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The simplest definition of Non-Destructive Testing (NDT) is to “Inspect or measure
without doing harm”. From simple visual inspection to the use of lasers, NDT methods
cover a broad range of uses in diverse environments. For example, in daily life, we
practice visual inspection when we check the thread of a screw; our luggage is inspected by
radiography when we go to an airport; and many medical diagnoses rely on echography,
an ultrasound method. Thus, NDT provides security, reliability and sustainability in our
technological society.

In fact, due to its ability to evaluate the properties of a material, component or system
without causing damage, NDT ensures safety in industries like aerospace, nuclear, oil and
gas, and construction, where structural integrity is vital; preserves assets by allowing for
regular inspections of infrastructures; and supports quality control. Furthermore, NDT is
cost-effective, as components can be tested without being destroyed, avoiding costly repairs,
replacements or catastrophic failures, and contributing to sustainability by minimizing
waste and conserving resources. Despite its key role in many industries, NDT faces several
challenges that can impact the accuracy, efficiency and overall effectiveness of inspections.

Current challenges faced by NDT include the detection of tiny or subsurface flaws,
especially in complex geometries or hard-to-reach areas; the problems posed by high
material complexity, like composites or highly attenuative/anisotropic materials; low
Signal-to-Noise ratios, which make it hard to differentiate actual defect signals from back-
ground noise; and subjectivity issues, as the interpretation of NDT results still relies on
technicians’ experience.

This Special Issue, titled Non-Destructive Testing of Materials and Parts: Techniques,
Case Studies and Practical Applications, aims to serve as a forum for presenting the
latest research and developments in this field, present new ideas that could help to close
knowledge gaps, and highlight future research directions to foster future developments on
this interesting topic.

As Guest Editors of this Special Issue, following a rigorous peer-review process of
manuscripts received over 16 months, we are pleased to announce the publication of
10 manuscripts. The accomplishment of this Special Issue was only possible due to the
interest from proficient researchers from all over the world. The Guest Editors would
like to thank all of the authors of the published works and also express their gratitude
to the reviewers for their time, and for their valuable comments and suggestions, which
improved the quality and value of this Special Issue. The success of this Special Issue would

Materials 2025, 18, 3312 1 https://doi.org/10.3390/mal8143312
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not have been possible without the support of the Section Managing Editor, Ms. Serena
Shi, who we thank for her dedication and commitment. The Guest Editors also thank
the Editors-in-Chief of Materials for this opportunity for collaboration, and congratulate
them on their stewardship of such a globally respected journal. The diligence, creativity,
and dynamic cooperation of all those mentioned above contributed to the success of this
Special Issue.

Several recently published papers focus on the contributions and applications of
current Non-Destructive Testing techniques, including Machine Learning, which can be
easily combined with other NDT techniques, like acoustic emission (AE) [1] or AE plus
radiography, for further data analysis [2]. The monitoring of structures remains an essential
issue in NDT, independently of technical fields, from oil and gas [3] to aerospace [4].
Complex materials, like composites, are a recurring theme in NDT studies [2,5], and are
also the subject of several thorough reviews of sensing technologies [6], showing the
importance of these techniques in detailed defect detection.

We invite the reader to peruse the entire book to become acquainted with the themes
of focus in the 10 published papers. One study discusses the use of modern methods, such
as acoustic emission combined with machine learning, to conduct effective structural health
monitoring, while another presents a method that provides a more effective approach to
early fatigue-damage detection by capturing nonlinear Lamb waves, and another investi-
gates the use of laser ultrasonic wave techniques as innovative visualization methods for
damage detection. In addition, one study investigates how high-resolution ultrasound can
be used to quantify sub-surface wrinkles, for instance, in a CFRP laminate, while another
discusses the possibilities presented by combining NDT methods for damage detection in
FRP-reinforced elements.

However, there is also some room for studies on the development of electromagnetic
tests to study mechanical and thermal features in ferrous alloys, or advances in the use
of nanoindentation and sclerometry to evaluate the effects of machining processes on the
mechanical characteristics of metallic parts.

Finally, the use of NDT in carbon fiber-reinforced polymers should not be disre-
garded, as these materials are becoming more important in terms of their applications;
both thermal methods and enhanced radiography or image processing have been used for
studying machining outcomes like damage extension or other features related to material
removal processes primarily developed for metal machining. These recent improvements
could contribute to improving the reliability of structural parts made from carbon fiber-
reinforced polymers.

As Guest Editors, we hope this Special Issue provides readers with some new insights
on the use of Non-Destructive methods like acoustic emission, ultrasound, electromagnetic
waves, thermal imaging, nanoindentation, thermography and enhanced radiography.

Author Contributions: Conceptualization, L.M.P.D. and N.C.L.; writing—original draft preparation,
LM.PD.; writing—review and editing, N.C.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The Guest Editors wish to acknowledge all of the authors for their vital contribu-
tions to this Special Issue, and to the editorial staff of Materials for their invaluable support.
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Abstract: Sandwich structures made with fibre-reinforced plastics are commonly used in maritime
vessels thanks to their high strength-to-weight ratios, corrosion resistance, and buoyancy. Under-
standing their mechanical performance after moisture uptake and the implications of moisture uptake
for their structural integrity and safety within out-of-plane loading regimes is vital for material opti-
misation. The use of modern methods such as acoustic emission (AE) and machine learning (ML)
could provide effective techniques for the assessment of mechanical behaviour and structural health
monitoring. In this study, the AE features obtained from quasi-static indentation tests on sandwich
structures made from E-glass fibre face sheets with polyvinyl chloride foam cores were employed.
Time- and frequency-domain features were then used to capture the relevant information and patterns
within the AE data. A k-means++ algorithm was utilized for clustering analysis, providing insights
into the principal damage modes of the studied structures. Three ensemble learning algorithms were
employed to develop a damage-prediction model for samples exposed and unexposed to seawater
and were loaded with indenters of different geometries. The developed models effectively identified
all damage modes for the various indenter geometries under different loading conditions with accu-
racy scores between 86.4 and 95.9%. This illustrates the significant potential of ML for the prediction
of damage evolution in composite structures for marine applications.

Keywords: composite sandwich; machine learning; acoustic emission; damage prediction;
seawater exposure

1. Introduction

Fibre-reinforced plastic sandwich structures (FRPSS) are a common form of composite
materials with growing application in various industrial sectors thanks to their superior
mechanical properties, particularly their stiffness-to-weight ratio, which surpasses that of
metals [1-3]. In the past few decades, structures made from FRPSS have been employed
in the automotive, aerospace, and marine industries. Specifically, significant parts of un-
derwater vessels, boats, and wind turbines are fabricated using FRPSS thanks to their low
weight, high strength, the ease of manufacturing complete shapes, cost effectiveness, corro-
sion resistance, and buoyancy [4-6]. Composite sandwich structures typically comprise
two (top and bottom) face sheets, joined together with a lightweight core. This design
ensures the fabrication of a structure with relatively low weight yet sufficient stiffness and
strength to withstand the in-service loads when compared to its constituent materials [7].
The overall mechanical performance of FRPSS depends on the properties and thickness
of the face sheets, core, and the effectiveness of the bonds between the constituents [8,9].
It has been established that glass-fibre reinforcements are generally hydrophobic (do not
absorb moisture); however, water ingress can affect the polymetric matrix resulting in

Materials 2024, 17, 2549. https:/ /doi.org/10.3390/ma17112549 4 https://www.mdpi.com/journal /materials
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plasticisation, swelling, and weakening of the interfacial bonding of the structure, thereby
causing degradation of the structure’s mechanical properties [10-12]. Consequently, com-
mon damage modes for FRPSS subjected to seawater exposure are matrix cracking, face
sheet buckling, delamination, and disbonding between the face sheet and the core [13,14].
Historically, investigations into these damage modes mostly relied on experiments and
numerical simulations, which can be both time consuming and resource intensive. Non-
destructive techniques such as acoustic emission (AE) have been employed in several
studies to characterize the damage-resistance properties of composite sandwich structures.
The results from these studies showed that AE could identify the major damage modes of
the structures and correlate them with the mechanical properties of the samples [15-17].

In recent years, the use of machine learning (ML) algorithms to evaluate the me-
chanical properties and performances of composite structures under diverse loading and
environmental conditions has attracted increasing attention. For instance, transfer learning,
a subset of ML, shows the potential to adapt to environmental and operational variabilities,
thereby accurately identifying these properties [18-20]. This trend is attributed to the
accuracy of the models and their robustness across several applications. For example, four
distinct ML methods—namely, decision tree, support vector regression (SVG), Gaussian
process regression (GPR), and an ensemble method—were used to predict the damage be-
haviour of carbon- and glass-fibre-reinforced composites under tensile loading regimes [21].
The developed models were assessed using performance matrices such as mean absolute
error (MAE), mean squared error (MSE), root mean square error (RMSE), and the coefficient
of determination (R?). The findings indicated that GPR outperformed the other models
with the highest R? of 0.98 and the lowest error values [22]. Also, a convolutional neural
network based on SqueezeNet was employed, using wavelet scalograms to characterize
the mechanical properties of FRP composite structures [23]. The obtained results yielded
a performance of more than 85% for three of the four clustered data. A deep learning ap-
proach based on the Inception Time model was proposed in [24] for damage classification
of AE time- and frequency-domain features to identify fibre breakage, matrix cracking,
and delamination damage modes under tension. Additionally, damage prediction models
for FRP composite structures under compression [25,26], impact [27,28], and fatigue [29]
were also developed using ML approaches. While demonstrations of the application of ML
techniques in damage prediction and structural health monitoring abound in the literature,
there is a need to further develop them for sandwich structures experiencing a combination
of quasi-static localized loads and environmental conditions. Such advancements would
offer valuable possibilities for material optimization and significantly enhance their practi-
cality, particularly for offshore applications. Moreover, ML approaches have the potential
to offer designers a suitable methodology with a robust dataset that can be tailored for
industry-specific applications. Consequently, such models could, therefore, be beneficial
for a wide range of applications.

In this study, the damage evolution in sandwich structures exposed to seawater con-
ditions was investigated under quasi-static indentation (QSI) using the AE technique
for damage characterization. The primary objective of this research is to enhance our
understanding of damage in FRPSS by establishing a predictive methodology. This method-
ology is based on multiple ML classification algorithms, with the identification of the
best-performing models determined through assessments of accuracy, recall, precision,
and Fl-score. In the study, time- and frequency-domain features are extracted, while the
k-means ML algorithm is employed to identify various damage conditions. Thereafter,
ensemble-based algorithms are used to predict the damage conditions of control and
seawater-exposed samples. The damage modes of these two types of samples, that have
different cores and are subjected to localized loading from three indenter geometries, are
chosen as response variables, while the AE time- and frequency-domain features based on
a rigorous feature selection process are selected as predictor variables. This is based on
the direct correlation between the damage to the material, its susceptibility to moisture
ingress, and the variation in the AE features during loading. Although four damage modes
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were identified in a previous study and were shown to be influenced by specific indenter
geometries [30], the novelty of this work is its analysis of the effects of seawater on the
structural health of FRPSS.

2. Materials, Experiment, and Methodology
2.1. Materials and Specimens

Face sheets of the studied FRPSS were fabricated from E-glass plain-weave fabric with
a weight of 160 g/m?, sourced from Samson Composites Ltd. (Shenzhen, China). The
matrix was epoxy resin obtained from EPOCHEM Ltd. (Lagos, Nigeria), with a volumetric
ratio of 2:1. As for the core material, EASYCell 75 closed-cell PVC foam composites from
Easycomposites Ltd. (Stoke-on-Trent, UK), were employed. The samples were fabricated at
room temperature (27 °C) and 48% humidity in Nigeria with a curing time of 18 h. The
process involved hand lay-up and vacuum-bagging techniques, resulting in sample plates
with dimensions of 300 mm x 300 mm. The samples had three different core configurations,
distinguished by the presence or otherwise and positions of additional adhesive layers
connecting parts of the foam core (Figure 1). This fabrication method was chosen for
its cost-effectiveness, simplicity, and versatility. Detailed mechanical parameters of the
constituents and sample designations can be found in Tables 1 and 2, respectively.

GSP
GFRP top face sheet
E 44— PVC foam core
Wy
<«4— GFRP bottom face sheet

GSV
E dv '\_\_\
e ' ‘Vertical adhesive layer

— d, =25 mm
GSH

[ Horizontal adhesive layer

7.8 mm

dy =3 mm

Figure 1. FRPSS fabrication configurations.

Table 1. Mechanical properties of materials [27,29].

Young’s Shear Tensile

Material Modulus Modulus Strength Pf{ftizn ]()3?;13?’
(GPa) (GPa) (MPa) &
E G12 V12 P
E-glass fabric 72.39 8.27 3100-3800 0.26 2.25
PVC foam 0.075 0.028 1.89 - 0.075
Epoxy matrix 3.2-35 - 70-80 0.29 1.16
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Table 2. Sample nomenclature.

Designation Description
GSPC Glass sandwich with pure core/conical indenter
GSVC Glass sandwich with vertical adhesive layered core/conical indenter
GSHC Glass sandwich with horizontal adhesive layered core/conical indenter
GSPH Glass sandwich with pure core/hemispherical indenter
GSVH Glass sandwich with vertical adhesive layered core/hemispherical indenter
GSPS Glass sandwich with pure core/flat indenter
GSVS Glass sandwich with vertical adhesive layered core/flat indenter
GSHS Glass sandwich with horizontal adhesive layered core/flat indenter

Note: Below, notation _c and _s after sample designations is used for unexposed and exposed samples, respectively.

2.2. Sea Water Exposure and Moisture Absorption

To analyse the environmental effect, some manufactured samples were placed inside
an Ascott 5450 salt spray chamber (Figure 2), Ascott Analytical Equipment Ltd., Tamworth,
UK, with salt spray at a salinity of 3.5%, following ASTM B117-19 [31] standards. Both
the saturation and cabinet temperatures of the chamber were adjusted to 40 °C. This
temperature setting was specifically selected as it below the glass transition temperature of
the materials, thereby preventing any temperature-induced damage during the exposure.

water

Salt-spray cabinet

reservoir

Exposed samples insidesalt-spray cabinet

Figure 2. Experimental setup for salt fog spray.

Similarly, maintaining a constant pH level was crucial to prevent chemical reactions
with the samples. Moisture absorption in composite structures occurs through three mecha-
nisms: (i) moisture ingress into manufacturing-induced defects [25]; (ii) capillary/wicking
along the fibre/matrix interface; (iii) combination of water molecules and hydrophilic resin
groups [30]. Gravimetric measurements were conducted to determine the moisture gain
in the exposed samples [15]. The average moisture uptake (M;) increases with immersion
time as defined below:

M — My

0

M; = x 100% 1)
where M; is the percentage of moisture gained, while M is the initial (dry) mass of the
sample and M; is the mass of the wet sample at a specific time. The water uptake adheres
to Fickian law, i.e., it is a function of the square root of immersion time [15]. It is important
to highlight that, for this study, the impact of edge corrections on moisture absorption was
presumed to be minimal. This is because during fabrication, the aspect ratio of the samples
was within acceptable limits (>4.5) and emphasis was placed on the meso- and macro-scale
damage morphologies. A schematic of the research framework is shown in Figure 3.
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[ Sample fabrication ]
v A 4
IECIEECEEE LR UL RCRREE .>[ Mechanical Testing ] [ Damage monitoring ]
Insitu AE

J Exposed 3 : €mission

| Seawater l samples l |< ...... .
Exposure (S

AE features

Validation

A 4

............... » fm———— e m———
! Feature selection |
___________ 7/
ettt s s == 1
! Dataclustering 1
___________ 4
o L I T T e ~
I Classification algorithm selection :

Figure 3. Schematic of research methodology.

2.3. Quasi-Static Indentation Tests

Quasi-static indentation (QSI) tests were conducted using various indenter shapes
with a minimum of 5 samples per configuration to assess the materials’ damage tolerance
and provide insights into the sequence of damage. The experiments followed the ASTM
D6264/D6264M-17 standard, employing a displacement control of 1 mm/min, while
the vertical displacement was measured with a linear variable differential transformer
(LVDT) [25]. An Instron 3369 universal testing machine with a 50 kN load cell (Instron
Corporation, Norwood, MA, USA) was used for the tests, with a fixture constructed
from steel plates (Figure 4). Three different indenter types made from stainless steel—flat
(diameter of 9.5 mm), hemispherical (diameter of 9.5 mm), and conical (shaft diameter of
8.5 mm)—were used (Figure 5). These indenters were chosen to investigate the indentation
effects of blunt, semi-blunt, and sharp foreign objects, respectively, on the FRPSS specimens.
During the test, the indenter was aligned with the centre of the specimen with an offset
of no more than 0.01 mm and was then applied until complete perforation of the sample.
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Further details regarding the QSI methodology employed can be found in our previous
study [30].

Indenter

Light I Sample
sources

AE sensors

Figure 4. QSI experimental setup.

100 mm
100 mm
100 mm

15 mm

13 mm ‘9.5111.111

9.5 mm

A

Figure 5. Indenter types with their dimensions.

2.4. Acoustic Emission

Several AE signal parameters, encompassing both time- and frequency-domain fea-
tures, were analysed in this study. These parameters include Time (s), Class ID, Channel,
Parametric, Risetime, Counts to Peak, Counts, Energy (J), Duration (s), Amplitude (dBae),
ASL, Threshold, Average Frequency (Hz), RMS, Signal Strength, Absolute Energy (J), Fre-
quency Centroid, and Peak Frequency (Hz). To capture these parameters, a structural
health monitoring system, Micro-SHM, Physical Acoustics Corporation, West Windsor
Township, NJ, USA), with a frequency band of 1 kHz-1 MHz equipped with 4 AE channels
and 2 parametric channels was employed. However, only two channels connected to the
Nano-30 AE sensors (125 kHz-750 MHz), mounted on the top and bottom face sheets
(see Figure 4) were utilized.

2.5. ML Approach

The ML approach includes critical steps that contribute to the development of predic-
tive models. These steps include feature scaling and selection, data clustering, classification
algorithm selection, hyperparameter tuning, model training, and performance evaluation.
Each of these components is essential in enhancing the accuracy, reliability, and robustness
of the predictive models developed with the ML process; they are briefly discussed below.
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2.5.1. Feature Scaling

Feature scaling is performed on a dataset to prevent dominance issues and reduce
calculation complexities. The process also helps to mitigate the impact of outliers, while
enhancing the convergence and compatibility of ML algorithms. Accordingly, the time-
and frequency-domain features (i.e., X =[x, ..., xn]T € R"*™) were transformed into a
range between 0 and 1, and scaled as follows:

X — Xmin

_ 2
Xinax — Xmin ( )

Xscaled =
where X,,,;; and X,y are the minimum and maximum values of the features in the dataset,
respectively, while X4, denotes the scaled feature value after normalization.

2.5.2. Feature Selection

Before model training is undertaken, it is important to identify the relevant information
features. Accordingly, a feature selection process was carried out by choosing a subset of
features or variables from a larger set within a dataset. The process is governed by criteria
such as the relevance of the features to the response variable, the predictive strength, or
the capacity of such features to enhance model performance. The primary goal of feature
selection is to reduce the dimensionality of the input features and tackle the influence of
highly correlated ones, to reduce the computational cost, and in some cases to enhance
the efficiency and efficacy of prediction algorithms. In this work, the permutation feature
importance (PFI) method was adopted for the feature selection process, which is provided
with the ML classifiers, thereby making them computationally efficient and robust to
outliers and noisy features [32,33]. PFI measures the contribution of each feature to the
statistical performance of a model for a given dataset by randomly shuffling the values
of a single feature and examining the consequent decrease in the performance score. By
disrupting the connection between the feature and the value to be predicted, PFI assesses
the extent to which the model depends on that specific feature. The main steps of the PFI
approach are summarized below.

For instance, if M is a fitted predictive model and X a feature matrix with n samples
and m features, then X € R"*", and y is the target vector corresponding to 1 samples, such
that y € R".

For each feature jin X, y;

For each repetitionkin 1, ..., K;

Randomly shuffle j of X, y to generate a corrupted version of X,y = ;(k,j/ v;

Compute reference score, Sk,j of M on Xkjr Vs
Compute importance i; for j defined as:

. 1k
ij =5 = g i1 5K ®)

PFI overcomes limitations of the impurity-based feature importance since it does not
have a bias towards high-cardinality features and can be computed on a held-out validation
set [34].

2.5.3. Data Clustering

The k-means++ algorithm is a widely recognized unsupervised ML method for tack-
ling clustering problems. In this work, the algorithm was employed to identify the domi-
nant damage mechanisms. Given X =[xy, ..., xn] with d-dimensional Euclidean space RY,
A=lay, ..., ac] is the c cluster centres, and z = [Zj],, ., where Z; € {0, 1} indicates if
datapoint x; belongs to the kth cluster, k = 1, .. ., c. Therefore, the objective function is:

J@A) =Y Y Zallx — 4)

10
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such that the k-means++ algorithm iteratively optimizes [(z, A) by updating cluster centres
and memberships according to specific conditions, such as

Yim1 ZikXij
a = =270 and
i=1 Zik

1 if[x; — a;||*> = min ||x; — ag|?
- if||x; — ag || gklgcll i — ag|
otherwise

The challenge of k-means++ is usually the need to specify the number of clusters a
priori [23,35,36]. It is noteworthy that the optimum clusters for the k-means++ were identi-
fied in the previous work [30] using two cluster-validity indices, namely the normalized
Calinski-Harabasz index and the Davies-Bouldin index.

2.5.4. Classification Algorithm Selection

Various ML classification algorithms are available to develop prediction models. These
algorithms, however, outclass each other based on the peculiarity of the dataset and predic-
tion intentions. The Lazy Predict method was selected in this study to facilitate the selection
of appropriate ML classifiers for the development of the prediction model. The method is
designed for the efficient training and evaluation of multiple ML models by employing
default configurations and hyperparameters for the models. This method enabled the
identification and prediction of damage mechanisms by deploying a total of thirty ML
classification algorithms, with the top-performing classifiers across the 9 configurations
(8 x unexposed and 3 x exposed samples subjected to 3 different indenter types) selected
for subsequent model development. Ensemble learning algorithms featured among the
top-performing classifiers using the Lazy Predict method. These algorithms leverage multi-
ple weak learners to make a resilient predictor. They also address overfitting and handle
complex data interactions more effectively, while exhibiting resilience to noise and outliers.
Additionally, they excel in scalability and efficiency when dealing with large datasets, as
obtained in this study, making them suitable for the development of prediction models in
diverse ML tasks. Considering the imbalanced distribution of damage-mode class data,
the robustness of ensemble learners helps to prevent the majority class from dominating
the learning process, allowing the model to give more attention to the minority class.
This could offer ensemble learners, such as light gradient boosting machine (LightGBM),
random forest (RF), and extreme gradient boosting (XGBoost), significant advantages over
other algorithms in class imbalance problems [37-39]. RF is an ensemble learning classifier,
which produces results by aggregating predictions from numerous decision trees, thereby
augmenting prediction accuracy through averaging. An illustration of RF is depicted in
Figure 6.
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Figure 6. Illustration of classification using RF.

2.5.5. Hyperparameter Tuning and Model Training

Following the selection of the appropriate ML classifiers, a tuning process for the
respective hyperparameters of the classifier is necessary to obtain the optimal set of hy-
perparameters to enhance the predictive performance of the model on unseen data. They
can also be employed to deal with overfitting and control the computational cost of model
training. Typical hyperparameters in the featured classifiers include the number of esti-
mators, the maximum depth of the trees and the number of features to be considered in
the quest for an optimal fit [40]. In this work, the GridSearch cross-validation (CV) [34]
was utilized for hyperparameter tuning. It involves creating a grid of all possible hyper-
parameter combinations and partitioning the dataset into multiple k-folds/subsets (for
instance, k = 5), where k — 1 folds are used to train the data and the rest are used to evaluate
the model. Subsequently, the folds are rotated so that all folds are featured in the model
training and testing processes. Hence, the model performance is the average mean accuracy
score for each of the hyperparameter combinations, with the combination that delivers
the optimal performance score adopted for the final model training on a held-out set. The
model development process and the hyperparameter tuning phase for one hyperparameter
combination are presented in Figure 7. To reduce the risk of bias in the developed model, a
random shuffle of the data is undertaken with the true class structure preserved. Shuffling
also prevents certain patterns in the original ordered data (such as timestamps) from being
learned, thereby forcing the model to learn more generalized patterns rather than specific
patterns related to the order of data points. Only 80% of the samples for each condition
were used for the hyperparameter tuning and model training process, while the remaining
20% were used to evaluate/validate the performance of the prediction model [41].
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Figure 7. Model development process based on one hyperparameter combination.

2.5.6. Model Evaluation

In assessing the performance of predictive models in detecting the damage conditions
of the dataset, four machine learning metrics, namely accuracy, precision, recall, and
F1-score [42], were employed. These four metrics were used because they provide more
comprehensive evaluation of the classifier’s performance [43,44]. Accuracy measures the
proportion of correct predictions out of the total cases, while precision and recall help us
to understand how well the model performs for individual classes. Precision signifies the
accuracy of positive predictions and recall indicates the model’s ability to correctly identify
positive instances. Fl-score is the harmonic mean of precision and recall, with both metrics
contributing equally to the score. Our multidimensional approach ensures a more nuanced
understanding of the classifier’s effectiveness across various scenarios and classes. The
employed metrics are expressed as follows:

Accuracy = P+ IN ®)
TP + TN + FP + FN

Precision = %IFP 6)

Recall = TPFSL7PFN @)

Fl-score = ﬁ 8)
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where True Positives (TP) and True Negatives (TN) indicate the correct predictions by the
model for positive and negative classes, respectively. Also, False Positives (FP) and False
Negatives (FN) represent the instances where the model’s predictions were incorrect for
positive and negative classes, respectively. The values for these metrics range between 0
and 1, with values close to unity indicating better predictive performance of the model.

3. Results and Discussion
3.1. Moisture Uptake

The moisture absorption curve obtained from the tests adhered to Fickian law and
exhibited a significant increase in the initial period of exposure (Figure 8). The FRPSS
without additional adhesive layers (GSP) demonstrated a higher amount of moisture up-
take than their GSV and GSH counterparts. This difference might have arisen from the
lack of obstruction to the diffusion process once plasticisation of the matrix commenced,
contrasting with the other samples that required more epoxy plasticisation over the expo-
sure period. Additionally, the reduced moisture absorption observed in the GSH samples
indicates that the water ingress primarily occurred in the in-plane direction, with a limited
through-thickness effect (edge effect). As can be seen for all the samples, the moisture
uptake continued until the saturation stage was reached, which is represented by the
plateau in the curves. It should be noted that this stage was reached for GSP after a longer
period of exposure while GSV and GSH attained saturation almost simultaneously. This
shows that the samples with adhesive cores had similar moisture absorption properties
due to the effects of the epoxy layers.

L CE
= E ]
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0 5 10 15 20 25 30 35
Time hr ("2

Figure 8. Moisture uptake of FRPSS.

3.2. Quasi-Static Out-of-Plane Behaviour
3.2.1. Failure Load

The mechanical performance of the FRPSS depended on both environmental exposure
and indenter geometry (Figure 9). Overall, it was evident that samples subjected to the
conical indenter demonstrated the lowest failure loads when compared to those subjected
to flat and hemispherical indenters across all of the sample types. This phenomenon
could be attributed to an early onset of localized damage at the point of contact caused by
the sharp indenter, which resulted in enhanced matrix shear cracking and fibre fracture.
Conversely, in cases with larger contact areas (as for hemispherical and flat indenters),
more of the reinforcements came into contact with the indenter, thus enhancing the damage
resistance of the loaded structure and indicating a higher load-bearing capacity until the
point of sudden failure when the shear strength was exceeded. It is noteworthy that
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this behaviour varied with the core configuration, as samples with adhesive layers (both
vertical and horizontal) exhibited greater levels of damage resistance, with the horizontal
adhesive-layered samples displaying a more brittle failure character.
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Figure 9. Failure load of FRPSS caused by different indenters: (a) conical; (b) hemispherical; (c) flat.

After the seawater exposure, the test results indicated a general decline in the load-
bearing capacity for all the tested samples. Specifically, samples subjected to conical
indenters exhibited the highest decrease in the failure load, with reductions of 48.9%,
51.5%, and 34.1% for the GSP, GSV, and GSH specimens, respectively. This decline can be
attributed to a combination of factors, including the sharp nose of the indenter and the
ageing of the structure due to seawater exposure. The conical indenter geometry led to
an early onset of damage, while the seawater induced plasticisation and swelling of the
epoxy matrix, affecting the adhesive bonding between the constituents of the FRPSS. At the
microscale, this deterioration was characterized by a weaker fibre/matrix interface, as well
as reduced intra- and interlaminar bonding, and debonding between the face sheet and the
core at the macroscale [30]. In the case of indentation with larger contact areas, such as with
hemispherical and flat indenters, the GSV samples were the most affected by the seawater
exposure, experiencing decreases in the failure load of 38.8% and 46.1%, respectively. This
could be attributed to the overall weakening of bond strength at the intersection between
the top face sheet, the core, and the vertical adhesive layer, as well as the low compressive
strength of the epoxy layer. Interestingly, the GSH samples performed slightly better, with
a decrease of 32.1% (compared to 35.4%) for GSP under the hemispherical indenters, while
there was a negligible difference for the flat indenters. This highlights that, while the core
configuration could lead to enhanced damage resistance for FRPSS, it could also have
significantly adverse effects for maritime applications.
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{(a) 10

3.2.2. Energy Absorption Capability

Energy absorption serves as a crucial metric in comprehending the damage behaviour
of composites. Hence, a comparison of the energy absorption properties of the samples
under different indenter configurations can be based on the total absorbed energy E,
obtained by integration of the area under the force-displacement curve:

X1
E, = / F(x)dx )
Xo

Like the trend for the failure load, it is noticeable that E, decreased after seawater
exposure for all of the samples (Figure 10). Furthermore, specimens loaded with the conical
indenter (GSPC, GSVC and GSHC) exhibited the lowest energy absorption capability and
experienced the largest decline after the seawater exposure, with reductions of 66.9%,
65.2%, and 41.4%, respectively. As previously explained, this could be attributed to the
easier penetration of the sharp nose and accelerated degradation due to seawater ageing.
The energy performance of specimens subjected to hemispherical and flat indenters varied
in a way similar to the failure load trend.
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Figure 10. Total absorbed energy for FRPSS under different indenters: (a) conical; (b) hemispherical;
(c) flat.

3.3. AE Results

It has been shown that the behaviour of AE features, such as cumulative counts, can
offer crucial insights into assessing the damage mechanisms and failure characteristics of
composite materials. This is due to their ability to facilitate a comprehensive classification
of distinct damage zones under quasi-static loading conditions [21-23]. These distinct
zones can be identified when there is a change in the gradient of the cumulative count’s
slope (Figure 11—zoomed-in section), indicating a transition in the load-bearing capacity
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of the sample characterized by the presence of a damage sequence [22]. Considering that
the displacement speed for all samples was kept constant, the time change would provide
an insight into the effects of moisture uptake on the rate of damage at critical loads. A
comparison of the force-displacement plots and the AE cumulative counts for the FRPSS
samples, both unexposed and exposed to seawater, is depicted in Figures 11-13.
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Figure 11. Relationship between load and AE cumulative counts of GSP specimen with different
indenters: (a) conical; (b) hemispherical; (c) flat.
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Figure 13. Relationship between load and AE cumulative counts for GSH specimen with different

indenters: (a) conical; (b) hemispherical; (c) flat.

There was a reduction in the time taken for the change in the cumulative count slopes
of the samples after seawater exposure to occur for penetrations of the top and bottom
face sheets. This time difference can be calculated by A; — A; for the top face sheet
penetration and By — By for the bottom face sheet penetration. Here A, and B, represent
the penetration time for the top face sheet for the unexposed specimen while A; and By
denote the penetration time for the exposed samples, respectively. GSP samples subjected
to conical, hemispherical, and flat indenters (Figure 11) experienced drops of 80%, 75%,
and 16% in the top face sheet and 28%, 28%, and 27% in the bottom one, respectively.
For GSV, the values were 78%, 27%, and 26% for the top face sheet and 25%, 17%, and
27% for the bottom face sheet, respectively, (Figure 12) while the respective values for
GSH were 73%, 31%, and 29% and 15%, 15%, and 20% (Figure 13). It can be seen that the
conical indenters caused the largest drop in the time in the top face sheet for all samples
which reinforces the heightened damage onset of sharp indenters on exposed samples.
Interestingly, the time interval for complete failure ranged from 15% to 28% as a result of the
varying combination of the damage resistances of the core, indenter shape, and friction in
the through-thickness direction. Consequently, it can be concluded that the time taken for
the onset of damage for FRPSS after seawater exposure to the top face sheet was primarily
driven by the indenter geometry, while the other constituents played a contributory role in
the subsequent damage sequence.

3.4. ML Setup

The primary tools utilized in the ML part of this study were the Python programming
language along with the pandas, NumPy, joblib, scikit-learn (sklearn), and Matplotlib libraries.
These libraries facilitated essential tasks that were necessary for model development, such
as data manipulation, numerical computation, the implementation of ML algorithms, and
visualisation. Owing to the large dataset size, joblib aided in parallelising the execution
capabilities, thereby reducing the cost of computationally expensive tasks such as cross-
validation and hyperparameter tuning. These computations were carried out using the
ALICE high-performance computing facility at the University of Leicester, UK. For each
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specimen type (e.g., GSPH), the experimental data for both control and exposed samples
were uploaded and combined into one data frame, and the normalization process was
applied using the Min—Max scaler, transforming each value of each feature to be within the
range of 0 to 1. The resulting dataset was randomly shuffled using a predefined random
seed and split in ratio of 4:1. Thus, 80% of the data were used for model training, with
while the remaining 20% were used for evaluating the model performance. During the
splitting process, the data were stratified based on the response class labels, so that the
samples of all class labels were equally distributed to alleviate issues arising from class
imbalance during the model training process. Thereafter, a clustering analysis was initiated
based on the k-means++ algorithm using the amplitude and peak frequency features. The
number of clusters to identify as well as the number of centroids to generate was set at
n =4 in our previous study [30].

For computations, a predefined random state was used to allow for reproducibility.
The resulting predicted clusters served as the response variable. Thus, representing the
damage modes for the respective specimens. Consequently, the Lazy Predict algorithm was
initialized to assess the model performance of thirty ML classification algorithms on their
default configurations and hyperparameters for the models. For each specimen, the dataset
was reshuffled based on the NumPy random state generator, with Lazy Predict providing
the preliminary assessment for model performance. The average accuracy results from
five iterations led to the identification of the three top-performing classifiers across the
eight damage modes that were predicted (four each for exposed and unexposed sample).
These included LightGBM, RF, and XGBoost. Hyperparameter tuning was subsequently
undertaken with GridSearch CV to determine the best hyperparameter combination that
offered the best generalisation performance on the respective classifiers. In the tuning
process, k = 5 cross-validation folds were selected with an accuracy set as the baseline
scoring parameter. PFI was then carried out by shuffling the features 10 times, and the
model refitted to estimate the importance of the feature based on the mean decrease in
accuracy. The features were then sorted based on their importance and stacked into a
two-dimensional array, in which only the highest ranked feature was in the first row and
all the features in the fifteenth row. Using a joblib parallelization, each of the rows of
features was fitted on their respective classifiers, and the row which delivered the best
model performance was evaluated on the initially held-out validation set based on the four
performance metrics. It is noteworthy that the weighted averages were specified for the
parameters of the precision, recall, and F1-score matrices, which accounted for the class
imbalance of the samples. Finally, the confusion matrices of the best-performing model of
the three classifiers were computed and discussed in the subsequent sections.

3.5. Feature Analysis

Generally, the obtained results indicated that the amplitude, frequency centroid, and
peak frequency features were the major signals contributing to the accuracy of the predictive
ML models (Figure 14) for all samples. Furthermore, the frequency centroid was more
dominant among them, as shown in Table 3.

Using Table 3 (in which the highest values of AE features for each sample are high-
lighted), an analysis of the mean accuracy decrease (MAD) value for GSPC AE features
shows that the removal of the AE amplitude feature from the dataset decreased the mean
accuracy by 42%. Furthermore, it can also be observed that, in the LightGBM and XG-
Boost models, the FC was the most important feature, contributing to about 45-70% of the
predictive power.

For specimens loaded with the hemispherical indenter, the PF contributed significantly
to about 30-50% of the MAD. On the contrary, it was observed that, for the flat and
conical indenters, peak frequency had a mostly insignificant influence on the predictive
power of the models. This can be linked to the material’s behaviour at the transition
points (elastic to plastic) underneath these indenters. The hemispherical indenter offers
a more consistent transition gradient at the critical load points than the conical and flat
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indenters, which caused an abrupt failure at these critical points, thereby creating a larger
scatter of data points. A similar occurrence for the ML regression algorithm was reported
in [45,46]. Therefore, for composite structures loaded with conical and flat indenters, the
peak frequency cannot be relied upon alone to assess the damage evolution using AE
signals. In practical terms, structural health monitoring of composite materials for marine
applications with AE could be achieved for similar sharp and blunt incident objects using
the frequency centroid and amplitude. For semi-blunt objects, peak frequency inputs could
also provide valuable data for failure monitoring. For the models built on the RF classifier,
the amplitude, frequency centroid, and peak frequency were the main contributors to
the MAD. This could indicate a higher level of robustness to outliers of RF in damage
prediction for data sets with varying levels of fluctuation. Generally, the threshold feature
did not contribute to the MAD, implying its irrelevance in the development of a predictive
model for damage assessment based on ensemble learning algorithms. Since energy had a
negligible value in the MAD, it was not included in the analysis.

Table 3. Results of AE feature analysis.

AE Features

Sample Model
P ode Amp FC PF ASL RT D C AE IF
LightGBM  0.42 0.07 0.00 0.06 0.00 0.01 0.02 0.03 0.01
GSPC RF 0.35 0.41 0.50 0.06 0.01 0.01 0.01 0.01 0.02
XGBoost 037 0.67 0.00 0.03 0.04 0.03 0.02 0.01 0.01
LightGBM  0.43 0.46 0.45 0.10 0.01 0.05 0.06 0.07 0.01
GSPH RF 0.46 0.41 0.50 0.06 0.01 0.01 0.02 0.01 0.01
XGBoost  0.49 0.43 0.51 0.08 0.01 0.02 0.02 0.03 0.01
LightGBM  0.42 0.70 0.00 0.06 0.00 0.02 0.02 0.03 0.01
GSPS RF 0.42 0.35 0.38 0.03 0.00 0.00 0.01 0.00 0.01
XGBoost  0.43 0.70 0.00 0.05 0.00 0.02 0.02 0.04 0.01
LightGBM  0.43 0.59 0.00 0.16 0.04 0.03 0.04 0.02 0.04
GSVC RF 0.40 0.30 0.26 0.13 0.02 0.02 0.03 0.00 0.03
XGBoost  0.43 0.59 0.00 0.16 0.04 0.04 0.04 0.03 0.04
LightGBM  0.48 0.39 0.33 0.04 0.01 0.01 0.01 0.01 0.01
GSVH RF 0.48 0.34 0.31 0.03 0.01 0.01 0.01 0.00 0.00
XGBoost  0.49 0.43 0.51 0.08 0.01 0.02 0.02 0.03 0.01
LightGBM 0.4 0.70 0.00 0.03 0.00 0.02 0.05 0.03 0.01
GSVS RF 0.43 0.31 0.37 0.05 0.00 0.02 0.03 0.00 0.00
XGBoost 043 0.70 0.00 0.07 0.00 0.03 0.05 0.03 0.00
LightGBM  0.46 0.69 0.00 0.01 0.01 0.03 0.02 0.03 0.00
GSHC RF 0.41 0.36 0.28 0.01 0.01 0.02 0.01 0.02 0.01
XGBoost 046 0.69 0.00 0.01 0.01 0.03 0.02 0.03 0.01
LightGBM  0.36 0.47 0.31 0.05 0.01 0.01 0.02 0.01 0.01
GSHH RF 0.38 0.46 0.22 0.03 0.01 0.01 0.01 0.00 0.01
XGBoost 038 0.45 0.32 0.05 0.01 0.02 0.02 0.02 0.01
LightGBM 035 0.63 0.00 0.09 0.03 0.03 0.04 0.02 0.02
GSHS RF 0.33 0.33 0.28 0.07 0.02 0.01 0.02 0.01 0.02
XGBoost  0.34 0.63 0.00 0.09 0.03 0.03 0.04 0.02 0.02
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Figure 14. Sample feature analysis of GSVH with best performing algorithm: (a) LightGBM; (b) RF;
(c) XGBoost (Amp—amplitude; FC—frequency centroid; PE—peak frequency; ASL—average signal

level; RT—rise time; D—duration; C—counts; AE—absolute energy; [F—initiation frequency).

3.5.1. Hyperparameter Tunning Results

The hyperparameters, range, selected parameters, and mean cross-validation scores

of GSVC that were used to identify the damage modes are presented in Table 4. Other
hyperparameters not shown in the table were used in their default states.

Table 4. Hyperparameters of classifiers and their studied ranges for GSVC.

Model Attribute Range Selected Value Mean Score
colsample_bytree [0.7,0.8,0.9, 1] 0.9
learning rate [0.01,0.1,0.2] 0.01

LightGBM max_depth [—1,5,10, 15] 10 0.8836
min_child_weight [0.001, 0.01, 0.1] 0.001
n_estimators [100, 200, 250, 300] 300
criterion [‘gini’, ‘entropy’, log_loss’] ‘entropy’
max_depth [None, 2, 3,4,5,7,8,10, 20] None
max_features [None, ‘sqrt’, ‘log2’] ‘sqrt’

RF min_samples_leaf [1,2,3,4,5] 1 0.8944
min_samples_split [2,4,5,7,8,10] 7
n_estimators [100, 150, 200, 250, 300] 300
colsample_bytree [0.7,0.8,09,1] 0.9
gamma [0,0.1,0.2] 0

XGBoost learning rate [0.01,0.1,0.2] 0.01 0.8955
max_depth [3,6,9] 6
n_estimators [100, 200, 300] 200
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Following this, the models were trained using the selected hyperparameter values
(which provided an optimal performance while dealing with overfitting) for the respective
classifier attributes to identify the damage sequence.

3.5.2. Identification of Damage Sequence

The confusion matrices of the prediction models for the GSP, GSV, and GSH samples
allow us to visualize their performance by comparing the true and the predicted labels
(Figures 15-17, respectively). For the sake of analytical comparisons and interpretability,
the individual quantitative values were normalized, demonstrating the results of clustering
(C1,C2,C3,C4, 651, S2, S3 and S4), with C1-C4 and S1-54 representing the four damage
modes (matrix cracking, delamination, fibre breakage, and core damage) for the unexposed
and exposed samples, respectively. The identification of the damage modes for FRPSS was
discussed in previous studies [27]. Generally, the developed models could clearly distin-
guish between unexposed and exposed specimens, with the control samples exhibiting a
higher extent of correct predictions between 66 and 100%. This is because, as demonstrated
previously, seawater exposure led to the degradation of the mechanical performance of the
constituents of the FRPSS and the entire structures. This degradation caused a faster onset
of damage in the matrix due to plasticisation, as well as a more pronounced weakening at
the constituent’s interface (matrix—fibre interface, intra-laminate/interlaminate, and face
sheet/core). It can be observed that the correct classifications of the GSP samples loaded
with the hemispherical and flat indenters had higher values than those loaded with the
conical one, with the lowest being 74.1% and 79.9% for GSPC-52 and GSPC-C1, respectively
(Figure 15a). For the GSV samples, the lowest classification results were GSVH-54 and
GSVS-C4 at 77.6% (Figure 16b) and 65.8% (Figure 16¢), respectively. Lastly, GSHC-C3 and
GSHH-51 showed the lowest values of 77.8% (Figure 17a) and 74.2% (Figure 17b) for the
GSH samples, respectively. These results demonstrate the ability of the developed models
to deal with damage induced by moisture uptake and the dominant influence of seawater
in the prediction capabilities of the ML algorithm. A description of the class clustering data
for exposed and unexposed samples is given in Table 5.

