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Abstract: For the simple bridge structure, the finite element model established by drawing and elastic
mechanics method is accurate. However, when faced with large and complex long-span bridge
structures, there are inevitable differences between the finite element model and the physical model,
where the model has to be updated. It is problematic that the updating structural matrix cannot be fed
back into the existing general finite element calculation software in the traditional structural matrix
updating method. In this paper, a parameter-type updating method based on the “Kriging model +
swarm intelligence” optimization is proposed. The Kriging model, based on Genetic Algorithm (GA),
Bird Mating Optimizer (BMO), and Particle Swarm Optimization algorithm (PSO), is introduced
into the finite element model, updating this to correct the design parameters of the finite element
model. Firstly, a truss structure was used to verify the effectiveness of the proposed optimization
method, and then a cable-stayed bridge was taken as an example. Three methods were used to
update the finite element model of the bridge, and the results of the three optimization algorithms
were compared and analyzed. The results show that, compared with the other two methods, the
GA-based model updating method has the least time due to the small computation. The results
of the BMO-based model were time consuming compared to the other two algorithms, and the
parameter identification results were better than the GA algorithm. The PSO algorithm-based model
updating method to solve the finite element model was repeated, which required a large amount
of computation and was more time consuming; however, it had the highest parameter correction
accuracy.

Keywords: model updating; Kriging model; swarm intelligence optimization; cable-stayed bridge

1. Introduction

During the bridge structural analysis, the finite element model of the structure is
usually established according to the design drawings. In order to obtain the real dynamic
characteristics of the structure, the parameters of the model must be set accurately [1–3].
By analyzing the structure with an accurate finite element model, the static and dynamic
responses of the structure can be predicted, and the damage condition of the structure
can be directly simulated [4,5]. Therefore, it is of considerable significance to obtain the
real finite element model of the bridge structure [6–8]. However, in general, due to the
complexity of the bridge structure itself, it is challenging for researchers to build models
that match theory exactly with the experiment.

Buildings 2022, 12, 504. https://doi.org/10.3390/buildings12050504 https://www.mdpi.com/journal/buildings1
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The errors between the calculated results of the theoretical model and the test results
are attributed to three aspects: (1) model structural error, (2) model parameter error, and
(3) model order error [9]. The model error is usually related to the selected mathematical
model, which depends on the main characteristics of the actual structure. The error of the
model order is caused by the finite element discretization, which cannot be avoided in
finite element analysis. Therefore, for most of the bridge structure finite element model
updating, the key is to use appropriate methods to reduce the second type of error, that is,
the model parameter error [10].

At present, methods of bridge structural model updating mainly include: frequency re-
sponse function method [11], neural network method [12], genetic algorithm [13], simulated
annealing method [14–17], and statistical method [18,19].

The method of frequency response function [20] can provide adequate response
information by itself; however, when using this method, response information needs to
be obtained in a high-demand environment, which limits the application of this method
to some extent. Because of its strong learning ability and nonlinear mapping ability, the
neural network is suitable for finite element model updating. However, the method has
some defects in robustness. The genetic algorithm [21] is a worldwide optimization search
algorithm. It is natural and universal, robust, suitable for parallel processing, efficient,
and practical. The selection of fitness function determines the speed and effect of the
algorithm. The simulated annealing method [22] is a standard method of probability
calculation. Because of its high quality, a strong initial robustness, simplicity, generality,
and ease of implementation, it is often used to search for the optimal solution in an ample
space. However, this method also has the disadvantages of a high initial temperature, a
slow cooling rate, a low termination temperature, and a time-consuming optimization
process. The model updating method based on the statistical method only uses the finite
element analysis during the initial sample preparation stage. Therefore, it is suitable for
all kinds of projects [23]. However, when using this method, feature extraction, parameter
screening, and response surface fitting are also needed, and there are problems such as
inappropriate feature extraction and multiple types of parameter selection.

Most of the above methods have problems such as too many parameters to be corrected,
too much calculation, and low efficiency of model updating. Not all of the parameters to
be updated have a significant influence on the structural model. Therefore, the method
based on sensitivity analysis should be used to analyze the updated parameters. The
problem with sensitivity-based model updating is that the impact of parameters with high
sensitivity on the structure may be small [24], while the influence of parameters with low
sensitivity on the structure may be critical. Therefore, it is more meaningful to adopt the
structural model updating method, which is not based on sensitivity.

Genetic algorithm (GA) [21] is a calculation method based on “natural selection and
survival of the fittest” in the theory of evolution. It is a parallel, random, and adaptive
search algorithm. Because GA can effectively avoid the problem of local optimization in
the search process, it developed as one of the principal artificial intelligence algorithms.

Bird mating optimizer (BMO) is a new kind of swarm intelligence optimization algo-
rithm [25] which has fewer controlled parameters and can avoid local optimization in the
optimization process. Therefore, the BMO algorithm has become a lively research direction
in structural finite element model modification.

Particle Swarm Optimization (PSO) [26], an evolutionary computing technology de-
veloped in 1995, is derived from the simulation of a simplified social model and belongs to
a swarm intelligence algorithm.

In this paper, we firstly studied the updating method of the Kriging model [27].
Three kinds of optimization algorithms, GA, BMO, and the PSO, were applied to the up-
dating method of the Kriging model, respectively. Secondly, a truss structure verified the
effectiveness of the three methods and compared the time consumption and calculation ac-
curacy. Next, we applied the Kriging model updating method based on three optimization
algorithms to a cable-stayed bridge structure for analysis.
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2. Methods

2.1. Kriging Model

The Kriging model is based on the original data of information samples in a specific
region [28,29], and carries out linear unbiased, minimum variance estimation for unknown
data with the same characteristics in the selected region. It consists of two parts: the linear
regression part and the non-parametric part. The non-parametric part can be regarded as
a Gaussian stationary random process, and a polynomial and a random distribution can
represent the Kriging model:

y(x) = f T(x)β + z(x) (1)

f T(x)β = β1 f1(x) + β2 f2(x) + . . . + βm fm(x) = [ f1(x) . . . fm(x)]β (2)

where y(x) represents the unknown function; β represents the regression coefficient; f (x)
represents the polynomial function of the variable x; m is the number of f (x).

In the design space, f (x) can be used to represent the global approximation and z(x)
can be used to simulate the local approximation. z(x) is a Gaussian stationary random
process, the mean value of which is zero and the covariance non-zero, and it obeys normal
distribution N

(
0,σ2). The covariance matrix of z(x) can be expressed as:

E
[
z(xi)z

(
xj
)]

= σ2R
(
θ, xi, xj

)
i, j = 1, 2, . . . , n (3)

where R
(
θ, xi, xj

)
represents the spatial correlation function between selected two points

from samples, which directly affects the accuracy of simulation; θ represents the parameters
of the correlation function; n represents the total number of points in the sample.

To build a completed Kriging model, assuming the test sample points in the region
of n × p are x = (x1, x2, . . . , xn), where xk

i ∈ Rp, p is the number of design variables. The
corresponding output can be expressed as:

Y = {y1(x), y2(x), . . . , yn(x)} (4)

β and σ2 can be estimated as follows:

β̂ =
(

FT R−1F
)−1

FTR−1Y (5)

σ̂2 =
1
n
(
Y − Fβ̂

)TR−1(Y − Fβ̂
)

(6)

where β̂ and σ̂2 are estimated value of β and σ2, F represents the estimated value vector
containing the f (x) for each test point, R is the correlation matrix of the test points, which
can be expressed as:

R =

⎡⎢⎣ R(x1, x2) . . . R(x1, xn)
...

. . .
...

R(xn, x1) . . . R(xn , xn)

⎤⎥⎦ (7)

To get the values of β̂ and σ̂2, the parameter θ should be figured out due to the β̂ and
σ̂2 are related to parameter θ. The maximum likelihood estimation is used to solve the
minimum value of the following equation:

min
θ>0

{
1/2

[
n ln

(
σ̂2
)
+ ln|R|

]}
(8)

Equation (8) is equivalent to an optimization problem, and θ can be obtained by taking

the minimum value of min
θ>0

{
|R| 1

n σ̂2
}

.
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When solving the optimization problem, GA, BMO, and PSO are adopted in the
Kriging model to solve the optimization of θ, respectively. After the parameter θ in
the correlation function is obtained, the optimal linear unbiased prediction result of the
response can be expressed as:

ŷ(x) = f T(x)β̂ + rT(x)α̂ (9)

where rT(x)α̂ represents the difference value of residual error of the regression function
f T(x)β̂, and the vector α̂ can be expressed as:

α̂ = R−1(Y − Fβ̂
)

(10)

rT(x) in Equation (9) can be expressed as the vector of the correlation function between
the test point and the unknown point:

rT(x) = {R(x, x1), L,R(x, xn)} (11)

The Kriging model established can be used to predict the points to be measured. In
Equation (3), the simulation of the random process includes a correlation function that can
affect the stationary characteristics of the model. Then, express the correlation function of
the test point as [30]:

R
(
θ, xi, xj

)
=

p

∏
k=1

Rj

(
θ, xk

i − xk
j

)
(12)

where xk
i and xk

j represent the part k of the test point. Gaussian function can be used as
kernel function of correlation function:

R
(
xi, xj

)
= exp

[
−

p

∑
k=1

θk

∣∣∣xk
i − xk

j

∣∣∣2] (13)

The steps to update the finite element model by Kriging model are showed in Figure 1
and explained as follows:

(1) Determine the variables to be corrected in the finite element model, and then generate a
certain number of samples according to the distribution form of the determined variables.

(2) Substitute the generated samples into the finite element model of the bridge for modal
analysis, and extract the modal correlation information corresponding to the variables.

(3) The variables and the corresponding structural mode frequencies are taken as the
input and output samples, respectively, and GA, BMO, or PSO is used to optimize
the parameters θ in the correlation function of the Kriging model to complete the
establishment of the Kriging model.

(4) Take the frequency of modal test of the bridge as the input, use the Kriging model to
predict the structure modal, and extract the variables by finite element model updating.

2.2. Kriging Model Updating Method Based on GA

When dealing with a specific problem, the GA treats the possible solution to the
problem as a solution space. The solution space is regarded as a population, and the
solution or solution vector is taken as individuals in the population. When the possible
solution to a problem is transformed from the solution space to the search space using the
GA, the transformation process is regarded as coding. GA randomly generates the initial
population and calculates the fitness value of each individual in the population according
to the fitness function. Based on the first generation, according to the evolutionary theory
of “natural selection, the survival of the fittest”, each offspring will inherit a better solution
than the previous generation. In the application of the theory of evolution, individuals
with high fitness are selected and calculated, utilizing crossover and mutation operators in
genetics to generalize new solutions into a new population. Finally, decoding the optimal

4
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individuals in the constrained population and the decoded optimal solution can be taken
as the approximate optimal solution of the optimization problem [13].

Figure 1. Kriging model-based finite element analysis model updating.

The specific steps of using GA to update the finite element model can be summarized
as follows:

(1) Code the samples to generate the initial population;
(2) Set the fitness function of the population, which is the inverse of the difference

between the modal frequency of the model and the measured field frequency. Then
the fitness of the individuals in the population is calculated;

(3) Conduct individual selection, crossover, mutation to generate new progeny population;
(4) Decode the obtained new progeny population and input it into the finite element

model to calculate and extract the modal information of the structure;
(5) Obtain the frequency error by comparing the finite element modal frequency with

the measured frequency. When the error meets the requirement of accuracy, complete
the correction process; if the accuracy cannot meet the requirements, then go back to
step (1).

2.3. Kriging Model Updating Method Based on BMO

The BMO is an algorithm that imitates the mechanism by which birds produce superior
genetic offspring. Consider a set of solution in the optimization problem as a bird. In
nature, birds are divided into males and females, with females representing the better
solution. The mating patterns of female birds are divided into two categories based on
the breeding categories of the birds: polyandry and self-mating. The mating patterns of
male birds fall into three categories: monogamy, polygamy, and hybridization. In the BMO
algorithm, the number of birds in each category is determined by the user, while in the
actual situation, the proportion of birds in monogyny and polygyny is relatively large. In
contrast, the proportion of birds in polyandry and hybridization is relatively small [25].

5
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2.3.1. Monogamy

If a male xM and a female xi mate, the equation for producing offspring is:

xb = xM +w × rg × (xi − xM)
if r1 > mc f , xb(c) = l(c) + r2 × (u(c)− l(c))

(14)

where xb represents the offspring; w is the time-varying weighting factor, which decreases
linearly from 1.85 to 0.15; rg is the vector of random distribution of elements, and the
interval is from 0 to 1. mc f = 0.85 is the variation control factor. r1 and r2 represents the
random number between 0 and 1. c represents the random number between the number
of optimized solutions and 1; u and l represent the upper and lower critical values of the
initial solution, respectively.

2.3.2. Polygyny

Polygyny refers to the male birds that mate with more than one female, and the
formula for the offspring can be expressed as:

xb = xPg + w ×
ni
∑

j=1
rg ×

(
xij − xPg

)
if r1 > mc f , xb(c) = l(c) + r2 × (u(c)− l(c))

(15)

where ni represents the number of females attracted by the male birds; xPg represents the
male birds; xij indicates that the jth female has good genes.

2.3.3. Promiscuity

If the solution of the worst fitness value is mutated then hybrid birds will appear. In
the algorithm, a chaotic sequence generates hybrid birds, and a chaotic sequence generates a
new feasible solution. The offspring of the hybrid birds are calculated by using Equation (14)
with reference to the monogamous birds.

2.3.4. Parthenogenesis

Parthenogenesis birds represent the best result. Calculate the brood as following:

if r1 > mc fP, xb(i) = x(i) + μ × (r2 − r3)× x(i)
if r1 ≤ mc fP, xb(i) = x(i), i = 1, 2 . . . n

(16)

where mc fP represents the variation control factor of self-mating the bird population, which
increases linearly from 0.10 to 0.75, r2 and r3 represents the random number between 0 and
1. μ is the step size and value is 9.1 × 10−3.

2.3.5. Polyandry

In the case of polyandry, the female bird will choose several males with good genes for
mating in order to obtain offspring with better genes. See Equation (15) for the calculation
of the offspring birds.

2.3.6. Steps

In the selection of female or male mates, apply the roulette selection strategy. The
higher the fitness value, the greater the probability of being selected. The specific steps of
using BMO to update the finite element model can be summarized as follows:

(1) Assuming the size of the bird population is m, the probability of selecting the kth
bird is calculated as:

pk =
1/ f (xk)

∑m
i=1 1/ f (xi)

(17)

where f (xi) represents the fitness function of the problem to be optimized; m is the size of
the population.

6
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(2) The selection probability p(xk) and accumulation probability Q(xi) of individuals
are calculated according to their serial numbers.

Q(xi) =
i

∑
k=1

p(xk) (18)

(3) A number r = rand(0, 1) is randomly generated between 0 and 1 to determine
which interval the number falls in. If Q(xi−1) < r < Q(xi), the interval is selected.

(4) Repeat step 3, and stop when the number of selected offspring reaches the re-
quired number.

2.4. Kriging Model Updating Method Based on PSO

PSO is a method developed by simulating the predation behavior of birds. Regard the
set objective function as the behavior of the birds searching for food. Regard the range of
single or multiple variables in the objective function as the flight space of the birds. Regard
the space where the solution of the objective function is located as the space where the birds
are searching for food in flight. Regard the birds as particle groups and regard each bird as a
particle. In the process of searching for and capturing food, carry out information exchange
and transmission among individual birds. The flight trajectory and flight speed are adjusted
continuously, and then prey is gradually approached. When birds are in the process of
finding and capturing food, individual birds continuously share and transmit information.
This sharing of information enables each individual to understand their location. The
information is then updated continuously to determine whether the target they are locked
on to and the flight status is the best combination, and they pass this information on to
other individuals. The birds then search near the target and regard the process of finding
the target as the process of finding the optimal solution in the optimization problem [26].

In the PSO algorithm, assume there is a group of particles with the total number of
m, which belongs to D-dimensional space, and use the position of xi = (xi1, xi2, · · · , xiD),
i = 1, 2, · · ·m for each particle in this group.

Then set the objective function, namely the fitness function. Through the objective
function, the most satisfying position of each particle in the group in the space can be found
and then expressed with Pi = (pi1, pi2, . . . , piD). The velocity of the particle is expressed in
terms of Vi = (vi1, vi2, . . . , viD). Pg =

(
pg1, pg2, . . . , pgD

)
represents the optimal position of

each particle in the group.
The updated position and velocity of each particle in the particle swarm can be

calculated according to the following formula:

v(i+1)d = wvid + c1r1(pid − xid) + c2r2

(
pgd − xid

)
x
(i+1)d = xid + v(i+1)d

(19)

where x(i+1)d represents the position of the next generation of the particle, which is cal-
culated by the current position of the particle xid and the velocity of the next generation
v(i+1)d. w is the weight for speed update, or inertia weight; c1 and c2 is the acceleration
factor, and they are generally taken as c1 = c2 = [0, 4]; r1 and r2 represent the random
number between 0 and 1. The individual optimal solution for particles can be expressed
in terms of Pbest, and the optimal solution for particle swarm can be expressed in terms
of Gbest.

The optimization process of the PSO algorithm can be summarized as follows:

(1) It is assumed that the total number of particles in the particle swarm is m, which
belongs to D-dimensional space. The inertia weight is w , the acceleration factor is c1
and c2, and the maximum flight speed is vmax.

(2) Calculate the fitness value f (x) of each particle according to the objective function,
compare the current fitness value of each particle with the adaptive value of the
optimal individual position, compare the current fitness value of each particle Pi with

7
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the fitness value of the global optimal position Pbest, and calculate the velocity v(i+1)d
and position x(i+1)d of the particle at the next moment.

(3) Iterative calculation.
(4) Calculate the fitness value of each particle and calculate the optimal position of the

individual. Calculate the optimal position of the population and the optimal fitness
value of the population, and update the speed and position of the particle.

(5) Determine whether the iteration reaches the maximum number or the convergence
threshold. If the iteration reaches the maximum number or the convergence threshold,
the optimization will stop. Instead, go back to step 3.

2.5. Latin Hypercube Sampling

Based on the theory of small sample learning and prediction, the samples of the Kriging
model are limited. The method of selecting sample points is particularly important to
carrying out the experimental design. In this section, adopt the Latin hypercubic sampling
method for sample experimental design.

Latin hypercubic sampling is a stratified sampling method proposed by Makay et al. [31].
This method can avoid the problem that the sampling points overlap in the local area,
thereby ensuring that the sampling points are evenly distributed in the sampling space. Sup-
pose there is a hypercube, the variable dimension of which is n, xi ∈ [ xi

l xi
u
]
, i = 1,2 . . . n,

xi represents the i th dimension variable. xi
u and xi

l are the upper and lower bounds of
the xi, respectively. The operation of generating m samples using the Latin hypercube
sampling method is as follows:

(1) Determine the number of samples m to be taken.
(2) Divide the interval of each dimension xi into m non-overlapping cells with the same

probability, and divide the original hypercube into small hypercubes with the number
of mn.

(3) Generation matrix M, whose dimension is m × n. Each column in the matrix M is
formed by random arrangement of sequence {1, 2, · · · , m}.

(4) Each row in the matrix M represents a small hypercube to be extracted, and a point is
randomly selected from each small hypercube to obtain the required m samples.

3. Finite Element Model Updating for Two Bridges

3.1. Verification of Plane Truss

The Kriging model method based on GA, BMO, and PSO algorithms is used to update
the finite element model of a 14-span plane truss structure in reference [32], as shown in
Figure 2. There are two supports in the model with a fixed support at the left end and
hinge support at the right end. Each member in the structure is a round steel tube with an
inner diameter of 0.054 m and an outer diameter of 0.085 m. The initial elastic modulus is
210 GPa, mass density is 7800 kg/m3, and Poisson’s ratio is 0.3.

Figure 2. The diagram of plan truss (Unit: cm).

During the finite element model updating, the elastic modulus and density of the ma-
terial are selected as the parameters to be corrected. Assume that the structural parameters
to be corrected obey the normal distribution of X~N (μ, σ). μ is the initial value (i.e., the
design value) of the parameters to be corrected. σ = μ × α is the standard deviation of the
parameters to be corrected, and α represents the coefficient of variation of the parameters
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to be corrected. Set the coefficient of variation of the design value of the elastic modulus
and density as 5%.

Use the Latin hypercube sampling method to sample the elastic modulus and density,
and substitute 100 samples into the finite element model of the bridge structure, and
calculate the first six modal frequencies of 100 truss models. Take the first three frequencies
of the structure obtained in the model as training samples, and the Kriging model based on
the GA algorithm, BMO algorithm, and PSO algorithm to train the samples, respectively,
and obtain the corresponding training models of the three methods. According to the
measured data, and using the best three groups of a training model to predict, the elastic
modulus and density can be obtained. Use the obtained values to input into the finite
element model based on three methods and compare with the reference [32]. The specific
results are shown in Table 1.

Table 1. Comparison of optimization results of truss model (Unit: Hz).

Order Measured

Ref. [32] GA BMO PSO
Modal

Frequency
Error Modal

Frequency
Error Modal

Frequency
Error Modal

Frequency
Error

1 8.79 8.83 −0.55% 8.79 0.00% 8.76 0.34% 8.75 −0.46%
2 29.60 30.18 −1.48% 29.78 −0.60% 29.98 1.28% 29.78 −0.60%
3 43.39 41.65 2.23% 42.66 1.69% 43.14 −0.58% 42.92 1.08%
4 59.10 59.62 −0.24% 59.55 −0.75% 59.77 −1.13% 59.19 −0.15%
5 90.62 91.34 −0.40% 91.09 −0.52% 90.75 0.14% 90.85 0.25%
6 119.81 120.84 −0.11% 120.86 −0.88% 119.95 0.12% 119.88 0.06%

As shown in Table 1, the results obtained by the Kriging model based on the GA
algorithm, BMO algorithm, and PSO algorithm are close. The maximum modal frequency
error of the reference [32] is 2.23%, and the minimum value is −0.11%. The maximum
mean error of results based on the GA algorithm, BMO algorithm, and PSO algorithm
is 1.69%, 1.28%, and 1.08%, respectively, and the minimum value is 0.00%, 0.12%, and
0.06%, respectively.

3.2. Finite Element Model Updating for Cable-Stayed Bridge
3.2.1. Description

The proposed optimization algorithm was applied to the finite element model up-
dating for a cable-stayed bridge. The main bridge is 604 m in length. The half span of
the bridge is 13.45 m, which consists of 2 × 0.5 m collision barrier, 2.5 m hard shoulder,
2 × 3.75 m lanes, 0.5 m curb, 0.25 m constant, and 1.7 m half column width. The main
bridge is a prestressed concrete cable-stayed bridge with two towers and a single cable
plane, as shown in Figure 3.

The cable tower of this bridge adopts the single-column tower, and the height above
the bridge deck is 78 m. The cross-section of the tower column is a circular hollow-core.
The longitudinal width is 6.9 m, transverse width is 3.4 m, and thickness is 0.8–1.1 m
in the transverse direction and 1.5 m in the longitudinal direction. The central piers are
round-ended piers with transverse width of 13.8–15 m and longitudinal width of 5.8 m
and 7 m, and the thickness is 1–2 m. At the bottom of the pier, a substantial section is used.
The foundation is made up of 16 bored piles with a diameter of 2.8 m, and a monolithic
reinforced concrete bearing platform with a height of 6 m. The stay cables are dense cable
systems and fan space layout with a total of 184. Considering the reference wind speed is
up to 61.3 m/s of the design of the main girder, the high strength galvanized steel wire is
used to make the parallel steel wire rope. The primary beam cable spacing is 6 m, and the
tower cable spacing is 1.6 m. The main beam section adopts a triangular box with a single
box and a double chamber. The full width of the box girder of this bridge is 26.9 m, the
beam spacing is 6 m, the height of the main girder is 3.2 m, the thickness of the box girder
roof is 27 cm, and the thickness of the bottom plate is 25 cm. The cross-section of the main
girder is shown in Figure 4.

9



Buildings 2022, 12, 504

Figure 3. Photo and elevation view of the cable-stayed bridge. (a) The side elevation photo of the
bridge during construction. (b) Elevation view.

Figure 4. Cross section of the cable-stayed bridge (unit: cm).

3.2.2. Modal Test

Modal tests were carried out on the bridge before the traffic officially opened.
In order to obtain the vertical modal characteristics of the structure, vertical measure-

ment points were arranged at each cable at both bounds of the main span of the main girder.
The whole bridge had 24 measurement points which divide into four groups. Since the
bridge was an asymmetrical structure, the sensors were arranged by using the symmetry
of the structure when selecting the measurement points, as shown in Figure 5.

Figure 5 shows the layout of the 1/4 bridge, which contains two groups of test points.
The first group contains V1, V2, V3, V4, V5, and V6 (test reference points), and the second
group contains V7, V8, V9, V10, V11, and V6.

By collecting the modal information of the bridge structure, the time-history curves of
the structure can be obtained, respectively (see Figure 6). The results of vibration mode
and frequency of the cable-stayed bridge were also obtained, as shown in Table 2.
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Figure 5. Measurement setup of the girder (1/4 span).

Figure 6. The typical time-history response.

Table 2. Comparison of measured and calculated data of truss model (Unit: Hz).

Order Measured Finite Element Model Error (%) Modal

1 0.4639 0.4582 1.23 Vertical bending
2 0.6507 0.5981 8.08 Antisymmetric

vertical bending
3 1.1960 1.0517 12.07 Vertical bending
4 - 1.5123 - Vertical bending
5 1.9814 1.9806 0.04 Vertical bending
6 2.6415 2.6222 0.73 Vertical bending

3.2.3. Finite Element Model of Cable-Stayed Bridge

In order to accurately analyze the structure, Midas/Civil software was used to build
the model of the cable-stayed bridge, as shown in Figure 7.

In the process of model updating, the selected parameters were elastic modulus Ec1
and bulk density γc1 of concrete of main girder, and elastic modulus Ec2 and bulk density
γc2 of concrete of the main tower.

By analyzing the acceleration response of the main girder, obtain the first six orders,
as shown in Table 2. The measured modal frequency of the bridge is higher than that of the
finite element model, and the error is between 0% and 13%. Hence, the parameters need to
be updated to obtain accurate results. This section used the Kriging model to update the
finite element model based on the proposed three algorithms.
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Figure 7. Finite element model of the cable-stayed bridge.

3.2.4. Results

From Table 2, it is easy to find that the vertical modes of the first order, second order,
third order, fifth order, and sixth order of the main girder of the cable-stayed bridge were
effectively identified according to the measured data. Therefore, select the frequencies
corresponding to the vertical modes of the first, second, third, fifth, and sixth order of the
main girder of the cable-stayed bridge as the training samples for calculation and analysis.
According to GA, BMO, and PSO algorithms, train the Kriging model after obtaining the
optimization results of theta. The measured results were substituted into the trained model
to obtain the correction results of the parameters to be updated. Next, evaluate the accuracy
of parameter correction by using the 2-norm of analysis frequency error as the evaluation
index. The calculated frequency results after the model updating as shown in Table 3.
Table 4 shows the modification results of the design parameters to be modified obtained in
the three finite element model modification methods.

Table 3. Comparison of optimization results of the cable-stayed bridge (Unit: Hz).

Order
Measured

Natural
Frequency

GA
Natural

Frequency

BMO
Natural

Frequency

PSO
Natural

Frequency

1 0.4639 0.4595 0.4611 0.4622
2 0.6507 0.6351 0.6375 0.6398
3 1.1960 1.1462 1.1453 1.1538
5 1.9814 1.9785 1.9825 1.9811
6 2.6415 2.6209 2.6235 2.6285

Table 4. The updating parameters of finite element model.

Parameters Not Updating GA BMO PSO Coefficient of Variation

Ec1/GPa 35.50 35.08 35.21 35.68 10%
γc1/(N/m3) 26,000 26,121 25,874 26,225 10%

Ec2/GPa 36.00 35.21 35.87 36.33 10%
γc2/(N/m3) 26,000 25,854 26,172 26,228 10%

Table 5 shows the comparison of the time consumed by three methods. By using the
same laptop and the same structure, GA methods took half a minute, followed by the BMO
method, and finally the PSO method, which took 90 s.

The Kriging model-based model updating method reduced the requirement for sample
size in the optimization process and improved the calculation efficiency without sacrificing
the calculation accuracy. According to the results of the Kriging model updating method
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based on the GA algorithm, the frequency error between the training samples in the finite
element model and the updating model was the largest, which ranges from 0.15% to 4.39%.

Table 5. Comparison of time-consuming of three methods (Unit: min).

GA BMO PSO

0.5 1.1 1.5

When the Kriging model based on the BMO algorithm was adopted, the error range
of the results compared with the measured data was smaller than that of the Kriging model
based on the GA algorithm, ranging from 0.06% to 4.24%. The result was similar to the
updating result based on the GA algorithm. However, in the process of calculation, in order
to obtain high-precision results, it was necessary to set a sufficient number of population
and number of descendants, which results in the updating method based on the BMO
algorithm being more time-consuming than the updating method based on GA algorithm.

Compared with the optimization results based on the GA algorithm and BMO algo-
rithm, the updating results of the Kriging model based on the PSO algorithm have the
smallest error range from 0.02% to 3.53% compared with the measured results. Similarly, if
high-precision optimization results were needed, sufficient population numbers and the
number of descendants should be set in the algorithm, which also has the problem of being
time-consuming. Compared with the other two methods, the Kriging model updating
method based on the PSO algorithm was the most time consuming of the three methods.

Calculate the Modal Assurance Criterion (MAC) values of the analysis mode and the
test mode to illustrate the degree of correlation between the updating model and the test
mode. Since the cable-stayed bridge used in this example mainly collected the vertical
frequency and mode information of the main girder during dynamic testing, the MAC
values calculated here also focused on the relevant information of the main girder, as
shown in Table 6. For the PSO algorithm, the MAC is the best, the second one is the BMO
algorithm, and GA is the last one.

Table 6. The MAC comparison results of the cable-stayed bridge.

Order Not Updating GA BMO PSO

1 0.9325 0.9083 0.9245 0.9588
2 0.9182 0.9192 0.9199 0.9215
3 0.9923 0.9921 0.9925 0.9933
5 0.9322 0.9304 0.9338 0.9358
6 0.9159 0.9158 0.9164 0.9172

Table 7 shows the comparison of 2-norm of errors by using different model updating
methods. When the finite element model was not updated, the error of 2-norm between
the measured frequencies and the corresponding frequencies of the finite element model
was the largest. Among the three Kriging model updating methods, the order of the error
of 2-norm between the frequency of the updated model and the measured frequency was
the GA algorithm, BMO algorithm, and PSO algorithm.

Table 7. Comparison of 2-norm of errors by using different model updating methods.

Not Updating GA BMO PSO

0.1788 0.0506 0.0475 0.0394

4. Conclusions

This paper presented a finite element model updating method based on the Kriging
model and intelligent group optimization. The method can optimize the parameters of

13



Buildings 2022, 12, 504

the bridge structure and of updating the finite element model. Based on the proposed
optimization algorithm, verify the effectiveness of the model updating methods by using a
plane truss supported beam structure. Then, taking a cable-stayed bridge as an example,
the proposed method was used to update the design parameters of some components in
the bridge structure.

To update finite element model of bridge, using GA, BMO, and PSO methods can
obtain consistent results and have good accuracy. This proves that the three methods used
in this paper can be applied not only to simple structures but also to complex structures
such as cable-stayed bridges.

Among the three updating methods, the PSO algorithm has the highest accuracy,
and the GA algorithm has the lowest accuracy. In terms of computing efficiency, the GA
algorithm takes the least time. The BMO algorithm requires relatively more sample data in
the calculation process. Therefore, the time consumption was increased. The PSO algorithm
is the most time consuming because it needs to be solved iteratively.
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Abstract: Inaccurate mass estimates have been recognized as an important source of uncertainty in
structural identification, especially for large-scale structures with old ages. Over the past decades,
some identification algorithms for structural states and unknown parameters, including unknown
mass, have been proposed by researchers. However, most of these identification algorithms are
based on the simplified mechanical model of chain-like structures. For a chain-like structure, the
mass matrix and its inverse matrix are diagonal matrices, which simplify the difficulty of identifying
the structure with unknown mass. However, a structure with a non-diagonal mass matrix is not of
such a simple characteristic. In this paper, an online joint state-parameter identification algorithm
based on an Unscented Kalman filter (UKF) is proposed for a structure with a non-diagonal mass
matrix under unknown mass using only partial acceleration measurements. The effectiveness of the
proposed algorithm is verified by numerical examples of a beam excited by wide-band white noise
excitation and a two-story one-span plane frame structure excited by filtered white noise excitation
generated according to the Kanai–Tajimi power spectrum. The identification results show that the
proposed algorithm can effectively identify the structural state, unknown stiffness, damping and
mass parameters of the structures.

Keywords: unknown mass; joint state-parameter identification; non-diagonal mass matrix; partial
acceleration measurement

1. Introduction

Nowadays, more and more large-scale civil building structures, especially high-rise
buildings and long-span bridges, are being built all over the world. Once these structures
are constructed and used, functional degradation of the structures will become a concerning
issue as the working-age of these structures increases. In order to ensure the safety and
reliability of these structures, it is particularly important to obtain the information on the
state and parameters of these structures accurately and timely. Structural health monitoring
(SHM) has received increasing attention in recent decades with the increasing demand for
effectively managing the health condition of these important infrastructures. Structural
identification (SI) methods play key roles in structural damage detection, model updating
and performance evaluation, which are the most important parts of structural health
monitoring. Therefore, the proposal of efficient and reliable structural system identification
algorithms is very important for the evaluation of the working performance of the structure
and the assessment of post-event conditions after natural disasters.

Over the past decades, a great deal of research has been conducted for structural
identification in either the frequency domain [1–5] or the time domain [6–10]. It should
be noted that almost all of the studies reviewed above assume that structural mass is
known when structural systems are identified. In practice, it is often difficult or even
impossible to obtain a priori information about the mass of an engineering structure in
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service. The inaccurate structural mass estimation causes large errors in the identification
of the structure, which endanger the reliability and even the safety of the structure.

In order to deal with this problem, many researchers developed some system identi-
fication algorithms under unknown mass. These system identification algorithms can be
roughly divided into two categories, namely, the frequency-domain method and the time-
domain method. In the frequency-domain system identification algorithm, Yuan et al. [11]
proposed an iterative algorithm for identifying structural mass and stiffness matrix ele-
ments of chain-like structures based on the first two orders of structural mode measurement
by combining modal expansion with the least-squares algorithm. Chakraverty et al. [12]
refined the above method by using Holzer criteria to improve its computational efficiency
and accuracy. Then, Mukhopadhyay et al. [13,14] also proposed a stiffness and mass matrix
identification method based on modal expansion. However, in order to perform modal
mass normalization processing, the structural mass, which the sensor is installed, must be
known prior. In addition, a flexibility-based damage identification algorithm that does not
require knowledge of structural mass is provided by Zhang et al. [15]. Farshadi et al. [16]
developed a (Transfer ratio function) FRF-based finite element (FE) model updating algo-
rithm. In this algorithm, the sensitivity equation between frequency response function and
parameter change is constructed, and the change in stiffness and mass are identified by
solving the equation. The above algorithms are all deterministic algorithms that cannot
quantitatively describe the uncertainty of identified results. The Bayesian statistical proba-
bilistic approach provides a method that can not only provide us with an optimal estimate
of the state and parameters of a structural system but also quantitatively describe the uncer-
tainty of this estimate. Mustafa et al. [17] proposed an efficient and robust Bayesian model
updating to update mass and stiffness by introducing a new objective function to remove
the coupling effect of stiffness and mass matrix to solve the unidentifiable problem of the
traditional Bayesian method when stiffness and mass matrix identified simultaneously.
Furthermore, Kim et al. [18] proposed a novel Bayesian model updating algorithm. In the
algorithm, the additional mass or additional stiffness is added to the structure to decouple
the coupling effects of mass and stiffness matrices of the identification algorithm so that
the model mass and stiffness parameters can be updated by comparing the measured data
of the reference model and the modified model.

On the other hand, various time-domain techniques were developed. Mei et al. [19]
proposed an algorithm synthesis of the Auto-Regressive Moving Average model and
structural dynamics equations to identify the changes in structural element mass and stiff-
ness. However, in this algorithm, only one damage index is defined, so it cannot identify
the changes in mass and stiffness simultaneously. The algorithm above is improved by
Do et al. [20] by introducing two damage indicators for identifying the changes in the stiff-
ness and mass in identifying the structure simultaneously. A restoring force identification
method is provided by Marsi et al. [21] to identify chain-like dynamic structural systems
under unknown mass. Based on his work, a time-domain identification algorithm of modal
parameters to handle the case of chain-like dynamic systems with unknown ambient excita-
tion under unknown mass was proposed by Nayeri et al. [22]. However, this algorithm can
only identify the stiffness and mass coupling coefficients of the structure. Zhan et al. [23]
generalized the approach by introducing the clustering algorithm to decouple the stiffness
and mass coupling coefficients. Meanwhile, Nayeri et al. [24] provided an algorithm com-
bining natural excitation technology and eigenvalue realization technology to identify the
modal parameters of structures with unknown mass. Xu et al. [25] investigated a time-
domain algorithm for simultaneous identification of mass and nonlinear restoring force
based on the least square algorithm and verified the algorithm with a chain-like nonlinear
structure of six degrees of freedom with a Magnetorheological (MR) damper mounted in the
middle. Huang et al. [26] employed the Kalman filter (KF) technique together with energy
equilibrium equations to develop a method that can identify the damping, stiffness and
mass of the structure simultaneously online. However, these time-domain algorithms men-
tioned above all need to be employed under the condition of full measurement of structural
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acceleration, which may have limited the application of the algorithms. In order to address
the aforementioned issues, an adaptive Extended Kalman Filter (EKF) was proposed by
Reina et al. [27] to perform joint time-varying mass and state estimation for vehicles, which
is simplified to a single degree of freedom model under partial acceleration measurements.
Boada et al. [28] proposed a real-time locomotive Vehicle and Road Irregularities estimation
algorithm based on dual KF simultaneously. In the dual KF, the first KF is used to estimate
the Vehicle state, and the latter is used for mass estimation. Lei et al. [29] extended the
method of Zhan et al. [25] by introducing EKF to replace the least squares to identify the
mass stiffness coupling parameters to identify structural stiffness and mass changes in
the case of partial acceleration response measurement. Zhang et al. [30,31] proposed a
loop substructure identification method for chain-like structures, which can identify the
mass and stiffness parameters of selected substructures under partial acceleration measure-
ments. Then, Xu et al. [32] also investigated a method for the identification of nonlinearity
restoring force of chain-like structural and mass simultaneously using partial acceleration
measurements. However, the application of EKF with weighted global iteration (EKF-WGI)
makes it impossible to implement the algorithm online.

It is noted that most of the methods reviewed in the aforementioned literature are only
suitable for chain-like structures, in which both the mass matrix and the inverse matrix
are diagonal matrices. This characteristic of a mass matrix for the chain-like structure
greatly reduces the difficulty of structure identification under unknown mass. However,
many civil structures cannot simply be simulated by a chain-like structure model, such as
super high-rise frame shear wall structures, long-span bridges and industrial plants. To
the best of the authors’ knowledge, there are very limited studies on joint state-parameter
identification algorithms of non-chain-like structures under unknown mass. The joint state-
parameters identification, even for linear structure, is essentially a nonlinear problem due
to the coupling effects between unknown structural parameters and unknown state vari-
ables. Compared with other schemes based on the nonlinear Kalman framework (e.g., EKF,
particle filter (PF)), which can identify nonlinear systems, UKF becomes a better choice
because it does not need to calculate the Jacobian matrix and has high computational
efficiency. To this end, this paper provided an online joint state-parameter identification
algorithm of a non-chain-like structure based on UKF under unknown mass using only
partial acceleration responses. The content of the paper is organized as follows: Section 2
briefly introduces the calculation process of UKF; Section 3 includes two numerical simu-
lation cases in the context of the beam-type model and plane-frame model used to assess
the performance of the joint state-parameter identification algorithm of a non-chain-like
structure under unknown mass. Finally, the conclusion and further research are given in
the conclusions section.

2. Brief Review of the Unscented Kalman Filter

A generalized n-DOF structural system dynamics equation can be expressed as

M
..
z + F

(
z,

.
z,θ

)
= ηf (1)

In which M is the mass matrix; z,
.
z and

..
z are n-dimension vectors of displacement,

velocity and acceleration, respectively; F
(
z,

.
z,θ

)
is a generalized restoring force equation

vector; θ is a q-dimension structural parametric vector containing the parameters that
need to parameterize the restoring force function F

(
z,

.
z,θ

)
; θm is an l-dimension vector

that to be identified in this study, which includes the structural mass. f is a p-dimension
external excitation vector and η is the influence matrix corresponding to f. Since the
structural system in this paper is a time-invariant system, the time derivatives of unknown
parameters in the structure

.
θm(i) = 0(i = 1, 2, 3, . . . l). An augmented state vector is defined

as X =
{

XT
z ,θm

T
}T

=
{

zT,
.
z

T,θm
T
}T

, which includes structural displacement, velocity
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and unknown structural parameters, including the structural mass, stiffness and damping
coefficients. The state-space form of Equation (1) can be expressed as follows:

.
X =

{ .
Xz.
θm

}
=

⎧⎨⎩
.
z
..
z
.
θm

⎫⎬⎭ =

⎧⎨⎩
.
z

M−1[ηf − F
(
z,

.
z,θ

)]
0

⎫⎬⎭= g(X, f) (2)

where g( .) denotes system equations for the structural system.
The continuous system Equation (2) on the kth time step can be discrete to be the

following form:

Xk+1 = Xk +
∫ (k+1)Δt

kΔt
g(Xt|k, fk)dt (3)

The observation equations for the structural system can be formulated as

yk+1= h(X k+1, fk+1) + vk+1 (4)

where yk+1 is an m-dimension measurement vector at time t = (k + 1)Δt with Δt being the
sampling time step, and vk+1 is the measurement noise vector modeled as Gaussian white
noise with zero mean and a covariance matrix E(v k+1vT

k+1) = Rk+1.
The unscented Kalman filter is implemented in the following three steps:

(1) Sigma point generation step

Firstly, a set of 2N + 1 sigma points whose mean and covariance are Xk|k and PXX
k|k ,

respectively, are reproduced as

χi,k|k =

⎧⎪⎪⎨⎪⎪⎩
Xk|k
Xk|k + (

√
(N + λ)PXX

k|k )i
Xk|k − (

√
(N + λ)PXX

k|k )i

, i = 0
, i = 1, . . . N
, i = N + 1 . . . 2N

(5)

where N is defined as the dimension of the state vector X, Xk|k = E{Xk},

PXX
k|k = E

{(
Xk − Xk|k

)(
Xk − Xk|k

)}
, (
√
(N + λ)PXX

k|k )i
denotes the ith column of the matrix

square root, λ = α2(N + κ)− N is a scaling parameter, α is a scaling parameter used to
incorporate higher-order information. It is often set to an extremely small positive value
(e.g., 2 × 10−3); κ is a secondary scaling parameter.

(2) The time updating step

The sigma points are propagated by structural system dynamic Equations as follows:

χi,k+1|k = χi,k|k +
∫ (k+1)Δt

kΔt
g
(
χt|k, fk

)
dt (6)

and the a priori estimate of the state vector Xk+1|k and corresponding error covariance
matrix PXX

k+1|k are calculated as

Xk+1|k =
2N

∑
i=0

w(m)
i χi,k+1|k (7)

PXX
k+1|k =

2N

∑
i=0

w(c)
i (χi,k+1|k − Xk+1|k)

(
χi,k+1|k − Xk+1|k

)T
+ Qk+1 (8)

where w(m)
i and w(c)

i are the weights for the predicted mean and covariance, respectively,
and given by

w(m)
0 =

λ

N + λ
; w(c)

0 =
λ

N + λ
+ (1 − α2 + β); (9a)
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w(m)
i = w(c)

i =
λ

2(N + λ)
(i = 1, 2 . . . 2N) (9b)

where β is a parameter used to contain prior information of the distribution of state
variables, and for Gaussian distribution, β = 2 is optimal.

The predicted measurement yk+1|k and its error covariance matrix P
yy
k+1|k is computed as

yi,k+1|k = h(χi,k+1|k, fk+1); yk+1|k =
2N

∑
i=0

w(m)
i yi,k+1|k (10)

Pyy
k+1|k =

2N

∑
i=0

w(c)
i (yi,k+1|k − yk+1|k)

(
yi,k+1|k − yk+1|k

)T
+ Rk+1 (11)

and the cross-covariance P
Xy
k+1|k matrix is calculated as

P
Xy
k+1|k =

2N

∑
i=0

w(c)
i (χi,k+1|k − Xk+1|k)

(
yi,k+1|k − yk+1|k

)T
(12)

(3) The measurement updating step

Finally, the augmented state vector Xk+1|k+1 and error covariance matrix PXX
k+1|k+1 are

updated with the measured output using the Kalman filtering Equations

Xk+1|k+1 = Xk+1|k + Km(yk+1 − yk+1|k) (13)

PXX
k+1|k+1 = PXX

k+1|k − KmP
yy
k+1|kKT

m (14)

in which is the Kalman gain matrix Kk+1 given by

Kk+1 = P
Xy
k+1|k

(
P

yy
k+1|k

)−1
(15)

By implementing the identification algorithm based on the unscented Kalman filter,
the augmented state vector of the structural system, which contains unknown structural
parameters including structural mass, stiffness and damping coefficients, can be identified.

3. Numerical Validation

In this section, two numerical simulation cases are given aimed at verifying the
effectiveness of the UKF algorithm for joint state-parameter identification of a structure
with a non-diagonal mass matrix under unknown mass in the context of two types of
non-chain-like structural models: beam-type model and plan-frame model.

3.1. Identification of a Beam-Type Structure Subjected to White Noise Excitation

Considering only chain-like structures were used to identify stiffness, damping and
mass simultaneously in most previous studies, a beam-type structure is investigated in
this case. The structure under consideration is a simply supported Euler beam, shown in
Figure 1. The beam is modeled using a two-dimensional finite element (FE) model and is
equally discretized into six beam elements. For these Euler beam elements, only bending
deformations in the vertical plane are considered, and shear deformations are ignored
since the shear deformations are very small as compared to the bending deformations. The
beam model contains a total of 12 DOFS, which includes five vertical DOFS and seven
rotational DOFS.
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Figure 1. A simply supported beam subjected to white noise excitation. (a) A simply supported beam
with unknown parameters; (b) broadband white noise excitation.

The beam elements adopt a consistent mass matrix and consistent stiffness matrix. Let
Mi and Ki be the mass matrix and stiffness matrix of the i-th beam element in the element
local coordinate, respectively. The local beam elemental consistent mass and consistent
stiffness matrices are calculated using the cubic interpolation functions. The interpolation
functions of the i-th element in its local coordinate can be obtained as follows:

Hi =

{
1 − 3

(
x
li

)2
+ 2

(
x
li

)3
, x − 2li

(
x
li

)2
+ li

(
x
li

)3
, 3
(

x
li

)2
− 2

(
x
li

)3
,−li

(
x
li

)2
+ li

(
x
li

)3
}

(16)

where li is the length of the i-th beam element. The local mass and stiffness matrices for the
i-th beam element are provided in Appendix A.

The equation of motion for the simply supported beam can be given by:

Mb
..
z + Cb

.
z + Kbz = ηf (17)

where
..
z;

.
z; z are the acceleration, velocity and displacement responses of the simply

supported beam, respectively. f is a one-dimension external excitation vector and η is the
influence matrix corresponding to f.

Mb and Kb are the global mass and stiffness matrices of the simply supported beam,
respectively, which can be obtained as the assembly of local element mass and local stiffness
matrices. For the simply supported beam, the Rayleigh damping is assumed, and the global
damping matrix Cb is expressed as:

Cb = a1Mb + a2Kb (18)

where a1 and a2 are the damping coefficients. The mass, stiffness and damping coef-
ficients are considered unknown in this example. The state vector Xz and parameter
vector θm of the structural system are combined to form the augmented state vector

X =
[
zT ,

.
z

T , mT , kT , a1, a2

]T
.

In this case, the length of the beam is 3.6 m, and the whole beam adopts a rectangular
section with a uniform section size with a width of 50 mm and a height of 15 mm. The
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Young’s modulus and material density of the beam is chosen as 206 GPa and 7850 kg/m3,
respectively. The first two natural frequencies obtained from the beam model are 21.4 Hz
and 133.7 Hz; a modal damping ratio of 5% is assumed for the first two modes.

Structural parameters are selected as follows: The cross-sectional area and moment of in-
ertia of each beam element are Ai = 7.5× 10−4 m2 and Izi = 1.406× 10−8 m4 (i = 1, 2 . . . 6),
respectively. The linear stiffness of each beam element is defined as ki =

EIzi
li

= 4.828 KN.m;
the linear mass density of each element is defined as mi = ρi Ai = 5.85 kg/m (i = 1, 2 . . . 6).
The Rayleigh damping coefficients were calculated to be a1 = 1.356 and a2 = 1.179 × 10−3

according to the first two nature frequencies. The initial guess values for the unknown
parameters are selected as: mi,0 = 4.68 kg/m, ki,0 = 3.862 KN.m (i = 1, 2 . . . 6), a1,0 = 1.084,
a2,0 = 0.944 × 10−3. The external excitation acting on a simply supported beam is assumed
to be broadband white noise, which acts on the 4th DOF. From the finite element model
built in matlab, the acceleration, velocity and displacement responses of the structure are
obtained by solving differential Equation (17) using the 4th-order Ronge–Kutta integration
method. Only five accelerometers are deployed at the 2nd, 4th, 6th, 8th and 10th DOFs,
respectively, to measure the vertical accelerations. When considering the existence of
measurement noise, a Gaussian white sequence with a 1% root-mean-square noise-to-signal
ratio is added to the calculated response. The sampling frequency is 1000 Hz, and the
sampling time is 3 s.

Figure 2 shows the comparisons of the identified and exact time histories of vertical
displacement of nodal 2 (z2), vertical velocity of nodal 2 (

.
z2), rotational displacement of

nodal 2 (z3) and rotational velocity of nodal 2 (
.
z3) obtained from the simulation case. It is

shown that both structural displacement and velocity responses can be well tracked.

Figure 2. Comparisons of the exact and identified displacements and velocities. (a) Comparison of
the exact and identified; (b) comparison of the exact and identified; (c) comparison of the exact and
identified; (d) comparison of the exact and identified.

The convergence of six unknown parameters (m1, m6, k1, k6, a1, a2) from the numerical
case above was demonstrated in Figure 3. It can be noticed that these identified parameter
values can converge to their exact values quite fast.
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Figure 3. Parameter estimation results for the simply supported beam. (a) Convergence of identified
linear density; (b) convergence of identified linear density; (c) convergence of identified linear
stiffness k1; (d) convergence of identified linear stiffness k6; (e) convergence of identified damping
coefficient a1; (f) convergence of identified damping coefficient a2.

The parameter identification values, true values and identified relative error of all
elements are listed in Table 1. It is shown that all the elements’ parameter identification
results meet the accuracy requirements; the relative error of the identified mass, stiffness
and damping coefficients relative to their true value is less than 5%.

Table 1. The parameters identification results of the simply supported beam.

Parameter Identified Actual Relative Error (%)

k1(KN.m) 4.675 4.828 −2.60
k2(KN.m) 4.908 4.828 2.25
k3(KN.m) 5.015 4.828 3.87
k4(KN.m) 4.626 4.828 −4.18
k5(KN.m) 4.628 4.828 −4.17
k6(KN.m) 4.962 4.828 2.77
m1(kg/m) 6.140 5.850 4.95
m2(kg/m) 5.727 5.850 −2.10
m3(kg/m) 5.765 5.850 −1.45
m4(kg/m) 5.993 5.850 2.44
m5(kg/m) 5.724 5.850 −2.15
m5(kg/m) 6.075 5.850 3.67

a1 1.380 1.356 1.77
a2(1 × 10−3) 1.206 1.179 2.29
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3.2. Identification of a Plane Frame Structure Subjected to Stationary Filtered White
Noise Excitation

In order to further verify the effectiveness of the proposed algorithm for the joint
state-parameter identification of the structure with a non-diagonal mass matrix under
unknown mass, a plane frame shown in Figure 4 is investigated in this case. A one-story
two-span plane span was applied here for numerical simulation. All beams and columns
adopt a consistent mass matrix and consistent stiffness matrix; the mass and stiffness matrix
detailed representation are shown in Appendix B. Rayleigh damping is assumed in this
numerical simulation case. The bases are assumed to be fixed. Therefore, the plane frame
contains a total of 12 DOFS, and each node point has three degrees of freedom (horizontal,
vertical and rotational).

Figure 4. A plane frame subjected to stationary filtered white noise excitation. (a) A plane frame
subjected to external excitation; (b) filtered white noise excitation generated according to the Kanai–
Tajimi power spectrum.

In this numerical example, the height of the column is 3.66 m and the length of the
beam is 9.12 m. The Young’s modulus and material density are taken as 206 GPa and
7850 kg/m3, respectively. The first two natural frequencies obtained from the plane frame
model are 7.55 Hz and 27.3 Hz. A modal damping ratio of 5% is assumed for the first
two modes.

Structural parameters are selected as follows: The cross-section area and moment of
inertia of each element are Ai = 2.68 × 10−2 m2 and Izi = 4.870 × 10−4 m4 (i = 1, 2 . . . 6).
The linear stiffness of each column element is ki = EIzi

li
= 27, 410 KN.m (i = 1, 2, 3, 4),

linear stiffness of each beam element is ki =
EIzi

li
= 11, 000 KN.m (i = 5, 6). All the beams

and columns adopt uniform linear density mi = ρi Ai = 210.38 kg/m (i = 1, 2 . . . 6). The
Rayleigh damping coefficients were calculated to be a1 = 3.738 and a2 = 4.538 × 10−4

according to the first two nature frequencies. The initial guess values for the identified
parameters are selected as: ki,0 = 21, 928 KN.m (i = 1, 2 . . . 4), ki,0 = 8800 KN.m (i = 5, 6),
mi,0 = 166.3 Kg/m (i = 1, 2 . . . 6), a1,0 = 2.990, a2,0 = 3.630.

In order to verify the robustness of the algorithm to external excitation, this case adopts
the filtered stationary white noise excitation generated according to the Kanai–Tajimi power
spectrum as the external excitation [33].

S ..
xg
(ω) =

ω4
g + 4ζ2

gω2
gω2

(ω2 − ω2
g)

2 + 4ζ2
gω2

gω2
S0 (19)

where S0 is the input white noise spectral density, ωg and ξg are the characteristic frequency
and characteristic damping ratio of the site, respectively. In this case, these parameters
were taken as ωg = 15.6(rad/s), ξg = 0.6. In this study, the stationary filtered white noise
time history generated according to the Kanai–Tajimi power spectrum was chosen as the
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external excitation acting at 4thDOF. From the finite element model built in matlab, the
acceleration, velocity and displacement responses of the structure are obtained by solving
differential Equation (17) using the 4th-order Ronge–Kutta integration method.

Suppose eight accelerometers are mounted on the plane frame to measure the hor-
izontal accelerations at 1,2,3 and 4 nodal points, i.e., (

..
x1,

..
x4,

..
x7,

..
x10), two vertical accel-

erations at 1,4 nodal points, i.e., (
..
x2,

..
x11), and two rotational accelerations at 1,4 nodal

points, i.e., (
..
x3,

..
x12). It is usually a good approximation to assume the rotational motion is

related to horizontal motion through the static deflection relation; hence, we compute the ro-
tational acceleration

..
x3 and

..
x12 from the horizontal acceleration

..
x1 at node 1. Consquently,

our measured response vector is y = [
..
x1,

..
x2,

..
x3,

..
x4,

..
x7,

..
x10,

..
x11,

..
x12]

T .
When considering the existence of measurement noise, a Gaussian white sequence

with a 1% root-mean-square noise-to-signal ratio was added to the calculated response.
The sampling frequency is 1024 Hz, and the sampling time is 4 s.

Figure 5a,b show the comparisons of the identified and exact time histories of Hor-
izontal displacement (z1) of nodal 1 and rotational displacement (z6) of nodal 4. The
identified time histories and the exact time histories

.
z1,

.
z6, are depicted in Figure 5c,d,

respectively. It is shown that both structural displacement and velocity responses can be
identified effectively.

