, 7" = | : o , 3)
es(zzhn) o os(ZZie) 1,
M. =43, 4)
My =132, ©®)

where S is the similarity matrix of size h X w, representing the cosine similarity between
visible and infrared features. cs is the cosine similarity function. M, represents the common

mask, and % normalizes the similarity scores to a range [0, 1], where 1 indicates the

maximum similarity. M), is the unique mask, and the transformation % also normalizes
the scores, with 1 indicating the maximum difference.

Next, we upsample the common mask and unique mask to align with the source
image size. Element-wise multiplication is performed between the two masks (M. and Mp,)
and infrared—visible images (I " and I vi) to yield four decomposed outcomes (Ci’, pir, Cvi,
and P”). The decomposed results are defined as followed, representing infrared-visible
common regions and unique regions, respectively:

Cir — i « upsgmple(Mc), (6)
pir — Jir « upsample(Mp)- 7
Cw' _ Ivi X UPSQMPZE(Mc)r (8)
PP = I x Upsample(Mp), o

The employment of cosine similarity enables more precise decomposition, ensuring
that the common regions and unique regions between the infrared and visible images
are captured.

3.3. Dense Attention for Feature Extraction

Although the current fusion methods [15,22] try to utilize skip connection structures
to obtain rich features, the differences between multi-scale features are not sufficiently
taken into account. Specifically, low-level features capture basic input characteristics, while
high-level features are more abstract, representing complex concepts and structures. Dense
connections and residual connections concatenate multi-scale features directly, which can
make it challenging for neural networks to differentiate important features, consequently
limiting the fusion performance.

To address this limitation, we propose a dense attention-based feature extraction
module to obtain multi-scale features, as shown in Figure 3. By inserting attention into
every dense connection, the model can learn the significant features and relationships
between different layers. Furthermore, as the network depth increases, this attention
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mechanism helps the model to learn long-range dependencies, improving its generalization
and robustness.
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Figure 3. The structure of the feature extraction module based on dense attention.

3.4. Unified Feature Space Based on Dynamic Instance Normalization

We construct the unified feature space to eliminate the difference between infrared and
visible features at the multi-scale feature level. The core components of the space include a
scale-aware module, shifted patch embedding, and dynamic instance normalization (DIN),
as shown in Figure 4. Specifically, the scale-aware module is trained to determine the size
and shape of a patch. With the # pairs of scale and size parameters output by this module,
shifted patch embedding can divide the feature map into n groups. For each group, it
splits the feature map into patches according to the corresponding scale and size. DIN
transforms infrared features into a pseudo-visible domain for each patch, which eliminates
the differences between infrared and visible images. Subsequently, the learned confidence
merges the features from the two modalities to produce the output result.
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Figure 4. An illustration of the unified feature space based on dynamic instance normalization (DIN).

More specifically, the unified feature space enables the domain transformation from
infrared to pseudo-visible, while also being adaptable to multi-scale targets. Dynamic
instance normalization (DIN) is the core of the unified feature space, capable of transform-
ing features from infrared features to pseudo-visible, thereby eliminating the difference
between the two modalities. Moreover, we employ global pooling to concatenate features
in order to enable a multilayer perceptron (MLP) to generate n pairs of size and shape
parameters. The multi-patch embedding module divides the infrared and visible features
into n groups along the channel dimension. Within each group, the features are segmented
into patches of the same scale, determined by a set of size and shape parameters. Then,
DIN transforms the infrared features to the pseudo-visible domain for each patch after
shifted patch embedding. For the fusion of infrared and pseudo-visible features, we de-
sign a learnable confidence module to learn fusion weights; this method can adjust the
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fusion weight depending on the image content, compared with the fusion rules of addition,
concatenation, and so on.

Although adaptive instance normalization (AdaIN) [41,42] plays a crucial role in
image translation tasks, the core idea of AdalN is to adjust the feature distribution of a
content image to match the feature distribution of a target style image, thereby achieving
style transfer. This process involves normalizing the features of the content image and then
adjusting these normalized features with the statistical data (mean and variance) of the
target style image. Through this method, the content image adopts the style characteristics
of the style image while retaining its content structure. However, this method is not
very precise due to the transformation of the domain at the level of global features. This
limitation prevents independent domain transformations for each patch, restricting the
effectiveness of domain transformation. To address this, we introduce dynamic instance
normalization (DIN), which astutely segments the feature map into distinct subregions, as
shown in Figure 5. This segmentation allows for independent domain transformations on
each patch, enhancing the adaptability of the process. The DIN function is mathematically
represented as

DIN(X, Y) = [AdaIN(x1, y1), AdaIN(x2, 1), - . ., AdaIN (x, v )], (10)
AdaIN () = o) (*TE) o), an

where both X and Y denote global features, X represents the content input, and Y is the
modal attribute input. Both X and Y are segmented into 7 patches, resulting in patch-wise
pairs denoted as (x;,y;) fori = 1,2,..., n, where each pair corresponds to matching patches
from X and Y. The terms p(x) and p(y) denote the means of x and y, respectively, while
o(x) and o(y) denote their standard deviations.

Patch-wise
| ( ‘
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& | aday |
‘ B H ‘ x'np +'o —> Output | ’ _D ‘idﬂ‘ —>|_Output
) ) Normalized B ‘ B ‘ l;—'|.‘_
}
Patch-wise DIN
(a) AdaIN (b) Dynamic instance normalization (DIN)

Figure 5. Different domain transformation methods. (a) AdaIN performs domain transformation
by adjusting the global feature distribution of the content input (denoted as B), making it match the
global feature distribution of the modal attribute input (denoted as A). (b) DIN, extended from AdalN,
adjusts the feature distribution at the patch-wise level, enabling more detailed domain adaptation.

In particular, we feed the concatenated infrared and visible features into a scale-aware
module to obtain the scales and ratios. The shifted patch embedding module separately
splits infrared and visible features into 7 groups and partitions each group of features into
patches based on the scale and ratio. Infrared and visible patches can be represented as
X =[x1,x2,-+,x4) and Y = [y1, Y2, - -, Yn], respectively. Applying DIN to each infrared—
visible patch pair, as shown in Equation (10), we transform the infrared features into the
pseudo-visible domain at the patch level. Then, we multiply them element-wise with a
neural network-derived confidence metric to form the final fusion features. We obtain the
final unified features by fusing pseudo-visible and visible features based on the learnable-
confidence module.
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3.5. Hierarchical Decoder for Fusion and Reconstruction

The hierarchical decoder does not only allow us to fuse infrared-visible features
and generate fused images, but is also robust to the noise contained in source images
and enhances the clarity of the fusion result. In this paper, we propose a multi-stage
decoder to achieve more refined fusion, which can be divided into fusion, reconstruction,
and enhancement stages.

The specific design of the hierarchical decoder is shown in Figure 6. We deploy two
convolutional layers to fuse unified and unique features, receptively, in order to retain more
infrared-infrared information. Then, in the reconstruction, we propose a novel module
to learn the fusion strategy and obtain refined features. As every scale feature is vital to
the fusion task, we not only insert a nest connection to learn the fusion strategy, but also
propose a direct connection to output multi-scale features. Specifically, in the proposed
architecture, features are reconstructed to match the size of the input image through a series
of convolutional or transposed convolutional layers. These reconstructed features are then
propagated to subsequent layers. In the final enhancement stage, we employ two distinct
sets of convolutional layers to obtain a guidance feature used to obtain the filter parameters
and preliminary fused images. Subsequently, we utilize a cascade of three convolutional
layers to derive two-dimensional positional offsets and non-local Gaussian kernels.
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Figure 6. The structure of the hierarchical decoder.

Regarding the non-local Gaussian filter (shown in Figure 7), used for image enhance-
ment, the process involves refining a preliminary fusion result, denoted as f. Here, f;
represents the value at position (i, j) after an initial fusion step. The refined fusion outcome,

~

£, is achieved through an advanced filtering technique, mathematically formulated as

N
Sij= ), wij (12)
n=1
. N wp
fij =), 57 St i+ Ajr (13)
n=1 “t]

where f; ; represents the value at position (i,]), and N is the total number of neighbors,
with a default value of 9. The term w? i denotes learnable Gaussian kernels for the n-th
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neighbor of the pixel at (i, j). S;; is the sum of weights for all neighbors, used to normalize
the weights such that the sum of weights within the neighborhood equals 1. The terms
Ai, and Aj, represent the positional offset values for the n-th neighbor, indicating the
deviations in the row (vertical) and column (horizontal) directions, respectively, relative to
the central pixel (i, f).

(a) Gaussian filter (b) Non-local Gaussian filter

Figure 7. An illustration of the non-local Gaussian filter, which employs a dynamic kernel to enhance
the image fusion.

The non-local Gaussian filter enables the adaptive refinement of the fusion process.
By dynamically adjusting the offsets and weights based on the local structures of the
initial fusion result, the network can achieve a more optimized and contextually aware
fusion outcome.

3.6. Loss Function

In this paper, we introduce two types of loss functions to simultaneously preserve
crucial information from the source images and enhance the saliency of the fused image.
Our loss functions incorporate two key components: the mean squared error (MSE) loss
Lmse and the proposed saliency structural similarity index (S’IM) loss L;,,- The MSE
loss is used to constrain the similarity between the fusion results and the infrared-visible
images. This loss focuses on maintaining fidelity to the source images by minimizing
pixel-wise differences. Our proposed S’IM loss aims to emphasize the saliency in the fused
image. The total loss is calculated as follows:

ﬁ(e, D) — Emse(e, D) +)\£s31m(9, D), (14)

where 6 represents the parameters of the neural network, D represents the training data,
and A is the hyperparameter that balances the two losses.

Due to its efficiency and stability, the mean squared error loss L5, can provide high
accuracy and reliability in many cases. Therefore, we use it to constrain the similarity
between the source images I, I, and the fused image I¢. Its definition is as follows:

N
MSE(A, B) = = )"(A; ~ B}, (15)
i=1

Emsg(g,D) = ]/llMSE(If, 11) + }leSE(If, 12), (16)

where p11 and p, are hyperparameters that balance the weights of the two MSE terms in
the loss function. This allows the model to adjust the reliance on the visible image and the
infrared image according to the needs of the specific task.

The structural similarity index measure (SSIM) [43] is a widely used image quality
assessment metric that aims to quantify the perceptual similarity between two images.
However, in infrared images, there are pixels with zero or very low intensity values, which
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means that the corresponding regions do not have objects with thermal radiation. In the
fusion process, they should be assigned lower weights. To address this issue, we propose
the saliency SSIM (S’IM). Specifically, S’IM can adaptively determine the loss weights
based on the pixel intensity. We divide the normalized pixel values into three major regions:
the low-saliency area, the linear area, and the high-saliency area, as shown in Figure 8.

Loss weight
A

Low-salient : . : High-salient
: Linear area :
area  : © area

W2 .................. \ .................................... 3

k

Wi

0 a ,B

Figure 8. The schematic diagram of the s%im weight.

> Pixel intensity

The low-saliency area contains pixels with lower intensity values, which typically
do not contain target information. When calculating the loss, they should be assigned
a very low weight. The high-saliency region contains pixels with high intensity values,
indicating objects with high thermal radiation, and they should have higher saliency in
the fused image. For the remaining pixels, we adopt a linear transformation strategy to
determine their loss weights, corresponding to the linear region in Figure 8. In summary,
the calculation method is shown as follows:

wy,x <«
hix) =<¢ kx+ba<x<p, (17)
wy, x > B
Ls,,(0,D) = (p[l — SSIM(1f, 11)} + (D) - [1 — SSIM(1y, 12)}, (18)

where ¢ is a hyperparameter used to adjust the weights of the infrared and visible images
during the fusion process.

4. Experimental Results

In this section, we describe the experimental setup and the details of the network train-
ing. Following this, we perform a comparative analysis of the current fusion methods and
carry out generalization experiments to highlight the benefits of our approach. Additionally,
we conduct ablation studies to validate the effectiveness of our proposed methods.

4.1. Experimental Settings

We conduct experiments using four publicly available datasets. The M3FD dataset [44]
is used for model training, while the TNO [45], RoadScene [15], and VTUAV [46] datasets
are used to evaluate the performance of our method. The M3FD dataset contains 300 pairs
of infrared and visible images for IVIF including targets such as people, cars, buses,
motorcycles, trucks, etc. These images were collected under various illuminance conditions
and scenarios. The TNO dataset contains multispectral imagery from various military
scenarios. The RoadScene dataset includes 221 image pairs featuring roads, vehicles,
pedestrians, etc. The VTUAV dataset is used for remote sensing analysis and contains
complex backgrounds and moving objects. We selected 20 pairs of infrared—visible images
from both the TNO and RoadScene datasets, as well as 10 pairs from the VTUAV dataset,
for the evaluation of our approach.
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Our UNIFusion is compared with nine current state-of-the-art fusion methods, in-
cluding a biological vision-based method, i.e., PFF [47]; an autoencoder-based method,
i.e., MFEIF [48]; two generative adversarial network -based methods, i.e., FusionGAN [26]
and UMF [49]; two convolutional neural network-based methods, i.e., U2Fusion [15],
PMGI [29], and REN [50]; a transformer-based method, i.e., swinfusion [17]; and a high-
level task supervision-based method, i.e., PIAFusion [18].

To quantitatively evaluate the fusion performance, we utilize five key metrics: the
average gradient (AG) [51], standard deviation (SD) [26], correlation coefficient (CC) [52],
spatial frequency [53], and multi-scale structural similarity index (MS-SSIM) [54]. The AG
measures the texture richness in the image, while the SD highlights the contrast within
the fused image. The SF is indicative of the detail richness and image definition. The CC
evaluates the linear relationship between the fusion results and infrared—visible images.
MS-SSIM is employed to calculate the structural similarity between images. Generally,
higher values in AG, SD, SF, MS-SSIM, and CC denote superior fusion performance.

4.2. Implementation Details

We trained our fusion model using the M3FD fusion dataset, which contains
300 infrared—visible pairs. During training, we randomly cropped the infrared—visible
image pairs into multiple 256 x 256 patches, applied random affine transformations to
enhance the model performance, and normalized all images to the [0, 1] range before
inputting them into the fusion model. For training, we utilized the Adam optimizer with
a batch size of 16. The initial learning rate was set to 5 x 10~* and was halved every
two epochs starting from epoch 30, continuing this reduction until the final epoch at 60.
Additionally, we set the parameters of Equations (13)-(16) as follows: A =1, 1 =1, pp =1,
x=02,6=07k=1,b=0,w; =0.2, wp =2, ¢ = 1. The entire network was trained using
the PyTorch 1.8.2 framework on an NVIDIA GeForce GTX 3080 GPU and a 3.69 GHz Intel
Core i5-12600KF CPU.

4.3. Fusion Performance Analysis

In this section, we conduct a comprehensive qualitative and quantitative analysis to
illustrate the advantages of our UNIFusion, comparing our method with nine state-of-the-
art (SOTA) fusion approaches. In addition, we test the performance of our UNIFusion
across various illumination scenarios within the VTUAV dataset.

4.3.1. Qualitative Results

The visualized comparisons of our UNIFusion with the nine SOTA methods are
provided in Figures 9-11. Figures 9 and 10 present the fusion results of the different
methods on the TNO and RoadScene datasets, respectively, while Figure 11 shows the color
fusion results. Moreover, we evaluate our model’s performance with remote sensing data
collected under normal and low-light conditions, as shown in Figure 11. In our approach,
we effectively transform infrared features into the pseudo-visible domain, resulting in fused
images that maintain superior visual perception. This transformation process enhances
the fusion of infrared and visible information, yielding more natural and clearer fusion
results. Notably, our image decomposition method plays a crucial role in preserving
unique information from multiple modalities, thereby highlighting salient objects in the
fused images.

In Figure 9, it can be seen that FusionGAN, PMGI, REN, U2Fusion, and UMF generate
fusion results with less information and lower brightness (see the red boxes), which contain
more infrared information and do not fully fuse visible image. The objects in MFEIF
and PIAFusion are not salient and therefore not easily observed (see the orange boxes in
Figure 9). SwinFusion suffers from overexposure and oversmoothing, resulting in some
details not being clear enough (see the orange boxes in Figure 9). Although PFF can fuse
more details, the results of this method contain noise (see the yellow boxes in Figure 9).
On the contrary, our fused images can fuse more information through the unified feature
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space, which leads to rich details and structures (see the red boxes in Figure 9). Our
UNIFusion can also obtain better fusion performance on small objects (see the orange boxes
in Figure 9). Moreover, the results generated from our method are clear and contain less
noise due to the non-local Gaussian filter (see the orange boxes in Figure 9).

UMF U2Fusion  SwinFusion RFN PMGI PIAFusion PFF MFEIF FusionGAN Visible Infrared

Ours

Figure 9. Qualitative comparison of the fused images from various methods on the TNO dataset.

Figures 10 and 11 show more fused images on the RoadScene dataset. In the red boxes,
it can be seen that the fused images obtained from PFF contain more visible information
and lees infrared information. In the fusion results obtained by FusionGAN, PMGI, and
REN, the overall brightness of the image is relatively low, leading to objects in the fused
image that are not salient (see the red boxes). FusionGAN, PMGI, and REN generate fusion
results with low overall brightness, resulting in less salient objects (see the red boxes).
Although MFEIF, PIAFusion, SwinFusion, and UMF produce brighter fusion results, their
results appear less contrasted in Figures 10 and 11. In the orange boxes of Figure 11,
the fusion result from PIAFusion and SwinFusion exhibits blurry details for the cloud,
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and the results of UMF and U2Fusion are unable to successfully process object edges (see
the edge of the tree in orange boxes). In comparison, our method can achieve superior
fusion performance in both day and night conditions. The fusion results obtained by
our UNIFusion can effectively integrate the source information from infrared and visible
images, and it exhibits better performance on the edges of the target.

SwinFusion U2Fusion

Figure 10. Qualitative comparison of the fused images from various methods on the Road-
Scene dataset.

PMGI RFN SwinFusion U2Fusion UMF Ours

Figure 11. Qualitative comparison of the color fused images from various methods on the Road-
Scene dataset.

To assess the generalization of our method and its performance in low-light conditions,
we conducted experiments on the VTUAV dataset. Figure 12 displays our fusion results,
with Figure 12a showing the fusion results under normal-light conditions, and Figure 12b
showcasing the fusion results under low-light conditions. In the normal-light scene (see
the red boxes in Figure 12a), the infrared images display high thermal contrast, which our
algorithm effectively integrates with the visible spectrum images, known for their rich
contextual details. The resulting fusion images demonstrate the algorithm’s proficiency in
synthesizing the distinct attributes of each spectrum to enhance the overall image quality.
Under low-light conditions (see the red boxes in Figure 12b), where visible images suffer
from limited visibility, our algorithm leverages infrared imaging to accentuate thermal
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Visible Infrared

Fusion

Visible Infrared

Fusion

details otherwise obscured by darkness. The fusion process yields images that not only
retain the luminance from visible light but also highlight thermal aspects, thus improving
the interpretability of the scene in suboptimal lighting.

(b) Low-light scene

Figure 12. Fused images in normal and low-light scenes on the VTUAV dataset. The orange boxes
show our fusion results in very low-light areas.

We evaluate the performance of our method using remote sensing data that include
natural environments, urban landscapes, and beach scenes. Figure 13 shows our fused
images in these environments. Our fusion method effectively integrates valuable infor-
mation from the source images, achieving satisfactory results in terms of illumination,
detail, and structural integrity. The fused images across the first, second, and third columns
exhibit our method’s capability to successfully fuse infrared and visible data, enhancing the
clarity in details and structures, as highlighted in the red boxes. Moreover, our approach
excels at retaining essential features while disregarding irrelevant information, as seen
in the urban and beach scenes of the fourth and fifth columns, respectively. Despite the
visible images in the fourth and fifth columns being somewhat dark and containing some
details, our fusion outcome maintains these details without being affected by the abnormal
illumination of the visible image. Our method is robust in preserving critical information
across diverse scenes and lighting conditions.

74



Remote Sens. 2024, 16, 969

Infrared

Visible

Figure 13. Fusion results in remote sensing imagery. The red boxes are enlarged to highlight the

fusion performance on image details.

4.3.2. Qualitative Results

Figures 14 and 15 provide a quantitative comparison between our method and the state-
of-the-art (SOTA) methods on the TNO and RoadScene datasets, respectively. The average
metric values for these methods are summarized in Tables 1 and 2, respectively. Our
method stands out in terms of overall performance. On the TNO dataset, our UNIFusion
obtains better performance with the highest average values of SD and CC, indicating the
effective integration of information from the source images while preserving the rich details
in the fused images. Additionally, our method achieves the second-best results in AG and
MS-SSIM, coming close to the top performer. This demonstrates our method’s capability to
integrate detailed information from source images effectively. In the RoadScene dataset’s
results, our method obtains remarkably high scores in AG, SD, and CC, further confirming
its outstanding overall performance. While PFF achieves the best metrics in AG and
SF by incorporating the characteristics of the human visual system, it relies on complex
decomposition algorithms and faces challenges in preserving the rich information from the
source images.

Table 1. Quantitative analysis on the TNO dataset. The best results are highlighted in red, the second-
best in pink, and the third-best in orange.

Methods AG SD SF MS-SSIM CcC

FusionGAN [26]  3.41 +1.27 30.73 £ 6.10 432 +1.26 0.754 £0.10 0.761 £ 0.10
MEFEIF [48] 424 +1.90 34.85 £ 8.26 4.86 +£1.39 0.914 + 0.03 0.771 £ 0.13
PFF [47] 10.02 £ 4.40 40.52 +7.24 8.76 = 1.61 0.782 £ 0.09 0.722 £0.13
PIAFusion [18] 6.69 = 3.27 41.95 - 11.48 6.77 £ 1.73 0.860 & 0.06 0.752 +0.13
PMGI [29] 4.86 +£1.43 39.12 + 4.04 5.51 +£1.30 0.912 + 0.07 0.750 + 0.13
REN [50] 340+ 1.11 43.89 4 9.63 424 +1.16 0.896 & 0.05 0.780 & 0.15
SwinFusion [17]  6.52 +2.90 39.74 £+ 10.88 6.72 +1.62 0.890 & 0.06 0.758 +0.13
U2Fusion [15] 6.91 £ 2.20 40.06 + 7.42 711 +1.42 0.931 £ 0.03 0.779 + 0.14
UMEF [49] 4.63 £1.87 32.60 £ 6.83 515+ 141 0.896 & 0.07 0.768 + 0.14
Ours 8.24 £ 3.58 45.20 +4.70 7.06 £ 0.65 0.928 £ 0.03 0.795 £+ 0.14

75



Remote Sens. 2024, 16, 969

AG SD
30 r T T T T T T T T 100 T T T T : r T T r
=@ Ours : 8.24 —»—PMGI: 4.86 —@— Ours : 45.2 —P— PMGI :39.12
—— FusionGAN : 3.41 —<—RFN:3.4 90 | —— FusionGAN : 30.73 —<— RFN : 43.89
2| —— MFEIF : 4.24 —— SwinFusion : 6.52 {0~ MFEIF : 34.85 SwinFusion : 39.74
—A— PFF: 10.02 —— U2Fusion : 6.91 —A— PFF:40.52 —3— U2Fusion : 40.06
—¥— PIAFusion : 6.60 —#— UMF :4.63 80 - —¥— PlAFusion : 41.95 —#— UMF:32.6 1
2 20 2 0k
3 3
£
2 S 6ot
S5t bt
Z 2 sof
E] 2
G| <
=0t S st
30 F
sk
20 1
0 . . . . . . . . . 10
0 2 4 6 8 0 12 14 16 18 20 0
Image pairs
SF - cc
16 T T T T T T T T T 13 . . . _MS-SSIM_ . . . 12 T T r T . T T - -
=—@— Ours : 7.06 —— PMGI : 5.51 —@— Ours : 0.93 —»— PMGI: 0.91 +0ur§ 108 —p— PMGI : 0.75
—— FusionGAN : 4.32 —<—RFN:4.24 12F —B— FusionGAN : 0.75 ——RFN : 0.9 —— FusionGAN : 0.76 —<—RFN:0.78
14+ ~—{— MFEIF : 4.86 SwinFusion : 6.72 —— MFEIF : 0.91 —k— SwinFusion : 0.89 L1E —— MFEIF: 0.77 +Sw|nF|:\smn:0,76 B
—A— PFF:8.76 —— U2Fusion : 7.1 il —A—PFF:0.78 —— U2Fusion : 0.93 —A—PFF:072 —=k— U2Fusion : 0.78
—W¥— PlAFusion: 6.77 _—#— UMF :5.15 : —¥— PIAFusion: 0.86 —#— UMF : 0.9 —¥— PlAFusion: 0.75 —#— UMF: 0.77
12 s 1
) o 2
| E g
Q 15 -
E 10 g09 E 09
o o
2
= Zost =
< ° =]
2 8k 2 2081
E 207 E
B S e
6F 06 0.7
05
4t 0.6
041
2 03 0.5
0 0 0
Image pairs Image pairs Image pairs
Figure 14. Comparative analysis of nine state-of-the-art methods using five metrics on the
TNO dataset.
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Figure 15. Comparative analysis of nine state-of-the-art methods using five metrics on the Road-
Scene dataset.

76



Remote Sens. 2024, 16, 969

Table 2. Quantitative analysis on the RoadScene dataset. The best results are highlighted in red,
the second-best in pink, and the third-best in orange.

Methods AG SD SF MS-SSIM CC

FusionGAN [26]  4.35 + 1.41 37.81 £5.17 536 £1.11 0.731 £ 0.06 0.692 + 0.07
MEFEIF [48] 5.1+ 1.58 3491 +£5.77 5.87 £1.24 0.864 + 0.04 0.750 £ 0.06
PFF [47] 10.07 & 2.86 48.85 + 4.64 8.45 +1.13 0.770 £ 0.05 0.692 £+ 0.06
PIAFusion [18] 6.48 +2.55 4413 £6.70 6.60 4 1.49 0.757 £ 0.08 0.701 4+ 0.08
PMGI [29] 5.89 £ 1.58 46.22 + 6.25 6.42 +1.14 0.911 £ 0.02 0.674 + 0.07
REN [50] 426 +1.18 42.84 +£5.85 5.35+1.02 0.867 £ 0.03 0.692 + 0.08
SwinFusion [17]  6.43 +2.22 43.21 £5.88 6.67 - 1.34 0.831 £ 0.05 0.718 £ 0.06
U2Fusion [15] 8.61 1 2.39 39.19 £+ 6.59 7.86 +1.23 0.923 £ 0.01 0.678 + 0.08
UMF [49] 575+ 172 33.10 + 6.06 6.26 £1.24 0.883 + 0.02 0.707 £ 0.07
Ours 8.92 4+ 2.51 47.19 + 3.24 7.31 £ 1.19 0.895 £ 0.02 0.752 £+ 0.07

4.4. Ablation Study

We conducted experiments to analyze the effectiveness of the proposed method for
infrared and visible image fusion. The fusion results with and without the unified feature
space (UFS), non-local Gaussian filter (NGF), and dense attention (DA) were compared
in the experiments. Figure 16 shows the fused images with and without UFS. It can be
seen that the method without UFS generates blurred text on the signboard (see the red
boxes in the first row of Figure 16) and does not sufficiently retain the information from
the source images. In contrast, our method with UFS produces a detailed fusion result,
particularly with much clearer text. From the second row of Figure 16, it can be observed
that our method can retain more details of the car compared with the method without UFS.
Furthermore, the red boxes in the first row of Figure 16 show that our method generates
clearer edges on the signboard, indicating that the unified feature space (UFS) effectively
fuses information from different modalities, thereby achieving high fusion performance.
In the absence of NGF, there is an increase in noise within the fused image (see the red box
in Figure 17). Compared with the method without NGF, our method not only removes more
noise but also preserves image details and structures. We propose the dense attention-based
feature extraction module to obtain multi-scale features, which can learn the significant
features and relationships between different layers. Without dense attention, the extraction
of key features becomes challenging, resulting in fusion outcomes that are lacking in detail.
In Figure 18, without dense attention (DA), features such as the clouds in the sky and
people on the grass appear less prominent and blurred. In contrast, our fusion results are
richer in detail and clarity.

Infrared Visible W /O UFS Ours

Figure 16. The fused images with and without the unified feauture space (UFS). The red boxes are
enlarged to highlight the fusion performance on image details.
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Infrared Visible W /O NGS Ours

Figure 17. The fused images with and without the non-local Gaussian filter (NGF). The red boxes are
enlarged to highlight the fusion performance on image details.

Infrared Visible W /O DA Ours

Figure 18. The fused images with and without the dense attention (DA). The red boxes are enlarged
to highlight the fusion performance on image details.

We selected three representative metrics to demonstrate the effectiveness of each
module: AG, MS-SSIM, and CC. AG indicates that the image contains rich information,
while MS-SSIM and CC suggest that the fusion results retain substantial content from
the source images. Table 3 presents the comparison results, which demonstrate that each
component influences the overall performance. The removal of UFS lead to a marked
decrease in AG, indicating its vital role in the fusion process and in maintaining rich
information. The absence of NGF and DA leads to a decrease in MS-SSIM, as shown
in Table 3, which shows that our proposed NGF and DA are capable of retaining more
information from the source image. The absence of DA leading to a significant decrease in
MS-SSIM indicates that DA captures essential features, thereby enriching the fusion results
with more details from the source images. Both the qualitative and quantitative results
demonstrate that the UFS, NGF, and DA are effective in removing noise while maintaining
the information from the source images.

Table 3. The results of the ablation study on the TNO dataset. The best results are highlighted in red.

Methods AG MS-SSIM CcC

W/O UFS 794 +3.24 0.927 4+ 0.03 0.79 £0.14
W/O NGF 8.10 + 3.30 0.920 + 0.03 0.79 £0.13
W/O DA 8.05 £ 3.17 0.908 + 0.04 0.79 £0.13
Ours 8.24 + 3.58 0.930 + 0.03 0.80 £+ 0.14
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5. Conclusions

In this paper, we fuse infrared and visible images through feature-based decomposition
and domain normalization. This decomposition method separates infrared and visible
images into common and unique regions. We apply domain normalization to the common
regions within the unified feature space to reduce modal differences while retaining unique
information. The domain normalization is achieved by transforming the infrared features
into a pseudo-visible domain via the unified feature space based on dynamic instance
normalization (DIN). Thus, we create a consistent space for the fusion of information from
diverse source images, while eliminating modal differences that affect the fusion process.
To effectively extract essential features, we integrate a novel dense attention into the feature
extraction process. The dense attention ensures that the network can dynamically capture
key information across various layers, thereby improving the overall fusion performance
in comparison to existing CNN-based methods, autoencoder-based approaches, and others.
As the source images may contain noise, we propose a non-local Gaussian filter with
learnable filter kernels that depend on the image content. This approach filters out noise
while preserving the image details and structure. The experimental results indicate that
our method can achieve fusion results of higher quality.
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Abstract: To realize aerial target recognition in a complex environment, we propose a multi-source
Takagi-Sugeno (T-S) intuitionistic fuzzy rules method (MTS-IFRM). In the proposed method, to
improve the robustness of the training process of the model, the features of the aerial targets are
classified as the input results of the corresponding T-S target recognition model. The intuitionistic
fuzzy approach and ridge regression method are used in the consequent identification, which
constructs a regression model. To train the premise parameter and reduce the influence of data
noise, novel intuitionistic fuzzy C-regression clustering based on dynamic optimization is proposed.
Moreover, a modified adaptive weight algorithm is presented to obtain the final outputs, which
improves the classification accuracy of the corresponding model. Finally, the experimental results
show that the proposed method can effectively recognize the typical aerial targets in error-free and
error-prone environments, and that its performance is better than other methods proposed for aerial

target recognition.

Keywords: target recognition; T-S intuitionistic fuzzy rules; ridge regression; adaptive weight

1. Introduction

The complexity of the battlefield environment is enhanced significantly by high-tech
equipment, which has introduced great difficulties to the acquisition of target information.
As the battlefield expands to the five-dimensional space of sea, land, air, sky, and electro-
magnetics, the collection of target information will not only be affected by the accuracy and
stability of sensor equipment, the influences of the climate environment, and the complex
electromagnetic field environment, but also by other factors that lead to deviations or
even errors in the collected target information. In addition, there will be interference and
confusing equipment intentionally released by the enemy, which increases the uncertainty
of the observation of the target. Therefore, it is difficult for a single information source to
obtain accurate and complete intelligence information in such a complex environment, and
also meet the requirements of actual aerial combat.

With the development of multi-source detection technology, a structure able to track
multiple targets and realize target recognition is essential to a multi-sensor data fusion
system. Information fusion can recognize a target from multiple dimensions and multiple
directions, which data can then be comprehensively processed with the complementarity
and redundancy of information, to eliminate the influence of inaccuracy and incompleteness
of information obtained from a single information source. Moreover, multi-feature fusion
processing is designed to obtain more accurate target features by data fusion of two or more
sensors, thus breaking the limits of single-sensor detection, in which equipment generally
collects the information of only one feature within a corresponding sensing range [1].
Target features obtained by different sensors are imprecise and conflict with the influence
of complex environments, interference signals and so on; for example, impulsive noise may
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cause the collected data to deviate from the original range, leading to the drawing of the
wrong conclusions in the target recognition system. Therefore, muti-feature fusion and
improving the interpretability of target recognition are particularly important.

1.1. Literature Review and Motivation

For the recognition system, a series of methods have been presented, such as the
Dempster-Shafer (D-S) [2—4], fuzzy set [5-7], probability statistics [8-10], the gray sys-
tem [11,12], rough sets [13-15], and fractal theory [16-18]. D-S evidence theory, a general
framework for information fusion, is used to combine multi-level information from multi-
source environments for reasoning and dealing with uncertainty, imprecision, and incom-
pletion [19,20]. Therefore, extended evidence theories have been well established in infor-
mation fusion [21], decision analysis [22], risk assessment [23,24], pattern recognition [25],
and other fields. However, traditional evidence theory has low accuracy because of the
problems of constructing a basic probability assignment (BPA) and conflict management.

With regard to the framework of the BPA, some modeling approaches have been
provided. Moreover, Dempster’s combination method is performed to transform the BPA
into probability distribution, the quality of the BPA in evidence theory will determine
whether the recognition result is reasonable. Yin et al. [26] proposed a measurement model
to achieve uncertainty management of the BPA via the processing of negation and the links
between uncertain data and entropy. Jiang et al. [27] constructed a correlation coefficient
to describe the non-intersection and the distinctions between the focal elements. Wang
et al. [28] proposed a belief divergence measurement that presented the correlation of
various kinds of subsets with a belief function and an appropriate probability distribution.
Kaur et al. [8] processed nonnegative and symmetric divergence measures for BPA. Hu
et al. [9] proposed the cross-information to change the comprehensive BPA. However,
an algorithm based on decision-level data fusion needs high data preprocessing and the
decision-making methods are short of general structure after obtaining the characterized
distributions of basis reliability.

