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Preface

This Special Issue examines innovations in mathematics education that improve professional

practice. Professional practice in mathematics education demands explicit attention to equity

(National Council of Teachers of Mathematics (NCTM), 2018). Equitable, meaningful assessment is an

indispensable component of classroom practice; for example, aligning expectations with assessments,

providing multiple forms of assessment, delivering high-quality and consistent feedback, consciously

attending to the influence of biases and assumptions about student ability, and ensuring the

distinction of assessments from grades (Copur-Gencturk et al., 2020; Porter et al., 2007; Webb, 1997).

Equitable classrooms also provide opportunities for students to take on leadership roles in their

learning and the assessment of their learning. In this way, students gain ownership of their learning

and that of their peers. Lessons that promote leadership also promote instructional vision, common

goals, and collective collaboration.

In the classroom, professional practice focuses on developing robust mathematics lessons

that open the conceptual space to all students (e.g., increased student communication, multiple

representations, climate of respect; Sawada et al., 2002) and providing instructional supports to ensure

the success of all students (e.g., additional time; NCTM, 2018).

In ‘Developing a Novel Model for ICT Integration in South African Education: Insights from

TIMSS’, Graham, Kruger, and van Ryneveld begin this Special Issue with an examination of the

opportunity for students in South Africa to use technology for learning mathematics.

Continuing the focus on the use of technology in mathematics education assessment, King,

Bostic, May, and Stone present ‘A Usability Analysis and Consequences of Testing Exploration of

the Problem-Solving Measures–Computer-Adaptive Test’. In this study, they analyze testing validity

of the PSM-CAT test and explore student perceptions of benefits and limitations of the exam.

‘Interactive Homework: A Tool for Parent Engagement’ presents an exploration by Moore

and Ronau on the use of interactive homework for empowering parents to support their child’s

mathematics learning.

In ‘The Impact of the COVID-19 Pandemic upon Mathematics Assessment in Higher Education’,

Fhloinn and Fitzmaurice move the Special Issue from a purely technological focus to examine how

assessment practices were influenced by COVID-19, especially focusing on assessment formats, time

limits, academic integrity, and satisfaction with the assessments.

Continuing this focus on assessment innovation, in ‘(Up)Grading: A (Re)Humanizing

Assessment Process with a Focus on Feedback’, Livers, Harbour, and Sullivan examine a novel

grading approach that values growth in learning and provides students the opportunities to reflect

on their learning experiences and give input on their course grade.

Later, in ‘The Use of Guided Reflections in Learning Proof Writing’, Hoffman, Williams, and

Kephart examine the efficacy of student self-assessment for proof writing as a learning tool and focus

on the growth of student metacognition regarding their proof writing skills.

In ‘Concrete–Representational–Abstract (CRA) Instructional Approach in an Algebra I Inclusion

Class: Knowledge Retention Versus Students’ Perception’, Prosser and Bismarck direct the Special

Issue toward instructional practices to improve mathematics learning. They examine the use of

manipulatives and a sequential instructional framework and its effect on conceptual understanding

and knowledge retention.

Miyauchi and Thamburaj continue the focus on mathematics instruction in ‘Exploratory Study

on Geometric Learning of Students with Blindness in Mainstream Classrooms: Teachers’ Perspectives

vii



Using the Van Hiele Theory’, as they examine geometric learning development trajectories for

students with blindness.

Finally, in ‘Building Mathematics Learning through Inquiry Using Student-Generated Data:

Lessons Learned from Plan–Do–Study–Act Cycles’, Rakes, Wesneski, and Laws conclude the Special

Issue with classroom research conducted by a classroom teacher and teacher candidate. In this study,

they describe how the professional development led them to try new instructional ideas in their

classes and provide example lesson activities for engaging students in mathematics inquiry.

We are pleased to bring you this set of studies to advance the field of mathematics education. We

hope these studies provide a foundation for continuing innovation in the mathematics classroom.

Christopher R. Rakes, Robert N. Ronau, and Jon Saderholm

Guest Editors

viii
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Abstract: ICT integration in the classroom is viewed as a panacea towards resolving education
challenges. A quantitative approach using South African Trends in International Mathematics and
Science Studies (TIMSS) 2019 Grades 5&9 data with a positivist philosophical stance was used to
explore ICT use. For a long time, most school research took the form of small-scale qualitative
studies, such as case studies or critical policy studies; however, research in education has witnessed
an increasing demand for high-quality, large-scale quantitative studies such as the current study.
TIMSS utilised a two-stage stratified cluster sampling design, sampling schools by size and selecting
intact classes. This study focusses on South Africa where 297 schools, 294 mathematics teachers,
and 11,903 students were sampled at Grade 5 level, and, at Grade 9 level, the sample consisted
of 519 schools, 543 mathematics teachers and 20,829 students. More than 50% of students attend
schools lacking computers/tablets, a figure that rises to nearly 90% concerning their availability in
classrooms. Less than half of students attend schools utilising online learning systems or providing
digital resources. Principals in approximately half the schools indicated shortages/inadequacies
in technologically competent staff, and audio-visual and computer technology/software resources.
Approximately 80% of teachers expressed interest in future technology integration training for both
grades when surveyed. Over half of the students lacked home internet access; however, the majority
had access to cell phones and computers/tablets at home. In tailoring this study to the South African
context, a novel model for ICT integration emerged which draws upon the Dynamic Model of
Educational Effectiveness and the TIMSS curriculum model. Recommendations for improving policy
and practice in ICT implementation in schools are structured around the new model.

Keywords: information communication technology; mathematics teaching and learning; TIMSS

1. Introduction

Growing global apprehension surrounds the academic performance of South African
mathematics students in schools. Initiatives such as the Trends in International Mathematics
and Science Studies (TIMSS) aim to delve into various facets of mathematics achievement.
TIMSS measures student performance at Grade 4 and Grade 8 level; however, South Africa
participates at Grade 5 and Grade 9 levels due to its overall low performance in previ-
ous rounds of TIMSS [1]. Among the 64 countries participating in TIMSS 2019 at Grade
5 level, South Africa ranked amongst the lowest, with a score of 374, notably below the
international benchmark of 500 points [2]. At Grade 9 level, among the 39 participating
countries, South Africa ranked second to last with a score of 389 [3]. TIMSS sets a mini-
mum benchmark of 400 points, indicating basic proficiency in mathematics. According to
Reddy et al. [2,3], only 37% of South African Grade 5 students and 41% of South African
Grade 9 students have reached this basic proficiency threshold, suggesting a substantial lack
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of fundamental mathematical knowledge for both grades. The concerning performance of
South African students in mathematics underscores the urgent need for research into what
can be improved within the South African educational system concerning mathematics
teaching and learning (T&L). There is an expectation that integrating Information Commu-
nication Technologies (ICTs) into T&L will translate into better achievement of educational
outcomes across schooling systems [4,5]. This research was initiated as a response to
reports of significant expenditure on integrating ICT for T&L into South African schools [6];
however, evidence suggests that even investing substantial amounts into ICT integration in
South African schools does not significantly improve student achievement [2,3]. This study
hypothesizes that ICT investment has not improved student achievement because ICT
has not been widely and effectively integrated into mathematics instruction. The research
questions (RQs) are: RQ1: What ICTs are being used for mathematics T&L in South Africa?
RQ2: Why are (or are not) certain ICTs being used for mathematics T&L in South Africa?
RQ3: What models can be used to inform the implementation of effective ICT integration
strategies within a South African context? Further investigation into the use of these ICTs in
South African classrooms, and even outside the classrooms by the students, is paramount
to discovering the problem areas, and, in this research, we used TIMSS 2019 data to explore
this matter.

2. Literature Review

The present study builds on a literature foundation describing the benefits of ICT
integration in the teaching and learning of mathematics. It also considers the extent to which
technology has been made available in South African schools and how that technology has
and has not been used. The review concludes with a conceptual framework.

2.1. Importance of ICT Integration in the T&L of Mathematics

Internationally, the benefits of integrating ICTs into the classroom have been empiri-
cally proven and established in recent research conducted in countries such as the United
States [4], Italy [5], Israel [7], Indonesia [8] and Spain [9]. Engelbrecht and Borba [10]
recently published an article on the new developments in using digital technology in
mathematics education. In their article, they discuss various topics from redefined learning
spaces (e.g., flipped classrooms where students are not introduced to new materials within
mathematics lessons but, rather, are expected to work through materials before their lessons
(usually made available online beforehand)), to the use of GeoGebra, student collaboration
through virtual learning environments and social media, Artificial Intelligence (AI) and
hyper-personalisation of learning, and multimodality (e.g., videos, virtual reality (VR),
augmented reality (AR)). The authors highlight the benefits of all these new technologies
but also list some concerns, such as the digital divide (some individuals (typically in low
socio-economic areas) not having access to ICTs). The advantages of ICT integration in
mathematics T&L have been documented by many authors (e.g., [10–12]); however, if one
does not have access to technologies, how can one use them for the T&L of mathemat-
ics? Accordingly, the situation regarding technology diffusion in South African schools is
considered next.

2.2. Technology Diffusion in South African Schools

Regarding technology diffusion, which in the context of the current study refers to the
degree to which technology is present in South African schools, several national-level ICT
initiatives have been implemented, such as the Teacher Laptop project, Sentech Ltd. and
the Telkom Internet Project, which aimed to establish Supercentres in over 1300 schools
equipped with computers, software, internet connections, and rent-free telephone lines.
Initiatives like the eMindset Network and U-Tong portal have been launched to provide
digital content resources via satellite television. eSchoolNet, South Africa’s primary edu-
cator ICT development programme, aims to empower teachers to integrate ICT into the
curriculum confidently. Furthermore, initiatives like Intel Teach to the Future and Microsoft
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Partners in Learning offer training programmes covering basic ICT skills, ICT integra-
tion, peer coaching, and ICT leadership for education managers. Collaborations between
the government and the private sector have led to projects like the Khanya Project and
Gauteng Online, providing ICT-based resources in specific provinces. Ongoing national-
level projects include the development of strategies from the integrated ICT policy review
process, implementation of the SANReN (SANReN stands for “South African National
Research Network”; see [13] for details) and TENET (TENET stands for “Tertiary Education
and Research Network” of South Africa; see [13] for details), the “Broadcasting Digital
Migration Policy for South Africa” (for more details on “Broadcasting Digital Migration
Policy for South Africa”, see [14]), and SA Connect (SA Connect is a “National wide gov-
ernment broadband connectivity project aimed at connecting government facilities” [15]
(para. 1]) [16]. Despite all these initiatives, recent research in South African schools still
reports that many South African schools do not have the necessary ICTs; for example, in
the recent study by Mokotjo and Mokhele [17] on the challenges of integrating GeoGebra in
the T&L of mathematics in South African secondary schools, they reported that there were
insufficient resources in the schools (mostly due to security issues—schools being robbed
and vandalized), causing teachers to become demotivated and disadvantaging students’
learning of mathematics.

South Africa is categorised as an upper–middle–income country with high levels of
compulsory school enrollment and significantly higher annual government expenditure
on education compared to many other nations [6]. The World Bank [6] provides a notable
example: In Sri Lanka, a lower–middle–income country, the average expenditure per
primary school-aged child from 2015 to 2019 was approximately PPP$615; PPP stands
for purchasing power parity. Despite this comparatively modest investment, Sri Lanka
achieved remarkable results, with a learning poverty rate of only 15%. In stark contrast,
South Africa allocated nearly PPP$2400 per primary school-aged child during a similar
timeframe. However, the learning poverty rate in South Africa stood at a staggering 79%.
This figure is akin to that of much poorer Guinea, where the expenditure per child was a
mere PPP$144. Thus, despite significant investment in education, South Africa’s outcomes
are extremely poor, and many students lack basic mathematics skills [2,3]. Accordingly, ICT
use, inside and outside the classroom, by teachers and South African students, at primary
and secondary levels, warrants investigation. While the majority of studies have focused on
the secondary level, investigating ICT use at the primary school level is essential. Acquiring
basic ICT skills at a young age lays the foundation for more advanced ICT literacy skills
later in life. These competencies equip young people for future technological use and
critical reasoning. Accordingly, the next section considers the uses of ICT in South African
mathematics T&L at primary and secondary levels.

2.3. Uses of ICT in South African Mathematics T&L

In South Africa, studies involving primary schools are considered first, followed by
studies in secondary schools. Mwapwele and colleagues [18] analysed the baseline data
from the ICT4E initiative (ICT4E stands for “Information and Communications Technology
for Education”; see [19] for more detail), which encompassed data from 197 teachers from
24 primary and secondary rural schools across seven of the nine provinces of South Africa.
They found that, despite some financial, technical, and digital skills challenges at their
schools, teachers were optimistic about the advantages that ICT integration into T&L could
bring. Mahwai and Wotela [19] also used the ICT4E project data, but only those of rural
schools in Seshego Circuit, and concluded that the promise of successful ICT integration
through this project was unsuccessful as the aims and objectives of the ICT4E project had
not been achieved. In the same year, Dlamini [20] published the results of a large quanti-
tative study (837 respondents from 133 schools) undertaken in Gauteng and concluded
that teachers’ limited technological pedagogical knowledge and limited experience in
integrating computers into the classroom has had a negative impact on ICT uptake; they
used the analytical framework of the Second Information Technology in Education Study

3



Educ. Sci. 2024, 14, 865

(SITES) in their investigation. Ramafi [21] analysed the data from 59 questionnaires and five
interviews collected from public school teachers and identified six factors influencing ICT
use: (i) government support, (ii) security measures provided for the ICT tools, (iii) teacher
efficacy, (iv) learner efficacy, (v) state of ICT tools, (vi) and the use of ICT tools. Graham
and colleagues [22] explored the reasons behind why (or why not) South African primary
and secondary school teachers integrate ICTs in their classrooms using the UTAUT as
a theoretical lens. They concluded that teachers only viewed technology integration as
beneficial when it increased productivity and social influence. Using the same data set,
these authors published a quantitative study one year later that investigated which ICTs
were being used most in South African mathematics classrooms [23]. The researchers
discovered that laptops/computers were the most frequently utilised ICT, with data pro-
jectors following as the next most frequently utilised ICT. They advised that professional
development initiatives should prioritise instructing teachers on how to incorporate ICTs
into their classrooms in a way that requires fundamental pedagogical adjustments.

Some examples of studies that only considered the secondary school level in South
Africa are considered next. Ojo and Adu [24] conducted a study in the Eastern Cape
Province using self-developed questionnaires and data from 450 students and 150 teachers.
It was determined that the most abundant ICT resources in every chosen school were mo-
bile phones, and these were utilised by pupils to exchange ideas and information regarding
their courses and download pertinent information. Chisango and colleagues [25] adopted
a qualitative research approach to explore rural secondary school teachers’ perceptions of
the use of ICTs in T&L and found that although teachers had a positive attitude towards
the adoption of ICTs and were ready to integrate ICTs in T&L, they lacked the requisite ICT
skills. Filita and Jita [26] conducted a study on teachers’ perspectives on ICT integration in
the teaching of Sesotho (one of South Africa’s official languages) by conducting interviews,
using the Technological Pedagogical Content Knowledge (TPACK) framework, and con-
cluded that teachers lacked technological knowledge, and that the lack of Sesotho content
in ICT resources negatively affected ICT adoption. More recently, Zenda and Dlamini [27]
examined the factors that influence teachers’ adoption of ICTs in rural secondary schools
using a survey and found that having ICT infrastructure and a training policy in place were
some of the reasons why teachers adopted ICTs in T&L; the modified UTAUT was used to
guide this investigation. In 2024, Mnisi and colleagues [28] conducted a study in Gauteng
using interviews and open-ended questionnaires with ten teachers and one curriculum
specialist, and concluded that most schools are improving ICT use, but the biggest factor
still hindering ICT integration is a lack of internet access in classrooms, hindering teachers
from making full use of ICTs.

Some examples of studies that only considered the primary school level in South
Africa are considered next. Saal and colleagues [29,30] used Grade 5 TIMSS 2015 data to
explore the use of ICT in T&L in mathematics and found that almost 90% of South African
students were taught by teachers who did not even have computers in their mathematics
classrooms. This is a devasting finding, because they also found students who were in
mathematical classes with computers significantly outperformed those without computers
available to them. These same authors published a qualitative case study at primary school
level, using the UTAUT (UTAUT stands for “Unified Theory of Acceptance and Use of
Technology”; see [31] for more details) as a theoretical lens, to investigate the elements facil-
itating and hindering the integration of educational technology in mathematics education
in economically disadvantaged areas of South Africa, and found that facilitating conditions
(such as adequate technological infrastructure and qualified information technology tech-
nicians), and social influence (such as other teachers using ICTs in their classrooms) had
the greatest impact on actual ICT use in the classroom of all the UTAUT constructs [32];
the interested reader is referred to Saal and colleagues [32] for more details on the UTAUT.
Kolobe and Mihai [33] conducted an investigation into how ICTs are used as an interven-
tion tool for progressed learners in T&L of English First Additional Language in Gauteng
and concluded that ICTs had the potential to reduce failure rates, minimizing the number
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of learners who need to be progressed without meeting promotional requirements; the
TPACK was used as theoretical framework. In a more recent study, Mahlo and Waghid [34]
explored ICT integration among teaching in township public primary schools using lesson
observations and interviews and concluded that the influence of personal conversion fac-
tors (ICT skills obtained through a community of practice and university training), had
created the capabilities for teachers to use ICTs for T&L purposes, although to a limited
extent.

The above literature review considered RQ1: What ICTs are being used for mathemat-
ics T&L in South Africa? RQ2: Why are (or are not) certain ICTs being used for mathematics
T&L in South Africa? RQ3: What models can be used to inform the implementation of
effective ICT integration strategies within a South African context? For RQ1 and RQ2,
studies from many researchers were considered on what ICTs are being used, why they are
(or are not) used (the latter speaking to ICT integration challenges and barriers), whereas,
for RQ3, some of the frameworks and models used to inform effective integration were
mentioned (e.g., TPACK, UTAUT, SITES framework). Moreover, regarding RQ3, some
current studies purely focus on formulating ICT integration frameworks that are effective
within a South African context; for example, ref. [35] formulated an ICT integration frame-
work (described by the authors as an extension of the Technology Acceptance Framework
[TAM]), responsive to the challenges that led to low ICT integration and more effective ICT
integration in Gauteng schools. The literature points to the questions being posed in the
current study as to what, why (or why not) ICTs are being used and what models can be
used to inform ICT integration in South African schools as topical research.

2.4. Conceptual Framework: Towards a Model for the Integration of ICT in School

In tailoring this study to the South African context, an adaptation of the Dynamic
Model of Educational Effectiveness (DMEE) was utilised as the foundational conceptual
framework [36]. (The DMEE’s contextual factors were redefined to incorporate South
African-specific educational policies and ICT provisions, which differ significantly from the
original model’s European context. We tailored the school-level factors to reflect the distinct
challenges related to technology integration faced by South African schools, such as limited
access to digital resources and a lack of technologically competent staff. Classroom-level
factors were adjusted to account for the varied levels of ICT availability in South African
classrooms and the impact of this on teaching and learning practices. The student-level
factors were revised to consider the external influences affecting South African students,
such as socioeconomic barriers to technology access at home) This choice was made
because the delineated levels of educational effectiveness within the DMEE align closely
with the categories outlined in the TIMSS curriculum model [37]. The DMEE endeavours
to delineate the factors correlated with educational effectiveness across four interconnected
levels: context-related factors (e.g., national and regional educational policies), school-
related factors (e.g., teaching and learning policies within schools), factors pertinent to the
classroom and educators, and those related to students themselves [38]. This framework,
illustrated in Figure 1, elucidates the interconnectedness of the DMEE, demonstrating how
each level exerts either a direct or indirect influence on the others within the model.
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Figure 1. The DMEE [39], pp. 77, 150.

Upon reviewing the DMEE [36] alongside the IEA guidelines for researchers utilizing
TIMSS data [40], it became evident that this study must also integrate the research areas
outlined by the IEA when analyzing the TIMSS 2019 data. TIMSS studies are structured
around a curriculum model that emphasises three key dimensions of teaching and learning:
the intended curriculum, the implemented curriculum, and the attained curriculum [37], as
depicted in Figure 2. This curriculum model serves as the cornerstone of TIMSS investigations
and harmonises effectively with the levels of educational effectiveness delineated in the DMEE.

 
Figure 2. The TIMSS curriculum model. Note. Adapted from TIMSS framework of intended
implemented and attained curriculum. Image, by [41]. CC BY-SA 4.0.
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There are four distinct areas of research on which the TIMSS context questionnaires
focus [42] and they are depicted in Table 1.

Table 1. TIMSS context questionnaires research areas.

TIMSS Context Questionnaire Areas of Research

Mathematics curriculum questionnaire
Country context

The mathematics curriculum as established by the Department of Education of
the participating country.

ScQ
School context

The educational environment in which both the student and instructor operate;
this consists of elements like resource accessibility, the perception of safety on
campus, and the support received from school administration.

TQ
Educator and classroom context

The educator’s background and the impact they have on the efficacy of teaching
and learning in the classroom are factors to consider. This encompasses the
educator’s teaching methods, the practical implementation of acquired
knowledge, and their educational credentials.

HQ
Home context

Details concerning educational resources available at home, perspectives on the
parents’ highest level of education and employment circumstances, evaluations
of their child’s school, attendance record in preprimary education programmes,
prioritisation of literacy and numeracy activities at home, and the parents’
literacy and numeracy proficiency at the start of the academic year are all
pertinent information.

StQ
Student context

Student-specific information, including student-related context such as the
student’s home environment, academic motivation and application, and parental
background and support availability, is encompassed within this category.

The relationship between the DMEE, the TIMSS curriculum model and the TIMSS
context questionnaires is depicted in Table 2.

Table 2. Relationship between the DMEE, the TIMSS curriculum model and the TIMSS context
questionnaires and assessment.

DMEE TIMSS Curriculum Model TIMSS Context Questionnaires and Assessment

Context-level factors (country and region) Intended curriculum Mathematics curriculum—Mathematics Curriculum
Questionnaire

School-level factors Implemented curriculum School context—ScQ

Classroom-level factors Implemented curriculum Classroom and educator context—TQ

Home-level factors Implemented curriculum Home context—HQ

Student-level factors Attained curriculum
Student achievement in TIMSS –Mathematics
assessment
Student context and background—StQ

While South African schools adhere to the uniform mathematics curriculum known
as CAPS [43], the approach to implementation and the contextual factors vary greatly
among schools nationwide. Given the diverse demographics of both schools and students,
a simplistic perspective on mathematics achievement would be inadequate. Moreover,
schools and students are embedded within social contexts, necessitating an examination of
TIMSS results within broader community frameworks. The conceptual framework of this
study aims to integrate these complex considerations, as illustrated in Figure 3.

7



Educ. Sci. 2024, 14, 865

 

Figure 3. Conceptual framework of this study as adapted from [37,39].

3. Methodology

3.1. Research Approach and Design

A quantitative approach was followed with a positivist philosophical stance that relied
on measurement and reason, and that knowledge was revealed from neutral and measur-
able (quantifiable) observations. Positivism builds on verifying a-priori hypotheses and
experimentation by operationalizing variables and measures [44]. This study hypothesised
that ICT investment has not improved South African students’ mathematics achievement
because ICT has not been widely and effectively integrated into mathematics instruction
and, using the variables listed in Tables 3 and 4 in Section 4, we aimed to verify this
a-priori hypothesis. The research design is a secondary data analysis [45], as this study
used secondary data from TIMSS 2019. TIMSS data are cross-sectional in nature and not
longitudinal, as TIMSS analyse data from different participants each cycle, i.e., they do not
follow the same group of individuals over time [46]. As the focus of the current study is on
South Africa, a purposive sampling technique [47] from within TIMSS 2019 was used by
only selecting and working with the South African TIMSS 2019 mathematics data.

3.2. Participants

For South Africa, at Grade 5 level, the realised sample was 297 schools, 294 mathe-
matics teachers, and 11,903 students [2]; whereas, at Grade 9 level, the sample consisted of
519 schools, 543 mathematics teachers, and 20,829 students [3]. The TIMSS 2019 employed a
two-stage stratified cluster sampling methodology. In the first stage, schools were selected
based on their size. In the second stage, one or more intact classes from the grade level of
interest from each school that participated were chosen [48].
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3.3. Instruments and Quality Assurance

TIMSS 2019 included a series of context surveys for various stakeholders, which
were used in the present study to investigate the research questions [42]. Specifically,
the principals answered a school questionnaire (ScQ), the teachers answered a teacher
questionnaire (TQ), and the students answered the student questionnaire (StQ). Selected
items from these context questionnaires relating to ICTs were analysed, and the items are
displayed in Tables 3 and 4 in Section 4. All three authors of the manuscript analysed
the context questionnaires, reaching a consensus on which items to use, specifically those
related to ICT use. It should be noted that the selected questions are predominantly
inventory-type (e.g., the number of computers available in the schools) and frequency–of–
use questions (e.g., how often ICTs are used in class), rather than attitude-type questions.
However, there are some opinion-based questions; for example, principals were asked to
indicate how much the school’s capacity to provide instruction is affected by a shortage
or inadequacy of ICTs. This question is not purely inventory-type (i.e., whether the ICT
is available or not), but rather relies on the subjective opinions of principals regarding
the negative impact of potential ICT shortages. These questionnaires were designed
within the framework of the TIMSS curriculum model [37]. In terms of quality assurance,
TIMSS 2019 implemented various measures to ensure the reliability and validity of the
assessment [48,49].

3.4. Data Analysis

The IEA IDB analyzer was used, supported by SPSS, to conduct the statistical analyses,
which included descriptive statistics such as percentages, measures of location (mean,
median), and measures of spread (standard deviation, interquartile range). Questions were
analysed from the ScQ, TQ, and StQ. All variables that were considered, and their responses
at Grade 5 and Grade 9 level, are shown in Tables 3 and 4 of Section 4. Multiple imputation
was used to address missing values because it is widely regarded as the most valid method
of addressing missingness, even when the data are not missing at random [50]. A last note
is, when interpreting the results, it is important to note that, in TIMSS studies, the student
is the unit of analysis; thus, say we interpret the responses of the principals (ScQ), it would
be interpreted as the percentage of students attending the school, and not the number of
principals—the same applies to the TQ answered by the teachers.

4. Results

Tables 3 and 4 display the TIMSS variables considered in the study, along with the
responses at both Grade 5 and Grade 9 level, respectively. Table 3 shows the variables
relating to RQ1: What ICTs are being used for mathematics T&L in South Africa?, whereas
Table 4 shows the variables relating to RQ2: Why are (or are not) certain ICTs being used for
mathematics T&L in South Africa? In Tables 3 and 4, variables with four response options
were simplified to two response options for easier interpretation. The downward arrow ↘
indicates the grouping of the first two response options into one category, while the upward
arrow ↗ indicates the grouping of the last two response options into another category.

Table 3. The TIMSS questions, variable names, and responses relating to RQ1.

TIMSS Question and Variable Name Grade 5 Grade 9

TQ (Grade 5: Answered by 294 Mathematics Teachers; Grade 9: Answered by 543 Mathematics Teachers)

“If yes to having access to a
computer or tablet in class, how
often do you do activities on
computers
during mathematics lessons to
support learning
for”:

“Whole class”
Grade 5: ATBM04CA
Grade 9: BTBM17CA

“Never or almost
never” (17.6%)
“Once or twice a
month” (34.1%)
“Once or twice a
week” (48.3%)
“Every or almost
every day” (0.0%)

↘
↗
↘
↗

Never to 1–2
pm (51.7%)

1–2 pw to
always (48.3%)

“Never or almost
never” (48.4%)
“Once or twice a
month” (24.9%)
“Once or twice a
week” (18.4%)
“Every or almost
every day” (7.9%)

↘
↗
↘
↗

Never to 1–2 pm
(73.7%)

1–2 pw to always
(26.3%)
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Table 3. Cont.

TIMSS Question and Variable Name Grade 5 Grade 9

“If yes to having access to a
computer or tablet in class, how
often do you do activities on
computers
during mathematics lessons to
support learning
for”:

“Low-performing
students”
Grade 5: ATBM04CB
Grade 9: BTBM17CB

“Never or almost
never” (29.8%)
“Once or twice a
month” (31.0%)
“Once or twice a
week” (36.3%)
“Every or almost
every day” (2.9%)

↘
↗
↘
↗

Never to
1–2 pm (60.8%)

1–2 pw to
always (39.2%)

“Never or almost
never” (56.3%)
“Once or twice a
month” (23.8%)
“Once or twice a
week” (7.7%)
“Every or almost
every day” (12.2%)

↘
↗
↘
↗

Never to 1–2 pm
(80.1%)

1–2 pw to always
(19.9%)

“High-performing
students”
Grade 5: ATBM04CC
Grade 9: BTBM17CC

“Never or almost
never” (28.4%)
“Once or twice a
month (21.7%)
“Once or twice a
week” (44.6%)
“Every or almost
every day” (5.3%)

↘
↗
↘
↗

Never to
1–2 pm (50.1%)

1–2 pw to
always (49.9%)

“Never or almost
never” (52.6%)
“Once or twice a
month” (25.0%)
“Once or twice a
week” (14.4%)
“Every or almost
every day” (8.1%)

↘
↗
↘
↗

Never to 1–2 pm
(77.5%)

1–2 pw to always
(22.5%)

“Students with special
needs”
Grade 5: ATBM04CD
Grade 9: BTBM17CD

“Never or almost
never” (38.2%)
“Once or twice a
month” (22.6%)
“Once or twice a
week” (31.0%)
“Every or almost
every day” (8.2%)

↘
↗
↘
↗

Never to
1–2 pm (60.8%)

1–2 pw to
always (39.2%)

“Never or almost
never” (57.0%)
“Once or twice a
month” (20.9%)
“Once or twice a
week” (12.6%)
“Every or almost
every day” (9.5%)

↘
↗
↘
↗

Never to 1–2 pm
(77.9%)

1–2 pw to always
(22.1%)

Note: Never to 1–2 pm = Never to once or twice per month; 1–2 pw to always = Once to twice per week to always.
All direct quotes are from the TIMSS questionnaires [51,52].

Table 1 shows the variables related to RQ1: What ICTs are being used for mathematics
T&L in South Africa? Teachers (using TQ) reported using computers or tablets for T&L
for the whole class more at Grade 5 level (approximately half reported using it “1–2 pw to
always”) as opposed to Grade 9 level where only about a quarter reported using it “1–2 pw
to always”. In Section 3.4, we noted that the student is the unit of analysis, so it is more
accurate to say that, for Grade 5, almost half of the students attended classes where the
teacher used computers or tablets one or two times per week to always. In contrast, only
about a quarter of Grade 9 students were taught in classes where this occurred one or two
times per week to always. Using computers and tablets for low-performing students again
showed a higher percentage of use at Grade 5 level than Grade 9, and a similar pattern is
seen when they reported on the use for high-performing students. When asked about the
use of computers and tablets for students with special needs, again, the Grade 5 percentage
was higher (approximately 40%) when reporting using it “1–2 pw to always” compared to
Grade 9 teachers (approximately 20%).

Table 4. The TIMSS questions, variable names and responses relating to RQ2.

TIMSS Question and Variable Name Grade 5 Grade 9

ScQ (Grade 5: Answered by 297 Principals; Grade 9: Answered by 519 Principals)

“How many computers (including tablets and iPads) does
your school have for use by Grade 5/9 students?”
Grade 5: ACBG07
Grade 9: BCBG07

Mean = 12.26
SD = 20.42
Median = 0.00 *
Interquartile range = 20.00

Mean = 21.79
SD = 42.45
Median = 0.00 **
Interquartile range = 30.00

“Does your school use an online learning management
system to support learning (e.g., educator
–student communication, management of grades, student
access to course materials)?”
Grade 5: ACBG09
Grade 9: BCBG09

Yes (12.6%)
No (87.4%)

Yes (25.5%)
No (74.5%)

“Does your school provide students with access to digital
learning resources (e.g., books, videos)?”
Grade 5: ACBG12
Grade 9: BCBG12

Yes (39.9%)
No (60.1%)

Yes (49.7%)
No (50.3%)
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Table 4. Cont.

TIMSS Question and Variable Name Grade 5 Grade 9

“How much is your
school’s capacity to
provide instruction
affected by a shortage or
inadequacy of”:

“Technologically
competent staff”
Grade 5: ACBG13AF
Grade 9: BCBG13AF

“Not at all” (13.0%)
“A little” (27.6%)
“Some” (40.7%)
“A lot” (18.7%)

↘
↗
↘
↗

None to a little
(40.6%)

Some to a lot
(59.4%)

“Not at all” (13.8%)
“A little” (32.1%)
“Some” (38.8%)
“A lot” (15.2%)

↘
↗
↘
↗

None to a little
(46.0%)

Some to a lot
(54.0%)

“Audiovisual resources for
delivery of instruction
(e.g., interactive white
boards, digital projectors)”
Grade 5: ACBG13AG
Grade 9: BCBG13AG

“Not at all” (29.7%)
“A little” (20.5%)
“Some” (16.3%)
“A lot” (33.5%)

↘
↗
↘
↗

None to a little
(50.2%)

Some to a lot
(49.8%)

“Not at all” (20.8%)
“A little” (27.4%)
“Some” (29.7%)
“A lot” (22.1%)

↘
↗
↘
↗

None to a little
(48.2%)

Some to a lot
(51.8%)

“Computer technology for
teaching and learning (e.g.,
computers or tablets for
student use)”
Grade 5: ACBG13AH
Grade 9: BCBG13AH

“Not at all” (29.7%)
“A little” (19.5%)
“Some” (14.0%)
“A lot” (36.8%)

↘
↗
↘
↗

None to a little
(49.2%)

Some to a lot
(50.8%)

“Not at all” (25.9%)
“A little” (24.7%)
“Some” (25.4%)
“A lot” (24.0%)

↘
↗
↘
↗

None to a little
(50.6%)

Some to a lot
(49.4%)

“Computer
software/applications for
mathematics instruction”
Grade 5: ACBG13BB
Grade 9: BCBG13BB

“Not at all” (29.0%)
“A little” (24.1%)
“Some” (18.8%)
“A lot” (28.1%)

↘
↗
↘
↗

None to a little
(53.1%)

Some to a lot
(46.9%)

“Not at all” (25.2%)
“A little” (25.5%)
“Some” (29.0%)
“A lot” (20.2%)

↘
↗
↘
↗

None to a little
(50.8%)

Some to a lot
(49.2%)

TQ (Grade 5: answered by 294 mathematics teachers; Grade 9: answered by 543 mathematics teachers)

“Students in this class have computers (including tablets)
available to use during their mathematics lessons,”
Grade 5: ATBM04A
Grade 9: BTBM17A

Yes (9.1%)
No (90.9%)

Yes (12.3%)
No (87.7%)

“If yes to having access to a
computer or tablet in class,
what access do they have”:

“Each student has a
computer”
Grade 5: ATBM04BA
Grade 9: BTBM17BA

Yes (4.5%)
No (95.5%)

Yes (21.3%)
No (78.7%)

“The class has computers
that students can share”
Grade 5: ATBM04BB
Grade 9: BTBM17BB

Yes (38.3%)
No (61.7%)

Yes (12.4%)
No (87.6%)

“The school has computers
that the class can use
sometimes”
Grade 5: ATBM04BC
Grade 9: BTBM17BC

Yes (83.6%)
No (16.4%)

Yes (53.7%)
No (46.3%)

“In the past two years, have you participated in
professional development in integrating technology into
mathematics instruction?”
Grade 5: ATBM09AD
Grade 9: BTBM22AD

Yes (44.8%)
No (55.2%)

Yes (50.6%)
No (49.4%)

“Do you need future professional development in
integrating technology into mathematics instruction?”
Grade 5: ATBM09BD
Grade 9: BTBM22BD

Yes (86.1%)
No (13.9%)

Yes (85.0%)
No (15.0%)

StQ (Grade 5: answered by 22,903 students; Grade 9: answered by 20,829 students)

“Do you have any of these
things at your home?”

“A computer or tablet”
Grade 5: ASBG05A
Grade 9: BSBG05A

Yes (56.9%)
No (43.1%)

Yes (52.2%)
No (47.8%)

“Internet connection”
Grade 5: ASBG05D
Grade 9: BSBG05D

Yes (36.2%)
No (63.8%)

Yes (43.0%)
No (57.0%)

“Your own cell phone”
Grade 5: ASBG05E
Grade 9: BSBG05E

Yes (67.8%)
No (32.2%)

Yes (79.1%)
No (20.9%)

“Electricity”
Grade 5: ASBG05G
Grade 9: BSBG05G

Yes (83.5%)
No (15.8%)

Yes (94.0%)
No (6.0%)

Note: Never to 1–2 pm = Never to once or twice per month; 1–2 pw to always = Once to twice per week to always.
All direct quotes are from the TIMSS questionnaires [53–56]. * More than half (59.9%) of responses were zero.
** More than half (52.4%) of responses were zero.

Table 2 shows the variables relating to RQ2: Why are (or are not) certain ICTs being
used for mathematics T&L in South Africa? Many of these questions are inventory-type
questions about whether the ICTs are available in the first place, because a reason for not
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using ICTs could be not having access to them. There are also some questions about teacher
professional development because if a teacher does not know how to use ICTs, they most
probably will not use them. For school-level (TQ [Table 3] and ScQ [Table 4]), the ScQ will
be considered first and it can be seen that the average number of computers (including
tablets and iPads) available to Grade 5 students (mean = 12.26) is significantly lower than
for Grade 9 students (mean = 21.79); however, the median is the same for both grades
with the median of zero indicating that, for both Grade 5 and Grade 9, more than half
of the responses were that there are zero computers available to students. Recall that, in
Section 3.4, we mentioned that the student is the unit of analysis, so, using the percentages,
the more accurate way of reporting these results would be to say that 59.9% of Grade 5
students attended classes where the principals reported there were no computers available
to students, whereas this percentage is 52.4% for the Grade 9 learners. Regarding the use of
online learning management systems to support learning, Grade 9 (25.5%) indicated higher
usage compared to Grade 5 (12.6%). Recall that, in Section 3.4, we mentioned that the
student is the unit of analysis, so the more accurate way of reporting these results would
be to say that about one quarter of Grade 9 students attended class where the principals
reported that the schools are using online learning management systems, compared to only
12.6% of Grade 5 students. When asked whether the school provides students with digital
learning resources, almost 40% of Grade 5 students attended schools where this is the
case, whereas, for Grade 9, this percentage was approximately 50%. When principals were
questioned about how much their schools’ capacity to provide instruction is affected by a
shortage of different things related to technology, for both grades, the ratios were about
50–50 for all technology-related concepts (technologically competent staff, audio-visual
and computer technology/software resources) indicating about a 50–50 split between them
affecting instruction and not affecting instruction. Next, the responses to the TQ are consid-
ered. For Grade 5, approximately 90% of students attended mathematics lessons with no
computers (including tablets) available in the mathematics classrooms, and this percentage
was also approximately 90% for Grade 9. When asked whether teachers participated in
professional development in integrating technology into mathematics instruction in the
past two years, the responses were roughly 50–50 for both grades; however, this ratio
changed dramatically when teachers were asked whether they would like to go for future
professional development on this topic, where the ratio is approximately 20–80 for no–yes
for both grades. For the student-level (StQ [Table 4]), for both grades, the majority of
students had access to electricity at home. Regarding internet access at home, for both
grades, more than half of the students indicated that they did not have it. When asked
whether they owned a computer (or tablet) and their own cell phone, the percentage for
cell phones was higher for both grades than for a computer/tablet, with all the percentage
yes responses being above 50%, meaning more than half of Grade 5 and Grade 9 students
had a computer/tablet and cell phone at home.

For RQ3, “What models can be used to inform the implementation of effective ICT
integration strategies within a South African context?,” there were no TIMSS questions that
addressed this question; however, different models were considered in Section 2.1 using
the available literature, and, during our study, a novel model for incorporating ICT into
schools emerged, which are considered and discussed in detail in Sections 2.2 and 6.

5. Discussion

For RQ1, “What ICTs are being used for mathematics T&L in South Africa?”, the results
showed that computers and tablets were being used more often at Grade 5 level as opposed
to Grade 9 level. These results could be attributed to the fact that many studies have
shown the benefit of ICT integration in T&L for younger learners [57,58]. Unfortunately,
the percentage use of other ICTs (e.g., interactive whiteboards) can not be discussed, as the
TIMSS instruments do not go into that level of detail regarding ICT use.