Figure 5. Comparisons of the exact and identified displacements and velocities. (a) Comparison of
the exact and identified z1; (b) comparison of the exact and identified z6; (c) comparison of the exact
and identified

.
z1; (d) comparison of the exact and identified

.
z6.

The convergence of six parameters (m4, m5, k4, k5, a1, a2) is demonstrated in Figure 6. It
shows that the identified linear density of element 4 (m4) and element 5(m5), the identified
linear stiffness of element 4(k4) and element 5(k5), and the dumping coefficients a1, a2 can
be identified effectively. Table 2 provides all the elements’ parameter identification values,
true values and identified relative error of all elements. It is shown that all the elements’
parameter identification results meet the accuracy requirements and the relative error of
the identified mass, stiffness and damping coefficients relative to their true value is less
than 5%.
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Figure 6. Parameter estimation results for the plane frame. (a) Convergence of identified linear
density m4; (b) convergence of identified linear density m5; (c) convergence of identified linear
stiffness k4; (d) convergence of identified linear stiffness k5; (e) convergence of identified dumping
coefficient a1; (f) convergence of identified dumping coefficient a2.

Table 2. The parameters identification results of the plane frame.

Parameter Identified Actual Relative Error (%)

k1(KN.m) 27,800 27,410 1.42
k2(KN.m) 27,906 27,410 1.81
k3(KN.m) 28,434 27,410 3.73
k4(KN.m) 27,484 27,410 0.27
k5(KN.m) 10,635 11,000 −3.32
k6(KN.m) 10,740 11,000 −2.36
m1(kg/m) 216.612 210.380 2.96
m2(kg/m) 204.300 210.380 −2.89
m3(kg/m) 211.701 210.380 0.63
m4(kg/m) 203.171 210.380 −3.42
m5(kg/m) 212.021 210.380 0.80
m6(kg/m) 206.901 210.380 −1.65

a1 3.851 3.738 3.02
a2(1 × 10−4) 4.456 4.538 −1.80
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4. Conclusions

In this paper, a joint state-parameter identification algorithm based on UKF was
provided for a structure with unknown mass using partial acceleration measurements. Nu-
merical verification was performed using a simply supported beam subjected to broadband
white noise excitation and a one-span two-story plane frame subjected to filtered white
noise excitation generated according to the Kanai–Tajimi power spectrum. The conclusions
are as follows:

1. Numerical results indicate that the proposed approach can effectively identify the
state and unknown parameters, including mass, stiffness, and damping coefficients of
non-chain-like structures;

2. Unlike some existing methods, the proposed identification algorithm does not require
iterative estimation at each time step, which makes the approach suitable for real-
time identification;

3. The proposed algorithm for the identification of joint state-parameter is effective in a
noisy environment. In this study, with reasonable noise included, the identification re-
sults for structural stiffness, damping and mass are robust to the measurement noises.

In summary, the proposed algorithm is suitable for the real-time identification of states
and parameters of a structure with a non-diagonal mass matrix under unknown mass
using partial acceleration measurement. Therefore, this paper provides a promising way
for the joint state-parameter identification of non-chain-like structures with unknown mass
information. However, this paper only demonstrates the algorithm for the identification of
linear structures with a non-diagonal mass matrix and assumes that the external excitation
is measurable. Extensions of such identification studies are conducted by the authors.
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Appendix A. The Local Mass and Stiffness Matrices

The local mass and stiffness matrices of the i-th element of the 2D simply supported
beam can be expressed as:

Mi =
mili
420

⎡⎢⎢⎣
156 22li 54 −13li
22li 4l2

i 13li 13li
54 13li 156 −22li

−13li −3l2
i −22li 4l2

i

⎤⎥⎥⎦ (A1)

Ki = ki

⎡⎢⎢⎣
12/l2

i 6/li −12/l2
i 6/li

6/li 4 −6/li 2
−12/l2

i −6/li 12/l2
i −6/li

6/li 2 −6/li 4

⎤⎥⎥⎦ (A2)

where mass is uniform along the length of the member, and its mass distribution along the
length is defined by the linear density mi. The stiffness parameter of the i-th member is
defined by the line stiffness ki =

EIzi
li

, in which E, Izi, li represent Young’s Modulus, inertia
moment, and element length, respectively.
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Appendix B. The Local Mass and Stiffness Matrices

The local mass and stiffness matrices of the i-th element of the 2D plane frame can be
expressed as:

Mi =
mili
420

⎡⎢⎢⎢⎢⎢⎢⎣

140 0 0 70 0 0
0 156 22li 0 54 −13li
0 22li 4l2

i 0 13li −3l2
i

70 0 0 140 0 0
0 54 13li 0 156 −22li
0 −13li −3l2

i 0 −22li 4l2
i

⎤⎥⎥⎥⎥⎥⎥⎦ (A3)

Ki = ki

⎡⎢⎢⎢⎢⎢⎢⎣

Ai/Izi 0 0 −Ai/Izi 0 0
0 12/l2

i 6/li 0 −12/l2
i 6/li

0 6/li 4 0 −6/li 2
−Ai/Izi 0 0 Ai/Izi 0 0

0 −12/l2
i −6/li 0 12/l2

i −6/li
0 6/li 2 0 −6/li 4

⎤⎥⎥⎥⎥⎥⎥⎦ (A4)

where mass is uniform along the length of the member, and its mass distribution along the
length is defined by the linear density mi. The stiffness parameter of the i-th member is
defined by the line stiffness ki =

EIzi
li

, in which E, Izi, li represent Young’s Modulus, inertia
moment and element length, respectively. The cross-sectional area is represented by Ai.
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Abstract: By introducing pre-compression/inverse moment through prestressing tendons or rods,
prestressed concrete (PC) structures could overcome conventional concrete weakness in tension,
and thus, these tendons or rods are widely accepted in a variety of large-scale, long-span structures.
Unfortunately, prestressing tendons or rods embedded in concrete are vulnerable to degradation
due to corrosion. These embedded members are mostly inaccessible for visual or direct destructive
assessments, posing challenges in determining the prestressing level and any corrosion-induced
damage. As such, ultrasonic guided waves, as one of the non-destructive examination methods, could
provide a solution to monitor and assess the health state of embedded prestressing tendons or rods.
The complexity of the guided wave propagation and scattering in nature, as well as high variances
stemming from the structural uncertainty and noise interference PC structures may experience
under complicated operational and harsh environmental conditions, often make traditional physics-
based methods invalid. Alternatively, the emerging machine learning approaches have potential for
processing the guided wave signals with better capability of decoding structural uncertainty and
noise. Therefore, this study aimed to tackle stress level prediction and the rod embedded conditions
of prestressed rods in PC structures through guided waves. A deep learning approach, convolutional
neural network (CNN), was used to process the guided wave dataset. CNN-based prestress level
prediction and embedding condition identification of rods were established by the ultrasonic guided
wave technique. A total of fifteen scenarios were designed to address the effectiveness of the stress
level prediction under different noise levels and grout materials. The results demonstrate that the
deep learning approaches exhibited high accuracy for prestressing level prediction under structural
uncertainty due to the varying surrounding grout materials. With different grout materials, accuracy
could reach up to 100% under the noise level of 90 dB, and still maintain the acceptable range of 75%
when the noise level was as high as 70 dB. Moreover, the t-distributed stochastic neighbor embedding
technology was utilized to visualize the feature maps obtained by the CNN and illustrated the
correlation among different categories. The results also revealed that the proposed CNN model
exhibited robustness with high accuracy for processing the data even under high noise interference.

Keywords: guided wave; convolutional neural network; structural health monitoring; stress level
prediction; t-distributed stochastic neighbor embedding

1. Introduction

Conventional reinforced concrete, due to the weakness of the concrete in tension,
often shows cracking and corrosion at an early age [1,2]. PC has been proposed through
prestressing/post-tensioning tendons/rods to compensate this drawback [3]. PC structures
exhibit dramatically improved performance over conventional reinforced concrete ones,
with the contribution of prestressing tendons or rods that enable them to cover a longer
span, thereby providing an effective solution in large-scale buildings, bridges, dams, and
nuclear power plant structures. It is known that PC structures often experience losses in
prestress due to various factors, including shrinkage/creep of concrete and relaxation of
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tendons/rods, which in turn potentially lead to excessive deflection or cracking. As such,
being able to quantify the stress level of these prestressing tendons/rods in service condi-
tions is critical to ensure structural integrity and achieve successful performance. However,
conventional visual or direct destructive examination tools are not valid, as the embedded
prestressing tendons or rods with or without grout materials are often inaccessible. There-
fore, non-destructive examination (NDE) methods and tools, including vibration-based
sensors [4], distributed sensors [5], ultrasonic guided waves [6,7], or acoustic emission [8],
could capture information of those far-reaching, inaccessible locations, while maintaining
high-quality monitoring and assessing of structural health. For instance, Bartoli et al. [4] em-
ployed dynamic identification techniques to investigate the correlation between PC beam
prestressing forces. Their results demonstrated that the vibration frequency could assist
in identifying the prestress level. Chen et al. [5] used distributed sensor, long-gauge fiber
Bragg grating to detect the damage of a bridge under stochastic traffic flow. In addition,
the existence of anomalies is an important issue in monitoring data; hence, Zhang et al. [9]
employed Bayesian dynamic regression to reconstruct missing data. Despite the merits of
different sensing techniques, vibration-based methods are often limited in low frequency,
while distributed sensors are often vulnerable to damage and anomalies. Alternatively,
as stated in the literature [6,10–13], ultrasonic guided waves could be a better solution to
tackle such situations, with the advantages of far-reaching, long-distance measurement
and high accuracy in detecting small changes in material discontinuity. Additionally, as an
active method, ultrasonic guided wave testing can judge the sensitivity and accuracy of a
sensor by receiving the excitations, reducing the possibility of receiving abnormal data.

Guided waves are widely used to evaluate the health of beams, plates, and pipes,
owing to the potential of long-distance propagation and sensitivity to mechanical damage.
Three modes, namely longitudinal, flexural, and torsional modes, are generated when
guided waves are propagated in a medium. Among them, longitudinal modes are more
sensitive to tensile stress and easy to excite by piezoelectric actuators [14], and are used for
the inspection of steel bars for corrosion, fracture, and stress reduction. Bread et al. [10] used
the pulse-echo technique to detect the corrosion and fracture of grouted tendon anchors
and rock bolts by ultrasonic guided waves. Lanza di Scalea et al. [15] applied guided waves
through magnetostrictive transducers to monitor the stress in seven-wire strands. Their
results demonstrated the feasibility of determining the prestress level using the guided
wave method. Ervin et al. [16] created an embeddable ultrasonic sensor network to localize
and monitor the corrosion of rebar embedded by mortar. They studied the characteristics of
guided wave propagated in rebar and the effect forms for corrosion detection, and showed
that the waves were sensitive to corrosion through scattering, mode conversions, and
reflections. Chaki and Bourse [17] detected the stress level of the seven-wire steel strands
by ultrasonic guided waves with L (0,1) mode. The typical calibration curves were plotted,
which showed that the stress level corresponded to the phase velocity change in the guided
waves. More recently, Treyssède and Laguerre [18] employed the semi-analytical finite
element approach to study the guided wave propagation in multi-wire strands. In addition,
high-order longitudinal modes were indicated to solve the leakage problem of fundamental
mode L (0,1) by Dubuc et al. [19]. They used the acoustoelastic theory to propose an
approximate theory for predicting the effect of stress on higher modes. Shoji Masanari [20]
employed 60 kHz L (0,1) mode as the guided wave to inspect anchor rods embedded in
soil, and unveiled the capability of the ultrasonic guided waves for stress identification
in rods. While physics-based approaches have been used for the signal process of guided
waves to identify stress changes in stressed rods, these methods still face challenges in
handling the wave signals with a variety of structural uncertainties, signal attenuation, and
environmental noises during testing.

In this way, recently emerging machine learning, particularly deep learning, could
provide potential solutions to improve the signal process of guided waves [6,7,21,22]. Deep
learning algorithms have been employed in time series [21,23–26] and image processing [27–
30]. Guo et al. [31] utilized a sparse coding-based deep learning algorithm to process
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wireless sensory data of a three-span bridge. The features of the dataset were learned
by sparse coding and then trained by the network. Cha et al. [27] proposed a vision-
based method by a deep learning network to detect concrete cracks without calculating
the features. The comparative study indicated that the deep learning-based technique
had better performance than the conventional physics-based methods. Furthermore, Cha
et al. [28] investigated the fast region-based convolutional neural network to detect five
types of damage in real time. Zhang et al. [32] proposed a CNN framework with some
convolutional kernels to identify vibration signals. Harsh et al. [33] applied high-frequency
guided waves to detect damages in railheads, generated the data by experiment and
simulation study, and then set up a framework to detect damage of railheads by a machine
learning method. The error rate was from 2% to 16.67%. Tabian et al. [34] used guided
waves to detect impact energy, localization, and characterization of complex composite
structures. The waves transferred into 2D images and were identified by a CNN algorithm.
The results showed that the accuracy was above 95%. Zargar and Yuan [35] used a unified
CNN-RNN network to extract the information of aluminum plates. This research focused
on the wave propagation in both spatial and temporal domains. While deep learning
approaches have been successfully used in many aspects of structural health monitoring,
less research is involved in deep learning-based ultrasonic guided wave diagnoses.

Therefore, we aimed to develop and implement the deep learning-enriched guided
wave technique to quantify the stress level of prestressed rods used in PC structures. The
CNN framework was utilized for processing guided wave signals to predict the stress level
of the rods with varying grout materials. t-distributed stochastic neighbor embedding
(t-SNE) was employed to visualize the features extracted by the CNN model. Moreover,
different noise levels were considered to examine the robustness of the CNN classifier.

2. Guided Waves as NDE Approach for Prestressed Rods

2.1. Governing Equations and Simulation of Guided Waves along a Rod

Guided waves were first introduced in cylinder structures in the 19th century [36].
The governing equation of the wave propagating in isotropic cylinders is expressed as [37]

(λ + 2μ)∇(∇ ∗ u) + μ∇2u + f = ρ

(
∂2u
∂x2

)
(1)

where u represents the displacement vector, x is the time, ∇2 is the three-dimensional
Laplace operator, λ and μ indicate Lame’s constants, ρ is the mass density, and the body
force f is equal to zero. Then, the Helmholtz decomposition is used in Equation (1) to
simplify the problem as

u = ∇ϕ+∇ ∗ H (2)

∇ ∗ H = 0 (3)

where ϕ and H represent the scalar and vector potentials.
Three types of guided waves, namely longitudinal mode (L (0, m)), torsional mode (T

(0, m)), and flexural mode (F (n, m)), were generated to propagate through a cylindrical
structure. In the modes, n and m denote the circumferential order and modulus, respectively.
When n = 0, the waves are symmetrical, such as L (0, m) and T (0, m). Otherwise, the waves
are asymmetrical.

Stress affects the phase velocity of the guided wave. The change in the phase velocity
ΔC is expressed as

ΔC = −
[
(C0)

2

l

]
Δt (4)

where C0 is the unstressed velocity, l represents the length of the wave propagation in the
stress area, and Δt is the time change.
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Figure 1 shows the phase velocity and group velocity derived by MATLAB PCDisp [38,39].
The lower frequency of the excitation waves, less than 50 kHz, was used to reduce the
dispersion of the guided waves.

Figure 1. Phase velocities and group velocities.

As such, the ultrasonic guided waves used in this study were numerically simulated
by Multiphysics Finite Element (FE) software COMSOL, and their propagation charac-
teristics along the prestressed rod under different conditions, including under varying
grout materials and different stress levels, were then modeled and extracted using machine
learning to assist in data classification, as discussed in Section 3.

2.2. Calibration of the FE Analysis of the Ultrasonic Guided Waves through the Rod

We sought to ensure that proper parameters were used for the rod simulation and
calibrate the effectiveness of FE-based simulation for capturing the characteristics of the
wave propagation along rods. One case of the characterization of ultrasonic guided waves
along an anchor rod was selected from the literature [40], in which the rod had a diameter of
21 mm and was 2.3 m in length, and was embedded in a concrete block with a cross-section
of 1.0 m by 1.0 m and a depth of 2.0 m, as shown in the FE meshed model in Figure 2a. The
excitation of the ultrasonic guided waves was a six-cycle tone burst with a frequency of
35 kHz. A pulse-echo test was set up on the rod where the actuators and receivers were
on the same side. Excitations were generated by Wavemaker 16 equipment, which is used
for long-range inspection of pipes. The rod was embedded in the concrete block along 2
m and the remaining length of the rod from both ends of the block [40]. The comparison
results are shown in Figure 2b, where signals in the literature are marked with red lines and
the black ones were generated from this study, and the three circled wave packets denote
the excitation signals, the first right boundary reflection, and the second right boundary
reflection. As shown in Figure 2b, the simulated guided waves in this study matched well
with the experimental data collected from the literature in most cases, where three wave
packets were captured well. The first boundary wave reflections from simulated signals
occurred at 0.001 s, identical to the experimental data with comparable amplitudes. Note
that some deviations occurred after the excitation, and a potential reason could partially
result from the attenuation of the concrete block where the simulation did not capture
well. However, the entire trend and amplitudes in most cases were in agreement with
the literature, suggesting that the simulation used in this study was appropriate to ensure
capturing of the characteristics of the ultrasonic guided waves through the rods.
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(a) (b)  

 

Figure 2. Calibration of the FE model. (a) Meshing of the rod embedded in concrete. (b) Comparison
of signals with the literature.

2.3. Design of Scenarios

Followed by the calibration in Section 2.2, this section details the design of different
scenarios to generate datasets that helped to elucidate the critical factors affecting the
characteristics of ultrasonic guided wave propagation along stressed rods, thus paving the
way for stress level prediction using machine learning in Section 3. As such, the prototype
of the stressed rods was derived from the literature [41]. The rod was 31.75 mm in diameter
with a length of 3657.6 mm. The material properties of the rod were density of 7800 kg/m3,
Young’s modulus of 2 × 105 MPa, and Poisson ratio of 0.3. A clamp served as the anchorage
of the rod, which was located 50.8 mm away from the free end. Besides the reference where
the rod had no grout, two grout materials, namely grease and cement, were selected to
unveil their effects on the effectiveness of the proposed methods. The density of the cement
was 1440 kg/m3, the Young’s modulus was 2.5 × 104 MPa, and the Poisson ratio was 0.25.
The density of the grease was 2600 kg/m3. The detailed information of the rod models is
shown in Figure 3. The entire rod with the clamp is illustrated in Figure 3a (note that the
meshing figure is a schematic diagram; the actual meshing unit is much smaller), and the
embedded rod is shown in Figure 3b. Specifically, the rod passed through the plastic pipe
and then added grease and cement to fill the gap between the pipe and the rod. The outer
diameter of the plastic pipe was 52.07 mm, and the thickness was 2.54 mm. In finite element
studies, meshing is one of the critical parts in simulation. Free triangular element was
selected in this model. Guided wave simulation requires a high-quality meshing system
to minimize the propagation error of guided waves. Thus, a wavelength needs to contain
at least eight elements. In this study, the maximum element size in the model was 2 mm
and time steps were 5 × 10−6 s. Guided waves could be excited in the rod by adding
displacement loads in all nodes of the left boundary in the model. The excitation waves
were 35 kHz five-cycle sinusoidal waves modulated by the Hanning window. Four points,
as received points, distributed the circumferential surface of the rod. Positions of received
nodes were 5 mm away from the left side. Received signals were time series data, which
intercept the first 1000 data points as results for further study.
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Figure 3. Rod models.

To simulate the stress reduction in prestressed components, five different pressure
levels were loaded into each rod: no prestress (State #1), 20% ultimate tensile strength (UTS)
(State #2), 40% UTS (State #3), 60% UTS (State #4), and 80% UTS (State #5). In total, 15 cases
were designed in this section, which are shown in Table 1. Noise was added into the data
to increase the uncertainty of the dataset.

Table 1. Test matrix for computation modeling.

Case State
Prestressing Level

(UTS)
Grout Material Noise Level

1
(no grout)

# 1 zero \

100 dB–60 dB

# 2 20% \
# 3 40% \
# 4 60% \
# 5 80% \

2
(grease)

# 6 zero Grease

# 7 20% Grease

# 8 40% Grease

# 9 60% Grease

# 10 80% Grease

3
(cement)

# 11 zero Cement

# 12 20% Cement

# 13 40% Cement

# 14 60% Cement

# 15 80% Cement
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2.4. Data Collection and Augmentation

Figure 4 shows the time records with five different prestress levels derived from the
finite element simulation in Case 1 from Table 1. The received point was located 5 mm
away from the left side of the rod. To ensure the input wave had similar energy, all the
received signals were normalized, and the maximum amplitude of the first packet was
equal to 1. The time series were from 0 s to 0.005 s; the guided wave can propagate and
reflect at least twice throughout the rod. Figure 4a–e illustrates the received signals of
the steel with prestress levels equal to 0% UTS, 20% UTS, 40% UTS, 60% UTS, and 80%
UTS. Specifically, at low prestress level states (0–40% UTS), the results clearly exhibit three
main wave packets that represent the initial excitation and the first and second reflections
from the boundary. Following the first packet, fluctuations with small amplitude were
echoes from the clamp. With the stress level increased, the amplitude of this part was
smaller, and it was hard to detect at 80% UTS. In addition, the velocity of guided waves
reduced with increasing the stress of the rod. The first reflection from the right boundary
was around 0.0018 s in the base state. The value was raised to 0.0019 s and 0.002 s when
stresses were 40% UTS and 80% UTS. At 60% and 80% UTS (shown in Figure 4d,e), only
two main packets existed in the signals, where one was initial input waves, and the other
was the boundary reflection. The energy of guided waves was dissipated when waves
propagated in the second cycle. Thus, it was difficult to detect the second echo from the
boundary.

 

 

Figure 4. Received signals at different stress levels: (a) zero; (b) 20% UST; (c) 40% UTS; (d) 60% UTS;
(e) 80% UTS.

As illustrated in Figure 5, the collected guided waves of the rod exhibited different
patterns from different grout materials. Figure 5 illustrates the signals collected from
States #1, #6, and #11 (without stress) in the time domain and frequency domain. It was
observed from the time domain that with long distance propagation, the energy of the
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reflection waves was reduced progressively. However, comparing these three states, the
rod embedded in cement had the highest attenuation, where the peak value of reflections
was reduced from 0.2588 to 0.1075. After propagating to the second cycle, the peak value of
the second boundary echo was reduced to 0.0897 in the unembedded state, and the value
of the rod in cement was the lowest, 0.0113. On the contrary, grease had less of an effect
on guided waves. With 1463.04 mm of propagation, the peak value of the reflected waves
was 0.0455, which was close to the unembedded state. In the frequency domain, it was
clear that the main frequency of waves was 35 kHz. Some weak peaks occurred at the low
frequency and the high frequency due to reflections from the clamp and the boundary.

 
 

(a) 

 
 

(b) 

 
 

(c) 

Figure 5. Received signals for rods with different grout methods: (a) no grout; (b) grease; (c) cement.

A total of 15 states were designed to simulate the actual situation of the rod. In each
state, four received nodes were distributed around the circumference and were located 5
mm away from the left side. Since the received waves were easily contaminated by noise,
five noise levels based on the signal to noise ratio (SNR) were added into the received
signals. In addition, noise involved in the signals could increase the uncertainties of the
data, so we attempted to investigate the robustness of the deep learning methods. Figure 6
illustrates the collected signals at five different noise levels. When SNR exceeded 80 Db, the
interference from noise was obvious and covered some original features of the initial signals.
Especially, at 60 dB, the amplitude of the noise was greater than the signal amplitude, which
was not conductive for further study.
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Figure 6. Received signals at different noise levels.

3. Deep Learning Framework

CNN has been widely adopted in many application domains, such as image clas-
sification and segmentation, speech recognition, and computer vision tasks. The CNN
framework contains multiple layers, including a convolutional layer, pooling layer, fully
connected layer, and ReLU layer. These layers help to decode the input data into high-
dimensional slices, extract the intricate features, and then encode them into the target
values. In this study, CNN was used to identify the complicated guided wave signals. The
architecture of the CNN trained by guided wave signals is described. The model of the
CNN was changed from LeNet-5.

3.1. Introductions of CNN

The input data consisted of a series of signals with m detection points and n time steps.
Thus, the size of the input layer was n × m.

The convolutional layer is one of the most crucial layers in a CNN. In this layer, each
element from the kernel is multiplied with the data in the previous layer. The size of
the kernel determines the operation area, and the number of kernels decides the third
dimension of the output. The kernel size is much smaller than the input layer, so the kernel
moves step by step to implement. The stride defines the length of each step, which causes
the output data reduction. The size of the stride is an essential value which affects the
efficiency and performance of the layer. A bigger size may cause the loss of some important
features, and a small size may cause an increase in calculation. The initial kernels are
generated randomly, and they update by learning from each iterator. A bias is added after
summing all the multiplication results in the operation area. When all the kernels finish the
multiplication with the input data and summarize, the result is the output in this layer.

The pooling layer is used to reduce the size of the previous layer. Two pooling layers
can be selected, namely max pooling and mean pooling. In max pooling, the maximum
values in the operation area are taken as the result. In mean pooling, the average values are
the result. The operation area is also moved by setting the values of stride. After adding a
pooling layer to a CNN framework, the output of the convolutional bands has a dramatic
decrease. In this CNN, all the pooling layers were set as max pooling layers.

The activation layer adds nonlinearity into the CNN. In this model, ReLU was chosen
as the activation layer in the CNN trained by guided wave signals. ReLU changes some
of the neurons to zero, which will thin the network, reduce the interdependence between
parameters, and avoid overfitting to some extent. In addition, it also saves computation and
improves the efficiency of deep learning models, compared with other activation functions.

After the cooperation of several layers, the initial data are changed into a series of
feature maps, and the size is deformed. To transfer these feature maps into their own
category, a fully connected layer is necessary. The result of this layer is the probability that
the data belong to each label. The entire process is shown in Figure 7.
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Figure 7. Flowchart of CNN.

3.2. CNN Architecture

The proposed CNN in this study was an eight-layer network, including three con-
volutional layers, two max pooling layers, a ReLU layer, a fully connected layer, and a
softmax layer. The selection of hyperparameters affects the performance of the neural
network. Different methods [27,42,43] have been proposed to select these parameters. For
instance, the learning rate is to adjust the gradient update, the kernel number size is to
adjust the receptive filed; in addition, stride step and batch size are critical in parameter
design [26,41]. In this study, the hyperparameter selection stems from previous studies,
maintaining the basic network architecture of LeNet-5. Note that several studies revealed
that the introduction of Bayesian optimization [44,45] in determining the hyperparameters
could further enhance the architecture of the CNN with less trial and error, and thus
improve the accuracy. As part of the ongoing investigation of the applications of deep
learning in civil structures, we consider advances in hyperparameter design, including
using Bayesian optimization, for optimizing the CNN architecture.

The detailed information of each CNN layer is given in Table 2. The input data are
a matrix sized 1000 × 4, representing four collected signals in a rod sample. A total of
1000 data points were intercepted from received signals, which included the excitation and
the reflection from the right boundary. Four is the number of received signals. In the first
convolutional layer, 20 filters sized 25 × 2 were generated and operated the input data into
976 × 3 × 20. The following was a max pooling layer with the stride equal to 5. The layer
captured the maximum value in the response field and significantly cut down the size of
the input. After that, the output of the data was 195 × 3 × 20. Then, the data experienced
cooperation from the convolutional layer and the max pooling layer, involving 40 filters,
and the pooling size was 5 × 1. At this moment, the output was 34 × 1, a dramatic decline
compared with the initial input. The third convolutional layer had a small size, 5 × 1, and
a ReLU was implemented to increase the nonlinearity. Finally, the fully connected layer
and softmax layer transferred the data into several probabilities in each label.

Table 2. Details of the proposed CNN.

Name Filters Filter Size Stride Bias Output Layer Size

Input layer – – – – 1000 × 4
Convolutional layer (C1) 20 25 × 2 1 20 976 × 3
Max pooling layer (P1) 20 5 × 1 5 – 195 × 3

Convolutional layer (C2) 40 25 × 3 1 40 171 × 1
Max pooling layer (P1) 40 5 × 1 5 – 34 × 1

Convolutional layer (C3) 20 5 × 1 1 20 30 × 1
ReLU – – – – 30 × 1

Fully connected layer (F1) 5 30 × 1 1 5 5
Softmax – – – – 5

39



Buildings 2022, 12, 1772

3.3. Feature Visualization with t-SNE

The CNN classifier achieves better performance since it automatically extracts features
from the training data. It expands the data into high-dimensional matrices by multiple
filters. Thus, these features are usually high-dimensional, which is not conductive to
understanding. However, stochastic neighbor embedding (SNE) was introduced to reduce
the dimensions of the features, making it possible to visualize the feature. SNE aims to
convert the high-dimensional Euclidean distance between data samples into conditional
probabilities. The t-distributed stochastic neighbor embedding (t-SNE) [46] proposed by
Maaten and Hinton transforms a high-dimensional dataset into a pairwise similarity matrix
and minimizes the gap between the distribution in two spaces. This method is popular for
feature visualization in machine learning algorithms.

4. Results and Discussion

4.1. Feature Visualization

In this study, 500 data points in each state emerged by adding white Gaussian noise,
including 60% data for training, 20% for validation, and 20% for testing. The CNN model
was well trained after studying the features from the training data. The feature maps
can estimate the efficiency of the proposed method. The following figures show the high-
dimensional feature maps in two-dimensional space by t-SNE.

Figure 8 depicts the features in Case 1, where the prestress level of the unembedded
rod is 80 dB. States #1–5 represent the rod with the prestress level equal to 0% (base state),
20% UTS, 40% UTS, 60% UTS, and 80% UTS. In total, 2500 samples comprised the dataset,
where 1500 were used to train the model, 500 for validation, and the remaining 500 for
testing. Figure 8a displays the feature maps of the test set after the first convolutional layer.
Through the distribution of features, data labeled as 40% UTS (green upper triangle) were
isolated from the entire dataset. This indicates that the features in this label extracted from
the first layer of the CNN model were much easier to separate than others because the
Euclidean distance is larger. However, the clusters in the red diamond (base state) and
yellow circle (20% UTS) located on the right side overlapped. At least one-quarter of the
data were mixed and difficult to separate, which means errors will occur. In addition, the
rod samples prestressed in 60% UTS (blue lower triangle) and 80% UTS (purple star) were
tangled together. Figure 8b represents the feature maps from the last layer of the CNN.
After eight layers’ processing, most of the samples were separated, except one outlier in
the base class clustered in 20% UTS and a small overlap appeared between the samples in
60% UTS and 80% UTS. The results demonstrate that the features became more sensitive
after operating the whole CNN process.

 
(a) (b) 

Figure 8. Feature visualization by t-SNE. (a) Feature maps in the first convolutional layer; (b) feature
maps in the last layer.
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The CNN model sliced input signals into several small pieces, which enlarged the
sensitive features and cut off the excess. Figure 9 plots the feature maps from five different
prestress levels after three convolutional layers. The data are signals from five different
prestress levels in Case 1 when SNR is equal to 100 dB. The differences between the five
figures are clear. The shape and peak values of lines characterize signals from different
groups. However, with the increasing noise level, extracting features became harder.

   

(a) (b) (c) 

  
(d) (e) 

Figure 9. Feature maps: (a) 0% UTS; (b) 20% UTS; (c) 40% UTS; (d) 60% UTS; (e) 80% UTS.

Figure 10 illustrates the feature visualization in Case 1 when SNRs were equal to
100 dB, 70 dB, and 60 dB. At 100 dB (in Figure 10a), the five clusters were far from each
other, and each cluster of data is relatively concentrated, with an average standard deviation
close to 2.53. With the noise level increased to 80 dB (shown in Figure 10b), a small overlap
appeared between the 60% UTS and 80% UTS data, but the other three groups were clearly
separated. The standard deviation in this situation was large, 2.83. However, when SNR
was lower than 80 dB, the distributions of features changed dramatically. At 70 dB, features
in either the base state and 20% UTS or 60% UTS and 80% UTS were blended into each
other, and only the data in the green upper triangles were independently located below
the graph, demonstrated in Figure 10b. In Figure 10c, feature maps at 60 dB had a worse
situation, as all the data interwove together entirely. It is hard to ascertain the boundaries of
each group. Therefore, this proved that noise had an adverse effect on the feature extraction
of the CNN.
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(a) (b) (c) 

Figure 10. Feature visualization by t-SNE. (a) SNR = 100 dB; (b) SNR = 70 dB; (c) SNR = 60 dB.

4.2. Classification for Prestress Levels of the Rod by CNN

The performance of CNN trained by the data under various noise levels is shown
in Figure 11, which classified the prestress levels of the rod in Case 1. Of the 2500 data
points, 1500 were used for training the CNN model, and the training curves are illustrated
in Figure 11a. Specifically, these training curves started near 20%, and then converged to
100%. When the noise level was 100 dB, the model only spent seven epochs to improve the
accuracy to 100%. That epoch number was enlarged to 25 at 90 dB. With SNR increased,
more epochs were spent on converging, and the error reduced to 0 with 34 epochs at 80 dB.
The slope of training curves from 100 dB to 80 dB were much larger than the curves at
70 dB and 60 dB. In detail, the accuracy of classification was raised from 20% to 31% by
15 epochs at 60 dB and then close to 100% after the 30th epoch. The validation set included
500 data points for modifying the parameters in CNN. The validation curves for 40 epochs
showed that the accuracy of CNN started at 20% and increased with the epochs. At 100 dB
and 90 dB, the accuracies reached 100% after training 6 and 20 epochs, respectively. When
SNR was 80 dB, the curve was close to 0.98 after the 28th epoch and would not improve as
the epoch increased. However, the accuracies were lower at 70 dB and 60 dB, where the
curve converged to 0.78 and 0.34 after training 40 epochs. Approximately 32% of the data
were misjudged as the incorrect category at 70 dB. The situation at 60 dB was much worse,
as most of the data could not be classified into the right category.

 
(a) (b) 

Figure 11. Learning results of CNN at various noise levels. (a) Training curve; (b) test curve.
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The test results at various noise levels are shown in Table 3. When SNR was no
less than 90 dB, the CNN model classified the test data correctly into the corresponding
categories because the training curves and the validation curves reached 100% after training.
At 80 dB, the accuracy of test data was 98%, and some misjudgments appeared in the base
state and the 80% UTS state. The results of the feature map visualization show that some
data in the base state were dropped into the 20% UTS group, and the 60% UTS and 80% UTS
clusters overlapped (shown in Figure 11b). The mixed features caused the misjudgments in
the test. At 70 dB, only 74% of the data were identified correctly, and 25% of the data in the
first category were misclassified into the second category. On the contrary, 27% of the data
that belonged to the second category were placed into the first category. The accuracies
of the fourth and fifth categories were both equal to 63%. The conclusion is consistent
with the previous analysis in feature visualization and accurate curves. At 60 dB, the CNN
model was not suitable in this situation because the noise covered the signals entirely and
all the analysis focused on the noise. Thus, all results had low accuracy.

Table 3. Confusion matrices at various noise levels.

90 dB (100%) 80 dB (98%)
Base 20% 40% 60% 80% Base 20% 40% 60% 80%

Base 100.0% 0.0% 0.0% 0.0% 0.0% 99.0% 0.0% 0.0% 0.0% 0.0%
20% 0.0% 100.0% 0.0% 0.0% 0.0% 1.0% 100% 0.0% 0.0% 0.0%
40% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100% 0.0% 0.0%
60% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 98% 7.0%
80% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 2.0% 93.0%

70 dB (74%) 60 dB (26.8%)

Base 75% 27.0% 0.0% 0.0% 0.0% 28.0% 27.0% 20.0% 12.0% 15.0%
20% 25.0% 71.0% 1.0% 0.0% 0.0% 28.0% 22.0% 17.0% 15.0% 12.0%
40% 0.0% 0.0% 98% 0.0% 0.0% 20.0% 16.0% 34.0% 17.0% 22.0%
60% 0.0% 1.0% 1.0% 63.0% 37.0% 14.0% 14.0% 12.0% 23.0% 15.0%
80% 0.0% 1.0% 0.0% 37.0% 63.0% 10.0% 21.0% 17.0% 33.0% 36.0%

The performance of the CNN classifier in Cases 2 and 3 is shown in Figure 12. In Case
2, rods were embedded in cement. The training and validation results at five noise levels
are illustrated in Figure 12a. The training and validation curves had better results when
SNRs were higher than 70 dB. All the curves fluctuated during the first five epochs and
then quickly converged to 0. Nearly 10 epochs were spent to increase the accuracies to
100%. At 70 dB, although the training curve took about 20 epochs to converge to 100%,
the validation curve only reached 0.78. However, the performance of the CNN dropped
sharply at 60 dB. In Case 3, the error occurred at 80 dB, where the training accuracy and
validation accuracy were close to 0.99 and 0.94, respectively. The error rate increased at
70 dB, where the validation curve reached 0.77 at the 20th epoch and then flattened out.
The results in Case 3 were similar to those of Case 1 because the grease had less of an effect
on guided wave propagation.

The test results of Cases 2 and 3 are shown in Table 4 when SNRs were from 90 dB
to 60 dB. In Case 2, all the test data were identified correctly at 90 dB and 80 dB. At 70 dB,
only the base state had a classification rate of 98%, and the other four groups had lower
rates. Among them, 12 of 100 data samples in the second category were misclassified
into the third and fourth categories. The accuracy of the third category was 74% with
26% misjudgment. In addition, the error rates in the fourth and fifth categories were 66%
and 64%, respectively. When the noise level increased to 60 dB, the accuracy of prestress
identification was the lowest (46.6%). Most of the data could not be identified, except
the data in the base condition (at 99%). Compared with Case 2, the approach exhibited a
slightly lower accuracy for Case 3, where 100% of data in 90 dB were classified, 94.4% were
identified at 80 dB, 76% at 70 dB, and 41.6% at 60 dB. At 80 dB and 70 dB, most of the errors
occurred between the fourth and fifth categories. Specifically, the predictions of the fourth
and fifth categories reached 78% and 94% at 80 dB. At 70 dB, the proportions were reduced
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to 52% and 51%, respectively. At 60 dB, only the data under the base condition could be
identified, and it was hard to identify the data in other conditions.

 
(a) (b) 

Figure 12. Results of CNN at various noise levels. (a) Case 2; (b) Case 3.

Table 4. Confusion matrices in Case 2 and 3.

Case 2 (Grease as the Grout Material)
90 dB (100%) 80 dB (100%)

Base 20% 40% 60% 80% Base 20% 40% 60% 80%

Base 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
20% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 2.0% 5.0% 4.0%
40% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 8.0% 100.0% 15.0% 18.0%
60% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 4.0% 14.0% 100.0% 14.0%
80% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 10.0% 14.0% 100.0%

70 dB (78%) 60 dB (46.6%)

Base 98% 0.0% 0.0% 0.0% 0.0% 99% 1% 0% 1% 0%
20% 2.0% 88% 2.0% 5.0% 4.0% 0% 50% 16% 29% 8%
40% 0.0% 8.0% 74% 15.0% 18.0% 0% 13% 24% 16% 25%
60% 0.0% 4.0% 14.0% 66% 14.0% 1% 26% 31% 26% 33%
80% 0.0% 0.0% 10.0% 14.0% 64.0% 0% 10% 29% 28% 34%

Case 3 (Cement as the grout material)

90 dB (100%) 80 dB (94.4%)

Base 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
20% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
40% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
60% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 78.0% 6.0%
80% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 22.0% 94.0%

70 dB (76%) 60 dB (41.6%)

Base 99.0% 1.0% 0.0% 0.0% 0.0% 79.0% 18.0% 2.0% 5.0% 3.0%
20% 0.0% 99.0% 0.0% 0.0% 0.0% 18.0% 38.0% 20.0% 9.0% 11.0%
40% 1.0% 0.0% 79.0% 13.0% 12.0% 1.0% 19.0% 29.0% 29.0% 23.0%
60% 0.0% 0.0% 11.0% 52.0% 37.0% 1.0% 15.0% 25.0% 27.0% 28.0%
80% 0.0% 0.0% 10.0% 35.0% 51.0% 1.0% 10.0% 24.0% 30.0% 35.0%

4.3. Classification for Embedding Situation by CNN

The embedding situation of the rod could also be predicted by the CNN classifier. A
total of 1500 data points were used for training the CNN, including unembedded rods,
rods embedded with cement, and rods embedded with grease. The training and validation
curves are shown in Figure 13. At a lower noise level, the classifier entirely predicted the
state of the rod. Until SNR was 70 dB, the validation curve was 0.956, training 40 epochs.
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However, the accuracies at 60 dB dropped sharply. The test results are given in Table 5.
Predictions were equal to 100% in each category when SNRs were from 100 dB to 80 dB.
Several errors occurred at 70 dB and the accuracy was 92%. Specifically, the rod samples
labeled as unembedded were much easier to confuse as rods embedded in grease, as 15%
of the data in that category were misclassified into the grease state. On the other hand, 7%
of the data were misclassified into the unembedded state. Only 1% of data in cement were
predicted incorrectly. The worst results were the classification at 60 dB, where the total
accuracy was only 35%, which means the model cannot identify the signals.

Figure 13. Results of CNN at various noise levels.

Table 5. Confusion matrices in varying embedding conditions.

90 dB (100%) 80 dB (100%)

Unembedded Cement Grease Unembedded Cement Grease

Unembedded 100.0% 0.0% 0.0% 100.0% 0.0% 0.0%
Cement 0.0% 100.0% 0.0% 0.0% 100.0% 0.0%
Grease 0.0% 0.0% 100.0% 0.0% 0.0% 100.0%

70 dB (92%) 60 dB (35%)

Unembedded 84.0% 0.0% 7.0% 37.0% 24.0% 39.0%
Cement 1.0% 99.0% 0.0% 28.0% 43.0% 36.0%
Grease 15.0% 1.0% 93.0% 35.0% 33.0% 25.0%

5. Conclusions

We investigated the deep learning-based guided wave process for stress level predic-
tion of prestressed rods. The CNN model was established for automatically encoding the
hidden information from complex signals that accounted for the impacts of different noise
levels and embedded grout materials. Some conclusions can be listed as follows:

(a) The deep learning method effectively encoded the guided waves under complex
uncertainties and assisted in stress level prediction and the embedded conditions
of the rods, thereby showing potential for signal processing of NDE methods in
structural health monitoring of PC structures.

(b) The feature visualization method, t-SNE, provided an effective window that the
different feature patterns could be clearly identified from visual two-dimensional
plots. The distances between each feature point indicated the correlation among data.
In addition, the impacts of noise interference on the data were observed with the use
of this approach.

(c) The deep learning approach also exhibited high accuracy and robustness for data
with high noise interference. The CNN classification for most cases could reach up
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to 100% when the noise levels were lower (80 dB–100 dB). However, with the energy
of the noise (SNR = 70 dB) close to the signals, data classification exhibited a certain
level of reduction, and the error rates were close to 80%. Particularly, when the noise
increased to a much higher level (60 dB), all the signals were contaminated, and the
effectiveness of the classification dropped.

(d) The proposed method can also identify the embedding conditions. The identification
is no less than 92% when the noise level is lower than 60 dB. However, the accuracy
drops to 35% at 60 dB, which means it is difficult to distinguish the embedding
conditions of rods.

This study simulated the different levels of PC structure’s prestress loss by a deep
learning method. To accommodate engineering concerns, noise interference was added. In
future work, the methods will be explored on more large-scale structures in laboratory and
field conditions. As high levels of noise prevent the model from achieving high accuracy,
future perspective will focus on this issue to improve the accuracy of identification under
higher noise levels (60 dB). In addition, different kinds of damage will occur at same time;
thus, future study will investigate more complex situations. Furthermore, as the selection
of hyperparameters is also critical, future research will also focus on deep learning with
optimization methods (Bayesian optimization).
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Abstract: Large-span steel trusses are widely used in public buildings such as large-span factory
buildings, exhibition halls, gymnasiums, and bridges because of their fast construction speed and easy
industrial manufacturing. Due to construction errors and environmental factors, the material proper-
ties may change during their service life, and it is an important prerequisite for the structural safety
assessment to identify the true material parameters of the structure. Among the many parameters,
the elastic modulus is one that has the greatest impact on the accuracy of structural safety analysis.
In this paper, a mathematical analysis model of elastic modulus identification was constructed, based
on the strain test data and the improved gradient regularization method. The relationship between
the strain test data and elastic moduli was established. A common finite element program based on
the method was developed to identify the elastic modulus. A series of numerical simulations was
carried out on a 53-element steel truss model to study the availability and numerical stability of the
method. The effects of different initial values, numbers of strain tests, and locations of the strain test
as well as the number of unknown parameters on the identification results were studied. The results
showed that the proposed method had very high accuracy and computational efficiency. For the case
of 53 unknown parameters without considering the test error, the identification accuracy could reach
a 1 × 10−10 order of magnitude after only several iterations. This paper provides an effective solution
to obtain the actual values of the elastic modulus of steel truss structures in practical engineering.

Keywords: parameter identification; regularization; gradient matrix; elastic modulus; strain

1. Introduction

Large-span steel truss structures are widely used in public buildings such as large-
span factory buildings, exhibition halls, gymnasiums, and bridges because of their fast
construction speed and easy industrial manufacturing [1,2]. Due to construction errors and
environmental factors, the structural material properties may change during the service,
and it is an important prerequisite for structural safety assessment to fully understand the
real material parameters of the structure. Therefore, the parameter and damage identifica-
tion of steel truss structures have been of significant concern.

Chang [3] presented the preliminary results of modal-parameter identification and
vibration-based damage detection of a damaged steel truss bridge. Zhuo [4] studied
the damage identification of bolt connections in steel truss structures by using sound
signals. Luong [5] proposed a methodology to identify multiple axial forces in members
of a truss structure based on the modal parameters. Luong [6] investigated the inverse
identification of the stress state in axially loaded slender members of steel truss structures
using measured dynamic data. Liu [7] adopted inverse sensitivity analysis to estimate the
unknown system parameter perturbation from the difference between the observed output
data and the corresponding analytical output data calculated from the original system
model. Cho [8] performed system identification on the swing span of a steel truss bridge
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dating from 1896 using acceleration data collected from a wireless sensor network (WSN).
Terlaje [9] used displacement measurements resulting from applied static point loads as
constraints in an optimization algorithm that employed optimality criterion methods to
extract the cross-sectional properties of elements within a mathematical model of a structure.
Chakraborty [10] presented a methodology to diagnose and quantify the damage at the
element level in a truss structure with the measured static strain properties of the truss.

In the above works, we found that most of the parameter identification work for
steel truss structures was based on the dynamic response test, and mainly identified the
dynamic characteristics of the structure. Works based on the static test and identifying the
elastic parameters of the structure are limited. This is mainly because the dynamic test
method can achieve real-time monitoring without artificially applying loads and blocking
traffic. However, because it is related to modal identification, there are higher requirements
for the accuracy of the test instruments and identification methods. A disadvantage of
the static test method is the need to apply a load to excite static response, which blocks
traffic, but it has the advantage of a good identification effect and easy measurement of the
required data. Moreover, the static equilibrium equation is only related to the nature of
the structural stiffness, and it is easy to calculate the structural stiffness according to the
measured static data. Additionally, the static test equipment is cheaper, the test technology
is more advanced, and the deformation of the structure can be measured more accurately,
so it is beneficial to study the elastic parameter identification method based on the static test.
In fact, the damage detection method based on the static test has also received extensive
attention in the field of civil engineering. Song [11] studied the problem of the optimal
strain sensor placement in the damage detection of truss elements. Wang [12] identified
moving train load parameters including the train speed, axle spacing, gross train weight,
and axle weights based on the strain-monitoring data. Compared with other static response
tests, the strain test has unique advantages because of the strain gauges’ small mass, high
accuracy, easy installation and fixation, and low comprehensive cost, so it is widely used in
engineering [13–15].

The elastic modulus is also one of the most important parameters that affect the struc-
tural safety assessment because it directly affects the composition of the structural stiffness
matrix. Although work on the elastic parameter identification of steel truss structures
is limited, this problem has been widely considered in the field of mechanical inverse
problems, and many research methods have been proposed. In these methods, the common
approach is to reflect the local parameter variation onto the actual response value based on
the relationship between the structural parameter variation and the actual measured data
of a certain response. Then, the problem is transformed into the minimization of the objec-
tive function with the unknown parameters as the unknown variables and the minimum
difference between the theoretical response value and the measured response value, which
is also a typical engineering inverse problem. According to different solution methods, the
problem can be subdivided into the neural network method [16,17], Levenberg–Marquardt
method [18,19], Tikhonov regularization method [20–22], Gauss–Newton method [23],
genetic algorithm [24], and so on.

The gradient regularization method (hereafter GRM) is a method for solving the
inverse problem. It was first proposed in [25] and its applicability to one-dimensional
hyperbolic equations (one-dimensional wave equations) was verified. The applicability of
the GRM in identifying the parameters of two-dimensional elliptic operators was demon-
strated in [26]. The nonlinear inverse problem is transformed into the problem of solving
linear equations by expanding the unknown parameters in series with the supplementary
conditions of the inverse problem. Then, the GRM is used to solve the ill-posed linear
equations. This method starts from the generality of the inverse problem, without any
special constraints, and is not limited by the space dimension when solving the inverse
problem, so it is a very general method for solving the inverse problem. The GRM solves
the difficulties of ill-posedness, strong nonlinearity, and large calculation requirement in the
process of solving inverse problems, and its advantages of a high accuracy of calculation
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results and short calculation time make it applicable in related fields. The elastic modulus
of concrete dam was identified by using the GRM and the displacement monitoring data in
Liu [27]. Zhang [28] realized the elastic modulus identification of bar structures based on
the displacement test data and the GRM.

The choice of the regularization parameter α during the solution process of the reg-
ularization method is very important. If α is too large, the stability of the solution is
guaranteed, but the accuracy is reduced; if α is too small, the stability of the solution is
difficult to guarantee. Based on the idea of homotopy mapping, Cui et al. [29] extended the
solution path, effectively expanded the convergence domain, and reduced the dependence
on the initial value of iteration. Reichel [30] et al. selected the appropriate regularization
parameter when the truncated singular value decomposition method and LSQR iterative
Krylov subspace could not accurately estimate the data error. Hua [31] et al. studied the
selection of regularization parameters in model updates and proposed that the selection of
adaptive regularization parameters was more effective than that of the fixed regularization
parameters. Hansen [32] proposed a more efficient regularization parameter selection
method based on the L curve. Bucataru et al. [33] studied the numerical reconstruction of
thermal boundary data on a part of the boundary occupied by an anisotropic solid, and
used gradient regularization to solve the inverse problem.

In this paper, the problem was transformed into identifying the elastic modulus of
the structure by measuring the strain data at several points of the structure, which is a
typical inverse problem of operator identification [34]. Based on the GRM, the diagonal
elements of the Jacobi matrix in the solution process were normalized through linear
transformation, which improved the solution speed and accuracy. A problem solution
model was derived and constructed based on the strain test data and the improved gradient
regularization–finite element method for the first time. A general finite element calculation
program was developed. A series of numerical simulation tests were carried out on a
53-element steel truss model to study the availability and numerical stability of the method.
The effects of different initial values, different numbers of strain test, different locations
of the strain test, and the number of unknown parameters on the identification results
were studied. The results showed that the proposed method had very high accuracy and
computational efficiency. Without considering the test error, only a few iterations were
needed, and the identification accuracy could reach the order of 1 × 10−10. For large-
scale calculation, the advantages of this work will be more prominent compared with
the traditional optimal solution method, and the identification accuracy does not depend
on the selection of the initial value, so it has strong practicability. The proposed method
provides an effective solution for obtaining accurate design values of the elastic parameters
of steel truss structures in practical engineering.

2. Elastic Parameter Identification Model Based on Strain Test Data

2.1. Mathematical Solution Model of the Problem

For any structural members, when we artificially add an external load, P, it will cause
additional displacement and stress–strain changes, and the strain is actually a function
of the displacement. The static equation of a steel truss structure solved by the structural
finite element is:

[K(E)]{U} = {P} (1)

{ε} = [B]{U} (2)

where {U} =
(
u1 u2 . . . . . . un

)T is a column vector composed of unknown node
displacements and {P} = (q1, q2, . . . . . . , qn)

T is a column vector of known nodal loads;

[K(E)] =

⎛⎜⎝k11(E) . . . k1n(E)
...

. . .
...

kn1(E) · · · knn(E)

⎞⎟⎠ is the global stiffness matrix of the structure; and E is

the elastic modulus of the structure.
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B is the transfer matrix between the strain and displacement, which is determined
according to the specific problem.

Formula (1) is the solution equation of the verse problem, that is, to solve the response
with the given load action and design parameter information. The correlation between
the elastic modulus and strain, ε, is established by Equation (1). However, if the design
parameters are unknown and the load and test data of the local response are known, can the
information of design parameters be obtained by reverse solving? This is a typical inverse
problem of operator identification. If the structure is regarded as a continuum in a certain
spatial domain, and E, ε, and P are functions about x, then the following mathematical
equations for solving the inverse problem can be established:

K(E(x))U(x) = P(x) x ∈ ∂Rr (3)

ε(x) = [B(x)]U(x) (4)

B1(ε(x)) = εc(x) x ∈ ∂R1r (5)

B2(ε(x))x=xs = εs(x) x ∈ ∂R2r (6)

where K is the operator of E(x); B1, B2 is the boundary condition operator and the additional
condition operator, respectively; s = 1, m, and m is the number of known strain test data.
R is the spatial domain of the problem, equal to 2 or 3 for the plane and spatial domain
problems, respectively; x is the coordinate defined on Rr; Rr

1 is the domain of given
boundary conditions; Rr

2 is the domain of the given supplementary conditions.

2.2. Establishing the Objective Function

Since only the strain data at the positions of the representative elements can be ob-
tained, the solution of the problem described in Equations (3)–(6) is not unique, and only a
set of optimal solutions satisfying the additional strain test data can be found. Considering
the existence of the test error and numerical error, this paper used the strain relative value
to establish the following constraint objective function.

Seeking E:
Let f (E) ≤ err (7)

f (E) =
s

∑
i=1

|ε̃i(E)| (8)

ε̃i(E) =
εsi − εi

εsi
(9)

where err is a very small given value; εsi is strain test data for the ith element; εi is the
calculated strain value for the ith element.

2.3. Solution of Gradient Regularization Method [25] Based on Strain Test Data

Assuming the strain test data, ε∗(x), is an exact solution satisfying Equations (3)–(6),
ε∗(x) and the supplementary condition B2(ε

∗(x)) are expanded by first-order Taylor ex-
pansion in the vicinity of E0(x), then there will be:

ε∗(x) = ε0(x) +
∫

R

∂ε(x)
∂E(x′)

ΔE
(

x′
)
dx′ (10)

B2(ε
∗(x)) = B2(ε0(x)) +

∫
R

∂B2(ε(x))
∂E(x′)

ΔE
(

x′
)
dx′ (11)

Since ε∗(x) is an exact solution, we have

B2(ε
∗(x)) = εs(x) (12)
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If we make:
D(x) = εs(x)− B2(ε0(x)) (13)

G
(
E
(

x′
)
, x
)
=

∂B2(ε(x))
∂E(x′)

(14)

then we substitute Equations (12)–(14) into Equation (11) to obtain:∫
R

G
(
E
(

x′
)
, x
)·ΔE

(
x′
)
dx′ = D(x) (15)

Here, G(E(x′), x) is the gradient operator of the supplementary condition ∂B2(ε(x))
to E(x′) at E(x′) = E0(x′).