When coping with highly conflicting evidence, D-S evidence theory may lead to
counter-intuitionistic recognition. Therefore, many methods have been proposed including
Yager’s combination rules method [29], Murphy’s arithmetically average model of bodies
of evidence [30], Li’s trust-based method [31], and so on. Target recognition methods based
on fuzzy set theory only need a small amount of prior knowledge to achieve more efficient
and accurate recognition. Wang [32] proposed the intuitionistic fuzzy dynamic Bayesian
network to transfer the outputs of intuitionistic fuzzy rules into probability. Jiang [7]
established a hybrid decision-making fuzzy rough and hesitant sets model and developed
a machine learning mechanism to construct the relative loss functions. Guo [33] proposed
the recognition structure of UAVs based on a recurrent convolutional strategy, which
influenced the degrees of super-resolution realization by setting the numbers of cycles
and iterations with changes in the blur degree. Moreover, intuitionistic fuzzy sets (IFS)
can conquer the inaccuracy and limitations of traditional fuzzy sets for solving specific
information and eliminate the bottleneck that Bayesian models excessively rely on. Lei [34]
proposed an intuitionistic fuzzy reasoning (IFR) framework to obtain the membership and
non-membership degrees of the property variables of a recognition model. Dolgiy [35]
combined the D-S method and Takagi-Sugeno (T-S) fuzzy system to develop the empirical
process of an expert system of probability estimates based on subjective preferences of
the description of typical sensors. Therefore, a novel hybrid T-S and intuitionistic fuzzy
inference system are applied to target recognition in our method.

1.2. Our Contributions

In this paper, a novel MTS-IFRM is proposed for high-performance multi-target recogni-
tion in error-free and error-prone environments. The main novelties of our method include:
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e Improving the robustness of the training process of the model: the features of the
aerial targets are classified as inputs to the corresponding T-S target recognition model,
so that features are divided into multi-level features with the target properties;

e  In the T-S model algorithm, the study of premise and consequence parameter identifi-
cation has been the key question. We apply an intuitionistic fuzzy C-means method
based on the dynamic particle swarm optimization (DPSO) algorithm and the ridge
regression model to identify the premise and consequence parameter of the T-S intu-
itionistic fuzzy model, respectively, which better realizes the parametric identification
of the model;

e High classification accuracy can be guaranteed in error-free and error-prone environ-
ments. The adaptive weight algorithm reduces the weight corresponding to the model
with a low degree of discrimination and increases the weight corresponding to the
model with a high degree of discrimination, which is better distinguished from the
input features.

1.3. Organization of the Article

The organization of the method is described as follows: The fuzzy target recognition
model is given in Section 2. Model construction and parameter identification are presented
in Section 3. The simulation results and an analysis with comparable methods are given in
Section 4. Finally, the conclusions are organized in Section 5. The meanings of notation in
the article are listed in Table 1.

Table 1. Notation list.

Notation Meaning of the Notation Notation Meaning of the Notation
G Discriminative frame s Scoring function set
R! Fuzzy rule | N Number of training samples
ZCA Inputs of CA Xi, Vi, P; Position, velocity, optimal solution of the i-th particle
Universe of discourses . .
Eca of CA G Size of particle swarm
Azgl Intuitionistic fuzzy subsets Py Current global optimal solution
p Consequent parameter Wmin, Wmax Minimum, maximum inertia weights
u(e),v(e) Membership, non-membership degree 1,62 Learning parameter
(o) Intuitionistic index T Number of iterations
Lrg Number of fuzzy rules M Number of label vector dimensions
Minimum, maximum, and average fitness of the
0 ) , , &
Yre Outputs for the model fminsfmax, favg particle swarm

2. Preliminaries

In this section, the preliminaries of the Dempster-Shafer evidence theory and Takagi-
Sugeno intuitionistic fuzzy rules method are first introduced.

2.1. Evidence Theory

Dempster—Shafer evidence theory has flexibility and effectiveness in modeling uncer-
tainties without prior information [19]. A discriminative frame ® consisting of all possible
propositions is defined as follows:

62{91/92/"'/9i/"'/9n} (1)

Mass function mapping m from 2© to [0, 1] is defined as BBA, which satisfies the

following conditions:
m(2) =0 and Yy m(6) =1 ()
0CO
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If m(6) > 0, then 6 is described as the focal element. Suppose two independent basic
belief assignments 1y, m, construct the form mj @ my according to Dempster’s rule of
combination, which can be expressed as follows:

o ¥ m(E)ym(F), 0+#@

m(9) = { " EnF-o ()
0 =0
With
K= ), m(E)ymy(F) @)
ENF#o

where E, F € 2% and K is the conflict coefficient of 71, and ;. When the evidence is highly
conflicting, the evidence fusion processing will lead to counter-intuitionistic results. For a
multi-source target recognition system, a degree of conflict of the information is provided
by each sensor, so dealing with the conflicts between the evidence is the key to applying
various evidence-based theories for accurate target recognition.

The common features of information on aerial targets, such as flight speed, acceleration,
flight height and so on, can be detected by a multi-source system. Due to the problem
of various forms of signal interference and other factors, a system detecting the target
information will contain a lot of uncertainty. Most methods based on decision-level data
fusion, such as D-S and Yager, require a high level of data preprocessing and display low
interpretability. In order to improve the interpretability of the information fusion and
the process of aerial target recognition, the T-S intuitionistic fuzzy model is introduced to
establish mapping between the feature space and the target space. The T-S intuitionistic
fuzzy model has strong learning ability and robustness, which means it can label historically
detected targets with the correct categories, and input their feature information into the
T-S intuitionistic fuzzy model for training after intuitionistic fuzzification, then forming a
correct mapping relationship. By continuously learning target features, the final trained
model can accurately obtain the mapping relationship between the features and the targets.

2.2. Takagi—Sugeno Intuitionistic Fuzzy Rules Method

When the number of input variables increases, the number of rules of the T-S model
will increase exponentially, resulting in a decrease in training performance. For typical
aerial targets, we divide the features of the aerial targets into two or three groups for
modeling. Figure 1 illustrates the classification and the process of target recognition.

Primary features T-S intuitionistic fuzzy
model
Secondary features

Aspect ratio

>

| Radar graphic feature
| identification

Radar graphic

1

Cross-section Area

Flight speed

5 Motion feature 5 q q
Acceleration —% identification %—b{ Dynamic weight allocation

Vertical speed ‘ Secondary features fusion ‘

|

‘ Target recognition results

Motion

Flight Height

Location feature
identification

Detection distance

Figure 1. Target recognition T-S intuitionistic fuzzy model.
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First, the features are divided into primary features and secondary features with the
target properties, and each secondary feature contains two or three primary features. Then,
the model is trained by the training data to obtain the premise and consequence parameters,
and the primary features are fused and judged by the trained MTS-IFRM. Finally, the
identity estimation results of the target are fused with secondary features to obtain the final
recognition result of the target.

The main difficulty of aerial target recognition lies in the fusion of multiple features.
Achieving accurate recognition of targets from imprecise and conflicting feature data is the
key. This section will mainly introduce the proposed aerial target recognition algorithm.
The MTS-IFRM is designed by taking the radar graphic (RG) as an example, the inputs of
the model are the feature values of aspect ratio (AR) and cross-sectional area (CA) after
intuitionistic fuzzification, then we define the MTS-IFRM based on a fuzzy set:

Rule R: If zcp is All, and z AR isAlz, then :

5
fha(zrG) = Phao + PraS(zca) + PraS(zar), 1 =1,2,..., Lrg ©)

where the part after “if” denotes the premise and the part after “then” denotes the consequence of the
rule. ZcA = {<CA,‘M(CA),U(CA)>|CA S ECA} and ZAR = {(AR,;M(AR),U(AR)HAR € EAR}
denote the inputs of the CA and AR after intuitionistic fuzzification, respectively. (o) and
v(®) are the degrees of membership and the non-membership, respectively, which represent the
intuitionistic fuzzy number. Then, 0 < yu(e) + v(e) < 1. 7(e) = 1 — y(e) — v(e) denotes the
intuitionistic index of the intuitionistic fuzzy number. The specific process can be referenced
in [36]. Ec4 and E or denote the universe of discourses of the CA and AR, respectively. Al1 and
Al2 denote the intuitionistic fuzzy subsets corresponding to the inputs zc4 and z4g of rule
1, respectively. The input vector zrg = [zca,zar] denotes the premise variable of the model.

pé{G = P%GO/ p%Gl, P%Gz} denotes the consequence part. S(e) denotes the scoring function with

the abilities of sequencing and decision-making, which converts an intuitionistic fuzzy set into a
definite numerical value [37]. Lrg denotes the RG number of fuzzy rules. Therefore, the weighted
average /% of the final outputs for each rule f}(zgg) are obtained by:

Lrg

Yhe = Y pt ZRG fRG ZRG) E i (zrG) - fro(zra) (6)
1=1 M (ZRG)

where y!(zgg) denotes the fuzzy membership degree of fuzzy rule I to input zgg. The
normalization method is defined as:

~ ! Z
P = Zl;’:f(u?(zlc) 7
where

ul(zrg) = Hat(zca) By (2aR) 8)

~ ! Z
i (zxc) = % ©)
Pat(zca) = Mpgr (Zea) + Aav i (zea) + A7 (2ca) (10)
Pai(zar) = MMt (2ar) + 22041 (24R) +A370 1 (24R) (11)

Here, yt 41 () , v 4 (®) and 7 4 (e) are calculated by the premise parameter identifica-
tion. ¢ ,; (@) can be expressed by using a suitable index A (generally setting Ay =1, A, =0,
and A3 = 0.5).
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Similarly, the MTS-IFRM based on the feature of motion (M) and location (L) can be
established. The output results of the corresponding model are defined as follows:

Ly

_ 3 e fiy () z 12
yFl;D ) ; ) fu(zm) (12)

p! Zs f #(z3)f1(z1) zr)

v = 2 . Z ) fip(ze) (13)
where zy; = [zps, 24, 2vs], 2L = [Z]:H,ZDD], zrs,z4,2vs, zry and zpp denote flight speed,
acceleration, vertical speed, flight height, and detection distance features after intuitionistic
fuzzification, respectively.

3. Aerial Target Recognition Methods Based on the MTS-IFRM

According to the above analysis, parameter identification is a central role of a T-S
rule-based system, which evaluates the quality of the rule modeling. Therefore, the related
work of the MTS-IFRM contains the structure identification of consequent parameters
based on the ridge regression method, the identification of the premise part with a novel
intuitionistic fuzzy C-means (IFCM) clustering model, and the adaptive weight algorithm.

3.1. Construction of MTS-IFRM

In this section, we take the training of the RG consequence parameters as an example.
First, according to Equations (5) and (6), let:

Se = (1, ST)T (14)

where s = [S(zcs), S(zar)] denotes the scoring function set of the input z. So that:

Ske = 7' (zrG)se (15)

SoRG = ((s}ac,)T O (Eﬁéc)T)T (16)
Pho = (Pko Pre pha) (17)

pore = ((vhe) " (vhe) oo (o)) 08)

where i (zg¢) is acquired in Equation (7). Next, the output of the model is denoted as:

Yie = (PerG) TSg,RG (19)

In Equation (19), we obtain the RG output of the MTS-IFRM. To solve the target
recognition problem, each secondary feature needs to have the corresponding output.
Therefore, the MTS-IFRM is constructed. The ridge regression method, a modified analysis
of the least-squares estimation, can deal with multicollinearity by operating the unbiased
estimator. To obtain a more reliable estimate of the consequent parameter, ridge regression
analysis is constructed to train the model:

min ](pg m, RG

1 N
PemRG = E E pq m, RG pg,m,RG (20)
g.m, n=1

i Mi

N
Z ( pg m, RG g n,RG — _1771,;71) +

[N ["]2

Equation (20) contains the minimization of empirical risk and structure risk. Where
Pg,m,rG denotes the consequent parameter of the m-th aerial target, N denotes the number
of training samples, ¥/, » denotes the M-dimensional label vector of the n-th training sample,
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71 represents the regularization parameter. To adjust the consequent parameter pg » rG,
the final optimization result is calculated by the first-order necessary condition:

O PomrG M N M N N
M = 2 Z <Sg,n,RG (Sg,n,RG)T +m Il><l> : pg,m,RG - Z 2 <sg,n,RGy”/m) =0 (21)

apg,m,RG m=1n=1 m=1n=1

In Equation (21), pg m,rG is as follows:

N 4 M N
T ~
PemRG = ) (’Ylllxl + S¢.n,RG (Sgn,RG) ) Y ) (Sg,m,RGy”,m) (22)
n=1 m=1n=1

Therefore, a new MTS-IFRM of RF for aerial target recognition can be expressed as
follows according to Equations (5) and (22):

Rule R': If zpg is Alll, and 7/, isAl | then :
l/

! ! ’ (23)
kG (ZRG) = Pyirao + Pyjrc15(Zes) + Py jraaS(Zar) I = 1,2, .., Lig

where z’CS and z;‘ r are the CS features and AR features after intuitionistic fuzzification,
respectively. plg/,m, rGi denotes the consequent parameter corresponding to rule I’ of model
m, here,i = 0,1,2 and L?{G denotes the number of rules. Similarly, the corresponding rules
of the MTS-IFRM for the motion feature (MF) and location feature (LF) can be established
in the same construction procedures.

3.2. Premise Identification

IFCM and the FCM clustering are very sensitive to the initial clustering center position
and are prone to converging to the local optimal solution in a noisy environment. Moreover,
the variation factors of dynamic evolution theory are introduced into the PSO algorithm to
improve the clustering optimization model [38].

Suppose the position of the i-th particle is X; = (x;1,Xi2,...,X;4), the velocity is
Vi = (vi1,0i2,...,0iq) and P; = (pi1, pi2, - -, Pia) is the optimal solution in d-dimensional
space, where i = 1,2,--- ,G, G is the size of the particle swarm, then the velocity and
position updated in the j-th dimension at an iteration are:

0;i(t+1) = wo; (t) +crri(pij — xij(£) + cara(pg,; — xij(t)) (24)

xl-,]'(t—f—l) :xi,]-(t)—i—vi,j(t—i-l), j=12,--- ,d (25)
where Py = (pg1,Pg2, - -+, Pg.a) denotes the current global optimal solution, w denotes the
inertia weight. r; and r, are random numbers in the interval [0, 1], respectively. ¢; and ¢
denote the learning parameter of the DPSO, respectively, and are defined as follows:

0 =25-2x (26)

S|~

Q:25+2X% (27)

where t denotes the number of iterations in this round, and T denotes the maximum
number of iterations. ¢; and ¢, change dynamically to meet the changing rule with the
increase in the number of iterations. Therefore, the algorithm can adaptively expand the
local search range in the early stage of iteration and accelerate the global convergence speed
in the late iteration. This learning mechanism is used to accelerate the overall convergence.

In the iterative process, the inertia weight can affect the search range of the current
round according to the speed of the previous round. At the end of each round of iterations,
the fitness function of the selected particle swarms should be obtained. Moreover, the
inertia weights can be dynamically adjusted based on the results of the fitness values, which
will make the selected particle swarms in this round of iterations have a more balanced
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position. The nonlinear adaptive inertia weight strategy is used to calculate the inertia
weight, and the method is as follows:

. (wmax_wmin) X (fi_fmin) A
w= Wmin + Favg — Fmin rfz < fuvg (28)
wmaXIfi > favg

where Wmax and Wiy are the maximum and minimum inertia weights set, respectively, and
fmin and fmax represent the minimum and maximum fitness values of the particle swarm
in this round, respectively. f;,o represents the average fitness of a particle swarm. At this
point, the speed of the particle swarm mainly refers to the speed of the previous round to
increase the activity of the particle swarm. Conversely, the speed of the particle swarm
at this time mainly refers to the local optimal position and the global optimal position to
accelerate the particle swarm to move closer to the dominant space.

Suppose Z = {z1,2y,...,zN} is the dataset, where z, = [z1,2),. ..,zd]T and z; =
{(x;, u(x;),v(x;))|x; € E}, 1 < i < d. N is the number of data items. m is the num-
ber of clusters. Here, V. = {v1,0p,...,0n}, Om € R, is a set of M clustering centers

where M > 2. Each clustering center vector can be expressed as v,, = [c]', ¢y, ..., ],
where " = {{c!", o, (c"), v, (c"))]1 <i<d,1 <m < M}. The objective function is
given below:
N M
]m(u/ V) = ):1 El Wnm 0d (Zn/ vm)
n=1m=
nm €[0,1], 1<m<M,1<n<N (29)
M
Y Ham =1, Vn,m
m=1

where j1,,,, is the membership degree of the sample data in the m-th class. U = [pum] n« m1
denotes the fuzzy membership matrix of X.cy € [1, +00) denotes the fuzzification index.
Ay (zn, v ) denotes the ordinary Euclidean distance between the measurement point z,
and the clustering center v,,;, which is defined as:

N[ —

d
i (Zn, 0m) = Zi Pi{ (12, (xi) = po, (C;")]z + [vz, (xi) — Uvm(ci‘ﬂ)]z + 712, (xi) — 7o, (C;'n)]z} (30)
where p; = (1/p,1/p,...,1/p), Uz, (Xi), Uy, (x;) and 71, (x;) are the fuzzy membership
degree, non-membership degree, and intuitionistic index of input data z,, respectively.
Ho, ('), Uy, (c') and 71y, (c]") are the fuzzy membership degree, non-membership degree,
and intuitionistic index of clustering center v;,, respectively.

Therefore, to obtain the optimal objective function by DPSO, it can be considered
that the smaller the result of the objective function [, (U, V), the better the fitness of the
particles, so the particle fitness can be expressed by the following:

A A
flxi) = = o
J(u,v) g AZ/{ Hrm?dnm® (Zn, Vi)

n=1m=1

where v;,,, denotes the intuitionistic fuzzy number of the m-th dimension of particle x;
and also denotes m-th clustering center. A is a constant, which can be manually adjusted
according to the specific situation. The main steps for DPSO-IFCM are summarized in
Figure 2.
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Initializtion

Compute the fitness of each particle
according to Eq. (31)

Update personal best and global best
accroding to the partidle fitness value

Update learning factors accroding to Eq. (26)
;Update weight accroding to Eq. (28)

Update particle velocity and position
according to Egs. (24) and (25)

DPSO

output

Calculated distance between data point to
cluster center according to Eq. (30)

Compute the membership degree of each
sample data to each clustering center and the
premise parameters of the model.

Figure 2. DPSO-IFCM algorithm processes.

In Figure 2, it is shown that the proposed DPSO-IFCM clustering algorithm includes

the following steps:

1.

Initialization: Initialize G particles to form G first-generation particles, where each
particle randomly generates M clustering centers. The fitness value is calculated by
Equation (31) and determines the current optimal position of each particle 7 by the fitness
value, and the position of the current particle swarm with the highest fitness is pq;
Compute the velocity and position of each particle in the new particle swarm using
Equations (24) and (25);

Compute the fitness value of each particle in the new particle swarm using Equation (31)
and compare it with the previous generation. For the same individual, if the indi-
vidual fitness in the new population is larger than the corresponding individual in
the previous generation, replace the individual of the previous generation and this
becomes the optimal position of particle i, otherwise, it remains unchanged;
Compare the fitness value of the optimal individual of the new particle swarm with
the optimal individual of the previous generation, if the fitness is greater than the
previous generation, update the optimal position of the population to the optimal
position of the new particle swarm, otherwise, it remains unchanged, then t =t + 1.
Repeat Steps 2—4 until a criterion is met that is usually of a sufficiently good fitness or
a maximum number of iterations;

Obtain the individual position with the highest fitness value as the initial clustering
center of the IFCM algorithm;

Compute the membership degree ji,,;; of each sample dataset to each clustering
center and the premise parameters j 47 (x;), v Am (xi), A (x;) of the model. A detailed
method can be found in Ref. [36].
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Finally, we input the intuitionistic fuzzy features into the trained MTS-IFRM. The
output of the j-th model is:

I S OO R IR )
L S T N DL >

3.3. Adaptive Weight Algorithm

From Equation (32), we know that every target has a corresponding MTS-IFRM, then
each model is trained and obtains the corresponding label vector output. If the features
of the input data are more similar to a certain class, then the value of the corresponding
class in the label vector output will be closer to one, otherwise, the value will be closer to
zero. When the values of more than one class are relatively close, the class cannot be well
distinguished from the input features; that is, the degree of discrimination is not obvious.
At this point, we can focus on other models to realize the classification and recognition
of the target; that is, reduce the weight corresponding to the model with a low degree of
discrimination, and increase the weight corresponding to the model with a high degree
of discrimination. First, the initial weight of each model is 1/h, h denotes the number of
secondary features, the weight distribution is also related to the following two points:

1. For a certain secondary feature, in the output result of the corresponding model, if all
the values in the output vector are less than 0.5, the possibility of the feature belonging
to the target being classified is too low. Therefore, the secondary feature should be
reduced according to the impact of the secondary features on the classification results,
the weight corresponding to the secondary features is reduced and assigned to other
features. Suppose that the maximum value of the label vector output by the model is
Xmax, the weight of the corresponding model can be expressed as:

1
Sl (xmax) - 1+ ehl'(hzfxmaX) (33)
The final output matrix can be obtained:
1 1
f1(Xmax) (34)

- E ’ ]_ + eh]'(h27xmax)

where /11 and h; are two constants to control the speed of weight change. Figure 3 shows
the weight change under h; = 20,1 = 0.25.
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Figure 3. Weight adjustment in case 1.

In Figure 3, when xmax is less than 0.5, the weight of the corresponding model will
gradually decrease. When xmax = 0.25, the weight of the corresponding model will
decrease rapidly. When the weight is below 0.1, the corresponding model weight is close to
0 and the larger weight will be allocated to the model that can be better identified, which
can obtain a higher recognition accuracy.
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2. For a certain secondary feature to the corresponding T-S IFM output, if the maximum
value in the label vector is greater than 0.5, and the difference between the maximum
value and the second large value is less than 0.3, then the classification ability of the
secondary features for all of the targets to be classified is weak. However, because the
maximum value in the label vector is greater than 0.5, the feature has a certain classi-
fication ability for a certain type or several types of targets, but it cannot determine
which type the input feature data belongs to. Therefore, the corresponding weight
can be appropriately reduced and assigned to other features.

Suppose that the difference between the maximum value and the sub-maximum value
in the label vector output by the model is x4y = Xfirst — Xsecond, 0 < Xgif < 0.3. Finally, in
case 2, Figure 4 shows the weight adjustment under h; = 20, i, = 0. Different from case
1, case 2 cannot clearly distinguish which category the target belongs to, because there is
a value in the label vector, only the weight is appropriately reduced. From Figure 4, the
weight is reduced to at most half of the original.

1
0.95
09F
0.85
0.8

= L
5 075

0 0.05 0.1 0.15 0.2 0.25 0.3
X

Figure 4. Weight adjustment in case 2.

According to the above two points of analysis, the final weight allocation method of
each model is designed, and the process is as follows:

To assign the reduced weight portion of the model of cases 1 and 2 equally to the other
models, first, the number of secondary features that do not satisfy the above two cases can
be expressed as:

i — { num, Xpax < 0.5 or Xgif <0.3 (35)
num+1, 05 < xp. <1 and 03 < Xaif <1

Equation (35) denotes the number of models with obvious classification effects. Then,
the final weight adjustment of each model can be expressed as:

fmax(xmax)/ Xmax <05
i) 0.5 < <1 and x,,<03
W, = fZ(xdzf) : Xmax S 1 and xg;r < 36)
Fm X (1= f(5)) 05 <y ST and 03 <y <1
J=Lj#

where W; denotes the final weight of the i-th model. f (xj) denotes the weight of the
corresponding model when case 1 or case 2 occurs. Therefore, the final fusion results are
calculated as follows:

v = WrryRe + WarYir + Wiryls (37)

3.4. Computational Complexity Analysis

In the proposed MTS-IFRM, the main program includes the implementation of the
DPSO-IFCM algorithm and the structure identification of consequence parameters based
on the ridge regression method. The total computational complexity of the ridge regression
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is calculated as N(L - N - M?), where L is the number of intuitionistic T-S fuzzy rules, N is
the number of samples, and M is the number of label vector dimensions. In the DPSO-IFCM
algorithm, the total computational complexity of the main loop of DPSO is N(G - T - d),
where G is the size of the particle swarm, T is the maximum number of iterations, d is the
dimension of the solution space, and the calculation time of the IFCM is mainly used for
the fuzzy membership p,,; and the computational complexity is N(L - N - M). In summary,
the computational cost of the proposed algorithm is determined by L, N, M, G, T, and d.

4. Simulation Results and Analysis

To evaluate the performance of the MTS-IFRM approach to the problem of recognizing
aerial targets in a complex environment, two examples were used to show the recogni-
tion performance of MTS-IFRM compared to that of the standard forms of the D-S [19],
Yager [29], Murphy [30], multi-sensor data fusion algorithm (MSDF) [32], Kaur [8], and
Hu [9] in a complicated environment. Table 2 presents the feature ranges of five typical
aerial targets (bomber (Br), fighter (Fr), helicopter (Hr), air-to-ground missile (AGM), and
tactical ballistic missile (TBM)).

Table 2. Feature ranges of five aerial targets.

Br Fr Hr AGM TBM
Flight height (km) 25-35 7-13 1.6-2.5 3.8-5.2 55-80
Detection distance (km) 350-450 250-350 130-180 100-140 130-180
Flight speed (m/s) 300-500 500-700 70-130 1000-1500 1700-2300
Acceleration (m/s?) 0-20 0-50 0-30 150-250 200-400
Vertical speed (m/s) 0-50 0-300 0-50 800-1200 1600-2300
Cross-section area (m?) 0.25-0.35  0.17-0.23  0.08-0.12 0.05-0.08 0.06-0.11
Aspect ratio 1.2-2.0 2.6-3.6 3.2-4.8 6.7-9.3 8.5-11.5

Table 2 shows the complete discernment frame is ® = {Br, Fr, HG, AGM, TBM}, and
the target recognition feature set is E = {E4, Eg, Ec, Ep, Eg, Er, Eg }, which represents
the credibility of the evidence of the flight altitude (FH), detection distance (DD), flight
speed (FS), acceleration (A), vertical speed (VS), cross-section area (CA), and aspect ratio
(AR), respectively. The training data is generated within the scope of feature ranges,
the experiment uses 125 sets of target feature data within the appropriate range as the
training phase with the rules of nine sets. Table 3 presents seven training datasets from the
training datasets.

Table 3. The feature data of aerial targets.

Serial FH DD FS A Vs CA
Number  (km)  (km)  (m/s) (m/s?)  (ms) (m?) °R  Target
1 586 1356 18455 2104 16856 008 95  TBM
2 42 1258 12507 2119 9522 006 84  AGMM
3 8.3 344 6123 426 2584 022 27 Fr
4 45 1328 12521 1587 9588 006 69  AGM
5 316 3774 3153 146 253 031 16 Br
6 17 1366 886 13 2093 009 38 Hr
7 566 1791 22006 3656 19367 010 115  TBM

Table 3 shows that the collected 13-14 d historical feature datasets with results are
obtained as the training datasets and the testing target is recognized according to the trained
MTS-IFRM, then the feature datasets and model parameters of the target are updated with
the recognition result.

The fuzzy membership function is very important for the initial recognition process
because of the uncertainty in the feature data. By analyzing the features of aerial targets,
the Gaussian membership function is used to recognize the target in Equation (38) and
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Table 4 presents § and x of five typical aerial targets with difference features, showing the
fuzzy membership functions corresponding to the detection distance.

[l — il

() = exp(—* 1) 9)
Table 4. Five typical aerial targets with different features.
Br Fr Hr AGM TBM

FH (km) (30,7.5) (10,4.5) 1) 4.5,1) (65,15)
DD (km) (400,80) (300,80) (200,60) (120,45) (150,60)
FS (m/s) (400,150) (600,150) (100,50) (1200,500) (2000, 500)
A(m/s?) (10,10) (25,25) (15,15) (200,60) (300,100)
VS(m/s) (25,25) (150,150) (25,25) (1000,300) (1950,600)
CA (m2) (0.3,0.08) (0.2,0.06) (0.1,0.03) (0.06,0.02) (0.08,0.03)

AR (1.5,0.5) (3,0.6) (4,0.8) (8,1.3) (10,1.5)

Table 4 shows the appropriate membership function y(x;) can be designed by adjusting
¢ and x with the different features of the targets x; by analyzing the various feature attributes
of each target in Table 2. Then, take the feature of detection distance as an example. Figure 5
presents the fuzzy membership functions corresponding to the detection distance.

1
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TBM | 7
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Br

Fuzzy membership degree
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o
o

Figure 5. Fuzzy membership functions of detection distance.

From Figure 5, the fuzzy membership degree of each target will be different with
different values of primary features. When the detection distance is 450 km, the fuzzy
membership degree belonging to target Br is the highest, which is 0.8226, and the fuzzy
membership degree belonging to the target AGM is the lowest, approaching zero. When
the target features obtained by the radar system are inaccurate and uncertain, the features
are calculated by the membership function, thus effectively recognizing the target initially.
Figure 6 shows the target recognition framework based on fuzzy membership degree and
evidence theory.

In Figure 6, the supporting information of the target obtained by the fuzzy membership
function may not be consistent. We use the recognition result of the target obtained by the
fuzzy membership function as the confidence degree, and evidence theory is used to fuse
the confidence degree and obtain a target recognition result.
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Figure 6. The target recognition framework based on fuzzy membership and evidence theory.

4.1. Example 1: The Data Does Not Contain Fault Features

In this example, data without fault features is employed to show the performance of the
methods, that is, all target features support a certain target. Suppose the radar detects a sus-
picious target, the target features are: A =23 km, B =450km, C =350 m/s, D = 10 m/ %,
E=40m/s, F =031 m? and G = 1.0. Table 5 presents the BPA example of multi-source
information fusion.

Table 5. The BPA example of the multi-source information fusion.

Evidence Br Fr Hr AGM TBM X
E,s 0.4185 237 x 1074 0 0 393 x10~*  0.5809
Eg 0.6766 0.0297 2.88 x 1074 0 0 0.2936
Ec 0.8837 0.0297 0 0.0549 1.84 x 105 0
Ep 0.3857 0.0614 0.3451 1.70 x 107> 859 x 107° 0
Er 0.3525 0.2691 0.3525 1.80 x 107> 2.01 x 107° 0
Er 0.9660 0.0340 0 0 0 0
Eg 0.3679 149 x 107> 7.81x10°° 0 0 0.6321

Table 5 shows the corresponding BPA functions and X denotes the unknown term.
The features are expressed with fuzzy membership for the unknown targets detected by
radar, all the features of the unknown target have high credibility for the target Br, and no
feature opposes the Br. Tables 6-9 show the recognition results of the target with different
numbers of evidence in an error-free environment.

Table 6. Comparison of algorithms with E4 and Ep in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target
D-S 0.8095  0.0176 0 0 0 0.1728 Br
Yager 0.2832 0 0 0 0 0.7168 X
Murphy 0.7905  0.0705 0.0715 0.0047 0 0.0627 Br
MSDF 0.7946  0.0692 0.0694 0.0047 0 0.0621 Br
Kaur 0.8056  0.0862 0.0891 0.0056 0 0.0135 Br
Hu 0.8134  0.0923 0.0451 0.0026 0 0.0466 Br
MTS-IFRM 0.9894  0.0064 0.0042 0 0 0 Br
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Table 7. Comparison of algorithms with E¢, Ep and Eg in an error-prone environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target
D-S 0.9610  0.0390 0 0 0 0 Br
Yager 0.1201  0.0049 0 0 0 0.8750 X
Murphy 0.9020  0.0385 0.0391 0.0021 0 0.0183 Br
MSDF 0.9050  0.0374 0.0375 0.0021 0 0.0180 Br
Kaur 0.9156  0.0395 0.0357 0.0035 0 0.0057 Br
Hu 0.9265  0.0402 0.0315 0.0018 0 0 Br
MTS-IFRM 0.9342  0.0187 0.0472 0 0 0 Br

Table 8. Comparison of algorithms with Er and Eg in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target
D-S 09782  0.0218 0 0 0 0 Br
Yager 0.3554 0 0 0 0 0.6446 X
Murphy 0.7905  0.0705 0.0715 0.0047 0 0.0627 Br
MSDF 0.7946  0.0692 0.0694 0.0047 0 0.0621 Br
Kaur 0.8165  0.0712 0.0718 0.0056 0 0.0349 Br
Hu 0.8564  0.0522 0.0559 0.0062 0 0.0293 Br
MTS-IFRM 0.9790  0.0210 0 0 0 0 Br

Table 9. Comparison of algorithms with E in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target
D-S 09998  1.75 x 10~* 0 0 0 0 Br
Yager 0.0121 0 0 0 0 0.9879 X
Murphy 0.9970 0.0014 0.0014 0 0 0 Br
MSDF 0.9973 0.0013 0.0013 0 0 0 Br
Kaur 0.9981 0.0010 9 x107* 0 0 0 Br
Hu 0.9985 0.0008 0.0011 0 0 0 Br
MTS-IFRM 0.9813 0.0015 0.0172 0 0 0 Br

From Tables 6-9 when the quantity of evidence increases, the recognition accuracy of
the other six methods steadily improves except for Yager. The reason is that Yager assigns
all the conflicts between evidence to X, which leads to cumulative conflicts between pieces
of evidence in the synthetic evidence, and the value of X will increase as the quantity of
fusing conflicting evidence increases. When the quantity of evidence is small, the MTS-
IFRM maintains better target recognition performance and faster convergence because it
can deal with the uncertainty well. Regardless of whether fewer features or more features
are available, the MTS-IFRM has higher accuracy when recognizing the targets.

4.2. Example 2: The Data Contains Fault Features

The dataset simulated in this paper contains one or more fault features obtained by
the equipment, so that the multiple features do not all support a certain target. Suppose the
radar detects a suspicious target, the obtained target features are: A = 23 km, B = 450 km,
C=350m/s, D =10 m/sz, E=40m/s, F =031 m?2 and G = 4.1. Except for the target
aspect ratio, other features are the same as in example 1. Due to the influence of factors
such as noise and the working status of the sensor device, the target aspect ratio feature is
abnormal, and the BPA of the aspect ratio can be expressed as:

Eg : mg(Br) = 0, mg(Fr) = 0.0340, mg(Hr) = 0.9658,
mg(AGM) = 0.0001, mg(TBM) = 0, m(X) = 0.