For RQ2, “Why are (or are not) certain ICTs being used for mathematics T&L in South
Africa?”, the reasons seem to be three-fold. Many South African schools do not have
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access to ICTs (Reason 1), many students do not have access to ICTs at home (Reason 2),
and teachers do not know how to integrate ICTs into T&L properly (Reason 3). Reason 1
was derived from the principals’ responses for both Grade 5 and Grade 9, which made it
evident that more than half of South African students are attending schools where there
are no computers or tablets available. These results are concerning, given the substantial
investment in ICT procurement, as they point to the fact that funds have not been fully
utilised in their intended way which warrants investigation into how these funds were
spent. When reporting on the use of online learning management systems to support
learning and whether the school provided students with digital learning resources, very
low percentages were reported by principals. Again, these low percentages, considering
the financial investments made [6,16], are troubling. For Reason 2, although South African
students have access to electricity at home, other ICT-related issues came to light; for
example, regarding internet access at home, it is concerning that, for both grades, more
than half of the students indicated that they do not have it. It should be noted that
electricity was included in the analysis due to South Africa’s ongoing electricity issues,
which negatively affects the educational milieu [59]; one cannot use technology without
electricity. For Reason 3, it came to light that many teachers expressed the desire to
attend more professional development programmes on integrating ICTs in mathematics
instruction and that approximately only half of teachers had undergone recent training
in it. Similar results of South African teachers needing more professional development in
ICT integration have been found by other researchers [22,28]. These conditions should be
alarming to all stakeholders because they highlight significant gaps in the effective use of
ICTs for mathematics teaching and learning.

For RQ3, “What models can be used to inform the implementation of effective ICT
integration strategies within a South African context?,” there were no relevant questions
in the TIMSS dataset. However, various models and frameworks (e.g., TPACK, UTAUT,
SITES framework) were reviewed in Section 2.1 based on the existing literature. Addition-
ally, during our study, a new model for incorporating ICT into schools emerged, which
draws upon the Dynamic Model of Educational Effectiveness and the TIMSS curriculum
model. This novel model is thoroughly examined and discussed in Sections 2.2 and 6. We
believe this model advances the theoretical framework for ICT integration in South African
schools, as no single model has proven to be entirely effective. Organised around the Four
Zones Model, recommendations emphasise the need for tailored support and continuous
professional development at all levels of the education system. National and provincial
education departments must provide substantial support and contextualised resources to
schools, while school management should ensure equitable access to ICT resources and
implement designated time slots for their use. Educators require targeted professional
development programs focusing on fundamental computer literacy and practical aspects
of ICT integration, while students should have access to high-quality educational software
and equitable opportunities for engagement. By implementing these recommendations,
South African schools can effectively harness the potential of ICT to enhance T&L outcomes,
preparing students for success in a technology-driven society.

6. Improving the Integration of ICT in Schools to Show an Increased Educational
Return on Investment

Upon analysing the research findings within the framework of this study, a novel
model for incorporating ICT into schools emerged. This model draws upon the Dynamic
Model of Educational Effectiveness (DMEE) by [36] and the TIMSS curriculum model [37].
Its objective is to guide the integration of ICT for T&L in schools by delineating distinct
zones of impact, key stakeholders, and curriculum expectations throughout the ICT imple-
mentation process. This proposed model, termed the “Four Zones Model for the Integration
of ICT in Schools” (Four Zones Model), is illustrated in Figure 4.
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Figure 4. The Four Zones Model.

Structured around four zones of impact akin to those identified by Creemers and Kyri-
akides [39], the Four Zones Model comprises the Context Zone, School Zone, Classroom
Zone, and Personal Zone. Each zone is associated with specific curriculum expectations
mirroring those outlined in the TIMSS curriculum by the IEA [37], namely the Expected
Curriculum, Real-world Curriculum, Operational Curriculum, and Realised Curriculum.
Additionally, the model delineates phases essential for successful ICT integration in teach-
ing and learning environments, as identified through an examination of the roles and
responsibilities within each impact zone. ICT integration and implementation, outlined
in the Four Zones Model, include the Initiation Phase, Implementation Phase, Integration
Phase, and Application Phase.

The initial stage of the Four Zones Model is termed the Initiation Phase, situated
within the Context Zone. This phase encompasses the functions and duties of national and
provincial Departments of Education. These departments play a pivotal role in establishing
a conducive policy and legal framework to facilitate the integration of ICT within schools.
Given the limited financial resources of many schools to acquire ICT resources for edu-
cational purposes, this study underscores the imperative for Departments of Education
to spearhead the distribution of ICT infrastructure to schools. Additionally, within the
Context Zone lies the delineation of the Expected Curriculum, which embodies the official
curriculum sanctioned by the Departments of Education.

The second stage in the Four Zones Model is termed the Implementation Phase, sit-
uated within the School Zone, delineating the responsibilities of school principals and
management. Within this phase, school management holds the pivotal role of fostering an
environment conducive to ICT integration through the formulation of school policies and
protocols that facilitate its effective utilisation. Findings from this study suggest instances
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where, despite the presence of ICT infrastructure within schools, its integration into T&L
processes remained limited. Many educators, despite undergoing professional develop-
ment interventions, seemed unable to apply acquired knowledge in practice. Establishing
an enabling environment for ICT integration may involve seemingly straightforward mea-
sures such as ensuring equitable access to computer facilities by scheduling dedicated
time for each class. Moreover, school management bears the responsibility of arranging
necessary support for ICT users, which could be as simple as assigning an enthusiastic
staff member to oversee ICT assistance. Additionally, an often-overlooked necessity is the
provision of additional time for educators to plan and implement ICT integration into their
lessons. School management could address this need by recognising ICT planning and im-
plementation as a designated extracurricular activity, allowing educators the requisite time.
Within the School Zone, the Real-world Curriculum is outlined, reflecting the curriculum’s
implementation guided by school-specific policies, procedures, and supportive structures.

The third stage within the Four Zones Model, known as the Integration Phase, holds
paramount significance as it marks the operationalisation of ICT integration. Nestled
within the Classroom Zone, this phase delineates the duties and obligations of educators
within their classrooms. The incorporation of ICT into the school curriculum represents a
novel undertaking for most educational institutions, necessitating educators to revise their
existing lesson plans to accommodate ICT integration seamlessly. Following the planning
stage, educators assume the responsibility of delivering lessons utilising newly devised
ICT activities. Moreover, educators are tasked with providing technical support to students
encountering challenges while utilising ICT to fulfill assigned tasks. Findings from this
study indicate that, although many educators exhibit enthusiasm towards ICT integration
in T&L, and participate in professional development initiatives, such interventions often
fall short in adequately preparing educators for the practical realities of integrating ICT
into their pedagogical practices. Within the Classroom Zone, the Operational Curriculum is
outlined, reflecting the curriculum as implemented by educators within the school setting.

The final stage in the Four Zones Model is the Application Phase, situated within
the Personal Zone, elucidating the roles and obligations of students within and outside
the classroom environment. With ICT integration, the dynamics of T&L shift from being
centered on educators to becoming centered on students. Consequently, students are
entrusted with the responsibility of taking charge of their own educational journey. Within
the Personal Zone, the Realised Curriculum is delineated, representing the curriculum as
grasped and achieved by students. It serves as the culmination of the Expected Curriculum,
embodying the ultimate outcome of the educational process.

The Four Zones Model endeavours to address the prevalent issue of ambiguity sur-
rounding the roles and responsibilities of various stakeholders involved in the integration
of ICT within schools. While originally conceptualised within the context of South African
education, the model possesses a level of generality that renders it adaptable to diverse
educational settings beyond South Africa. Hence, it is recommended that the Four Zones
Model be regarded as a guiding framework for forthcoming ICT integration projects
within schools.

6.1. Reliability of the Four Zones Model

The researchers have engaged in discussions with domain experts in educational
technology and policy-making to critique and refine the model. This expert feedback is
being systematically incorporated to strengthen the model’s consistency and application
potential. A series of hypothetical applications of the model to past ICT integration projects
are being undertaken. By examining how the model would have functioned in these
well-documented instances, we aim to assess its reliability in various educational settings.

6.2. Validity of the Four Zones Model

We have more deeply grounded the model in the existing literature and theories of
educational technology adoption, such as the Technology Acceptance Model (TAM) and
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the Unified Theory of Acceptance and Use of Technology (UTAUT), to establish its face
and content validity. The model has also been subjected to scrutiny by a panel of experts
in ICT in education, who have provided insights and recommendations to ensure that it
adequately represents the complex dynamics of ICT integration in schools.

7. Recommendations for Improved Implementation of ICT in Schools

Recommendations for improved policy and practice in the implementation of ICT in
schools are organised according to the four zones of impact as identified in the proposed
“Four Zones Model for the Integration of ICT in Schools”. The zones identified are the
Context Zone, the School Zone, the Classroom Zone and the Personal Zone.

7.1. The Context Zone (National and Provincial Departments of Education)

It is evident that schools require substantial support from both national and provincial
education departments when implementing ICT hardware and software. The selection of
educational software must be tailored to meet the specific educational needs of students
in each school, rather than adopting a uniform solution for all schools within a province.
Furthermore, contextualising educational software is essential to ensure that students can
relate to the content, language, and assessment methods employed. For large-scale ICT
projects in education, continuous technical and academic support should be provided to
schools and educators to facilitate the seamless integration of educational software into
regular classroom practices.

7.2. The School Zone (Principals and School Management)

According to the conclusions drawn from this study, it appears that school principals
require distinct professional development initiatives for effectively integrating ICT into the
school curriculum, differing from those tailored for educators. Many principals demon-
strate a lack of clarity regarding their role in implementing ICT integration within the
curriculum and struggle to recognise the potential positive impacts of ICT on T&L within
their schools. Additionally, their leadership in promoting the integration and utilisation of
ICT in T&L appears inadequate when they themselves lack a comprehensive understand-
ing of ICT integration. Considering the substantial financial investment required for ICT
implementation, it becomes imperative for school management to assume responsibility
for the effective utilisation of ICT resources. It is incumbent upon school management
to administer the school’s ICT resources in a manner that ensures equitable access for all
educators and classes. Implementing a weekly designated time slot within the formal
school timetable could be a practical solution to ensure each class receives fair access to the
school’s ICT equipment.

7.3. The Classroom Zone (Educators)

Initiating professional development programs for educators concerning ICT inte-
gration within the school curriculum should commence with addressing fundamental
computer literacy and skills. It is crucial for educators to feel at ease with computer usage
for personal tasks, as lacking this confidence may impede their ability to effectively inte-
grate ICT into their teaching practices. There is a pressing need to enhance opportunities
for professional development among educators concerning ICT integration within the
school curriculum. The observed number of educators who reported non-attendance at
professional development activities underscores this urgency. Centralised management of
these professional development initiatives by national or provincial education departments
could ensure equitable access for all educators. Professional development interventions for
educators must prioritise practical aspects of ICT integration within the school curriculum
and incorporate workplace-based support.
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7.4. The Personal Zone (Students)

Regular use of ICT is essential for students to cultivate non-academic skills essential
for active engagement in the knowledge-driven society awaiting them beyond school. Nev-
ertheless, many students lack access to computers at home, underscoring the responsibility
of education departments and schools to provide access to computers and software during
school hours. Educational software must be tailored to the educational level of students
within each school, and students should have sufficient time allocated for engaging with
high-quality educational software. The more time students spend with high-quality educa-
tional software, the greater the likelihood of meaningful learning and improved academic
achievement. Thus, it is incumbent upon school management to ensure equitable access to
ICT resources for all students within the school environment.

8. Limitations

A limitation of the current study is that a secondary data analysis was conducted.
Conducting a secondary data analysis presents several limitations that researchers must
consider. Firstly, the original data may not have been collected with the specific research
questions in mind, leading to potential gaps in the dataset that may hinder comprehen-
sive analysis. Additionally, the quality of the data may vary, as it relies on the accuracy
and reliability of the original data collection methods and procedures. Researchers may
encounter issues with missing or incomplete data, inconsistencies in data coding, or inac-
curacies in measurements, all of which can compromise the reliability and validity of the
findings. Furthermore, secondary data analysis may limit researchers’ ability to control
for confounding variables or explore alternative explanations for observed phenomena, as
they have no control over the data collection process. These limitations were mitigated by
thoroughly studying the TIMSS booklets and familiarising ourselves with all the steps and
procedures followed by the TIMSS researchers.

9. Conclusions

While our study is grounded in the specific context of South African schools, the
findings and implications carry broader significance for several reasons. The obstacles
and successes identified in the South African context often mirror those in other emerging
economies and even in under-resourced areas of developed countries. The strategies and
models we propose can be informative for similar contexts where educational technology
integration is a work in progress. Furthermore, the Four Zones Model, though developed
within the South African framework, is designed with adaptability in mind. It is based on
universal principles of ICT integration that are relevant to diverse educational settings. We
anticipate that the model can be adjusted to suit different regional and cultural contexts.
Finally, the trends and patterns in ICT use we have identified contribute to the global
discourse on educational technology. Our research adds to the understanding of how ICT
can influence educational outcomes, which is a subject of international concern.
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Abstract: Testing is a part of education around the world; however, there are concerns that
consequences of testing is underexplored within current educational scholarship. More-
over, usability studies are rare within education. One aim of the present study was to
explore the usability of a mathematics problem-solving test called the Problem Solving
Measures–Computer-Adaptive Test (PSM-CAT) designed for grades six to eight students
(ages 11–14). The second aim of this mixed-methods research was to unpack consequences
of testing validity evidence related to the results and test interpretations, leveraging the
voices of participants. A purposeful, representative sample of over 1000 students from
rural, suburban, and urban districts across the USA were administered PSM-CAT followed
by a survey. Approximately 100 of those students were interviewed following test adminis-
tration. Findings indicated that (1) participants engaged in the PSM-CAT as desired and
found it highly usable (e.g., most respondents were able to use and find the calculator
and several students commented that they engaged with the test as desired) and (2) the
benefits from testing largely outweighed any negative outcomes (e.g., 92% of students
interviewed had positive attitudes towards the testing experiences), which in turn supports
consequences from testing validity evidence for PSM-CAT. This study provides an example
of a usability study for educational testing and builds upon previous calls for greater
consequences of testing research.

Keywords: assessment; computer-adaptive test; problem solving; test; usability; validity

1. Introduction

Educators need access to comprehensive, valid information about their students’
mathematics learning. In turn, educators should make data-based decisions as a result
of using valid results from high-quality assessments (Lawson & Bostic, 2024; Fennell
et al., 2023). Assessment in this study refers to the activities that teachers and others use
to gather student data, as well as the activities that provide teachers with feedback for
modifying their teaching and student learning (Fennell et al., 2023). In some capacities, in-
the-moment questioning can draw out students’ knowledge during classroom instruction,
which informs teachers about what and how students are learning (Fennell et al., 2023).
More formal assessments such as quizzes and tests have potential to provide necessary
information about students’ learning, too (Fennell et al., 2023). A distinction is sometimes
made between the terms test and assessment because a test can encompass broader sources
of information than a single instrument (AERA et al., 2014); however, in this manuscript,
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both terms will be used interchangeably to promote readability for a broad audience.
Readers interested in the language differences and nuances are encouraged to consult the
Standards for Educational and Psychological Testing ([Standards], AERA et al., 2014).

Schools around the world use tests to gather information about students’ mathematics
performance. However, a test’s usability—the degree to which a respondent engages with
it in an intended manner—can implicate a respondent’s results (Estrada-Molina et al., 2022).
Further, negative consequences from engaging with a test may also unnecessarily impact
the respondent and produce greater test score variance (AERA et al., 2014; Lane, 2020).

The present study explores the consequences of testing related to a mathematics
problem-solving test as well as its usability with the intended population: grades six
to eight (ages 11–14) students. A purposeful, representative sample (Creswell, 2014) of
students from the population participated in surveys and interviews immediately following
test administration. One goal of this study was to disseminate findings related to the
consequences of testing and usability related to a mathematics problem-solving test that is
grounded in classroom standards. A second goal was to provide a study that could serve as
a model for educational researchers with an example of how to conduct a usability study.

2. Literature Review

2.1. Educational Policies: An Overview

The No Child Left Behind Act of 2001 (NCLB) was designed to improve the perfor-
mance of students enrolled in public schools in the United States of America (USA). One key
feature of NCLB was accountability for student achievement, which initially required each
state to develop standardized tests in reading, mathematics, and later in science, to be ad-
ministered annually in grades three–eight, and once in high school. This act was reflective
of USA educational and standardized test data use policies that went into effect. While stan-
dardized testing is commonplace in the USA, other countries also implement standardized
tests: Japan’s National Assessment of Academic Ability (Hino & Ginshima, 2019), South
Africa’s Annual National Assessment (Maphalala & Khumalo, 2018), Germany’s Abitur
examination (Bruder, 2021), Mexico’s Plan Nacional para la Evaluación de los Aprendizajes
(Céspedes-González et al., 2023), and Israel’s Bagrut Matriculation Exams (Naveh, 2004).
Outside of standardized tests, another typical classroom assessment is an end-of-unit exam
typically administered by teachers at the end of a unit or course to measure the degree
to which students have mastered the material taught through instruction. These are two
types of summative assessments. Summative assessments are tools to gather data about
how much has been learned and/or whether an individual has reached a desired level of
proficiency (A. H. Schoenfeld, 2015). Formative assessment includes “all those activities
undertaken by teachers and/or by their students, which provide information to be used
as feedback to modify the teaching and learning activities in which they are engaged”
(Black & Wiliam, 2010, p. 7). One type of formative classroom assessment is a progress
monitoring test. These progress monitoring tests provide teachers with information that
communicates what students know and may provide teachers with information they can
use to plan further instruction. Taken collectively, these types of assessments can be framed
around notions of summative assessment and formative assessment.

All assessments have consequences and effects on teachers and students (McGatha &
Bush, 2013). Positive consequences from tests for formative and summative assessments
include but are not limited to improvements in teacher and student motivation and effort;
better content and format of assessments; and advancements in the use and nature of test
preparation activities (Lane & Stone, 2002). There can also be negative consequences: nar-
rowing of curricula and instruction; use of unethical test preparation materials; unfair test
score use; reassignment of teachers or students based on a single data point; and decreases
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in student and teacher confidence, motivation, and/or self-esteem (Lane & Stone, 2002).
Evidence related to consequences of testing should be explored with any test—including
both formative and summative assessments (AERA et al., 2014; Bostic, 2023; Kane, 2006;
Lane, 2014).

2.2. Computer-Adaptive Tests (CATs): The Transition from PSM to PSM-CAT

The PSM test measures middle school (i.e., grades six through eight; ages 11–14)
students’ mathematical problem-solving performance in ways that leverage their un-
derstanding of grade-level mathematics content, as derived from classroom standards.
Classroom content standards may differ to some degree across states within the USA;
however, 36 states maintain features originally found in the Common Core State Standards
for Mathematics (CCSSM) that were implemented in 2011 (CCSSI, 2010). This PSM test
functions primarily as a formative assessment. It may be used to gather information about
students’ problem-solving performance while drawing on their mathematics knowledge
related to classroom content standards, and in turn inform teachers’ future mathematics
instruction.

Computer-adapted tests (CATs) are designed to improve measurement efficiency using
a smaller number of ability-targeted items than traditional paper-pencil tests or other static
tests (Martin & Lazendic, 2018). Static tests require all students to engage with a defined
set of identical or nearly identical items (Wainer & Lewis, 1990). In order to effectively
measure all students with a fixed set of items, test makers generally include a range of items,
running from less to more difficult. Because the items are consistent across all students,
regardless of ability, the desired level of measurement error (precision) is only achievable
after a large number of items are administered. Items equally as difficult as a student is able
have the capacity to reduce measurement error quickly and are considered “well-targeted”.
Items that are easier than a student is able, or conversely, items that are more difficult than
a student is able, reduce measurement error more slowly and are considered “less well-
targeted”. A substantial number of items on static tests are required—not necessarily to
ensure content coverage, but rather, psychometrically, to ensure that no matter what ability
a student may possess, the test administration can generate an accurate measurement of
student content mastery (Martin & Lazendic, 2018).

CATs accomplish the task of reaching measurement precision with far fewer items than
traditional static paper-pencil tests because items are typically well-targeted to a student’s
specific level of ability (Martin & Lazendic, 2018). In a CAT environment, students are first
administered an item of moderate difficulty. Subsequent items are then selected based on
a student’s response pattern (Davey, 2011). If a student answers correctly, then the next
item delivered is more difficult (see Figure 1). On the other hand, when a student answers
incorrectly, then the next item delivered is less difficult. Therefore, CATs have the capacity
to efficiently zero in on (target) a student’s particular capacity (ability) in a content area
by delivering items that offer increased information about each student (Lane, 2020) if
effectively developed.

CATs have been used in mathematics contexts since the 1990s (Davey, 2011). They
provide a mechanism to better target students’ mathematics abilities with shorter test-
ing durations compared to static tests. There are numerous examples of CATs used in
mathematics contexts with many coming between 1990 and 2010 during a period of rapid
development. We share a recent example of mathematics-focused CAT use to demonstrate
its continued appropriateness during a period of time when artificial intelligence, machine
learning, and natural language processing are becoming more popular. Uko et al. (2024)
created a mathematics and science CAT for Nigerian secondary students. One conclusion
was that their CAT for mathematics and science contexts provided an accurate and efficient

23



Educ. Sci. 2025, 15, 680

means to assess secondary students’ abilities. Thus, they recommend that “CAT should be
introduced in assessment of learning. . .of the students [and] to be tested with sufficient
accuracy” (p. 85).

Figure 1. Example of Item Difficulty Measures for CATs. Numbers in this example represent item
difficulties as measured using Rasch analysis, grounded in logits.

In the case of the PSM-CAT, delivery was made via a web-based browser directly in
the classroom. Students were able to use an online calculator and formula sheet, which
were located on the testing platform. In addition, they could use scratch paper and a
writing utensil. The test had a time limit (30 min), and students could work at their own
pace with no maximum number of items to complete. Thus, there was some freedom in
the testing experience that might differ from a fixed-length test. Classroom tests like the
PSM-CAT test are no different from other educational tests in the sense that it is essential
that test scores are interpreted and used in an appropriate way (AERA et al., 2014), which
implicates test developers, users, and administrators. Much like other CATs, respondents
are provided more difficult items as they answer items correctly. Conversely, they see less
difficult items after answering a present item incorrectly. It is plausible, though rare in
practice, for a student engaged with PSM-CAT to see an item from a different grade level
based upon their response pattern.

2.3. Validity

Validity ensures that an assessment accurately captures the intended construct or
phenomenon being studied (Bostic, 2023; Kane, 2013). Validity is defined as “an integrated
evaluative judgment of the degree to which empirical evidence and theoretical rationales
support the adequacy and appropriateness of inferences and actions based on test scores”
(Messick, 1989, p. 13). Validation “can be viewed as a process of constructing and evaluating
arguments for and against the intended interpretation of test scores and their relevance
to the proposed use” (AERA et al., 2014, p. 11). It is a process by which scholars gather
evidence related to an assessment to better assist others in evaluating the degree to which
it measures what it purports (Bostic, 2023; Carney et al., 2022; Kane, 2013).

Five sources of validity evidence are described in the Standards (AERA et al., 2014).
The five sources of validity evidence include test content, response processes, internal
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structure, relations to other variables, and consequences of testing (AERA et al., 2014).
Figure 2 provides a description of each source of validity evidence. Using the metaphor
of a rope with intertwined braids helps to demonstrate the idea that validity represents
a unitary concept and the sources work together, and the strands represent the different
sources of evidence working together to ground a validity argument within the construct.
Past research (e.g., Krupa et al., 2024) has demonstrated that the consequences of testing
is underexplored and rarely reported, especially in mathematics education assessment
research. Stated more concretely, Krupa et al.’s (2024) research synthesis found that of
the papers describing mathematics assessments between 2000 and 2020, consequences of
testing validity evidence was described in 61 articles out of the total reviewed sample of
1206 articles, which equates to consequences of testing being described less than 2% of
the time.

Figure 2. Metaphorical Knotted Rope Demonstrating Sources of Validity Evidence within a Concept.
For more information, please reference (AERA et al., 2014).

2.4. Consequences of Testing

Consequences of testing includes both positive and negative outcomes and should
be purposefully evaluated for any test (Lane, 2020; Sireci & Benitez, 2023). Some positive
consequences include but are not restricted to student, teacher, and administrator motiva-
tion and efforts; the use of assessment results on teacher instruction and student learning;
improvement or change to school courses (Lane, 2020). There are also potentially negative
effects of an assessment that may arise from giving an assessment including narrowing of
curricula, unfair question use, as well as decreased confidence and/or affect (Lane, 2020).
Taken collectively, consequences of testing validity evidence help others to understand
potential outcomes that may arise from administering a test and using its results.

Consequences of a test can include substantive outcomes such as student placement
into a class or advancement to a grade level (AERA et al., 2014; Lee, 2020). Lee (2020) fo-
cused on the test consequences of an English reading course placement test (e.g., advanced,
remedial, general) that was administered at a large university. Lee talked to students about
the effects this assessment had on their learning and attitudes. One-on-one interviews
were conducted to draw out perceptions about the test and respondents’ experiences. The
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results showed that there was a near split amount of positive and negative perceptions
towards the test. There were good attributes related to the test, but nearly half of the
respondents felt there were negative attributes to the test’s results and ensuing interpreta-
tions. Similarly, three-fourths of the respondents communicated that the test questions and
reading passages were too complex, conveying that a consequence of using the result may
be linked with students’ negative perceptions of their testing experience. This is a high
number of respondents concerned with negative consequences. An outcome from Lee’s
work was a further study of that test to guarantee that the results and their interpretations
are justified in robust consequences of testing validity evidence. Lee’s study also provides
a guide for data collection with the use of interviews. A second outcome is that Lee’s work
demonstrates the importance of investigating the degree to which a test has negative and
positive outcomes. More positive outcomes than negative outcomes, or at least a balance, is
desirable (AERA et al., 2014). Greater negative outcomes than positive outcomes warrant
concern and should be considered before test administration (AERA et al., 2014).

Consequences of a test can also be explored with content-focused tests administered
by teachers. Heissel et al. (2021) designed a study with third- to eighth-grade students
where they measured cortisol levels at various times during the day, including time during
a test (Heissel et al., 2021). Cortisol is a hormone produced by the human body released
in response to stress, like during a test. Samples of cortisol were collected to gauge
the physiological stress response during test periods, and how it correlated with their
test performance (Heissel et al., 2021). Researchers found that during the test, students
had higher cortisol levels than during the rest of the school day. Students’ negative test
consequences experiences were linked with their test scores. That is, higher cortisol levels,
like those during the test, were associated with lower test performance. If a goal is to
effectively and fairly assess students’ knowledge, then it is critical that testing situations
limit anxiety or stress that might negatively contribute as variance (error) to a test score. In
addition to consequences of testing, the need for evaluating assessment usability features
is critically important.

2.5. Assessment Usability Features

Any K-12 assessment designed for classroom use should be usable by students and
teachers. While that might sound simple, a usability study can explore the degree to
which respondents understand the questions on the assessment, the ways respondents
engage with the test, and whether test administrators (e.g., teachers and staff) perceive
that the test can produce robust information usable for data-based decisions (AERA et al.,
2014; Estrada-Molina et al., 2022). Interpretation and use statements for quantitative in-
struments are helpful when considering an assessment (Carney et al., 2022; Kane, 2013).
Carney et al. (2022) explain that usability features are centrally important for test adminis-
trators and developers because they communicate necessary information. The degree to
which users perceive features of the test as easy to locate and understand ultimately impacts
test usability. For example, if respondents are supposed to use a calculator embedded in a
CAT but they cannot easily locate it on the website, then there may be usability issues that
negatively impact student performance and/or consequences of testing. Understanding the
usability features of a test before wide administration also provides structure and support
to decide whether the test has the potential to represent student knowledge accurately.
Additionally, usability testing helps to identify potential areas of needed assessment or
delivery modification. Accordingly, exploring assessment usability during pilot testing is
essential to minimize the impact of conditions that may contribute to the validity of test
results (AERA et al., 2014).
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Research related to usability is often conducted in the healthcare field (e.g., Denecke
et al., 2021; Hudson et al., 2012; Saad et al., 2022; Thielemans et al., 2018) but far less
frequently within educational research. After conducting a thorough literature review
on usability, our results showed that there were none in mathematics education and a
limited number in education related to the usability of educational tests. This outcome led
our team to draw from the healthcare literature where there was an abundant amount of
usability studies. One healthcare usability study created a mobile mental health chatbot
for regulating emotions. This chatbot was operated by multiple users, and researchers
conducted a usability test (i.e., User Experience Questionnaire) to study users’ experiences
with it (Denecke et al., 2021). A 26-question survey with closed-end and open-ended
items was administered to gather participants’ experiences with the chatbot. Denecke
and colleagues found that participants confirmed the chatbot as understandable, easy to
learn, and clear. However, attractiveness, novelty, and dependability were scored as below
average. Usability results, like those from a survey, allow for judgment, comparisons, and
evidence-informed modifications to be made to the tool under study.

Another healthcare assessment usability study employed direct observation, focus
groups, and questionnaires to understand a test’s usability (Thielemans et al., 2018). Thiele-
mans and colleagues’ work outlines how to study the usability of a healthcare assessment
through focus group discussions (FGDs) and a self-administered questionnaire. Partic-
ipants used a device and were asked to critique features. They engaged in a usability
assessment with a mixed-methods approach including observations, surveys, and focus
groups. The present study employed a convergent mixed-methods approach (Creswell &
Plano Clark, 2018) similar to Thielemans et al. (2018), and builds upon usability studies
harnessing interviews and surveys (Denecke et al., 2021).

3. Materials and Methods

3.1. The Present Survey

Usability studies can be conducted to explore how students understand the test’s
directions and questions, and how students perceive the features of the test to be easy to
use and foster positive outcomes after testing (AERA et al., 2014; Estrada-Molina et al.,
2022). If students cannot easily access the resources, or the questions they saw were not
applicable to them, then the assessment’s results will not accurately characterize students’
performance. Similarly, it is necessary to evaluate consequences of testing validity evidence
to confirm that the benefits outweigh the negative outcomes.

The original version of PSM-CAT is paper-pencil and delivered in a static format (see
Bostic & Sondergeld, 2015, 2018; Bostic et al., 2017); however, the version investigated for
this study is delivered in a computer-adaptive format (i.e., PSM-CAT; Bostic et al., 2024).
The paper-pencil version of the PSM test has been ongoing since 2019; meanwhile, the
PSM-CAT development started in 2021 and the first administration was in 2024.

The PSM-CAT is grounded in mathematical problems and problem-solving frame-
works. The items align with A. Schoenfeld’s (2011) framework characterizing mathematical
problems as tasks such that the number of solutions is uncertain, the pathway to a solution
(i.e., strategy) is unclear, and there are multiple pathways to a solution. These are word
problems; therefore, we also address Verschaffel et al.’s (1999) framework for mathematical
word problems. That is, PSM-CAT items are also grounded as being open, complex, and
realistic. Open tasks can be solved in multiple developmentally appropriate strategies.
Complex tasks engage problem solvers in ways that cause them to think, pause, and reflect.
Realistic tasks draw upon experienced or believable situational knowledge as a key part of
the task. Finally, the PSM-CAT is grounded in Lesh and Zawojewski’s (2007) framing of
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mathematical problem solving. Taken collectively, these frameworks help to ground the
PSM and PSM-CAT.

A concern with any test is its content validity evidence. The PSM-CAT uses the
CCSSM’s Standards for Mathematics Content as a content blueprint. Content domains
within the grades six–eight regarding Standards for Mathematics Content vary; albeit,
they include domains such as Geometry, Number Sense, Expressions and Equations, and
Statistics and Probability. Some PSM-CAT items have a primary and secondary standard.
Readers interested in test content validity evidence should consult Bostic et al. (2024).
Three sample items have been released from the test, which are shared in Figure 3 below
to assist readers. The grade six item aligns to Ratio and Proportions and Expressions and
Equations content standards. The grade seven item aligns to an Expressions and Equations
content standard, whereas the grade eight item aligns to Number Sense content standards.
In summary, all items were deemed by multiple expert panels to align with the desired
Standards for Mathematics Content, and additionally, each item connected to one or more
Standards for Mathematical Practice (see (CCSSI, 2010) for more information).

Figure 3. Sample of PSM-CAT items.

This study used a convergent mixed-methods research approach to collect data about
PSM-CAT, specifically (a) its usability among potential users and (b) validity evidence
related to consequences of testing. One intended study outcome is to broadly distribute
findings for potential test users and administrators (e.g., school personnel, researchers,
and evaluators) to consider when selecting a mathematics problem-solving test. A second
outcome is to provide readers with a model of a study that combines exploring usability
and consequences from testing for a K-12 test. The research questions for this study are

RQ1: To what degree is the PSM-CAT usable for students?

RQ2: What consequences of testing evidence exist for the PSM-CAT?
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3.2. Research Design

This convergent mixed-methods research (MMR) design (Creswell & Plano Clark,
2018) utilized a survey and 1–1 interviews (QUAN + QUAL). There are aspects from the
survey and interviews that address each of the two research questions. In an MMR study,
both quantitative and qualitative data are collected and then analyzed (Creswell & Plano
Clark, 2018). We compared the quantitative and qualitative results to build a common
understanding (Creamer, 2017; Creswell, 2014). Data were gathered immediately following
test completion to accurately measure students’ experiences with the test. Students were
more likely to recall their experiences with just minutes between test completion, survey,
and interview.

The present study is part of a larger grant-funded project (National Science Founda-
tion—2100988; 2101026) that works with representatively and purposefully sampled school
districts across the USA. These participating districts were purposefully sampled to repre-
sent different regions and contexts of the USA, including one urban district in the Pacific
region, one large suburban district in the Mountain West region, and multiple school
districts inclusive of suburban and rural contexts in the Midwest. This study met exempt
IRB status; students who wished not to participate in data collection did not participate. All
names used in this study are pseudonyms that participants selected. We describe methods
for the survey followed by methods for the interviews.

3.3. Survey Methods
3.3.1. Participants

A survey was administered to 1010 students in grades six through eight to capture
their perceptions of the usability and consequences of taking the PSM-CAT. Participant
demographic information is shown in Table 1. We used purposeful, representative sam-
pling (Creswell, 2014) because our team sought to generate findings that may reflect the
diversity of middle school students across three regions of the USA. Participant selection
was performed with a goal to have a broad pool of students with respect to sex, racial/ethnic
diversity, and geographic location (both region and context). Students self-identified their sex
and race/ethnicity. As in prior work from this project, participants chose (a) male, (b) female,
or (c) prefer not to say for gender. This approach was used after students in earlier studies
with this project recommended a third option (see Bostic et al., 2024). Students were offered
multiple options for race/ethnicity that followed the USA census’ approach.

Table 1. Demographics of Participants for Survey and Interviews.

Demographic Type Demographic Information Participants in the Survey Participants in the Interviews

Sex
Male 467 (46%) 60 (49.6%)

Female 515 (51%) 59 (48.7%)
Prefer not to say 28 (3%) 2 (1.7%)

Race/Ethnicity

White/Caucasian 606 (60%) 75 (62%)
Hispanic/Latino 140 (13.8%) 16 (13.2%)

Asian/Pacific Islander/Hawaiian 71 (7%) 7 (5.8%)
Black/African American 54 (5.4%) 4 (3.3%)

Mixed/Biracial 117 (11.6%) 14 (11.6%)
Other 22 (2.2%) 5 (4.1%)

Grade Level
Sixth Grade 264 (26.1%) 25 (20.6%)

Seventh Grade 351 (34.8%) 52 (43%)
Eighth Grade 395 (39.1%) 44 (36.4%)

Location
Pacific 282 (28%) 44 (36.4%)

Mountain West 477 (47.2%) 38 (31.4%)
Midwest 251 (24.8%) 39 (32.2%)
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3.3.2. Instrument and Data Collection

The survey was constructed with the intent of integrating and gathering data towards
both research questions. It was further modeled after prior usability studies as well as
surveys about consequences of testing (Denecke et al., 2021; Thielemans et al., 2018). In
Denecke and coauthors’ study, survey questions resulted in binary responses, such as
“confusing/clear”, “not understandable/understandable”, and “cluttered/organized”.
Thielemans et al. (2018) survey related to a tool’s ease of use, and readability/comprehension,
which was mirrored in the current study focusing on the usability of tools associated with
the test (i.e., calculator and formula sheet), readability of items and test directions, and
overall test usability. Survey questions are presented in Figure 4.

Figure 4. Survey Questions and Skip Logic.

Classroom teachers distributed the survey to students immediately following the
completion of the PSM-CAT through a hyperlink. Students were asked to provide demo-
graphic information. Then, they began responding to survey questions related to the test.
In total, the survey had four focal questions. The four focal survey questions focused on
whether they understood the test and could find appropriate materials (i.e., calculator
and formula sheet). Those focal questions were (1) Did you understand the test? (2) Did
you use a handheld or online calculator? (3) Did you use the formula sheet? (4) Did you
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experience any issues during the test? The survey consisted of ‘skip logic’, which parallels
past research (e.g., Ifeachor et al., 2016; O’Regan et al., 2020). An additional five questions
branched from the focal questions depending on student response. For example, if students
answered ‘no’ to a question, then they would be given a different question than if they
responded ‘yes’ (see Figure 4 for more information). Most students completed the survey
within four minutes.

3.3.3. Data Analysis

Descriptive statistical analyses were performed on the closed-ended survey data to
examine how students responded to each binary choice (yes/no). Open-ended survey
questions were analyzed through an inductive, multi-stage thematic analysis approach
(Creswell, 2014; Miles et al., 2014). This five-segment approach included multiple steps
(see Figure 5). A goal of this approach was to have multiple opportunities to review
the qualitative data, create observations, take notes, and generate themes from the data.
Collaboration across two researchers (i.e., King and Bostic) was also included in this process
to provide opportunities to evaluate and critique the processes and outcomes that were
generated. In addition, results during qualitative data analysis were shared with co-authors
(i.e., May and Stone) to promote triangulation (Creamer, 2017; Miles et al., 2014).

Figure 5. Multistage Qualitative Analysis Process.

Each segment consisted of a series of steps, which are shown in five segments (A
through E). Two researchers conferred at the end of each segment (see Figure 5). Segment
one was used to become intimately familiar with the data and prepare data for analysis.
Segment two consisted of making generalizable notes on a spreadsheet. Segment three
was to draw together the notes into memos. Segment four was used through synthesizing
the created memos into codes. The fifth and final segment consisted of making plausible
themes from the codes in relation to the research questions.

3.4. Interviews: Data Collection and Analysis

Students were purposefully and representatively chosen for an interview and asked to
confirm willingness to participate as volunteers. An aim for sampling interviewees was to
reflect the demographics of the surveyed participants. In total, 121 students participated in
1–1 interviews with an intent to gather data on students’ perceptions of the PSM-CAT (see
Table 1). The purpose of this interview was to gather data for both research questions. Lee’s
interview questions (Lee, 2020) were used as a model for the interview protocol in this
study, which focused on aspects related to testing consequences and usability. Interview
questions are found in the Appendix A. Data collection started when two researchers
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(i.e., King and Bostic) asked teachers whether any students volunteered for interviews.
Teachers provided a list of volunteers. As students were selected, they were asked to
confirm participation in the interview on their way to the interview space. Students were
escorted one-at-a-time to a quiet space for the interview.

The researchers used a structured protocol that asked questions about students’ per-
ceptions and experiences with the PSM-CAT. First, they were asked to confirm their partici-
pation in the interview. After confirming their participation, they were asked to provide
information related to their demographic data and to choose a pseudonym. Next, re-
searchers provided an overview of the interview. Participants were handed a paper with
the purpose of the PSM-CAT and interview questions (see Appendix A). A researcher
confirmed whether the participant understood the purpose of the PSM-CAT and could read
the questions. The interview started after students communicated their understanding. If
students had any questions, then they were answered. Researchers redirected participants
when necessary. Interviews took approximately five minutes.

Similar to the interview, a thematic data analysis approach (Creswell, 2014; Miles et al.,
2014) was used to analyze the data from 1–1 interviews (see Figure 5). The same process
described earlier was used with the interview data. We connect students’ responses to
interview questions and communicate when students’ ideas were prompted by the final
question, “Is there anything that you want to share with me about your experience during
the test?” We frame responses to that final question as ‘unprompted’ because they are not
necessarily resulting from a targeted interview question.

4. Results

Data analysis led to themes and ideas for RQ1 and RQ2.

RQ1: To what degree is the PSM-CAT usable for students?

RQ2: What consequences of testing evidence exist for the PSM-CAT?