In terms of the average performances for the eight damage modes, C1-C4 and S1-54,
Table 6 shows the model performance values for each sample loaded with the various
indenters with the highest values highlighted. The models with the highest performance
values for each sample had a range of 86.4%-95.9% across the selected performance in-
dicators (namely, accuracy, precision, recall, and Fl-score). Although the four metrics
yielded similar scores in terms of their predictive capabilities on each sample, Friedman
tests taken at the level of « = 0.05 resulted in F-statistic and p-values of 8.181 and 0.043 for
LightGBM; 9.243 and 0.026 for RF; and 7.950 and 0.047 for the XGBoost models, respec-
tively. The tests, therefore, indicated that there was a statistically significant difference in
performance between the metrics and the models. Accordingly, at least one of the models
(LightGBM, RF or XGBoost) performed differently from the others on the four evaluated
metrics. Thus, the XGBoost model demonstrated the best overall performance across all
the studied samples. This was noted on the GSVS sample, achieving accuracy, precision,
recall, and Fl-score values of 0.9587, 0.9592, 0.9587, and 0.9587, respectively. Specifically,
the LightGBM model exhibited the highest performance for the GSV sample, while the
XGBoost model demonstrated the highest performance for the GSH sample, across all three
of the indenter types employed.
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Table 5. Class clustering data description.
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Class Clustering Data Description

Sample Cluster Value Sample Cluster Value Sample Cluster Value
GSP
GSPC_c1 C1 16,381 GSPH_c1 C1 47,633 GSPS_c1 C1 45,924
GSPC_c2 C2 15,177 GSPH_c2 Cc2 52,810 GSPS_c2 C2 69,598
GSPC_c3 C3 32,798 GSPH_c3 C3 38,213 GSPS_c3 C3 72,779
GSPC_c4 C4 16,988 GSPH_c4 C4 54,834 GSPS_c4 C4 45,146
GSPC_s1 S1 17,142 GSPH_s1 S1 57,804 GSPS_s1 S1 26,283
GSPC_s2 S2 17,898 GSPH_s2 S2 70,847 GSPS_s2 S2 53,096
GSPC_s3 S3 18,911 GSPH_s3 S3 85,418 GSPS_s3 S3 70,230
GSPC_s4 S4 18,655 GSPH_s4 S4 88,616 GSPS_s4 S4 36,562
GSV
GSVC_cl C1 22,860 GSVH_c1 C1 25,789 GSVS_cl C1 28,432
GSVC_c2 C2 21,091 GSVH_c2 2 34,000 GSVS_c2 C2 27,548
GSVC_c3 C3 25,386 GSVH_c3 C3 21,235 GSVS_c3 C3 27,665
GSVC_c4 C4 16,755 GSVH_c4 C4 26,295 GSVS_c4 C4 23,663
GSVC_sl S1 19,879 GSVH_sl S1 53,640 GSVS_sl S1 53,889
GSVC_s2 S2 18,700 GSVH_s2 S2 61,286 GSVS_s2 S2 36,701
GSVC_s3 S3 14,859 GSVH_s3 S3 51,369 GSVS_s3 S3 35,678
GSVC_s4 S4 19,492 GSVH_s4 S4 81,788 GSVS_s4 S4 61,885
GSH
GSHC _c1 C1 20,454 GSHH_c1 C1 40,256 GSHS_c1 C1 47,697
GSHC_c2 C2 13,528 GSHH_c2 2 31,579 GSHS_c2 C2 32,055
GSHC_c3 c3 35,224 GSHH_c3 C3 47,866 GSHS_c3 C3 17,419
GSHC_c4 C4 17,772 GSHH_c4 C4 27,235 GSHS_c4 C4 36,516
GSHC_s1 S1 26,507 GSHH_s1 S1 17,311 GSHS_s1 S1 45,513
GSHC_s2 S2 22,917 GSHH_s2 52 59,395 GSHS_s2 S2 24,719
GSHC_s3 S3 23,774 GSHH_s3 S3 35,561 GSHS_s3 S3 33,314
GSHC_s4 S4 12,656 GSHH_s4 S4 70,114 GSHS_s4 S4 41,140
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Table 6. Summary of best-performing ML models.

Performance Indicators

Sample Model —
Accuracy Precision Recall F1-Score

LightGBM 0.9103 0.9106 0.9103 0.9102
GSPC RF 0.9106 0.9108 0.9106 0.9105
XGBoost 0.9111 0.9114 0.9111 0.9110
LightGBM 0.9357 0.9356 0.9357 0.9355
GSPH RF 0.9434 0.9433 0.9434 0.9432
XGBoost 0.9453 0.9453 0.9453 0.9452
LightGBM 0.9562 0.9556 0.9562 0.9557
GSPS RF 0.9568 0.9563 0.9568 0.9563
XGBoost 0.9568 0.9562 0.9568 0.9563
LightGBM 0.8974 0.8973 0.8974 0.8972
GSVC RF 0.8971 0.8969 0.8971 0.8968
XGBoost 0.8996 0.8995 0.8996 0.8995
LightGBM 0.9429 0.9429 0.9429 0.9429
GSVH RF 0.9421 0.9422 0.9421 0.9421
XGBoost 0.9436 0.9437 0.9436 0.9435
LightGBM 0.9584 0.959 0.9584 0.9583
GSVS RF 0.9556 0.956 0.9556 0.9555
XGBoost 0.9587 0.9592 0.9587 0.9587
LightGBM 0.9548 0.9553 0.9548 0.9548
GSHC RF 0.9535 0.9544 0.9535 0.9535
XGBoost 0.9548 0.9554 0.9548 0.9549
LightGBM 0.9389 0.9394 0.9389 0.9392
GSHH RF 0.9384 0.9391 0.9384 0.9387
XGBoost 0.9383 0.9388 0.9383 0.9385
LightGBM 0.8636 0.8640 0.8636 0.8630
GSHS RF 0.8616 0.8614 0.8616 0.8612
XGBoost 0.8632 0.8635 0.8632 0.8627

4. Conclusions

This study investigated the effect of moisture uptake on the damage to FRPSS with

GFRP face sheets and PVC foam cores caused by loading with different indenters, which
is relevant for marine applications. Multiple ML predictive models were applied to the
data collected with AE during QSI tests for both control and seawater-treated samples. The
results obtained from the study indicated the following:

The decline in the load-bearing capacity for all samples after the seawater exposure
was attributed to several factors. Samples loaded with the conical indenter experienced
the highest decrease in the maximum load, with reductions of 48.9%, 51.5%, and 34.1%
for GSP, GSV, and GSH specimens, respectively. For indentation cases with a higher
contact area, the GSV samples were notably impacted by seawater exposure, with
reductions of 38.8% and 46.1%, while the GSH samples showed a slightly better per-
formance, decreasing by 32.1% (compared to 35.4% for GSP) under the hemispherical
indenter and exhibiting a negligible difference under the flat indenter.

In terms of energy absorption, a similar trend was observed, with this parameter demon-
strating the largest decrease for the samples loaded with the conical indenter—66.9%,
65.2%, and 41.4% (respectively, for GSP, GSV, and GSH) after seawater exposure. This
could be attributed to the easier penetration of the sharp (conical) indenter and accel-
erated degradation due to seawater ageing. Furthermore, the energy performance of
specimens subjected to hemispherical and flat indenters varied in a way similar to the
failure load trend.

The AE amplitude, frequency centroid, and peak frequency were the major signals
contributing to the accuracy of the predictive ML models for all samples, with the
FC being dominant. The MAD values for GSPC, GSVC, and GSHC decreased the
mean accuracy after the removal of the AE amplitude by 42%, 52%, and 69%, respec-
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tively, with LightGBM models. The FC was the most important feature, contributing
45-70% to predictive power in LightGBM and XGBoost models. For the hemispherical
indenter, the PF contributed significantly (30-50% MAD). The models showed high
performances (86.4-95.9%) in distinguishing between the unexposed (control) speci-
mens and the exposed ones. The lowest correct classification rates were observed for
samples loaded with the conical indenter.

Overall, the developed ML models could clearly distinguish between unexposed
and exposed specimens, with the control samples exhibiting a higher extent of correct
predictions between 66 and 100%. The reason for this, as shown by the experimental
results, was the effect of moisture uptake on the degradation of mechanical properties of
the constituents in the FRPSS. Also, it was observed that the XGBoost model performed best
overall, achieving a 95.9% accuracy for the GSVS samples. This paper thus demonstrated
the potential of ML techniques for damage prediction in marine structures and components
and the viability of using these techniques with data from in situ AE inputs, which could
be important for various industrial applications.
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Abstract: Orthotropic steel decks (OSDs) are commonly used in the construction of bridges due to
their load-bearing capabilities. However, they are prone to fatigue damage over time due to the cyclic
loads from vehicles. Therefore, the early structural health monitoring of fatigue damage in OSDs
is crucial for ensuring bridge safety. Moreover, Lamb waves, as elastic waves propagating in OSD
plate-like structures, are characterized by their long propagation distances and minimal attenuation.
This paper introduces a method of emitting high-energy ultrasonic waves onto the OSD surface to
capture the nonlinear Lamb waves formed, thereby calculating the nonlinear parameters. These
parameters are then correlated with the fatigue damage endured, forming a damage index (DI) for
monitoring the fatigue life of OSDs. Experimental results indicate that as fatigue damage increases,
the nonlinear parameters exhibit a significant initial increase followed by a decrease. The behavior
is distinct from the characteristic parameters of linear ultrasound (velocity and energy), which also
exhibit changes but to a relatively smaller extent. The proposed DI and fatigue life based on nonlinear
parameters can be fitted with a Gaussian curve, with the R-squared value of the fitting curve being
close to 1. Additionally, this paper discusses the influence of rib welds within the OSDs on the DI,
whereby as fatigue damage increases, it enlarges the value of the nonlinear parameters without
altering their trend. The proposed method provides a more effective approach for monitoring early
fatigue damage in OSDs.

Keywords: orthotropic steel decks (OSDs); structural health monitoring; ultrasonic; fatigue; nonlinear
parameters

1. Introduction

Orthotropic steel decks (OSDs) form a composite structural system that is reinforced
by welding top plates, longitudinal ribs, and transverse stiffeners. Originating in Germany
during the 1930s [1], OSD technology has since been adopted worldwide, exemplified by
its use in the Bronx—Whitestone Bridge in the United States, the Daishi Bridge in Japan,
and the Humen Bridge in China [2]. The widespread popularity of OSDs can be attributed
to several key advantages, including their lightweight nature, exceptional load-bearing
capacity, minimal joint requirements, and ease of construction [3,4].

However, with the increasing service life and number of OSD bridges, it has become
evident that OSDs are not without their issues [1,5]. For instance, they require complex
welding details and are prone to intricate stress patterns during the initial design phase [6,7].
Over time, they are susceptible to the frequent passage of overweight vehicles, which
significantly heightens the risk of fatigue damage, posing a direct threat to the overall
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safety of the bridge. The previously mentioned Bronx-Whitestone Bridge, Daishi Bridge,
and Humen Bridge have all experienced fatigue-induced cracks [2], necessitating regular
maintenance and inspections. Therefore, real-time and effective monitoring of the OSD’s
fatigue life is crucial, especially for the early detection of fatigue damage.

Currently, various methods for identifying fatigue damage have been developed,
including ultrasonic testing [2,8-10], strain measurement [11-13], acoustic emission [14],
electro-mechanical impedance [6], infrared thermography [15], magnetic flux leakage [16],
and prediction methods based on temperature and traffic data [17]. Strain measurement
employs strain gauges to detect deformation at specific locations [13], while infrared ther-
mography captures images based on temperature variations at crack sites [15]. Although
infrared thermography and magnetic flux leakage methods provide a certain level of visual
detection, their sensitivity in the early stages of crack and damage detection is insufficient,
making it difficult to capture the appearance and development of small cracks in a timely
manner. Prediction methods based on temperature and traffic data establish a nonlinear
relationship between traffic information, temperature variations of the bridge deck, and
the fatigue life of the OSD [17]; however, they rely on extensive historical data and complex
algorithms. This makes them highly dependent on data completeness and model accuracy.
In practical applications, the variability of traffic flow and environmental temperature often
compromises the applicability and precision of these prediction models.

In contrast, ultrasonic testing requires fewer sensors and offers longer propagation
distances [18], making it more promising for early fatigue prediction in OSDs [2,8-10].
Shi et al. [2,10] experimentally and numerically validated the fact that reflected Lamb waves
can be used to monitor the geometric shape of cracks that are caused by fatigue in OSDs,
highlighting the importance of sensor placement for effective monitoring. Gao et al. [8]
utilized a pitch-catch sensor configuration to analyze the energy of ultrasonic backscattering,
enabling the early warning of fatigue damage in welded steel plates. The aforementioned
ultrasonic monitoring methods for fatigue damage rely on linear ultrasonic evaluation
metrics, such as changes in the energy and velocity of scattered waves.

The early cracks in OSDs are better explained by contact acoustic nonlinearity the-
ory [10], as linear velocity and energy tend to plateau during the initial stages of micro-
damage [19], limiting their sensitivity to early fatigue damage. Nonlinear ultrasound,
in contrast, is more sensitive in characterizing fatigue micro-damage. Within a certain
amplitude range, nonlinear ultrasound generates higher harmonics through interaction
with the material’s nonlinearity [20,21]. These harmonics arise from the coupling of the
fundamental wave with microstructures, defects, and lattice dislocations within the mate-
rial. Lee et al. [20] quantified the direction and length of cracks using nonlinear parameters
through numerical simulation. These nonlinear parameters are not only applicable to
steel plates but are also effective in assessing early micro-damage in aluminum plates [21]
that has been caused by fatigue. Compared to ordinary steel or aluminum plates, OSDs
feature U-ribs and weld seams. The presence of weld seams inevitably induces nonlinear
effects [22], posing greater challenges for monitoring fatigue damage in OSDs. There-
fore, investigating the applicability of nonlinear ultrasound technology for monitoring the
fatigue life of OSDs is of significant interest.

This paper makes the following key contributions: it is the first to explore the interac-
tion between nonlinear ultrasonics and fatigue cracks in OSDs, with particular attention to
the impact of weld seams at the OSD ribs on nonlinear ultrasonic signals. A novel detection
method is introduced, capable of quantitatively analyzing the remaining fatigue life of
OSDs by fitting the DI based on nonlinear parameters to a Gaussian curve, which will be
validated on seven OSD specimens. The method’s efficacy is thoroughly compared with
traditional linear ultrasonic evaluation methods.

The structure of this paper is as follows: Section 2 introduces the evaluation methods
and the preparation of the required materials, including the derivation of the DI based
on nonlinear ultrasound, the fabrication of OSDs, fatigue testing, and ultrasound testing
configurations; Section 3 presents the changes in linear and nonlinear ultrasound signals
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before and after OSD fatigue, along with the fitting analysis of DI and fatigue life; Section 4
compares the proposed method with linear ultrasound evaluation methods and examines
the impact of weld seams on nonlinear parameters; and Section 5 concludes the paper.

2. Materials and Methods
2.1. Nonlinear Ultrasonics

The British physicist Sir Horace Lamb first described Lamb waves in 1917 [23]. These
waves can propagate in plate-like structures with parallel free boundaries, similar to steel
plates. Lamb waves exhibit two fundamental modes—the symmetric mode (S-mode) and
the antisymmetric mode (A-mode) [24]. In the S-mode, the plate vibrates simultaneously
outward or inward, while in the A-mode, the vibrations on either side of the plate are
opposite. Moreover, their properties vary with frequency. The relationship between the
velocity and frequency of Lamb waves in OSDs can be determined through the Rayleigh—
Lamb equation [25], as illustrated in Figure 1. It is evident that at any given frequency in
OSD, both modes will be present. However, since the subsequent ultrasonic excitation
is in an antisymmetric manner, the A-mode is expected to be the predominant mode of
vibration [24].
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Figure 1. Lamb waves dispersion curves of OSDs: (a) phase velocity and (b) group velocity.

Fatigue cracks within OSDs may exhibit an alternating open-and-close state under
cyclic loads of a certain amplitude, a phenomenon vividly termed the “breathing effect” [20].
This effect results in local nonlinear interactions between the Lamb waves propagating
in the OSD and the vicinity of the fatigue cracks, leading to waveform distortions and
the emergence of second-order or higher-order harmonics. The internal stress endured
by the contact surfaces of the breathing cracks can be represented using a simplified
one-dimensional model, as follows:

o=Ee(1+pe+---) @

where E(pa) is the modulus of elasticity; B represents the second-order elastic coefficient;
and o (pa) and € denote stress and strain, respectively. By neglecting the higher-order terms
beyond the second order in Equation (1) and utilizing the relationship between particle
displacement and strain, substitution into the one-dimensional wave equation yields the
following result [26]:
o%u 0%u ou 9%u
T czﬁ + ZCZpaﬁ
where 1(m) represents displacement; p(kg/m?) is the density of the medium; x(m) is
the distance over which the wave propagates; t(s) stands for time; and c(m/s) is the
wave speed.
Based on perturbation theory [26], it is assumed that the displacement u is composed
of a linear response, 1, and a nonlinear response, u,,;. By synthesizing both the multiscale
method and the trial solution method, as well as neglecting higher-order small quantities

)

31



Materials 2024, 17, 2792

during the solution process, an approximate analytical solution to Equation (2) can be
obtained, as follows:

u = u; + uy = Uycos(kx — wt) — Upsin[2(kx — wt)] 3)

where k(m~!) represents the wavenumber, and w(rad/s) denotes the angular frequency.
The variables U; and Uy, respectively, stand for the amplitudes of the fundamental wave
and the second harmonic, with the following relationship established between them:

U, = gu%kzx €Y

where /8, k?, x can be uniformly regarded as describing the nonlinearity coefficient of the
medium [20,27] By, facilitating subsequent DI construction.

_ W

Bo = i (5)

In actuality, the forces exerted on the surfaces of fatigue cracks are exceedingly com-
plex, and the one-dimensional simplified model mentioned above struggles to precisely
represent the nonlinear interaction process of fatigue cracks [26]. Nonetheless, the non-
linear parameters deduced from various theories can all be formulated as expressed in
Equation (5). Consequently, this paper opts for the nonlinear parameter as the principal
characterizing parameter for fatigue cracks and proceeds to construct the DI based on this.

Given the presence of OSDs with varying degrees of fatigue, to facilitate the compari-
son of nonlinear parameters between specimens with different identifiers, the DI is further
introduced as follows: ,

pr=_Fo_ (6)

ﬁO(o%)

where B, represents the nonlinear parameter for different OSDs under varying fatigue
lives, and By(o9,) denotes the nonlinear parameter for OSDs when not subjected to any
load. A larger DI indicates a stronger nonlinear phenomenon of Lamb waves within the
OSD. Furthermore, attempting to fit the DI and damage degree through linear or nonlinear
curves is a key step in the proposed methods and is an essential part of non-destructive
testing methods [8,20].

2.2. Experimental Specimens

Scaled dimensions were utilized for the fabrication of the OSD. Both the top plate
and U-ribs were constructed from Q345b steel, which has a density of 7850 kg/m3 and a
Poisson’s ratio of 0.3. Material tests on the steel top plates used yielded an average elastic
modulus of 218.3 GPa and an average yield strength of 400.6 MPa. The dimensions of the
scaled OSD are illustrated in Figure 2a. A bevel groove weld was employed between the
U-ribs and the top plate. To ensure a uniform welding quality, an automatic submerged arc
welding method was used, followed by cutting. The weld penetration was no less than 75%
of the plate thickness, and burn-through was not permitted. The assembly gap, b, was less
than or equal to 0.5 mm, with a bevel angle of the top plate a being 50 4- 2°. After welding,
a pre-fabricated crack with a depth of 1 mm and a width of less than or equal to 0.3 mm
was created at the weld joint using wire cutting. The details of the top plate and U-rib
welding, as well as the actual welding effect, are shown in Figure 2b. Ultimately, seven
sets of specimen entities were obtained, as shown in Figure 2¢, and they were respectively
labeled as OSD specimens S1, S2, 53, 54, S5, 56, and S7.
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Figure 2. (a) OSD processing dimension diagram; (b) welding process schematic; (¢) OSD specimen
labeling diagram.

2.3. Fatigue Loading Configuration

Fatigue loading tests were conducted at the Vibration and Strength Testing Center of
Dalian University of Technology, using the PLG-200C high-frequency tension-compression
fatigue testing machine, as shown in Figure 3. The tests employed a four-point bending
loading method. Before setting the mean stress and stress amplitude, a simple bending
normal stress test was conducted on an OSD specimen, determining the mean stress for
fatigue loading to be 30 kN and the stress amplitude to be 6 kN. Under these experimental
conditions, the processed and scaled OSD was subjected to fatigue loading, with the testing
machine’s operating frequency being essentially stable at approximately 89.3 Hz, as de-
picted in Figure 3. The OSD S7 specimen was loaded until significant fracture deformation
was observed, with the fatigue cycle count reaching 820,000. When noticeable deformation
occurred, the testing machine’s operating frequency decreased to 88.9 Hz. Additionally, to
compare the macroscopic metallographic states of the fatigue life plates, the OSD specimens
S1-56 corresponded to total cycle counts of 200,000; 300,000; 400,000; 500,000; 600,000; and
700,000, respectively. It should be noted that during the test process, all OSD specimens
were paused and unloaded every 100,000 cycles for ultrasonic testing.

Control
System

Loading point
Unitmm

X

Figure 3. Schematic diagram of the OSD fatigue test loading process.

2.4. Ultrasonic Testing Configuration

Figure 4 presents a schematic diagram of the ultrasonic testing process for OSDs. The
excitation probe of the ultrasonic transducer is placed at the center of the plate, 120 mm
from the left boundary of the top plate, while the receiving probe is positioned at the
midline. Ultrasonic waves are emitted using the RITEC SNAP (model RAM-5000); then,
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they are passed through an attenuator and a low-pass filter to reach the transmitting probe
resonating at 250 kHz. This setup is intended to better detect the second harmonic response.
The receiving end employs an ultrasonic probe with a resonant frequency of 500 kHz, and
the probe sends the fundamental wave signal directly back to the main system. Since the
received signal’s fundamental frequency amplitude is between 10 and 100 times that of
the harmonic frequency, a 500 kHz band-pass filter is set in the receiving circuit to isolate
the second harmonic signal. The filters used in this study were provided by RITEC (model
FDK, serial No. 9074). The low-pass filter is a 10th-order Butterworth design with a 3 dB
attenuation at 250 kHz and an input impedance of 50 ohms. The band-pass filter is a
Sth-order design with a 40 dB out-of-band attenuation. The excitation voltage is set at 640 V,
with an attenuation of 4 dB and a gain of 40 dB. The gate amplifier is set to an output level
of 32. During the nonlinear ultrasonic detection process, an oscilloscope is used to obtain
the time-domain graphs of the fundamental wave signal and the second harmonic signal.
The RAM-5000 SNAP system extracts the first wave signal from the time-domain graphs of
both the fundamental and second harmonic signals to perform a sweep and to obtain their
spectrum graphs.

Layout process

A Oscilloscope B.High- l¢ 5 D.Computer
Nonlinear ultrasonic test device | energy

ultrasonic
emitter
| | E.Attenuator T C Bandpass

filter
. fundam ental T
filt
s J2 Receiver

D
—
Excitation point 120 115 75
Unit:mm

Figure 4. Schematic diagram of the ultrasonic testing connection for OSDs.

As shown in Figure 1, an excitation value near 250 kHz can relatively weaken the ultra-
sonic frequency dispersion linearity and reduce the number of modes, matching the phase
velocity with the second harmonic [28]. Using a total of 10 cycles ensures the concentration
of the ultrasonic spectrum signal towards the central frequency, further weakening the dis-
persion effect [29]. Therefore, the excitation signal uses a ten-cycle sinusoidal modulation
signal with a central frequency of 250 kHz, as shown in the following expression:

w(t) = {0.5 [1—cos(27tfct/n)|sin(27fet) t € (0,n/ fc) @)

0 otherwise

where w(t) is the excitation signal; f. (kHz) is the central frequency; and 7 is the number of
modulation periods of the Hanning window, with its time-domain and frequency-domain
expressions shown in Figure 5. The Hanning window serves to reduce the spectral leakage
of the excitation signal [30,31].

To provide a more intuitive overview of the construction process of the proposed
evaluation method, a flowchart is illustrated in Figure 6. This includes the materials, exper-
imental procedures, data acquisition, quantitative analysis, and two extended discussions
on the evaluation method. As shown in Figure 6, the prepared OSD specimens first undergo
fatigue loading. After reaching the specified number of fatigue cycles, ultrasonic testing
is performed. If the specimens do not meet the fatigue cycle requirement, fatigue testing
continues after the ultrasonic test. The ultrasonic test results are presented in the form of
linear and nonlinear parameters. In addition to performing nonlinear curve fitting on the
seven specimens for quantitative analysis, two discussions on the evaluation method are

34



Materials 2024, 17, 2792

also included. These discussions focus on the sensitivity of nonlinear ultrasonic indicators
in comparison to their linear counterparts, as well as the impact of weld seams on nonlinear
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Figure 6. Flowchart of the evaluation method construction process for fatigue damage detection

in OSDs.

3. Results

To enhance the reliability of the test data for the fundamental wave amplitude and
the second harmonic amplitude, the coupling agent was reapplied for each ultrasonic
monitoring session, and the test was conducted three times. The sweep amplitudes of the
fundamental and second harmonics were obtained by measuring and taking the average
value, which was then used to calculate the nonlinear parameter. Figure 7 summarizes the

DI values for different specimens.
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Figure 7. Variation of DI values for different specimens with fatigue life.

3.1. Changes in Ultrasonic Signals before and after Fatigue Loading

Due to the largest variation in the DI values of S5 (as shown in Figure 7), and since
the trend of ultrasonic signal changes in other specimens is similar, this section takes S5
as an example to demonstrate the changes in the ultrasonic nonlinear effects before and
after OSD fatigue loading. The fundamental wave amplitude values of S5 before and after
fatigue loading are shown in Figures 8a and 9a, respectively. The results indicate that the
energy of the initial fundamental wave is not significantly different. The transmission times
of the first wave are 0.0364 ms and 0.0403 ms, respectively, with sound speeds of 3159 m/s
and 2854 m/s, respectively. The difference in sound speed is also minimal and close to the
theoretical sound speed of the A0 mode in the group velocity dispersion curve shown in
Figure 1 (A0: 3159 m/s), thereby confirming that the first signal to arrive is primarily in the
antisymmetric mode, consistent with the excitation method of the ultrasonic signal.
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Figure 8. Experimental results for undamaged condition of S5: (a) Time-domain plot of the funda-
mental wave; (b) Time-domain plot of the harmonic wave; (c) Spectrogram of the fundamental and
harmonic frequencies.

Figures 8b and 9b illustrate the capture of harmonic signals through a 500 kHz band-
pass filter. The measurement of the harmonic wave speed is not sufficiently precise, and
a rough estimate from the time-domain graph suggests a decrease in the harmonic wave
speed after fatigue loading. This may be related to the apparent diffraction of the defect
signal post-fatigue loading. However, the amplitude of the first wave of the second
harmonic after loading was significantly increased compared to before fatigue loading,
indicating that fatigue induces a strong nonlinear response in OSD.
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Figure 9. Experimental results for fatigue condition of S5: (a) Time-domain plot of the fundamen-
tal wave; (b) Time-domain plot of the harmonic wave; (c) Spectrogram of the fundamental and
harmonic frequencies.

Figure 8c shows that before the fatigue loading of S5, the peak of the fundamental
wave spectrum is around 249 kHz, while the peak of the harmonic spectrum is around
494 kHz. The harmonic frequency being a multiple of the fundamental frequency indicates
that this second harmonic is a generated nonlinear signal. From the spectrum, the peak
amplitude of the fundamental wave is 1.206 V, while the peak amplitude of the harmonic is
0.0154 V. The nonlinear parameter is calculated to be 0.0106; at this time, the harmonic is
primarily caused by the nonlinearity of the welding structure. Post-fatigue loading, the
spectrum of S5, as depicted in Figure 9c, shows the fundamental wave spectrum peak
at approximately 247 kHz and the harmonic spectrum peak at around 491 kHz, with
almost no change in the peak frequency values. The peak amplitude of the fundamental
wave through the path of the crack is 1.171 V, while the peak amplitude of the harmonic
is 0.0321 V. The nonlinear parameter is calculated to be 0.0234, indicating a significant
increase due to the local nonlinearity caused by the fatigue crack.

3.2. Evaluation of OSD Fatigue Life

Figure 10 reveals that as the fatigue cycle count increases for the seven specimens
of OSDs, the DI value continuously rises, reaching a peak at approximately 61.0% of the
fatigue life before subsequently decreasing. The early increase in DI may be attributed
to the accumulation of dislocations at the wire-cutting sites during the initial stages of
fatigue, which gradually evolve into micro-closed fatigue cracks, resulting in a ‘breathing’
phenomenon and a significant increase in nonlinear response. This process implies that
the normalized nonlinear parameter can characterize the accumulation of dislocations;
however, once the fatigue cracks propagate to a certain extent, the ‘breathing’” phenomenon
diminishes with the widening of the crack opening, leading to a weakened nonlinear
response, as indicated by a reduction in the nonlinear parameter. Additionally, it can
be seen that the DI derived from nonlinear parameters does not exhibit a linear or even
monotonic relationship with fatigue life. This observation is consistent with the findings of
Lee et al. [20], who noted similar phenomena when analyzing fatigue cracks in steel plates
using nonlinear ultrasonics. This indicates that linear or monotonic nonlinear curves are
no longer applicable in this context. In contrast, a nonlinear curve based on a Gaussian
model [32] can effectively represent the trend where the DI initially increases and then
decreases. Therefore, to quantitatively analyze the relationship between fatigue life and
DI value, a Gaussian curve is chosen for fitting, with the expression for the fitting curve

as follows:
(«’C*Xc)Z

y=1vyo+ Ae 22 (8)
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where v, A, w, x. represents the shape parameters of the Gaussian function, which deter-
mine the specific form of the Gaussian curve. The numerical values of the shape parameters
for the fitting curves of the specimens, other than S1, can be found in Table 1, while the
correspondence between the fitting curves and the actual data is displayed in Figure 10.
Due to the short fatigue loading cycle of S1, the number of data points is insufficient to
satisfy the unknown values required for curve fitting, thus precluding an effective fatigue
life fit for S1. However, the fitting curves for the other six groups of specimens will be
validated using the data from S1.

0 20 40 60 80 100
Fatigue life (%)

Figure 10. Gaussian fitting curve of OSDs’ fatigue life and DI.

Table 1. Parameter values of different OSD fitting curves.

Specimens Yo A w Xc
52 0.97042 0.69347 0.25813 1.18431
S3 0.97996 0.63097 0.23621 1.03675
S4 0.97254 0.67169 0.25296 1.28564
S5 0.83359 2.12618 0.74694 9.94756
S6 0.96443 1.24339 0.42064 3.52888
S7 0.86297 0.48607 0.26865 0.70411

Figure 11 illustrates the applicability of a single fitting curve derived from specimens
S2 to S7 across all other specimens. The results indicate that for specimens experiencing
fewer fatigue cycles, such as S2 to S5, the fitting curve’s applicability to other specimens is
lower, with variance even reaching negative values, suggesting a suboptimal fit. In contrast,
for S7, the fitting curve obtained after enduring 100% fatigue loading, when applied to other
specimen groups, yielded variance values exceeding 0.81. Notably, the fitting variance for
each individual specimen falls within the range of 0.97 to 1, further validating the efficacy
of the Gaussian curve in predicting the relationship between fatigue life and DI in OSDs.
The fitting curve extends the quantitative analysis of OSD fatigue damage assessment into
the field of nonlinear ultrasonics.
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Figure 11. The R-squared values of the fitted curve for other OSD fittings.
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4. Discussion
4.1. Comparison with Linear Ultrasonics

In linear ultrasonic methods, velocity and energy are commonly used metrics to assess
material conditions [2,8,9]. Signal energy is calculated by squaring the amplitude of the
sample signals and summing them, given that the energy density of ultrasonic waves is
proportional to the square of the amplitude. This section examines changes in energy and
velocity for specimen 57, as depicted in Figure 12. 57, having undergone a complete fatigue
life cycle, serves as a representative data set for comparative analysis.
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Figure 12. Linear ultrasonic change of S7 with different fatigue life: (a) velocity and (b) energy.

Figure 12 demonstrates that as fatigue cycles increase, the sound velocity and fun-
damental wave energy of S7 both show a slight and insignificant downward trend. The
relative change rate for both parameters did not exceed 1%, suggesting a substantial po-
tential for random error. Therefore, sound velocity and energy are not highly sensitive
indicators of fatigue life and are prone to significant errors. Conversely, as shown in
Figure 10, the DI based on nonlinear parameters effectively characterizes fatigue life with a
broad range of variation.

4.2. Influence of Welding on Ultrasonic Nonlinearity

The OSD features a U-rib structure, with the top plate being connected to the U-
ribs through welding. Even advanced welding techniques cannot entirely prevent the
formation of microscopic defects in the welded areas, which contribute to a nonlinear
ultrasonic response. To ensure the credibility of the results, the influence of welding on
ultrasonic nonlinearity must be considered.

A parent metal plate was fabricated using 10 mm thick steel from the same batch as
the OSD. Except for the welding process, the fabrication flow and ultrasonic monitoring
methods were consistent with those used for the OSD preparation. Figure 13 compares
the nonlinear parameters of the OSD before and after fatigue loading with those of the
parent metal plate specimens. Before fatigue loading, the nonlinear parameters of the
parent metal plate showed a similar trend to S7 due to fatigue damage. However, the
nonlinear parameters of S7 were noticeably higher than those of the parent metal plate
specimens, indicating that the welded structure within the OSD induces a significant
nonlinear ultrasonic response.
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Figure 13. Comparison of nonlinear parameters of parent metal plate base metal and S7 before and
after fatigue loading.
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Furthermore, prior to fatigue loading, the excitation probe was placed at varying
distances from the left end of the weld seam on seven sets of OSD specimens. The receiving
probe was correspondingly moved to maintain a total transmission distance of 115 mm
for testing to investigate the weld seam’s impact on the nonlinear parameters. Figure 14
illustrates the average nonlinear parameters at different distances from the weld seam. It
shows that the closer the excitation probe is to the center of the weld seam, the greater the
nonlinear parameters and the more pronounced the nonlinear response is. This suggests
that the welded structure produces a certain degree of nonlinear response.
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Figure 14. Nonlinear parameter change curve with different distance from weld.

As the excitation probe moves further from the center of the weld seam, the nonlinear
parameters gradually decrease. However, when the distance becomes sufficiently large,
the change in nonlinear parameters is minimal. This indicates that part of the nonlinear
response in the OSD fatigue damage test is due to the weld seam. Therefore, ultrasonic
detection results should not be attributed solely to fatigue loading, as this may introduce a
degree of error. This influence is also why different Gaussian curve shape parameters were
observed among the seven sets of OSD specimens. Unfortunately, due to the presence of
weld seams, the proposed method cannot achieve a baseline-free characteristic, which poses
challenges for assessing existing bridges. Nonetheless, it remains suitable for evaluating
newly constructed bridges.

5. Conclusions

This study proposes a method for detecting the fatigue life of OSDs based on nonlinear
ultrasonic parameters. By employing a nonlinear ultrasonic system, tests were conducted
on seven OSD specimens and a parent plate. It was observed that in the early stages
of fatigue, the nonlinear effects in the OSDs significantly increased, peaking at 61% of
the fatigue life, after which they began to decline. Concurrently, the study compared
the performance of linear ultrasonic indicators in assessing OSDs’ fatigue life and found
no significant changes under fatigue loading. In contrast, the DI based on nonlinear
parameters could be well-fitted to the remaining fatigue life of OSDs using a Gaussian
curve, enabling the quantitative analysis of OSDs’ fatigue life. Additionally, the change
trend of the nonlinear parameters of OSDs was consistent with the increase in fatigue
life when compared to steel plates of the same thickness, confirming that weld seams do
not affect the effectiveness of the nonlinear ultrasonic method in evaluating fatigue life.
This research lays the groundwork for the practical application of nonlinear ultrasonic
parameters in predicting the fatigue life of OSDs.

However, the nonlinear response induced by the welded structures within the OSDs
leads to variations in the fitting curve parameters among different specimens. This non-
linear response from the weld seams must be considered in ultrasonic testing to avoid
misinterpreting the results as solely being caused by fatigue loading. This limitation pre-
vents the evaluation method from being baseline-free, thereby constraining the assessment
of existing bridges. Addressing this issue remains a focal point for future research.
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Abstract: Lamb waves have become a focal point in ultrasonic testing owing to their potential for
long-range and inaccessible detection. However, accurately estimating the flaws in plates using Lamb
waves remains challenging because of scattering, mode conversion, and dispersion effects. Recent
advances in laser ultrasonic wave techniques have introduced innovative visualization methods
that exploit the dispersion effect of Lamb waves to visualize defects via, for example, acoustic
wavenumber spectroscopy. In this study, we developed an interdigital transducer (IDT)-based
scanning laser Doppler vibrometer (SLDV) system without a power amplifier using a low-power
IDT fabricated from lead magnesium niobate-lead zirconate titanate single crystals. To validate the
proposed low-power IDT-based SLDV, four different defective plates were measured for defects.
A comparison between a conventional IDT-based SLDV, a dry-coupled IDT-based SLDV, and the
proposed method demonstrated that the latter is highly reliable for measuring thin plate defects.

Keywords: Lamb wave; low-power interdigital transducer; scanning laser Doppler vibrometer;
wavenumber sensitivity; thin-wall plate detection

1. Introduction

Lamb waves have garnered significant interest from researchers owing to their capacity
to be used in inaccessible or long-range detection applications. These waves offer a unique
advantage in ultrasonic testing by providing information about specimens from scattered
waves, which is challenging to achieve via traditional methods. However, the data obtained
from Lamb waves regarding specimen defects, particularly from scattered waves, are often
insufficient for accurately estimating the defects in plates. Consequently, many studies
have aimed to quantitatively analyze Lamb wave properties, including reflection, mode
conversion, and the interactions between symmetric, anti-symmetric, and shear horizontal
waves [1-4]. However, the complex behavior of these waves, which is characterized by
scattering, diffraction, and mode conversion, poses significant challenges in detecting
minor pitting defects or gradual wall thinning. Additionally, the dispersion effect, which
results in the spreading of Lamb waves over time and distance as they traverse a plate, is a
critical issue [5-8].

In response to these challenges, laser ultrasonic wave techniques have been adopted [9-28]
to enable defects to be visualized through signal processing methods without the need
for intricate Lamb wave analysis. Quantitative visualization imaging algorithms such
as acoustic wavenumber spectroscopy (AWS) [18], local wavenumber domain estima-
tion [15,29-31], local wavenumber mapping [32,33], and 2D wavenumber estimation [34]
have been employed. Moreover, the dispersion effect of Lamb waves, which has been tradi-
tionally viewed as a drawback because of its impact on wave propagation, is used in these
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visualization methods. Specifically, the phase velocity changes in Lamb waves passing
through structures provide valuable thickness information, transforming the dispersion
effect from a disadvantage into a useful tool for quantitatively assessing structures.

Previous studies on the use of exciters and receivers for ultrasonic wave generation
and detection in plates have explored several combinations, including pulsed lasers, piezo-
electric transducers (PZTs), and air-coupled transducers used as exciters and laser Doppler
vibrometers, PZTs, or air-coupled transducers used as receivers. Notable work on the
optimization of exciter and receiver configurations was conducted by An et al. [10], who
identified that the combination of scanning laser excitation with fixed-point PZT sensing
yielded the highest signal-to-noise ratio among the laser ultrasonic scanning setups ex-
plored, which included fixed-point PZT excitation with scanning laser sensing, scanning
laser excitation with fixed-point PZT sensing, fixed-point laser excitation with scanning
laser sensing, and scanning laser excitation with fixed-point laser sensing. Their research
primarily focused on the analysis of propagated and scattered waves from defects in a plate.
Addressing a different aspect, Flynn and Jarmer introduced a method for the high-speed
imaging of plate defects using steady-state ultrasonic vibration excited by a continuous
sinusoidal wave [35]. This approach, particularly the fixed-point PZT excitation with a
scanning laser sensing configuration, allowed for high energy acquisition owing to energy
efficiently pumping into the structures, the absence of measurement delays, and reduced ac-
quisition times. This was achieved while ensuring operational safety using class 1-2 lasers
with lower power compared to those used in propagation wave analysis methods. Conse-
quently, continuous-based excitation using scanning laser Doppler vibrometers (SLDVs)
has emerged as a powerful tool for visualizing and detecting defects in plates.

Despite the advantages of SLDVs over scanning laser excitation methods, using the
Ag Lamb wave mode complicates the detection of shallow wall thinning in plates. Early
damage detection is crucial for preventing catastrophic failures in industrial facilities, such
as nuclear and thermal power plants. Traditional SLDV approaches, which use Ay mode for
wall-thinning detection, must contend with the mode’s dispersive nature, which impacts
the accuracy of evaluating the thickness of wall thinning. This limitation restricts the wall-
thinning detection capability of SLDV to thicknesses higher than 30% in plates and pipes.
To address this challenge, Kang et al. [36,37] and Moon et al. [38] explored the detection of
shallow wall thinning using an interdigital transducer (IDT)-based SLDV [36-38], which
offers a promising avenue for enhancing early damage detection capabilities.

IDTs are manufactured using a picosecond laser machining process and are engineered
to excite modes sensitive to shallow wall thinning, which are characterized by a high
wavenumber sensitivity. In the studies of Kang et al. and Moon et al. [36-38], IDT-based
SLDVs were proven capable of detecting wall thinning higher than 5%, aligning with the
requirements of KEPIC 3521 for nuclear power plants. A notable limitation of both PZT and
IDT technologies is their dependence on a couplant, such as oil or water, which complicates
and encumbers the inspection process. To address this, Kang et al. [39] introduced a
dry-coupled IDT-based SLDV system. This innovative approach used a A/4 impedance
transformer with alumina for dry coupling and successfully detected wall thinning over
3% in plates without requiring any couplant.

Despite these advances, and even though the dry-coupled IDT-based SLDV system
is more amenable to field deployment, it still faces challenges that need resolution. One
significant issue is the power consumption of the exciter. Typically, a power amplifier
is used to enable the IDT to generate a high-power sinusoidal wave in IDT-based SLDV
operations. For instance, the HSA4052 model from the NF Corporation(Yokohama, Japan),
with its maximum voltage of £75 V at 25 (), is commonly used.

In this study, we propose a novel methodology for operating the IDT-based SLDV
without a power amplifier. This approach involves replacing the conventional IDT material
with a CSL2 (PMN-PZT) to enhance the sensitivity of IDT sensors, thereby developing a
highly reliable system that does not require a power amplifier. The rest of this paper is
structured as follows. Section 2 describes the development of the newly designed low-
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power IDT-based SLDV. Section 3 evaluates the performance of the low-power IDT-based
SLDV through a comparative analysis; it also elaborates on the performance metrics of the
IDT-based SLDV, dry-coupled IDT-based SLDV, and low-power IDT-based SLDV, high-
lighting their differences and capabilities. Section 4 concludes the paper with a summary
that encapsulates the findings and potential implications of this research.