The aspect ratio has a high degree of support for target Hr, while the support degree for
Br is 0. Therefore, Eg shows significant conflict with the other evidence. Tables 10 and 11
compare the target recognition performance of the algorithms.
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Table 10. Comparison of algorithms with Er and Eg in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target
D-S 0 1 0 0 0 0 Fr
Yager 0 0.0012 0 0 0 0.9988 X
Murphy 0.7060  0.0631 0.2003 0.0035 0 0.0270 Br
MSDF 0.7746  0.0702 0.1257 0.0037 0 0.0258 Br
Kaur 0.7945  0.0642 0.1254 0.0034 0 0.0125 Br
Hu 0.8563  0.0281 0.1043 0.0021 0 0.0092 Br
MTS-IFRM 09639  0.0345 123 x 1074 0 0 0 Br

Table 11. Comparison of algorithms with E in an error-prone environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target
D-S 0 1 0 0 0 0 Fr
Yager 0 0 0 0 0 1 X
Murphy 0.9830 6.31 x 107* 0.0163 0 0 0 Br
MSDF 0.9965 5.89 x 1074 0.0029 0 0 0 Br
Kaur 0.9905 0.0084 0.0011 0 0 0 Br
Hu 0.9942 0.0049 0.0009 0 0 0 Br
MTS-IFRM 0.9811 0.0184 0.0019 0 0 0 Br

Tables 10 and 11 show that because of the conflicting evidence E, D-S finally deter-
mines that Fr is the final result, which is counter-intuitionistic. Meanwhile, the Yager is
also unable to correctly recognize the target because it assigns the high-conflict part of the
evidence to X. Murphy, MSDEF, Kaur, Hu, and the MTS-IFRM can process the conflicting
evidence and realize reasonable results. The Murphy method has lower convergence be-
cause it calculates the averages without considering the correlations between the evidence,
the MSDF method modifies the entropy method to calculate the weight of the evidence,
and the Kaur and Hu methods comprehensively improve the credibility of evidence by
analyzing the discrepancy in different aspects. Moreover, the accuracy of the MTS-IFRM is
higher compared to other methods in the case of fewer features. The MTS-IFRM establishes
a higher stability and reliability structure when confronting uncertainty.

The reasons why the MTS-IFRM shows better performance for aerial target recognition
can be explained as follows. First, the MTS-IFRM is constructed according to intuitionistic
fuzzy theory, which deals with uncertainty data of aerial targets using DPSO-IFCM cluster-
ing. Second, the adaptive weight algorithm is used to further improve the classification
accuracy of the model, which is crucial for addressing the target recognition problem in an
error-free or error-prone environment.

To further verify the effectiveness of the method, a dataset of 10,000 target features is
randomly generated within the range given in Table 12 as the test dataset of the simulation.

Table 12. Range of the test dataset.

Brld Frls Hrld AGMId TBMI &
FH (km) 30115 1015 211 4512 70130
DD (km) 4001200 3001150 150175 120160 150175
FS (m/s) 4001200 6001300 100150 1200 1 600 200011000
A(m/s?) 10110 25125 15115 2001100 3001150
VS(m/s) 25125 1001100 20120 1000 | 500 20001 1000
CA (m?) 0.3010.15 0.2010.1 0.1010.05 0.0510.02 0.1010.05
AR 1.510.75 2511.0 4.012.0 8.014.0 10.015.0

The data model for the simulation feature parameters is:
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where fi]- denotes the j-th feature of the target i corresponding to the deviation 6;;, randn
denotes a normal random number with a mean of 0 and a variance of 1. Six algorithms
with higher recognition rate methods are employed in the experiment.

In Table 13, a( ) represents the recognition rate of the target “-”, which is obtained
by dividing the number of correctly recognized samples by the total number of testing
samples, and in bold is the best simulation result under the same conditions. After fusing

the seven features, Figure 7 shows the final recognition rates of six algorithms.

Table 13. Recognition rates for five algorithms.

Es, Ep

ECIED/EE

EFIEG

E

D-S

Murphy

MSDF

Kaur

MTS-IFRM

a(Br) = 0.4970
a(Fr) = 0.6394
a(Hr) = 0.6663
a(AGM) = 0.6102
a(TBM) = 0.4207
a(Br) = 0.5976
a(Fr) = 0.7350
a(Hr) = 0.7956
a(AGM) = 0.6463
a(TBM) = 0.4862
a(Br) = 0.6173
a(Fr) =0.7709
a(Hr) = 0.8553
a(AGM) = 0.6977
a(TBM) = 0.5365
a(Br) = 0.6215
a(Fr) =0.7821
a(Hr) = 0.8163
a(AGM) = 0.7062
a(TBM) = 0.6035
a(Br) = 0.7654
a(Fr) = 0.7905
a(Hr) = 0.8632
a(AGM) = 0.7256
a(TBM) = 0.6636
a(Br) = 0.8834
a(Fr) =0.7341
a(Hr) = 0.7589
a(AGM) = 0.7954
a(TBM) = 0.8795

a(Br) = 0.6085
a(Fr) = 0.8698
a(Hr) =0.9133
a(AGM) = 0.8389
a(TBM) = 0.7138
a(Br) = 0.7861
a(Fr) = 0.8473
a(Hr) = 0.9602
a(AGM) = 0.7983
a(TBM) = 0.6907
a(Br) = 0.7892
a(Fr) = 0.8557
a(Hr) = 0.9749
a(AGM) = 0.8217
a(TBM) = 0.7119
a(Br) = 0.8021
a(Fr) = 0.8566
a(Hr) =0.9713
a(AGM) = 0.8078
a(TBM) = 0.7256
a(Br) = 0.8156
a(Fr) = 0.8557
a(Hr) = 0.9812
a(AGM) = 0.8247
a(TBM) = 0.7311
a(Br) = 0.7145
a(Fr) = 0.8844
a(Hr) = 0.9253
a(AGM) = 0.9051
a(TBM) = 0.9493

a(Br) = 0.7044
a(Fr) = 0.3802
a(Hr) = 0.5227
a(AGM) = 0.4165
a(TBM) = 0.2678
a(Br) = 0.5915
a(Fr) =0.7326
a(Hr) = 0.7904
a(AGM) = 0.6228
a(TBM) = 0.4968
a(Br) = 0.6141
a(Fr) =0.7776
a(Hr) = 0.8489
a(AGM) =0.7023
a(TBM) = 0.5362
a(Br) = 0.6042
a(Fr) =0.7511
a(Hr) = 0.8224
a(AGM) = 0.6634
a(TBM) = 0.5264
a(Br) = 0.6317
a(Fr) =0.7812
a(Hr) = 0.8497
a(AGM) =0.7123
a(TBM) = 0.5546
a(Br) = 0.8345
a(Fr) = 0.5341
a(Hr) = 0.8835
a(AGM) = 0.4954
a(TBM) = 0.7101

a(Br) = 0.8381
a(Fr) = 0.9347
a(Hr) = 0.9997
a(AGM) = 0.9160
a(TBM) = 0.9041
a(Br) = 0.9174
a(Fr) = 0.9064
a(Hr) = 0.9990
a(AGM) = 0.9044
a(TBM) = 0.8611
a(Br) = 0.9087
a(Fr) =0.8951
a(Hr) = 0.9990
a(AGM) = 0.9212
a(TBM) = 0.8549
a(Br) =0.9213
a(Fr) = 0.9155
a(Hr) = 0.9990
a(AGM) = 0.9156
a(TBM) = 0.8744
a(Br) = 0.9315
a(Fr) =0.9213
a(Hr) = 0.9992
a(AGM) = 0.9336
a(TBM) = 0.8639
a(Br) = 0.9354
a(Fr) = 0.9555
a(Hr) = 0.9952
a(AGM) = 0.9862
a(TBM) = 0.9899

In Figure 7, the MTS-IFRM algorithm has better performance than the other five
methods and is slightly inferior to other algorithms for the Hr. The main reasons for this:
in other methods, the preliminary recognition of the target with the fuzzy membership
function will have high accuracy, and the results will be fused by the evidence theory
method. Moreover, Table 2 shows that the features of flight height and speed for Hr have
a large difference from those of other targets, for example, suppose the radar detects a
suspicious target, the target features are: A =1.7 km, B=135km, C=75m/s, D =10 m/ 82,
E=25m/s, F=0.09 m? and G = 3.8, in our proposed method, the existing target features are
used to construct the T-S intuitionistic fuzzy training model, and the feature datasets and
model parameters of the target are updated with the recognition result, which has higher
requirements for training data. If the number of Hr in the training data is insufficient,
the suspicious target may be recognized as an AGM or TBM with E 4 and Ep, because Hr,
AGM, and TBM have the similar feature ranges of detection distance. In addition, due
to the similar feature ranges of acceleration and vertical speed, the suspicious target may
be recognized as a Br or Fr with Ec, Ep and Er. However, the final recognition rate of
the MTS-IFRM is more than 99% for the Hr with abundant training datasets. Overall, if a
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richer and more effective training dataset can be obtained, the recognition accuracy of the
proposed MTS-IFRM can be improved.

100.00%

95.00%
90.00%
85.00%
80.00%

D-S Murphy Kaur MSDF H Hu l MTS IFRM

Figure 7. The recognition rates of six algorithms.

5. Conclusions

In this paper, a target recognition approach based on MTS-IFRM is proposed, which
constructs a fuzzy classification model to enhance the robustness of the recognition pro-
cess. The intuitionistic fuzzy theory and ridge regression method are employed in the
consequent identification, the intuitionistic fuzzy C-regression clustering based on dynamic
optimization can realize the premise identification. Then, the adaptive weight algorithm
improves the classification accuracy of the corresponding model. The experimental results
show that the MTS-IFRM can effectively recognize aerial targets in error-free and error-
prone environments, and its performance is better than the methods proposed for aerial
target recognition.

Although the proposed MTS-IFRM can show encouraging results for target recogni-
tion, many issues remain. For example, when fusing the outputs of multiple models, the
method of the weight distribution is still relatively rough. As the features of the target
increase, a more complete weight allocation algorithm needs to fuse the outputs of multiple
models accurately. In the future, further methods can be proposed to improve accuracy
by extending the models to adjust to different types of datasets and by developing more
efficient objective functions for the MTS-IFRM using specific samples.
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Abstract: Synthetic aperture radar (SAR) and optical images often present different geometric struc-
tures and texture features for the same ground object. Through the fusion of SAR and optical images,
it can effectively integrate their complementary information, thus better meeting the requirements
of remote sensing applications, such as target recognition, classification, and change detection, so
as to realize the collaborative utilization of multi-modal images. In order to select appropriate
methods to achieve high-quality fusion of SAR and optical images, this paper conducts a systematic
review of current pixel-level fusion algorithms for SAR and optical image fusion. Subsequently,
eleven representative fusion methods, including component substitution methods (CS), multiscale
decomposition methods (MSD), and model-based methods, are chosen for a comparative analysis.
In the experiment, we produce a high-resolution SAR and optical image fusion dataset (named
YYX-OPT-SAR) covering three different types of scenes, including urban, suburban, and mountain.
This dataset and a publicly available medium-resolution dataset are used to evaluate these fusion
methods based on three different kinds of evaluation criteria: visual evaluation, objective image
quality metrics, and classification accuracy. In terms of the evaluation using image quality metrics,
the experimental results show that MSD methods can effectively avoid the negative effects of SAR
image shadows on the corresponding area of the fusion result compared with CS methods, while
model-based methods exhibit relatively poor performance. Among all of the fusion methods involved
in the comparison, the non-subsampled contourlet transform method (NSCT) presents the best fusion
results. In the evaluation using image classification, most experimental results show that the overall
classification accuracy after fusion is better than that before fusion. This indicates that optical-SAR
fusion can improve land classification, with the gradient transfer fusion method (GTF) yielding the
best classification results among all of these fusion methods.

Keywords: synthetic aperture radar (SAR); optical image; image fusion; image classification

1. Introduction

With the rapid development of different types of sensors that obtain information from
the Earth, various remote sensing images have become available for users. Among them,
optical images and synthetic aperture radar (SAR) images are two of the most commonly
used data in remote sensing applications. SAR images have unique characteristic structure
and texture information, making them adaptable for collection at any time without being
affected by weather conditions. However, due to the special measurement method of SAR
systems (i.e., side-looking imaging), the gray values of SAR images are different from the
spectral reflectance of the Earth’s surface, which brings difficulties for the interpretation of
SAR images in certain scenarios. As is shown in Figure 1, considering that optical images
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contain rich spectral information, they can directly reflect the colors and textural details
of ground objects. Therefore, optical and SAR images are fused to obtain fusion results
containing complementary information, thus enhancing the performance of subsequent
remote sensing applications [1].

" (b)

Figure 1. Optical image and SAR image of the same scene: (a) Optical image. (b) SAR image.

According to the stage of data integration, the fusion technology can be divided into
three categories: pixel-level, feature-level, and decision-level [2]. Compared with feature-
level and decision-level methods, pixel-level fusion methods involve higher computational
complexity. Pixel-level fusion methods, despite their higher computational complexity
compared to feature-level and decision-level approaches, are widely employed in remote
sensing image fusion due to their superior accuracy. These methods have the properties of
effective retention of original data, limited information loss, and abundant and accurate
image information [3]. As more and more algorithms and their improved versions have
been used to fuse optical and SAR images, researchers have compared the performance
of these methods for improving ground object interpretation. For instance, Battsengel
et al. compared the performance of intensity—hue—saturation (IHS) transform, Brovey
transformation, and principal components analysis (PCA) in urban feature enhancement [4].
The analysis revealed that the images transformed through IHS have better characteristics
in spectral and spatial separation of different urban levels. However, in a comparative
experiment conducted by Sanli et al., IHS showed the worst results [5].

As mentioned above, the performance of the same fusion method can exhibit signif-
icant variations across different scenes owing to the special imaging mechanism of SAR
and its distinct image content. The fusion quality is affected not only by the quality of the
input image, but also by the performance of the fusion method. Accordingly, it is worth
considering the selection of a suitable method among many fusion methods and the choice
of appropriate metrics for evaluation. In order to compare the performance of various
fusion methods objectively, some researchers quantitatively evaluate the effect of fusion
methods through objective fusion quality evaluation metrics [6-9], but there are few fusion
methods and evaluation metrics involved in experiments, which fail to cover all of the
categories of pixel-level fusion methods.

In addition to evaluating fusion quality based on traditional image quality evaluation
metrics, it is worth exploring how to use classification accuracy to evaluate fusion quality,
particularly in the context of improving image interpretation and land classification. The
quality of the input images will affect the accuracy of the classification results [10-13].
Radar can penetrate clouds, rain, snow, haze, and other weather conditions, thus obtaining
the reflection information from the target surface. As a result, SAR data can be collected
at nearly any time and under any environmental conditions. However, these data are
susceptible to speckle noise, thus resulting in poor interpretability, and they lack spectral
information. In contrast, optical images contain rich spectral information. In the application
of land cover classification, the fusion of optical and SAR data is beneficial to distinguish
ground object types that might be indistinguishable due to their similar spectral charac-
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teristics. Thus, in order to improve the image classification results, numerous researchers
have used SAR and optical image fusion for land cover classification [14-18].

Gaetano et al. deal with the fusion of optical and SAR data for land cover monitoring.
Experiments show that the fusion of optical and SAR data can greatly improve the classi-
fication accuracy compared with raw data or even multitemporal filtering data [15]. Hu
et al. propose a fusion approach for the joint use of SAR and hyperspectral data, which is
used for land use classification. The classification results show that the fusion method can
improve the classification performance of hyperspectral and SAR data, and it can collect
the complementary information of the two datasets well [17]. Kulkarni et al. present a
hybrid fusion approach to integrate information from SAR and MS imagery to improve
land cover classification [18]. Dabbiru et al. investigate the impact of an oil spill in an
ocean area. The main purpose of that study was to apply fusion technology to SAR and
optical images and explore the application value of fusion technology in the classification
of oil-covered vegetation in coastal zones [19]. However, few researchers take classification
accuracy as an evaluation metric to evaluate the performance of different fusion methods.

Optical and SAR image fusion has garnered significant attention owing to the special
complementary advantages. However, many existing methods borrow migrations of fusion
models from other fields (e.g., optical and infrared images, multi-focused images), with a
lack of algorithmic exploration for the study of optical and SAR specificity. In recent years,
deep learning has greatly driven the applied research on image fusion, but the studies are
mostly focused on specific application scenarios, such as target extraction, cloud removal,
land classification, etc. [20-22], in which the algorithms mainly deal with local feature
information rather than global pixel information. In most of the latest research articles
on pixel-level fusion of optical and SAR images based on deep learning, no specific code
files have been published to objectively verify the advantages and disadvantages of the
algorithms. Therefore, in this paper, in order to better experimentally verify the algorithms
within the field of pixel-level image fusion, several types of traditional algorithms that are
well-established and publicly available are selected for comparative analysis.

This paper makes the following three contributions:

1. We systematically review the current pixel-level fusion algorithms for optical and SAR
image fusion, and then we select eleven representative fusion methods, including CS
methods, MSD methods, and model-based methods for comparison analysis.

2. Based on the evaluation indicators of low-level visual tasks, we combine these with the
evaluation indicators of subsequent high-level visual tasks to analyze the advantages
and disadvantages of existing pixel-level fusion algorithms.

3.  We produce a high-resolution SAR and optical image fusion dataset, including
150 pairs of images of urban, suburban, and mountain settings, which can pro-
vide data support for relevant research. The download link for the dataset is https:
/ /github.com/yeyuanxin110/YYX-OPT-SAR (accessed on 21 January 2023).

This paper extends our early work [23] by adding two datasets, including a self-
built high-resolution dataset named YYX-OPT-SAR and a publicly medium-resolution
dataset named WHU-OPT-SAR, to evaluate the fusion methods. In order to evaluate the
performance of different fusion methods in subsequent classification applications, we also
employ classification accuracy as an evaluation criterion to assess the quality of different
fusion methods.

2. Pixel-Level Methods of Optical-SAR Fusion

As an important branch of information fusion technology, the pixel-level fusion of
images can be traced back to the 1980s. With the increasing maturity of SAR technology,
researchers have explored the fusion of optical and SAR images to enhance the performance
of remote sensing data across various applications. In the multi-source remote sensing
data fusion competition held by the IEEE Geoscience and Remote Sensing Society (IEEE
GRSS) in 2020 and 2021, the theme of SAR and multispectral image fusion has been
consistently included, which underscores the growing significance of optical and SAR

104



Remote Sens. 2023, 15, 5514

image fusion in recent years. At present, research on pixel-level fusion algorithms of
optical and SAR images based on deep learning remains relatively limited in depth, so
the pixel-level fusion algorithms selected in this paper are relatively mature, traditional
algorithms. Generally speaking, traditional pixel-level fusion methods can be divided into
CS methods, MSD methods, and model-based methods [2]. Because of their different data
processing strategies, these three methods have their own advantages and disadvantages
in optical and SAR image fusion.

2.1. CS Methods

The fusion process of CS methods is shown in Figure 2. CS methods aim to obtain the
final image fusion result by replacing a certain component of the positive transformation
of the optical image with the SAR image and then applying the corresponding inverse
transformation. In this way, the obtained image fusion result incorporates the spectral
information from the optical image and the texture information from the SAR image. For
instance, Chen et al. utilize the IHS transform to fuse hyperspectral and SAR images. The
fusion results not only have a high spectral resolution but also contain the surface texture
features of SAR images, which enhances the interpretation of urban surface features [24].
The conventional PCA method is improved by Yin and Jiang, and the fusion result demon-
strates better performance in preserving both spatial and spectral contents [25]. Yang et al.
use the Gram-Schmidt algorithm to fuse GF-1 images with SAR images and successfully
improve the classification accuracy of coastal wetlands by injecting SAR image information
into the fusion results [26].

Forward

transformation

C G
. 1
Optical Replace one of these components

Fusion

Figure 2. Fusion process of the CS method.

With the characteristics of simplicity and low computational complexity, CS methods
can obtain fusion results with abundant spatial information in pan-sharpening and other
fusion tasks. However, in multi-sensor and multi-modal image fusion, such as SAR-optical
image fusion, serious spectral distortions occur frequently in partial areas because of low
correlation. Recently, the research on pixel-level fusion algorithms of optical and SAR
images has developed toward the multi-scale decomposition method.

2.2. MSD Methods

MSD methods divide the original image into the main image and the multilayer de-
tail image according to the decomposition strategy, and each image encapsulates distinct
potential information from the original image [27]. While the number of subbands de-
composed by different methods varies, these methods share a similar process framework,

105



Remote Sens. 2023, 15, 5514

which is shown in Figure 3. According to the decomposition strategies, MSD methods can
be divided into three categories: wavelet-based methods, pyramid-based methods, and
multi-scale geometric analysis (MGA)-based methods [27].

Optical

— " First level | Firstlevel
_ decomposition decomposition
Second level Second level
decomposition ecomposition

Correspondence
hierarchy fusion

l reconstruction

Fusion

Figure 3. Schematic diagram of fusion process of multi-scale decomposition methods.

Kulkarni and Rege use the wavelet transform to fuse SAR and multispectral images,
and they apply the activity level measurement method based on local energy to merge
detail subbands, which not only enhances spatial information but also avoids spectral
distortions [1]. Eltaweel and Helmy apply the Non-subsampled shearlet transform (NSST)
for multispectral and SAR image fusion. The fusion rules based on local energy and the
dispersion index are used to integrate the low-frequency coefficients decomposed through
NSST, and the multi-channel pulse coupled neural network (m-PCNN) is utilized to guide
the fusion process of bandpass subbands. The fusion results show good object contour
definition and structural details [28].

The primary goal of MSD methods is to extract multiplex features of the input image
into different scales of subbands, and thus to realize the optimal selection and integration
of diverse pieces of salient information through specifically designed fusion rules. Activity-
level measurement and coefficient combination are essential steps in MSD methods. As
a critical factor affecting the quality of the fused image, activity-level measurement is
used to express the salience of each coefficient and then provide the evaluation criterion
and calculation basis for the weight assignment in the coefficient combination process.
And the activity-level measurement methods can be divided into three categories: the
coefficient-based, window-based, and region-based measures. Equally important are
coefficient combination rules, which involve various operations, such as weighted average,
maximum value, and consistency verification, that help to control the contribution of
different frequency bands to the merging results with predefined or adaptive rules [29].

2.3. Model-Based Methods

Model-based fusion methods relate to the fusion of optical and SAR images as an
image generation problem. The final fusion result is derived by establishing a mathematical
model that describes the mapping relationship from the source image to the fusion result,
or by establishing a constraint relationship between the fusion result and the source image.
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In addition, in order to enhance the fusion effect, a probability model and a priori constraint
can be introduced into the model, albeit at the expense of increased solution complexity.
Representative methods within this category include variational model methods and sparse
representation (SR) methods. Variational model methods establish an energy functional
consisting of different terms based on prior constraint information. The fusion result is
obtained by minimizing the energy functional under the premise that the existence of a
minimum for the energy functional is proved. On the other hand, the methods based on
SR select different linear combinations from overcomplete dictionaries to describe image
signals. Yang and Li are pioneers in employing SR for the image fusion task, and they
propose an SR-based image fusion method using the sliding window technique [30]. The
schematic diagram of the method is shown in Figure 4.

Coefficient of sparsity

8 Image segmentation
and vectorization

l

Rules of fusion —>

1

Image segmen tation
and vectorization

Coefficient of sparsity

Image 2 Over-complete
dictionary

Figure 4. Flow chart of image fusion based on sparse representation.

Wei Zhang and Le Yu introduce the variational model for pan-sharpening into the
fusion process of SAR and multispectral images, which obtains the final fusion result
by minimizing the energy functional composed of linear combination constraints, color
constraints, and geometric constraints. The experiment demonstrates that a variational
model-based fusion method is acceptable for SAR and multispectral image fusion in terms
of spectral preservation [31]. Additionally, Huang proposes a cloud removal method for
optical images based on sparse representation fusion, which uses SAR and low-resolution
optical images to provide high-frequency and low-frequency information for reconstructing
the cloud occlusion area and achieves good visual effect and radiation consistency [20].

2.4. Method Selection

Generally speaking, the traditional pixel-level fusion methods can be divided into
CS methods, MSD methods, and model-based methods. According to the decomposition
strategy, MSD methods can be divided into three categories: wavelet-based methods,
pyramid-based methods, and multi-scale geometric analysis (MGA) methods. In order to
compare the differences between fusion methods in different categories, we choose some
classical methods for the following two points in each category. First, there are publicly
available algorithms with dependable performance to conduct comparative experiments.
Second, they have been used in optical and SAR image fusion fields. Table 1 shows a list of
investigated methods.

For MSD methods, the “averaging” rule is selected to merge low-pass bands, while
the “max-absolute” rule is employed to merge high-pass MSD bands. Two instances of the
“max-absolute” rule are applied, one being the conventional rule and the other incorporat-
ing a local window-based consistency verification scheme [32]. These are denoted by the
numbers “1” and “2” appended to the corresponding abbreviation, as shown in Table 2, to
explore their respective impacts on the final fusion results. The decomposition levels and
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decomposition filters presented in Table 3 are chosen according to the research conclusion
of the literature [33]. In the sparse representation based on the sliding window, the step size
and the window size are fixed to one and eight, respectively [30], the K-means generalized
singular value decomposition (K-SVD) algorithm [34] is used to build an overcomplete
dictionary, and the orthogonal matching pursuit (OMP) algorithm [35] is utilized for sparse
coding. The parameter selection of other methods adopts the recommended values from
the corresponding literature.

Table 1. Pixel-level fusion methods participating in comparison.

Category Method

Intensity—-Hue-Saturation (IHS) transform [36]
CS Principal Component Analysis (PCA) [37]
Gram-Schmidt (GS) transform [38]

Laplacian pyramid (LP) [39]

Pyramid-based Gradient pyramid (GP) [40]
; Discrete wavelet transform (DWT) [41]
MSD Wavelet-based Dual tree complex wavelet transform (DTCWT) [42]
MGA Curvelet transform (CVT) [43]

Non-subsampled contourlet transform (NSCT) [44]

SR [30]
Gradient Transfer Fusion (GTF) [45]

Model-based

Table 2. The fusion rule of the high-frequency component, represented by different serial numbers.

Method Rule
XX_1 max-absolute
XX 2 “max-absolute” rule with a local window-based consistency

verification scheme

(XX denotes a fusion method).

Table 3. Filters and number of decomposition layers in MSD methods.

Category Method Filters Levels
LP / 4
Pyramid-based
RP / 4
DWT Daubechies (db1) 4
Wavelet-based First: LeGall 5-3
DTCWT Other: Q-shift_06 4
CVT / 4
MGA id:
NSCT Pyramid: pyrexc 14,8,8,16)

Orientation: 7-9

3. Evaluation Criteria for Image Fusion Methods
3.1. Visual Evaluation

The visual evaluation is conducted to assess the quality of the fused image based
on human observation. Observers judge the spectral fidelity, the visual clarity, and the
amount of information in the image according to their subjective feelings. Although visual
evaluation has no technical obstacles in implementation and directly reflects the visual
quality of images, its reliability is influenced by various factors, such as the observer’s
self-experience, display variations in hardware, and ambient lighting conditions, leading to
lower reproducibility and stability. Generally, the visual evaluation serves as a supplement
in combination with statistical evaluation methods.
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3.2. Statistical Evaluation

The statistical evaluation of image quality is a fundamental aspect of digital image
processing encompassing various fields, such as image enhancement, restoration, and
compression. Numerous conventional image quality evaluation metrics, like standard
deviation, information entropy, mutual information, and structural similarity, have been
widely applied. These metrics can objectively evaluate the quality of fusion results and
provide quantitative numerical references for the comparative analysis of fusion methods.
In addition to these conventional metrics, researchers have proposed some quality metrics
specially designed for image fusion, such as the weighted fusion quality index Qy and the
edge-dependent fusion quality index Qf [46], as well as the objective quality metric based
on structural similarity Qy [47].

The objective quality evaluation of image fusion can be carried out in two ways [48].
The first way is to compare the fusion results with a reference image, which is commonly
used in pan-sharpening and multi-focus image fusion. However, in multimodal image
fusion tasks, such as SAR-optical image fusion, obtaining an ideal reference image is
challenging. Therefore, this paper uses the non-reference metrics to objectively evaluate
the quality of the fusion image. The fusion results are comprehensively compared from
different aspects through nine representative fusion evaluation metrics: information en-
tropy (EN), peak signal-to-noise ratio (PSNR), mutual information (MI), standard deviation
(SD), the metric Q*B/F based on edge information preservation [49], the universal image
quality index Q, [50], the weighted fusion quality index Qyy, the edge-dependent fusion
quality index Qf, the similarity-based image fusion quality index Qy, and the human visual
system (HVS)-model-based quality index Qcp [51]. Based on the different emphases of
these evaluation indexes, they can be divided into four categories [52,53]. Table 4 presents
the definitions and characteristics of the selected nine quality metrics.

3.3. Fusion Evaluation According to Classification

Most of the subsequent applications of remote sensing images focus on image classifi-
cation and object detection. At present, there have been researches on object detection of
remote sensing images [54], but there are few traditional methods. Therefore, this paper
chooses image classification as an index to evaluate the performance of image fusion in
subsequent applications. In the evaluation of image classification, three classic methods,
including Support Vector Machine (SVM) [55], Random Forests (RF) [56], and Convolu-
tional Neural Network (CNN) [57], are used to perform image classification. It is crucial
to evaluate the accuracy of classification results. According to the results of the accuracy
evaluation, we can judge whether the classification method is accurate and whether the
classification degree meets the needs of the subsequent analysis. This information enables
us to identify which fusion method yields the best classification result. The commonly used
method to evaluate the accuracy of classification results is the confusion matrix, also known
as the error matrix. It reflects the correct and incorrect classification of the corresponding
classification results of each category in the validation data. The confusion matrix is a
square matrix with a side length of ¢, where c is the total number of categories and the
values on the diagonal are the number of correctly classified pixels in each category.

Overall accuracy (OA) refers to the ratio of the total number of pixels correctly classi-
fied to the total number of pixels in the verified sample. It provides the overall evaluation
of the quality of the classification results. User accuracy (UA) represents the degree to
which a class is correctly classified in the classification results. It is calculated as the ratio of
the number of correctly classified pixels in each class to the total number of pixels sorted
into that class by the classifier (the sum of row elements corresponding to that class).
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Table 4. Definition and significance of nine quality indices.

Category Definition Range Characteristic
EN = —Z,L;()l pilog, p1, Reflects the amount of
L is the number of the gray level and p; is the normalized histogram of an [0,10g, L] information contained in
. image the image
Information-theory-
based PSNR = 10log,, 1hr
where MSE = %, [0, +o0] Reflects the distortion
MSExr = gig Tty Eo! (X(,7) = F(if))?
Reflects the distribution
M N .
SD = \/Zizl i (G, f) = p)? [0, +o0] and contrast of the image
Image- QAB/F _ o 2 (A )w? () +QPT (j)wP (i)
feature-based o 2 (wAG)+wB (i) Evaluates the edge
QXF(i,j) = Q?F(i,j) XE(i,7), Q?F(i,j) and QX*(i,j) denote the edge [0,1] information preserved in
strength and orientation preservation values at pixel (i, j); w is the the fused image
weighting factor
A(w)SSIM(A, BJw) + (1 — A(w))SSIM(B, F | w), SSIM(A, Blw) > 075 o1 Reflects the structural
max{SSIM(A, B|w), SSIM(A, B|lw)},SSIM(A, B|w) < 0.75 0.1] stmuian gnae esee“ ©
SSIM(X, Y|w) is local structural similarity, A(w) is the weighting factor &
Reflects the loss of
_ AF B,F))/2, correlation, luminance
ﬁo (Qo}g Y )_+ ZQV?Q(, 2)3){ wy [—1,1] distortion, and contrast
Structural-similarity- where Qo(X,Y) = o+l g+ distortion of the fused
based image
Qw= ¥ c(w)(AMw)Qo(A,F|w)+ (1—A(w)Qo(B,F|w)) Indicates the amount of
weW 11 salient information
c(w) is normalized salience, A(w) is saliency weight, and (=11 transferred into the fused
Qo(X,Y | w) is Wang-Bovik image quality index image
_ . B P\ Evaluates the edge
o Qe = Qu(A, B F) - Qw <A' B F) [-1,1) information preserved in
A, B, F are edge images of A, B, and F; « is the adjustable parameter the fused image
Human-perception- Qce = Aa(x,v)Qar(x,y) + Ap(x,¥)Qpr(x,y), Aa, Ap is the saliency map, 0,1] Assesses the image

inspired

Qar, Qpr is the information preservation value

quality of the fused image

(M, N are the width and height of the image; X and Y represent any image; A and B represent the source image; F
represents the fusion result).

4. Datasets

To promote the development of optical-SAR data fusion methods, access to a sub-
stantial volume of high-quality optical and SAR image data is essential. SAR and optical
images with a sub-meter resolution provide abundant shape structure and texture infor-
mation of landscape objects. Accordingly, their fusion results are beneficial for accurate
image interpretation, and they reflect the specific performance of the used algorithm, thus
enabling a persuasive assessment of the fusion methods.

To facilitate research in optical and SAR image fusion technology, we constructed a
dataset named YYX-OPT-SAR. This dataset comprises 150 pairs of optical and SAR images
covering urban, suburban, and mountain settings, and it is characterized by scene diversity
with sub-meter resolution. This dataset can also provide data support for the study of
optical and SAR image fusion technology.

The SAR images were collected around Weinan City, Shaanxi Province, China. In order
to form high-resolution SAR and optical image pairs, we downloaded optical images of the
corresponding areas from Google Earth. The exact location of data collection is shown in
Figure 5.
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Figure 5. YYX-OPT-SAR dataset: Geographic location of the dataset in Shaanxi Province, China.

After the acquisition of heterogeneous image data, image registration is required to
carry out the subsequent phase of fusion. At present, there are many excellent heterologous
image registration methods [58,59]. In this paper, an efficient matching algorithm named
channel features of orientated gradients (CFOG) [60] is utilized to achieve high accuracy
registration with a match error of less than one pixel. In order to maximize the use of
available scenes and ensure that each pair of cropped images can fully express the features
of optical and SAR images, so as to facilitate the visual evaluation and the subsequent fusion
result analysis, we crop the registered optical and SAR image pairs into non-overlapping
image blocks with a size of 512 x 512 pixels. Then, according to different image coverage
scenes, we categorize the obtained image pairs into three types: urban, suburban, and
mountain. Each type comprises 50 pairs of images, resulting in a total of 150 pairs of images.
Some samples are shown in Figure 6.