To summarize the findings, the theme for RQ1 was that students perceived the PSM-
CAT with a high degree of usability. There were two ways that usability was framed:
resources and test items. Data informing RQ2 led to two themes. The first theme was
that students experienced positive outcomes from taking the PSM-CAT. These positive
outcomes are grounded in two ways: student learning and student attitudes. The second
theme was that students believed their teachers might gain information as a consequence
of the PSM-CAT. This second theme was grounded in two ways. First, students felt that
teachers might learn what students understand mathematically from the test results. Sec-
ond, students felt their teachers might be better equipped to help students mathematically
grow. We display these themes and ideas behind the themes in Figure 6. Quotations
are intentionally selected to demonstrate consistency and coherence across grade lev-
els and are shared in greater detail through sections below. As ideas are discussed, the
pseudonyms that participants chose are used. However, an individual’s demographic
information (e.g., sex and race/ethnicity) are not shared to (a) protect anonymity and (b) to
follow current Executive Order 13985 https://www.whitehouse.gov/presidential-actions/
2025/01/ending-radical-and-wasteful-government-dei-programs-and-preferencing/ (ac-
cessed on 23 February 2025). This executive order directs the federal government to
eliminate diversity, equity, and inclusive programs and policies that promote discrimi-
nation (White House, 2025), which includes scholarships stemming from federally grant-
funded research.
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Figure 6. Themes Responding to Research Questions.

4.1. RQ1: Usability

Data analysis led to a single theme for RQ1: Students’ perceptions of the PSM-
CAT demonstrated a high degree of usability. This theme was seen through two ideas:
(a) resources and (b) items. Results for RQ1 were found through quantitative survey
data related to usability features, and integrated with qualitative data about usability
(e.g., students could have responded to the open-ended interview questions related to
usability or consequences of testing). Test usability evidence also came across in a broad
sense from several students. Cornetheus, a seventh-grade student communicated that he
preferred PSM-CAT over other tests he has taken recently, “I definitely do prefer that [CAT]
test over our usual paper tests, because, you can see that it definitely makes an impact
based on the way that it was set up and the way the time limit is, and the questions on
the screen worked well. I mean, like, I knew what to do.” Test usability was also stated
in a similar sense by Michael, an eighth-grade student who shares his thoughts about the
usability of the time limit, “I didn’t get many questions done, but that is okay because the
time that I needed was enough for every question. It was actually content that I should
know and knew. That’s different from other tests where I feel I have to rush to answer
every problem”. Kennedy, a sixth-grade student, added comments about the directions
and flow of the test: “the test [directions] explained most stuff and there were pretty good
explanations of the problems. . .it was easy to get through the test and I knew what to do to
get to the next problem.” In summary, students conveyed a high degree of test usability
from the directions to the navigation to the timer and time limit.

4.1.1. Resources

A finding for RQ1 was that resources (i.e., online calculator and formula sheet) pro-
vided in the PSM-CAT system were accessible and easy to use. This is also evidenced
through students who perceived the resources on the PSM-CAT as helpful. With regards
to accessibility, the majority of students easily found the online calculator and formula
sheet, and could use them (see Figure 7). In total, 856 of the 1010 students used a calculator.
There were 662 students who used the online calculator and 194 students who used a
handheld calculator. Of those 662 students that used the online calculator, 97% (n = 642)
of survey respondents indicated they were able to locate it. Similarly, there were 694
of the 1010 students who wanted to use the formula sheet. Of those 694 students, 82%
(n = 569) were able to access it with ease. Interview data complemented this finding of
resources being easily accessible and usable. John, a seventh-grade student, was one of
many students who shared that he thought there were more benefits to the test during an
unprompted response: “I liked how when I used the calculator on the test, it didn’t take up
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the whole screen. I could see the question while also seeing the calculator instead of having
to memorize what I need to type in and then go back to the calculator. I also think that the
resources were just organized well because I could find them”. Data were consistent across
interviews; however, there was a small group of students who wanted to use resources
but could not locate them (1.6%, n = 16). The survey data also included information about
whether students could understand the directions as a usability feature, and if they had
issues with the testing system. Results showed that 98% of students surveyed could clearly
read and understand what the test directions were, and less than 3% of students experi-
enced issues with the testing system. An example of the biggest issue (i.e., 1.7%) was that
students could not locate the resources while taking PSM-CAT.

 

Figure 7. Survey Responses (a) results for understanding the directions; (b) results for using and
finding the calculator; (c) results for experiencing issues; (d) results for using and finding the
formula sheet.

The finding that the PSM-CAT was usable was also described by students who ex-
pressed that resources were helpful to them while test-taking, often at the end of the
interview. We found seven comments from interviewed students, which were connected to
the other data from the survey. Four of these comments were captured from the interview
questions themselves, and three of these comments about the resources were found in the
data when asked if they had anything else they would like to share. Lucy, a sixth-grade
student, conveyed this feeling when asked if she had anything else to share about the test
overall, “There were good resources that you could use while taking the test which, helped
me while problem solving”. Similarly, Peter, a seventh-grade student, said this quote when
asked if he had anything else to share, “On the test I got to use a calculator. It was helpful
to focus on the actual question because I had a calculator there. It would be more work
if you did not have a calculator”. Peter and others were able to focus on the test items
because of the provided calculator. In summary, students expressed that the resources were
usable because they were easy to access and use, and they were valuable tools needed to
support students while testing (i.e., 6% of students from interviews, and 97% (calculator
ease), 82% (formula sheet ease), were found from survey data).

4.1.2. Test Items

Our finding for the test being highly usable was grounded through a second way related
to the test items itself rather than the resources. Students’ perceived PSM-CAT items as
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readable and the item contexts were relatable. Charlie, a seventh-grade student, offered the
following at the end of the interview for any final thoughts, “The problems were just fun
and they were about fun things like driving and finding the cost of things. I understood the
questions because they were about actual things you could use in the world”. Charlie and
another participant, John, emphasized that the items’ contexts connected with their real-world
experience or familiarity with a context. John, a sixth-grade student, said in his interview
when asked about the perceived benefits of the test (i.e., interview question one) that “The
questions were clear and easy to understand, it was very simple. I find that other test’s
questions are hard to understand or find the information”. Faith, an eighth-grade student,
shared this sense when asked the same question as John, “I think this test had benefits because
the questions were worded in a way that I was able to understand”. This idea of the test
items being easy to read and understandable was expressed consistently across participants.
Interview questions were open-ended, and therefore, led students to discuss information
unprompted about the usability of the test as well, leading to these results. This consistency
led to the finding that supported a high degree of usability by intended respondents.

4.2. RQ2: Test Consequences

The first theme related to test consequences was that students perceived positive
outcomes from the PSM-CAT. A second theme was that students believe their teachers
might gain information about their mathematics proficiency from the PSM-CAT. We unpack
theme one, then theme two.

4.2.1. Outcomes: Student Learning

Our first theme for RQ2 was that there were positive outcomes from taking the PSM-
CAT. Theme one was reified through two ideas. The first idea was that students felt they
were able to demonstrate their mathematics learning through PSM-CAT completion. That
is, they perceived their test score as reflective of their mathematics learning. Students
viewed the test as a coherent map of their mathematics learning. While they did not
specifically reference mathematical content in their ideas, their responses were a result of
thinking about the mathematics content that they came across in the testing system. Roman,
a seventh-grade student, shared, like many others, that the PSM-CAT gave an opportunity
to reflect on what mathematical content he knew and areas for growth: “The good from
this test is that you experience more things in math, and you see more what you need help
with so you can do better”. In Roman’s case, he was asked about whether the test had more
benefits or negatives. His response is evidence of the first idea of theme one that students
were able to demonstrate mathematics learning. As a reminder, the PSM-CAT seeks to
measure students’ abilities accurately and efficiently, which requires administering items
that may be somewhat beyond what they have learned. Brielle, a seventh-grade student,
shared an experience with the test when also asked about the benefits: “This test has more
benefits than issues because you could see what you already know how to do in math”. Her
comments unpack the idea that the test can remind students what mathematics they know
how to do, also evidence of the first idea. Saje, an eighth-grade student, supported this idea:
“Good came from the test because it helped me to reflect on how we (Saje and peers) figure
out math problems and if I am able to solve them correctly”. Statements like these were
consistent across the sample and portrayed how students perceived the PSM-CAT to have
positive outcomes, such as gaining information about their current content knowledge and
content that they may need to work on. There were rare instances where students had
negative experiences beyond the control of the PSM-CAT, (1.1%, n = 11). Those experiences
include the test not loading or an item failing to open after answering another item. Such
experiences may have been due to the school’s internet or computer quality rather than
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the test. This seemed to be limited to a paucity of students across the entire testing sample.
Moreover, most students experienced positive outcomes from taking the PSM-CAT, and
this was grounded through evidence related to students reflecting on what content they
understood and what content they needed to work on.

4.2.2. Outcomes: Student Attitudes

A second idea related to this theme (i.e., students experienced positive outcomes from
taking the test) was that the PSM-CAT led to maintaining or promoting positive attitudes.
Participating students either maintained a positive attitude from start to finish with the
PSM-CAT, or their attitude became more positive (i.e., increasingly positive) compared to
when they started. Of the 121 interviewed students, twenty-six (21%) felt positive about the
testing experience both before and after the PSM-CAT, whereas eighty-six students (71%)
described a positive increase in their attitude towards the PSM-CAT after completing it.
Taken collectively, 92% of students interviewed had positive attitudes towards the testing
experiences. This finding was a result of interview questions about how students felt before
and after the testing experience. Students shared a variety of information characterizing why
they felt positive. A seventh-grade student, Jane, told the interviewer: “I felt positive towards
the test because as you answered a question, they got harder and harder to match your level.
I liked that and it made me feel good”. This student felt positive about the experience because
the test was computer-adaptive; she was able to answer the PSM-CAT items she could, and
some items were beyond her current abilities. Alternately, Trinity, a sixth-grade student,
simply expressed: “I got a lot of questions done, and I felt good after the test”. Overall, most
students expressed a positive attitude after completing the PSM-CAT.

4.2.3. Teachers Gain Knowledge: What Students Know

RQ2 had a second theme. Students believed their teachers might gain informa-
tion about their mathematics proficiency as a result from the PSM-CAT. This theme was
grounded through the first idea reflecting that teachers could gain information about what
content their students currently understand. Bianca, an eighth-grade student told an in-
terviewer when asked about the benefits of the test, “What the test is trying to do is help
teachers understand what’s going on. You know—through a student’s head, and how
they (students) think. Personally, I think that’s it’s important for my teacher to know”.
Participants expressed that teachers may gain information about their students’ thinking
as a result from completing the PSM-CAT. Harper, a sixth-grade student also answered this
question, “There are benefits and positives to this test because your teacher can find out
how you learn and what your math level is at. I want my teacher to know what I know”.
Interviewed students consistently communicated a strong desire for their teachers to gain
information about what content they knew and understood.

4.2.4. Teachers Gain Knowledge: How to Help Students

The second theme to RQ2 had a second idea that acted as supporting evidence for this
theme. Students believed the PSM-CAT would result in information for teachers about
helping with student mathematics learning. That is, help with content that students learned
previously. Students were reflecting more on how their teachers can take the results from
the PSM-CAT and help them with the content that they may not have understood in that
moment. Collin, a seventh-grade student, communicated that “This test helps my teacher
realize what I’m struggling in (with math). If they (my teacher) can understand that, then
they can see and figure out what I need help with. I hope my teacher uses the test results to
help me where I need it”. Rachel, an eighth-grade student said something similar: “The
test will help teachers, like mine, figure out what to help students, like me, with math I’m
learning, and that they (me and my peers) need help with some things—like those problems
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I got wrong”. Neither of these students were asked interview questions specifically related
to their teachers gaining knowledge; however unprompted, these students and others
responded in such ways in relation to the benefits of testing or how they felt during the
test. In summary, the findings from interview data characterized positive consequences,
such as the PSM-CAT allowing their teachers to learn what students can do in mathematics
and areas where they may need help.

5. Discussion

One goal of this manuscript was to explore usability outcomes related to the PSM-CAT.
A second goal was to share validity evidence related to the consequences of testing for the
PSM-CAT. Reporting on these two goals provides potential users—researchers, evaluators,
and school personnel—the necessary information to make informed choices related to a
CAT measure of mathematical problem-solving. Evidence from this mixed-methods study
provides a strong foundation for findings related to the two goals. That is, (1) the PSM-CAT
had a high degree of usability by potential users; (2) the positive outcomes related to
consequences of testing outweigh negative outcomes related to the PSM-CAT.

5.1. Connecting to Consequences of Testing

Accountability and computer-based testing are ubiquitous phenomena in the modern
education landscape. Students take tests that have outcomes; hence, it is important that
validity evidence is examined from a broad perspective, as described in the Standards (AERA
et al., 2014). Test results and their interpretations that lack robust validity evidence can lead
to spurious findings or worse, harmful outcomes (Bostic, 2023). Krupa et al. (2024) have
shown that consequences of testing information related to mathematics tests is rarely shared
in the literature, which makes this study helpful as a contributor to the discussion about
consequences of testing. This study also extends prior research on consequences of testing (e.g.,
Lee, 2020). The findings from the present study indicated that there was an overall positive
experience from testing and outcomes from the PSM-CAT. Students communicated that they
developed or maintained a positive attitude while testing, and that the test has the capacity
for teachers to gain information about their learning. Previous research findings suggested
substantive negative consequences from testing are possible (see Lee, 2020) and should be
sufficiently explored. Lee’s (2020) students conveyed concerns about how test results might be
used, and roughly half felt the consequences were positive. Lee’s findings contrast our findings
in which less than 3% of students communicated any negative experiences or outcomes from
the test. Tests should have more positive consequences than negative ones.

Narratives from test respondents provide potential test users with greater confidence
that the benefits of testing with PSM-CAT are greater than the negatives associated with it
(e.g., issues while testing). There were several unprompted responses from participants
during the interview regarding consequences, suggesting that consequences of testing
was something they considered and felt important enough to convey to interviewers. If
teachers are expected to administer a test, then the time taken during testing should be
buttressed with reasonable evidence that the testing time is worth it. Conclusions like
this one are called for in research (e.g., Carney et al., 2022) and warranted to support
robust validity claims about consequences of testing that have been rare in literature
(Krupa et al., 2024) or highlight greater positives than negatives unlike Lee (2020). Findings
from this study provide readers and potential PSM-CAT users with confidence that the
results from these tests are being used appropriately. This study also provided an example
of researching consequences of testing for test results and, in turn, it is a case where the
positive consequences from a test were greater than the negative consequences.
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5.2. Usability Studies in Education Research

The present study extends past usability studies from other areas into education.
Denecke et al.’s (2021) work, as well as Thielemans et al.’s (2018) usability study, provided
a foundation for the present study. The Standards (AERA et al., 2014) indicate that test
developers should explore usability. Scholars (e.g., Carney et al., 2022; Estrada-Molina et al.,
2022) have expanded on these guidelines and recommend that studies clearly communicate
usability-related information about tests. One outcome from the present study is an
example of a convergent mixed-methods project that highlighted areas of strength and
areas for improvement related to a mathematical problem-solving test. A second, and
important outcome, is that this study serves as an example for other usability studies within
educational testing research. Usability investigations from medicine and technology can
be reasonably applied with some modifications to educational testing situations, and this
study may serve as one way to translate from other research areas. Educational scholars
might find the present study useful for conducting their own usability studies. Past
usability studies described acceptable usability features, but also characterized potential
improvements (Thielemans et al., 2018). Our study also found that the PSM-CAT had a
high degree of usability due to the nature of the resource accessibility and test design;
however, some students (less than 2%) expressed struggles locating the formula sheet. This
finding led the development team to move the formula sheet’s location and convey its
location more clearly in the directions. In effect, usability studies present a form of design
research around validation work that can shape better outcomes for future users.

5.3. Limitations and Future Directions

We share some limitations of the study, which could be improved with future work.
First, the survey did not include statements leading to quantitative data for consequences
of testing. At the same time, the interviews generated qualitative data for test usability.
This study drew upon both data sources (i.e., interviews and surveys) to convey a broader
narrative around the test. A limitation is a lack of quantitative data related to consequences
of testing and a lack of qualitative data related to usability. Our research team made those
methodological choices by drawing from past research. A future study might develop a
survey with items related to consequences of testing and interview questions related to
usability. Second, the data set was drawn from three diverse districts (i.e., rural, suburban,
and urban). There are some areas where the data could be strengthened, including greater
breadth in student backgrounds such as increasing numbers of students from urban and
rural populations. A future investigation might better study outcomes with these popula-
tions and explore the degree to which the findings from the present investigation extend.
A third limitation was related to the usability results. Our findings discuss that the test
demonstrated a high degree of usability with the features that were studied. To improve
results, additional research including more usability features could have the capacity to im-
prove the PSM-CAT. More usability studies need to be performed in education, specifically
and especially in CAT environments. Our hope is that this study might serve as a model
for more usability studies in education.

Author Contributions: Conceptualization, S.G.K., J.D.B., T.A.M. and G.E.S.; Methodology, S.G.K.
and J.D.B.; Validation, J.D.B.; Formal analysis, S.G.K. and J.D.B.; Investigation, S.G.K. and J.D.B.;
Resources, S.G.K., J.D.B. and T.A.M.; Data curation, S.G.K.; Writing—original draft, S.G.K. and
J.D.B.; Writing—review & editing, J.D.B., T.A.M. and G.E.S.; Visualization, S.G.K.; Supervision, J.D.B.;
Project administration, J.D.B.; Funding acquisition, J.D.B., T.A.M. and G.E.S. All authors have read
and agreed to the published version of the manuscript.

38



Educ. Sci. 2025, 15, 680

Funding: This research was funded by National Science Foundation grant numbers [2100988; 2101026;
1920621; 1920619]. The APC was funded by [1920621].

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of Bowling Green State University
(protocol code #1749616-7 on 11 October 2024). The Bowling Green State University Institutional
Review Board determined this research is exempt according to federal regulation AND the research
met the principles outlined in the Belmont Report.

Informed Consent Statement: Consent/assent from participants was waived due to the research
meeting exempt status according to federal regulations. All participants were provided information
about the study prior and had the option for their data not to be used as part of the study.

Data Availability Statement: Data are not publicly available.

Conflicts of Interest: Author Gregory E. Stone was employed by the company Clarity Assessment
Systems Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CAT Computer-adaptive test
FGD Focus group discussions
IRB Institutional review board
MMR Mixed methods research
USA United States of America

Appendix A

Purpose Statement and 1–1 Interview Questions

39



Educ. Sci. 2025, 15, 680

References

American Educational Research Association (AERA), American Psychological Association (APA), & National Council on Measurement
in Education (ECME). (2014). Standards for educational and psychological testing. American Educational Research Association.

Black, P., & Wiliam, D. (2010). Inside the black box: Raising standards through classroom assessment. Phi Delta Kappan, 92(1), 81–90.
[CrossRef]

Bostic, J. (2023). Engaging hearts and minds in assessment research. School Science and Mathematics Journal, 123(6), 217–219. [CrossRef]
Bostic, J., May, T., Matney, G., Koskey, K., Stone, G., & Folger, T. (2024, March 6–8). Computer adaptive mathematical problem-solving

measure: A brief validation report. 51st Annual Meeting of the Research Council on Mathematics Learning (pp. 102–110), Columbia,
SC, USA.

Bostic, J., & Sondergeld, T. (2015). Measuring sixth-grade students’ problem solving: Validating an instrument addressing the
mathematics Common Core. School Science and Mathematics Journal, 115, 281–291. [CrossRef]

Bostic, J., & Sondergeld, T. (2018). Validating and vertically equating problem-solving measures. In D. Thompson, M. Burton, A. Cusi,
& D. Wright (Eds.), Classroom assessment in mathematics: Perspectives from around the globe (pp. 139–155). Springer.

Bostic, J., Sondergeld, T., Folger, T., & Kruse, L. (2017). PSM7 and PSM8: Validating two problem-solving measures. Journal of Applied
Measurement, 18(2), 151–162.

Bruder, R. (2021). Comparison of the Abitur examination in mathematics in Germany before and after reunification in 1990. ZDM
Mathematics Education, 53, 1515–1527. [CrossRef]

Carney, M., Bostic, J., Krupa, E., & Shih, J. (2022). Interpretation and use statements for instruments in mathematics education. Journal
for Research in Mathematics Education, 53(4), 334–340. [CrossRef]

Céspedes-González, Y., Otero Escobar, A. D., Ricárdez Jiménez, J. D., & Molero Castillo, G. (2023, November 6–10). Academic achievement
in mathematics of higher-middle education students in veracruz: An approach based on computational intelligence. 11th International
Conference in Software Engineering Research and Innovation (CONISOFT) (pp. 177–185), León, Mexico. [CrossRef]

Common Core State Standards Initiative (CCSSI). (2010). Common core standards for mathematics. Available online: http://www
.corestandards.org/Math/ (accessed on 5 September 2024).

Creamer, E. G. (2017). An introduction to fully integrated mixed methods research. SAGE Publications.
Creswell, J. W. (2014). Research design: Quantitative, qualitative, and mixed method approaches (4th ed.). SAGE Publications, Inc.
Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). SAGE.
Davey, T. (2011). A guide to computer adaptive testing systems. Council of Chief State School Officers.
Denecke, K., Vaaheesan, S., & Arulnathan, A. (2021). A mental health chatbot for regulating emotions (SERMO)—Concept and usability

test. IEEE Transactions on Emerging Topics in Computing, 9(3), 1170–1182. [CrossRef]
Estrada-Molina, O., Fuentes-Cancell, D. R., & Morales, A. A. (2022). The assessment of the usability of digital educational resources:

An interdisciplinary analysis from two systematic reviews. Education and Information Technologies, 27, 4037–4063. [CrossRef]
Fennell, F., Kobett, B., & Wray, J. (2023). The formative 5 in action, grades K-12. Updated and expanded from the formative 5: Everyday

assessment techniques for every math classroom. Corwin.
Heissel, J. A., Adam, E. K., Doleac, J. L., Figlio, D. N., & Meer, J. (2021). Testing, stress, and performance: How students respond

physiologically to high-stakes testing. Education Finance and Policy, 16(2), 183–208. [CrossRef]
Hino, K., & Ginshima, F. (2019). Incorporating national assessment into curriculum design and instruction: An approach in Japan.

In C. P. Vistro-Yu, C. P. Vistro-Yu, T. L. Toh, & T. L. Toh (Eds.), School mathematics curricula (pp. 81–103). Springer Singapore
Pte. Limited. [CrossRef]

Hudson, J., Nguku, S. M., Sleiman, J., Karlen, W., Dumont, G. A., Petersen, C. L., Warriner, C. B., & Ansermino, J. M. (2012). Usability
testing of a prototype phone oximeter with healthcare providers in high-and low-medical resource environments. Anaesthesia,
67(9), 957–967. [CrossRef]

Ifeachor, A. P., Ramsey, D. C., Kania, D. S., & White, C. A. (2016). Survey of pharmacy schools to determine methods of preparation
and promotion of postgraduate residency training. Currents in Pharmacy Teaching and Learning, 8(1), 24–30. [CrossRef]

Kane, M. (2006). Validation. In R. L. Brennan (Ed.), Educational measurement (4th ed., pp. 17–64). American Council on Education/
Praeger.

Kane, M. (2013). Validating the interpretations and uses of test scores. Journal of Educational Measurement, 50(1), 1–73. [CrossRef]
Krupa, E., Bostic, J., Folger, T., & Burkett, K. (2024, November 7–10). Introducing a repository of quantitative measures used in mathematics

education. 46th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics
Education (pp. 55–64), Cleveland, OH, USA.

Lane, S. (2014). Validity evidence based on testing consequences. Psicothema, 26(1), 127–135. [CrossRef]
Lane, S. (2020). Test-based accountability systems: The importance of paying attention to consequences. ETS Research Report Series,

2020(1), 1–22. [CrossRef]
Lane, S., & Stone, C. A. (2002). Strategies for examining the consequences of assessment and accountability programs. Educational

Measurement: Issues and Practice, 21(1), 23–30. [CrossRef]

40



Educ. Sci. 2025, 15, 680

Lawson, B., & Bostic, J. (2024). An investigation into two mathematics score reports: What do K-12 teachers and staff want? Mid-
Western Educational Researcher, 36(1), 12. Available online: https://scholarworks.bgsu.edu/mwer/vol36/iss1/12 (accessed on 18
December 2024).

Lee, E. (2020). Evaluating test consequences based on ESL students’ perceptions: An appraisal analysis. Columbia University Libraries
and Applied Linguistics and TESOL at Teachers College, 20(1), 1–22. [CrossRef]

Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching
and learning (pp. 763–804). Information Age Publishing.

Maphalala, M. C., & Khumalo, N. (2018). Standardised testing in South Africa: The annual national assessments under the microscope.
ResearchGate. Available online: https://www.researchgate.net/publication/321951815 (accessed on 12 May 2025).

Martin, A. J., & Lazendic, G. (2018). Computer-adaptive testing: Implications for students’ achievement, motivation, engagement, and
subjective test experience. Journal of Educational Psychology, 110(1), 27. [CrossRef]

McGatha, M. B., & Bush, W. S. (2013). Classroom assessment in mathematics. In SAGE handbook of research on classroom assessment
(pp. 448–460). SAGE.

Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 13–103). Macmillan.
Miles, M., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). Sage.
Naveh, K. (2004). Matriculation in a new millennium: Analysis of a constructivist educational reform in Israeli high-schools [Doctoral

dissertation, University of Leicester and ProQuest Dissertations Publishing]. Available online: https://www.proquest.com/
docview/U190040 (accessed on 2 December 2024).

O’Regan, S., Molloy, E., Watterson, L., & Nestel, D. (2020). ‘It is a different type of learning’. A survey-based study on how simulation
educators see and construct observer roles. BMJ Simulation & Technology Enhanced Learning, 7(4), 230–238. [CrossRef] [PubMed]
[PubMed Central]

Saad, M., Zia, A., Raza, M., Kundi, M., & Haleem, M. (2022). A comprehensive analysis of healthcare websites usability features, testing
techniques and issues. Institute of Electrical and Electronics Engineers, 10, 97701–97718. [CrossRef]

Schoenfeld, A. (2011). How we think: A theory of goal-oriented decision making and its educational applications. Routledge.
Schoenfeld, A. H. (2015). Summative and formative assessments in mathematics supporting the goals of the Common Core Standards.

Theory Into Practice, 54(3), 183–194. [CrossRef]
Sireci, S., & Benitez, I. (2023). Evidence for test validation: A guide for practitioners. Psicotherma, 35(3), 217–226. [CrossRef] [PubMed]
Thielemans, L., Hashmi, A., Priscilla, D. D., Paw, M. K., Pimolsorntong, T., Ngerseng, T., Overmeire, B. V., Proux, S., Nosten, F.,

McGready, R., Carrara, V. I., & Bancone, G. (2018). Laboratory validation and field usability assessment of a point-of-care test for
serum bilirubin levels in neonates in a tropical setting. Wellcome Open Research, 3, 110. [CrossRef]

Uko, M. P., Eluwa, I., & Uko, P. J. (2024). Assessing the potentials of compurized adaptive testing to enhance mathematics and science
student’t achievement in secondary schools. European Journal of Theoretical and Applied Sciences, 2(4), 85–100. [CrossRef] [PubMed]

Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical
application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1, 195–229. [CrossRef]

Wainer, H., & Lewis, C. (1990). Toward a psychometrics for testlets. Journal of Educational Measurement, 27(1), 1–14. [CrossRef]
White House. (2025). Ending radical and wasteful government DEI programs and preferencing [Presidential executive order]. The White House.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

41



education 
sciences

Article

Interactive Homework: A Tool for Parent Engagement

Laura Moore 1,* and Robert N. Ronau 2,*

1 School of Education, Johns Hopkins University, 2800 N Charles St, Baltimore, MD 21218, USA
2 Department of Elementary, Middle & Secondary Teacher Education, College of Education and Human

Development, University of Louisville, 2301 South 3rd Street, Louisville, KY 40292, USA
* Correspondence: laura_moore@hcpss.org (L.M.); bob@louisville.edu (R.N.R.)

Abstract: Families have largely been excluded from the implementation of the Common Core State
Standards in Mathematics (CCSSM), reducing their ability to extend their child’s mathematics learn-
ing. CCSSM emphasizes different instructional elements (e.g., pictorial representations, problem
solving, multiple strategies for solving) that may differ greatly from how parents learned mathe-
matics. In addition, many school officials have ineffectively engaged parents in the changes, further
diminishing their capacity to participate in their child’s learning. This case study examined parent
mathematics self-efficacy and parent mathematics knowledge for teaching, factors that influence
the effectiveness of their engagement in their child’s mathematics learning. This study was also
implemented to identify elements that the parent participant found helpful for their child’s mathe-
matics learning. A thematic analysis was performed on the data sources, the interactive homework
assignments, a survey, observations, a researcher’s journal, and an interview to conclude that the
interactive homework assignments improved parent mathematics self-efficacy and parent mathe-
matics knowledge for teaching. The parent participant also identified the assignments’ side-by-side
examples, additional practice, and the easy access of the assignments as features of the intervention
that enhanced her ability to support her child.

Keywords: interactive homework assignments; mathematics knowledge for teaching; mathematics
self-efficacy; parent engagement

1. Introduction

Mathematics achievement is considered critical for social mobility, career opportu-
nities, and full enjoyment of the world [1–6]. As a discipline, mathematics is also an
important economic driver for countries [7–9]. Despite the recognized importance of
learning mathematics to their children’s future, parents in school settings struggled to
support them in learning mathematics [10–12]. The content, as well as the ways in which
elementary mathematics was taught, changed with the implementation of the Common
Core State Standards for Mathematics (CCSSM) [13]. For example, CCSSM focused on
helping students develop a conceptual understanding of mathematics through physical
and pictorial representations while also ramping up the mathematics content at each grade
level. Furthermore, teachers with limited mathematics understanding required additional
learning to use conceptual strategies; however, that notion was not always embraced
by teachers, resulting in sometimes dated and ineffective mathematics explanations and
instruction [14,15].

This study addresses how parents faced multiple barriers to helping their children
with mathematics such as: the onslaught of the COVID-19 pandemic, the accompanying
closing of schools, and the hasty implementation of remote instruction, which required
more home support than ever before. This study was designed to support learning at
home by helping parents move past traditional mathematics strategies such as algorithms
and rote learning into science-based teaching methods that promote conceptual under-
standing of mathematics constructs. Based on Hatano and Inagaki’s [16] framework on
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conceptual development, conceptual strategies promote a deeper understanding that is
transferable and generalizable in which students can reason about mathematics by iden-
tifying relationships and patterns. In contrast, those wedded to rote memorization and
traditional strategies often struggle to apply different approaches when solving novel
problems and can be challenged to judge the reasonableness of their answers [17]. This
study also examines ways to effectively support families experiencing barriers associated
with the pandemic and remote instruction (e.g., technological challenges, delivering lessons
intended for face-to-face instruction, and reduction in teacher capacity and accessibility).
Additionally, this study aims to help parents engage in dialogue that more closely resembles
classroom discussion that supports their child’s critical thinking about mathematics.

There were two parts to the study: the needs assessment and the intervention. Prior to
the development of the intervention study, a needs assessment was conducted to better
understand what parents needed to help their children in learning mathematics. This needs
assessment served as a preliminary tool to determine whether the school population’s needs
were consistent with the parent needs highlighted by Goldman and Booker [10], Jackson
and Remillard [11], and Remillard and Jackson [12]. The assessment was distributed to
67 parents of third-, fourth-, and fifth-grade students from an affluent and diverse suburban
elementary school. Approximately 93% of the online parent participants had a bachelor’s
degree (n = 21), a master’s degree (n = 24), or a doctorate (n = 12) as their highest level of
educational attainment.

The online survey of open-ended questions (n = 7) and close-ended Likert-scale items
(n = 19) and follow-up interviews with six in-person interviews indicated that parents had
lower levels of mathematics self-efficacy regarding supporting their students’ mathemat-
ics learning of conceptual strategies and desired more instructional support in the form
of textbooks and more homework that they could use with their children. Mathematics
self-efficacy is the belief that one will be successful in mathematics and in performing math-
ematics tasks in general [18], and low mathematics self-efficacy is linked to low self-concept
and high mathematics anxiety [19]. Parent responses also suggested misunderstandings
about pictorial mathematics representations and their purpose. For example, one parent
stated how he wished students learned useful mathematics such as percentages. This
parent did not know that percentages are introduced in later grades after they have learned
pictorial representations that support their understanding of percentages. Other parent
participants emphasized the sole importance of arriving at the correct answer without
understanding that pictorial representations help students develop a conceptual under-
standing so they can more accurately and more meaningfully use abstract algorithms.
Additionally, parents were unaware that algorithms are taught after students developed
an understanding of the meaning of the operations of addition, subtraction, division, and
multiplication through physical and pictorial strategies. For example, in kindergarten,
students are introduced to addition and subtraction through sets of physical objects (e.g.,
base-10 blocks, counters, and snap cubes) and pictures of various objects. Through a series
of experiences comparing differences between two groups of these objects (e.g., visually,
counting, and using balance beams), students begin to develop an understanding of addi-
tion and subtraction. The same materials serve to help students develop the meaning of
place value. Understanding the concept of place value and the ideas behind the mathemati-
cal operations of addition and subtraction provides students with the understanding to use
them in new settings and manage algorithms in subsequent grades.

An interactive homework intervention was shown to be effective for improving parent
mathematics self-efficacy and parent mathematics knowledge for teaching. Interven-
tions that resulted in improved parent mathematics self-efficacy included self-guiding
tools [20–22] and emotional supports [23,24]. Interventions that included collaborative
learning [25,26], engaging mathematics tasks [27,28], and guidance on the development of
mathematics knowledge of content and mathematics knowledge of teaching [29,30] were
also effective in developing parent mathematics knowledge for teaching. From the needs
assessment and extant research, the following research questions served as the guide for the
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study: “In what ways does a homework intervention change perceived parent participant
mathematics self-efficacy?”; In what ways does a homework intervention change perceived
parent participant mathematics knowledge for teaching?”; and “What components of an
interactive homework assignment program do parent participants identify as useful in
helping them support their children with mathematics learning at home?” The interactive
homework intervention addressed these questions through a focus on parent mathematics
self-efficacy and parent mathematics knowledge for teaching by addressing misunder-
standings and improving their understanding of the purpose of pictorial representations to
support conceptual understandings.

2. Study Design

Due to the COVID-19 pandemic, the sample consisted of a parent and child part-
nership, which required a design change from a quasi-experimental concurrent mixed
methods study to a descriptive, single-case holistic case study. This specific case study
design is appropriate for examining one unit of analysis (e.g., parent participants) that
is influenced by real world contexts [30]. This six-week case study began when parent
participants were recruited with surveys about their experiences and backgrounds with
traditional and conceptual mathematics strategies. Only one parent, Linda, was interested
in participating in this project with her daughter, Laura Jean, a nine-year-old enrolled in a
fourth-grade mathematics class. Linda and Laura Jean completed the required consent and
assent documents. Then from February to March 2021, each week, Linda was emailed one
interactive homework assignment, the first containing addition and subtraction problems,
for completion at the end of each week. Six interactive homework assignments were sent
in total. Zoom observations of the homework sessions, five in total and approximately
30 min in length, were conducted with the two participants using the interactive home-
work assignments. The researcher’s observations of the participants occurred after the first
week to clarify homework assignment directions and provide guidance when necessary.
All observed sessions were recorded. A final Zoom session was used to interview Linda
about her reported experiences with the interactive homework assignments. In addition, a
reflective journal was kept by the researcher to capture the changes over time in the parent
and child’s interactions using the interactive homework assignments during the Zoom
sessions. The researcher primarily served as a passive observer to gain an understanding
of the assignment’s effectiveness in guiding participant interactions and parent learning.
She occasionally intervened to maintain fidelity by encouraging the parent participant’s
faithful adherence to assignment directions. All data sources—parent comments on the
survey and interactive homework assignments, transcripts of observations, the researcher’s
journal, and the interview transcript—were analyzed. A thematic analysis was performed
in which all data sources were reviewed to identify patterns which were then grouped,
coded, and analyzed. Member-checking occurred with the final parent interview, and
peer debriefing between the researcher and her advisor occurred at various stages of the
study: homework assignment modifications, review of participant transcripts, and coding
and analysis processes. Lastly, the researcher’s weekly observations of the participants
discussing and collaboratively solving their problems over Zoom further created a compre-
hensive understanding of parent mathematics self-efficacy and mathematics knowledge
for teaching.

2.1. Participants

Linda is a White parent of two children, and Laura Jean, one of her daughters, was
enrolled in a fourth-grade-level mathematics class in an affluent, suburban elementary
school in Maryland. Linda has a master’s degree in social work, and her mathematics
background is extensive, having minored in mathematics in college. She was well-versed
in traditional mathematics strategies focused on procedural knowledge but struggled with
the conceptually focused activities her children brought home. She chose to participate in
this study to learn conceptual mathematics strategies as the parent who primarily helps her
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children with mathematics at home. School district initiatives led to the rapid transition
from in-class instruction to remote instruction due to the pandemic. These changes resulted
in additional challenges (e.g., limitations to differentiating classroom instruction, limitations
in student collaboration, and technical difficulties) in supporting Laura Jean’s learning.

2.2. Researcher Identity

This study was conducted by Laura Moore, a National Board Certified educator with
eight years of teaching experience. She is African American from a southern family and
is third-generation college-educated. She would be considered middle class. Although
Laura differs in race from the participants, similarities in social class and formal education
reduced power imbalances between the researcher and parent participant. Given these
factors, trust was quickly established between the researcher and the parent participant.

2.3. Interactive Homework

Interactive homework activities were used to address parents’ mathematics knowl-
edge for teaching and self-efficacy. These two constructs are important in helping parents
with their children’s homework. Ball et al.’s [31] mathematics knowledge for teaching
(MKT) theory describes the mathematics understanding educators need for school instruc-
tion. Mathematics competence influences the role parents play in reinforcing mathematics
instruction, and De Corte et al. [32] identified five necessary elements of mathematics com-
petence: (a) positive mathematic beliefs, (b) specific mathematical knowledge, (c) heuristic
methods, (d) metacognition, and (e) self-regulatory skills. De Corte et al. [32] reported that
positive mathematics beliefs include high levels of self-concept and self-efficacy. Specific
mathematical knowledge involves an understanding of mathematical constructs (e.g., sym-
bols, procedures, and concepts) and the ability to make generalizations and use heuristic
methods to make problem solving more meaningful.

Mathematics knowledge for teaching is divided between subject matter knowledge
and pedagogical content knowledge, two dimensions originating from Ball et al.’s [31]
MKT framework, which is based on Shulman’s [33] pedagogical content knowledge (PCK)
construct, which emphasizes the connection between knowledge of a subject and the ability
to teach that subject. Within these dimensions are six domains: (a) common content knowl-
edge (CCK), (b) horizon content knowledge (HCK), (c) specialized content knowledge
(SCK), (d) knowledge of content and students (KCS), (e) knowledge of content and curricu-
lum (KCC), and (f) knowledge of content and teaching (KCT). CCK, HCK, and SCK fall
under subject matter knowledge, and KCS, KCC, and KCT fall under pedagogical content
knowledge.

Self-efficacy plays a significant role in guiding one’s motivation and engagement in
specific behaviors described by Bandura [34]. Specifically, those with high levels of mathe-
matics self-efficacy are more inclined to (a) create challenging goals, (b) view challenges as
learning opportunities, (c) increase the effort required to master goals, and (d) associate
failure with insufficient effort [28]. Thus, mathematics self-efficacy’s connection to overcom-
ing educational obstacles [19] likely explains why high levels of mathematics self-efficacy
correlate with higher mathematics achievement [28].

Bandura’s [34] triadic reciprocal determinism theory, coupled with his self-efficacy
theory, demonstrates how environmental factors, personal factors, and behavioral factors
interact to influence an individual’s life and was used to construct the themes in the self-
efficacy data. The interactive homework assignments (environmental factors), collaboration
(a behavioral factor), and mathematics knowledge for teaching (a personal factor) appeared
to mutually reinforce each other to improve parent mathematics self-efficacy.

The interactive homework assignments (Appendix A) consisted of four components:
the problem-solving section, the discussion section, the writing section, and the parent
feedback section. The first three sections (e.g., problem solving, discussion, and writing)
served to promote parent mathematics knowledge for teaching and parent mathematics
self-efficacy for teaching. The feedback section promoted parent mathematics self-efficacy
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for teaching by allowing the parent participant to direct the content of the next session to
further support their learning of the strategies. Each section was created for the express
purpose of promoting dialogue and joint problem solving between parent and child. These
assignments were designed as a template for parents to guide instruction without the
researcher’s regular input.