This is an ill-posed problem, hence, we construct the regularization functional:

J(ΔE(x), α) = ρ2
(∫

W
G
(
k
(

x′
)
, x
)
ΔE
(

x′
)
dx′, D(x)

)
+ αΘ

(
ΔE
(

x′
))

x′ ∈ W, x ∈ ∂W2 (16)

ρ2
(∫

W
G
(
E
(

x′
)
, x
)
ΔE
(

x′
)
dx′, D(x)

)
=
∫

∂W2

(∫
W

G
(
E
(

x′
)
, x
)
ΔE
(

x′
)
dx′ − D(x)

)2
dx (17)

Find ΔE(x′) from Formula (18):

minJ
(
ΔE
(

x′
)
, α
)
= ρ2

(∫
R

G
(
E
(

x′
)
, x
)
ΔE
(

x′
)
dx′, D(x)

)
+ αΘ

(
ΔE
(

x′
))

(18)

where α is the regularization parameter and Θ(ΔE(x′)) is the regularization functional.
Equation (18) is discretized to give:

minJ
(
ΔẼ, α

)
=
(
G̃·ΔẼ − D̃

)T(G̃ΔẼ − D̃
)
+ α

(
D̃ΔẼ

)T(R̃ΔẼ
)

(19)

Let the first-order partial derivative of Equation (19) be equal to 0, and the extreme
value of Equation (19) can be obtained as follows:(

G̃TG̃ + αH̃
)

ΔẼ = G̃T D̃ (20)

where H̃ is the derived matrix of Θ(E(x′)).
For a linear problem, ΔẼ can be solved from Equation (20). For a nonlinear problem, it

needs to be solved by many iterations, thus:

Ẽn+1 = Ẽn + ΔẼn (21)

When the convergence condition of Equation (21) is satisfied, the value En+1 is taken
as the real elastic modulus.

3. Improvement of Gradient Regularization Method [28]

The regularization parameter, α, plays a key role in the process of solving the inverse
problem, and it will affect the stability and accuracy of the solution. When it becomes large,
the stability of the solution is improved, but the accuracy is reduced, and vice versa when
it becomes small. Therefore, the choice of α is key to the balance between the accuracy
and stability.

In the original GRM, when looking for the parameters, the values are completely
different in each iteration, even by several orders of magnitude. The search for α is difficult.
Therefore, based on the original GRM, the following linear transformation was adopted to
normalize the diagonal elements of the Jacobi matrix.

After discretization, we have:

G =
(
G1 . . . Gj . . . Gn

)
(22)
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ΔE =
(
ΔE1 . . . ΔEj . . . ΔEn

)T (23)

Gj =
(
G1j . . . Gij . . . Gmj

)T
=

(
∂B1

∂Ej
. . .

∂Bi
∂Ej

. . .
∂Bm

∂Ej

)T

(24)

where n is the number of unknown elastic moduli and m is the number of supplementary
test data. Let:

G =

(
G1

‖G1‖2
. . .

Gj

‖Gj‖2
. . .

Gn

‖Gn‖2

)
(25)

ΔE =
(‖G1‖2ΔE1 . . . ‖Gj‖2ΔEj . . . ‖Gn‖2ΔEn

)T (26)

Equation (15) is discretized as:

G̃ΔẼ = D̃ (27)

Substituting G, ΔE into Equation (20):(
GTG + αR̃T R̃

)
ΔE = GT D̃ (28)

where

GTG =

(
GT

i
‖Gi‖2

· Gj

‖Gj‖2

)
n×n

(29)

When i = j,
GT

i
‖Gi‖2

· Gj

‖Gj‖2
=

GT
i

‖Gi‖2
· Gi
‖Gi‖2

= 1 (30)

ΔẼ =

{
ΔẼ1

‖G1‖2
. . .

ΔẼj

‖Gj‖2
. . .

ΔẼn

‖Gn‖2

}T

(31)

So far, the Jacobi matrix is normalized, which will not only improve the search speed,
but also increase the accuracy of its solution.

4. Numerical Experiments and Analysis

To verify the method in this paper, a typical steel truss bridge model was selected,
and a series of numerical experiments were carried out with the common finite element
analysis program developed with Fortran Language based on the GRM method.

4.1. Prototype for Numerical Experiments

As shown in Figure 1, a plane steel truss model was selected for the numerical simula-
tion analysis [35]. In this structure, each bar had a pipe cross section with an outer diameter
of 1.71 cm, and a wall thickness of 0.2 cm. The total length of the truss was 5.6 m, with
0.4 m in each bay, and the height of the truss was 0.4 m. The model has 53 bar elements,
28 nodes, and 81 degrees of freedom. Among them, Nos. 1–14 elements were lower chord
bars; No. 15–26 elements were upper chord bars; Nos. 27–53 elements were vertical bars,
and the material parameters of each bar was the same (see Table 1 for specific parameter
information). The bars were connected at pinned joints. There were two supports in this
truss structure: a pin support at the left end and a roller support at the right end of the
lower chord. The roller support at the right end was constrained in the vertical direction.
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Figure 1. Schematic diagram of the plane hinged truss model.

Table 1. Basic material parameters of the truss bridge.

Parameter Value

Modulus of elasticity, E 2.0 × 108 Pa
Moment of inertia, I 3.556 × 10−4 m4

Section area of each bar, A 1.38 × 10−4 m2

Density, r 5.69 × 107 kg/m3

It was assumed that the external load acts on node 21, F = −10 kN (vertically down-
ward), and the strain value of each element can be calculated through the verse problem
calculation with the known design values of material parameters, as shown in Table 2.

Table 2. The calculated strain value of each element.

Element Strain (×10−3) Element Strain (×10−3)

1 9.54 28 8.13
2 9.17 29 7.23
3 8.46 30 5.96
4 7.40 31 4.34
5 5.98 32 2.35
6 4.25 33 3.54
7 2.45 34 2.35
8 2.45 35 4.34
9 4.25 36 5.96

10 5.98 37 7.23
11 7.40 38 8.13
12 8.46 39 8.67
13 9.17 40 9.11
14 9.54 41 8.74
15 9.17 42 8.02
16 8.45 43 6.94
17 7.38 44 5.49
18 5.96 45 3.69
19 4.21 46 1.53
20 2.21 47 1.53
21 2.21 48 3.69
22 4.21 49 5.49
23 5.96 50 6.94
24 7.38 51 8.02
25 8.45 52 8.74
26 9.17 53 9.11
27 8.67

4.2. Study on the Availability of the Method

To verify the availability of the method, it was assumed that the material parameters
are unknown. To simplify the problem of the regularity study of the method, the initial
elastic modulus values of the bottom chord, the middle web member, and top chord were
assumed to be the same and set as E1, E2 and E3, respectively, according to the position
of the member; these values were estimated according to experience. The strain values of
elements 2, 21, 36, and 44 were obtained by the verse problem calculation as the simulated
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strain test data. The termination criterion was set to 1 × 10−10. If the method is correct,
the design parameter values will be identified. The iteration process of the numerical
experiment is shown in Table 3.

Table 3. Iteration process (unit: 108 N/m2).

Step E1 E2 E3 Objective Function

E0 1.00 1.50 1.80 /
1 1.49 1.85 2.02 7.55 × 10−1

2 1.87 1.97 2.00 1.51 × 10−1

3 1.99 2.00 2.00 9.01 × 10−3

4 2.00 2.00 2.00 2.68 × 10−5

5 2.00 2.00 2.00 6.68 × 10−9

6 2.00 2.00 2.00 2.16 × 10−13

True value 2.00 2.00 2.00

The data in Table 3 show that the calculated elastic modulus value finally converged
to the design value of the model and satisfied the requirement of the objective function
in the sixth iteration step, which proves the availability of the method and reflects its
high efficiency.

4.3. Elastic Parameter Identification under Different Initial Elastic Moduli Values

The strains of elements 2, 21, 36, and 44 were still selected as supplementary conditions
for the inversion calculation. Three groups of different elastic moduli values were taken
as the initial elastic moduli values, and the calculation results are shown in Table 4 (the
iteration convergence progress is shown in Figure 2). The identification results in Table 4
show that the selection of the initial value of the elastic moduli had little effect on the
identification results as long as the supplementary test information was accurate, but it
would have a certain impact on the identification speed. However, because of the high
efficiency of the GRM, the impact on the computational efficiency was almost negligible.
Still, for large-scale engineering calculations in practical application, the initial value should
be estimated according to the engineering information as far as possible to improve the
calculation efficiency as much as possible. The information can be the initial design value of
the elastic modulus in the design files, or some test data at the beginning of construction, etc.

4.4. Effect of Amounts of Strain Test Data on the Identification Results

The initial elastic moduli values (1.3, 1.6, 1.9) × 108 N/m2 were selected, along with
different amounts of strain data from Table 2 as supplementary conditions to conduct the
numerical simulation. The calculation results are shown in Table 5 (the convergence process
is shown in Figure 3).

Table 4. Iteration results with different initial values.

Set No.
Initial Value
(×108 N/m2)

Total Iteration Steps
Solution

(×108 N/m2)
Error (%)

1
E1 = 1.0

6
2.0 2.10 × 10−11

E2 = 1.3 2.0 5.80 × 10−11

E2 = 1.5 2.0 7.85 × 10−11

2
E1 = 1.2

5
2.0 7.65 × 10−10

E2 = 1.5 2.0 6.20 × 10−10

E3 = 1.7 2.0 5.60 × 10−11

3
E1 = 1.3

5
2.0 5.14 × 10−10

E2 = 1.6 2.0 2.86 × 10−10

E3 = 1.9 2.0 3.00 × 10−12
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Figure 2. Results under different sets of initial values. (a) Results under the first set of initial values.
(b) Results under the second set of initial values. (c) Result under the third set of initial values.

Table 5. Results with different numbers of strain test data (×108 N/m2).

Number of Strain
Test Data

Total Iteration Steps E1, E2, E3 Error (%)

2 5
1.69 −15.5%
1.71 −14.5%
3.57 157.0%

3 5
2.0 4.77 × 10−10

2.0 1.74 × 10−10

2.0 1.00 × 10−11

5 5
2.0 5.43 × 10−10

2.0 1.38 × 10−10

2.0 2.50 × 10−12

10 5
2.0 8.61 × 10−10

2.0 9.85 × 10−11

2.0 1.15 × 10−11

15 5
2.0 9.72 × 10−10

2.0 2.10 × 10−10

2.0 5.00 × 10−13

53 6
2.0 1.15 × 10−11

2.0 1.20 × 10−11

2.0 1.10 × 10−11
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(a) 2 strain test data (b) 3 strain test data 

 
(c) 5 strain test data (d) 10 strain test data 

 
(e) 15 strain test data (f) 53 strain test data 

Figure 3. Calculation results of different numbers of strain test data.

It can be seen from the above numerical experiment results that when the number
of supplementary conditions is less than the number of unknown elastic parameters,
the calculation cannot converge to the true elastic moduli value. Thus, the number of
supplementary conditions in practical projects is at least greater than or equal to the
number of unknown parameters. However, the calculated results are still convergent to
the elastic parameters of the model regardless of whether the least three elements or all
53 elements of the strain data are selected as the supplementary conditions. Therefore, in
an actual project, it is enough to select a certain number of measured values as additional
information, more is not necessarily better. The number of measuring points can be selected
according to the actual situation of the site, which not only reduces the construction cost,
but also reduces the time cost and improves the operation efficiency.

4.5. Identification of Elastic Parameters with Strain Test Data at Different Locations

We still took (1.3, 1.6, 1.9) × 108 N/m2 as the initial elastic moduli values. When the
locations were all scattered at the lower chord (the red part as shown in Figure 4a) and the
locations were all concentrated at the support position (the red part as shown in Figure 4b),
the iteration process is shown in Tables 6 and 7, respectively.
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Figure 4. (a) Selection of scattered measuring points of the lower chord. (b) Selection of centralized
measuring points at the support.

Table 6. Calculation results with centralized measuring points of the lower chord.

Number of Iterations E1 E2 E3 Objective Function

E0 1.30 1.60 1.90 /
0 1.52 2.78 2.43 3.86 × 10−1

1 1.81 2.32 2.09 1.26 × 10−1

2 1.96 2.03 2.02 2.71 × 10−2

3 2.00 2.00 2.00 1.20 × 10−3

4 2.00 2.00 2.00 5.66 × 10−8

5 2.00 2.00 2.00 1.52 × 10−12

Table 7. Calculation results with centralized measuring points at the support.

Number of Iterations E1 E2 E3 Objective Function

E0 1.30 1.60 1.90 /
0 1.64 1.96 2.32 3.23 × 10−1

1 1.91 2.01 2.01 1.15 × 10−1

2 2.00 2.00 2.00 5.20 × 10−3

3 2.00 2.00 2.00 8.13 × 10−6

4 2.00 2.00 2.00 1.11 × 10−9

5 2.00 2.00 2.00 1.09 × 10−12

The above numerical experimental results show that there was little difference in the
accuracy of the identification results across different locations of the selected measuring
points. The true elastic moduli values could be accurately identified. This is of great
significance for practical engineering applications. In practical engineering, according
to the actual construction conditions, the time-saving and labor-saving points can be
preferentially considered for strain measurement to improve the construction efficiency.
Of course, the measuring points with obvious strain change should be selected wherever
possible, which is conducive to ensuring the accuracy of the solution.

4.6. Studies on Numerical Stability

In practical engineering, test errors are often caused by other factors such as the
accuracy of the instrument or the non-standard test operation. Random errors of +5% and
+10% were artificially applied to the strain values of elements 2, 21, 36, and 44 in Table 2,
and the calculation results are shown in Table 8. It can be seen from the identification
results in Table 8 that after considering the model error, the iteration process is stable and
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the solution changes regularly and stably with the change in the error, which proves the
good numerical stability of the method in this paper.

Table 8. Calculation results under different error conditions.

Step 0% +5% +10%

E0
1.3
1.6
1.9

1.3
1.6
1.9

1.3
1.6
1.9

1
1.75
1.91
2.01

1.71
1.84
1.92

1.67
1.77
1.83

2
1.97
1.99
2.01

1.88
1.90
1.91

1.81
1.82
1.82

3
2.00
2.00
2.00

1.90
1.90
1.90

1.82
1.82
1.82

4
2.00
2.00
2.00

1.90
1.90
1.90

1.82
1.82
1.82

err(%)
0
0
0

4.76
4.76
4.76

9.09
9.09
9.09

4.7. Identification under Different Numbers of Unknown Parameters

In practical engineering, the elastic modulus of each region may not be equal, so it
should be assumed that the elastic parameters of each measured region are unknown and
must be identified. Since the initial value of the initial elastic modulus had no effect on the
parameter identification, it was assumed that the initial elastic modulus of all members
was 1.5e8 N/m2. The identification results under five unknowns (six simulated test strains
were randomly selected), 10 unknowns (11 simulated test strains were randomly selected),
15 unknowns (16 simulated test strains were randomly selected), and the elastic moduli of
53 elements were all unknown (53 test strains are all selected) were studied, respectively.
The calculation results of the objective function are shown in Table 9, and the convergence
process is shown in Figure 5.

Table 9. Convergence process of the objective function under different unknowns.

Number of Iterations
Number of Unknowns

5 10 15 53

0 4.00 × 10−1 7.335 × 10−1 1.071 3.536
1 2.35 × 10−2 4.249 × 10−2 6.250 × 10−1 2.048 × 10−1

2 7.34 × 10−5 1.194 × 10−4 2.968 × 10−3 1.245 × 10−3

3 3.07 × 10−8 6.589 × 10−8 2.278 × 10−3 3.475 × 10−4

4 4.79 × 10−13 6.917 × 10−13 2.078 × 10−5 1.969 × 10−6

5 2.482 × 10−9 1.347 × 10−10

6 2.090 × 10−12 1.277 × 10−12
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Figure 5. Calculation results under 53 unknowns.

When the number of unknowns increased to 53, the calculation results still converged
to the true elastic moduli values, which proves the effectiveness of the method when applied
to large-scale operations. However, Table 8 shows that when the number of unknowns
increased to 15 and 53, more iterations were needed to reach the objective function value
than when the number of unknowns was 5 or 10. Thus, when the number increases to a
certain extent, the solution process will become longer. In practical engineering, according
to the position of the members and their properties in the structure, the members with the
same elastic modulus value should be assessed and set as the same unknown parameters
as much as possible in combination with prior experience to improve the efficiency of the
solution and reduce unnecessary test work.

5. Conclusions

In this paper, a mathematical analysis model of elastic modulus identification was
constructed, based on strain test data and the improved gradient regularization–finite
element method. The numerical analysis showed that the proposed method had very high
accuracy and computational efficiency. Finally, the related problems in this paper can be
explained and discussed as follows:

(1) The elastic parameter identification method based on the strain test and gradient
regularization–finite element method in this paper is available and efficient. However,
in practical application, the accuracy of the test data must be ensured. At present, the
strain measurement technology for civil structure health monitoring has been very well-
developed, the most commonly used being resistance type strain gauges [36], vibrating wire
type gauges [37], and fiber optic sensors [38]. At present, the accuracy of the commonly used
strain sensors can reach 0.1~0.5 με. The rapid development of modern testing technology
provides a technical guarantee for the proposed method.

(2) In the elastic stage, the proposed method only needs to determine the additional
external load and the geometric dimensions of the structure at the moment of the test and
has nothing to do with the initial stress of the structure, so it needs less input information
and improves the identification accuracy.

(3) In fact, the identification method in this paper is also applicable to the identification
of elastic parameters of other structures, but the solution model used in the verse analysis
process is different according to the characteristics of various structures.
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Abstract: We present a finite element model updating technique for soil–structure system identifica-
tion of the Millikan Library building using the seismic data recorded during the 2002 Yorba Linda
earthquake. A detailed finite element (FE) model of the Millikan Library building is developed in
OpenSees and updated using a sequential Bayesian estimation approach for joint parameter and
input identification. A two-step system identification approach is devised. First, the fixed-base
structural model is updated to estimate the structural model parameters (including effective elastic
modulus of structural components, distributed floor mass, and Rayleigh damping parameters) and
some uncertain components of the foundation-level motion. Then, the identified structural model is
used for soil–structure model updating wherein the Rayleigh damping parameters, the stiffness and
viscosity of the soil subsystem (modeled using a substructure approach), and the foundation input
motions (FIMs) are estimated. The identified model parameters are compared with state-of-practice
recommendations. While a specific application is made for the Millikan Library, the present work
offers a framework for integrating large-scale FE models with measurement data for model inversion.
By utilizing this framework for different civil structures and earthquake records, key structural model
parameters can be estimated from the real-world recorded data, which can subsequently be used
for assessing and improving, as necessary, state-of-the-art seismic analysis and structural modeling
techniques. This paper presents an effort towards using real-world measurements for large-scale FE
model updating in the soil and structure, uniform soil time domain for joint parameter and input
estimation, and thus paves the way for future applications in system identification, health monitoring,
and diagnosis of civil structures.

Keywords: finite element model updating; soil–structure interaction; system identification; joint
system and input identification; Bayesian estimation; Millikan Library

1. Introduction

The dynamic response of a building structure to an earthquake excitation is occasion-
ally the result of a complex interaction between the structural system and the underlying
and surrounding geology. Since modeling the physics of a coupled soil–structure system
in detail is an intricate undertaking, the state of practice has adopted simplified modeling
and analysis procedures, such as the substructure approach (e.g., [1,2]). In this approach,
the soil flexibility and energy dissipation are modeled using distributed spring and dash-
pot elements to which the foundation input motions (FIMs) are applied as uniform base
excitations [3]. The stiffness and viscosity of these elements are derived using simplified
analytical methods, which are nonetheless based on idealized and restrictive assumptions—
e.g., linear elastic response behavior of soil and structure, uniform soil half-space (or soil
profiles with stiffness gradually varying with depth [4]), etc. These simplifying assumptions
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and the empirical nature of the mechanical analogs (e.g., soil springs and dashpots) could
potentially lead to unquantified errors in predicting the seismic responses of real-world
building structures, even though the simplified models have demonstrated acceptable accu-
racy in idealized case studies (e.g., [5]). Furthermore, integrating the substructure method
with the Rayleigh damping model—which itself has a highly empirical nature—introduces
another source of uncertainty in the seismic analysis of building structures. Clearly, there is
an inconsistency between the relatively sophisticated mechanics-based techniques available
for structural system modeling and the crude simplicity of the underlying assumptions
that guide the damping and soil–structure interaction (SSI) models. It appears clear that
the efforts on damping and SSI characterization should be guided by observations distilled
from real-life data.

Soil–structure interaction (SSI) analysis has been an active research subject for more
than 40 years (e.g., [6]). SSI effects can be classified into two categories: kinematic and
inertial interaction effects [7]. Referred to as the FIMs, the earthquake excitations experi-
enced by a structure–foundation system are affected by the stiffness contrast between the
foundation stiffness and the surrounding geology. Therefore, FIMs are generally different
from the Free-Field Motions (FFMs) that would have been recorded in the absence of the
foundation system. The effects of foundation stiffness and geometry, which result in dis-
crepancies between FIMs and FFMs, are collectively referred to as the kinematic interaction
effects. Inertial interaction effects are a result of the foundation–superstructure mass, which
imparts inertial forces onto the surrounding soil and causes the foundation to experience
a response different from the FIMs. Due to the inertial interaction effects, the vibrating
structure operates as a wave source and alters the wave field around the foundation system.
In the substructure modeling approach, these two effects are treated separately (e.g., [8]).
That is, FIMs are analytically or numerically calculated based on the soil and founda-
tion properties (e.g., [9]). Then, inertial effects are represented by frequency-dependent
impedance functions that are estimated through analytical, numerical, or experimental
studies (e.g., [10]). Finally, the superstructure on top of the impedance functions is analyzed
under the estimated FIMs.

In this study, we develop a model inversion framework that can be used to back-
calculate the soil–structure model parameters from the seismic responses of real-world
buildings. By repeating this effort for different buildings and earthquake records, the
estimation results can be summarized and compared with the state-of-practice recommen-
dations to improve the present seismic analysis capabilities and predictive models for
building structures. We apply the model inversion framework that is devised in the present
study to the data recorded from the Millikan Library building during the 2002 Yorba Linda
earthquake, which was a low-amplitude seismic event. The response of the building during
this small event was nearly linear elastic. As such, it provides an opportunity to compare
the estimation results with linear elastic seismic analysis practices.

The utilized model inversion framework is based on a finite element (FE) model
updating approach formulated in the time domain, using a sequential Bayesian estimation
method [11]. The FE model updating approach has been developed and verified previously
using numerically simulated data (e.g., [12,13]). This paper presents an effort towards
using real-world measurements for large-scale FE model updating in the time domain,
and thus paves the way for future applications. Although the presented model updating
approach is used along with a linear FE model in this study, the approach can be readily
extended to nonlinear FE models of civil structures.

In what follows, the Bayesian FE model updating approach and its algorithmic details
are briefly discussed in Section 2. Section 3 provides the modeling details of the Millikan
Library building. A two-step system identification approach is introduced in Section 4,
which is applied to the Millikan Library data in Sections 5 and 6. An identifiability analysis
accompanies each system identification step to select the estimation parameters. Finally,
the key estimation results are summarized and compared with available literature and the
state of practice in Section 7.
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2. Data Assimilation through FE Model Updating in the Time Domain

The finite element model of a building structure depends on various “model param-
eters”. Model parameters include, but are not limited to, inertial properties, damping
parameters, parameters that characterize the stiffness properties of the structural and
nonstructural components, and the time histories of the unmeasured components of base
excitation. If the soil–structure interaction effects are included in the FE model, then the
parameters used to model the soil subsystem and the time history of FIMs are also un-
measurable and unknown. Using the recorded acceleration response time histories of the
building during an earthquake, our objective is to identify the best estimates of the un-
known model parameters along with the input excitation time history, in order to minimize
the discrepancy between the FE-predicted and measured structural responses.

The estimation problem is tackled by updating iteratively and sequentially the joint
probability distribution function (PDF) of the unknown model parameters and the discrete
values of the input motion time histories using a Bayesian inference method. The basics
of the sequential FE model updating method for joint system and input identification are
presented in [11]. Here, we briefly review the technical background of this method and
highlight the new improvements introduced for this study.

2.1. Bayesian FE Model Updating in Time Domain for Joint System and Input Identification

The predicted response of a FE model at time step i to an earthquake excitation time
history can be expressed as [14]

^
yi = hi
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where vi ∈ R
ny×1 is the simulation error vector, which accounts for the misfit between the

measured and FE-predicted responses. This misfit stems from the output measurement
noise, parameter uncertainties, and model errors. Model errors stem from simplifying
idealizations adopted when devising the model as well as deviations in its geometry
and configuration from the real-life structure it represents, which result in an inherent
discrepancy between the FE model prediction and the measured structural responses [15].

Given an unbiased estimate of θ and
..
u

g
1:k, it is assumed here that the simulation

error can be modeled as a stationary, zero-mean, and independent Gaussian white noise
process [16]. Therefore, the likelihood function can be derived as
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where |R| denotes the determinant of the diagonal matrix R ∈ R
ny×ny , which is the time-

invariant covariance matrix of the simulation error vector, i.e., R = E
(
vivi

T), ∀i. The
unknown model parameter vector and time histories of the unknown input ground motion
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can be stacked into an extended unknown parameter vector defined as ψ =

[
θT ,

( ..
u

g
1:k

)T
]T

.

In a stochastic model inversion, the uncertainty in the unknown parameter vector is
characterized by a joint probability distribution function (PDF). The objective in FE model
updating is to find an estimate of the unknown parameters such that their joint posterior
PDF given the measured output response of the structure is maximized. This is referred to
as the maximum a posteriori (MAP) estimate. Using Bayes’ rule, it can be observed that(

^
ψ

)
MAP

= argmax
ψ

p(ψ | y1:k) = argmax
ψ

p(y1:k | ψ)× p(ψ) (4)

where p(y1:k |ψ) = ∏k
i=1 p(vi), and p(ψ) is the joint prior PDF of the extended unknown

parameters.

2.2. Sequential Finite Element Model Updating Using Model Linearization

Solving the MAP estimation problem shown in Equation (4) using a batch optimization
algorithm can be computationally demanding [11]. Therefore, a sequential estimation
approach is introduced in [11] to improve the computational efficiency and convergence
rate. In this approach, the estimation time domain is divided into successive overlapping
time windows, referred to as the estimation windows. The estimation problem is solved
iteratively at each estimation window to estimate the posterior mean vector and covariance
matrix of the unknown parameters. At each iteration, the FE model is linearized to
propagate the uncertainties in the prior PDF into the FE model response. The posterior
mean vector and covariance matrix of the unknown parameter vector are then derived
using Equation (4), and used as prior information for the next iteration. Once the iterations
converge for an estimation window, the estimated mean vector and covariance matrix are
transferred to the next estimation window and are used as prior information. In what follows,
the mathematical process of the sequential Bayesian estimation approach is outlined.

Assume that the mth estimation window with length tl spans from time step tm
1 to time

step tm
2 , where tl = tm
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1 . Considering that p
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where k0 is a constant, and
^
ψ

−
m and

^
P
−
ψ,m are the prior mean vector and the covariance matrix

of the extended parameter vector at the mth estimation window.
~
R ∈ R

(tl×ny)×(tl×ny) is a
block diagonal matrix, in which the diagonals denote the simulation error covariance matrix
R, and

.̂.
u

g
1:tm

1 −1 is the estimated input motion time history from the previous estimation
windows, which is treated as a known vector. To determine the MAP estimate of ψm, we

solve
∂log

(
p
(
ψm | ytm1 :tm2

))
∂ψm

= 0, which results in a nonlinear algebraic equation in ψm, as
shown in [11]. This equation can be solved using an iterative first-order approximation of

the FE response function at
^
ψ

−
m , which requires the computation of FE response sensitivities

with respect to the extended unknown parameter vector, evaluated at the prior mean values.
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The FE response sensitivity matrix is denoted by C hereafter. As a result, the following
(first-order approximate) equation for the MAP estimate of ψm can be obtained [11] as

^
ψ

+

m,j =
^
ψ

−
m,j + K

(
ytm

1 :tm
2
− htm

1 :tm
2

(
^
ψ

−
m,j,

.̂.
u

g
1:tm

1 −1

))
(6)

where
^
ψ

+

m is the updated (or the posterior) mean estimate of ψm. The term K =
^
Pψy(

^
Pyy)−1

is referred to as the Kalman gain matrix [17]. The matrix
^
Pψy =

^
P
−
ψ,mCT is the cross-

covariance matrix of the unknown parameter vector and measured data, and
^
Pyy = C

^
P
−
ψ,mCT +

~
R is the covariance matrix of the measured data (the reader is re-

ferred to [11,18] for further derivation details). The subscript j is appended to the estimated

mean vector and covariance matrix to denote the iteration number. The updated
^
ψ

+

m,j from
Equation (6) is iteratively used as the new point for the linearization of the nonlinear FE
model to improve the estimation. This iterative prediction–correction procedure at each
estimation window is equivalent to an iterative extended Kalman filtering (EKF) method for
parameter-only estimation [17]. Following the EKF procedure, the prior covariance matrix
^
P
−
ψ,m,j is updated to the posterior covariance matrix

^
P
+

ψ,m,j at each prediction–correction
iteration as in ^

P
+

ψ,m,j = (I − KC)
^
P
−
ψ,m,j(I − KC)T + K

~
RKT . (7)

Furthermore, to improve the convergence characteristics of the iterative prediction–
correction procedure, a disturbance matrix is added to the posterior covariance matrix at each it-

eration to provide the prior covariance matrix for the next iteration, i.e.,
^
P
−
ψ,m,j+1 =

^
P
+

ψ,m,j +Q,
in which Q is a diagonal matrix with small positive diagonal entries (relative to the diagonal

entries of the matrix
^
P
+

ψ,m,j). The matrix Q is referred to as the process noise covariance
matrix in the Kalman filtering world [17].

Accurately computing the FE response sensitivities is an integral part of the presented
sequential FE model updating. In previous studies (e.g., [11,12]), the response sensitivities
have been computed using a direct differentiation method (DDM) (e.g., [19]), which re-
quires extending the FE numerical scheme and implementing new codes in the FE software
to calculate the response sensitivities. Although available in OpenSees [20], this imple-
mentation is not readily available as part of other FE simulation platforms. Therefore,
to extend the applicability of the sequential FE model updating procedure to other FE
simulation platforms, here we use the finite difference method (FDM) to compute the
response sensitivities. The FDM method is implemented by perturbing the estimation pa-
rameters one at a time based on a central difference method with unequal spacing. We use
parallel computing to enhance the computational efficiency of the FDM implementation.
The Bayesian FE model updating algorithms are implemented in MATLAB [21], which
calls several instances of OpenSees in parallel for FE response and response sensitivity
computations at each prediction–correction iteration. Table 1 summarizes the sequential FE
model updating algorithm for the joint estimation of model parameters and input motion
time histories that is described above. It should be noted that the presented Bayesian FE
model updating framework is applicable to both linear and nonlinear FE models. In case
the FE model is linear, the model response function will still be a nonlinear function of the
model parameters and input motion; however, the model updating process will become
more computationally efficient.
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Table 1. Sequential FE model updating algorithm for joint estimation of model parameters and input
motion time histories.

1. Determine the start and end points of the estimation windows—i.e., tm
1 , tm

2 , where m = 1, 2,
. . . , N and N is the number of estimation windows.

2. Set the initial mean vector and covariance matrix of the model parameter vector (
^
θ0,

^
Pθ0 )

and input ground motion time history vector across the first estimation window

(
.̂.
u

g
0,t1

1:t1
2
,

^
P ..

u
g
0
). The initial mean values of the ground motion time history are usually set as

zero, i.e.,
.̂.
u

g
0,t1

1:t1
2
= 0.

3. Use the inverse of the initial values of the model parameters as the scaling factors, i.e.,

an = 1
θ0,n

. Set up
^
ψ

+

0,0 =

[
A

^
θ0

.̂.
u

g
0,t1

1:t1
2

]T
and

^
P
+

ψ,0,0 =

⎡⎣A
^
Pθ0 AT 0

0
^
P ..

u
g
0

⎤⎦.

4. For the mth estimation window:

4.1. Setup the initial mean vector and covariance matrix of the unknown parameters (i.e.,
^
ψ

+

m, 0

and
^
P
+

ψ,m, 0) based on the posterior mean vector and covariance matrix obtained from the

last estimation window (i.e.,
^
ψ

+

m−1 and
^
P
+

ψ,m−1) (refer to [11] for details).
4.2. Define the process noise covariance matrix Q and the simulation error covariance matrix R.

Set up
~
R.

4.3. Iterate (j = 1, 2, . . . ):

4.3.1. Set
^
ψ

−
m,j =

^
ψ

+

m,j−1,
^
P
−
ψ,m,j =

^
P
+

ψ,m,j−1 + Q.

4.3.2. Obtain the FE responses using
^
ψ

−
m,j, i.e.,

^
ytm

1 :tm
2
= htm

1 :tm
2
(

^
ψ

−
m,j,

.̂.
u

g
1:tm

1 −1). Obtain the FE
response sensitivities using a finite difference method. Set up the sensitivity matrix with
respect to the scaled model parameters, Cs.

4.3.3. Compute the Kalman gain matrix: K = (
^
P
−
ψ,m,j(C

s)T)(Cs ^
P
−
ψ,m,j(C

s)T +
~
R)−1.

4.3.4. Find the corrected estimates of the mean vector and covariance matrix of the extended

parameter vector:
^
ψ

+

m,j =
^
ψ

−
m,j + K

(
ytm

1 :tm
2
− htm

1 :tm
2

(
^
ψ

−
m,j,

.̂.
u

g
1:tm

1 −1

))
, · · ·

^
P
+

ψ,m,j = (I − KCs)
^
P
−
ψ,m,j(I − KCs)T + K

~
RKT .

4.3.5. Correct for constraints.
4.3.6. Update the model parameter scaling factors using Equation (8). Update

^
ψ

+

m,j and
^
P
+

ψ,m,j
based on the new model parameter scale factors.

4.3.7. Check for convergence: if | ^
ψ

+

m,j −
^
ψ

+

m,j−1| < 0.01 × | ^
ψ

+

m,j−1| or j > 15, then move to the
next estimation window (m = m + 1, go to step 4); otherwise, iterate again at the current
estimation window (j = j + 1, go to step 4.3).

2.3. Correction for Constraints

The estimation process described earlier is not constrained and may result in the
estimation of non-physical values for the model parameters. This issue is resolved by
correcting the posterior estimation results for a set of predefined lower- and upper-bound
constraints. Once any of the posterior mean values exceed their designated lower or
upper limit, the posterior Gaussian PDF (characterized by the updated mean vector and
covariance matrix) is truncated at the constraint edges. The mean vector and the covariance
matrix of the truncated PDF are then calculated. The constraint correction approach is
borrowed from [17,22]. The algorithmic details are provided in [23] and are not repeated
here for brevity.
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2.4. Adaptive Scaling of the Unknown Model Parameters

In order to improve the performance of the estimation algorithm, the FE model param-
eters are scaled adaptively at each iteration. The scaling allows the FE model responses to
have relatively similar sensitivities with respect to different estimation parameters at each
estimation point. The scaled FE model parameter vector is defined as θs = Aθ, in which A

is an nθ × nθ diagonal scaling matrix. It should be noted that only the FE model parameters
are scaled, and the vector of unknown input ground motion remains unscaled. The param-
eter scaling factors (i.e., the diagonal entries of matrix A denoted by an, n = 1, 2, . . . , nθ)
are calculated to result in equal corresponding diagonal entries in the Fisher Information
Matrix of the scaled parameters, which is approximated as Is = (Cs

θ)
T(Cs

θ) [14], wherein
Cs
θ denotes the FE response sensitivity matrix with respect to the scaled FE model param-

eter vector. The nth diagonal entry of Is is Is
n = 1

an2

(
∂h
∂θn

)T(
∂h
∂θn

)
. The scaling factor an is

calculated so that Is
n is equal to the mean of diagonal entries of the Fisher Information

Matrix corresponding to the vector of unknown input ground motion, i.e., for the mth

estimation window:
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(8)

3. The Millikan Library Building

The Millikan Library is a reinforced concrete shear wall building, with a basement and
nine stories above the ground, located on the California Institute of Technology (Caltech)
campus (Figure 1). The Millikan Library has been the subject of many studies, especially
in the fields of soil–structure system identification, due to its unique structural and soil
properties, and its relatively old and dense instrumentation, which recorded its seismic
responses during numerous earthquakes [24–30]. The Millikan Library building is 43.9 m
tall above ground, including the roof level. It has a 4.3 m deep basement below the ground
level. The basement is encased by surrounding shear walls. Precast concrete claddings
are installed on the north and south faces of the building from the second floor up to the
roof. The lateral force-resisting system comprises shear walls in the north–south direction
on the east and west sides of the building and core walls around the elevator shaft in the
north–south and east–west directions. The floor system consists of concrete slabs supported
by reinforced concrete beams. Lightweight aggregate concrete is used for slabs and beams
at all floors, while regular aggregate concrete is used for foundations, columns, and walls.
The foundation system consists of a 1.2 m deep central pad, 6.0 m below the ground level,
and two foundation strips on the north and south sides of the building 5.0 m below the
ground level. Four stepped beams at the four corners of the foundation connect the central
foundation pad to the north and south foundation strips.

The building is instrumented using a total of 36 uniaxial accelerometers, measuring six
acceleration responses at the foundation (or basement floor) level, and three translational
acceleration responses on each floor. The instrumentation details are obtained from [31] and
are provided in Figure A1 and Table A1 in Appendix A. Multiple earthquake records are
available for the Millikan Library; a relatively recent survey of earthquake data recorded at
the building can be found in [28]. For the purpose of this study, we use the 2002 Yorba Linda
earthquake record, which is a low-amplitude earthquake (PGA of ~0.6% g). Two notes
should be made about this earthquake record of the Millikan Library. First, the location of
sensors on the foundation (or basement floor) could not be determined precisely. Second,
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recordings of the east sensor on the second and eighth floors (measuring NS direction) were
not available during the 2002 Yorba Linda Earthquake. Therefore, only 34 measurement
channels are available for this record. Since the level of considered earthquakes is low, the
effects of material and geometric nonlinearities in the dynamic response of the structure
are expected to be minor, and therefore, the use of a linear model is justified.

 

Figure 1. Millikan Library building.

FE Model Development

Using the available structural drawings, a detailed FE model of the structural sys-
tem was developed. We used the graphical user interface of SAP2000 software [32] to
develop the initial geometry of the model. The SAP2000 model was then transferred to
OpenSees [20] using a custom-developed MATLAB script based on the SAP2000 Applica-
tion Programming Interface (API). For the purpose of this study, we prepared a linear FE
model of the Millikan Library building. The model comprises linear elastic beam–column
elements for the buildings’ beams and columns, and quadrilateral shell (DKGQ) elements
with linear elastic (elastic membrane plate) sections are used for shear walls and slabs. The
kinematic interaction of precast claddings (installed on the north and south faces of the
building) with the structural system is modeled using diagonal brace elements, which are
included in the north and south frame bays from the second story to the roof. The brace
elements are assumed to be linear elastic with square cross-sections of 0.1 m × 0.1 m. By
adjusting the elastic modulus of the diagonal braces, the stiffness and force contributions
of the precast panels to the lateral response of the structure can be characterized. The kine-
matic interaction between the structure and other nonstructural components and systems
(e.g., partition walls and stairs) are not modeled explicitly; they are expected to be lumped
into the stiffness properties of the structural members and precast claddings.

The inertial effects of nonstructural components (i.e., stairs, precast panels, and eleva-
tors) are accounted for by modeling their corresponding mass and weight contributions.
The weight of each precast panel is estimated to be about 50 kN, which conforms with [24].
A uniformly distributed load is applied on the floor slabs to account for live loads and
weight of partition walls, later treated as an unknown parameter to be estimated. A uni-
formly distributed load of 2.5 kN/m2 is applied on the foundation to account for the live
load of library shelves in the basement. Moreover, the mass of soil filling between the
foundation surface and basement floor is accounted for by applying the corresponding
mass on the central foundation pad and the two foundation strips. The mass of structural
components is calculated based on the nominal concrete densities specified in the structural
drawings: ρc−LW = 1760 kg

m3 for lightweight aggregate concrete material, ρRC−LW = 1900 kg
m3

for lightweight aggregate reinforced concrete, and ρRC = 2500 kg
m3 for regular aggregate

reinforced concrete. Figure 2 shows the geometry of the model. Different colors in this
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figure present different material property groups used to define the shell (shear wall and
slab) and beam–column elements. More details on material parameters are provided in
Section 5. A sensitivity analysis is performed to ensure convergence of analysis results with
respect to the mesh size. The model in the presented configuration consists of 1885 frame
elements and 4043 shell elements, corresponding to a total of 27,526 degrees of freedom.

Figure 2. Developed FE model of the Millikan Library structure.

A gravity analysis was performed before dynamic time history analyses by applying
constant g acceleration in the vertical direction. The damping energy dissipation for the
time history analysis is defined using mass- and stiffness-proportional Rayleigh damping.
The Rayleigh damping parameters are treated as unknowns to be estimated. For the
purpose of time history analyses, Newmark’s constant average acceleration method is used
for time-stepping with increments of Δt = 0.03 s. The time step size is selected following a
convergence study to ensure a large time step size that provides adequate accuracy. All of
the measured acceleration response time histories are also resampled at Δt = 0.03 s for the
model updating phase.

4. A Two-Step System Identification Approach

A two-step FE model updating approach is used for model and input identification
of the soil–structure system. In the first step, the measured acceleration responses at the
foundation level are used to calculate six components of the foundation-level motions.
The foundation-level motions are then used as uniform base input excitations, and the
measured responses of the structure are used as output measurements to update the FE
model of the “fixed-base” structure. The objective is to estimate the model parameters
characterizing the structural model, regardless of the soil subsystem. During this process,
we discovered inconsistencies in the recordings obtained from two of the foundation
sensors, as is discussed further in the next section. These sensors are installed inside a
utility tunnel—referred to as the steam tunnel—next to the foundation slab. Therefore, the
acceleration response time histories of these two sensors are assumed as unknown input
motions and are estimated jointly with the structural model parameters. This step results
in FE model updating with partially unknown inputs.

The second step is an output-only FE model updating procedure, wherein the identi-
fied structural model parameters are fixed at their mean estimates obtained from the first
step, and the three translational components of FIM and other parameters characterizing
the soil–structure model are estimated jointly. Since the Millikan Library foundation is not
deep and does not have large dimensions (comparable with the lengths of incident waves),
the rotational components of FIM are not considered in this study.

To decide about and select the estimation parameters, an identifiability analysis is
performed, as is outlined in the next section for each identification step. Before proceeding
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with the real-life data, we verified the two-step FE model updating procedure using numer-
ically simulated data to examine the effectiveness of the proposed estimation algorithm
and the accuracy of its results. The verification studies are documented in [33] and are not
included here for brevity.

5. Step 1 System Identification: FE Model Updating of the Structural System with
Partially Unknown Inputs

5.1. Model Identifiability and Parameter Selection

The identifiability of model parameters is investigated using an information-theoretic
approach based on [34]. In this approach, a set of candidate parameters are selected first,
and then, the entropy gain of each parameter is calculated. The entropy gain is used as a
quantitative metric to measure the information each model parameter receives from the
measurement data. The entropy gain is compared between the estimation parameters to
assess their relative identifiability. Moreover, the mutual entropy gain (or mutual gain)
between parameter pairs is used to investigate the dependence between each pair of
model parameters. The entropy gain and mutual gain are then used to determine the
most identifiable parameter set. This is an alternative procedure to prior methods that,
for example, adaptively group updating parameters based on the sensitivities of a model
updating objective function with respect to the parameters (e.g., see [35,36]).

Fifteen (15) structural model parameters characterizing the material, inertial, and
damping properties were initially selected as the estimation parameters for identifiability
assessment at this step. These parameters were selected initially based on our judgment
on their potential contribution in the structural response. For a given input motion, the
entropy gain for each parameter is a function of the parameter values, which are unknown
in advance. Without the knowledge of correct parameter values, their nominal values are
used for prior identifiability assessment, following the recommendation in [34]. These
parameters and their nominal values are listed in Table 2. The logic based on which the
nominal values are estimated is further described below.

The material parameters consist of the effective elastic modulus of the floor system
(beams and slabs) and the vertical/lateral system (walls and columns). The material
parameters are grouped at the story level and along the height of the building. With the
exception of the first three stories, the effective elastic modulus of structural components
is grouped together at the upper stories. The first three stories are considered separately
because previous studies have suggested minor structural damage in the first stories of
the building after the 1971 San Fernando earthquake (e.g., [26,37,38]). The effective elastic
modulus for floor slabs and beams is calculated by applying a 35% reduction factor on the
nominal elastic modulus of lightweight aggregate concrete, which is derived based on ACI
318-14 [39] as Ec = 0.043(ρc−LW)1.5√ f ′c, where f ′c = 27.5 MPa is the nominal compressive
strength. The effective elastic modulus for columns and walls is calculated by applying a
70% reduction factor on the nominal elastic modulus calculated as Ec = 4700

√
f ′c, where

f ′c = 27.5 MPa. For foundation, a 35% reduction factor is applied on the elastic modulus,
which is calculated considering f ′c = 20.7 MPa, to account for flexural cracking.

To estimate the elastic modulus of diagonal brace elements representing the precast
claddings, the results concluded from modal analysis performed during the construction
period are used. According to [6,26], the installation of precast panels resulted in a 25%
increase in the lateral stiffness of the building structure in the EW direction. The initial
values for the elastic modulus of the diagonal brace elements in the model are tuned
iteratively and manually to yield a similar increase in the stiffness of the first mode in the
EW direction. Consequently, the estimated elastic modulus of diagonal braces is found to be
20 GPa. The initial value of the distributed floor mass (to account for live load and mass of
nonstructural elements) is estimated to be about 250 kg/m2. Estimating the accurate weight
and mass contribution of mechanical equipment on the roof was not possible; therefore,
the equivalent distributed roof mass is approximately estimated as 300 kg/m2. Finally,
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the initial values of the Rayleigh damping parameters are estimated by assuming a 5%
damping ratio for the first and second modes.

Table 2. Fifteen model parameters used for prior model identifiability assessment.

Parameter ID Description Value

1 Elastic modulus of brace elements representing
precast claddings 20 GPa

2 Effective elastic modulus of beam and slab
concrete at 1st floor 5.8 GPa

3 Effective elastic modulus of beam and slab
concrete at 2nd floor 5.8 GPa

4 Effective elastic modulus of beam and slab
concrete at 3rd floors 5.8 GPa

5 Effective elastic modulus of beam and slab
concrete at 4th, 5th, and 6th floors 5.8 GPa

6 Effective elastic modulus of beam and slab
concrete at 7th, 8th, 9th, and roof floors 5.8 GPa

7 Effective elastic modulus of column and wall
concrete at basement 17.3 GPa

8 Effective elastic modulus of column and wall
concrete at 1st story 17.3 GPa

9 Effective elastic modulus of column and wall
concrete at 2nd story 17.3 GPa

10 Effective elastic modulus of column and wall
concrete at 3rd, 4th, and 5th stories 17.3 GPa

11 Effective elastic modulus of column and wall
concrete at 6th, 7th, 8th, 9th, and roof stories 17.3 GPa

12 Mass-proportional Rayleigh damping coefficient 0.4

13 Stiffness-proportional Rayleigh
damping coefficient 5.3 × 10−3

14 Distributed floor mass on 1st to 9th floors 250 kg/m2

15 Distributed floor mass on roof 300 kg/m2

The identifiability of model parameters is assessed using the measured foundation-
level motion, including all translational and rotational components. As mentioned earlier,
the recordings of two acceleration channels on the foundation are later treated as unknowns
and estimated through the model updating process. Nevertheless, these measured record-
ings are used for the identifiability analysis as approximate inputs. This approximation is
expected to have negligible effects on the overall identifiability results. As described in [34],
evaluating the entropy gain and mutual gain also requires the prior covariance matrix of
the unknown parameter vector (or the prior variance of parameters). A 10% coefficient of
variation is assumed for all parameters to derive the a priori covariance matrix.

Figure 3 displays the relative entropy gain of the fifteen candidate estimation parame-
ters. The presented entropy gains are relative, which means that the entropy gain values
are scaled with respect to the largest value. This plot presents the relative information
that the model responses (which represent the measurements) carry about each model
parameter. Those parameters that receive small information from the measurement data
(e.g., parameters #2 to #6) are likely to be unidentifiable. Furthermore, Figure 4 shows the
relative mutual entropy gain between the parameter pairs. This figure is used to investigate
the dependence between each two parameters. The diagonal components in this figure
represent the entropy gain of each parameter. The dark off-diagonal colors in this figure
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indicate strong relative dependence between parameter pairs. For example, Figure 4 sug-
gests that there is a mutual dependence between parameters #7 and #8, and some mutual
dependence between parameters #7, #8, and #10. Moreover, there are some competing
effects between these parameters and parameter #14. These observations are physically
meaningful since parameters #7, #8, and #10 characterize the stiffness of the building, and
parameter #14 contributes to the building mass. Figure 3 along with Figure 4 can be used
to guide the selection of the estimation parameters. The parameters that gain relatively
small amounts of information from the measurement data or have strong dependencies on
other estimation parameters can be put aside (i.e., fixed) or merged with other parameters,
if physically meaningful, to enhance the identifiability. Indeed, the process is not definitive
and requires some engineering judgment in selecting the final estimation parameter set.

Figure 3. Relative entropy gain of the fifteen model parameters (see Table 2 for parameter IDs).

Figure 4. Relative mutual entropy gain between the parameter pairs (see Table 2 for parameter IDs).

The strong mutual gain between parameters #7 and #8 suggests merging these two
parameters into a single unknown parameter. This is justifiable as these parameters
characterize the effective elastic modulus of columns and walls at the basement level
and the first story, which are expected to be close. The mutual gains between other stiffness-
related parameters are not significant; nevertheless, their small entropy gains in Figure 3
suggest merging them together. Furthermore, since the initial estimate of mass-related
parameters (#14 and #15) are close and their individual entropy gains are small, they are
also merged together to improve their identifiability. Finally, while the entropy gains of
parameters #1 and #12 are small, we still consider them as unknown parameters to be
estimated; however, the resulting estimates are expected to be inaccurate and include large
uncertainties. As a result of the outlined identifiability assessment process, we end up with
six estimation parameters, as listed in Table 3.
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Table 3. Final selected model parameters for Step 1 system identification.

Parameter ID Description Value

1 Elastic modulus of brace elements representing precast
claddings (EClad) 20 GPa

2 Effective elastic modulus of column and wall concrete at
basement and 1st story (EW&C1) 17.3 GPa

3 Effective elastic modulus of column and wall concrete at
2nd story to roof (EW&C2) 17.3 GPa

4 Mass-proportional Rayleigh damping coefficient (α) 0.4

5 Stiffness-proportional Rayleigh damping coefficient (β) 5.3 × 10−3

6 Distributed floor mass on 1st to roof floors (m) 250 kg/m2

5.2. Joint System and Partial Input Identification Using Yorba Linda Earthquake Data

The seismic data recorded at the Millikan Library building during the 2002 Yorba Linda
earthquake are utilized for the FE model updating. Here, we present two model updating
cases. In Case 1, the recordings of the six accelerometers installed on the foundation
are averaged to find the time histories of translational and rotational components of
the foundation-level motion. These input excitations along with the measured structural
responses obtained from all the channels are used for an “input–output” FE model updating
to estimate the six model parameters listed in Table 3. In Case 2, we assume that the
recordings of the two sensors located in the steam tunnel, i.e., Channels #4 and #5, are
unknown. This resulted in FE model updating with partially unknown inputs to jointly
estimate the six model parameters and the acceleration response time history at two
sensor locations.

Figure 5 presents the relative root mean square error (RRMSE) between the measured
and FE predicted acceleration responses for both Case 1 and Case 2. The figure also shows
the RRMSE values obtained from the initial FE model (i.e., based on the initial parameter
values). As can be seen in this figure, the RRMSE is consistently reduced from the initial to
the updated FE model in both cases. However, Case 2 shows more reduction in RRMSE
for all measurement channels compared to Case 1 except for Channels #4 and #5, in which
RRMSEs are increased. This suggests that these two sensor measurements do not comply
with the other measurements on the foundation level. Hence, the updated FE model
in Case 2 is most likely a better representation of the real-world building. As shown in
Appendix A, these two channels correspond to the sensors installed in the steam tunnel—
Channel #4 measures the acceleration response in the NS-direction and Channel #5 in the
Up–Down or Z-direction. The steam tunnel is a rectangular reinforced concrete utility
access tunnel built next to the foundation level and is not part of the basement structure.
After the 1971 San Fernando Earthquake, a 0.5 mm crack around the steam tunnel, at
the point where the tunnel connects to the basement wall, was reported [37]. Based on
these observations, it is concluded that the tunnel is most likely not fully connected to
the structural system, and thus, the readings of the accelerometers located in there may
not correctly represent the foundation level motions. Figure 6 compares the measured
and estimated acceleration response time histories at Channels #4 and #5. The differences
between the measured and estimated acceleration time histories are minor and more
prominent for Channel #5, which is the Z-direction measurement.

The initial and final estimates of the six model parameters, along with their final
estimated coefficients of variation (COVs), are listed in Table 4. The coefficient of variation
quantifies the estimation uncertainty. In an unbiased estimation, the COV should merge to
zero. The non-zero values for the COV mean that the estimation might be uncertain. The
larger the COV, the more uncertainty there is in the estimated model parameter values.
As can be seen in Table 4, the COV of the two parameters with the highest COV in case 1,
i.e., EClad and m, is significantly reduced in Case 2. It is also seen that the estimate of these
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parameters is unrealistically low in Case 1, while their estimates in Case 2 seem to be more
realistic. These results, along with the RRMSE results shown in Figure 5, indicate that
Case 2 is likely to be more reliable than Case 1, and hence, the parameter estimates from
this case will be used for the next step.

Figure 5. Relative root mean square error (RRMSE) between the measured and the FE predicted
structural responses using the initial and final FE models.

(a) (b)

(c) (d)

Figure 6. Comparison of the measured and estimated acceleration response time histories at Channels #4
and #5. The right-hand-side plots magnify the response time history between 1 and 7 s. Each figure’s
title shows the sensor location and recording direction, e.g., “Basement, North West Corner-Z” means
acceleration response time history in the Z-direction, recorded by the sensor located on the north-west
corner of the basement.
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Table 4. Initial and final estimates of the model parameters, along with their final estimated coefficient
of variation (COV). Parameters are defined in Table 3.

Parameter EClad EW&C1 EW&C2 α β m

Initial Estimate 20 GPa 17.3 GPa 17.3 GPa 0.40 5.3 × 10−3 250 kg/m2

Case 1—Final
Estimate (COV)

0.25 GPa
(9.87%)

16.2 GPa
(0.41%)

29.7 GPa
(0.68%)

0.24
(2.64%)

2.6 × 10−3

(1.4%)
2.8 kg/m2

(8.97%)

Case 2—Final
Estimate (COV)

6.17 GPa
(2.87%)

19.6 GPa
(0.66%)

26.1 GPa
(0.84%)

0.29
(2.61%)

1.7 × 10−3

(2%)
161 kg/m2

(2.44%)

Figure 7 shows how well the updated model predictions match the measurement
records for both model updating cases, wherein selected measured acceleration response
time histories are shown together with those estimated using the initial and final updated
FE models. The figure shows that while the initial FE model response predictions have
remarkable discrepancies with the measured responses, the updated model predictions
have good agreement with the measurements. It also shows that the updated model
predictions in Case 2 have better agreement with the measurements than Case 1, which
further proves the reliability of Case 2 over Case 1. In the next paragraph, we describe the
details of the estimation algorithm setup.

  
(a) (b) 

  
(c) (d) 

Figure 7. Comparison of the measured structural responses with the structural responses predicted
using the initial and final-updated FE models for both Case 1 and Case 2. The right-hand-side plots
magnify the response time history between 1 and 7 s. Each figure’s title shows the sensor location
and recording direction, e.g., “9th floor, East-N” means acceleration response time history in the NS
direction, recorded by the sensor located on the east side of the 9th floor.

The initial values of model parameters (
^
θ0) are listed in Table 3, and their initial

coefficient of variation is selected as 10%. The estimation constraints for model parameters
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are selected as 0.1
^
θ0 ≤ θ ≤ 5

^
θ0. The initial estimate of the discrete values of the unknown

ground motion time history is selected to be zero, and their initial standard deviation is
selected as 0.05 Rad

s2 . A variable estimation window configuration (length and overlap) is
considered. During the first 6 s of the earthquake (which corresponds to the strong motion
part), a small window length (60 time steps = 1.8 s) with 50% overlap is used. As we
march through the time history, the estimation window length is gradually increased to
100 time steps (3 s) with 20% overlap. Selecting smaller lengths and larger overlaps for the
estimation windows at the beginning of the earthquake ensures the incremental absorption
of the information when the model has large uncertainties and the measurements have
large information content (due to strong motion). The window length is subsequently in-
creased and the overlap is reduced to improve the computational efficiency. The estimation
window configuration can affect the computation demand and the estimation accuracy and
should be selected based on experience and adjusted by observing the performance of the
estimation algorithm.