Another large ground object fusion dataset used in this paper named WHU-OPT-
SAR [61] contains medium-resolution optical and SAR images. This dataset, with a reso-
lution of 5 m, covers 51,448.56 square kilometers in Hubei Province, including 100 pairs
of 5556 x 3704 (pixel) images. The exact location and coverage of these images on the
map are shown in Figure 7. The optical images in the dataset were obtained from the GF-1
satellite (2 m resolution), while the SAR images were obtained from the GF-3 satellite (5 m
resolution), and a unified resolution of 5 m was achieved through bilinear interpolation.
Some samples of this dataset are shown in Figure 8.

In the experiment, we produce a high-resolution SAR and optical image dataset
covering three different types of scenes: urban, suburban, and mountain. Such a dataset
and a publicly available medium-resolution dataset named WHU-OPT-SAR are used
collectively to evaluate these fusion methods using three different kinds of evaluation
criteria. Detailed specifications of the two datasets are given in Table 5.
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Figure 6. Three types of images for the experiment: (a) Optical images covering the urban setting.

(b) SAR images covering the urban setting. (c) Optical images covering the suburban setting. (d) SAR
images covering the suburban setting. (e) Optical images covering the mountains. (f) SAR images
covering the mountains.
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Figure 7. WHU-OPT-SAR dataset: Geographic location of the dataset in Hubei Province, China.

(b)

Figure 8. Some samples from WHU-OPT-SAR: (a) Optical images. (b) SAR images.

Table 5. Specifications of the datasets.

YYX-OPT-SAR WHU-OPT-SAR
Number of images (pairs) 150 100
Image pixel size 512 x 512 5556 x 3704
Ground resolution (m) 0.5 5
. Weinan City, Shaanxi Province =~ Wuhan City, Hubei Province
The surrounding areas : . . .
in China in China

5. Experimental Analysis
5.1. Visual Evaluation
5.1.1. Visual Evaluation of High-Resolution Images

The datasets proposed in the previous section are fused using the 11 fusion methods
given in the second section (Table 1) to generate the corresponding fusion results. CS
methods select a specific component from the forward transform and replace it with the
SAR image for inverse transformation, which makes full use of SAR image information.

113



Remote Sens. 2023, 15, 5514

Compared with other types of fusion methods, this strategy makes the fusion results
include the texture feature of SAR images and introduce shadows in SAR images. Figure 9
illustrates the fusion results of CS methods (including IHS and PCA) and MSD methods
(including GP and NSCT). It can be clearly seen that the fusion results of CS methods
introduce shadows in the SAR images, which makes image interpretation challenging and
fails to achieve the purpose of fusing complementary information. Compared with the
results of MSD methods, those of CS methods present worse global spectral quality, often
manifesting as color distortion in the areas of roads and vegetation.

(b)

Figure 9. Fusion results of component substitution methods and partial multiscale decomposition
methods. (a) SAR. (b) Optical image. (c) IHS. (d) PCA. (e) GP_1. (f) NSCT_1. A larger version of the
red square is shown in the upper left corner.

MSD methods exhibit lower overall color distortion compared to CS methods. Vi-
sual observation of the results obtained by applying the two different high-frequency
component fusion rules is basically consistent, as shown in Figure 10. Therefore, in the
rest of the qualitative evaluation, we only select the fusion results obtained based on one
high-frequency fusion rule in each MSD method. As a result, we select the “max-absolute”
rule for experimental analysis. On the one hand, by merging the separated low-frequency
components, MSD methods effectively retain the spectral information of optical images;
on the other hand, by using specific fusion rules for the integration of high-frequency
components, the bright textures and edge features of the SAR images are combined into
the fusion results to effectively filter out the shadows (as seen in the last two columns of
Figure 9). Figure 11 shows the fusion results of different MSD methods. It is apparent that
the fusion results of LP and DWT combine more SAR image information, thus introducing
the brighter edge features and noise information from SAR images. However, these two
methods have color distortion in some areas, such as the edges of houses (the first row of
Figure 11) and trees (the second row of Figure 11).

The model-based fusion methods, including SR and GTF, showcase their advantages
and disadvantages due to their different fusion strategies. SR tends to make an either—or
choice between optical and SAR images, which is consistent with the sparse coefficient
selection rule (specifically, the “choose-max” fusion rule with the L1-norm activity level
measure). Consequently, the fusion result of SR resembles that of the SAR image in the
non-shaded part and that of the optical image in the shaded part, with a rough transition
between the two regions. In comparison, GTF integrates the optical image information
effectively, but the texture details of SAR are not well introduced, resulting in fuzzy object
edges. Figure 12 shows the selected fusion results of these two model-based methods.
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Figure 10. The fusion results obtained using two high-frequency component fusion rules of multi-
scale decomposition. (a) Optical. (b) SAR. (c) LP_1. (d) LP_2. (e) GP_1. (f) GP_2. (g) DWT_1.
(h) DWT_2. (i) CVT_1. (j) CVT_2. (k) NSCT_1. (1) NSCT_2. XX_1 denotes “max-absolute” rule; XX_2
denotes “max-absolute” rule with a local window-based consistency verification scheme.

Figure 11. Fusion results of different multiscale decomposition methods. (a) SAR. (b) Optical.
(c) LP_1. (d) GP_1. (e) DWT_L1. (f) CVT_1. (g) NSCT_1. A larger version of the red square is shown in
the lower left corner.

The fusion results of all fusion methods under the same image are shown in Figure 13,
and the enlarged image of the selected area is displayed in the upper left corner. From
the perspective of visual effect, the fusion results of different types of fusion methods are
obviously different. CS methods take the SAR image as a component to participate in
inverse transformation and effectively use the pixel intensity information of the SAR image.
Compared with other fusion methods, CS methods combine more SAR image information,
thus introducing more SAR image texture features and shadows. From the box selection
area, it can also be seen that the image texture features and shadows are more similar to
the SAR image. MSD methods have advantages in preserving the spectral information of
optical images by combining the separated low-frequency components. At the same time,
the high-frequency component is selected through specific fusion rules, and the bright
and edge features of the SAR image are fused into the fusion result effectively, while the
shadows are filtered. Among them, LP, DWT, and DTCWT combine more SAR image
information and introduce brighter edge features and noise information in the SAR image,
while the color transition is not natural, such as the roads in the figure. GTF can retain
spectral information better, but the boundary of ground objects is fuzzy.
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(d)

Figure 12. Fusion results of different model-based methods: (a) SAR. (b) Optical. (c) SR. (d) GTE. A
larger version of the red square is shown in the corner.

Figure 13. Cont.
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Figure 13. Fusion results of different methods for the high-resolution images: (a) SAR. (b) Optical.
(c) IHS. (d) PCA. (e) GS. (f) GP. (g) NSCT. (h) LP. (i) DWT. (j) DTCWT. (k) CVT. (I) SR. (m) GTE A
larger version of the red square is shown in the upper left corner.

5.1.2. Visual Evaluation of Medium-Resolution Images

From the perspective of visual effect, the fusion results of medium-resolution images
exhibit obvious differences among different types of fusion methods. As is shown in
Figure 14, CS methods take the SAR image as a component and participate in the inverse
transformation, utilizing the pixel intensity information of the SAR image effectively.
Compared with other fusion methods, CS methods combine more SAR image information,
which introduces more texture features and shadows from SAR images.

By combining the separated low-frequency components, MSD methods excel in pre-
serving the spectral information of optical images. At the same time, by using specific
fusion rules to select high-frequency components, they effectively incorporate the bright
point features and edge features of SAR images into the fusion results while filtering out
shadows.

GTF can retain the spectral information better. The same kind of ground objects share
the same color in the optical images, but the boundaries of ground objects appear blurred.
The fusion results of GTF contain less texture information from SAR images, and they only
contain the brighter edge information.
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5.2. Statistical Evaluation
5.2.1. Statistical Evaluation of High-Resolution Images

The nine quality assessment metrics shown in Table 4 are used for quantitative analysis
of the fusion methods. Because each fused image has three bands, we calculate the average
value of the metrics of these three bands and use it as the final assessment metric. In
addition, we analyze the fusion results of different scenes, including urban, suburban,
and mountain scenes, separately. Considering that each scene contains 50 fused images,
the average value of their metrics is taken as the result of each method in such a scene.
Figure 15 depicts the assessment metric values of the fusion results of each compared
method. The higher the metric value, the better the fusion quality.

The EN index reflects the amount of image information, and the PSNR index can mea-
sure the ratio of signal to noise and then reflect the degree of image distortion. Figure 15a
shows that the fusion result of the mountain scene contains more information than the other
two types of ground objects, indicating that more SAR image information is combined.
However, when SAR image information is introduced, the noise information of the SAR
image is also introduced. Therefore, as shown in Figure 15c, the PSNR value corresponding
to the mountain scene is lower than that of the other two types of ground objects.

From the perspective of different types of fusion methods, the fusion quality of CS
methods (such as IHS, PCA, and GS) is generally at the same level. For the images in
suburban and mountain areas, his achieves the maximum values on most metrics (such
as EN, SD, Q4B/F, and Qy)- In the images covering the urban scene, most metrics of the
fusion results obtained through PCA achieve the maximum values (such as PSNR, Qy, Q.,
and Q).

In the MSD methods, LP has the highest EN and SD values in all images of the three
different scenes, which proves that the fusion results of LP contain higher contrast and
richer information content than those of other MSD methods. In the three types of images,
NSCT achieves the highest values in most metrics (such as Qu, Q., and Q,), indicating a
better fusion effect for NSCT.

Figure 14. Cont.
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Figure 14. Fusion results of different methods for the medium-resolution images: (a) SAR. (b) Optical.
(c) IHS. (d) PCA. (e) GS. (f) GP. (g) NSCT. (h) LP. (i) DWT. (j) DTCWT. (k) CVT. (1) SR. (m) GTE. A
larger version of the red square is shown in the lower left corner.

In the model-based methods, GTF obtains higher EN, SD, and PSNR for the three
types of images, revealing that the fusion results of GTF contain more information. From
the image quality assessment metrics, the fusion results of SR are worse than those of GTF
and MSD methods on the whole.

Considering that the visual interpretation of SR is poor and the spectral distortion is
serious, the fusion methods that obtain the highest values on each metric except SR are
listed in Table 6. GTF has the highest EN and SD values, indicating that the fusion result
contains more information. MSD methods obtain the highest values in most of the image
quality assessment metrics in the three types of images; in particular, NSCT has the highest
Quw, Qe, and Q, values, which indicates that NSCT presents the best fusion result in all of
these fusion methods.
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Figure 15. Nine indexes obtained using each method for the high-resolution images of the three types
of features: (a) EN. (b) SD. (c) PSNR. (d) Q“B/F. (&) Qu. () Qe. (8) Qo. (h) Qy- (i) Qcp.

Table 6. Fusion methods for obtaining the highest index value for various types of high-resolution
images (excluding SR).

EN sSD PSNR Q%F @, Qu Q. Q, Qep
Urban ~ GIF  GIF  GP LP  NSCT NSCT NSCT NSCT NSCT
Suburban GTF GTF  GP LP  NSCT NSCT NSCT  LP PCA
Mountain ~GTF ~ GTF  GP LP  NSCT NSCT NSCT NSCT NSCT

Based on the above subjective comparison and objective analysis, NSCT performs
best when dealing with the fusion of optical and SAR images, mainly including urban
and mountain scenes. In terms of statistical evaluation metrics, NSCT and LP have their
own advantages in optical and SAR image fusion of suburban areas. However, from the
perspective of visual effect, the fusion images obtained through LP have color distortion.
Therefore, combining visual effect and statistical evaluation metrics, NSCT can obtain the
best fusion effect in the image fusion of these three types of ground objects.

5.2.2. Statistical Evaluation of Medium-Resolution Images

In addition to the quantitative analysis of the fusion results of the high-resolution
images, we also select the dataset of the medium-resolution images for image fusion
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and quantitatively analyze the performance of different fusion methods on this dataset.
Figure 16 shows the assessment metric values of the fusion results of all of the compared

methods.
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Figure 16. Nine indexes obtained using each method for the medium-resolution images of the three
types of features: (a) EN, (b) SD, (c) PSNR, (d) Q45/F, (e) Qu, (f) Qe, (8) Qu, (h) Qy, (i) Qcp-

From the perspective of different types of fusion methods, the fusion results of the
medium-resolution images present a similar law to those of the high-resolution images.
The fusion quality of CS methods (such as IHS, PCA, and GS) is almost at the same level,
among which IHS achieves the highest PSNR and Qyy values in mountain scenes.

Most of the quality assessment metrics of MSD methods are higher than those of CS
methods. Among them, LP has the highest SD and Q“8/F values among the three types
of images. NSCT obtains the highest Qp, Qy, and Q. values for the three types of images,
indicating that NSCT can obtain better fusion results.

The fusion result obtained through GTF for the medium-resolution images is worse
than that for the high-resolution images. This discrepancy is because the quality of the
fusion results of GTF depends on the information richness of the original optical and
SAR images, and the information of the medium-resolution images is less than that of the

high-resolution images.

The fusion methods (excluding SR) that obtain the highest value on each metric are
listed in Table 7. It can be observed that LP has the highest SD and Q“8/F and NSCT has
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the highest Q,, Q., and Q, for the three types of images. Therefore, NSCT demonstrates
the best performance in image fusion across various metrics.

Table 7. Fusion methods for obtaining the highest index value for various types of medium-resolution
images (excluding SR).

EN SD PSNR Q%F @, Qu Q. Q, Qep
Urban ~ GTF LP NSCT  LP  NSCT NSCT NSCT NSCT NSCT
Suburban DWT LP  NSCT ~ LP  NSCT NSCT NSCT NSCT  GS
Mountain ~ LP  LP  IHS LP  NSCT IHS NSCT NSCT NSCT

Based on the subjective comparison and objective metric analysis of the two groups of
data, the conclusions can be drawn as follows. The fusion results of CS methods combine
more SAR image information, like texture features and shadows. Nevertheless, the visual
effect is worse than that of MSD methods. The surface boundary of GTF is fuzzy, and the
visual effect is not as good as that of MSD methods. In the MSD methods, LP and NSCT
are at the forefront of most metrics, indicating that these two methods obtain better fusion
results. However, considering the color distortion of LP, NSCT performs best among all of
the compared methods.

5.3. Fusion Evaluation According to Classification
5.3.1. Fusion Evaluation of High-Resolution Images According to Classification

The datasets mentioned earlier are fused using the 11 fusion methods outlined in the
second section (Table 1) to generate the corresponding fusion results. CS methods select the
specific component of the forward transform and replace it with the SAR image for inverse
transformation, thus maximizing the utilization of SAR image information, like texture
feature. Figure 9 represents the fusion results of CS methods (including IHS and PCA)
and MSD methods (including GP and NSCT). It is evident that the fusion results of the CS
methods introduce shadows in the SAR images, thus complicating image interpretation and
failing to achieve the purpose of fusing complementary information. In comparison to MSD
methods, CS methods present worse global spectral quality, with noticeable color distortion
in road and vegetation areas. In this section, we evaluate the 11 fusion methods through
image classification for high-resolution images. In the experiment, 50 pairs of fused images,
including some typical ground objects, such as bare ground, low vegetation, trees, houses,
and roads, are classified by SVM, RF, and CNN, respectively. Given that the dataset contains
multiple fused images, the average of their measurements is taken as the result of each
method. Tables 8-10 show the classification accuracy results. For instance, the classification
results of a pair of optical and SAR images are shown in Figure 17. From the classification
accuracy table, it is obvious that CNN achieves higher overall accuracy compared to SVM
and RF. Simultaneously, the bare ground is more prone to be misclassified, while the houses
and roads exhibit lower misclassification rates. This is because the spectral characteristics
of the bare ground are highly uncertain, and the spectral characteristics of the houses and
roads are obviously different from those of other categories. From Figure 17, it can be seen
that CNN produces classification results more similar to the labels, indicating superior
performance compared to SVM and RF, which show more instances of misclassification.

From Figure 17 and the classification accuracy table, it can be concluded that the fused
images obtain better classification accuracy compared with single optical or SAR image,
which demonstrates that image fusion effectively integrates complementary information
of multimodal images and improves classification accuracy. Compared with the single
SAR image, the optical image yields better classification accuracy. The special imaging
mechanism of SAR leads to the inherent multiplicative speckle noise in SAR images,
seriously affecting the interpretation of SAR images. As a result, the classification accuracy
of SAR images is poor. During the data fusion process, these effects are transmitted to the
fusion image, resulting in the same confusion in the image classification. However, the
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classification accuracy of the fused image surpasses that of the single optical and single
SAR images. This shows the feasibility of using optical and SAR image fusion to improve
classification results.

Table 8. SVM classification accuracy table of the high-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

SVM Gfoa;f\ d VegI;(t):t,ion Trees Houses Roads OA
RGB 49.75% 60.92% 60.37% 62.36% 62.91% 59.69%
SAR 34.08% 27.88% 45.68% 22.14% 42.44% 39.29%
CVT 39.45% 53.32% 50.03% 73.97% 63.96% 59.85%
DTCWT 37.39% 56.28% 46.60% 62.99% 61.40% 56.68%
DWT 33.71% 57.02% 48.33% 48.98% 58.98% 52.37%
GP 40.08% 59.70% 57.16% 73.61% 65.13% 61.98%
GS 50.26% 58.50% 59.19% 68.31% 70.23% 64.08%
GTF 50.96% 60.45% 58.01% 70.96% 72.25% 65.59%
IHS 49.48% 62.39% 61.15% 67.61% 65.35% 63.11%
LP 37.68% 57.15% 50.77% 58.96% 66.57% 57.46%
NSCT 44.38% 55.32% 52.13% 68.98% 65.79% 60.28%
PCA 49.74% 61.59% 60.25% 68.82% 67.78% 63.96%
SR 36.08% 29.89% 45.41% 60.20% 46.13% 42.24%

Table 9. RF classification accuracy table of the high-resolution images. The bolded item is the highest
value of classification accuracy for each feature category.

RF Gf:;fl d VegI:t):t,ion Trees Houses Roads OA
RGB 46.78% 57.77% 60.74% 70.10% 61.67% 57.79%
SAR 32.41% 27.85% 44.89% 22.47% 42.44% 39.20%
CVT 32.58% 48.85% 47.21% 77.40% 62.76% 56.75%

DTCWT 31.59% 51.37% 43.11% 70.37% 60.72% 54.04%
DWT 31.37% 51.00% 45.63% 59.17% 59.72% 52.11%

GP 33.88% 55.27% 53.09% 74.74% 64.45% 58.57%

GS 45.11% 56.05% 59.23% 80.65% 69.97% 64.13%
GTF 45.87% 55.00% 55.78% 78.43% 72.27% 64.45%
IHS 47.33% 57.97% 60.77% 81.14% 64.74% 63.69%

LP 34.29% 52.22% 47.32% 70.71% 66.73% 56.68%

NSCT 37.20% 50.37% 49.08% 73.99% 64.31% 57.96%
PCA 45.95% 58.59% 60.22% 81.26% 68.12% 64.41%
SR 34.49% 29.48% 44.42% 58.35% 48.54% 42.77%

From the perspective of different types of fusion methods, the overall classification
accuracy of the three CS methods (such as IHS, PCA, and GS) is nearly the same. The
overall classification accuracy of PCA and GS is higher than that of others, suggesting that
the two methods have better effect in classification applications though the performance of
image fusion is poorer than that of MSD methods. Among the MSD methods, the overall
classification accuracy of GP and NSCT is higher, indicating their superior classification
effectiveness. Nonetheless, the overall classification accuracy of DTCWT, DWT and LP
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is lower, with the classification accuracy of fused images obtained by the three methods
even lower than that of the optical image. This illustrates that not all optical-SAR fusion
methods can improve land classification.

Table 10. CNN classification accuracy table of the high-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

CNN Gf::;fl d VegI:t):t,ion Trees Houses Roads OA
RGB 56.39% 71.32% 72.54% 81.01% 73.61% 70.07%
SAR 35.37% 62.39% 70.44% 57.78% 55.14% 57.86%
CVT 50.42% 66.82% 67.55% 82.74% 75.67% 71.41%
DTCWT 47.07% 67.81% 66.73% 78.46% 74.64% 69.79%
DWT 44.96% 65.50% 62.32% 73.21% 73.00% 66.76%
GP 51.06% 70.78% 68.67% 81.67% 76.21% 71.94%
GS 53.85% 72.02% 79.72% 86.69% 78.24% 75.74%
GTF 58.43% 72.05% 74.97% 83.75% 77.87% 75.83%
IHS 52.88% 74.11% 80.35% 85.32% 72.60% 73.89%
LP 48.83% 65.07% 65.67% 74.62% 76.44% 68.87%
NSCT 53.05% 65.89% 65.33% 82.72% 77.40% 71.18%
PCA 53.76% 74.74% 80.20% 85.68% 75.40% 75.12%
SR 36.17% 62.11% 70.18% 71.32% 56.79% 61.01%

Overall, GTF obtains the highest overall classification accuracy among the eleven
fusion methods. Compared with the single optical image and single SAR image, the fused
image has a better classification effect, with up to about 5% improvement.

5.3.2. Fusion Evaluation of Medium-Resolution Images According to Classification

In this section, similarly to the previous section, we evaluate the 11 fusion methods
according to image classification for medium-resolution images. Some typical ground
objects, such farmland, city, village, water, forest, and roads, are classified by SVM, RF, and
CNN, respectively. Tables 11-13 show the classification accuracy of the 11 fusion methods.
The overall classification accuracy for medium-resolution images is observed to be lower
than that of the high-resolution images. Like the high-resolution images, the city and water
have a smaller chance of being misclassified due to their distinct spectral characteristics.
Among the 11 fusion methods, GTF obtains the highest overall classification accuracy. The
results in Figure 18 and the classification accuracy tables indicate that, for most cases, the
overall classification accuracy after fusion is better than before fusion across all of the three
classification methods. This indicates that optical-SAR fusion has the potential to improve
land classification. But, the visual effect is not as good as that of the high-resolution images,
possibly due to the lower image resolution and a larger number of categories. Figure 18
also reveals that the overall classification result of CNN is more similar to the ground truth,
indicating that this method has better classification results, whereas SVM and RF have
more misclassification.

Building on the above groups of classification experiments, we can obtain the following
results: (1) The classification effect of CNN is better than that of RF and SVM. (2) Features
with relatively different spectral characteristics from other features have a lower probability
of misclassification, while features with relatively uncertain spectral characteristics have a
higher probability of misclassification. (3) Fused images obtained using fusion methods
exhibit better a classification effect compared to single SAR or optical images. (4) Among
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the 11 fusion methods selected, GTF consistently achieves the highest overall classification
accuracy for all three classification methods.

Table 11. SVM classification accuracy table of the medium-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

SVM Farmland City Village Water Forest Road Others OA
RGB 39.97% 66.02% 44.46% 58.82% 61.56% 42.61% 43.75% 51.97%
SAR 21.37% 46.66% 20.39% 46.92% 27.26% 24.61% 28.45% 33.65%
CVT 34.48% 54.90% 26.92% 48.13% 45.93% 24.74% 28.60% 43.89%
DTCWT 37.15% 59.48% 23.55% 47.51% 41.30% 25.24% 25.58% 43.54%
DWT 37.41% 50.44% 25.49% 44.33% 42.41% 26.15% 26.27% 44.12%
GP 27.03% 54.97% 28.11% 45.74% 33.75% 20.73% 28.53% 45.19%
GS 39.98% 61.50% 44.53% 66.78% 51.12% 36.39% 40.98% 53.40%
GTF 35.90% 79.87% 40.55% 79.14% 62.20% 45.96% 60.42% 56.95%
IHS 30.10% 61.86% 34.67% 68.20% 47.75% 39.19% 36.38% 52.77%
Lp 29.48% 45.80% 26.94% 53.76% 48.20% 30.86% 30.62% 48.53%
NSCT 31.18% 54.98% 27.11% 61.42% 45.80% 33.19% 34.65% 52.01%
PCA 30.13% 69.53% 31.01% 66.86% 49.01% 38.20% 36.23% 52.81%
SR 27.29% 34.26% 25.64% 47.45% 27.95% 29.12% 29.19% 32.61%

Table 12. RF classification accuracy table of the medium-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

RF Farmland City Village Water Forest Road Others OA
RGB 37.41% 66.55% 37.54% 61.87% 58.16% 40.54% 38.30% 48.50%
SAR 20.92% 44.62% 20.14% 46.59% 27.35% 24.69% 28.44% 33.63%
CVT 31.10% 55.19% 24.59% 41.19% 41.96% 22.30% 23.44% 40.16%

DTCWT 32.37% 52.41% 22.82% 42.09% 37.09% 22.68% 22.49% 40.71%
DWT 36.78% 54.63% 25.54% 41.15% 40.63% 24.93% 24.08% 42.96%

GP 26.51% 55.10% 26.83% 45.92% 41.06% 31.84% 27.61% 43.62%

GS 37.61% 60.41% 39.71% 56.83% 56.69% 33.09% 33.79% 49.51%
GTF 34.18% 80.71% 38.39% 72.33% 58.85% 44.69% 56.69% 54.82%
IHS 28.54% 61.01% 30.42% 58.33% 43.75% 35.98% 31.34% 49.46%

LP 27.45% 48.89% 25.83% 49.26% 44.14% 28.16% 27.92% 46.36%

NSCT 29.15% 52.90% 27.16% 54.44% 40.18% 33.56% 29.81% 48.80%
PCA 29.80% 69.39% 37.81% 66.62% 49.57% 35.18% 28.63% 49.37%
SR 25.93% 44.14% 26.21% 49.20% 27.69% 27.81% 28.96% 34.47%

Table 13. CNN classification accuracy table of the medium-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

CNN Farmland City Village Water Forest Road Others OA

RGB 52.83% 81.49% 61.08% 72.85% 70.89% 70.25% 67.85% 65.23%
SAR 30.49% 53.45% 35.20% 62.07% 31.84% 41.26% 29.70% 39.00%
CVT 44.48% 75.19% 56.32% 69.73% 64.91% 51.44% 57.65% 53.91%
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Table 13. Cont.

CNN Farmland City Village Water Forest Road Others OA
DTCWT 48.35% 79.58% 54.52% 67.41% 61.56% 56.86% 55.43% 53.76%
DWT 47.81% 71.64% 56.71% 65.38% 63.62% 56.61% 57.37% 54.26%
GP 49.33% 74.68% 58.56% 66.84% 63.85% 61.64% 59.56% 55.39%
GS 51.38% 80.91% 66.70% 83.02% 66.07% 69.20% 66.87% 68.11%
GTF 53.14% 85.05% 65.94% 78.39% 73.33% 72.45% 67.97% 69.49%
IHS 40.62% 71.46% 54.82% 68.12% 67.78% 59.29% 56.43% 66.56%
LpP 49.91% 76.82% 57.64% 63.98% 69.25% 60.55% 50.76% 60.73%
NSCT 42.73% 75.78% 58.17% 72.56% 67.18% 63.73% 55.69% 66.98%
PCA 50.28% 86.13% 64.26% 80.53% 68.96% 70.11% 66.43% 68.19%
SR 31.25% 61.46% 40.71% 66.54% 34.59% 45.33% 31.29% 42.91%
[ bare ground
o B low vegetation
W trees
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[ roads
W bare ground
M low vegetation
[ trees
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[ roads

Figure 17. Classified images of (a) label, (b) RGB, (c) SAR, (d) GTE, (e) label, (f) SVM, (g) RF, (h) CNN.

(YYX-OPT-SAR).
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optical image
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Figure 18. Classified images of (a) label, (b) RGB, (c) SAR, (d) GTF, (e) label, (f) SVM, (g) RF, (h) CNN
(WHU-OPT-SAR).

For image quality metrics, among all of the fusion methods involved in comparison,
NSCT has a superior visual effect in image fusion, and its quantitative metrics of fusion
results are at the forefront. In the evaluation using image classification, three classic
methods, including SVM, RE, and CNN, are used to perform image classification. Most
experimental results show that the overall classification accuracy after fusion is better than
that before fusion for all three classification methods. This demonstrates that optical-SAR
fusion can improve land classification. In all of these fusion methods, GTF obtains the
best classification results. Therefore, we recommend NSCT for image fusion and GTF for
classification applications.

6. Conclusions

The fusion of optical and SAR images is an important research direction in remote
sensing. This fusion allows for the effective integration of complementary information
from SAR and optical sources, thus better meeting the requirements of remote sensing
applications, such as target recognition, classification, and change detection, so as to realize
the collaborative utilization of multi-modal images.

In order to select appropriate methods to achieve high-quality fusion of SAR and
optical images, this paper systematically reviews the current pixel-level fusion algorithms
for SAR and optical image fusion and then selects eleven representative fusion methods,
including CS methods, MSD methods, and model-based methods for comparison analysis.
In the experiment, we produce a high-resolution SAR and optical image dataset (named
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YYX-OPT-SAR) covering three different types of scenes, including urban, suburban, and
mountain scenes. Additionally, a publicly available medium-resolution dataset named
WHU-OPT-SAR is utilized to evaluate these fusion methods according to three different
kinds of evaluation criteria, including the visual evaluation, the objective image quality
metrics, and the classification accuracy.

The evaluation based on image quality metrics reveals that MSD methods can ef-
fectively avoid the negative effects of SAR image shadows on the corresponding area of
the fusion result compared with the CS methods, while the model-based methods show
comparatively poorer performance. Notably, among all of the evaluated fusion methods,
NSCT presents the most effective fusion result.

It is suggested that image quality metrics should not be the only option for the interpre-
tation of fused images. Therefore, image classification should also be used as an additional
metric to evaluate the quality of fused images, because some fused images with poor image
quality metrics can obtain the highest classification accuracy. The experiment utilizes three
classic classification methods (SVM, RF, and CNN) to perform image classification. Most
experimental results show that the overall classification accuracy after fusion is better than
that before fusion for all three classification methods, indicating that optical-SAR fusion
can improve land classification. Notably, in all of these fusion methods, GTF obtains the
best classification results. Consequently, the suggestion is to employ NSCT for image fusion
and GTF for image classification based on the experimental findings.

The differences between this paper and the previous conference paper are mainly
related to the following four aspects: First, we extend the original self-built dataset from the
original 60 image pairs to 150 image pairs, and we add classification labels to provide data
support for subsequent advanced visual tasks. While previous contributions did not expose
the dataset, this paper exposes the produced dataset. Second, because the self-built dataset
is a high-resolution image, in order to better evaluate the fusion effect of the fusion method
at different resolutions, we added the experiment under the published medium-resolution
images as a comparison, so as to prove that the excellent fusion method can obtain better
results in images with different resolutions. Third, the previous contribution is a short paper,
and there is no detailed introduction to optical and SAR pixel-level image fusion algorithms.
This paper systematically reviews the current pixel-level fusion algorithms of optical and
SAR image fusion. Fourth, we evaluate the fusion quality between different fusion methods
by combining subsequent advanced visual tasks, and we verify the effectiveness of image
fusion in image classification, proving that the fused image can obtain better results than
the original image in image classification.

At present, most pixel-level fusion methods of optical and SAR images rely on tra-
ditional algorithms, which may lack comprehensive analysis and interpretation of these
highly heterogeneous data. Consequently, these methods inevitably encounter performance
bottlenecks. Therefore, this non-negligible limitation further creates a strong demand for
alternative tools with powerful processing capabilities. As a cutting-edge technology, deep
learning has made remarkable breakthroughs in many computer vision tasks due to its
impressive capabilities in data representation and reconstruction. Naturally, it has been
successfully applied to other types of multimodal image fusion, such as optical-infrared
fusion [62,63]. Accordingly, we will also explore the application of deep learning methods
for optical and SAR image fusion in the future.
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Abstract: This paper presents a method of fusion of identification (attribute) information provided by
two types of sensors: combined primary and secondary (IFF) surveillance radars and ESMs (electronic
support measures). In the first section, the basic taxonomy of attribute identification is adopted
in accordance with the standards of STANAG 1241 ed. 5 and STANAG 1241 ed. 6 (draft). These
standards provide the following basic values of the attribute identifications: FRIEND; HOSTILE;
NEUTRAL; UNKNOWN; and additional values, namely ASSUMED FRIEND and SUSPECT. The
basis of theoretical considerations is Dezert-Smarandache theory (DSmT) of inference. This paper
presents and uses in practice six information-fusion rules proposed by DSmT, i.e., the proportional
conflict redistribution rules (PCR1, PCR2, PCR3, PCR4, PCR5, and PCR6), for combining identification
information from different ESM sensors and radars. This paper demonstrates the rules of determining
attribute information by an ESM sensor equipped with the database of radar emitters. It is proposed
that each signal vector sent by the ESM sensor contains an extension specifying a randomized
identification declaration (hypothesis)—a basic belief assignment (BBA). This paper also presents
a model for determining the basic belief assignment for a combined primary and secondary radar.
Results of the PCR rules of sensor information combining for different scenarios of a radio electronic
situation (deterministic and Monte Carlo) are presented in the final part of this paper. They confirm
the legitimacy of the use of Dezert-Smarandache theory in information fusion for primary radars,
secondary radars, and ESM sensors.

Keywords: information fusion; Dezert-Smarandache theory (DSmT) of inference; conflict redistribution
rules; radar emitters recognition; electronic support measures (ESMs); primary and secondary radars

1. Introduction

Designing systems for creating a recognized air picture in the air defense system
requires, among other factors, the development of algorithms for combining identification
information about detected targets from various types of sensors. The basic elements of
the air-situation-recognition system are two types of sensors: ESM sensors and combined
primary and secondary radars (IFF: identification friend or foe). They provide identifica-
tion information to information-processing centers that develop a recognized air picture.
Each air-situation information-processing system should have an attribute information set,
specifying acceptable values for the identification information of the detected targets trans-
mitted by sensors to information-processing centers and information produced by those
centers. This article uses a certain interpretation of attribute identification in accordance
with the NATO STANAG 1241 standard [1,2]. It should be noted that this is one of the
possible interpretations of the adopted definitions. It is assumed that five identification
classes are used: three primary and two secondary ones. Sensors can transmit identification
information in the form of a hard decision, sometimes determined as non-randomized,
or a soft decision, sometimes determined as a randomized decision. In this paper, it is
assumed that the sensors send identification information to the system in a randomized
form, i.e., in the form of a basic belief assignment on the set of identification classes. This
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assignment determines the sensor’s belief that the detected emitter belongs to separate
identification classes.