The problem-solving section contained (a) a word problem or prompt, (b) side-by-side
examples of strategies, (c) a list of problems to solve using the strategies, and (d) two areas
designated for the parent and student to problem solve using their strategies. Each partici-
pant had to solve at least two problems, and this section’s three probing questions were
used to help the parent and child observe the strategies in greater detail in preparation for
deciding which strategies would be more suitable for solving specific problems (Figure 1).
Figure 1 contains side-by-side examples of two mathematics representations of subtrac-
tion: base-10 blocks and the traditional algorithm. Figure 1 demonstrates the process of
regrouping with subtraction using base-10 blocks, which are physical objects arranged in
singular pieces and in groups of 10, 100, and 1000 to represent the base-10 numerical system.
This section provided participants with images of the strategies employed, demonstrated
connections between those strategies and word problems (and prompts), and highlighted
how different strategies could be employed to solve problems. Choosing a problem and
defending their reasoning for strategy choice served to boost interactions, and the separate
writing sections designated for the parent and child participants also served to promote
their interactions through joint problem solving on the same paper.

Figure 1. Problem-solving section: Side-by-side examples of subtraction.

The discussion and writing sections encouraged participants to reflect on and discuss
their engagement with the problems to deepen their mathematics knowledge about the
strategies and to reflect on the effectiveness of their partnering. The discussion section
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contained two questions that the participants answered aloud to gain more insight into
the relationship between their strategies and problems to determine which strategies were
more effective for specific problems (Table 1).

Table 1. Discussion section questions.

Question 1 Compare the strategies you used. Which strategy worked best for solving each
problem? Please defend your response.

Question 2 How did your partner help you learn about the strategies (e.g., encouragement,
providing a great explanation)?

Additionally, the writing section contained questions (two to three) that encour-
aged the adult participant to compare strategies and form predictions about which strate-
gies work best with different problems, strengthening their understanding of conceptual
strategies’ purposes and advantages (Table 2). The number of questions would vary de-
pending on whether the homework assignment contained a word problem or a prompt
(Appendix A). If a homework assignment contained a prompt, Questions 1 and 2, were
used. If a homework assignment contained a word problem Questions 1, 2, and 3 were
used. The parent participant recorded her thinking in this section.

Table 2. Writing section questions.

Question 1 What were the advantages of each strategy?

Question 2 Can you predict which strategies would work best with these problems by
inspection? Why or why not? Please explain.

Question 3 How did the strategies reflect the word problem?

The feedback section also contained three statements in which the adult participant
could describe student progress on the assignment. This section also encouraged the
adult to provide recommendations for future assignments. Goldman and Booker’s [10]
and Jackson and Remillard’s [11] studies aligned with this study’s needs assessment
responses, which indicated that parents wanted more instructional resources on these
strategies. Specifically, parent participants from the needs assessment desired supports
that were prescriptive, such as textbook resources containing examples of how to use
the strategies. The feedback section was created to empower the parent participant to
request additional support on strategies to further aid their understanding of conceptual
mathematics strategies. The researcher, also a fourth-grade teacher, was familiar with the
strategies that the child participant had learned. Moreover, the researcher’s observations
of parent–child interactions guided her construction of subsequent homework activities
as she inserted and changed the pictorial representations to support the parent’s growing
understanding of the strategies.

3. Results

This study was developed to examine the effectiveness of an interactive homework
program for elementary mathematics students and their parents. Three research questions
were designed to guide the study. Specifically, two research questions were designed
to capture the intervention’s impact on Linda’s perceived mathematics self-efficacy and
mathematics knowledge for teaching. The third research question involved her identifying
helpful interactive homework program components. Many study results were unantici-
pated, and the emerging themes may prove helpful in guiding future studies regarding
parent and child mathematics engagement.

3.1. Research Question One

Research Question One is “In what ways does the homework intervention change
perceived parent participant mathematics self-efficacy?” Linda appeared to demonstrate
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greater confidence in teaching Laura Jean conceptual mathematics strategies, as indicated
by the survey, interactive homework assignments, observations of the homework sessions,
journal entries, and the interview, which yielded four themes: beliefs, autonomy, modifica-
tion, and motivation. Beliefs is a theme in this study, referring to the parent participant’s
reactions to new teaching methods and how her beliefs evolved throughout the interven-
tion. Autonomy represents the participants’ capacity to direct the problem-solving process
and collaboratively problem solve. Modification represents how the interactive homework
sheets were changed based on participant interactions during the problem-solving process
and parent requests. Motivation is the participants’ willingness to engage in pictorial math-
ematics strategies and extend their learning outside the interactive homework sessions.

With respect to the theme of beliefs, Linda was initially frustrated by conceptual
strategies (Interactive Homework One; Interactive Homework Two; Sessions One through
Three; Survey). During the first two observed sessions, Linda’s frustration appeared to
stem from how she struggled to help Laura Jean realize success in mathematics when she
had minored in mathematics (Survey and Session Two) and had extensive mathematics
experiences with her own parents (Session Three). Linda shared, “Yeah, we [family] get
pretty confused. My dad’s an engineer, my mom’s an accountant. So. . . numbers, we
know them” (Session Three). Linda also believed that conceptual strategies were more
complicated than necessary, as indicated by her response to the use of number lines, a
strategy used to demonstrate the difference between whole numbers serving as endpoints:

I don’t like number lines. I really. . . I’m not asking you to make me do this again.
But some of them seem, some problems are way harder to do with the number
line because it’s much more complicated math. And I feel like they should just
leave that behind now [and] move on. (Session Three)

Upon debriefing with Linda at the end of the first observed session featuring Inter-
active Homework Two, her disapproval of conceptual strategies appeared to be another
source of concern, evidenced by her discussion of adjustment, a compensation strategy, in
which the minuend, the top number, and subtrahend, the second number, in a subtraction
problem, are modified by an equal amount. Figure 2, from the first interactive homework
assignment, shows both reduced by 1. Linda expressed relief upon reviewing Interactive
Homework Two, which did not contain a side-by-side example of the adjustment strategy,
“Yeah, I don’t think I like adjustment. When I saw that. . . she [Laura Jean] started doing
that, I’m like, I just. . .don’t want to change the number. I want to work [with] the number I
have” (Session One). Her dislike of the conceptual strategies also led to her resistance to
using them. For example, as referenced earlier, Linda’s comment regarding number lines,
“I don’t like number lines. . . I’m not asking you to make me do this again” (Interactive
Homework Four; Session Three). Because she did not feel comfortable using the conceptual
strategies, she expressed satisfaction when she checked her answers using the traditional
algorithm, “And that’s when you can use the algorithm and check against like. . .Oh, look
at it” (Session Three).

 

Figure 2. The adjustment strategy from the first assignment.
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By the fourth session, Linda’s concerns about the conceptual strategies began to
rapidly subside as she embraced conceptual strategies to help Laura Jean understand
fractions, concepts Laura Jean struggled with more than whole numbers. As Laura Jean
began to arrive at the correct answers and grasp adding fractions using number lines
and area models, a region that is partitioned into equal areas, Linda praised the number
line strategy for adding fractions, “Hey, Laura Jean. That makes sense on the number
line” (Session Four). Linda also appeared to value how the area model helped Laura Jean
visualize adding fractions, “Like having this the area model of your picture. She could do
that and see what it is” (Session Four).

Linda began to demonstrate greater autonomy as the sessions continued (Researcher’s
Journal, p. 4), and she became hopeful for what the assignments would bring, “Hopefully
it’ll help me. . . make me more confident with my younger one [her youngest daughter]
when she’s doing this stuff [conceptual strategies]” (Session Four). In the first session, Laura
Jean selected the two problems (500-345, 400-289) that would have been appropriate for solv-
ing with the adjustment strategy. As a result, she left Linda with the remaining problems
that were too difficult to solve with this strategy. As Linda conveyed in the assignment’s
writing section, she could not complete her last problem. This incident reflected her limited
authority in redirecting Laura Jean’s selection of problems as she did in later sessions, three
through five, when Linda became more confident using conceptual strategies.

By the fourth observed session, when Laura Jean struggled to generate a number
line for adding 3

10 and 5
10 , Linda skillfully directed her to the interactive homework’s

pictorial representations and modeled creating a number line for the new problem. Linda’s
reliance on the conceptual models to rectify Laura Jean’s confusion was apparent in her
(a) highlighting features of the conceptual strategies; (b) creating her own model as a
demonstration; and (c) asking follow-up questions to deepen and assess Laura Jean’s
understanding of computing with fractions: “Okay. So, you know that one of these.
We only need one for the tenths, and we cut [it] into 10 pieces. Three of the 10 pieces,
right? Okay, but where [what] does this one represent? Do you still need these?” Linda’s
techniques were based firmly on pictorial representations (Figure 3), demonstrating greater
confidence in using conceptual strategies (Researcher’s Journal, p. 5)

 

Figure 3. Video screenshot of parent work during session four using interactive homework five.

Each interactive homework assignment underwent modifications based on researcher
observations and parent feedback on the assignments, effectively conforming the assign-
ments to participant need to improve their confidence using the conceptual strategies.
Linda was disincentivized from using conceptual strategies, believing that they were less
useful after Laura Jean selected all the problems for solving that were appropriate for the
adjustment strategy on the first assignment, leaving Linda with problems that were only
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suitable for solving with the traditional algorithm. Thus, the directions on the second
interactive homework were modified to ensure that participants alternated turns when
choosing problems to facilitate discussion and improve their opportunities for selecting
strategies that correspond to the problems. The second assignment was also modified to
include three strategies instead of two, as in Interactive Homework Assignment One, to
facilitate Linda’s understanding and use of conceptual strategies (Figures 4 and 5). Fig-
ure 4 shows side-by-side examples of the adjustment strategy (discussed above) and the
traditional subtraction algorithm. Figure 5 illustrates three strategies. Removal is a number
line strategy in which the total quantity is positioned at the right endpoint of the number
line and the second number is removed through repeated subtraction in segments; the
answer is the most left or last point on the number line. The partial difference strategy
involves subtracting the minuend incrementally, often by place value. At the end of Session
Three, Linda requested help with teaching fractions. In response, Interactive Homework
Assignments Five and Six were modified to include ways to conceptually develop an un-
derstanding of fractions and fraction operations. Her request reflects improved confidence
in using conceptual strategies to support Laura Jean’s understanding of the subtraction of
whole numbers (Researcher’s Journal, p. 4).

Figure 4. Interactive homework assignment one.

Figure 5. Interactive homework assignment two.
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The interactive homework assignments contributed to Laura Jean’s motivation to
engage in mathematics activities. According to Linda, Laura Jean began to enjoy math-
ematics because she could practice and master concepts for which she had previously
struggled (Interview; Sessions Three through Five). The assignments were tailored to her
areas of development. As a result, Laura Jean experienced even greater success on more
challenging problems, which also improved her motivation to participate in the interven-
tion (Researcher’s Journal, p. 4). Her enjoyment of the interactive homework assignments
and mathematics was evident when she opted to solve most of the problems instead of
sharing the responsibility equally with her mother (Researcher’s Journal, pp. 3–5; Sessions
Three through Five).

Linda credited the interactive homework’s collaborative nature to Laura Jean’s newly
found interest in mathematics, which in turn motivated Linda to find additional problems
for Laura Jean to practice:

But it was helpful for me to work with Laura Jean and for her to have somebody
else. . . we have the assignment to go along, but we had to do [it] together and
she actually enjoyed it. So, I think seeing her getting interested to study math,
I think it helped, and gave us a reason to do more math. And we just said, hey,
let’s just do some extra, like homework or sheets I found online. And so, it kind
of gave us [a] purpose to do more math and work on some of the stuff that she’s
been working on. (Interview)

3.2. Research Question Two

Research Question Two is “In what ways does the homework intervention change
perceived parent participant mathematics knowledge for teaching?” An examination of
participant comments on the survey and assignments, observations, researcher’s journal
entries, and the interview indicated Linda’s greater proficiency in identifying and using
conceptual strategies to support Laura Jean’s mathematics learning. For the second re-
search question, understanding and functionality were identified themes that characterized
improved parent mathematics knowledge for teaching. Understanding was defined as the
participant’s growing knowledge of the pictorial representations or conceptual mathemat-
ics strategies and how and when to use them, and functionality was the parent participant’s
growing understanding of the purposes of each set of strategies.

Linda’s limited understanding of conceptual mathematics strategies contributed to
her challenges with helping Laura Jean. Due to these past struggles, she revealed in her
interview that she joined the study to learn more about them. Because Linda did not know
the conceptual strategies for computing with fractions, helping her daughter with fractions
was particularly difficult:

. . . I don’t actually remember how to, like, do them, like subtract fractions and
everything. . . . I can visually and I know what the number is like, and I could do
it. But I’m like actually showing her. . . the traditional algorithm kind of way. I’m
like, I don’t know that I know it [a conceptual strategy]. (Session Three)

Linda’s unfamiliarity with these mathematics concepts also influenced her ability to
identify connections between conceptual strategies and the traditional algorithm, “I don’t
know. Do you see? . . . The algorithm next to the example . . . looks totally different to me.
Like it doesn’t. I don’t see [the] relation” (Session Three). Yet, as the sessions progressed,
Linda used the support from the side-by-side examples of how to solve the problem to
connect her mathematics background to what Laura Jean was learning in school. In her
interview she elaborated:

So, I guess it [the side-by-side example of the conceptual strategy] just informed
me of what it is and kind of showed me compared to. . . how I learned in school.
[It] kind of gave me a comparison so I can see what. . . I was doing compared to
what I needed to be doing to show her [Laura Jean].
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Learning more about the conceptual strategies led to Linda developing more positive
beliefs about the use of conceptual strategies. She initially expressed dissatisfaction with
the adjustment strategy (Interactive Homework One; Researcher’s Journal, pp. 1, 3; Session
One), but by the third session, she conveyed that the addition of the number line on
the fourth interactive homework assignment helped her learn the adjustment strategy,
“Adjustment with the number line helped [me] to see how adjustment work[s].” Linda’s
understanding improved with the combination of two conceptual strategies she initially
disliked and did not understand. Linda’s greater familiarity with conceptual strategies
and resulting improvements in her mathematics knowledge for teaching were illustrated
when she relied on pictorial representations to help her daughter. For example, in the third
session on Interactive Homework Four, Linda used the side-by-side examples of the base-10
model and traditional algorithm for subtraction to help Laura Jean understand regrouping:

. . .when you look at just this number like that, then you don’t have to borrow.
Right? Right. So, if you did traditional, you’d have to like this, right? Cross that
off, make that a seven, this would become 10. Right? Yes.

By the fourth session, Linda’s improved mathematics knowledge for teaching was
illustrated by her complete reliance on or full use of pictorial representations. She was
then asking questions of Laura Jean such as,” How does your picture represent three
times? What part of your picture? Can you shade it?” These comments and resulting
behaviors, reflective of Sessions Four and Five, directly contrast with her dependency on
the traditional algorithm in Sessions One, Two, and Three.

Linda’s understanding and mathematics knowledge for teaching were also demon-
strated in her correct assessment of Laura Jean’s abilities. By the end of the third session,
which featured the fourth assignment, Linda desired a change in content because her
daughter felt comfortable subtracting whole numbers in various ways, “Like she’s comfort-
able with this stuff. Now she fully understands it. But. . . She’s already [on] fractions [in
class].” Her assessment matched that of the researcher, who had eight years of instructional
experience. Moreover, although the intervention was initially created to develop a con-
ceptual understanding of whole number operations, Linda requested practice computing
with fractions once she observed that Laura Jean mastered subtracting whole numbers.
The flexibility of the intervention was partially based on Linda’s input, allowing the re-
searcher to use the intervention to target additional areas of need. Thus, the fifth and sixth
assignments were adjusted to include fractions (Researcher’s Journal, pp. 5–6).

Linda’s improved understanding of conceptual strategies was also indicated by how
she recognized these strategies in other parts of her daughters’ learning. She identified Inter-
active Homework Five’s models in Laura Jean’s DreamBox program, an online mathematics
resource that teachers assigned as homework and classwork to reinforce mathematics learn-
ing. Linda also used this connection to help Laura Jean solve problems, “. . .these fractions
are kind of like your square units that you were doing [on] that DreamBox. Remember how
you’re doing it yourself?” (Session Five). She also recognized the homework assignment’s
number line strategies in her younger daughter’s class work (Session Three).

Initially, Linda’s limited exposure to and understanding of conceptual strategies
influenced her beliefs about them, as indicated by her concerns about their functionality,
the second theme of Research Question Two. For example, when Laura Jean selected
all the problems that corresponded to the adjustment strategy on the first assignment,
Linda wrote, “Guess there are less steps in adjustment, but it can’t be used in every
problem and requires extra thinking.” This observation demonstrated how she defined
functionality by a strategy’s versatility. Linda also defined a strategy’s utility by the
amount of effort required to use it, as indicated by her comments on the first assignment,
which acknowledged advantages of the traditional algorithm for subtraction, “Traditional
[algorithm] = straight forward and no extra thinking if it could work.” The concept of the
traditional algorithm’s efficiency was reiterated in the third session, in which she discussed
how the conceptual strategies “Force you to think about solving,” thereby reducing their
efficiency in the process.
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The assignments were adjusted weekly to help Linda redefine functionality and change
her mindset and develop confidence using conceptual mathematics strategies (Researcher’s
Journal, pp. 2–6). As a result, Linda began to understand that conceptual strategies pro-
mote understanding instead of achieving an immediate answer, the traditional algorithm’s
purpose (Interactive Homework Assignments Three through Six; Sessions Three through
Five). For example, before the intervention, Laura Jean spent at least two months learning
the traditional algorithm for subtracting whole numbers, and she developed the habit of
reversing minuends and subtrahends. After completing Interactive Homework Assign-
ments Three and Four, which featured the base-10 model for subtraction, Linda observed
the visual representation’s effectiveness when Laura Jean stopped reversing minuends and
subtrahends for problems that required regrouping. This change in performance illustrates
how visual representations remedied Laura Jean’s misunderstandings, transitioning her
to the correct use of the traditional algorithm (Interactive Homework Four; Session Three;
Researcher’s Journal, p. 4). Witnessing how learning conceptual strategies improved
Laura Jean’s understanding of the traditional algorithm was an eye-opener for Linda,
“Yeah, I mean, I think the base-10 blocks actually make the most sense to me visually”
(Session Three).

3.3. Research Question Three

Research Question Three is “What components of the interactive homework assign-
ment program do parent participants identify as useful in helping them support their
children with mathematics learning at home?” The themes of repetition, convenience, and
side-by-side examples were identified as effective intervention components for developing
mathematics knowledge. Repetition was defined as the participants’ opportunities for
repeated exposure to and practice with mathematics concepts. The side-by-side examples
are about the diagrams of the pictorial strategies located in the interactive homework
worksheets, and convenience is defined by the parent participant’s noted ease of using the
interactive homework assignments.

Linda discussed the importance of repetition, requiring additional practice on math-
ematics concepts. Laura Jean struggled to recall what she learned in school because she
took notes on white boards and rarely had homework in previous grades (Session Two;
Session Five). Linda appreciated the additional practice she received with the homework
assignments, “I always wanted more stuff from the school. I’m just trying to help [with] the
math because I didn’t get it. And I took this opportunity as a chance to do that” (Session
Four). Linda discussed how these additional resources and practice at home helped Laura
Jean master concepts, “So it was helpful for her to have some extra math that wasn’t too
hard to kind of talk about and stuff to see” (Interview).

Repetition and Laura Jean’s subsequent successes in mathematics led to her enjoyment
of mathematics (Interview; Sessions Three through Five). This change in Laura Jean’s
mindset inspired Linda to provide more opportunities for mathematics engagement:

But it was helpful for me to work with Laura Jean and for her to have somebody
else kind of, I mean, we have the assignment to go along, but we had to do
together and she actually enjoyed it. So, I think seeing her getting interested in
studying math, I think it helped, and gave us a reason to do more math. And we
just said, hey, let’s just do some extra, like homework or sheets I found online.
And so, it kind of gave us purpose to do more math and work on some of the
stuff that she’s been working on”. (Interview)

Laura Jean’s enjoyment of the interactive homework assignments and mathematics
were also illustrated when she opted to do most of the assignments’ problems instead
of sharing the responsibility with Linda (Researcher’s Journal, pp. 3–5; Sessions Two
through Five). Linda appreciated how the side-by-side examples of the interactive home-
work assignments helped her understand the conceptual strategies. Linda was unfamiliar
with these strategies and discussed the importance of using these examples to support
Laura Jean:
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And so, I think having that sample like above and explaining the different forms
to do it helps at least a parent that knows some bit about math and doesn’t know
the math isn’t, you know, going to figure it out unless they’re learning along with
their kid. But yeah, I think the hardest thing was always that she was expected to
do these different models. And I didn’t know what they were. (Session Four)

Linda discussed how she did not receive sufficient resources from Laura Jean’s teachers
and how she appreciated how the side-by-side examples helped her compare conceptual
strategies and the traditional algorithm to learn conceptual strategies:

So, I didn’t have any of the side-by-side stuff to show the different ways in what
they’re supposed to be doing and how they were learning and stuff because none
of it ever came . . . home where she was explaining, I don’t know what she was
saying. So, so I guess [the examples] just informed me of what it is and kind
of showed me compared to what how I learned in school kind of gave me a
comparison so I can see what I was, what I was doing compared to what I needed
to be doing to show her. (Interview)

The side-by-side strategies, serving as informative guides during remote instruction
when access to teachers was more limited, and the resulting available problems informed
Linda’s understanding of efficiency. She emphasized the importance of these samples, “So
I think having a sample of what the kids are supposed to be working on, I think, helps”
(Session Five).

Linda praised the convenience of the interactive homework assignments, stating
how prior inconvenient resources and tools detracted from Laura Jean’s learning. She
specifically cited the challenges of remote instruction that required students to complete
assignments on the computer and Laura Jean’s difficulties writing on the touch screen of
her school-district-provided Chromebook. Her screen was too small to write on and a
stylus had not been provided:

It’s like if the screen is bigger, it would be easy to work on but their computer
screens are [too small and] it’s like this big pain, and their little fingers are fat.
And I guess if you had like little, like the pencils that write on screens. . .Yeah,
that would make it easier. And I don’t know if they even work with these things.
But um, but yeah, it makes it really hard to write on there and then to erase and
then you need to go back and take. Yeah, it’s just a pain. (Session Three)

Linda believed that the typing feature of Pear Deck, an interactive app for student
learning, posed additional challenges for setting up problems for solving:

And if you just type and use the type part. . .trying to get it to like [to] type the
problem and then line it up and hit their space and that ends up, it doesn’t line
up right. (Session Three)

She continued discussing challenges with Chromebooks in the fourth session, when
she experienced difficulty locating Laura Jean’s school assignments to print out (Re-
searcher’s Journal, p. 4). Given Linda’s difficulties with technology, she was grateful
for the easy access to the interactive homework assignments and the ability to write directly
on them for problem solving (Session Three).

4. Conclusions

In alignment with existing literature, this study’s findings revealed a need for pro-
viding parents with sufficient mathematics support to aid their child’s learning [10–12].
Although Linda had an extensive mathematics content background, she did not have
extensive pedagogical content knowledge. Therefore, she initially struggled to help her
daughter learn mathematics concepts and strategies for which she had limited experience.
Linda began to demonstrate improvements in mathematics self-efficacy in her ready use
of conceptual strategies to support Laura Jean. Improvements in parent mathematics self-
efficacy appear to stem from greater exposure to and practice with conceptual mathematics
strategies and modifications to the intervention to suit participant needs [23,24,28,35].
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Specifically, participants solved problems together using various strategies, and their un-
derstanding of these strategies improved through repeated practice and the use of question
prompts and examples to evaluate and reflect on the strategies’ effectiveness. As a result
of practice and evaluation, their arsenal of strategies improved, leading to a deeper un-
derstanding of the nature of subtraction, addition, and the part-to-whole relationship of
fractions. Moreover, participant learning and self-efficacy also progressed due to conditions
that were controlled (e.g., the nature of parent–child discussion and opportunities for
selecting different strategies) through weekly homework modifications based on partici-
pant feedback and need. Problem-solving tasks, collaboratively problem solving, direct
instruction on instructional methods, self-guiding instruction, and emotional supports
(e.g., a discussion question that asked participants to highlight each other’s contributions
and prompts that promoted positive interactions among participants) were contributing
factors to improved parent mathematics self-efficacy and parent mathematics knowledge
for teaching.

A bilateral relationship between the parent–child partnership in their understanding of
conceptual strategies and confidence using the conceptual strategies was postulated to affect
the intervention’s outcomes. The improvement in Laura Jean’s learning was remarkable.
Although Linda was the participant of primary focus of this study, the interactions between
Linda and Laura Jean propelled their progress during the intervention. Specifically, as
Linda’s mathematics self-efficacy and mathematics knowledge for teaching improved,
Laura Jean’s mathematics skills also improved, resulting in Linda’s improved approach to
her mathematics engagement with Laura Jean.

Additional themes that emerged from the intervention were initiative and ability.
Initiative is defined as one’s willingness to take charge of the learning process, and ability
refers to levels of mathematics proficiency. Laura Jean’s transformation was signaled by
her willingness to take the initiative in solving problems in the homework. Session One
was characterized by Laura Jean following Linda’s directions on completing the problems
(Researcher’s Journal, p. 2). As Linda repeated the strategies’ procedures, Laura Jean
quietly obeyed. As Linda attempted to engage Laura Jean, she initially responded with one
to three words, grunts, and shrugs. Moreover, Linda did not answer the second homework’s
discussion section question, “How did your partner help you learn about the strategies (e.g.,
encouragement, providing a great explanation)?”, reinforcing the researcher’s observations
of how Laura Jean had not initially facilitated Linda’s learning (Researcher’s Journal, p. 2;
Session One).

Their improved interactions mutually reinforced each other’s growth, leading to
Laura Jean’s improved initiative to engage in mathematics tasks by the last session. At
the beginning of the second session, Laura Jean maintained her passivity; however, after
the base-10 strategy was explained, she volunteered to complete the rest of the interactive
homework problems (Researcher’s Journal, p. 3). By Session Three, as Linda began to
follow the discussion prompts to examine the side-by-side examples more closely, facilitate
productive dialogue, and encourage Laura Jean, Laura Jean volunteered to do most of the
homework problems and complete problems outside of the intervention and schoolwork
(Interview; Researcher’s Journal, pp. 4–6; Sessions Three through Five). Linda’s guidance
and encouragement, facilitated by the assignment’s prompts and questions, improved
Laura Jean’s understanding. As a result, she experienced success in mathematics, leading
to more positive reinforcement and, thus, a greater desire to engage in mathematics. By the
last session, Laura Jean created models for solving and articulated her problem-solving
process using mathematical language without Linda’s prompting. (Researcher’s Journal,
p. 6; Session Five).

Laura Jean’s improved ability and rapid mathematics success appeared to be the
linchpins that ignited improvements in Linda’s mathematics knowledge for teaching and
mathematics self-efficacy as she observed the effectiveness of conceptual strategies. Before
the intervention, Laura Jean struggled for at least two months using the traditional standard
algorithm for subtraction with regrouping. After two sessions using the base-10 block
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strategy led to her accurate use of the traditional algorithm, Linda requested additional
practice with conceptual strategies to improve Laura Jean’s understanding of fractions
(Researcher’s Journal, p. 4; Session Three). By Session Four, Linda guided Laura Jean’s
understanding of fractions through questioning and pictorial representations of the part-to-
whole relationship. Linda had to correct Laura Jean’s area models for subtracting fractions
less than one; however, by Session Five, Laura Jean adroitly created number lines with
equivalent fractions greater than one to regroup with subtraction while correcting her
mistakes and explaining her process for solving. Laura Jean’s self-corrections, articulation
of her problem-solving process, and her adaptations of a conceptual strategy without
prompting (e.g., placing equivalent fractions on the same number line to subtract) with
more advanced concepts like fractions represent a marked departure from her mathematics
engagement in the initial sessions. The parent participant’s knowledge and confidence in
using conceptual development strategies translated to the child participant’s full embrace
of mathematics as she began to experience success. As a result, the parent participant,
initially resistant to using conceptual strategies, actively sought additional opportunities
to work with her child to use conceptual strategies. Additional practice led to greater
improvement in mathematics knowledge and confidence. Each participant fueled the
other’s progress, likely resulting in the relatively rapid growth in their overall conceptual
knowledge and self-efficacy. The dynamic between parent and child collaborations cannot
be underestimated as a factor in future mathematics interventions.

Implications for the Future

While the results of the intervention appear promising, there are many questions that
future studies should examine. The parent participant had a strong mathematics back-
ground that she used to catapult her understanding of conceptual mathematics strategies.
Furthermore, she was confident in her general mathematics abilities. How effective would
the interactive homework assignments be for parent participants with less mathematics
experience and confidence? These participants were also affluent, and what would the
impact of this intervention be with participants from various SES or a much more diverse
set of participants in general? This intervention involved two participants, but what could
be its impact on a larger sample size of participants? Given the small sample size, the
assignments could be tailored based on specific needs. How could this intervention be
scaled up to meet the varying needs of several more participants?

As schools in the United States continue to grapple with the aftermath of the COVID
pandemic’s effects on student learning, new approaches must be taken to improve parent
mathematics engagement. This study highlighted the impact of a parent participant, who,
when appropriately supported, developed a new mindset and skills for helping her child
overcome significant mathematics challenges and gaps in understanding. This study also
revealed the importance of respecting parent perspectives; how valuing their needs, skills,
and insight can work to accelerate their child’s progress. Schools should provide resources
to families that help them learn new mathematics concepts and approaches to teaching
mathematics different from ways that they may have learned. Specifically, these resources
should be embedded with question prompts that promote positive mathematics engage-
ment between family member and child, as the study revealed that guided collaboration
enhanced the participant understanding of the strategies and their motivation to continue
learning. Moreover, schools should focus on gathering feedback from families about the
resources they need to support their children. As the participants grew in their knowledge
of pictorial mathematics strategies, the parent participant better advocated for additional
materials to meet her daughter’s needs. Improving the bridge between home and school
through interactive tools that mirror classroom instruction and communication could be
instrumental in improving this nation’s mathematics trajectory for the future.
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Abstract: Historically, the assessment of mathematics in higher education comprised closed-
book, summative, proctored examinations. Related disciplines and subjects like statistics,
mathematics education, and the history of mathematics lend themselves to a broader range
of assessment techniques that have been reported to provide a more balanced picture of stu-
dents’ abilities. In 2020, an online environment for the teaching and learning of mathematics
was imposed on the academic world globally as a result of the COVID-19 pandemic. In
an effort to teach and assess remotely while maintaining institutional academic standards,
the majority of lecturers were in a situation where closed-book, proctored assessments
were not an option. As a result, other methods were adopted. This paper reports on an
investigation into how mathematics lecturers worldwide assessed mathematics before the
pandemic, during the initial lockdown restrictions, and in the immediate aftermath, while
some restrictions were still in place, to see if any changes were sustained. There was a
statistically significant difference in the proportion of respondents who used many of the
assessment types investigated across the three time periods, including open-book timed,
open-book untimed, closed-book, multiple-choice questions, online proctored, in-person
proctored, presentations, projects, and assignments. The majority of those who favoured
closed-book proctored examinations prior to the pandemic moved to timed open-book
assessments. Differences between the weightings of final examinations versus continuous
assessments were also statistically significant, with greater weight given to continuous
assessment once the pandemic began. Respondents’ satisfaction levels with their assess-
ments were significantly different also, with the highest satisfaction levels prior to the
pandemic and the lowest during the initial lockdown restrictions. Academic integrity was
a key concern of the majority of respondents when assessing the learning outcomes of their
modules and played a role in the vehicle of assessment they chose.

Keywords: COVID-19; mathematics assessment; emergency remote teaching; higher education
mathematics; teaching mathematics online; technology in mathematics assessment

1. Introduction

The assessment of mathematics in higher education has long depended on closed-
book, summative, proctored examinations (Iannone & Simpson, 2011; Davies et al., 2024).
Arguments have been made to support the assertion that mathematics is in some way
“different” as a discipline, in that it lends itself more to traditional forms of teaching and
assessment, more so than might be the case in other subjects—but equally, more recently,
such arguments have been refuted (Becher, 1994; Ní Fhloinn & Carr, 2017). Particularly
since the early years of this millennium, research has been conducted into the possible
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modes of assessment into which mathematics could naturally expand, citing the fact that
the traditional timed, closed-book assessment does not effectively assess skills such as
problem-solving or the use of IT (Challis et al., 2003). It seems clear at least that mathematics
assessment of this kind may fall short of the mark, as it may not give a fully comprehensive
picture of a student’s learning achievement (Burton & Haines, 1997). Although assessment
of a broader range of skills can be achieved through approaches such as report writing,
projects, and oral examinations (Niss, 1998), it appears that alternative modes of assessment
are only more prevalent in modules of statistics, history of mathematics, mathematics
education, and final-year projects (Iannone & Simpson, 2011).

During the initial university closures due to COVID-19 in 2020, mainly out of necessity,
a broader range of formative and summative assessment methods were embraced by the
mathematics teaching community (Fitzmaurice & Ní Fhloinn, 2021). This was a positive
outcome of the move to remote teaching, as alternative assessment strategies assess a
broader range of learning outcomes (Pegg, 2003). However, while this change happened
during the first months of the pandemic, when lecturers had to pivot to online assessment
with little or no time to plan, it is of interest to determine what happened the following
year, when lecturers still often had to assess mathematics online but had significantly more
notice of the fact.

Two decades ago, online assessment in mathematics started becoming more prevalent
as the internet became more conducive to mathematics (Engelbrecht & Harding, 2004). The
use of technology in education is seen as an inherent component of a teaching and learning
environment that seeks to fulfil the diverse needs of students in the 21st century (Valdez &
Maderal, 2021). Digital technologies offer compelling tools to conduct formative assessments
effectively in mathematics (Barana et al., 2021). Online assessment, or E-assessment, comprises
an extensive range of assessment types, including but not limited to online essays and
computer-marked online examinations (James, 2016). Online examinations are an efficient
means of conducting diagnostic, formative, and summative assessments and providing
students with the opportunity to perform to the best of their ability (Valdez & Maderal, 2021).

Recent years have seen exponential growth in the different modes of online assessment
that are available. Research by Davies et al. (2024), conducted in 2024, however, indicates
that Computer-Aided Assessment (CAA) in tertiary mathematics remains underutilised
despite these reported advancements in assessment methods. The continued over-reliance
by university-level mathematics lecturers on closed-book written exams referred to above
prompts questions about whether CAA can provide a more effective alternative, particu-
larly in formative assessment. Some studies have documented that CAA has been shown
to improve examination performance (Greenhow, 2015), although Greenhow (Greenhow,
2015, 2019) recommends that it should complement rather than replace traditional mathe-
matics assessments. When used effectively, online formative assessment has the potential
to nurture a learner- and assessment-centred focus using formative feedback and enhanced
learner engagement with worthwhile learning experiences (Gikandi et al., 2011). However,
it should be noted that distance assessment is not always experienced as a positive for
students, as they can struggle with access to technology and resources or simply with
feelings of isolation (Kerka & Wonacott, 2000). Multiple-choice questions have also been
shown to have the potential for bias in relation to students with varying learning styles or
in relation to confidence levels (Sangwin, 2013). Specific training or knowledge of question
creation is also needed, as questions assessed via computer-aided assessment are different
from those graded by hand (Greenhow, 2015).

Iannone and Simpson’s more recent investigation into summative assessments in the
UK (Iannone & Simpson, 2022) found that closed-book examinations are still tremendously
popular; however, E-assessment has increased significantly in the decade since their last
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study on mathematics assessment. Systems like STACK and NUMBAS are widespread in
many universities, mainly as part of some coursework components of first-year modules.
These systems are attractive because of the time-saving aspects of electronic marking and
the provision of rapid feedback (Iannone & Simpson, 2022). STACK is an open-source tool
that can seamlessly integrate with learning management systems like Moodle, enabling the
generation of randomised, automatically graded mathematics questions. Davies et al.’s
(2024) work ratifies STACK as an assessment vehicle that delivers instant feedback, with
adaptability in assessing complex mathematical concepts. NUMBAS is another open-source,
web-based assessment tool designed specifically for mathematics. Similar to STACK, it
provides interactive, automatically graded assignments and instantaneous feedback to
participating students, which they tend to put great value on (Lishchynska et al., 2021).
While the questions are customised and randomised, this can be quite a time-consuming
process for lecturers who choose it (Lishchynska et al., 2021).

Valdez and Maderal (2021) state that online assessments in mathematics are increasing
in use and popularity over the traditional paper-and-pen type as they evaluate student
learning without the need for everyone to be physically present in the same room. The
decrease in cost and increase in the availability of powerful technology have altered how
many mathematics lecturers assess their modules (Stacey & Wiliam, 2012). Yet Iannone
and Simpson (2022) found that there remains a relatively low level of variety in what
they call ‘the assessment diet’ in mathematics in HE in the UK. There is a question over
whether reasoning can be assessed online as efficiently as in a traditional examination
setting; however, Sangwin (2019) demonstrated that typical closed-book exam questions in
linear algebra could be replicated in an e-assessment system.

Academic integrity is a primary concern when selecting modes of assessment. Univer-
sities must uphold the academic veracity and exit standards of their degrees to preserve
their reputation, and a move to online assessment can coincide with grade inflation if
students are given increased time to complete assessments (Henley et al., 2022). Instances
of academic misconduct have been shown to increase when assessment is fully in online
format. Contract cheating refers to instances where students hire someone else to complete
their work or provide answers on their behalf (Liyanagamage et al., 2025). Lancaster and
Cotarlan (2021) found a 196% increase in contract cheating requests across five STEM
subjects when comparing the periods from April to August 2019 and April to August 2020.
This rise coincided with the shift to online assessments due to the COVID-19 pandemic.
Trenholm (2007) contends that proctoring truly is the only method to eliminate cheating
in online exams. However, Eaton and Turner’s’s (2020) research on E-proctoring, the
systematic remote visual monitoring of students as they complete assessments, may have a
detrimental impact on students’ mental health and well-being. Sarmiento and Prudente
(2019) demonstrated that ways around this are achievable. Their work illustrates that it
is possible to assess online and limit opportunities for copying. They used MyOpenMath
to generate individualised homework assignments for students. They found it not only
limited copying but also had a significant positive impact on students’ homework that was
submitted and on their summative assessment performance (Sarmiento et al., 2018).

While there is an abundance of studies that examine student perceptions about online
learning, there is a dearth in the literature on online assessment of mathematics (Valdez
& Maderal, 2021), specifically which areas of mathematics lend themselves more to being
assessed online. The university closures due to the COVID-19 pandemic forced lecturers
worldwide out of their comfort zones and normal practices when it came to assessing
their students. This research investigates the extent to which lecturers migrated from their
conventional assessments when pressurised to do so, the lessons learnt during this time,
the assessment changes that were preserved when they had a little more time to think and
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plan, and those that were discarded on their second attempt at online assessment. The
research questions we explore in this paper are as follows:

1. What assessment types were used by mathematics lecturers before the pandemic,
during the initial university closures, and during the academic year 2020/2021?

2. Were there changes to the weightings given to final examinations versus continuous
assessment during these time periods?

3. Did mathematics lecturers observe any changes in grade distribution within their
modules during these time periods?

4. Were mathematics lecturers satisfied with their assessment approaches during these
time periods?

5. What do mathematics lecturers believe are the easiest and most difficult aspects of
mathematics to assess online?

2. Materials and Methods

2.1. Sample

The profile of the respondents in the survey can be seen in detail in Table 1, with gender,
age, years of experience in teaching mathematics in higher education, and employment
status given. There was a total of 190 respondents to the survey. The gender breakdown
of the respondents was 52% female, which does not reflect the population of mathematics
lecturers in higher education, as this is predominantly male. The survey was sent to
a mailing list of female mathematicians in Europe, which likely accounts for the high
response rate from female mathematicians. The age profile was fairly evenly spread, with
85% of respondents between 30 and 59 years of age and a similar percentage in permanent
employment. Their teaching experience in higher education reflected the age profile, with
40% of respondents having more than 20 years of experience.

Table 1. Profile statistics of survey respondents (n= 190), showing their gender, age, years of
experience teaching mathematics in higher education, and current employment status.

Number %

Gender
Male 87 46%

Female 99 52%
(Blank) 4 2%

Age
20–29 years 8 4%
30–39 years 52 27%
40–49 years 60 32%
50–59 years 50 26%
60+ years 19 10%

(Blank) 1 1%

Experience teaching maths in higher education
0–1 year 2 1%
2–3 years 11 6%
3–5 years 18 10%

5–10 years 28 15%
10–15 years 39 21%
15–20 years 17 9%
20+ years 75 40%

Employment status
Ph.D./Postdoc 2 1%

Short-term contract (≤1 yr) 4 2%
Long-term contract (>1 yr) 22 12%

Permanent 162 85%

66



Educ. Sci. 2025, 15, 449

The respondents were based primarily in Europe, with only 12% based outside of the
continent, most of these in the United States. The highest proportion by far was based in
Ireland, as are the two researchers in this study. In total, respondents from 27 different countries
answered the survey. Further details can be found in (Ní Fhloinn & Fitzmaurice, 2022).