2. Low-Power IDT-Based SLDV
2.1. Fabrication of Lead Magnesium Niobate—Lead Zirconate Titanate Single Crystals

In this study, the solid-state single crystal growth (SSCG) method was used to syn-
thesize lead magnesium niobate-lead zirconate titanate (PMN-PZT) [Pb(Mg; ;3Nb; /3)Os-
Pb(Zr,Ti)O3] piezoelectric single crystals (Product Code: CSL2) at Ceracomp Co., Ltd.
(Cheonan, Republic of Korea) [40—44]. Figure 1 displays a schematic representation of the

SSCG method.
I. Diffusion Bonding Process Il. Embedding Process
1. Diffusion Bonding W
¥
P 7 1 I
olycrystalline Body R |
2. Growth of a Seed Crystal by Grain Growth ;

<

Figure 1. Solid-state single crystal growth (SSCG) method: illustration of single crystal development
within a polycrystalline matrix via grain growth.

Among the various kinds of PMN-PZT single crystals, the PMN-PZT (CSL2) sin-
gle crystal was selected because it has high piezoelectric constants, has a composition
of “40PMN-25PZ-35PT + 1.0LayO3 [mol%]”, and exhibits a rhombohedral phase at room
temperature. Compared to conventional single-crystal methods, such as the flux and Bridg-
man methods, the SSCG method is more cost-effective and suitable for mass production
because the difficult steps of melting and solidification in the conventional methods can be
completely avoided in the SSCG process. Because of its advantages, the SSCG method is
the most effective way of growing high-performance piezoelectric single crystals with very
complicated chemical compositions.

High-purity raw materials, including Pb3O4 (99.9%, Alfa Aesar, Ward Hill, MA,
USA), MgNb,O¢ (99.9%, H. C. Starck GmbH, Newton, MA, USA), and TiO; (99.99%,
Ishihara, San Francisco, CA, USA), were selected for the fabrication process. After precisely
measuring each raw material, the powders were subjected to ball milling for 24 h, then
dried and calcined at 800 °C. The calcinated powders were further processed via secondary
ball milling, with the addition of excess PbO powder, and were subsequently dried and
sieved to produce the final powder. This powder was then uniaxially hot pressed at
high temperatures to form a dense, primary sintered body. For the SSCG process, a
Ba(Zr(1Tig9)O3 seed single crystal was positioned on top of the ceramic sintered body,
after which a specialized heat treatment was performed. To mitigate the loss of volatile
PbO, the double-crucible method was used during the SSCG heat treatment. This process
facilitated the continuous growth of the Ba(Zry1Tip9)Os seed single crystal within the
polycrystalline ceramic matrix, culminating in the production of single crystals measuring
40 mm x 40 mm x 10 mm, as shown in Figure 2. A notable advantage of the SSCG method
is the absence of composition gradients within the resulting single crystal, which ensures
chemical uniformity. This uniformity is attributed to the fact that the PMN-PZT phase
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does not melt during the fabrication process, thereby preserving the integrity of the single
crystal structure.

Figure 2. Image of PMN-PZT piezoelectric single crystal grown in polycrystalline ceramics via the
SSCG method.

Figure 2 shows a photograph of a PMN-PZT piezoelectric single crystal produced
using the SSCG method.

2.2. Design and Fabrication of Low-Power IDT

In linear piezoelectric materials, the interactions between electrical and mechanical
variables conform to linear relationships as defined by the ANSI/IEEE Standard 176-1987 [45].
The constitutive relationships that govern the interaction between these variables are

S=stT+d (1)

D=dT+¢"E 2)

where sF is the elastic compliance under a constant electric field, T is the stress, d is the
piezoelectric charge constant, E is the electric field, S is the strain, &' is the permittivity of
the ceramic material, and D is the electric flux density. An increase in the strain necessitates
a corresponding increase in the elastic compliance, stress, piezoelectric charge constant, or
the electric field. However, given that sE, T, and E remain constant, the variable d becomes
the focal point for adjustment.

Table 1 compares the performance metrics of the developed PMN-PZT (CSL2) single
crystals with those of APC 850 (PZT) polycrystalline ceramics. CSL2 was categorized into
two subtypes based on the crystallographic orientation: CSL2 (001) exhibited higher k33 and
ds3 constants (appropriate for the longitudinal vibration mode), and CSL2 (011) exhibited
higher k31 and d3; constants (appropriate for the lateral vibration mode).

Table 1. Specifications of CSL2 and APC 850.

Type
CSL2 (001) CSL2 (011) APC 850
Parameter

tand 0.011 0.013 <2.00

k33 0.91 0.88 0.72

k31 0.45 0.76 0.36

ds3 (pC/N) 1952 753 400

—dsz1 (pC/N) 750 919 175
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In Table 1, tand is the dielectric loss, ki]- is the electromechanical coupling factor, i
represents the direction of the electric field, and j represents the direction of the vibra-
tion. The term d;; corresponds to the piezoelectric charge constant previously mentioned,
where polarization is induced in direction i (aligned with the piezoelectric element’s po-
larization) per unit stress applied in direction j (perpendicular to the ceramic element’s
polarization) [46,47].

The CSL2 (001) subtype, operating in a longitudinal vibration mode, exhibited a d33
value of 1952 pC/N, significantly surpassing APC 850’s d33 value of 400 pC/N. Similarly,
the CSL2 (011) subtype in the lateral vibration mode had a d3; value of 919 pC/N, compared
to APC 850’s d31 value of 175 pC/N. Specifically, the ds3 value for CSL2 (001) was 4.88 times
higher than that for APC 850. In addition, the d3; value for CSL2 (011) was 5.25 times higher
than that for APC 850. These comparisons confirmed CSL2’s suitability as an IDT material
for low-power applications owing to its superior ds3 and d3; values relative to PZTs.

Figure 3 shows the low-power IDT produced using CSL2.

Electrode (silver)

50 mm

Figure 3. Prototype of low-power interdigital transducer (IDT) using CSL2.

Based on previous studies [36-39], the optimal frequency for the low-power IDT was
determined, and the wavenumber sensitivity for 450 kHz was obtained by taking the
derivative of the dispersion curve, as shown in Figure 4.
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Figure 4. Wavenumber sensitivity at 450 kHz for carbon steel.
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The mode of Aj exhibited a favorable sensitivity for thicknesses of less than 2 mm
but was unsuitable for plates with a thickness of 6 mm. In contrast, the So mode exhibited
a high sensitivity in the plates with a thickness of 6 mm, which demonstrates the precise
design for efficient mode generation in low-power IDTs.

To assess the performance of the fabricated low-power IDT, the RMS value was
measured under several excitation voltages. In this study, CSL2 (001) is referred to as
the ds3-type CSL2, and CSL2 (011) as the d3;-type CSL2. The relationship between the
RMS value and the excitation voltage was linear. Using retroreflective tape enhanced the
stability of the optical measurements, resulting in more stable RMS values compared to
measurements taken without the tape [44]. Figure 5 illustrates the RMS measurements for

the dz3-type CSL2, comparing scenarios with and without the retroreflective tape.
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Figure 5. RMS as a function of excitation voltage for the dz3-type CSL2 with (orange circles) and
without (blue stars) retroreflective tape.

The results indicated that the RMS values consistently exceeded 0.2 V (irrespective of
the tape’s presence) at an excitation voltage of 10 V. This suggests that the device can operate
effectively without the need for a power amplifier. Figure 6 shows the RMS values for the
d31-type CSL2, for which tests were conducted exclusively without retroreflective tape.
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Figure 6. RMS as a function of excitation voltage for the d3;-type CSL2 (without retroreflective tape).
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The findings demonstrated that a minimum excitation voltage of approximately
15-16 V was necessary to achieve RMS values above 0.2 V. Given that commercial function
generators typically provide 10 V or less, this limitation underscores the necessity for a
power amplifier for the ds;-type CSL2.

A comparative analysis of Figures 5 and 6 revealed that the d33-type CSL2 exhibited
a more efficient performance than the d3;-type CSL2. Considering the 10 V limit of com-
mercial function generators, the da3-type CSL2 was selected as the preferred material for
low-power IDT applications.

3. Experiment
3.1. Wall-Thinning Measurement Procedure Using AWS

The modified AWS technique, as proposed by Kang et al. [37], was used to reconstruct
the thickness of a plate. This modified approach builds upon the original AWS method
developed by Flynn and Jarmer [35], incorporating adjustments to enhance image quality
with captured signals. The procedure of the modified AWS method, which is depicted in
Figure 7, emphasizes the importance of the bandpass filter in eliminating unwanted propa-
gation modes in vfi[x, y, fo]. As the cutoff frequency increases, a continuous augmentation
occurs in the number of modes in the high-frequency thickness regime, indicating that
the bandpass filter is essential for isolating pure propagation modes. A key innovation of
this modified AWS method compared to the original method is dispersion-based thickness
mapping. The fusion of images at different frequencies allows for the accurate visualiza-
tion of defects at varying depths, overcoming the limitations of traditional single-mode
approaches and providing intuitive thickness information that facilitates the inspection
process [37].
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Figure 7. Procedure for measuring the thickness of plates using modified AWS.
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3.2. Specimen and Experimental Setup

Figure 8 illustrates the method for measuring the thickness of a thin-wall plate with a
low-powered IDT scanning laser Doppler vibrometer (SLDV).

To validate the functionality of the low-power IDT, the AWS method was used in
the experimental setup. A function generator (PXI-5402) was used to produce a single-
frequency sine wave, a high-speed bipolar amplifier (HSA4052) was used to deliver a
high-voltage signal, and three types (standard, dry-coupled, and low-power) of IDTs were
used to generate excitations. A scan head unit was used for the scanning vibrometer, which
received the signal, and a data acquisition board (PCI-5124) recorded the vibration signals.
The experimental arrangement is depicted in Figure 9.

Target e 'V\N\I

» - !V\N\J Electrical sine wave

IDT

Lov Function

.

Galvanometer

A

Pre-amp DAQ |«

Trigger

Figure 8. Schematic of low-power IDT scanning laser Doppler vibrometer (SLDV).

Interdigital transducer Galvanometer Control computer

Scanning area

Pre-amp

Power amp

) Vibration signal
Vibrometer .
Vibrometer controller

Figure 9. Setup for scanning laser Doppler vibrometer (SLDV) experiments.

The tested material was carbon steel with a thickness of 6 mm, featuring four different
depths of fabricated defects. These defects were square-shaped, measuring 40 mm by
40 mm, and were located at depths of 0.3, 0.6, 0.9, and 1.2 mm, as illustrated in Figure 10.
To conduct the experiment, the scan area was set to 150 mm x 150 mm in relation to
the defect.

The materials of the test piece, defect size, etc., were set to the same configuration
as the existing test piece to perform a comparative analysis with the results of previous
research. Such defects correspond to those outlined in the KEPIC 3521 standards for nuclear
power plants [36-39].
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3.3. Experimental Results

This section presents the results of applying the d33-type CSL2 IDT in both low-power
IDT-based and dry-coupled IDT-based SLDV configurations. Figure 11 displays the experi-
mental imaging results for the three SLDV techniques; panels (a) and (b) show the results
of previous studies, and panel (c) displays the results of the low-power IDT-based SLDV.
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Figure 11. Comparative results for three SLDV techniques: (a) IDT-based SLDV, (b) dry-coupled
IDT-based SLDV, and (c) low-power IDT-based SLDV.
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All three techniques resulted in favorable outcomes; even the 20% depth defect was
imaged with greater clarity than the other defects. This is attributable to the difference
in wavenumber between the defect and sound regions. As illustrated in Figure 4, the
wavenumber sensitivity was high at 6 mm, and the error rate was minimal because of the
proportional relationship between the accuracy and wavenumber sensitivity.

Figure 12 displays the section thickness measurements along the y-axis for each defect
depicted in Figure 11. The figure compares the performance of each SLDV technique in
terms of the defects.
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Figure 12. Thickness measurement results of three SLDV techniques for (a) 5%, (b) 10%, (c) 15%, and
(d) 20% depth defects.

As illustrated in Figure 11, the results of the low-powered IDT-based SLDV method
were comparable to those of the previously investigated IDT and dry-coupled IDT. This
substantiates the efficacy of the low-powered IDT-based SLDV technique. The results of
Figures 11 and 12 are summarized in Table 2.

Table 2. Summary of experimental SLDV results.

Dry-Coupled Low-Power
Depth IDT-Based SLDV IDT-Based SLDV IDT-Based SLDV
5% (Error rate) 1.77% (64.6%) 1.47% (70.6%) 1.7% (66%)
(0.3 mm) (0.11 mm) (0.09 mm) (0.10 mm)
10% (Error rate) 7.52% (24.8%) 8.5% (15%) 8.37% (16.3%)
(0.6 mm) (0.45 mm) (0.51 mm) (0.50 mm)
15% (Error rate) 11.17% (25.5%) 13.17% (12.2%) 13% (13.3%)
(0.9 mm) (0.67 mm) (0.79 mm) (0. 78 mm)
20% (Error rate) 14.5% (27.5%) 15.5% (22.5%) 14.83% (25.8%)
(1.2 mm) (0.87 mm) (0.93 mm) (0.89 mm)

The results presented in Figures 11 and 12, as well as in Table 2, demonstrate the
enhanced performance of the low-power IDT SLDV technique in comparison to that of the
other methods. It is evident that a 5% depth defect is associated with an elevated error rate,
exceeding 65%. Furthermore, determining the thickness of thin plates with precision is a
challenging task. The most effective outcomes were observed in instances where the depth
defects were present at a rate of 10-15%. The low-power IDT-based SLDV demonstrated
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Abstract: Carbon fiber reinforced polymer (CFRP) composites are popular materials in the aerospace
and automotive industries because of their low weight, high strength, and corrosion resistance. How-
ever, wrinkles or geometric distortions in the composite layers significantly reduce their mechanical
performance and structural integrity. This paper presents a method for non-destructively extracting
the three-dimensional geometry, lamina by lamina, of a laminated composite. A method is introduced
for fabricating consistent out-of-plane wrinkled CFRP laminate panels, simulating the in-service
wrinkle observed in industries that utilize thick structure composites such as the vertical lift or wind
power industries. The individual lamina geometries are extracted from the fabricated coupon with an
embedded wrinkle from captured ultrasonic waveforms generated from single-element conventional
ultrasonic (UT) scan data. From the extracted waveforms, a method is presented to characterize the
wrinkle features within each individual lamina, specifically the spatially varying wrinkle height and
intensity for the wrinkle. Parts were fabricated with visibly undetectable wrinkles using a wet layup
process and a hot press for curing. Scans were performed in a conventional immersion tank scanning
system, and the scan data were analyzed for wrinkle detection and characterization. Extraction of
the layers was performed based on tracking the voltage peaks from A-scans in the time domain.
Spatial Gaussian averaging was performed to smooth the A-scans, from which the surfaces were
extracted for each individual lamina. The extracted winkle surface aligned with the anticipated
wrinkle geometry, and a single parameter for quantification of the wrinkle intensity for each lamina
is presented.

Keywords: woven fiber carbon composite; out-of-plane wrinkle; conventional ultrasound; A-scan;
peak tracking

1. Introduction

Carbon fiber reinforced polymer (CFRP) composites are lightweight, strong materials
used in various industries. They offer a significantly higher strength-to-weight ratio in
comparison to metals. Industries such as aerospace, automotive, construction, and machin-
ery benefit from CFRP composites [1,2]. Numerous studies have investigated aspects of
carbon fiber reinforced polymer (CFRP) composites, including layup sequences [3]; ply
orientations [4,5]; bond line thickness [6]; and the exploration of defects such as foreign
object debris (FOD) [7], barely visible impact damage (BVID) [8], out-of-plane wrinkles [9],
porosity measurement [10], interlaminar delamination [11], etc. In this study, we present
a method for characterizing out-of-plane wrinkles from UT scanning data in carbon fiber
reinforced polymer (CFRP) composites.

The reasons behind a wrinkle being present within a laminated composite are induced
during manufacturing from a variety of sources, such as micro-scale deformations, non-
uniform pressure distributions, poor co-bonding between lamina, thermal coefficient (CTE)
mismatch, gaps, overlaps, etc. [12]. Hallander et al. [13] observed that the lay-up sequence
significantly influenced out-of-plane wrinkling in UD prepreg laminates, even when the
other variables inducing wrinkles are mitigated. Hallander et al. showed that even for
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quasi-isotropic, multilayer UD prepreg structures on a double curved geometry, out-of-
plane wrinkling can occur.

The structural capacity of a laminated part is compromised due to the presence of a
wrinkle. For example, Xie et al. [14] performed a numerical study to relate the maximum
wrinkle angle and cross-sectional area with knock-down in failure stress, which can be
as large as a 50% reduction in failure stress. Similarly, Hsiao and Daniel [15] provided
an analytical model to predict the elastic properties of a composite part. An example
is provided in Figure 1 of the change in material stiffness as a function of the wrinkle
intensity I, defined as the ratio of the wrinkle height H divided by twice the winkle width
(2W), specifically I = H/2W. This figure was plot using a custom in-house code of the
published Hsiao and Daniel model. Note that the point of 0.022 is highlighted as this is the
actual wrinkle intensity of the part studied in the results section of the present paper. It is
important to note that a wrinkle intensity of 0.022 is almost imperceptible to the trained
eye, whereas it reduces the stiffness along the fiber, Ej; by nearly 35%. Detecting and
quantifying fiber waviness is crucial for maintaining quality during manufacturing, and it
is necessary to have an inspection method for CFRP materials [16].
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Figure 1. Effect of wrinkle intensity on normalized stiffness values along each axis using the Hsiao—
Daniel model.

It is desirable to develop a non-destructive testing (NDT) approach to quantify em-
bedded wrinkles, to prevent compromised parts from finding implementation in service
(see, e.g., [9,17]). There are a variety of NDT methods commonly employed when studying
structures, such as electromagnetic testing (ET), ultrasonic testing (UT), thermographic
testing (TT), radiographic testing (RT), computed tomography (CT), shearography, etc.,
and many have found use in inspections of CFRP composites (see [18,19]). UT and X-ray
CT are the two primary approaches for inspecting laminated polymer matrix composites,
due to their accuracy, with the remaining aforementioned techniques finding limited use
and acceptance. Due to the expense, time, limited component sizes, and complexity of
CT technology, UT systems have a distinct advantage, especially with recent advances in
digitizing and higher frequency waveforms [9,20]. Ultrasound has shown tremendous
success when it comes to detecting and quantifying different embedded features in com-
posite laminate parts, but most work is carried out using manual methods requiring highly
trained operators to interpret the captured waveforms.
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Sandhu et al. [21] presented an analytical approach to extract bulk wrinkle character-
istics, i.e., wavelength and amplitude from low resolution B scans, with their algorithm
converting rectangular scan coordinates into part coordinates for analysis of a curved
composite part. The information generated by Sandhu et al. provides general wrinkle
characteristics but does not yield quantifiable information for individual lamina. Larranaga-
Valsero et al. [22] also detected wrinkle characteristics of height, severity, and maximum
angle of a hybrid composite part with unidirectional carbon and woven glass fiber using
the FMC/TEFM method of phased array. They analyzed the instantaneous amplitude and
phase analytically at the first and second resonance frequencies for optimum frequency
and then simulated at the given frequency, and from the analyzed data, they were able to
visually interpret the results to identify the wrinkle. Zhang et al. [23,24] observed the trend
in signal intensity where inter-ply reflection kept increasing with the increase in frequency,
and wrinkle defect reflection showed the opposite trend in a rich resin thick composite.
They analyzed B-scan images of side drilled holes (SDH) and rich resin areas by filtering
the center frequency from 2.5 MHz to 6 MHz and compared them with the simulated result.
From the analyzed data, Zhang et al. were able to interpret plotted scan data to identify the
wrinkle. The present authors have been unable to identify in the literature a method that
automates the extraction, on a lamina-by-lamina basis in three dimensions, of the wrinkle
features of each individual lamina.

In this paper, an algorithm is presented to take conventional ultrasonic data, extract the
geometric position in 3D-space of each of the individual layers of a carbon fiber laminated
composite, and then provide a bulk characterization of the wrinkle height and intensity
for each layer. The presented method is not necessarily limited to carbon fiber filled
systems, and future studies may consider alternative material systems. Figure 2 represents
a wrinkle along with the coordinate system used for the results, where the Xscan, Xjndex,
and z axes represent the scan direction, index direction, and depth from the top of the
surface, respectively. The concern is that an embedded wrinkle would not be visible from
the surface, thus the need for a non-destructive approach to capture the wrinkle. An
additional uniqueness of this work is the application to woven lamina, whereas existing
works addressed wrinkles in unidirectional laminates. In addition, the spatial variation in
the wrinkle along with a layer-by-layer characterization is also unique to this work. The
present study focuses on wrinkles up to the 14th layer of a laminated composite. Future
studies are needed to investigate the limitations of the proposed method as composite
structures become thicker. The authors have reason to believe that thicker laminates
could be investigated, contingent upon there being a sufficient signal-to-noise ratio of the
captured reflection wave as one penetrates deeper into the laminate.

Xindex

Figure 2. Coordinate system used for the scan analysis.

2. Manufacturing Method

There are several ways of fabricating a woven CFRP laminate. Laminated composites
have found widespread use in the aerospace industry. In the present research, we selected a
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wet layup fabrication with subsequent curing utilizing a hot press. This approach allowed
us to tune the wrinkle characteristics. The wet layup process continues to find its way
into the manufacture of large components with complex shapes, but the methodology
presented is not limited to this manufacturing process. Based on several internal studies,
this approach yielded acceptable manufactured wrinkles that effectively simulated wrinkles
from several proprietary parts we observed.

2.1. Wet Layup

The wet layup procedure is a hand layup technique where resin is applied to dry
fiber with a brush. In this study, dry fibers were placed one after another, and resin was
manually wiped onto the lamina surface before placing the next lamina. Two aluminum
plates were prepared using a mold release agent, one for use as a tool on which the wet
layup was performed, and another to put on top of the laid-up laminae. Then, 3K plain
weave carbon fibers from ACP Composites were used for fabricating the laminate. The
resin system was a Pro-Set Infusion Epoxy Resin 114 (INF-114) and a Pro-Set Infusion
Epoxy 211 Hardener (INF-211) (Pro-Set, Inc., Bay City, Michigan) with a prescribed mix
ratio of resin and hardener of 3.65 to 1. A FlakTek SpeedMixer (FlackTek Manufacturing
Inc., Louisville, CO, USA) was used to remove bubbles and adequately mix the resin and
hardener. The mixer was programmed to spin in a vacuum at 800 rpm for 30 s and then at
1500 rpm for 270 s. After laying up about half of the rectangular carbon fiber laminas, in
the present study, 14 lamina multiple 3K tows were placed across the layup, as shown in
Figure 3a. Then, the remaining laminae were placed on the layup, repeating the fabric and
resin application process, as shown in Figure 3b.

Aluminum
Plate N
I~ Cross-tows
Maskingor __1, | located in
gum tape 7| the middle
Carbon fiber _{i—
cross-tows Layup of all
o the laminae

Hand layup of
the bottom
half laminae

(a) (b)

laminae Inserted cross-tows

(©)

Figure 3. Schematic diagram of the fabrication process, (a) indicating the cross tows placed between
the center lamina, (b) the overall layup before curing with all lamina, and (c) a side view of the carbon
fiber laminate layup showing the embedded tows.

The cure cycle for the selected resin system calls for the part to be held under pressure
for 8 h, and then placed in an elevated temperature environment to complete the curing
process. In the present study, the part was kept at room temperature for 6 of the 8 h gelation
time before moving the layup to the pressure step, similar to the approach suggested by a
previous researcher in Minnie [9].

2.2. Curing

The recommended curing from the manufacturer requires 8 h at room temperature
followed by 8 h at 82 °C. After 6 h of gelation, the laminate was kept in the hot press for 10 h.
During the elevated temperature portions of the study, along with the final 2 h of the room
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temperature cure, a holding pressure of 276 kPa (40 psi) was applied. A programmable hot
press, a Carver Auto Four/1512-PL (Carver Inc., Wabash, IN, USA), was used for curing
the laminate.

3. Analysis Methods
3.1. Ultrasonic Data Collection

The ultrasonic scan system used for this study was a custom immersion tank scanning
system with a single spherically focused transducer. The advantages of this type of scan
include a uniformity of acoustic coupling that reduces sensitivity variations, a reduction
in the scan time due to automation, and the focused immersion transducer increasing the
sensitivity to small reflectors [25]. The UT scan was performed in a water tank, as shown
in Figure 4, using pulse-echo scanning with access to only a single side of the laminate
(see e.g., [20,25]). Based on several internal studies, a single-element 37.5 mm spherically
focused probe with a 7.5 MHz frequency was found appropriate over a wide range of
laminate thicknesses. The transducer was excited to 190 V, the largest value allowed by the
Olympus Focus PX (Evident, Center Valley, Lehigh County, PA, USA) digitizer utilized,
with a square wave pulse width of 65 ns. Two Velmex Bi-slides with a spatial resolution of
0.0025 mm, as shown in Figure 4, were used to move the transducer along the scan axis and
then in the index direction following the raster pattern, as shown in Figure 5, to scan the
region of interest (ROI) of the laminated part. A step size of Ax = Ay = 0.2 mm was used
in the present study. It is noted that scans typically took 10 min in the present investigation.
The scan time was inversely proportional to the scan resolution; thus, a doubling of the
index size, resulted in a nearly 50% reduction in the scan time. Moreover, a subject which
the authors are currently pursuing is to implement a synthetic raster using phased array,
often reducing the scan time by an order of magnitude.

slides — ]

Immersion
tank

Transducer

CFRP
Laminate

Velmex
Motor

OLYMPUS
FOCUS PX

Figure 4. Immersion tank system utilized to perform scans in the present research.
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Figure 5. Typical raster pattern used to scan the region of interest.
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For this study, the scan direction generally traversed transverse to the embedded cross
tows, and the index direction generally aligned with the embedded cross tows. A-scans
and B-scans were produced and analyzed to study the sub-surface wrinkles. An A-scan is
a one-dimensional scan where the scan-echo amplitude is plotted as a function of time, and
a B-scan displays a series of A-scan readings that originate in a single run along a single
axis [25].

3.2. Extraction of Laminated Layers

In this study, an algorithm was constructed to extract the three-dimensional lamina
position from within the laminated composite part. The algorithm allowed the quantifica-
tion of the bulk wrinkle parameters, specifically the wrinkle height and wrinkle intensity,
the results of which are presented in Section 4.

Figure 6 represents the algorithm of the overall layer extraction method. Data were
initially captured using an Olympus Focus PX (Evident, Center Valley, Lehigh County, PA,
USA) digitizer and saved in an Olympus proprietary file format, *.fpd. The raw A-scan
data were then read into a MATLAB (version 2022b) script and then shifted in time such
that the initial reflection wave from the front of the part was aligned across all A-scans.
Next, a spatial Gaussian averaging technique (see [26] for a presentation of this algorithm)
was performed to smooth the data in the plane of the laminate for a given depth. Next, the
averaged A-scan over a subregion was compiled and the individual peaks in time were
extracted from the waveform. The results of a typical peak detection can be seen in Figure 7.
Observe that the individual peaks correlated to the interface between lamina, and these
peaks were tracked between each of the A-scans within the region of interest, forming
a layer-by-layer surface. Each peak indicates an individual depth of the laminated part
corresponding to the depth of each individual ply. The individual peaks were then tracked
in both the scan an index directions. This tracking resulted in a surface, with the vertical
dimension corresponding to the lamina position, given as the time of flight, within the
laminate as a function of (X, 4ex, Xscan ). This extracted surface was then smoothed using a
Gaussian averaging technique, and the time of flight data were converted to depth data
using the effective through thickness speed of sound of the laminate to extract the layers as
a function of the individual layer depth, as shown in Figure 8 and plotted in the MATLAB
environment. The effective through thickness speed of sound was obtained using the
known thickness of the part times two, divided by the time of flight of the signal between
the front wall and the back wall. The addition of the two was made as we utilized the
pulse-echo mode of inspection.

Shift all the A scans

Extract raw data from |::> Shift time and fitting |:> corresponding to the
* fpd file surface at front wall flr)ont wagll

U

Mark the peaks to Perform Gaussian
indicate the lamina K Find the peaks from <:| averaging technique to
interfaces average A scan smoothen A scans

4

Track a peak in both the

- .. Perform Gaussian
scan an index directions averaging for cach
to define the lamina ging

. extracted surface
interface surface

Figure 6. Flowchart of the layer extraction method, implemented in the MATLAB environment.
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Figure 8. Extracted layer surfaces from the analysis of the first 14 lamina.

3.3. Scan Data Analysis

Figure 7 represents a typical average A-scan over a sub-region of size x.xx (mm) X y.yy(mm)
of the overall 58.4 mm x 10 mm scan. This subregion scan was taken far from the wrinkle
and was used as the seed A-scan, where each of the corresponding peaks indicate the
interface between the laminae. Peaks above a prescribed threshold, in the present study we
used 0.02, were identified as being an interface between lamina. This worked effectively
for lamina above the inserted tow layer, specifically the interface between the 14th and
15th lamina, but did not capture the interfaces for lamina past the 15th lamina. Specifically,
as the synthetic part of 28 lamina had the embedded 3K tows between the 14th and 15th
lamina, it did not make sense to analyze any of the lamina deeper than the 14th lamina.
A manufactured component would not typically have additional tows causing a wrinkle;
thus, it was not reasonable to analyze the lamina beneath the embedded tow layer. Each
peak within the locally averaged A-scan was tracked across the surface of the part. It is
worth noting that the signal intensity tended to decrease while penetrating the part because
of the signal attenuation, with a high intensity at the back side of the part reflecting off the
interface between the laminate and the surrounding water medium. The various layers are
identified in Figure 7, along with the backwall. As shown in Figure 7, the signal weakened
due to signal attenuation.

Figure 8 represents a side view of each of the individual lamina, as extracted from the
automated algorithm presented in Figure 6 and implemented in the MATLAB software
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environment. The ROI was taken as a 58.4 mm x 10 mm area with an overall part thickness
of 6.23 mm. Of note is the 14th layer of the part that exhibits the highest wrinkle intensity
in Figure 8. The top four layers of the part are almost flat, which is in agreement with the
visual inspection that was unable to identify any wrinkles from the part surface. Conversely,
the wrinkles in the individual layers can be observed to progressively increase from lamina
5 up to the 14th lamina. The 14th lamina is plotted separately in Figure 9, plotted in the
MATLAB environment. Notice that the 3D representation of the 14th lamina is reasonably
uniform along the axis of the wrinkle, but there are subtle changes along the projection
of the wrinkle peak, a detail expanded upon in the next section and highlighting that the
present method can capture the spatial variations in the wrinkle intensity.

.
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Figure 9. Three-dimensional representation of the 14th lamina of the part showing the subsurface

wrinkle.

4. Results

For this study, two sub-surface wrinkle parameters, wrinkle height and wrinkle
intensity, were analyzed. As the extracted surface was three-dimensional, a baseline was
created by fitting a linear surface to the lamina well outside of the region containing the
wrinkle. The wrinkle height H, such as that shown in Figure 10, was measured for each
value of x;,4., for each of the individual scans. The base length of the wrinkle was defined
as 2L (see Figure 10), where L is the length between the two points where the layer height
is one-half of the wrinkle height. The wrinkle intensity is defined as follows (similarly to
that in, [15,23,27]):
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Figure 10. Wrinkle intensity characterization of the 14th extracted lamina.

Figure 11 represents the wrinkle height along x;;,4., for each of the 14 laminae. Observe
that the height was not constant across the x;;,4., direction but it did remain fairly consistent,
and an average value is reported to represent the lamina. The wrinkle height generally
increased monotonically for each layer as one progressed deeper into the laminate. For
example, the wrinkle height was measured as 0.01 mm at layer 5, whereas the maximum
wrinkle height was found to be 0.19 mm at layer 14. To report the wrinkle height, a spatial
average was computed, and the average wrinkle heights are shown for each layer in Table 1
and Figure 12.
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Table 1. Wrinkle heights of the individual lamina from the automated non-destructive inspection,
where N/A indicates the results are not applicable for analysis.

Layer No. Wrinkle Height (mm) Wrinkle Intensity (mm/mm)
14 N/A N/A
5 0.0210 N/A
6 0.0321 N/A
7 0.0435 N/A
8 0.0574 0.0069
9 0.0866 0.0109
10 0.0968 0.0107
11 0.1029 0.0127
12 0.1246 0.0159
13 0.1473 0.0171
14 0.1931 0.0221
02 ‘ . ' . r " . - 0.024
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Figure 12. Non-destructively extracted wrinkle height and wrinkle intensity as a function of depth
within the investigated laminate.
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The top four laminae are not reported, as no detectable wrinkle was identified. Al-
though a wrinkle height could be quantified for the 5th through 7th lamina, the wrinkle
width was quite difficult to quantify due to uncertainty, and thus the intensity is not
reported for these laminae. For lamina 8 through 14, both the height and intensity are
reported and presented in Table 1. The wrinkle intensity was measured as a minimum
of 0.0069 in the 8th lamina, and the maximum intensity was found to be 0.0221 on the
14th layer, which was the closet layer to the inserted cross-tows in the part. Looking back
to Figure 1, this would suggest that the 14th lamina would have a reduced stiffness of
65% that of the outer most lamina, thus the outer lamina would carry more of the load in
any structural application.

5. Conclusions and Discussion

Wrinkles are a common defective feature in a manufactured CFRP composite part,
which can significantly compromise the structural performance of a CFRP. The current
literature does not provide examples of the extraction, on a lamina-by-lamina basis and in
three dimensions, of the wrinkle feature of each individual lamina.

e  The present research presents a method for fabricating a laminated composite with a
synthetic wrinkle that can be used for inspection methodology development.

e  The present research presents both a methodology and results for the extraction of the
wrinkled layer surfaces from ultrasonic data.

e  The automated code can extract the spatially varying wrinkle geometry and quantify
the wrinkle intensity, height, and width as a function of spatial position, for each
individual lamina.

In the present study, a part with 28 lamina that were mirrored about the central axis
with embedded tows creating an internal wrinkle was studied. The presented results
include the 3D surface of each individual lamina, from which the height of the lamina
and the wrinkle intensity could be readily characterized. The results presented included a
wrinkle with a height as small as 0.01 mm and a wrinkle intensity of only 0.0069 up to a
wrinkle height of 0.19 mm and an intensity of 0.022. Future work needs to include validation
of the results from sectioned samples characterized using microscopy and potentially a full
X-ray CT inspection of the laminate.
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Abstract: Fiber-Reinforced Polymer (FRP) composites have emerged as a promising alternative to
conventional steel reinforcements in concrete structures owing to their benefits of corrosion resistance,
higher strength-to-weight ratio, reduced maintenance cost, extended service life, and superior
durability. However, there has been limited research on non-destructive testing (NDT) methods
applicable for identifying damage in FRP-reinforced concrete (FRP-RC) elements. This knowledge
gap has often limited its application in the construction industry. Engineers and owners often lack
confidence in utilizing this relatively new construction material due to the challenge of assessing its
condition. Thus, the main objective of this study is to determine the applicability of two of the most
common NDT methods: the Ground-Penetrating Radar (GPR) and Phased Array Ultrasonic (PAU)
methods for the detection of damage in FRP-RC elements. Three slab specimens with variations in
FRP type (glass-, carbon- and basalt-FRP, i.e., GFRP, CFRP, and BFRP, respectively), bar diameter, bar
depths, and defect types were investigated to determine the limitations and detection capabilities of
these two NDT methods. The results show that GPR could detect damage in GFRP bars and CFRP
strands, but PAU was limited to damage detection in CFRP strands. The findings of this study show
the applicability of conventional NDT methods to FRP-RC and at the same time identify the areas
with a need for further research.

Keywords: Fiber-Reinforced Polymer (FRP); ground-penetrating radar (GPR); ultrasonic testing (UT);
phased array ultrasonic (PAU); non-destructive testing (NDT); FRP-reinforced concrete (FRP-RC)

1. Introduction

The construction industry predominantly utilizes two structural materials: steel and
concrete [1]. However, with the increasing demand for extended service life, reduced main-
tenance, enhanced resilience, and sustainability, the limitations of traditional construction
materials (e.g., steel reinforced /prestressed concrete, structural steel, and timber) have
become more evident. In response to these demands, Fiber-Reinforced Polymer (FRP)
composites have emerged as a promising alternative, offering improved durability and
performance and providing the potential for extended service life and reduced maintenance
costs [2]. FRPs are composite materials composed of reinforcing fibers impregnated in a
polymeric resin. The reinforcing fibers in the composite are the main load-carrying (rein-
forcing) elements, while the polymeric matrix or resin helps to form the desired geometry
and transfers forces to and between the fibers. In general, the types of FRPs used in the
construction industry based on the type of fibers are GFRP (glass-FRP), CFRP (carbon-FRP),
BFRP (basalt-FRP), and AFRP (aramid-FRP) composites.
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1.1. FRP-Reinforced Concrete (FRP-RC) Elements

Over the past three decades, FRP composites have gained significant popularity in civil
engineering, attributed to mainly their increased durability, corrosion resistance, and higher
strength-to-weight ratio [3]. They have been used as reinforcement for constructing new
structures as well as rehabilitating existing ones. FRPs can be used either in conjunction
with concrete elements or as stand-alone structural or non-structural elements in buildings
as well as bridge structures. When used in conjunction with concrete elements, FRP
application can be divided into two categories: (1) internal application with FRP bars/rods
and strands/tendons for new FRP-reinforced /prestressed constructions and (2) external
application with FRP laminates/plates/jackets, sheets/fabrics/wraps, and near-surface
mounted (NSM) bars for the strengthening, retrofitting, and repair of existing structures.
This paper focuses on the internal application of FRP composites, more specifically on the
damage detection of FRP rods/strands embedded in concrete elements. For the sake of
brevity, FRP bars/rods and strands/tendons are referred to as FRP bars in the following
sections of this paper.

1.2. Advantages of FRP-RC Elements

Corrosion is one of the main issues that can compromise the serviceability and safety
of conventional steel-reinforced / prestressed concrete structures. A 2002 Federal Highway
Administration (FHWA) study conducted in partnership with the National Association of
Corrosion Engineers (NACE) International, now known as the Association for Materials
Protection and Performance (AMPP), estimated the average annual direct cost of corrosion
for US highway bridges to be $8.29 billion [4]. A decade later, in 2013, NACE International
estimated an increase in this cost to $13.6 billion per year [5]. Despite these estimates
being decades old, the issue of corrosion persists, and it remains a primary cause of
bridge deterioration in the US. The latest 2021 American Society of Civil Engineers (ASCE)
infrastructure report card scored America’s bridges a low grade of C and emphasized the
use of innovative materials such as ultra-high-performance concrete (UHPC), corrosion-
resistant reinforcement, high-performance steel, composites, and improved coatings to
increase the lifespan of the nation’s bridges [6].

FRP composites are one of such relatively new construction materials that are resistant
to all the factors causing corrosion in steel-reinforced concrete (RC) structures, such as
a decrease in concrete pH due to carbonation, chloride penetration, and the diffusion of
halides and chemicals [7-10]. Further, FRP composites are not affected by electromagnetic
disturbances from sources such as railroads with DC or AC traction, overhead power
lines, and unbalanced currents from three-phase power systems, which contribute to the
corrosion of metal structures and the deterioration of reinforced concrete [11]. Hence, the
use of FRPs as reinforcement in concrete elements is strongly justified for locations where
the corrosion of conventional steel reinforcement poses significant economic and safety
risks [12].

Additionally, better mechanical performance, superior durability, and the environ-
mental implications of the FRP composites [13,14] offer more flexibility for engineers to
build structures that last longer. When compared to steel bars, FRP bars have significantly
higher tensile strength [15], about one-fourth of the density of steel, and can achieve a
longer service life [16]. Nevertheless, the application of FRP composites is associated with
a higher initial cost, which is often quoted as one of the major drawbacks to its implemen-
tation. However, in recent years, the initial cost of GFRP bars has benefitted due to price
fluctuation in the metal market worldwide since the mid-2020s and has even dropped due
to the growth of the GFRP bar industry [17]. Further, despite the fact that FRP bars initially
cost more than traditional steel bars, a life cycle cost study shows that they can rather be
cost-effective in the long run [18]. Because of these factors, FRP bars are progressively
becoming a reliable material in civil engineering. This is evident from a recent example of a
coastal bridge fully reinforced with GFRP bars built in 2021 at the 23rd Avenue over Ibis
Waterway located in Florida, USA, which is the second of its kind [3,19].
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1.3. Damage in FRP-RC Elements

Although FRP bars offer improved durability and performance compared to steel in
certain aspects, there are concerns about potential damage and defects in both FRP bars
and FRP-reinforced concrete (FRP-RC) elements. Many of the serviceability issues related to
conventional RC elements such as cracking, permeability, carbonation, chloride content, and
concrete cover may not pose the same concern for FRP-RC elements. FRP bars and FRP-RC
elements are prone to a unique set of defects as compared to their steel counterparts. For
instance, the bond behavior of the FRP bar—concrete interface differs from that of the steel
bar—concrete interface [20]. The bond failure of FRP bars not only occurs in the concrete but
also inside the bars, unlike a steel bar [21,22]. Similarly, in a study conducted by Valentine [23],
it was found that cracks are the predominant defect reported by the bridge inspectors in the
inspection of FRP-reinforced bridge decks, which can be attributed to the low modulus of
elasticity of the FRP bars. In this paper, the detectability of three different types of potential
damage that might occur in the FRP reinforcements—rupture, debonding, and loss of cross-
sectional properties—will be investigated. It should be noted that the term “potential damage”
has been used due to the fact that, unlike steel bars, where corrosion is the obvious damage
to be expected, there is very limited information on the damage that is possible in FRP bars,
a relatively new, corrosion-resistant construction material. Additionally, this paper will also
include the detection of damage in concrete such as delamination, cracks, and voids, which
would be similar to traditional steel reinforced /prestressed concrete elements.

1.4. Inspection of FRP-RC Elements

The literature on the application of non-destructive testing (NDT) methods for the
internal application of FRP is limited and scarce. There is no standard guide available
for the inspection of FRP-RC elements [24-26]. This represents a knowledge gap that
this research study attempts to address. Hence, although the use of FRP in highway in-
frastructures has been on the rise [27-30], the absence of reliable condition assessment
methods for FRP-RC elements has significantly hindered its extensive application. Bridge
engineers are hesitant to use materials that are difficult to detect and assess for mainte-
nance. Therefore, there’s a pressing need for research into effective condition assessment
techniques for FRP-RC elements, which could greatly encourage the adoption of FRP in
future construction projects.

The inspection of FRP-RC elements is limited to detecting the initiation of FRP bars—
concrete debonding [31,32] or the initiation of fractures in the FRP [33,34] rather than
detecting the damage in the bars themselves. This is in most part because it was believed
that FRP bars are undetectable or have low detectability, making it impossible to spot
them effectively during an inspection. NDT techniques used for inspecting steel-reinforced
concrete rely on identifying differences in specific properties, such as the dielectric constant
and acoustic impedance, between steel and concrete. However, FRP reinforcements, unlike
steel, exhibit properties similar to concrete that include non-conductivity and comparable
density. These similarities introduce complexities in detecting/inspecting FRP, making it a
more challenging task.

However, Ekes [35] demonstrated for the first time that ground-penetrating radar
(GPR) can detect both CFRP and GFRP bars embedded in concrete and therefore concluded
that it is a suitable tool for locating FRP bars on bridge decks. Another study conducted by
the authors of this paper showed that the detectability of FRP bars/strands increased with
the rise in the antenna center frequency of the GPR device and further showed that phased
array ultrasonic (PAU) testing is also effective in detecting GFRP and CFRP strands [36].
PAU is sensitive in detecting air voids and hence it was effective only for FRP strands
because of the air voids present within the twisted wires of strands and the uneven surface
of the strands, unlike the smooth surfaces of bars. However, these studies do not give any
information about the detectability of damage in FRP reinforcements using GPR and PAU.