Another problem that should be solved by the designers of air-situation-recognition
systems is the choice of the method of combining information from sensors. One possible
solution is the STANAG 4162 standard proposed by NATO. It is a standard based on
Bayesian decision functions. Another solution is to use Dempster-Shafer reasoning [3,4].
Works [5,6] show that such solutions have their drawbacks. The disadvantages of Dempster—
Shafer reasoning are also confirmed in this work for situations of high conflict. These
disadvantages can be avoided by applying Dezert-Smarandache theory (DSmT).

DSmT in its basic version contains five rules of proportional conflict redistribution,
namely PCR1-PCRS5. Later, the authors presented a new PCR6 rule [7], which was tested in
this paper, alongside the earlier PCR1-PCRS5 rules.

At this point, it should be noted that DSmT is not the only development of Dempster—
Shafer theory. DSmT provides different rules for the proportional redistribution of the
conflict mass between the resulting BBA masses in the process of information fusion.
Examples of this development of Dempster—Shafer theory can be found in [8-10]. In [8,9],
it was proposed to use the negation evidence (BBAs from sensors) and Deng’s [11] entropy
to determine BBAs after information fusion. The new BBA distribution is calculated as a
weighted sum of the original BBA, with the weights being a function of Deng’s entropy.
The paper [10] shows the application of the negation evidence method in fault diagnosis.

In [12], a new risk priority model based on the belief Jensen-Shannon divergence
measure and Deng’s entropy is proposed. In the new method, Deng’s entropy and the belief
Jensen-Shannon divergence measure are used to model the uncertainty of risk assessments
in the “Failure mode and effects analysis” procedure and to deal with potential conflict
information. This allows one to calculate the appropriate weighted average probabilities
(WAPs) value. Classic Dempster’s combination rule is used to fuse data to generate
integrated values of the risk factors. Unfortunately, the latest publications do not compare
the DSmT method with the proposed new solutions. The examples provided there concern
other applications than those presented in this work.

In [13], a generalized evidential Jensen-Shannon (GE]S) divergence to measure the
conflict and disparity among multiple sources of evidence. This generalization was used to
determine the weights of the information sources. Subsequently, it was used to determine
the results of information fusion using Dempster’s combination rule.

In [14], an extension of Dempster-Shafer theory was presented, which received the
name complex evidence theory. It implements complex weighted discounting multisource
information fusion. The complex evidence theory defines complex basic belief assignments
and a complex evidential correlation coefficient. A weighted discounting multisource
information-fusion algorithm with complex evidential correlation coefficient improves the
performance of expert systems based on complex evidence theory.

Another development of Dempster-Shafer theory is the generalized quantum ev-
idence theory [15,16]. In these papers, multisource quantum information fusion was
presented. The papers are complemented by an example of a pattern classifier from the
motor-rotor-fault-diagnosis domain, which confirmed the efficiency of the multisource
quantum information-fusion algorithm.

This paper is a continuation of another work [17] and contains new research re-
sults obtained for new scenarios of the electronic situation, new DSmT rules, and new
information-fusion schemes.

Below, the substantive content of individual chapters is subsequently discussed. The
first part of the paper presents the applied interpretation of attribute identification in
accordance with the NATO STANAG 1241 standard. It should be noted that this is one of
the possible interpretations of the adopted definitions. It leads to the Bayesian model of the
basic belief assignment.

The next part of the paper presents the mathematical form of the DSmT rules PCR1,
PCR2, PCR3, PCR4, PCR5, and PCR6 [5,18] for two sensor inputs and PCR5 and PCR6
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for three sensor inputs, assuming the Bayesian model of the basic belief assignment of
the hypothesis.

The next two sections, namely Sections 4 and 5, show how to determine the basic belief
assignment for a combined primary and secondary (IFF) radar and ESM sensors. These
assignments are the input information in the PCR1-PCR6 information-fusion algorithms.
Section 4 presents a method for determining the basic belief assignments (BBAs) of airborne
targets moving in the observation space of a combined primary and secondary (IFF) radar
sensor. This method uses the primary radar model, taken from [17]. The result of executing
the algorithm of this method are scenarios containing reports from BBAs. Section 5 presents
a method for determining BBAs for airborne targets that emit electromagnetic radiation
(airborne radars and other emitters). It requires databases of reference signals of various
airborne emitters, equipment of airborne platforms, and the nationality of the platforms.

Each sensor report sent to the information-fusion center contains a vector of belief mass
for all attribute identification values. The results of the proportional conflict redistribution
sensor information, combining rules for selected deterministic and Monte Carlo scenarios,
are presented in Sections 6 and 7 of the paper. Section 6 presents the results of research on
the fusion of information sent only from ESM sensors. This corresponds to a situation when
the ESM sensors operate in a system: one master station and one or two slave stations.
Section 7 presents the results of research on the fusion of information sent from ESM sensors
and combined primary and secondary radars. This corresponds to a situation where one
ESM sensor (master station) and radars cooperate with the information-processing center
(the producer of the recognized air picture).

Conclusions are provided at the end of the paper. They confirm the legitimacy of the
use of DSmT in information fusion for primary radars, secondary radars, and ESM sensors.

2. Interpretation of Attribute Identification according to STANAG 1241

The set of possible values of attribute identifications used by sensors can be adopted
based on standardization documents of organizations that exploit these sensors [1,2,19-21].

This paper assumes a basic taxonomy of identification in accordance with the draft of
STANAG 1241 ed. 6 [2]. Other similar documents may include the following standards:
STANAG 4420 and STANAG 1241 ed. 5, which provide the following basic values of the
attribute identifications:

FRIEND (F);
HOSTILE (H);
NEUTRAL (N);
UNKNOWN (U).

Each of these documents contain their own definitions of the declarations.
The following definitions of these basic values of the attribute identification are used
in this paper (in accordance with [2]):

e FRIEND: an allied/coalition military track, object, or entity; a track, object, or entity,
supporting friendly forces and belonging to an allied /coalition nation or a declared or
recognized friendly faction or group;

e HOSTILE: a track, object, or entity whose characteristics, behavior, or origin indi-
cate that it belongs to opposing forces, or that it poses a threat to friendly forces or
their mission;

e NEUTRAL: a military or civilian track, object, or entity, neither belonging to al-
lied /coalition military forces nor to opposing military forces, whose characteristics,
behavior, origin, or nationality indicate that it is neither supporting nor opposing
friendly forces or their mission;

e  UNKNOWN: an evaluated track, object, or entity, which do not meet the criteria for
any other standard identity.

These standards bring additional values of the attribute identification:
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e ASSUMED FRIEND (AF);
e  SUSPECT (S).

Attention should be paid to these two last identities contained in [1], as well as their

definitions [2]:

e ASSUMED FRIEND: a track, object, or entity, which is assumed to be friend or neutral
because of its characteristics, behavior, or origin;

e  SUSPECT: a track, object, or entity whose characteristics, behavior, or origin indicate
that it potentially belongs to opposing forces or potentially poses a threat to friendly
forces or their mission.

The identification definitions in [1,2] can lead to different interpretations. This paper

adopts the interpretation that is shown by the graphical form of in Figure 1.

e
SRS

g‘i)ﬁxxxxxxxxx
SIS

>
SRR
SRR
= 55
0% 5

5
5

Figure 1. The interpretation of STANAG 1241 using the Venn diagram.

3. Fusion of Information from ESM Sensors and Radars in the Information-Fusion
Center (IFC)

3.1. Diagram of the Process of Information Fusion for Two Sensors in the
Information-Fusion Center

In this work, it is assumed that ESM sensors send messages asynchronously to the
information-fusion center. These reports contain sensor decisions regarding the iden-
tification of objects emitting the detected signals. The set of possible identifications is
as follows:

0={0,=1,...,6}, (1)

where in the following interpretation is used:

61: FRIEND (F);

6,: HOSTILE (H);

63: NEUTRAL (N);

64: ASSUMED FRIEND(AF);

05: SUSPECT(S);

fs: UNKNOWN (U).

According to Figure 1, the hypotheses are mutually exclusive, i.e.,

e, ifi=],
0in0; = {@, ifi 4. @)

Each sensor with the number i (i € N) sends its decisions as so-called soft decisions,
i.e., as BBA measure vectors (BBA: basic belief assignment).

m; = [mi(()l),...,mi(f)é)}. (3)
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A vector of generalized BBA measures for the information-fusion center should also
be introduced as follows:

mrp — [mp(91),...,mp(66)]. (4)

This paper adopts the Bayesian BBA model as it has been adopted as valid in the
STANAG 4162 standard [20]. This means that Equation (5) applies in addition to (1) and (2).

Y8 mp(0;) = X8 m;(6;) = 1. ®)

In the first case that is considered, two sensors send, asynchronously in one cycle,
one report each, containing decisions regarding the BBAs related to the target. The IFC
system, after receiving the report from the sensor, fuses the information contained in the
two vectors: in the current generalized BBA vector mp = [mp(6y),...,mp(6s)] and in the
BBA vector m; from sensor 1 or in the BBA vector m, from sensor 2.

The information-fusion procedure performed in the IFC is carried out in accordance
with the following formula:

my = Rp(mp,m;) (i=1o0r2), (6)

wherein m. is a vector of the generalized BBA measure determined by the Rr rule based on
the previous generalized BBA measure vector mp and the new BBA measure vector m; sent
by the i-th sensor. The diagram of identification information fusion from the ESM sensors
is shown in Figure 2.

m,
Sensor 1 ———® IFC
> »  Procedure of
m; ESM sensor
and radar

m

Sensor 2 ;b report fusion

| —» fortwo bba )

m, vectors m,

A

EER

Figure 2. The diagram of the information-fusion process in the information-fusion center (IFC) for
two sensors. Explanations: m; a BBA measure vector of i-th sensor; mp, a generalized BBA measure
vector that is a part of the electronic entity record in the IFC; EER, an electronic entity record in the
IFC database.

In the second case that is considered, two sensors send, asynchronously in one cycle,
one report each, containing decisions regarding the BBAs related to the target. The IFC
system waits for reports from both sensors in one cycle, using registers. Only when both
registers are full does the IFC system perform a fusion of the information contained in
three vectors: BBA vector mp = [mp(601),...,mp( 0¢)], BBA vector m; from sensor 1, and
BBA vector my from sensor 2. It should be noted that this method has a drawback: the
information stored in the registers lose credibility.

In this case, the information-fusion procedure performed in the IFC is carried out in
accordance with the following formula:

mrF = RF(mFrmlrmZ)/ (7)

wherein m. is a vector of the generalized BBA measure determined by the Rr rule based
on the previous generalized BBA measure vector mr and the new BBA measure vectors m;
and my sent by both sensors. The diagram of identification information fusion from the
ESM sensors is shown in Figure 3.
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Figure 3. The diagram of the information-fusion process in the information-fusion center (IFC) for
two sensors and electronic entity record from the IFC database. Explanations: m1;, a BBA measure
vector of i-th sensor; mr, a generalized BBA measure vector that is a part of the electronic entity
record in the IFC; EER, an electronic entity record in the IFC database.

Further in this paper, the combination rules of the BBA vector from the i-th sensor and
the generalized BBA vector in the CFI are described.

3.2. The Rules of Combination of BBA Measures Vectors

This section presents formulas defining various combination rules for calculating basic
belief assignments for the system shown in Figures 2 and 3. The general forms are described
in detail in [6,18,22]. The information-fusion rules of the DSm theory are presented below
with the following constraints:

the properties of a set of hypotheses are described by Formulas (1) and (2);

for the first scheme (Figure 2), the information-fusion procedure handles two informa-
tion inputs: on one input, reports from two ESM sensors appear alternately, while on
the second input, electronic entity records from the IFC database appear;

e for the second scheme (Figure 3), the information-fusion procedure handles three
information inputs: on the first input, reports from a combined primary and secondary
surveillance radar appear; on the second input, reports from an ESM sensor appear;
and on the third input, electronic entity records from the IFC database appear.

3.2.1. Dempster’s Rule

Dempster’s rule [3,4] of the BBA measure vector m; sent by the i-th sensor and the
generalized BBA measure vector mr s in the IFC is described for each ; € @ by the
following formula:

mF(Gf) = ™Mp (Gj) T 1L - 1.6 me(O)m(0)
1=1,.6 8)
9]‘09;(:@

me (6;)mi (6;) _ mri(f))

IR g mE(6k)mi(6)) 1=kpi
12k

where in the kr; degree of conflict is defined by the formula:

6 6
kFi = 2 mF(Gk m; 91 2 Zmp Gk m; 61) ’ (9)
k=1,....6 k=11=1
I=1,...6 1#
Gjﬂekzg
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while
mei (6)) = me (6;)mi(6))- (10)
It can be noticed that
Y. mp(O)mi(6) =1, (11)
k=T,..6
=1,
Y mp(0)mi(6)+ X mp(6)m;(6)) =
k=T,..6 k=T,..6
=16 =17
9j09k=@ ejm FD
6 6 6 6
= Y Y mp(0)mi(0;) + £ ¥ mp(6)m;(6;) = (12)
k=11=1 k=11=1
12k 1=k
6 6 6
= ¥ X mp(Op)m;(60;) + ¥ mp(6)m;(6) =1
=1 k=1

From (12), it follows that if

Zmp 9k mZ(Qk =1,ie, Z mrg Gk m; 91) 0, (13)
k=1 k=1,..6
1=1,...,6

then the degree of conflict is full.
If

Zmp 9k ml(Qk —0 e, Z mp )—1, (14)
k=1 Il<:1, .
=1

then there is no conflict.
mp(.) is the Dempster-Shafer fusion result if, and only if, the denominator of expres-
sion (8) is non-zero, i.e., if the degree of conflict kr; is less than 1.

3.2.2. The Proportional Conflict Redistribution Rule PCR1

The PCR1 rule is the simplest and the easiest version of the proportional conflict
redistribution rule. The concept of the PCR1 rule assumes the calculation of the total
conflicting mass (not worrying about the partial conflicting masses). The total conflicting
mass is redistributed to all non-empty sets of hypotheses proportionally, with respect to
their corresponding non-empty column sum of the associated mass matrix. The PCR1 rule
is defined for every non-empty hypothesis in the following way:

m%(ej)z mPCRl(Gj) = Z me(0x)m;(01)] + CFi(G,j) kpi =

k=1,..6
o626 (15)
cri(0;) cri(0;)
= mp(0;)m;(0;) ;F.] kpi = mg;(6;) ;F,J - kr;
1 1

where cr;(6;) is the non-zero sum of the column corresponding to the hypotheses 6; in the
mass matrix

_ |mF
-
specified by the following formula:
Cpi(gj) = mp(GJ) -+ ml(()]) (17)

where:
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e m; (i=1,2)is a row vector of the basic belief assignment masses of the i-th sensor’s
hypotheses;

e mpris arow vector of the basic belief assignments masses of the IFC system’s hypothe-
ses;

e  kr; is the degree of mass conflict specified by the following formula:

6 6
kei= ), mpB)mi(6) =Y. Y mp(6)m(6)), (18)
k=T,..6 p
1=1,..6 I#k
b~

e  dp;is the sum of all non-zero column sums of all non-empty sets, as follows:
6
dFi = Z[ (9 —|—m1 ZCPZ . (19)

j=1

In the case from this paper, dp; = 2 because

6 6
Y mp(6) =) mi(6;) =1 (20)
i =
In addition,
mr;(0;) = mp(6;)m;(6;) (21)

3.2.3. The Proportional Conflict Redistribution Rule PCR2

In the PCR2 rule, the total conflicting mass kp; is distributed only to the non-empty sets
involved in the conflict (not to all non-empty sets) and taken proportionally with respect to
their corresponding non-empty column sum.

A non-empty set 6 € © is considered to be involved in the conflict if there exists
another set §; € O that is neither included in 6 nor includes a 6, such value that 8, N0, = &
and mp;(0x N 6;) > 0. The PCR2 rule is defined for every non-empty hypothesis 6; € © in
the following way:

m(O)) = mpcra6) = [ X me(B)mi(@)] + C(6) TG -kri =

26, (22)
— Nr- (0. NCRG) g sz( i)
= mF(0]>ml(9]) + C(Gj) i ~kpj = mp;(0 ) +C(0 ) ki

where
1, if 9]~ is involved in the conflict,

C(Gj ) = { 0, otherwise.

Formula (23) can be written differently in form (25), taking into account the definition
of the involvement in a conflict and Formula (24) [6]:

(23)

mpi(0; 0 0x) = mp(6;) - m;(0) + mp(6) - m;(6)) (24)

1, if36,€0,k#j: mp(é)j) -m;(0g) + mg(6k) - mi(Gj) >0

C(ej) - { 0, otherwise. (25)

cri(;) is the non-zero sum of the column corresponding to the hypotheses in the mass
matrix M (16) specified by the following formula:

cri(0;) = mp(8;) +m;(6;) (26)
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where:
e m;(i=1,2)isarow vector of the basic belief assignment; masses of the i-th sensor’s hypotheses;
e mpisarow vector of the basic belief assignment masses of the IFC system’s hypotheses;
e kg is the degree of mass conflict specified by Formula (18);
e ¢y is the sum of all non-zero column sums of all non-empty sets involved in the
conflict, as follows:
6 6
epi =Y [mp(6;) +mi(6;)] = Y cri(0;) =Y C(6)[mp(6;) 4+ mi(6;)] = Y C(6;) - cri(6)) (27)
jECF jECF j=1 =1
where
CF = {] =1,.,6 : V0, €O mpi(ej N Qk) > 0} (28)
and 1111:1'(9]' N 6y) is defined by (24).
In addition
mr;(0;) = mp(6;)m;(6;) (29)

It is shown below that in the case of data used in numerical experiments (Section 6),
er; = 2, which means that the PCR2 rule is equivalent to the PCR1 rule. The BBA vectors
used there contain values less than 1, which means the following;:

Vj—l,...,6 : WIP(QJ) < 1A ml(Qj) <1 (30)

It follows that each BBA vector contains at least two non-zero components, that is
Jdj=1,...,6, Jk=1,...,6 with k # j, such that

0< Wlp(gj) <1AO0KL mP(Qk) <1 (31)

0< 1111(9]) <1AO0KL mi(ek) <1 (32)

From (31) and (32), it follows that if mp (Gj) > 0, then there exists at least one value
k # j, such that m;(6;) > 0, which can be written in the following form:

Vi=1,...,6 : 0<mp(f;) <1 = Fk...... L6,k #j  0<m(6r) < 1 (33)
From (33), it follows that
Vi=1,...,6 : 0< mp(Gj) <1 = dk=1,...,6k#j: H’ZF(G]‘) -m;(6g) > 0 (34)
The same applies to the following:
Vi=1,...,6 : 0<m(0;) <1 = Fk=1,...,6,k#j: m(6;) -mp(6) > 0 (35)
Taking into account (34), (35) and (25) can obtain the following;:

Vi=1,...,6: 0<mp(9]-)<1 = Jk=1,...,6,k # j such that

36
me(0;) - m;(6x) +m;(0;) - mp(6f) >0 (36)
Vi=1,...,6 : 0< mi(Gj) <1 = 3Jk=1,...,6,k # jsuch that (37)
m;(0;) - mp(6) +mp(0;) - m;(6;) >0
From (36) and (37), it follows that
ijl,...,6 : 0<ml:(9]') <1l = C(Gj)zl (38)
ijl,...,6 : 0<mi(9j) <1l = C(Gj)zl (39)

This means that any hypothesis with a non-zero BBA value for any of the two sensors
is involved in a conflict.
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From (27), it follows that

6 6 6
eri =y C(0;)[mp(6;) +m;(6;) | =Y C(0;)mp(6;)+ Y _ C(6;)m;(6;) (40)
j=1 j=1 =1
Using (36), (37) and (40), the value ef; is determined.
Because
6 6 6 6
C(O)mp(6;) = Y, C(0))mp(6;) + Y C(6))mp(6;) = )Y mp(6;) =1 (41)
j=1 =1 =1 =1
mp((-)j)>0 mp(G]):O mp(G])>O
6 6 6 6
Zc(ej)ml<6]) = 2 C(Gj)mz(ej) + Z C(gj)ml(e]) = Z mi(ej) =1 (42
! mi(]e]')>0 mi(JQ')ZO mi(Gj)>0
we obtain
6 6
eri = Y C(0;)mp(6;) + Y _ C(6;)m;(6;) =2 (43)
j=1 j=1

Considering (43), it can be said that in this case, the PCR2 rule is equivalent to the
PCRI rule. For this reason, the results of the PCR2 rule are not presented in Section 6, as
they would be identical to the results of the PCR1 rule as only the Bayesian BBAs are used
in this application.

3.2.4. The Proportional Conflict Redistribution Rule PCR3

In the PCR3 rule, the partial conflicting masses are distributed instead of the total
conflicting mass, kr;, to the non-empty sets involved in the partial conflict. If an intersection
is empty, for instance 6, N0, = &, then the mass m(6; N 6;) of the partial conflict is
transferred to the non-empty sets 6 and 6; proportionally, with respect to the non-zero sum
of masses assigned to 6 and, respectively, to 6; by BBAs mp(.) and m;(.). The PCR3 rule
works if at least one set between 0 and 0; is non-empty and its column sum is non-zero.

The PCR3 rule is defined for every non-empty hypothesis 6; € © in the following way:

mp(0;) = mpcgs(6;) = kilZ 6mP(9k)mi(91) + | cri(6)) kilZ ) SEER3 (65, 6;) | =
1=1,..6 6,16~
0,16, =6;
= sz(gj) + [CFl(G])k,12 6SEFR3(9]/9k>]
K
(44)
where

m (0 )m; (0;)+mp (6;)m;(6) 0 .
SgZ-CR?’(Gj, 0) = { cri(8;)+cri(6f) for cri(0)) +cri(O) # 0 (45)

0 for Cpi(gj) +cri(6y) =0

cri(0;) is the non-zero sum of the column corresponding to the hypotheses 6; in the
mass matrix M (16), specified by the following formula:

cri(0;) = mp(8;) +m;(6;) (46)
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3.2.5. The Proportional Conflict Redistribution Rule PCR4

The PCR4 rule redistributes the partial conflicting masses only to the sets involved
in the partial conflict in proportion to the non-zero mass sum assigned to 8y and ¢; by the
conjunction rule according to the following formula:

mp(0;) = mpcra(6j) = mri(0;) +mpi(6;) ¥ . SEeR (67, 61) =

.....

47
— i (6)) + me(6) X SEERY(8;,60) )
kA
where
mrg; 0:Mo,
PCRA mn(g"();ln;%zek) for cri(0j) + cri(6) 7 0 and mg;(6;) - mri(6x) 7 0
. — mrp;(6:N
e (0),0k) = lei(gj)“‘ijcﬁ'tgk) for cri(6;) +c ( k) # 0and mp;(6;) - mp;(6;) =0 (48)
0 for CFi(Gj) +cri(0x) =0
wherein
mpi(0; N 0k) = mp(6k)m;(0;) + mp(6))m;(6f) (49)
mpi(0;) = mp(6;) - m;(6;) (50)
cri(0;) = mp(8;) +m;(6;) (51)

If at least one of the BBAs, mp(.) or m;(.), is zero, the fraction is discarded and the
mass ng;(6; N 0) is transferred to 6; and 6 proportionally, with respect to their non-zero
column sum of masses cr;(0;).

3.2.6. The Proportional Conflict Redistribution Rule PCR5 for Two BBAs (Two Sources)

Similar to the PCR2-PCR4 rules, PCRS5 redistributes the partial conflicting mass to
the hypothesis involved in the partial conflict. PCR5 provides the most mathematically
precise [6,18,22] redistribution of conflicting mass to non-empty sets in accordance with
the logic of the conjunctive rule. However, it is more difficult to implement. The PCRS5 rule
is defined for every non-empty hypothesis 6; € © in the following way:

mp(0;) = mpcrs(8;) = mpi(0;) + Y SFCRO(0;,60¢) = mpi(0;) + Y. SEER(6),60)

k=1,...6 k=1,...6
Gkﬁej:@ k?’é/
(52)
where
mp (6;)2-m;(6;) m; ()% -mp (6;)
PCRS (9. 6} — mp(0)+m;i(Ok)  mi(0;)-+mp(6r)
Ser 000 = mp(6)) + mi(6) # 0 and m;(6;) + mp(6;) # 0 ©3)
0 for mp(0;) + m;(6x) = 0 or m;(6;) + mp(6;) = 0
wherein

mri(0;) = mp(6;) - m;(6;) (54)
In Formula (52), the component SgiCRE’ is equal to zero if both denominators are equal

to zero. In Formula (53), if a denominator is zero, then the component is discarded.

3.2.7. The Proportional Conflict Redistribution Rules PCR5 and PCR6 for Three BBAs
(Three Sources)

In [6,22], improved proportional conflict redistribution rules of the combination of ba-
sic belief assignments PCR6, PCR5+, and PCR6+ are presented. The authors point out that
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these rules should be applied if, and only if, we are to combine more than two BBAs. If we
only have two BBAs to combine (s = 2), we always obtain mpcrs = mpcRrs+ = MpCRe = MPCR6+/
because in this case, the PCR5, PCR5+, PCR6, and PCR6+ rules coincide. Below are the
formulas that define the PCR5 and PCR6 rules for three BBAs.

The PCRS5 rule for three BBAs (three sources) is defined for every non-empty hypothe-
sis in the following way:

m" (9])

= 55
e, m (8) )

mi(6;) = mpcrs ()

wherein

m'(0;) =mpi(0) + X SERP(0,000)+ T SIERP(0,0)++ T S2PRP(0;,600) =

k=1,...,6 k=1,...,6 k=1,...,6
1=1,...,6 9k09j=® Qkﬁgj‘:@
Gkﬂelﬁ(?]:z
=mp()) + L X SppU(0,0060) + L SIERC(0,0)+ + X S0 (06 =
k=1,..6 I=1,..,6 k=1,...6 k=1,...,6
k#j  1£jNF#k j#k j#k

=mpp(0)+ L | L SEER5(0,0k0)) + S1EGRO(6;,6,) + S2EER5 (6, 601)

k=1,..6 | 1=1
k£ LI#iN#k

me(0;)% - my(0¢) - ma(0;)  mp(6) - my(0))% - ma(6k)  mp(6p) - mi(6)) - ma(6))?

SPRY (05, 6k, 6;) =

mp(0;) +my(6k) +ma(6)) ~ mp(0)) +m1(0;) +ma(0)  mp(6) +ma(6)) +ma(6;)

|PCRS mp(0;)% - my(0) - ma(6)  mp(6k) - my(6;)% - mp(6r)  mp(6f) - my(Bk) - ma(6;)
mp(0;) +my(6r) +ma(6)  mp(0k) +my(6;) +ma(6k)  mp(6)) + my(6r) + ma(6;

Slepp ~(0),6) =

S2PERS (9. gy — mp ()% - m1(6;) - ma (6) N mp(6) - m1(6;)% - ma(6;)>  mp(6;) - my(6)) - ma(6;)?
P2 R e (0)) + my (8,) + mo(8)  mp(8) + my(6;) + ma(6;) " mp(8) + mi(6) + ma(6;)
, m" (6;)
0)=m 0,) = 60
mp( ]) PCR5( ]) 21‘6:1 m”(Gi) ( )

In Formulas (57)—(59), if a denominator is zero, then the component is discarded.
The quotient in Formula (55) ensures the normalization of the BBA vector m/,, which

ensures the following:
6

6
Y m(6;) =) mpcrs(6;) =1
iz

i=1
The PCR6 rule for three BBAs (three sources) is defined for every non-empty hypothe-
sis 0; € © in the following way:

m" (9])

_ 61
O, m (8) ©D

mp(6;) = mpcrs () =
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wherein
m" (0;) = mp12(6;) + I SPCR6 (0, 6k, 6y) + iy S1ECRO (0, 6¢) +
1=1,..6 60—
Gkﬁe,ﬂejzg
+ ¥ S275R(6;,6) =
k=1,...,.6
gkﬂf)] j%}
=mmp(0))+ ¥ L SPSRe (9],9,(,91)+ z 515526(9 O )+
k=1,..,6 1=1,..6 (62)
k#j  1#jN#k ];ék
+ z 5251(32 (6),6;) =
J#k

:mF12(9j)+k 12 s 12 ) SECR(6;, ek,91)+51§§2R6(9],9k)+52§§2R6(9 6;)
ki Li#iAT#k

with (6))%-m1 (6)-ma(61) (61)-m1(6))-ma (%)
PCR ) _ mp(G;)7-my (Vg ) ma (0 mp(0p)-my(0j)”-mp Ok
St (911910 91) mi () +my () +m2(6;) + m(6))+my (6;)+ma (6;) (63)
mg (6 )-m1 (6y)-m (67)
mF(9k)+m1(91)+m2(9 )
PCR5 (9. _ mp(0;)%mq (6)-ma(6;) m (0r)-my (6;)%ma(6;)
51F12 (9 ek) - mr 9] -y (O ) +mp (6k) mF(f)k)-‘rml(Gj)-Fle(Qk) (64)
n mg () -m1 (Br)-m (6)
mp (O)+m1 (0 ) +mo (6))
SZIF)%RS (Gj, ek): mF(9])2 ' ml(e]) ' mZ(Gk) + mF(e]) ' m1(9])2 ' mZ(ek) +
mr (9]'> + mq (9]') + my(6)
mp(6)) - my(6;)% - ma(0;) + mp(6x) - mq(6) 'm2(97)2+ (65)
mr (Gk) -+ mq (9]') -+ my (9]')
+mF(9j)2 -1 (0) - mp(6;) + mp(6) - my (6) - ma(6;)?
mp(0;) +my(6) +ma(6))
and

mr12(6;) = mp(0;) - m1(6;) - ma(6) (66)

In Formulas (63)—(65), if a denominator is zero, then the component is discarded.
The quotient in Formula (61) ensures the normalization of the BBA vector m/,, which
ensures the following:

™o
3

6
F(6;) = Z;mPCRS(ei) =1

i=1

Comparing the two fusion schemes (Figures 2 and 3), it should be noted that sequential
and global information fusion generally produces different results [18], i.e.,

PCR5(mpg, my, my) # PCR5(PCR5(mp, my), my) # PCR5(PCR5(mp, my), my) (67)

In addition, the article experimentally verified the theorem on the inequality of the
results of both PCR5 and PCR6 rules for three BBAs (three sources) presented in [18]:

PCR5(mp, my, mp) # PCR6(mp, mq, my) (68)

4. Basic Belief Assignment for Combined Primary and Secondary Surveillance Radars

Combined primary and secondary (IFF) radars are the main source of identification
information regarding air and maritime objects. A primary radar only yields the detection
of an object in a supervised area. The detection of the object is the precondition for sending
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a request to the object by the secondary radar (interrogator). Interpretation of the object
response is dependent on the type of request. The so-called civilian modes only yield a
determination of whether the detected object replies to an interrogation or not.

This paper assumes that the analyzed radar sensor consists of two radars: primary and
secondary. Therefore, the probability of the correct detection and the correct identification
of a target is expressed by the following formula:

Pyi = Py - Pipr (69)

where P; is the probability of correct detection of the target by a primary radar, and Pjrr is
the probability of a correct reply to an interrogation. If a target is detected by the primary
radar and there is a lack of proper identification by the secondary radar, it can be assumed
that the target has a value of attribute identification of UNKNOWN—U. Thus, the following
relation can be written:

m(U) = Py(1 — Prp), (70)

where m(U) is the mass of probability for a value of UNKNOWN identification attribute.
A method for calculating the probabilities P; and Pjrr is presented in [7,17,23].
This section explains the way the remaining mass of probability is calculated (1 — m(L)).
It is assumed there that every simulated target should have a base value of attribute identi-
fication from the set as follows:

Zpr = {Np, Fg,Hp} (71)

where:

Np: base NEUTRAL identity;
Fp: base FRIEND identity;
Hp: base HOSTILE identity.

STANAG 1241 introduces, in addition to the basic set of attribute identification val-
ues, secondary (additional) attribute identification values: SUSPECT (S) and ASSUMED
FRIEND (AF). According to Figure 1, a table of possible attribute value transitions between
set (10) and the set of secondary attribute identification values can be introduced:

Zs; = {Ns, Fs,Hs, AF, S} (72)

The belief mass values contained in Table 1 determine how the mass of the base belief
assignment is transformed into the mass of the secondary belief assignment. They can be
estimated as empirical frequencies based on recorded archive events.

Table 1. Transformation of the base belief assignment mass into the secondary belief assignment mass.

Base Identification — Fp Np Hpg
FS m(F5|FB) 0 0
Ns 0 m(Ns|Np) 0
Hs 0 0 m(Hs|Hp)
AF m(AF|Fg) m(AF|Ng) 0
S 0 m(S|Fp) m(S|Hp)

Of course, the normalization conditions are satisfied: Y, 7. m(x|Fg) =1, Yxez,, m(x[Np) =1,
and Yo,z m(x|Hp) = 1.

The final values of the belief mass of secondary attribute identification values are
calculated according to the formulas as follows:
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1. For a target with the FRIEND base value of an attribute identification,

m(U) = Py(1 — Prrr);
m(AF) = m(AF|Fp)(1 —m(U));
m(Fs) = m(Fs|Fg)(1 —m(U)).

2. For a target with the NEUTRAL base value of an attribute identification,

m(U) = Py(1— Prrr);

m(AF) = m(AF|Np)(1—m(U));

m(S) = m(S|Np)(1 —m(U));

m(Ns) = (1 —m(AF|Ng) —m(S|Np))(1 —m(U)).

3. For a target with the HOSTILE base value of an attribute identification,

m(U) = P4(1 — Pirr);
m(Hs) = m(Hg|Hg)(1 —m(U));
m(S) = m(S|Hg)(1 —m(U)).

Other final values of the belief mass of secondary attribute identification values are
equal to zero.

5. Basic Belief Assignment for ESM Sensors

ESM sensors consist of passive receivers and direction finders, which allow them to
capture emitter signals coming from certain directions. In this way, the electronic recog-
nition system can receive, among other data, information on radar emitters mounted
on air or maritime platforms. Reports sent from the ESM sensors include, among oth-
ers, the characteristics of the intercepted signal, the emitter’s azimuth, and the so-called
identification information.

This paper also assumes that sensors are equipped with specialized databases called
the databases of emitter signal patterns, in which information about previously captured,
processed, analyzed, recognized, and described radar emitter signals is stored, along with
additional information about the type and mode of the emitter work, the platform on
which these emitters can be installed, and the national or organizational affiliation of these
platforms. The detected signals are the subject of an analysis procedure, which yields
the determination of the so-called distinctive features of the signal, and then assigns this
information to a specific electronic entity (already existing or created ad hoc) [24]. The
basis for assigning distinctive information to an electronic entity is the azimuth angle of
the incoming signal.