Respondents were also asked about their mathematics teaching in the academic year
2020/2021 to provide context for their responses. Half of the respondents lectured students
taking non-specialist (service) mathematics, while 60% taught students undertaking a math-
ematics major. We defined “small” classes as those having less than 30 students, “medium”
as being those between 30 and 100 students, and “large” as more than 100 students. From
our sample, 58% had small classes, 57% had medium classes, and 37% had large classes.
Almost three-quarters of respondents did all their teaching online that year, with a further
17% doing it almost all online. Prior to the pandemic, 75% of respondents had done no
online teaching of any kind, with a further 13% having done only a little.

2.2. Survey Instrument

This study falls under the umbrella of a larger investigation into the remote lecturing
of tertiary-level students of mathematics during the COVID-19 pandemic. Our research
design comprised the creation and dissemination of a purposely designed survey to inves-
tigate how lecturers and students were coping with remote mathematics education during
the initial stages of the COVID-19 pandemic around the world. In 2020, we created an
initial survey that would shed light on how mathematics lecturers were responding to the
challenge of a spontaneous and forced move to remote teaching. The survey questions
were original questions devised by the authors. The outcome of this research is reported in
(Ní Fhloinn & Fitzmaurice, 2022).

To get a comprehensive insight into this experience and period of time where there
were varying levels of restrictions enforced in 2021, we disseminated a follow-up survey in
order to make comparisons between remote teaching in 2020 with that 12 months later. It is
this follow-up survey on which this study focuses. It was largely based on the previous sur-
vey, with questions adapted to account for the fact that lecturers now had a year of remote
teaching and assessment experience. It was an anonymous survey created in Google Forms,
with a consent to participate checkbox on the landing page. We piloted the survey with a
panel of experts within two university mathematics departments to increase the reliability
and validity of the instrument. The lecturers were asked to review the questions to check
for clarity of phrasing and if the questions were unbiased and aligned with the intended
constructs. Suggestions for items we had not included were also welcomed. We asked the
panel of experts to identify ambiguities, inconsistencies, or potential misinterpretations in
a bid to improve content validity. Their feedback helped us refine question wording and
format, thus increasing reliability. This process was conducted so that the survey would
accurately address our research questions and produce consistent results across different
respondents. The relevant survey questions are shown in Appendix A.

The survey began with a number of profiling questions, the results of which are shown
in Table 1. There were then sections on their mathematics teaching allocation, the types
of technology they used and the purpose of this, student experience, remote teaching
experience, and personal circumstances, as well as the section which is the focus of this
paper—online assessment in mathematics. Within this section, there were nine questions,
four of which were open-ended.
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2.3. Data Collection

The survey was made available exclusively online, using Google Forms, and was
advertised via mailing lists for mathematics lecturers, as well as at mathematics education
conferences relevant to those working in higher education.

2.4. Data Analyses

Respondents were asked in many places to give their approach at three specific time
points: prior to the pandemic, during the initial university closures from March–June 2020,
and during the academic year 2020/2021. Throughout the paper, we will refer to these as
Period 1, Period 2, and Period 3 for simplicity.

Quantitative analysis was done using SPSS (version 29). For investigating binary
changes over the three time periods, we used Cochran’s Q test, as this is a non-parametric
test for comparing binary outcomes across three or more time periods for the same group
of subjects. In our results reported below, a statistically significant result is one for which
the p-value is less than 0.05. Where the results of Cochran’s Q tests were significant, we
conducted post-hoc McNemar tests to ascertain where the significant differences lay. In
this case, we needed to utilise a Bonferroni adjustment on the results because of making
multiple comparisons, and so a statistically significant result is one for which the p-value
is less than 0.017. To investigate changes in Likert-scale data over the three time periods,
a Friedman test was used, as this is a non-parametric test for comparing ordinal data
across three or more time periods for the same group of subjects. Where the results of the
Friedman test were significant, we conducted post-hoc Wilcoxon signed-rank tests as above
for the McNemar tests, with a similar Bonferroni adjustment.

For the qualitative responses, grounded theory was utilised, specifically general in-
ductive analysis. Both researchers independently coded the responses initially to provide
greater reliability in the results. Inter-coder reliability was 91%. We used the open dis-
cussion to categorise the disputed data points. This revealed minor differences in the
interpretation of some data that, when clarified, led to almost perfect agreement.

3. Results

3.1. Assessment Types

Respondents were asked about the types of assessments that they conducted at three
specific time points: Period 1, Period 2, and Period 3. The results are shown in Figure 1.

A Cochran’s Q test was conducted on each assessment type, and the outcomes are
shown in Table 2 below. From this, we found that there was a statistically significant
difference in the proportion of respondents using most of these assessment types over
time: namely, open-book timed, open-book untimed, closed-book, MCQ, online proctored,
in-person proctored, presentations, projects and assignments.

Further post-hoc McNemar tests were conducted for the assessment types that were
statistically significant, and the results are shown in Table 3 below. From this, it can be seen
that for open-book timed and online proctored assessments, there was a statistically signifi-
cant difference between each of the three time periods when considered in pairs—so there
was a significant difference between Periods 1 and 2, Periods 1 and 3, and Periods 2 and 3.
For open-book untimed, closed-book, MCQ and in-person proctored assessments, there
was a statistically significant difference between Periods 1 and 2 and Periods 1 and 3,
but not between Periods 2 and 3. For presentations, there was no significant difference
between Periods 1 and 3, although the other two pairings were significant. For projects and
assignments, the only significant difference was between Periods 2 and 3.
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Table 2. Results of Cochran’s Q tests conducted on each assessment type, where a p-value of
p < 0.05 represents a statistically significant difference in the proportion of respondents using each
assessment type.

Assessment Type Cochran’s Q Value p-Value Outcome

Open-book timed 138.078 <0.001 Significant
Open-book untimed 19.818 <0.001 Significant

Closed-book 163.538 <0.001 Significant
MCQ 27.167 <0.001 Significant

Online proctored 44.4 <0.001 Significant
In-person proctored 107.079 <0.001 Significant

Presentations 15.826 <0.001 Significant
Oral Assessments 2.583 0.275 Not significant

Essays 4.545 0.103 Not significant
Screencasts 4.750 0.093 Not significant

Projects 22.067 <0.001 Significant
Assignments 8.615 0.013 Significant

Table 3. Results of McNemar tests conducted on the assessment types that showed as statistically
significant in Table Y. A Bonferroni adjustment was applied so that p-values below 0.017 were
considered significant. P1 = Period 1, P2 = Period 2 and P3 = Period 3.

Assessment Type Periods Compared p-Value Outcome

Open-book timed P1vP2 <0.001 Significant
P1vP3 <0.001 Significant
P2vP3 <0.001 Significant

Open-book untimed P1vP2 <0.001 Significant
P1vP3 <0.001 Significant
P2vP3 0.832 Not significant

Closed-book P1vP2 <0.001 Significant
P1vP3 <0.001 Significant
P2vP3 0.064 Not significant

MCQ P1vP2 <0.001 Significant
P1vP3 <0.001 Significant
P2vP3 0.307 Not significant

Online proctored P1vP2 <0.001 Significant
P1vP3 <0.001 Significant
P2vP3 <0.001 Significant

In-person proctored P1vP2 <0.001 Significant
P1vP3 <0.001 Significant
P2vP3 0.092 Not significant

Presentations P1vP2 0.002 Significant
P1vP3 0.864 Not significant
P2vP3 <0.001 Significant

Projects P1vP2 0.027 Not significant
P1vP3 0.021 Not significant
P2vP3 <0.001 Significant

Assignments P1vP2 0.481 Not significant
P1vP3 0.096 Not significant
P2vP3 0.004 Significant
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Figure 1. Responses to the question “What types of assessment did you conduct?” (n = 190). Respon-
dents were permitted to tick more than one response, as appropriate.

3.2. Assessment Weightings

To measure the difference in weightings between different assessment types, respon-
dents were asked how much their final examination was worth in comparison with contin-
uous assessment in their modules. They had to select a percentage band, which was 20%
wide (e.g., 100% final exam, 80–99% final exam, etc.). The results are shown in Figure 2.
As can be seen in the chart, for Period 1, the most common approach was to have be-
tween 60–79% of the marks for the module assigned to the final examination (n = 68),
which dropped during Periods 2 and 3 (n = 46) but remained the most common weighting
throughout, although 40–59% became a very close second (n = 42) in Period 3. When a
Friedman test was conducted on this data, there was a statistically significant difference be-
tween the weightings of final examinations and continuous assessments, measured across
the three time periods (χ2(2) = 27.752, p < 0.001). Post-hoc analysis was conducted using
Wilcoxon signed-rank tests with a Bonferroni correction applied, and this found statistically
significant results between Period 1 and Period 2 (Z = −4.112, p < 0.001) and Period 1
and Period 3 (Z = −3.879, p < 0.001), but not between Period 2 and Period 3 (Z = −0.866,
p = 0.387).

In fact, if we consider the changes for any individual respondent, shown in Figure 3,
we find that 112 respondents did not alter how much their final exam was worth in relation
to the continuous assessment at any point during the three time periods under investi-
gation. Very few put more weight on final examinations between Periods 1 and 2, with
most who made changes moving towards a greater weighting on continuous assessment
(either a 1–19% increase or 60–79% increase, suggesting they either made minor weighting
adjustments or substantial ones). Between Periods 2 and 3, the biggest adjustments were
plus or minus 1–19% change in weightings, with respondents almost equally adjusting
towards more final examination weighting or more continuous assessment weighting.
Overall, looking at the change between Periods 1 and 3, there was a noticeable shift back
towards increased weighting for continuous assessment, although again the most common
response was a 1–19% increase in weighting.
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Figure 2. Responses to the question “How much was your final exam worth (versus continuous
assessment) in your modules?” (n = 178).
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Figure 3. Changes in individuals’ module weightings between the Final Exam (FE) and Continuous
Assessment (CA) between (i) pre-pandemic and March–June 2020 (ii) March–June 2020 and the
academic year 2020–2021 and (iii) pre-pandemic and the academic year 2020–2021.

There were 73 additional comments on this question, many describing specifics about
their approach, but some elaborating on reasons for the choices made in terms of assessment
at the various stages. The most common themes are highlighted in Table 4 below, along
with a sample comment made under each theme.
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Table 4. Responses given to the question “Any comments on changes to your approach to assessment
this academic year?” (n = 73).

Themes Number of Responses Sample Comment

Cheating 10 Open book online assessments led to lots of cheating (e.g., Chegg)

No choice 5 The university rules did not allow changing the balance of exam vs.
continuous assessment

Previous experience 4

Multiple choice exam last June in Linear Algebra was awful to create and
very bad at assessing students—average mark was 90%. This year’s Stack
based questions for quizzes and exams on Moodle was much more
discriminating

Time-consuming 4

Assessment became much more difficult. In particular, the process of
creating an exam and finding appropriate problems (which could not be
solved trivially using online software or Math Stack Exchange) was
extremely time-consuming

3.3. Grade Distribution

Respondents were then asked if they observed any differences in the distribution of
grades within their modules during Period 3. Only just over 3% felt that there was a big
difference in grade distribution that year, with 22% stating that there was no difference
at all and the remaining responses falling somewhere between these poles, as shown in
Table 5.

Table 5. Responses given to the question “Was there a difference in the distribution of grades within
your modules this academic year?”, where 1 = no difference and 5 = a big difference (n = 181).

Ranking Number of Responses

1 40
2 52
3 54
4 29
5 6

When asked for their interpretation of any differences they observed, there were
89 further comments made. The most common themes to emerge are shown in Table 6.

Table 6. The five most common themes mentioned by respondents when asked, “If you saw a
difference (in grades), why do you think this was?”.

Theme Number of Occurrences Sample Comments

Exam type 40 Grades are possibly higher due to the large amount of coursework/continuous assessment.
I don’t think I would have the same number of A’s if it was the usual proctored exam.

Copying 19 Students adapt to online exams and are more likely to cheat.
It doesn’t appear that there was more cheating than there usually is.

Student
divide 19 More bimodal—perhaps reflecting the difficulties a subgroup of students had with online learning.

Struggling students withdrew but focused students had more time to study.

Engagement 9
Engagement in sessions was not as high during online learning as students were not as accountable
as they would be in-person.
Some students didn’t/couldn’t engage with the online environment.

Lecturer
experience 9

It was hard to pitch the level of difficulty on Webwork. . .I think that was too generous and the
resultant marks were slightly higher.
Students scored higher in some classes because my questions were a bit too ‘traditional’.

3.4. Satisfaction with Assessments

Respondents then rated their satisfaction levels with their assessments during the
three time periods in question. The results are shown in Figure 4. It can be seen that
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three-quarters of respondents to this question were either satisfied or very satisfied with
their assessments during Period 1. This dropped as low as two-fifths of respondents for
Period 2 and recovered to 55% for Period 3. When a Friedman test was conducted, there
was a statistically significant difference between satisfaction levels with assessments over
time (χ2(2) = 84.874, p < 0.001). Post-hoc analysis was conducted using Wilcoxon signed-
rank tests with a Bonferroni correction applied, and this found statistically significant
results between each of the three time periods when compared with each other in terms of
respondent satisfaction with their assessments (Period 1 vs. Period 2: Z = −7.333, p < 0.001;
Period 2 vs. Period 3: Z = −4.564, p < 0.001; Period 1 vs. Period 3: Z = −5.286, p < 0.001).
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Figure 4. Responses to the question: “How satisfied were you with your assessments?” where respon-
dents could select one response from a five-point Likert scale as shown in the chart. Respondents
were asked the question in relation to the three time periods: before the pandemic; from March to
June 2020; and during the academic year 2020–2021.

3.5. Easiest/Hardest Aspects of Mathematics to Assess Online

Finally, respondents were asked two more general questions about assessment in
mathematics: namely, what aspects of mathematics they considered to be most difficult
and easiest to assess online. The most common themes to emerge from the 123 responses to
each question are shown in Table 7.

Table 7. The most common themes that emerged when respondents were asked “What aspects of
maths do you think are most difficult to assess online?” and “What aspects of maths do you think are
easiest to assess online?” (n = 123).

Themes: Hardest to Assess Frequency Themes: Easiest to Assess Frequency

Proof 29 Computation 38
Computation 26 None 13

Cheating 24 Understanding 11
Understanding 16 MCQs 8
Online solving 13 Cheating 5

Theory 12 Proof 5
Skills 9 Programming 4

Reasoning 7 Statistics 4
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Tables 8 and 9 show the most common themes under “hardest to assess” and “easiest
to assess”, respectively, along with the frequency of the theme and some sample comments
made by respondents.

Table 8. The most common themes emerged when respondents were asked, “What aspects of maths
do you think are most difficult to assess online?” along with sample comments under each theme
(n = 123).

Theme Number of Occurrences Sample Comments

Proof 29 I believe there is much merit in asking students to learn to state theorems and
to prove them. But this is tricky to assess online.

Computation 26

I think any procedural questions for service maths modules. . .are difficult to
assess online—the fact that there are so many websites where fully worked
solutions to questions can be easily generated makes it very difficult to stand
over the integrity of online assessments.

Cheating 24
The fact that there are so many websites where fully worked solutions to
questions can be easily generated makes it very difficult to stand over the
integrity of online assessments.

Understanding 16
As ‘bookwork’ questions (e.g., proofs of theorems) are not possible. . .it can be
difficult to assess a student’s understanding of the theory of any
particular topic.

Online solving 13

The availability of online computational software and problem-solving sites
makes it very difficult to assess students online. I don’t see any way around
this without radically altering what we assess for. To some extent, this might
be worth discussing even in the absence of online education.

Theory 12 Theoretical content

Skills 9 Basic skills

Reasoning 7 The problem I had was assessing their ability to think with insight into
unfamiliar problems.

Table 9. Most common themes that emerged when respondents were asked “What aspects of maths
do you think are easiest to assess online?” along with sample comments under each theme (n = 123).

Theme Number of Occurrences Sample Comments

Computation 38 Questions that have parameters are relatively easy to vary without changing
the difficulty of the question.

None 13 There is really no aspect of Maths that is easy to assess online.

Understanding 11 More abstract concepts are possibly a little easier to assess online as the
understanding of the students can be tested in different ways.

MCQs 8 Multiple choice questions and quizzes can be easily developed and completed
which does help with assessment between sessions.

Cheating 5
However, there is no way to control or prevent students to contact each other
during a timed exam they sit at home. Therefore, it is not clear if the exams
assess if a particular student has understood the material.

Proof 5
Standard questions that are not (easily) solved on webpages or computer
software like Mathematica. Such as ‘show this function is continuous’, ‘show
this subgroup is normal’.

Programming 4 Programming. . ., by design, has been assessed online for a very long
time—anything else wouldn’t really make sense.

Statistics 4
Giving students real data to work with and setting them online questions
based on their individual data and/or project work. Students are very
engaged too as they feel it is useful.
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4. Discussion

In this study, we explored the assessment approaches taken by mathematics lecturers
at three distinct periods to determine whether the forced inclusion of online assessment as
a result of the COVID-19 campus closures might alter their opinions towards diversifying
their assessment longer-term. Assessment in mathematics typically over-emphasises repli-
cation of content (facts) and skills (techniques) (Pegg, 2003). Assessment design should
be heavily influenced by the mathematics that is considered most important for students
to learn (Stacey & Wiliam, 2012). The respondents in this sample conducted almost no
online teaching in Period 1, exclusively online teaching in Period 2, and almost all online
teaching in Period 3. As such, the latter two periods did not reflect the “normal” situation
for many of them but instead acted as a unique snapshot of time whereby they had to use
online assessment.

4.1. What Assessment Types Were Used by Mathematics Lecturers Before the Pandemic, During
the Initial University Closures, and During the Academic Year 2020/2021?

Our first research question explored the assessment types used by mathematics lectur-
ers during the three periods under investigation. We found statistically significant changes
in assessment types used by our sample in relation to 9 of the 12 assessment types investi-
gated. We established that our sample was typical of the mathematics lecturer population
during Period 1, in that 70% of respondents used closed-book examinations and 57% used
assignments, both of which would be commonly used mathematics assessment approaches
(Iannone & Simpson, 2022). By Period 3, open-book timed examinations had replaced the
more popular closed-book examinations, even more so than in Period 2, when many re-
spondents did not have sufficient time to implement such changes in their assessment. The
findings clearly show a broader range of assessment modes in use in Period 3. After open-
book timed assessments, projects, assignments and MCQs are the most popular modes
of assessment. This is of interest as, according to Niss (1998), relaxing timing restrictions
for students allows one to assess a broader range of concepts and skills. Suurtamm et al.
(2016) say that implementing a range of assessment approaches allows students multiple
opportunities to utilise feedback and demonstrate their learning. When a lecturer relies
on one type of assessment, students often become experts at predicting likely assessment
areas and choose their areas of revision accordingly (Burton & Haines, 1997). Seeley (2005)
recommends designing assessments by “incorporating problem-solving, open-ended items,
and problems that assess understanding as well as skills”, making assessment an integral
part of teaching and learning. Of the three assessment types where no significant differ-
ence was observed, oral assessments were the most commonly used (by just over 20% of
respondents). Although this was an under-utilised assessment type, it does appear to have
been one that was able to be used across all three time periods, regardless of whether the
assessment was in-person or online. This makes it an assessment type worthy of further
consideration in relation to mathematics (Iannone et al., 2020).

4.2. Were There Changes to the Weightings Given to Final Examinations Versus Continuous
Assessment During These Time Periods?

The proportion of lecturers who gave 80–100% final exams remained steady between
Periods 1 and 3. There was a shift from the proportion who offered a 60–79% final exam
towards a 40–59% exam. We do observe a statistically significant increase in lecturers
favouring 100% continuous assessment in Period 3 when compared with Period 1. The
number of those in favour of a 100% continuous assessment is in line with those in favour
of a 100% final exam.
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4.3. Did Mathematics Lecturers Observe Any Changes in Grade Distribution Within Their
Modules During These Time Periods?

Overall, lecturers did not observe a vast difference in grade distribution between the
three periods in question, although they gave varying reasons for this. The most prevalent
theme was that of the type of examination that the students undertook. Some comments
related this to a higher weighting on continuous assessment (“Grades are possibly higher
due to the large amount of coursework/continuous assessment”), while others referenced the
“binary right/wrong marking” of some online assessment tools, particularly in relation to
multiple-choice questions. A number of respondents spoke of the impact of using open-
book examinations where previously they would have had closed-book (“I don’t think I
would have the same number of A’s if it was the usual proctored exam”). However, opinions were
mixed on whether this was more or less difficult for the students, with one respondent
stating, “open book exams plus timed online format skewed harder than in previous years as no book
answers” while another felt that “open book made it easy for students to look at worked examples”.
The next most common theme was that of copying—either another student’s work or using
an online tool to cheat. Respondents observed that “cheating online is very easy” and that
“students adapt to online exams and are more likely to cheat”. Conversely, one respondent
felt that “it doesn’t appear that there was more cheating than there usually is”; however, this
respondent stated that their module was fully assessed by continuous assessment both
before the pandemic and during the academic year 2020/2021. Additionally, several
respondents remarked on how, although they suspected there were students cheating,
there was not as big a difference in the grade distribution as might have been expected
because “there was probably cheating, but at the same time some students were less motivated”,
and others echoed approaches similar to that in (Sarmiento & Prudente, 2019). Another
strong theme to emerge was that of an increased divide in student performance, with
many respondents pointing out how difficult it was for some of their students (“More
bimodal—perhaps reflecting the difficulties a subgroup of students had with online learning”).
Several respondents felt that, although it was more difficult for some students, others
coped well (“I feel that some students were not able to concentrate online. The high achievers
were able to perform well in both situations”), or in fact that some students excelled in this
situation (“Struggling students withdrew but focused students had more time to study”). Several
respondents also mentioned student engagement as a reason for greater disparity in grades,
stating that “some students didn’t/couldn’t engage with the online environment” and “engagement
in sessions was not as high during online learning as students were not as accountable as they
would be in-person”. This could partly be attributed to the pandemic conditions, in which
students from lower socio-economic backgrounds, or those with caring responsibilities,
were impacted more in terms of engaging with online learning (Ní Fhloinn & Fitzmaurice,
2021). Finally, a number of respondents also alluded to their own lack of experience in
setting different types of assessments as a reason for a differing grade profile, with some
stating that they felt they made the assessment too easy as a result (“it was hard to pitch
the level of difficulty on Webwork. . .I think that was too generous and the resultant marks were
slightly higher”), while others felt the opposite had occurred (“Students scored higher in some
classes because my questions were a bit too ‘traditional’”). Others simply observed that “there
is a learning curve in terms of making a good online multiple-choice exam when all study aids are
allowed. It is possible but requires some clever thinking”. This echoes the warning of Greenhow
(2015) in relation to the creation of online assessments.

4.4. Were Mathematics Lecturers Satisfied with Their Assessment Approaches During These
Time Periods?

Although the academics had increased the number of assessment methods in use,
fewer respondents were satisfied with their assessments in Period 3 than before the pan-

76



Educ. Sci. 2025, 15, 449

demic in Period 1. The differences in satisfaction levels between all three time periods
were significant, with the highest satisfaction ratings given pre-pandemic, and the next
highest in Period 3. Overall satisfaction was significantly lower in Period 2, which was to
be expected, as this was when lecturers had to pivot to new assessment types with very
little time or resources to implement or plan these new assessments.

4.5. What Do Mathematics Lecturers Believe Are the Easiest and Most Difficult Aspects of
Mathematics to Assess Online?

Our final research question was in relation to what aspects of mathematics lecturers
believed were easiest or most difficult to assess online. The end of Period 3 represented
a unique snapshot in time to obtain this information, whereby the majority of lecturing
staff had been obliged to conduct online assessments in mathematics, regardless of their
previous experience with online teaching (Ní Fhloinn & Fitzmaurice, 2021). We particularly
wanted to investigate if mathematics lecturers perceive an online environment to be more
conducive to the assessment of some mathematical areas than others. Respondents mostly
spoke about the topic being assessed. The most common theme among “hardest to assess”
was that of “proof”. Many respondents pointed out the difficulty of assessing theorems
online in the same manner as they would have in a closed, proctored examination (“I believe
there is much merit in asking students to learn to state theorems and to prove them. But this is tricky
to assess online”). Other respondents noted that it was difficult to assess students’ ability to
“reproduce a long technical proof ”, although some respondents did question whether there
was evidence of understanding previously in this approach (“Understanding (or, perhaps,
if we are very honest, memory of) proofs.”), and observed that “it does make you think about
key aspects of a proof not just memory and regurgitation”. The small number of instances of
“proof” being mentioned in terms of being easiest to assess online leaned towards “standard
questions that are not (easily) solved on webpages or computer software like Mathematica. Such as
‘show this function is continuous’, ‘show this subgroup is normal’” or “applications of theorems”.

Notably, “computation” appeared as the second-most common theme in terms of
“most difficult to assess” and as the most common theme in terms of “easiest to assess”.
Those who found it easiest to assess tended to make comments around the ease of using
software to develop “questions that have parameters are relatively easy to vary without changing
the difficulty of the question”. In contrast, many of those who found it hardest to assess linked
this difficulty to the issue of students cheating, either by getting the solution from their
classmates or online software (“I think any procedural questions for service maths modules. . .are
difficult to assess online—the fact that there are so many websites where fully worked solutions
to questions can be easily generated makes it very difficult to stand over the integrity of online
assessments”). Similarly, some mentioned the difficulty of assessing basic computational
techniques in open-book examinations (“As we only used open-book methods when assessments
were online, it is hard to gauge if students have gained mathematical skills or if they are very
dependent on copying procedures from worked examples”).

Yet more mentioned the drawbacks of “MCQs [multiple-choice questions] that involve lots
of arithmetic/algebraic manipulation—it is difficult to give half marks/quarter marks to students
who have done it partly correct but reached an incorrect result”.

Plagiarism, copying or “cheating” was the third most common theme in the aspects
that are hardest to assess. This was frequently linked to either the “proof” or “computation”
themes, but also often cited on its own, with one respondent stating that the hardest thing
to assess was “anything where you want to ensure the work is the student’s own” and another
that it was “anything you can find the answer to online”. The difficulty of detecting such
activity was summed up by one respondent who said that “catching collusion can be tricky,
as sometimes there is basically one obvious way to get to the right answer”. Another observed
that “the fact that there are so many websites where fully worked solutions to questions can be easily
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generated makes it very difficult to stand over the integrity of online assessments”. This theme
emerged a few times also among the comments in relation to the easiest aspects to assess;
usually as an addendum to other comments, such as “However, there is no way to control or
prevent students to contact each other during a timed exam they sit at home. Therefore, it is not
clear if the exams assess if a particular student has understood the material”.

The theme of “understanding” occurred almost equally frequently in both the hardest
and easiest aspects to assess online. Among those who deemed it hardest to assess online,
many simply mentioned “conceptual understanding” without elaboration; however, a few
mentioned that it was difficult to know “whether students understand definitions (because open
book)” and “as ‘bookwork’ questions (e.g., proofs of theorems) are not possible. . .it can be difficult to
assess a student’s understanding of the theory of any particular topic”. For the respondents who
deemed “understanding” easiest to assess, again several simply mentioned “conceptual
understanding”. However, a couple explained that “more abstract concepts are possibly a little
easier to assess online as the understanding of the students can be tested in different ways” and
that misconceptions could be exposed “using basic mcqs or true false. It doesn’t require any
written mathematics and can expose key misunderstanding. Although why those exist might require
alternative approaches”.

The theme “online solving” made specific reference to students using apps, websites or
software to solve the questions they were asked in their assessments and only appeared in
relation to the hardest aspects to assess. One respondent linked this to a need to consider
what it is that is assessed and the purpose of such assessment, even outside the need
to assess online (“The availability of online computational software and problem-solving sites
makes it very difficult to assess students online. I don’t see any way around this without radically
altering what we assess for. To some extent, this might be worth discussing even in the absence of
online education”).

The three other most common themes of “theory”, “skills” and “reasoning” again ap-
peared only in the hardest aspects to assess online. Respondents did not elaborate much on
any of these themes, mostly just mentioning “theoretical content”, “basic skills” or “mathemat-
ical reasoning”. However, one respondent did elaborate in terms of reasoning to explain
that “the problem I had was assessing their ability to think with insight into unfamiliar problems”.

In terms of the easiest aspects to assess online, the second-most common was “none”
with no further comments made on this. A number of respondents mentioned “multiple-
choice questions (MCQs)”, stating “multiple choice questions and quizzes can be easily developed
and completed which does help with assessment between sessions”. However, another respondent
cautioned that “aspects that can be validly assessed by multichoice questions lend themselves to
being tested in hands-on mode . . . but the design of good MCQs is very challenging, and not all
knowledge and skills can be covered”.

Finally, both “programming” and “statistics” were mentioned a number of times as
being the easiest to assess online. In relation to the former, one respondent observed that
“programming. . ., by design, has been assessed online for a very long time—anything else wouldn’t
really make sense”. For statistics, another respondent suggested “giving students real data to
work with and setting them online questions based on their individual data and/or project work.
Students are very engaged too as they feel it is useful”.

5. Conclusions

To conclude, only one significant change in assessment approach was observed across
the three periods of study; a move from closed- to open-book timed examinations. Aca-
demic integrity was clearly a strong consideration of the lecturers who participated in this
study. For them, this refers to cheating and significantly influences the assessment strategy
they adopt. This echoes the findings of Henley et al. (2022), whose large-scale survey

78



Educ. Sci. 2025, 15, 449

of mathematics departments across the UK and Ireland found academic misconduct on
the part of students to be of significant concern over the same time period as this study.
The authors state that a community-wide approach will be necessary moving forward if
open-book online assessments are to be continued. They found that increasing the time
available for students to complete the assessments remotely led to increases in instances
of plagiarism and cheating (Henley et al., 2022). Assigning randomised and personalised
assessments is one method suggested in recent studies for reducing this misconduct (Eaton
& Turner’s, 2020; Sarmiento & Prudente, 2019). While this may sound very laborious and
time-consuming, Henley et al. (2022) state that this is not necessarily true. Respondents to
their survey listed several methods of achieving this, including, for example, LaTeX Macros,
which can be used to create personalised mathematical problems and generate random
values for assessments. Online proctoring may reduce incidents of cheating (Lancaster
& Cotarlan, 2021) but then result in negative mental health outcomes for others (Eaton &
Turner’s, 2020).

Moving away from closed-book, proctored assessments in any capacity is likely to
lead to grade inflation for a variety of reasons. Our findings echo those of Iannone and
Simpson (2022), who in 2021 found that there is little variety in the assessment strategies
of mathematics departments in Higher Education institutions in the UK. They too found
that the weighting of final assessments was shifting towards the inclusion of other meth-
ods, but progress is slow. Despite the unprecedented visit of a pandemic and a drastic
sudden move to remote teaching and assessment, assessment in mathematics remained
largely unchanged. Research conducted since the pandemic provides evidence that remote
assessment of mathematics posed a momentous challenge for many lecturers during this
unprecedented period (Cusi et al., 2023). More worryingly, a study conducted with almost
470 university mathematics lecturers in Kuwait and the UK during the same time period as
reported in this study found that the lecturers were very much unconvinced of the merits
of online assessment in mathematics and would likely revert to their tried and trusted
methods when restrictions were lifted (Hammad et al., 2025). Continued professional
development programmes that support the effective implementation of practical and fair
assessment practices and provide practical strategies and hands-on training are necessary
if progress forward instead of backwards is to be sustained (Cusi et al., 2023).

The future of mathematics education holds great promise for technological innovations
and the integration of Generative Artificial Intelligence (GenAI). Personalised learning is
expected to become more widespread, with adaptive learning platforms and intelligent
tutoring systems analysing students’ needs and providing tailored instruction and assess-
ment. This study was undertaken when the capacities of GenAI were considerably weaker
than they are at the time of writing, and given the concerns expressed by lecturing staff
in relation to academic integrity at this earlier time, we feel that this is likely to be at the
forefront of any decisions taken in relation to new assessment approaches to mathematics
in the future. A follow-up mixed-methods study is planned to investigate the current status
of assessment in mathematics globally, with the emergence of GenAI and its availability to
both lecturers and students.

There are a number of limitations which should be taken into account in relation
to this study. Firstly, 36% of respondents were based in Ireland, with a total of 88% of
respondents based in Europe, meaning that the results can only be considered reflective of
practice in European countries and may not be generalisable further afield. In addition, the
survey was only available in English; it was distributed and conducted online via mailing
lists and advertisements at relevant mathematics education conferences. As a result, it is
unknown how representative it is of the general population of mathematics lecturers in
higher education.
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Appendix A. Survey Questions on Assessment

How much of your assessment was conducted online versus in-person this academic year
(2020–2021)? (5-point Likert scale)
What types of assessment did you conduct? (Please tick all that apply)

Assessment Type Before the Pandemic
During Initial University

Closures (March–June 2020)
Academic Year 2020–2021

Open-book timed
Open-book untimed

Closed book
Multiple-choice questions (MCQ)

Online proctored
In-person proctored

Presentations
Oral assessments

Essays
Screencasts

Projects
Assignments

How much was your final exam worth (versus continuous assessment) in your modules?

% Weighting Before the Pandemic
During Initial University

Closures (March–June 2020)
Academic Year 2020-2021

100% Final Exam
80–99% Final Exam
60–79% Final Exam
40–59% Final Exam
20–39% Final Exam
1–19% Final Exam

100% Continuous Assessment

Any comments on changes to your approach to assessment this academic year?
Was there a difference in the distribution of grades within your modules this academic
year? (5-point Likert scale)
If you saw a difference, why do you think this was?
How satisfied were you with your assessments? (5-point Likert scale)

80



Educ. Sci. 2025, 15, 449

What aspects of maths do you think are most difficult to assess online?
What aspects of maths do you think are easiest to assess online?
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Abstract: Researchers across two universities and three different mathematics education courses
implemented their vision of a novel grading approach called (Up)grading. (Up)grading shifts the
focus of assessment from grades to growth. Key features of implementing (Up)grading included
(a) providing students with opportunities to reflect upon and grow from their learning experiences,
and (b) giving them a voice in determining their course grade. The findings suggest that most
students perceived (Up)grading as a positive experience in their learning and as an assessment
approach. The features of (Up)grading students believed contributed to the positive experience
included giving them opportunities to reflect on their work and learn from their mistakes, as well as
targeted feedback, enabling them to independently move their thinking forward. Tensions in the
process did arise, including students’ initial anxiety with the norm shift from grades to growth and
instructors’ management of the flow of assignments.

Keywords: assessment; upgrading; rehumanizing practices; self-assessment

1. Introduction

In the quest for teaching mathematics for understanding, the connection between
learning and assessment often becomes disjointed if the assessment practices are based on
compliance and completion. The call for assessment practices of teacher candidates that
mirror K-12 began in the 1990s [1] as standards-based instruction became the focus. The
standards-based movement was grounded in learning theory and environments that sup-
port constructivist practices [2]. Although teacher education programs have incorporated
performance assessments and have been revised to align more with those in their P-12
counterparts, the requirement of grading and particular grading scales hinder a focus on
assessment for growth, reflection, and feedback. The grading system never was meant
to increase engagement but fostered a climate where “mistakes are unwanted, unhelpful,
and punished” [3] (p. 30). It is noted that mathematics teacher educators (MTEs) wishing
to “rehumanize” [4] (p. 1) elements of their instructional practice to better align with per-
spectives on teaching and learning are often faced with challenges from their departments
and institution [5]. Despite the move to be more standards-based and student focused,
grading remains something we do to students rather than with students, meaning there is
not a shared authority in the process. Problematically, “grades [. . .] have contributed to the
ever-widening divide of learners based on race, socioeconomic status, sex, gender identity,
ability, and more, granting even more access and opportunities to those who already had
access and opportunity” [6] (p. 163). Because the act of grading causes a detachment from
the purpose of the learning experience, students tend to focus on checking off requirements
versus internalizing the content and practice [6]. The focus on earning a grade rather than
engaging in the learning process can be troublesome for teachers and teacher candidates as
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they navigate the complexities of the teaching and learning of mathematics. With the need
for teachers to focus on student understanding in mathematics classrooms, the preparation
and development of teachers should support and provide exposure to assessment practices
aligned with fostering understanding.

2. Literature Review

In the following section, we outline research and practices related to humanizing
assessment to create an environment of growth and development rather than compliance
and hierarchy.

2.1. Standards-Based Assessment

Despite assessment practices being promoted to determine what students know and
can do, grading practices have encompassed non-cognitive factors like behavior, disposi-
tions, and compliance. As early as the late 1950s, it was noted that grading practices in
elementary schools were based on a mix of academics and non-cognitive factors [7], even
with calls from measurement research to be based on achievement. Likewise, and decades
later, Brookhart [8] noticed similar assessment practices and believed they were deeply
rooted in societal expectations and norms and included factors that were not about learn-
ing, growth, and achievement. Because of the comingling of academics and non-cognitive
factors, traditional grading practices are unsound in capturing student achievement [9].

Standards-based assessment practices are primed to keep the focus on what students
know and can do in alignment with the standards. Students are assessed on specific content
standards in terms of mastery or proficiency [10,11]. Standards-based assessment practices
communicate precise areas where students need support, allowing students to address the
gaps in learning, and provide targeted feedback to students and families [11,12]. Although
there is no consensus on the approach to standards-based assessments [13,14], research does
indicate three specific criteria that are essential in standards-based assessment practices:
(1) grades are based on standards and often include multiple grades in place of a single
content grade; (2) performance categories are used to help communicate proficiency; and
(3) academic grades are presented separately from non-cognitive grades [14,15].

2.2. (Re)Humanizing Assessment

The humanity of students is at the forefront of rehumanizing mathematics education
and mathematics identity development [16]. Addressing power, status, and agency struc-
tures and practices within the teaching and learning of mathematics works to humanize
students [16]. Ensuring the assessment practices are aligned with a humanizing approach
is vital to supporting positive identities and success. “Grades are not good incentive, not
good feedback, not good markers of learning, encourage competitiveness over collabo-
ration, don’t reflect the idiosyncratic, subjective, often emotional character of learning,
and they are not fair” [17] (p. 28). Variations in grading practices that veer away from
traditional practice can provide “mirrors” through which teachers view their growth and
“windows” [4] (p. 1) through which teachers can gain new views of practice. These mirrors
and windows put the focus of assessment on feedback, reflection, and growth and do not
lower standards or rigor [18].

Within a more humanized approach to assessment, grading policies should be
“responsive to [learners], sustain, and revitalize” [19] (p. 86). By including students
in the grading process, the authority shifts away from the instructor and provides a space
for feedback that helps teachers examine their teaching practice [19]. Optimal feedback
must be valued by the student, provide open dialogue between the student and the teacher,
and help to establish trust [20]. Additionally, the purpose of intentional feedback is for
students to “develop their capacity to calibrate their own judgements and appreciate the
qualities of their work and how it might otherwise be improved” [21] (p. 4). The shared
authority increases communication and a shared relationship between students and their
instructors and thus cultivates personal responsibility [22].
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A rehumanizing approach to grading may require an increased involvement from the
instructor and does require more work and flexibility [18]. Teaching philosophies can also
be a factor in the implementation of rehumanizing grading approaches [23]. For example,
by allowing for flexible deadlines, there are issues since assignments often build upon
each other causing difficulty for instructors and students if the students are on varying
paths and levels of understanding [18]. “Teachers become designers and sustainers of the
learning milieu; establishing conditions in which students can operate with agency” [21]
(p. 710). Moreover, student-focused assessment has proven to support student learning in
higher education [24].

Blum [6] emerged with her conceptualization of rebuilding and redesigning assess-
ment practices in what she coined “ungrading”. She notes that others have called it
de-grading or going gradeless. The “ungrading” process changes the cornerstone from
grades to learning [6]. As we have worked within this philosophy, we put an emphasis on
feedback as the cornerstone of our assessment practices. As such, we refer to our approach
as (Up)grading to denote the shared partnership around growth, feedback, and reflection.
We believe that it is an elevated assessment approach that (up)lifts students’ voices and
agency in the process.

3. Theoretical Framework

We entered this work with a lens for equitable and just instructional practices. We
centered ourselves in TODOS’s essential actions that include eliminating deficit views, erad-
icating mathematics used as a gatekeeper, engaging in the sociopolitical turn of mathematics
education, and elevating the professional learning of mathematics teachers and leaders
with a dual focus on mathematics and social justice [25]. Additionally, we draw on the
National Council of Teachers of Mathematics’ Catalyzing Change series key recommendation
to “[implement] equitable instructional practices to cultivate students’ positive mathemati-
cal identities and a strong sense of agency” [26] (p. 45). More specifically to assessment
practices, frameworks that have informed our different approaches include labor-based
grading [27], self-evaluation using progress processing reflective writing/metacognition
(e.g., [17]), practices that promote social justice and equity [4], and diminishing hierarchies
and promoting student contributions [28–30].