This paper explores the feasibility of employing commercially available GPR and PAU
devices to identify damage in FRP bars embedded in concrete. These methods are selected
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among various NDTs because they are widely used in inspecting steel RC elements [24].
Further, this paper also aims to determine the detection of damage in the concrete elements
reinforced with FRP using GPR and PAU devices. Three small-scale slabs were fabricated
with damage simulated in bars and concrete to evaluate the feasibility of the chosen NDT
method. The results of this study show that GPR devices can detect damage in FRP
bars/strands and concrete. However, it was observed that PAU devices are effective only
for detecting damage in CFRP strands along with steel bars and concrete.

The results of this study can be utilized to drive further research on the non-destructive
testing of FRP-RC elements and embedded FRP bars. One such prospective field of
study in the future could be the use of NDT damage detection methods in conjunction
with diagnostic load testing for bridges. Diagnostic load tests are performed to evaluate
the integrity and performance of bridges and identify local damage areas based on the
variations in measurements of deflections, strains, and vibration responses [19]. Once
local damage areas are identified, NDT can be employed to perform a more thorough and
refined damage assessment within those areas. When used together, NDT and diagnostic
load testing can achieve efficient, comprehensive, and dependable damage detection
and assessment of FRP bars embedded in concrete. These will provide owners with
inspection options and help them in decision making regarding necessary countermeasures
for ensuring the bridge’s safety and longer service life.

2. Experimental Program
2.1. Fabrication of FRP-RC Slab Specimens

To determine the capability of GPR and PAU in detecting defects in FRP reinforcements,
three concrete slab specimens were fabricated and inspected. These slabs, measuring
36 inches in width, 36 inches in length, and 7 inches in depth, were fabricated with
simulated defects in FRP bars and the concrete itself. The concrete mix design used for
casting the slabs was determined following the specifications of the Florida Department of
Transportation (FDOT) for “Class II 4500 Bridgedeck” concrete. The mixture included Type
II cement with a water-to-cement ratio (w/cm) of 0.44, #57 stone as a coarse aggregate,
and silica sand as a fine aggregate. Concrete cylinders were tested at 28 days following
American Society for Testing and Materials (ASTM C39) standards [37,38] to verify the
actual strength, resulting in an average compressive strength of 31.70 MPa with a standard
deviation of 0.69 MPa (yielding a coefficient of variation of 2.2%).

The construction of slab specimens aimed to explore the effect of various factors in
detectability, including the type of FRP bars/strands (GFRP, CFRP, BERP), their diameters,
the depths of embedment, and the type of defects. Table 1 shows the key characteristics of
each slab specimen. Given the prevalent use of GFRP bars compared to other FRP bars in
concrete reinforcement, one slab (Slab O) was reinforced only with GFRP bars at varying
depths of embedment. According to American Concrete Institute (ACI) CODE-440.11-
22 [39], the concrete cover for GFRP-reinforced members ranges between 0.75 inches and
3 inches, which guided the depth variations in the slab specimens to reflect the potential
positioning of the top layer of FRP reinforcement. Slab P was designed to include two CFRP
strands, a BFRP bar, and a steel bar (which serve as a benchmark for this investigation).
This setup enables a direct comparison of the detectability of various FRP bars/strands
against that of the steel bar under identical testing conditions. Additionally, the study
extended to include Slab Q, which was designed to investigate the detection of simulated
defects within the concrete itself.

Each specimen was constructed and marked according to the layout depicted in
Figure 1. Every slab is designated by an alphabet (O, P, and Q), and each side is assigned
a number (ranging from 1 to 4). The direction of measurement is defined by the starting
point and the endpoint numbers of the measurement.
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Table 1. Identification of small-scale concrete slab specimens.

Slab Specimen Slab ID Bar Diameter No. of Bars

Slab with damaged GFRP bars Slab O #6 GFRP bars 4

Slab with damaged CFRP strands, Slab P 0.6" CFRP strands, #4 steel bar, and #6

BFRP bar, and steel bar BFRP bar 4

#4 and #6 GFRDP bars, #4 and #6 steel bars,

Slab with damage in concrete Slab Q 43 CFRP bar. and 0.6 CFRP strand
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Figure 1. Labeling of slab specimens.

2.2. Simulation of Defects in FRP Bars and Concrete

Slabs O and P contain defects in the bars. These defects correspond to bar rupture,
a loss of cross-sectional properties, and debonding. To produce the bar rupture, the
cross-section was reduced almost to breakage and then covered with a polyethylene tube
to prevent the concrete from penetrating the defect and filling the void, as shown in
Figure 2a,b. Cross-sectional property defects were produced by reducing the cross-section
by 50% of its initial area and then covering it with polyethylene to prevent the concrete
from filling the removed volume, as shown in Figure 2c,d. The loss of cross-sectional
“properties” was simulated through the reduction in the cross-sectional “area” only for the
experimental purpose of this paper. It should be noted that such an extreme reduction in
the cross-sectional “area” of FRP bars may be unlikely, but the reduction in cross-sectional
“properties” does occur under harsh environmental conditions. The aim is to explore
the capability of NDT methods in detecting the variation in damage levels. Finally, the
debonding defect was simulated by covering the bar with bubble wrap to generate a thin
layer between the bar and the concrete (see Figure 2e,f). Figure 3 shows the location of the
different defects and their dimension details.

In Slab Q, four types of defects in the concrete were simulated to evaluate the feasibility
of different NDT methods. Delamination, flexural and split cracks, as well as voids in the
concrete were simulated in Slab Q using thin architectural polystyrene foam held in place
with the use of epoxy, as shown in Figures 4 and 5. This specimen includes steel, glass, and
carbon FRP #4 and #6 bars.

Table 2 provides the geometrical details of the slab specimens, including the distance
of the bars from the edge, cover depth, bar diameter, bar material, and slab thickness,
following the conventions shown in Figure 1.
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Figure 2. Damage introduced in bars. (a) Cross-section rupture, (b) covered rupture defect, (c) reduc-
tion in cross-section, (d) 3 inches of cross-section defect, (e) 3 inches of debonding defect, (f) different

defects in bars.
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Figure 3. Slab specimen with simulated damage in bars, Slab O (a) and Slab P (b).
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Figure 4. Three-dimensional scheme of Slab Q with simulated damage in the concrete.
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Figure 5. Dimension details of Slab Q with simulated damage in the concrete.
Table 2. Reinforcement/dimension details of slab specimens.
Slab ID Parameter (Symbol/Units) Resf;z;znce Bar1 Bar 2 Bar 3 Bar 4 Bar 5 Bar 6
Distance to edge reference (L/inch) 6.0 14.0 22.0 30.0
Cover depth (C/inch) 1.0 2.0 35 4.5
(@) Bar diameter (¢ /inch) 3 #6
Bar material (T) Glass
Slab thickness (h/inch) 7.0
Distance to edge reference (L/inch) 6.0 14.0 22.0 30.0
Cover depth (C/inch) 1.0 2.0 3.5 45
P Bar diameter (¢ /inch) 3 0.6” #4 0.6” #6
Bar material (T) C-Std * Steel C-Std * Basalt
Slab thickness (h/inch) 7.0
Distance to edge reference (L/inch) 3.0 9.0 15 21 27 33
Cover depth (C/inch) 3.3 3.1 3.3 3.1 3.3 3.2
Q Bar diameter (¢ /inch) 3 #4 #6 #4 #6 #3 0.6’
Bar material (T) Glass Glass Steel Steel Carbon  C-Std *

Slab thickness (h/inch)

7.0

* C-Std. (i.e., CFRP strands) labeled as Bars 1 and 3 in Slab P and Bar 6 in Slab Q.
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2.3. Non-Destructive Testing (NDT) Methods

As mentioned in the introduction section, this paper aims to determine the detectabil-
ity of damage in FRP reinforcements and FRP-RC elements using GPR and PAU devices
(Figure 6). GPR is a real-time NDT method used to analyze the internal characteristics of
civil structures. It operates on the principle that electromagnetic waves are reflected back
when they hit a boundary between two materials with different dielectric constants [40,41].
The technique involves transmitting electromagnetic waves into the material under investi-
gation and capturing the waves that are reflected from any irregularities within it. These
irregularities could include boundaries between different materials, such as those between
concrete and bars, or interfaces created by subsurface anomalies like voids, cracks, and
instances of debonding or delamination in concrete [42]. Despite its potential, research
on the application of GPR for inspecting FRP-RC elements is limited and its efficacy as
a reliable NDT technique for this application remains unexplored. This study aims to
investigate the feasibility of using GPR to detect damage in FRP bars.

Figure 6. NDT devices used: (a) GPR device, (b) PAU device.

The GPR system used in this experiment was a Conquest 100 Enhanced GPR (Sensors
and Software Inc., Mississauga, ON, Canada) with a monostatic GPR antenna with a center
frequency of 1000 MHz. GPR tests were carried out using both individual line scans and
comprehensive grid scans. The line scans served as an initial survey to provide a prelimi-
nary understanding of the internal structure, including the orientation of reinforcements
and the depth of exploration, by producing a cross-sectional image along the scan direction.
However, this method proved to be time-consuming and labor-intensive due to the need
to interpret multiple line scans. To streamline the process, grid scans were introduced,
involving systematic GPR data collection along a predefined grid covering the test area.
The grid’s line spacing, set at 2 inches for this study, directly influenced the resolution
of the collected data, with closer spacing yielding higher-resolution images and easier
data interpretation. The data from grid scans produced depth slice images, offering a
cross-sectional view parallel to the specimen’s surface, facilitating a detailed analysis of the
internal features.

PAU is the other NDT method being investigated in this study which is simply an
advancement over the conventional ultrasonic testing (UT) method. Similar to GPR, UT
is based on the principle that the ultrasonic waves are reflected back upon encountering
a boundary between two materials with different acoustic impedances. These ultrasonic
waves are generated and received by transducers that convert electrical or optical signals
into ultrasonic waves and vice versa. A PAU setup is achieved by arranging multiple
transducers in an array (Figure 6) and activating them sequentially with slight delays,
allowing the individual waves to interfere constructively and destructively [43]. This
arrangement enables the focusing and steering of the ultrasonic waves. PAU offers test
results that are easy to interpret, a scanning rate of 5 to 10 times, and better resolution,
reliability, portability, and mobility than conventional UT [44,45]. However, one of its major
drawbacks is the uncertainty associated with its application as it has not yet been fully
tested for inspection of FRP-RC elements.
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The PAU device used for this experiment was a Pundit Live Array Pro device (Screen-
ing Eagle Technologies, Zurich, Switzerland) with 8 x 3 dry-contact Pundit array trans-
ducers. The PAU line scan was performed by moving the array of ultrasonic transducers
along a specified line of inspection. Each scan at distinct positions was combined to form a
continuous cross-sectional image perpendicular to the surface. For area scans, a stripe scan
technique was employed, moving the transducers perpendicular to the line of inspection.
Each stripe scan produced a line scan with a width equal to that of the PAU device, and
these scans were stitched together to create a depth slice view. This view represents a
cross-section parallel to the scanned surface, which can be further developed into a compre-
hensive 3D iso-surface model. A previous study by the authors [36] can be further explored
for in-depth information on the applicability of GPR and PAU techniques for the inspection
of structural elements reinforced with FRP.

3. Results
3.1. Ground-Penetrating Radar (GPR)

In order to detect damage in FRP bars, it is first important to determine whether the
GPR device is able to detect the bars itself. The line scans (B-scans) of the slabs O, P, and Q
were obtained for the sole purpose of checking bar detectability before taking the detailed
area scan which can be used in the field inspection for the real-time detection of damage.
Figure 7 shows the GPR response of a line scan collected perpendicular to the embedded
bars in the longitudinal direction (from the reference edge 3 to 4) over Slab O. The top of
the hyperbolic shape (i.e., inverted U shape) in the figure indicates the location of the bars.

/3 Slab O /A\
Legends: 1 = GFRP bar 1, 2 = GFRP bar 2, 3 = GFRP bar 3

Figure 7. Line view for bar detection carried out before defect/damage detection (Red markings are
superimposed/added on test results to indicate distinctive features).

The GPR line scan of only one of the slabs (Slab O) is presented in this paper for the
sake of brevity and Table 3 summarizes the results of the line scan test of all the other slabs.
The line scans of Slab P and Q are presented in Appendix A, Figure Al.

Table 3. Summary of bar detectability for damage detection.

Slab ID Bar 1 Bar 2 Bar 3 Bar4 Bar 5 Bar 6
(@] v v v X - -
P v v v X - -
Q X X v v v v

Note: v'= detectable, X = not detectable.

It was observed that GPR could not detect the #6 GFRP bar in Slab O (Bar 4) and the
#6 BFRP bar in Slab P (Bar 4), which have a concrete cover of more than 3.5 inches. Hence,
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it is clear that GPR would not be able to detect bar damage with a larger concrete cover.
Slab Q, on the other hand, did not have any damage in the embedded bars but the damage
was introduced to the concrete in the vicinity of the bars (in some cases below those bars).
In addition to taking line scans perpendicular to the embedded bars in Slab Q, line scans
were also taken at the center of the slab parallel to the bars to detect the damage introduced
to the concrete. Two such line scans were taken, one from the top surface and the other
from the bottom surface (after flipping the slab upside down), which are shown in Figure 8.
It can be seen that more damage was visible from the bottom surface than from the top
surface because the damage was closer to the bottom. The line scans conducted from the
top surface could not detect vertical damage (flexural and split cracks) at all. Moreover, it
can be seen that the hyperbolas for vertical damage (damage “c” in Figure 8) are narrower
and taller than those for horizontal damage (damage “b” in Figure 8), which are wider
and shorter. The damage “a” and “d” in the line scan carried out from the bottom surface
(flipped Slab Q) appears to have been located at the surface, which is erroneous. This could
be attributed to the use of small polystyrene foam cubes as a base for securing this damage
(ping pong balls representing voids) at the bottom of the formwork.

oy fy e ff ey

Slab Q: Perpendicular to damage at c/c Slab Q (flipped): Perpendicular to damage at c/c

Legends: a/d = Spherical void, b = Concrete delamination, ¢ = Flexural crack

Figure 8. Line views for concrete defects/damage at c/c of Slab Q (red markings are superim-
posed/added to test results to indicate distinctive features).

Next, depth slices (C-scans) taken with GPR to determine the damage detectability for
each of the constructed slabs (Slab O, P, Q) are shown in Figures 9 and 10. To generate the
depth slices, data collection was conducted longitudinally from reference edges 3 to 4, with
a consistent spacing of 2 inches.

In Slab O with damaged GFRP bars, GPR successfully identified various forms of
damage, including rupture, cross-sectional properties reduction, and debonding in Bar 1,
as shown in Figure 9. However, the damage in Bar 2 is not quite distinguishable (see
Appendix A, Figure A2). The bar itself is not as clearly visible as Bar 1, which is also
because the already weak signal from GFRP bars (compared to steel bars) becomes even
weaker with increasing depth. Further, while Bar 3 was detectable during the line scan, it
was not visible in the depth slice due to its comparatively weaker signals relative to those
from Bars 1 and 2. Thus, it was observed that the GPR exhibited limitations in detecting
GERP bars situated at greater depths, rendering it ineffective in identifying damage in
these deeper-embedded GFRP bars. Consequently, it can be concluded that GPR’s damage
detection capability is primarily confined to GFRP bars located at shallower depths.
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A A

Superimposed

drawing illustrat-

Slab O:1-2 in Slab P: 1-2 in

Legends: - - Rupture, = Cross section defects, =Debonding, 1 = GFRP bar 1 for slab O and CFRP strand 1 for slab P

Figure 9. Depth slices of slabs for damage detection in bars.

Superimposed drawing illustrating the location of damage.

Slab Q: 3-4 in

Legends: =Delamination, = Flexural crack, = Split crack, D / |:| / O =vVoids

Figure 10. Depth slices of slabs for defect/damage detection in concrete.

The GPR depth slice results for Slab P varied in efficacy for detecting damage across
different reinforcement materials. Specifically, for the CERP strand located near the surface,
GPR failed to identify any damage (see Figure 9). However, for the CFRP strand positioned
ata depth of 3.5 inches, there were faded indications of damage (see Appendix A, Figure A2).
In contrast, GPR exhibited comprehensive damage detection capabilities for the steel bar,
identifying all present damage (see Appendix A, Figure A2). The BFRP bar presented a
unique challenge; GPR was unable to detect it, particularly in the presence of dominant
signals from the steel bar and CFRP strands. Consequently, damage in the BFRP bar
remained undetected. However, it is worth noting that if the slab was only reinforced with
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BERP bars, it is possible that GPR might have been able to detect damage in BERP bars to a
certain degree.

The depth slice of slab Q shown in Figure 10 illustrates GPR’s capability to clearly
identify delamination within the concrete slab. However, its performance was limited
when it came to the detection of deeper vertical cracks. In contrast, when the GPR test was
conducted over the bottom surface of the slab, it proved adept at identifying shallower
vertical cracks and voids (see Appendix A, Figure A3). These findings underscore the
nuanced performance of GPR in detecting different types of defects in concrete, highlighting
its selective sensitivity to various forms of damage depending on their nature and depth
within the elements.

3.2. Phased Array Ultrasonic (PAU)

The PAU line scans were taken with a similar approach used for GPR line scans for
first detecting the bars as shown in Figure 11. For Slab O, no GFRP bars were detectable,
and for Slab P, the steel bar (Bar 2) and the CFRP strand (Bar 3) were clearly detectable.
Similarly, for Slab Q, the steel bars (Bars 3 and 4) were clearly detectable. Further, there
were also some indications of vertical cracks (labeled a and b in Figure 11).

Slab O

Legends: + = Expected bar location, 2= = Bottom surface

A Slab Q: Perpendicular bars at c/c

Legends: + = Expected bar location, == = Bottom surface, 3 = Steel bar 3, 4 = Steel bar 4, 5 = CFRP bar 5, 6 = CFRP strand 6,
a/b = Split cracks

Figure 11. PAU line views for bar detection before damage detection.
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In addition to performing line scans perpendicular to the embedded bars in Slab
Q, line scans were also conducted at the center of the slab parallel to the bars to detect
the damage introduced in the concrete, as shown in Figure 12. It can be seen that the
horizontal delamination (labeled as b in the figure) was distinctly visible but the vertical
cracks (labeled as c in the figure) were only visible as a dot at the top point of the crack
where it initiates (instead of being visible as a vertical line). Similarly, the voids (labeled as
a and d in the figure) were also visible but not as distinct as the delamination, which could
be because they were smaller in size.

/ Y
a b c d
___c;__//_//__/_ ______ - —— |
/77 7 '

Slab Q: Perpendicular to defect/damage at c/c
Legends: + = Expected bar location, E= - Bottom surface, a/d = Spherical void, b = Delamination, c = Flexural crack

Figure 12. Line view for concrete defects/damage at c/c of Slab Q using PAU.

As expected, since GFRP bars could not be detected using PAU (as mentioned earlier
in the PAU line scan results), the area scans over Slab O did not yield any damage detec-
tion. However, the depth slices and 3D view of PAU tests for Slabs P and Q (shown in
Figures 13 and 14) produced some promising results.

Slab P: Rebar 1 Slab P: Rebar 2 3D view Slab P: Rebar 3 3D view

Legends: ' =Rupture, = Cross section defects, = Debonding

Figure 13. Depth slices of slabs for damage detection in bars using PAU.
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3D view of stripe (v)

Slab Q: Depthsslice at the bottom surface

Legends: = Delamination, | = Flexural crack, = Split crack, El / I:I / O =voids

Figure 14. Depth slices of slabs for damage in concrete detectability tests using PAU.

It can be observed that Bar 2 and Bar 3 in Slab P do not appear to be straight. This is
because Bar 2 (steel bar) had a kink because of a rupture at its mid-length resulting in a
shift during casting, making it look like a bent bar. Similarly, in the case of Bar 3 (CFRP
strand), the detected shape appears to be curved since these strands were flexible and
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curved outwards and downwards (sag) during the concrete pouring process. The CFRP
strand had the tendency to bend to its transported coiled shape. It should also be noted
that although it seemed the CFRP strand closer to the top surface (Bar 1) was visible in the
line view (Figure 11), upon conducting the area scan over the strand, the detection proved
not distinct enough for the entire strand (Figure 13). Only a portion of the strand at the
mid-span was visible, which could be due to the fact that it sagged at the center with the
weight of the concrete during casting, therefore increasing its depth from the top surface
and making it free of surface reflections. These nuances of the PAU test results obtained
from Slab P further illustrate the precision of PAU devices in detecting the geometrical
orientation of the steel bar and CFRP strands embedded in concrete.

Similarly for Slab Q, while the CFRP bar (Bar 5) and CFRP strand (Bar 6) seem to be
visible in the line scan (Figure 11), they were not visible on the depth slices (Figure 14),
which could be because the signals from the damage in concrete (delamination) dominated
over the weaker signal from the CFRP bar/strand.

In the context of damage detection in FRP bars, from the results of Slab O, it is evident
that the PAU test cannot detect embedded GFRP bars at any depth and hence it also
cannot detect any damage in GFRP bars. In slab P, the PAU was unable to detect the
CFRP strand situated closer to the top surface. Additionally, its capability was limited
when it came to the BFRP bar, rendering it ineffective in identifying damage within these
BFRP bars. In contrast, PAU displayed comprehensive detection capabilities for the steel
bar, with all damage, including the rupture at the bent position, being clearly identifiable.
This clarity in damage detection was further enhanced when viewed in a 3D perspective.
However, the damage in the CFRP strand at an intermediate depth, specifically Bar 3, was
not as readily discernible as those in the steel bar. The presence of damage in this strand
could be interpreted from the non-uniform color scale along the detection path, with red
being the stronger signal and green to yellow being the weaker signal associated with
defective/damaged areas.

Finally, for Slab Q, the PAU was adept at clearly identifying horizontal delamination
and voids within the slab. Regarding the detection of vertical cracks in concrete (flexural
and split cracks), although the direct detection proved challenging, these cracks could
be inferred from the observed discontinuities or gaps present at the slab’s bottom reflec-
tion [46], shown at the bottom center image and the 3D views shown in Figure 14. The
bottom surface of the slab specimen is not visible below delamination and cracks because
these discontinuities prevent the propagation of ultrasonic waves below them and may
even trap the waves to bounce back and forth between them and the top surface, resulting
in multiple equally spaced reflections [47].

4. Discussion

The test results are summarized in a comprehensive test result matrix shown in Table 4.
From the table, it can be seen that except for the case of the damaged BFRP bar, there is
no other case where both GPR and PAU collectively have the label “ND” (not detectable).
Therefore, the application of these two NDT methods together will not miss the detection
of damage in internal FRP bars/strands and concrete. Hence, all the test parameters are
found to be either detectable, “D”, or to have limited detectability, “LD” (limitation based
on depth), by at least one of the GPR or PAU devices. In other words, in case a parameter
is not detectable by GPR, then the detectability or limited detectability can still be ensured
using PAU and vice versa. Thus, using both the GPR and PAU would be the best option to
inspect FRP-RC elements. Otherwise, detectability can still be achieved using just one of
these devices for the parameters mentioned as “LD” and “D” in Table 4.
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Table 4. Effectiveness of GPR and PAU methods for the inspection of FRP-RC elements !.

Selected NDTs
Slab Parameters

GPR PAU

Rupture LD ND

(@) Damaged GFRP bars Cross-sectional property loss LD ND
Debonding LD ND

Rupture LD LD

Damaged CFRP strands Cross-sectional property loss LD LD

Debonding LD LD

Rupture ND ND

P Damaged BFRP bar Cross-sectional property loss ND ND
Debonding ND ND

Rupture D D

Damaged steel bar Cross-sectional property loss D D

Debonding D D

Horizontal delamination D D

Q Defects/damage in concrete Vertical Cracks LD LD
Voids LD LD

Note: D = detectable; LD = limited detectability (based on depth); ND = not detectable. 1 The results were
obtained from slab specimens with a maximum thickness of 7 inches and a maximum reinforcement depth of up
to 4.5 inches.

However, there are some limitations related to the research conducted in this paper
that warrant further investigation and consideration in future research studies concerning
nondestructive testing techniques for the inspection of FRP-RC elements. It should be
noted that the results shown in Table 4 have been obtained under laboratory conditions
and the range of parameters used for the test specimens and test methods may not be
applicable generally. For example, certain techniques were used to simulate the damage
in FRP, e.g., the reduction in cross-section by grinding out the material and taping the bar
to simulate debonding. Nevertheless, because the specimen and test conditions aimed
to be as practical as possible, the results can provide credible guides for the use of NDT
methods for FRP-RC elements. Regarding the inability to detect damage in the BFRP bar
in Slab P, further experiments need to be conducted on slab specimens only reinforced
with BFRP bars (similar to Slab O) before coming to a conclusion about the detectability
of damage in BFRP bars. The low frequency 1 GHz GPR device used in this research
was not able to detect the BFRP bar but a previous study by the authors [36] has proved
that it can be detected using higher frequency GPR devices. Future research on detecting
damage in BFRP bars should focus on using high-frequency GPR devices to detect several
types of simulated damage with variations in parameters such as depth, extent, and type
of damage. Since BFRP bars have gained popularity in recent years, it is justifiable to
dedicate future research to the detectability of damage in BFRP bars to gain confidence
among engineers in its use as a reinforcing material. Additionally, the scope of this study
was limited to the real-time test results obtained from the proprietary software that comes
with the commercially available GPR and PAU devices used in this study. This method
of data collection represents the actual field conditions faced by the inspectors, who do

not have access to complicated post-processing software at the inspection site location.

Future research on refining these NDT techniques could even explore the integration of
artificial intelligence and machine learning [48,49] for improved data analysis on remotely
sensed data. Similarly, this study is limited to only three specimens with limited variation
in depth of bars up to 4.5 inches, which can be overcome in future studies by conducting
experimental verification on several specimens with a wider range of test parameters to
collect more data for a statistically sound validation. One such extension could be testing
the ability of the NDT devices to detect damage in multiple layers of reinforcements, as this
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study is limited only to the investigation of the first layer of reinforcement at the selected
cover depth.

5. Conclusions

This study investigated the application of GPR and PAU in detecting damage in the
FRP-RC elements. Three slab specimens with variations in several parameters, such as FRP
type (GFRP, CFRP, BFRP), bar diameter, bar depth, and defect types were fabricated to
determine the limitations and detection capabilities of these two NDT devices. Damage
in the FRPs was simulated by a reduction in the cross-section to represent changes in
cross-sectional properties and by wrapping the bars with tape to represent debonding.
Foam pieces, flat and solid, were used to simulate the damage expected in the concrete.
The findings of this study generally conclude that the combined use of GPR and PAU can
detect potential internal defects associated with FRP-RC elements, as well as delamination,
cracks, and voids in concrete.

The findings of this study have contributed significantly to the field of non-destructive
testing (NDT) for FRP-RC elements. The successful demonstration of the combined use
of GPR and PAU methods in detecting a variety of damage in FRP-RC elements under
laboratory conditions lays the groundwork for future research and practical applications.
The practical implications of these findings could involve the development of guidelines
for the application of GPR and PAU methods in the inspection of FRP-RC elements in
real-world scenarios, potentially improving the safety, maintenance, and durability of such
structures. The specific conclusions of this paper include:

e Damage associated with the FRP-RC elements can be categorized as damage in the
FRP reinforcements and those in the concrete. The potential types of damage in the
FRP bars were identified as ruptures, loss of cross-sectional properties, and debonding,
while the internal damage in concrete includes delamination, cracks, and voids.

e  GPR could detect damage in GFRP bars, CFRP strands, steel bars, and all the internal
damage introduced in concrete. It was not able to detect damage in BFRP bars in the
experimental setup considered in this study, but there is a possibility that a higher
frequency GPR device may be able to detect damage in BFRP bars, which is to be
investigated in future studies.

e PAU showed limitations in its capability to detect damage in GFRP and BFRP bars but
performed well in detecting damage in CFRP strands, steel bars, and concrete.

e Using GPR and PAU testing together would be the best option to inspect FRP-RC
elements as the damage missed by one method would be detectable by the other.
However, detectability (except for BFRP bars) can still be achieved using just one of
these devices but with some limitations on the depth of the FRP.

e  There may be some limitations related to the research conducted in this paper that may
warrant further investigation. The experiments were under laboratory conditions and
for a range of parameters for specimens and test methods and may not be applicable
generally. Nevertheless, because the specimen and test conditions were chosen to
be as practical as possible, e.g., FRP type, sizes, and concrete cover similar to actual
values, the results can provide a credible guide for the use of NDT methods for
FRP-RC elements.
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Appendix A

/3\ Slab P /A

Legends: 1 = CFRP strand 1, 2 = Steel bar 2, 3 = CFRP strand 3

/3\ slab Q /A

Legends: 3 = Steel bar 3, 4 = Steel bar 4, 5 = CFRP bar 5, 6 = CFRP strand 6

Figure A1. Line views for bar detection carried out before damage detection (for Slabs P and Q).
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Slab O: 1-2in Slab O: 2-3in

A
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Vi,

Legends: - Rupture, = Cross section defects, = Debonding, 1 = GFRP bar 1, 2 = GFRP bar 2

AN

Superimposed drawing illustrating the location of damage

Slab P: 1-2in Slab P: 2-3in Slab P: 3-4in

Legends: - Rupture, = Cross section defects, = Debonding, 1 = CFRP strand 1, 2 = Steel bar 2, 3 = CFRP strand

Figure A2. Depth slices of slabs O and P for damage detection in all the bars.
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Superimposed drawing illustrating the location of defects/damage

Slab Q: 3-4in

Superimposed drauTIg illustrating the location of defects/damage

Slab Q (flipped): 0-1in Slab Q (flipped): 3-4 in

Legends: = Delamination, | = Flexural crack,

Figure A3. Depth slices of slab Q for damage detection in concrete (from top and bottom surface).

= Split crack, |:| / D / O =vVoids
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Abstract: Non-destructive electromagnetic tests based on magnetic noise analysis have been devel-
oped to study, among others, residual stress, heat treatment outcomes, and harmful microstructures
in terms of toughness. When subjected to thermal cycles above 550 °C, duplex stainless steels form
an extremely hard and chromium-rich constituent that, if it is superior to 5%, compromises the
steel’s corrosion resistance and toughness. In the present work, a study was carried out concerning
the interaction of excitation waves with duplex stainless steel. Hence, by analyzing the magnetic
noise and variations in the amplitude of the first harmonic of the excitation waves, the detection of
the deleterious sigma phase in SAF 2205 steel is studied. To simplify the test, a Hall effect sensor
replaced the pick-up coil placed on the opposite surface of the excitation coil. Sinusoidal excitation
waves of 5 Hz and 25 Hz with amplitudes ranging from 0.25 V to 9 V were applied to samples
with different amounts of the sigma phase, and the microstructures were characterized by scanning
electron microscopy. The results show that the best testing condition consists of applying waves with
amplitudes from 1 V to 2 V and using the first harmonic amplitude. Thus, the test proved effective
for detecting the formation of the deleterious sigma phase and can follow the ability to absorb energy
by impact and, thus, the material embrittlement.

Keywords: magnetic noise; non-destructive test; duplex stainless steel

1. Introduction

Duplex stainless steels are characterized by presenting equal volumetric percentages
of ferrite and austenite constituents in their structure [1-3]. However, when thermal
cycles above 550 °C are allowed, a harmful phase called sigma is formed, with a hardness
of around 900 HV and rich in chromium. The high hardness compromises the energy
absorption capacity by impact, i.e., toughness, and the high chromium content reduces the
corrosion resistance [4-7]. The paramagnetic sigma phase arises from the ferrite structure,
which is ferromagnetic, changing the material permeability. However, it does not occur in
the austenite phase, which is paramagnetic [1,3,4,6].

Low quantities of the sigma phase promote a considerable decrease in toughness
without a notable influence on the hardness. For instance, the precipitation of 1.3% of this
phase decreased the impact toughness from 320 J (solute-treated) to 24 ] (aged samples at
800 °C for 10 min) [1,2,4,5], and, as the precipitation of the sigma phase increases, cracks
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occur preferentially in the contours of the particles of this phase. Also, as the sigma phase
is rich in chromium, it deflects the adjacent region of Cr, reducing corrosion resistance [1,5].

Changes in magnetic permeability characterize the formation of new constituents by
phase transformations in ferromagnetic materials. This makes non-destructive electromag-
netic tests interesting, such as the ones based on eddy currents, magnetic Barkhausen noise
(MBN), and magnetic permeability measurements in the reversibility region of the move-
ment of magnetic domain walls. These tests have been applied, for example, to studies
of heat treatments, residual stress, fatigue, the presence of second phases, the integrity of
welded joints, and embrittlement [2,3,8-19].

The imposition of an electromagnetic wave on ferromagnetic materials leads to the
movement of the magnetic domain walls and an interaction of these with the material’s
microstructure. Factors such as grain boundaries, grain size, precipitates, dislocations,
second-phase particles, and residual stresses act as anchorage points for the movement of
the walls, and when the external magnetic field strength is sufficient for them to overcome
the obstacles of the microstructure, the generation of magnetic Barkhausen noise occurs.
This noise analysis brings information about the changes in the material, which is valuable
in non-destructive electromagnetic tests [20-35].

Electromagnetic tests based on MBN are characterized by two coils: the excitation,
which applies the signal, and the pick-up, which acquires the interaction signal. In these,
there are three configurations of pick-up coils: one on the same surface as the excitation,
another on the opposite surface, and the last surrounding the material. From these, the
most common is the layout on the same surface of the excitation coil. A pick-up coil wound
closely around the sample has also been used in studies of stress measurements in thin
film samples, where the thicknesses are relatively small [16]. These tests have various
configurations for the devices used, mainly in terms of excitation coils and receivers, the
shape of the cores of the coils, and the characteristics of the signal applied to them, such
as in terms of amplitude, frequency, and type of wave. Positioning the receiver coil on
the opposite surface favors studying along the thickness of the material, thus sweeping a
larger volume and allowing the evaluation of areas thermally affected by processes such as
welding. Positioning the excitation coil on the same surface is limited in this regard, and
the surrounding coil requires different configurations depending on the thickness of the
material to be analyzed [10,13,15].

When a magnetic field is applied to a ferromagnetic material, the resulting shape of
the magnetic induction is distorted due to magnetic hysteresis, and the non-linearity of
the material’s permeability, i.e., a sinusoidal shape wave being applied induces a non-
sinusoidal one. This distorted magnetic induction waveform contains components at
the harmonic frequencies of the applied magnetic field [23,24,26]. Harmonic analysis
has been applied to investigate material failures, detect corrosion degradation, perform
non-destructive evaluations of steels subjected to heat treatment, and monitor harmful
microstructures in stainless steels [23-28].

Electromagnetic tests in the reversibility region of the magnetic domain walls” move-
ment have used Hall effect sensors to detect the interaction of magnetic flux density and the
material and, thus, analyze microstructural variations, magnetic anisotropy, and residual
stress, among other applications. These sensors are sensitive to small variations in the
intensity of the magnetic flux passing through a material, cost only a few dollars, and
are simple to use. There are initial studies for replacing the receiver coil in tests in the
irreversibility region. However, a deeper study of the applied wave intensity and a better
transmission wave frequency is lacking in the literature [2,3,8,10].

Magnetic permeability measurements using a Hall effect sensor have proven effective
for studying the o phase in duplex stainless steels. The results confirm that Hall voltage
measurements are affected by the phase transformations that occur in SAF 2205 duplex
stainless steel at 425 °C and 475 °C and are suitable for tracking the formation of the
o phase in a non-destructive way. This was confirmed by correlation with the X-ray
diffraction technique, an already well-consolidated inspection technique [3]. Similar results
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were obtained by authors who observed a decrease in magnetic susceptibility measurement
in the same temperature range [29]. The microstructure formed prevents the movement of
the magnetic domain walls, and, therefore, the magnetic susceptibility is decreased.

Permeability measurements have also been used to detect the formation of the sigma
phase in the temperature range from 700 °C to 1000 °C through measurements carried out
with Hall effect sensors and applying magnetic field strengths of up to 300 A/m in a pick-up
coil. An ideal external magnetic field should be applied to obtain the best amplitude for
the phase assessment. A value of 211.5 A/m has been suggested as the ideal field. The
paramagnetic sigma phase reduces the induced magnetic field even when the phase is
in reduced quantities of 2% [2]. The sigma phase was also studied in SAF 2205 duplex
stainless steels at temperatures of 800 °C and 900 °C by analyzing the MBN with emitting
and receiving coils positioned on the same surface and applying 10 Hz sinusoidal waves.
Root mean square (RMS) values were correlated with the amount of the sigma phase. The
MBN intensity was significantly reduced with the increased heat treatment time, indicating
fewer ferromagnetic phases [4,7].

MBN noise has been applied to analyze several types of materials. The effect of
quenching embrittlement in supermartensitic steels was studied in samples treated at
temperatures of 620 °C and 640 °C cooled in water and in an oven after tempering, and those
cooled slowly showed a lower toughness and a higher volumetric fraction of austenite [10].
Another study analyzed the stress profile generated in a 1070 steel sample subjected to a
three-point bending test. The results suggested that the technique can detect the applied
voltage profiles. Furthermore, the variation in microstructure in carbon steel welded joints
was monitored by MBN. The results permitted the identification of the welded joint’s
heat-affected zone (HAZ) using MBN signals [30].

Non-destructive inspection techniques based on MBN have also been applied to detect
non-homogeneous regions in carbon steel sheets. The non-homogeneous or damaged
regions were produced by plastic deformations in rolled and annealed sheets of SAE 1060
and 1070 steels. The behavior of the mean square root of the Barkhausen magnetic noise
signal was correlated with the position of the uneven regions detected in the samples. The
results showed that in all the studied cases, it was possible to detect the position of the
damage through the variation in the magnetic field [31]. Another application based on
MBN is detecting early-stage fatigue, which is associated with plastic deformation in ferro-
magnetic metallic structures. Experimental results demonstrated that MBN is promising
for this characterization [32]. The presentation of the behavior of the interaction between
excitation waves and different types of anchoring points, presented previously, serves as a
foundation for understanding the influence of the microstructure on magnetic noise.

In the present work, a study was carried out of the best excitation wave to be applied
in duplex stainless steel (DSS) to detect the formation of the sigma phase in a configuration
where the receiving coil, positioned on the opposite surface to the excitation, is replaced
by a Hall effect sensor to simplify the test. In this, the magnetic noise and the harmonic
of the emitting wave were studied, as well as their ability to follow the formation of the
harmful sigma phase. The methodology presented was applied to duplex stainless steel
because, under the studied condition, only one harmful constituent is formed from the
decomposition of ferrite. This would facilitate the interpretation of the signals resulting
from the interaction between the excitation waves and the material, as well as the analysis
of the methodology. Furthermore, the applied field strength was carried out in the region
of magnetic reversibility of the movement of the magnetic domain walls [2,3] and the
magnetic noise analyzed, which, according to the literature, will not be termed Barkhausen,
as it is not in the irreversibility region.

2. Materials and Methods

The material studied in this work was SAF 2205 hot rolled steel supplied in plate
format with a thickness of 8 mm. To carry out the experiments, four duplex stainless steel
SAF 2205 samples were used, which were machined by electro-erosion in a circular shape
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with a diameter of 24 mm, one without aging, and three underwent thermal treatments
at a temperature of 850 °C for %4 h, 1 h, and 2 h in a resistance oven and were then cooled
in water. The treatment at 850 °C for % h can generate 5% of the sigma phase in the
material, which is enough for the steel under study to become embrittled, affecting its
microstructure and compromising its mechanical properties [1-3]. The other treatment
times are sufficient to consolidate the formation of the sigma phase and serve to follow the
deleterious sigma phase.

The plate was received in the hot rolled state, and all the measurements were per-
formed in the rolled direction, corresponding to the easy magnetic direction. The direction
of easy magnetization of the received material was determined by the non-destructive
technique for measuring magnetic anisotropy developed by [8]. The procedure used to
study microstructural anisotropy was a non-destructive test carried out in the region of
magnetic reversibility using direct current. It consisted of applying a magnetic flux intensity
in the center of a circular sample 24 mm in diameter and 8 mm in thickness to determine the
magnetic flux density resulting from the interaction through a Hall effect sensor applying a
frequency of 5 Hz and 10 V. The sample was rotated from 0° to 360° in 22.5° steps.

Duplex stainless steel was chosen for this study because it is widely used in industry
due to its toughness and corrosion resistance characteristics in the as-received condition.
However, when subjected to thermal cycles, such as in the welding process, the sigma phase
may form from the decomposition of the ferromagnetic ferrite phase. A mere 5% of the
sigma phase is enough to compromise its mechanical properties and corrosion resistance, as
this phase has a hardness of around 1000 HV and is rich in chromium, thus impoverishing
its matrix and reducing its resistance to corrosion.

Manufacturing processes of the studied steel, such as welding, require non-destructive
testing to evaluate their quality by detecting the formation of the sigma phase and predict-
ing corrective interventions. The apparatus used in this study can be applied to detect the
presence of this harmful constituent. Furthermore, in the studied temperature range, the
steel under analysis presents only the formation of a harmful constituent to its properties,
making it easier to predict the origin of the changes in the used signals.

The samples were prepared for optical and scanning electron microscopy analysis,
the first to detect the amount of the sigma phase and the second for the microstructural
analysis. The samples were maintained under chemical attack with an electrolytic solution
of 10% KOH using a voltage of 3.7 V and a current of 0.75 A for % h, which preferably
reveals the sigma phase and facilitates its visualization and identification, i.e., segmentation.
It is possible that some x phase was also formed and quantified as o phase. However, it
was not the objective of this work to separate these two phases because they have similar
effects on steel’s properties. The x phase forms itself before the precipitation of the o phase
and disappears once the o phase starts to precipitate [1]. Twenty images of each condition
were acquired and segmented. The amount of the constituent sigma phase was determined
according to a 95% confidence interval.

Ferrite microhardness measurements in the as-received and treated for “4h and 2 h
conditions were carried out to analyze the presence of the sigma phase. Ten measurements
were taken for each condition, and the confidence interval was obtained at 95%. A Shimadzu
microhardness tester model HMV-G 20 S was used with an applied load of 250 g.

The X-ray diffraction tests were carried out using copper K« radiation, with a voltage
of 40 kV and a current of 30 mA; a step of 0.02°, with a time per step equal to 9.6 s; and
adopting a viewing angle (20) ranging from 41° to 53°.

The workbench consists of two modules, one for excitation and the other for acquisi-
tion. The scheme of the experimental setup is shown in Figure 1.

The excitation module comprises a function generator (Minipa MFG 4205B model, Sao
Paulo, Brazil) and a transmitter coil. The function generator transmits waves of different
formats to the pick-up coil. Here, a sinusoidal wave was chosen since it presents the least
interference from the harmonics of the excitation wave. The coil was positioned in the
center of one of the sample faces, inducing a magnetic flux density in the material. The
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studied waves were applied to the center of the circular samples, and the signal resulting
from the interaction was acquired on the opposite surface. The surfaces of the samples
were sanded with 320-grit sandpaper to eliminate possible surface oxidation during cooling
after treatment.

or o

Figure 1. Used experimental setup: (1) signal generator, (2) shielded cables, (3) excitation coil,
(4) material sample, (5) Hall effect sensor, (6) test bench with Faraday cage, (7) acquisition board, and
(8) computer.

The acquisition module comprises a Hall effect sensor, an acquisition board, and a
computer. The sensor is positioned in the center of the other face of the sample to detect
the interaction field of the interaction between the excitation wave and the material. The
acquisition board connects to the sensor and the computer via USB cables. The computer
performs automatic data acquisition using software developed in-house. The chosen
SS495A model is a Hall linear effect sensor with a sensitivity of 3.125 mV /gauss and an
input voltage between 0 V and 10V, it being supplied here with a continuous voltage of 5 V.
This sensor has a working range of up to 700 gauss, and the measurements were carried
out at around 550 gauss, remaining below its saturation region.