In the case of a high density of targets, identification information may fluctuate due to
incorrect assignment of signal information to the electronic entity [25]. The impact of this
negative phenomenon can be significantly reduced by an efficient estimation of the emitter
positions [24]. Assuming that the sensors send all reports on the tracked electronic entities
to the superior operation center in the electronic recognition system, such a center (in this
paper, called the information-fusion center (IFC)) can perform the fusion function of the
identification information. The fusion of identification information ensures greater stability
of this information, i.e., resistance to accidental changes in sensor decisions.

An ESM sensor is a passive sensor that captures incoming electromagnetic signals
generated firstly by radar emitters mounted on air or maritime platforms. This sensor
recognizes radar signals determining the values of their distinctive features. In this paper,
we do not handle methods of radar signals recognition in detail. We do, however, use the
information about these methods to identify platforms generating the signals according
to STANAG 1241—NATO Standardization Agreement and DSmT. As previously stated,
we are interested in three basic values of identification: friend, hostile, and neutral, as
well as two secondary values: suspicious and assumed friendly. In addition, we assume
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that in some situations, it is not possible to determine the identity of the emitter-carrier
platform. To clarify this issue, we briefly describe the method used to determine the
identification of the emitter-carrier platform that generated the captured signal. The sensor-
recognition system is equipped with a database that can be divided into three components:
a platform database, an emitter list, and a geopolitical list [21]. The platform database
(PDB) contains information about platforms that can be met in the area of interest, along
with their equipment with emitters. The emitter name list (ENL) includes all emitters
corresponding to each platform of the PDB and contains the values of the signal distinctive
features for each emitter. The values of distinctive features are the basis for the procedure
of recognizing a captured signal. The geopolitical list (GPL) provides the allegiance of
various countries and platforms and yields the identification of them in accordance with
STANAG 1241.

The algorithm of signal recognition is realized in two stages:

1. Verification at the level of signal quality features. The second stage is executed after
a positive assessment of the conformity of quality features;

2. The signal-recognition procedure determines the distances between the distinctive
features of the recognized signal and the distinctive features of all pattern signals stored
within the emitter list.

Let us introduce the following notation:

xs : vector of distinctive features of the recognized signal;

x;: vector of distinctive features of the i-th pattern signal (i: the number of the pattern
signal, i € {1,..., M});

ds; = d(xs,x;) : the distance between the distinctive features vector of the recog-
nized signal and the distinctive features vector of the i-th pattern signal; the dis-
tance d;; is the Mahalanobis distance, taking into account the correlations of the
distinctive features.

The signal-recognition classifier compares the distance d(x;, x;) with the acceptable
positive distance of the classification J. The distance J is the limit that we interpret as a
boundary of emitter pattern recognition. We divide the set of pattern signals into two sub-
sets: the patterns satisfying the positive classification condition in relation to the recognized
signal s (D) and the patterns that do not satisfy the positive classification condition (D;).
The formal definition is as follows:

D ={ie{l,..., M}, <6} (73)

Dy ={ie{1,...,M}|d; > 6} (74)

In this paper, we propose the following method of determining the basic belief assign-
ment on a set of pattern signals, which is related to the distance between a signal and a
pattern in the distinctive features space:

mg(i) = e~406x) (75)

As can be seen from Formula (75), if d(x;, x;) = 0, then m; (i) = 1, whereas if d(xs, x;) >
0, then 0 < mgy(i) < 1. The above measure is not normalized; hence, we normalize it
as follows: (0
_ . M (i
ms(i) = (76)
iy ms(i)
The sum of the measures assigned to all the emitters, the distinctive features of
which lie outside the limit J, are treated as a measure assigned to the base hypothesis
“unknown” (U):

fiis(U) = Y ms(i) (77)

ieD;
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Another way of recognizing emitters based on their signals is presented in [26]. For
this, the authors use a convolutional neural network with a softmax layer.

To determine the belief measure of other base hypotheses (H, F, N) and secondary
hypotheses (AF and S), we introduce formal definitions of sets contained in the sensor
database and used for the recognition of captured signals. As mentioned above, the set
of all the necessary data for platform identification can be divided into three sets: PDB, a
platform database; ENL, an emitter name list; and GPL, a geopolitical list:

PDB: the platform database contains information about all platforms observed in
the area of interest, including information on all emitters mounted on each platform; we
assume that one platform can have many emitters and the same type of emitters can be
installed on many platforms; the PDB also contains information on the national affiliation
of each platform;

ENL: the emitter name list is a set of information about all recognized emitters in
the area of interest; this set contains the mean values of the distinctive features of emitter
signals (the so-called signal patterns) and their standard deviations;

GPL: the geopolitical list contains base values of identification attributes (H, F, N)
assigned to the various countries.

We also introduce additional notations used in this paper:

e  PDBL: the list of platform numbers that are stored in the PDB;
e  PL(i): the set of numbers of platforms that have an emitter with number

",
1

2

IPL(j): the base identification attribute of the platform with number “j” determined on
the basis of the information contained in the PDB and ENL (IPL(j) € { F, H, N}).

The set of signal patterns satisfying the positive classification condition in relation to
the recognized signal s, denoted as D, can be divided into disjunctive subsets according
to the values of the carrier platform identification features:

D} =D fup{f uDNuUD A UD{?, (78)

DI*nD' =@, k #1, k,1 € {F,H,N,AF,S} (79)

Each subset of the set D for the base identification is defined as follows:

DSf = {ieDJ|VjePL(i) IPL(j) = F}, (80)
D" = {ieDJ|vje PL(i) IPL(j) = H} (81)
DN ={ieDJ|Vje PL(i) IPL(j) = N} (82)

In a similar way, subsets of the set D] for the secondary identification (AF, S) can be
defined as follows:

Df4F = {ieDf|3jePL(i) IPL(j)=F A 3je PL(i) IPL(j) = N} (83)

D= {ieDf:3jePL(i) IPL(j)=H A 3j€PL(i) IPL(j)=N}  (84)

It can be noticed that we assume in this paper that no emitter type can be installed
simultaneously on platforms with identifications F and H:

{ieDf|3jePL(i) IPL(j)=F A 3jePL(i) IPL(j)=H} =2 (85)

Introducing the definition of subsets of the set determines the belief masses for all
identification features:

ms(F) = Z ms(i), ms(H) = Z s (i), s (N) = Z s (i), (86)

ieDHF ieD{H ieDf N
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Tﬁs(AF) = 2 ﬁs(i)r ”75(5) = 2 ﬁls(i) (87)

ieDFAF ieDys
It should be emphasized that the method presented here is different than that pre-
sented in [25,27]. These papers assume that ESM sensors can only generate basic decla-
rations with attribute values FRIEND, HOSTILE, and NEUTRAL, but in this paper, we

assume that ESM sensors can generate declarations from an extended set of attribute values
(including ASSUME FRIEND, SUSPECT, and UNKNOWN).

6. Numerical Experiments of Fusion of Identification Information from ESM Sensors
6.1. General Research Scheme of Fusion of Identification Information from ESM Sensors

Figure 4 shows a general scheme of simulation experiments, which indicates the places
of description of individual models.

Simulation Identification
scenario information
generator for ESM sensor fusion
electronic reports carried out in
situation tracking »| accordance with
by ESM sensors one of the PCR
described in rules described in
Section 5 Section 3

Figure 4. The general diagram of simulation experiments of fusion of identification information from
ESM sensors.

6.2. Simulation Scenarios

Paper [25] presents a typical simulation scenario for testing identification information
fusion. The authors formulated several requirements that should be met by such a scenario.
It should meet the following requirements:

(1) adequately represent the known ground truth of the emitter identification;

(2) include sufficient numbers of incorrect associations to be realistic and to test the
robustness of the rules in temporary incorrect sensor decisions;

(3) provide only partial knowledge about the ESM sensor declarations and thus contain uncertainty;

(4) be able to show stability in the case of countermeasures;

(5) Dbe able to switch identification when the ground truth changes.

The authors of [25] propose the following parameters of the scenario:

(1) ground truth of identification is FRIEND (F) for the first 50 iterations of the scenario
and HOSTILE (H) for the last 50 iterations;

(2) the percentage of correct associations is 80% of all iterations, and the percentage of
incorrect associations caused by countermeasures is 20% of all iterations in randomly
selected moments of time;

(3) ESM sensor declarations have a mass of 0.7 for the most credible identification and
0.3 for the identification of UNKNOWN (U).

Assumption (5) is not considered in this paper, assuming that the real object does not
change its real identity while performing the mission. Therefore, assumption (1) regarding
the scenario parameters becomes obsolete.

The following assumptions concerning the parameters of the scenario have been made
in this paper:

(1) the real value of identification is constant in each scenario and is equal to FRIEND (F)

in scenarios 1, 2, and 5 and HOSTILE (H) in scenarios 3, 4, and 6;
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(2) the above declarations are transmitted by sensor number 1 with the real identification
mass equal to 0.7 and the mass of complementary identification (UNKNOWN) equal
to 0.3;

(3) the second sensor transmits its declarations in accordance with Tables 2 and 3 for
scenarios 1 and 2 and in accordance with Tables 4 and 5 for scenarios 3 and 4.

Table 2. Belief mass values for the second sensor for scenarios 1 and 5.

Type of Identification F N H AF S u
Correct identification (80% of events) 0.6 0.1 0 0.2 0 0.1
Incorrect identification (20% of events) 0 0.1 0.6 0 0.2 0.1

Table 3. Belief mass values for the second sensor for scenario 2.

Type of Identification F N H AF S u
Correct identification (80% of events) 0.7 0.1 0 0.1 0 0.1
Incorrect identification (20% of events) 0 0.1 0.7 0 0.7 0.1

Table 4. Belief mass values for the second sensor for scenario 3.

Type of Identification F N H AF S u
Correct identification (80% of events) 0 0.1 0.6 0 0.2 0.1
Incorrect identification (20% of events) 0.6 0.1 0 0.2 0 0.1

Table 5. Belief mass values for the second sensor for scenarios 4 and 6.

Type of Identification F N H AF S u
Correct identification (80% of events) 0 0.1 0.7 0 0.1 0.1
Incorrect identification (20% of events) 0.7 0.1 0 0.1 0 0.1

It should be noted that scenario 2 differs from scenario 1 by a greater belief mass
assigned to an incorrect identification of the recognized emitter. Scenarios 3 and 4 are
similarly different.

Scenarios 1-6 for sensor 1 are presented in Figures 5 and 6. All deterministic scenarios
for sensor 2 are presented in Figures 7-10.
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Figure 5. The course of scenarios number 1, 2, and 5 for sensor 1.
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Figure 6. The course of scenarios number 3, 4, and 6 for sensor 1.
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Figure 7. The course of scenario number 1 for sensor 2.
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Figure 8. The course of scenario number 2 for sensor 2.
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This section is divided by subheadings. It provides a concise and precise description

of the experimental results, their interpretation, and the experimental conclusions that can
be drawn.
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Figure 9. The course of scenario number 3 for sensor 2.
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Figure 10. The course of scenario number 4 for sensor 2.

The paper also uses the Monte Carlo method for generating the scenario for sensor 2.
Moments in which incorrect identifications occurred are generated by the pseudorandom
integer number generator from the range [0, 100]. Examples of scenarios are shown in
Figures 11 and 12.
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Figure 11. The course of Monte Carlo scenario number 5 for sensor 2.
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Figure 12. The course of Monte Carlo scenario number 6 for sensor 2.

6.3. Calculation Results for Deterministic Scenarios

In all figures presenting the values of the resulting belief mass, the decision threshold
is marked with a horizontal line. An identification whose belief mass at a given moment is
above the decision threshold is the so-called hard decision.

6.3.1. Dempster’s Rule

Dempster’s rule is not resistant to a situation where the degree of conflict kg; = 1. This
means the total conflict between the mass vector sent by the sensor and the mass vector
of the information-fusion center, which occurs when each non-zero belief mass value sent
by the sensor corresponds to the zero belief mass value of the vector determined by the
information-fusion center and vice versa.

The simulation results of identification information fusion using Dempster’s rule are
presented for deterministic scenarios 1 and 3 in Figures 13 and 14, respectively. When
the degree of conflict kr; = 1, according to Equation (8), it is impossible to perform sensor
information fusion, i.e., it is impossible to determine the resulting BBA.
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Figure 13. The values of the resulting belief mass for scenario 1 and Dempster’s rule.

6.3.2. The PCR1 Rule

The simulation results of identification information fusion using the PCR1 rule for
deterministic scenarios 1, 2, 3, and 4 are presented in Figures 15-18, respectively.
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Figure 14. The values of the resulting belief mass for scenario 3 and Dempster’s rule.
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Figure 15. The values of the resulting belief mass for scenario 1 and the PCR1 rule.
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Figure 16. The values of the resulting belief mass for scenario 2 and the PCR1 rule.

o
©

o
=

e
=

o
=

mass value m(.)
o o
R o

e
1

o
I

=

o

80 100 120 160
time step

Figure 17. The values of the resulting belief mass for scenario 3 and the PCR1 rule.
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Figure 18. The values of the resulting belief mass for scenario 4 and the PCR1 rule.
6.3.3. The PCR3 Rule

The simulation results of identification information fusion using the PCR3 rule for
deterministic scenarios 1, 2, 3, and 4 are presented in Figures 19-22, respectively.
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Figure 19. The values of the resulting belief mass for scenario 1 and the PCR3 rule.
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Figure 20. The values of the resulting belief mass for scenario 2 and the PCR3 rule.
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Figure 21. The values of the resulting belief mass for scenario 3 and the PCR3 rule.
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Figure 22. The values of the resulting belief mass for scenario 4 and the PCR3 rule.
6.3.4. The PCR4 Rule

The simulation results of identification information fusion using the PCR4 rule for
deterministic scenarios 1, 2, 3, and 4 are presented in Figures 23-26, respectively.
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Figure 23. The values of the resulting belief mass for scenario 1 and the PCR4 rule.
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Figure 24. The values of the resulting belief mass for scenario 2 and the PCR4 rule.
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Figure 25. The values of the resulting belief mass for scenario 3 and the PCR4 rule.
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Figure 26. The values of the resulting belief mass for scenario 4 and the PCR4 rule.

6.3.5. The PCR5 Rule for 2 BBAs

The simulation results of identification information fusion using the PCR5 rule for two
BBAs for deterministic scenarios 1, 2, 3, and 4 are presented in Figures 27-30, respectively.
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Figure 27. The values of the resulting belief mass for scenario 1 and the PCR5 rule for 2 BBAs.
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Figure 28. The values of the resulting belief mass for scenario 2 and the PCR5 rule for 2 BBAs.
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Figure 29. The values of the resulting belief mass for scenario 3 and the PCR5 rule for 2 BBAs.
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Figure 30. The values of the resulting belief mass for scenario 4 and the PCR5 rule for 2 BBAs.

6.3.6. The PCR5 Rule for 3 BBAs

The simulation results of identification information fusion using the PCR5 rule for three BBAs
for deterministic scenarios 1, 2, 3, and 4 are presented in Figures 31-34, respectively.
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Figure 31. The values of the resulting belief mass for scenario 1 and the PCR5 rule for 3 BBAs.
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Figure 32. The values of the resulting belief mass for scenario 2 and the PCR5 rule for 3 BBAs.
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Figure 33. The values of the resulting belief mass for scenario 3 and the PCR5 rule for 3 BBAs.
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Figure 34. The values of the resulting belief mass for scenario 4 and the PCR5 rule for 3 BBAs.
6.3.7. The PCR6 Rule for 3 BBAs

The simulation results of identification information fusion using the PCR6 rule for three
BBAs for deterministic scenarios 1, 2, 3, and 4 are presented in Figures 35-38, respectively.
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Figure 35. The values of the resulting belief mass for scenario 1 and the PCR6 rule for 3 BBAs.
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Figure 36. The values of the resulting belief mass for scenario 2 and the PCR6 rule for 3 BBAs.
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Figure 37. The values of the resulting belief mass for scenario 3 and the PCR6 rule for 3 BBAs.
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Figure 38. The values of the resulting belief mass for scenario 4 and the PCR6 rule for 3 BBAs.

The presented results (Figures 13-38) yield the conclusion that the applied methods of
managing conflicts in information fusion enables correct conclusions to be drawn about
the real identification of the recognized object.

The application of the decision threshold for the belief mass at the level m, = 0.37 for
the PCR1 rule (Figures 15 and 17) and m, = 0.45 for PCR3, PCR4 (Figures 19, 21, 23 and 25),
and PCRS5 for two BBAs (Figures 27 and 29) for scenarios 1 and 3 allows for a proper
evaluation of the identification of the recognized object: scenario 1, FRIEND; scenario 3,
HOSTILE. For scenarios 2 and 4, the optimal thresholds are my = 0.4 for the PCR1 rule
(Figures 16 and 18) and m, = 0.48 for the PCR3, PCR4 (Figures 20, 22, 24 and 26), and
PCRS rules for two BBAs (Figures 28 and 30). When assessing the interval between the
minimum resultant mass for correct identification and the maximum resultant mass for
misidentification, the worst results are reached by the PCR1 rule, and the rules of PCR3,
PCR4, and PCR5 behave similarly and are better than rule PCRI1.

The research carried out for the deterministic scenarios shows that the PCR5 rule for
three BBAs and the PCR6 rule for three BBAs behave very similarly (Figures 31, 33, 35 and 37
for scenarios 1 and 3, m, = 0.37 and Figures 32, 34, 36 and 37 for scenarios 2 and 4, m, = 0.39).
They restore the correct identification after the occurrence of temporary misidentification
much faster than the rules PCR1-PCRS5 for two BBAs.

6.4. Calculation Results for the Monte Carlo Scenarios
6.4.1. Dempster’s Rule

In the Monte Carlo scenario, Dempster’s rule behaves similarly to a deterministic
scenario. It is not resistant to a situation where the degree of conflict kr; = 1. This means
that the total conflict between the mass vector sent by the sensor and the mass vector of
the information-fusion center, which occurs when each non-zero belief mass value sent
by the sensor corresponds to the zero belief mass value of the vector determined by the
information-fusion center and vice versa.

The simulation results of identification information fusion using Dempster’s rule are
presented for Monte Carlo scenarios 5 and 6 in Figures 39 and 40, respectively.
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Figure 39. The values of the resulting belief mass for Monte Carlo scenario 5 and Dempster’s rule.
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Figure 40. The values of the resulting belief mass for Monte Carlo scenario 6 and Dempster’s rule.
6.4.2. The PCR1 Rule

The simulation results of identification information fusion using the PCR1 rule for
Monte Carlo scenarios 5 and 6 are presented in Figures 41 and 42, respectively. The
application of the decision threshold for the belief mass at the level m, = 0.34 for the
PCR1 rule (Figures 41 and 42) for scenarios 5 and 6 allows for a proper evaluation of the
identification of the recognized object. There are only three time points when the rule
misidentifies due to increased misidentification intensity.
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Figure 41. The values of the resulting belief mass for Monte Carlo scenario 5 and the PCR1 rule.
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Figure 42. The values of the resulting belief mass for Monte Carlo scenario 6 and the PCR1 rule.
6.4.3. The PCR3 Rule

The simulation results of identification information fusion using the PCR3 rule for
Monte Carlo scenarios 5 and 6 are presented in Figures 43 and 44, respectively. The
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application of the decision threshold for the belief mass at the level m, = 0.42 for the
PCRS3 rule (Figures 43 and 44) for scenarios 5 and 6 allows for a proper evaluation of the
identification of the recognized object. There is only one time point for scenario 6 where
the rule misidentifies due to increased misidentification intensity.
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Figure 43. The values of the resulting belief mass for Monte Carlo scenario 5 and the PCR3 rule.
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Figure 44. The values of the resulting belief mass for Monte Carlo scenario 6 and the PCR3 rule.

6.4.4. The PCR4 Rule

The simulation results of identification information fusion using the PCR4 rule for
Monte Carlo scenarios 5 and 6 are presented in Figures 45 and 46, respectively. The
application of the decision threshold for the belief mass at the level m, = 0.47 for the
PCR4 rule (Figures 45 and 46) for scenarios 5 and 6 allows for a proper evaluation of the
identification of the recognized object.
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Figure 45. The values of the resulting belief mass for Monte Carlo scenario 5 and the PCR4 rule.
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Figure 46. The values of the resulting belief mass for Monte Carlo scenario 6 and the PCR4 rule.

6.4.5. The PCR5 Rule for 2 BBAs

The simulation results of identification information fusion using the PCR5 rule for two
BBAs for Monte Carlo scenarios 5 and 6 are presented in Figures 47 and 48, respectively.
The application of the decision threshold for the belief mass at the level m, = 0.47 for the
PCRS rule for two BBAs (Figures 47 and 48) for scenarios 5 and 6 allows for a proper
evaluation of the identification of the recognized object. There is only one time point for
scenario 6 where the rule misidentifies due to increased misidentification intensity.
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Figure 47. The values of the resulting belief mass for Monte Carlo scenario 5 and the PCR5 rule for
2 BBAs.
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Figure 48. The values of the resulting belief mass for Monte Carlo scenario 6 and the PCRS5 rule for
2 BBAs.

163



Remote Sens. 2023, 15, 3977

6.4.6. The PCR5 Rule for 3 BBAs

The simulation results of identification information fusion using the PCRS5 rule for
three BBAs for Monte Carlo scenarios 5 and 6 are presented in Figures 49 and 50, respec-
tively. The application of the decision threshold for the belief mass at the level m, = 0.39 for
the PCRS5 rule for three BBAs (Figures 49 and 50) for scenarios 5 and 6 allows for a proper
evaluation of the identification of the recognized object.
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Figure 49. The values of the resulting belief mass for Monte Carlo scenario 5 and the PCRS5 rule for
3 BBAs.

mass value m(.)

e o
= o

n

i
0 20 40 60 B8O 100 120 140 160 180 200
time step

Figure 50. The values of the resulting belief mass for Monte Carlo scenario 6 and the PCR5 rule for
3 BBAs.

6.4.7. The PCR6 Rule for 3 BBAs

The simulation results of identification information fusion using the PCR6 rule for
three BBAs for Monte Carlo scenarios 5 and 6 are presented in Figures 51 and 52. The
application of the decision threshold for the belief mass at the level m1, = 0.39 for the PCR6
rule for three BBAs (Figures 51 and 52) for scenarios 5 and 6 allows for a proper evaluation
of the identification of the recognized object.
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Figure 51. The values of the resulting belief mass for Monte Carlo scenario 5 and the PCR6 rule for
3 BBAs.
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Figure 52. The values of the resulting belief mass for Monte Carlo scenario 6 and the PCR6 rule for
3 BBAs.

The presented results show that due to the high intensity of sending reports with
incorrect identifications in the middle part of the scenarios, the information-fusion rules
(apart from the PCR4, PCR5, and PCR6 rules) determine the maximum resulting mass for
incorrect identification. The PCRS5 for three BBAs and PCR6 for three BBAs rules are the
fastest to restore the correct identification after receiving several incorrect reports.

7. Numerical Experiments of Fusion of Identification Information from ESM Sensors
and Radars

7.1. General Research Scheme of Fusion of Identification Information from Radars and
ESM Sensors

Figure 53 shows a general scheme of simulation experiments, which indicates the
places of description of individual models.

Simulation
scenario
generator for ESM sensor
electronic reports
situation tracking
by ESM sensors Identification
described in information
Section 5 fusion
carried out in
accordance with
Simulation one of the PCR
scenario rules described in
generator for air Section 3
situation tracking Radar
by combined reports
radars described
in Section 4

Figure 53. The general diagram of simulation experiments of fusion of identification information
from radars and ESM sensors.
7.2. Numerical Experiments Scenarios

We assume that we will combine attribute information from two sensors: a combined
primary and secondary surveillance radar and ESM sensor. These sensors work asyn-
chronously. Upon receipt of the sensor’s declaration in the form of a vector of masses,
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we fuse this vector with the vector of the actual values of the declaration masses for the
fuser’s frame of discernment. The frequency of transmission of the sensor declarations
depends on the rules of the data exchange network and on the technical characteristics of
the sensors. Various combination methods are presented in [3,4]. This paper used two of
the methods of proportional redistribution conflict (PRC5 and PCR6 [6,22]). Information
fusion has been simulated for two processing schemes (Figures 2 and 3). The numerical
model of combined primary and secondary surveillance radars was taken from [17,23].
It allows for the determination of the probability P; during the simulation of the object’s
movement, i.e., the change in the object’s position relative to the radar. Detailed rules
for determining BBAs’ vectors, assuming the knowledge of probabilities P; and Pjrr, are
presented in Section 4.
Numerical experiments have been performed for the following data:

e for combined primary and secondary surveillance radars sensor:
Pfy=107%, R}ype= 100 [km], Pj= 0.7, 07 =2 {mz}, Pypp = 0.962
and the following table of masses (compare Table 6):

Table 6. Transformation of the base belief assignment mass into the secondary belief assignment
mass for combined primary and secondary surveillance radar.

(Scenario Nr, Base Identification) — (1,Fp) (2,Np) (3,Hp)
Fs 0.8 0 0
Ng 0 0.5 0
Hg 0 0 0.7
AF 0.2 0.3 0
S 0 0.2 0.3

The flight path of the air object was 30 km away from the sensor (in the horizontal
plane), the flight altitude was 1 km, and the radar cross-section was 1 m?.

The following assumptions concerning the parameters of the scenario for the ESM
sensor were made in this paper:

(1) The real value of identification is constant in each scenario and is equal to FRIEND
(F) in the first scenario and HOSTILE (H) in the second scenario;

(2) The above declarations are transmitted by sensor number 1 with the real identifica-
tion mass equal to 0.7 and the mass of complementary identification (UNKNOWN) equal
to 0.3;

(3) The second sensor shall transmit its declarations in accordance with Tables 1 and 2
for scenarios 1 and 2, respectively, and with Tables 3 and 4 for scenarios 3 and 4, respectively.

Tables 7-12 present the mass values for all possible declarations for the six scenarios
for the ESM sensor.

Table 7. Belief mass values for the second sensor (ESM) for scenario 1.

Type of Identification F N H AF S u
Correct identification (80% of events) 0.6 0.1 0 0.2 0 0.1
Incorrect identification (20% of events) 0 0.1 0.6 0 0.2 0.1

Table 8. Belief mass values for the second sensor (ESM) for scenario 2.

Type of Identification F N H AF S u
Correct identification (80% of events) 0 0.5 0.3 0 0.2 0
Incorrect identification (20% of events) 0 04 0.2 0 0.3 0.1

166



Remote Sens. 2023, 15, 3977

Table 9. Belief mass values for the second sensor (ESM) for scenario 3.

Type of Identification F N H AF S u
Correct identification (80% of events) 0 0.1 0.7 0 0.1 0.1
Incorrect identification (20% of events) 0 0.1 0.6 0 0.2 0.1

Table 10. Belief mass values for the second sensor (ESM) for scenario 4.

Type of Identification F N H AF S u
Correct identification (80% of events) 0.1 0.7 0.1 0 0 0.1
Incorrect identification (20% of events) 0 0.1 0.6 0 0.2 0.1

Table 11. Belief mass values for the second sensor (ESM) for scenario 5.

Type of Identification F N H AF S u
Correct identification (80% of events) 0.6 0.1 0 0.2 0 0.1
Incorrect identification (20% of events) 0 0.1 0.6 0 0.2 0.1

Table 12. Belief mass values for the second sensor (ESM) for scenario 6.

Type of Identification F N H AF S u
Correct identification (80% of events) 0.1 0.7 0.1 0 0 0.1
Incorrect identification (20% of events) 0.6 0.1 0 0.2 0 0.1

Scenarios 1-6 for sensor 1 are presented in Figures 54-56. All deterministic scenarios
for sensor 2 are presented in Figures 57-62.
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Figure 54. The course of scenarios number 1 and 4 for sensor 1.
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Figure 55. The course of scenarios number 2 and 5 for sensor 1.
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Figure 57. The course of scenario number 1 for sensor 2.
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Figure 58. The course of scenario number 2 for sensor 2.
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Figure 59. The course of scenario number 3 for sensor 2.
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Figure 60. The course of scenario number 4 for sensor 2.
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Figure 61. The course of scenario number 5 for sensor 2.
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Figure 62. The course of scenario number 6 for sensor 2.
Scenarios 1-3 assume relatively small changes in the mass of all declarations. Scenarios 1-3

assume significant changes in the credibility mass of all declarations (small errors). Scenarios 4-6
assume significant changes in the mass of all declarations (large errors).

7.3. Calculation Results for Four Proportional Conflict Redistribution Rules
7.3.1. The PCR5 Rule for 2 BBAs

The simulation results of identification information fusion using the PCR5 rule for
two BBAs for deterministic scenarios 1-6 are presented in Figures 63—68.
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Figure 63. The values of the resulting belief mass for scenario 1 and the PCR5 rule for 2 BBAs.
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Figure 64. The values of the resulting belief mass for scenario 2 and the PCR5 rule for 2 BBAs.
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Figure 65. The values of the resulting belief mass for scenario 3 and the PCR5 rule for 2 BBAs.
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Figure 66. The values of the resulting belief mass for scenario 4 and the PCR5 rule for 2 BBAs.
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Figure 67. The values of the resulting belief mass for scenario 5 and the PCR5 rule for 2 BBAs.
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Figure 68. The values of the resulting belief mass for scenario 6 and the PCR5 rule for 2 BBAs.

For the PCR5 rule for two BBAs, the application of the decision thresholds at the belief
mass level m, = 0.40 for scenario 4, m, = 0.36 for scenario 5, and m, = 0.5 for scenario

6 allows for a proper evaluation of the identification of the recognized object for most
time moments.

7.3.2. The PCR5 Rule for 3 BBAs

The simulation results of identification information fusion using the PCR5 rule for
three BBAs for deterministic scenarios 1-6 are presented in Figures 69-74.
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Figure 69. The values of the resulting belief mass for scenario 1 and the PCR5 rule for 3 BBAs.

171



Remote Sens. 2023, 15, 3977

—&— Unknown
0.9 —+— Friend
Neutral
0.8 —&— Hostile
Assumed Friend
0.7 —2£— Suspect

|

Wy W w v WYY Wy

mass value m(.)
o
o

0 20 40 60 80 100 120 140 160 180 200
time step

Figure 70. The values of the resulting belief mass for scenario 2 and the PCR5 rule for 3 BBAs.
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Figure 71. The values of the resulting belief mass for scenario 3 and the PCR5 rule for 3 BBAs.
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Figure 72. The values of the resulting belief mass for scenario 4 and the PCR5 rule for 3 BBAs.
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Figure 73. The values of the resulting belief mass for scenario 5 and the PCR5 rule for 3 BBAs.
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Figure 74. The values of the resulting belief mass for scenario 6 and the PCR5 rule for 3 BBAs.

For the PCR5 rule for three BBAs, the application of the decision thresholds at the

belief mass level m, = 0.42 for scenario 4 allows for a proper evaluation of the identification
of the recognized object.

For the PCR5 rule for three BBAs, the application of the decision thresholds at the
belief mass level m, = 0.37 for scenarios 5 and 6 allows for a proper evaluation of the
identification of the recognized object for most time moments.

7.3.3. The PCR6 Rule for 3 BBAs

The simulation results of identification information fusion using the PCR6 rule for
three BBAs for deterministic scenarios 1-6 are presented in Figures 75-80.
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Figure 75. The values of the resulting belief mass for scenario 1 and the PCR6 rule for 3 BBAs.
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Figure 76. The values of the resulting belief mass for scenario 2 and the PCR6 rule for 3 BBAs.
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Figure 77. The values of the resulting belief mass for scenario 3 and the PCR6 rule for 3 BBAs.
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Figure 78. The values of the resulting belief mass for scenario 4 and the PCR6 rule for 3 BBAs.
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Figure 79. The values of the resulting belief mass for scenario 5 and the PCR6 rule for 3 BBAs.
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Figure 80. The values of the resulting belief mass for scenario 6 and the PCR6 rule for 3 BBAs.
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For the PCR6 rule for three BBAs, the application of the decision thresholds at the
belief mass level m, = 0.45 for scenario 4 allows for a proper evaluation of the identification
of the recognized object.

For the PCR6 rule for three BBAs, the application of the decision thresholds at the
belief mass level m, = 0.35 for scenario 5 and m1, = 0.4 for scenario 6 allows for a proper
evaluation of the identification of the recognized object for most time moments.

Comparing Figures 66-68 with Figures 72-74 and 78-80, conclusion can be drawn
that the PCRS for three BBAs and PCR6 for three BBAs rules provide more stable results
of combined belief masses (smaller amplitude of changes). Due to the large dispersion
of belief mass changes for scenarios 5 and 6, it is not possible to correctly evaluate the
identification of the recognized object for all time moments.

The presented results (Figures 61-78) allow a conclusion to be drawn that the applied
methods of removing conflicts in information fusion enables the correct conclusions to be
drawn about the real identification of the recognized object.

8. Conclusions

The proposed basic belief assignment model for ESM sensors and radars can be used
to build identification information-fusion systems. Models conformable to STANAG 1241
have primary practical significance.

Due to the assumption of conflicts between the ESM sensor declarations in this work,
Dezert-Smarandache theory is used to determine the basic belief assignment of decla-
rations as a product of the process of fusion of identification information sent by these
sensors. Supplementing standard reports on the detected signals with random identifi-
cation declarations allows the use of methods of identification information fusion in the
information-fusion center. The test results confirm the full usefulness of conflict redistribu-
tion rules in reports from ESM sensors developed as a part of Dezert-Smarandache theory,
with the best results presented for the PCR5 and PCR6 rule.

The basic belief assignment model for ESM sensors and for combined primary and
secondary radars [17] can be applied to build models of different identification data-fusion
systems. All the models compatible with STANAG 1241 have primary practical significance
as it contains definitions corresponding to intersections of basic identification declarations.
Therefore, the paper uses Dezert-Smarandache theory for the calculation of the basic
belief assignment.

The conducted research showed that the best results were obtained for the PCR6 rule
when reports from three sources (from two sensors and the fusion-system database) were
processed simultaneously. This corresponds to the synchronous processing of reports and
involves delayed processing of a report from one of the sources. The research confirmed a
slight advantage of the PCR6 rule over the PCRS5 rule. This was mainly the case when the
sensors sent information with a high degree of conflict.
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Abstract: In the framework of massive sensing and smart sustainable cities, this work presents an
urban distributed acoustic sensing testbed in the vicinity of the School of Technology and Telecommu-
nication Engineering of the University of Granada, Spain. After positioning the sensing technology
and the state of the art of similar existing approaches, the results of the monitoring experiment are
described. Details of the sensing scenario, basic types of events automatically distinguishable, initial
noise removal actions and frequency and signal complexity analysis are provided. The experiment,
used as a proof-of-concept, shows the enormous potential of the sensing technology to generate
data-driven urban mobility models. In order to support this fact, examples of preliminary density
of traffic analysis and average speed calculation for buses, cars and pedestrians in the testbed’s
neighborhood are exposed, together with the accidental presence of a local earthquake. Challenges,
benefits and future research directions of this sensing technology are pointed out.