The process noise covariance matrix Q (see Table 1) is selected as a diagonal matrix.
The diagonal entry corresponding to the ith model parameter is selected as

(
qθ̂i
)2

, where
q = 0.001 and θ̂i is the mean estimate of the ith model parameter. This means that the
RMS of the process noise corresponding to the model parameters is taken as 0.1% of the
mean estimate of the associated model parameter. Thus, this part of the matrix Q would be
time-varying. The diagonal entries corresponding to the unknown ground motion time
histories are constant, and are taken as (0.001g)2. This means that the root mean square
(RMS) of the process noise corresponding to the input excitation is time-invariant and is
equal to 0.1% g. This selection is performed based on our previous experience with the
estimation algorithm to ensure stability and proper convergence rate (more discussions
are provided in [11]). Finally, the simulation error covariance matrix R is also selected as a
time-invariant diagonal matrix, whose diagonal entries are selected as (0.001g)2. In other
words, the simulation error is modeled as a 0.1% g RMS Gaussian white noise process.

6. Step 2 System Identification: FE Model Updating of the Soil–Structure System with
Unknown Inputs

At this stage, we use the updated model of the superstructure (Case 2) for soil–
structure system identification. The objective is to estimate the FIMs and the parameter
characterizing the soil–structure system, including the stiffness and viscosity of the soil
springs and dashpots used for modeling the inertial soil–structure interaction effects. For
this purpose, and similar to the previous step, we start with an identifiability analysis
by evaluating the information contained in the model responses. Then, we use the real
measurement data to estimate the soil–structure model parameters.

6.1. Model Identifiability and Parameter Selection

Distributed linear soil springs and dashpots are included underneath the foundation
slab of the updated FE model, obtained from the previous step. Three linear springs and
three linear viscous dashpots are modeled independently in the x-, y-, and z-direction
(corresponding to EW, NS, and Up–Down directions, respectively) at each nodal point of
the foundation slab. The stiffness of soil springs and viscosity of dashpots are computed
using the subgrade modulus (i.e., soil stiffness per unit area) and viscosity modulus (i.e.,
soil viscosity per unit area), respectively. The spring stiffness and dashpot viscosity at
each nodal point are calculated by multiplying the tributary area of the nodal point by the
corresponding subgrade modulus and viscosity modulus, respectively.

The Millikan Library has a two-level foundation system consisting of a central pad
and two north and south foundation strips, as shown in Figure 8. Six unknown subgrade
moduli—namely kx, ky1, ky2, kz1, kz2, and kz3—are defined for different foundation regions,
where, for example, the parameter kz2 characterizes the vertical subgrade modulus for the
interior area of the central pad. Two strips along the east and west edges of the central pad,
which are underneath the two box shear walls at the east and west sides of the building,
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are assigned a different vertical subgrade modulus (kz3) based on the recommendation
provided in [3] to account for the rotational stiffness of the soil subsystem. Similarly, a
different vertical subgrade modulus (kz1) is assigned to the two north and south foundation
strips. Likewise, six (unknown) parameters—namely cx, cy1, cy2, cz1, cz2, and cz3—are used
to define the viscosity modulus. Different foundation regions and their corresponding
subgrade and viscosity modulus are shown in Figure 9. The twelve unknown subgrade and
viscosity moduli along with the Rayleigh damping parameters (α and β) and the effective
elastic modulus of foundation slabs (EFound) are selected as parameters for the identifiability
analysis. Although estimated in the previous step, the Rayleigh damping parameters are
included for the soil–structure system identification since the damping model behavior of
the fixed-based structure is expected to be different from the flexible-base structure.

Figure 8. Structural configuration of the Millikan Library basement showing the structural walls and
two-level foundation details, including the central pad (at EL.−6 m from the ground surface), and
the two north and south foundation beams (at EL.−5 m from the ground surface).

(a) (b)

Figure 9. (a) Six unknown subgrade modulus parameters, and (b) six unknown viscosity modulus
parameters defined for different foundation regions. The figures show the foundation plan of the
Millikan library, including the central pads, and the two foundation beams (dimensions are in meters).

To assess the identifiability of these fifteen (15) unknown parameters, we pursue the
same identifiability analysis approach presented before. Initial estimates of soil model
parameters are assigned using the NIST standard guidelines [3]. The FIMs are unknown at
this stage and will be estimated through the model updating process. In the absence of the
correct FIMs, the three translational components of the foundation-level motion, estimated
from the previous step, are used as the FIMs for identifiability assessment. The parameters
used for identifiability analysis and their corresponding initial values are listed in Table 5.
The initial values of the Rayleigh damping parameters are selected based on the estimation
results obtained in the previous step. Moreover, a 20% coefficient of variation is assumed
for all parameters to derive the a priori covariance matrix.

Figure 10 displays the relative entropy gain of the fifteen estimation parameter candi-
dates. Figure 11 displays the mutual entropy gain between parameter pairs. In Figure 11,
the diagonal terms (i.e., entropy gain of estimation parameters) are found to be much
larger than the off-diagonal terms (i.e., mutual entropy gain between parameter pairs);
hence, including both of them in the figure would underrepresent the off-diagonal terms
since they would appear with a hard-to-see, light color. Therefore, the diagonal terms
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are excluded from this figure. These two figures can be used together for selecting the
estimation parameters. Figure 10 shows that some of the parameters (e.g., parameters #2,
#8, #11, and #12) receive little information from the measurements. These parameters are,
therefore, unlikely to be identifiable. Based on this figure, parameters #2 and #3, which
represent the subgrade modulus in the north direction for the foundation beams and central
pad, respectively, are merged together. This is due to the small relative entropy gain of
parameter #2. Similarly, parameters #8 and #9, and #10 to #12 are merged together to
improve their identifiability. Moreover, Figure 11 shows mutual dependence between
parameter #15 and parameters #4 to #6. This implies that the estimation of the effective
elastic modulus of foundation slabs will likely affect the estimation accuracy of the vertical
and rocking soil stiffnesses. Hence, parameter #15 is fixed at its nominal value given the
relatively large thickness of foundation slab, which is expected to result in linear elastic
behavior. Based on this identifiability study, the estimation parameters characterizing the
soil–structure model are reduced to ten, which are kx, ky, kz1, kz2, kz3, cx, cy, cz, α, and β.

Table 5. Fifteen model parameters used for prior model identifiability assessment.

Parameter ID 1 2 3 4 5 6 7 8

Parameter kx ky1 ky2 kz1 kz2 kz3 cx cy1

Value
65

MN/m3
100

MN/m3
150

MN/m3
20

MN/m3
22.5

MN/m3
37.5

MN/m3
700

kN.s/m3
700

kN.s/m3

Parameter ID 9 10 11 12 13 14 15

Parameter cy2 cz1 cz2 cz3 α β EFound

Value
700

kN.s/m3
1000

kN.s/m3
1000

kN.s/m3
1000

kN.s/m3 0.29 1.7 × 10−3 7.5
GPa

Figure 10. Relative entropy gain of the fifteen model parameters (see Table 5 for parameter IDs).
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Figure 11. Relative mutual entropy gains between the parameter pairs (see Table 5 for parameter IDs).

6.2. Joint System and Input Identification Using the Recorded Yorba Linda Earthquake Data

The seismic data recorded at the Millikan Library building during the 2002 Yorba Linda
earthquake are now utilized in an output-only FE model updating procedure to estimate
the eight soil parameters, two Rayleigh damping parameters, and the three components
of the FIM in EW, NS, and Up–Down directions (no rotational component is considered
for the FIM). The model parameters characterizing the superstructure (except the Rayleigh
damping parameters) are kept constant based on the estimated results obtained from the
previous system identification step. Except the initial coefficient of variation of estimation
parameters, which is selected as 20%, and the estimation constraints for model parameters,

which are selected as 0.1
^
θ0 ≤ θ ≤ 50

^
θ0, the setup of the estimation algorithm and its

parameters are similar to the previous step (see Section 5.2).
Figure 12 shows the time history of the posterior mean and standard deviation (SD) of

the three components of the FIM. The initial and final estimates of the ten soil–structure
model parameters along with the estimated coefficient of variation (COV) are listed in
Table 6. The estimated parameter values with larger COV include larger estimation un-
certainties. Figure 13 compares the measured acceleration response time histories at the
selected measurement channels with those estimated using the final estimates of the model
parameters and FIMs. This figure indicates that there is a remarkable agreement between
the estimated and measured acceleration responses. Furthermore, Figure 14 presents the
RRMSE of the updated FE model responses at different measurement channels. Comparing
Figure 14 with Figure 5, the discrepancies between the FE predictions and measurements
in the NS direction are generally less than those in the EW direction. This is predictable
since the soil–structure interaction effects are more dominant in the NS direction of the
Millikan Library [28], and hence, the flexible-base model uncertainty is expected to be less
in the NS direction than in the EW direction.

Table 6. Initial and final estimates of the soil–structure model parameters along with their final
estimated coefficient of variation (COV).

Parameter kx ky kz1 kz2 kz3

Initial Estimate 200 MN/m3 200 MN/m3 225 MN/m3 225 MN/m3 225 MN/m3

Final Estimate
(COV)

47.9 MN/m3

(2.7%)
418.2 MN/m3

(4.9%)
386.8 MN/m3

(0.9%)
614.4 MN/m3

(3.4%)
310.5 MN/m3

(3.4%)

Parameter cx cy cz α β

Initial Estimate 700 kN.s/m3 700 kN.s/m3 1000 kN.s/m3 0.29 1.7 × 10−3

Final Estimate
(COV)

313.7 kN.s/m3

(13.1%)
1187 kN.s/m3

(10.7%)
4 kN.s/m3

(906.5%)
0.15

(3.1%)
2.3 × 10−3

(2%)
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(a) (b) 

Figure 12. (a) Estimated foundation input motion (FIM) time histories and (b) their standard deviation
(SD) values.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 13. Comparison of the measured structural responses with the structural responses predicted
using the final estimates of the soil-structure model parameters and FIMs. The left-hand-side plots
compare the responses in frequency domain, the middle plots compare the time histories, and the
right-hand-side plots magnify the response time history between 1 and 7 s.
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Figure 14. Relative root mean square error (RRMSE) of the FE predicted structural responses using
the final estimates of the soil–structure model parameters.

7. Summary and Discussion

7.1. Effective Structural Stiffness Parameters

The estimated effective elastic moduli of columns and walls (EW&C1 = 19.6 GPa,
EW&C2 = 26.1 GPa) are larger than the nominal value that is based on code recommendations,
which is 17.3 GPa. Several factors can collectively account for this difference. (i) The effects
of lateral stiffness of the backfill soil at the basement level are not modeled in the FE model.
This is likely the reason behind the larger estimated value for EW&C1. It can also be a source
of modeling error because the columns and walls at the first-story and basement level are
parameterized with the same effective elastic modulus. (ii) Concrete aging, which will
increase the stiffness of concrete material, is not accounted for in the nominal estimations.
(iii) The lateral stiffness of nonstructural components and systems (i.e., partition walls
and stairs) are not accounted for in the FE model. This can result in estimating larger
values for the effective elastic moduli of the columns and walls, which characterize the
lateral stiffness of the building. (iv) Finally, the nominal elastic modulus is calculated for
the concrete material without accounting for the effects of steel reinforcement, which can
partially explain the larger estimated effective elastic moduli.

7.2. Soil Subsystem Stiffness and Viscosity

Table 7 compares the estimated lumped stiffness and viscosity of the soil subsystem
with the NIST recommendations [3] based on [40]. The lumped soil stiffness and viscos-
ity should be evaluated at the fundamental frequency of soil–structure system using the
flexible-base dimensionless frequency a0 = ω̃b/Vs, where ω̃ is the flexible-base fundamen-
tal circular frequency, b = 11.5 m is the foundation half-width, and Vs is the shear wave
velocity, which is averaged over an effective soil profile depth based on the recommenda-
tions provided in [3]. Using the shear wave velocity profile of the Millikan Library site
presented in [41], the average shear wave velocity is calculated as 398.1 m/s for translation,
392.1 m/s for rocking in the NS direction, 407.7 m/s for rocking in the EW direction,
and 422.3 m/s for torsion. The flexible-base frequency is a function of the soil stiffness
coefficients as follows [3].

T̃x

Tx
=

√
1 +

kx

Kx
+

kxh2

Kyy
(9)

Equation (9) presents the flexible-base to fixed-base fundamental period ratio (i.e.,
period elongation) in the x-direction, where T̃x is the flexible-base fundamental period,
Tx is the fixed-base fundamental period, kx is the fixed-base structural stiffness, h is the
effective fundamental modal height, Kx is the soil horizontal stiffness, and Kyy is the soil
rocking stiffness. kx is calculated as 411.4 MN/m given the effective fundamental modal
mass (mx = 5252.9 ton) and Tx = 0.71 s. Likewise, ky is calculated as 1129.9 MN/m given
my = 5541.2 ton and Ty = 0.44 s. The effective fundamental modal height is taken as 0.7 times
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the building height [1] (h = 0.7 × 43.9 = 30.73 m). The process to calculate T̃ is iterative [42].
T is intially utilized to evaluate the soil stiffnesses. Then, T̃ is calculated using Equa-
tion (9), and the soil stiffnesses are reevaluated using T̃. Then, T̃ and the soil stiffnesses
are iteratively updated until no considerable change in T̃ is observed. This procedure is
used for calculating the soil parameters corresponding to the two translational vibration
modes in the NS and EW directions. For the torsional mode, the fixed-base torsional period
(Tzz = 0.33 s) is used for evaluating the torsional soil parameters.

Table 7. Comparison of the normalized estimated lumped stiffness and viscosity of the soil–
foundation subsystem with the recommended values in [3]. The translational components are
normalized by GL and the rotational components by GL3, where G = 268 MPa and 2L = 27.4 m.

Foundation Vibration Mode Trans.-EW Trans.-NS Trans.-Up Rock.-EW Rock.-NS Torsion

Estimated Stiffness 5.8 50.65 59.08 2.15 1.38 2.14

NIST-based Stiffness 5.14 5.27 6.08 6.16 3.98 7.08

Estimated Viscosity 0.04 0.14 0.0005 0.00002 0.00001 0.007

NIST-based Viscosity 0.13 0.13 0.23 0.005 0.004 0.038

The estimated values in Table 7 are the integrated stiffness and viscosity of the soil
subsystem with respect to the center of the foundation pad using the mean estimates
of subgrade and viscosity moduli obtained in Section 6.2. To maintain compatibility
with previous studies [28], we normalize the sway stiffness and viscosity by GL, where
G = 268 MPa and 2L = 27.4 m are the soil shear modulus and a reference foundation length,
respectively. For rocking and torsional components, the normalizing factor is GL3.

Table 7 indicates that the estimated stiffness and viscosity coefficients have a non-
negligible difference with the NIST-based recommended values. One potential reason
for the observed difference is the assumption of rigid foundation used in deriving the
approximate formulas of the impedance function reported in [3], which was shown to
be violated in the Millikan Library, especially in the EW direction [26]. In contrast, the
foundation flexibility is explicitly modeled in this study. Furthermore, the estimated
impedance function in this study is obtained using the building’s seismic response that
contains effective high-frequency components, as shown in the recording of Channel #16
presented in Figure 13, which is typical for the response of mid-level and lower-level
floors. Since the impedance function is frequency-dependent, the presence of multiple
frequencies in the response will likely make it difficult to exclusively tune the estimated
impedance function to the flexible-base fundamental frequency. Therefore, some deviation
of the estimated impedance function using multiple-frequency responses from the NIST
recommendations, in which the impedance function is evaluated at a single frequency,
is expected.

Comparing the stiffness coefficients, an especially significant discrepancy can be
observed between the estimated and NIST-based recommended values of the translational
stiffness in the NS direction and Up–Down direction. A similarly significant discrepancy
between the theoretical and experimental estimates of soil translational stiffness in the NS
direction was reported in [41], and it was attributed to either an error in the measured
foundation translational motion or the crude simplification of the foundation model. To our
knowledge, no studies have reported the soil stiffness in the Up–Down direction; therefore,
we could not compare our estimated values to other reference values.

Comparing the viscosity coefficients, almost all estimated viscosity coefficients deviate
considerably from the corresponding NIST-based values, which is possibly a manifestation
of the high uncertainty with which these parameters are estimated, as shown in Table 6.
Estimating damping experimentally has always been a key problem in system identification
of building structures [43]. This is likely the case with the Millikan Library since there
were challenges with accurately determining the phase of the response (with respect to the
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applied force) in forced vibration tests [41]. Moreover, the estimated viscosities are almost
always less than their NIST-based counterparts. This can be explained by examining the
soil shear wave velocity profile of the Millikan Library site reported in [41]. Looking at
this profile, the shear wave velocity increases almost linearly with depth until it reaches
944.8 m/s at 118.57 m depth. This rapid increase in the shear wave velocity with depth
most likely causes multiple wave reflections at the different soil layer interfaces, hence the
reduction in soil radiation damping. We can also observe that the reduction in radiation
damping due to the nonuniform soil profile is more significant in rocking than in horizontal
translation, which is reported in [3]. Thus, we can state that although using an average
shear wave velocity can fairly simulate the nonuniform soil stiffness, it cannot simulate the
nonuniform soil radiation damping at the same level of accuracy.

The lumped stiffnesses of the soil subsystem for the Millikan Library have also been
estimated using other system identification methods in the literature. Table 8 presents the
estimated stiffness coefficients in six different previous studies compared to those identified
in this study.

Table 8. Comparison of the normalized lumped stiffness of soil–foundation subsystem between
different studies. The translational components are normalized by GL and the rotational components
by GL3, where G = 268 MPa and 2L = 27.4 m.

Study
Foundation Vibration Mode

Trans.-EW Trans.-NS Rock.-EW Rock.-NS Torsional

[6] 31.1 8.7 207.2 145.9 9.9–10.5

[44] 6.9 4.6 10.0 5.4 —

[41] 7.2 6.7 10.2 5.9 —

[26] 5.5 5.2 7.4 5.6 11.1

[45] 2.7 2.7 1.8 1.8 —

[28] — 6.2 2.5 3.9 0.98

Current
Study 5.14 50.65 2.15 1.38 2.14

As can be seen, the translational stiffness in the EW direction is close to the value iden-
tified by Luco et al. [26]; the NS translational stiffness is not comparable to any other study;
the EW and NS rocking stiffnesses are close to the static values used by Chen et al. [45] and
adopted from Balendra et al. [46]; and the torsional stiffness is close to the value estimated
by Ghahari et al. [28]. The observed discrepancy between the identified model parameters
and the corresponding parameters identified in previous studies highlights the challenging
nature of the problem at hand. It also draws attention to the importance of widening
the application of structural sensing to real-life structures to develop accurate numerical
models for structural health monitoring, condition assessment, and damage prognosis,
especially in high-seismicity areas [47].

7.3. Period Elongation

Table 9 compares the period of the first five structural modes between the updated
flexible-base and fixed-base models. The table, moreover, reports the period elongations.
The estimated modal periods of the flexible-base structure have good agreement with the
results reported in [28].
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Table 9. Comparison of the flexible-based and fixed-base modal periods of the updated FE models.

Structural Vibration Mode 1st Trans.-EW 1st Trans.-NS 1st Torsional 2nd Trans.-EW 2nd Trans.-NS

Flexible-base Period (s) 0.95 0.6 0.42 0.22 0.16

Fixed-base Period (s) 0.88 0.5 0.37 0.2 0.16

Period Elongation 1.08 1.2 1.14 1.1 1.0

7.4. Rayleigh Damping

Figure 15 compares the Rayleigh damping ratio as a function of frequency between
the initial, updated fixed-base, and updated flexible-base FE models. Table 6 shows that the
estimated mass-proportional Rayleigh damping coefficient for the flexible-base structure is
relatively small, which results in a nearly stiffness-proportional linear Rayleigh damping
curve for the updated flexible-base model. This is a well-known effect of SSI on effective
modal damping [48].

Figure 15. The Rayleigh damping ratio as a function of frequency in the initial, updated fixed-base,
and updated flexible-base FE models.

7.5. Possible Sources of Estimation Uncertainty

The estimated model parameters include uncertainties, which are quantified relatively
using the estimated coefficient of variations (COVs). Aside from parameter identifiability
issues, which are discussed earlier in the paper, modeling errors are most likely the most
important source of estimation uncertainties. Modeling errors result from the inherent
imperfections, approximations, and idealizations in the mathematical FE model. As a result,
the selected class of FE models does not contain the real-world structure, and the estimated
parameters characterize the closest possible model, in the model class, to the real struc-
ture [49]. Geometric approximations, material nonlinearities (even during low-amplitude
earthquake excitations), effects of nonstructural components and systems, and modeling
of damping energy dissipation mechanisms are some examples of imperfections in the
numerical FE model. Model parameterization (i.e., selecting the estimation parameters in
the model) is another source of modeling error. Modeling errors lead to biased estimation
results. This means that by changing the earthquake event, the estimation result may vary,
preferably slightly. Addressing the effects of modeling error requires repeating this study
using more refined FE models and/or different earthquake data, which is beyond the scope
of the present paper and can be the subject of future studies.

8. Conclusions

In this study, we developed a finite element (FE) model updating framework using a
sequential Bayesian estimation approach to identify the soil and structural model parame-
ters as well as the input motions from recorded seismic response of the Millikan Library
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building during the 2002 Yorba Linda earthquake. The newly developed Bayesian FE
model updating procedure was used in a two-step system identification approach. In the
first step, a fixed-base structural model was identified using partially unknown inputs. The
structural model parameters included the effective stiffness of columns and shear walls
(grouped along the height of the structure), the Rayleigh damping parameters, and the
distributed floor mass. In the second step, the parameters characterizing the soil–structure
model and the time histories of the Foundation Input Motions (FIMs) were estimated.
The soil–structure model parameters included the soil subgrade and viscosity moduli at
different foundation regions and the Rayleigh damping parameters. For each step, an
identifiability analysis based on an information theoretic approach was performed to study
the dependencies between model parameters and select the most identifiable parameter
sets to be estimated. In Section 7 of the paper, the estimated model parameters were
compared with the state-of-practice recommendations and other previous studies on the
Millikan Library, and the differences were highlighted.

Minor differences were observed between the measured and FE-predicted response
time histories obtained from the updated FE models. Considering the various sources of
modeling error in this identification problem, the agreement between the updated FE model
responses and the measurements was remarkable. Future studies are suggested to extend
this process with more refined FE models (e.g., including material nonlinearities) and differ-
ent earthquake data to further quantify the effects of modeling error. Applying this process
to nonlinear SSI models using the recorded structural responses to strong ground motions
may introduce additional complications due to the damage in nonstructural components,
the nonlinear kinematic interaction between the structural and nonstructural systems, and
the nonlinearities in the soil response. As a result, the identification of the nonlinear struc-
tural model parameters and the Raleigh damping model parameters is expected to include
uncertainties and estimation biases. Furthermore, the identified soil–foundation subsystem
model parameters, i.e., the impedance function, are expected to deviate more considerably
from the state-of-practice recommendations. Despite these difficulties, undertaking such a
research effort is crucial for developing a better understanding of the nonlinear interaction
between the non-structure, structure, and soil subsystems. By utilizing the presented model
inversion framework for different civil structures and earthquake records, key structural
model parameters can be estimated from real-world seismic data. These are valuable
information that can guide—along with theoretical results—the selection of engineering
analysis and design parameters to improve state-of-the-art seismic analysis and design
procedures.
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Appendix A. Instrumentation Plan for the Millikan Library

Table A1. Sensors’ locations and measurement directions.

Channel # Sensor Location
Measurement

Direction

1 Basement, North East Corner N

2 Basement, North East Corner Up

3 Basement, North East Corner E

4 Basement, North West Corner N

5 Basement, North West Corner Up

6 Basement, South East Corner Up

7 1st Floor, East N

8 1st Floor, West E

9 1st Floor, West N

10 2nd Floor, West E

11 2nd Floor, West N

12 3rd Floor, East N

13 3rd Floor, West E

14 3rd Floor, West N

15 4th Floor, East N

16 4th Floor, West E

17 4th Floor, West N

18 5th Floor, East N

19 5th Floor, West E

20 5th Floor, West N

21 6th Floor, East N

22 6th Floor, West E

23 6th Floor, West N

24 7th Floor, East N

25 7th Floor, West E

26 7th Floor, West N

27 8th Floor, West E

28 8th Floor, West N

29 9th Floor, East N

30 9th Floor, West E

31 9th Floor, West N

32 Roof, East N

33 Roof, West E
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Figure A1. Floor plans showing the different sensors’ locations and measurement directions.
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Abstract: Concrete cracks have always been the focus of research because of the serious damage they
cause to structures. With the updating of hardware and algorithms, the detection of concrete structure
surface cracks based on computer vision has received extensive attention. This paper proposes an
improved algorithm based on the open-source model Deeplabv3+ and names it Deeplabv3+ BDF
according to the optimization strategy used. Deeplabv3+ BDF first replaces the original backbone
Xception with MobileNetv2 and further replaces all standard convolutions with depthwise separable
convolutions (DSC) to achieve a light weight. The feature map of a shallow convolution layer is
additionally fused to improve the detail segmentation effect. A new strategy is proposed, which
is different from the two-stage training. The model training is carried out in the order of transfer
learning, coarse-annotation training and fine-annotation training. The comparative test results show
that Deeplabv3+ BDF showed good performance in the validation set and achieved the highest mIoU
and detection efficiency, reaching real-time and accurate detection.

Keywords: damage detection; non-destructive evaluation; deep learning; concrete structure;
crack segmentation

1. Introduction

In recent years, many concrete infrastructures have suffered from structural degrada-
tion due to long-term, high-load operation, or are close to the end of their natural service
life, resulting in safety problems. Therefore, it is necessary to regularly inspect the health
status of infrastructure, and the identification and evaluation of structural surface cracks
are the tasks that managers and researchers are focusing on. However, traditional manual
crack detection methods are inefficient and subjective. How to develop and promote more
effective and reliable detection methods is the current research direction.

In view of the limitations of artificial crack detection, Yeum et al. [1] have carried
out a lot of research on intelligent crack identification methods in the last decade. Ini-
tially, image processing techniques (IPTs) were used to carry out detection tasks, but this
method requires additional pre-processing and post-processing technologies, thus, re-
ducing the degree of intelligence. Deep learning algorithms [2], which can automatically
extract the sensitive features of the target in the training process, were subsequently
proposed and widely studied. Among them, the most representative algorithms are of
two types: objection detection [3] and semantic segmentation [4]. Objection detection
gives the category and position of the target in an image in the form of a rectangular box,
and some models with excellent performance have been proposed, such as the YOLO
series and SSD [5] one-stage models and Fast R-CNN [6] and Faster R-CNN [7] two-stage
models. Improved models have also been put forward according to specific task require-
ments. Park et al. [8] proposed a structural crack detection and quantification method in
which YOLOv3-tiny is used to locate concrete cracks in real time. Zhao et al. [9] proposed
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a crack feature pyramid network (Crack-FPN), which has superior feature extraction
capability and reduced computational cost. Some research or reviews on the application
of objection detection algorithms to crack detection have also been carried out [10–16].
However, due to the simplicity of the result form, the target detection algorithm is only
applicable to simple target existence determination.

Crack images and datasets are highly class imbalanced, and cracks usually have
complex textures. According to these characteristics, the research has further developed
from objection detection to semantic segmentation algorithm, that is, all pixels belonging
to the same type of target are represented by a monochrome mask, and the picture is
simplified into a combination of multiple different color masks. Some research has also
been carried out on the application of the semantic segmentation algorithm in crack
detection [17–22]. Xiang et al. [23] proposed a crack segmentation method based on
super-resolution reconstruction, which achieved a more than 10% performance improve-
ment compared with previous models but could not meet the real-time requirements.
Ren et al. [24] proposed a new end-to-end crack segmentation method based on a fully
convolutional network which uses dilated convolution, spatial pyramid pooling, skip
connection and an optimization loss function to obtain higher efficiency and accuracy.
However, researchers have ignored or avoided some aspects of research, such as: (1) The
computation amount required by the semantic segmentation algorithm is very large, and
it even takes a few seconds to detect an image in the early stage. If the semantic segmenta-
tion is intended to be used in an actual scene, the data type is usually video with a frame
rate of 60. When considering frame extraction or reducing the frame rate, real-time detec-
tion requires that the model processes images at a speed of 0.033 to 0.04 s per image, that
is, 25 to 30 frames per second (FPS). At present, the detection efficiency of many models
is difficult to achieve in actual projects. (2) Due to the limitations of manual labeling, the
division between the cracks and the background boundary in the label is relatively vague,
which makes the segmentation results given by the trained model show a large number
of false positives and false negatives on the boundary [25]. (3) Mei et al.’s study [26]
and many other studies deployed a transfer learning [27] strategy in a model, using
initial weights trained on a large dataset containing many categories. These datasets
have many objects of different classes from cracks (for example, ImageNet [28] has more
than 5000 classes), and the extracted features are not highly related to cracks. Even if the
models are continuously trained with carefully prepared datasets after transfer learning,
it usually takes a lot of time to complete the production of segmentation labels. It seems
to be a method to automatically label targets with computers, but the marking model
still requires an initial dataset to complete training before it can be put into use.

In this paper, a new pixel-level semantic segmentation model for crack detection based
on Deeplabv3+ [29] is proposed to solve the above problems and is named Deeplabv3+
BDF. This model can overcome the interference of background and crack-like features,
extract the crack boundary quickly and accurately and, thereby, prepare for the intelligent
detection of fine indicators such as crack width across complex background, so that the
management and maintenance department can concentrate resources to study cracks and
ignore the background or other objects. In addition, this paper also attempts to use a new
training strategy to reduce the common labeling cost problem of semantic segmentation
models, which provides a potential solution for researchers with a large amount of data
but not enough resources to fine-label all data. The main contributions of this paper are
as follows:

(1) A lightweight network MobileNetv2 is used as the backbone, and all standard
convolutions are replaced by DSC to reduce the number of parameters and realize
real-time detection;

(2) On the basis of the characteristics of semantic hierarchy and cracks, during the
up-sampling process, the shallow feature map after one down-sampling is fused to improve
the segmentation accuracy at the boundary between the foreground and background;
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(3) Focusing on the problem of the labeling cost of semantic segmentation model
being too high, a three-step training strategy according to the sequence of transfer learning,
coarse-annotation (CA) training and fine-annotation (FA) training is designed and proposed,
which can enhance the learning and extraction of crack features. This training strategy can
train a better segmentation model with a large number of CA images on the premise of
only a few FA images, saving a lot of human and material resources.

2. Models and Methodology

2.1. Deeplabv3+

The Deeplab series was developed on the basis of FCN [30]. Its main feature is to
expand the receptive field by using atrous spatial pyramid pooling (ASPP) to obtain more
image feature information. Deeplabv3+ achieves 87.8 mIoU on the PASCAL VOC-2012
dataset, and its image segmentation effect is superior to other Deeplab series models.
Compared with Deeplabv3, the main feature of Deeplabv3+ is that it adds a decoder
module with transposed convolution as the main unit, which can gradually restore high-
dimensional feature vectors to the feature map of the same size as the input image. Figure 1
shows the network diagram of Deeplabv3+.

 
Figure 1. The structure of Deeplabv3+.

The encoder consists of backbone network Xception [31] and ASPP. Xception extracts
two feature maps of high semantic information and low semantic information at the same
time. The former usually represents an abstract concept and is the information expressed by
the image closest to human understanding, while the latter is the color, texture and shape.
The high semantic information feature map conducts multi-scale, dilated convolution
sampling in the ASPP module, generates and fuses multiple feature maps of different scales
and, finally, uses 1 × 1 convolution for dimension reduction. Low semantic information
is transferred into the decoder part for 1 × 1 convolution and is fused with the high
semantic information feature map after bilinear up-sampling four times to enhance the
network learning effect and improve the segmentation accuracy. Then, the feature is
extracted through 3 × 3 convolution, and the final semantic segmentation map is obtained
by up-sampling four times.

2.2. Deeplabv3+ BDF and Optimization Strategies

According to some defects in the current research described in Section 1, including
defects relating to detection efficiency, boundary ambiguity and initial weight mismatch,
we propose a method to improve the model accordingly and rename the model according
to the optimization strategy used, namely Deeplabv3+ BDF.
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2.2.1. Backbone

MobileNetv2 is used to replace Xception as the backbone. MobileNetv2 is the same
as MobileNetv1, which is a lightweight CNN, and it uses DSC. By adjusting the number
of channels in each convolution layer, MobileNetv2 does not affect the performance but
can reduce the amount of computation. Taking it as a backbone can effectively improve
the detection speed and decrease the occupation, making the model oriented to real-time
detection. For more details, please refer to [32].

2.2.2. DSC

All standard convolutions other than the backbone are replaced by DSC [33], including
standard convolutions in the decoder to accelerate the detection. DSC can be divided into
depthwise convolution (DWC) and pointwise convolution (PWC) [34]. The comparison
of these convolution operations is shown in Figure 2. Take the convolution operation
in Figure 2 as an example. There are four filters in the standard convolution, and each
filter has three convolution kernels, which correspond to three channels of the image.
After convolution, the feature maps with the same number of filters is obtained, and the
parameter quantity is 4 × 3 × 3 × 3 = 108. There is only one convolution kernel in each filter
of DWC, which is responsible for one channel, respectively. The number of channels before
and after convolution remains unchanged, and the parameter quantity is 3 × 3 × 3 = 27.
The convolution kernel size of PWC is 1 × 1, and its function is to generate a new feature
map by weighted combination of the output feature maps of the upper layer. It is a special
case of standard convolution when convolution kernel size is 1 × 1 and the parameter
quantity is 1 × 1 × 3 × 4 = 12. After DWC and PWC, a four-channel output can also be
obtained, which is the same as in standard convolution. Moreover, compared with the
standard convolution, the parameter quantity of DSC is 27 + 12 = 39, which is only 36.1%
of the standard convolution, and the calculation cost is significantly reduced.

 

Figure 2. Comparison of convolution operations.

2.2.3. Feature Fusion

The feature map after one down-sampling is fused additionally, as shown in Figure 3.
Convolution features are hierarchical and choosing different layers may achieve completely
different results. Shallow features of CNN focus on detail features, such as edges and
corners, which are usually associated with individual segmentation results. Middle features
are a part of the object, and deep features focus on deeper semantic information. Intuitively,
deep feature maps can represent a complete object, which is usually related to the accuracy
of classification results. Only when the receptive field size of the feature map is larger than
the object can the correct detection be carried out. Correspondingly, shallow features can
only cover small objects, while deep features can cope with larger objects.
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Figure 3. Comparison of network structure changes.

The boundary of the crack belongs to edge or corner features, so the feature map
after one down-sampling is added to the up-sampling process to enhance the ability of
the model to deal with the demarcation. For the feature map after three down-samplings,
because the crack itself is a tiny object, even if it runs through the whole image, the
number of pixels belonging to the crack is very small. The cracks contained in the receptive
field corresponding to the feature map after two down-samplings can meet the training
requirements, because a part of a long crack can still be regarded as a crack with complete
features. However, it is also unreasonable to only fuse the feature map after one down-
sampling, because it needs a larger field of vision to judge whether it is a crack or a
crack-like object. Only focusing on the edges or corners of the object may mistake some
black, slender objects for cracks, thus, we retain the strategy of fusing the feature map after
two down-samplings in Deeplabv3+.

3. Establishment of Dataset

The biggest difference between the actual project and the laboratory scene is the envi-
ronment around the crack. Generally, images obtained in the field experience interference
due to handwriting, template lines and other crack-like objects, while the crack images
obtained in the laboratory have a monotonous background and no sundries; so, the trained
model is difficult to extend to practical applications. Therefore, we take 82 images from
multiple scenes. The illumination conditions, exposure intensity and acquisition equipment
of these images are different, so the dataset has enough diversity. Because the dataset is
collected by mobile phones or high-definition cameras, the image capture distance varies
in a large range (0.2 m to 5 m), and the image scene also has enough complexity; the
trained model has good recognition effect on common crack images. However, the model
has the potential to improve the recognition effect of fine cracks, especially for cracks
where the width is less than 1 pixel, which are very easy to be missed in detection. This is
also the difficulty of the semantic segmentation model used for crack detection at present.
Examples of the dataset are shown in Figure 4. Four images at 3840 × 2880 pixels are
from a composite plate failure experiment, eight images at 1920 × 1080 pixels are from
another composite plate experiment, four images at 4608 × 3456 pixels are from a bridge,
seven images at 4608 × 3456 pixels are from some cracked walls or structures in Zhejiang
University, five images at 1920 × 1080 pixels are from a concrete beam bending experiment
and five images at 1920 × 1080 pixels are from a concrete column bending experiment.
These images are manually labeled at pixel level using the Labelme program. Another
49 images at 1920 × 1080 pixels are obtained from a concrete beam bending test, and CAs
are made to enable the model to be pretrained. Although transfer learning is an effective
strategy, its initial weights are usually trained by multi-class objects, and there are a lot of
irrelevant or weak correlation features. After transfer learning, more pretraining for cracks
can weaken these irrelevant or weak correlation features and strengthen the recognition
and extraction of crack features.
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Figure 4. Examples of the dataset.

The comparison of CA and FA is shown in Figure 5. CAs use more long lines and
obvious angles to represent the irregular contour of the crack. The form shown in the figure
shows that the mosaic area is wider, the jagged boundary of the crack is ignored and the
final label can be approximately regarded as a polygon, which greatly reduces the time for
CA. FAs make the marking points fit the crack as much as possible so that the width of the
mosaic and the outline of the label basically match the crack. Therefore, obvious bending
does not appear in the figure, and the overall appearance of FA is smoother. It takes about
6 min for an image to be coarsely labeled and 15 min to be finely labeled. This method of
training based on two types of labels does not require fine labeling of all images and can
reduce labeling costs.

 

Figure 5. Comparison of CA and FA.

Firstly, all images are divided into sub-images at 576 × 576 pixels; 588 coarse-labeled
images and 944 fine-labeled images are obtained. Then, images without cracks are removed,
and 550 coarse-labeled images and 676 fine-labeled images are obtained. Due to the
small amount of data, in order to make the test results more reliable, we refer to a data
configuration strategy similar to K-fold verification in [35] so as to avoid over-fitting. The
dataset is divided into five subsets for cross-training and validation. The division of sub-
datasets is shown in Table 1, and the dataset not used in each training process is used as
the code of this training process; so, each sub-dataset includes 540/541 images (including
only FA images) or 980/981 images. CA images are not used for testing.
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Table 1. Division of sub-datasets.

Sub-Dataset No.
or Training Process

CAs FAs

Sd1 110 135
Sd2 110 135
Sd3 110 135
Sd4 110 135
Sd5 110 136

Total 550 676

Due to the small amount of data, the model proposed in this paper should be lim-
ited to detecting concrete cracks, and the prediction effect of surface cracks in extreme
environments (such as earthquake) or other materials needs further research.

4. Model Training and Results

The contents of this chapter include the details and experimental results of training
Deeplabv3+ BDF. The optimization of the model is implemented using Python and the open-
source framework Deeplabv3+. The computing workstation is configured with four 1080 Ti
GPUs. In the following paper, transfer learning is referred to as process T, training on CA
images is referred to as process C and training on FA images is referred to as process F.

4.1. Training Strategy and Experimental Results

Training is divided into four types: F, C + F, T + F and T + C + F, i.e., three-step
training. Process T does not need to be specific, and using the Cityscapes initial weights
already available in the Deeplabv3+ model package can be considered an alternative to
this process. Deeplabv3+ BDF is trained on CA images firstly and then on FA images as
the model converges. Experiments show that process C converges after 15,000 epochs,
and the weight of any subsequent epoch can be used as the initial weight of process F.
In this paper, process C is iterated with 20,000 epochs. The image input size is set to
577 × 577 resolution, the loss function is binary cross-entropy loss, the initial learning
rate is 0.0001, the learning rate attenuation coefficient is 0.1, the number of attenuation
steps is 2000, the batch size is 32, the dropout rate is set to 0.5 and the total number of
epochs is 50,000. That is, when process C with 20,000 epochs exists, process F continues
to iterate 30,000 epochs, and the loss is recorded every 10 epochs.

In order to present the figures clearly, a simple moving average (SMA) of every
500 steps is used to describe the loss curve, as shown in Figure 6. The SMA is calculated
according to Equation (1):

SMA =

{
(Li + Li−1 + Li−2 + · · ·+ L1)/i, i f i ∈ [1, 500)

(Li + Li−1 + Li−2 + · · ·+ Li−499)/500, i f i ∈ [500, 50000]
(1)

where i is the number of iterations, and Li is the loss value of the ith iteration. Since the
number of iterations is less than 500, SMA calculation needs to follow another variant form
in the first 499 iterations, while SMA is normally calculated after 500 iterations. After two
pretraining sessions of process T and process C, the three-step training model still shows
the potential to be optimized in process F and further decreases in the loss value and finally
converges to 0.25, which is the lowest of the four training strategies. Even for process
C + F without process T this phenomenon also appears, that is, after the process C training
weight excellence, it still has room to be improved, and its loss converges to 0.39.
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(a) F (b) C + F 

  
(c) T + F (d) T + C + F 

Figure 6. SMA loss curve.

Process T + F and process F, which are two conventionally used training strategies
with convergence values of about 0.30 and 0.42, respectively, without process C can also
converge but are higher than T + C + F. In the two strategies without process T, the SMA
curve fluctuates in different degrees. Note that this is the average curve, and its fluctuation
is somewhat mitigated, but it still has disadvantages compared with the corresponding
curves of the two strategies with process T. Therefore, process T is necessary.

The effectiveness of our proposed training strategy can also obtain the same conclusion
from the validation indices. The precision (P), recall (R), F1-score and the most commonly
used index in semantic segmentation task, mIoU, are used for evaluation, and they are
calculated according to Equations (2)–(5):

P = TP/(TP + FP), (2)

R = TP/(TP + FN), (3)

F1-score = 2 × P × R/(P + R), (4)

mIoU = (1/k) × TP/(FN + FP + TP), (5)

where TP, FP and FN represent true positive, false positive and false negative, respectively,
and K is the number of target categories in all images. Figure 7 shows that, when the
training strategy is T + C + F and the dataset is Sd2, the change of mIoU curve is opposite
to the loss curve, but the change trend is the same, that is, when process F is carried out
after the convergence of process C, the curve has a certain mutation. The mIoU curves
of the four training types on the Sd1 subset are shown in Figure 8. From the comparison
between F and C + F, and the comparison between T + F and T + C + F, it can be seen that,
although the curves of C + F and T + C + F are lower at the initial stage, the inversion is
achieved after 20,000 iterations, which indicates that the models with CA and FA training
have significant optimization in terms of mIoU.
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Figure 7. Example of mIoU curve.

 
Figure 8. mIoU curves of four training types.

The performance of the four training strategies on the validation set is shown in Table 2,
which shows the indices of different training strategies on different sub-datasets. The results
of process T + C + F is the highest in the four indices. From the comparison of T + F and
F, T + C + F and C + F, it is revealed that transfer learning is still a very effective strategy
when dealing with small datasets. It can provide better initial performance, optimization
rate and convergence for the model. The effectiveness of establishing a training strategy for
a specific task can be proved by the comparison of T + F and T + C + F and the comparison
of F and C + F. Deeplabv3+ BDF that is pretrained with CA data for a specific task and then
trained normally is better at indicators than the model that is trained directly on FA data.
The conventional training strategy, i.e., process T + F, is 0.019 lower than the secondary
pretraining method proposed in this paper in terms of mIoU.
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Table 2. Indicators obtained by different training strategies.

Training Strategy Training Process P R F1 mIoU

F

Sd1 0.837 0.841 0.839 0.821
Sd2 0.843 0.838 0.840 0.824
Sd3 0.831 0.828 0.829 0.816
Sd4 0.834 0.829 0.831 0.818
Sd5 0.839 0.835 0.837 0.820

Average 0.837 0.834 0.835 0.820

C + F

Sd1 0.871 0.874 0.872 0.856
Sd2 0.863 0.859 0.861 0.841
Sd3 0.854 0.865 0.859 0.838
Sd4 0.861 0.868 0.864 0.845
Sd5 0.859 0.851 0.855 0.843

Average 0.862 0.863 0.862 0.845

T + F

Sd1 0.883 0.880 0.881 0.900
Sd2 0.875 0.874 0.875 0.893
Sd3 0.881 0.877 0.879 0.902
Sd4 0.879 0.877 0.878 0.899
Sd5 0.874 0.879 0.876 0.895

Average 0.881 0.877 0.879 0.898

T + C + F

Sd1 0.892 0.903 0.897 0.921
Sd2 0.889 0.897 0.893 0.917
Sd3 0.883 0.887 0.885 0.912
Sd4 0.887 0.882 0.884 0.914
Sd5 0.892 0.896 0.894 0.919

Average 0.889 0.893 0.891 0.917

Some experiments are carried out on the proportion of data required by process C and
process F, and the final mIoU is taken as the evaluation index. A total of 550 CA images
are divided into five sub-datasets. Trial training is conducted according to the number of
sub-datasets from 1 to 5, and the mIoU of each experiment is recorded, which can be seen
in Figure 9. The results show that the difference of mIoU is within ±0.03 after using three
or more sub-datasets, i.e., 330 CA images, which can be regarded as the fully developed
optimization potential. However, this result is only for the task of this paper. In an actual
project, the number ratio of CA and FA images should be determined according to the
complexity of the task, the characteristics of the object and other factors. Section 3 describes
the time spent in annotation, and an FA image is 2.5 times a CA image. If 330 or more CA
images are labeled according to the FA image standard, it takes more time to achieve the
same result, and this problem can be solved using the three-step training strategy proposed
in this paper.

 

Figure 9. The change of mIoU with the number of CA images.
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4.2. Comparison Results

The excellent performance of Deeplabv3+ BDF can also be shown in the comparison
experiment, and we compare Deeplabv3+ BDF with a variety of representative semantic
segmentation models, including Deeplabv3+, U-Net [36], PSP-Net [37], DeepCrack [38]
and DeepCrack-Aug [38], among which DeepCrack is a model specially designed for
crack detection. Table 3 shows the results of the comparative experiment. Due to the use
of a lighter backbone and the replacement of all standard convolutions with DSCs, the
number of parameters in Deeplabv3+ BDF is greatly reduced, the physical occupation
and running video memory occupation are reduced and the detection speed is greatly
improved. In addition, even Deeplabv3+ BDF without process C intensive training
is superior to other models in various evaluation indicators, while Deeplabv3+ BDF
with process C training further expands its advantages. The mIoU of Deeplabv3+ BDF
(T + C + F) takes the lead over Deeplabv3+ with better performance at 0.102, and
the detection speed reaches 26.132FPS, 2.9 times faster than U-Net. The comparison
experiment proves that our optimization measures are effective. Deeplabv3+ BDF has
both accuracy and speed and can meet real-time detection requirements (generally
20–25 FPS). If Deepalabv3+ BDF (T + C + F), Deeplabv3+ and DeepCrack-Aug are used
simultaneously to detect 100 images at 576 × 576 pixels, which takes 3.83 s, 26.56 s and
11.43 s, respectively, our model can complete the same task with high accuracy and
speed, and this advantage is more obvious when the number of images is larger.

Table 3. Comparison results using the dataset of this paper.

Model Deeplabv3+ U-Net PSP-Net DeepCrack DeepCrack-Aug
Deeplabv3+ BDF

(T + F)
Deeplabv3+ BDF

(T + C + F)

P 0.821 0.813 0.801 0.467 0.512 0.880 0.888
R 0.783 0.779 0.724 0.532 0.502 0.877 0.897
F1 0.802 0.796 0.761 0.497 0.507 0.878 0.892

mIoU 0.815 0.782 0.746 0.612 0.538 0.898 0.917
FPS 3.765 8.934 7.824 2.784 8.752 25.783 26.132

The results of crack semantic segmentation detection can be used to measure the width
and length of cracks, and its application in the field of structural damage detection is not
only as demonstrated here, but is also for corrosion detection and calculation and statistics
of corrosion area, which will be carried out in our future work.

4.3. Typical Inference Results

The proposed three-step training method is proved to be effective. In this section, we
use representative inference results to show that Deeplabv3+ BDF with additional feature
map fusion has better performance. Another training session is conducted using the same
strategy and dataset Sd1, but the training object is changed to Deeplabv3+ BDF, which only
fuses the feature map twice, and it is named Deeplabv3+ BDF-single for differentiation.
These two models are inferred from the same test set, three representative images are
selected and the mIoU values after detection are attached. The pixels in the segmentation
result can be divided into four categories, namely, TP in red, FN in blue, FP in green and
TN representing the background, as shown in Figure 10.
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(a) mIoU = 0.908/0.831 

 
(b) mIoU = 0.823/0.672 

 
(c) mIoU = 0.876/0.752 

Figure 10. Typical segmentation results.
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Deeplabv3+ BDF gives more accurate segmentation results of all fractures and
obtains significant advantages over the comparison model in mIoU. Figure 10a is a
crack image containing a small cavity with simple background. Deeplabv3+ BDF-
single incorrectly identifies the cavity as a crack, but Deeplabv3+ BDF does not. The
segmentation results show that the mIoU of Deeplabv3+ BDF-single is only 0.831 even in
simple background, and more FP pixels appear on the dark concrete background at the
crack edge. Figure 10b contains a fuzzy fine crack. Fine cracks are the key and difficult
task of crack detection. However, due to the accuracy of human eyes, the edges of
cracks cannot be accurately marked, which makes it difficult to completely segment the
fine cracks. Deeplabv3+ BDF has less truncation on the whole fine crack and less error
expansion at the crack edge, while Deeplabv3+ BDF-single detects a complete fine crack
as nearly 10 cracks, and the mIoU also reflects the performance difference from the data
level. Figure 10c contains a spalling concrete surface, and the crack that passes through
it can be confusing. Deeplabv3+ BDF overcomes the problem of crack area expansion
caused by spalling to a certain extent, but there are a lot of FN results in the spalling
area, which still has the potential for improvement. Deeplabv3+ BDF-single has a similar
problem in dealing with the problem of spalling concrete. The whole crack is segmented
more thinly, and the detection of the next thin cracks still fails, and the instrument circuit
is classified as crack, which is unacceptable. It can be seen from Figure 10 that most of
the FP and FN values of the crack segmentation task appear at crack boundary, which is
the reason why we choose to fuse the shallow feature map, because it corresponds to
the edges and corners of crack. Although the judgment of crack boundary is subjective
due to the different degrees of image blur, at an overall level, however, the additional
feature map fusion strategy reduces the proportion of FP and FN and has advantages in
filtering various complex backgrounds or processing cracks with different widths.

Figure 11 shows the segmentation results of our model, Deeplabv3+, U-Net and
DeepCrack-Aug. Figure 11a shows a crack with an average width of about 3.7 pixels. Our
model has almost the same result as the groundtruth. The worst one is DeepCrack-Aug.
As mentioned earlier, the dataset used by DeepCrack is relatively simple, and it is easy
to make mistakes in some common images with general complexity. Figure 11b shows
a crack with an average width of only 1.6 pixels. In this image, all models have made
many errors, but, from a comprehensive perspective, our model still achieves the best
results. The other three models have different degrees of truncation and error expansion
for this fine crack. It can also be inferred from Figure 11b that our model can identify
cracks only 1 pixel wide and separate them from the background. It is proved that our
model is superior to the recent work in both data and segmentation visualization.
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(a)

(b)

Figure 11. Segmentation results comparison of multiple models. Subfigure (a,b) are two randomly
selected crack images.

5. Conclusions

In this study, we noticed that the current research has some defects or ignores some
problems, so we proposed a semantic segmentation model improving on Deeplabv3+ and
named the model Deeplabv3+ BDF according to optimization strategies. The identification
of cracks is the most critical task in structural health detection, so we think it is necessary
and beneficial to propose a deep learning network dedicated to crack detection according to
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the unique characteristics of cracks. We adjusted the training strategy of Deeplabv3+ BDF
and optimized the network structure and established a dataset including CA images and FA
images. After the training, we evaluated the performance of the proposed Deeplabv3+ BDF
by comparing it with other models. The results show that Deeplabv3+ BDF solves the
three problems mentioned in the paper well, especially realizing real-time detection. The
conclusions are as follows:

(1) The network structure of Deeplabv3+ BDF is made lightweight by using Mo-
bileNetv2 as the backbone network, so that its FPS of 576 × 576 pixels image is 26.132,
which meets the real-time requirements and is 2.9 times faster than in recent works;

(2) Because of the additional fusion of shallow feature map, Deeplabv3+ BDF can
reduce the number of FN and FP values in detection results and improve the processing
ability of the boundary between foreground and background under the same conditions;

(3) After the second pretraining, that is, the proposed three-step training strategy,
the potential of Deeplabv3+ BDF is further developed. Compared with the conventional
training strategy, the mIoU of Deeplabv3+ BDF is increased to 0.917, which is at least 0.102
ahead of other models.
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Abstract: The drive-by method has become a popular indirect approach for bridge damage inspection
(BDI) because of its simplicity in deployment by evaluating the bridge health status solely via the
vehicle dynamic response. Derived from the vehicle dynamic response, the recent proposed contact-
point response involves no vibration signal with the vehicle frequency, bearing great potential for
drive-by BDI. However, an appropriate methodology for the application of contact-point response
in drive-by BDI remains lacking. The present study proposes a novel drive-by method, in which a
new damage factor index, i.e., the characteristic wavelet coefficient (CWC), is established for bridge
damage identification in an efficient and accurate manner. The CWC is obtained by analyzing the
contact-point response via the continuous wavelet transform (CWT) and complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) techniques. CEEMDAN is introduced to
overcome the issue of modal aliasing and pseudo-frequency. First, the general framework of the
proposed drive-by BDI method is introduced. Then, a demonstration case study is carried out to
examine the effectiveness of the proposed method. Subsequently, a parametric study is carried out
to explore the effects of several parameters on the performance of BDI including the scale factor,
vehicle speed, environmental noise, and boundary effect. The results indicate that the proposed
drive-by BDI method can better eliminate the mode mixing and pseudo-frequency problems during
the extraction of the CWC, compared with the traditional ensemble empirical mode decomposition
method. The extracted CWC curve is smooth, convenient for damage inspection, and has strong
anti-noise performance. After adding white noise with a signal-to-noise ratio of 20, a bridge girder
with a damage severity of 20% can be identified successfully. In addition, the selection of the scale
factor is critical for bridge damage inspection based on the extracted CWC. The effective scale factor
of the CWC extracted using the proposed method has a wide range, which improves the inspection
efficiency. Finally, a low vehicle speed is beneficial to alleviate the adverse effect of the boundary
effect on the damage inspection of bridge girder ends.

Keywords: vehicle–bridge interaction; drive-by method; bridge damage inspection; characteristic
wavelet coefficient; complete ensemble empirical mode decomposition with adaptive noise

1. Introduction

Due to the increase in aging infrastructures worldwide, structural system inspection
and damage detection have become increasingly important for structural health status
assessment. For bridges in particular, it is also crucial to ensure their structural integrity
and safety, because bridges usually serve as the critical links in transportation networks.
In general, bridge health inspection methods are mainly divided into two categories, i.e.,
direct inspection methods and indirect inspection methods. Direct inspection methods aim
to detect damage by installing sensors on bridges and analyzing vibration data collected
by sensors [1–4]. Although direct inspection methods have been widely used, they often
require a large-scale deployment of sensors on the bridge, leading to demanding costs
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and cumbersome maintenance. Therefore, a structural health motoring (SHM) system
is typically installed on long-span bridges with a relatively higher budget than short- or
medium-span bridges [5].