To detect the characteristics of the excitation waves that can follow the sigma phase
formation, the as-received and treated at 850 °C for % h samples were analyzed. Thus, the
characteristics of the wave station that can have the sensitivity to detect the presence of
5% of the sigma phase from the thermal treatment were determined. The best condition of
this analysis was then used to follow the formation of this harmful phase in samples with
different amounts of sigma phase, mainly corresponding to %4 h, 1 h, and 2 h of treatment
times, as well as in the initial condition.

The signal analysis was divided into two stages. In the first one, high-pass filters for
magnetic noise analysis were applied. Thus, using a fast Fourier-transform (FFT) algorithm,
the signals were transformed to the frequency domain and then processed by 50 Hz and
250 Hz digital high-pass filters. These cutoff frequencies were used to analyze the noise
region. The second stage involved analyzing the harmonics of the 5 Hz and 25 Hz excitation
waves by identifying their peaks based on the signal’s root mean square (RMS).

Thus, based on the signal’s RMS parameter analysis, the best condition was used to
follow the sigma phase formation in the SAF 2205 material. The excitation voltages of the
waves used were 0.25V,0.5V,0.75V,1V,125V,15V,1.75V,2V,3V,5V, 7V, and 9 V. These
values refer to the magnetic field strength applied to the samples of 1.4 Oe, 2.3 Oe, 3.4 Oe,
3.9 Oe, 4.6 Oe, 5.2 Og, 5, 6 Oe, 6.7 Oe, 9.9 Oe, 15.7 Oe, 22.4 Oe, and 28.2 Oe, respectively.
For each condition, 50 measurements were taken, and the 95% confidence interval was
determined.

The test power was used to analyze the ability of the studied experiment to differenti-
ate conditions with and without the sigma phase. An accurate estimation of the test power
can predict the probability that a statistically significant difference will be detected based
on a finite sample size under a real alternative hypothesis. If the power is too low, there is
little chance of a significant difference being detected, and non-significant results are likely,
even if there are, in fact, real differences. In Figure 2, (1 — (3) corresponds to the test power.
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Values of (1 — ) greater than or equal to 1 (one) indicate a 100% or more difference and
that the measurements will always differ. Values below 1 (one) indicate the probability of
overlapping results. The value (1 — 3) indicates the measurement system’s accuracy and
corresponds to the test power in Figure 2.

Ho ' Hy

Ho Xc Ha

Figure 2. Representation of the histogram for two situations, Hy and H,, where one seeks to know
with an error o how precisely the two measurements differ.

In Figure 2, acis the error if the null hypothesis (Hy) is rejected in favor of the alternative
hypothesis (H,) when Hy is true. 3 is the error if Hy is not rejected when H, is true. (1 — 3)
is the power of a hypothesis test, i.e., the probability of rejecting Hy when H, is the true
hypothesis. When (1 — 3) is greater than or equal to 1 (one), it indicates a 100% or more
difference and that the measurements will always differ.

The following equations are used to determine the test power:

Xe = po +tc ¥ 1

20
V'
where X, is the critical value of the Hy, Sy is the Hy standard error, y is the Hy mean, n the
number of measures, and t. the t Student for (n — 1) and « = 0.05, and

7, = ez i) < VR "
a
where Zg is the standard score, which represents how far from the mean a data point is, i,
is the H, mean, and S, is the H, standard error.
The Zg value is then used to find the area of the region of (1 — 3) shown in Figure 2,
which represents how different Hy and H, are, using a Z score table.

3. Results and Discussions

Figure 3a shows the optical microscopy of the as-received material, and Figure 3b
depicts the polar plot of the measured magnetic flux density for the related stainless steel
sample. Figure 1 shows that the easy magnetization direction is lamination (180°). This
angle has the highest value of magnetic flux density, i.e., this direction corresponds to the
one with the lowest magnetic losses. The present work was carried out with direct current
and a fixed solenoid pole; therefore, under the experimental conditions, the polar graphs
show the maximum at an angle of 0°. The plate was received in the hot rolled state, and
all the measurements were performed in the rolled direction, corresponding to the easy
magnetic direction.

In scanning electron microscopy, the angle formed between the X-ray source and the
detector, i.e., the angle between the transmitted beam and the reflected beam, is usually
designated as 26. In an experiment, the crystallographic plane cannot be observed; however,
the transmitted and the reflected beam can be observed and, therefore, the 20 can be
experimentally assessed.
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Figure 3. (a) The optical microscopy of the DSS structure in the as-received condition, where 6 is

the ferrite phase and y the austenite, and (b) the magnetic flux density variation as a function of the
rotation angle.

Figure 4a,b show the material’s scanning electron microscopy analysis results in the
as-received condition and its X-ray diffraction. In Figure 4a, one can observe the presence of
austenite islands, clear regions on a ferrite matrix, and dark regions, showing no formation
of precipitates. The presence of these constituents is confirmed in the diffractogram of
Figure 4b, where only peaks of austenite and ferrite can be seen. The ferrite constituent is
ferromagnetic and the austenite paramagnetic. In the as-received condition, SAF 2205 steel
has no ferrite matrix transformation. However, when heated at temperatures above 550 °C,
precipitates are formed, including the sigma phase, which has a hardness of around 900 HV
and, as it is rich in chromium, impoverishes the matrix of this element and compromises
both the corrosion resistance and the tenacity of the material [1-4,8].
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Figure 4. (a) The scanning electron microscopy image (10% KOH attack, 1000x of magnification) and
(b) the X-ray diffractogram of the as-received condition sample (5—ferrite and y—austenite).

Figure 5 presents the microscopy of the sample treated at 850 °C for % h and its X-ray
diffractogram. The presence of the sigma phase in the ferritic region can be observed
as discontinuous precipitates formed from the ferrite grain boundaries. The austenite of
duplex stainless steel does not transform, as the diffusion of atoms in it is about 100 times
greater than in ferrite, which leads to concentrations occurring in this phase [1-3,10].
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Figure 5. (a) The scanning electron microscopy image (10% KOH attack, 1000X of magnification)
and (b) the X-ray diffractogram of the sample treated at 850 °C for %4 h (6—ferrite, y—austenite, and
o—sigma).

Figure 6 presents the microscopy of the sample treated at 850 °C for 2 h and its X-ray

diffractogram. A greater presence of the sigma constituent can be observed in this case.

The amount of the sigma phase was measured as being 5%, 17%, and 18% for the treatment
times of %4 h, 1 h, and 2 h, respectively. As the difference between the sample treated for 1 h
and the one for 2 h was only 1%, Figure 6 presents only the scanning electron microscopy
image and the X-ray diffractogram of the sample treated for 2 h.
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Figure 6. (a) The scanning electron microscopy image (10% KOH attack, 1000X of magnification)
and (b) the X-ray diffractogram of the sample treated at 850 °C for 2 h (0—ferrite, y—austenite, and
o—sigma).

The treatments with times of 1/4 h and 2 h show the presence of the chi phase.
However, the x phase forms before the precipitation of the o phase and disappears once
the o phase starts to precipitate. The precipitation of the o and x phases decreases the
magnetic properties of the steel because ferrite is ferromagnetic, and the x and o phases are
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paramagnetic phases. Electrolytic etching with 10% KOH solution preferably reveals the o
phase [1,33].

Ferrite microhardness measurements in the as-received, treated for ¥4 h, and for 2 h
conditions were carried out, being 215.15 (£13.4) for the as-received condition, 254.1
(£10.79) for the treated for %4 h, and 292.5 (+10.4) for 2 h. Ten measurements were taken
for each condition, and the confidence interval was obtained at 95%. The increase in
hardness shows the formation of the sigma phase during treatment. The results of X-ray
diffraction and scanning electron microscopy, combined with the microhardness, reinforce
the understanding that there was no sigma formation before annealing, or if it did occur,
the quantity was insufficient for detection with the techniques used. This indicates that the
5% sigma obtained is already enough to influence the results and that the effect of ferrite
softening, if any, will not be a main factor in the present work.

Figure 7a,b show the magnetic noise of the conditions without the sigma phase and
with 5% of it, respectively, after applying the 50 Hz high-pass filter for an excitation wave of
5 Hz frequency and 1 V amplitude. The presence of sigma precipitates acts as anchor points
for the movement of the magnetic domain walls and reduces the magnetic flux density
value [2,3]. Also, there is the contribution of the paramagnetism of the sigma phase [1,5].
The RMS values for the conditions without and with the sigma phase were determined
as equal to 0.04825 and 0.04437 gauss, respectively. The test power was calculated to be
around 6, indicating a more than 100% certainty in differentiating between the two cases
despite only having a 10% difference. Although the values obtained are small in magnitude,
measurements in different conditions can differentiate the two cases without overlapping
measurements, thus confirming accuracy.
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Figure 7. (a) Magnetic noise, measured in the magnetic flux density, of the conditions without the
sigma phase, as a function of the time, after applying the 50 Hz high-pass filter for an excitation wave
of 5 Hz and 1 V. (b) Magnetic noise of the conditions with 5% of the sigma phase, as a function of
time, after applying the 50 Hz high-pass filter, for an excitation wave of 5 Hzand 1 V.

Next, this study concerned itself with the characteristics of the excitation wave able
to detect the presence of the sigma phase by magnetic noise analysis in the samples
under study, with the application of excitation waves with a frequency of 5 Hz and cutoff
frequencies of 50 Hz and 250 Hz. Figure 8 shows the RMS variation in the signal acquired
by the Hall sensor as a function of the amplitude of the excitation wave applied to the
samples without precipitate and treated at a temperature of 850 °C for % h, for an excitation
frequency of 5 Hz and amplitudes from 0.25 V to 9 V, and a cutoff frequency of 50 Hz.
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Figure 8. RMS of the signal acquired by the Hall sensor as a function of the amplitude of a 5 Hz
excitation wave applied in samples with and without treatment and a cutoff of 50 Hz.

Analyzing Figure 8, one can perceive the existence of three distinct regions, named
I, II, and III, one for 0.25 V to 1 V amplitudes, another for 1 V to 2 V amplitudes, and the
last one for 3 V to 9 V amplitudes. This figure depicts the RMS variation as a function
of the amplitude of the excitation wave for the samples as received and with 5% of the
paramagnetic sigma constituent. The curve for the sample with the presence of the sigma
constituent is shifted downwards due to the reduction in its ferromagnetism, with the
transformation of part of the ferrite constituent into sigma precipitates. In region I, there is
also a reduction in RMS values due to blocking the movement of the walls of the magnetic
domains due to the presence of sigma precipitates. The increased magnetic flux in region
II leads to a greater detection of these precipitates and their contribution to the blockage.
However, in the third region (III), as there is a large increase in magnetic flux, there is an
increase in the noise generated by the movement of the magnetic domain walls, which try
to overcome the blocking effect of the sigma constituent. Similar behavior was observed
in [2,3,10]. The logarithmic scale was chosen for the amplitude to facilitate the visualization
of the regions in the presented graphs.

A point was chosen in each region of Figure 8 to analyze the test power of the measure-
ments, that is, their ability to differentiate the two conditions. The test power was applied
to the waves with 0.25V,1.25V, and 7 V of excitation amplitude, and results of 4.04, 6.26,
and 0.6, respectively, were obtained. The value of 0.6 indicates that in the third region for
this amplitude, there is a 60% overlap of the results of the two conditions. However, for
the first and second regions, the values were above 1 (one), indicating with total certainty
that the technique accurately differentiates the two conditions. The values of 4.04 and 6.26
indicate the sensitivity of the measurement setup.

Figure 9 shows the RMS variation of the signal acquired by the Hall sensor as a
function of the amplitude for an excitation frequency of 5 Hz and a cutoff frequency of
250 Hz, applied in the samples with and without treatment. The same regions identified in
the previous case can be observed in Figure 9. It can also be noted that the RMS values of
the treated sample signal are lower than those of the untreated sample. This can occur due
to the paramagnetism of the sigma phase, which reduces the material’s permeability [2,3],
or to the movement of magnetic domain walls” blocking because of this newly formed
structure [2,13,34].

To identify the best working region for the 5 Hz excitation wave, a graph was built
concerning the module of the difference in the RMS of the two cases, without and with the
presence of the sigma phase in a percentage, as shown in Figure 10. It is noted that the
greater differences between the two cases in the central region of the graph are the most
evident for the performed test in detecting the sigma phase. This region corresponds to
excitation wave amplitudes ranging from 1 Vto 2 V.
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Figure 9. RMS of the signal acquired by the Hall sensor as a function of the amplitude of the 5 Hz
excitation wave applied in samples with and without treatment and a cutoff frequency of 250 Hz.
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Figure 10. Module of the difference in RMS as a function of the amplitude of the 5 Hz excitation wave
and the two tested cutoff frequencies.

Next, the influence of applying 25 Hz sinusoidal waves was studied. Figures 11 and 12
show the RMS values as a function of the amplitude of the excitation wave with 50 Hz and
250 Hz cutoffs. Figure 11 shows the influence of the 50 Hz cutoff, where the three regions
detected when applying the 5 Hz wave can be observed. The first stage presents behavior
in the conditions of with and without precipitate in a parallel way, followed by a fall, but
with a gradual increase from the second region. This means that the harmonics of the
excitation wave begin to influence the RMS values in the noise region, indicating that the
increase in frequency and the application of cutoffs in the lower-frequency region lead the
harmonics of the excitation wave to influence the noise region and increase its amplitude.

In Figure 12, one can see that the first region is still quite well-defined. The second
stage goes from 1 V to 2 V, and a gradual increase is observed due to the increase in
frequency, leading the harmonics to interference in this region. However, for these, the
behavior was like that of the 5 Hz excitation waves.

Figure 13 shows the module of the difference in the RMS as a function of the wave am-
plitude to determine which regions lead to the best values that differentiate the percentage
as a function of the amplitude of the 25 Hz excitation wave. One can perceive that in the
region from 1 V to 2 V, the best results were found for the cutoff frequency of 25 Hz. For
the 50 Hz cutoff, there appear points with greater values for the amplitudes of waves of 7 V
and 9 V, where one can perceive that as the cutoff is reduced to 50 Hz and the frequency is
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increased, these points are also more distinguished. These are due to the harmonic of the
main wave interfering in this region.
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Figure 11. RMS of the signal acquired by the Hall sensor as a function of the amplitude of the
excitation wave applied to the samples with and without treatment for an excitation frequency of
25 Hz and a cutoff of 50 Hz.
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Figure 12. RMS of the signal acquired by the Hall sensor as a function of the amplitude of the
excitation wave applied to the 8 mm samples with and without treatment with an excitation frequency
of 25 Hz and a cutoff of 250 Hz.
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Figure 14 shows the RMS variation as a function of the excitation amplitude for waves
of 5 Hz and 1 V regarding the amount of the sigma constituent. The excitation wave was
chosen to be in the region with the best results. Thus, the magnetic noise obtained by the
methodology can follow the formation of the sigma phase.
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Figure 14. RMS of the signal acquired by the Hall sensor as a function of the amplitude of the 5 Hz
excitation wave applied to 8 mm samples for conditions with different amounts of the sigma phase
and a cutoff of 50 Hz.

Next, the ability to detect the constituent sigma’s presence was studied by analyzing
the excitation wave’s harmonics [18-20]. Figure 15 shows the variation in the RMS of the
first harmonic of 5 Hz and 25 Hz excitation waves as a function of their amplitude. A
similar behavior could be observed between the studied frequencies: an increase to the
amplitude of 1V, followed by a decrease to 2 V, and a linear growth again. In addition, the
signals with precipitates present lower values than those without the sigma constituent.
The lower values, obtained with precipitates, must combine the paramagnetism of the
sigma constituent, formed from the ferromagnetic ferrite, and the blocking of the magnetic
domain walls” movement by forming coarse precipitates. This type of behavior has been
observed in the literature [2,3]. However, the drop in values from 2V, as occurred for both
conditions, indicates that the increase in amplitude leads to the detection of the contribution
of paramagnetic austenite with the increase in magnetic flux [10]. It can also be noted in
Figure 15 that the RMS values fall with increasing frequency. This was expected, as the
penetration depth has an inverse behavior to the increase in frequency due to the surface
effect [12]. Because the error range of the measurements is too small to be easily readable,
a magnification showing the range detail for the sample with thermal treatment and the
25 Hz and 3 V excitation wave is visible in Figure 15.

To determine the best working region, a graph was built of the difference between
the conditions without and with precipitate in a percentage as a function of the amplitude
of the 5 Hz and 25 Hz excitation waves (Figure 16). One can note that the best region
continues to be from 1V to 2 V. Still, the range of difference in this region with magnetic
noise analysis was around 7% to 10% before, and now it becomes from 25% to 32% when
the amplitude of the first harmonic is analyzed. Thus, the first harmonic was applied to
monitor the formation of the sigma constituent.

Next, a study concerning the follow-up of the formation of the sigma constituent was
carried out. Considering that in the range from 1 V to 2 V, the increase in the magnetic
flux density begins to detect the paramagnetic austenite, the study was conducted for
1V, which takes values still in the region of better results for detecting the sigma phase.
Figure 17 shows the RMS variation of the first harmonic of the excitation wave as a function
of the treatment time at 850 °C for an amplitude of 1 V and frequencies of 5 Hz and 25 Hz.
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Figure 17 shows a drop in RMS values to a plateau after 1 (one) hour of treatment. The test
was shown to be sensitive to the detection of 5% of the sigma phase, which is harmful to
the tenacity of the material and occurs after 15 min of treatment. The plateau is due to the
amount of formed constituent being close to the treatment times of 1 h and 2 h.
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Figure 15. RMS variation of the first harmonic as a function of the amplitude of the 5 Hz and 25 Hz
excitation waves and samples with and without the sigma phase. The 25 Hz and 3 V excitation wave
error range is shown.
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Figure 16. Differences in percentage between conditions without and with the sigma phase as a
function of the amplitude of the 5 Hz and 25 Hz excitation waves.
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Figure 17. RMS variation of the first harmonic as a function of the treatment time for the 5 Hz and
25 Hz excitation waves. The 5 Hz and 1 V excitation wave error range is shown.
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A correlation between the absorbed energy per impact and the amount of the sigma
phase for the same studied plate showed an absorbed energy of 76.67 ] for the as-received
condition, 13.87 J for the amount of 5% of the sigma phase, and 10.2 J for the amounts
of 17% and 18% of the sigma phase [2]; that is, there is a quick drop to 5% and then a
stabilization around 10 J. The values of 5%, 17%, and 18% correspond to the amounts of
the sigma phase for the treatment times of % h, 1 h, and 2 h, respectively. This indicates
that the variation in the first harmonic RMS directly correlates with the variation in energy
absorbed by impact and serves as a parameter to follow the formation of the harmful sigma
phase in the studied stainless steel. Correlations between the amount of the sigma phase
and the energy absorbed per impact have shown the same behavior in the literature [1,35].

In the present work, a study of detecting the formation of sigma precipitates was
carried out through an electromagnetic test with the replacement of the pick-up coil by a
magnetic field sensor. The magnetic noise and the first harmonic amplitude variation for
detecting harmful sigma precipitate were analyzed. One can note that both parameters
detect the constituent studied, and the best results were obtained with the harmonic
analysis. It was also verified that the best test amplitude of the excitation wave to detect
the presence of the sigma phase, without interference from paramagnetic austenite, is 1 V
for frequencies of 5 Hz and 25 Hz.

4. Conclusions

In this work, a study was carried out on applying magnetic noise and the amplitude of
the first harmonic of the excitation wave to detect the formation of the harmful constituent
sigma in duplex stainless steel. An electromagnetic test was applied with the replacement
of the pick-up coil by a magnetic field sensor. The following conclusions were obtained:

e The applied electromagnetic test detected the presence of the sigma phase, with the
replacement of the pick-up coil by the Hall effect sensor.

e  The RMS values of the samples with the presence of the sigma phase were lower than
those of the condition without precipitate, and the graphs of the RMS values as a
function of the amplitude of the excitation wave showed three regions with different
behaviors.

e  The reduction in the RMS values in the first region occurred probably due to the
movement of magnetic domain walls being blocked by the presence of the sigma
phase. On the other hand, the increase in the magnetic flux in region I led to a greater
detection of the phase precipitates and their contribution to the blockage. However,
for region IlI, there was an increase in noise generated by the movement of the walls,
which tried to overcome the blocking effect of the sigma constituent.

e Applying waves with the studied frequencies detected the presence of the sigma
constituent, with the best results being for excitation waves with amplitudes from 1 V
to 2 V, both by magnetic noise and the amplitude of the first harmonic analysis.

e The analysis, both by magnetic noise and the amplitude of the first harmonic, showed
the presence of a plateau between 1 V and 2 V, which was attributed to the increase in
the magnetic flux becoming influenced by the presence of paramagnetic austenite.

e  The best results for detecting the sigma phase were obtained by analyzing the ampli-
tude of the first harmonic, which was used to follow the constituent sigma formation
and proved its effectiveness.
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Abstract: The generation of mechanical characteristics in workpiece subsurface layers as a result of
the cutting process has a predominant influence on the performance properties of machined parts.
The effect of the end milling process on the mechanical characteristics of the machined subsurface
layers was evaluated using nondestructive methods: instrumented nanoindentation and sclerometry
(scratching). In this paper, the influence of one of the common processes of materials processing
by cutting—the process of end tool milling—on the generation of mechanical characteristics of
workpiece machined subsurface layers is studied. The effect of the end milling process on the
character of mechanical property formation was evaluated through the coincidence of the cutting
process energy characteristics with the mechanical characteristics of the machined subsurface layers.
The total cutting power and cutting work in the tertiary cutting zone area were used as energy
characteristics of the end milling process. The modes of the end milling process are considered as
the main parameters affecting these energy characteristics. The mechanical characteristics of the
workpiece machined subsurface layers were the microhardness of the subsurface layers and the total
work of indenter penetration, determined by instrumental nanoindentation, and the maximum depth
of indenter penetration, determined by sclerometry. Titanium alloy Til0V2Fe3Al (Ti-1023) was used
as the machining material. Based on the evaluation of the coincidence of the cutting process energy
characteristics with the specified mechanical characteristics of the machined subsurface layers, the
milling mode effect of the studied titanium alloy, in particular the cutter feed and cutting speed, on
the generated mechanical characteristics was established.

Keywords: cutting; milling; subsurface layers; nanoindentation; sclerometry; indenter penetration
work; indenter penetration depth

1. Introduction

The most common methods of ensuring the required service properties of parts for
various machines and mechanisms are various chip formation—-cutting processes. As a result
of the tool’s thermomechanical impact on the machined workpiece, certain mechanical
properties are generated in the workpiece’s subsurface layers [1,2]. These properties,
evaluated in terms of the hardness parameters (including microhardness) [3], residual
stresses [4,5], material structure [6,7] and others, have a decisive influence on the service
properties of machined parts and their durability [8]. The formation patterns of these
mechanical properties are essentially determined by the machining process conditions,
which in turn are regulated by the used cutting modes. Numerous publications have been
devoted to the study of the relationship between the formation regularities of mechanical
properties of subsurface layers and the machining process conditions. In the past few
decades, this research focus has also been supported by numerical modeling [9]. This
significantly expands the possibilities and application area of this research field, as well
as providing a significant reduction in the cost of experimental research. In particular, it
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is relevant in the study of mechanical property generation patterns in subsurface layers
of complex-profile parts [10,11] with the use of spatial cutting processes. Spatial cutting
processes are characterized by a significant variability in the contact conditions between the
tool and the machined material, of which end milling is a striking representative, generating
a significant gradient of mechanical properties in the subsurface layers, which is all the
more aggravated in the case of hard-to-machine metals and alloys [12]. These circumstances
cause significant difficulties both in evaluating the above mechanical properties and in
establishing their relationship with the cutting process conditions. Significant support in
the evaluation of mechanical characteristics is provided by micro- and nanometer methods,
in particular, instrumental nanoindentation [13,14] and the sclerometry (scratching) of
surfaces [15,16], ensuring the determination of integral mechanical characteristics, which
are quite closely related to the conditions of their generation, in this case, the cutting
processes [17].

The present study is devoted to the investigation of the relationship between the
mechanical characteristics of subsurface layers generated during the end milling of i-phase
titanium alloy Til0V2Fe3Al (Ti-1023) and the cutting process conditions.

2. Brief Description of the State of the Art on the Determination of Mechanical
Characteristics from Machined Subsurface Layers

The most commonly measured mechanical characteristics of machined subsurface
parts include microhardness, residual stress magnitude, and the microstructure of the
machined material. These characteristics are also used to evaluate the mechanical proper-
ties of the workpiece subsurface layers of hard-to-machine metals and alloys subjected to
milling [18]. Dai et al. [19] studied the hardening process of machined subsurface layers
from the Inconel 718 workpiece. They established the effect of the cooling method in the
cutting zone on work hardening. Analyzing the effect of cutting speed and tool feed on
the work hardening of the same machined material was the focus of a study by Ren and
Liu [20]. As a result, the optimal cutting modes were determined, providing the required
hardening of machined subsurface layers. Investigating the cutting process of Inconel 718
at different tool rake angles and the machined material structure, Xu and colleagues [21]
determined the relationship between the geometric parameters of the tool and the mechan-
ical characteristics of the workpiece’s machined subsurface layers. The deformation value
of the subsurface layers and their hardening value were used as the studied mechanical
characteristics. The study of the microhardness formation process in the subsurface layers
during the micro milling of nickel alloy Inconel 718 depending on the cutting modes,
in particular, cutting speed, cutter feed, and axial cutting depth, was undertaken by Lu
et al. [22]. Xavior and colleagues [23] examined the formation mechanism of Inconel 718
hardening, as well as the formation of residual stresses in it and its microstructure under
different tool materials and cutting conditions. The influence of alternative machining pro-
cesses on surface integrity and the regularities of residual stress formation in the machined
subsurface layers of alloy 718 are the subject of a study by Suarez et al. [24]. The formation
of machined surface microhardness of titanium alloy Ti-6Al-4V is the subject of studies
by Hou with Li [25] as well as Mathoho and coworkers [26]. Monka and colleagues [27]
considered the influence of cutting modes and tool geometric parameters on the microhard-
ness of the machined surface in orthogonal and oblique cutting. They obtained response
surfaces and correlation dependences of microhardness on the above-studied parameters.
The microhardness prediction of the milling machined subsurface layers is the subject of a
study by Wang [28]. He used different methods of regression analysis in carrying out this
process. The residual stress formation in the subsurface layers of such difficult-to-machine
materials as duplex steel and titanium alloy Ti-6Al-4V as a result of the cutting process
was studied by dos Santos and colleagues [29] and Rangasamy et al. [30]. A considerable
amount of research on the mechanical characteristics of surface layers machined by cutting
is devoted to the analysis of the machined material microstructure and the cutting process
conditions” influence on it, as found in [31]. At the same time, the microstructure of the
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machined material was evaluated based on microhardness distribution. Thus Mendas
et al. [32] and Ameri with colleagues [33] determined dislocation density by measuring
microhardness distribution. Among other mechanical characteristics of the subsurface
layers, Alijani et al. [34] studied the microstructure of titanium-nickel alloy after milling.
As a result, they determined the effect of machining process conditions on the formation of
the studied microstructure. The study by Chen and coworkers investigates the effect of
cutting depth and the corresponding magnitude of plastic deformation of Inconel 690 nickel
alloy subsurface layers as a result of milling [35]. Haddag and colleagues [36] studied the
influence of cutting modes during the machining of titanium alloy Ti-6Al-4V, mainly the
cutting speed and tool feed, on the formation of the machined subsurface layer structure.
The need to determine the optimal cutting modes for the milling of nickel alloy Inconel 625,
providing the necessary microstructure of the machined material, is reported in the study
of da Silva et al. [37]. At the same time, the form parameters of the relative movement of
the tool and the workpiece, which have the greatest influence on the microstructure of the
machined material, were determined. Rajguru and Vasudevan [38] studied the effect of the
Inconel 625 milling process on the microhardness of subsurface layers when machining
without coolant with coated milling cutters. The influence of both the strain hardening
and thermal softening of the machined surfaces was considered. It should be noted that in
addition to evaluating the mechanical characteristics of the workpiece’s subsurface layers,
a significant part of the studies on the surface integrity of difficult-to-machine materials is
devoted to investigating the microtopography and, consequently, the microgeometry of the
machined surface and the influence of cutting modes and conditions on microtopography
parameters (see, for example, [39]).

Further development of the methodological and instrumental base for evaluation
methods of the physical and mechanical characteristics of surfaces contributed to the
creation of nondestructive testing methods for various surfaces and, in particular, for
machined subsurface layers of parts. In this way, micro- and nanometric methods were
established, in particular, instrumented nanoindentation [40-42], and sclerometry (scratch
test) [43,44]. The research and development carried out by Atkins and Tabor [45] served as
a prototype for the creation of an instrumented nanoindentation method. Further improve-
ment of the method, using the continuous penetration of the indenter into the test material
through the development of new devices and algorithms for evaluating the measurement
results [46,47], ensured the creation of the currently widely used method of instrumented
nanoindentation (see, e.g., [48,49]). Almost simultaneously with the instrumented nanoin-
dentation method, the sclerometry method was established [15]. This method ensures the
qualitative evaluation of coatings [16,50], such as coatings of carbide inserts used as cutting
elements of various tool types, by determining the contact adhesion of the coating with
the substrate [51,52]. A part of the uncertainty in the estimation of the indenter load at the
moment of the studied surface fracture [53] has been recently compensated for through the
use of the multi-pass scratching method [54,55]. The improvement and further develop-
ment of the instrumented nanoindentation method and sclerometry depend predominantly
on the instruments and devices that enable the realization of these methods. Therefore, a
significant part of the studies devoted to these nondestructive testing methods is related
to the creation and improvement of devices. In this regard, it is necessary to mention the
study of Li et al. [56], devoted to the improvement of the calibration method of the device
for instrumented nanoindentation through the use of an optical interferometer; the study
of Peng et al. [57], devoted to the creation of a device for the realization of nanoindentation
on subsurface layers, providing a significant increase in the accuracy of measurements; the
work of Ding and colleagues [58], devoted to the study of different calibration methods of
measured values; and the study of Fritz and Kiener [59], evaluating the influence of the
environment of the device on the measurement results. An important role in the process
of the further development of instrumented nanoindentation and sclerometry methods is
played by research aimed at improving the methodology for evaluating the determined
mechanical properties of materials. Such studies include works devoted to improving the
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stability of measurement results [60], the selection of an optimization method for determin-
ing mechanical properties [61], the analysis of contact stiffness fluctuations in the studied
materials [62], the influence of the indenter contact conditions with the tested material on
the measurement results, and many others. In this connection, it is necessary to point out
the study of Harsono et al. [63], devoted to the investigation of the friction effect in the
specified contact; the study of Wang, on establishing the relationship between the indenter
penetration modes and the friction value in the contact with the measured mechanical
properties [64]; the work of Sivaram et al., devoted to the study of the relationship between
pile-up or sink-in effects and the strain hardening of the tested material [65]; and the inves-
tigation of friction phenomena in contact with synthesized materials through instrumental
nanoindentation and sclerometry by Farayibi and colleagues [66].

The development of the instrumented nanoindentation method was mainly aimed at
determining the microhardness of subsurface layers (see, e.g., [67-69]), the deformation
degree of variously formed parts (see, e.g., [50,58,70]), the microstructure of materials (see,
e.g., [71-73]), and the residual stresses in the subsurface layers of specimens generated by
their previous formation (see, e.g., [74-76]). The determination of the material mechanical
properties using the sclerometry method was also used somewhat later to investigate the
microstructure and hardening of materials by estimating the indenter penetration depth
into the test material (see, e.g., [77-79]). Recently, the tool indentation method and the
sclerometry method have been used not only to determine the above-mentioned individual
mechanical characteristics of the parts’ subsurface layers subjected to various machining
processes but also to evaluate the integral (energy) mechanical characteristics [17,80]. In
this regard, it is necessary to note the study of Bezyazychnyy et al. [81], devoted to the
establishment of the relationship between cutting modes and physical and mechanical
characteristics of the machined material, and the specific accumulated strain energy of
this material along the workpiece depth. The relationship between the elastic and plastic
components, as well as the total indentation energy and microhardness of the investigated
specimens was the topic of the study of Yamamoto et al. [82]. The relationship between the
mechanical properties of carbide metals and alloys and the cutting process conditions has
been studied by Wang and coworkers [83] and Ren and Liu [20].

The analysis of the possibilities of the instrumented nanoindentation method and the
sclerometry method shows the perspectives of these methods” application to the determina-
tion of the mechanical characteristics of specimens’ subsurface layers, especially specimens
from hard-to-machine materials, subjected to machining by cutting with essentially chang-
ing conditions of contact between the tool and the workpiece.

Simultaneously with the formation of a specified macro- and microgeometry of the
machined part, the cutting process generates certain physical and mechanical characteristics
in the machined subsurface layers of the workpiece. Under all other equal conditions,
the value and distribution of these characteristics in the machined workpiece volume
are mainly determined by the thermomechanical conditions of contact between the tool
and the workpiece. In this regard, there are significant difficulties in determining these
contact conditions in real three-dimensional cutting processes and, in particular, when
machining difficult-to-machine materials. At the same time, such conditions are attracting
the most interest from the industry. Taking into account this interest, a study of the
influence of the milling process with end milling cutters on the formation of physical and
mechanical characteristics of the workpiece subsurface layers was carried out, and titanium
alloy was used as the machined material. This study is a continuation and methodological
development of a previously published paper [17]. In the previous study [17], a coincidence
of cutting power and cutting work with the mechanical characteristics of subsurface layers
formed during the orthogonal cutting of structural steel was established. The cutting
power and cutting work in the orthogonal cutting process were determined for different
cutting speeds and tool rake angles. The mechanical characteristics of the machined
subsurface layers were characterized by the total work of indenter penetration during tool
nanoindentation and the maximum depth of indenter penetration during sclerometry.
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3. Materials and Methods

The methodology for performing the present study to determine the physical and
mechanical characteristics of the subsurface layers generated by the end milling process is
explained by the scheme presented in Figure 1.
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Figure 1. Methodology scheme for the determination of physical and mechanical characteristics of
subsurface layers machined by milling.

The initial stage of determining the physical and mechanical characteristics of the
workpiece subsurface layers machined by the end cutter is to carry out experimental
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studies of the cutting process characteristics. These characteristics include the set of
characteristics by which the cutting process expresses itself externally. Typically, these
include kinetic characteristics, such as the cutting force components and their power,
thermal characteristics, such as cutting temperature, heat flows in the workpiece and tool,
stresses and strains in the tool-machined material contact pair, etc. In the present study,
the kinetic characteristics of cutting were determined, namely, the resultant cutting force
Fc and the total cutting power Pc. The next step is devoted to measuring the mechanical
characteristics of the milled subsurface layers of the workpiece. These characteristics
include the microhardness of the machined layers, the indenter penetration total work, and
the maximum depth of indenter penetration [17,55]. The first two mechanical characteristics
are measured using instrumented nanoindentation, and the last characteristic is determined
by the sclerometry of the workpiece machined surfaces. In parallel with the first two steps,
a simulation of the end milling process is performed through a numerical cutting model.
The adequacy of the milling numerical model is verified by comparing the measured
and simulated values of cutting force and cutting power. After that, a simulation of the
studied machining process is performed, as a result of which the stresses ¢y and strains
g of the machined material in the area of the tertiary cutting zone are determined. These
stresses and strains are subsequently used to calculate the thermomechanical effect of the
tool on the machined material A in the specified cutting zone. This cutting work in the
tertiary cutting zone A mainly determines the physical and mechanical characteristics
of the machined subsurface layers of the workpiece. The subsequent and last stage of
the research methodology for determining the physical and mechanical characteristics
of the subsurface layers generated by the end milling process is devoted to analyzing
the coincidence of the mechanical characteristics measured at the previous stage with the
energy characteristics of the milling process: the total cutting power P¢c and the work of
thermomechanical impact of the tool on the machined material A in the tertiary cutting
zone. The presented methodology of the integral mechanical characteristics evaluation in
the workpiece subsurface layers formed as a result of the milling process and the study of
the coincidence between these characteristics and the energy characteristics of the cutting
process influencing them will provide a deeper understanding of the physical processes
that generate the mechanical properties of the machined surfaces of parts [17].

3.1. Materials

The machining of the test material by end milling was carried out at the machining
center UWF 1202 H by Hermle—Figure 1. Titanium alloy Til0V2Fe3Al (Ti-1023) was used
as the tested material. The machined material was vacuum-annealed before cutting. The
chemical composition of titanium alloy Ti-1023 is specified in Table 1, and its mechanical and
thermal properties are given in Table 2. The initial characteristics of the machined titanium
alloy Ti-1023 specimen are shown in Figure 2. The initial metallographic microstructure
of the machined specimen is shown in Figure 2a. Figure 2b illustrates the initial surface
topography of the machined specimen. The arithmetic mean profile height of the specimen
initial surface was R; = 0.69 um, and the maximum height of profile was R, = 3.74 um.

The description of the experimental setup, the measurement equipment for the cut-
ting force and torque components, the used tool (carbide end cutter) and its geometrical
parameters, and the initial geometry of the machined workpiece (tested specimens) are
described in a previously published study [84]. Table 2 shows the mechanical and thermal
properties of the carbide end cutter. The milling was performed on a rectangular track
along the cross-section of the workpiece in four levels, with a varying radial depth of cut a,
of 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm—Figure 1. The feed of the end milling cutter was
changed from 0.06 mm/tooth to 0.12 mm/tooth in steps of 0.02 mm/tooth. The cutting
speed V¢ was varied in five levels: 30 m/min, 45 m/min, 60 m/min, 90 m/min, and 120
m/min. The reliability of experimental values was ensured by repeating each set of cutting
modes at least 5 times. The confidence interval was chosen to be equal to 0.9. The choice
of confidence interval was based on analyzing the scatter of the individual experimental
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values of the cutting forces. Since there were no significant differences between the individ-
ual measured cutting forces, the average value was used as a representative value of the
measured data. The maximum uncertainty in measuring the cutting forces was no more
than 11%.

(b)

Figure 2. Initial characteristics of the machined titanium alloy Ti-1023 specimen: (a) initial metallo-

graphic microstructure and (b) initial surface topography of the machined specimen.

Table 1. Chemical composition of titanium alloy Til0V2Fe3Al [85,86].

Material Ti Al A Fe C N H (6] Other

Ti10V2Fe3Al 82.86-86.8% 26-34 9.0-11%  1.622% <0.05% <0.05%  <0.015%  <0.13% <0.3%

Table 2. Mechanical and thermal properties of titanium alloy Til0OV2Fe3Al and the milling

cutter [85,87].
Strength (MPa) Elastic . . , Specific Thermal Thermal
Material Modulus Elor:og/a)tmn Hardness Poliss;(')n s Heat Expansion Conductivity
Tensile Yield (GPa) ° atio (J/kg-K) (um/m-°C) (W/m-K)
Til0V2Fe3Al 1282 1220 110 4-10 HV 430 0.35 527 9.7 7.0
Milling cutter - - 650 - HV 1550 0.25 251 - 59

The influence of the milling process on the mechanical characteristics of the machined
workpieces” subsurface layers was evaluated through the instrumented nanoindentation
and sclerometry of the machined surfaces. The mechanical properties of the milled sub-
surface layers of the workpiece were evaluated through instrumented indentation using a
Fischer Picodentor HM500 measuring system—Figure 3a. The instrumented indentation
was performed on the milled surfaces of the specimen with different radial depths of cut
a,—Figure 3b. The measurements were performed with a Berkovich indenter at a maxi-
mum force on the indenter equal to 450 mN. The load applied to the indenter was recorded
using a force sensor. The accuracy of the indenter load was 0.02 mN, and the accuracy
of the indenter depth measurement was 5 nm. At the same time, the depth of indenter
penetration into the specimen was recorded by the position-measuring system. The change
rate of the indenter load was 20 mN/s. Once the maximum indenter load was reached,
the indenter was maintained at this load and then unloaded (see diagram in Figure 3b).
The delay time was 5 s. The instrumented nanoindentation process was repeated at least
10 times for each set value of cutting speed V¢, cutter feed f, and radial depth of cut 4,.
According to the instrumented nanoindentation diagram obtained as a test result, the
Vickers HV microhardness of the subsurface layers, the indenter elastic penetration work
WE, its plastic penetration work W), and total penetration work Wyy were determined (see
the diagram in Figure 3b). The determined values of the total indenter penetration energy
were averaged over the tests performed. In this case, the measurement’s largest error was
no more than 10%.
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Figure 3. Experimental setup for measurements via instrumental nanoindentation and measure-
ment scheme: (a) experimental setup for nanoindentation; (b) specimen image and instrumented

indentation diagram.

The mechanical property evaluation of the milled subsurface layers was performed
through sclerometry using the “Micron-gamma” device [17,55] at a Berkovich indenter
load of 100 mN—Figure 4.
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Figure 4. Experimental setup for sclerometry and its measurement scheme: (a) experimental setup
for sclerometry of machined surfaces; (b) specimen image and sclerometry diagram.
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In this case, the indenter displacement velocity was 20 um/s and the scratch length
was about 630 um. The Berkovich indenter was set so that the projection of one of its
edges was parallel to the velocity vector of the indenter movement. Sclerometry tests were
repeated at least 8 times for each set value of cutting speed V¢, cutter feed f, and radial
depth of cut a.. The error of the averaged values of the maximum indenter penetration
depth along the scratch length (see the sclerometry diagram in Figure 4b) did not exceed
11%. To perform scratch analysis on the “Micron-gamma” device, an optical profilometer
“Micron-alpha” was used [17,55]. The vertical resolution of the microtopography images of
the machined surfaces obtained on this device was about 2 nm.

3.2. Methods

In the first part of the study on the mechanical property generation of the machined
subsurface layers [17], the relationship between the conditions of the machining process and
the mechanical characteristics of the above-mentioned subsurface layers is shown. Similar
to the previously studied process of orthogonal cutting (see [17,55]), the milling process
generates certain physical and mechanical characteristics in the subsurface layers of the
workpiece due to the elastic—plastic interaction of the end cutter with the machined material
and its subsequent separation into chips and the machined surface of the workpiece with
the fracture of this material. Unlike orthogonal cutting, in which the stress—strain state of
the machined material corresponds to a plane (two-dimensional), in the milling process, as
in other real cutting processes, the machined material is in a spatial (three-dimensional)
stress—strain state [88-90]. However, both in the spatial process stress—strain state (for the
considered case in the milling process), and in the two-dimensional stress—strain state, the
mechanical properties of the machined subsurface layers are determined to a significant
degree by the cutting process conditions. In this case, either the adiabatic hardening of the
machined material or its isothermal softening is realized in the cutting zones [91]. These
conditions are also determined by the thermomechanical interaction (contact) between the
end cutter and the machined material in the cutting zones. At the same time, the influence
of contact conditions was evaluated by the well-proven energy characteristics of the cutting
process for this purpose [17]. Taking into account the complexity and multiplicity of
physical processes in the cutting zones during the spatial process of milling, the contact
conditions of the end cutter with the machined material were estimated using the total
cutting power Pc and the plastic deformation work of the machined material in the tertiary
cutting zone A Thus, the mechanical characteristics of the machined subsurface layers
generated during end milling, namely, microhardness and indenter penetration work,
determined using instrumented nanoindentation, and maximum indenter penetration
depth, determined using sclerometry, were considered according to the total cutting power
Pc and the plastic deformation work of the machined material in the tertiary cutting zone
A This is postulated by the following two statements:

o The thermomechanical interaction of the end cutter with the machined workpiece is evaluated
using the total milling power and is proportional to the indenter penetration work in the work-
piece machined surface, determined using the instrumented nanoindentation of the machined
subsurface layers, and proportional to the maximum depth of the indenter penetration in the
subsurface layers, determined using the sclerometry of the machined subsurface layers:

SCn
VSCE%HPC&W[N\/ Pc & hmax, (1)
R Sc1

where R is the existence space of cutting process states (conditions); Sc is the cutting
process state; Pc is the total cutting power; Wiy is the total indenter penetration
work through the instrumented nanoindentation of the milled surface; and h,y is the
maximum indenter penetration depth during the sclerometry of the milled surface.
o  The thermomechanical interaction of the end cutter with the machined workpiece is evaluated
through the plastic deformation work of the machined material in the tertiary cutting zone
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during milling and is proportional to the indenter penetration work in the workpiece machined
surface, determined using the instrumented nanoindentation of the machined subsurface layers,
and proportional to the maximum depth of the indenter penetration in the subsurface layers,
determined using the sclerometry of the machined subsurface layers:

Scn
gSC € §RS§1 Acf o« Win V Acf o Fimax - (2)

The total cutting power Pc was determined according to the dependence known from
cutting theory [88,89,92]:
Pc = Fc- 'V, 3)

where Fc is the total cutting force, and V¢ is the cutting speed.