Keywords: distributed acoustic sensing; urban mobility patterns; optical fiber; smart cities; massive
sensing

1. Introduction

The UN’s Sustainable Development Goals Report for 2022 [1] includes the analysis
of Goal 11 devoted to sustainable cities and communities stating that 99% of world’s
urban population breathe polluted air and, depending on the region of the world, few city
dwellers have convenient access to public transportation. In addition, often public spaces
in congested urban areas play a vital role in social and economic life, but are not widely
accessible. The first step to improve actual conditions in cities is learning realistic models
of their present mobility patterns usable to monitor urban settlements, implement smart
traffic management tools, and create sustainable smart mobility plans.

The paradigms of smart cities [2-4] and multimodal remote sensing [5,6] provide very
useful tools to obtain data transformable into knowledge, to face the challenges stated.
Massive amounts of data with very diverse formats and origins are analyzed using auto-
matic signal processing and Big Data approaches combined to understand what happens
and provide directions of change and improvement. Regarding the analysis of urban traffic,
approaches from the massive data retrieval and pattern extraction based on artificial intelli-
gence tools [7,8], traffic prediction models [9,10], to digital-twin based strategies [11,12] are
oriented to modify urban traffic once analyzed.

There is a wide range of sensing technologies that contribute to the monitoring of
urban traffic like, e.g., unmanned aerial vehicles [13], crowd-sensing of users” mobile
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phones [14], traffic cameras [15], vehicles GPS [16], or satellite images [17]. The Internet of
Vehicles (IoV) approach [18] provides vehicles with smart devices such as wireless sensors,
onboard computers, GPS antennas, radar, etc., to collect and process large amounts of data
while enabling information interaction between vehicles.

In this multi-modal urban sensing scenario, the usage of communication optical fibers
as sensors to monitor mobility patterns has gained great interest. Distributed acoustic sens-
ing [19,20] is an emergent sensing technology based on the Rayleigh scattering phenomenon
occurring in an optical fiber when an interrogation light-wave faces its inhomogeneities.
Depending on the fiber’s refraction index, part of the incoming light-wave is backscattered
towards the interrogator and can be analyzed. If a local perturbation occurs along the
fiber (e.g., vibrations or changes in the fiber’s strain or temperature produced by moving
stimuli), its refraction index will change locally providing a proportional change in the
properties of the backscattered light-wave coming from the spatial point where the per-
turbation occurred. This capability of demodulating the magnitude and location of the
stimuli affecting the fiber, converts fibers into arrays of sensors adopting the concept of
distributed sensing versus traditional point sensors. Vibrations and strain or temperature
perturbations in the bandwidth of acoustic signals (up to the MHz regime) occurring along
the fiber are registered.

1.1. Distributed Acoustic Sensing and Urban Traffic Monitoring Overview

Perturbations along the fiber modulate the backscattered light-wave that travels back
to the interrogator. Once received, the stimuli demodulation can be performed in the
time domain, receiving the name of Optical Time-Domain Reflectometry (OTDR). Con-
ventional OTDR has been widely used to monitor static processes like fiber attenuation
for fault detection in telecommunication cables. However, it is not suitable to detect local
dynamic changes in the fiber refraction index, as expected in the distributed acoustic sens-
ing. For such a purpose, several approximations based on the analysis of the phase of the
backscattered light-wave have been proposed [21]. Coherent phase-OTDR [22,23] is based on
the complete phase recovery of the interferometry signal provided by optical mixing of the
backscattered and reference lights. It provides accurate dynamic measurements of strain at
the cost of high system complexity (requisite of laser coherence) and contestable long-term
stability. Phase-sensitive OTDR [24] is a simpler direct detection approach based only on
intensity variations of the interferometry signal, opposite to the phase recovery needed in
the coherent detection formulation. As a drawback, intensity variations of the interferom-
etry signal do not show linear dependence with the perturbation applied. Perturbations
are detected, but their quantification can only be achieved through a frequency sweep of
consecutive probe pulses representing an increase of the measurement time and complexity.
Chirped-pulse phase-sensitive OTDR (CP-®OTDR), mathematically formalized and demon-
strated in 2016 [21,25], preserves the direct detection advantages of Phase-sensitive OTDR,
avoiding the time-consuming frequency sweep needed. Consecutive interrogations are
substituted by a single probe pulse with a linear chirp. If the chirp-induced spectral content
is much larger than the pulse transform-limited bandwidth, the linear relationship between
the time-domain signal and its spectrum allows for the mapping of perturbation-induced
spectral shifts in the trace into local temporal trace delays. Then, the empirical mapping
of trace delays and ongoing changes of its group refractive index [26] serves to quantify
dynamic local perturbations along the fiber expected in distributed acoustic sensing.

The sensing possibilities of the distributed acoustic sensing (DAS) technology are used
in a wide range of application fields like active seismology and vertical seismic profiles gen-
eration [27], gas or petroleum deposits detection [28], ambient noise interferometries of the
Earth’s surface [29], passive seismic and volcano-seismic monitoring [30-32], security and
perimeters surveillance [33], or big infrastructures health monitoring [34], among others.

In the scope of urban traffic monitoring, the usage of DAS has experienced an im-
portant growth in the last years. Its longer monitoring range compared to the spatial
sparseness of point sensors due to their higher costs of installation and maintenance, its

178



Remote Sens. 2023, 15, 3282

higher sampling rate compared to GPS or mobile phones, and its independence of weather
conditions together with its preservation of anonymity, have made it an attractive option.
Table 1 shows the most recent representative approaches of DAS for monitoring moving
vehicles and pedestrians. Detection, counting, measuring speed and other traffic flow
parameters are common objectives of all works. Signal processing is a key challenge for
several reasons: the backscattered ray-trace has low SNR and many events are spatially and
temporally overlapped, there are many sources of noise present in the sensing scenarios,
and the sensing capacity is very much dependent on the characteristic of the materials
solidary to the fiber among others. Frequency analysis and denoising strategies are com-
mon approaches. Supervised /unsupervised machine learning approximations are being
proposed in the last few years. A new approach will be introduced in our algorithm in

order to improve the performance of the system.

Table 1. Traffic monitoring through DAS approaches.

Reference

Objective

Signal Processing

Sensing Scenario

patent, 2016, [35]

vehicles detection, traffic
flow, speed
measurements

[-]

(-]

journal, 2018, [36]

vehicle detection and
counting, speed
estimation

wavelet-threshold
denoising and dual
threshold detection.

200 m. road in the
NanShan Iron mine
(China) during
seismic trial

congress, 2019, [37]

average speed, flow rate,
queue detection,
congestion detection,
journey times, traffic
count

[l

(-]

journal, 2020, [38]

signatures of floats,
bands, motorcycles

detrending, filtering,
noise removal,
frequency analysis

2.5 km of fiber
underneath the Rose
Parade route,
Pasadena(USA)

congress, 2020, [39]

detect pedestrian
footstep

convolutional neural
network

5km Pennsylvania State
University campus

journal, 2020, [40]

vehicle detection and

classification, vehicle
count, speed
measurement

wavelet denoising,
dual-threshold detection,
feature extraction,
vehicle classification
with SVM

320 m. campus road of
Beijing Jiaotong
University (China)

journal, 2020, [41]

vehicle detection,
counting and
characterization

frequency analysis,
template matching

4 km. Telecom. cable
running through Palo
Alto, CA, leased from
Stanford University IT

Services (USA)

journal, 2020, [42]

human locomotion
detection (walking,
running, different shoes)

frequency analysis,
shallow and deep
Neural Networks

15-m-long hallway.

journal, 2021, [43]

vehicle counting, traffic
volume, average speed

detrending, filtering,
noise removal,
frequency analysis

37 km.
Caltech-Pasadena City
DAS array (USA).

conference, 2021, [44]

estimation of individual
simultaneous vehicles
velocity in multiple
lane roads

frequency domain
MUSIC beamforming

commercial telecom.
cable parallel to a main
road in Toulon(France).

journal, 2022, [45]

speed and volume
estimate of traffic flow

frequency analysis, F-K
filtering for noise
removal

50 km. of telecom. cable
inside the city of
Hangzhou (China).

journal, 2022, [46]

counting and velocity
estimation for individual
vehicles in challenging
scenarios without
spatial/temporal
separation

self-supervised
deconvolution
autoencoder

14 km. commercial
telecomm. along a main
road connecting
Alba-la-Romaine,
Saint-Thomé,
and Valvigneres
(France).

179



Remote Sens. 2023, 15, 3282

1.2. Contributions of This Work

In the general technology framework presented, this work describes a distributed
acoustic sensing experiment deployed in the vicinity of the School of Techonology and
Telecommunication Engineering of the University of Granada, Spain. For several months
the mobility activity around the building has been recorded to explore the capacities of
DAS to extract urban mobility patterns. The contributions we present and the rest of the
work are organized as follows:

i.  Animplementation of the DAS technology in an urban environment with a wide vari-
ety of dynamic mobility patterns is presented. Section 2.1 describes the testbed used.

ii. The signal processing needed, the different types of mobile elements sensed and
feature extraction possibilities are exposed in Sections 2.2-2.4, respectively.

iii. Example applications derived from the processing of information obtained are shown
in Section 3 followed by a reflection about this sensing approach and its possibilities
and applications in Section 4.

2. Materials and Methods

The experiment described in this section lasted from the September 2022 until the
20 January 2023. Its main objective has been exploring the technology and obtaining
preliminary strategy conclusions applicable to further sensing campaigns.

2.1. Testbed Description and Calibration Process

A dark fiber double-loop was buried for the specific sensing objective around the
School of Technology and Telecommunication Engineering of the University of Granada,
Spain (ETSIIT). A High-Fidelity Distributed Acoustic Sensor based on the CP-®OTDR
technology ([21]) manufactured by the Spanish company Aragén Photonics™ has been
used. The sensor has a 1 n strain sensitivity, 6 m minimum spatial resolution (gauge length)
and up to 70 km reach. The setup provides strain-type data on near a kilometer of fiber,
with 10 m spatial sampling and 250 Hz temporal sampling.

Figure 1 shows the triangle-shaped outer fiber loop comprising 2 streets of 140 and
170 m of length (red and blue double arrows), a concrete wall of 140 m of length (yellow
double arrow), and an internal loop of 220 m (green oval arrow) surrounding a garden and
two prefabricated lecture rooms. The fiber is always buried except for concrete wall section
on which the fiber is uncovered, solidary to the wall for research purposes. Sampling
points (P1-P32 and M1-M20) are depicted as a result of a calibration process carried our
before monitoring activities. The sensor registers strain variations in the fiber resulting
from stimuli like pedestrians, public or private buses, cars, bicycles, etc. These data are
pre-processed for noise removal (see Section 2.2). Monitored strain registers can be directly
processed or converted into 2D energy maps, commonly known as energy waterfalls, used
as input to potential automatic labeling or classification systems.

Figure 2 shows the energy waterfall corresponding to the sensing circuit depicted in
Figure 1 for 25 min. The X-axis represents time, while the Y-axis represents the spatial
points of the extended double loop of the fiber. The color scale represents the strain’s
energy on each spatial point along time. The colored double arrows on the sides of the
waterfall indicate the portions of the school perimeter corresponding to each part of the
Y-axis in the waterfall. It is notable that the internal loop sensing the inside garden suffers
a kind of mechanical superconductivity. High energy appears simultaneously on many
spatial points, connected to the existence of a mobile event in other region of the waterfall.
This might be due to the existence of a deep concrete platform on top of which the garden
and prefabricated lecture rooms were located. This simultaneous energy transmission
becomes an specially challenging overlapping noise for sensing points M1-M20 . Energy
footprints related to events occurring in the inside garden are overlapped with useless
mechanical conduction footprints related to activity in other areas. The criterion used to
distinguish real mobility activity in the area from mechanical energy superconductivity
is that while the first one will present a certain small slope (space will be gone through
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in a certain time), the former one will occur simultaneously in spatial positions separated
from each other (that is, footprints would have somewhat infinite slope). Automatic event
detection approaches applied to the registers for counting applications (see Section 3) will
face this difficulty with the help of template matching strategies that favor real plausible
slope values.

dikafaellGomez Mont;
ALLLE. P C. Periodista Rafae| Gg
U 2 ael Gomez Mont
L]

C:)Periodj: .i
s () P3 pglfta'Rafaﬂ Gomﬁez M
-

Figure 1. Google Map™ view of sensing testbed installed in the Telecommunication and Computer
Science Engineering School of the University of Granada, Spain. Sensing points calibrated in the fiber
with spacial resolution of 10 m are depicted. Red markpoints correspond to the internal fiber ring,
while blue markpoints correspond to the external fiber ring. Four sensing areas are differentiated:
Periodista Rafael Gbmez Mont street (red arrows), Periodista Daniel Saucedo Aranda street (blue
arrows), internal gardens of the School (green ellipsoid) and concrete wall in a side of the School
perimeter (yellow arrows). Sensing points P1 and P10 are the respective entrances/exits of a surface
and underground parking.
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Figure 2. Example of energy waterfall of 25 min for the fiber deployment described in Figure 1.
All sensing points are depicted in the Y-axis, with the side color arrows indicating the spatial area
corresponding to each segment of the Y-axis.

2.2. Signal Processing

DAS technology has several sources of noise due to optical noises and ground-to-fiber
transfer effects, dependent on the fiber and characteristics and coupling [47]. In addition,
backscattered traces are low power signals. For these reasons, denoising approaches are
important to achieve quality SNRs. Added to these challenges, the occurrence of time
and space overlapped stimuli is other source of noise that can mask the mobile events
searched for. Our work presents a preliminary common denoising strategy devoted to
the acquisition of a baseline database of mobility patterns usable in further applications.
Approaches based on machine learning like [48] are considered for future implementations.
Figure 3 shows the four denoising steps followed proposed by the sensor manufacturer
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Aragon Photonics: signal thresholding is carried out to compensate for spurious strain
peaks based on the study of cumulative values. Then, signal variations are compared to
those of a reference portion of the fiber without stimuli. For this purpose, the output of two
consecutive median and mean filters applied to the reference strain is subtracted, obtaining
the strain variation Ae signal used in the analysis. Finally, using an iterative process on
both time and space dimension, temporal and spatial discontinuities are smoothed, again
making use of a median filter.

Variations compared ) . .

Spureous _peaks to non-stimulated 3 Wmdow—based_ 3 Wlndow—base_d spatial

correction temporal smoothing smoothing
reference fiber

A 4

Figure 3. Steps for baseline noise reduction in strain registers.

Once the denoising step has been completed, a frequency analysis is performed. When
a moving event approaches a given sensing point, there are two simultaneous effects
taking place [43,46]. First there is a low-frequency (<3 Hz.) quasi-static deformation of
the subsurface due its weight pressing down on the road/ground. Such deformation is
transferred to the fiber leading to a strain of measurable amplitude, traveling at the speed
of the mobile event and more easily localized in time. Secondly, the interaction between the
vehicle tires /pedestrian and the road/ground generates high frequency (>3 Hz.) surface
waves that travel away from the source point at seismic speeds usable in interferometry
analysis. We have performed the reported two bands analysis during the experiments. Its
results will be shown in Sections 2.3 and 2.4.

2.3. Types of Events Registered

The School of Technology and Telecommunication Engineering is located in the north-
west of the city of Granada, relatively close a communication hub connecting the inner
city to a several of highways around it. It is inserted in the middle of a neighborhood with
buildings of homes. Public urban bus n° 9 goes through street Periodista Rafael Gémez
Montero (see Figure 1). Mobility patterns of workers and students relating to the School
have been continuously registered during the experiment together with those of the people
living in the area or traveling through it. There are footprints of different types of vehicles
interacting among them or with pedestrians often also monitored entering or exiting bus
n° 9. Under a first approach, we have distinguished three basic types of events: buses,
cars and pedestrians, with the objective of performing automatic detection and counting
and creating a master database with labeled examples. Such a baseline database will
permit further machine learning probabilistic approaches to find data classifiable as similar
or different types of events, mixtures of them, out-of-distribution events, etc. Figure 4
shows three example representations of the footprint registered for a bus (Figure 4a), a car
(Figure 4b) and a pedestrian (Figure 4c) moving parallel to the fiber in the testbed deployed.
Their waterfalls, corresponding strain variation matrices along time and space and the
spatially-averaged frequency spectrograms for the same footprints are depicted. Figures
show that buses have higher energy due their higher weight producing higher strain
variations. A basic speed calculation based on the slope of the footprint (space divided by
time) shows that, as expected, the bus and the car have higher speeds than the pedestrian.
Spatial-average power spectral densities suggest different frequency contents for the three
types events that are further analyzed.
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Figure 4. Example visualizations of the canonic events detected in the monitoring testbed (bus, car
and pedestrian). (a) Energy waterfall, strain variation and spatial-average power spectral density
for a canonic bus example. (b) Energy waterfall, strain variation and spatial-average power spectral
density for a canonic car example. (c) Energy waterfall, strain variation and spatial-average power
spectral density for a canonic pedestrian example.

Figure 5 depicts the distribution of the frequencies with maximum energy for a small
database of buses, cars and pedestrians registered in the testbed. The analysis is performed
for the whole band of frequencies involved in the activity (from 0.1 Hz to 30 Hz) in the
left column subfigure, for the quasi-static band of activity (band 0.1-5 Hz) in the central

subfigure, and the high-frequency band (5 to 20 Hz) originated by the surface waves.

Buses show a higher content of frequencies around 10 Hz that are not that present in
cars nor pedestrians which generate very little surface waves. The low frequency band
(center subfigure) often used because its simpler analysis and time location, might not
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be the optimal band when distinguishing different types of events. Analyzing the whole
band provides more discriminative differences between events at the price of introducing
some noise.
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Figure 5. Histograms of the frequency with highest energy for the three baseline events analyzed.
Three frequency bands are studied: complete band from 0.1 Hz to 30 Hz (left), quasi-static band from
0.1 to 5 Hz (center) and high frequency band 5Hz to 20 Hz (right).

2.4. Characterization of the Events

There are several approximations to study the strain-variation time series registered.
A possible analysis might include feature extraction, combination and measurement of their
discriminative potential, and their contribution to the interpretability of the data. Otherwise,
in the framework of Information Theory, many approaches focus on the complexity of the
time series searching for information contents from a mathematical viewpoint without
semantic analysis. In this framework, complexity is a magnitude widely used to quantify
the intricacy of a time series allowing choice of the forecasting methods to be applied [49].
The higher the complexity, the more information provided by the time series. That is,
complexity is low in regular time series and grows in chaotic ones. There are several
methods to measure complexity, Shannon Entropy [50] being a very commonly used
one. In recent literature, several other measures have been developed to quantify the
changes in complexity for biological signals [51] like electroencephalograms (EEG) [52],
electrocardiograms (ECG) [53,54] or magnetoencephalograms (MEG) [55]. Biological time
series of a healthy person are more regular than those of a diseased person that become
more complex. The same approximation is used in the fault diagnosis in machinery [56] or
in financial time series analysis [57].

In the context of our proposal and due the nature of the signals, events generating
strain variations in the fiber’s backscattered light (cars, buses or pedestrians passing by)
will produce changes in the complexity measures. Based on this hypothesis, approximate
entropy [58] (see Figure 6) and Hjorth parameters [59] (see Figures 7 and 8) are analyzed
by searching for their potential for mobile events discrimination and characterization.
The well-known Hjorth parameters of activity, mobility and complexity, transversely used
in all mentioned disciplines, are added to amplify the statistical information in the analysis.

Approximate entropy is calculated in the time domain. It measures the matches of a
pattern along the signal, calculating then the logarithmic frequency of repeatable patterns.
Time series containing many repetitive patterns have relatively small approximate entropy
values (the time series is more regular), while more chaotic or complex processes show
higher values. Hjorth parameters, although calculated in the time domain, also provide
meaning in the frequency domain. Activity gives a measure of the squared standard
deviation of the amplitude of the signal, being high if higher frequencies are present;
mobility is obtained as the square root of variance of the first derivative of the signal
divided by its variance. Complexity, defined as the ratio between the mobility of the first
derivative and the mobility of the signal, indicates how the shape of a signal is similar to
a pure sine wave providing an estimation of its bandwidth. Adapting window sizes to
frequency bands and possible range of events duration, complexity measures have been
analyzed for two frequency bands (0.1-2 Hz and 5-20 Hz) following the hypothesis of
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the different activity and events discriminability pointed out in Section 2.2. The result
of the analysis is shown for the same strain variation segment in Figures 6-8. Several
events detected have been indicated with different color arrows, with gray, orange and red
indicating the corresponding presence of a bus, a car or a pedestrian.

Results show the interesting potential of approximate entropy and Hjorth activity to
highlight the presence of a mobile event, removing noise in the strain variation matrices to
perform more accurate event detection. Exact event timing, important for applications like
event’s velocity calculation, can be improved through these parameters. Hjorth’s mobility

and complexity show a certain presence especially in the band 0.1-2 Hz that is under
analysis for a better usage.
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Figure 6. Events detected in a segment of DAS register pointed at with red, yellow and gray arrows
indicating the presence of pedestrian, car or bus, respectively. (a) shows strain variations and

approximate entropy in the band 0.1-2 Hz. (b) shows strain variations and approximate entropy in
the band from 5-20 Hz.
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Figure 7. Events detected in a segment of DAS register pointed at with red, yellow and gray arrows
indicating the presence of pedestrian, car or bus, respectively. Strain-variation file segment processed
in the band 0.1-2 Hz. Corresponding Hjorth parameters.
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Figure 8. Events detected in a segment of DAS register pointed at with red, yellow and gray arrows
indicating the presence of pedestrian, car or bus, respectively. Strain-variation file segment processed
in the band 5-20 Hz. Corresponding Hjorth parameters.
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3. Results

This section points out potential applications of the DAS monitoring to extract relevant
information for data-driven mobility models. Its objective is to show the flavors of what
can be accomplished with a deeper analysis of the data obtained. Data monitored in the
period from December 2022 to January 2023 have been analyzed and used as example.

3.1. Example of Mobility Changes on New Year’s Eve

Continuous monitoring was carried during the evening and night of the 31st of
December on New Years eve. Figure Al in Appendix A shows four example waterfalls
of one hour of duration at different times (31 December at 4:00 pm, 9:00 pm and 11:00
pm, and 1 January at 00:00 am). It can be seen that different traffic densities are observed
at different times of the day. The last two subfigures show anthropologically interesting
information about human behaviors on New Year’s Eve. Urban traffic is especially low from
the 31 December at 11:00 pm until approximately 1 January at 00:30. Then, many cars start
moving during the whole night. This information is highly compatible with the Spanish
tradition of welcoming the new year inside homes with family or friends (eating 12 grapes
together at exactly 1 January at 00:00) and going out to celebrate afterwards. Figure 9
provides the automatic counting of buses, cars and pedestrians during the mentioned 24 h.
The counting has been performed using an image processing multiple template-matching
approach over the waterfall images [60]. It is remarkable that the number of cars in the one
hour gap starting at 00:58 am is higher than any other time of the day.

Events registered between 2022/12/31 10:58 and 2023/01/01 09:58
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Figure 9. Automatic counting of the number of cars, pedestrians and buses carried out during the
monitoring example.

3.2. Example of Mobility during a Work Day

Figure 10 provides the same automatic counting of mobile events performed during
a work day (Figure 10, left). Differences compared to the patterns found in New Year’s
Eve (Section 3.1) are very clear. Traffic peaks are detected from 9:03 to 10:03 am and in
the afternoon/evening when the density of pedestrians is also higher. It is remarkable the
lower amount of buses and cars in the interval 14:00-15:00. The right subfigure depicts
the time interval between buses registered during the same day. Discarding the sporadic
presence of private buses that travel through Rafael Gomez Montero street, the figure
mainly measures the frequency of public bus n° 9 that commutes this neighborhood to
the center of Granada. The approximately constant rhythm of the bus is notable, with
slightly higher intervals between buses in the hours with higher traffic density. A deeper
analysis could be carried out, correlating these results with the traffic jam hours in other
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Number of events

parts of the city. Figure 11 shows a preliminary speed analysis for the three types of
events during the monitoring period. Average speeds with their standard deviations are
plotted together with the number of events averaged. Speeds were calculated based on
the waterfall event detection approach. Further improvements for more exact calculations

based on characterization parameters described in Section 2.4 are under analysis.
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Figure 10. Example hours of traffic during the monitoring example carried out January 9th 2023
from 09/01/2023 00:03:08 to 09/01/2023 23:03. Automatic counting of buses, pedestians and cars
(left subfigure). Average time interval between buses in minutes (right subfigure).
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Figure 11. Average speed for the 3 types of events detected during the workday monitoring period.

3.3. Monitoring Access to the Schools’s Surface Parking

The left-side subfigure in Figure 12 shows the amplified detail of the School of Engi-
neering surface parking depicted in Figure 1. The right-side subfigure shows the strain
variation registered at the fiber sensing positions P3, P2, P1, M20, M21, M19, M9 and MS,
monitoring the parking and its entrance. The global activation of all sensing points at ap-
proximately 460 seconds is due to the presence of an urban bus passing by. Its high weight
produces mechanical vibrations monitored by all the sensors under analysis. Entering the
parking can only be occur following one of the two routes painted on blue in the left side
of Figure 12, and vehicles leaving the parking may only follow the directions marked in
red. Strain variations due to the presence of entering or exiting vehicles will be activated at
fiber positions M10, M9, and M8 if the vehicle enters the parking. If the vehicle leaves the
parking towards the left, fiber positions P1, P2 and P3 will be sequentially activated. That

188




Remote Sens. 2023, 15, 3282

is what can be seen in the left-side subfigure during the seconds 100, 200 and 300, marked
with red arrows.
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Figure 12. On the left, map and fiber position of outdoor parking; and on the right, acoustic energy
detected at the fiber positions in the map along 600 s: vehicles entering (red arrows) and leaving
(blue arrow) the park lot.

Another vehicle leaves the parking around second 400 (see red arrow marked), being
fiber positions P1, P2 and P3 inactive. It therefore can be concluded that the vehicle moves
towards the right.

Finally, a vehicle entering the parking can be detected at second 650 (marked by a blue
arrow). Positions P3, P2, and P1 are sequentially activated, and then positions inside the
car park, following the sequence M10, M9, and M8.

3.4. Urban Seismicity Monitoring

During the New Year’s Eve monitoring experiment, Figure A2 shows the energy
footprint of a local earthquake with an epicenter in the region of Almeria (with a distance
of around 100 km to the testbed) registered the 31 December 2023 at 08:05:54 am local
time, with depth = 0 km and magnitude 4 Mw [61]. Figure 13 shows how simultaneous
and energetic strain variations are present in all spatial points with different magnitudes
depending on the transmission properties of each ground portion. The concrete wall located
approximately in the middle of the waterfall (see Figure 2) cannot register the earthquake
being the wall somehow unlinked from the Earth’s movement. Figure 14 depicts the spatial-
average frequency spectrogram during the earthquake, showing the well-known P-wave
first arrival with higher frequency contents generated by a fracture source mechanism,
followed by an S-wave with lower frequency contents extended longer in time with energy
exponential decay [62].

Strain variation during the local earthquake Detail of strain variation
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Figure 13. Strain variation of the earthquake registered the 31 December 2023.

189



Remote Sens. 2023, 15, 3282

spectrogram 0.1Hz -30Hz earthquake

= 140
- 120
100
15
80
10 60
4
5
2
0
0 20 30 4 S0 6 70

frequency (Hz)

time (s)

Figure 14. Spatial-average power spectral density for the earthquake observed.

Time-domain analysis of seismic P and S waves using a classic multi-component point
geophone would provide separate vertical and horizontal components related to P and S
phases, permitting polarization and shear waves analysis. Due to the single-component
nature of the DAS array and its measure of strain-rate rather than particle motion or
acceleration, it produces a single measurement of the changes in the fiber’s group refractive
index originated by the projection of the three components along the fiber. Given its interest
for the geophysical community, several approaches are under analysis at the moment to
overcome this limitation like the usage of helically wound fibers to measure strains in
three directions [63], usage of azimuthally varying 2D arrays for horizontal components
sensing [64] and machine learning complementary analysis [65].

4. Discussion

The work presents an experimental testbed for distributed acoustic sensing in urban
environments, devoted to the analysis of the mobility patterns in the surroundings of the
School of Technology and Telecommunication Engineering of the University of Granada.
Strain variations registered by the sensor are processed for noise reduction and filtered
in convenient frequency bands, identifying three basic types of events (cars, buses and
pedestrians) to initiate a preliminary automatic counting process. Hjorth parameters
and approximate entropy are explored as possible processing approaches to improve
automatic events detection and classification based on template matching. Several example
applications of the technology are shown. Time dependent density of traffic, intervals of
public bus arrivals, speed of pedestrian vehicles split into classes (to start with high/low
weight vehicles) are monitorable without interruption anywhere in the city having an
optical fiber installed. In addition, urban seismicity is also recordable with the subsequent
interest for urban locations with risk of seismic hazards. The benefits of having data-
driven mobility pattern models are many. Green urban planning strategies, sustainable
development plans, smart traffic managing applications or emergency evacuation plans,
among others, can be designed based on the knowledge provided by them.

Compared to other sensing technologies, the anonymity of the data, independence of
weather conditions, no need of maintenance or power supply for point sensors, or long
range and high spatial sampling frequency are remarkable advantages. The challenges of
distributed acoustic sensing are several, opening an interesting research framework for
future works. Strain variations have often low SNR and are dependent on the specific and
changing ground and fiber properties. Robust calibration and advanced noise removing
approaches are needed. The automatic detection and classification of events that are
often overlapped and merged offer the possibility to explore automatic unsupervised and
supervised approaches based on state-of-the-art machine learning strategies.
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Appendix A
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Figure A1. Example hours of traffic during the monitoring example carried out 21 December 2022
from 31 December 2022 10:58:08 to 1 January 2023 9:58:13.
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Figure A2. Example of local earthquake with magnitude 4 Mk with epicenter in Almerfa, registered
by the sensor the 31 December 2022.
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Abstract: Landmines and explosive remnants of war are a significant threat in tens of countries and
other territories, causing the deaths or injuries of thousands of people every year, even long after
military conflicts. Effective technical means of remote detecting, localizing, imaging, and identifying
mines and other buried explosives are still sought and have a great potential utility. This paper
considers a positioning system used as a supporting tool for a handheld ground penetrating radar.
Accurate knowledge of the radar antenna position during terrain scanning is necessary to properly
localize and visualize the shape of buried objects, which helps in their remote classification and
makes demining safer. The positioning system proposed in this paper uses ultrawideband radios
to measure the distances between stationary beacons and mobile units. The measurements are
processed with an extended Kalman filter based on an innovative dynamics model, derived from
the model of a pendulum motion. The results of simulations included in the paper prove that using
the proposed pendulum dynamics model ensures a better accuracy than the accuracy obtainable
with other typically used dynamics models. It is also demonstrated that our positioning system can
estimate the radar antenna position with the accuracy of single centimeters which is required for
appropriate imaging of buried objects with the ground penetrating radars.

Keywords: ground-penetrating radar; GPR; position estimation; extended Kalman filter; EKF;
ultrawideband radio modules; UWB; landmines detection; imaging

1. Introduction

The presence of landmines and explosive remnants of war (ERW), such as artillery
shells, grenades, rockets, bombs, and cluster munition remnants, poses a significant world-
wide threat in the areas of current and past military conflicts. It results in deaths and
injuries of mostly civilian victims even many years after the wars.

According to the yearly reports of the Landmine Monitor [1,2], providing a global
overview of the landmine situation, tens of millions of landmines are still buried under-
ground in at least 60 countries and other territories. Only a single year 2021 brought
7073 casualties of mines/ERW (2492 killed and 4561 injured) in 54 different countries, and
80% of the victims were civilians [1-3].

Considering the significance of the problem, efficient methods of mine clearance are
still tough. Currently, various metal detectors (MD) are often used for this purpose, and
contemporary MDs offer excellent parameters, enabling the detection of even very small
and deeply buried metal objects [4-9]. Paradoxically, this high sensitivity can be also their
drawback leading to many false detections which lengthen the time necessary for demining.
Moreover, MDs do not offer any way to initially identify or classify the detected objects
and every detection must be carefully examined. What is even more problematic and
dangerous, not all contemporary landmines and ERWs contain metal elements, which
limits the usefulness of MDs in mine clearance operations.

Apart from the MDs, radar technology has been successfully employed for scanning
near-underground surfaces in search of mines, improvised explosive devices (IED), and
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other explosive remnants of war [6-8,10-14]. Ground penetrating radar (GPR) is a general
term used with respect to techniques using radio waves, typically in a frequency range from
several MHz to several GHz, to acquire information about objects buried underground
or hidden under/behind any other concealing obstacles, surfaces, etc. [3,15-21]. These
techniques enable non-invasive and non-destructive remote detecting, locating, imaging,
and identifying geological structures, cavities, buried objects, and underground man-made
infrastructures, which do not have to contain metal parts. The mentioned features make
GPRs a very useful tool for demining. They can be used for this purpose alone [12,17,22-24]
or integrated with MDs [12,25-30].

In military applications, GPRs can be installed on large armored manned vehicles
with enhanced immunity to nearby explosions [31-35]. For increased safety of the crew, the
radar antennas are usually attached to the end of long arms in front of the vehicle. A good
alternative is mounting GPRs on remotely controlled unmanned wheeled vehicles [36]
or tracked vehicles [30,35,37,38], which eliminates the risk for the crew, and reduces the
costs of the purchase and the exploitation of such systems. The GPRs on vehicle platforms,
however, have limited utility in difficult terrain: mountainous areas, forests, dumps,
urban surfaces covered with debris, or interiors of buildings, where landmines and other
explosives can be typically found. A good solution applicable in such areas is a handheld
version of the ground penetrating radar (HH-GPR) [39-42]. The problem of estimating the
antenna position of such type of radar is addressed in this paper.

The GPR operation requires emitting electromagnetic energy in the direction of the
ground. The transmitted radio waves penetrate near-surface layers of the soil and encounter
on their way various objects and layers of different permittivity € and conductivity o, which
results in reflecting and scattering back a portion of the transmitted energy. The echo
signals are received, collected, and processed to detect and create images of buried objects.

Most contemporary GPRs are pulse radars [15,16,22,24,43,44], transmitting repeatable,
very short, high-amplitude pulses and receiving strongly attenuated echo signals reflected
or scattered back from layers” boundaries and buried objects [3,45,46] as shown in Figure 1.