We draw specifically on the last two assessment frameworks for the purpose of this
study and our approach to assessment: practices that promote social justice and equity
and seek to increase student involvement within the assessment process. The essential
aspect of incorporating (Up)grading practices is a shift in the process and the importance
of feedback. Instead of traditional feedback, the instructor is challenged to “feedforward”.
The practice of feedforward involves providing the learner with statements and questions
that provide the potential to advance the nature of their thinking and/or improve the
quality of their responses via resubmissions. Hirsch [31] argued that feedforward feedback
is about assisting students with repair. Instead of providing ratings and judgment based on
past performance, feedforward focuses on development, growth, and additional learning
through repairing misconceptions and mislearning [31]. Specifically, there are six attributes
to the approach of feedforward: (1) regenerates talent to increase engagement, (2) expands
possibilities and supports creativity and opportunities, (3) particular and laser-focused
on essentials, (4) authentic and based on practice, (5) provides impactful feedback that
is practical and useful, and (6) refines group dynamics [31] (p. 7). We argue that the use
of feedforward feedback provides a more equitable and inclusive learning environment,
centering student contributions and providing them with more agency and authority in
their learning [4,28–30].

4. Purpose of the Study

The purpose of this study was to explore students’ lived experience, via reflection,
as they participated in a grading experience that was a significant disruption from their
traditional experiences with grading and grades. The two research questions that we
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sought to address were: (1) What perceptions did students have about their (Up)grading
experience?, and (2) What tensions did students and MTEs experience as they navigated
the (Up)grading experience?

5. Methodology

5.1. Participants and Setting

(Up)grading was implemented in three different courses, across two universities, with
a total of 65 teacher candidates and practicing teachers. At one public, doctoral/professional
institution located in the Midwest region of the United States, the (Up)grading practice was
implemented in two different undergraduate semester-long courses for teacher candidates
with differing foci, elementary mathematics methods (n = 18) and a statistics and probability
course for future teachers (n = 15). Additionally, (Up)grading was implemented in a
graduate course (n = 32) at a large, research-intensive university in the southeast region of
the United States. The graduate course consisted of practicing K-12 mathematics teachers
and focused on mathematical discourse and high-quality tasks. Each author received
approval from their university Intuitional Review Board (IRB-FY2020-695, Pro00079356,
and IRB-FY2024-414). The IRB approval for one MTE required student consent forms,
which were presented to students during the first week of class. These consent forms were
kept secure until final grades were posted; then, the MTE reviewed consent and pulled
survey data and reflections for the consenting participants. The IRB for the third author at
the same institution required consent after the close of the class and the MTE contacted
students for consent. The IRB at the other institution (second author) did not require
consent forms. This MTE used anonymous surveys that were sent after final grades of the
course were posted.

5.2. (Up)Grading Approaches

Within each of the three courses, an overarching goal was a more humanistic approach
that valued student voice in assessment through what we call (Up)grading. Features that
were consistent across the three courses were: (a) students were given opportunities to
revise their thinking to show an advancement in understanding after receiving targeted
feedback from the MTE, and (b) students had a substantial voice in determining their
final grade for the course. Despite student work not being “graded” in a traditional sense,
students were made aware that there would be a grade attached to their efforts at the
end of the course and that they would be the one responsible for providing a grade with
supporting evidence to justify that grade. It was communicated early in the semester
that the assessment process would be based on labor (i.e., completing assigned work) and
evidence of growth in understanding of the key concepts of the course. We sought to focus
students’ attention on the journey of continuous reflection and revision with the goal of
attaining higher levels of academic rigor and greater retention of conceptual ideas. We
are learning that context matters in how we approach (Up)grading; as such, each MTE
approached (Up)grading in a slightly different way as described below.

Elementary Mathematics Methods. For the elementary mathematics methods course,
students set goals at the beginning of the semester, and the (Up)grading process was
explained. For smaller assignments, the codes “Got it” or “Missed something” were used.
For larger assignments attached to their work in schools, a weighted scale was used to
help students see the impact of their work on elementary students and the placement
teacher. Students were provided detailed descriptions outlining the expectations of the
assignment. Target due dates were used coupled with an expanded window for submission.
If the assignment was turned in within this window, assignments could be resubmitted
after adhering to the feedback. Weekly, students communicated their participation level,
preparation level, and key understandings, and they could ask additional questions within
a folder system for communication and documentation. The folder system included a
physical folder with reflective prompts each week that supported two-way communication
between the MTE and students. Students had weekly entries to document attendance,
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participation, reflections, and questions. The focus of the feedback was to help students
to reflect, rework, and resubmit their work to increase understanding. At the midpoint
of the semester, there was a check-in for both the process and student understanding.
To culminate the semester, students provided a critical reflection and justification for the
overall grade complying with university expectations. Students could refer to their folder
for the weekly documentation.

Statistics and Probability Course for Future Teachers. Within the statistics and probabil-
ity course for future teachers, students were told at the beginning of the semester that they
would not be receiving traditional numerical or letter grades on assignments, mini-projects,
or assessments. In place of these markings, the instructor would provide targeted feedback
to support their efforts to improve their understanding and, when appropriate, a phrasing
that would suggest the level of work needed to be done to demonstrate an advancement of
understanding. One example of these ratings was “Nailed It”, “Almost There”, “Not Yet”,
and “Help”. Throughout the semester, the instructor would assign reflective written assign-
ments, asking students to compare their thinking to responses that the instructor believed
had “Nailed It”. These assignments typically asked students to reflect on what was missing
from their response and specifically what they now understand that they did not before.
Throughout the semester, it was stressed that there was always an opportunity for growth
on any work that was submitted. The challenge for this course is the unfamiliar content
and the modeling of high-quality teaching of statistics and probability with the hope that
the students will be comfortable implementing these same activities and practices in their
own classroom someday.

Mathematical Tasks and Discourse Graduate Course. For the graduate course on dis-
course and tasks, the focus was allowing teachers the space to apply their learning in their
classrooms without fear of “grades” limiting their risk-taking, as they were being asked to
push themselves out of their comfort zones with their mathematics teaching. The goal was
to focus on growth, not on grades. To do this, students were asked to write critical reflec-
tions and rationales for their grades on all assignments. For instance, reading responses
were completed weekly; however, “scores” were obtained through three retrospective re-
flections by the students, while the instructor provided feedback each week. For the major
assignment in the course, the students were asked to work through the 5 Practices [32]. The
5 Practices (Smith and Stein, 2018 [32]) provides a model for facilitating productive and
high-quality discourse in mathematics classrooms through: (a) setting goals and selecting
tasks—Practice 0, (b) anticipating student thinking—Practice 1, (c) monitoring students’
work—Practice 2, (d) selecting student strategies to share—Practice 3, (e) sequencing the
strategies to be shared—Practice 4, and (f) connecting shared strategies—Practice 5. As-
signments were designed to allow teachers time to dig into each practice and implement
it within their various classroom settings. For example, for Practice 0, setting goals and
selecting tasks [32], the teachers worked to identify the learning goal and develop the task
they would ultimately implement with their own K-12 students. The MTE’s role was to
provide feedback, wherein this was an iterative process where the practicing teacher could
revisit and refine the task. The teachers would then “grade” themselves through a critical
reflection on their process, focusing on their learning and growth through this phrase of the
5 Practices [32], and ultimately scoring themselves out of 10 points possible with a detailed
justification for their score. The same process occurred across each of the major course
assignments. While no rubrics were provided, detailed descriptions for assignments were
used, and revisions and refinements were encouraged.

5.3. Data Collection

Data focused on the MTEs’ initial implementation of (Up)grading and consisted
of an open-ended survey given to students seeking perceptions of their (Up)grading
experience. Sample open-ended survey questions included: (a) How has the (Up)grading
experience shaped your perception of “growth” versus “grades?” (b) Did the (Up)grading
process provide you with a voice and ownership in your learning and assessment? If so,
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how? (c) What aspects of the (Up)grading process were most helpful in advancing your
learning? The survey also asked students about how to improve the assessment process.
Survey data were collected for all the enrolled students in the elementary methods course
and for statistics content course; however, the task and discourse graduate course had a
53% return rate (n = 50 total surveys, n = 18 for elementary methods course, n = 15 for
statistics content course, n = 17 for task and discourse graduate course). Additionally, each
MTE kept anecdotal and semester-long reflections, including a mid-point check-in. The
reflections included open-ended questions to monitor how students were doing with the
process and helped monitor student needs along the way. These were often part of exit
slips in class. Each MTE did these a little differently, but the intent was to help inform
supports and student growth. Each MTE also kept notes of their thinking and changes
throughout the semester.

5.4. Data Analysis

Each MTE conducted a case study analysis of their students’ responses to the sur-
vey. The goal of this analysis was to identify themes in students’ lived experiences
with (Up)grading, aspects of (Up)grading that student found most helpful, and ways
the (Up)grading experience could be improved. After this analysis was completed, a
comparative analysis [33] of emerging themes across the three courses for each question
was conducted to identify consistent themes across the data. The first step was to code
for perceptions and tensions within the survey data, reflections, and the MTE anecdotal
notes. To ensure reliability of the study, data obtained were analyzed first by the MTE of
record, then checked by another member. Once we analyzed the student perceptions, we
organized the perceptions according to the six feedforward attributes as defined by Hirsch
(2017) [31] as depicted in Figure 1. Additionally, each MTE coded these perceptions; then,
to ensure reliability, another MTE checked the initial coding. Disagreements were decided
by the third MTE.

Figure 1. Hirsh’s [31] feedforward attributes.

6. Findings

6.1. Student Perceptions of (Up)Grading

Collectively the students’ perceptions revealed students had a favorable response to
(Up)grading. Their perceptions were rooted in the shift from a focus on grades to a focus on
growth in understanding. Three main themes emerged as students reflected on aspects of
(Up)grading that were most helpful to them. These included: (a) depressurization of grades
and stress, (b) opportunities to self-reflect, and (c) opportunities to learn from mistakes and
explore ideas. We expand on each theme in the following paragraphs.

As indicated, one significant theme that emerged across all courses was the depressur-
ization of grades, as evidenced by this student who noted, “Having the pressure of grades
released allowed me to take time with the projects and fully learn the material rather than
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just getting it done for points”. Another student noted, “I loved the ungrading experience
because I felt like I could focus more on my actual learning and what I wanted to do in the
classroom, other than turning in an assignment and worrying about a grade”. Other words
and phrases students used to describe the depressurization of grades were “liberated”,
“freedom”, “ownership”, “reducing fear”, “take away stress”, and “motivated”.

(Up)grading allowed students to take a more holistic approach to their learning,
allowing them a multiple of opportunities to self-reflect and have ownership in their growth
and subsequent grades. For instance, one student indicated, “This was a foreign experience
for me. As a student I am not used to being in such a large degree of ownership for grading.
I have owned my learning before, but this layer allowed me to own my learning, growth
and results”. Additionally, a student expressed, “The upgrading experience definitely
helped me to reflect on what I did, what I learned, how I interacted with the course and
my peers. I found it to be much more effective because of the reflection piece. In my own
teaching, I reflect constantly so I found it to be much more easier and my work was better”.
These student responses highlight how the (Up)grading assessment approach allowed
them to be involved in their learning and grading process, rather than having it done
to them or working to simply check something off a list of tasks. Students also noticed
that the purpose of the courses and assignments was about them and their growth and
not a particular class ranking. A student commented, “It has showed me how it matters
more about the content of your work and the understanding behind it than the letter
grade result”.

Another advantage of (Up)grading for students was the opportunities to learn from
mistakes and explore ideas. For instance, a student realized that the work and resubmission
process was focused on the opportunity to learn from mistakes or misunderstanding,
noting “It has made me see that I am able to keep trying till I master the material, rather
than what I get is what I get. I was able to fix my learning and get feedback from the
teacher”. The idea of expanded opportunities to learn was highlighted by one student who
indicated, “The upgrading experience has been enlightening. I focused on my growth and
my meeting of expectations much more than the number grade. I felt like I was critical but
in doing so I found room for improvement and was able to go back through and improve!”.
The process allowed for students to make changes without the feeling of stress caused
in traditional grading approaches as noted by one student’s comment: “I find that the
upgrading process really allowed me to look at my work and make changes. I never really
think much about grades. There was definitely more reflection on my part”. Additionally,
students appreciated the time and having more flexibility in their working pace as essential
to relieving the stress of worrying about grades.

Students also provided insight into ways to improve the (Up)grading process. For
instance, students indicated that additional guidance and time to become comfortable
with (Up)grading would be beneficial. One student expressed the idea of a more gradual
integration of (Up)grading, saying it may be helpful to “Ease students into the notion of
upgrading. Rather than completely removing all grading aspects, leave some structure,
maybe some rubrics, to allow students to learn to reflect and become more comfortable”.
This sentiment was echoed by another student who noted, “The upgrading process requires
a shift in thinking. As you introduce it to students for the first time, consider using
a combination of traditional teacher-graded activities and ungraded activities. It took
me some time to become at ease with the technique”. Additionally, students noted that
providing more opportunities to reflect on learning, think about the nature and structure of
assignments could also help to improve the (Up)grading process. One student provided a
suggestion of providing examples to “show what that looks like (an example of a written
response)” to support the development of self-reflection.

Connection to Framework. As we worked to offer feedforward feedback, we relied on
Hirsh’s [31] recommendation with repair as the key purpose of feedback and growth. In
analyzing students’ perceptions, we organized the perceptions as they related to the six
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attributes of feedforward feedback. We sought to see if the influence of the attributes were
noted in the student reflections (see Table 1 for examples).

Table 1. Examples of feedforward attributes.

Feedforward Attribute Influence on Students’ Examples

Regenerates Talent

I felt like I could focus on my actual learning and what I wanted to do in the classroom, instead of
just turning in an assignment and worrying about a grade.
I got to focus on what I was doing in the classroom both in class and at my placement school rather
than working on assignments.

Expands Possibilities Growth allows students to make mistakes, explore ideas, get feedback.
The lack of a grade provided better motivation.

Particular

I found it very helpful that you were very clear on exactly what my understanding was. You told me
what I needed to elaborate on, what I was off, and what I was almost there. In addition, you let me
know when I nailed something.
The explicit feedback.

Authentic
Being able to redo assignments after getting useful feedback from teachers.
To reflect on how I implemented a given task in my classroom. This provided me with the energy to
give myself grace when it did not go well but to continue implementing it in order to improve.

Impact

That it was not about a grade, it was about actually learning the information and how we put that
information into effect in the classroom.
Upgrading made me do more than I probably would have done in the first place. It’s easy to phone
things in when someone else is grading your work. When you are critiquing yourself, it’s hard to
lie to yourself.

Refines Group Dynamics

The most helpful aspect of upgrading experience is the collaborative element in it. We can all grow
quicker and stronger if we’re all trying together.
One big aspect that helped me was hearing other students share. I learned just as much from other
students’ understanding of the concept as I did from you giving us the information.

As we analyzed the data, we realized that these reflective assignments with the support
of the feedforward feedback provide a “window” into the students’ lived experience that
extends far beyond the grade. Often, the instructor has no idea as to each student’s journey
and learning processes within a given assignment or even course. As we read over the
student reflections, we were taken with the impact these experiences have had on not
only students’ intellectual development but also their social-emotional development. The
following reflection from a student encompassed the benefit of the overall process and
feedforward feedback:

“This was an interesting and thought-provoking assignment. It had me answer
questions and think in a manner that is the exact opposite of everything I have
experienced regarding grades in school. Not only does it make me think critically
about what I know, I find it difficult to advocate for myself in any assignment, so
this assignment is challenging. In the beginning and still a bit now I feel like I’m
giving myself a pat on the back for what I’ve accomplished, which once again
is something I’m not prone to doing. Had I not done this assignment I would
have never recognized those things about myself. For that reason, I am already
grateful for this assignment, in the sense that it showed me things about myself
that clearly need some growth because I should be proud of what I learned and
the effort I have put in”.

6.2. Student and MTE Tensions around (Up)Grading

Several themes emerged from the analysis of tensions around (Up)grading, including
clarity of assignment expectations and criteria, redundancy of reflection, and navigation of
a new assessment process. As each MTE navigated the (Up)grading process, the student
tensions were similar in that students still wanted the comfort of step-by-step guides to
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how to assess rather than realizing that, for teachers, a cookie-cutter approach does not
work as each grows in their knowledge and instructional practice. For instance, a student
suggested, “. . .maybe show what that looks like as an example of a written response”.
Additionally, students still wanted to quantify their work. For instance, one student said,
“Maybe a rubric that explains. . .give yourself 10 points if you did “xyz” 9 points if you did
“abc”. As the focus shifted to the students with an increase in reflection, students found
some of the reflection activities to be redundant. An example from a student included this,
“there were times where I felt like I was being redundant in my self-reflection”.

(Up)grading represented a disruption to the norm of grading that students had ex-
perienced throughout their schooling. This disruption brought on a range of emotions
from students that required the MTE to empathetically navigate: “my initial thoughts and
feelings towards upgrading was that it was unfamiliar. This unfamiliarity brought on a
sense of fear and anxiousness as it was an experience I have never encountered. It has been
strange and difficult because it is so different because it is so different. . .however, it is a
fabulous concept”.

The MTEs also experienced tensions within implementing the (Up)grading within their
courses. A significant tension the MTEs faced in implementing (Up)grading was managing
the flow of assignments. In traditional grading, there is a linear flow of assignments:
students turn in the work, the teacher provides a grade, and the work is returned to the
student. However, in (Up)grading, the process is more cyclical in nature, with iterations
of MTE feedback and revisions. The cyclical nature of grading can cause the process
of coordinating assignments to become more demanding on the MTE because they are
providing feedback on the same assignment multiple times. Additionally, balancing hard
and soft deadlines to assist students with structure added to the pressures of a constant
influx of assignments to provide feedback and guidance. Likewise, figuring out how to use
(Up)grading on smaller assignments that support the authentic application assignments
(e.g., reading/article reflections) was a difficult process to navigate for the MTEs. It was
easier to focus and foster a feedforward focus on the authentic application assignments
verses the supporting assignments, perhaps indicating that (Up)grading is not a one-
size-fits=all approach. Another tension for the MTEs was shaking themselves from the
traditional thinking of point values on assignments. MTEs still wanted to weigh or handle
assignments in a way that felt more traditional and comfortable.

7. Discussion

The goal of (Up)grading is to focus students’ attention on the journey of learning
through continuous reflection and revision of assessment responses with the goal of at-
taining higher levels of academic rigor and greater retention of conceptual ideas. Previous
research has indicated that with traditional grading, students focus on the number or
grade and do not attend to the feedback (e.g., [34]). To rehumanize the assessment process,
we have found a way to provide feedforward feedback within a climate of (Up)grading,
putting students’ growth and reflection at the forefront of the learning experience. Specifi-
cally, this exploratory study provides insights into students’ perceptions of (Up)grading as
an assessment approach, students’ perceptions of the influence of feedforward feedback as
part of the (Up)grading approach, and the tensions felt by both students and MTEs as they
experienced and implemented (Up)grading.

Each MTE approached (Up)grading differently; like Brown and Robbins [35] noted,
a “one size fits all approach” is not possible when seeking to focus on rehumanizing
assessment practices (p. 64). However, looking across the three different cases, insight was
gained around specific strategies that students believed best supported their learning, as
well as ways to improve the (Up)grading experience. Like Gorichanaz [22], we found that
students were able to focus more on the feedback received by the MTEs rather than grades
assigned to their work. The assessment approach of (Up)grading provided new ways of
learning. Students across all courses were able to see the bigger picture of the assignments in
that the courses were benefiting their development as learners and teachers. It is important
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to note that using a feedforward approach within (Up)grading yielded strong positive
perceptions and growth. Each MTE worked to facilitate a positive learning experience
with the purpose of growing reflective practitioners [21]. As each MTE worked to provide
feedback, monitor the student growth, and optimize the experience, trust was established
between the MTEs and their students [20]. We believe that once students experience
the benefits of (Up)grading and there is better initial communication by the instructor of
features of (Up)grading, the tensions students face as they experience (Up)grading for the
first time can be lessened.

Limitations

We recognize that there are limitations in the current study since the main source of
data is a single end-of-course survey and the MTE reflections and notes from the student
reflections. It is also an important limitation that most of the studies like this one have been
with smaller class sizes and not large lecture courses (e.g., [35]). Additional research is
needed to understand how to incorporate (Up)grading within those larger lecture courses
to make the assessment practices more humanizing.

8. Closing

The detractors of (Up)grading would argue that there is a “fuzziness” around the
idea of upgrading. This is not necessarily the case. What it does is position the student
as an advocate for themselves and an active participant in the process [21]. Often, grades
are based on numerical data that do not consider the students’ journey. The often-quoted
phrase “It is not the destination but the journey that matters” is appropriate here. More
traditional grading practices centered on the destination with students are typically focused
on a numerical value (e.g., weighted average) without regard for what has been done to
reach that destination. This destination is often a product of grades that are typically
assigned by the instructor.

Moreover, we would argue that a feedforward approach could be used in both an
(Up)grading and a more traditional grading approach that allows resubmissions. Let us
be clear that all grades, even those within our (Up)grading approach, are subjective. It is
the instructor who more than likely chooses what is to be assessed, how it is assessed, and
how student responses are evaluated. Along the same vein, the student sees the grade
that is assigned to those evaluation instruments as a final destination, fixed in time with
no opportunity to benefit from reflection. We learn more from our mistakes than we will
from what we did correctly. Giving students opportunities to reflect on those mistakes
and advance understanding is motivating while, at the same time, it shifts from a fixed
destination mindset to a continued growth, journey-driven mindset. In these situations,
benefits arise for both the student and the teacher; the student has an opportunity to be
rewarded for their intellectual advancement, while the instructor has visible evidence of
these advancements in learning. As we work to prepare and support teachers, it is essential
that the focus be on helping them grow within their practice and knowledge and giving
up the constraints and hierarchy of traditional grading practices. We hope the exposure to
student-focused assessment practices will yield more humanizing assessment practices in
P-12 schools.
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Abstract: We investigated written self-reflections in an undergraduate proof-writing course designed
to mitigate the difficulty of a subsequent introductory analysis course. Students wrote weekly self-
reflections guided by mechanical, structural, creative, and critical thinking modalities. Our research
was guided by three research questions focused on the impact of student self-reflections on student
metacognition and performance in the interventional and follow-up class. To address these questions,
we categorized the quality of the students’ reflections and calculated their average course grades
within each category in the proof-writing, the prerequisite, and the introductory analysis courses. The
results demonstrated that writing high-quality self-reflections was a statistically significant predictor
of earning higher average course grades in the proof-writing course and the analysis course, but not
in the prerequisite course. Convergence over the semester of the students’ self-evaluations toward an
experts’ scorings on a modality rubric indicates that students improve in their understanding of the
modalities. The repeated writing of guided self-reflections using the framework of the modalities
seems to support growth in the students’ awareness of their proof-writing abilities.

Keywords: self-reflection; proof writing; real analysis

1. Introduction

In the US, the transition from early university mathematics courses that are calcu-
lational in nature to proof-based courses—where students are expected to read, write,
and assess proofs—has been a significant modern pedagogical challenge [1]. Even stu-
dents who were successful in prior calculational courses, such as calculus and differential
equations, may struggle when confronted with a proof-based course [2]. Historically and
inter-institutionally, an alarmingly high number of students earn non-passing grades in
their first proof-based course. At many institutions of higher education, a first course in
proof writing aligns with one of two categories: (1) a course with a primary focus and
learning objectives that address specific mathematical content, which we describe as a
Content-Based Introduction to Proof (CBIP); or (2) a course for which the primary focus
is on proof structure and techniques, which we call a Fundamental Introduction to Proof
(FIP) [3]. In CBIPs, proofs (and the associated linguistic and logical content) are taught
through the lens of other mathematical content, for example, linear algebra, abstract alge-
bra, or real analysis. Alternatively, FIPs teach the fundamentals of proof writing through
symbolic logic, sets, relations, and elementary number theory.

In the early 1980s, there was a concerted national movement to address students’
difficulty in transitioning to proof-based courses by creating FIP courses [4]. These courses
aimed to teach students how to effectively communicate in the language of mathematics
and, in particular, how to write formal proofs such as those required in upper-level courses.
Today, most collegiate mathematics departments in the U.S. have incorporated some form

Educ. Sci. 2024, 14, 1084. https://doi.org/10.3390/educsci14101084 https://www.mdpi.com/journal/education95



Educ. Sci. 2024, 14, 1084

of an FIP course as a requirement for baccalaureate math programs, although the syllabus
and learning objectives of FIPs vary widely [3–5]. Marty [4] addressed the effectiveness of
CBIP and FIP courses through a 10-year study at their institution. Longitudinal data, based
on grade outcomes in future courses, were compared between student populations who
took CBIP-type courses and student populations who took FIP-type courses. The findings,
based on a population of approximately 300 students, led the author to suggest that it
is more effective to focus on developing students’ approaches to mathematical content
(as emphasized in FIPs) than to focus on the mathematical content itself. The study
concluded that FIPs also increase students’ confidence and ability to take ownership in
their mathematical maturation.

Developing best practices for teaching proof writing in the mathematical sciences has
been the focus of much scrutiny and has proven to be a formidable task [6–14]. Alcock’s
study [15], based on interviews with mathematicians teaching introductory proof material,
addressed the complexity of the thought processes involved in proof writing. The article
concludes with the suggestion that the transition to proof courses should address four inde-
pendent thinking modes: instantiation, structural, creative, and critical modes. The study
of Moore [2] looked specifically at the cognitive difficulties for students transitioning to
proofs at a large university, concluding that the three main difficulties are (a) foundational
concept understanding, (b) mathematical language and notation, and (c) starting a proof.
The FIP in our study focuses on skills in (b) and (c) through novel self-reflective writing.
Consequently, we identified a previously unaddressed opportunity to directly analyze the
effectiveness of transition-to-proof reflective writing strategies.

The present study focused on an FIP course we recently developed to bolster the
success rate of students in the subsequent Introduction to Real Analysis class. The latter
course is considered difficult by many students and instructors. The modified course se-
quence begins with (1) a prerequisite introductory linear algebra course, followed by (2) the
optional FIP course, predicted to prime student success in (3) the subsequent introductory
analysis course. This sequencing allows for a direct comparison of students who choose
the path of linear algebra to real analysis and those who choose to take the FIP between
these core courses. The newly developed FIP course includes active learning techniques
that have been shown to increase the efficacy of teaching mathematical proofs [4]. While
building from the thinking modality work of Alcock [15], our approach of using reflective
writing as a framework for students to develop self-awareness of their understanding
of their proof-writing skills represents a novel interventionist [13] pedagogical approach
compared to the traditional pedagogical approaches to transition-to-proof courses.

The goal of the present work was to assess the innovative use of student self-reflective
writing-to-learn (WTL) exercises, scaffolded by a modality-based prompt and assessment
rubric. Specifically, we developed a modality rubric that consists of a Likert-scale evaluation
and field(s) for open-ended response self-evaluations for each of four modalities: mechani-
cal (the mechanical modality corresponds to remembering, which is different from [15] the
instantiative modality, which corresponds to a deeper understanding of the definitions),
structural, creative, and critical thinking modalities of proof writing. Students were also
asked to evaluate their use of the type-setting program LaTeX. However, here, we focus
on the conceptual elements of proof writing, that is, the mechanical, structural, creative,
and critical modes of thinking (see Appendix B for example modality rubrics and Section 2
for detailed descriptions of the modalities). The framework of these modalities and the
modality-based rubric are inspired by prior, related work [8,16,17]. In weekly homework
assignments, students were asked to reflect on their performance specifically in the context
of their comfort with the modalities. With this structure, we posed three research questions:

• Does having students write reflections in the interventional (FIP) course support their
ability to be metacognitive about their own proof-writing processes?

• Does having students write reflections in the interventional course impact their per-
formance and success in that course?
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• Does having students write reflections in the interventional course impact their per-
formance in the subsequent Introduction to Real Analysis course?

We addressed these questions over three semesters of the FIP course through analyzing
students’ weekly self-reflections (both with Likert ratings and open-ended responses)
and correlating with students’ grades in the prerequisite, interventional, and subsequent
introductory analysis courses. As such, we addressed a gap in the research in mathematics
education regarding the cognitive processes involved in proof writing [1]. Specifically, we
investigated the effectiveness of a novel approach that has students engage in reflective
writing in a transition-to-proof course. While there is extensive research on reflective
writing and student success, our novel contribution is combining the modality rubric, one
of the best practices for teaching proof writing, with reflective writing.

While the focus of this work is on the impact of reflective writing on student achieve-
ment in an introductory proof-writing course, there is a related question of the impact of the
new course as an intervention relative to a student’s overall success. We analyze the impact
of the new course in a subsequent paper [18] using data from a pre–post-assessment and
analyzing students’ grades in the prerequisite course, the interventional course, and the
subsequent course for students who took and did not take the interventional course. Pre-
liminary results show a positive effect of the interventional course on student learning and
success [18].

The next section lays out the theoretical framework for our study design and method-
ologies. The Materials and Methods section describes the interventional course, the learning
modalities, the instruments used, and the qualitative and quantitative methods used to
analyze the student reflections. The Results section includes a discussion of student per-
formance in the progression of courses as a function of the quality of their reflections,
an analysis of their growth in metacognition, and an analysis of student reflections relative
to the grader’s evaluation of student performance. Finally, the Discussion section contains
a summary of our results, conclusions, and other considerations.

2. Theoretical Framework and Related Literature

In this section, we synthesize theory and the relevant literature to provide framing for
the pedagogical practice of having students engage in reflective writing in mathematics and
how and why to provide students with instructional scaffolding to support their reflection
on their proof-writing processes. We also trace the origins of our framing of the four
thinking modalities involved in proof writing.

2.1. Reflective Writing-to-Learn in Mathematics

Writing stimulates thinking and promotes learning [19–23]. In the process of compos-
ing, writers put into words their perceptions of reality. As Fulwiler and Young describe it,
“. . . language provides us with a unique way of knowing and becomes a tool for discovering,
for shaping meaning, and for reaching understanding” [22] (p. x ). Writing enables us to
construct new knowledge by symbolically transforming experience [24] because it involves
organizing ideas to formulate a verbal representation of the writer’s understanding.

For more than 50 years, research in the movements known as writing-to-learn (WTL)
and writing in the disciplines (WID) has shown the connections between writing, thinking,
and learning and has demonstrated that writing may contribute to gains in subject area
knowledge [25], and specifically in mathematics [26–30]. One strand of theorization around
the mechanisms by which writing may lead to gains or changes in understanding in a
particular subject area holds that the act of writing spontaneously generates knowledge,
without attention to or decisions about any particular thinking tools or operations [31,32].
The writing process commonly referred to as free writing is associated with this strand
of theory. Another conceptualization of the role of writing in thinking and learning is
the idea that when thinking is explicated in the written word, the writer (and readers)
can then examine and evaluate those thoughts, which may allow for the development of
deeper understanding [33], as cited in [32]. Pedagogical approaches that follow from this
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view include reflective and/or guided writing processes. Other theories of the relationship
between writing and learning focus on the role of attention to genre conventions [34] and
rhetorical goals [35] and how attending to these concerns allows writers to transform their
understanding. Together, these theories of the connection between writing and learning,
along with empirical studies of the effects of writing-to-learn, argue for the value of having
students articulate their thinking about a subject matter through the written word.

Indeed, a recent meta-analysis of more than 50 studies of WTL activities in math,
science, and social studies at the K-12 level found that writing in these subject areas
“reliably enhanced learning (effect size = 0.30)” [36] (p. 179). Furthermore, Bangert-
Drowns et al.’s earlier (2004) [25] meta-analysis of writing-to-learn studies had found that
scaffolding students’ writing through prompts that guided them to reflect on their “current
level of comprehension” (p. 38) of the topic was significantly more effective than other
kinds of prompts or than unguided writing.

Such metacognitively focused reflective writing is a mode of WTL that supports learn-
ing by engaging the writer in the intentional exploration and reconstruction of knowledge
and personal experience in a way that adds meaning [37,38]. In the process of reflection,
the learner’s own experience and understanding become the focus of their attention. Done
well, reflection in writing enables the writer to abstract from, generalize about, and syn-
thesize across experiences [39]. When reflective WTL is supported pedagogically through
well-constructed writing prompts and instructor and peer feedback, the writing process
may enable student writers to become aware and in control of their own thinking and
learning processes, in other words, to become metacognitive and self-regulating [38]. Such
an ability to self-regulate their learning processes also contributes to learners’ perceptions of
greater self-efficacy [40,41]. Thus, guided, reflective WTL activities hold particular promise
for helping learners to organize their knowledge, thereby deepening their understanding,
gaining more awareness and control over their learning processes, and experiencing a sense
of greater self-efficacy.

In mathematics, guided, reflective WTL aims to support learners’ making connections
to prior knowledge, developing awareness of and improving problem-solving processes
(i.e., metacognition), bringing to consciousness areas of confusion or doubt as well as the
development of understanding, and/or expressing the learner’s feelings and attitudes
toward math [42]. A small body of the literature on reflective WTL in college-level mathe-
matics exists, but even fewer studies have aimed to connect reflective WTL with improved
student outcomes in mathematics courses. Much of the existing literature on reflective WTL
in mathematics focuses on students’ feelings and attitudes, specifically helping students
to express and alleviate math anxiety [42,43]. In a notable departure, Thropp’s controlled
study aimed to show benefits from reflective writing for student learning outcomes in a
graduate statistics course. Students who participated in reflective journal writing in the
interventional statistics course performed significantly better on an assignment and a test
than students in the control section who did not engage in reflective journaling [44].

2.2. Scaffolding Reflection on Proof Writing

For reflection in writing to be productive, many students need some support and
guidance [25,30,38,45–49]. Guiding questions and other forms of “scaffolding” [50] can help
students focus on the elements of their thinking and problem solving that are important
for their success in the course. Bangert-Drowns et al.’s meta-analysis [25] found that
the metacognitive scaffolding of writing-to-learn activities, such as interventions that had
students “reflect on their current understandings, confusions, and learning processes”, were
associated with gains in student learning. Applying it to proof writing, we posit, therefore,
that focusing students’ attention on modes of thought associated with constructing and
justifying proofs might help them to understand proofs better and become more adept
at writing them [6,51]. Another more streamlined approach toward the thinking modes
involved in proof writing is Alcock’s four modes [15]: instantiation, structural thinking,
creative thinking, and critical thinking. Engaging students on these fronts likely requires
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classroom approaches and techniques beyond standard lecture. Therefore, our study
adapted the above approaches to guide students’ reflection on their proof writing using
four thinking modalities, as outlined below.

2.3. The Modalities for Thinking about Proof Writing

The mechanical modality refers to the precise use of definitions and formal manip-
ulation of symbols. Accurate and precise use of language in definitions is a new skill for
students as they begin to write proofs [52,53], and they often find it difficult to understand
and apply many of the definitions of advanced mathematics [2,54]. Instantiation, as de-
scribed by Alcock [15], goes beyond the simple memorization of a definition and includes
understanding the definitions to the extent of successfully applying them to an example. In-
stead of Alcock’s instantiation [15], we chose to focus the mechanical modality on the more
basic skill of memorization, since this was an introduction to proof writing class. Alcock’s
instantiation [15] might be better for the real analysis course, so students can build on the
mechanical modality as their proof-writing acumen increases. The mechanical modality
as used here does not require the level of understanding of Alcock’s instantiation [15],
and instead refers to memorizing, a very basic learning skill.

The structural modality focuses on viewing the whole proof as a sum of its constituent
parts. For instance, standard proof writing begins with stating the hypothesis and ends
with stating the conclusion. To prove an if-then statement (A → B), one must justify how
the hypothesis leads to the correct conclusion. The proof of an if-and-only-if statement
(A ↔ B), however, must include proving both the forward (A → B) implication and
backward implication (B → A). Thus, the proof comprises two pieces. This is similar to
“zooming out” as described by Weber and Mejia-Ramos [55] and reminiscent of the idea of
the “structured proof” studied by Fuller et al. [56]. The structural modality corresponds to
more complex cognitive skills than the mechanical modality since it requires students to
see both the whole proof and the parts that contribute to the whole.

The creative modality involves making appropriate connections between concepts
to correctly ascertain the crux of the statement/proof. For a simple if-then style proof,
the creative modality is the crucial idea that connects the hypothesis to the conclusion.
Still, there is no algorithmic method to teaching students how to connect the hypothesis to
the conclusion because it will be different for each proof. The creative modality is similar
to the “zooming in” strategy proposed by Weber and Mejia-Ramos [55] as “filling in the
gaps” or a line-by-line strategy or “key idea” or “technical handle” as suggested by Raman
et al. [57]. This modality is more challenging than either the structural or mechanical
modalities because it requires creating a logical sequence of statements.

The critical modality involves ascertaining the overall truth or falsity of a state-
ment/proof, thus verifying a sequence of logical steps or producing a viable counterex-
ample [58]. Critically assessing whether a proof is correct, well written, valid, and has the
right amount of detail for readers to follow is an advanced skill that results in differences
in interpretation even among mathematical experts [7–9,12,57,59–62]. Students find this
modality challenging for several reasons. For one thing, they typically read less skeptically
than experts. They also tend to trust every line of proof by default if it is written by a
mathematician [63]. To verify the validity of a proof, students must think abstractly to
decide if the hypotheses and line-by-line details warrant the conclusion [64]. Students
struggle with the critical modality because it involves both “zooming in” and “zooming
out”, as referenced by Weber and Mejia-Ramos [55] (p. 340).

3. Materials and Methods

3.1. Context of Research
3.1.1. FIP Interventional Course Description

We piloted a 4-credit class, Introduction to Mathematical Reasoning, with a maximum
capacity of 30 students. The course was offered to students who had not yet taken, or at-
tempted, a CBIP and had previously completed a second-year introductory course in linear
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algebra with a grade of “C” or better. The textbook we used was Edward R. Scheinerman’s
(2013) Mathematics: A Discrete Introduction, 3rd Edition, Brooks/Cole [65]. Twice a week,
students met with the faculty instructor for 75 min for a content-focused lecture and guided
examples. A subsequent weekly, 50 min discussion section, led by a teaching assistant (TA),
engaged students actively in small groups working on low-risk assessments. Students
were expected to complete homework assignments independently each week. Throughout
the semester, students took three unit exams and a cumulative final exam with questions
aligned to student learning objectives (see Appendix A). Overall, the FIP course format
facilitated deliberate practice of proof-writing skills through both traditional (i.e., lecture)
and active learning (i.e., group work) methods.

The focal interventional course was developed by one of the authors of this manuscript,
some colleagues in the Department of Mathematics and Statistics, as well as pedagogical
experts in the Faculty Development Center, with the aim of decoupling the structural
foundational difficulties of proof writing from specific mathematical concepts, such as
mathematical analysis and abstract algebra. To this end, the students developed proof-
writing skills based on topics including basic number theory ideas (e.g., odd, even, prime,
and divisibility), sets, logic and truth tables, and relations. The course focused on basic
proof techniques such as if-then and if-and-only-if but also introduced more advanced proof
techniques, including induction, contradiction, contraposition, and smallest counterexample.
The final weeks of the course focused on applying these techniques to set-based function theory
using ideas such as injective, surjective, and bijective. We addressed these competencies among
others through the eight specific learning objectives listed in Appendix A. The scope of the
interventional course was consistent with 81% of FIPs offered at R1 and R2 universities [3].
During this study, this newly designed FIP course was taught by the same instructor (who
is an author and the course developer) and two different TAs for three semesters from
Fall 2019 through Fall 2020. Data collection for this study was impacted by the COVID-19
pandemic. This course abruptly switched to an online course during the second semester
and was taught completely online for the third semester of data collection. We further
comment on the impact of the pandemic in the Discussion.

3.1.2. The Role of the Teaching Assistant

Each semester the course was offered, there was one teaching assistant (TA) assigned
to the course. Over the three semesters that data were collected for this study, two different
individuals served as the teaching assistant for this course: one individual for Fall 2019
and Spring 2020, and a different individual for Fall 2020. The role of the teaching assistant
for this course is multifaceted. The TA, as mentioned previously, led a 50 min discussion
section each week. In addition, the TA graded the weekly homework assignment, which
consisted of the worksheets given during the discussion, questions from the book, and
the modality rubric. For the purposes of this study and after grading the discussion
worksheet and questions from the book, the TA evaluated each student on a Likert scale
for their proficiency in each modality each week. As a TA for the course, the individual
had extensive experience in writing proofs and was fluent in the meaning of each of the
modalities. The TA was not required to write self-reflections such as the ones that the
students wrote, nor did they participate in the part of the research that involved reading
and rating the students’ reflections.