In order to overcome the limitations of direct inspection methods, indirect inspection
methods have been proposed for the damage assessment of bridge structures, such as
drive-by-based methods, global navigation satellite system (GNSS)-based methods [6], and
unmanned aerial vehicle (UAV)-based methods [7]. Among them, the drive-by method was
first proposed by Yang et al. [8], and it aims to assess the bridge health status indirectly via
the vehicle dynamic response when traveling on the bridge, based on the vehicle–bridge
interaction (VBI). The feasibility of the drive-by method was later verified through a real
bridge test [9]. Since then, the drive-by method has been widely used by many scholars
for detecting damage of bridge girders. In general, the drive-by method constructs the
bridge damage index through either the modal related parameters or the non-modal related
parameters. As the name implies, the modal-parameter-based drive-by method needs to
first identify the frequency, vibration mode, or damping [10–13] of the bridge, and then
further construct the bridge damage index. For example, OBrien et al. [14] presented a
novel algorithm for bridge damage detection based on the mode shapes, in which the
bridge response was measured from an instrumented vehicle with laser vibrometers and
accelerometers. The algorithm was proved to be effective and accurate when the vehicle
speed was less than 8 m/s. Similarly, Oshima et al. [15] evaluated two types of damage
of a bridge, i.e., immobilization of a support, and a decrease in the stiffness of the bridge
girder at the mid-span, via mode shapes estimated from the responses of passing vehicles.
In a recent study conducted by Robert and Abdollah [16], the contact-point responses were
utilized to extract the bridge frequencies for bridge damage detection, which avoids the
effects of the vehicle frequency. It is noteworthy that, although much progress has been
made in the last two decades, key challenges remain with the modal-parameter-based drive-
by method for bridge damage inspection, including how to extract the modal parameters
efficiently and accurately, and how to eliminate the effect of road roughness and noise.

Different from the modal-parameter-based method, the non-modal-parameter-based
method does not rely on modal parameters and typically utilizes machine learning and
signal processing techniques, which have been proven effective in detecting and locating
damage. The advantage of machine learning algorithms is that they can make full use of
the massive data collected by the drive-by system. Mei et al. [17] proposed a novel damage
detection technique by combining the mel-frequency cepstrum (MFC) and principal com-
ponent analysis (PCA) for bridge damage detection using drive-by data measured from
vehicles. With the proposed method, the influence of temperature and road roughness
under operating conditions can be adequately considered. Corbally and Malekjafarian [18]
proposed a new data-driven approach for the drive-by monitoring of bridge condition us-
ing an artificial neural network (ANN), which is subsequently trained to predict the bridge
behavior using acceleration measurements from multiple passes of a traversing vehicle.
Sarwar and Cantero [19] proposed a vehicle-assisted bridge damage assessment approach
based on a deep autoencoder (DAE) architecture, considering multiple convolutional lay-
ers and an LSTM layer. With the proposed approach, the relationship between vehicle
responses and bridge dynamics is established successfully. Locke et al. [20] proposed a
drive-by health monitoring technique to detect bridge damage considering environmental
(temperature) and operational effects (road roughness and random traffic flow). One major
challenge of machine-learning-based indirect inspection methods is that massive training
data are required, and sometimes the data need to be manually classified or marked. In
addition, machine-learning-based indirect inspection methods may not be applicable under
complex operational conditions, e.g., road roughness, temperature, and random traffic flow,
in practical applications.

Compared with machine-learning-based indirect inspection methods, signal-processing-
based methods, e.g., wavelet transform (WT) and empirical mode decomposition (EMD),
are more convenient and relatively easy to implement, and they have drawn increasing
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attention recently. For example, Abdulkareem et al. [21–23] proposed a series of wavelet
analysis methods to extract the modal shapes of plate structures and to construct structural
damage factors. Zhu and Law [24] employed the continuous wavelet transform (CWT) to
identify cracks in bridge beam structures under a moving load. Hester and González [25]
successfully detected the damage in a 40 m simply supported bridge beam model by
analyzing its acceleration response under a moving load via the WT. Nguyen and Hai [26]
proposed an approach for detecting a multi-cracked beam-like structure subjected to a
moving vehicle based on the on-vehicle vibration signal and wavelet analysis. By using the
continuous wavelet method, Khorram et al. [27] compared the effect of the signal obtained
by the bridge mid-span sensor and the sensor installed at the contact point between the
mobile vehicle and the bridge for damage inspection. The analysis results showed that the
inspection method of the bridge contact sensor was more effective. Tan et al. [28] employed
Shannon entropy to select the optimal scale factor in the process of the CWT, which im-
proves the efficiency of bridge damage inspection. The aforementioned WT-based methods
are mainly implemented on vehicle dynamic responses, while their performance on the
vehicle–bridge contact-point response remains unclear. Yang and Chang [29] employed the
EMD technique to decompose the vehicle response into a set of intrinsic mode functions
(IMFs), with which the bridge frequencies, especially the higher modes, were successfully
extracted. Obrien et al. [30] also utilized EMD to decompose the acceleration of a car
body’s mass center (vehicle acceleration) to construct the damage index for accurate bridge
damage detection. In recent years, ensemble empirical mode decomposition (EEMD) and
extreme-point symmetric mode decomposition (ESMD) have been successively used by
Zhu and Malekjafarian [31] and Yang et al. [32] to improve the efficiency and accuracy of
the frequency inspection of bridges.

It is reported that the above signal decomposition methods such as EEMD still have
modal aliasing and pseudo-modal problems [33]. In addition, the contact-point response
is proved to be more efficient and accurate than the vehicle dynamic response for bridge
damage inspection, yet there is currently a lack of related research in this field [34]. The
present study proposes a novel drive-by-based method, in which a new damage factor
index, i.e., the characteristic wavelet coefficient (CWC), is established for bridge damage
identification in an efficient and accurate manner. The CWC is obtained by analyzing the
contact-point response via the CWT and complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) techniques. CEEMDAN is introduced to overcome the
issues of modal aliasing and pseudo-frequency. The remainder of this paper is organized as
follows. First, the general framework of the proposed drive-by bridge damage inspection
methodology is introduced. Then, a demonstration case study is carried out to examine the
effectiveness of the proposed drive-by damage inspection methodology. Subsequently, a
parametric study is carried out to explore the effects of several parameters on the perfor-
mance of the proposed damage inspection methodology including the scale factor, vehicle
speed, environmental noise, and boundary effect.

2. Bridge Damage Inspection Methodology

The proposed drive-by bridge damage inspection methodology consists of three parts,
i.e., VBI analysis (part I), preliminary damage inspection (part II), and thorough damage
inspection (part III), as illustrated in Figure 1. In part I, the VBI analysis is performed, in
which the dynamic responses of the vehicle–bridge system are obtained. Subsequently, the
dynamic responses of the vehicle–bridge system are analyzed using the CWT, in which
the wavelet coefficient (WC) is extracted and used for the preliminary damage inspection
of the bridge, as detailed in part II. It is noteworthy that the WC contains a variety of
high-order frequency contents of bridge vibration, which has adverse effects on the damage
inspection accuracy. To overcome this issue, the WC in part II is further processed by
CEEMDAN, with which the CWC is extracted and used for thorough damage inspection,
i.e., identifying the damage location and severity of the bridge accurately, as introduced
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in detail in part III. Each one of the three parts of the proposed drive-by bridge damage
inspection methodology will be elaborated in the following subsections.
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Figure 1. Flowchart of the proposed drive-by bridge damage inspection methodology.

2.1. Vehicle–Bridge Interaction (VBI) Analysis
2.1.1. Analytical Solution

For illustration purposes, the coupled vehicle–bridge system is simplified as a lumped
sprung mass moving on a simply supported beam, as shown in Figure 2. By neglecting the
damping effects of the vehicle–bridge system, the corresponding equations of motion can
be written as

mv
..
uv + Kv(uv − ub|x=vt ) = 0

mb
..
ub + EIu′′′′

b = fc(t)δ(x − vt)
(1)

where uv and ub are the vertical displacement of the vehicle body (lumped sprung mass)
and the bridge (simply supported beam), respectively; the two dots represent quadratic
differentials with respect to time t; mv and mb are the mass of the vehicle and bridge,
respectively; Kv is the stiffness matrix of the vehicle; EI is the flexural rigidity of the bridge;
x = vt is the position of the moving vehicle on the bridge; v is the moving speed of the
vehicle; δ(t) is the Dirac function; and fc(t) is the contact force between the vehicle and
bridge, which is given by

fc(t) = kv(uv − ub|x=vt) + mvg (2)

where g is the gravitational acceleration.
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mvuv
kv

ub

Figure 2. Lumped sprung mass moving on a simply supported beam.

Based on the modal superposition method, the bridge displacement response ub(x,t) is
expressed in terms of modal shapes sin (nπx/L) and generalized coordinates qb,n(t):

ub(x, t) = ∑
n

sin
nπx

L
qb,n(t) (3)

where L is the length of the bridge.
One can obtain the theoretical solution of the acceleration time histories of the bridge,

vehicle, and contact point between the bridge and vehicle as [8,35]

..
ub(x, t) = ∑

n
sin

nπx
L

Δst,n

1 − S2
n

[
−
(nπv

L

)2
sin
(

nπvt
L

)
+ Snω2

b,n sin ωb,nt
]

(4)

..
uv(t) = ∑

n

{
Av,n cos ωvt + Ad,n cos

2nπvt
L

+ Abr,n cos
(

ωb,n +
nπv

L

)
t + Abl,n cos

(
ωb,n − nπv

L

)
t
}

(5)

..
uc(t)|x=vt = ∑

n
sin

nπvt
L

Δst,n

1 − S2
n

[
−
(nπv

L

)2
sin
(

nπvt
L

)
+ Snω2

b,n sin ωb,nt
]

(6)

in which the amplitude coefficients Av,n, Ad,n, Abr,n, and Abl,n are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Av,n = −ω2
v

2Δst,nμ2
nS2

n
1−S2

n

{
1

1−4μ2
nS2

n
− 1

[1−μ2
n(1−Sn)

2][1−μ2
n(1+Sn)

2]

}
Ad,n = ω2

d,n
Δst,n

2(1−S2
n)(1−4μ2

nS2
n)

Abr,n = −ω2
br,n

Δst,nSn

2(1−S2
n)[1−μ2

n(1+Sn)
2]

Abl,n = ω2
bl,n

Δst,nSn

2(1−S2
n)[1−μ2

n(1−Sn)
2]

(7)

where Δst,n = 2mvgL3/EIπ4; μn = ωb/ωv; Sn = nπv/Lωb; ωbl,n and ωbr,n are the left and right
frequencies of the bridge, respectively; ωv is the frequency of the vehicle; and ωd,n is the
driving frequency.

2.1.2. Numerical Simulation

Generally, the bridge can be discretized as several beam elements, and the vehicle is
idealized as a spring-mass model. To consider the vehicle–bridge interaction, it is common
to formulate the governing equation of the coupled vehicle–bridge system as [8][

mv 0
0 [mb]

]{ ..
qv{ ..
ub
}}+

[
kv −kv{N}T

−kv{N} [kb] + v2mv{N} ∂2{N}T

∂x2 + kv{N}{N}T

]{
uv

{ub}
}

=

{
0

−mvg{N}c

}
(8)

where mv and kv denote the mass and stiffness of the vehicle; [mb] and [kb] are the mass and
stiffness matrixes of the bridge element supporting the vehicle; {ub} represents the displace-
ment vector of the bridge element; {N} contains the cubic Hermitian interpolation functions
associated with the transverse displacement of the element (i.e., vertical displacement for
the bridge); and {N}c represents the realization of {N} at the vehicle–bridge contact point, as
given below:

113



Buildings 2023, 13, 397

{N(xc)} =

{
1 − 3

( xc

l

)2
+ 2

( xc

l
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xc

(
1 − xc

l

)2
3
( xc

l

)2
+ 2

( xc

l

)3 x2
c
l

( xc

l
− 1

)
1 − xc

l
xc

l

}T

(9)

in which l is the length of the bridge element. The numerical solution of the coupling be-
tween the vehicle and the bridge system can be realized by the separation iteration between
the vehicle and the bridge system. In the solving process of the vehicle–bridge interaction
program, the geometric and mechanical coupling relationship between the vehicle and
bridge systems is satisfied through the Newmark-β method and separation iteration, so as
to realize the independent solution of the bridge and vehicle motion equations (Figure 1,
part I). For more information about the numerical solution system in this article, see [36–38].

2.2. Preliminary Damage Inspection Based on CWT

The WT is a mathematical approach that enables the extraction of the prominent
characteristics of the original dataset, such as discontinuities, trends, and breakdown
points, which has been widely used for signal processing applications. The WT is divided
into the CWT and discrete WT (DWT). In the present study, the CWT is employed to process
the acceleration response of the vehicle–bridge system, which is given by

WTf (a, b) =
1√
a

∫ ∞

0
f (t)ψ∗

(
t − b

a

)
dt (10)

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
(11)

where f (t) is the signal (the acceleration response in the present study); ψa,b(t) is the wavelet
basis function; ψ∗(t) represents the conjugate function of the basic wavelet function; t is
the time; a is the scale factor; and b is the time shift factor. When the parameters t, a, and b
are continuous variables, the above transformation is the CWT, and WTf (a,b) is the wavelet
coefficient under scale factor a and shift factor b. The WC of the signal at a certain scale can
be obtained by applying the CWT to the acceleration response of the vehicle–bridge system
obtained in the previous section, which is subsequently used for the damage inspection of
the bridge girder.

2.3. Thorough Damage Inspection Based on CWC

As mentioned previously, the WC contains a variety of high-order frequency contents
of bridge vibration, which has adverse effects on the damage inspection accuracy. To
improve the identification accuracy, the CEEMDAN technique is applied to the WC to
obtain the CWC for thorough damage inspection.

Huang et al. [39] first developed the EMD method to examine the nonlinear and non-
stationary signals in an adaptive time–frequency–amplitude space. With the EMD method,
the signal can be decomposed into several intrinsic mode functions (IMFs) and a residue.
Despite its wide applications, EMD experiences some problems, such as the presence of
oscillations of very disparate amplitudes in a mode, or mode mixing. To overcome these
problems, ensemble EMD (EEMD) has been proposed, which performs the EMD over an
ensemble of the signal plus Gaussian white noise [40]. Based on EEMD, the CEEMDAN
method has recently been proposed, in which a particular noise is added at each stage of
the decomposition and a unique residue is computed to obtain each mode [41]. This helps
to further reduce the modal aliasing and pseudo-modal problems as well as enhancing the
anti-noise ability. The flowchart of CEEMDAN is illustrated in Figure 1. Given a set of
measured data X(t), the process of the CEEMDAN algorithm decomposing each order’s
IMF is described as follows:

(1) The Gaussian white noise is added to the signal X(t) to obtain a new signal

X(t) +
n
∑

n=1
WNn, and the new signal is decomposed through EMD to obtain the first-
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order IMF and remainder (Equation (12)). The above process is repeated N times, and N
first-order IMFs are obtained because the white noise added is different.

E(X(t) +
n

∑
n=1

WNn) = Cj
1(t) + rj(t) (12)

where E(·) refers to the EMD process;
n
∑

n=1
WNn refers to the white noise; n is the number of

times the white noise is added; Cj
1(t) is the first-order IMF; rj(t) is the remaining margin;

and j is the number of decompositions.
(2) The average of the resulting N first-order IMFs yields the first IMF C1(t) decom-

posed by CEEMDAN:

C1(t) =
1
N

N

∑
j=1

Cj
1(t) (13)

(3) The residual of the original signal X(t) is calculated after removing the first
modal component:

Xr(t) = X(t)− C1(t) (14)

(4) The signal obtained in the previous step is treated as a new signal, which is pro-
cessed by the first three steps to obtain the second-order IMF. Subsequently, the procedure
is applied repeatedly to extract the third- and fourth-order IMF components (if they exist),
until the residual signal is a monotonic function. Finally, assuming the number of extracted
IMFs is K, the original signal X(t) can be expressed as the summation of all IMF components
and the residual signal, as given by

Xr(t) = X(t)− C1(t) (15)

3. Numerical Case

A demonstration case study is carried out to examine the effectiveness of the proposed
drive-by damage inspection methodology.

3.1. VBI of Simply Supported Bridge Beam

The demonstration case involves a single-degree-of-freedom (DOF) sprung mass
moving along a simply supported bridge beam model, as shown in Figure 3. The total
length of the bridge beam is 15 m, which is divided into 30 elements with an equal length
of 0.5 m. The damage of the bridge girder is simulated by means of a reduction in the
elastic modulus. The time step during the VBI analysis is set to 0.005 s. In addition, the
speed of the vehicle is set to 4 m/s, and the key parameters of the vehicle–bridge system
are shown in Table 1. The VBI is realized using a self-compiled program in the MATLAB
software. For validation purposes, the simulated dynamic responses of the vehicle–bridge
system are compared with the analytical solutions, as shown in Figure 4. It is clearly shown
in Figure 4 that the vertical acceleration of the bridge mid-span, the vertical acceleration
of the vehicle body, and the vertical acceleration of the contact point obtained from the
numerical simulations are in good agreement with those of the analytical solutions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

mvuv
kv

uv

Figure 3. Single-DOF sprung mass moving along a simply supported bridge beam model.
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Table 1. Essential parameters of the vehicle–bridge system.

Parameter Definition Value

mv Vehicle mass 1000 kg
Cv Vehicle rigidity 500 kN/m
mb Mass per meter of bridge 4000 kg
L Length of bridge 15 m
Ib Inertia moment of bridge section 0.12 m4

wv Vehicle frequency 3.56 Hz
wd Driving frequency 0.266 Hz
wb1 First-order frequency of bridge 6.623 Hz
wb2 Second-order frequency of bridge 26.492 Hz
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Time/s
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Figure 4. Comparison between the simulated dynamic response of the vehicle-bridge system
and the analytical solutions: (a) bridge mid-span acceleration; (b) vehicle acceleration; (c) contact-
point acceleration.

In total, 14 cases are considered, as listed in Table 2. In cases 1~5, the damage is
assumed to be located at seventh element with various degrees of severity, i.e., 0%, 5%,
10%, 20%, and 40%. The vehicle mass and vehicle speed remain unchanged in cases 1~5,
i.e., mv = 1000 kg and V = 4 m/s. To examine the influence of the damage location on the
feasibility of the proposed damage inspection methodology, the damage location is shifted
from the seventh element to the second element of the bridge in cases 6~8, with a damage
severity of 0%, 20%, and 40%. The vehicle mass and vehicle speed in cases 6~8 are the same
as those in cases 1~5. To further investigate the influence of the vehicle speed, the vehicle
speed is reduced from 4 m/s to 1 m/s in cases 9~11. The damage in cases 9~11 is located at
the second element of the bridge with a damage severity of 0%, 20%, and 40%. It is noted
that cases 1~11 only contain one damage location, while cases 12~13 assume two damage
locations. To be specific, in case 12, elements No. 4 and No. 14 are damaged with a severity
of 10% and 30%, while in case 13, elements No. 4 and No. 14 are damaged with a severity
of 30% and 10%.
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Table 2. Case setting for VBI analysis.

Number
Vehicle Mass

(kg)
Vehicle Speed

(m/s)
Damage Location
(No. of Element)

Degree of
Damage

1 1000 4 7 0%
2 1000 4 7 5%
3 1000 4 7 10%
4 1000 4 7 20%
5 1000 4 7 40%
6 1000 4 2 0%
7 1000 4 2 20%
8 1000 4 2 40%
9 1000 1 2 0%

10 1000 1 2 20%
11 1000 1 2 40%
12 1000 4 4, 14 10%, 30%
13 1000 4 4, 14 30%, 10%

3.2. WC Extraction Based on CWT

Previous studies have shown that abnormal changes in the WC under a certain scale
factor can be used to identify the bridge damage effectively. Figure 5a shows the time–
frequency diagram after applying the CWT to the vehicle acceleration under case 5. The
ordinate is the scale factor (Scale) of the CWT, and the abscissa is the time shift factor (Shift)
of the CWT, which can be understood as the relative position of the bridge. The color
shade indicates the magnitude of the WC. It is observed that the color of the WC varies
significantly at the position of 6.5/30 = 0.21 (the center of the damaged No.7 element), and
the scale factor ranges from approximately 30 to 60. To clearly observe the variation in the
WC, the WC under the scale factor of 35 in case 5 is displayed in Figure 5b. For comparison
purposes, the WC in the undamaged case (case 1) is also plotted in Figure 5b. As shown in
Figure 5b, there is an obvious peak of the WC at the center of the damaged No.7 element,
which suggests that the significant variation in the WC under an effective scale factor can
help to identify the damage location of the bridge. It is also worth mentioning that the
wavelet basis function could affect the damage identification results. The commonly used
wavelet basis functions include the Haar wavelet, Morlet wavelet, Mexican hat wavelet, and
Daubechies wavelet. A preliminary analysis was conducted to examine the effectiveness of
the type of wavelet basis function on the damage identification results, where the Mexico
hat wavelet outperformed the other selected wavelet basis functions and was selected for
the subsequent analysis.

0.2 0.4 0.6 0.8 1.00
3×10-3

2×10-3

1×10-3
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1×10-3

2×10-3
 umdamaged
 40% damaged

damage location

Scale=35
(b)(a)

x(t)/L

Figure 5. CWT of vehicle acceleration under case 5: (a) the time-frequency diagram; (b) wavelet
coefficient graph with a scale factor of 35.
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In addition to the WC of vehicle acceleration, the WC of the bridge mid-span accelera-
tion and the contact-point acceleration in cases 2~5 is also extracted, as shown in Figure 6.
It is observed from Figure 6a,b that although the trend of the WC shows a certain degree
of increase at the damaged location, such an increase is not obvious, especially when the
damage severity is less than 40%. This is because the overall trend of the WC is largely
contaminated by its fluctuations, i.e., the high-frequency contents.
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Figure 6. Wavelet coefficient diagram: (a) bridge mid-span acceleration; (b) contact-point acceleration.

3.3. Extracting CWC Based on WC Using EEMD or CEEMDAN

The previous discussion indicates that the extracted WC after applying the CWT to
the acceleration response of the bridge mid-span and contact point has a poor damage
inspection performance, due to the contamination of the high-frequency content of the WC.
In order to improve the identification accuracy, it is natural to filter out the high-frequency
contents of the WC to make the trend of the WC visible. In view of this, the extracted WC is
further analyzed using two signal decomposition techniques, i.e., EEMD and CEEMADAN,
in which the extracted WC is decomposed into a series of IMF components with different
frequencies. Figures 7 and 8 show the IMFs and the associated FFT spectra after processing
the WC (case 5) with EEMD and CEEMDAN, respectively. It is observed that the IMFs
help to separate the first few bridge natural frequencies or the vehicle driving frequency.
In addition, obvious mode mixing can be observed in IMF3 and IMF4 extracted using the
EEMD method, as shown in Figure 7. Furthermore, our analysis showed that the IMFs
with a dominant frequency higher than the first vertical natural frequency (6.623 Hz) of the
bridge have adverse effects on the bridge damage identification results, while the opposite
result is found for the IMFs with a frequency lower than the first vertical natural frequency
of the bridge. Therefore, only the IMFs with a dominant frequency lower than the first
vertical natural frequency of the bridge are selected to construct the new damage index,
which is termed as the CWC in the present study.

The CWC decomposed by EEMD and CEEMDAN is shown in Figure 9. It is observed
in Figure 9 that the CWC extracted by both EEMD and CEEMDAN shows an abrupt
increase at the damage location of the bridge girder, and such an abrupt increase is more
obvious under severer damage conditions. To be specific, the peak of the CWC extracted
by EEMD is 2.13 × 10−4, 2.87 × 10−4, and 4.72 × 10−4 under damage of 0%, 20%, and
40%, while the peak of the CWC extracted by CEEMDAN is 1.41 × 10−4, 3.35 × 10−4, and
6.08 × 10−4 under damage of 0%, 20%, and 40%. This indicates that the CWC can be used
to detect the damage location and to quantify the damage severity of the bridge girder. In
addition, it is found that the CWC extracted using the CEEMDAN method is smoother
than that extracted using the EEMD method. Therefore, the CEEMAN method is adopted
for the subsequent analysis.
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Figure 7. The IMF and FFT of the WC extracted by EEMD.
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Figure 8. The IMF and FFT of the WC extracted by CEEMDAN.
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Figure 9. CWC extracted using different methods: (a) EEMD; (b) CEEMDAN.

3.4. CWC for Multi-Damage Case

In this section, the performance of the proposed drive-by damage inspection method-
ology in a multi-damage case is further evaluated. Two damage scenarios of the bridge
girder with two damage locations are investigated. In the first damage scenario (case 12),
elements No. 4 and No. 14 are damaged with a severity of 10% and 30%, while in the
second damage scenario (case 13), elements No. 4 and No. 14 are damaged with a severity
of 30% and 10%. Figure 10 shows the CWC by analyzing the bridge mid-span acceleration,
vehicle acceleration, and contact-point acceleration. As shown in Figure 10a, the CWC
extracted from the bridge mid-span acceleration has a poor damage inspection performance.
In contrast, as for the CWC extracted from the vehicle acceleration and contact-point accel-
eration, two noticeable peaks can be observed at the two damaged elements, as shown in
Figure 10b,c. In addition, for damage scenario one, the peak at element No. 4 with a 10%
damage severity is less than that at element No. 14 with a 30% damage severity, while the
opposite result is found for damage scenario two. The above observations clearly suggest
that the CWC extracted from the vehicle acceleration and contact-point acceleration is also
effective for damage identification in multi-damage scenarios.
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Figure 10. Inspection of multi-damage case: (a) CWC extracted from bridge mid-span acceleration;
(b) CWC extracted from vehicle acceleration; (c) CWC extracted from contact-point acceleration.
Where @ indicates the degree of damage.

120



Buildings 2023, 13, 397

4. Parametric Analysis

In this section, a parametric study is carried out to explore the effects of several
parameters on the performance of the proposed damage inspection methodology including
the scale factor, vehicle speed, environmental noise, and boundary effect.

4.1. Effect of Scale Factor

As discussed earlier, the scale of the CWT has a significant effect on the performance of
the proposed drive-by damage inspection methodology. In practice, it is usually necessary
to find a better scale factor through trial and error. Figure 11 shows the CWCs at scale factors
of 15, 35, and 55, which are extracted from the contact-point accelerations in case 1, case 3,
and case 5, respectively. It is observed that the CWC under a scale factor of 35 outperforms
that under scale factors of 15 and 55.
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Figure 11. CWC under different scale factors: (a) scale = 15; (b) scale = 35; (c) scale = 55.

4.2. Effect of Environmental Noise

Vehicle signals are inevitably polluted by environmental noise during the acquisition
process, resulting in signal distortion or some key information being missing. Therefore, in
this section, the effect of noise on the performance of the proposed damage identification
framework is investigated. During the analysis, Gaussian white noise with three different
signal-to-noise ratios (SNR = 15, 20, and 50) is added to the vehicle acceleration response
in cases 1~5. Figure 12 shows the CWC under SNR = 15, 20, and 50. It is observed that
appreciable fluctuations are induced all along the bridge girder due to the Gaussian white
noise. As such, the CWC can only identify the damage locations under a severity of 40%,
below which it becomes quite difficult to successfully carry out damage identification.
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Figure 12. CWC extracted from signals with noise with different SNRs: (a) SNR = 50; (b) SNR = 20;
(c) SNR = 15.

4.3. Vehicle Speed

The previous studies indicate that the performance of the conventional damage in-
spection method under a low vehicle speed is better than that under a high vehicle speed.
In this section, the performance of the proposed damage inspection methodology in cases 1,
4, and 5 under two vehicle speeds, i.e., 8 m/s and 12 m/s, is investigated. It is observed in
Figure 13 that the CWC is able to identify the damage location under both vehicle speeds,
indicating that the proposed damage inspection methodology has a good performance
under a relatively high vehicle speed.

0.2 0.4 0.6 0.8 1.00
2×10-2

1×10-2

5×10-3

0

5×10-3

1×10-2

0.2 0.4 0.6 0.8 1.00
2×10-2

2×10-2

8×10-3

0

8×10-3

x(t)/L

 undamaged
 20% damaged
 40% damaged

damage location

Scale=26

x(t)/L

 undamaged
 20% damaged
 40% damaged

damage location

Scale=16
(a) (b)

Figure 13. CWC at different speeds: (a) 8 m/s; (b) 12 m/s.
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4.4. Boundary Effect

It is noted that in the process of the CWT, the WC is derived from the window function
and wavelet convolution. When the window is located at the end of the signal, the signal
is inevitably distorted because the signal is forced to zero at its end. This is referred to
as the boundary effect of the CWT. In the time–frequency diagram, the quality of the
signal becomes poor with the decrease in the frequency (scale a), as shown in Figure 14a.
The boundary effect could inundate the damage information of the beam element near
the bridge girder end. For example, when the vehicle speed is 4 m/s, it is impossible to
extract the damage information of element 2, as shown in Figure 14a. The influence of the
boundary effect is illustrated in the influence cone, in which the signal inside the influence
cone is not affected by the boundary effect, while the signal outside the influence cone
is significantly affected by the boundary effect. It is also noted that as the vehicle speed
reduces from 4 m/s to 1 m/s, the influence cone becomes flatter and the influence of the
boundary effect becomes less significant. As shown in Figure 14b, when the vehicle speed
is 1 m/s, the second element can be successfully identified. Therefore, a low-speed test
vehicle is expected to alleviate the adverse boundary effect. However, it remains impossible
to identify the damage at the girder ends (i.e., 1st and 30th elements), even with a low-speed
test vehicle, and more advanced algorithms may be considered in the future to resolve
this limitation.

Figure 14. CWC and influence cone at different speeds: (a) 4 m/s; (b) 1 m/s.
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5. Concluding Remarks

The present study proposes a novel drive-by-based method, in which a new damage
factor index, i.e., the CWC, is established for bridge damage identification in an efficient
and accurate manner. The following conclusions were obtained:

(1) Compared with the EEMD method, the CEEMAN algorithm can better eliminate
the mode mixing and pseudo-frequency problems during the extraction of the CWC.
The introduction of this method also makes the CWC curve smooth, convenient for
damage inspection, with strong anti-noise performance. After adding white noise
with a signal-to-noise ratio of 20, a bridge girder with a damage severity of 20% can
be identified.

(2) The selection of the scale factor is critical for bridge damage inspection based on the
extracted CWC. The effective scale factor of the CWC extracted using the proposed
method has a wide range, which improves the inspection efficiency.

(3) A low vehicle speed is beneficial to alleviate the adverse effect of the boundary effect
on the damage inspection of bridge girder ends.

It should be noted that, as with most existing studies on drive-by methods for bridge
health inspection, the proposed method is numerically verified, demonstrating the poten-
tial for actual practice. However, there remain great challenges in achieving a satisfactory
accuracy of bridge health inspection in real-world environments. In particular, the col-
lected vibrational signals for damage identification are usually contaminated due to the
interference of random traffic flow, environmental noises, etc. It is therefore recommended
to carry out such a practical test when there is less adverse traffic excitation. Meanwhile,
a specialized test vehicle with fewer internal noises (e.g., from motor vibration) is also
beneficial to the performance of damage identification. To further improve the drive-by
method, one may present further investigations on eliminating the common boundary
effect through innovative algorithms and/or novel experimental designs.
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Abstract: This study presents a two-step FE model updating approach for health monitoring and
damage identification of prestressed concrete girder bridges. To reduce the effects of modeling error
in the model updating process, in the first step, modal-based model updating is used to estimate linear
model parameters mainly related to the stiffness of boundary conditions and material properties.
In the second step, a time-domain model updating is carried out using acceleration data to refine
parameters accounting for the nonlinear response behavior of the bridge. In this step, boundary
conditions are fixed at their final estimates using modal-based model updating. To prevent the
convergence of updating algorithm to local solutions, the initial estimates for nonlinear material
properties are selected based on the first-step model updating results. To validate the applicability
of the two-step FE model updating approach, a series of forced-vibration experiments are designed
and carried out on a pair of full-scale decommissioned and deteriorated prestressed bridge I-girders.
In the first step, parameters related to boundary conditions, including stiffness of supports and
coupling beams, as well as material properties, including initial stiffness of concrete material, are
estimated. In the second step, concrete compressive strength and damping properties are updated.
The final estimates of the concrete compressive strength are used to infer the extent of damage in the
girders. The obtained results agree with the literature regarding the extent of reduction in concrete
compressive strength in deteriorated concrete structures.

Keywords: modal-based model updating; Bayesian model updating; system identification; damage
identification; operational health monitoring; I-girder; bridge; aging

1. Introduction

Bridges are vital components of the transportation infrastructure. The average age
of in-service bridges in the United States is increasing, which necessitates methods and
tools to inform decision making related to the maintenance and/or replacement of these
structures [1,2]. Finite Element (FE) model updating methods have emerged as a venerable
procedure for operational health monitoring and post-event structural damage identifica-
tion [3–17]. In these methods, the initial/baseline FE model—developed using available
as-built drawings—is updated using measured dynamic responses. During this process,
uncertain model parameters—including material properties, damping parameters, bound-
ary conditions, etc.—are calibrated/estimated. The deviation of final estimates of model
parameters from their initial/baseline values reveals information regarding the location
and extent of damage in the structure.

FE model updating approaches are mainly divided into two groups. The first group is
modal-based model updating, wherein the initial FE model is updated to match the identified
modal properties of the structure. In this method, the modal properties are first identified
using modal identification methods (e.g., [18–22]). Then, the parameters characterizing the
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linear response behavior of the FE model are estimated to reduce the discrepancies between
the identified and FE-predicted modal properties [3]. The accuracy of the identified modal
signatures is controlled by the level of nonlinearity in the response behavior of structure,
measurement noise, excitation frequency range, and sensor sparsity. The uncertainty in the
identified modal properties propagates into the model updating process and is reflected in
the final estimates of model parameters [23]. In addition, modal properties cannot be used
to infer parameters characterizing the nonlinear material behavior. Consequently, the up-
dated FE model may not be able to predict the dynamic response behavior of the structure
correctly, especially when the structure is subjected to material nonlinearity. Although the
estimated linear model parameters can be used for structural monitoring and damage iden-
tification [24], the application of modal-based model updating for damage identification
of reinforced concrete bridges has been shown to be limited [25,26]. The second group of
model updating approaches is referred to as time-domain model updating [17,27,28]. In this
approach, the unknown model parameters characterizing linear and/or nonlinear response
behavior of structure are updated to reduce the discrepancies between the measured and
FE-predicted responses in time domain. In contrast to the modal-based model updating
method, the measured dynamic responses of the structure are used directly for model
updating in this approach. The direct application of dynamic responses in time-domain
model updating eliminates the propagation of modal identification uncertainties into the
model updating process.

Several studies in the literature (e.g., [10,23,29–35]) have focused on the system and
damage identification of bridges subjected to ambient or traffic excitation (i.e., operational
conditions) using modal-based model updating. The performance of these methods is
mostly evaluated by comparing the identified and posterior FE-predicted modal signa-
tures of the bridge. Studies in [36,37] showed that the accuracy of the updated model is
highly sensitive to the selection of unknown model parameters. Moreover, [38] indicates
that damage detection of bridges would depend on the proper simulation of boundary
conditions. A two-step FE model updating process is suggested in this study to resolve
modeling errors due to boundary conditions.

Using measurements other than modal properties for model updating and damage
identification of bridges has attracted research interest recently. While static/pseudo-static
responses (e.g., displacement measurements) have been used in previous studies for model
updating [5,11,17,39–42], acceleration measurements have not been used directly for the
purpose of model updating of bridges under operational conditions. It is worth noting
that static/pseudo-static responses contain limited information regarding the dynamic
behavior of the bridge compared to acceleration measurements. Therefore, acceleration
measurements can be more informative about the uncertain model parameters compared to
static/pseudo-static responses. The target in this study is to use both the modal properties
and acceleration responses for model updating and damage diagnosis through a two-step
FE model updating process.

Moreover, previous studies have shown that weak identifiability and mutual depen-
dency between model parameters, modeling errors, as well as convergence of parameters
to local solution may challenge the model updating process [4,43,44]. These challenges
are exacerbated in a real-world application, especially in cases with large number of un-
certain model parameters and/or improper selection of initial values for the uncertain
model parameters.

To resolve the above-mentioned issues, this study presents a sequential combination
of modal-based and time-domain model updating for operational health monitoring and
damage identification of aged bridges using acceleration responses. In this procedure, first,
a deterministic modal-based model updating is carried out to estimate the linear model
parameters of a bridge. These model parameters are related to boundary conditions and
material properties. Then, in order to refine the parameter estimation and account for the
nonlinear response behavior of the bridge, a time-domain model updating is carried out. In
this step, nonlinear material properties, as well as the damping energy-dissipation-related

128



Buildings 2023, 13, 420

model parameters, are estimated while the linear-elastic model parameters are fixed at
their final estimates obtained from the modal-based model updating. The final estimates of
material properties are used to infer/quantify damage in the bridge.

In summary, the reasoning behind introducing the sequential combination of modal-
based and time-domain model updating, which constitute the novelties of this work, can
be summarized as follows.

• Unknown boundary conditions often challenge the application of time-domain model
updating for bridges since the model parameters are often dependent on the boundary
conditions. Here, the modal-based model updating is used to identify the boundary
conditions first.

• The application of modal-based model updating for damage identification of bridges
is limited. This is likely due to the uncertainties in the identified modal signatures that
propagate through the parameter estimation process. Therefore, here, the estimation
of model parameters for damage identification will be refined through a subsequent
time-domain model updating.

• The dynamic measurements can provide more information about the uncertain ma-
terial parameters compared to the static/pseudo-static responses. Hence, here, the
acceleration measurements are used directly in the time-domain model updating.

• To improve the numerical stability and convergence of the model parameters the linear
and nonlinear response behavior of the bridge are assimilated through the two-step
model updating process.

To show the two-step FE model updating method and validate its applicability for
damage identification in a real-world setting, a pair of full-scale precast prestressed bridge
I-girders were used as testbed structures. These girders were in service from 1971 until 2009
before they were decommissioned and repurposed for research experiments [45]. A series
of forced-vibration experiments were designed specifically for this study. The girders were
subjected to sinusoidal force excitations, and their acceleration responses were measured
at different locations. First, the collected acceleration responses are used to identify the
modal signatures of the testbed structure. Then, the two-step FE model updating is carried
out. In the first step, the initial FE model of girders is updated in the modal domain,
and boundary conditions, including stiffness of supports and coupling beams, as well
as material properties, including initial stiffness of concrete material, are estimated. The
updated model is used as the prior model in the Bayesian model updating process to
estimate concrete compressive strength and damping properties. Comparison between
the posterior FE-predicted responses and field measurements shows a good agreement
in the time domain. Moreover, the final estimates of concrete compressive strength result
in a realistic damage identification/quantification for the girders. This process validates
the applicability of the introduced two-step FE model updating approach for damage
identification of bridge structures/components under operational conditions. While the
input load used in this study varies from moving traffic load, this study proves the concept
for future real-world application.

The paper is organized as follows. Section 2 is focused on test methodology and
preliminary results including an introduction to the testbed structure and the experiments,
modal identification, and development of the initial FE model. The two-step FE model
updating method and the results are discussed in Section 3. Concluding remarks are
provided in Section 4.

2. Material, Test Methodology, and Preliminary Results

In this section, first, a description of the field experiment including testbed structure,
dynamic excitation system, wireless sensing network, and force-vibration tests is presented.
Then, the modal identification process and corresponding results are shown in Section 2.2.
Finally, the initial FE model is developed in Section 2.3.
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2.1. Description of the Field Experiment
2.1.1. Testbed Structure

The testbed structure in this study includes two AASHTO precast prestressed bridge I-
girders that were part of the Maryland 90 bridge. After decommissioning, the girders were
salvaged and transferred to the Turner-Fairbank Highway Research Center (TFHRC) in
McLean, VA, USA to be used as a research testbed [45,46]. The cross-section and elevation
views of the girders are shown in Figure 1.

 

 

(a) (b) 

Figure 1. The testbed structure: (a) cross-section view of each girder and (b) elevation view of each
girder. All the dimensions are in centimeters, and all reinforcing rebars are #4 (equivalent to Φ13).

The studied girders are 1.37 m deep and 26 m long. Reinforcements and prestressing
steel strands are shown in Figure 1. A side view of the testbed structure (with a 20 cm
slab on top of each girder) is shown in Figure 2a. After being transferred to the TFHRC,
each girder was placed on two 1 × 1 m2 bearing pads on top of two 2.3 × 1.6 × 1.6 m3

geosynthetic reinforced soil (GRS) piers [47]. These can be seen in Figure 2b,c. The girders
were placed parallel to each other with 2.9 m centerline spacing and were connected with
four coupling beams with 0.3 × 1.4 m2 cross-sectional area. Three out of four coupling
beams are seeable in Figure 2d.

The studied girders were in service in a corrosive environment for almost 40 years.
The environment simultaneously exposed the concrete matrix of the girders to physical and
chemical deterioration processes. Concrete delamination and degradation, as well as steel
corrosion, are the main damage mechanisms for concrete bridges in such environment [48].
Due to this, the girders experienced aging and deterioration in several locations, including
cracking, steel reinforcement corrosion, spalling, etc. Figure 2e shows an example of the
observed damage in girders.

Aside from the aging-related damage discussed above, in 2012, salt spray chambers
were installed on each girder to accelerate deterioration in the girders. The chamber
installed on the west girder sprayed a 15 weight percent (wt.%) NaCl solution and the
chamber installed on the east girder sprayed a 3.5 wt.% NaCl solution. This was part of
a study to develop protocols for non-destructive testing (NDT) methods for prestressed
girder bridges [45].
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 2. Testbed structure: (a) side view and north direction, (b) bearing pad, (c) piers and coupling
beam, (d) top view, and (e) example of existing damage (west girder close to the north pier).

2.1.2. Dynamic Excitation System

The shaker used in this study was a small uniaxial hydraulic device capable of pro-
ducing arbitrary displacement motions in the vertical direction. The device consisted of a
hydraulic piston connected to a servo-hydraulic valve that controlled the motion of a stack
of steel plates that combined to form 4450 N of moving weight. The motion was controlled
by an MTS PID hydraulic controller using an LVDT sensor to provide feedback displace-
ment. The shaker’s hydraulic piston, moving weights, and steel frame of the shaker were
supported on four 4450 N load cells, which were used to measure the total force generated
by the shaker. The load cells were installed between the shaker plate and the clamping
plate on the girder. The shaker plate with dimensions of 30 cm × 30 cm × 2 cm was located
on the top center of the clamping plate with dimensions of 140 cm × 70 cm × 5 cm (see
Figure 3). The shaker displacement and force time histories were collected through a
LORD-Microstrain V-Link-200 wireless node [49]. The wireless sensing network is dis-
cussed further in the following section. Figure 3 shows a close view of the shaker, and
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Figure 4 shows the two locations (layout 1 and layout 2) at which the shaker was in-
stalled on the testbed structure. The hydraulic power for the shaker was provided by a
diesel-powered mobile pump.

 
Figure 3. The shaker installed on the girder.

 

Figure 4. Test layout including the sensor and shaker locations.

2.1.3. Wireless Sensing Network

The wireless sensing network included ten battery-powered triaxial MEMS wire-
less accelerometers (LORD-Microstrain G-Link-200) and a V-Link-200 node [49]. Each
accelerometer had an adjustable measurement range of ±8 g and could be configured
for continuous, periodic, or event-triggered sampling modes to output acceleration, tilt,
or derived vibration parameters (velocity, amplitude, etc.). The measured data could be
transmitted in real-time and/or be saved to the onboard memory with storage capacity up
to 8 × 106 data points. The accelerometers had a noise density of 25 μg√

Hz
with a wireless

range of up to 1 km and an adjustable sampling rate of up to 4 kHz. Each accelerometer
had dimensions of 47 mm × 43 mm × 44 mm. To install the accelerometers, zinc-plated
steel washers were glued on top surface of the girders. Then, each accelerometer was
screwed to a magnetic base and attached to the washers. Figure 5 shows an installed
wireless accelerometer. Data collection and coordination between the wireless nodes in-
cluding the accelerometers and the V-Link-200 node, which was used to collect shaker
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data, were carried out through the wireless USB data acquisition gateway. The gateway
used the lossless extended range synchronized (LXRS) data communication protocol and
facilitated lossless data collection with node synchronization of ±50 μs. Synchronization
was carried out by transmission of a continuous system-wide timing reference known as
the beacon. The communication between the gateway and sensors was wireless through a
license-free 2.405 GHz to 2.480 GHz radio frequency with 16 channels. The configuration
of the network, data acquisition initialization, and sampling mode selection were managed
through the SensorConnect software [50], which was installed on a host computer. The
layout of the employed accelerometers is shown in Figure 4. In this study, the sampling
rate was 128 Hz, and the acceleration data were collected in directions 1 (i.e., east-west) and
3 (i.e., up-down).

 
Figure 5. A wireless accelerometer installed on the girder’s top surface.

2.1.4. Forced-Vibration Testing

The testbed structure was subjected to a series of designed sinusoidal force excitations
through frequency sweeps with pre-defined frequency range, duration, and amplitude.
Sweeps ranged between 2 Hz and 20 Hz, including 50 different frequencies increasing
logarithmically with a duration of 30 s for each frequency. Moreover, the sweeps excited
the girders with three different target load amplitudes equal to 445 N, 2225 N, and 4450 N.
Considering two layouts (see Figure 4) and three levels of load amplitudes, girders were
tested under six frequency sweeps. A general view of the testbed structure during the
field experiments is shown in Figure 6. The excitation force time history and instantaneous
excitation frequency—calculated using a short-time Fourier transform [51]—for each sweep
are presented in Figure 7.

 

Figure 6. The field experiment setup corresponding to layout 2 (See Figure 4).
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Excitation force time histories and instantaneous excitation frequencies: (a) Layout 1 with
445 N target load amplitude, (b) Layout 2 with 445 N target load amplitude, (c) Layout 1 with 2225 N
target load amplitude, (d) Layout 2 with 2225 N target load amplitude, (e) Layout 1 with 4450 N
target load amplitude, and (f) Layout 2 with 4450 N target load amplitude.

2.2. Modal Identification

In this section, the modal properties of the testbed structure are identified from the
forced-vibration experimental data. For the purpose of modal identification, the collected
data from the sweep with layout 1 and 445 N target load amplitude are used (see Figure 7a).
These data include the acceleration of 10 channels in directions 1 and 3 (results in 20 input
signals—see Figure 4) and the shaker excitation force. A brief summary of the modal
identification process and the identified modal properties are presented in this section.

Various modal identification techniques are available in the literature to identify
modal properties—including natural frequencies, damping ratios, and mode shapes—from
experimental data [19,21,22]. In this study, due to the nature of the excitation, the empirical
frequency response functions (EFRFs) [22] are calculated using applied input (shaker
excitation force) and measured outputs (acceleration responses). Then, the calculated multi-
output EFRFs are used to estimate a state-space model. This two-stage frequency-domain
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approach helps to specify the frequency band of interest in which the modal identification
needs to be carried out.

The EFRF between a measurement signal y(t) and input signal u(t)—depicted by
G( f )—is defined as below:

G( f ) =
Y( f )
U( f )

(1)

where Y( f ) and U( f ) are Fourier transforms of y(t) and u(t), respectively. In a real-
world setting, data are always polluted with measurement noise. To reduce the effects of
the measurement noise and obtain a smooth EFRF, Welch’s averaging method [52] with
12,800 data points Hamming window is used for spectral estimation. This size of window
is selected to ensure covering the full length of excitation and the ambient signal before
and/or after it.

Having EFRFs for all 20 signals, an n-order state-space model is estimated to fit the
estimated EFRFs in the frequency band of interest. In this study, to reduce uncertainties
due to low- and high-frequency noises, the frequency band of interest is selected between 2
to 25 Hz. Blue curves in Figure 8 show the calculated EFRFs using measured data.

To estimate the state-space model, the subspace state-space identification method is
used [53,54]. While this method is briefly explained here, the proof of theory and more
details can be found in [53]. In the subspace state-space identification method, measure-
ments are placed in a block Hankel matrix which is divided into a past and a future part.
The identification algorithm proceeds with projecting the future measurements into the
past measurements, while the projection matrix can be factorized as the product of an
observability matrix and a state sequence. These two matrices are identified by apply-
ing the singular value decomposition (SVD) to the projection matrix, and the order of
the system is calculated as the number of non-zero singular values. By applying one
block shift in separation between past and future measurements in the Hankel matrix,
another projection matrix, shifted observability, and state sequence matrices can be ob-
tained. At this point, the system matrices can be calculated from the overdetermined set of
linear equations.

The numerical algorithms for system identifications are available in the Matlab
n4sid [55] function and are used in this study. As a classical remedy, the modal iden-
tification is carried out for a range of model orders, and a stability diagram is plotted on
which true modes appear as stable modes [56]. For this purpose, the stability analysis is
run considering model orders from 2 to 40 with 1% and 5% error tolerances for natural
frequency and damping ratios, respectively. The stability analysis showed that a model
order of n = 26 is the lowest model order to have all stable modes within the frequency band
of interest. The fits between estimated and calculated EFRFs can be improved using the
prediction error minimization algorithm and nonlinear least-squares objective functions.
This approach is carried out using the Matlab ssest function [57], which initializes the model
parameters based on the previously estimated state-space model, and then updates the
parameters using an iterative search to minimize the prediction errors [21]. Red curves
in Figure 8 display EFRFs of the estimated state-space model at measurement points. As
can be seen, the estimated state-space model is able to approximate the calculated EFRFs
acceptably. Identified natural frequencies ( f ID) and damping ratios (ξ ID) of the system are
reported in Table 1. The identified mode shapes—those which will be used for modal-based
model updating—are later shown in Section 3.1.
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(a) 

 
(b) 

Figure 8. EFRFs calculated from the experimental data (blue) and EFRFs estimated using the
identified state-space model (red): (a) Direction 3 and (b) Direction 1.

Table 1. Identified natural frequencies and damping ratios.

Mode Number

1 (Tr *) 2 (Tr) 3 (V **) 4 (Tr) 5 (V) 6 (To ***)

f ID(Hz) 4.07 5.57 9.73 9.76 12.79 20.98
ξ ID(%) 1.92 1.78 2.97 0.60 1.39 2.18

*: Transverse mode, **: Vertical mode, ***: Torsional mode.

136



Buildings 2023, 13, 420

2.3. Finite Element Modeling of the Testbed Structure

The initial FE model of the testbed structure is developed in OpenSees [58] using the
available as-built drawings. The girders are modeled using fiber-section force-based beam-
column elements (forceBeamColumn) with approximately 30 cm length and 3 integration
points. Moreover, the linear-elastic shear stiffness and torsional stiffness are aggregated to
the fiber sections. The slab is also modeled using rectangular fiber sections as a part of the
girders’ sections. Steel reinforcement is modeled using single fibers located at the center of
each bar. To model the profile of the draped strands—with a nominal cross-sectional area
of 1 cm2—the strands’ depth at the integration points of each element is calculated based
on Figure 1. The strand is modeled using a single fiber at its corresponding depth. Concrete
material for girders and slabs is modeled with nominal compressive strength ( f

′
c,E and f

′
c,W

for the east and west girders) of 46 MPa, strain at maximum strength (εc) of 0.2%, strain at
crushing strength (εu) of 0.5%, and zero crushing strength. As girders are already damaged,
no tensile strength is assumed, and therefore, the Concrete01 material model is employed.
To model the shear and torsional stiffness of the girder sections, the shear modulus (G)
is calculated based on the concrete modulus of elasticity, E (= EE = EW), and Poisson’s
ratio of 0.2. Moreover, the shear area for girder sections is set equal to 0.38 and 0.65 m2

in the Y and X directions (see Figure 1), and torsional constant of girder sections is set
equal to 0.03 m4. The parameters EE and Ew—modulus of elasticity for the east and west

girders—are set equal to the initial slope in Concrete01 model (i.e.,
2 f

′
c,E

εc
and

2 f
′
c,W
εc

) which is
46 GPa here. Steel is modeled using bilinear steel01 material with a modulus of elasticity of
200 GPa, and yielding strength of 455 MPa and 1720 MPa for reinforcing steels and strands,
respectively. Moreover, the prestressing force in strands (128.60 kN per strand) is modeled
by applying its resulting initial strain to the steel material. For this purpose, the normal
strain in strands’ steel resulting from the prestressing force is calculated by dividing the
prestressing force by strand’s axial rigidity (product of the strand’s modulus of elasticity
and gross section area). The calculated strain (0.65%) is assigned to the strands’ steel01
material using InitStrainMaterial. The mass, 104 × 103 kg in total, and weight of the girders
are assigned to the element nodes.

Coupling beams are modeled using elasticBeamColumn elements considering the gross
cross-sectional area and an Elastic material with the modulus of elasticity equal to 30 GPa.
The coupling beams are connected to the girders assuming rigid connections. The mass
and weight of the coupling beams are assigned to the element nodes. To model each
support, the girder nodes that are located along the bearing pad are constrained to a node
at the center of the bearing pad using rigidLink constraint. To account for flexibility in the
piers and bearing pads, supports are defined using a 6 degrees of freedom (DOFs) spring.
This is modeled using ZeroLength elements with Elastic uniaxial material. Moreover, the
energy dissipation in the piers and bearing pads is collectively modeled using a dashpot in
the vertical direction. This is performed using ZeroLength elements with Viscous uniaxial
material. The corresponding stiffness and damping parameters are initially selected based
on engineering judgment [47,59] and are later updated using modal-based and time-
domain model updating. In summary, the FE model consists of 214 beam-column elements,
16 rigidLink elements, 12 ZeroLength elements, and 230 joints. The list of model parameters
that are later treated as unknown parameters in Section 3.1 and 3.2 and their initial values
are summarized in Table 2. In this table, the equivalent values for concrete compressive
strength and modulus of elasticities of girders are shown in the same row separated with
‘/’. The directions in this table are based on Figure 4.
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Table 2. Model parameters for the initial FE model. The directions in this table are based on Figure 4.

Parameter Parameter Description Initial Values

f
′
c,W /EW Concrete compressive strength/Concrete modulus of elasticity for the west girder 46 MPa/46 GPa
f
′
c,E/EE Concrete compressive strength/Concrete modulus of elasticity for the east girder 46 MPa/46 GPa

Ec Modulus of elasticity for coupling beams 30 GPa
KR Rotational stiffness of bearing pads about directions 1 and 2 and 3 9.4 × 105kN⁄rad

KV Vertical stiffness of bearing pads in direction 3 1.2 × 105kN⁄m
KT Transverse stiffness of bearing pads in direction 1 1.6 × 104kN⁄m
KL Longitudinal stiffness of bearing pads in direction 2 1.6 × 104kN⁄m
CD Damping coefficient for bearing pads in direction 3 45 × 102kN.sec⁄m
ξ1 Damping ratio for mode 1 0.02
ξ2 Damping ratio for mode 2 0.02

The nonlinear time history analysis is performed using the Newmark average ac-
celeration method with a constant time step size of 0.0078 s equal to the measurement
sampling rate. The Newton-Raphson method is used to iteratively solve the nonlinear
equilibrium equations [60]. To define energy dissipation in the structural system aside from
the material nonlinearity, modal damping is modeled for the first six modes. The damping
ratios, i.e., ξi, ∀ i ∈ {1, 2, 3, 4, 5, 6}, are set equal to the identified ones (see Table 1). The
only exceptions are damping ratios for modes 1 and 2, which are set equal to 0.02. The
reason is to have similar initial values—which is not very different from the identified
values (0.0192 and 0.0178)—during time-domain model updating, which is discussed later.

3. Two-Step Model Updating: Methodology, Results, and Discussion

3.1. First Step: Modal-Based Model Updating

The modal properties of the initial FE model are different from the identified ones
(Figure 9). Hence, the initial FE model needs to be updated using modal-based model
updating to better fit the identified modal properties. As mentioned before, the modal-
based model updating is limited to the linear response behavior of structures. Hence, only
the linear model parameters are updated at this step. Modal-based model updating process
is discussed next.