The cutting force Fc was calculated as the resultant of the cutting force components
measured during milling, as is presented in Figure 1 and Section 3.1. The plastic deforma-
tion work of the machined material in the tertiary cutting zone A was determined as a
dependence function of the equivalent stresses 0 acting in the machined material in the
tertiary cutting zone on the strains ¢ of the machined material in this zone:

te

Acf = f((fcf/ ch) = Vm'/‘fcfdfcf/ 4)

ts

where V,, is the material removal volume, and t; and ¢, are the simulation start and end
times, respectively.

A determination of the dependence function (4) was performed by simulating the
milling process of the titanium alloy Ti-1023 workpiece (see Section 3.2) with an end cutter
using the previously developed numerical model of the milling process [84,86]. The cutting
tool in these models was modeled as a perfectly rigid body and the workpiece material
as an isotropic material defined by the Johnson—Cook constitutive equation [93,94]. The
contact conditions between the tool and chip and between the tool and workpiece were
specified via the Coulomb model [95]. Friction coefficients were determined according
to a previously developed methodology [96]. In this case, the friction coefficient in the
plastic area of the secondary cutting zone was Frp, = 0.786, the friction coefficient in the
elastic area of the secondary cutting zone was Fgr, = 0.405, and the friction coefficient
in the tertiary cutting zone was Fcr = 0.623. The fracture mechanism of the machined
material [97] was realized using the Cockcroft and Latham model [98]. The critical stress
value of the Cockcroft and Latham model as well as the parameters of the constitutive
equation were found through sensitivity analysis by DOE (Design of Experiment) [84,86].

A determination of stresses and strains of the machined material in the region of the
tertiary cutting zone through a simulation of the milling process with the end cutter was
performed using tracking points. The layout of tracking points is shown in Figure 5. The
five tracking points (P, Py, P3, P4, and Ps) located in the workpiece material in the tertiary
cutting zone region were used. Before the plastic deformation work of the machined
material in the tertiary cutting zone A s was calculated, the stresses and strains determined
at the indicated points were averaged over all five points.
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Figure 5. Layout scheme of tracking points: (a) initial geometric model of milling with a mesh and
boundary conditions; (b) location of tracking points.

4. Results and Discussion

The influence of the milling process on the mechanical characteristics of the machined
material subsurface layers was evaluated using the value of the resulting cutting force Fc
and cutting power P, and the thermomechanical effect of the end cutter on the machined
material A in the tertiary cutting zone (see Section 3.2). The dependence of the resultant
milling force Fc calculated from the measured values of the cutting force components and
cutting power Pc on the cutter feed and cutting speed is shown in Figure 6. The resulting
cutting force increases proportionally as the cutter feed increases—Figure 6a.

Material: Ti-1023;
500 HV = 430; o; = 1282 MPa;
Radial depth of cut ag, = 1.5 mm

Cutting power

60
Cutting g1, g:j/fnin
(b)

Figure 6. Dependence of the resultant cutting force and cutting power on cutting speed and cut-
ter feed: (a) cutting mode influence on the resultant cutting force; (b) cutting mode influence on
cutting power.

The change in cutting force is explained with a proportional increase in the volume
of removed material in chip form. At the same time, increasing the cutting speed leads
to a significant reduction in the resultant cutting force—Figure 6a. This effect of cutting
speed is explained by the predominant influence of machined material softening over its
strain hardening [90,99,100]; in other words, the increase in cutting temperature caused
by an increase in cutting speed softens the machined material to a greater extent than
this material is hardened due to the speed factor. An increase in cutter feed also causes a
corresponding increase in cutting power, as is presented in Figure 6b, due to the increased
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volume of workpiece material removed. In contrast to the effect on the resulting cutting
force, an increase in cutting speed leads to a significant increase in cutting power. In all
probability, this is caused by the numerical influence of cutting speed, since the value of
cutting speed is included as a multiplier in the dependence of cutting power determination.

The determination of the thermomechanical work effect of the end cutter on the
machined material A in the tertiary cutting zone was performed, as announced in Section 3,
by simulating the stresses in the machined material and their corresponding strains. The
adequacy of the developed numerical model of titanium alloy Ti-1023 milling for the
studied range of cutting modes was checked by comparing the experimentally determined
values of the resulting cutting force F¢ and cutting power Pc with the corresponding
simulated values, as was presented in Section 3.

The results of this comparison, exemplarily for cutting speeds from 60 m/min to
120 m/min, and for a radial depth of cut 2, = 1.5 mm and an axial depth of cut a, =5 mm,
are shown in Figure 7. Together with the cutting force and cutting power values, the
deviation values between the experimental and simulated values are presented in the
figure. The specified deviations for a cutting speed V¢ = 60 m/min and the entire range of
cutter feed variation lie between about 10.3% and about 17.3%, as is presented in Figure 7a,d.
The corresponding deviations between the experimental values of cutting force and cutting
power for a cutting speed V¢ = 90 m/min and the entire range of cutter feed range lie
between about 11.9% and about 19.3%, as is presented in Figure 7b,e, and for a cutting
speed V¢ =120 m/min and the entire range of cutter feed range, they lie between about
13.9% and about 21.5%, as is presented in Figure 7c,f. Thus, it can be assumed that the
numerical model of titanium alloy milling is able to adequately simulate the characteristics
of the machining process used later to match them with the mechanical characteristics of
the machined subsurface layers of the workpiece.

The stresses and strains of the machined material in the tertiary cutting zone region,
which are further used to calculate the A s thermomechanical impact of the end cutter on
the machined material, were determined using five tracking points (see the diagram in
Figure 5 and Section 3.2) as a result of the milling process simulation. The variations in
effective strain ¢y and effective stress 0, determined at five specified tracking points, by
simulation time and the dependence of effective stress o s on effective strain ¢.;, exemplarily
for a cutting speed V¢ = 60 m/min and a radial depth of cut a. = 1.5 mm, are presented in
Figure 8.

The variation in effective strain ¢y and effective stress o,¢ by simulation time for the
considered five tracking points placed in the tertiary cutting zone region is presented
in Figure 8a,b. According to the results of the change in ¢y and o their relationship
is determined and presented in Figure 8c. This relationship together with the material
volume value V;, removed as a result of the milling, determined for the studied range of
cutting modes, was used to calculate the cutting work A in the tertiary cutting zone (see
Equation (4), Section 3). In this case, the volume V,;, was determined from the nominal
chip shape, without taking chip compression into account. This assumption was made on
the basis that the chip compression ratio of the used Ti-1023 titanium alloy for the studied
range of cutting modes does not exceed 1.1 [84,86]. The effect of cutter feed and cutting
speed on the cutting work A is presented exemplarily for a cutting speed V¢ = 60 m/min
and a radial depth of cut 4, = 1.5 mm in Figure 9. The cutting work A in the tertiary
cutting zone increases almost linearly as the cutter feed increases from 0.06 mm/tooth to
0.12 mm/tooth—Figure 9a. This increase in cutting work seems logical because as the
cutter feed rate increases, the amount of material removed per unit of time increases. An
increase in cutting speed in the studied range causes a monotonic increase in cutting work
A—Figure 9b. This increase in A is most likely also a consequence of the increase in the
material removal volume with increasing cutting speed.
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Figure 7. Comparison of experimental and simulated values of the resultant cutting force and
cutting power with changing cutting modes: (a) cutting force dependence on cutter feed at cutting
speed V¢ = 60 m/min; (b) cutting force dependence on cutter feed at cutting speed V¢ = 90 m/min;
(c) cutting force dependence on cutter feed at cutting speed V¢ = 120 m/min; (d) cutting power
dependence on cutter feed at cutting speed V¢ = 60 m/min; (e) cutting power dependence on cutter
feed at cutting speed V¢ = 90 m/min; and (f) cutting power dependence on cutter feed at cutting

speed V¢ =120 m/min.
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Figure 9. Effect of cutting modes on cutting work A in the region of the tertiary cutting zone:
(a) effect of cutter feed on cutting work; (b) effect of cutting speed on cutting work.

The values that predetermine the mechanical characteristics of the workpiece subsur-
face layers machined using end milling are the microhardness of these layers, the total
indentation work, and the maximum indentation depth, as is presented in Figure 1 and
Section 3. The first two values are determined by instrumented nanoindentation for a
wide range of cutting conditions, as is presented in Figure 3 and Section 3.1. The results
of the instrumented nanoindentation are exemplified by the radial depth of cut 4, = 1.5
mm in Figure 10. This figure demonstrates the effect of cutter feed and cutting speed
on the microhardness of the milled subsurface layers and the total indenter penetration
work. The microhardness of the machined subsurface layers monotonically increases
with increasing cutter feed—Figure 10a. This effect of tool feed is logical because as the
feed increases, the material removed volume per unit of time increases. The increase in
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the volume of removed material entails a corresponding increase in the strain degree of
the machined subsurface layers of the workpiece, which leads in turn to the hardening
of these layers and, naturally, to an increase in their microhardness [88,99,100]. At the
same time, the microhardness of the subsurface layers decreases with increasing cutting
speed—Figure 10a. In all probability, the reason for such an effect of cutting speed on
microhardness is the increase in cutting temperature with increasing cutting speed, which
entails the softening of subsurface layers [89,90,100]. The total indenter penetration work
Wiy monotonically decreases with increasing cutter feed—Figure 10b. Such an effect of feed
is quite understandable, since the consequence of increasing the cutter feed is (as already
shown above) a corresponding increase in the volume of material removed per unit of time,
entailing an increase in the strain degree of the machined material layers, and hence an
increase in the hardening of these layers [89,90,92]. In turn, an increase in the hardening
of the subsurface layers leads to a lower degree of indenter penetration into the studied
material and, as a consequence, to a lower indenter penetration work Wyy. In this case, the
consequence of increasing cutting speed is a monotonic increase in the indenter penetration
work—Figure 10b. This increase is due to the softening of the machined subsurface layers
of the workpiece caused by the increase in cutting temperature with increasing cutting
speed [99,101]. The similar character of changes in the studied mechanical characteristics
of subsurface layers is also observed at other values of the radial depth of cut a,.
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Figure 10. Effect of cutter feed and cutting speed on microhardness of machined subsurface layers of
the workpiece and total indenter penetration work: (a) microhardness dependence on cutting modes;
(b) indenter penetration work dependence on cutting modes.

The maximum indenter penetration depth was determined by the sclerometry of the
specimen’s milled surface, as is presented in Figure 4 and Section 3.1. The results of the
sclerometry analysis are shown exemplarily for the radial depth of cut 2, = 1.5 mm in
Figure 11.

The maximum depth of indenter penetration /,,y into the milled surface as a result
of sclerometry monotonically decreases with the cutter feed increase. This is due to the
increased hardening of the workpiece subsurface layers as a result of machining with
increasing cutter feed due to the corresponding increase in the volume of material removed
per unit of time [99,100]. As a result of this increase in the hardening of the subsurface
layers, the indenter penetration depth at constant load decreases [17]. At the same time, the
maximum depth of indenter penetration increases with increasing cutting speed—Figure 11.
This effect of cutting speed is a consequence of softening at the workpiece milled subsurface
layers [88,89,99], caused by the increase in cutting temperature as a result of increasing
cutting speed [89,101].
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Figure 11. Indenter penetration depth dependence on cutter feed and cutting speed.

The evaluation of the mechanical characteristics of the milled subsurface layers, per-
formed through instrumented nanoindentation and sclerometry with a significant change
in cutting modes (cutter feed, cutting speed, and radial depth of cut), indicates the predom-
inant effect of the milling process characteristics on the studied mechanical characteristics.
This indicates the existence of a close correlation between the characteristics of the milling
process and the mechanical characteristics of the machined subsurface layers. The presence
of such a relationship makes it possible to compile the characteristics of the milling process
with the studied mechanical characteristics according to the above-formulated postulates,
as is presented in Section 3, Equations (1) and (2). To generalize these comparisons, the
milling process characteristics should serve their energy values. In this case, such char-
acteristics are cutting power and the work of thermomechanical interaction between the
cutter and the workpiece in the tertiary cutting zone.

The coincidence results of both mechanical characteristics of the machined subsurface
layers, indenter penetration work and microhardness, with cutting power Pc and cutting
work A in the tertiary zone are presented exemplarily for a cutting speed V¢ = 60 m/min
and a radial depth of cut a, = 1.5 in Figure 12.

Figure 12. The coincidence of the indenter penetration work and microhardness with the cut-
ting power and cutting work in the tertiary cutting zone: (a) depending on the cutting power;
(b) depending on the cutting work in the tertiary cutting zone.

With increasing cutting power, the indenter penetration work Wjy monotonically
decreases, and similarly, the microhardness of the machined subsurface layers of the
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Indenter penetration depth

pm

workpiece increases with increasing cutter feed—Figure 12a. A similar effect on indenter
penetration work and microhardness is due to the cutting work in the tertiary cutting zone
region A —Figure 12b. This influence effect can be explained by the fact that the increase
in the interaction energy between the cutter and the machined material as a result of the
increase in cutting power and cutting work in the tertiary cutting zone contributes to the
hardening of the machined subsurface layers. The increased hardening of these layers
inhibits indenter penetration, resulting in the observed increase in microhardness and the
decrease in indenter penetration work.

When comparing the maximum indenter penetration depth /., with the energy
characteristics of the cutting process, with cutting power Pc and cutting work A in the
tertiary cutting zone, a monotonic decrease in hy,, value is observed—Figure 13. This
decrease occurs in conjunction with an increase in the indicated energy characteristics
caused by an increase in cutter feed. The decrease in h,,, with increasing cutting power
Pc and cutting work A in the tertiary cutting zone is also explained by the hardening of
the milled subsurface layers of the workpiece. The increase in the hardening degree of
these layers causes a decrease in the possibility of indenter penetration into the workpiece
milled surface.
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Figure 13. The coincidence of indenter penetration depth during sclerometry with the cutting power
and cutting work in the tertiary cutting zone: (a) depending on the cutting power; (b) depending on
the cutting work in the tertiary cutting zone.

The analysis of the coincidence of the mechanical characteristics from the milled
subsurface layers with the characteristics of the cutting process makes it possible to confirm
the above-formulated postulates about the significant influence of the considered energy
characteristics of the end milling process on the studied integral mechanical characteristics.
This creates the possibility of a purposeful selection of the contact conditions between the
tool and the machined material through the assignment of cutting modes that ensure the
necessary mechanical characteristics of the workpiece subsurface layers. The achievement
of the specified mechanical characteristics of the machined by the milling subsurface layers
may in turn enable the required service properties of machine parts.

5. Conclusions

The research performed here is devoted to the formation patterns of subsurface layers
mechanical characteristics of titanium alloy Til0V2Fe3Al (Ti-1023) workpieces as a result of
their milling by an end milling cutter. The mentioned patterns are considered based on
an analysis of the coincidence of the measured mechanical characteristics with the milling
process characteristics. To generalize the studied patterns, integral characteristics were
used as mechanical characteristics: indenter penetration work in the machined surface, the
microhardness of these surfaces, and the maximum depth of indenter penetration. The
measurements of the mentioned integral characteristics were carried out using nondestruc-
tive testing methods, namely, the instrumented nanoindentation and sclerometry of the
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studied subsurface layers. As generalized characteristics of the milling process, cutting
power and the thermomechanical interaction work of the cutter with the machined material
in the region of the tertiary cutting zone were used. To determine the cutting power of
the milling process, the measured value of the resultant cutting force was used, and the
thermomechanical interaction work of the cutter with the machined material was calculated
using a numerical model of the milling process.

The following patterns of changes in the milling process kinetic characteristics of
titanium alloy Ti-1023 and mechanical characteristics of the machined subsurface layers
depending on the machining modes were established by experimental studies:

> The resulting cutting force monotonically increases with increasing cutter feed and
decreases monotonically with increasing cutting speed;

> The microhardness of the workpiece subsurface layers monotonically increases with
increasing cutter feed and decreases with increasing cutting speed;

> The indenter penetration work as a result of the instrumented nanoindentation of the
workpiece subsurface layers decreases with increasing cutter feed and increases with
increasing cutting speed;

> The indenter maximum penetration depth as a result of the sclerometry of the work-
piece subsurface layers decreases with increasing cutter feed and increases with
increasing cutting speed.

The machining modes’ influence on the generalized characteristics of the cutting
process is characterized by the following patterns:

> The cutting power increases both with increasing cutting speed and with increasing
cutter feed;

> The cutting work in the tertiary cutting zone increases both with increasing cutter
feed and with increasing cutting speed.

The regularities established as a result of experimental and simulation studies of
the end tool milling process enable the possibility of identifying the coincidence of the
machining process energy characteristics with the integral mechanical characteristics of the
milled subsurface layers. The use of cutting process energy characteristics for this purpose
provides a numerical characterization of machining technology as a way of generating
mechanical characteristics of subsurface layers. This, in turn, ensures the possibility of
analyzing the impact of the machining technology regardless of the technology used.

The analysis of the coincidence of the integral mechanical characteristics of the work-
piece milled subsurface layers with the cutting process energy characteristics provides the
possibility of a purposeful selection of the milling process conditions with the end tool of
titanium alloy Ti-1023, conditioned by the appropriate choice of cutting modes. In turn, the
possibility of such a choice enables the achievement of the required service properties of
manufactured parts with mechanical characteristics of subsurface layers generated by the
milling process.

The research direction presented in the paper is planned to be further developed
by studying the coincidence of the characteristics of other machining processes with the
mechanical characteristics of the machined subsurface layers. In addition, it is planned to
expand the type of machined materials.
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Abstract: Carbon fiber-reinforced polymer (CFRP) laminates are widely used in aerospace,
automotive, and infrastructure industries due to their high strength-to-weight ratio. How-
ever, defect detection in CFRP remains challenging, particularly in low signal-to-noise ratio
(SNR) conditions. Conventional segmentation methods often struggle with noise interfer-
ence and signal variations, leading to reduced detection accuracy. In this study, we evaluate
the impact of thermal image preprocessing on improving defect segmentation in CFRP
laminates inspected via pulsed thermography. Polynomial approximations and first- and
second-order derivatives were applied to refine thermographic signals, enhancing defect
visibility and SNR. The U-Net architecture was used to assess segmentation performance
on datasets with and without preprocessing. The results demonstrated that preprocessing
significantly improved defect detection, achieving an Intersection over Union (IoU) of
95% and an F1-Score of 99%, outperforming approaches without preprocessing. These
findings emphasize the importance of preprocessing in enhancing segmentation accuracy
and reliability, highlighting its potential for advancing non-destructive testing techniques
across various industries.

Keywords: pulsed thermography; carbon fiber-reinforced polymer; thermal image
preprocessing; non-destructive testing (NDT); deep learning; polynomial approximation

1. Introduction

Carbon fiber-reinforced polymers (CFRPs) have revolutionized industries where
lightweight and high-strength materials are essential, such as aerospace, automotive,
and renewable energy sectors [1]. Their exceptional combination of mechanical and physi-
cal properties has made them indispensable in applications demanding high-performance
solutions. However, the structural integrity of CFRPs can be compromised during manu-
facturing or in-service use due to defects such as delaminations, cracks, and voids, posing
significant safety and reliability risks [1]. The formation and progression of these defects
are influenced by various factors, including manufacturing inconsistencies and prolonged
exposure to harsh environmental conditions. High temperatures, corrosive agents, and me-
chanical stresses (both dynamic and static) can degrade the resin matrix and weaken the
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fiber-resin interface, leading to structural failures over time [2]. In addition, sustained
loading combined with temperature cycling has been shown to significantly weaken CFRP
bonds, accelerating failure. Exposure to saline environments further exacerbates degra-
dation through galvanic corrosion, particularly when CFRP is in direct contact with steel.
Moisture ingress can plasticize adhesives and lower bond strength, while fatigue loading
can cause progressive debonding at CFRP-steel interfaces. Studies have indicated that
CFRP systems subjected to long-term environmental exposure can lose up to 60% of their
original bond strength [3]. Understanding these degradation mechanisms is crucial for
improving both defect detection and preventive maintenance strategies.

Non-destructive testing (NDT) techniques play a pivotal role in detecting internal
defects without compromising the functionality of the tested components. Several NDT
methods have been employed to inspect CFRP laminates, each with distinct advantages and
limitations. Ultrasonic testing (UT) is widely used due to its sensitivity to subsurface defects.
Yet, it faces challenges when inspecting highly attenuative composite materials [4]. X-ray
computed tomography (XCT) provides detailed internal imaging but is time-consuming
and costly, limiting its practical application in large-scale inspections [5]. Eddy current
testing (ECT) is effective for conductive composites but has limited applicability to non-
conductive CFRPs. In this context, pulsed thermography (PT) has emerged as a preferred
method due to its ability to provide rapid and comprehensive assessments of composite
materials’ structural health [5]. PT operates by applying a heat pulse to the material’s
surface and analyzing the thermal response, allowing defect detection based on variations
in heat diffusion properties [6]. It offers a non-invasive and efficient solution for defect
detection. Despite its advantages, raw thermographic data often exhibit substantial noise
and thermal variations, complicating accurate defect identification [7]. Consequently,
there is a growing need for advanced preprocessing methods to enhance the quality and
interpretability of thermographic data.

A recent study demonstrated the effectiveness of combining self-organizing maps
(SOMs) with bio-inspired parameter optimization through bee colony optimization (BCO)
techniques in improving thermographic image analysis [8]. However, these methods often
require extensive computational resources and can lack generalizability across different
CFRP structures and defect types, limiting their broader adoption [9]. This methodology
highlights the potential of advanced algorithms in improving non-destructive testing
workflows and supports the exploration of similar innovations in the field.

Thermographic Signal Reconstruction (TSR) has been proposed as a robust prepro-
cessing technique to improve the signal-to-noise ratio (SNR) in thermographic images [7].
By employing polynomial fitting and derivative analysis, TSR refines the thermal signals,
enabling clearer visualization of defect features. Nonetheless, one of the primary challenges
in thermographic image processing lies in balancing noise reduction while preserving
critical defect-related thermal signatures. Over-smoothing can obscure defect boundaries,
whereas inadequate filtering may fail to suppress noise effectively [10]. With the rise of
deep learning methods, particularly convolutional neural networks (CNNs) such as U-Net,
the ability to preprocess data effectively has become even more critical [11,12].

Deep learning models like U-Net have shown significant promise in the segmenta-
tion of thermographic images, achieving high accuracy in identifying complex patterns
and defects [13]. However, the performance of these networks heavily depends on the
quality of input data. Despite advancements in PT and deep learning, studies explicitly
quantifying the impact of preprocessing methods like TSR on U-Net performance remain
scarce. While prior research has successfully applied deep learning techniques to defect
detection, the direct influence of preprocessing on segmentation accuracy and model ro-
bustness has not been fully addressed. A systematic investigation of how preprocessing
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100mm

steps enhance deep learning-based defect segmentation is still lacking in the literature. Ad-
dressing this gap is crucial to advancing the integration of NDT with artificial intelligence
for composite materials.

This work aims to systematically investigate the influence of TSR preprocessing
on the performance of the U-Net architecture in detecting and segmenting defects in
CFRPs. By comparing the segmentation results of U-Net models trained on raw and
TSR-preprocessed thermographic data, we seek to demonstrate how preprocessing can
significantly enhance defect detection capabilities. Metrics such as F1-Score and Intersection
over Union (IoU) will be employed to evaluate the effectiveness of the proposed approach.
In comparison to existing studies, this research uniquely quantifies the impact of TSR
preprocessing on deep learning-driven defect segmentation, providing a structured analysis
of its benefits and trade-offs. By bridging the gap between thermographic preprocessing
and deep learning-based defect detection, this study offers new insights into optimizing
defect identification pipelines for high-performance composite materials.

2. Materials and Methods

This study focuses on a unidirectional carbon fiber-reinforced polymer (CFRP) lami-
nate composed of carbon/PEEK (polyether ether ketone) APC-2/AS4, a material known for
its high strength-to-weight ratio, making it widely used in aerospace structural applications.
CFRP structures are susceptible to defects such as delaminations and inclusions, which can
compromise their mechanical performance and pose risks of operational failure. To simu-
late these defects, polyimide film inserts with a thickness (Kapton® from 3M, St. Paul, MN,
USA) were embedded in the laminate during manufacturing. These inserts had dimensions
of 4 x 4 mm, 3 x 3 mm, and 2 x 2 mm and were placed at specific depths to replicate internal
anomalies, as shown in Figure 1.
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Figure 1. (a) Positions and sizes of defects in the laminate layers. (b) Inspected sample.

The laminate sample used in this experiment consisted of a flat CFRP panel with nine
artificial defects. The laminate was manufactured using APC-2/AS4 (© Syensqo, Brussels,
Belgium), which contains a fiber volume fraction of 61% and a [0,/90;]¢ stacking sequence.
The defect positions within the laminate are illustrated in Figure 1, with nominal depths of
0.13 mm (D1), 0.26 mm (D2), and 0.39 mm (D3). The thermal properties of APC-2/AS4 are
presented in Table 1 while mechanical properties are presented in Table 2.
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Table 1. Thermal properties of APC-2/AS4 [14].

Property Value Unit

k: Thermal conductivity (Longitudinal) 5.65 W/mK
k: Thermal conductivity (Transverse) 0.35 W/mK
Cp: Specific heat (* 1310 J/kgK
p: Density 1584 kg/m3

(@) at constant pressure.

Table 2. Mechanical properties of APC-2/AS4 [15].

Property VAlue Unit
Tensile Properties

Longitudinal Tensile Modulus 127.6 GPa
Transverse Tensile Modulus 10.3 GPa
Longitudinal Tensile Strength 2132 MPa
Transverse Tensile Strength 95.2 MPa
Shear Properties

In-Plane Shear Strength 82 MPa
Poisson’s Ratio

Longitudinal 0.32

Transverse 0.022

Thermal Property

Glass Transition Temperature 143 °C

The approach employed in this study involves a four-phase process, outlined in
Figure 2: capturing thermographic images via pulsed thermography, enhancing data
quality through Thermographic Signal Reconstruction (TSR), annotating defects manually
(process detailed in Section 2.5), and utilizing neural networks for defect segmentation.
This methodology facilitates a thorough investigation of how TSR preprocessing affects the
performance of deep learning models.

{TSR}

Deep Learning Defect
Models Segmentation

<|:Pulsed Thermograph){|‘ ‘|: U-net :|’

Figure 2. Defect segmentation methodology.

Data Acquisition Image Processing Data Labeling

2.1. Pulsed Infrared Thermography

Pulsed thermography is an active infrared non-destructive testing (NDT) technique
that utilizes thermodynamic principles and infrared imaging to assess material properties
and identify internal defects. This method involves applying a short-duration heat pulse to
the material’s surface, resulting in a localized temperature rise. The heat propagates through
the material, and internal discontinuities, such as delaminations and inclusions, alter the
thermal diffusion, causing localized variations in the thermal response. The material’s
thermal behavior is recorded over time using an infrared camera, capturing the emitted
radiation. By analyzing the cooling process, defects can be identified based on temperature
contrast, as these anomalies create variations in the thermal response [16,17]. Figure 3
illustrates the setup used in a typical pulsed thermography inspection.
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Figure 3. (a) Schematic of the experimental setup for pulsed thermography inspection. (b) Photograph
of the work’s experimental setup.

Pulsed thermography has been used for years, and its main advantages and disadvan-
tages are as follows [10]:
Advantages

e  Fast surface inspection: While traditional ultrasound inspection can take several
minutes (even hours), a thermographic inspection takes only a few seconds.

e  Ease of installation: In many cases, no special preparation is required for the inspection.
Only an infrared camera and a heat source are sufficient. Additionally, no contact with
the surface is necessary.

e  Safety: Unlike X-ray inspections, no harmful waves are used. However, stimulation
using strong heat sources (such as photographic flashes) requires eye protection,
and mechanical wave-generated heat requires ear protection.

* Inspection requires access to only one surface: Often, the inspected piece is installed
and in use, making it impossible to move. Infrared thermography allows for on-site
inspection with access to just one surface.

e  Easy numerical thermal modeling: A numerical model of a thermographic experiment
typically involves only heat transfer in solids, which can be easily solved using the
finite element method and simulation software.

e  FEasy interpretation of thermograms: Unlike ultrasound inspection, where results are
often 1D waveforms, infrared thermography provides 2D images, making it easier to
distinguish defective and non-defective areas.

¢ Wide range of applications: Infrared thermography is used in various fields, including

- Monitoring and diagnostics of electrical components, thermal comfort, buildings,
and artwork.

—  Process control, such as sealing line inspection of Tetra Pak® packaging (Meyrin,
Switzerland), automotive brake system efficiency, and heat loss in electronic modules.

—  Detection of discontinuities, metal corrosion, cracks, and impact damage.

—  Material characterization, including thermal properties, moisture content, and
fiber orientation.

Disadvantages

¢ Different emissivity of inspected materials: Low-emissivity materials reflect a lot
of ambient thermal radiation, which can interfere with inspections. When possible,
surface painting with spray can adjust emissivity for better results.

®  Thermal losses: Heat loss due to conduction and radiation may lead to misinterpreta-
tion of results.
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e  Equipment cost: Infrared cameras and thermal stimulation units used in active ther-
mography are more expensive than some other non-destructive testing techniques
(e.g., visual inspection and basic ultrasound equipment). However, costs are compet-
itive when compared to advanced technologies like phased arrays (ultrasound and
eddy currents) and X-ray systems.

e Limited to detecting defects that alter thermal properties: Only defects that cause
measurable thermal property changes can be detected.

e  Reduced inspection depth: Infrared thermography is limited to a certain depth below
the material surface. However, defects a few centimeters beneath the surface can be
detected using low-frequency excitation in modulated thermography:.

e Difficulty in achieving uniform heating: Achieving uniform heating, especially with
photographic flashes, can be challenging.

e  Transient nature of inspections: The transient thermal contrast requires infrared
cameras capable of capturing sequential images.

e Need for a clear line of sight: The inspected object must be visible to the infrared
camera without obstructions; otherwise, the inspection cannot be performed.

The following equation can mathematically describe the thermal behavior during
pulsed thermography:

y(z,t) = To—i—Qexp(—ZZ) 1)
! e\/ﬂ 4pt )’
where a is the thermal diffusivity of the material, k is the thermal conductivity, c, is the
heat capacity, e = \/kpcy, is the thermal effusivity, z represents the depth of the defect, and ¢
is time.
At the material’s surface (z = 0), the equation simplifies to
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where Tj is the initial temperature and Q is the applied heat flux [18].

The parameter e describes the material’s ability to exchange thermal energy with
its surroundings. In a sound region with homogeneous material properties, thermal
diffusivity and conductivity are consistent. However, defective regions exhibit distinct
thermal behaviors due to different parameters. This temperature variation is what allows PT
to successfully differentiate between sound and defective areas, serving as the foundation
for non-destructive evaluation [16].

Additionally, the thermal effusivity e can be calculated as

e = /kecy, 3)

where p represents the material’s density. This parameter plays a crucial role in heat transfer
analysis and is fundamental in interpreting thermographic data for defect detection [17].

For the experimental setup, a high-power optical heating system was used to gener-
ate the thermal pulse. The heat source was positioned at a controlled distance from the
CFRP surface to ensure uniform heat distribution. An infrared camera with a resolution
of 640 x 512 pixels and a frame rate of 55 Hz was used to record the images. Calibration
procedures were performed before each test to maintain consistency in the experimen-
tal conditions.

Pulsed thermography has been widely applied in various industries, including
aerospace, automotive, and composite materials inspection. It is particularly effective for
detecting internal defects in carbon fiber-reinforced polymers (CFRPs) and other advanced
materials. Recent advancements in signal processing techniques, such as independent
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component analysis, have further enhanced its capability to detect and quantify defects
with improved accuracy and reliability [11,18].

2.2. Thermographic Signal Reconstruction—TSR

Thermographic Signal Reconstruction (TSR) is a widely adopted algorithm in the field
of infrared thermography. As described by [7], TSR focuses on reducing both the spatial
and temporal resolution of thermographic data sequences, significantly streamlining the
volume of information to be processed. This approach mitigates common challenges in
pulsed thermography by transitioning the data into a logarithmic domain.

TSR is based on Fourier’s law of heat conduction, which describes the thermal diffu-
sion process in a material. To facilitate data analysis, the classical one-dimensional Fourier
equation is transformed into a logarithmic domain, which enables the representation of
temperature decay in a linearized form. By applying this transformation, the temperature
variation over time can be expressed as follows:

In (AT) = In (f) 2 In(t) @

This logarithmic transformation of Fourier’s one-dimensional solution is adjusted to
fit a time series using a polynomial function of degree n. This polynomial approximation
enables the reconstruction of temperature decay curves for each pixel, allowing the identifi-
cation of defective regions that deviate from the expected thermal response. The resulting
thermographic sequence is then converted into images representing the n + 1 polynomial
coefficients, facilitating the creation of synthetic thermograms.

In (AT) = co+cIn(t) +coIn® (£) + - - - + ¢, In" (¢) (5)

In Equation (5), AT denotes the temperature change over time f for each pixel (i, j).
This polynomial-based representation transforms the thermographic data into a series of
coefficients, from ¢((i, j) to ¢, (i, j), which are used to generate images reflecting the tem-
perature variation (i, j, t). These coefficients also allow for the computation of derivatives,
accounting for temporal noise and changes.

The TSR method offers notable advantages, including noise reduction, analytical
flexibility, and efficient data compression. It also enables the interpolation of temperature
values between data acquisition intervals. The first derivative of the polynomial reveals
the cooling rate, while the second derivative highlights variations in this rate, providing
deeper insights into the thermal behavior of materials [19].

Several alternative preprocessing techniques have been explored in the literature to
enhance defect detection in infrared thermography. Principal Component Thermography
(PCT) [18] and Independent Component Analysis (ICA) [11] are commonly used to ex-
tract key features from thermal sequences by decomposing the data into orthogonal or
statistically independent components. While these methods effectively reduce noise and
emphasize defect-related patterns, they often require parameter tuning and may suffer
from information loss during dimensionality reduction.

In contrast, TSR preserves the original thermal decay behavior by utilizing polynomial
approximations, allowing direct interpretation of defect-related variations in thermal sig-
nals. The polynomial-based approach enhances defect contrast while maintaining spatial
integrity, which is particularly advantageous for integration with deep learning models
such as U-Net. Additionally, unlike PCT and ICA, TSR does not rely on statistical as-
sumptions about data distribution, making it more adaptable to different materials and
imaging conditions.
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However, TSR is not without its challenges. The effectiveness of the polynomial
reconstruction depends on the selection of parameters, such as polynomial degree and
derivative order, which may require optimization for different defect types. Furthermore,
environmental factors, such as temperature fluctuations and reflections, can introduce
uncertainties in real-world applications. To mitigate these issues, future research could
explore adaptive TSR models that dynamically adjust reconstruction parameters based on
material properties and experimental conditions.

Despite these challenges, the results presented in this study demonstrate that TSR
preprocessing significantly enhances defect segmentation accuracy. By refining the thermal
signal before deep learning-based segmentation, the proposed method improves the ro-
bustness and reliability of defect detection in CFRP materials, reinforcing its potential for
advancing non-destructive testing techniques [7].

2.3. Deep Learning-Based Methods Used in Thermography for NDT

Recent advancements in deep learning have significantly enhanced the classification
and segmentation of pulsed thermography (PT) data. For instance, Mask-RCNN has
been employed to analyze synthetic PT datasets, effectively detecting abnormal regions
in composite materials [20]. Similarly, U-Net models have been applied to segment defect
regions in curved CFRP samples inspected via PT, demonstrating strong performance in
handling complex geometries [20]. Faster-RCNN architectures, incorporating Inception
V2 and Inception ResNet V2, have been utilized to identify defects in composite materials
through thermographic images. Comparisons of average precision reveal that the Incep-
tion V2-based model achieves superior accuracy compared to the Inception ResNet V2
model [20].

Further research has explored hydrogen-based deep neural networks, which inte-
grate temporal and spatial features to detect defects in composites and coatings [21].
Another study applied machine learning classification techniques to detect impact damage
in composite samples using PT, achieving classification accuracies ranging from 78.7%
to 93.5% [22]. Recurrent and feed-forward neural networks have been investigated for
identifying defects in non-planar CFRP components, with LSTM networks outperform-
ing feed-forward networks in handling temporal dependencies [23]. In addition, neural
networks trained on raw thermographic data were compared to those trained on TSR-
preprocessed data, with the latter significantly improving segmentation accuracy [24].

Generative adversarial networks (GANs) have also shown promise in processing
thermographic data. A GAN-based approach for thermal image enhancement has been
developed to improve defect visibility in CFRP components [25]. The IRT-GAN model,
trained on six datasets of simulated thermographic data, leverages TSR coefficients as input
to produce accurate and segmented images, further demonstrating the potential of GANs
in automated defect detection [26].

Expanding on these innovations, a novel approach has been developed by combining
DeepLabv3 and BiLSTM models for segmenting thermographic images of CFRP compos-
ites. This integration, applied for the first time in infrared imaging, has demonstrated
substantial improvements in defect detection accuracy. Experimental comparisons revealed
that the DeepLabv3-BiLSTM combination achieved an F1-Score of 0.96 and an IoU of 0.83,
surpassing other methods such as U-Net. These findings emphasize the importance of incor-
porating both temporal and spatial features to analyze complex thermal patterns, thereby
advancing the inspection of composite materials through pulsed thermography [27].

Despite significant advancements, the literature persists in a critical gap regarding the
integration of TSR as a core preprocessing technique in thermal analysis workflows. This
study seeks to address this gap by exploring the impact of TSR on improving the accuracy
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and reliability of deep neural networks for defect detection in NDT. Additionally, it intro-
duces novel approaches for inspecting high-performance materials like CFRP, advancing
the capabilities of existing methodologies.

2.4. U-Net

The U-Net neural network has emerged as a cornerstone in image segmentation,
extensively utilized in medical imaging and industrial inspection applications [28,29].
Initially proposed by Ronneberger et al. [29], the architecture has gained recognition for its
ability to deliver high accuracy even with limited training data. Its dual capability to capture
global context and preserve fine-grained localization details has made it indispensable in
various domains [28].

The architecture of U-Net is defined by its symmetric encoder—decoder structure,
as depicted in Figure 4. The encoder, often referred to as the contracting path, progressively
reduces the spatial resolution of input images while extracting hierarchical features through
convolutional and max-pooling layers [29]. This step enables the network to model complex
high-level abstractions, which are essential for identifying significant patterns within the
data [28].

In parallel, the decoder, or expansive path, reverses this process by gradually restor-
ing the spatial resolution through upsampling and convolutional layers. Crucially, skip
connections between corresponding layers in the encoder and decoder allow the network
to combine precise localization information from earlier stages with the contextual features
learned during downsampling [28,29]. This integration enhances segmentation accuracy
by ensuring the alignment of detailed and contextual features.

Beyond its initial application in biomedical imaging, U-Net has been adapted to
various industrial tasks, including the detection of defects in materials inspected through
infrared thermography [28]. Its resilience to data scarcity and effectiveness in handling
diverse segmentation challenges underscore its versatility and enduring importance in
modern image analysis pipelines [29].

= [imPUT
[ IMAGE »)

$ *

ul It

L 4 *
= conv 3x3,Relu
I’I’I — I’I‘I = copy and crop
4

T ¥ maxpool 2x2
.-b--b! — ,"-"- + up-conv 2x2
— » » conv 1x1

Figure 4. The architecture of the U-Net.

The implementation of the model was performed using the PyTorch 2.6 library, which
enabled efficient processing of large-scale image datasets through GPU acceleration [30].
The model architecture is built from sequential blocks, each consisting of two 2D convolu-
tional layers followed by batch normalization and ReLU activation functions, forming the
core computational operations.

The encoder, or contraction path, reduces the spatial resolution of the input features
while increasing the depth of representation. This path consists of four levels, each in-
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cluding a double convolutional block and a max-pooling operation. The number of filters
increases progressively, starting from 64 and doubling at each level, reaching 512 at the
deepest layer. Conversely, the decoder, or expansion path, restores spatial resolution using
bilinear upsampling. Each upsampling step is followed by the concatenation of the corre-
sponding feature maps from the encoder and additional convolutional blocks, refining the
representations and ensuring accurate segmentation.

The final output is produced by a single convolutional layer with one filter, mapping
the refined features into a binary segmentation mask. This output highlights the regions of
interest within the input image, enabling precise defect detection.

Optimization of the model was achieved using the Adam optimizer, with an initial
learning rate of 10~°. To enhance the training process, the learning rate was dynamically
adjusted using the ReduceLROnPlateau scheduler, which reduces the learning rate when
the validation loss stagnates, inspired by adaptive learning rate strategies proposed by [31].
The Binary Cross Entropy with Logits Loss (BCEWithLogitsLoss) function was used to com-
pute the loss. The training was conducted for 60 epochs in a GPU-accelerated environment,
ensuring efficient computation and faster convergence.

2.5. Training, Validation, and Test Data

The dataset collected in the experimental setup illustrated in Figure 3 comprises
1053 preprocessed thermographic images using the TSR technique. These images were
systematically divided into three distinct subsets: training, validation, and testing. A total
of 737 images (70%) were allocated for training, ensuring the model could learn effectively
from a diverse set of examples. Another 158 images (15%) were set aside for validation,
enabling the tuning of hyperparameters and monitoring performance during training.
Finally, the remaining 158 images (15%) were designated for testing, ensuring an unbiased
evaluation of the model’s segmentation capabilities. This stratified division guarantees
that each subset maintains a balanced distribution of defects, contributing to a robust and
generalizable model.

To facilitate model training, all collected images were meticulously annotated by an
expert. The annotation process was carried out using the VGG Image Annotator (VIA),
a web-based tool developed by the Visual Geometry Group at the University of Oxford [32].
The VIA tool was chosen for its user-friendly interface, flexibility, and capability to handle
diverse annotation tasks efficiently.

The annotation workflow consisted of four main stages to ensure precision and consis-
tency in defect labeling:

* Image Processing and Standardization: Before annotation, all thermal images were
uploaded to the VIA tool and pre-processed to maintain uniform resolution and format
across the dataset. This step was crucial to ensure consistency in defect representation.

*  Manual Region Marking: An expert manually outlined the Regions of Interest (ROIs)
that corresponded to defect locations within the CFRP material. These delineations
served as the basis for accurate defect segmentation.

e Defect Classification: Each annotated ROI was assigned a specific label to categorize
the defect type. This structured labeling approach helped distinguish different types
of defects clearly.

¢ Validation and Quality Assurance: To ensure annotation reliability, a cross-validation
process was conducted involving multiple annotators. Any inconsistencies were
resolved through discussions, and necessary adjustments were made to maintain a
high standard of accuracy.