3.1.3. Participants

Prospective participants for this study included students who completed the inter-
ventional FIP course, the subsequent introductory analysis course, Introduction to Real
Analysis, and the prerequisite core course, Introduction to Linear Algebra, with a grade
of C or better. Prospective participants reviewed an informed consent letter, approved
by the Institutional Review Board, before actively joining or declining to join the study.
Only students consenting to the study (N = 36) had their course data included in research
analyses. All participants were enrolled in the interventional FIP course during one of the
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first three semesters that it was offered at the focal institution, a mid-sized, public, minority-
serving research university in the mid-Atlantic region of the United States. According to
institutional data, 39% of student participants in this study identified as female and 61% as
male. In total, 38% of the participants identified their race/ethnicity as White, while 62%
identified as people of color.

3.1.4. Reflection Guided by Thinking Modalities

The development of a new course allows opportunities for innovations in pedagogy
to better achieve course goals. The innovation described here involved students in writ-
ing self-reflections on their proof-writing processes and abilities, scaffolded by a rubric
that defined four thinking modalities of proof writing: mechanical, structural, creative,
and critical. The goals of having students write self-reflections included: (1) supporting
students’ metacognitive awareness of their proof-writing processes and abilities by giving
them a framework for identifying specific areas of struggle; (2) assessing students’ devel-
opment in these skills over the semester; and (3) allowing the instructor to evaluate the
role of interventional self-reflection in students’ learning of proof writing. The four think-
ing modalities were described to students routinely throughout the entire interventional
course, both in lectures and in the discussion sections. Each weekly homework prompted
students to evaluate their proof-writing performance through the lens of each modality.
Students began this reflective process by evaluating their performance on a Likert scale,
followed by writing justifications of their Likert ratings in an open-ended response field
(see Appendix B). The Likert ratings served a multifaceted purpose. They (1) corresponded
to a modality rubric containing descriptors developed by the instructor to approximate
novice-to-mastery level achievement with each modality; (2) encouraged students to care-
fully consider their achievement-level(s) using each modality, thereby preparing them to
write a more meaningful self-evaluation in the open-ended response portion of the reflec-
tion; and (3) provided a means for the instructor to quickly compare students’ perceptions
of their modality skills to that of the grader, a TA considered to have expert-level fluency
with the modalities and proof writing.

The cognitive difficulty associated with each of the modalities increased over the
semester. Early in the course, the mechanical modality consisted of learning basic defini-
tions such as “even”, “odd”, “prime”, and “composite” (among others). As the semester
progressed, students learned new definitions, such as “relation” and “equivalence rela-
tion”, which were more abstract and challenging for the students to remember and apply.
Similarly, the structural modality was concrete for the proof of an “if-then” statement, intro-
duced near the beginning of the semester. However, toward the end of the course, students
were asked to construct more complex proofs, such as an “if-and-only-if” statement in
conjunction with a hypothesis and conclusion that involved “set equality”. The structure
of such a proof is more advanced because it comprises four separate parts. Given this
increase in complexity, we would not expect linear progress in students’ development of
these modalities over the course of the semester. The open-ended response justifications
and explanations in the written reflections provide insight into the students’ thinking and
learning processes throughout the course.

3.2. Research Methodology
3.2.1. Instruments

While students worked toward mastery of the learning objectives (Appendix A)
through a variety of formative and summative assessments, the focal instrument for this
study was a novel reflection tool assigned to students along with each weekly homework
assignment. Students’ evaluations were guided by a modality rubric with an accompany-
ing Likert scale and field(s) for open-ended response self-evaluations for each modality
(see Appendix B). Students were assigned to complete one reflection for each of 12 weekly
homework assignments. The TA graded students’ weekly homework and evaluated stu-
dents’ performance of each modality using the same Likert scale that students used to
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self-evaluate. While the TA provided written feedback on weekly homework problems,
the TA did not comment on the students’ written reflections, and the students were not
aware of the TA’s Likert scale ratings on the modalities. Students were given credit for
completing the weekly modality rubric and reflection.

Over the three-semester study, the self-reflection prompts changed in response to
direct feedback from the students and the recognition of a misalignment between the
instructor’s expectations for open-ended response content versus the observed content
submitted by students. The rubric for each semester can be found in Appendix B. In the
first semester of the study, some students provided vague or off-point comments in relation
to modalities, which provoked re-examination of the instrument’s phrasing. For example,
the original mechanical modality required “insightful” use of definitions. Recognizing that
this was vague, we changed the requirement to a more basic skill of memorizing definitions
“precisely”. Likewise, student feedback drove a change to the Likert scale range used to
self-rate performance. Below, we describe these changes in detail.

During the first semester, the students self-rated their mastery of each thinking modal-
ity using a four-point Likert scale, attached to the descriptors superior, proficient, acceptable,
and poor (see Appendix B). In addition to these four categories, students could choose “not
applicable for this homework”. Subsequently, students were prompted to write a short
self-reflection on “substantial gaps or significant improvement” with respect to their mas-
tery of the modalities. Students typically focused on only one of the modalities, and their
reflective responses lacked specificity. During the first semester of the study, students
used a Learning Management System tool to enter both the Likert scale responses and
open-ended response reflections/justifications. For the subsequent two semesters of the
project, these responses were entered into a Google form.

The student feedback and instructor’s evaluation of student responses drove a change
in the Likert scale students used to rate their performance during the second and third
semesters that the course was offered (see Appendix B). The Likert scale for each modality
was expanded to include seven increments, where a rating of “7” indicated confident
mastery, and a “1” indicated a significant need for more instructional support. Consistent
with the first semester, students were also given the choice of “not applicable for this
homework”. The explanation for each increment on the Likert scale changed as well.
For example, the highest self-rating or TA rating of superior on the mechanical modality
was described during the first semester as “Student shows flawless and insightful use of
definitions and logical structures, and formal manipulation of symbols”. During the second
semester of the study, the revised rating of “7” on the Likert scale read “I consistently and
correctly use definitions, logical structures, and formal manipulation of symbols”. While
the first description tacitly asked the students to rate their performance and the language
implied an almost unattainable perfection, the revised prompt is more student-centric (such
as the use of “I”) and explicitly asks students to evaluate their own skills. In an effort to
elicit more details from the students, the prompt for the open-ended self-reflection was
also revised in the second semester to read “Please comment on why you chose each of the
ratings above” in an effort to guide students to comment on each of the four modalities,
every week. During the second offering of the course, the instructor explicitly discussed
the reflection prompt with students and reinforced expectations with an example of an
ideal reflection.

During the third semester of the interventional FIP course, the seven-point Likert scale
on which students evaluated their performance with respect to each modality was retained.
However, in a further effort to elicit high-quality self-reflections for each of the modalities,
the prompt for the written self-reflection instructed students to respond to each modality
separately by writing four different self-reflections. In addition, more explicit instructions
were given to the students (see Appendix B for details). The prompt for the mechanical
modality, for example, became “Using the format claim → evidence → reasoning, justify
your chosen ranking for the Mechanical Modality. Be sure to include specific examples
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for evidence to support your claim, and carefully describe your reasoning for how your
evidence supports your claim”.

3.2.2. Qualitative Methods

Three raters (the authors) independently read and rated all the reflections provided
by N = 36 participants, for a total of M = 310 responses, out of a possible 432 responses.
(The difference between the total and possible numbers of responses reflects the fact that
some participants did not write all 12 reflections during the semester.) The overall quality
of each participant’s set of reflections was initially rated as one of four levels: exceptional,
acceptable, developing, or incomplete. The definitions of each quality level were refined
ad hoc as the raters made iterative passes through the data and patterns of completion
and specificity emerged from the data, a method adapted from analytic coding techniques
as described by Coffey and Atkinson [66]. While the prompts were refined in the second
and third offerings of the course, the criteria by which we rated students’ responses were
consistent over all three semesters of data. Table 1 provides descriptions with which each
participant’s open-ended response reflections were rated for quality. In order for a student’s
response profile to be categorized as exceptional, acceptable, developing, or incomplete,
criteria had to be satisfied for both the aligned “Completion of Assigned Reflections” and
“Adherence to the Prompt” columns of Table 1. For example, if a student’s reflections were
75% complete over the semester, yet only 50% of the reflections adhered to the prompt,
then the student’s response profile would be categorized as Acceptable, not Exceptional.
Assessing reflection quality is crucial to addressing our research questions.

Table 1. Parameters for rating the quality level of students’ written reflections

Rating
Completion of Assigned Reflections

(% over the Semester)
Adherence to the Prompt

(% of Reflections Possible)

Exceptional 75–100%

In total, 66–100% specifically or fully addressed the
prompt, including explication of the thinking modalities,

justifying the self-rating, and exemplifying it using
specific elements of the proof in question

Acceptable ≥66% In total, ≥50% specifically addressed the prompt

Developing ≥50% In total, ≥25% either vaguely or specifically addressed
the prompt; vague reflections are representative

Incomplete 0–49% In total, 0–24% contained reflections that specifically
addressed the prompt; many responses omitted

In developing the rating categories for students’ reflections, we considered the percent
of reflection assignments completed over the semester. However, the percent of reflections
completed could not be the sole definition of quality since several students completed
most assignments with little effort or adherence to the prompt. In order to specifically
address the prompt, reflections went beyond stating, for example, that the homework
was “easy” or “hard”; ideal reflections provided explanations and reasoning for any of
the four modalities the student struggled with or felt confident about. Rephrasing the
prompt without additional context did not constitute a highly specific reflection, nor did
commenting on one’s rating of the respective homework assignment. Likewise, several
students provided thoughtful, targeted reflections in some instances but neglected to write
them or wrote vague ones in other instances. It is important to note that the rating process
did not address the correctness of any mathematical claims students made since the prompt
did not require them to make mathematical claims. Rather, the focus of the reflection was
on their own thinking, with reference to the thinking modalities. Therefore, our ratings
of the quality of student reflections is based on the extent to which they showed such
metacognition, not on mathematical accuracy.
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After independently coding M = 310 written reflections, the three raters deliberated
and reached consensus, following [67], on appropriate quality ratings for all 36 participants’
reflections. The methodological flow diagram in Figure 1 shows how these 310 individual
written reflections were categorized throughout the research process.

Figure 1. Data analysis flow diagram: This figure shows the data analysis process we conducted and
the relationships among (a) the raw data, or individual student responses; (b) the aggregate data,
or the global rating assigned to each student’s collection of responses; and the analytical categories
these collections of responses first assigned to (c) four categories, which were later collapsed into
(d) two categories.

3.2.3. Quantitative Methods

Quantitative analyses treated written reflection data on a broader level of two groups:
low or high quality. Developing and incomplete reflections were grouped together in a
“low quality” category. Likewise, acceptable and exceptional data were treated as a group
of “high-quality” reflections. We decided to explore the broader categories for two reasons.
First, while deliberating and reaching consensus for rating the reflections qualitatively, we
often struggled with distinguishing incomplete reflections from developing reflections,
and acceptable reflections from exceptional ones. Second, given the small sample size
and variance, we expected that creating two larger categories would allow relationships
to emerge.

To determine whether a relationship existed between content-specific reflection quality
and students’ performance in relevant mathematics coursework, quality identifiers for
each participant’s written reflections were aligned with their respective final grades in the
prerequisite course, the interventional course, and the subsequent required core course
(on a five-point scale: A = 4, B = 3, C = 2, D = 1, F and W = 0). The real analysis
course was chosen because it is a required course for all math majors at the focal institution,
and students from the FIP course would then enroll in that course. The majority of the
grade in each of these courses was determined by in-class exams and a cumulative final
exam. Quantitative analyses accompanied qualitative analyses to provide support for
emerging patterns. The weekly modality rubric prompted students to rate their use or
understanding of the four modalities on a Likert scale (see Appendix B). We calculated
the difference between grader and student modality rubric ratings for each modality,
per student, per week of the semester. These difference data were used in a Pearson’s
Correlation test to determine if they shared a significant linear relationship with time in the
interventional course (assignment week over the duration of a semester). With this test, we
asked, as the weeks passed, do grader–student differences in rubric ratings decrease? A
smaller difference in grader–student ratings was intended as a proxy for students’ modality
use reaching expert level.

3.2.4. Statistical Analyses

Descriptive quantitative statistics were applied to determine whether course grade
data sets followed a normal distribution, for which statistical tests were warranted. Both
Shapiro–Wilk and Kolmogorov–Smirnov tests for normality revealed that none of these
data sets of interest met the criteria for parametric tests, except for tthe modality rubric data.
Therefore, non-parametric tests were applied to compare multiple groups of unpaired,
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non-normal data, while parametric tests were used to analyze the modality rubric data, as
described below.

After categorizing students’ reflections as one of two quality groups, the correspond-
ing grade data were analyzed with independent samples Mann–Whitney U tests. This test
was selected because we wished to compare the same variable (grade earned) across two
completely different groups of subjects (those producing “low-” vs. “high-quality” reflec-
tions). Similarly, we applied the independent samples Kruskal–Wallis test to compare the
course grades of four completely different groups of subjects, those whose set of reflections
were rated as (1) exceptional, (2) acceptable, (3) developing, or (4) incomplete quality.

Pearson’s Correlation test was applied to the normative modality rubric numeric data
to elucidate possible direct or inverse relationships between subjects’ course grades and
the quality of their written reflections. Likewise, parametric beta linear regression analysis
with independent variables of linear algebra grades (4, 3, 2, 1, 0) and “high-quality” written
reflections and the dependent variable of the Real Analysis couce grade (4, 3, 2, 1, 0) allowed
us to investigate the significance on “beta” for the binary variable; the binary variable was
whether students earned a passing grade in the interventional course. In other words,
the selected statistical test considered whether some combination of prerequisite course
performance, interventional course performance, and/or written reflection quality could
reliably predict or explain course performance in the next, rigorous course in sequence.

Data were organized in Microsoft Office Excel, and all statistical tests were performed
in IBM SPSS Statistics 26. The study was classified by UMBC’s Office of Research Protections
and Compliance as exempt (IRB protocol Y20KH13003), 25 July 2019.

4. Results

4.1. Analyses of Reflections for Quality, Metacognition, and Variability Across Cohorts

The three raters independently rated the body of each student’s written reflections
over the 12 homework assignments to provide a single, holistic rating for each student’s
work. In determining these ratings, we agreed that typical “exceptional” reflections explic-
itly addressed the prompt by explicating multiple modalities and consistently provided
examples and/or reasoning. Reflections rated “acceptable” often explicitly responded to
the prompt, sometimes provided specific examples of areas of struggle or success from the
student’s proofs, and/or provided some reasoning for the self-rating. A holistic rating of
“developing” was assigned if the student neglected to submit some responses and/or the
reflections responded to the prompt in nonspecific ways. A rating of “incomplete” was as-
signed where a student did not complete the reflections or the writing was extremely vague
with respect to the prompt. See Table 1. Example responses characteristic of each quality
level are shown in Table 2. One participant completed over 50% of reflection opportunities,
yet their reflections were rated as “incomplete” (instead of “developing”, as suggested by
the completion parameter) because the majority of their reflections were a single word,
which was insufficient for addressing the prompt. Nearly all participants whose reflections
were rated as exceptional completed at least 11 of 12 assignments. However, the reflections
of one participant who completed only nine assignments were rated as exceptional due to
their overall quality.

As shown in Table 2, students whose writing was rated as “developing” or “incom-
plete” skipped writing the reflections or wrote them using very vague language. They
generally did not describe their struggles or successes and did not refer to the modalities or
any specific elements of the proofs they wrote that week. Thus, their reflections did not
provide good evidence that they understood the four modalities and could appreciate how
to operationalize them in order to write their proofs.
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Table 2. Example participant reflections characteristic of four quality levels (one example provided
per semester per level).

Reflection Quality
Semester, Participant, Homework Assignment Number

(HW) , Excerpt of Written Reflection
Raters’ Comments

Exceptional

Semester 2, Student 22, HW 7: “Mechanical: I chose superior
because I feel like I was able to know which definitions to use

and where to put each definition. [Structural]: I chose
proficient because I struggled with knowing how many parts

are supposed to go in a proof, especially with the smallest
counter example proofs. Creative: I chose superior because I

feel like [I] was able to adequately fill in the middle of the
proofs, knowing what the beginning and the end should be.
Critical: I chose superior because although we didn’t have

true or false, I was able to know the converse or contrapositive
form of the given statements and then prove those statements

to see a contradiction properly”.

• Accurately explicates each of the
four modalities

• Provides reasoning for self-ratings
• Refers to specific elements of the

proofs (e.g., “converse or contrapos-
itive forms of the given statements”)

Acceptable

Semester 1, Student 10, HW 11: “I felt substantial gaps in the
[structural] and critical modality, which then prevented me

from getting to the creative modality portion of
the homework”

• Demonstrates understanding of the
inter-relationships among modalities

• Does not explicate or exemplify
any modalities

Developing Semester 3, Student 23, HW 4: “I gave myself a 7 because I
used a lot of logic and had strong arguments”

• Provides vague reasoning
• Does not explicate any of the modali-

ties or provide any examples

Incomplete Semester 3, Student 24, HW 7: “I had issues with the proofs,
especially 21”

• Does not refer to the modalities
• Refers to but does not reflect on a

specific problem
• No reflection on what the writer strug-

gled with

4.2. Analysis of Student Growth in Metacognition

In this section, we analyze student growth in metacognition based on a longitudinal
analysis of student reflective writing over the semester, as well as a longitudinal comparison
of student ratings with the ratings of the grader, whom we consider an expert in this context.

4.2.1. Longitudinal Analysis of Student Reflective Writing

To frame our analysis of metacognition in the students’ reflective writing over the
semester, we looked for evidence of their awareness of and ability to control their own
thinking and learning processes, specifically their use of the four thinking modalities to self-
regulate their learning of the proof-writing process, as well as evidence of metacognitive
growth in their reflective writing over the semester. Students who were able to articulate
their thinking processes through accurate use of the modalities to explain their approaches
to the homework in their reflections and/or were able to clearly express the extent of
their understanding of how the modalities supported their ability to write the homework
proofs were judged as showing evidence of metacognition. All 15 students whose sets of
reflections were rated exceptional or acceptable showed evidence of metacognition in one
or more of the reflections they wrote.

As an example of metacognition in reflection, we highlight a few of Student 13’s
reflections, which were selected for their typicality as well as their richness in detail. This
student’s set of reflections was rated exceptional overall and showed early and consistent
evidence of metacognition. In Homework 2, Student 13 wrote:

Mechanical: I think I did a better job at using symbols than homework 1, but I’m
still not sure whether it’s greater than, as good, and hopefully not worse than
homework 1. . .

(Student 13, Homework 2)
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In the first clause of this statement (“I think I did a better job at using symbols than
homework 1”), Student 13 shows awareness of improvement in their use of symbols
compared to in the previous week’s homework. In the second clause (“but I’m still not
sure whether it’s greater than, as good, and hopefully not worse than homework 1”), they
also demonstrate awareness of the limits of their current understanding, mentioning what
they struggled with or were still unsure about. Like all students whose reflections were
rated exceptional (N = 5), Student 13 cited specific elements of that week’s proof exercise
that showed they understood how the modalities relate to the thinking involved in writing
those proofs. See, for example, the rest of Student 13’s Homework 2 reflection:

. . . [Structural]: I think I was able to show off parts of the statement in the truth
table in order to fully determine if two statements were equivalent, but there
could be something that I could be missing from the tables. Creative: I was able
to show some connection between statements in order to determine if statements
were logically equivalent, but I feel like I wasn’t able to fully explain some of the
statements as to why they were either true or false. Critical: I think I was able [to]
show how statements were either true or false, and was able to show my thought
process with the truth tables.

(Student 13, Homework 2)
In response to the creative modality, Student 13 was able to articulate an awareness

of strengths (“I was able to show some connection between statements”) but also identify
areas of improvement (“I feel like I wasn’t able to fully explain some of the statements”).
Thus, Student 13 is demonstrating signs of metacognition in their reflections by being able
to identify their own strengths and weaknesses in writing the proofs in Homework 2.

While Student 13’s set of reflections are representative of writing that was rated ex-
ceptional overall, it is noteworthy that only five students out of 36 across the entire data
pool wrote reflections that were rated this highly. In total, 9 of the 10 students whose sets
of reflections we rated as acceptable wrote some entries that were highly metacognitive
and self-critical (39 out of 108 instances of reflection across 12 homeworks for 9 students),
but they did not consistently, throughout the entire semester, ground their references to
the modalities in actual performance or the particulars of that week’s proofs. In total, 8 of
10 students whose set of reflections were rated acceptable showed inconsistent evidence of
progress in metacognition over the semester. However, two students whose reflections were
rated acceptable showed consistent development in their ability to reflect metacognitively
about proof writing over the semester. Student 9’s reflections, for example, are represen-
tative of such growth, and were selected to highlight here because the contrast between
their early and later writings is vivid. Compare Student 9’s reflection on Homework 3 with
what they wrote for their final reflection on Homework 12:

I believe that the proofs I provided used adequate detail and included logical
connections between statements in this homework.

(Student 9, Homework 3)

I believe that I have made a lot of improvement on how to approach a proof
problem. I think I really built the mechanical and [structural] modality being
that I can see a proof and immediately be able to break it down into the multiple
subsections in order to solve it in [its] entirety. However, going from one point to
the next is where I think I struggle. I have a tendency to set up each part of the
proof or create a form of a shell of what needs to be filled in and then I have a
hard time filling in some of the gaps. I think the repetition of proofs in class and
on the homework have allowed me to improve on doing so, however I think I
need a bit more practice on my own over the winter break. . .

(Student 9, Homework 12)
In the earlier reflection on Homework 3, Student 9 wrote in generalities with no

explicit reference to the modalities or to their process, whereas by Homework 12, Student 9
articulated strengths and weaknesses in their proof-writing process with explicit reference
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to the modalities. Thus, while Student 13, classified as writing exceptional reflections, showed
signs of metacognition in their responses as early as Homework 2, Student 9, classified as
writing acceptable reflections, showed development of metacognition over the semester.

4.2.2. Longitudinal Analysis of Student–Grader Differences

We examined the question of whether grader–student differences in rating decrease
over time using Pearson’s Correlation test and found that as the semester progressed,
student and grader ratings became more similar in the structural and creative modalities
(p < 0.001, Table 3). A similar trend is evident for both the mechanical and critical
modalities, but not significantly so. The negative Pearson Correlation values show that
the linear relationship for all four modalities is negative: As time passed, the difference in
ratings between graders and students decreased.

Table 3. Correlations between time and the difference between grader and student reflective rubric ratings.

Mechanical Structural Creative Critical

Pearson
Correlation −0.065 −0.298 ** −0.226 ** −0.043

Sig. (2-tailed) 0.220 0.001 0.001 0.478

N 359 345 344 276

The symbol (∗∗) indicates that the p-value of significance is less than 0.01. Through
analyzing student reflections as well as comparing student–grader differences over time,
there is evidence of student growth in metacognition over the semester. Below, we will
show that students who wrote high-quality reflections demonstrated strong performances
in both the interventional course and the advanced course.

4.3. Comparison across Semesters

The proportion of the students classified as writing either high- or low-quality re-
flections was fairly consistent over the three semesters (see Table 4). Notably, the relative
proportions of reflection quality observed in the second iteration of the course, which
coincided with an abrupt transition to emergency remote instruction in spring 2020 due to
the COVID-19 pandemic, stand out in comparison to the semesters prior and following.

Table 4. Descriptive statistics of participant reflections by quality.

Reflection
Quality

n
Number of
Completed

Reflections (X ± SD)

Proportion of
Semester 1
Reflections

Proportion of
Semester 2
Reflections

Proportion of
Semester 3
Reflections

High 15 11.3 ± 1.3 0.36 0.44 0.41

Low 21 6.7 ± 3.1 0.63 0.55 0.6

In summary, students were grouped by the quality of their reflection responses over the
course of the semester. Student reflections showed both evidence of metacognition as well
as growth in reflective writing and development of metacognition. Despite changes to the
prompt in an effort to elicit better self-reflections and an abrupt transition to online instruction,
the proportions of reflection quality remained fairly consistent over the three semesters.

4.4. Analyses of Quantitative Trends

We compared the achievement of participants in the prerequisite course (linear al-
gebra), the interventional course (FIP), and the subsequent course (Introduction to Real
Analysis) based on participants’ quality of self-reflections in the interventional course.
Specifically, we analyzed math course grade data on the basis of reflection quality. We
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proceeded with two statistical perspectives: (1) comparisons of students’ course grades
between multiple groups of written reflection quality and (2) beta linear regression analyses
to evaluate the possible role(s) of linear algebra grades, FIP grades, and written reflection
quality as predictors of course grades in Introduction to Real Analysis.

Course performance diverged between those students who had high-quality
(exceptional or acceptable quality) reflections in the interventional course compared to
those who had low-quality (developing or incomplete quality) reflections as shown in
Figure 2. This difference in performance between the reflection quality groups is more
prominent in both the interventional and introductory analysis course grades, as compared
to prerequisite core course grades. Figure 2 illustrates that the performance differential
between the students who wrote high-quality reflections and the students who wrote
low-quality reflections increases with course progression. A non-parametric, individual
samples test (Mann–Whitney U) was applied to the data, with reflection quality (high
vs. low) as the group qualifier. Statistical results suggest that differences between course
grades among those students (N = 36) who wrote high- vs. low-quality reflections were
significant in the interventional (p = 0.003) and introductory analysis courses (p = 0.007),
and not significant in the prerequisite core course (p = 0.072).

Figure 2. Relationship between average course grades and two categories of reflection quality: We
classified each participant’s responses as either high quality (“exceptional/acceptable”, black bars) or
low quality (“developing/incomplete”, gray bars); the participants’ grades in the prerequisite core
course (linear algebra), the interventional (FIP) course, and the introductory analysis course (real
analysis) were determined. The course grade results are shown in the bar graph, where a grade of
‘A’ corresponds to 4, ‘B’ corresponds to 3, ‘C’ corresponds to 2, ‘D’ corresponds to ‘1’, and 0 to ‘F’ or
‘W’ (withdraw). While each course shows a higher average grade for the “exceptional/acceptable”
participants (black bars), only the grades in the interventional FIP course (p = 0.003) and introductory
analysis course (p = 0.007) are statistically significant.

4.5. Reflection Quality and Prior Student Course Achievement as Predictors of Future Success

A beta linear regression test shows that reflection quality, treated as two category levels,
is a significant predictor of the Real Analysis grade (beta = 1.171, p = 0.004). A separate
beta linear regression test shows that the Linear Algebra grade (scale of 0–4) is not a
significant predictor of the Real Analysis grade (beta = 0.290, p = 0.312). A third beta linear
regression test shows that the FIP grade is a significant predictor of the Real Analysis grade
(beta = 0.628, p = 0.022), where the beta variable represents whether students passed the
interventional course with a C grade or higher. In summary, whether we apply regression
analysis or a group comparison approach to the quantitative data, we see similar results.
Specifically, reflection quality during the FIP is a significant predictor of future success
in the Real Analysis course, while grades in the prerequisite Linear Algebra course are
not. Likewise, group comparison results suggest that differences between course grades
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among those students who wrote high- vs. low-quality reflections were significant in
the interventional (FIP) and introductory analysis courses, and not significant in Linear
Algebra. Together, these aligned findings reinforce our confidence that having students
write reflections throughout the interventional FIP had a positive impact on students’
success in both that course and the subsequent introductory analysis course.

5. Discussion

5.1. Summary

Based on best practices in the literature [3–5], we created an interventional FIP course,
Introduction to Mathematical Reasoning, to mitigate the difficulty of the CBIP course,
Introduction to Real Analysis. The interventional FIP course utilized active learning
and the novel approach of self-reflections focused on four learning modalities within
mathematical reasoning—mechanical, structural, creative, and critical—inspired by [15].
In this study, we analyzed the quality of self-reflections pertaining to students’ proof-
writing self-efficacy for evidence of meaningful learning. We first rated each student’s
reflections in the categories of exceptional, acceptable, developing, or incomplete. We
then combined these four categories of student reflections into two groups: high quality,
i.e., those meeting exceptional/acceptable criteria, and low quality, i.e., those aligned
with developing/incomplete criteria. Both classification systems demonstrated similar
quantitative results. Figure 2 illustrates the average letter grade for each of the three
sequenced courses based on the two-category classifications, respectively. Specifically,
the increased performance gap was statistically significant for the interventional and
introductory analysis courses, but not for the prerequisite course. In other words, success
in the prerequisite course alone does not predict success in the upper-level CBIP course.

5.2. Addressing the Research Aims
5.2.1. Does Having Students Write Reflections in the Interventional (FIP) Course Support
Their Ability to Be Metacognitive about Their Own Proof-Writing Processes?

In answering our first research question, we see evidence that some students are marshal-
ing the concepts behind the four thinking modalities post hoc to write their reflections. Student
13, whose reflections were rated exceptional, showed consistent evidence of metacognition
throughout the semester. Student 9’s reflections, on the other hand, were rated acceptable,
but they also showed growth in their metacognitive abilities over the semester. While we
are able to draw conclusions about the metacognitive abilities of students who write high-
quality reflections, we are not able to draw any conclusions about students who either did
not write reflections every week or whose reflections were vague or nonspecific. However,
our study design did not allow us to determine whether or not any students are consciously
applying the modalities while they are in the process of writing proofs. A future study that
has students think aloud as they engage in proof writing might shed more light on their use
of various thinking strategies, including the four modalities, during the process.

5.2.2. Does Having Students Write Reflections in the Interventional Course Impact Their
Performance and Success in That Course?

Figure 2 shows that there is a statistically significant relationship between the high-
quality (exceptional/acceptable) reflections and students earning higher average grades in
the interventional course. Thus, the intervention may have impacted the performance of
the students who thoughtfully completed the self-reflections. Specifically, based solely on
the average course grade, students who wrote better self-reflections performed better in
the interventional course than students who wrote low-quality (developing/incomplete)
reflections. Thus, corroborating [25], it appears that merely assigning students to write self-
reflections does not necessarily affect their performance and success in the interventional
course. However, on average, writing high-quality reflections correlated with higher
grades in both the interventional course and subsequent introductory analysis course, thus
suggesting a positive impact of the intervention. Students whose reflections qualified as
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high quality did not necessarily have greater success in the prerequisite course, as evidenced
by the lack of significant correlation between writing a high-quality reflection and respective
performance in the prerequisite course. However, on average, these students did perform
better in both the interventional and subsequent introductory analysis courses.

5.2.3. Does Having Students Write Reflections in the Interventional Course Impact Their
Performance in the Subsequent Introduction to Real Analysis Course?

Analysis of modality reflections showed that students who wrote high-quality reflections
performed better in the interventional course. Perhaps more surprising and more important
is the correlation between high-quality (exceptional/acceptable) reflections and the respective
students’ performance in Introduction to Real Analysis, where students were not asked to use
the modalities. Not only did students writing high-quality reflections reliably achieve higher
grades in the introductory analysis course, but also the performance gap between students
who wrote high- and low-quality reflections increased relative to the performance gap in the
interventional course. Combined with the lack of correlation between writing high-quality
reflections and students’ grades in the prerequisite course, success in the CBIP course was
not predicted solely by performance in the prerequisite course, and performance in the real
analysis course seems to have been impacted by thoughtful self-reflections.

5.3. Other Considerations

In an effort to elicit high-quality reflections from students, the prompt was revised
twice during the course of the study to clarify expectations and provide more structure
for the students’ ability to reflect metacognitively [25,45,68,69]. Despite these efforts, the
data (Table 4) do not support an obvious correlation between the quality of reflections and
our efforts to clarify our expectations with regard to modality self-reflections. Dyment and
O’Connell [70] describe several limiting factors to reflective writing that might explain this.
For instance, over the course of the three semesters of our study, neither the instructor nor
the TA provided personalized feedback on students’ individual reflections. The instructor,
however, did attempt to provide extra structure to the prompts and also frequently provided
examples of each of the modalities during class. However, these efforts did not appear to
impact students’ reflections. In another attempt to improve student reflections, the instructor
also clarified expectations by providing examples of high-quality reflections and conveyed
the positive impact of self-reflective writing exercises on course outcomes. Subsequent to
this study, to provide additional support to students for reflective writing, we added a short,
small-group discussion on the modalities at the beginning of the discussion section. We
predicted that students will benefit from this additional, deliberate learning opportunity.

As the semester progressed, students showed increased understanding of the modali-
ties, as evidenced by the decrease in the difference in ratings between graders and students
for all four modalities. While the correlation results for the structural and creative modali-
ties were statistically significant, the trends for mechanical and critical modalities did not
meet the criteria for statistical significance (Table 3). The correlational findings for the
structural and creative modalities show that grader–student differences in rating decrease
as the semester progresses, which suggests student conceptual growth in these modalities
over the semester. We speculate that the evaluative demands of the critical modality may
have been the most challenging for the students to master, even by the end of the term.
On the other hand, the mechanical modality is less cognitively demanding than the other
modalities. Thus, many students may have found the mechanical modality manageable
from very early in the term, leaving little room for growth over time. We posit that the
structural and creative modalities are more cognitively challenging than the mechanical
modality, but not as challenging as the critical modality. Thus, it is in the structural and cre-
ative modalities where we would expect students to make the greatest gains in awareness
of their own abilities over the semester.

While our results indicate that students who submit high-quality reflections are more
successful proof writers, our research methodology was not designed to prove causation.
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One may speculate that the convergence between grader ratings and student self-ratings
may partly be attributable to the students adjusting to the TA’s expectations. Given that
the TA is an expert, the natural conclusion is that the student is becoming better at proof
writing. It may be the case that students who are naturally good at writing reflections are
also good at writing proofs. Since the prerequisite class is more calculational, students with
strong proof-writing abilities would not necessarily stand out. While this may contribute
to some of the results, subsequent detailed analysis found in [18] shows that the greatest
impact the interventional course had was on the students who received a B or a C in the
prerequisite course. Thus, while these alternative explanations are plausible, one may
reasonably conclude that the reflective writing and the interventional class positively
impact student performance.

We further speculate that our findings were impacted both by the global COVID-19
pandemic, which emerged during the second of the three semesters of this study, and by data-
driven changes in instruction. Data analysis from the first semester resulted in changing
the self-reflection prompt, as well as the Likert scale for the student rating of the modalities.
During the second semester that the course was offered, instruction abruptly switched
from in-person to online due to the onset of the COVID-19 pandemic. Students were
impacted by external factors such as the lack of reliable internet connections, flagging
motivation, and challenges of time management [71], which may have influenced their
performance in the course in a variety of ways. We also noted challenges surrounding
active learning during discussions that continued into the following semester, despite a
variety of adaptations that the instructor tried to improve the situation. The class was
redesigned for the third semester to improve outcomes in the online environment. Lectures
were recorded, and students were required to submit lecture notes to ensure they had
viewed the recording. Student attendance was required at both a synchronous question
session and a synchronous discussion section. We do not believe that these challenges and
modifications to the course influenced our findings in any significant way. On the contrary,
despite the challenges of teaching and learning during a pandemic, our findings suggest
the significant impact of high-quality self-reflections on student performance in both the
FIB and CBIP courses across both in-person and online instructional environments.

6. Conclusions

Our analysis of students’ written reflections structured around thinking modalities of
proof writing showed that students who wrote high-quality reflections performed better in
both the interventional course and the subsequent introduction to analysis course. Further-
more, student performance in the prerequisite course did not predict student performance in
the interventional and introduction to analysis courses. It was not just that diligent students
performed well both with reflective writing and in the math content of their courses. If that
were the case, we would expect their performance in the prerequisite course to correlate with
their categorization as writing high-quality reflections, which it did not. Thus, we conclude
that repeated exposure to guided self-reflection using the lens of the modalities supports
growth in the students’ awareness of their own abilities pertaining to proof writing. In partic-
ular, the modalities provided students with a framework for discerning what they understood
and what they needed help with to understand. Our results support the potential power of
repeated, modality-based self-reflection as a strategy to improve students’ ability to write
better proofs, and thus impact outcomes in future proof-based courses.

While the current work highlights the impact of reflective writing to support students’
metacognition around proof writing, future work could focus on the best way to guide
students toward more effective reflective writing, thus improving both their self-awareness
and outcomes in future courses. For example, future work could investigate the role of the
frequency and intensity of reflective writing activities on developing proof-writing abilities.
Additionally, our work did not directly measure how the students used the modalities while
writing their proofs. Further research into students’ metacognitive processes—specifically
think-aloud-type methods that reveal students’ thought processes as they write proofs—could
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yield additional insights into common misconceptions and misconstruals that would help
instructors tailor their lectures, activities, and assignments accordingly. Lastly, supporting
instructors and TAs in understanding theory and practice around reflective writing could
enable them to better help students develop reflective writing skills.
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Appendix A. Student Learning Objectives

Table A1. Student learning objectives (SLOs) for the FIP Course.

SLO 1 Construct basic proofs of if-then statements about integers and sets.

SLO 2 Evaluate the truth or falsity of given statements; defend this decision by providing justifications or counterexamples
as appropriate.

SLO 3 Manipulate and negate simple and compound mathematical statements using propositional logic and truth tables.

SLO 4 Quantify (and negate) precise mathematical statements with proficiency in mathematical statements and propositions.

SLO 5 Utilize common proof techniques such as induction, proof by contraposition, and proof by contradiction; recognize the
need for these strategies in given problems.

SLO 6 Apply skills of mathematical reasoning, as listed above, to topics including functions, probability, number theory,
and group theory.

SLO 7 Evaluate the validity of a given mathematical argument.

SLO 8 Demonstrate correct and precise use of mathematical language.
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Please reflect on your performance on homework 1. Please comment on substantial
gaps or significant improvements on your performance with respect to the modalities.

Appendix B.2. Spring 2020

Table A3. Mechanical modality rubric for Semester 2.

Self-Rating Description of Performance

7 I consistently and correctly use definitions, logical structures, and formal manipulation
of symbols.

6 Between a 5 and 7.

5 I appropriately use definitions, logical structures, and formal manipulation of symbols,
with small or occasional mistakes.

4 Between a 3 and 5.

3 I have some ability to use definitions, logical structures, and formal manipulation of symbols. I
could use more support/feedback to meet associated goals.

2 Between a 1 and 3.

1 I need more exposure to the definitions, logical structures, and in formal manipulation of
symbols. I need more practice developing my skills in this area.

0 This assignment does not make significant use of mechanical factors

Table A4. Structural modality rubric for Semester 2.

Self-Rating Description of Performance

7 I consistently and correctly view the whole statement/proof in terms of the comprising parts
and/or ideas.

6 Between a 5 and 7.

5 I appropriately view the whole statement/proof in terms of the comprising parts and/or ideas,
with only minor or occasional errors.

4 Between a 3 and 5.

3 I have some ability to view the whole statement/proof in terms of the comprising parts
and/or ideas. I could use more support/feedback to meet associated goals.

2 Between a 1 and 3.

1 I need more exposure to the whole statement/proof in terms of the comprising parts and/or
ideas. I need more practice developing my skills in this area.

0 This assignment does not make significant use of structural factors

Table A5. Creative modality rubric for Semester 2.

Self-Rating Description of Performance

7 I consistently and correctly make connections between concepts. Or, I correctly approach the
crux of the statement/proof in a unique or novel way.

6 Between a 5 and 7.

5 I appropriately ascertain the truth or falsity of the statement/proof and can recognize a correct
and complete proof or counterexample, with only minor or occasional errors.

4 Between a 3 and 5.

3
I have some ability to ascertain the truth or falsity of the statement/proof. It is still difficult to

recognize a correct and complete proof or counterexample, and I could use more
support/feedback.
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Table A5. Cont.

Self-Rating Description of Performance

2 Between a 1 and 3.

1 I need more exposure to verifying the truth or falsity of the statement/proof and need more
practice recognizing correct and complete proofs or counterexamples.

0 This assignment does not make significant use of mechanical factors

Table A6. Critical modality rubric for Semester 2.

Self-Rating Description of Performance

7 I consistently and correctly ascertain the truth or falsity of the statement/proof, and can
recognize a correct and complete proof or counterexample.

6 Between a 5 and 7.

5 I appropriately ascertain the truth or falsity of the statement/proof and can recognize a correct
and complete proof or counterexample, with only minor or occasional errors.

4 Between a 3 and 5.

3
I have some ability to ascertain the truth or falsity of the statement/proof. It is still difficult to

recognize a correct and complete proof or counterexample, and I could use more
support/feedback.