The modal-based model updating is a process to minimize the discrepancies between
identified and FE-predicted modal frequencies and mode shapes by updating the linear
parameters of the FE model [24,61]. In this process, an objective function, g(θ), is defined
as shown in Equation (2). The discrepancies between modal frequencies, mode shapes, and
a regularization term are respectively the first, second, and third terms in Equation (2).

g(θ) = Wf r f
T r f + WM

(
N −

i=N

∑
i=1

MACi

)
+ (θ− θ0)

T Wθ (θ− θ0) (2)

In Equation (2), the parameter Wf is the weighing scalar for frequency residuals
and the term r f ∈ R

N×1 is the vector including the square root of normalized differences
between FE-predicted and identified modal frequencies. The parameter WM is the weighing
scalar for modal assurance criteria (MAC) residuals. The term N is the total number of
identified modes that are used for model updating, and the term MACi indicates the MAC
value for mode i. The parameter Wθ is the weighing scalar for penalizing large deviation
of the unknown FE model parameters from their initial values. The vector θ ∈ R

nθM×1

is the vector of unknown FE model parameters and nθM is the number of unknown
model parameters for modal-based model updating. The vector θ0 ∈ R

nθM×1 is the initial
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estimates of the unknown model parameters. The ith entry of the vector r f , denoted as r f ,i,
is defined as follows:

r f ,i =

√√√√∣∣∣∣∣ f ID
i − f FE

i
f ID
i

∣∣∣∣∣ 1, 2, . . . , N (3)

 
 

(a) (b) 

  
(c) (d) 

Figure 9. Comparison between identified, initial, and updated modal properties: (a) first lateral
mode, (b) second lateral mode, (c) first vertical mode, and (d) second vertical mode.

In the above equation, the terms f ID
i and f FE

i are the modal frequencies of the ith

identified and FE-predicted modes. The term MACi is defined as follows:

MACi =

∣∣∣∣(ψID
i

)T
ψFE

i

∣∣∣∣2((
ψID

i

)T
ψID

i

) ((
ψFE

i

)T
ψFE

i

) (4)

The terms ψID
i and ψFE

i ∈ R
NDOF×1 are the ith identified and FE-predicted mode

shape vectors, respectively, and NDOF is the number of DOFs. The superscript T denotes
matrix/vector transpose operator.

To update the FE model using modal-based model updating, the stiffness-related
model parameters E (= EE = EW), Ec, KR, KV and KT are selected as unknown FE model
parameters to be updated (nθM = 5). Note that parameter KL is not selected as there is no
measurement in the longitudinal direction of the girders. The vector θ0 is initiated using
the initial values listed in Table 2.

The first two lateral and the first two vertical identified modes (N = 4) are used for
the modal-based model updating. This is because the first two identified vertical modes are
the only ones with frequencies less than 20 Hz (maximum excitation frequency). As can be
seen in Figure 4, measurements are collected in 5 vertical (i.e., in direction 3) and 5 lateral
(i.e., in direction 1) DOFs for each girder; therefore, NDOF = 20. The terms Wf , WM and
Wθ are selected equal to 4, 1, and 0.01 to balance the contributions of the MAC value and
frequency errors in the objective function. As a result, the difference between identified and
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estimated modal frequencies will be penalized more than mode shapes [61]. This is because
the uncertainty in identified mode shapes is greater than frequencies. The constrained
nonlinear multivariate optimization function fmincon within the Matlab Optimization
Toolbox is used [62] with the interior-point algorithm [63]. The maximum iteration number
is set to 30, and the process terminates when the relative difference between successive
values of the objective function is lower than a given threshold of 10−4. Moreover, the
lower and upper bounds for parameter estimation are set equal to 10±4 times of the
initial values.

A comparison between the identified, initial, and updated modal properties is shown
in Figure 9, and the updated values for the FE model parameters are shown in Table 3. It is
noteworthy that as parameters EE = EW are updated, the parameters f

′
c,E = f

′
c,W are also

updated (using EE =
2 f

′
c,E

εc
and EW =

2 f
′
c,W
εc

assuming fixed value for εc). These equivalent
values for each girder are shown in a same column in Table 3 and are separated using ‘/’.
A comparison between Tables 2 and 3 shows that the parameters EE and EW are estimated
to a smaller value than their initial ones. This was expected as both girders are aged and
have experienced severe damage. The parameter Ec is estimated to a smaller value than its
initial one. This is probably due to the presence of cracks in the section and could also be an
indication of the fact that the connections between the girders and coupling beams are not
completely rigid. The parameters KR, KV , and KT are estimated to have values greater than
their initial ones, which indicates that the bearing pads are stiffer than what is considered
in the initial model. The improvement in the modal frequencies is superior to the MAC
values. This means that the modal-based model updating process compensates for the
frequency match with MAC values. The maximum error in frequency is at the second
lateral mode, which is less than 8% and is acceptable. The updated model is later used as
the prior FE model for the time-domain model updating.

Table 3. The updated FE model parameters after modal-based model updating.

Parameter f’
c,W/EW f’

c,E/EE Ec KR KV KT

Updated
value

39 MPa/39
GPa

39 MPa/39
GPa 28.23 GPa 1.4 ×

106kN⁄rad

1.8 ×
105kN⁄m

2.2 ×
104kN⁄m

3.2. Second Step: Time-Domain Model Updating

To this point, the initial FE model of the studied girders is updated using modal-based
model updating. It is noteworthy that concrete material has nonlinear response behavior
even under small levels of excitation. In addition to that, presence of prestressing force
pushes the concrete material across the section along its nonlinear response curve. Then, the
applied excitation—shaker force here and traffic load in operational conditions—results in
small loading/unloading of concrete material in nonlinear range of the response curve. The
level of nonlinearity in the response behavior of concrete material increases as a function of
deterioration and damage [64]. However, the nonlinear response behavior of the studied
girders is not captured through modal-based model updating.

To account for the nonlinear response behavior of girders as well as refining the esti-
mation of damage-related model parameters, time-domain model updating—here referred
to as the second step of the model updating procedure—is carried out. The cumulative
damage effects in a reinforced concrete section can be modeled by altering the stress-strain
response behavior of the concrete material, e.g., reduction of the effective compressive
strength [65–67]. Based on this, it is intended to estimate the concrete compressive strengths
of girders using time-domain model updating. Moreover, the acceleration measurements
contain information regarding the dynamic behavior of the testbed structure. Hence, the
energy-dissipation-related model parameters can also be estimated using time-domain
model updating. For this purpose, first, the most identifiable FE model parameters are
selected using an information-theoretic identifiability analysis [68]. Then, these parameters
are updated using the Bayesian model updating process.
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3.2.1. Identifiability Analysis for Time-Domain Model Updating

The identifiability analysis is an approach to determine the most identifiable unknown
model parameters using the sensitivity of FE-predicted responses with respect to the
unknown model parameters. In this method, the relative information that each candidate
model parameter gains from the responses and the mutual information gain between these
parameters are calculated. The model parameters with high relative information gain and
little dependency on other parameters are likely more identifiable than others and are
selected to be updated in the model updating process.

The data used for identifiability analysis are noted as Data 1-2 in Table 4, which
corresponds to layout 1 and the target load amplitude of 2225 N. It is noteworthy that
no significant difference is expected in the identifiability analysis results using different
layouts and target load amplitudes. However, the target load amplitude for identifiability
analysis is selected high enough to have a moderate level of loading/unloading response
behavior in the concrete material of the testbed structure. The data in Table 4 are later used
for model updating.

Table 4. Field experimental data used for the Bayesian FE mode updating. The measured data with
excitation frequencies close to mode 1 and mode 2 are lumped together.

Data
I.D.

Layout
Target Load
Amplitude

Excitation
Frequencies

Data I.D. Layout
Target Load
Amplitude

Excitation
Frequencies

1-1 1 445 N 9.73 Hz and 12.86 Hz 2-1 2 445 N 9.73 Hz and 12.86 Hz
1-2 1 2225 N 9.73 Hz and 12.86 Hz 2-2 2 2225 N 9.73 Hz and 12.86 Hz
1-3 1 4450 N 9.73 Hz and 12.86 Hz 2-3 2 4450 N 9.73 Hz and 12.86 Hz

As can be seen in Table 4, the identifiability analysis and model updating process
are performed using experiments with excitation frequencies of 9.73 Hz and 12.86 Hz.
These excitation frequencies are selected as they are the closest ones to the identified modal
frequencies (9.73 Hz and 12.79 Hz) and are expected to provide useful information on the
dynamic behavior of the testbed structure. Moreover, the measured signal-to-noise ratio
in the experiments with these frequencies is higher than the similar ratio in experiments
with excitation frequencies far from the identified modal frequencies. A higher measured
signal-to-noise ratio results in more stable parameter estimation [69].

Each data set in Table 4 augments two experiments with excitation frequencies of
9.73 Hz and 12.86 Hz (while the layout and target load amplitude are similar). This is
shown in the following equations:

y =

[
y9.73 Hz

y12.86 Hz

]
(5)

u =

[
u9.73 Hz

u12.86 Hz

]
(6)

The terms y ∈ R
20×te and u ∈ R

2×te denote the acceleration measurements and in-
put excitations that are being used for identifiability analysis and time-domain model
updating. The terms y9.73 Hz ∈ R

10×te and y12.86 Hz ∈ R
10×te refer to the collected acceler-

ation measurements (at 10 measurement channels in direction 3) from experiments with
input excitation frequencies of 9.73 Hz and 12.86 Hz. The terms u9.73 Hz ∈ R

1×te and
u12.86 Hz ∈ R

1×te refer to the input excitations with frequencies of 9.73 Hz and 12.86 Hz.
The term te is the total length of collected data.

One of the intentions of identifiability analysis/time-domain model updating is to
analyze the identifiability of/update the unknown model parameters ξ1 and ξ2. For this
purpose, it is required to implement measurements from both excitation frequencies equal
to 9.73 Hz and 12.86 Hz. The augmenting process provides measurements that contain
dynamic response behavior of the testbed from both its vertical modes.
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Parameters f
′
c,W , f

′
c,E, Ec, KR, KV , KL, CD, ξ1, and ξ2 are selected as candidate unknown

model parameters. It is intended to refine the damage state estimation of girders for the
west and east girder separately. Therefore, the concrete compressive strengths of the west
and east girders are modeled using two different parameters f

′
c,W and f

′
c,E, respectively.

While the main intention of the time-domain model updating is to update the model
parameters related to the energy dissipation and nonlinear behavior of the structure, the
parameters Ec, KR, KV , and KL are also considered as candidate unknown parameters. As
will be seen later, this is to highlight how the introduced two-step model updating helps
with unidentifiability and mutual dependencies between the model parameters. Since the
input load mainly excites the first two vertical modes of the girders, the modal damping
ratios of these two modes are included in the list of candidates for unknown parameters.
The value for parameters f

′
c,W , f

′
c,E, Ec, KR, and KV are set equal to their final estimates in

modal-based model updating (see Table 3). As the input load is in the vertical direction, the
parameter KT is most probably not identifiable and is excluded from the list of candidate
model parameters. The value of parameter KL is set equal to the updated value of KT (after
modal-based model updating) as the properties of bearing pads are assumed to be the
same in the transverse and longitudinal directions. The value of parameters CD, ξ1, and
ξ2 are set equal to their initial values (see Table 2), as these parameters were not updated
using modal-based model updating.

The relative information gain of the candidate unknown model parameters and relative
mutual information gain between the candidate unknown model parameter pairs are shown
in Figure 10. As can be seen in this figure, although the parameters Ec, KR, KV , and KL
have considerable levels of relative information gain, they are highly dependent on the
parameters f

′
c,W and f

′
c,E. This dependency is likely because all these parameters contribute

to the stiffness of the testbed structure. Based on this, parameters Ec, KR, KV , and KL are
most probably not identifiable together with parameters f

′
c,W and f

′
c,E. Parameters Ec, KR,

KV , and KL reflects the linear-elastic response behavior of the testbed structure and are
already estimated using modal signatures. Moreover, the parameters f

′
c,W and f

′
c,E have

relatively large information gain, and their estimation is of main interest in time-domain
model updating as their final estimates help to refine the damage estimation in girder level
and reflect the cumulative damage status of each girder. Hence, parameters f

′
c,W and f

′
c,E are

selected to be estimated using time-domain model updating while parameters Ec, KR, KV ,
and KL are fixed at their corresponding values in Table 3 obtained from the modal-based
model updating. This reduces the challenges of model updating due to the unidentifiability
and/or mutual dependencies between model parameters. It is noteworthy that the final
estimates of parameters f

′
c,W and f

′
c,E using time-domain model updating will inherently be

dependent on the fixed values selected for parameters Ec, KR, KV , and KL. Parameters ξ1,
ξ2, and CD have relatively moderate information gain and have a negligible dependency
on other parameters. However, parameter CD is dependent on parameters ξ1 and ξ2 as
all of them contribute to the viscous damping energy dissipation of the structure. As the
initial value for parameter CD is selected based on judgment, it is of interest to update this
parameter using the model updating process. However, the final estimates of parameters
ξ1, ξ2, and CD are expected to vary between different case studies and depend on each
other. Therefore, the overall damping of the testbed will be calculated at the end. Based
on the above discussion, parameters f

′
c,W , f

′
c,E, ξ1, ξ2, and CD are selected to be estimated

using the time-domain model updating.

3.2.2. Bayesian Inference

In the Bayesian model updating, the unknown FE model parameter vector is consid-
ered as a random vector with joint probability density function (PDF) whose mean (referred
to as estimate hereafter) and covariance are updated recursively through the integration
of the FE-predicted and measured responses. The unknown FE model parameters are
updated using measured responses in successive overlapping windows. In this approach,
known as the sequential estimation window approach [70], the a priori estimates of the
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unknown FE model parameters at each estimation window are updated to the a posteriori
estimates. A brief review of this method is provided in the following.

 
 

(a) (b) 

Figure 10. Identifiability analysis results: (a) relative information gain of the candidate unknown
model parameters; (b) relative mutual information gain between the candidate unknown model
parameter pairs. Each row is normalized to its diagonal value. Then, the diagonal values are nullified.

Assuming zero-mean Gaussian white noise processes for the measurement noise
(λ) and the process noise (q), the state-space model at each estimation window is set up
as follows:

ϑw+1 = ϑw + qw (7)

yw = hw(ϑw, uw) + λw (8)

As can be seen in Equation (7), the unknown FE model parameter vector for Bayesian
model updating, ϑ ∈ R

nϑBFE×1, evolves linearly in the state equation by a random walk
process. The term nϑBFE is the number of unknown FE model parameters in the Bayesian
model updating. In this study, the term nϑBFE is equal to 5 (which counts the number
of parameters f

′
c,W , f

′
c,E, ξ1, ξ2, and CD) and the initial values for the unknown model

parameters are equal to those described in the previous section. In Equation (8), the term
yw ∈ R

(ny×tw)×1 denotes the measurement vector and hw(.) ∈ R
(ny×tw)×1 denotes the non-

linear FE-predicted response function at the wth estimation window, which spans between
time steps tw,1 and tw,2 with to time steps overlap with the previous estimation window.
The parameter ny (here 20) is the number of collected signals and tw is number of time steps
at the wth estimation window. The term uw ∈ R

tw,2×1 is the deterministic input vector at the
wth estimation window. In this study, estimation windows have the length of 150 time steps
with 50 time steps overlap, i.e., t1,2 = 50 and tw = 150 and tw−1,2 − tw,1 = 50 ∀ w ≥ 2.

The measurement equation (Equation (8)) is linearized using the first-order Taylor
series expansion with linearization point at the a priori estimate. The following equation
is obtained:

yw
∼= hw

(
ϑ̂
−
w , uw

)
+

∂hw(ϑw, uw)

∂ϑw

∣∣∣∣ϑw=ϑ̂
−
w

(
ϑw − ϑ̂

−
w

)
+ λw (9)

in which the superscripts –/+ denote the a priori/posteriori estimates, and derivation of
hw(ϑw, uw) with respect to ϑw is referred to as the sensitivity matrix and is calculated using
the finite difference approach. The estimation method that is used in this study is referred
to as the Extended Kalman filter (EKF) for parameter-only estimation [71]. In this method,
the a priori estimates of the mean vector and covariance matrix of the unknown model
parameters at each estimation window are considered equal to the a posteriori estimates at
the previous estimation window. This is depicted in Equations (10) and (11). Moreover, the
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estimation problem is solved across each estimation window iteratively, and the subscripts
0 and k in the following equations denote the iteration number.

ϑ̂
−
w,0 = ϑ̂

+
w−1 (10)

^
P
−
ϑϑ,w,0 =

^
P
+

ϑϑ,w−1 (11)

The term
^
P
−/+

ϑϑ,w is the a priori/posteriori estimate of the covariance matrix of the un-
known model parameters at the wth estimation window. For the sake of brevity, the details
for the derivation of the Bayesian inference based on the EKF method is not shown here,
and only the recursive equations at each estimation window are presented. After com-
pleting the iteration process at each estimation window, the estimation moves to the next
window, and the process is repeated. To complete the iteration process at each estimation
window, the estimates of unknown model parameters need to be converged. However, to
improve the efficiency of the process, the maximum number of iterations is limited. More
details are available in [71].

ϑ̂
−
w,k+1 = ϑ̂

+
w,k (12)

^
P
−
ϑϑ,w,k+1 =

^
P
+

ϑϑ,w,k + Qw (13)

ϑ̂
+
w,k+1 = ϑ̂

−
w,k+1 + Kw,k+1

(
yw − ^

y
−
w,k+1

)
(14)

^
P
+

ϑϑ,w,k+1 = (I − Kw,k+1Cw,k+1)
^
P
−
ϑϑ,w,k+1(I − Kw,k+1Cw,k+1)

T+Kw,k+1RwKw,k+1
T (15)

while

Kw,k+1 =
^
P
−
ϑy,w,k+1

(
^
P
−
yy,w,k+1

)−1

(16)

Cw,k+1 =
∂ hw(ϑ, uw)

∂ ϑT

∣∣∣∣
ϑ=ϑ−

w,k+1

(17)

^
P
−
yy,w,k+1 = Cw,k+1

^
P
−
ϑϑ,w,k+1Cw,k+1

T + Rw (18)

^
P
−
ϑy,w,k+1 =

^
P
−
ϑϑ,w,k+1Cw,k+1

T (19)

The term Qw ∈ R
nϑB×nϑB is the covariance matrix for the process noise (qw ∼ N(0, Qw)).

The matrix Qw is a diagonal matrix, and its jth diagonal entry is equal to q times the jth

entry in vector ϑ̂
−
w . The term q is set equal to 0.002. The term Rw ∈ R

(tw×ny)×(tw×ny) is
the measurement noise (λw ∼ N(0, Rw)) and is modeled as a block diagonal matrix with
the simulation error covariance matrix—including measurement noise—on the diagonal
blocks. In this study, the diagonal entries of the matrix Rw are set equal to (0.32%g)2

at all measurement channels. The value 0.32%g is approximately equal to the average

root-mean-square of ambient measurements. The term
^
y
−
w,k+1 is the a priori FE-predicted

response calculated at ϑ̂−
w,k+1. The matrix Kw,k+1 ∈ R

nϑB×(tw×ny) is the Kalman-gain matrix
at the (k + 1)th iteration in the wth estimation window. The matrix Cw,k+1 ∈ R

(tw×ny)×nϑB

is the FE response sensitivity matrix—with respect to ϑ̂
−
w,k+1—at the (k + 1)th iteration

in the wth estimation window. The term I ∈ R
nϑB×nϑB denotes the identity matrix. The

matrix
^
P
−
yy,w,k+1 ∈ R

(tw×ny)×(tw×ny) is a priori estimate of the covariance matrix of
^
y
−
w,k+1,

and
^
P
−
ϑy,w,k+1 ∈ R

nϑB×(tw×ny) is the a priori estimate of the cross-covariance matrix of ϑ̂−
w,k+1

and
^
y
−
w,k+1. The matrix

^
P
+

ϑϑ,0 is initialized diagonally with diagonal entries equal to the
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initial variance of the initial estimate of the unknown model parameters. The jth diagonal

entry in
^
P
+

ϑϑ,0 is equal to the square of pϑ times the jth entry in vector ϑ̂+
0 . In this study

pϑ is set equal to 0.1. The recursive Bayesian model updating process in each estimation
window is completed after 10 iterations or meeting the following convergence criteria in
the posterior estimates of unknown model parameters.∣∣∣ϑ̂+

w,k+1 − ϑ̂
+
w,k

∣∣∣ < (0.02)×
∣∣∣ϑ̂+

w,k

∣∣∣ (20)

3.2.3. Results

This section presents the results of the second step of the introduced two-step model
updating approach as well as its application for damage identification of the testbed struc-
ture. First, the Bayesian model updating is carried out, and its performance is discussed
through the updating process of unknown model parameters and the fit between measure-
ments and posterior estimates of FE-predicted responses. Subsequently, the final estimates
of unknown model parameters are used to infer damage in the girders and calculate the
overall damping of the testbed structure. To assess the application of Bayesian FE model
updating, the data sets presented in Table 4 are used. As explained in Section 3.2.1, while
the excitation frequencies close to the first two modes are lumped together, the target load
amplitudes and layouts differ from one data set to another one. As mentioned before,
lumping the frequencies together increases the identifiability of model parameters and the
parameter estimation stability by using the dynamic response behavior of testbed structure
from its two first vertical modes.

The updating process for the posterior estimates of the unknown model parameters
f
′
c,W , f

′
c,E, ξ1, ξ2, and CD using data from Table 4 is shown in Figure 11. In this figure,

the estimates of the unknown model parameters are normalized to their corresponding
initial values in time-domain model updating process. As can be seen in this figure, all the
unknown model parameters are updated from their initial values and smoothly converged
to their final estimates.

Figure 11. Updating process for the posterior estimates of the unknown model parameters using
data in Table 4.

Next, the prior estimates of responses—simulated responses using the prior FE
model—and the posterior ones are compared with the field measurements. For the sake of
brevity, only one second of data obtained using Data 1-2 are shown in Figure 12. In this
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figure, the two top rows correspond to channels 1–10 and an excitation frequency of 9.73
Hz, and the two bottom rows correspond to the same channels and an excitation frequency
of 12.86 Hz. For the case of excitation frequency of 9.73 Hz, the prior FE responses mostly
underestimate the measurements in channels located between the supports (channels 2, 3,
4, 7, 8, and 9) and slightly overestimate the responses in channels located on the overhang
parts (channels 1, 5, 6, and 10). However, the responses in all channels are initially over-
estimated for the excitation frequency of 12.86 Hz. This shows that although the prior FE
model matches the main modal signatures of the real structure, it cannot correctly predict
the measurements in the time domain. As can be seen in Figure 12, after the application of
Bayesian model updating, the updated FE model better fits the measurement responses
in the time domain. This improvement is noticeable in various channels and for both
excitation frequencies of 9.73 Hz and 12.86 Hz.

 
(a) 

 
(b) 

Figure 12. The measured, prior and posterior estimates of FE-predicted responses using Bayesian FE
model updating based on Data 1–2: (a) excitation frequency of 9.73 Hz and (b) excitation frequency
of 12.86 Hz.

To quantify the discrepancies between two signals, the relative root mean square error
(RRMSE) is calculated as follows:

RRMSE(%) =

√
∑tn

i=t1

(
^
si − si

)2

√
∑tn

i=t1
(si)

2
× 100 (21)

In the above equation, si and
^
si denotes the measured and estimated responses at

the ith time step. The closer the RRMSE gets to zero, the better signals s and
^
s match.
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The RRMSEs are calculated between the measured responses and their prior/posterior
FE-predicted responses and are listed in Table 5.

Table 5. RRMSEs (%) between the measurements and FE-predicted responses from the prior and
posterior model.

9.73 Hz Excitation Frequency 12.86 Hz Excitation Frequency

Data I.D. CH # 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1-1
Prior 201 75 74 80 66 170 76 74 83 46 161 63 63 70 67 202 67 68 72 97

Posterior 172 14 9 22 27 192 22 17 28 28 132 16 15 22 40 153 11 11 23 57

1-2
Prior 163 107 110 102 127 119 101 102 99 101 300 112 117 103 164 565 133 140 109 269

Posterior 24 11 10 10 22 34 10 9 8 21 72 23 24 24 30 133 20 21 13 55

1-3
Prior 191 128 134 116 165 137 114 118 108 130 429 146 156 126 235 1111 193 205 141 480

Posterior 24 11 12 20 21 46 11 13 18 18 90 33 35 35 41 254 27 28 20 93

2-1
Prior 312 61 58 71 55 259 63 60 75 30 590 30 27 46 124 236 30 26 51 84

Posterior 191 8 8 18 46 213 17 14 23 50 312 7 4 22 68 133 9 9 22 54

2-2
Prior 229 78 78 84 66 187 78 77 85 40 388 54 52 64 80 250 55 54 66 117

Posterior 139 11 9 20 46 172 18 15 20 60 236 7 7 17 65 175 9 7 26 72

2-3
Prior 109 611 64 46 114 104 62 66 43 128 124 38 34 36 17 54 33 33 49 33

Posterior 83 8 7 17 52 99 12 11 11 61 180 9 10 13 49 177 10 9 21 82

As can be seen in Table 5, RRMSE values are reduced from prior to posterior values
for all measurement channels. This shows that the time-domain model updating reduces
the discrepancies between FE-predicted and measured responses successfully. However,
the highest posterior RRMSEs are due to channels 1, 5, 6, and 10. These channels are
located on the overhang parts of the girders (see Figure 4), and the measurements are likely
less reliable due to the low signal-to-noise ratio. It is understandable from Figure 12 and
Table 5 that the FE-predicted responses at these channels are promisingly updated to match
the measurements.

The final estimates of unknown model parameters using all data are shown in
Figure 13. The average final estimates of parameters f

′
c,W and f

′
c,E are approximately 30%

and 26% less than their initial values in Table 2. Previous studies [72,73] have shown
more than 25% reductions in concrete compressive strength of deteriorated concrete
structures—e.g., abandoned structures and structures in acidic environments. Consid-
ering that the operating environment of girders caused them to be prone to various damage
mechanisms (including concrete degradation, as well as steel corrosion as discussed in
Section 2.1.1), the final estimates of parameters f

′
c,W and f

′
c,E are reasonable. Moreover, as

mentioned in Section 2.1.1, after being decommissioned, the west girder has been under
more intense environmental testing conditions than the east girder [45]. This can be under-
stood from the model updating results as the final estimates of parameter f

′
c,W is smaller

than f
′
c,E. The only exception is the case study with Data 2-1 in which the final estimate

of f
′
c,E is smaller than f

′
c,W . This is most probably an estimation error due to measurement

noise, experimental error, etc. Moreover, based on Figure 13 and ignoring the case study
with Data 2-1, the maximum difference in the estimation of parameter f

′
c in layouts 1 and 2

is less than 7%, which shows the consistency of Bayesian model updating results regardless
of the shaker location and target load amplitude.
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Figure 13. The final estimates of unknown model parameters using data sets in Table 4. The
information on each set of data is shown in Table 4. The estimates for parameters f

′
c,W , f

′
c,E and CD

are normalized to their corresponding initial values in time-domain model updating process.

The final estimates for modal damping parameters vary between different data sets.
The identifiability analysis showed dependencies between parameters ξ1, ξ2, and CD. This
dependency is most probably a reason for the discrepancy between the final estimates of
these parameters using different data sets. Aside from this, it is known that structural
damping roots in various factors, including opening and closing of micro cracks, friction
in structural joints, level of vibration, and other sources of energy dissipation, etc. [74,75].
These conditions could be varied from one experiment to another and result in different
levels of damping. To have insight into the overall damping of the testbed structure, the
modal damping ratios are calculated using the state matrix of the system. For this purpose,
the stiffness, mass, and damping matrices of the system are developed for the posterior
models. The stiffness (K) matrix is recorded as the current global system matrix (using
OpenSees printA command) while a static analysis using LoadControl integrator is carried
out, and damping is removed from the model. The mass matrix (M) is calculated based on
the current global system matrix while a static analysis using LoadControl integrator and a
transient analysis using CentralDifference integrator is carried out, and damping is removed
from the model. Using the Central Difference formulation presented in Equation (22), the

mass matrix is equal to the recorded current global system matrix (
^
KCDF) times Δt2. In

Equation (22), the term Δt is the size of the time step increment and is set to a very small
value (here 10−6 s) to record the current global system matrix with high precision. The
term C is the damping matrix.

^
KCDF =

M

(Δt)2 +
C

2Δt
(22)

Including damping in the model and carrying out a transient analysis using New-

mark integrator with γ = 0.5 and β = 0.25, the matrix
^
KNewmark can be recorded us-

ing printA. The damping matrix is calculated as it is shown in Equation (23) using the
Newmark formulation.

C =
β Δt

γ

(
^
KNewmark − K − M

β (Δt)2

)
(23)

The matrices M, C, and K are condensed at the dynamic DOFs, and the state matrix is
calculated [74]. Using the state matrix of the posterior models, the modal damping ratios
are obtained for all data sets. These damping ratios are reported in Figure 14. As can
be seen, the testbed structure dissipates a greater level of energy in its first mode than in
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the second mode, which agrees with the identified modal damping ratios (see Table 1).
Moreover, the overall modal damping ratios estimated from experiments with larger target
load amplitudes are smaller than those estimated from experiments with smaller target load
amplitudes. Although this has been previously observed in a few system identification
studies [76,77], it is in contrast with the literature in which damping increases as load
amplitude increases.

 
Figure 14. Overall damping ratio of the testbed structure for mode 1 and mode 2 using different
data sets.

4. Conclusions

This paper proposed a two-step FE model updating process for operational health
monitoring and damage identification of bridge structures. In the proposed approach,
first, modal-based model updating was carried out to calibrate the initial FE model of
the bridge. In this step, the stiffness-related model parameters—mainly related to bound-
ary conditions—as well as the initial stiffness of concrete material were updated to fit
the FE-predicted and identified modal signatures of the bridge. Then, to account for the
nonlinear response behavior of the bridge as well as refinement of model parameter es-
timation, Bayesian time-domain model updating was carried out in the second step. In
this step, material properties that reflect the cumulative damage in the bridge, e.g., effec-
tive concrete compressive strength, as well as damping energy-dissipation-related model
parameters, were estimated. The linear-elastic boundary conditions were fixed at their
final estimates obtained from the modal-based model updating. To prevent convergence
of the model updating algorithm to the local solution, the initial values for concrete com-
pressive strength were selected using the final estimates of concrete initial stiffness from
modal-based model updating.

The application of the two-step model updating approach was presented using a pair
of full-scale precast prestressed deteriorated bridge I-girders as the testbed structure. For
this study, a series of forced-vibration experiments were planned, and the testbed structure
was subjected to sinusoidal force excitations through frequency sweeps at three different
amplitudesusing a small shaker. The input excitation was measured using load cells, and
the acceleration responses were collected using a wireless sensing network. The findings
confirm the following conclusions:

• Identifiability analysis showed significant mutual dependency between different
model parameters. This mutual dependency could lead to weak identifiability of
model parameters in the traditional FE model updating process. The proposed two-
step model updating helped with this challenge to update the most sensitive model
parameters separately using modal-based and time-domain model updating.

• Sequential application of modal-based and time-domain model updating reduced the
challenges due to ill-conditioning and modeling errors.

• It was demonstrated that the updated FE model using only modal-based model
updating was not capable of reflecting true response behavior of the structure in
time domain.
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• Concrete compressive strength was correlated with damage/deterioration in the
monitored structure and could be used to assess the health condition of the structure.
In this study, a 30% reduction in concrete compressive strength from its nominal value
correctly showed significant deterioration in the studied girders.

It is noteworthy to mention that although the input load in this study was different
from the traffic load during the operation of bridges, it provided a real-world exercise to
validate the capability of the two-step model updating approach for damage identification
of bridge structures.
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‖ŷ − y∗‖∂R + ‖ŷ0 − y∗
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Abstract: Formulas for computing the line shape of a thin-walled hollow pier body based on struc-
tural characteristics and measured sunlight temperature difference are derived using an analytical
algorithm. In a case study of the No. 5 pier of a newly constructed continuous beam bridge on a
mountainous expressway of Guizhou Province in China, the pier top’s displacement calculated by
the analytical algorithm, currently accepted code, and a FEM program were each compared to its
measured values. Furthermore, the effects of sunlight temperature difference, pier height, and wall
thickness on the line shape of the pier body were explored, and the results show that the calculation
values from these formulas were closer to the measured values than the currently accepted code,
with a maximum error of 0.507 mm, demonstrating that the formulas have a more dependable result,
higher precision, and more specific applicability. Thus, the algorithm provides a better method for the
line shape calculation and construction control of thin-walled hollow piers because it can accurately
account for sunlight temperature differences and pier height.

Keywords: thin-walled hollow pier; line shape calculation; field measurement; sunlight temperature
difference

1. Introduction

For thin-walled hollow high-piers in the state of the construction stage, any change
in sunlight temperature leads to an uneven temperature field on a pier that typically
presents with a nonlinear distribution [1,2]. This can lead to a large nonlinear temperature
difference in the pier structure that can cause structural deformation, the temperature
difference is affected by atmospheric temperature, sunlight radiation, section position, and
other factors [3–5]. With the recent development of highway construction in China, the
amount of high-pier bridge construction has been correspondingly increasing, and the
height of piers has also been gradually increasing. However, it is common that pier top
displacements exceed the allowable value (25 mm, H/3000, and ≤30 mm (H is pier height))
during the bridge construction stage [6]. The optimal configuration is that the linear of
the pier after construction has no offset, and the offset value is 0 mm. In construction,
when the linear offset of pier meets the requirements of the design specification, it can also
be accepted. Nonlinear temperature changes not only affect a pier’s alignment but also
produce a large eccentric bending moment at the bottom of the pier that affects the bearing
capacity of the pier [7–9]. Hence, studies of the effects of sunlight temperature differences
on the alignment of such high piers [10–13] are urgently needed.
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The research on the effect of temperature on concrete structures began in the 1950s,
when scholars from various countries initially studied the temperature field of concrete
structures through a series of theoretical analyses and a large number of field experiments
and successfully obtained some temperature field distribution laws for concrete struc-
tures [14–20]. However, the research on the effect of a sunlight temperature difference
mostly focused on the superstructure of the constructed bridge [21–29] rather than the
substructure under construction [30–33]. Research on the influence of sunlight temperature
differences on the shape of thin-walled hollow piers under construction was even more
scant. In recent years, though, with the wide application of hollow, thin-walled high
piers in engineering, people have begun to pay more and more attention to the effects of
temperature in their analyses of bridge substructures, especially high the piers [34,35].

Based on the theory of sunlight temperature distribution, Zhang [30] analyzed the
temperature effect of a double-limbed rectangular hollow pier under a sunlight temperature
load using the secondary development function of ANSYS and analyzed the influence of
section shape on the pier’s temperature field. Dai [31] et al. used the generalized Pareto
distribution and Centennial return period additive model to analyze the temperature–time
change in the direction of pier thickness and predicted the most extreme temperature values
during the return period, although they did so without experimental verification. Similarly,
Liu [32] analyzed the influence of sunlight radiation and air temperature on thin-walled
hollow piers in high-altitude areas according specifically focusing on low temperatures,
the large temperature differences between day and night, and stronger solar radiation at
higher altitudes. To study of the effects of sunlight temperature differences on the shape of
thin-walled hollow piers, Lin [33] analyzed the effect of temperature with both three-cavity
sections and double-limb sections. The results showed that the displacement of the pier
top caused by the sunlight temperature difference was closely related to the change in air
temperature, and the lateral displacement of the pier top was the largest when the external
temperature was the highest. Likewise, Bi [3] established a three-dimensional simulation
model of a thin-walled hollow pier using ANSYS software and analyzed the displacement
of the pier top under the fabrication constraints. Based on ANSYS analysis and railway
specification formula [36], Tang [37] calculated the top displacement of a thin-walled hollow
high pier under the action of sunlight temperature difference, and then put forward an
active control method for high pier body alignment.

However, there are still few studies on the effects of sunlight temperature differences
on the substructure of bridges under construction, and research results on the effects of
sunlight temperature differences on the alignment of high piers are still scarce. The only
useful references have come in the Chinese Code TB 10052-1997 railway flexible pier bridge
technical specifications [36] for the calculation formula of pier top displacement, or from
the use of finite element software. However, the displacement calculation formula in the
railway code is meant for railway flexible piers, and it has a long history of successful appli-
cability, whereas the thin-walled hollow structure commonly used in high pier structures is
not well suited for that formula as it fails to reflect the piers’ structural characteristics.

To solve the above-mentioned disadvantages, the finite element methods are used
to tackle the problem of optimal high pier construction including modeling, boundary
condition simulation, calculation, and result analysis, and an optimal high pier construction
configuration is obtained in this study. Additionally, the field environment is complex and
ever-changing, so that question of how best to simulate the real-world situation of these
structures is also difficult. Therefore, this article uses the function integral method together
with the equivalent linearization method to derive an analytical formula for thin-walled
hollow pier top displacement caused by sunlight temperature differences according to this
type of pier’s particular structural characteristics. Furthermore, it takes the No.5 thin-walled
hollow high pier under construction of a continuous beam bridge in the mountainous area
of Guizhou Province in China as a field example and use monitored temperature effects to
compare the analytical formula to existing finite element calculations. These comparison
results show that the analytical calculation formula has very high precision and thus can
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provide a new means for better taking sunlight temperature differences into account. Using
the above formula and pre-bias method, it can provide a method for the linear construction
control of the hollow pier.

2. Derivation of the Analytical Formula

2.1. Fundamental Assumptions

Consider a theoretical thin-walled hollow pier. It is assumed that the temperature dis-
tribution along the height direction of the pier is uniform, and the temperature distribution
difference caused by local changes is ignored. The concrete materials are assumed to be
homogeneous and isotropic, in line with the law of elastic deformation before cracks occur,
and the Bernoulli plane deformation assumption is also applied. Deformation loads are
thus calculated as unidirectional temperature loads and then superimposed to form the
basis for multidirectional temperature load calculations.

2.2. Derivation

At present, the research on the influence of sunlight temperature differences on the
alignment of bridge piers usually begins from the one-dimensional problem. First, the
temperature field effects in the one-dimensional direction of the structural plane are ana-
lyzed, as shown in Figure 1, and then the temperature field effects in another dimension
are analyzed. The total offset value is then obtained using a coupling calculation, and
this analysis method has achieved the expected results in several practical engineering
projects [31,32]. Referring to the relevant literature and specifications [37], under the action
of a sunlight temperature difference between the AB-side and the CD-side, as shown in
Figure 1, the temperature gradient pattern of box piers along the wall thickness is dis-
tributed exponentially [38] as follows:

T(x) = T0e−ax (1)

where T(x) is the temperature difference between the calculation point and the back surface
(◦C); T0 is the temperature difference between the front and back of the pier (◦C); a is the
exponential coefficient, generally taken to be 7; and x is the distance from the calculated
point to the heated surface (m).

Figure 1. Deformation of the pier section under a sunlight temperature difference.

Figure 1 shows the deformation of the thin-walled hollow pier cross-section using a
sunlight temperature difference diagram. The right side of the deformation diagram can be
expressed in the X direction along the bridge but can also be expressed in the Y direction
transverse bridge. Under the action of the nonlinear temperature gradient from sunlight,
the longitudinal (transverse) fiber on the cross-section of the bridge pier swells and shrinks,
and in the free state the free deformation curve of the fiber is similar to the shape of the
sunlight temperature gradient curve (an exponential curve), as shown in Figure 1. However,
since the longitudinal (transverse) fiber deformation on the cross-section needs to maintain
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the straight-line distribution assumed by the plane cross-section, the actual cross-section
line shape is given by line 2 in Figure 1, and the self-constrained deformation between the
longitudinal (transverse) fibers of the cross-section are shown as the shaded line in the
figure. Since there is a free end, the thermally induced stresses should be 0 in the vertical
direction of the pier.

Figure 1 shows that the self-constrained temperature stress in the cross-section is
proportional to the free strain of the fiber and that the strain difference is retained after
plane deformation. The calculation is as follows:

ε = αT0e−ax (2)

T′
x = T1 − (T1 − Tn)

x
d

(3)

ε′ = αT′
x (4)

ε0(x) = ε − ε′ = α
[

T0e−ax − T1 + (T1 − Tn)
x
d

]
(5)

σ0(x) = Eε0(x) = Eα
[

T0e−ax − T1 + (T1 − Tn)
x
d

]
(6)

In the above formulas: α is the material linear expansion coefficient (α = 1.0 × 10−5/◦C);
d is the width of a single pier; ε is the free strain of the fiber; ε′ is the actual deformation of
the section; T1 is the surface temperature of the sunny side when the section is deformed in
the plane (◦C); Tn is the surface temperature of the dorsal side when the section experiences
planar deformation (◦C); T0 is the temperature difference between the front and back of the
pier (◦C); T′

x is the equivalent temperature at the position x when the cross-section is plane
deformed (◦C); ε0(x) is the strain difference between fiber-free expansion and section plane
deformation (◦C); σ0(x) is self-constrained temperature stress; and E is the elastic modulus
of concrete (MPa).

When the temperature field is stable, the deformation of the structure is related to the
linear expansion coefficient of the material. In a typical pier structure, the volume of the
steel bars is only 1% to 2% of the total volume of the structure, so the thermal conductivity of
the pier structure is mostly affected by the thermal conductivity of the concrete. Therefore,
α takes 1.0 × 10−5/◦C. During construction the pier during construction is a statically
determinate structure, so the temperature stress caused by sunlight temperature difference
is only temperature self-stress σ0(x). According to the principle of temperature stress
self-balance on a section, when the bar is in a free state, the bending moment on the section
is ∑ M = 0, i.e.,

∫ d
0 σ0(x)

(
d
2 − x

)
h0dx = 0. From this formula, it can be obtained:

h
[

T0

(
1
a2 e−ad + de−ad

2a + d
2a − 1

a2

)
− 1

12 (T1 − Tn)d2
]
−

h0

[
T0

(
1
a2 e−a(d−δ) + (d−2δ)e−a(d−δ)

2a + (d−2δ)e−aδ

2a − e−aδ

a2

)]
+
[

h0

(
1

12d (T1 − Tn)(d − 2δ)3
)]

= 0

(7)

The temperature gradient η along the wall thickness can be obtained from Equation (7)
by equivalent linearization of the actual temperature difference curve:

η = T1−Tn
d

= 6T0
ahd3−ah0d3

0

⎧⎪⎨⎪⎩
hd
[( 2

ad + 1
)(

e−ad − 1
)
+ 2

]
−

h0d0

[(
2

ad0
+ 1

)(
e−ad0 − 1

)
+ 2

]
e−aδ

⎫⎪⎬⎪⎭
(8)

where d is the longitudinal width of the pier section; h is the transverse width of the
pier section; d0 is the longitudinal width of the hollow part of the pier section; h0 is the
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transverse length of the hollow section of the pier; and δ is thin-walled hollow high pier
wall thickness. The rotation angle for the pier micro-segment dy is given by αηdy, so pier
top displacement ΔS can be expressed as:

ΔS =
∫ H

0
αηydy (9)

Now, it assumes that A = h× d and A0 = h0 × d0 so that when d is constant, η changes
with the temperature difference. Substituting Formula (8) into Formula (9), thus gives:

ΔS = αηHΔH
2

=
3αHΔHAT0[( 2

ad +1)(e−ad−1)+2]
ahd3−ah0d3

0

− 3αHΔHA0T0e−aδ
[(

2
ad0

+1
)
(e−ad0−1)+2

]
ahd3−ah0d3

0

(10)

where H is the vertical length of the pier (m), and ΔH is the distance from pier center to pier
top (m). Since e−aδ is small, on the order of 10−3 to 10−6, the second term of the molecule is
much smaller than the first term, and it can be ignored here. Thus,

ΔS =
3αHΔHdhT0

[( 2
ad + 1

)(
e−ad − 1

)
+ 2

]
ahd3 − ah0d3

0
(11)

If the sunlight temperature differences are different for n different sections of the pier,
the pier needs to be divided formally into these n sections to calculate the displacement
of the pier top caused by the sunlight temperature difference in each section ΔSi [39]
as follows:

ΔSi =
3αHiΔHidihiTi

[(
2

adi
+ 1

)(
e−adi − 1

)
+ 2

]
ahidi

3 − ahi0di
3
0

(12)

where ΔSi is the free displacement of section i in the sunlight (m); α is the material linear
expansion coefficient (α = 1.0 × 10−5/◦C); Hi is the length of segment i (m); ΔHi is the
distance from the center of section i to the pier top (m); di is the width of the pier along
the bridge in section i (m); hi is the transverse width of pier i (m); Ti is the temperature
difference between the sunny side and the back-sun side along the bridge in section i (◦C);
di0 is the longitudinal width of the hollow part of the pier body in section i (m); hi0 is the
transverse width of the hollow part of the pier body in section i (m); and n is the calculated
number of segments. Superimposing the pier top displacement caused by each segment,
the total pier top displacement is thus:

ΔS =
n

∑
i=1

ΔSi =
n

∑
i=1

3αHiΔHidihiTi

[(
2

adi
+ 1

)(
e−adi − 1

)
+ 2

]
ahidi

3 − ahi0di
3
0

(13)

The above analytical formula applies to both the calculation of pier top displacement
along the bridge and the calculation of pier top displacement across the bridge under the
measured sunlight temperature difference. When calculating the transverse displacement
of the pier top, it is only necessary to exchange the position of the along-bridge param-
eter di (di0) and the transverse bridge parameter hi (hi0) in Formula (13). Furthermore,
after calculating the longitudinal and transverse displacements of the pier top, the total
displacement S of the pier top can be obtained by coupling these two displacements [40,41].
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S =
√

ΔS2
longitudinal + ΔS2

transverse (14)

where ΔSlongitudinal and ΔStransverse are the displacement of the pier top along the bridge
direction and transverse bridge directions, respectively.

3. Engineering Profile and Case Study Selection

3.1. Engineering Profile

For the Case study, taking a newly constructed continuous beam bridge on a moun-
tainous expressway of Guizhou Province in China with a span arrangement of (3 × 40 +
3 × 40 + 3 × 40) m as an example, and whose superstructure uses a prestressed concrete
(post-tensioned) continuous beam. The substructure abutment is U-shaped, and the No. 4
and No. 6 piers have a rectangular solid pier construction. The No. 5 pier, however, is a
rectangular thin-walled hollow pier, and the rest of the piers are double-limbed cylindrical
solid piers whose abutments pile foundations.

The No. 5 pier is 75 m high, making it the highest pier of this bridge, and the
areas 1 m from the upper and lower ends of the No. 5 pier are a solid section, with the
others being thin-walled hollow equal sections. Each section size is 3 m (along the bridge
direction) × 6 m (transverse bridge direction), and the wall thickness is 0.55 m, as shown
in Figure 2. A diaphragm plate with a thickness of 0.5 m is also set every 18.15 m in the
vertical direction of the pier A generalized construction diagram of this pier is shown in
Figure 2.

Figure 2. Cont.
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Figure 2. Pier No. 5 structural design drawing (frontal plane) (unit: cm).

3.2. Temperature Monitoring Scheme

To analyze the sunlight temperature effect on the No. 5 pier, embedded thermometers
were placed in its vertical 1/4, 1/2, and 3/4 sections. The layout scheme is shown in
Figure 3. When pier construction height is low, the influence of sunlight temperature
difference is small, so the thermometer measuring points were arranged starting from the
vertical 1/4 section. Externally embedded thermometers were placed close to the outer
side, and internally embedded thermometers were placed close to the inner side.

Figure 3. The arrangement of measuring points on the pier No. 5’s vertical 1/4 cross-section( 1©– 12© is
the number of the measuring points).
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Figure 3 shows the layout of the measuring points at the vertical 1/4 section of the
No. 5 pier, and the vertical 1/2 and 3/4 section measuring points were arranged in the
same manner. The middle measuring point on the north side was the starting point,
and clockwise from the outside to the inside, these were numbered 13 to 24 and 25 to
36, respectively. When installed, embedded thermometer is close to the inner or outer
side of the pier, each thermometer was first fixed on the steel bar of the pier body, and
then buried in the concrete after moisture and mechanical damage prevention steps were
taken. In addition, a signal cable of embedded thermometer needed to be drawn out of the
concrete’s surface.

The specific test instrument was an embedded thermometer (model: BGK-3700-0.2)
provided by Geokon Instruments (Beijing) Co., Ltd. As shown in Figure 4, the core
component of embedded thermometer adopts semiconductor thermistor sensor, and the
measurement range was −30 ◦C ~ +70 ◦C, with a test accuracy of 0.2 ◦C. This instrument
included a BGK-MICRO-40 automatic data acquisition instrument provided by Geokon
Instruments (Beijing) Co., Ltd., and the supporting BGK-Logger software system was based
on the WINDOWS working platform, which can read, save, and process the measurement
data quickly and conveniently, as shown in Figure 5. The acquisition device also supported
wireless transmission. The thermometer’s data signal was sent using BGK-187V3 profes-
sional cable transmission because this type of cable has superior waterproof performance,
good data signal stability, and high precision.

Figure 4. An embedded thermometer.

Figure 5. The BGK-MICRO-40 automatic data acquisition instrument.

3.3. Temperature Field Analysis of the Pier Section

Nearly three months of on-site temperature testing from the time the thermometers
were installed in May, 2019 until the construction of the piers was completed in July, 2019.
During the hot summer months, a large amount of temperature data were collected. To
select the appropriate calculation parameters for the sunlight temperature differences, the
temperature field changes of the pier section on a sunny day in May, June, and July were
selected for analysis: May 16 (when the pier had been constructed to the 1/2 cross-section),
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June 16 (when the pier had been constructed to the 3/4 cross-section), and July 15 (when the
pier had been completed). The three selected time points all reflect the period immediately
after the completion of pier construction and maintenance, and the temperature of these
measuring points is influenced almost entirely by sunlight. Temperature changes at each
measuring point on the vertical 1/4 section of the pier on May 16 are shown in Figure 6.

Figure 6. Temperature changes at each measuring point at the 1/4 section of the pier on May 16.

From the above figures, it was considered that the temperature changes at the mea-
suring points at similar positions on the pier in the longitudinal and transverse directions
(both positive and negative sides) were the same. From early morning to about 7 a.m.,
the temperature of each side measuring point cools. In the morning, the east side and
the north side were located on the positive side, and the temperature of the measuring
points increased rapidly, however. By 13:00, the highest temperatures were 29.2 and 29 ◦C,
respectively, before these sides came under shadow and began to cool. The measuring
points on the west side and the south side were located in shadow in the morning, and thus
they were subject to a similar (the peak temperatures were both slightly lower than the
other two sides) yet time-shifted cycle compared to the east and north sides. At about noon,
the temperature difference between the two sides of the pier along the bridge and across
the bridge reached their maxima, which were 6 ◦C (along the bridge) and 5 ◦C (across
the bridge), respectively. On June 16, the pier had been constructed to the vertical 3/4
section. The temperature changes in each measuring point of the vertical 1/4 section and
1/2 section of the pier on June 16 are listed below.

As shown in Figure 7, the temperature changes at the measuring points at the 1/4
cross-section and the 1/2 cross-section of the pier were the same at similar positions both
along and across the bridge (both positive and negative sides). However, the maximum
temperatures at each site in Figure 7 were higher than that in Figure 6 because the average
daily temperature in June was higher than in May. In June, the sunlight time became longer
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as well. Starting at 6 a.m., the sides of the pier were already in a state of warming. The
temperature rose until noon, at which point the highest temperature was reached, and
the temperature at the measuring points began to trend downward. At about noon on
the same day, the temperature differences between the two sides of the 1/2 section in the
longitudinal and transverse directions were the largest, at 7.5 ◦C and 7 ◦C, respectively. On
July 15, the pier had been completed, the temperature changes in each measuring point of
the vertical 1/4 section, 1/2 section, and 3/4 section of the pier on July 15 are listed below.
For brevity, only the temperature changes in along the bridge on the vertical 1/4 section
and 1/2 section are listed.

Figure 7. Cont.
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Figure 7. Temperature changes at each measuring point at the 1/4 section and the 1/2 section of the
pier on June 16.

Figure 8 shows that the temperature changes at the measuring points at similar
positions of each section of the pier along both the bridge direction and the transverse
bridge direction (both on the positive and negative side) were roughly the similar. In the
morning, the temperature of the measuring point on the positive side of the 3/4 section
rose rapidly and reached its highest temperature of 40.5 ◦C (north side) and 41 ◦C (east
side) at 12:00 and 13:00, respectively. In the afternoon, the two sides came under shade, and
the temperature of the measuring point cooled until 0:00 at night. The temperature of the
3/4 section of the pier was higher than the other sections as well, at up to 41 ◦C, but this
was mainly due to the fact that July had much hotter weather than June or May as well as
an earlier sunrise and higher sunlight intensity. Moreover, the higher the height of the pier
section, the longer the sunlight radiation time. At about 12:00, the temperature difference
between the two sides of the pier in both the longitudinal and transverse directions reached
their maxima, which were 8.5 ◦C and 7 ◦C, respectively.

3.4. Selection of Calculation Conditions for Sunlight Temperature Differences

Since the transverse moment of inertia of the thin-walled hollow pier is larger than
that along the bridge, the temperature difference along the bridge is more likely to cause
linear deviation of the pier. Thus, the temperature condition of the maximum temperature
difference along the bridge is selected for calculation.

Condition 1: On May 16, the sunny, maximum temperature difference between the
front and back sides occurred at noon along the vertical 1/4 section of the pier. At this
time, the external temperature of the north side along the bridge was 29 ◦C, the external
temperature of the south side was 23 ◦C, the temperature difference was 6 ◦C, and the No.
5 pier of the bridge had been constructed to the vertical 1/2 section height. As shown in
Table 1.

Condition 2: On June 16, the sunny, maximum temperature difference between the
front and back sides again occurred at noon along the vertical 1/2 section of the pier. At
this time, the external temperature of the north side along the bridge was 34.5 ◦C, the
external temperature of the south side was 27 ◦C, the temperature difference was 7.5 ◦C,
and the No. 5 pier of the bridge had been constructed to the vertical 3/4 section height.
The maximum temperature difference conditions of 1/4 section and 1/2 section along the
bridge are shown in Table 1.
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Figure 8. Temperature changes at each measuring point at 1/4 section, 1/2 section, and 3/4 section
of the pier on July 15.
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Table 1. The measured temperatures of the pier on each side in the longitudinal direction (unit: ◦C).

Condition Location Northside Southside
Temperature
Difference

Condition 1 1/4 section 29 23 6

Condition 2
1/4 section 33 26 7
1/2 section 34.5 27 7.5

Condition 3
1/4 section 37 30 7
1/2 section 39.5 31.5 8
3/4 section 40.5 32 8.5

Condition 3: On July 15, the sunny, maximum temperature difference between the
front and back sides also occurred at noon along the vertical 3/4 section of the pier. At this
time, the external temperature of the north side along the bridge was 40.5 ◦C, the external
temperature of the south side was 32 ◦C, the temperature difference was 8.5 ◦C, and the No.
5 pier of the bridge had been completed. The maximum temperature difference conditions
of each section along the bridge are shown in Table 1.

Since the No. 5 pier is located in a valley, the wind speed was small, and the duration
of exposure to direct sunlight of each part of the pier is different. Thus, the lower the pier
section height, the smaller the temperature difference.

4. Basic Theory and Finite Element Methods in Temperature Effect Research

4.1. Basic Theory of Temperature Effect Research

Beginning with a homogeneous isotropic material, a micro-element is shown in
Figure 9.

Figure 9. Microunit thermal conductivity schematic.

In the Figure 9, dx, dy, and dz are the length of the three coordinate directions of the
micro-element; qx is the heat flow into the micro-element, qx + dx is the heat flux of the
derived micro-element.

According to the law of conservation of energy to analyze the thermal energy balance
of the micro-element. The difference between heat entering and leaving the micro-element
for a change dt in time is equal to the heat of the heat source and the thermodynamic energy,
as shown in Figure 9. The heat conduction equation can be expressed as [42]:

∂T
∂t

= λ

(
∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

)
+

∂θ

∂t
(15)

where λ is the thermal conductivity coefficient (m2/h); θ is adiabatic heating (◦C); T is the
temperature (◦C); and t is time (h).
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If there is no internal heat source, the above formula becomes

∂T
∂t

= λ

(
∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

)
(16)

When ∂T
∂t = 0, there is a steady temperature field, and the field is unsteady otherwise.

In addition, there exists a unique solution to the above equation for every set of initial
conditions for the temperature problem.