The involvement of multiple annotators and the previous knowledge of the positions
of the polyimide film tapes prior to molding ensured that all defects were correctly labeled.
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Once the annotation process was finalized, the labeled regions were compiled into a ground
truth dataset, which served as a reference for training and validating the segmentation
models. The creation of precise ground truth masks was essential for aligning model predic-
tions with actual defect structures, thereby improving the reliability of the defect detection
system. Figure 5 illustrates a visual comparison of the original thermal image, the anno-
tated regions, and the corresponding segmentation mask, showcasing the transformation
of raw data into a structured dataset optimized for deep learning applications.

a) Original Image b) Labeled Image c) Segmentation Mask

Figure 5. Visual comparison of the manually annotated image and the generated segmentation mask.

2.6. Evaluation Metrics

To evaluate the efficiency of the data processing approach in defect detection, both
qualitative and quantitative analyses were conducted. The qualitative analysis involved
comparing the processed images step-by-step to observe visual improvements. Quantita-
tively, metrics such as the signal-to-noise ratio (SNR) were used to compare the original
images with those enhanced by the TSR technique. Additionally, segmentation performance
was assessed using metrics like the F1-Score and Intersection over Union (IoU).

The SNR measures the contrast between defective regions and surrounding intact
areas, offering a dynamic range representation. For each defect, a region within the defect
and a noise region representing the defect-free area are selected. In this study, SNR values
are calculated using Equation (6), following the methodology described by [33].

(6)

SNR — % —20. loglo <abs(5area(mean) - Narea(mean))) [dB]
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In Equation (6), Narea(mean) represents the average pixel intensity within the defective
region, Syrea(mean) 1 the average intensity in the defect-free area, and ¢ is the standard
deviation of pixel intensities in the defect-free region.

The F1-Score evaluates model accuracy by balancing precision and recall, making
it particularly useful for imbalanced datasets. It is computed using Equation (7), as the
harmonic mean of precision and recall [34].

Precision - Recall

Fl=2- Precision + Recall
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IoU is another widely used metric for segmentation tasks, quantifying the overlap be-
tween the predicted regions and the actual ground truth. It is calculated using Equation (8)
by dividing the intersection area by the union area.

Intersection Area

I p—
od Union Area ®)

Higher IoU values, closer to 1, indicate greater accuracy in identifying defects, while
values near 0 suggest poor performance. In this study, IoU was adapted to calculate
overlaps using defective and non-defective pixels instead of bounding boxes, ensuring the
metric’s relevance to thermal image segmentation.
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3. Results

The application of the TSR technique demonstrates a substantial improvement in
the visualization of defects within CFRP samples, as shown in Figure 6. The comparison
focuses on three distinct defects, labeled D1, D2, and D3, located at varying depths within
the material. In Figure 6a, which presents the raw image, D1, the shallowest defect, is
moderately visible, while D2 and D3, corresponding to intermediate and deeper defects,
respectively, become increasingly difficult to detect due to reduced contrast and the effects
of thermal diffusion.

@) (b)

Figure 6. Comparison between images with and without processing. (a) Top section of raw data,
(b) data processed with TSR.

In contrast, Figure 6b, representing the TSR-processed image, reveals a significant
enhancement in defect visibility. D1 appears with sharper definition, and both D2 and
D3 exhibit noticeably improved contrast, making them easier to identify. The deeper
defect, D3, in particular, benefits substantially from TSR processing, as its thermal signature
is amplified, compensating for the challenges associated with its depth. These results
highlight TSR’s capability to enhance thermal contrast, improving defect detectability across
various depths and enabling more reliable inspection and analysis of composite materials.

The signal-to-noise ratio (SNR) was determined following the methodology described
in Equation (6). As shown in Figure 7, defective regions (highlighted in red) and intact
regions (highlighted in green) were selected for the SNR calculation. This process was
performed on a representative thermal image and subsequently repeated across all frames
in the thermal sequence.

The results of the SNR calculations for each identified defect are summarized in
Table 3, providing a quantitative assessment based on the defined regions in the image.
This approach ensures consistency in evaluating the contrast between defective and defect-
free areas, facilitating a detailed analysis of the thermal sequence.

Figure 7. Defect areas (red) and intact areas (green).

Table 3. Calculation of SNR in decibels (dB).

Defects SNR Original (dB) SNR TSR (dB)
D1 14.03 18.41
D2 13.84 15.72
D3 2.98 17.80

The results presented in Figure 7 and Table 3 illustrate the impact of the TSR technique
on improving the Signal-to-Noise Ratio (SNR) for defect detection in CFRP samples. In the
raw images, the SNR values for defects D1, D2, and D3 were 14.03 dB, 13.84 dB, and
2.98 dB, respectively, indicating that deeper defects (e.g., D3) are harder to detect due to
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their weaker thermal signal. After applying the TSR processing, significant improvements
in SNR were observed, with D1, D2, and D3 reaching values of 18.41 dB, 15.72 dB, and
17.80 dB, respectively.

This demonstrates the effectiveness of TSR in enhancing the contrast and clarity of
defects, particularly for deeper anomalies like D3, which showed a remarkable increase in
detectability. The improved SNR values reflect the enhanced ability to distinguish defective
regions from intact areas, confirming TSR’s capability to process thermal signals effectively
and provide more reliable insights for defect identification in materials with varying depths.
These results underscore the importance of incorporating advanced preprocessing techniques
in thermographic analyses to address challenges related to signal attenuation and noise.

To evaluate the segmentation performance, the processed data were utilized as input
to the U-Net architecture, aiming to delineate the defective regions within the thermal
images. The U-Net model underwent two distinct training and validation phases to enable
a comparative analysis of its performance. In the initial phase, the network was trained
using raw thermal images acquired directly from the experimental setup, without any
preprocessing. In the subsequent phase, the same model was trained and validated using
thermal images enhanced through the TSR technique.

Figure 8 showcases the results of this comparison, displaying three sets of segmen-
tation outputs for all nine defects: (a) ground truth segmentation manually annotated by
an expert; (b) the predicted segmentation produced by the U-Net model trained with raw
thermal data; and (c) the segmentation results obtained when the model was trained with
TSR-preprocessed images. In these images, red pixels indicate regions where the model
failed to detect defects (false negatives), while blue pixels represent areas where the model
incorrectly classified non-defective regions as defective (false positives). This comparison
highlights the influence of preprocessing on the network’s ability to accurately segment
and identify defective areas across varying depths within the material.

(a) Manual segmentation. (b) Unprocessed images. (c) TSR-processed images.

Figure 8. Comparison of segmentation results. Red pixels indicate false negatives (regions where
defects were present but not detected), while blue pixels indicate false positives (regions where defects
were incorrectly detected). (a) Ground truth segmentation, (b) segmentation from unprocessed
images, (c) segmentation from TSR-processed images.

The results presented in Figure 8 provide a direct visual comparison of segmentation
performance under three conditions: manual annotation, model predictions using raw
thermal images, and predictions with TSR-processed images. The manual segmentation
(a) serves as the ideal reference, outlining the precise defect locations. When comparing
(b) and (c), a higher density of red and blue pixels is observed in the segmentation from raw
thermal data, indicating greater difficulty in distinguishing defective from non-defective
regions. This effect is particularly pronounced in deeper defects (rightmost column), where
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low thermal contrast leads to misclassification. However, the segmentation results from
TSR-processed images (c) show a notable reduction in false positives and false negatives,
demonstrating that preprocessing significantly improves model performance. These results
reinforce the effectiveness of TSR in enhancing defect segmentation accuracy.

To assess the segmentation performance quantitatively, thermal image sequences
were processed by the models, as shown in Figure 9. Each frame in the sequence was
segmented, and evaluation metrics, including F1-Score and IoU, were calculated for every
segmented frame. These metrics provide a frame-by-frame assessment of how well the
models identify defective regions. Subsequently, the average values of these metrics across
the entire sequence were computed to summarize the overall performance of the models.

[eJe)e)
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(a) Thermal sequence over time.
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variation on time
(b) Predicted mask over time.

Figure 9. Comparison of original and predicted images over time [27].

Figure 9 illustrates the original thermal image sequence and the corresponding seg-
mented results. Panel (a) depicts the original thermal frames over time, capturing the
evolution of heat distribution across the material. Panel (b) shows the predicted segmen-
tation outputs, highlighting the regions identified as defects. This comparison enables a
comprehensive evaluation of the model’s ability to accurately segment defects at different
depths and time frames.

The quantitative results are summarized in Table 4, which compares the U-Net model
trained on TSR-processed data with models previously reported in the literature, including
U-Net and DeepLabv3+BILSTM from [27]. This comparative analysis underscores the
impact of TSR preprocessing on model accuracy and demonstrates the advantages of
advanced architectures in capturing temporal and spatial features effectively.

Table 4. Comparison of segmentation metrics for different models.

Model Preprocessing F1-Score IoU
U-Net * Without TSR 0.9142 0.6141
DeepLabv3+BILSTM * Without TSR 0.9629 0.8312
U-Net With TSR 0.9903 0.9516

* Adapted from [27].
The results presented in Table 4 highlight the impact of preprocessing and model

architecture on segmentation performance. The U-Net model, when trained without TSR
preprocessing, achieved an F1-Score of 0.9142 and an IoU of 0.6141, demonstrating its
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baseline capability in segmenting defects. However, the DeepLabv3+BILSTM model, even
without TSR preprocessing, outperformed the U-Net with an F1-Score of 0.9629 and an
IoU of 0.8312, likely due to its ability to incorporate temporal and spatial features. When
TSR preprocessing was applied to the U-Net model, there was a significant improvement,
with an F1-Score of 0.9903 and an IoU of 0.9516.

This demonstrates the critical role of TSR in enhancing thermal image quality and
segmentation accuracy. Notably, the U-Net model with TSR preprocessing surpassed the
DeepLabv3+BILSTM model without TSR, emphasizing the importance of preprocessing
techniques in improving segmentation performance. Despite these benefits, TSR prepro-
cessing introduces an additional computational cost compared to raw image processing.
The polynomial fitting and derivative calculations required for TSR increase both memory
usage and processing time. However, the impact remains manageable for most applica-
tions, as the preprocessing stage is performed offline before model inference. For real-time
scenarios, optimization strategies such as parallel processing and hardware acceleration
could be explored to minimize computational overhead. These findings underscore the
value of combining advanced preprocessing methods like TSR with neural networks to
achieve superior results in defect detection and segmentation tasks.

4. Conclusions

The findings of this study have direct implications for the detection of CFRP defects
in industrial applications. By leveraging TSR preprocessing, the accuracy and reliability
of defect segmentation in pulsed thermography can be significantly enhanced. The abil-
ity to amplify defect visibility, particularly in low signal-to-noise ratio (SNR) conditions,
suggests that this methodology could be effectively deployed in aerospace, automotive,
and infrastructure industries where CFRP integrity is critical. Improved segmentation accu-
racy translates into more reliable non-destructive testing (NDT) procedures, reducing the
likelihood of undetected structural damage and enabling predictive maintenance strategies.

This study demonstrated the critical role of thermographic signal reconstruction (TSR)
using polynomial approximations in enhancing the defect detection and segmentation of
CFRP laminates through pulsed thermography. By preprocessing thermal images with
TSR, significant improvements were observed across all evaluation metrics, highlighting
its ability to enhance the signal-to-noise ratio (SNR) and improve the overall quality of
input data for neural networks. The most notable SNR improvements were observed in
defect D4, which increased from 9.33 dB to 22.36 dB, and defect D9, which improved from
—1.48 dB to 9.02 dB, illustrating the technique’s effectiveness in amplifying defect visibility
and contrast.

The U-Net model trained with TSR-processed images achieved exceptional results,
with an IoU of 95.16% and an F1-Score of 99.03%, far outperforming the unprocessed
model, which achieved an IoU of 61.41% and an F1-Score of 91.42%. These findings under-
score the importance of preprocessing techniques in non-destructive testing workflows,
enabling more precise and reliable segmentation of defects, particularly for deeper anoma-
lies that are traditionally challenging to detect. Furthermore, the TSR-preprocessed U-Net
model achieved comparable, and in some cases superior, performance to more complex
architectures like DeepLabv3+BILSTM.

Despite these advancements, some limitations should be acknowledged. TSR pre-
processing introduces an additional computational cost due to the polynomial fitting and
derivative calculations, which increase processing time and memory usage. While this is
manageable for offline analysis, further optimizations would be necessary for real-time
applications. Additionally, the selection of TSR parameters, such as polynomial degree,
has a direct impact on segmentation performance and may require tuning for different
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Future research could explore the integration of TSR with complementary prepro-
cessing strategies, such as wavelet transforms or feature extraction techniques, to further
enhance defect segmentation. Additionally, the application of Transformer-based models
and hybrid deep learning approaches could improve the accuracy and generalization
capability of segmentation networks. Another promising avenue is the optimization of
computational efficiency, either through parallel processing techniques or the development
of lightweight neural architectures, making TSR preprocessing viable for real-time inspec-
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neural networks, providing a robust framework for defect detection in high-performance
materials such as CFRP laminates. The combination of TSR with deep learning-based
segmentation models significantly improves defect detection accuracy and robustness,
demonstrating its potential for practical applications in industrial non-destructive testing.
Further developments in this field could lead to more efficient and scalable defect detection
systems, contributing to safer and more reliable composite material inspections.
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Abstract: Fiber-reinforced composites are extensively used in many components and structures in
various industry sectors, and the need to connect and assemble such types of components may require
drilling operations. Although drilling is a common machining process; when dealing with fiber-
reinforced composite materials, additional and specific problems may arise that can com-promise
mechanical integrity. So, the main goal of this work is to assess how various input variables impact
two main outcomes in the drilling process: the exit-adjusted delamination factor and the maximum
temperature on the bottom surface where the drilling tool exits. The input variables include the type
of drilling tools used, the operating speeds, and the thickness of the plates being drilled. By using
Analysis of Variance (ANOVA), the analysis aims to identify which factors significantly influence
damage and exit temperature. The results demonstrate that the influence of tools and drilling
parameters is critical, and those selections impact the quality of the hole and the extent of the induced
damage to the surrounding area. In concrete, considering the initially selected set of tools, the BZT03
tool does not lead to high-quality holes when drilling medium- and high-thickness plates. In contrast,
the Dagger tool shows potential to reduce exit hole damage while also lowering temperature.

Keywords: composite materials; drilling; delamination characterization; thermographic characterization;
statistical assessment; ANOVA

1. Introduction

As the use of composite materials continues to grow, the need to connect parts made
of these materials increases the interest in understanding the drilling damage that occurs
when preparing those parts. Because of the heterogeneous characteristics of composite
materials, the damage that occurs during drilling, such as delamination and tearing, as
well as thermomechanical changes due to the drilling effects on the composite, deteriorate
the quality of the composite [1].

Several studies regarding the drilling of Fiber-Reinforced Polymer (FRP) composites
can be found, among them, reviews on drilling Carbon Fiber-Reinforced Polymers (CFRP).
An extensive review of drilling on CFRP presents relevant information found on drilling
mechanisms, thermomechanical responses, drilling-induced damage, and the effects of
various process conditions. High cutting speeds and low feed rates were found to im-
prove the hole quality of CFRPs. Also, this review indicates that developing suitable tool
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geometries/materials, and the optimization of cutting parameters effectively decreases
the drilling damage of cut CFRP holes [2]. The type of matrix material highly influences
the thrust force and torque in conventional dry drilling of CFRP composites, while higher
cutting speeds result in lesser torques developed during drilling [3].

To study the influence of machining parameters on the delamination damage of Glass
Fiber-Reinforced Polymers (GFRP) during drilling, several drilling processes were explored
and it was found that delamination is most influenced by feed rate, tool material, and
cutting speed in conventional machining, while vibration assisted drilling and ultrasonic
assisted drilling are more appropriate for drilling of GFRP [4].

As delamination is important damage resulting from drilling FRPs, many authors
have investigated its mechanism and contributing factors [5-12]. In a review focused on
delamination quantification and measurement techniques, several delamination measure-
ment methods along with their advantages and drawbacks are compared and discussed [8].
The more accurate measurement techniques are X-ray radiography and computerized
tomography, but are used less because of the high initial cost, the need for a secured area
for inspection, and a high sample preparation time. Although with a lower accuracy,
microscopy is the most generally used method due to its simplicity. Higher dimensionality
of the delamination factor improves its accuracy but also increases computation time. The
calculation of the delamination factor differs depending on the method used and many
permutations and combinations are possible to define a more accurate delamination fac-
tor. Different models are used to predict drilling delamination, using different drilling
parameters, such as cutting speed or cutting sequences [6,9].

The effect of tool material and geometry on the damage induced during drilling glass
or carbon FRP composites is another interesting topic addressed by some authors [3,12-15].
Although extensive studies on the effect of cutting parameters and tool geometry on the
quality of the hole have been made, the shearing of fiber-reinforced polymers needs a
better understanding. Also, specific tools with special geometry need to be developed
to achieve better performances [15]. In another article comparing different drilling tools
on GFRPs, delamination was observed in the form of matrix debonding, uncut fibers,
and fiber pull-out [7]. Results showed that the solid carbide tools had the best drilling
performance for a low feed rate and a high speed, and high laminate thickness. Different
drill types were also studied in drilling GFRP pipes and several tests were performed at
a constant speed and different feed rates [16]. Thrust forces were measured and hole exit
surface damage and borehole surface damage were examined with a digital microscope
and scanning electron microscope, after the drilling operations. Damage is very much
influenced by the tool geometry and feed rate, observing increased delamination for a
conventional twist drill at lower feed rates, in comparison with a brad and spur drill, and a
brad center drill. The latter generated less damage. New drilling tools are also presented
in different works to improve hole quality, diminish delamination, and decrease overall
damage on FRPs [14,17-20]. Hole quality is an important indicator of good drilling on FRPs,
as it is related to less damage and smaller temperature-affected areas. Several studies seek
to evaluate this indicator through different techniques such as studying bore quality factors’
influence on the progress of tool wear and the thrust force [21], the effect of speed, feed
rate, and drill angle on hole quality [22], and the application of artificial neuron networks
to assess the effects of drilling parameters on drilling temperature and hole quality [23].

New methods for predicting damage in FRPs have been devised. Several models
were developed to predict the delamination factor [6,24,25]. The use of Deep Neural
Networks resulted in very small errors in the predicted delamination factor and circularity,
demonstrating that this technique is very suitable for predicting drilling damage on FRPs [6].
Other more simple modelling techniques have been proposed to predict delamination with
great accuracy, such as AutoCAD Image Processing [24]. Other models focus on predicting
the temperature distribution during the drilling process. In one study, a model to predict
the temperature distribution during the drilling process of unidirectional CFRP is used to
explore the influence of feed rate and spindle speed, and the results show that increasing
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the feed rate decreases the drilling temperature and the opposite occurs when increasing
the spindle speed [26].

The variation of temperature during drilling of FRPs is an important parameter for
the quality of the hole and, consequently, it is related to damage. Thus, many studies focus
on thermal damage, cutting heat accumulation and tool wear extent during the drilling
of FRP structures. Several strategies are used to diminish the wear of tool bits, such as
variable feed rates and reducing the number of holes performed [27]. The surface integrity
is also used as an indicator of the quality of the hole to assess the performance of special
drills made for drilling CFRPs with less tool wear [28]. Many techniques are used to obtain
information on temperature, such as infrared cameras [5,29,30] and thermocouples [26,31].
When considering the temperature-dependent material properties of CFRP laminates to
study the problem of contact at the drill margin-borehole surface interface during dry
drilling [31], it is known that the increase in temperature during dry drilling reduces
the elastic modulus of the CFRP and causes thermal expansion of the drill. This causes
significant contact length at the drilling margin and borehole surface interface, which, in
turn, increases damage. The temperature increase also increases the thrust force and torque,
indicating that low feed rates is disadvantageous to dry drilling because of the temperature
rise due to inefficient material cutting.

The use of non-destructive testing methods for estimating damage in composite
materials has been an established practice in research for years. However, several studies
have noted the increase in research on non-destructive testing techniques, driven by the
growing use of composites in industries like aerospace, automotive, and energy sectors,
where ensuring the integrity of structures is critical [32]. Furthermore, advancements in
computing power, sensor technology, and imaging techniques have made these methods
more accessible and reliable, promoting broader applications [33]. Many of these methods,
including ultrasonic testing, infrared thermography, shearography, and acoustic emission,
have evolved, offering greater precision, faster data processing, and automated systems for
inspecting composite structures [32-38].

In another complementary perspective, exploratory data analysis, although consisting
of an important research area by itself, plays a very important role when linked to specific
engineering problems, as it may provide important insights into the experimental and/or
modelling approaches observations, identifying the components, parameters, that most
contribute to explain the observed experimental or simulated responses. To illustrate
this, one may refer to the work developed by some co-authors, in complementary areas.
Carvalho et al. [39] investigated the variability in the static and dynamic response of fiber-
reinforced composites, considering multivariable linear regression models, to characterize
the contribution of each modelling parameter to the explanation of those variabilities.
Focusing on another type of composite materials, Rosa et al. [40] analyzed how material
and geometrical uncertainty may modify the foreseen deterministic response of a structure
built from dual-phase functionally graded materials. In that work, the authors proposed
the constitution of statistic models to allow their use as alternative prediction models for
such structures under similar operating conditions. More recently Carvalho et al. [41]
investigated the influence that the uncertainty associated with carbon nanotubes” material
and geometrical characteristics may have in the static behavior of functionally graded plates,
where this gradient is dictated by the weight volume fraction of these nanoparticles. The
study considered the constitution of multiple regression models which allow concluding on
the influence of the characteristic parameters and also can be used as alternative prediction
tools within the domain of the study.

In the present work, drilling parameters, such as the spindle speed, the feed rate, the
GFRPs laminates’ thicknesses, and tool bits, are considered and their influence is assessed
on a set of usual delamination factors that are often used as damage metrics, and on the
thermally influenced area.

Regarding the authors” knowledge, this work has an innovative character, considering
the joint glass fiber composites’ drilling experimental work and the detailed statistical study
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performed upon the results achieved. This statistical approach enables an extensive analysis
and corresponding conclusions regarding the engineering problem this work addresses,
namely considering the influence of tool selection, material thicknesses on final part drill
quality, as well as the importance of drilling parameters in minimizing undesirable effects.

The remainder of this manuscript presents the following structure: the second section
presents the fundamental theoretical aspects required for the study’s development, followed
by the third section where the case studies and the results achieved are presented and
discussed and more specific conclusions are drawn. The last section refers to the conclusions
of the present work.

2. Materials and Methods
2.1. Composites Plates and Experimental Setup Characterization

In the present work, four sets of glass fiber polymeric laminated plates were produced
via a wet layup method: a set of plane laminates consisting of 10 layers of short glass fibers;
and three sets of plane laminates made of fiberglass textile and epoxy resin, with 10, 20, and
30 layers, respectively. All sets had a quadrilateral configuration with a 250 mm edge. After
the curing process, the plates were characterized and identified, as presented in Table 1.

Table 1. Plate characterization.

Reinforcement Number of Layers Thickness (mm) Glass Fiber

10 2.88

Fabric 10 3.00
(long fiber) 10 2.95
20 5.54

30 8.36

Mat

(short fiber) 10 6.37

Glass fiber was herein considered either in the form of fabric, produced with interwo-
ven long fibers, or in the form of mat, which consists of short fibers randomly overlapped,
nonwoven. These two types of fiber dispositions represent the most common alternatives
used in glass fiber composite manufacturing.

Different plates were prepared as indicated in Table 1. The wet layup technique was
used, with Sicomin’s SR1500 resin mixed with hardener SD2505 in a 3:1 ratio. The various
layers were impregnated with the resin and cured at room temperature under compression
between metal plates.

Figure 1 presents the tools used in the drilling experiments.

As the material properties of GFRC are highly dependent on the fabrication method,
and on the uncertainty of associated sources, thermographic analysis was used to find
correlations between the material defects and the drilling outcome.

To perform the drilling operations, a specific support was developed to be adjusted to
the computerized numerical control machine (CNC, Cincinnati Arrow 500 VMC, Cincinnati,
OH, USA), and two thermographic cameras (ThermaVue CSI 735R INFRARED (Southamp-
ton, UK) and TROTEC ec060 (Heinsberg, Germany)) were used to record the operation
from the upper and lower laminate surfaces’ perspectives.

The camera recording the lower surface of the laminate was aligned with the tool axis,
while the upper surface camera had a slight deviation to this axis due to being put near the
tool. The experimental apparatus is shown in Figure 2.
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Number of  Diameter

Tool Teeth (2) (mm)
(a) BZT01 2
(b) BZT03 10
(c) Dagger 2
(d) Helical 2

Figure 1. Cutting tools: (a) BZT01 Tool (Manufacturer BZT, Leopoldshohe, Germany, Ref. 751080060F);
(b) BZT03 Tool (Manufacturer BZT, Ref. 751070060F); (c) Dagger Tool (Manufacturer GANDTRACK,
Oldham, UK, Ref. GT-50-6.0 63089); (d) Helicoidal Tool (Manufacturer SECO, Fagersta, Sweden, Ref.
SD205A-6.0-32-6R1-C2).

Figure 2. Experimental apparatus: (a) drilling tool; (b) lower thermographic camera; (c) plate;
(d) upper thermographic camera.

After conducting preliminary experimental tests for the thicker laminate using the
BZTO03 tool, the temperature range was verified to be within [23-250 °C].

2.2. Delamination Quantification Metrics

To perform the statistical assessment of the results, we considered the various affected
areas, including those related to delamination induced by drilling and those associated
with thermally affected regions in the laminate. The quantification of delaminated areas
has been explored by various authors, who have employed different methods to assess the
extent of the damage. One usual indicator is the damage factor Fd [42,43]; however, in this
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work, the adjusted delamination factor, Fdaj, that considers the contribution of the fissure
size and the damage area [44] is more extensively used:

Ad 2
Faoj = Fi+ ———— (F2 ~ Fa) 1
aoj = Fat g Ay \F —Ea 1
where A is the delaminated area, A, and A are, respectively, the areas corresponding
to the maximum damage diameter, D4y, and to the hole diameter, Dy. An alternative
assessment of the delaminated area was proposed by Ahn et al. [45], which considers the
existing proportionality between the image areas and the corresponding number of pixels:

Ny(Ag)
Fpo =1+ 122
da N, (Ao)

@
where Nj,(A,) is the number of pixels of the delaminated area, and N,(Ay) is the number
of pixels corresponding to the hole area. The maximum delamination diameter D,y and
the delaminated area A, are obtained as:

Np(Dmax)

Dmax - DOW
14

®)

where Np(Dmax) is the number of pixels of the maximum diameter area, and Dy is the
hole diameter. This last calculation of the damaged area, F;,, has proven to be more
reliable than the damage factor, F;, as the latter is not sensitive to the in-plane shape of
the delamination profile. The studies conducted take these different measurements into
account to characterize the results of the experimental drilling tests.

To identify the delaminated and thermally affected regions resulting from drilling
operations, scans were performed on both the upper and lower surfaces of the laminate.
The entire drilling process was also recorded using thermographic cameras. The captured
digital data were subsequently processed with the open-source image processing software
Fiji (Image]J 1.53q, public domain (Bethesda, MD, USA) [46], the images were examined,
and the extent of the damage was quantified.

After calibrating the initial image dimensions, Figure 3a, the photograph was con-
verted to binary grayscale to isolate the damaged areas, Figure 3b. The FFT bandpass filter
corrected shadows and smoothed the image, and the threshold tool was applied using the
iterative procedure known as the IsoData algorithm [47], as seen in Figure 3c. The resulting
binary image was used to determine the maximum damage diameter through a line that
passes through the hole’s center, Figure 3d.

Figure 3. Procedure to evaluate the delaminated and thermally area affected by drilling: (a) original
photograph; (b) binary image; (c) image after FFT bandpass filtering; (d) diameter measured after
thresholding. (e) Thermographic image from lower camera.

In addition to the discrete temperature data provided by the thermographic cameras at
specific points (see crosses in Figure 3e), a complementary methodology based on the RGB
color system was employed to characterize the maximum temperature reached during the
drilling process. The color scale of the images was also taken into account. This procedure
ensures that the maximum temperature in the selected image is measured, as it may be
somewhat distant from the points marked by the crosses. However, the presence of uncut
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material, fibers, expelled material, as well as the determination of the frame considered to
reach the maximum value, can influence the determined value.

2.3. Statistical Analysis Methodology

One way to compare a variable across different categories is through a graphical
representation using multiple boxplots [48]. This graphical tool shows the distributions
side by side, allowing for a clear comparison of their medians, ranges, and variability.

An important graphical tool for visualizing a multivariate dataset is a composition of
several plots, referred to here as a matrix plot. This plot allows for the analysis of both the
individual distributions and the different correlations between variables. In this type of
plot, the individual distribution of the variables under analysis is shown along the diagonal
of the matrix. An empirical density line is added, providing a suggestion of the appropriate
probability model for each variable. This type of analysis is important for assessing the
assumptions often required for inferential purposes. Additionally, matrix plots allow for
the analysis of correlations between pairs of variables. Below the diagonal, scatter plots
are displayed, while above it, the values of Pearson’s linear correlation coefficient are
shown [48].

Analysis of Variance (ANOVA) is a statistical method used to determine if there
are statistically significant differences between the means of three or more independent
groups [48]. ANOVA tests the null hypothesis that all group means are equal,

Ho: ph=pa=--- =iy vs Hy: 3y # pj

and if this hypothesis is rejected, it indicates that at least one group differs from the others.
However, ANOVA does not specify which groups differ from each other, so post-hoc tests,
such as Tukey’s Honestly Significant Difference (HSD) test, are often used to perform
pairwise comparisons between group means. Tukey’s HSD test controls for Type I errors
by adjusting the significance level in multiple comparisons, ensuring a more reliable
identification of specific differences between group means. It is possible to visualize these
differences through the graphical representation of confidence intervals for the difference
between means [48].

ANOVA relies on several key assumptions to ensure the validity of its results [48]. It
assumes that the data in each group follow a normal distribution. This assumption can be
checked using normality tests such as Shapiro-Wilk [49]. Also, it assumes the independence
of observations, meaning that the data points in each group are independent of each other,
which is often guaranteed by proper experimental design. All ANOVA results presented in
this article meet these assumptions with a significance level of 1%.

When the assumptions of a parametric test are violated, a non-parametric approach is
applied, such as the Kruskal-Wallis test [50]. This method is used to compare three or more
independent groups and to assess whether there are statistically significant differences in
their medians.

3. Results and Discussion

As an introductory note in this section and with no prejudice to more detailed de-
scriptions that will be provided in each sub-section, it is considered adequate to make an
overall brief presentation of the data analysis flow which was supported by intermediate
conclusions.

Hence, due to some experimental limitations, and issues encountered during the
experimental tests, the statistical analysis was conducted sequentially.

In the first phase, the aim was to determine if there were differences among the four
tools used in terms of damage indicators or temperature within the considered range of
values (spindle speed of 5300 rpm and feed rate of 640 mm/min). This initial case allowed
to identify high correlations in the output variable values at the entrance and exit. These
values remained similar throughout the tests, which led us to focus on the exit-adjusted
delamination factor, the variable Fdaj_out, for damage analysis. Furthermore, based on
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the results obtained, it was decided to continue the study using only the BZT03 and the
Dagger tools, as they represent two very different performances in terms of damage.

In the second phase, given the distinct nature of the two tools, a study of both tools
was conducted in parallel. The aim of this study was to understand the influence of using
low, medium, or high ranges in a combination of speed and feed rate on the damage factor.
In the third phase, different thickness values were then analyzed.

In the end, a discussion was elaborated and provided for each of the two tools (BZT03
and Dagger) regarding the relationship between damage and temperature across the
different categorical dimensions used (feed rate and thickness).

3.1. Variables Characteristics

The input variables considered in the present work essentially comprise the drilling
tools used, the operating speeds, and the thickness of the plates to be drilled.

The drilling of the samples, considering the different variables, was performed and the
effect on the samples was registered, as shown in Figure 4 for one of the samples. Despite
being by far the drill that makes the best holes and causes significantly less damage, the
Dagger tool sometimes leaves some fibers uncut at the exit.

BZTO Tool

Fabric (long fiber)

Mat (short fiber) N = »,; ,I

Figure 4. Holes’ exits performed by Dagger and BZT03 in plates reinforced with small or long fibers
(spindle speed 5300 rpm; feed rate 640 mm/min).

After conducting some exploratory tests and observing minimal variation in the effect
of drilling parameters on damage of different plates with different fiberglass textile, it was
decided to evaluate only the holes made in the long-fiber plates. This choice helped reduce
the variation in measured exit damage, often caused by factors like a single fiber being
pulled out rather than delamination between layers.

The output variables are coefficients calculated according to damage characterization
indicators, and the maximum temperature at the bottom surface where the drilling tool
exits the plate. The input variables and data associated as well as the output variables and
corresponding acronyms are presented in Table 2.

Table 2. Description of input and output variables.

Input Variables Data

Tool BZTO01, BZT03, Dagger, Seco
Spindle speed (rpm) 1300, 2650, 5300

Feed rate (mm/min) 78,156, 234, 318, 640
Thickness (mm) 2.88,2.95,3,5.54, 8.36
Output variables Acronym

Exit delamination factor Fd_out

Exit delaminated area factor Fda_out
Exit-adjusted delamination factor Fdaj_out

Exit delaminated area Area_out

Exit maximum temperature Tmax_inf

153



Materials 2024, 17, 5631

Considering the characteristics of the input variables, they were all considered cat-
egorical variables. From the experimental tests developed, 76 (see Appendix A) were
considered valid, being those summarized in Table 3.

Table 3. Experiment characteristics for output variables assessment using the tools BZT01, BZT03,

Seco, and Dagger.
Tool Thickness Spindle Speed Feed Re}te Number of Tests
(mm) (rpm) (mm/min)

BZT01 2.88 (low) 5300 640 5

Seco 2.88 (low) 5300 640 5

BZT03 2.88 (low) 5300 640 10

5.54 (medium) 5300 640 5

8.36 (high) 5300 640 3

3 (low) 2650 318 4

3 (low) 1300 156 5

3 (low) 1300 78 5

3 (low) 1300 234 5

Dagger 2.88 (low) 5300 640 9

2.95 (low) 2650 318 5

2.95 (low) 1300 156 5

2.95 (low) 1300 78 5

2.95 (low) 1300 234 5

Concerning the information in Table 3, it is relevant to note that the column corre-
sponding to the thickness variable, besides containing the values themselves, also contains
the indication of a qualitative classification {low, medium, high}. This is because, for a set
of situations where the thickness assumes the values of 2.88 mm, 2.95 mm, and 3 mm, this
was not intentional and corresponds to uncertainties in the manufacturing process. So, this
set of thicknesses is considered to pertain to the same class of thinner plates.

Cutting tools with the same diameter but different characteristics were selected to
evaluate the influence of the tools’ geometry. Some of the selected tools resemble milling
cutters, while others are more similar to traditional drill bits. This selection aimed to
analyze a wider range of tool types for drilling holes in glass fiber epoxy plates.

3.2. Case 1: Assessing the Influence of Input Variables on the Exit-Adjusted Delamination Factor
for an Initial Set of Drilling Tools

In the first stage of this work, we began by considering five experimental tests for
each of the four tools under study. All the drilling tools were tested under the same
conditions (spindle speed of 5300 rpm and feed rate of 640 mm/min) on plates with a
uniform thickness of 2.88 mm.

In this preliminary case, it is also important to say that the output variables at the tool
entrance on the top surface of the plate were also initially registered, but they were shown
to be less significant when compared to the results obtained at the exit. So, only the exit
output variables will be considered.

The correlation coefficients between the different variables can be observed in Figure 5,
where the matrix plots corresponding to the entrance and exit output variables are pre-
sented. The red line corresponds to a smooth curve called Locally Estimated Scatterplot
Smoothing (LOESS). This method is useful for visualization and is constructed by fitting
multiple quadratic (or possibly linear) regression lines as a moving window passes along
the x-axis. The black dots are the data and the red one is the corresponding mass center.
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Figure 5. Matrix plots for the output variables; (a) entrance, and (b) exit.

Considering the results in the matrix plot of the exit output variables, it is visible that
the variables are strongly correlated, namely the exit delamination factor (Fd_out) and the
exit-adjusted delamination factor (Fdaj_out), the exit-delamination area factor (Fda_out),
and the exit-delaminated area (area_out). This is an expected result considering how these
metrics are obtained. Because of this, we have decided to keep only one of these metrics
to characterize the damage, being this metric, the Fdaj_out variable. So, from this point
on, only the exit output variables will be considered, more specifically the exit-adjusted
delamination factor.

3.2.1. Influence of a Tool on the Exit-Adjusted Delamination Factor at the Tool’s Exit

Following the previous analysis, it was important to understand which tool would be
more adequate for the drilling operation. If one builds the boxplots of the exit-adjusted
delamination factor for each tool, one obtains the representations in Figure 6.
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Figure 6. Multiple boxplots for the exit-adjusted delamination factor as a function of the tools BZT01,
BZT03, Dagger, and Seco.

From Figure 6, we conclude that there is a significant difference among the Fdaj_out
variable mean values associated with each tool. It is possible to verify that the Dagger and
Seco tools enable drilling with a lower exit damage value for the plates. In contrast, BZT
tools exhibit not only a higher exit-adjusted delamination factor but also higher uncertainty.
So, Dagger tools offer a more consistent drilling performance with greater uniformity and
quality, providing superior control over the process.
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Table 4 presents the ANOVA results from the comparison of the Fadj_out mean values
for the four tools, allowing for the conclusion that there is a significant difference among
them. The first column lists the different sources of variability (Tool, Error, Total), indicating
where the variation in the data originates. The second column shows the degrees of freedom
(df), representing the number of independent observations that can vary for each source of
variation. The third column contains the Sum of Squares (SS), which measures the total
variability attributed to each source and quantifies how much variation is explained by
each factor. The fourth column presents the Mean Square (MS), calculated by dividing
the Sum of Squares by the degrees of freedom; this gives the average variation for each
source of variability (MS = SS/df). The fifth column provides the F-Statistic, the ratio of the
mean square between groups to the mean square within groups, which tests whether the
variability between groups is greater than that within groups, indicating a significant effect.
Finally, the last column displays the p-value, which represents the probability of obtaining
a result at least as extreme as the observed one, assuming that the null hypothesis (the
hypothesis that there is no difference) is true. A low p-value suggests that the differences
between groups are statistically significant. To aid in interpreting the results, a code is
added to the p-value to indicate whether the statistical significance is below 0.001 or at 0.01.

Table 4. ANOVA results from the comparison of the Fadj_out mean values for the four tools: BZT 01,

BZT 03, Dagger, and Seco.
Degrees of Sum of 1
Freedom Squares Mean Squares F p-Value
Tool 3 42.87 14.29 16.38 <0.001 **
Residuals 16 13.96 0.87

! Significance codes: <0.001 **" 0.01 *".

Given that the equality of the mean values has been rejected, it is appropriate to
examine the differences between each pair. So, a multiple comparisons test (Tukey test)
was performed. The results obtained are presented in Figure 7.

99% family-wise confidence level
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(p-value = 0.102) :

| |
I 1

Dagger - BZT01
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Dagger - BZT03
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Figure 7. Results from the multiple comparisons test, between pairs of tools: confidence intervals for
mean differences. Significance codes: <0.001 ** 0.01 *".
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Considering the results in Figure 7, it is possible to conclude that the BZT01 and BZT03
tools do not differ significantly, the same applying to the Dagger and Seco pair and the Seco
and BZTO01 pair. Supported by these results, we proceeded with further tests considering
only the BZT03 and Dagger tools, which is in agreement with what was already observed
in Figure 6.

3.2.2. Influence of Spindle Speed and Feed Rate on the Exit-Adjusted Delamination Factor
at the Tool’s Exit

The experimental data were increased to evaluate the influence of the spindle speed
and the feed rate on the exit-adjusted delamination factor at the tool’s exit, as shown in
Table 5.

Table 5. Experiment characteristics for exit-adjusted delamination factor assessment using BZT03

and Dagger tools.
Tool Thickness Spindle Speed Feed Ra}te Number of Tests
(mm) (rpm) (mm/min)
BZT 03 2.88 5300 640 10
3 2650 318 4
3 1300 156 5
3 1300 78 5
3 1300 234 5
Dagger 2.88 5300 640 9
2.95 2650 318 5
2.95 1300 156 5
2.95 1300 78 5
2.95 1300 234 5

The analysis of the boxplots in Figure 8, relating the exit-adjusted delamination factor
at the tool’s exit with the spindle speed for each one of the tools, raises doubts regarding
the hypothesis of equality of the mean value of the exit-adjusted delamination factor in the
three ranges of the spindle speed considered (low, medium, and high).

BZT03 Dagger

1.8

1.7

Fdaj_out

1.5

-i

1.3

1300 2650 5300 1300 2650 5300

Spindle Spindle

(a) (b)

Figure 8. Multiple boxplots for the exit-adjusted delamination factor at the tool’s exit as a function of
the spindle speed for the (a) BZT03, and (b) Dagger tools.

To confirm, an ANOVA was performed and the p-values obtained from the ANOVA
conducted for the BZT03 and Dagger tools (Tables 6 and 7) were respectively 0.99 and 0.02.
Considering a significant level of 1%, there was no significant difference in the mean value
of the exit-adjusted delamination factor in the three ranges of the spindle speed considered
(low, medium, and high).
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Table 6. Regarding the BZT 03 tool, ANOVA results from the comparison of the Fadj_out mean
values for the three ranges of the spindle speed.

Degrees of Sum of

. 1
BZTO03 Freedom Squares Mean Squares F p-Value
Spindle 2 0.10 0.07 0.01 0.99
Residuals 34 327.30 9.63

1 Significance codes: <0.001 **" 0.01 “*".

Table 7. Regarding the Dagger tool, ANOVA results from the comparison of the Fadj_out mean
values for the three ranges of the spindle speed.

Degrees of Sum of

. 1
Dagger Freedom Squares Mean Squares F p-Value
Spindle 2 0.15 0.07 427 0.02
Residuals 26 0.45 0.02

! Significance codes: <0.001 **" 0.01 “*".

A similar approach was conducted regarding the feed rate. The corresponding box-
plots are presented in Figure 9.
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Figure 9. Multiple boxplots for the exit-adjusted delamination factor at the tool’s exit as a function of
the feed rate for the (a) BZT03, and (b) Dagger tools.

Although there are differences in Figure 9, they are not significant. The ANOVA
results (Tables 8 and 9) indicate that when considering a significant level of 1%, there are no
significant differences in Fdaj_out, for all the feed rate values considering both the Dagger
and the BZT 03 tools.

Table 8. Regarding the BZT 03 tool, ANOVA results from the comparison of the Fadj_out mean
values for the five ranges of the feed rate.

Degrees of Sum of 1
BZT03 Freedom Squares Mean Squares F p-Value
Feed rate 4 62.35 15.59 1.88 0.14
Residuals 32 265.11 8.285

! Significance codes: <0.001 **" 0.01 “*".
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Table 9. Regarding the Dagger tool, ANOVA results from the comparison of the Fadj_out mean
values for the five ranges of the feed rate.

Degrees of Sum of

. 1

Dagger Freedom Squares Mean Squares F p-Value
Feed rate 4 0.16 0.04 2.22 0.10
Residuals 24 0.44 0.02

1 Significance codes: <0.001 **" 0.01 “*".

3.3. Case 2: Assessing the Maximum Temperature at the Tool’s Exit as a Function of the Spindle
Speed and the Feed Rate for the BZT03 and Dagger Tools

In the sequel of the previous case study, where two tools (BZT03 and Dagger) were
selected considering their differentiated characteristics regarding the delamination assess-
ment, the present case study proceeds with those same tools to assess how the input
parameters may influence the maximum temperature achieved at the tool’s exit location, in
the bottom surface of the plates.

The experiment characteristics used to assess the influence of the spindle speed and
the feed rate on the maximum temperature at the tool’s exit were already presented in
Table 3.