Transmitter Receiver
Amplitude
L S e .
The first layer ) q
of 56l Transmitted Z
__________________ 01, & signal I=
The second layer | = E; “““
of soil > \
q A-scan
L Betetbdianaltell Y b
T, £ signals (
05, & Buried object / Anomaly 4
Time (depth)

Figure 1. General idea of GPR operation.

Time delays of subsequent peaks in the received echo signals are proportional to the
depth of the detected objects or layers of different permittivity. Collecting and joint process-
ing multiple echo signals, so-called echograms or radargrams, for a GPR moving along a
predefined scanning path enables locating and imaging those objects and layers [3,15,16].

Three types of visual presentations of GPR radargrams are used in practice [3,14,16,21].
A single echogram was obtained for only one GPR antenna position with coordinates (i, f)
is a one-dimensional signal representation, called an A-scan (Figure 2a). Time delays of the
signal peaks in the A-scan are usually converted into respective depths and the Z-axis is
scaled in the distance units [21,23,39,46,47].
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Figure 2. Types of GPR radargrams’ visual presentations: (a) A-scan; (b) B-scan; (c) C-scan.

An analysis of GPR data is typically based on a two-dimensional signal representation,
called a B-scan, which is a dataset created from many A-scans acquired for various antenna
locations along a usually linear scanning path, as shown in Figure 2b. It represents a radar
image of a vertical surface intersecting the scanned terrain volume below the scanning path.
Due to a relatively large GPR antenna beamwidth, the same buried objects are illuminated
many times from different antenna locations and consequently from different distances.
Therefore, the echo signals form hyperbolic structures visible in the B-scans [14,23,39,46,47].
An example of such a structure for a single-point object is shown as a red hyperbole in
Figure 2b.

Collecting A-scans for multiple antenna locations in the nodes of a grid span onto
the OXY surface, one can create another type of GPR signal visual presentation, called a
C-scan (Figure 2c). This is a three-dimensional signal representation, which is very useful
in visualizing, identifying, and classifying buried objects.

The C-scans are often presented as a set of two-dimensional greyscale or color images,
created as horizontal sections through the C-scan volume on various depths [3,21,48]. An
example of such a single image is shown in Figure 3.

@) (b)

Figure 3. Examples of a horizontal section through a C-scan: (a) color image; (b) grayscale image.
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The presented scans were made using a pulse radar produced by IDS GeoRadar
company, containing a DAD K2 control unit and an antenna with a central frequency equal
to 900 MHz. This radar made 850 soundings per second, the duration of the probing pulse
was about 1 ns, and the obtained spatial resolution was about 5 cm.

Knowledge of accurate positions of a GPR antenna moving along a scanning path
is necessary to properly assemble all the acquired radargrams and create high-quality
GPR B-scans or C-scans. Several scientific papers [44,49] and patents [50] suggest that
the GPR antenna positioning accuracy should be better than one eight of a radar signal
wavelength [51]. As typical GPRs work at a frequency range between 400 MHz and 4 GHz
(wavelengths from 7.5 to 75 cm) [49,51], the antenna positioning accuracy should be of the
order of single centimeters which requires using very high-accuracy navigation systems.

Typically, the navigation devices or systems used for GPR antenna positioning are
Global Navigation Satellite Systems (GNSS) receivers [50,52], often with real-time kine-
matic (RTK) corrections, inertial navigation systems [42,52], wheel odometers [50], visual
navigation systems [53], laser scanners [49] or integrated systems combining several of the
mentioned devices [42,50,52].

As most of the listed above devices or systems are not adequate for HH-GPRs, due
to their large size, weight, specific installation requirements, vulnerability to jamming or
signal shadowing, and too low accuracy, the authors of this paper proposed a system based
on several ultrawideband (UWB) radio modules. This concept was first described in an
authors’ conference paper [54], where physical models of a mobile unit and UWB beacons
were presented. The mentioned paper also contained a description of an autocalibration
procedure, used for self-locating the UWB beacons for quickly establishing a frame of
reference before the scanning process, and presented an initial assessment of the system’s
accuracy which in the scanning zone reaches desired level of 2-3 cm.

In another authors’ conference paper [41], it was claimed and demonstrated that the
accuracy of the UWB positioning system can be further improved with a properly chosen
estimation algorithm. In that paper, using an extended Kalman filter (EKF) based on a
GPR antenna motion model, derived from the mathematical pendulum motion model,
was proposed. The mentioned paper, however, contained a proof of concept rather than a
complete and applicable positioning solution, as the proposed pendulum-based dynamics
model used in the EKF was oversimplified to present the main idea only. It assumed that
the attachment point of the “pendulum”, which is the position of a GPR operator’s arm, is
initially known and that the angle of orientation of the main axis of the scanning section
always equals zero degrees. These assumptions can hardly be met in practice. Moreover,
the mentioned conference paper contained only a sketch of the system’s model and very
limited results of its simulative testing.

This paper can be considered a significantly extended version of the above-mentioned
conference paper. It presents an elaborated, practically applicable version of the GPR
antenna positioning system using UWB radio modules and includes a complete description
of its extended mathematical model and detailed results of its simulative testing. The main
novelty of this paper includes:

1.  Elaboration and detailed presentation of an advanced and practically applicable
dynamics and observation model of the UWB-based GPR antenna positioning system,
with relinquished simplifying assumptions of the model presented in [41];

2. Elaboration and detailed presentation of the estimation algorithm used in the pro-
posed GPR antenna positioning system;

3. Presentation of new and detailed results of simulative tests of the positioning system
for various realistic system configurations.

This paper is organized as follows. A general concept of the ground penetrating radar,
types of GPR data visualizations, accuracy requirements for GPR antenna positioning,
technologies used for GPR positioning, previous authors” works in this field, and a discus-
sion of the novelty of this paper are presented in Section 1. The system’s description, its
mathematical model, and the estimation algorithm elaborated by the authors are presented
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in Section 2. The methodology and the results of simulative testing of the GPR antenna
positioning system are presented in Sections 3 and 4 contain a discussion.

2. Materials and Methods
2.1. Scanning Profiles

As has already been mentioned, creating B-scans requires moving a GPR antenna
over the ground, ideally along a linear scanning path (profile) with constant velocity, to
collect linearly arranged and uniformly separated radargrams. Creating C-scans requires
repeating such scanning (profiling) for many equidistant lines in one direction, as shown
in Figure 4a, or bi-directionally, as shown in Figure 4b, where the antenna position is
marked as a letter A [7,15,16]. In multichannel GPRs, with several equidistant antennas, the
profiling can be realized quicker, unidirectionally (like in Figure 4a) for several scanning
paths at a time.
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Figure 4. Ideal GPR scanning profiles: (a) unidirectional; (b) bidirectional.

Although in favorable conditions the profiling shown in Figure 4 can be at least
approximately realized with GPRs installed on vehicles (carefully driven or remotely
controlled, in non-demanding terrain and with the use of an accurate supporting navigation
system), this can hardly be achieved with HH-GPRs. The elements of the scanning path, in
this case, are shown in Figure 5, where the letters A and S represent the positions of the
antenna and the sapper.

2.2. UWB Positioning System

The structure of the HH-GPR antenna positioning system proposed in this paper
is shown in Figure 6. It is composed of four stationary modules M; <+ My serving as
radio beacons and two mobile modules M and Mg. The M module is installed over the
GPR antenna and the Mg module over the sapper’s shoulder. All the modules contain
UWSB transceivers. Distance measurements realized by these transceivers are collected and
processed using estimation algorithms described in the further part of the paper.
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Figure 6. UWB positioning system for HH-GPR antenna.

The following variables are used in Figure 6:

d pj—distance between a j-th beacon and the antenna module My,
dsj—distance between a j-th beacon and the sapper module Mg,

xj, yj—coordinates of a j-th beacon position,

x4,y a~—coordinates of the M 4 module position,

xg, ys—coordinates of the Mg module position,

[—length of the HH-GPR handle (horizontal distance between Mg and My),
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f—angle between the horizontal projection of the GPR antenna handle and the central axis
of the scanning section.

We assumed that the UWB radios used in our system are PulsON P440 modules from
TDSR [55]. They use the two-way time-of-flight (TW-TOF) method for ranging and offer an
operating range between 300 and 1100 m and a ranging accuracy of about 2 cm in line of
sight (LOS) conditions. Such parameters give the potential to build a positioning system
with the desired centimeter-level accuracy, required in the considered application of the
HH-GPR antenna positioning.

The placement of beacons outside a potentially hazardous area, as shown in Figure 6,
is only one of the possible options, suggested for quick and easy deployment of the system
in terrain. Other beacons’ locations are also possible, and their relative positions with
respect to the mobile units M4 and Mg influence the accuracy of the UWB positioning
system, which will be discussed in detail in the Results section of the paper.

2.3. Mathematical Model

As can be seen in Figure 5, the scanning profiles are composed of fragments that
resemble arcs rather than straight sections. Moreover, the velocity of the HH-GPR antenna
is more changeable than in GPRs installed on vehicle platforms, as typically an operator
(sapper) performs a swinging motion, initially accelerating and finally decelerating the
antenna. Therefore, the collected radargrams are not linearly arranged nor uniformly sepa-
rated. Nevertheless, the acquired A-scans can be used to create two- or three-dimensional
GPR visualizations of buried objects provided that the antenna positions are known for all
the collected radargrams [3,15,16].

A single arc belonging to the scanning profile is shown in Figure 7. If we consider
the changeable angular velocity of the antenna motion (initially accelerating and finally
decelerating), such a trajectory resembles the motion of a mathematical pendulum [56],
and can be described by the following formula:

d?0

ﬁ—l-%sinQ:O, )

where:

f—angle between the horizontal projection of the GPR antenna handle and the central
axis of the scanning section,

a—acceleration forcing the HH-GPR antenna (M4 module) motion,

[—length of the HH-GPR handle (horizontal distance between Mg and M,).

Ya
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Figure 7. Part of HH-GPR antenna trajectory (a single arc of the scanning profile).
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The acceleration a is analogous to the gravity acceleration g in the mathematical pen-
dulum motion model. Contrary to g, which can be considered a constant, the acceleration a
is more changeable and to large extent depends on the operator’s strength, fatigue, style of
HH-GPR operation, etc., thus we treat it as an additional variable to be estimated and we
model it as a Wiener stochastic process [57-59]. Considering the geometrical relationships
shown in Figure 7, the equations describing the antenna and the sapper’s arm motion can
be formulated as follows:

x4 = wlcosy = w(ya—ys)

Yy = —wlsiny = —w(xs — xs)

5(5 = Uyg

Ys = iy , @)
0 =w

o= ‘;27? = —7sin6

a=u,

where:

x 4,y a4—coordinates of the HH-GPR antenna (M4 module) position,

xg, s —coordinates of the sapper’s arm (Mg module) position,

uyg, uys—Gaussian white noises representing random components of the sapper’s arm
(Mg module) motion,

[—length of the HH-GPR handle (horizontal distance between Mg and M),

f—angle between the horizontal projection of the GPR antenna handle and the central axis
of the scanning section,

y—angle between the horizontal projection of the GPR antenna handle and the OY axis of
the frame of reference,

w—angular velocity of the HH-GPR antenna (M4 module) motion,

a—acceleration forcing the HH-GPR antenna (M 4 module) motion,

u,;—Gaussian white noise representing random changes of a.

Rewriting Equation (2) to fit it into the standard form of a nonlinear continuous
dynamics model [60-63]:
x(t) = f{x()] + G(t)u(t), ®3)

one obtains the following detailed version of this model, which has been further used in
our estimation algorithm:

XA [ w(ya—ys) 7 [0 0 0]

yA —w(xA—xs) 0 0 0

Xs 0 1 0 0] [ux

Ys | == 0 +(0 1 0 [uyS]. 4)
6 w 00 0| u

w —4sin6 000 T(T

a i 0 1 o o 1]
~——

x(t) £[x(t)] G(t)
The nonlinear observation model in the following standard form [60-62]:
z(k) = h[x(k)] + v(k), (5)

has been formulated assuming that at every step k the UWB positioning system realizes
four distance measurements between a j-th beacon and the antenna module M 4:

dai() =/ (xa(6) — x)2 + (ya(k) — ;) + 045 (K), ©6)

202



Remote Sens. 2023, 15, 741

and four distance measurements between a j-th beacon and the sapper module Mg:

dsj(k) =/ (x5 (K) — x)2 + (ys (k) — ;) + 2 + g, (),

where:

d pj—distance between a j-th beacon and the antenna module My,

dsj—distance between a j-th beacon and the sapper module Mg,

xj, yj—coordinates of a j-th beacon position,

x4,y a~—coordinates of the M 4 module position,
xg, ys—coordinates of the Mg module position,

h—sapper’s arm height,

v 4j, vsj—distance measuring errors for M4 and Mg modules.

@)

A detailed version of the observation model, which has been further used in our
estimation algorithm, is as follows:

V) = x0) + (yak) - y1)?
(07 | V@) -2+ al) — ) | Tom ()]
PRl | Vb —xl + wab - | |22
da(K) VAt =)+ 0a® -y | | fonl®) o
S0 et =0+ sk =) | |21
s2 052
dal) | |V (s =%+ (s (®) =y + 12| | vy (k)
Ldsa() S 1 /g () — x3)2 + (s (k) — a2+ 12 | Losa(k)
20 [ J(xs() - xa)? + rs(k) -2 +02] V0
hx(k)]

As the antenna module M4 is kept close to the soil during scanning, and the differences
between slant distances d 4; and their horizontal projections are very small, we assumed
that their altitude over the ground can be omitted in the observation model. On the other
hand, the Mg module is placed over the ground on the sapper’s arm, and its altitude # is
non-negligible. In our model, we assumed that it is constant, as its changes in the order of
centimeters during the system’s operation can be neglected for typical distances from the
UWB beacons, which are in the order of tens of meters. In a real system the altitude / can
be a settable constant, adjusted before using the system, based on the sapper’s height.

2.4. Estimation Algorithm

An extended Kalman filter for HH-GPR antenna position estimation was designed
based on the previously described dynamics and observation models and its flowchart is
shown in Figure 8.

After initialization of the EKF at step k = 0 or after closing each subsequent filter’s
loop at steps k > 0, the filter alternately performs prediction and correction steps. The
prediction step requires previous calculations of the fundamental matrix F, the transition
matrix ®, and the covariance matrix of disturbances Q at every step k. The method of
calculating the F matrix (more precisely it is F;_1 but to shorten the notation the index k — 1
will be omitted in further equations) is explained in Appendix A.
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Figure 8. Flowchart of the Extended Kalman Filter used for HH-GPR antenna position estimation.

Using the calculated F matrix and the G matrix from the equation (4), ®; ;_1 and Q;_;
matrices are obtained as follows [60-62]:

FAt)?

@) 1 = e AT+ FAL+ ( 5 ) )

2 2 3

Qi 1~ QuAt+ (FQq + QuF) U + [FPQu + 2PQu FT + Qu (FT)*| 4
3 20 §T T2 T\3] (81)* (10)

+[FPQu +3F2QuFT +3FQu (FT)” + Qu (F1)”] -,
where:

Q. = GQ.G', (11)

and At is a period between two successive time steps k — 1 and k.

The Q. matrix from Equation (11) represents the covariance matrix of continuous distur-
bances which is a 3-by-3 diagonal matrix containing power spectral densities Sy, Sy; and S,
of the noises uy;, 1y, and 1, composing the disturbances vector u(t) in Equation (4):
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Q. = diag([Sxs, Sys, Sal)- (12)
The predicted state vector Xy, is calculated in accordance with the following general
equation [64,65]:
kAt
= [ Exo)at (13)
(k—1)At

but in practical calculations we use Heun’s numerical integration method [65-68] which
leads to the following formulae:

Xek—1 = Xg—1k—1 + % [f(f(kfukfl) + f(*kq\kq + f(*kfl|kfl))}/ (14)

where X;_1;_1 is the final state vector estimate from the previous step k — 1.

Apart from the predicted state vector Xy;_1, the covariance matrix of prediction errors
Py k-1 is calculated based on the covariance matrix of filtration errors Py_q;_; from the
previous step k — 1 as follows [60-62]:

Prk—1 = Prer—1Prqpe 1951 + Qi_1, (15)

where we use the mentioned matrices ® and Q.

The correction step requires previous calculations of the observation matrix H at every
step k, and the method of its calculation is explained in Appendix B. This step involves a
calculation of the Kalman gains matrix Ky, a correction of the predicted state vector Xy ;1
based on the current measurement vector z, which produces the final estimate X at
the step k, as well as calculation the covariance matrix of filtration errors Py, and these
operations are realized as follows [60-62]:

-1
K = Py H{ (HkPk|k71HlF£ + Rk) , (16)
Xifk = Xee—1 + K (Zk - h(*k\k—1))/ (17)
Py = (I — KeHg)Pyppe_q- (18)

The Ry matrix in Equation (16) is the covariance matrix of measurement errors [60,61]
which is formed as an 8-by-8 diagonal matrix, containing the variances of all eight distance
measurements performed between pairs of UWB modules in the positioning system:

, 2 2 2 2 2 2 2 o
Ry = dlag( [UAlf‘TAZ/ 043, 044,051,052, 053, ‘754} ) (19)

where 03 j and Ugj represent variances of distance measurement between a j-th beacon and
the antenna module M 4 or the sapper module Mg.

2.5. Alternative Positioning Algorithms

Apart from the proposed pendulum-model-based EKF, simpler algorithms can also be
used to estimate the HH-GPR antenna position. One possible solution is a non-linear least
squares (NLS) algorithm [57,69,70] which processes a vector z(k) of distance measurements
collected at each step k without using the previously estimated state vector and without
filtration. Such an algorithm does not use any dynamics model either. The NLS requires an
initialization by assigning at least coarse values to the antenna coordinates x4 and y4 and
subsequently, it improves their estimates iteratively. This algorithm is simple but due to
lack of filtration, its accuracy is not high.

Better estimation results can be obtained by using EKF filters based on nearly-constant-
velocity (CV) or nearly-constant-acceleration (CA) dynamics models [57,71-74], which are
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typically applied in navigation and radiolocation. The CV model (20) assumes a rectilinear
uniform motion, whereas the CA model (21) assumes a uniformly accelerated motion, and,
in both cases, small disturbances of these ideal movements are modeled by the vector u(f):

N 010 0][x4] [0 0

o | 00 0 0f|o|, |1 0f[u

74 000 1 yAJroo{uz,y]' (20)
' 0000 0 1]—~—
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where:

x4,y a~—coordinates of antenna position,

Ux, vy—components of antenna velocity,

ay, ay—components of antenna acceleration,

Uy, uvy—Gaussian white noises representing random disturbances of CV motion,

Ug,, Ug,—Gaussian white noises representing random disturbances of CA motion.

Clearly, the CV and CA models do not fit ideally the actual HH-GPR antenna motion
but nevertheless, they can be used for prediction in EKFs. Such filters are not optimal, but
they are simpler than the EKF presented in Figure 8 because both dynamics models are
linear, and the prediction of the state vector is realized like in a linear Kalman filter [60-62]:

Xik—1 = Pri—1Xk k- (22)

Moreover, the transition matrix @ and the covariance matrix of disturbances Q can be
calculated in advance before the filter implementation using the simple formula [62] and
they remain constant during the filters” operation. Thus, such EKFs do not require in-run
calculation of the Jacobian matrix F and the matrices ® and Q.

All the mentioned algorithms, NLS and EKFs based on the CV and CA models,
have been implemented by the authors and tested to compare them with the previously
described pendulum-model-based EKE. Further in the paper, the following acronyms will
be used for these algorithms: NLS, EKF-CV, EKF-CA, and EKF-PND.

Although the EKF-CV and the EKF-CA are not optimal, their accuracy can be maxi-
mized by choosing appropriate power spectral densities of disturbances Sy, , So, of uo,, Uy,
noises in the CV model or S, _, Say of ug,, Ug, NOises in the CA model. Their choice affects
the values of the Q matrices and consequently influences the information quality [75],
notably estimation errors of the filters. The process of choosing filters” parameters and
minimizing their estimation errors is called “tuning Kalman filter” [76] and it was realized
in the case of the EKF-CV and EKF-CA designed in our research.

3. Results

The described HH-GPR antenna positioning system and the proposed pendulum-
model-based EKF were implemented and simulatively tested in MATLAB® version R2022b.
The simulations included an assessment of the dependence of the system'’s accuracy on the
positions of UWB stationary modules M; < My deployed around the area of interest, where
the demining process is going to be performed. The results of these analyses are presented
in Section 3.1. In further experiments, the accuracy of the EKF-PND filter was analyzed for
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chosen scanning sections. This accuracy was also compared with the accuracy of the NLS,
EKF-CV, and EKF-CA algorithms. The results of these tests and accuracy comparisons are
presented in Section 3.2.

3.1. Influence of UWB Beacons’ Locations on System’s Accuracy

Possible locations of the UWB stationary modules M; <+ My are to large extent depen-
dent on the terrain characteristics and the obstacles present around the scanning area. The
sapper usually cannot place it freely when he deploys the system’s elements in a previously
unsearched and potentially hazardous terrain. When approaching a minefield, he usually
knows which part of the terrain is free of explosives and where the search should start.
Thus, the most typical and safe locations for placing the UWB beacons lay in front and
on the sides of the minefield, as shown in Figure 6. Such a system’s geometry is certainly
not optimal from the accuracy point of view, but even under the mentioned limitations,
the actual placement of M; + My may significantly influence the positioning accuracy in
various areas of the minefield.

To verify the mentioned dependence of the positioning accuracy on the locations of
the UWB stationary modules, three system configurations with different locations of the
M; -+ My modules were considered. The assumed positions of the modules are given in
Table 1 and are graphically presented in Figure 9.

Table 1. Locations of the UWB stationary modules for different system configurations.

Coordinates of the UWB Modules

Configuration Number

M; M, M; M,
C1 [0,0] [100,0] [—50,30] [150,30]
C2 [30,0] [70,0] [10,30] [90,30]
C3 [40,0] [60,0] [30,30] [70,30]
on T T T T T
@ Configuration 1 - Configuration 2 %  Configuration 3
150 | J
Dangerous
Rl area 7
E
50 o e S R e R S e R e s s el 3
T W M?K 51 M: ?/162 2 i
-50 1 1 1 1 1

-100 -50 0 50 100 150 200

x[m]

Figure 9. Locations of the UWB stationary modules for different system configurations.

We assumed that an area of 500 m x 500 m lying in front of the UWB beacons is
divided by a grid with cells of 10 m x 10 m each. For every node of this grid, a set
of ten thousand UWB measurements was generated in MATLAB®, and its position was
estimated using a simple iterative NLS algorithm, without any Kalman filtration. Based on
the parameters of P440 modules, declared by their producer [55], we assumed that UWB
measurement errors have zero-mean Gaussian distribution with a standard deviation of
2 ¢cm. Next, RMS errors (RMSE) for each node were calculated and the obtained results for
the three system’s configurations are shown as colormaps in Figure 10. As the RMSE is
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very large in the vicinity of the UWB modules, the colormap is presented for the area where
the y coordinate is larger or equal to 50 m. In practice, it means that the actual placement
of the UWB beacons should be in the foreground of the minefield, far enough ahead of its
border, to ensure that the positioning accuracy in the planned search zone is high.

RMSE [em RMSE [cm RMSE [cm
500 15 500
450 450
10 400 400 -
350 : = 350 EEEEH 5
8 200 10 300
E2%0
¢ 200 EEEH
150 10
5
i 100
50
A A A A
2 A [ PAYAY
100 50 0 50 100 150 200 250 300 200 150 -100 -5 O 50 100 150 200 250 300

Figure 10. RMSE for different system configurations: (a) C1; (b) C2; (c) C3.

As can be seen, the smallest positioning errors are achievable in front of the place,
where the UWB stationary modules M; < My are located. The high-accuracy zone is wider
and deeper for a more extended baseline of the positioning system.

Mean and maximal RMSE values for the whole area of 450 m x 500 m and for smaller
areas, limited to the nearest 100 m x 100 m and 50 m x 50 m respectively, in front of the
UWRB stationary modules M; <+ My are given in Table 2.

Table 2. Mean and maximal RMSE values for areas of various sizes.

The Area of Interest
450 m x 500 m 100 m x 100 m 50 m x 50 m
Configuration Number
RMSE Values [cm]
Mean Max Mean Max Mean Max
C1 4.0786 11.8357 2.0348 2.4603 1.9048 2.1324
C2 8.9495 15.1545 3.6597 4.9420 3.1985 4.0216
C3 15.5555 28.2914 6.6283 9.1209 5.6234 6.9220

As can be seen, the proposed positioning system can provide a centimeter level
of accuracy in areas large enough for practical demining tasks and for reasonable and
practically realizable systems’ configurations. The high-accuracy zone could certainly be
extended if the UWB stationary modules were more distributed around the area to be
scanned, however for safety reasons it cannot always be achieved.

3.2. Positioning Accuracy

The accuracy of the EKF-PND filter was assessed and compared with the accuracy of
EKF-CV and EKF-CA filters as well as with the accuracy of an NLS algorithm in MATLAB®
for the C1 configuration of the system. The dynamics and observation models given by
Equations (4) and (8) were used to generate the antenna trajectories and the parameters
chosen during the simulations are given in Table 3. The choice of these parameters was
done in such a way that the shape and duration of the resulting antenna trajectory resemble
typical HH-GPR antenna trajectories.
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Table 3. Parameters used in dynamics and observation models during simulations.

Parameter Name Symbol Value Unit
Length of the HH-GPR handle 1 1.6 m
Starting angle of the scanning section 0 —34.2 °
Nominal acceleration a 0.25 e
Standard deviations of all the distance measuring errors o 0.02 m
x-coordinate of the initial sapper position Xg 80 m
y-coordinate of the initial sapper position Ys 50 m
Sapper’s arm height h 1.6 m
Period between two successive time steps t 0.1 s
Power spectral density of disturbances 11y, Sxs 41073 W’TZ
Power spectral density of disturbances Sys 41073 mTZ
Power spectral density of disturbances u, Sa 31073 ’;L:

The same standard deviations of all the distance measuring errors 0aj = 0sj = 0 and
power spectral densities Sy, Sy¢, S given in Table 3 were used in the EKF-PND for setting
the values of the R and Q matrices. The EKF-CV and EKF-CA also use 04 = 05; = 0 as
given in Table 3, but as their dynamics models are different, their Q matrices required finding
power spectral densities of different noises Sy, , Svy or S, Say. This was done during the
mentioned tuning process and the obtained values are as follows: S,, = Sy, = 42.1073 ’:—32
and S;, = S;, = 611073 1%

Firstly, the results of the antenna position estimation with the EKF-PND and the NLS
algorithm were compared for various orientations of scanning sections and chosen results
of these tests are presented in Figure 11. These experiments confirmed that the EKF-PND
filter works properly and achieves a similar accuracy for various orientations of the central
axis of the scanning section.

Next, a closer inspection of the estimation results was done for all the implemented
algorithms for a chosen orientation of the central axis of the scanning section equal to 45°.

A comparison of HH-GPR antenna positions estimated with NLS, EKF-CV, EKF-CA,
and EKF-PND is presented in Figure 12. As can be seen, all these algorithms are capable of
properly estimating the antenna position, however, their accuracy is noticeably different
and required further analysis, which will be presented further.

At this step of the simulations, the results of the estimation of other elements of the
state vector x from the dynamics model given by Equation (4) were analyzed and they are
presented in Figures 13-15. The angle 6 between the horizontal projection of the antenna
handle and the central axis of the scanning section, estimated with the EKF-PND filter, is
shown in Figure 13. The results of angular velocity estimation are presented in Figure 14.
Figure 15 contains an estimate of the acceleration a forcing the HH-GPR antenna movement.
All these figures contain only results for the EKF-PND, as other algorithms do not estimate
variables such as 0, w, and a.
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Figure 11. Estimated antenna positions with EKF-PND and NLS, for various orientations of the
central axis of the scanning section: (a) 45°; (b) 135°; (c) 225°; (d) 315°.
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Figure 12. Comparison of antenna positions estimated with NLS, EKF-CV, EKF-CA, and EKF-PND.
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Figure 13. Angle between the horizontal projection of the antenna handle and the central axis of the
scanning section estimated with EKF-PND.
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Figure 14. Angular velocity of the antenna motion estimated with EKF-PND.
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Figure 15. Acceleration estimated with EKF-PND.

To better compare the accuracy of estimation with various algorithms, we conducted
a series of ten thousand simulations and calculated average RMS antenna position errors
for the whole scanning sections for each realization of the simulations. The obtained RMSE
values are shown in Figure 16. Single points in various colors are RMS antenna position
errors obtained with NLS, EKF-CV, EKF-CA, and EKF-PND. Although they are changeable
in various simulation runs, they form bands on noticeably different levels.

% NLS ° EKF -CV ° EKF - CA + EKF - PND

0.025

0.015

RMSE of GPR antenna position [m]
o
2

0.005

4000 5000 6000 7000 8000 9000 10000

Realization number

0 1000 2000 3000

Figure 16. Comparison of RMS antenna position errors for NLS, EKF-CV, EKF-CA, and EKF-PND.

Based on the above results we created a histogram of RMS antenna position errors for
NLS, EKF-CV, EKF-CA, and EKF-PND and it is presented in Figure 17. From this and the
previous figure, one can conclude that the EKF-PND is more accurate than all other tested
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algorithms and the EKF-CV and EKF-CA perform similarly, but still better than the NLS
algorithm. The EKF-CA is slightly more accurate than the EKF-CV.

- NLS - EKF -CV ‘:I EKF - CA - EKF - PND

Number of occurrences

0 0.005 0.01 0.015 0.02 0.025
RMSE of GPR antenna position [m]

Figure 17. Histogram of RMS antenna position errors for NLS, EKF-CV, EKF-CA, and EKF-PND.

A comparison of numerical values of average RMS antenna position errors for all the
realizations and for the NLS, EKF-CV, EKF-CA, and EKF-PND algorithms are given in
Table 4. This table also presents percentage improvements of accuracy for EKF-CV and
EKF-CA vs. NLS and EKF-PND versus all other algorithms. As can be seen, in the chosen
simulation scenario, the EKF-PND provides positioning results about 40% more accurate
than other tested EKFs and about 60% better than NLS.

Table 4. Average RMS antenna position errors for NLS, EKF-CV, EKF-CA, and EKF-PND.

NLS EKF-CV EKF-CA EKF-PND
Mean RMSE [cm] 2.14 1.39 1.32 0.83
Improvement vs. NLS [%] — 35.2 38.3 61.1
Improvement vs. CV [%] — — — 40.0
Improvement vs. CA [%] — — — 36.9

4. Discussion

In this paper, an accurate positioning system dedicated as a supporting tool for a
handheld ground penetrating radar was presented. The system uses ultrawideband radio
technology for accurate distance measurements and processes them to estimate the GPR
antenna position. Various estimation algorithms were used for this purpose, from NLS,
through simple EKFs (EKF-CV and EKF-CA), based on those typically used in radiolocation
and navigation CV and CA dynamics models, to the EKF-PND, based on the proposed by
the authors” dynamics model derived from the model of a pendulum motion.

The results of simulations included in the paper have demonstrated that the proposed
positioning system can provide a desired centimeter level of accuracy in areas large enough
for practical demining tasks. They also have shown how the actual placement of UWB
beacons influences the system’s accuracy. It occurs that the smallest positioning errors are
achievable in some distance in front of the area where the beacons are located and that
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the high-accuracy positioning zone is wider and deeper for a more extended baseline of
the system.

Further experiments have confirmed that the EKF-PND filter works properly for
various orientations of the central axis of the scanning section and have proved that using
the proposed pendulum dynamics model ensures a better accuracy than the accuracy
obtainable with other typically used dynamics models CV and CV. The simulations have
shown that the EKF-PND provides positioning results about 40% more accurate than other
tested EKFs (EKF-CV and EKF-CA) and about 60% better than NLS.
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Appendix A

Appendix A explains the method applied by the authors for calculating the funda-
mental matrix F, which is necessary to perform each prediction step in the EKF.

The F matrix is a Jacobian of the nonlinear vector-valued function f(x) from the con-
tinuous dynamics model (4). It is obtained by calculating the first-order partial derivatives
of the f(x) function with respect to all the elements of the state vector x [60-62].

The numerical values of its elements are calculated at each processing step k, based on
the state vector X;_1|;_1, which is estimated at the previous step k — 1, and therefore the F
matrix at this step can be more specifically written as Fy_1.

A general formula for calculating the F;_1 matrix is given by (A1) and the equations
(A2)-(A10) explain the way of calculating all its individual non-zero elements.

[0 9A 9fi 9 9fi A  9fi]
dxy  dyy  dxs  9ys a0 Jw Ja
Of  9h 9h 9 o ofh I
ox4  dya  dxs  dys a0 dw Ja
ofs 9fs 9fs Ifs s Ofs Ifs
dxq dyy dxg dys 00  Odw  da

_ |9 9h o 9 on ofi 0 (A1)
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ox4  dya  Odxs  dys a0 Jw Ja
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The final shape of the fundamental matrix Fy_; can be obtained by placing all its
individual elements given by the Equations (A2)-(A10) at appropriate positions in (A1)
and it is given below as Equation (A11).

0 Cbk—1|k—1 0 _djk—l|k—l 0 yAAk,l‘k,l - 951(7”1(71 0

*djkfl\kfl 0 Cak71|k71 0 0 f5k71\k71 - fAkq\kq 0

0 0 0 0 0 0 0

F._1= 0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 B C(l)s Ok—1k—1 0 J

L 0 0 0 0 0 0

Appendix B

Appendix B explains the method applied by the authors for calculating the observation
matrix H, which is necessary to perform each correction step in the EKFE.

The H matrix is a Jacobian of the nonlinear vector-valued function h(x) from the
observation model (8). It is obtained by calculating the first-order partial derivatives of the
h(x) function with respect to all the elements of the state vector x [60-62].

The numerical values of its elements are calculated at each processing step k, based on
the predicted state vector Xj;_;. Thus, the H matrix at the step k can be more specifically
written as Hy.

A general formula for calculating the Hy matrix is given by (A12) and the equations
(A13)-(A16) explain the way of calculating all its individual non-zero elements.
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The final shape of the observation matrix Hy, obtained by placing all its individual
elements given by the Equations (A13)-(A16) at appropriate positions in (A12) is given

below as Equation (A17).
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To keep the notation of Equation (A17) more compact, the following auxiliary variables
were introduced in the denominators of respective fractions:

~ 2 2
dA]'k\kfl = \/(ﬁAkkl — x]) + (?Ak\kfl — y]> ,forj=1...4, (A18)
A 2 2 .
dsj, | = \/ (%50 = %)+ (I5ge s ) +12 forj=1...4 (A19)
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