4.2. Finite Element Methods

In ANSYS thermal analysis software, five kinds of thermal loads (boundary conditions)
can be directly applied to solid or element models, namely constant temperature, heat
flux, convection, and heat generation rate. There are three main means of heat exchange
between bridge piers and the external environment: solar radiation, radiation heat transfer,
and convection heat transfer. Compared to solar radiation and convection heat transfer,
radiation heat transfer has little effect on the temperature distribution of the structure and
can be ignored. Thus, only the temperature effect caused by solar radiation and convective
heat transfer are analyzed, so that the final thermal load applied to the boundary nodes of
the pier finite element model is the combination of the external comprehensive temperature
and the comprehensive heat transfer coefficient [42]. The comprehensive temperature is
the sum of air temperature and solar radiation equivalent temperature. it can be calculated
as follows:

Tsa = Tα + at I/h (17)

where Tsa is the combined temperature (◦C); Tα is the measured external temperature
(◦C) of the bridge pier; I is the solar radiation intensity (W/m2), (refer to the Chinese
national standard Specifications for design of heating ventilation and air conditioning for
details [43]); h is the comprehensive heat exchange coefficient (W/(m2·◦C)), which is the
sum of the convective heat exchange coefficient hc and radiative heat exchange coefficient
hr; and at is the absorption rate, generally taken to be 0.65 [37]. Since the heat radiation
exchange coefficient is negligible compared to the convective heat exchange coefficient, the
overall heat exchange coefficient can be taken as the convective heat transfer coefficient hc,
which is given by: hc = 5.6 + 4.0 v, where v is wind speed (m/s).

4.3. A finite Element Model of the No. 5 Pier

Both the three-dimensional solid finite element method and the space bar finite element
method can be used in the finite element analysis of the displacement of the pier top under
the action of sunlight temperature difference of the No. 5 pier. The space bar finite element
method is also called the space truss displacement method and is suitable for the calculation
of grid structures. Although it is simple to model and fast to calculate, the error is slightly
larger than that of the former because the model is not as fine as the three-dimensional solid
finite element model [44]. For this reason, the more accurate solid finite element models
are elected to study the pier according to theoretical construct.

First, the finite element analysis models of bridge piers under three working conditions
were established by ANSYS finite element analysis software: finite element models of verti-
cal 1/2 section height, vertical 3/4 section height, and bridge pier construction completion.
The temperature field unit of the ANSYS finite element model was the SOLID87 three-
dimensional solid thermal analysis unit, and the structural field unit was the SOLID187
three-dimensional solid structural analysis unit. When the thermal coupling analysis of the
temperature field was carried out, the temperature load could only be applied to the thermal
analysis unit SOLID87. After thermal analysis, conversion between the thermal unit SOLID87
and the structural unit SOLID187 was achieved through ANSYS interface operations and
command streams in order to apply the structural stress load generated by thermal analysis
and then complete the thermal coupling analysis of the structural temperature field. The three
ANSYS finite element models of the No. 5 pier are shown in Figure 10.
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Figure 10. The finite element models of the No. 5 pier.

5. Comparative Analysis of Algorithm Results

According to the measured meteorological data during the construction of the No. 5
pier, the average wind speed of the bridge site was 2.0 m/s. Measurement of the average
wind speed is needed to calculate the comprehensive heat transfer coefficient. the reference
temperature was set to 0 ◦C according to the relevant literature [45] in order to facilitate the
application of temperature load in the ANSYS calculations. The deviation of the pier along
the bridge caused by the sunlight temperature difference was more obvious than in any
other direction, so the deviation of the pier top along the bridge in this direction is selected
for calculation and analysis.

5.1. Finite Element Calculated Values

The displacement calculation under the action of a temperature field was carried out
by ANSYS, and the displacement of the pier top of the No. 5 pier three sunlight temperature
difference conditions was 2.157 mm (Condition 1), 5.801 mm (Condition 2), and 10.935 mm
(Condition 3). As shown in Figures 11–13.

Figure 11. The calculated longitudinal displacement result for the top of the No. 5 pier under
Condition 1 (unit: m).
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Figure 12. The calculated longitudinal displacement result for the top of the No. 5 pier under
Condition 2 (unit: m).

Figure 13. The calculated longitudinal displacement result for the top of the No. 5 pier under
Condition 3 (unit: m).

5.2. Analytic Algorithm Results

The data from Section 3.4 were used to inform analytical calculations of the pier top
displacement under a sunlight temperature difference effect along the bridge direction.
The results are given in Table 2.
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Table 2. The pier top calculated displacement results from the analytical algorithm (unit: mm).

Condition Location Longitudinal Direction

Condition 1 total 2.293

Condition 2
0 ~ 1/2 segment 5.351

1/2 ~ 3/4 segment 0.717
total 6.068

Condition 3

0 ~ 1/2 segment 8.027
1/2 ~ 3/4 segment 2.293
3/4 ~ top segment 0.807

total 11.127

5.3. Specification Calculation Results

Referring to the Chinese national standard TB10052-1997 Technical specifications for
flexible pier railway bridges, Article 2.3.6 [15,36], the formula for pier top displacement
caused by sunlight temperature differences along the bridge is:

ΔS =
n

∑
i=1

6αTiyiΔyi(adi − 2)
a2d3

i
(18)

where, ΔS is the pier top displacement caused by sunlight (m); α is the linear expansion
coefficient of concrete, taken to be 10−5 (1/◦C); Ti is the temperature difference between the
sunny side and the back of the bridge pier (◦C); a is the coefficient, taken to be 7 (1/m); n is
the number of segments; Δyi is the length of each calculated segment (m); yi is the distance
from the center of segment i to the top of the pier (m); di is the width of section i of the pier
along the bridge (m). The results for the calculated pier top displacement along the bridge
under three sunlight temperature difference conditions are given in Table 3.

Table 3. The pier top calculated displacements from the Chinese reference formula (unit: mm).

Condition Location Longitudinal Direction

Condition 1 total 3.635

Condition 2
0 ~ 1/2 segment 6.946

1/2 ~ 3/4 segment 1.136
total 8.082

Condition 3

0 ~ 1/2 segment 9.756
1/2 ~ 3/4 segment 3.18
1/2 ~ top segment 1.281

total 14.217

5.4. Comparative Analysis

The analytic algorithm calculation values, standard calculation values, finite element
calculation values, and field-measured pier top displacement values for the No. 5 pier
under all three sunlight temperature difference conditions are now compared. To measure
the actual displacement in the field, the TC1800 high-precision total station from Leica,
Germany was used, which has a minimum angle measurement accuracy of 1′′ and a
minimum reading of 0.01 mm. The comparison results are shown in Table 4.
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Table 4. The results comparison of the pier top displacement calculations in the longitudinal direction
(unit: mm).

Calculated Values Condition 1 Condition 2 Condition 3

analytical algorithm 2.293 6.068 11.127
railway code 3.635 8.082 14.217
finite element 2.157 5.801 10.935

measured value 2.8 6.48 11.36
analysis-measured 0.507 0.412 0.233

code-measured 0.835 1.602 2.857
digital-measured 0.643 0.679 0.425

It can be seen from the table that the four groups of results were generally close, but
the calculation results of the analytical algorithm were closer to the measured values of
the pier than of the railway specification, and the maximum difference was only 0.507 mm.
This shows that the calculation results of the analytical algorithm are reliable and have
considerable accuracy.

The measured value of the pier top displacement was larger than the calculated value
from the analytical algorithm, however, because the measured pier top offset was not only
affected by the sunlight temperature difference but also by wind load and other factors.
Under each of the three kinds of sunlight temperature difference conditions, the finite
element calculation value was also consistent with the measured value of the pier top,
and the maximum difference was 0.679 mm. The finite element calculated values were
slightly smaller than the measured values because the ANSYS finite element method only
considered the sunlight temperature load.

Among the three calculation methods, the difference between the calculated value
from the Chinese reference and the measured value of the pier top was the largest, up to
2.857 mm (Condition 3). This is mainly because the reference is somewhat outdated, and it
is mainly aimed at the calculation of the displacement of pier tops of flexible railway piers
under sunlight temperature differences. its applicability is not directly transferrable to a
thin-walled hollow pier.

5.5. Parametric Analysis

The No.5 pier of the Bridge is located in a V-shaped valley area, and due to the
influence of this topography, the sunlight temperature difference was not very large.
However, this is not the case in many different regions across China, and the linear changes
in piers in these regions can also be quite different from those of the case study. Figure 14
shows the displacement results of the pier top calculated by analytical algorithm under
different sunlight temperature difference conditions for the No.5 pier. It is assumed that
the pier had been constructed to a height of 75 m at this time and that the pier consisted of
only one segment. The remaining parameters were unchanged.

As Figure 14 shows, with an increase in sunlight temperature difference, the displace-
ment of the pier top along and across the bridge also gradually increases. Specifically, when
the sunlight temperature difference is 10 ◦C, the longitudinal bridge is 15.289 mm and
the transverse bridge is 4.868 mm. Furthermore, the greater the temperature difference,
the greater the displacement of the pier top, and the greater the displacement along the
bridge compared to across the bridge. This is because the thin-walled hollow pier section
transverse moment of inertia is larger than that along the bridge.

Figure 15 presents a graph of the changes in displacement for different pier heights.
Because this graph is only for the height of the pier, it is assumed that the temperature
difference between the longitudinal and transverse directions of the bridge was 5 ◦C and
that the pier only consisted of one section. The other parameters remained unchanged.
From the figure we see that the greater the height of the thin-walled hollow pier, the
greater the offset of the pier top for a given sunlight temperature difference. Furthermore,
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the greater the sunlight temperature difference and pier height, the more significant the
influence the sunlight temperature difference on pier alignment.

Figure 14. The pier top displacements caused by different temperature differences.

Figure 15. The pier top displacement caused by different pier heights.

Figure 16 shows the displacements of the pier top when the wall thickness of the pier
changes. If the wall thickness is too small, it affects structural safety, so the minimum
wall thickness was set to be 0.5 m. Assuming the temperature difference of the pier to be
5 ◦C and that the pier only consisted of one segment, as above, other parameters remain
unchanged. It can be seen from the Figure 16 that the offset of the pier top decreases with
an increase in pier wall thickness, but when the wall thickness reaches 0.75 m, the offset of
the pier top does not change much with further increases. This shows that for thin-walled
hollow piers, increasing wall thickness has little significance after a point in limiting the
displacement of the pier top.
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Figure 16. The pier top displacements caused by different pier wall thicknesses.

6. Conclusions

Based on the structural characteristics of thin-walled hollow concrete piers, an analyti-
cal formula for the displacement of pier top caused by sunshine temperature difference
was derived. The calculated values from this analytical formula are compared with the ref-
erence calculation values, finite element calculation values, and field measured values and
analyzed the influence of sunlight temperature difference, pier height, and wall thickness
on pier alignment. The conclusions are enumerated below.

(1) The analytical calculation formula derived in this paper has quite a high accuracy and
thus can provide a new means to calculate and control the alignment of thin-walled
hollow piers.

(2) The analytical formula is more suitable for the linear calculation of thin-walled hollow
piers under the influence of sunlight temperature differences than the formula in the
current Chinese railway code. The formula has more specificity to its application, and
was also closer to the measured values than the reference formula, with a maximum
difference of only 0.507 mm.

(3) The temperature difference due to sunlight has a great influence on the alignment
of thin-walled hollow piers, and the greater the temperature difference and height,
the more significant the influence on the alignment. When the temperature differ-
ence was 10 ◦C, the displacement of the pier top (75 m high) along the bridge was
1.5 cm. However, increasing pier wall thickness did not significantly limit the pier top
displacement.
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Abstract: Lightning rod structures are susceptible to wind loads due to their high slenderness ratio,
high flexibility, and light weight. The wind-induced dynamic response of a lightning rod is critical
for structural safety and reliability. The traditional methods for this response, including observation
and simulation, focus on structural health monitoring (SHM), wind tunnel tests (WTTs), or fluid–
structure interaction (FSI) simulations. However, all these approaches require considerable financial
or computational investment. Additionally, problems such as data loss or data anomalies in the
sensor monitoring process often occur during SHM or WTTs. This paper proposes an algorithm based
on a long short-term memory (LSTM) network to predict the wind-induced dynamic response and to
solve the problem of data link fracture caused by abnormal sensor data transmission or wind-induced
damage to lightning rod structures under different wind speeds. The effectiveness and applicability
of the proposed framework are demonstrated using actual monitoring data. Root-mean-squared error
(RMSE), determination of coefficient (R2), variance accounted for (VAF), and the refined Willmott
index (RWI) are employed as performance assessment indices for the proposed network model. At
the same time, the random forest algorithm is adopted to analyze the correlation between the data of
the different measurement points on the lightning rod structure. The results show that the LSTM
method proposed in this paper has a high accuracy for the prediction of “missing” strain data during
lightning rod strain monitoring under wind speeds of 15.81~31.62 m/s. Even under the extreme
wind speed of 31.62 m/s, the values of RMSE, MAE, R2, RWI and VAF are 0.24053, 0.18213, 0.94539,
0.88172 and 0.94444, respectively, which are within the acceptable range. Using the data feature
importance analysis function, it is found that the predicted strain data of the measurement point on
the top part of the lightning rod structure are closely related to the test strain data of the two adjacent
sections of the structure, and the effect of the test strain data of the measurement points that are far
from the predicted measurement point can be ignored.

Keywords: lightning rod structure; long short-term memory (LSTM) network; structural health
monitoring (SHM); wind-induced response prediction; data augmentation

1. Introduction

Substations are key places in the power grid system to receive, transform and distribute
electric energy, and it is very important to ensure their safe operation. During the service
period of a substation, lightning strikes, as a common natural disaster, seriously threaten
the safety of electrical equipment and transmission lines in the substation. To prevent
lightning damage, lightning rods are usually installed on the substation frame to form a
frame–lightning rod structure [1], as shown in Figure 1. Lightning rods are usually thin
and long, with a height of 10 m~30 m. They are typically towering structures and are
very sensitive to wind loads. In the past ten years, lightning rod destruction accidents
in substations caused by wind-induced vibration have occurred from time to time. For
example, in December 2014, the lightning rod of the 220 kV outlet side of a 500 kV substation
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was broken [2]. In March 2015, the lightning rod of the 330 kV incoming line frame of a
750 kV substation was fractured [3]. In September 2015, the lightning rod of the frame on
the incoming side of the main transformer of a 750 kV substation collapsed [4] and caused
regional power outages, resulting in the interruption of people’s normal production and
living order and great economic losses. Therefore, it is of great practical significance to
carry out fine analysis of the wind-induced vibration response of a frame lightning rod
structure using finite element numerical (FEM) simulations, wind tunnel tests (WTTs),
or structural health monitoring (SHM) techniques [5–7]. This helps to accurately grasp
the bearing performance of the structure and then take reasonable maintenance measures
to ensure its work safety and reliability. However, FEM simulations, WTTs and SHM
require high analysis costs and support for a large amount of data. In recent years, with the
development of smart sensor technology, wireless sensor networks have been gradually
used in laboratory experiments and online monitoring of large-scale building structures
and infrastructures [8–10]. However, in the process of testing or monitoring, transmission
interruption caused by the unstable state of individual sensors and the destruction of
environmental factors is unavoidable, resulting in frequent data loss and drift, which has a
great adverse effect [11] on the accuracy and reliability of testing and monitoring results.
Therefore, it is very important to address these abnormal data chains [12].

(a) (b)

Figure 1. Substation structure and lightning rod structure. (a) A substation. (b) Frame–lightning
rod structure.

With the advent of the fourth scientific and technological revolution, the growing
digital resources of computer technology and deep learning have opened up many new
possibilities for the refinement experiments of engineering structures and the processing
of sensor data in the field of SHM [13]. Yuen and Kuok [14] conducted a monitoring
study on a 22-story building structure, determined the correlation relationship between
environmental conditions and structural modal frequencies, and found that normalizing the
sensor system data can reduce the influence of environmental noise and sensor failures on
the results. Cross et al. [15] extracted damage-sensitive features using principal component
analysis (PCA) techniques to remove operational and environmental effects. Sarmadi
and Karamodin [16] proposed a method based on the Mahalanobis squared distance that
combines a class of k-nearest neighbor (kNN) rules and an adaptive distance metric, which
can eliminate the influence of different environmental conditions on the anomaly detection
process. Padil et al. [17] proposed a structural damage identification method combining
the RFR function and principal component analysis, which can reduce the amount of input
data, minimize the influence of uncertain and abnormal data on model disturbance, and
thus reduce the model error. Bao et al. [18] proposed a method for detecting abnormal
data using a deep neural network (DNN), which can detect abnormal data by converting
data signals into image signals for computer visualization. Tang et al. [19] developed a
structural damage identification system that can convert real-world anomaly detection
acceleration data into dual-channel time–frequency images with an overall average correctly
identified accuracy of 93.5%. Avci et al. [20] proposed a decentralized 1D-CNN system
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for structural damage identification. In this system, each sensor uses a 1D-CNN for
local damage identification. Through the classification network for each sensor, damage
identification and localization are realized, which effectively reduces the need for data
transfer and aggregation.

However, the above research mainly focuses on the health monitoring of traditional
civil engineering structures such as bridges, and there is still a lack of necessary research
on wind tunnel tests or online monitoring data processing of the wind-induced vibration
response of power system structures such as frame–lightning rod structures. Therefore,
in this paper, a method based on a long short-term memory (LSTM) network is proposed
to predict the “missing” data of wind-induced dynamic response in the process of testing
or monitoring lightning rod structures under different wind speeds. Using the existing
test data from some measurement points, the predicted value of another part of the mea-
surement points can be obtained and compared with the measured data. On this basis, the
random forest algorithm analysis function is used to determine the parameter correlation
proportion between the different sections of the lightning rod. It is expected to provide nec-
essary data support for the analysis of the cause of frame–lightning rod structure fracture
accidents and to provide a basis for the wind resistance design and daily monitoring and
maintenance of similar lightning rod structures.

2. Long Short-Term Memory Network

The long short-term memory (LSTM) [21] network originally evolved from the recur-
rent neural network (RNN) model. By introducing “gate” units such as forget gates, input
gates and output gates (as shown in Figure 2), the LSTM model can effectively predict
long sequence problems with long-term dependencies, which cannot be reasonably solved
by the traditional RNN model because of problems such as gradient disappearance and
explosion [22–24].

Figure 2. Structure diagram of the nth LSTM cell hidden layer at time t.

The LSTM method uses the same activation function σ for the three “gate” structures
and introduces the unit memory cell Ct through them. Overall, the hidden state ht and cell
state Ct simultaneously flow over time. This well-designed “gate” structure enables the
LSTM method to have the function of data memory and forgetting [25,26].

2.1. Forget Gate

The forget gate can selectively forget the last few sets of states and correct the parame-
ters [27], which determines what information the LSTM unit needs to forget from the cell
state Ct and what information it needs to retain. The forget gate checks the output vector
Ct−1 from the previous LSTM unit, combines the parameter ht−1 passed from the previous
time step with the input value Xt of the current time step, and outputs the number from
0 to 1 [28] via the activation function σ (i.e., sigmoid function), where 0 means forget it
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completely, and 1 means keep it completely. Then, by combining the product with Ct−1,
information screening is achieved [29,30]. The calculation formula of the activation vector
Ft is as follows:

Ft = σ(WxfXt + ht−1Whf + bf) (1)

In Formula (1), Xt is the input data of the current time step, ht−1 is the hidden state of
the previous time step, Wxf and Whf are the weight parameters, and bf are the bias vectors,
which are learned from the training samples during the training process. The activation
function σ is used to convert multiple linear inputs into nonlinear relationships in the
neural network to realize the linear to nonlinear mapping function. The calculation formula
of σ is as follows:

σ(x) =
ex

ex − 1
(2)

2.2. Input Gate

The input gate contains two activation functions: the σ function and tanh function.
Combining the input Xt at the current time step and the hidden state ht−1 transmitted
from the previous time step, the two activation vectors It and Gt can be obtained through
the above two activation functions. Here, Gt is also called a candidate memory cell, and
its information is added to the cell state Ct medium [31,32]. The calculation formulas of
activation vector It and Gt are as follows:

It = σ(WxiXt + ht−1Whi + bi) (3)

Gt = tanh
(

WxgXt + ht−1Whg + bc

)
(4)

In Formulas (3) and (4), Wxi, Whi, Wxg, and Whg are weight coefficients, and bc and
bi are bias vectors. Here, the tanh function is the hyperbolic tangent function, which is
another activation function in the model. Its calculation formula is as follows:

tanh(x) =
ex − e−x

ex + e−x (5)

The candidate memory cell Gt is used to update the value of the unit state Ct, and its
calculation formula is as follows:

Ct = Ft e Ct−1 + It e Gt (6)

In Formula (6), t represents the current time step, t – 1 represents the previous time
step, and e represents the Hadamard product.

2.3. Output Gate

The output gate calculates the output ht of the entire processing unit according to the
value of the state variable Ct and the function values of Xt and ht−1 after activation [33].
The calculation formulas of activation vectors Ot and ht are as follows:

Ot = σ(WxoXt + ht−1Who + bo) (7)

ht = Ot e tanh(Ct) (8)

In Equations (7) and (8), Wxo and Who are the weight coefficients of the gating unit, bo
is the bias vector, and ht−1 is the hide state for the previous time step.

2.4. Multi-Hidden-Layer LSTM Structure

A standard LSTM model typically includes an input layer, an output layer, and
multiple hidden layers, as shown in Figure 3. With the increase in hidden layers, the
structure becomes more complex, and the nonlinear mapping relationship between the
data samples used for processing becomes more complex. However, this does not mean
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that the more hidden layers there are, the better the prediction of the structure for the
unknown data because the number of hidden layers has a positive correlation with the
iteration time, and with the increase in the number of hidden layers, the calculation time
will increase exponentially. In addition to the above structure, there is a fully connected
(FC) layer before the output of the model data, which is located between the hidden layer
and the output layer. The final multiple hidden layers are connected by the FC layer to the
target output layer to construct the desired output features [34,35].

Figure 3. Multilayer LSTM structure model diagram.

Furthermore, a dropout layer can also be added after each LSTM hidden layer, and
its value is usually between 0.2 and 0.5, effectively avoiding the occurrence of overfitting
during model training [34,36]. Overfitting is a common problem in deep learning fields [37].
The key idea of the dropout layer is to randomly interrupt the mapping relationship
between some data during the training process and discard a part of the data at a certain
dropout rate. For these very reasons, the computing speed and computational efficiency of
an LSTM model are greatly enhanced.

3. Prediction Method of the Wind-Induced Strain Response of Lightning Rod
Structures Based on LSTM

Because the strain response between each measurement point of the lightning rod
structure has a certain degree of nonlinear mapping relationship [38–40], the LSTM network
has strong applicability for addressing this problem. Therefore, this paper adopts the LSTM
network to repair and predict the missing or defective data of wind-induced dynamic
response in the process of testing or monitoring lightning rod structures under different
wind speeds. The specific process is shown in Figure 4.
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Figure 4. Flow chart of LSTM prediction and analysis of the strain value of the lightning rod structure
measurement point.

First, the parameters of the LTSM model are optimized by using the strain time-history
data of each measurement point of the aeroelastic model of the lightning rod structure
obtained from the wind tunnel test, and the most suitable model structure is determined.
Then, normal data are used to repair the disease data or “missing” data to ensure the
integrity of the data chain. The detailed step descriptions are as follows:

Step 1: Classify the collected dynamic strain test data of 10 measurement points on
the strong axis and weak axis of the lightning rod structure. Then, take the first 70% of the
data of some measurement points as the training set and the last 30% of the data as the test
set. Here, the test set data are treated as “missing” data.

Step 2: Perform noise reduction processing on the collected dataset to reduce the
interference of the noise data collected during the test on capturing the nonlinear mapping
relationship between the strains of each measurement point. At the same time, the data are
normalized to decimals between 0 and 1 to speed up model iteration.

Step 3: Input a part of the data into the model for parameter-seeking training and
determine the unknown parameters such as the number of hidden layers, the number of
hidden units, and the number of iterations of the model so that the model can reach the
optimal structure for the next step of data fitting and prediction.

Step 4: Input the dynamic strain data of the lowest two points of the lightning rod
aeroelastic model structure into the sequence X1 = (x1, x2, x3, . . . , xT), X2 = (x1, x2, x3, . . . ,
xT) and set the dynamic strain sequence of the point to be measured as Y = (y1, y2, y3, . . . ,
yn), that is, using many-to-one model construction. Then, the first 70% of the data (i.e., 0.7T
× (M + 1)) of these sequences are used to form a multidimensional matrix [X1, X2, . . . , Y] T

to perform the machine learning process. Here, M is the number of X vectors, and T is the
number of data contained in each column of X vectors.

Step 5: After the model has captured the nonlinear relationship between X1, X2 . . .
and Y to a considerable extent, the error loss image of the training process is used to judge
whether the training is complete and whether the number of iterations is sufficient. If
the training error loss image no longer decreases, go to step 6. If the image is still not
completely decreased within the limited number of iterations, the number of iteration steps
needs to be increased, and step 4 is repeated.

Step 6: Input the last 30% of strain data into the model to predict the Y sequence and
then denormalize it to obtain the final predicted value of Y.

Step 7: Take the obtained predicted value Y as the new input value X3, together with
the previous input values X1 and X2, to compose a new input matrix [X1, X2, X3]T. The
dynamic strain value of the next adjacent measurement point is used as new “missing”
data to predict the value of Y, and steps S2 to S5 are repeated.
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Step 8: Repeat steps S2 to S7 to predict the time-history data of the “missing” strain
response data of the lightning rod structure.

By comparing the lightning rod strain response time-history data obtained in the
above steps with the strain response time-history data actually measured by the wind
tunnel test, the accuracy of the prediction results can be judged. On this basis, the average
relative error of multiple prediction results is used as the final evaluation indicator for the
prediction model.

4. Example Verification

4.1. Wind Tunnel Test of the Lightning Rod Aeroelastic Model

To study the wind-induced vibration response characteristics of frame–lightning rod
structures, the research group designed and carried out a wind tunnel test of the scaled
aeroelastic model of typical frame lightning rods [1]. Through the wind tunnel test and
fiber grating (FBG) strain measurement technology, the strain response time-history of the
lightning rod structure aeroelastic model under different wind speeds and different wind
directions was measured.

The central wind tunnel during the test is a series double test section return/DC
boundary layer wind tunnel with a height 3.0 m and length 24.0 m. According to the design
theory of aeroelastic models, combined with the structure type of the lightning rods, the
similarity ratios that should be satisfied in the design of the lightning rod aeroelastic model
include the geometric ratio, mass ratio, Froude number, Cauchy number, dimensionless
frequency, and damping ratio. The similar design parameters used in the aeroelastic model
wind tunnel test are shown in Table 1, and the arrangement of one of the models and the
strain measurement points of the FBG sensors is shown in Figure 5.

Table 1. Similarity parameters for the aeroelastic model wind tunnel test (n = 1:10).

Similarity
Parameter

Geometric
Ratio λL

Mass Ratio
λM

Wind Speed
Ratio λU

Flexural
Rigidity Ratio

λEI

Frequency Ratio
λf

Damping Ratio
λζ

Similitude ratio n n3 n0.5 n5 n−0.5 1
Values 1:10 1:1000 1:3.16 1:100,000 3.16:1 1

 
(a) (b) 

Figure 5. Aeroelastic model and strain measurement points. (a) Aeroelastic model. (b) Arrangement
of the FBG sensor strain measurement points.
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The lightning rod aeroelastic model consists of five sections of rods with different
specifications, which are defined as the first section, the second section, the third section, the
fourth section and the fifth section from top to bottom. Measurement points are arranged
at the center of each segment bottom to measure the strain values of the corresponding
measurement points. The side corresponding to the smaller stiffness of the rod is called
the weak axis, which is represented by W. The side with the larger stiffness of the rod is
called the strong axis, which is represented by S. The W-axis measurement points from top
to bottom are W-1, W-2, W-3, W-4, and W-5, and the S-axis measurement points from top to
bottom are S-1, S-2, S-3, S-4, and S-5, respectively, as shown in Figure 5b.

Due to the slender and highly flexible structure of lightning rod aeroelastic models,
light-weight and small-volume sensors are more suitable for wind tunnel tests to avoid
excessive influence on the dynamic response of the model and minimize the measurement
error. Therefore, FBG strain sensors are adopted in the experiment to measure the strain
value at different measurement points of the structure. Figure 6 shows the location of
specific FBG measurement points on the model and the FBG demodulator used in the test.

  
(a) (b) 

Figure 6. FBG measurement point and FBG demodulator. (a) FBG measurement point (red). (b) FBG
demodulator.

During the test, the definition of the wind direction angle is shown in Figure 7. The 0◦
wind direction angle is the case where the windward side is along the W-axis, and the 90◦
wind direction angle is the case where the windward side is along the S-axis. Under a 0◦
wind direction angle, the along-wind vibration response measurement points are located
on the W-axis, and the crosswind vibration response measurement points are located on
the S-axis. The wind speeds during the wind tunnel test are 5 m/s, 6 m/s, 8 m/s, and
10 m/s. According to the similarity ratio of the scaled model, the actual wind speeds of the
corresponding lightning rod structure are 15.81 m/s, 18.97 m/s, 25.30 m/s, and 31.62 m/s.
The above wind speed range not only includes the main wind speed range when the actual
lightning rods work but also includes the extreme wind speed conditions that may occur in
practice. For the convenience of guiding engineering practice, in the subsequent analysis,
the wind speeds considered in this study are expressed in accordance with the actual
wind speeds.

Figure 7. Schematic diagram of the lightning rod wind direction angle.
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4.2. Selection and Processing of Data Samples

The strain values at the ten measurement points under the action of four different
wind speeds (i.e., 15.81 m/s, 18.97 m/s, 25.30 m/s, 31.62 m/s) were sampled. The sampling
frequency and time were 250 Hz and 40 s, respectively. There were 40 samples in total,
and each sample contained 10,000 strain values. The first 70% of all the samples was used
to train the LTSM network model. The remaining 30% of the data in the sample set of
measurement points 1 to 3 were regarded as the “missing” data to test the LTSM network
model. The evaluation indices [41,42] of the model were the root mean square error (RMSE),
the mean absolute error (MAE), the variance accounted for (VAF) and the refined Willmott
index (RWI). When the values of VAF and RWI are close enough to 1 and the values of
RMSE and MAE are close enough to 0, the LSTM model can be considered excellent. The
formulas for calculating the abovementioned indices were as follows:

RMSE =

√
1
n∑n

i=1 (yi − yit)2 (9)

MAE =
1
n∑n

i=1|yi − yit| (10)

VAF = 1 − var(yi − yit)

var(yi)
(11)

RWI = 1 −

n
∑

i=1
|yi − yit|

2
n
∑

i=1
|yi − yn|

(12)

In Formulas (9) to (12), n is the number of test samples, yi is the measured value at
time i, yit is the predicted value at time i, var represents variance, and yn is the average
value of the measured samples.

Meanwhile, the data in the training set and test set can also be normalized to improve
the prediction accuracy and prediction speed. The calculation formula for normalization is:

xnorm =
x − mean

variance
(13)

In Formula (13), mean is the mean of the input samples, and variance is the variance of
the input samples.

Take, as an example, the lightning rod under the action of wind speed 25.30 m/s. A
total of 30,000 data points were selected from the test values of measurement points S-3,
S-4, and S-5 on the strong axis to train and optimize the LTSM network model parameters.
The data of measurement points S-4 and S-5 are used as the input data, and the data of
measurement point S-3 are used as the output data. The measured time-history strain values
of the abovementioned measurement points during the wind tunnel test are demonstrated
in Figure 8.

Figure 8 shows that the time-history data fluctuate greatly in the first 5 s after the start
of the test, and the difference is obvious from the data after that. To make the optimization
of the model parameters more accurate and to minimize the adverse effect of noise data on
the predictive results, the measured data of the first 5 s are removed, and the data from
5 s to 45 s are used for simulation and prediction in the subsequent analysis. The updated
time-history data are shown in Figure 9.
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(a) (b) (c) 

Figure 8. Measured strain time-history diagram of the measurement points of S-3, S-4, S-5. (a) Mea-
sured strain values at measurement point S-3. (b) Measured strain values at measurement point S-5.
(c) Measured strain values at measurement point S-5.

(a) (b) (c)

Figure 9. Updated strain time-history diagram of the measurement points of S-3, S-4, S-5 after noise
elimination. (a) Updated strain values at measurement point S-3. (b) Updated strain values at
measurement point S-5. (c) Updated strain values at measurement point S-5.

4.3. Determination of Model Structure and Parameters

MATLAB 2018a deep learning tools were used to build the predictive models. Due to
the large number and the high dimensions of the measured data, a dropout layer is adopted
to prevent the model from overfitting during the learning process. During analysis, the
parameters of the LSTM model are first determined, and then the influence of different
LSTM layers and hidden units on the prediction results is studied to find the optimal model
parameters, and the basic control variable method is used for analysis.

To ensure that the model fully captures the nonlinear mapping relationship between
the data, the number of iterations is set to 1000, and the initial learning rate is 0.005. The
range of the number of hidden layers is set to 1 to 7, and the range of the number of
hidden units is set to between 50 and 600, with a value interval of 50. The two independent
variables (i.e., number of hidden layers and number of hidden units) are simulated, and
the final fitting result of the three-dimensional surface graph is shown in Figure 10a. At the
same time, to determine the most suitable number of iterations, the root mean square error
(RMSE) of the test set during the training process of the LSTM neural network is counted,
and its descending curve is shown in Figure 10b.
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(a) (b)

Figure 10. RMSE values for different parameters. (a) RMSE surface graph under different parameters.
(b) Changing of RMSE value during the learning process.

From Figure 10a, it can be observed that the RMSE values change with the number
of hidden layers and the number of hidden units. When the number of hidden layers
is 3, the RMSE value is stable between 0.45 and 0.5, and the error is small compared to
other combinations of hidden layers and hidden units. Figure 10b indicates that when
the number of iterations is approximately 1000, the RMSE gradually tends to be stable.
Since the calculation time of the model is positively correlated with the number of hidden
layers, the number of hidden units and the number of iterations, to obtain the best balance
between the calculation time and the calculation results, the optimal number of hidden
units is set to 250, and the number of iterations is set to 1000.

The LSTM neural network model established in this paper includes an input layer
for receiving input data; three LSTM layers for modeling the data; three dropout layers,
with the dropout rate set to 0.2 to prevent data from being overfitted; and an FC layer for
dimensional transformation of the output data.

The Adam optimizer is used in the neural network training process, the threshold
activation function is the σ function, the output activation function is the tanh function,
and the initial learning rate is 0.005. The maximum number of iterations is set to 1000.
The dynamic learning rate is adopted, and the learning rate is reduced by half after every
500 training iterations. At the same time, the weight parameters of the LSTM model are
normalized to prevent data from being overfitted. The parameter for normalization is set
to 0.01. At this point, the neural network parameter training is complete, and the final
optimal network parameters are presented in Table 2.

Table 2. LSTM network parameters.

Layer Type Activation Function Output Shape

Input InputLayer - (none, n, f + 1)
LSTM1 LSTM tanh (none, n, 250)

Dropout1 dropout - 0.2
LSTM2 LSTM tanh (none, n, 250)

Dropout2 dropout - 0.2
LSTM3 LSTM tanh (none, n, 250)

Dropout3 dropout - 0.2
FC Dense Linear (none, s × f)

Note: n is the length of the input time series; s is the length of the output time series; f is the number of degrees of
freedom for prediction.

4.4. Analysis of Wind Vibration Response of Lightning Rod Structure under the Action of Wind
Speed 25.30 m/s

The first four orders of modal frequencies of the lightning rod aeroelastic model
structure are shown in Table 3. To find the weak parts of the lightning rod structure
and identify the positions where the sensors are more likely to damage and cause data
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loss or drift during the test process, a Fourier transform of the strain time-history under
25.3 m/s wind speed and 0 degree wind direction angle is performed. The along-wind and
crosswind vibration strain power spectra of the four measurement points on the upper part
of the structure are shown in Figures 11 and 12, respectively.

Table 3. The first four orders of vibration mode frequencies of the lightning rod aeroelastic model.

Modal Number
Aeroelastic Model Natural Frequency (Hz)

W-Axis S-Axis

1st order 7.95 8.97
2nd order 17.48 19.23
3rd order 43.41 47.49
4th order 64.02 71.84

 
(a) b  

 

(c) (d) 

Figure 11. Along-wind vibration strain power spectrum of each measurement point of the lightning
rod under a wind speed of 25.3 m/s. (a) Along-wind strain power spectrum at measurement point
W-1. (b) Along-wind strain power spectrum at measurement point W-2. (c) Along-wind strain
power spectrum at measurement point W-3. (d) Along-wind strain power spectrum at measurement
point W-4.

Figure 11 shows that the along-wind vibration characteristic of the upper part near
the W-1 measurement point of the lightning rod is the most complex; its vibration response
contains the mode components of the first four orders, with corresponding frequencies of
7.51099 Hz, 17.7699 Hz, 38.9595 Hz, and 64.0572 Hz. The vibration response of the structure
near measurement point W-2 mainly includes the first-, second- and third-order mode
components, while the vibration response of the structure near measurement point W-3
is dominated by the contribution of the first- and second-order modes. By and large, the
high-frequency vibration response of the lightning rod structure mainly occurs in the upper
part of the structure, the vibration is jointly controlled by multiple modes of vibration,

216



Buildings 2023, 13, 1256

and the vibration amplitude becomes stronger with increasing wind speed, while the
vibration of the lower part of the structure is basically dominated by the contribution of the
fundamental vibration mode. Therefore, the sensors at the upper part of the lightning rod
structure are more prone to damage, resulting in data loss or abnormality.

 
(a) (b) 

 
(c) (d) 

Figure 12. Crosswind vibration strain power spectrum of each measurement point of the lightning
rod under a wind speed of 25.3 m/s. (a) Strain power spectrum at measurement point S-1. (b) Strain
power spectrum at measurement point S-2. (c) Strain power spectrum at measurement point S-3.
(d) Strain power spectrum at measurement point S-4.

Figure 12 also shows that the crosswind vibration characteristic of the structure near
the upper measurement points is relatively complex, and its vibration response contains
mode components of the first four orders. The corresponding modal frequencies are
8.18271 Hz, 19.0523 Hz, 41.1578 Hz, and 64.0572 Hz. Under a wind speed of 25.30 m/s,
the high-frequency vibration of the lightning rod near measurement point S-1 is the most
severe, which also indicates the position where exceptional monitoring data are prone to
occur during the test.

4.5. Prediction Results of the Strain Response Data of the Lightning Rod

Based on the LSTM neural network model trained in the previous sections, the along-
wind and crosswind strain response data of measurement points 1 to 5 of the lightning rod
under different wind speeds are adopted to predict the “missing” strain response. Here,
the measured strain response data of measurement points 4 and 5 are used as input data,
and the strains of measurement points 1, 2 and 3 are treated as output data. Using the
simulation method proposed in the above sections, the along-wind and crosswind strain
response data are predicted, and the results are shown in Figures 13–18.

217



Buildings 2023, 13, 1256

(a) (b)

(c) (d)

Figure 13. Comparison of the prediction results and test values of along-wind strain response
at W-1 measurement point of the lightning rod under different wind speeds. (a) Strain values at
measurement point W-1 under a wind speed of 15.81 m/s. (b) Strain values at measurement point
W-1 under a wind speed of 18.97 m/s. (c) Strain values at measurement point W-1 under a wind
speed of 25.30 m/s. (d) Strain values at measurement point W-1 under a wind speed of 31.62 m/s.

(a) (b)

(c) (d)

Figure 14. Comparison of the prediction results and test values of along-wind strain response
at W-2 measurement point of the lightning rod under different wind speeds. (a) Strain values at
measurement point W-2 under a wind speed of 15.81 m/s. (b) Strain values at measurement point
W-2 under a wind speed of 18.97 m/s. (c) Strain values at measurement point W-2 under a wind
speed of 25.30 m/s. (d) Strain values at measurement point W-2 under a wind speed of 31.62 m/s.
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(a) (b)

(c) (d)

Figure 15. Comparison of the prediction results and test values of along-wind strain response
at W-3 measurement point of the lightning rod under different wind speeds. (a) Strain values at
measurement point W-3 under a wind speed of 15.81 m/s. (b) Strain values at measurement point
W-3 under a wind speed of 18.97 m/s. (c) Strain values at measurement point W-3 under a wind
speed of 25.30 m/s. (d) Strain values at measurement point W-3 under a wind speed of 31.62 m/s.

(a) (b)

(c) (d)

Figure 16. Comparison of the prediction results and test values of crosswind strain response at S-1
measurement point of the lightning rod under different wind speeds. (a) Strain values at measurement
point S-1 under a wind speed of 15.81 m/s. (b) Strain values at measurement point S-1 under a wind
speed of 18.97 m/s. (c) Strain values at measurement point S-1 under a wind speed of 25.30 m/s.
(d) Strain values at measurement point S-1 under a wind speed of 31.62 m/s.
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(a) (b)

(c) (d)

Figure 17. Comparison of the prediction results and test values of crosswind strain response at S-2
measurement point of the lightning rod under different wind speeds. (a) Strain values at measurement
point S-2 under a wind speed of 15.81 m/s. (b) Strain values at measurement point S-2 under a wind
speed of 18.97 m/s. (c) Strain values at measurement point S-2 under a wind speed of 25.30 m/s.
(d) Strain values at measurement point S-2 under a wind speed of 31.62 m/s.

(a) (b)

(c) (d)

Figure 18. Comparison of the prediction results and test values of crosswind strain response at S-3
measurement point of the lightning rod under different wind speeds. (a) Strain values at measurement
point S-3 under a wind speed of 15.81 m/s. (b) Strain values at measurement point S-3 under a wind
speed of 18.97 m/s. (c) Strain values at measurement point S-3 under a wind speed of 25.30 m/s.
(d) Strain values at measurement point S-3 under a wind speed of 31.62 m/s.
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Figures 13–18 show that the strain time-history responses at each measurement point
predicted by the LSTM model are in good agreement with the measured values by the
wind tunnel test, regardless of whether under frequently encountered wind speed or
extreme wind speed conditions, indicating that the proposed method in this paper has high
reliability and stability.

In practical engineering, the vibration amplitude of a lightning rod usually increases
with increasing wind speed, which may cause damage to the sensors on the upper part of
the structure under extreme wind speed conditions, resulting in measured data abnormities
or broken data chains. Therefore, it is more meaningful to accurately predict the vibration
response of the structure under the condition of high wind speed.

4.6. Correlation Analysis of the Predictive Data under Extreme Wind Speed Conditions

The above analysis shows that the structural vibration response is most complex and
strongest at measurement points W-1 and S-1 under the extreme wind speed 31.62 m/s.
The sensors in these positions are most likely to fail in actual engineering, resulting in an
incomplete response data chain. To identify whether the proposed prediction method can
meet the needs of engineering applications, a correlation analysis of the predictive data
under extreme wind speed conditions is performed in this study, and the results are shown
in Figure 19. Here, R2 is the coefficient of determination, and the range of its value is 0 to 1.
Moreover, the closer the value of R2 is to 1, the better the data prediction effect.

 
(a) (b) 

Figure 19. Scatter plot and linear fitting diagram of the prediction strain results at measurement
points W-1 and S-1 under a wind speed of 31.62 m/s. (a) Scatter plot and linear fitting diagram of the
predicted data at measurement point W-1. (b) Scatter plot and linear fitting diagram of the predicted
data at measurement point S-1.

It can be seen from Figure 19 that even under extreme wind speed conditions, the
coefficient of determination of the predicted data at the most unfavorable position of the
lightning rod (i.e., measurement point 1) is approximately 0.9, and the predicted and
measured values are evenly distributed on both sides of the fitting curve. There is no
abnormal drift point, indicating that the prediction ability of the model in this paper has a
high guarantee rate and can meet the actual engineering needs. At the same time, with the
help of the unique data feature importance analysis function of the random forest method,
the weight coefficients of different input data features for the prediction results can be
obtained. When predicting the “missing” data at monitoring point 1, four sets of measured
data from measurement point 2 to measurement point 5 were used, and the final analysis
results are shown in Figure 20.
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(a) (b) 

Figure 20. Weight coefficients of the measured data of each measurement point for the predicted
results at measurement point 1 under a wind speed of 31.62 m/s. (a) Weight coefficients of the
measured data at measurement points W-2, W-3, W-4, and W-5 with respect to W-1. (b) Weight
coefficients of the measured data at measurement points S-2, S-3, S-4, and S-5 with respect to S-1.

Figure 20 shows that when predicting the strain response of the lightning rod at
measurement point S-1, the measured data at measurement point S-2 play a decisive
role in the predictive results at measurement point S-1, and its weight coefficient reaches
0.48. The influence of the data of measurement point S-3 on the prediction results of
measurement point S-1 is second only to that of measurement point S-2, and its weight
coefficient is 0.23. The influence of the data of measurement point S-5 and measurement
point S-4 on the prediction results is basically similar, and their weight coefficients are
approximately 0.15. In general, the measured response data of the monitoring points that
are closer to the predicted measurement point have a greater impact on the response of
the predicted measurement point, while the measured response data of monitoring points
that are far from the predicted measurement point have less impact on the response of the
predicted measurement point and are considered ignorable. To compare the precision of
the prediction results of each working condition analyzed in this paper more intuitively,
the RMSE, MAE, RWI and VAF of the prediction results corresponding to each working
condition are also analyzed, and the results are shown in Figures 21–24.

  
(a) (b) 

Figure 21. RMSE values of each measurement point under different wind speeds. (a) RMSE values of
each measurement point on the W-axis. (b) RMSE values of each measurement point on the S-axis.
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(a) (b) 

Figure 22. MAE values of each measurement point under different wind speeds. (a) MAE values of
each measurement point on the W-axis. (b) MAE values of each measurement point on the S-axis.

 
(a) (b) 

Figure 23. RWI values of each measurement point under different wind speeds. (a) RWI values of
each measurement point on the W-axis. (b) RWI values of each measurement point on the S-axis.

 
(a) (b) 

Figure 24. VAF values of each measurement point under different wind speeds. (a) VAF values of
each measurement point on the W-axis. (b) VAF values of each measurement point on the S-axis.

Figures 21 and 22 show that within the wind speed range analyzed in this paper,
the RMSE and MAE values of the prediction results of each measurement point on the
W-axis of the lightning rod show a negative correlation as a whole with the increase in
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wind speed, and under the same wind speed conditions, the RMSE and MAE values of
each measurement point are relatively stable.

Figures 23 and 24 indicate that within the wind speed range analyzed in this paper,
the RWI and VIF values of each measurement point of the lightning rod structure gradually
increase with increasing wind speed and finally tend to 1. On the S-axis side of the lightning
rod, when the wind speed is 25.30 m/s, the prediction precision of the response results
of measurement point S-1 is the highest. For other measurement points on the S-axis, the
prediction precision can still reach an excellent level, which shows that the LSTM model
built in this paper has a certain degree of generalization capability.

5. Conclusions

This paper proposes a method based on an LSTM neural network to predict the
“missing” response data of lightning rod structures under wind-induced vibration. The
prediction of the “missing” strain value of each measurement point in the along-wind
and crosswind directions of the lightning rod under different wind speeds is carried out,
and the random forest method is used to analyze the correlation relationship between the
predicted data and the measured data under extremely high wind speed conditions. The
main conclusions are as follows:

1. The high-frequency and complex response of the lightning rod structure in the along-
wind direction and the crosswind direction mainly occurs near measurement point 1
on the upper part of the structure. Problems such as loss or abnormality of monitoring
data are prone to occur. Therefore, it is important to focus on this measurement point
and prepare for missing data prediction during testing and monitoring.

2. Under the normal working wind speed range of the lightning rod structure, regardless
of whether frequently encountered wind speed or extreme wind speed, the strain
responses of the measurement point predicted by the LSTM model are in good
agreement with the measured values of the wind tunnel test. Even under the case of
an extreme wind speed of 31.62 m/s, the values of RMSE, MAE, R2, RWI and VAF
are 0.24053, 0.18213, 0.94539, 0.88172 and 0.94444, respectively, which are within the
acceptable range, indicating that the LSTM method can better capture the nonlinear
mapping relationship between the strains of each measurement point and has high
reliability and stability.

3. In the structural vibration response prediction, measurement point 2 plays a decisive
role in the prediction result at measurement point 1, while the influence of measure-
ment points 5 and 4 on the prediction results is almost negligible. In general, the
measured response data of the monitoring points that are closer to the predicted
measurement point have a greater impact on the response of the predicted measure-
ment point, while the measured response data of monitoring points that are far from
the predicted measurement point have less impact on the response of the predicted
measurement point and are considered ignorable.

4. Finally, it should be noted that it is necessary to perform more complex processing
on the noise data to make the prediction results more accurate and meet engineering
requirements.
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Abstract: This paper proposes a Bayesian RC-frame finite element model updating (FEMU) and
damage state estimation approach using the nonlinear acceleration time history based on nested
sampling. Numerical RC-frame finite element model (FEM) parameters are selected through nested
sampling, and their probability density is estimated using nonlinear time history. In the first step, we
estimate the error standard deviation and select the FEM parameters that are required to be updated
by FEMU. In the second step, we estimate the probability density of the selected parameters and
realize the FEMU through the resampling method and kernel density estimation (KDE). Additionally,
we propose a damage state estimate approach, which is a derivative method of the FEMU sample.
The numerical results demonstrate that the proposed approach is reliable for the Bayesian FEMU and
damage state estimation using nonlinear time history.

Keywords: Bayesian model updating; structural health monitoring; nested sampling; Bayesian model
selection; finite element model; nonlinear model; damage degree estimation

1. Introduction

The finite element model (FEM) has been widely used in the engineering field, partic-
ularly in civil engineering. The role of FEM is to predict or calculate the relevant response
of structures. Approaches such as incremental dynamics analysis (IDA) and pushover
have been developed from FEM for predicting the structural response and damage in
accidents, particularly in seismic incidents [1–4]. Evidently, FEM is not the same as the
actual structure. Errors, such as noise and material properties in the FEM and the actual
structure, can result in incorrect results of model calculations. Therefore, it is important to
refine the FEM based on the collected structural responses, which is termed finite element
model updating (FEMU). FEMU, as a part of the structural health monitoring and model
updating method, has been developed in recent decades along with many other structural
health monitoring methods [5–10].

Model updating methods are generally divided into deterministic and nondetermin-
istic methods that consider errors. Deterministic methods, such as Machine learning and
Kalman Filter, do not consider the effects of errors; these approaches have been success-
fully applied in updating some simple linear and nonlinear models [11–13]. The key to
a deterministic model updating method is to modify the model and match the results to
the collected response data. However, in the case of complex structures, the difference
and error between the FEM and the actual structure may lead to incorrect results; thus,
we need to consider the error and difference between the FEM and the actual engineering

Buildings 2023, 13, 1281. https://doi.org/10.3390/buildings13051281 https://www.mdpi.com/journal/buildings227



Buildings 2023, 13, 1281

structure when performing FEMU. Bayesian methods have proven to be a successful non-
deterministic approach to model updating considering errors. It has been successfully used
for updating many linear and nonlinear models [14–18].

While performing model updating, we always encounter complex Bayesian poste-
rior distribution problems, which are challenging to solve; particularly, when we use
high-dimensional parameters, time-history response etc. To solve this problem, Beck [19]
proposed the use of Markov chain Monte Carlo (MCMC) sampling for model updating in
2002, and the related methods have been fully developed in recent years [20–25]. In fact, it
remains challenging to use these related MCMC methods to perform model updating when
we encounter high-dimensional parameter problems. Therefore, it is important to find a
way of reducing the number of identified parameters and using more efficient sampling
methods for model updating, especially in FEMU.

In previous studies, in order to solve high-dimensional and complex equation prob-
lems in model updating based on Bayesian methods, they were more likely to use high-
efficiency sampling methods immediately or use complex methods to simplify numerical
models, such as model selection methods [26], individually. Different from other sampling
methods already been used in model updating based on Bayesian methods. This paper
proposed an approach that combined model selection and rapidly sampled from the pos-
terior based on a nested sampling method. The proposed approach not only realized the
number of parameter reductions but also accurately estimated the probability distribution
of the nonlinear model.

The nested sampling method proposed by Skilling [27] is completely different from
the MCMC method, and it has proven to be more than five times more efficient than the
MCMC method [28]. J.Speagle [29] created a package called Dynesty to make it easier to
implement the complex nested sampling method.

The proposed method in this paper is realized by changing the value of the stop
criterion in nested sampling to estimate parameter distribution in two steps. At first,
using minimal values of the stop criterion and the number of live points to do initial
sampling; analyzing and reducing the number of parameters with convergence curves.
Then, using normal values of the stop criterion and the number of live points to do sampling
for the simplified Bayesian equation. In this way, nested sampling will successfully be
used in simplifying the numerical Bayesian model and probability distribution estimation
for FEMU.

This paper realized a 2D RC-frame FEMU and parameter selection using nonlinear
time history with nested sampling. Then, the probability distributions of the selected
parameters were estimated using resampling.

2. Theory Background

2.1. Bayesian Method Based on Nonlinear Time History

In the Bayesian method, the basic formula is as follows [30]:

Posterior = Prior × Likelihood/Evidence (1)

In the equation used in FEMU, Posterior is the distribution of the structural parame-
ters, and its specific description is as follows:

p
(

θ| d̃, M
)
= Posterior (2)

where θ is a set of parameters of the structure and d̃ is the measured data vector we
collected from the structure. In this proposed method, d̃ is the acceleration time history of
the structure and M is the given model. Prior is established through prior knowledge of the
engineering structures, which is usually determined using historical data and engineering
experience. In FEMU, Prior is generally treated as a uniform distribution [31,32]:
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Prior = π(θ) = c (3)

where c is a constant, which is determined using the range of θ.
In Equation (1), Likelihood is established using the measured data vector and output

data vector of the Numerical Model. For a given model M, the error e between the real
collected and output from the Finite Element Model differs from time to time:

e = ỹ − y(θ|M) (4)

where e is the error between the real data ỹ, which is collected from the structure and
simulated acceleration; y(θ |M ), which is outputted from the numerical model. Generally,
the error vector is assumed as a normal distribution whose Mean = 0 and Variance = σ [26].
Therefore, likelihood can be derived as below:

Likelihood = L(θ) = exp

[
∑−||y(θ|M)− ỹ||2

2σ2

]
(5)

Evidence is used to perform model selection [33,34]. This paper proposes another
approach to performing model selection, where it is generally treated as a constant [26].

From the above formulas, the Posterior probability distribution can be derived as:

p
(

θ| d̃, M
)

∝ exp

[
∑−||y(θ|M)− ỹ||2

2σ2

]
(6)

Solving this equation using appropriate sampling methods, we can get the probability
distribution of the parameters.

2.2. Nested Sampling

Nested sampling is a sampling method proposed by Skilling, which is often used in
astronomy to solve high-dimensional Bayesian problems. There are three basic steps to
obtain samples through nested sampling [28]:

1. “Slicing” the posterior into many simpler distributions.
2. Sampling from each of those in turn.
3. Re-combining the results afterwards.

Because step one converts a high-dimensional posterior to a one-dimensional poste-
rior, which makes it easier to solve the high-dimensional problem, such as FEMU, using
nested sampling.

In some cases, nested sampling is used to estimate Evidence for Bayesian model
selection [32]. However, in the FEMU of Civil Engineering, it would take a significant
amount of time to select an appropriate Bayesian model using estimating evidence. This
paper proposes another approach to perform model selection (parameters selection) using
nested sampling but without using evidence.

2.2.1. Basic Overview of Nested Sampling

For the nested sampling approach, the key is to use one other parameter instead of all
the true parameters. The method is shown below:

Z =
∫

Ωθ

L(θ)π(θ)dθ =
∫ 1

0
L(X)dX (7)

Z =
∫

Ωθ

c·L(θ)dθ =
∫ 1

0
L(X)dX (8)
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J. Speagle [28] has listed many mathematical approaches to achieve the transformation
of Equation (8). The prior distribution integral is defined as:

X = X(λ) =
∫

L(θ)≥λ
π(θ)dθ =

∫
L(θ)≥λ

cdθ (9)

Xi(λi−1) =
∫

L(θ)≥λi−1

cdθ (10)

where λi = L(θi) ∝ p
(

θ| d̃, M
)

, and it is the value of likelihood at the i-th time iteration.
To calculate the value of Z faster, the k-th iteration can be simplified as below:

Zk =
k

∑
i=1

(Xi−1 − Xi)Li (11)

where Li is the i-th time iteration value of L(θ). The iteration process gives:

λi > λi−1 (12)

As λ increases, X decreases from 1 to 0:

lim
i→∞

λi = Lmax (13)

0 < XN < . . . < X2 < X1 (14)

2.2.2. Stopping Criterion

Unlike MCMC, nested sampling sets the number of iteration step to stop the sampling
loop, nested sampling stops the loops by controlling the value of Z. The stopping criterion
is as follows:

Δ ln Zk = ln(Zk)− ln(Zk−1) < ε (15)

To obtain a full distribution curve, that is mostly [26–28], the stopping criterion was
set as:

ε = 10−3(K − 1) + 10−2 (16)

If ε is set as an infinite small value in the loop and the number of “live points” is set
very little, the iteration steps will increase significantly. From Equations (13) and (14), we
can easily derive:

λj ≈ λj−1 ≈ Lmax (17)

where j is the number of the last time iterate step. It is a process similar to the maximum
likelihood estimation [35].