From this experimental data obtained, we have built the boxplots in Figure 10, where
the exit-adjusted delamination factor at the tool’s exit is related to the three spindle speed
values tested for each one of the tools. Those boxplots in Figure 10a suggest that for the
BZTO3 tool, some differences in the mean value of the maximum temperature at the tool’s
exit, for the three spindle speed values. However, the ANOVA confirms that they are not
significant (p-value = 0.03) (Table 10).
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Figure 10. Multiple boxplots for the maximum temperature at the tool’s exit as a function of the
spindle speed for the (a) BZT03 and (b) Dagger tools.

Table 10. Regarding the BZT03 tool, ANOVA results from the comparison of the Tmax_inf mean
values for the three ranges of the spindle speed.

Degrees of Sum of

. 1
BZTO03 Freedom Squares Mean Squares F p-Value
Spindle 2 21,371 10,685 411 0.03
Residuals 33 85,827 2601

1 Significance codes: <0.001 **" 0.01 “*".

However, Figure 10b and Table 11 show that for the Dagger tool, there exists a sig-
nificant difference among the three spindle speed values (ANOVA p-value < 0.001). The
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temperature for the higher speed significantly differs from the mean temperature for the
other two spindle speed values.

Table 11. Regarding the Dagger tool, ANOVA results from the comparison of the Tmax_inf mean
values for the three ranges of the spindle speed.

Degrees of Sum of

. 1
Dagger Freedom Squares Mean Squares F p-Value
Spindle 2 4347 2173.6 21.57 <0.001 **
Residuals 26 2620 100.8

! Significance codes: <0.001 **" 0.01 “*".

Figure 11 depicts the multiple comparison tests between the pairs of spindle speed
values considered in the experiments. It can be concluded that a significant difference exists
for the cases: 5300-1300 rpm and 5300-2650 rpm. It can be inferred that using the maximum
spindle rotation speed in this study will lead to significant differences when compared to
intermediate or lower speeds, making it more relevant to evaluate the extreme values.

99% family-wise confidence level
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Figure 11. Results from the multiple comparisons test for pairs of spindle speed: confidence intervals
for mean differences. Significance codes: <0.001 **” 0.01 *’.

The boxplots for the maximum temperature at the tool’s exit at the bottom of the
plates, as a function of the feed rate, are presented in Figure 12.
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Figure 12. Multiple boxplots for the maximum temperature at the tool’s exit as a function of the feed
rate for the (a) BZT03 and (b) Dagger tools.
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Regarding the BZT 03 tool boxplots presented in Figure 12a, the null hypotheses of the
Shapiro normality test were rejected, so the non-parametric Kruskal-Wallis test was used.

The mean temperature value is significantly different for the five feed rate values
(p-value < 0.001). The multiple comparison tests allow us to conclude that there exists only
a significant difference for the cases 78-234 mm/min.

For the Dagger tool results presented in Figure 12b one observes that the mean
temperature value is significantly different for the five feed rate values considered (ANOVA
p-value < 0.001, see Table 12).

Table 12. Regarding the Dagger tool, ANOVA results from the comparison of the Tmax_inf mean
values for the five ranges of the feed rate.

Degrees of Sum of 1
Dagger Freedom Squares Mean Squares F p-Value
Spindle 4 4755 1188.7 12.89 <0.001 **
Residuals 24 2213 92.2

1 Significance codes: <0.001 **" 0.01 *".
The multiple comparison tests (Figure 13) show that a significant difference exists for
the cases: 78-640 mm/min, 156-640 mm/min, 234-640 mm /min, and 318-640 mm /min.

Concerning Shapiro normality test, it was verified.

99% family-wise confidence level
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Figure 13. Results from the multiple comparisons test between pairs of feed rate values: confidence
intervals for mean differences. Significance codes: <0.001 **” 0.01 “*’.

3.4. Case 3: Influence of Plates” Thickness on the Exit-Adjusted Delamination Factor and the
Maximum Temperature at the Tool’s Exit

To analyze the influence of the plates’ thickness on the exit-adjusted delamination
factor and on the maximum temperature at the tool’s exit neighborhood, a few more
experiments were conducted using only the BZT 03 tool. Table 13 summarizes these
experimental characteristics.
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Table 13. Set of experimental tests with the BZT03 tool for the maximum temperature at the tool’s exit.

Thickness (mm) Spindle Speed (rpm) Feed Rate (mm/min) Number of Tests

2.88 5300 640 10
5.54 5300 640 5
8.36 5300 640 3
3 2650 318 4
3 1300 156 5
3 1300 78 5
3 1300 234 5

The boxplots corresponding to the results obtained from these experimental tests are
presented in Figure 14.
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Figure 14. Multiple boxplots for the (a) exit-adjusted delamination factor, and for the (b) maximum
temperature at the BZT3 tool’s exit as a function of three classes of thicknesses—low, medium,
and high.

The results from the ANOVA (Table 14) and multiple comparison tests (Figure 15)
indicate that the mean of Fdaj_out is significantly different for the high and medium
thickness as for the high and low thickness. An inverse relation is observed between the
damage factor and the maximum temperature as the plate thickness varies. The damage
values increase with greater thicknesses, even though the temperature on the lower side of
the plate decreases. This may be caused by the tool’s geometry, which does not promote
good chip removal, potentially leading to poorer cutting performance in the final stage.
This may result in greater compressive forces and contribute to greater delamination of
the composite.

However, regarding the maximum temperature at the tool’s exit, the null hypothesis
of the Shapiro normality test was rejected, so we resorted to the non-parametric Kruskal-
Wallis test. This latter test indicates that the mean of the output variable, Tmax_inf, is
significantly different for the three thickness classes. The corresponding non-parametric
multiple comparison tests indicate that the mean of Tmax_inf is significantly different for
the low and medium thicknesses as well as for high and low thicknesses.

Table 14. ANOVA results from the comparison of the Fdaj_out mean values for the three ranges
of thickness.

Degrees of Sum of

. 1
BZTO03 Freedom Squares Mean Squares F p-Value
Thickness 2 159.7 79.83 16.17 <0.001**

Residuals 34 167.8 494

1 Significance codes: <0.001 **" 0.01 “*".
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Figure 15. Results from the multiple comparisons test between pairs of mean levels of thicknesses:
confidence intervals for mean differences. Significance codes: <0.001 **” 0.01 “*’.

3.5. Case 4: The Relations Among Temperature, Exit-Adjusted Delamination Factor, and Other
Input Variables, for the BZT03 and Dagger Tools

This final sub-section devoted to the presentation and discussion of the results is
intended to analyze if and how the exit-adjusted delamination factor (Fdaj_out) and the
maximum temperature (Tmax_inf) at the bottom surface are related.

To avoid redundancy, the presentation of results is limited to some sufficiently illus-
trative studies to demonstrate the behaviors’ trends. The BZT03 and Dagger tools were
used separately to analyze the correlation between the two output variables (Tmas_inf and
Fdaj_out).

3.5.1. Influence of Plates’ Thicknesses and Spindle Speed on the Exit-Adjusted
Delamination Factor and Maximum Temperature at the Tool’s Exit for the BZT03 Tool

According to the analysis performed in Section 3.3, it was possible to conclude that
the plates’ thickness classes (low, medium, and high) differently affect the exit-adjusted
delamination factor and the maximum temperature at the tool’s exit. In the present study,
we aim to introduce an additional input variable into this analysis, namely the spindle
speed. The relations among this wider set of variables are presented in Figure 16.

The bubble plot in Figure 16 illustrates very clearly that for medium- to high-thickness
plates, we achieved the highest values for the exit-adjusted delamination factor, although
for lower maximum temperatures. For the thickest plates (“high” class of thicknesses) the
lowest temperatures were achieved although presenting the highest adjusted delamina-
tion factors.

Figure 16 also shows that when dealing with thinner plates in the so-called “low”
class, although attaining the highest temperatures, the use of the highest spindle speed
(5300 rpm) provides the lowest exit-adjusted delamination factor values. For lower values
of spindle speed, namely for the lower one, the exit-adjusted delamination factor starts to
increase despite presenting a greater dispersion in the delamination factor.

Since the thicker plates, medium and high, show exit-adjusted delamination factor
values assessed as too high to be considered successfully executed, these variations will
not be taken into account in the upcoming comparisons.

7

163



Materials 2024, 17, 5631

BZT03
250~ .0.0. *
* *
. L
*
- ‘0 e o * P
2 thickness
*
. * 1_low
200-
¢ . ® 2_medium
£ @ :hin
~ .
x
£
= spindle
150 -
* 1300
® 2650
oo @ 9] * 5300
100-
@ ® o ®
4 8 12 16
Fdaj_out

Figure 16. Bubble plot relating the maximum temperature with the exit-adjusted delamination factor,
the thickness class, and spindle speed for the BZT03 tool.

3.5.2. Influence of Spindle Speed and Feed Rate on the Exit-Adjusted Delamination Factor
and Maximum Temperature at the Tool’s Exit, for the BZT03 Tool

Regarding the BZT03 tool, the Pearson’s correlation coefficient between the variables
(Tmax_inf) and (Fdaj_out) is —0.730, so there is an inverse correlation.

Figure 17 presents for the BZT03 tool a bubble plot with the relative influence of the
input variables, spindle speed, and feed rate in the exit-adjusted delamination factor and
the maximum temperature at the tool’s exit in the plates’ bottom surfaces.
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Figure 17. Bubble plot relating the maximum temperature with the exit-adjusted delamination factor
and the feed rate and spindle speed for BZT03 tool.

As the bubble plot in Figure 17 illustrates, when the BZT03 tool operates at 5300 rpm
with a feed rate of 640 mm/min, higher values of temperature at the tool’s exit (near
the maximum value for the camera) are attained, although with a lower exit-adjusted
delamination factor. For the spindle speed of 2650 rpm the temperatures are similarly high
although the damage presents in general a higher metric value.
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The lower spindle speed (1300 rpm) when combined with the lowest feed rate
(78 mm/min) yields very high-temperature values although the lowest damage values;
however, when the feed rate is augmented until 234 mm /min, the temperature progres-
sively diminishes and the exit-adjusted delamination factor increases, assuming values
within the range of 6.5 to 11. Even considering only the tests that used the same feed per
tooth with the BZT03 tool, it can be stated that as the drilling speed increases, the damage
at the exit of the hole decreases, despite the temperature rising.

3.5.3. Influence of Spindle Speed and Feed Rate Speed on the Exit-Adjusted Delamination
Factor and Maximum Temperature at the Tool’s Exit for the Dagger Tool

After a more detailed study in the previous sub-sections regarding the BZT03 tool,
this sub-section aims to focus on the Dagger tool, to identify the main influences and
relations among the output variables and the input variables associated with the drilling
operating parameters.

Regarding the Dagger tool, the Pearson’s correlation coefficient between the maximum
temperature and the exit-adjusted delamination factor at the tool’s exit is -0.367, in this case
also an inverse correlation, although less strong when compared with the results obtained
for the BZT03 tool.

Figure 18 presents the bubble plot where the relations among these output and input
variables can be observed.
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Figure 18. Bubble plot relating the maximum temperature with the exit-adjusted delamination factor,
the feed rate and spindle speed for Dagger tool.

With the Dagger tool it is possible to understand that overall, regardless of the spindle
speed used, the exit-adjusted delamination factor is significantly minor compared with
those presented when the drilling tool is the BZT03. It is also visible that the highest values
of maximum temperature appear for the higher spindle speed values, although with a
minor magnitude when compared with the values attained with the BZT03 tool.

Variation in the machining parameters appears to have a limited influence on the
damage at the tool exit, despite some changes in temperature. Thus, for these ranges and
this tool, there does not seem to be a significant correlation between these two outputs.

4. Conclusions

In this study, an assessment of damage and temperature in holes drilled in glass
fiber composite plates has been successfully conducted using various statistical tools.
An experimental setup was established to evaluate these parameters, and the statistical
tools proved essential for interpreting the numerous tests performed. This approach
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helped to identify differences between the various tests and excluded those that do not
significantly vary.

As an overall conclusion, the results show that the tool selection and the composite
thickness show a great impact on the output parameters analyzed.

The influence of tools and drilling parameters is critical, as these selections directly
impact the quality of the holes and the extent of damage at the hole exit. The determination
of operational parameters to minimize undesirable effects is strongly correlated with
the type of drill selected, indicating that the optimal parameters for one tool may differ
significantly from those for another.

The Tukey test revealed that the Dagger and Seco tools resulted in lower exit damage
values for the plates, while the BZT tools displayed a higher exit-adjusted delamination
factor and greater variability. In contrast, the Dagger tools provided more consistent drilling
performance, with greater uniformity and control, leading to superior overall quality in the
drilling process. Also, the results indicate no significant difference between the BZT01 and
BZTO03 tools, as well as between the Dagger and Seco tools, and similarly between the Seco
and BZTO01 tools.

The BZT03 tool does not allow the manufacture of good-quality holes when drilling
medium and high thickness plates. An inverse relation is observed between the damage
factor and maximum temperature as plate thickness changes. Damage increases with
thicker plates, while temperatures on the lower side decrease. This may be caused by the
tool’s geometry, which does not promote good chip removal, potentially leading to poorer
cutting performance in the final stage. This may result in greater compressive forces and
contribute to greater delamination of the composite. When focusing exclusively on tests
that used the same feed per tooth with the BZT03 tool, the findings suggest that increasing
drilling speed reduces damage at the hole’s exit, despite the associated rise in temperature.

When comparing the tools, the BZT03 tool exhibits a wider range of results in con-
trast to the Dagger. With the Dagger tool, the exit-adjusted delamination factor remains
consistently lower than with the BZT03, regardless of spindle speed. Additionally, while
maximum temperature increases at higher spindle speeds, these temperatures are notably
lower than those observed when using the BZT03 tool. The Dagger tool demonstrates an
ability to improve damage at the hole exit while simultaneously reducing temperature.
However, establishing strong correlations between these two variables remains challenging.
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Appendix A
Tool Thickness Spindle Speed Feed Ra.ite Fdaj_out Tmax_inf
[mm] (rpm) [mm/min]
BZT01 2.88 (low) 5300 640 3.595 250
3.481 250
3.699 250
3.769 241.638
3.277 233.044
Seco 2.88 (low) 5300 640 1.434 79.116
1.802 69.268
1.933 75.524
1.818 87.314
2.026 86.646
1.434 79.116
BZT03 2.88 (low) 5300 640 3.647 242.387
3.653 250
3.395 250
4.199 248.443
3.921 236.274
4.385 222.716
5.529 214.491
7.907 229.016
2.988 223.528
4.340 224933
5.54 (medium) 5300 640 5.592 119.338
9.636 122
9.544 88
7.407 121
5.008 121
8.36 (high) 5300 640 11.436 87.982
15.935 88
12.956 88
3 (low) 2650 318 6.935 232.101
6.819 246.467
7.527 237.575
5.316 225.816
1300 156 5.896 225.668
8028
9.689 227.145
5.207 242.438
5.556 219.759
78 4.081 243.046
4.623 228.579
3.914 246
3.522 246
3.908 246
234 6.882 195.256
8.365 209.159
9.493 192.476
9.586 204.38

10.567 173.591
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Thickness Spindle Speed Feed Rate

Tool [mm] (rpm) [mm/min] Fdaj_out Tmax_inf
Dagger 2.88 (low) 5300 640 1.415 150.771
1.319 133.857
1.235 140.142
1.416 139.302
1.371 142.372
1.415 150.771
1.319 133.857
1.235 140.142
1.416 139.302
2.95 (low) 2650 318 1.368 115.851
1.308 121.286
1.238 114.886
1.323 117.232
1.440 112.424
1300 156 1.347 125.457
1.338 101.128
1.591 110.194
1.449 122.96
1.435 141.387
78 1.655 110.338
1.474 106.805
1.644 118.796
1.242 123.43
1.411 140.866
234 1.247 114.181
1.494 106.892
1.874 108.239
1.389 103.857
1.509 112.236
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Abstract: Composite materials are increasingly being implemented in various solutions,
ranging from conventional applications, like furniture, to more advanced ones, such as
aerospace, based on their excellent properties, such as high mechanical strength and low
weight. There are applications in which these materials are coupled to other parts. To
achieve this connection, drilling processes are commonly used. Drilling causes irreversible
damage to the material, which influences the mechanical strength of the plates. This study
was conducted on 48 carbon/epoxy plates, each with two drilled holes, based on DOE
(design of experiments) and the Taguchi method to design the experimental plan and to
validate the results. Three control factors were considered for drilling: drill bit type, cutting
speed, and feed rate, as it is expected that a low feed rate and a high cutting speed is
the drilling configuration that inflicts the least damage. Subsequently, these specimens
were subjected to enhanced radiography and an image analysis processing tool based on
MatLab® to assess the data collected and compute damage results. At the end, in analyzing
the results of the Taguchi method, it is possible to validate the assumptions on the influence
of the drilling process in delamination extension.

Keywords: composite materials; drilling damage; damage assessment; non-destructive
testing; Taguchi method

1. Introduction

In a progressively developed world, materials with enhanced properties are increas-
ingly sought-after. These materials, like polymeric matrix composites, are widely used in
diverse applications and industries. Examples of these applications are easy to identify,
like the automotive industry [1,2], shipbuilding industry [3], wind turbines blades [4], or
even sports [5] or furniture [6,7].

One of the advantages of these type of material is their excellent properties, such as
high mechanical strength combined with low weight, resulting in a high specific strength.
As aresult of the way that parts are produced, they also provide a near-net shape, character-
ized by good surface finishing and no need for large machining processes. However, there
are situations in which, due to the need to assemble structural parts, machining, especially
drilling, is necessary. Drilling is a complex process that can cause significant damage,
delamination being the most relevant, by negatively affecting the mechanical properties
of the machined plates. This outcome of the drilling process and its consequences has
been extensively studied by a considerable number of authors [8-13] and some significant
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revisions concerning advances in drilling techniques and delamination evaluation can be
found in [14-16]. Delamination, which occurs at the entrance and exit of the hole, is one of
the major damages to be studied.

1.1. Composite Plate Drilling

In drilling, material removal occurs due to the contact and rotation of the drill bit
on the workpiece. Normally, drills have two cutting edges and two flutes to allow the
easy removal of chips from the machining zone. The force that is exerted in the direction
perpendicular to the part is called the axial thrust force (F,), and it is dependent on the
plate material, the drill bit geometry and the drilling parameters. This axial thrust force is
considered as primarily responsible for the damage caused in the drilling process. In [8],
the authors investigated the influence of cutting speed, feed rate and tool diameter on
the uncut fiber and delamination damage on composite sandwich structures using DOE
(design of experiments), showing the influence of feed rate and the possibility of achieving
an optimum point for cutting speed and tool diameter. In [9,10], similar conclusions on
the importance of feed rate on damage were confirmed. Rajkumar et al. [11] conducted an
experimental investigation using RSM (response surface methodology) to determine the
influence of these parameters on the machining of composites, revealing the importance of
drill diameter on delamination and thrust force. The influence of different drill geometries
was the focus in [12,13], demonstrating the influence of tool geometry.

Figure 1 [15] outlines the main parameters that influence the drilling operation in
composite materials. This figure summarizes the inputs that condition and alter the drilling
for a composite material. In [14-16], it is possible to find reviews of the issues related
to drilling of fiber-reinforced composites, including the minimization of delamination
extension and the path to high-quality drilling, presenting the main findings of recent
papers. The main parameters that influence conventional drilling are feed rate, cutting
speed, and drill bit geometry. Of these parameters, that regarded as the most important
is the feed rate as it is directly related to the axial thrust force, thus defining the damage
caused by the drilling. Cutting speed is the second most important parameter among those
mentioned above [10].

Process
Parameters

Drill Geometry Drill Material

Cutting speed Twist drill Cemented carbide

Step drill
Straight flute drill

High speed steel

Feed rate =——jp!

Type and flow of Coated carbides

Brad and spur drill
Polycrystalline
diamond

Core drill and others

Drill point angle

Drill diameter—p> Toolwear:

Fiber volume fraction e

Drill zone
temperature

Fiber orientation e——ps»-
Workpiece thickness =

Workpiece Workpiece and Drill
Material bit Attributes Other Causes

Figure 1. Cause and effect diagram showing the influence of various parameters on performance
characteristics of drilled composites [15].

Tool geometry also has some influence on the development of axial thrust force during
drilling. Besides the standard twist drill, with variation of the point angle, defined as the
angle formed by the two cutting edges of the drill bit, other drill geometries have been used
when studying the drilling of composite plates, like Brad and Spur, step, straight-flute or
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core drill;, see Figure 2, showing some of the drills used to produce holes in composites [15].
The importance of drill point angle on the progress of axial thrust force and damage caused
by drilling should be noticed. When using sharp-angled tools, lower cutting forces and
less delamination damage is expected, whereas obtuse-angled tools register higher thrust
forces, causing more delamination damage [17-20].

Two-facet twist drill Brad and spur drill Eight-facet twist drill
| .
Tapered drill reamer Straight-flute drill bit Step drill bit

Core-twist drill Core-saw drill Core-candlestick drill

Step-core-saw drill Step-core-candlestick drill

Candle stick drill Saw drill Core drill

Figure 2. Various drill geometries employed in the drilling of composites [15].

1.2. Non-Destructive Testing of Drilled Composite Plates

To achieve the necessary results in order to quantify and qualify the damage exten-
sion, it is necessary to analyze the region around the drilled holes with non-destructive
techniques to determine the required geometrical parameters of the affected areas and,
eventually, the mechanical properties of the materials after machining, ensuring the neces-
sary strength [21-24]. The determination of mechanical properties of the drilled coupons is
outside the scope of this study.

Non-destructive testing, or NDT, is particularly important in the evaluation and
characterization of materials. Some of the NDT methods most commonly used in composite
materials are radiography, ultrasound, eddy-current or tera hertz, among others. All these
methods are suitable to detect delamination or other damage in the materials. When using
radiography, it is normal to associate the use of liquid penetrant testing, by immersing the
plate in a contrasting fluid. In enhanced radiography, a contrasting fluid is used to improve
radiographic images. These liquids can help in the detection of small flaws in the interior
of the material under analysis. As they are oriented perpendicularly to the radiation beam,
delaminations are well detected by this method [25-27].

X-ray computed tomography (CT) has been increasingly used in composite materials
as a technique for non-destructive testing. This technique allows for the reconstruction
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of the part, enabling highly accurate inspection of composite materials, as these materials
are characterized by their heterogeneity and damage is sometimes difficult to carry out
a proper assessment on. Therefore, 3D imaging can be used to analyze and evaluate the
possibility of existing damages and thus ensure structural integrity of the parts. This
technique is based on the computational reconstruction of a 3D image, obtained by the
beams of radiation made from various angles of a part [28,29]. Examples of the use of this
technique can be found in [30,31]

The ultrasound method is based on the incidence of high-frequency sound waves,
between 20 kHz and 25 MHz, on the material to be analyzed. Due to the properties of
composite materials, frequencies between 1 and 5 MHz are frequently applied. The most
common defects detected in composite materials are fiber breakage, inclusions, matrix
cracking and delamination [32].

Eddy-current can be adapted to characterize subsurface defects in composites, like de-
laminations, microcracks, porosity or fiber breakage, providing an effective and economical
solution for the non-destructive inspection of CFRP [33,34].

As a final note for the use of Terahertz waves as NDT method, these waves use
signal frequencies between 300 GHz and 3 THz, with wavelengths ranging from 1 mm to
100 pm. This method is characterized by using non-ionizing radiation to the detriment
of ionizing radiation, such as X-radiation, assuring safety for the operator or avoiding
consequences to biological samples. Terahertz demonstrates effectiveness in penetrating
non-conductive materials, such as ceramics and plastics. The use of Terahertz as a non-
destructive method has deserved the interest shown in recent research [35,36], as some
advantages are easily recognized.

1.3. Image Processing Techniques for Delamination Assessment

A characteristic that is common to all these non-destructive methods is the recording
of images to allow for posterior assessment of the geometrical features of the region around
the drilled hole, as delamination criteria apply based on this. The processing and analysis
of the images obtained during the process of radiography of the holes is a fundamental
step towards the results of this dissertation. Image processing, based on MatLab®, version
23.2 or similar software, is a method frequently used to help on the quantification of the
delaminated area around the hole, referred to by previous studies of the team involved
in this work, such as Durao et al. [37] or Silva et al. [38]. The ultimate goal in any image
processing method is to obtain images in which the pixels that correspond to the damaged
area have one color, usually white, and the rest of the pixels in the same image another
color, usually black (see Figure 3). The boundaries between the drilled region and the
damaged area or between the damaged area and sound plate have various shades, and
the same is true for the damaged area, the drilled area or the plate surface. It is therefore
necessary to define a strategy that permits a clear definition of the contours and areas. A
technique often used for this purpose is the use of threshold. Threshold is an algorithm
that calculates an edge value, which divides the grayscale values, turning the image into
a binary image. In other words, the algorithm assigns a value to each color in the image,
between 0 and 255, calculates an average value of the grayscale of an image and assigns
a black pixel for values below the defined threshold and a white pixel for values above
it, resulting in a black-to-white image, with sharper contours and areas. Several software
applications that allow image processing already have the threshold tool incorporated, as
is the case with Matlab®, used in the study here presented.
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Binarized image

Enlargement of the marked area

o

Cc
Figure 3. Example of a damaged area region: A (black outer region) is the undamaged coupon;
B (black region) is the hole; C (white region) is the damaged area (full line).

Alternative approaches to the assessment of damaged area are the use of ANN (Artifi-
cial Neural Networks) or even the use of Al tools, considering the increased computational
capacity of modern computers. Both can be used for any process where the starting point is
an image obtained by some NDT method, as in those mentioned in 1.2. Concerning ANN,
this research team has presented a novel solution based on an artificial neural network in
the analysis of radiographic images [39]. In [40], recurrent neural networks (RNNs) were
developed and implemented to estimate tool wear during composites drilling.

The study of delamination requires quantifying it in some way. Only in this way is it
possible to assess how the various factors already mentioned can affect delamination, to
establish comparisons between them and to seek solutions to mitigate this phenomenon.
The evaluation of delamination begins with obtaining some kind of image of the drilled hole
and its peripherical region [38]. Afterwards, it is fundamental to define some mathematical
criteria for this assessment. One of the early criteria presented was the Delamination Factor
(Fq) [41], Equation (1), which is obtained by the ratio between the maximum diameter of
the damaged area (Dmax) and the nominal diameter of the hole (Dy).

Fy= S )

However, this factor has the limitation of being one-dimensional, not considering the

effect of the damaged area, so two holes with different areas of damage can have the same

value of Fy (see Figure 4) [42]. Additionally, in cases where the damaged area is more

irregular and not circular, it is advisable to use the damaged area to quantify delamination
instead of the maximum diameter.

Dmaa
/]

Fy= Dimaxi — Dumax2

o=
Duom Dnom

Figure 4. Example of equal delamination factors for different damaged areas (damage area is marked
in red) [42].
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Several solutions have been proposed to overcome this problem (see Davim et al. [43]),
which suggested the Adjusted Delamination Factor, Equation (2):

Dmax Amux
Fi, = 2
da w DO + JB AO ( )

where A,y is the damaged area and Aj the nominal hole area.

Recently, Tsao et al. [44] developed the Equivalent Delamination Factor, (Feq), which
relates an equivalent diameter (D), see Figure 5, to the nominal diameter of the hole (Dy),
Equations (3) and (4). This criterion was adopted for the study here presented.

D,
Feq = Do 3)
4(A 4 Ag)\*°
D, = (A4 20)) @
7T
. Delamination area

’
—e |:| Hole area

Figure 5. Scheme for Equivalent Delamination Factor.

A tridimensional delamination criterion (Fy) was recommended by Xu et al. [45] and
it would be interesting to consider this factor in this work, as it includes the accumulated
volume of the various delaminated plies along the plate, Equation (5), where p is the
number of layers and k is the number that specifies the delaminated ply. However, for
the current state of the radiographic setup, this option was not possible to incorporate,
remaining as a challenge to meet in future work.

1 AR
F,==-Y" d 5
o= YA, (5)

Therefore, understanding and predicting how the drilling process can affect the dam-
age extension and, consequently, the mechanical strength of composite plates is the main
purpose of this study. The use of the Taguchi method is helpful in designing the experimen-
tal sequence and helping with a sound analysis of the results obtained regarding damage
evaluation and correlations with the experimental factors defined for this study.

2. Materials and Methods

To evaluate the effect of drilling on composite materials and considering the informa-
tion collected in the bibliographic review, the main parameters of drilling to include in this
study were decided: feed rate, cutting speed and drill bit geometry. Two possible levels
have been assigned to each of these characteristics. For feed rate, the values of 0.05 and
0.2 mm/rev were established. The choice of these values was based on bibliographic re-
search and analysis of previously published papers in the same field [13-17,21,22,37,38,46].
These values are within a range of acceptable drilling values for the composite material and
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from which satisfactory results are predictable. For the cutting speed, the decision was to
use spindle speed values of 500 and 2000 rpm, corresponding to 9.4 and 37.7 m/min. For the
6 mm drill geometry, a step drill from INOVA Tools (Kinding, Germany), Ref. 850.037.00,
with a first diameter of 3.7 mm and a point angle of 140° was chosen (see Figure 6a). When
using a step drill, it is reported that larger feed rates can be used, meaning shorter cycle
times, without delamination damage [46]. The other option was the use of a twist drill in
a pilot hole drilling sequence, using two twist drills of different diameters, with a ratio
of 0.4 from the pilot to the final hole, following a previous published study [47]. The
advantage of pilot hole drilling on delamination reduction by cancelling the chisel edge
effect during final diameter machining was evidenced in [48,49]. For the twist drills, the
point angle was 118°. These tools were also from INOVA Tools, Refs. 701.024.000 for the
pilot hole and Ref. 701.060.000 for the final hole (see Figure 6b). The drills selected are
capable of drilling composite materials and are within a range that has normally been
evaluated in this type of study.

———=s

Figure 6. Tools used in experimental work (Source: INOVA Tolls catalogue): (a) step drill;
(b) twist drill.

A summary of the experimental levels and their unfolding for experimental work is
provided in Table 1.

Table 1. Experimental plan—parameters levels.

Coupon ID Drill Geometry Fflfri /I::‘:e Spincil;n?peed
1-PD0505 Pilot hole drilling 0.05 500
2-PD0520 Pilot hole drilling 0.05 2000
3-PD2005 Pilot hole drilling 0.20 500
4-PD2020 Pilot hole drilling 0.20 2000
5-5T0505 Step drill 0.05 500
6-5T0520 Step drill 0.05 2000
7-5T2005 Step drill 0.20 500
8-5T2020 Step drill 0.20 2000

With the help of Minitab® software, version 22.1.0, a DOE (design of experiment) was
created for the application of the Taguchi method, resulting in two different plans. One is
simpler, with only four configurations of the control factors, which results in a sample array
of four, which was abandoned. Another DOE was prepared, with all the configurations
of the three factors, which resulted in an array of eight, as illustrated in Table 1, together
with the identification adopted for the plates drilled in each option. Drill bit wear was
considered as the noise factor; therefore, the planning was repeated to check and verify
the results.

To run this experimental plan, four laminate plates were produced, each consisting of
twelve layers of prepreg, symmetrically stacked and balanced. The laminate was of the
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cross-ply type, and the stacking sequence was [0°/90°]55. The plates were produced using
a HEXCEL prepreg from HEXCEL®, Stamford, CT, USA, composed of AS4 12K carbon
fibers (HexTow®) and 8552 epoxy resin (HexPly®). The prepreg has a nominal fiber volume
of 57%. Material characteristics of the prepreg material can be seen in Table 2. The plates
produced were approximately 300 mm wide and long and 2.2 mm thick. Before drilling,
plates were cut in coupons of the appropriate dimension for the testing sequence planned,
considering the coupons needed for the complete DOE. A total of 12 holes were drilled at
each level, including the necessary repetitions for statistical analysis soundness, and tool
wear evaluation, only at two levels, new and worn. Machining was performed in a HAAS
VE-2 machining center (Figure 7a,b).

Table 2. Prepreg mechanical properties—HexPly® 8552 UD Carbon Prepregs, in HEXCEL, USA.

Test Units Value
0° Tensile Strength MPa 2207
90° Tensile Strength MPa 81
0° Tensile Modulus GPa 141
90° Tensile Modulus GPa 10
0° Compression Strength MPa 1531
0° Compression Modulus GPa 128
0° ILSS MPa 128
In-plane Shear Strength MPa 114

Figure 7. (a) HAAS VF-2 CNC machine (HAAS, Oxnard, CA, USA); (b) Image of a drilled coupon.

Then, a non-destructive alternative was determined, in this particular case enhanced
radiography, since this had already been used in previous works, reducing uncertainty in
results [37,38,50]. For enhanced radiography, coupons were immersed in diiodomethane,
a contrasting liquid, for 15 min and then radiographed with the help of a digital imaging
system consisting of a 60 kV, 300 kHz Kodak 2100 X-ray system (Kodak, Rochester, NY,
USA) associated with a Kodak RVG 5100 digital acquisition system. The exposition time
was set to 0.25 s [50]. Following the line of this study, the images obtained by enhanced
radiography were analyzed and treated using a program developed in MatLab®. This
software was used to convert radiographic images into binary images composed of black
and white pixels. From this point, the program calculated the values of the geometric
parameters that are understood as useful, knowing that each pixel corresponds to a square
with a side of 0.0185496 mm.
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As already stated, the delamination criteria used in this study was the Equivalent
Delamination Factor, (F.q) [45] where the delamination assessment is computed from the
measurement of the delaminated area resulting from the use of a computational routine
developed on MatLab® for radiographic image treatment, following Equations (3) and
(4) (see Section 1) and enabling the values of the delaminated area around the hole. The
minimum value of this factor is 1 (one), equal to a situation where no delamination is
observed, or greater than 1 (one) if some delamination is observed. Inherently, the greater
the value of this factor, the greater the delaminated area.

Finally, the application of the Taguchi method was completed to validate the results
and identify the best drilling configuration. With this method, it is also possible to evaluate
the interactions that the different factors have with each other and the significance that
each of them represents for the result. The drill bit wear was considered a noise factor.
Therefore, the values of this factor were inserted for new and worn drills.

To analyze the results obtained by this method, it is necessary to identify the best level
for each control factor. Through the S/N ratio (signal/noise), the configurations of the
control factor that minimize the variability caused by the noise factor are identified. In the
linear analysis of the model, several coefficients are calculated, the most important being
the p-factor. This is calculated for each control factor and for the interactions between each
of the factors considered. The p-factor determines the statistical significance of each control
factor in the response. It is usually assigned a significance level « of 0.05, which indicates
a 5% risk of concluding that there is a significance when in fact this does not exist. If the
p-value is less than or equal to the significance level, it is possible to conclude that the factor
in question is statistically significant for the response. If the p-value is greater than or equal
to the level of significance, it is not possible to conclude that there is significance among
the experimental factors involved [51,52].

3. Results and Discussion
3.1. Preliminary Testing

As a starting point, for confirmation of plate properties, a tensile test according to
ISO 527-1:2019 [53] was performed. As the relevant properties considered were the elastic
modulus and the tensile strength of the material, a test speed of 1 mm/min was adopted
until a load of 8 kN was reached and then switched to 2 mm/min. to provide data for both
properties. A summary of the results is presented in Table 3, concerning the data from
8 tests.

Table 3. Average mechanical properties of the plates.

Test Units Average Std Dev
Tensile Strength MPa 971.44 82.09
Tensile Modulus GPa 66.55 2.34

During the drilling phase, no data were monitored regarding axial thrust force, as
there are previous studies confirming the effect of tool geometry, cutting speed or feed rate
on this outcome.

3.2. Delamination Measurement

The enhanced radiographic analysis process, described in the previous section, per-
mitted quantification of the damage caused by the drilling operation. For that purpose,
the plates were immersed for 15 min in diiodomethane, a contrasting fluid, before image
capturing. Through the image processing sequence, it was possible to obtain the following
results (see Table 4) that represent the average of 6 coupons under each drilling condition.
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Table 4. Measured hole and delamination values.

Coupon ID Hole Area Damage Area Feq
1-PD0505 28.227 1.312 1.023
2-PD0520 28.456 0.759 1.013
3-PD2005 28.566 1.552 1.027
4-PD2020 28.547 1.097 1.019
5-ST0505 28.248 1.694 1.029
6-ST0520 28.365 1.154 1.020
7-ST2005 28.492 1.832 1.032
8-5T2020 28.571 1.121 1.028

Average PD 28.449 1.180 1.022

Average ST 28.419 1.450 1.028

By analyzing the average values calculated, the holes with the pilot hole strategy return
lower values for the damaged area, meaning that less damage was caused by drilling.

Taking all the values obtained from the image treatment of the radiographs, it was
possible to calculate the equivalent delamination factor for every situation, using the criteria
as defined in Section 2 (see [44] and Equations (4) and (5)), where the relevant values in
Table 4 are the damaged area and the nominal dimensions of the drilled hole. Resulting
Feq average values are also presented in Table 4.

By analyzing these results, it is possible to conclude that a higher cutting speed and a
lower feed rate cause less damage, as the higher cutting speed is the common factor in the
two best values shown in Table 4.

From the combination of these factors for both drilling strategies, it results that the
configuration that has a higher equivalent delamination factor is that with a high feed
rate and a low cutting speed, using a step drill geometry. On the other hand, the drilling
operation that results in a lower equivalent delamination factor is that which results from
using a pilot hole strategy with a low feed rate and a high cutting speed, considering
the range of this experimental study. Lower feed rates reduce the thrust force during
drilling, keeping these values below the threshold for delamination onset, as demonstrated
in [54]. Higher spindle speeds avoid long contact between the cutting edges of the drill
and the hole walls, reducing temperature during drilling, which prevents matrix softening
and, consequently, delamination or other related damages increase in temperature during
dry drilling, reduce the elastic modulus of the CFRP and cause thermal expansion of the
drill [13,55].

Based on previous knowledge of the delamination effects on mechanical features of
plates [13,22,38,48,56], an increase in the Fo4 value represents a plausible decrease in the
bearing strength resulting from the Bearing test (ASTM D5961 [57]), or another mechanical
test with the same objective. This trend is normally expected, meaning that a higher value
of Foq represents greater damage around the hole that, in turn, causes a greater loss of the
mechanical strength of the plate. The completion of destructive confirmation tests is out of
the scope of this study.

3.3. Taguchi Method Analysis

Finally, the application of the Taguchi method was completed to validate the results of
this experimental design and identify the best drilling configuration among the options
considered in this study. With this method, it is also possible to evaluate the interactions
that the different factors have with each other and the significance that each of them
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represents for the result. The data for the equivalent delamination factor (F.q) was then
analyzed. For that purpose, drill wear was considered as a noise factor. Therefore, the
values of this factor were inserted for new and worn drills. For worn drills, new drills equal
to those used in the first experimental step were used to produce 48 consecutive holes in a
sacrificial plate identical to those of the experimental sequence.

For the F.q analysis, the ratio chosen for the S/N ratio was “lower is better”, because
the objective of the experiment was to minimize the response, which in this case is the Feq
value. Although the S/N ratio was considered as “lower is better”, the choice of optimal
levels should be made in such a way that the S/N ratio value is maximum. This is because
minimizing the loss-to-function is associated with maximizing the S/N ratio; therefore, the
higher the value of this ratio, the better. Tables 5 and 6 represent the linear analysis for the
equivalent delamination factor average value and for the correspondent S/N ratios.

Table 5. Analysis of variance for experimental results.

Source DF SQ Seq SQ(aj) OM(aj) F %
Dirill type 1 0.000094 0.000094 0.000094 214.36 0.043
Feed rate 1 0.000067 0.000067 0.000067 152.60 0.051
Cut speed 1 0.000113 0.000113 0.000113 257.40 0.040
Drill*Feed 1 0.000000 0.000000 0.000000 0.98 0.504
Drill*speed 1 0.000004 0.000004 0.000004 9.09 0.204
Feed*speed 1 0.000005 0.000005 0.000005 10.86 0.188
Residual error 1 0.000000 0.000000 0.000000
TOTAL 7 0.000284

Table 6. S/N ratio variance analysis.

Source DF SQ Seq SQ(aj) OM(aj) F %
Dirill type 1 0.006808 0.006808 0.006808 231.74 0.042
Feed rate 1 0.004790 0.004790 0.004790 163.06 0.050
Cut speed 1 0.008221 0.008221 0.008221 279.83 0.038
Drill*Feed 1 0.000031 0.000031 0.000031 1.04 0.494
Drill*speed 1 0.000302 0.000302 0.000302 10.28 0.192
Feed*speed 1 0.000364 0.000364 0.000364 12.38 0.176
Residual error 1 0.000029 0.000029 0.000029
TOTAL 7 0.020544

By analyzing the values in the tables above, it is possible to conclude that for the Fqq
average, the drill type and the cutting speed are significant as they have a p-factor less
than 0.05. However, the lowest value is that of cutting speed, so this control factor is the
most significant, followed by the drill type. The feed rate factor has a value of 0.051, which
makes it not significant, nonetheless this value is very close to the limit. For the interactions
between the control factors, all of them have a p-factor greater than 0.05, which means that
they do not have statistical significance for the average calculated for F.4. Regarding the
S/N ratios, the p-factors of the control factors are all significant for the result. On the other
hand, the interactions between them are not statistically significant.

For a better interpretation of these results, it is possible to elaborate several graphs
from the analysis software, as illustrated below, see Figures 8 and 9.
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Figure 8. Average values—main effects of experimental factors.
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Figure 9. Signal-noise ratio of experimental factors.

As previously stated, the objective is to maximize the value of the S/N ratio. The
drilling setup that allows this premise employs a pilot hole strategy using a standard twist
drill with a 140° point angle, a feed ratio of 0.05 mm/rev and a spindle speed of 2000 rpm,
equal to a cutting speed of approximately 38 m/min when a 6 mm diameter drill is used.
Note that different drill diameters can turn into diverse conclusions.

The concern of drilling with a new or with a worn drill bit was also compared for
Feq. Therefore, it is possible to say that the values of the equivalent delamination factor
are lower in drilling with the new drill than with the worn one. The worn drill is also
associated with higher standard deviations of damage extension, characteristic of a more
irregular drilling.

Finally, and to validate the results, the Taguchi method was used, and it was possible to
identify which control factors were most significant and evaluate the interactions between
them. For the F.q data, we can conclude that all factors are significant, with the cutting
speed as the most significant factor, and that the ideal drilling configuration is the one
performed with a pilot hole strategy, with a feed rate of 0.05 mm/rev and a spindle speed
of 2000 rpm.

182



Materials 2025, 18, 1595

4. Conclusions

This work aimed to study the effects of drilling on the damage extension of a composite
plate by using enhanced radiography, an image processing tool based on MatLab®, and the
Taguchi method. With this purpose, several drilling tests were carried out to characterize
the damage around the drilled holes under diverse conditions of drill geometry, feed rate
and cutting speed.

The analysis by enhanced radiography permitted to quantify the damage extension
caused by drilling, calculating the equivalent delamination factor (Feq).

The application of Taguchi method was crucial to validate the results and identify the
best drilling configurations. It was concluded that the combination of pilot hole drilling,
feed rate of 0.05 mm/rev and a spindle speed of 2000 rpm provided the best results in terms
of lower drilling-induced delamination extension. Statistical analysis showed that spindle
speed and the drill geometry are significant factors, while feed rate has a lower significance.

This study demonstrated that the drilling parameters can influence damage extension
in composite materials. Through a detailed experimental approach and the application
of statistical methods, such as the Taguchi method, it was possible to identify the drilling
configurations that could improve the quality of the holes.

Future work should include the use of computed tomography (CT-scan), making
it possible to apply a three-dimensional delamination factor and, consequently, obtain
more accurate results. Another possible improvement would be the use of Al (Artificial
Intelligence) regarding the definition of the threshold value in image processing.

Other works could include similar studies with different composite materials, varying
the number of layers and the stacking sequence or the fiber direction, thus contributing to
an improved understanding of the mechanical behavior of composite materials.
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