2.2.3. Sampling Flow

The details of the nested sampling algorithm flow used in this study are as given
in [28]:

1. Draw K “live” points θK = {θ1, . . . , θk} from the prior π(θ), live points distribution is
the same as prior. In this paper, because prior π(θ) is a uniform distribution, samples
will be selected randomly.

2. Compute the minimum likelihood Lmin among the current set of live points. Record it
as L1, accumulate Z, and record these K “live” points into samples.

3. Add a new point θ′, which is subject to the constraint L(θ′) ≥ Lmin, and replace the
point of Lmin in step 2. Treat the new set of “live” points as θ∗K.

4. Compute whether it meets the stopping criterion. If it does, end this flow. If it does
not, continue this flow.

5. Replace the original θK by θ∗K in step 1, and go back to step 1.
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2.2.4. Re-Combine Samples

As shown in Equation (17), if we set ε = 0.01 and σ = 0.2 [26], we can easily obtain the
real value of the error’s variance σ, similar to the maximum likelihood estimation. Then,
set ε as Equation (16) and the previously calculated real value of σ into the nested sampling
again. After the completion of all the previous processes, samples of all the parameters will
be obtained.

Unlike the MCMC, the samples recorded using nested sampling cannot immediately
calculate the probability distribution through the Kernel density estimation [20,36] (KDE).
These samples are required to be resampled using resampling methods [30,37]. In this
paper, we use the systematic resampling method to reconstruct the samples collected from
nested sampling. [30]

2.2.5. Comparison of Nested Sampling and MCMC in Efficiency

As mentioned before, nested sampling has more advantages in solving complex
Bayesian problems, which MCMC could not. Moreover, because nested sampling does
not have a “Burin-in” process, the efficiency of nested sampling is much more than the
efficiency of the MCMC method. We also make a comparison by using nested sampling and
MCMC to sample a standard Cauchy distribution. The comparison of different methods in
sampling efficiency is analyzed using the sample mean; the result is shown below

Because the target distribution is a standard Cauchy distribution, the mean value of
the sample points should be close to zero and belong to the iteration process. This means if
the sample mean of the iteration process is stabilized to zero more rapidly, then this method
shows that this property is the more efficient method. As shown in Figure 1, the sample
mean of nested sampling has already stably converged to zero at the 100-iteration step, but
the sample mean of MCMC has not converged to zero even at the 500-iteration step. The
result shows that nested sampling is five times more efficient than the MCMC method.

θ

Figure 1. Sample Mean in Iteration Process.

3. Numerical Example

3.1. Two-Dimensional RC-Frame Finite Element Model

For a defined Finite Element Model, if the shape and section are defined and unchange-
able, the only property of the structure that can be updated is the material stress–strain
model parameters. Unlike steel structures, RC-frame structures have more materials and a
more complex stress–strain curve. To prove the advantage of the proposed approach. In
this study, a 2D RC-Frame FEM was created in Opensees as an example [38,39].
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Figure 2a shows an example of the shape of a 2D RC frame. Figure 2b shows the
column and beam sections that built this entire finite element model. Figure 2c,d show how
the column and beam sections were meshed by the core and cover concrete in Opensees.
The compressive strength of concrete is 30 MPa and the tension strength of steel is 400 MPa.
In the column and beam sections, confined and unconfined concrete materials properties
follow the Mander stress–strain model [40], as shown in Figure 3.

 

(a) (b) 

  
(c) (d) 

Figure 2. Two-Dimensional RC-Frame Finite Element Structure (unit: mm). (a) RC-Frame Structure;
(b) Column and Beam sections; (c) Mesh of Column Section; (d) Mesh of Beam Section.

Figure 3. Mander Stress–strain Model.
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The relationship between the parameters in Figure 3 is:

fc =
fccxr

r − 1 + xr (18)

In the Equation (18):

x =
εc

εcc
(19)

εcc = εc0

[
1 + 5

(
fcc

fc0
− 1

)]
(20)

fcc = fc0

⎡⎣−1.254 + 2.254

√
1 +

7.94 f1
′

fc0
− 2

f1
′

fc0

⎤⎦ (21)

r =
Ec

Ec − Esec
(22)

Ec = ec
√

fc0 (23)

Esec =
fcc

εcc
(24)

In the above equations, fc0 is the unconfined concrete peak stress, εc0 is the unconfined
concrete peak strain, fcc and εcc are the confined concrete peak stress and strain, respectively;
Ec is the initial elastic modulus of concrete, Esec is the secant modulus at the peak stress
point; and f1

′ is the effective restraint stress of the hoop reinforcement, which depends on
the shape and strength of hoops:

f1
′ = ke f1 (25)

f1 =
1
2

ρs fyh (26)

For rectangular hoops:

ke =

(
1 − n

∑
i=1

ω′
i

6bcdc

)(
1 − s′

2bc

)(
1 − s′

2dc

)
1 − ρcc

(27)

In the above equations, ρcc is the reinforcement rate of the longitudinal reinforcement
in the core area of the hoop constraint; s′ is the net distance of the hoop; ω′

i is the net
distance of the i-th longitudinal reinforcement; and bc and dc are the distances between the
centerlines of the hoops along the two directions of the constraint concrete section.

After performing the above calculations, these parameters are input to concrete 02 (a
stress–strain rule in Opensees) to build the confined concrete materials.

For these reinforced concrete sections, steel materials properties follow the Giuffré-
Menegotto-Pinto stress–strain model [40] (Steel 02 called in Opensees). Giuffré-nMenegotto-
Pinto stress–strain model has four main parameters, fy, E, R, and Ratio, where fy and E are
the yield strength stress and initial elastic modulus of steel. R is the parameter control for the
transition from elastic to plastic branches, and Ratio is the value of plastic elastic modulus
to the initial elastic modulus. Generally, they are set through a suggested value [41].

Derived from these previous Equations (18)–(27), to build a finite element model, the
initial values of vector θ should be known.

The flowchart in Figure 4 shows how the FEM is built

θ =
{

fc0, ε, fyh, εcu, ec, Fy, E, Ratio
}

(28)
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θ

θ

Figure 4. FEM Build Flowchart.

3.2. Structural Parameter Identification based on Nested Sampling

As shown in Figure 5, the input seismic recorder is I-ELC180 ground motion (obtained
from the 1940 Imperial Valley earthquake at the Array #9 station). To prove the proposed
method as much as possible, amplify the I-ELC180 ground motion PGA to 0.1 g, 0.3 g
and input them into the FEM separately to create two different damage state cases (Case.1
PGA = 0.1 g, Case.2 PGA = 0.3 g). To simulate the acceleration collection in real engineering
structures. The response acceleration data of the structural top story is recorded, and 20%
root mean square (rms) [42] white noise is added to the acceleration to simulate collected
responses in reality. It is easy to derive that, unlike the real structure, all the errors of FEMU
in the numerical examples are oriented from the added white noise.

t T

Figure 5. EL-Centro Ground Motion.

3.2.1. Initial Sampling and Structural Parameters Selection

The simulated acceleration in Figure 5 is input to Equation (6), a large enough sample
range, covering the parameter distributions range, is set to prior. The primary sampling is
started using the method proposed in Section 2. The primary sampling process of different
cases is shown in Figure 6.

In Figure 6a, it is evident that the parameters, such as ε0, fc0, and E0, have significant
convergence in the iterative process, implying that the relationships between ε0, fc0 and
E0 with the collected acceleration are strong. That is because, under the seismic force with
PGA = 0.1 g, acceleration is barely collected with nonlinearity. In Figure 6b, it is evident
that parameters, such as fc0, ε0, Fy, and E0, are apparently gradually converging with

234



Buildings 2023, 13, 1281

the iteration; however, because the acceleration is nonlinear, the samples of fyh, εcu/ε0,
ec, and Ratio are different. Parameters such as Fy affect the nonlinear time history. If we
still insist on updating these parameters without a significant relationship, it will not only
lead to inefficient sampling but may also produce incorrect results. Therefore, in FEMU,
appropriate parameters should be selected for updating.

 
(a) 

(b) 

f c
0 0

f y
h

cu
/
0

e c

F y E 0 Ra
tio

Figure 6. Primary Sampling Process of Different Cases. (a) PGA = 0.1 g; (b) PGA = 0.3 g.

This paper recommends only sampling the parameters that are closely related to the
collected information, such as ε0, fc0, and E0 in Case 1. For the other parameters without
close relationships, this paper recommends setting them as a suggested value.

The suggested value is defined using the historical data and engineering experience
of the structure. For example, in this paper, the concrete which built the FEM was C30, and
the Steel was HRB400. These suggested values in the FEM are shown in Table 1.

Table 1. Suggested Value of Different Parameters.

Parameters Suggested Value

fc0 (×10 MPa) 2.01
ε0 (×10−3) 1.64

fyh (×102 MPa) 4.00
εcu/ε0 7.00

ec (×103) 5.00
Fy (×102 MPa) 4.00
E0 (×105 GPa) 2.06
Ratio (×103) 1.00
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As described in Section 2, the primary sample process is similar to MLE. Therefore, we
can record the last iteration’s acceleration response as yN , and substitute it into Equation (4)
to calculate the standard deviation of error.

As mentioned in Section 2, considering the error as normal distribution and computing
standard deviation, the standard deviation is estimated, which is shown below along with
the true value.

3.2.2. Secondary Sampling

The selected parameters in the primary sampling are input into Equation (6). The
stopping criterion is set as Equation (16). Then, sampling the modified equation as secondary
sampling. The proposed approach is used to calculate the distribution of different parameters.

The results are as follows:
As shown in Figure 7, nested sampling successfully estimates the parameter proba-

bility density of the parameters and provides probabilistic FEM updating. To prove the
reliability of the solution in different cases, this paper converted the error between the most
likely estimated parameters in Figure 7 with true values.

 
(a) 

 
(b) 

fc0 0 Fy E0

Figure 7. Probability distribution of the parameters for different cases. (a) PGA = 0.1 g;
(b) PGA = 0.3 g.

As shown in Tables 2 and 3, the sampling results have a small error of no more than
6% with these true values, implying that the results of the proposed method are reliable.

Table 2. Comparison of the estimate and true value of the standard deviation.

STD Estimated True Error (%)

σ(PGA = 0.1 g) 0.0695 0.0697 0.29

σ(PGA = 0.3 g) 0.2537 0.2535 0.08

236



Buildings 2023, 13, 1281

Table 3. Comparison of the estimate and true parameters.

Case Parameters Estimate True Error (%)

PGA = 0.1 g
fc0(×10 Mpa) 2.01 2.13 5.97

ε0
(×10−3) 1.64 1.66 1.22

E0
(×105 Gpa

)
2.06 2.03 1.46

PGA = 0.3 g

fc0(×10 Mpa) 2.01 2.07 2.99
ε0
(×10−3) 1.64 1.61 1.83

Fy
(×102 Mpa

)
4.00 3.95 1.25

E0
(×105 Gpa

)
2.06 2.04 0.97

3.3. Damage State Estimation

The purpose of FEM updating is to accurately estimate the performances and damage
state under an earthquake.

Mostly, the damage degree of the RC frame buildings is accomplished through the
damage index as other structures. In general, the damage index can estimate the seismic
damage degree of structural components and the whole body quantitatively. In recent years,
a lot of calculated methods of damage index in long-term research have been proposed
for different structures [43–45]. Actually, it is difficult to choose an adequate method to
calculate the damage index, which can capture the damage level of structures using a
single value. In this paper, because the model in the present research is simple, the seismic
damage of the structure was expressed in the form of the Maximum Inter-Story Drift Ratio
(MIDR), which is considered a useful damage index to estimate the RC Frame structural
seismic damage [46].

In the case of RC frame building using MIDR to estimate the damage degree, Masi [47]
proposed a relationship between MIDR and damage degree. As shown in Table 4 below,
the damage state can be determined using the structural MIDR.

Table 4. Relation between the MIDR and damage state [48].

MIDR (%) <0.25 0.25–0.50 0.50–1.00 1.00–1.50 >1.50

Degree of
damage Null Slight Moderate Heavy Destruction

Similar to the parameters, the output responses of the FEM also have probability
density. By inputting the ground motion to the FEM samples recorded in nested sampling
and collecting the output MIDR of different models in samples, the distribution of the
MIDR can be obtained. According to the probability density of the MIDR, the damage state
of a structure’s underground motion can be obtained by integrating the probability density
of the MIDR.

The MIDR probability densities of the 2D RC Frame Structure in different ground
motion cases are shown below.

As shown in Figure 8, the MIDR estimated in Case 1 (PGA = 0.1 g) is in a null-
damage-state MIDR range, and for Case 2 (PGA = 0.3 g), the estimated MIDR is in the
Moderate-damage-state MIDR range; therefore, the estimated damage state probability is
completely 100% Null and Moderate in different cases after the integral.

It’s easy for us to obtain the real Inter-Story Drift Ratio of the defined finite element
model in different cases by Opensees. The output of the real IDR of the structure in different
cases is shown in Figure 9 below.

As shown in Figure 9, the real max inner-story drift ratio and damage state in different
cases are easily classified, and the results are shown in Table 5 below.
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(a) (b) 

Figure 8. Estimation of MIDR. (a) Probability Distribution of MIDR (PGA = 0.1 g); (b) Probability
Distribution of MIDR (PGA = 0.3 g).

 
(a) (b) 

t/s

Figure 9. Structural Real Performances in Different Cases. (a) IDR of Each Story (PGA = 0.1 g);
(b) IDR of Each Story (PGA = 0.3 g).

Table 5. Structural Real MIDR and Damage State.

Case MIDR Damage State

PGA = 0.1 g 0.17 Null
PGA = 0.3 g 0.67 Moderate

As we can see by comparing Figure 8 and Table 5, the real damage degree of the
RC Frame FEM is null and moderate, which is as same as the estimated damage state.
This implies that the proposed approach can successfully estimate the degree of structural
global damage.

Furthermore, we can also calculate the MIDR probability distribution for each story
using these output samples in nested sampling. Because the global damage degree of the
structure, in the case of PGA = 0.1 g is null, there is no need to do further local damage
degree analysis for the structure. Obviously, in the case of PGA = 0.1 g, the damage degree
of each story in the structure is null. In the case of PGA = 0.3 g, the MIDR probability
distribution of each story is calculated and shown below.
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As shown in Figure 10, In the case of PGA = 0.3 g, we can deduce that the second
story of the structure suffered the most serious damage compared with other stories. The
estimated damage degree of the first story is the same as the second story, both are moderate
damage. The third story of the structure estimate MIDR is in the range of 0.25–0.50, so the
estimated damage degree of the third story is slight damage. This is the same as shown
in Figure 9b.

Figure 10. MIDR Probability of Each Story.

Derived from the result, the proposed method can accurately locate the damage
location and the damage state. In this result, it had not shown many probabilistic properties
in estimating the structural damage state. This is because the error in the numerical example
is too low to expand the range of sample distribution. This reason leads to an estimated
results probability of 100%.

4. Conclusions

This paper proposed a FEMU approach by using nested sampling with nonlinear time
history and its application in structural damage estimation. Different from other common
sampling methods, the major advantage of the proposed method is that it can combine
model selection with estimate probability distribution by changing the stop criterion.

The results from the example in different damage cases show that the nested sampling
is reliable in the number of parameters’ reduction and selection without calculated evidence
in different situations. This will help simplify high-dimensional space Bayesian problems
in the future. Moreover, the results also show that the method could be used to estimate
probability distributions by using the nonlinear time history and nonlinear models such
as FEM, which is more advanced than other methods that are based on the Markov chain
Monte Carlo approach.

We have also presented a method for damage probability estimation by using the
samples created using nested sampling. It provided a new method to estimate damage
state and location in probability.

The reliability of the proposed approach has been demonstrated by the numerical
example in different cases. Because a large number of algorithms perform well in numerical
examples but cannot be used in engineering, a real engineering structural example is still
required to prove its application in the future. Future work will consider using the proposed
method in the shaking table test and more complex structures, which have more parameters
to estimate.
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Abstract: Simplifications and theoretical assumptions are usually incorporated into the numerical
modeling of structures. However, these assumptions may reduce the accuracy of the simulation
results. This problem has led to the development of model-updating techniques to minimize the error
between the experimental response and the modeled structure by updating its parameters based
on the observed data. Structural numerical models are typically constructed using a deterministic
approach, whereby a single best-estimated value of each structural parameter is obtained. However,
structural models are often complex and involve many uncertain variables, where a unique solution
that captures all the variability is not possible. Updating techniques using Bayesian Inference (BI)
have been developed to quantify parametric uncertainty in analytical models. This paper presents
the implementation of the BI in the parametric updating of a five-story building model and the
quantification of its associated uncertainty. The Bayesian framework is implemented to update
the model parameters and calculate the covariance matrix of the output parameters based on the
experimental information provided by modal frequencies and mode shapes. The main advantage of
this approach is that the uncertainty in the experimental data is considered by defining the likelihood
function as a multivariate normal distribution, leading to a better representation of the actual
building behavior. The results showed that this Bayesian model-updating approach effectively allows
a statistically rigorous update of the model parameters, characterizing the uncertainty and increasing
confidence in the model’s predictions, which is particularly useful in engineering applications where
model accuracy is critical.

Keywords: modal analysis; Bayesian inference; parametric uncertainty; probabilistic model updating;
full-scale testing; finite element modeling

1. Introduction

Commonly, the mechanical behavior of infrastructure systems is determined through
analytical methods, experimental testing, and field observations. In structural engineering,
modeling uses mathematical and computational techniques to simulate the mechanical
behavior under different load conditions. Deterministic mathematical models are widely
adopted to accurately represent the behavior of real structures while avoiding excessive
computational costs. These models are favored for their ease of manipulation; however,
their accuracy in representing the real behavior of built structures is often limited [1,2].
Therefore, the model-updating methodology attempts to decrease the gap between the
constructed structural system and its structural model’s behavior [3].

The Finite Element Method (FEM) has been extensively applied in structural
engineering [4]. The traditional approach to estimating the parameters of an FE model
is based on a unique result for a given set of inputs, no matter how many times it is re-
calculated. This deterministic modeling approach limits the information obtained from
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experimental data, since the uncertainty associated with each structural parameter is not
included in the analysis [5]. The uncertainty might arise from a combination of factors,
including lack of knowledge, material variability, load changes, measurement errors, and
modeling assumptions [6–8]. Over the years, significant contributions have been made
towards incorporating uncertainty in structural models and their parameters, aiming to
update building code models [9].

The uncertainty may be accounted for using probabilistic methods when statistical
distributions are incorporated, providing more realistic estimations of the structural re-
sponse. Inferential statistics proposes an alternative solution to the deterministic approach
by generating models where the results are given probabilistically. Thus, it is possible to
know how accurate the model outputs are, draw conclusions based on percentages, and
make decisions to develop safer designs [10]. Parametric updating of structural models
often implements the Bayesian over other probabilistic approaches due to the incorporation
of prior knowledge. This technique provides more accurate parameter estimation by ac-
counting for uncertainty and updating beliefs as new information is obtained. Additionally,
it provides a systematic framework for model selection and is able to handle complex
and nonlinear models. Thus, valuable experimental information should be obtained to
feed the models to be updated. Many structural identification methods typically rely
on a deterministic approach, which involves experimental measurement of properties
and estimating unknown or non-measurable model parameters by minimizing an error
function based on these measurements. With this deterministic approach, the information
obtained from tests is limited to the measurements taken and their accuracy, and there is
no consideration of uncertainty or variability in the measurements. On the other hand,
probabilistic approaches such as Bayesian updating take into account uncertainty in the
model parameters and incorporate prior knowledge, which may lead to more accurate and
robust parameter estimation.

Ambient vibration testing is a useful and non-destructive method for measuring
the response of a structure, allowing the estimation of modal parameters. The Bayesian
Inference (BI) approach proposes a methodology to quantify the uncertainty associated
with the model and its input parameters. The information obtained from experimental
tests is augmented using a Bayesian-approached model to quantify the uncertainty in
the data [11]. However, implementing Bayesian model updating with FE models is still
challenging. Updating the model parameters using Bayesian methods requires evaluating
functions multiple times, which might be computationally expensive when dealing with
large FE models. Nonetheless, the development of efficient computational methods and
algorithms continues to advance the application of Bayesian model updating in the field of
structural engineering [12,13].

This paper aims to implement the BI framework for the parametric updating of a
structural FE model based on experimental modal properties. The methodology proposes
quantifying the model’s uncertainty taking into account different kinds of observations
using a multivariate normal likelihood function. The reference structure for implementing
the developed method is a full-scale five-story reinforced concrete building. Specialized
software for performing Bayesian updating of a complex model is utilized. Furthermore,
the software allows cloud-based computational solutions and other techniques to make the
updating process of this computationally expensive model feasible and valuable.

This specific research holds a remarkable significance in the field due to the incorpora-
tion of two innovative approaches: the utilization of test data and the implementation of
iterative calculation of the covariance matrix. The research conducted by Loyola (2018) [14]
highlights that the architecture, engineering, construction, and operation (AECO) indus-
try lags behind in harnessing the potential of big data compared to other sectors. With
limited examples and a lack of practical application, the use of data and Bayesian models
in this study brings a significant contribution to decision-making processes in building
design. Furthermore, the comparison between the iterative calculation of the covariance
matrix and the use of an identity matrix as covariance matrix in the paper represents a
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significant disclosure within the field, contributing valuable insights and paving the way
for further developments.

The organization of this paper is as follows. The Introduction provides an overview of
the research topic and an explanation of its significance. Section 2 presents the Bayesian
inference framework. Section 3 describes the experimental program, including the char-
acteristics of the reference structure and data collection. In Section 4, the implementation
of Bayesian inference in the parametric updating of the reference structure model using
identified modal properties is presented. The results are presented in Section 5, which
involves assessing the behavior of various parametric uncertainties and evaluating the
predictive performance of the updated structural model. Finally, the main findings are
discussed and the potential implications of the implementation of this framework are
considered in the Conclusions.

2. BI in Finite Element Model Updating (FEMU)

A comprehensive understanding of the BI methodology employed in this study re-
quires specific concepts explained in [15–17]. Uncertainty in modeling complex systems
may be classified as epistemic or aleatory. Epistemic uncertainty arises from a lack of
knowledge and might be reduced through improved data and modeling, while aleatory
uncertainty results from inherent variability or randomness and cannot be reduced. There-
fore, it is the epistemic error that we aim to reduce through the implementation of BI in
structural models. BI is based on Bayes’ theorem [18], which is defined as:

P(A | B) =
P(B | A) · P(A)

P(B)
(1)

where P(A|B) is the conditional probability of event A given event B has occurred, P(B|A)
is the conditional probability of event B given event A has occurred, P(A) is the prior
probability of event A, P(B) is the prior probability of event B.

Bayes’ theorem is based on the fundamental principle where laws of probability guide
rational belief. In BI, the probabilities represent degrees of belief rather than frequencies
or long-term averages. This methodology provides a framework for updating beliefs as
more experimental evidence or information becomes available, starting with prior beliefs
and using Bayes’ rule to derive a posterior probability distribution. Therefore, BI provides
a flexible methodology for complex modeling through data and making inferences [19].
Bayesian methods have been widely used in engineering for model updating and uncer-
tainty quantification due to their ability to handle various challenges, such as missing
data, hierarchical structures, nonlinear relationships, and model uncertainty [20–23]. In
particular, BI provides a flexible and robust approach to statistical modeling, making it
ideal for complex engineering problems. The most common form of Bayes’ theorem in this
context is defined as:

P(θ|D, Mj) =
P(D|θ, Mj) · P(θ|Mj)

P(D)
(2)

where P(θ|D, Mj) is the posterior Probability Density Function (PDF) of the parameter
vector θ, for the model Mj, given the evidence P(D). P(θ|Mj) is the a priori probability
distribution, representing the prior belief of the parameters. P(D|θ, Mj) is the conditional
probability where the evidence D is fulfilled given the θ parameters evaluated in the Mj
model. The marginal likelihood P(D), is a normalizing constant that ensures an area equal
to one when the posterior distribution is integrated.

The marginal likelihood in BI becomes more complex as the number of model param-
eters and data points increase, making it computationally expensive. Furthermore, the
complexity of the likelihood function employed in the model can also impact the marginal
likelihood. Since it does not affect the shape of the posterior distribution, it is common to
work with the unnormalized posterior distribution which is proportional to the product of
the prior distribution and the likelihood function, as shown in Zhang and Feissel (2011) [24]:
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P(θ|D, Mj) ∝ P(D|θ, Mj) · P(θ|Mj). (3)

2.1. Likelihood Function

In BI, the likelihood function is a critical component representing the probability of
observing a particular data set given a group of model parameters. To formulate the
likelihood function, it is necessary to assume a probabilistic relationship between the model
predictions and the experimental data, accounting for both aleatory and epistemic uncer-
tainty, as noted by Argyris et al. (2020) [25]. Depending on the characteristics of the data,
different prediction error equations might be used for each type of parameter. The likeli-
hood function is a multivariate normal distribution to account for multiple observations
of the same structure and better characterize the associated errors beyond the updated
parameters. It is well suited for this purpose since it may represent multiple outputs, each
with its own mean and covariance within a single distribution [26,27]. Thus, the likelihood
function φ(x) is defined as follows:

φ(x) =
(

1
2π

)p/2
|Σ|−1/2e(−

1
2 (x−μ)ᵀΣ−1W(x−μ)) (4)

where μ and x are the experimental and model data, respectively. The likelihood function
takes the maximum value when the vector x equals the vector μ. p is the dimension of
the normal distribution. The weight matrix W assigns different values to the obtained
information from the tests and designates relative importance to different parts of the
model or measurement data. The weight matrix may be used to reflect confidence levels in
different parts of the data or different accuracy levels in measurements. Thus, the Bayesian
model-updating approach may provide a more informed estimation of the model param-
eters, considering the weight matrix’s measurements and information. The covariance
matrix Σ is also a fundamental component of the multivariate normal distribution used as
the likelihood function in BI. It characterizes the degree of variability and the relationship
between the different variables in the dataset. In Bayesian model-updating problems, the
covariance matrix plays a fundamental role in capturing the uncertainty associated with
the measurements and the model parameters. A precise and accurate covariance matrix
estimation is necessary to obtain reliable results and make informed decisions based on the
posterior distribution. It is defined as

Σ =

⎡⎢⎢⎢⎣
σ2

1 σ1,2 · · · σ1,n
σ2,1 σ2

2 · · · σ2,n
...

...
. . .

...
σn,1 σn,2 · · · σ2

n

⎤⎥⎥⎥⎦
n×n

(5)

where the diagonal elements of the covariance matrix σ2
i represent the variances of each

variable i in the dataset, while the off-diagonal elements of the covariance matrix σi,j
represent the covariances between pairs of variables i and j in the dataset. The size n is
equal to the number of variables in the dataset. |Σ| is the determinant of the covariance
matrix, and Σ−1 is the inverse of the covariance matrix called the precision matrix, which is
also updated.

Identity Matrix as a Covariance Matrix

This paper presents two approaches for incorporating the covariance matrix into the
likelihood function. The first approach involves computing the covariance matrix for each
iteration, using a Numpy function called numpy.cov(); accessed on 1 April 2023, which
may result in a more precise estimation of the posterior distribution by considering the
unique characteristics of the data. The other approach involves using an identity matrix as
the covariance matrix.
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Assuming an identity matrix as the covariance matrix is a common practice when there
is a lack of prior knowledge about the correlations between model output parameters or
when there is no reason to believe that these correlations are non-zero [28,29]. By assuming
uncorrelated parameters with equal uncertainty, the updating algorithm is simplified,
and the identity matrix may also serve as a starting point for more complex covariance
structures if needed [30]. However, this approach assumes equal variances of observations
across all parameters, which is not always true [31]. This may lead to suboptimal or biased
parameter estimates, and in such scenarios, a more intricate covariance matrix may be
necessary to incorporate the varying variances of observations.

When deciding whether to compute the covariance matrix for each sample or use an
identity matrix, multiple factors must be taken into consideration. In situations with a small
sample size, where the variability of the experimental data is low, it is generally suggested
to compute the covariance matrix for each sample to obtain a more precise estimate of
the posterior distribution [32]. However, in cases where using an identity matrix may
still provide reasonable results offering computational efficiency, it is a commonly used
alternative [33]. Ultimately, the choice between these or another options depends on the
specific needs of the problem being tackled, such as the desired precision of the posterior
distribution and the available computational resources.

3. Experimental Program

3.1. Test Building

The experimental structure consists of a full-scale five-story concrete building tested at
the University of California, San Diego [34]. Based on the coordinate system illustrated in
Figure 1a, the structure consisted of three column and wall axes aligned in the longitudinal
direction (Y direction), and two column and wall axes oriented in the transverse direction
(X direction). The reinforced concrete was poured in situ with a floor area of 6.6 × 11 m
and a mezzanine height of 4.27 m, resulting in a total height of 21.34 m from the top of the
foundation (zero elevation) to the deck [34]. Figure 1 shows the bare and built structure.

(a) (b)
Figure 1. Five-story test building. (a) Bare structure without non-structural elements, (b) Complete structure.

The building had six identical reinforced concrete columns (660 × 460 mm) with a
longitudinal steel ratio (ρ) of 1.42% and a precast welded mesh of 12 mm to 102 mm tie rods
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as transverse reinforcement. Each reinforced concrete slab, 0.2 m thick, was designed with
two-way reinforcement at the top and bottom, and incorporated perforations to enable
the installation of various building services, including plumbing, electrical wiring, fire
sprinklers, sensors, and camera cables. Additionally, the slabs were configured with two
large openings to accommodate an elevator and a stairwell. Two walls placed in the Y-
direction bound the elevator span and are made of reinforced concrete with a 0.15 m thick
reinforcing mesh. These walls also provide additional transversal and torsional stiffness;
thus, one of Y-axis spans of the building was transversely braced at all floor levels with
32 mm diameter steel rods anchored to the concrete slabs above and below. A summary of
the compressive strength and elastic modulus of concrete for a selected number of cylinders
is presented in Table 1 [34].

Table 1. Summary results for compressive concrete cylinder tests before seismic testing.

Element Average f ′c [MPa] Average Ec [GPa]

Columns and walls 57.2 32.6
Slabs and beams 51.7 33.1

3.2. Test and Data Collection

A series of dynamic tests, which included white noise, pulse, and earthquake motions,
were performed on the structure’s base in the horizontal X direction using the shake table.
In addition, Ambient Vibration Tests (AVT) were conducted during the construction of
the test building and during the base excitation testing phases to identify the system. The
test building was subjected to 13 earthquake motion tests, 31 low amplitude white noise
base excitation tests, and 45 pulse-like base excitation tests using the NEES@UCSD shake
table [34].

The natural frequencies and damping ratios associated with ten structural mode
shapes were identified by Pantoli et al. (2016) [35] using AVT data. Two output-only
system identification methods, Data-Driven Stochastic Subspace Identification (SSI-DATA)
and Natural Excitation Technique combined with Eigensystem Realization Algorithm
(NExT-ERA), were utilized for estimating the modal properties of the building. Both
methods assume broad-band and stationary excitation for the AVT data [36]. Among
the ten identified mode shapes, the first three modes and associated frequencies from
SSI-DATA were selected in this study for the Bayesian updating of the parameters. The
identified frequencies for the mode shapes are 1.91 Hz, 1.89 Hz, and 2.66 Hz, corresponding
to the first, second, and third modes, respectively. These mode shapes were classified as
longitudinal, transverse+torsional, and torsional, respectively.

Astroza et al. (2016) [36] utilized the Modal Assurance Criterion (MAC) value to de-
termine that the identified mode shapes from each method were not significantly different,
implying that any alternative method would not have substantially altered the results. The
identified modal properties provided crucial input for further model updating and accurate
structural assessment of the building.

4. Methodology

The general methodology for implementing the Bayesian parametric update in the
model of the five-story building is illustrated in Figure 2. This diagram provides a compre-
hensive overview of the steps involved in the methodology, which will be further elaborated
upon in the subsequent subsections, with a particular emphasis on the critical steps.
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Collect experimental
data

Build the FE model

Perform a global sensi-
tivity analysis

Set the prior distribution
for the model parameters

Define the likelihood
function

Implement cloud com-
puting resources

Perform posterior sam-
pling

Establish convergence
criteria

Assess the goodness-of-
fit

Conduct a posterior pre-
dictive check

Information through physical tests or mon-
itoring systems about the geometry and
response of the structure under considera-
tion.
It includes material properties, geometry,
loads and boundary conditions.
This analysis aids in prioritizing parame-
ters wich are more influential on the model
response, guiding the subsequent updat-
ing process and reducing the number of
significant variables.
The prior distribution represents the initial
knowledge or beliefs about the parameter
values before incorporating the output ex-
perimental data.
A multivariate normal likelihood in
Bayesian inference allows for capturing
correlation and efficient parameter estima-
tion.
The complex nature of Bayesian model up-
dating often requires significant computa-
tional resources.
Employing sampling techniques such as
Markov Chain Monte Carlo (MCMC) to
generate samples from the posterior distri-
bution.
Convergence assessment ensures that the
samples drawn from the MCMC have
reached a stationary distribution.

Statistical measures, visual comparisons,
and hypothesis tests can be used to assess
the level of agreement.

Assessment of the capacity of the updated
model to replicate new observations or gen-
erate synthetic data.

Figure 2. Workflow of the implemented methodology for Bayesian parametric update in the model
of the five-story building.

4.1. Modeling of the Structure

The model presented in this study is built upon the foundation of a previously de-
veloped model by Gutierrez (2020) [37]. The building is modeled in Opensees using a FE
program in Python called Openseespy. Figure 3 shows a graphical representation of the 3D
FE model developed in Openseespy. The structure is first discretized into elements and
nodes. Then, the elements’ shape, type, boundary conditions, and dimensions are defined.
The model consists of 20 input parameters, such as the moduli of elasticity E for beams,
columns, slabs, and walls, and two output parameters, which are the modal coordinates
and frequencies of the first three mode shapes. The selection of these parameters is made
based on the availability of experimental data during the course of this study. This choice
is guided by the aim of utilizing the most pertinent and credible information from the
experimental test. Beams and columns are modeled using the elasticBeamColumn element.
The ShellMITC4 element is used for slabs and walls, which are joined with approximately
750 nodes. The moduli of elasticity are defined as variable parameters in the model. The
beam elements are separated into two groups on each floor: beams on the X-axis and
Y-axis. Each group has the same E per level and a cross-sectional area of 0.22 m2. The
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slabs of each floor are discretized into 184 elements, where each shell element has an elastic
section with a depth of 0.20 m. The 0.19 m side walls are modeled with 80 shell elements,
reaching from the base of the building to the roof. The truss members are modeled with a
fixed E using the UniaxialMaterial element, where steel properties are implemented as an
elastic material. These truss elements are included in the model as fictitious members with
strain-rate effects, making them suitable to include damping in the system [34].

The shear modulus (G) for each of the mentioned structural elements is calculated
indirectly using a function that incorporates Poisson’s ratio (ν) and the modulus of elasticity
(E) (See Equation (6)). The value of ν is set as constant and defined as 0.16 following the
work of Pearson (1999) [38].

G =
E

2(1 + ν)
(6)

A remarkable aspect to consider is that the utilized calibration model may not have
fully accounted for the presence of stiff zones in the joints. In practice, joints introduce
stiffness to the structural system due to the connections and interactions between elements.
However, in the calibration model, these stiffening effects might not have been explicitly
included, leading to an underestimation of the overall stiffness.

In order to address the absence of stiff zones in the joints, the calibration process
indirectly increased the moduli of elasticity for beams and columns. By raising the moduli
of elasticity, the model effectively incorporates the stiffening effects that would be present
in the joints, although in an indirect manner.

Figure 3. Finite element model developed in Openseespy.
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4.2. Global Sensitivity Analysis

As explained in the previous section, the FE model is defined with 20 input parameters,
which are the moduli of elasticity for the structural elements. Before carrying out the
updating process, it is important to investigate which parameters have the most significant
effects on the response that will be subsequently used for estimation. Thus, a one-at-a-time
(OAT) local sensitivity analysis is performed by varying each parameter by ±5% and ±10%
of its corresponding nominal value. Then, the variation effects on the model outputs are
subsequently studied. The responses obtained by perturbing each model’s parameter (i.e.,
keeping the others fixed) are compared with the response obtained with the nominal values
of each parameter (Figure 4).

(a)

(b)

Figure 4. Results of the OAT sensitivity analysis. Note that the number accompanying the letter
S indicates the story where the structural elements are. (a) Changes (%) on natural frequencies
regarding variations on the moduli of elasticity, (b) Changes (%) on mode shapes regarding variations
on the moduli of elasticity.

250



Buildings 2023, 13, 1568

Figure 4a shows that the most sensitive parameters for the frequencies correspond to
the moduli of elasticity of columns, while the least sensitive parameters correspond to the
moduli of elasticity of slabs. However, in the case of mode shapes (Figure 4b), there is no
structural element whose modulus of elasticity parameter is particularly sensitive. The
values presented in Figure 4a,b are obtained through the calculation of the mean squared
error (MSE) using the vector of experimental and model values of the mode shapes and
frequencies. By utilizing this approach, we may assess the level of agreement between the
experimental and model values, providing a comprehensive evaluation of the accuracy
and performance of the model in capturing the experimental data. The sensitivity analysis
results only provide information on the relative importance of the model parameters on
the building’s first three natural frequencies and mode shapes. However, it does not mean
that a higher preponderance is given to some structural elements when performing the
model updating. Hence, a direct comparison of the influence of input parameters in the
model is feasible, particularly in relation to the moduli of elasticity of specific beams such
as the second and third level beams (Beam 3S and Beam 4S, respectively). These beams
exhibit a similar influence on both mode shapes and associated frequencies, allowing for
a meaningful evaluation of their respective contributions. Although the amplitude of
the shape modes does have an influence on the results depicted in Figure 4, it is not the
decisive factor in the regrouping of variables. This is primarily due to the error calculation
method employed in the analysis. These results define a regrouping of the input parameters
to make more efficient use of the available computational resources. The regrouping is
performed with the idea that all parameters included in a subgroup have a single associated
Probability Density Function (PDF). As shown in Table 2, seven groups are defined and
divided based on their PDFs.

Table 2. Parameter regrouping for Bayesian updating of the structural model.

Group Element Previous Nomenclature New Nomenclature

1 Beam—1st Story Ebeam1 Ebeam1Beam—2nd Story Ebeam2

2
Beam—3rd Story Ebeam3

Ebeam2Beam—4th Story Ebeam4
Beam—5th Story Ebeam5

3 Column—1st Story Ecol1 Ecol1Column—2nd Story Ecol2

4
Column—3rd Story Ecol3

Ecol2Column—4th Story Ecol4
Column—5th Story Ecol5

5

Slab—1st Story Eslab1

Eslab1
Slab—2nd Story Eslab2
Slab—3rd Story Eslab3
Slab—4th Story Eslab4
Slab—5th Story Eslab5

6 Wall—1st Story Ewall1 Ewall1Wall—2nd Story Ewall2

7
Wall—3rd Story Ewall3

Ewall2Wall—4th Story Ewall4
Wall—5th Story Ewall5

4.3. Bayesian Updating Algorithm
4.3.1. Likelihood Function Estimation

As the likelihood function serves as a bridge between prior knowledge and new
information, the correct likelihood function depends on the type of data being analyzed
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and the nature of the estimated parameters. There are various forms that the likelihood
function may take, such as normal distributions and gamma distributions, each tailored
to a specific problem. The multivariate normal distribution is chosen because it may ade-
quately capture the relationships between multiple observations, making it well-suited for
modeling complex systems. The multivariate normal distribution also has well-understood
properties for propagation errors and estimating uncertainty, making it a useful tool for
Bayesian model updating. Following the definition made in Equation (4), the vectors x and
μ are expressed with the following configuration:

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1−exp
f2−exp
f3−exp

Φ1,1−exp
...

Φ1,20−exp
Φ2,1−exp

...
Φ2,20−exp
Φ3,1−exp

...
Φ3,20−exp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
63×1

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1−mod
f2−mod
f3−mod

Φ1,1−mod
...

Φ1,20−mod
Φ2,1−mod

...
Φ2,20−mod
Φ3,1−mod

...
Φ3,20−mod

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
63×1

(7)

where fi represents the frequency of the mode shape i, while Φi,j denotes the modal
coordinate j of the mode shape i. The subscripts exp and mod indicate the experimental
and model values, respectively.

The weight matrix W is defined in this study as:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0
0 1 0 0 0 0 . . . 0
0 0 1 0 0 0 . . . 0
0 0 0 1

20 0 0 . . . 0
0 0 0 0 1

20 0 . . . 0
0 0 0 0 0 1

20 . . . 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 . . . 1

20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
63×63

(8)

where the first three values in the diagonal of the matrix contain the weights of the frequency
values associated with the first three mode shapes, and the weights of the modal coordinates
for the first three modes are in the following 60 values. Since there are 20 modal coordinates
for each mode, the respective values are normalized by a factor of 1/20, while the associated
frequencies are multiplied by a factor of 1, thus giving each mode the same weight as its
corresponding frequency.

Following Equation (5), the covariance matrix measures the degree of interdependence
between output variables in a dataset. In the diagonal elements, σ2

i , with i ≤ 3, corresponds
to the variance of the frequency associated with the i mode shape, and i > 3 corresponds to
the variance of respective modal coordinates. The off-diagonal elements are the covariance
between a pair of output variables, whether frequencies or mode shapes.

4.3.2. Posterior Sampling

The model updating is performed using Python together with the following libraries:
Arviz for the exploratory analysis of Bayesian models, Numpy for the implementation
of mathematical functions and linear algebra operators, Bilby for parameter estimation
using BI [39], Matplotlib for plotting, Scipy as a statistical package (probability distribu-
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tions, correlation functions, etc.), Emcee as a sampler of Goodman and Weare’s Markov
chain affine invariant [40], Pandas for data manipulation and analysis, and Openseespy as
Opensees interpreter.

The numerical model updating of the structure aims to estimate the parameter set
of the x vector that maximizes the likelihood function φ(x) (Equation (4)). However, it is
necessary to include the MAC to ensure that the correct modal forms are being compared.
To ensure that a pair of experimental and model mode shapes are comparable, it is necessary
to both normalize the mode shapes and calculate the MAC value between them. Once
the MAC value has been calculated, the mode shapes can be compared, and the highest
MAC value indicates the most similar mode shapes. The covariance matrix is automatically
estimated using the command integrated into the Numpy library.

The numerical model code is included within the main Bayesian updating code to save
resources in data transfer in the system to be worked. The estimations are performed using
a Markov chain Monte Carlo (MCMC) ensemble sampler with 142,000 samples and Log-
Normal distributions as priors for all parameters (Table 3). Values for the prior distributions
are obtained from the experimental data available in [34]. The choice of using a LogNormal
distribution is based on the work conducted by Mirza and MacGregor (1982) [41] and
Nowak and Szerszen (2003) [42]. These studies involved collecting a substantial amount of
data on the compressive strength of concrete, which is closely associated to the modulus of
elasticity. It was observed that the data in both studies exhibited a distribution that could
be reasonably approximated by a LogNormal distribution.

Table 3. Prior distributions for model updating.

Prior Distributions

Parameters Type of Distribution Mean [MPa] Std. Dev. [MPa]

Ebeam1 LogNormal 35,000 9700
Ebeam2 LogNormal 35,000 9700
Ecol1 LogNormal 35,000 9700
Ecol2 LogNormal 35,000 9700
Eslab1 LogNormal 35,000 9700
Ewall1 LogNormal 35,000 9700
Ewall2 LogNormal 35,000 9700

4.4. Cloud Computing as Alternative

One of the main drawbacks faced in this study is the execution time of the Bayesian
updating algorithm. In this case, two variables have the most significant impact on running
time: the quantity of nodes and elements of the FE model and the relatively low sensitivity
between the input parameters and the model’s output. Therefore, the Infrastructure-as-
a-Service (IaaS) cloud computing provided by Google is used based on its scalable and
cost-effective way of using Virtual Machines (VM) on demand, charging them only for the
computing resources leased for a period. Moreover, Google cloud service allows integration
with Google Colaboratory, an open-source Python programming tool used primarily for
machine learning. Natively, Google Colaboratory uses VMs to run the notebook code on
the server. The VM used in this study was the c2-standard-8, which focuses on ultra-high
performance for processing-intensive workloads and is mainly used for workloads linked
to processing. The complete model-updating simulation took about 215 h.

5. Results and Discussions

In this section, it will be presented and compared the results obtained from the two
different approaches for the covariance matrix in the likelihood function: calculating the
covariance matrix at each iteration and using an identity matrix as the covariance matrix,
hereafter, it will be referred to as iterative-approach and identity-approach, respectively.
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By comparing the results obtained from these two approaches, it is possible to assess
their respective strengths and limitations in terms of accuracy, computational efficiency,
and robustness. Such an analysis may help determine which approach is best suited for
a particular problem and may inform the design of future studies involving Bayesian
updating of structural models.

5.1. Convergence Criteria

The convergence of the Markov chains is verified using two methods: evolution of
the Effective Sample Sizes (ESS) and the Markov Chain Standard Error (MCSE). The ESS
measures the efficiency of Monte Carlo methods reaching the number of effective samples
necessary for estimating the posterior distribution of the corresponding parameter to have
enough information to guarantee a satisfactory result according to the evaluator’s crite-
rion [43]. In this case, the limit number that needs to be exceeded to guarantee convergence
according to the method is 400 effective samples [44]. For both, iterative-approach and
identity-approach, using the bulk-ESS and tail-ESS methods, the number of effective sam-
ples obtained in the chain far exceeds the limit, shown in Figure 5, with more than 2000 in
the first case and more than 5000 in the second. In most of the chains, the iterative-approach
shows a slightly faster convergence compared to the identity-approach. This may be due
to the fact that the iterative-approach takes into account the specific characteristics of the
data, allowing for a more precise estimation of the posterior distribution. However, the
difference in convergence speed between the two approaches is so small that it may be
considered negligible.

Figure 5. Evolution of effective sample size (ESS) for posterior sampling.
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On the other hand, the MCSE method is defined as the standard deviation of the chains
divided by their effective sample size [45]. The MCSE provides a quantitative measure
of the magnitude of the estimation noise. Although the acceptable limit is also given at
the discretion of the researcher, the acceptable uncertainty associated with the mean of the
posterior distribution may be taken as a reference (Figure 6). The MCSE results indicate
that there is no significant difference in the precision of estimating the posterior distribution
of the parameters between the two approaches. Thus, both approaches may be considered
equally effective in estimating the posterior distribution.

Figure 6. Markov chain standard error (MCSE) for posterior sampling.

5.2. Numerical Evaluation of the Model Updating

The posterior probability density allows for a detailed analysis of the model parame-
ters, including the identification of the most likely values, the range of uncertainty, and the
correlation between different parameters. Thus, Figure 7 illustrates the final distribution
obtained for each parameter using both approaches. The figure provides a visual represen-
tation of the PDF generated through the respective methods and allows for a comparative
analysis of the results.
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Figure 7. Posterior probability density function and tracing values.
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Figure 8 illustrates that the posterior distributions obtained from both approaches
exhibit significant overlap, indicating that they are almost identical. It depicts the trends
and high-density intervals for each parameter where Ebeam1, Ebeam2, Ecol1, and Ecol2
have a considerably higher modulus of elasticity than Eslab1, Ewall1, and Ewall2. These
plots may effectively highlight data points deviating significantly from the expected trend.
The posterior distribution of the model parameters is found to be highly comparable
between both approaches, indicating that the precision in estimating posterior distributions
is comparable as well. Decision-makers may use this information in designing or assessing
engineering models [46].

Figure 8. Posterior probability density function in forest plot. Gray zone: 94.0% HDI. Iterative-approach.

Figures 9 and 10 with their respective Tables 4 and 5 illustrate the pairwise relationship
between model parameters and their corresponding marginal distributions in a corner plot,
allowing for a visual interpretation of the parameter correlations and providing insights
into the model’s behavior. These figures reveal weak correlations between variables by
both approaches, which may be attributed to the inherent independence of input variables
in FE models.

Table 6 presents Pearson’s correlation coefficients for the posterior distribution of
model parameters obtained from the two approaches: iterative-approach and identity-
approach. The above-the-diagonal values represent the correlation coefficient obtained
from the iterative-approach and the below-the-diagonal values represent the correlation
coefficient obtained from the identity-approach. This table provides valuable information
about the correlation between the posterior distribution of model parameters obtained from
the two approaches, which may be useful for understanding the impact of the covariance
matrix on the estimation of the posterior distribution. The values in bold represent the
largest values for a coefficient between the same parameters. As the results are mixed,
it is difficult to establish a clear correlation between the parameters and either of the
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approaches. Initial regrouping of highly correlated parameters performed in Section 4.2
may have contributed to general weak correlations between the model final parameters.

Figure 9. Corner plot of model parameters. Iterative-approach.

Table 4. Summary of posterior distribution of model parameters. Iterative-approach.

Mean [GPa] SD [GPa] HDI 3% [GPa] HDI 97% [GPa]

Ebeam1 48.93 4.87 39.75 57.99
Ebeam2 48.16 5.27 38.39 58.18
Ecol1 48.14 4.88 38.90 57.23
Ecol2 47.92 5.03 38.60 57.68
Eslab1 38.19 5.00 28.75 47.48
Ewall1 36.23 5.03 26.74 45.66
Ewall2 37.25 4.05 29.50 44.72
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Figure 10. Corner plot of model parameters. Identity-approach.

Table 5. Summary of posterior distribution of model parameters. Identity-approach.

Mean [GPa] SD [GPa] HDI 3% [GPa] HDI 97% [GPa]

Ebeam1 49.22 4.86 40.01 58.25
Ebeam2 48.29 5.15 38.43 57.79
Ecol1 48.55 4.85 39.28 57.54
Ecol2 47.76 4.96 38.59 57.25
Eslab1 38.38 5.04 28.63 47.50
Ewall1 35.55 5.17 25.84 45.34
Ewall2 37.08 4.15 29.20 44.77

This study uses two key parameters to assess the accuracy of the structural response
and the effectiveness of the model updating. First is the Posterior Predictive Check (PPC),
which evaluates the agreement between observed and predicted responses. Second is the
Modal Assurance Criterion (MAC), which quantifies the similarity between experimental
and updated modal properties. Given the similar results obtained from both approaches
in the posterior distributions, either approach will be used interchangeably to compute
the results derived from the posterior distributions going forward. Figure 11a–c show the
results of a subsequent prediction check in which the frequencies predicted by the model
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are compared with the observed data. A PPC is used to evaluate the goodness-of-fit of the
model and the data, involving the generation of new frequency sets based on estimated
model parameters and a comparison to the experimental data. It compares the predictions
generated by the model with the actual observed values (experimental). Analyzing the PPC
plot compared to experimental values helps validate the model’s predictions and provides
insights into its performance and reliability. The results present a good model performance
relative to the experimental data used in the updating process. Specifically, the model’s
predictions closely match the observed data in terms of the frequencies, providing evidence
of the model’s improved accuracy and reliability.

Table 6. Pearson’s Correlation Coefficient for posterior distribution of model parameters. Above the
diagonal: Iterative-approach. Below the diagonal: Identity-approach.

Ebeam1 Ebeam2 Ecol1 Ecol2 Eslab1 Ewall1 Ewall2

Ebeam1 1 −0.01629 0.01 0.02 0.000633 0.009928 0.007501
Ebeam2 −0.000538 1 0.016919 −0.003235 −0.005969 0.00827 0.004841
Ecol1 0.020662 0.005784 1 −0.002967 0.020706 −0.007723 0.021349
Ecol2 0.019176 0.012743 −0.007397 1 0.006645 −0.001015 −0.01976
Eslab1 0.008815 −0.02366 0.017139 0.034489 1 0.012989 0.010983
Ewall1 −0.003382 0.006759 0.026454 0.005082 0.022536 1 0.017236
Ewall2 −0.004593 0.003377 0.024154 0.010754 −0.00095 −0.011894 1

(a)
vspace0.5cm

(b)

(c)

Figure 11. Posterior predictive check and tracing values. (a) Frequency 1, (b) Frequency 2, (c) Fre-
quency 3.

The quality of the mode shape comparison is quantified by the MAC values, where
a value of 1 indicates a perfect match of the mode shapes between the experimental and
FE model. The modal coordinates and associated uncertainties are calibrated using the
posterior distribution of the updated model parameters, followed by a comparison of the
resulting MAC with experimentally identified data. A graphical comparison of the MAC
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matrix calculated for the value corresponding to the prior and posterior distribution of the
modal coordinates is shown in Figure 12. The prior values correspond to the estimated
values for the modal coordinates, which are based exclusively on prior information, and
are not yet updated with any new data or information. The posterior values correspond to
the posterior distribution of the modal coordinates, which means that the estimated values
for the modal coordinates, after the Bayesian updating process, have been incorporated
into the analysis. As shown in the diagonal elements of the MAC matrix, the proposed
updates have significantly improved the fit of the FE model to the experimental results. The
updated MAC values are closer to 1 than the initial values, indicating a closer agreement
between the updated model and the experimental measurements. The good performance
in the MAC fit suggests that this Bayesian model-updating approach effectively captured
the uncertainties and updated the model parameters to match the experimental results.

Figure 12. Prior and posterior MAC PDF.

5.3. Covariance Matrix Analysis

The covariance matrix is a type of matrix that provides insights into the correlation
between frequencies and mode shapes and their associated uncertainties [27]. The shape
and values of the covariance matrix reveal critical structural features such as the degree
of symmetry, the presence of localized modes, and the overall complexity of the vibration
patterns. Through a modification in the source code of the BI library, it is possible to save
the covariance matrix for each sample. The original matrix has a size of 63 × 63; however,
only those corresponding to the first three frequencies are shown in Figure 13. The variance
(main diagonal elements) and covariance (off-diagonal elements) of the frequencies are
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plotted together in this plot. A higher covariance between two natural frequencies indicates
a more significant correlation between the corresponding vibration modes of the structure.

Figure 13. First three rows and columns on the Covariance matrix representing the first three
frequencies of the building.

6. Conclusions

This paper implemented a methodology for updating the structural model parameters
using BI. The modal properties of a five-story full-scale RC building were used to update
the FE model. The parametric uncertainty quantification process and its results were
explained following the proposed methodology. The updating algorithm determined the
posterior probability of the FE model’s parameters and calculated the covariance matrix of
the observations, comparing them with model realizations. The covariance matrix between
observations and the updated model allowed for identifying the error computed through a
multivariate normal likelihood function.

Although, in theory, iteratively calculating the covariance matrix enabled a more com-
prehensive understanding of the system’s behavior, both used approaches for incorporating
the covariance matrix into the Bayesian model-updating framework (identity-approach
and iterative-approach) resulted in similar posterior distributions and convergence rates.
Therefore, in this case, both approaches may be used interchangeably without affecting
the results’ reliability or accuracy. This finding provides a practical advantage in terms of
computational efficiency when dealing with large sample sizes.
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The obtained posterior updating of the input parameters of the FE model corresponds
to distributions similar to normal shapes without clear biases, i.e., approximately symmet-
ric distributions. In all cases, the posterior distributions have a smaller standard deviation
with respect to the prior distributions. Therefore, the error associated with the model
and parameter’s values is smaller than initially assumed. Furthermore, the way the MAC
function was calculated provides valuable information about the reliability of the model
update in terms of mode shapes, highlighting the importance of quantifying the uncer-
tainty associated also with the associated frequency through PPC and its comparison with
experimental data. The proposed methodology may improve the reliability of structural
models and assist in decision-making for the design and assessment of structures.
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