2 Between a 1 and 3.

1 I need more exposure to verifying the truth or falsity of the statement/proof and need more
practice recognizing correct and complete proofs or counterexamples.

0 This assignment does not make significant use of mechanical factors

Table A7. Latex for Semester 2.

Self-Rating Description of Performance

7 I consistently and correctly use LaTeX to clearly and aesthetically format typeset.

6 Between a 5 and 7.

5 I typeset in LaTeX appropriately, with only minor or occasional errors.

4 Between a 3 and 5.

3 I have some ability to use LaTeX typesetting and I could use more support/feedback. My
LaTeX contains errors that might detract significantly from the reader’s experience.

2 Between a 1 and 3.

1 I need more exposure to and practice with LaTeX typesetting. It is difficult to read my work, or,
I did not typeset the submission using LaTeX.

0 This assignment does not make significant use of mechanical factors

Please comment on why you chose each of the ratings above.

Appendix B.3. Fall 2020

These rubrics used the same Likert scale as Spring 2020, except for a change to the
prompt for commenting on why the student chose their self-ratings. After the ratings for
each modality, students were prompted as follows:

Using the format “claim → evidence → reasoning”, justify your chosen ranking
for [this modality]. Be sure to include specific examples for evidence to support
your claim, and carefully describe your reasoning for how your evidence supports
your claim.
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Abstract: Mathematical manipulatives and the concrete–representational–abstract (CRA) instruc-
tional approach are common in elementary classrooms, but their use declines significantly by high
school. This paper describes a mixed methods study focused on knowledge retention and perceptions
of students in a high school Algebra I inclusion class after a lesson on square roots using a novel
algebra manipulative. Twenty-five students in a high school Algebra I inclusion class engaged
in an interactive lesson on square roots paired with the manipulative to support their conceptual
understanding. Participants completed a pretest, a post-treatment questionnaire, and a delayed
post-test. The two-sample t test showed a significant difference in students’ pretest–post-test scores.
However, conventional content analysis of the questionnaires showed that most students did not
believe the CRA instructional approach supported their learning. Implications include increased use
of manipulatives to teach abstract algebraic topics to support students’ conceptual understanding
and destigmatizing the use of manipulatives in secondary mathematics classrooms.

Keywords: algebra manipulative; inclusion class; concrete–representational–abstract approach; high
school algebra; secondary mathematics; student perceptions

1. Introduction

“Our goal must be to develop the talents of all to their fullest. Attaining that goal
requires that we expect and assist all students to work to the limits of their capabilities” [1]
(p. 12).

The quotation above is taken from the seminal report A Nation at Risk and still applies
regarding the need for educators to implement instructional practices that assist all students
in reaching their fullest potential [1]. As of 2017–2018, the most recent data available,
approximately 14% of all public school children in the United States are educated under
the Individuals with Disabilities Act [2]. Students with a specific learning disability (i.e.,
learning disability or LD) constituted the largest percentage of students with disabilities,
at 33.6% [2]. The call for equitable treatment of and access for all students has echoed
throughout the years in mathematics education reform [3–5].

When examining high school mathematics classrooms that include students with LDs,
mathematics teachers focus on providing accommodations to students with LDs that range
from additional time to complete assignments to alternative homework assignments and
to the use of calculators [6]. These accommodations can be attributed to interventions
that target procedural mimicry and recall of facts [7]. A growing body of research studies
examining the effectiveness of using hands-on and interactive materials with high school
students with LDs provide consistent support for instructional practices that go beyond
the accommodations and interventions referenced above [8,9]. Within the mathematics
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education community, hands-on and interactive materials often include what are referred
to as “manipulatives”.

Manipulatives are objects (either virtual or concrete) used to represent abstract mathe-
matical ideas concretely [10]. The conceptual grounding for using manipulatives originates
from aspects of constructivist theory that connect students’ concrete perceptions and expe-
riences of the world and abstract thinking [11]. The constructivist perspective provides a
promising approach as students with LDs have difficulty generalizing learned material and
conceptualizing abstract algebraic concepts and tasks [7,12,13]. Manipulatives are concrete
objects that students can arrange, partition, and group in ways that assist them in abstract
thinking associated with specific mathematical concepts [14].

With the increased availability of electronic devices (e.g., computers, tablets, and
interactive whiteboards) in classrooms, the use of virtual manipulatives has also increased.
Virtual manipulatives are digital representations of concrete objects. Studies have compared
the effectiveness of concrete manipulatives to virtual manipulatives and found them to be
equally effective [15–17]. Specifically, Westenskow and Moyer-Packenham [17] examined
the use of both concrete and virtual manipulatives for students with mathematical learning
disabilities and found that both types of manipulatives provided evidence of statistically
significant knowledge gain on a variety of fraction concepts; concrete manipulatives were
favored approximately half of the time, and virtual manipulatives favored the other half.

However, it should be noted that using manipulatives does not elicit the automatic
learning of mathematical concepts. Ball’s [18] article on using mathematical manipula-
tives with elementary school students puts this notion of mathematical understanding
in perspective: “[U]nderstanding does not travel through the fingertips and up the arm.
Although concrete materials can offer students context and tools for making sense of
the content, mathematical ideas really do not reside in cardboard and plastic materials”
(p. 47). Manipulatives need to be implemented in the classroom using appropriate instruc-
tional practices. After a 72 h rigorous professional development program specific to a
constructivist approach that included manipulatives, for example, teachers of mathematics
expressed a belief that students learn abstract topics best when engaged with hands-on
activities but noted classroom management (e.g., distractions due to manipulatives) as a
barrier to implementation of this approach [19].

One instructional approach that uses concrete models, such as manipulatives, is the
concrete–representational–abstract (CRA) approach, which is sometimes referred to as the
graduated instructional sequence or the concrete–pictorial–abstract approach. The three
parts of the CRA instructional approach build upon each other. The CRA sequence begins
with students using the manipulative as they work on a task (i.e., the concrete stage). Once
students master the concrete stage, they can create a pictorial display of a completed task
with the manipulative (i.e., the representational stage). In the last stage (i.e., the abstract
stage), students use numerical or algebraic symbols to facilitate abstract reasoning [20]. For
example, students could use base-ten blocks to display a multidigit multiplication problem
at the concrete stage, a drawing of the base-ten blocks to comprise the representational
stage, and Arabic numerals and symbols to show the same problem during the abstract
stage (see Figure 1).

In the early 1980s, Singapore’s Ministry of Education began advocating for the im-
plementation of the CRA instructional approach [21]. The strategy has become a staple
of teaching mathematics in Singapore and is the grounding behind the country’s success
on several international mathematics achievement assessments [22]. The CRA sequence
has been used while teaching with manipulatives for decades in the United States and has
been shown to be an effective approach in mathematics classrooms that include students
with LDs [9,23]. Unfortunately, using manipulatives and, therefore, the CRA approach has
not been implemented regularly in high school mathematics classrooms [24], likely due
to the misconception of the effectiveness of manipulatives with older students [25] and
that manipulatives use is distracting [19]. Implementing instructional practices that assist
all students includes examining manipulatives that target high school concepts through
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concrete and visual representations using the CRA approach. Therefore, this article will ex-
amine the implementation of the CRA approach with an Algebra I inclusion class, focusing
on students’ knowledge retention and perception of their learning.

(a) (b) (c)

Figure 1. A multidigit multiplication problem, 12 × 13, is displayed using each stage of the CRA
approach: (a) Panel 1 shows base-ten blocks, which is the concrete stage; (b) Panel 2 shows a diagram,
which is the representational stage; and (c) Panel 3 shows symbols that model the problem, which is
the abstract stage.

2. Perspectives on Manipulatives Use and Need for the Study

A common view among researchers is that instructional practices involving manipula-
tives are beneficial for young students but unnecessary for older students [25,26]. Using
manipulatives in the mathematics classroom has typically been associated with a child’s
stage of cognitive development [27]. Cognitive development theories suggest that there are
developmental stages in children’s ability to think and learn as they age [28–30]. For this
paper, we focus on the progression from concrete to formal or abstract operations [30,31]. In
this progression, children go from using concrete materials to assist them in learning math-
ematics to the ability to more fully rationalize abstraction while learning mathematics [32].
As a result of this developmental-based progression, hands-on materials and manipulatives
are predominantly used to help students learn mathematics in elementary grades [25,26].

Results from a survey conducted by Swan and Marshall [24] reported that using such
hands-on materials is almost entirely abandoned by the time students reach high school.
Even in middle schools, for example, only 17% of mathematics teachers use manipulatives
frequently or very frequently [33]. It is important to note that cognitive development theory
suggests that adolescents develop the ability to more fully rationalize abstraction, but not
that concrete materials hinder them in the development of knowledge [34]. The overgener-
alization of this theory has contributed to a view of children’s cognitive development as
inflexible and dichotomous [34].

Research suggests that nearly two-thirds of 17-year-olds (i.e., high school juniors and
seniors) have yet to move past the concrete level of thinking and will struggle to formulate
abstract thought patterns using purely symbolic representations and making generaliza-
tions with little context [32,35]. Furthermore, national groups involved in mathematics
education advocate for all students to be actively engaged in the learning of mathematics
at all grade levels [4,5,36]: “Students at all grade levels can benefit from the use of physical
and virtual manipulative materials to provide visual models of a range of mathematical
ideas” [5] (p. 82).

Limited research exists on implementing the CRA approach in high school mathematics
courses (e.g., algebra, geometry, trigonometry, and calculus). Bouck and Park [37] conducted
a systematic literature review of studies between 1975 and 2017 on using manipulatives
to support students with LDs; 29 articles explored using manipulatives through the CRA
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approach. Of those 29 articles, 5 were identified as targeting secondary mathematics stu-
dents [13,38–41], 4 of which found that all students increased their mathematical knowledge,
skills, or both. Maccini and Hughes [39] found that five of the six student participants
improved on all mathematical tasks. This small set of studies presents a promising approach
to teaching mathematics to high school students with LDs and requires further investigation.

The low number of studies on high school students’ manipulatives use may also be a
function of the small number of manipulatives available that target abstract concepts typically
taught in the high school mathematics curriculum. Linking concrete materials to abstract
representations has presented a significant challenge for educational research [42]. Inherent
in this challenge is the dual-representation hypothesis. The dual-representation hypothesis
occurs when “symbols are simultaneously objects in their own right and representations
of something else” [42] (p. 156). For example, when using algebra tiles, the variable x is
represented by the length of a rectangle. The fact that the rectangle has a fixed length may
make it harder for the student to focus on the representation of the length, as x is typically
presented as an unknown value. This dual representation presents a need to examine and
evaluate different manipulatives that target high school concepts through concrete and visual
representations while minimizing unnecessary complexities and dual representations.

Indeed, one response-to-intervention recommendation for elementary and middle
school students is using concrete manipulatives when visual representations are insufficient
for student understanding of the abstract [43]. In fact, the systematic use of manipulatives
and visual representations in 13 randomized controlled trials showed moderate evidence
for improving students’ conceptual understanding [43]. However, others have argued for
the appropriateness of manipulative use when introducing new mathematics topics to
enhance conceptual understanding and problem solving [44–46]. After an updated review
of mathematics interventions for secondary students with learning disabilities, Maccini
et al. [46] called for future studies to be conducted within general education classrooms to
enhance generalizability and to address middle or high school mathematics topics instead
of remedial topics. The focus of this mixed methods study is to determine the knowledge
acquisition and retention of knowledge by students after a CRA lesson about an abstract
algebra concept. The following research questions guided this study:

1. To what extent will students in a high school Algebra I inclusion class retain the
knowledge of simplifying square roots after being instructed using the CRA instruc-
tional approach?

2. How will students in a high school Algebra I inclusion class describe the effectiveness of
using a mathematical manipulative to learn about a specific mathematical procedure?

3. Materials and Methods

The data highlighted in this article were from a larger study involving 4 teachers and
212 students within 10 college preparation mathematics classes (five Algebra I and five
Geometry) at a suburban high school in the southeastern United States. The larger study
was a pretest-delayed post-test control group experimental design with three randomly
selected algebra classes and three randomly selected geometry classes receiving instruction
using the CRA approach (treatment). The remaining two algebra classes and two geometry
classes received traditional, didactic instruction (control). Each student in the treatment
group received an anonymous open-response questionnaire to complete after the treatment
lesson. Approximately one month after the lesson, the post-test was administered to
students in both the control and treatment groups.

During the analysis of the pretest–post-test data, the second author discovered that
one of the Algebra I classes from the treatment group showed a statistically significant
difference that was much greater than any of the other classes. For example, the analysis of
two Algebra I treatment classes produced p values of 0.017 and 0.0031, but the other class
had a p value less than 0.0001. The researcher contacted the teacher of record to discuss
the outlier findings and was informed that the class was an inclusion class. Because this
information was not known prior to the study, there was no control group specific to the

123



Educ. Sci. 2023, 13, 1061

inclusion class. The statistically significant results in the larger study led to this deeper
investigation into the qualitative responses of the students in the inclusion class. This type
of retrospective analysis has been referred to as “unmotivated looking”—a term coined by
Sacks [47] to describe qualitative analysis when the results are expected to have practical
application [48]. For example, educational researchers have applied unmotivated looking
to (re)analyze transcripts after unexpected but salient findings in their initial analysis [49].

This study applied a complementarity mixed methods design, which “seeks elabo-
ration, enhancement, illustration, clarification of the results from one method with the
results from the other method” [50] (p. 259). Unlike the more commonly used triangulation
designs, in which two methods assess the same aspect of a phenomenon, qualitative and
quantitative methods in a complementarity design assess different but overlapping facets
of a phenomenon [50].

3.1. Context and Participants

The mid-sized high school enrolled 911 students; 53% were deemed proficient in
mathematics as measured by state standardized test scores. The school receives Title I
funding, with 50% of the population considered economically marginalized [51]. The
student racial/ethnic identification is 78% White, 12% African American, 5% Hispanic, and
5% Asian or American Indian.

College preparation and honors were the only two levels of Algebra I classes offered
at this school. The class of interest for this article, the Algebra I inclusion class, comprised
25 students, of which at least 40% were identified as having a high-incidence disability
(e.g., specific learning disability, speech impairment, language impairment, or other health
impairment). The teacher of record was not at liberty to disclose students’ specific diagnoses.

3.2. Lesson

During the lesson, the second author facilitated the entire lesson and took field notes
while students worked in small groups. The teacher of record was present in the classroom
for the entirety of the lesson. The teacher sat in the back of the classroom, away from the
students, and observed the lesson.

The students were taught one lesson on simplifying square roots by the researcher (not
the teacher of record) over one 90 min class block using the CRA instructional approach.
The lesson began with a 10 min discussion about square roots and their connection to side
lengths of squares and ended with introducing the students to the geometric definition of
a square root, the length of the side of a square with a given area. Students were placed
in pairs, pre-assigned by the teacher of record, and provided with instructions regarding
the manipulative and the activity sheet. Students were then instructed to begin working
on the first task. The researcher acted as a facilitator, monitoring and answering technical
questions regarding the manipulative. After each task, the researcher asked groups to
present their solutions and provided time for whole group discussion and connections
before moving on to the next task. The first three tasks focused on developing conceptual
understanding through the use of the manipulative (i.e., concrete stage), the next two
tasks transitioned to drawing representations of the manipulative (i.e., representational
stage), and the remaining three tasks provided opportunities to connect the concrete
and representational stages to the numerical representation (i.e., abstract stage). This
was performed by completing a table, making conjectures, and analyzing the numerical
progression, which is traditionally associated with simplifying square roots. Neither group
of students received additional instruction on the concept.

The Manipulative

As both concrete and virtual manipulatives have been found to be equally effective [17],
the second author in this study used a concrete version of the manipulative; a virtual version
is being developed. The manipulative, which was piloted and refined prior to the larger
study [52], has since been cited in multiple state standards documents [53–55] and has been
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used in mathematics professional development grant projects [56]. To initiate the CRA ap-
proach, the second author created concrete (i.e., tactile) square manipulatives by printing,
laminating, and cutting out squares with whole number areas ranging from 2 cm2 through 10
cm2.

Students can select square tiles of a particular size and arrange them in an array to
create squares of larger areas, such as those shown in Figure 2. This process allows students
to physically model finding perfect square factors rather than watching the teacher model
the process. The second author created an activity sheet that provided students with
different-sized squares to partition using the manipulative. This activity sheet provided
students with opportunities to think and write about the partitions, generalize, and connect
the visual representation to the corresponding numerical process.

(a) (b)

Figure 2. These diagrams are representations that show the equivalence of (a)
√

8 to (b) 2
√

2.

The manipulative minimizes dual representation because the representation of the
manipulatives (squares) is directly related to the task (simplifying square roots). The
manipulatives are represented as squares of specific whole number areas (in cm). It is
critical that all of the squares represent accurate measurements for this model to work. To
complete the task, students do not need to interpret these squares in any other context, size,
or representation. In fact, it is essential that students see the manipulatives as squares with
given areas that correspond to their side lengths. The properties of the square manipulatives
are important to their use and, therefore, do not present dual representation. Minimizing
dual representation with this type of design has been hypothesized to facilitate transfer
and retention [57].

3.3. Instrumentation

Two paper-and-pencil instruments were used for this study: a pretest–post-test and
an anonymous open-response questionnaire. The pretest–post-test consisted of three
procedural items and two relational items [58]. The procedural items asked students
to simplify a given square root. The relational items focused on student explanation,
the connection between perfect square factors, and the simplification process. The first
relational item asked students to explain why a given square root could not be simplified.
The second relational item asked students to identify an error in the simplification process,
explain the error, and correct the error. The total score of the assessment was five points
(one point for each item). All the questions targeted knowledge needed when simplifying
square roots and not knowledge specific to the manipulative or activity.

The questionnaire consisted of two items, each followed by several lines for students
to write their responses. The first question asked the students how the activity was helpful
to them and to provide support and explanation for their response. The second question
asked students whether they thought the activity would help them remember how to
simplify square roots and why.
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3.4. Procedure
3.4.1. Data Collection

Data were collected using the pretest, questionnaire, and delayed post-test. The five-
question pretest was administered by the teacher of record the day before the intervention
lesson, and the post-test was administered approximately one month after the lesson had
been taught. This length of time between the lesson and the post-test was chosen to measure
knowledge retention [59]. All 25 students completed both the pretest and post-test. The
open-response questionnaire was provided to the students after the lesson by the teacher
of record. Students were given approximately 10 min to complete the questionnaire, and
all 25 students responded to each question.

3.4.2. Quantitative Data Analysis

Pretest–post-test scores for each treatment group were analyzed to determine if stu-
dents (N = 25) showed a significant score increase using matched pair t tests. Normality
was confirmed for the group using histograms and Q-Q plots in the computer program
SAS. The t test examined if there was a significant gain from the pretest to the post-test,
making the test one-sided. The alpha value used to determine significance was 0.01.

3.4.3. Qualitative Data Analysis

The open-response questionnaire was analyzed using conventional content analy-
sis [60]. Conventional content analysis is often used when the goal of a study is to describe
a phenomenon where limited information is available related to the phenomenon under
study, and open-ended responses are available to form a basis for theory regarding the
phenomenon rather than moving toward an existing theory [60]. Analysis, therefore, began
by creating word clouds for each set of responses to look for emergent trends in the data
that might assist with coding schemes. Word clouds have been found to be a useful tool
in determining trends and coding schemes for qualitative data [61,62]. Categories were
generated from the data, therefore, in a manner consistent with inductive analysis [60].

Using steps outlined by Hsieh and Shannon [60], the responses for both open-ended
items were read, and any words or phrases that suggested a reaction related to the per-
ception or efficacy of the manipulative were highlighted. The highlighted portions were
then reviewed to identify common ideas among the highlighted portions. The common
ideas were reviewed to identify, categorize, and label themes. Next, the responses were
reviewed to bring related categories together and ensure there are categories for response
data that do not fit the previously established categories. Lastly, the final list of categories
was evaluated and arranged into a hierarchical structure based on how often responses
occurred within the category.

4. Results

4.1. Knowledge Acquisition and Retention

A total of 112 treatment students had both pre- and post-test scores (see Table 1). The
matched pair t tests indicated significant differences in all three Algebra 1 classes and in
the Geometry A and C classes. Inspection of the worksheets from the Geometry B class
determined that three students had multiplication errors on the procedural items, which
caused their post-test scores to be lower than their pretest scores.

To examine the effect size for each class, Cohen’s d was calculated. The effect size
for the Geometry B class provided evidence of a small effect (0.202). The effect sizes for
the Algebra A, Algebra B, Geometry A, and Geometry C classes provided evidence of a
medium effect (ranging from 0.526 to 0.842). The Algebra C (inclusion) class provided
evidence of a very large effect (1.378).

The results support that instruction using the CRA approach with a mathematical
manipulative had a statistically significant increase in knowledge retention. The quantita-
tive analysis provides evidence of significant knowledge gain after using the manipulative.
These results support the hypothesis that knowledge transfer and retention can be facili-
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tated by a manipulative that minimizes dual representation [57]. These results also support
discussions that hands-on experiences assist students with LDs in their understanding of
how numerical and abstract concepts operate at a concrete level [20,63,64].

Table 1. Matched pair t test and Cohen’s d for the pretest and delayed post-test (N = 95).

Class n M diff. SD t p Cohen’s d

Algebra A 22 −1.272 1.9623 −3.04 0.0031 0.701
Algebra B 22 −0.9773 2.0206 −2.27 0.017 0.526
Algebra C
(Inclusion) 25 −1.88 1.8044 −5.21 <0.0001 1.378

Geometry A 10 −0.8 1.2517 −2.02 0.037 0.842
Geometry B 18 −0.5278 1.48 −1.51 0.0743 0.202
Geometry C 15 −0.8333 1.5079 −2.14 0.025 0.744

4.2. Perception of Manipulative Effectiveness

The initial word cloud coding process indicated that students’ responses focused on
the value of the manipulative (e.g., helped, easier, understand, and better) and the attributes
of the manipulative/activity (e.g., visual, way, and squares). Three simple categories were
defined to examine how the students perceived the effectiveness of the lesson in developing
an understanding of simplifying square roots: positive, neutral, and negative responses.
The first category was identified as positive responses and included clear indications that
the student found the manipulative helpful, enjoyable, easy, or simple were coded as
having a positive response. The second category was identified as neutral responses and
included indications that the student found the manipulative somewhat useful, that there
was some confusion, or that the student needed more practice. The third category was
identified as a negative response and included indications that the student did not find the
manipulative useful or that they found the activity/method overly confusing.

Among all six treatment classes (n = 115), the majority of students (80%) made positive
comments, whereas the remaining students were split among neutral (11.3%) and negative
comments (8.7%). See Table 2 for complete data.

Table 2. Student perceptions of manipulative effectiveness (N = 115).

Class Positive Neutral Negative

n % n % n %

Algebra A 14 87.5 2 12.5 0 0
Algebra B 20 87 2 8.7 1 4.3
Algebra C
(Inclusion) 9 36 8 32 8 32

Geometry A 13 100 0 0 0 0
Geometry B 17 94.4 1 5.6 0 0
Geometry C 19 95 0 0 1 5

Within the inclusion class, however, nine students (36%) had responses coded as
positive, eight students (32%) had responses coded as neutral, and eight students (32%)
had responses coded as negative. The responses coded as positive included phrases such
as “visual understanding” and “hands-on”, but there were fewer positive responses than
the other responses. The majority (64%) of the students in the inclusion class were coded
as having either neutral or negative perceptions of the lesson. Further analysis of the
neutral and negative responses was conducted to find sub-themes. The predominant sub-
themes from these responses were a lack of confidence and an aversion to being challenged.
The responses coded as a lack of confidence showed a negative outlook on learning and
mathematics. One student responded with “I don’t remember nothing”, while another
responded with “Honestly it made me confused. I didn’t really understand it, so show it
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to the honors class, they’ll understand”. The responses coded as having an aversion to
being challenged all referenced being confused or that the process was too long and had
too many steps. One student responded, “No because it’s too many steps”, while another
responded, “Not really. It takes time for me to know the steps and the process. Factors and
square roots make it more confusing for me with all the steps”.

The qualitative analysis provides some insight into students’ perceptions of how
this manipulative was used to deliver effective instruction. The Algebra I inclusion class
showed mixed perceptions of the effectiveness of using a mathematical manipulative.
The first level of coding found that the responses were almost evenly distributed among
the three themes. The sub-themes provided insight into why the students had either a
neutral or negative response to using the manipulatives. The manipulative challenged
the students to see connections between the geometric representation and a numerical
process for simplifying square roots (i.e., identifying perfect square factors). The researchers
believe that the students were viewing the lesson in a direct instruction context, typical
in mathematics instruction, where everything that is performed in the lesson is modeled
by the teacher and then reproduced by the student, step by step. It seems that it was
unclear to these students that using the manipulative was to gain a better understanding of
simplifying square roots rather than to replicate the entire activity on their own.

When it comes to students’ development of knowledge, the majority of the students
stated that they were either unsure or did not believe that they would gain and retain
knowledge from the lesson. On the contrary, the quantitative analysis provided evidence
of significant gains. Perhaps the implementation of CRA, an unfamiliar instructional
approach, impacted their perception of knowledge gain and retention. The lesson was
designed so that students had to make sense of the process of simplifying square roots
visually and progress to making connections to the numerical method while the teacher
facilitated the activity. Many students perceived this process as confusing, with several
stating that they needed repeated practice before they would retain the knowledge (e.g., “If
we continue to practice, then yes! If not, no!”).

A need for repeated practice is a hallmark of direct instruction. Based on questionnaire
responses, students in the inclusion class seemed to believe that mathematics learning
occurs through teacher-led instruction followed by repeated practice. Often, students per-
ceive confusion during a direct instruction lesson to be associated with not learning [65,66].
Perhaps the extensive prior use of direct instruction with students with LDs made them less
comfortable with the experience of using manipulatives to develop relational understand-
ing. Providing these students with more information about the CRA instructional approach
and how it compares to direct instruction at the beginning of the lesson may have avoided
some of the confusion and misunderstood expectations of what students were learning.
Implementing the CRA instructional approach regularly may also help students with LDs
see the value of this approach. Further research is needed to test these hypotheses.

5. Discussion

Providing high school mathematics students with LDs with an effective instructional
approach to develop connections between concrete representations and abstract procedures
is within mathematics teachers’ reach. Unlike studies presented by Maccini et al. [46], this
study provides support that the CRA instructional approach, along with a manipulative
that minimizes dual representation, can be effective in both knowledge acquisition and
retention in a high school setting. It is important to highlight, however, that the majority of
students expressed that they did not believe that this approach was helpful. The students
in the larger study, in contrast, had predominately positive statements about the efficacy of
the CRA instructional approach.

This study adds to the limited research on using manipulatives in secondary school
mathematics classrooms and suggests that the CRA instructional approach needs to be
explored further with other abstract topics. As several topics in the typical high school
curriculum relate to the properties of squares, this manipulative has the potential to
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further assist students with abstract thinking across mathematics courses. Two such
topics are proportional reasoning related to the area and side length of squares and the
converse of the Pythagorean theorem. Further expansion of manipulatives and the CRA
approach in secondary school mathematics classrooms also aligns with successful practices
demonstrated by Singapore.

This approach allows students to focus on the properties of the manipulative and
support their progress to abstract thinking. As many abstract mathematical concepts are
grounded in geometric representations, other similar manipulatives should be developed and
explored. As further studies emerge that support using manipulatives for abstract thinking,
the CRA instructional approach in high school classrooms should increase. In turn, all high
school students will have multiple opportunities to develop their relational understanding
by making clear connections between visual representations and abstract procedures.

There are several limitations to this study that should be highlighted and discussed.
The first limitation was the lack of a control group for the inclusion class. Data from a
control group could have compared the CRA approach to traditional instruction. Since the
identification of the inclusion class happened after data analysis, data from a control group
could not be collected. Including a control group in a future study could provide more
clarity regarding student retention when using the CRA approach. Additionally, because
the open-ended questionnaire was anonymous, we were unable to link specific students’
perceptions of the manipulative lesson with their post-test scores to determine any patterns
of student improvement and their perceptions. Future research should create a participant
number for each student so these data can be linked.

This study was also limited in what could be determined related to the student’s per-
ception of mathematics and the learning of mathematics. The open-response questionnaire
provided the researchers with insight into the students’ perceptions of the instructional
approach and the manipulative as they related to learning a mathematics topic, but not
the students’ perceptions of themselves as a learner of mathematics. The limited data did,
however, provide glimpses into students’ perceptions of the purpose of the activity. Future
research may indicate the role of the instructor in metacognitive modeling (e.g., “think
alouds” [67]) to support students’ conceptual understanding of the mathematics content, in
general, and the CRA activity, specifically. Creating a classroom culture in which students
not only identify confusions but discuss them will also increase metacognition, which
can sometimes be neglected when the focus is on a hands-on or interactive lesson [67].
Normalizing these confusions could influence students’ willingness to try new activities or
persevere when a lesson seems particularly challenging or unhelpful, as was the case with
some participants.

Finally, follow-up questionnaires or semistructured interviews could provide further
insight into high school inclusion students’ self-efficacy as a learner of mathematics after
partaking in lessons using the CRA approach, particularly as the students in the present
study had substantial misperceptions of their learning with this lesson. Teachers and
researchers could conduct clinical interviews, which would elicit information related to stu-
dents’ problem-solving processes that are difficult to obtain through other methods [68,69].
Collecting more qualitative data would allow for a more robust analysis and provide aware-
ness of how different instructional approaches impact students’ self-efficacy as learners
of mathematics. This type of information could be helpful to teachers, researchers, and
policymakers as they consider implementing different instructional approaches throughout
the mathematics curriculum.
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Abstract: Ensuring mathematics education for all learners, including students with blind-
ness learning in mainstream classrooms, is crucial. This exploratory research aims to clarify
the characteristics of geometric learning among students with blindness and to identify the
factors contributing to the challenges faced by this population. The Van Hiele theory of ge-
ometric thought served as a reference framework. Qualitative data were gathered through
group interviews with specialists in the field of education for students with blindness
and analyzed using inductive analysis. Participants affirmed that students with blindness
progress through Van Hiele levels of geometric thought in a manner similar to sighted
students, suggesting that much of the learning can take place alongside sighted peers
in mainstream classrooms. However, they also highlighted the unique challenges these
students face in reaching level 0, a level where students recognize shapes without a formal
understanding of their properties or attributes. Among the reasons for these challenges
were that for these particular students, subskills, such as bimanual exploration, hand coor-
dination, and cognitive integration, are required to reach level 0. The study also identified
the necessity for specialists in visual impairment education to guide students using appro-
priate tasks and learning materials that reflect the characteristics of haptic perception. Since
level 0 serves as a gateway to both basic and advanced geometry, the findings underscore
the importance of providing differentiated support that targets these subskills early in
students’ schooling. To ensure meaningful geometry instruction, mainstream teachers are
encouraged to collaborate with specialists in visual impairment education, who can guide
the selection of appropriate learning tools and support the development of the subskills.

Keywords: geometry; students with blindness; subskills; Van Hiele theory

1. Introduction

Geometry, a branch of mathematics addressing spatial sense and geometric reasoning
(Howse & Howse, 2014), is a fundamental component of education. Compared to other
mathematical topics like numbers, algebra, measurement, and data analysis, geometry
occupies a considerable portion of the curriculum at every educational level (Trimurtini
et al., 2022).

Blindness is a condition within the spectrum of visual impairment, characterized by a
decrease in the ability to see to a degree that challenges daily living or access to learning
and cannot be corrected with glasses or contact lenses (World Health Organization, 2019).
Students with blindness predominantly use braille and tactile materials for learning. Their
needs are distinct from those who are sighted or those who have lost their vision later in life,
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as these groups can rely on visual imagery, whereas congenitally blind individuals depend
on haptic imagery—imagery perceived through touch. Students with blindness, whose
impairment is solely in vision, are expected to learn the same mathematics curriculum
as their sighted peers and achieve equivalent outcomes. Therefore, providing adequate
geometry education to students with blindness is equally important as it is for students
without blindness.

In recent years, there has been a growing trend to include students with disabilities,
including blindness and other diverse needs, in mainstream rather than specialized schools
(e.g., schools for the blind). This shift toward inclusive education is influenced by inter-
national and national frameworks, such as the Convention on the Rights of Persons with
Disabilities (United Nations, 2006) as a former example. These frameworks assert that
all students, including those with blindness, have the right to be included and receive
adequate education alongside their sighted peers in their local communities or mainstream
schools. This right to inclusive education has opened new avenues for individuals with
disabilities and prompted mainstream schools to become more flexible and innovative in
addressing the needs of diverse learners, many of whom had previously been overlooked
(Dalgaard et al., 2022; Szumski et al., 2017). However, while inclusive education is promis-
ing in theory, in reality, students with specific disabilities, such as blindness, face many
barriers in mainstream schools. A key example of this is their exclusion from higher-level
“visual subjects”—subjects that rely heavily on visual input or practical applications, such
as mathematics, science, and physical education (Miyauchi, 2020). Despite their abilities,
students with blindness are often denied access to these subjects, highlighting a significant
shortfall in inclusive education.

The Van Hiele theory of geometric thought, which this research used as a reference,
is a well-known framework explaining how students learn geometry (Crowley, 1987).
It consists of five levels of understanding, beginning with level 0 (visualization), where
students recognize shapes by their visual appearance without a formal understanding
of their properties or attributes. At level 1 (analysis), students notice different shapes by
recognizing attributes but do not yet understand their relevance. This is followed by level 2
(abstraction), level 3 (deduction), and level 4 (rigor), where students progressively identify
and analyze geometric forms, moving toward higher levels of abstraction (Crowley, 1987;
Naufal et al., 2021). Past studies confirmed that students transition gradually from one
level to the next, often moving back and forth between stages without sudden jumps or
skipping levels (Duroisin & Demeuse, 2015).

To the authors’ knowledge, Argyropoulos (2002) is the only study that explores Van
Hiele’s theory in relation to students with blindness. This study suggests that Van Hiele’s
theory is a suitable framework for examining the geometrical thinking process of these
students while also highlighting the unique challenges they face, particularly at the earlier
levels. However, given the scarcity of research on this topic, further investigation is needed.

Exploring how students with blindness learn geometry and the challenges they face us-
ing a framework designed for sighted learners is crucial for advancing inclusive education
in the following ways. First, this process, we believe, will help reveal both the similarities
and differences in how children with and without visual impairments learn. Recognizing
these similarities and differences is essential, as societal perceptions of human differences
can be both positive and negative—what some researchers term the dilemmas of difference
(Norwich, 2008; Paulsrud, 2024). Acknowledging and addressing a child’s unique learning
needs may lead to physical separation (or segregation), potentially resulting in feelings of
exclusion and a lack of acceptance among peers. However, failing to recognize and respond
to these differences can limit students’ access to resources and specialist services, hindering
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their equitable participation in education and society. Hence, finding the right balance
between differences and similarities in how children learn is crucial.

Second, this process helps us understand what effective differentiated teaching within
a mainstream classroom may look like—one that strikes the balance between differences
and similarities in how children learn. Differentiated teaching is a method employed by
teachers that involves assessing and monitoring students’ learning readiness and processes
(Vaughn et al., 2022/2023). Its purpose is to extend the knowledge and skills of each
individual child; hence, this approach includes small-group or individualized instruction
and the use of tailored instructional tools, rather than rigid whole-class instruction with
the same tools for all students. Incorporating differentiated teaching into mainstream
classroom instruction has been identified as a key strategy for enhancing inclusion (Soan &
Monsen, 2023).

This research uses the Van Hiele theory of geometric thought to explore how students
with blindness learn geometry. This approach provides valuable insights into achieving
a balance between recognizing commonalities in the learning processes of students with
blindness and sighted students and identifying the specific content that should be reflected
in differentiated teaching. Such an understanding can guide mainstream teachers in effec-
tively collaborating with specialists, supporting and enhancing the learning experiences of
students with blindness in classrooms.

This study aims to clarify the characteristics of geometry learning among students
with blindness in comparison to their sighted peers, by interviewing specialists in the
education of students with blindness using the Van Hiele theory of geometric thought
as a reference. By highlighting both similarities and differences, this research seeks to
identify areas where differentiated teaching is needed to foster effective inclusive education.
Furthermore, it aims to provide practical insights for mainstream teachers to enhance the
learning experiences of students with blindness.

The specific research questions addressed are as follows:

1. Does the Van Hiele theory align with how teachers and specialists observe their
students with blindness learn geometry?

2. What specific challenges do students with blindness face in learning geometry?
3. What are the origins of these unique challenges?

2. Materials and Methods

2.1. Study Design

Given the limited research on geometry education for students with blindness, this
study adopted an exploratory design. The research focused on qualitative group interviews
with a purposive sample of Japanese individuals who possessed extensive knowledge
of teaching both students with and without blindness. Qualitative research methods
were chosen as they are appropriate to expand knowledge on unexplored areas. Group
interviews were chosen owing to their ability to foster dynamic discussions, allowing
participants to build on each other’s responses and generate rich data through group
interaction (Krueger & Casey, 2014).

2.2. Study Setting
2.2.1. Study Context

With the Japanese government promoting an “inclusive education system”, whereby
students with disabilities are enrolled in mainstream classrooms to the extent possible
(Ministry of Education, Culture, Sports, Science & Technology, 2013), more children with
visual impairment are learning in mainstream settings. However, within visual impairment,
students who uses braille (hence, students with blindness) tend to continue to enroll in
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schools for the blind, as these schools offer more specialized support. Japan is a unitary
state where the central government, specifically the Ministry of Education, Culture, Sports,
Science, and Technology (MEXT), governs the national curriculum known as the Course of
Study. All textbooks used in schools are authorized by MEXT based on the Course of Study.
Students with blindness are required to follow the same Course of Study as their sighted
peers. Hence, braille textbooks for these students are created by modifying textbooks used
in mainstream schools.

2.2.2. Recruitment and Sampling

Purposive sampling was employed to recruit participants with extensive teaching
knowledge who could provide in-depth insights into the similarities and differences in
geometry learning between sighted students and students with blindness. The selection
was based on two main criteria. First, participants had to be either teachers or lecturers.
Teachers were required to hold teaching certificates in mathematics or other relevant
subjects (e.g., geography) for both mainstream schools and schools for the blind, with at
least 20 years of teaching experience. Lecturers, on the other hand, needed to have a PhD
in the field and demonstrate expertise through teaching and research on the education of
students with visual impairments. Second, to ensure participants had extensive knowledge
of the similarities and differences in how students with blindness learn compared to sighted
students, all participants—whether teachers or lecturers—had to have served as MEXT-
appointed editorial board members in adapting school textbooks into Braille versions for
students with blindness. In Japan, braille modification is conducted strictly to preserve the
content of mainstream school textbooks, altering only the aspects that must be adapted due
to vision impairment. As a result, editorial board members are required to have expertise,
not only in how blind students learn, but also in how sighted students learn, ensuring that
the adapted materials remain as equivalent as possible. This selection process ensured
that participants aligned with the purpose of this research. Lastly, participants who were
blind themselves were intentionally included if they met the above criteria. This approach
ensured that the study incorporated the lived experiences of blind individuals, who learned
through tactile perception.

A total of five teachers and experts in the field participated in this study. Of these, four
were teachers (three math teachers and one geography teacher) and had an average of 27.75
(SD: 6.0) years of experience teaching students with blindness. Among the four teachers, one
was female and three were male. The three male teachers were congenitally blind. All four
teachers held dual teaching certificates: one for lower and upper secondary school (subject
areas of mathematics or social studies, geography, and history) and another teaching
certificate for special needs education (with a focus on visual impairment). All were
actively involved in editing braille textbooks authorized by the government in addition
to training other educators and authoring books on the education of students with visual
impairment. One was a part-time university lecturer who was congenitally blind and
possessed expertise in tactile arts and graphics for students with blindness. Participant
details are described in Table 1.
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Table 1. Demographics of the individuals interviewed.

Participant Sex Age Occupation
Obtained

Degree/Licensure

Number of
Years

Teaching

Visual
Impairment

Status

A Male 60s

Lower and upper
secondary math

teacher at school for
the blind, retired

Teaching certificate for
lower and upper
secondary school

mathematics/teaching
certificate for special

needs education
(visual impairment)

36 Blind

B Male 50s

Lower and upper
secondary math

teacher at school for
the blind

Teaching certificate for
lower and upper
secondary school

mathematics/teaching
certificate for special

needs education
(visual impairment)

28 Blind

C Female 50s

Lower and upper
secondary math

teacher at school for
the blind

Teaching certificate for
lower and upper
secondary school

mathematics/teaching
certificate for special

needs education
(visual impairment)

25 Sighted

D Male 50s

Lower and upper
secondary social

studies, geography,
and history teacher at

school for the blind

Teaching certificate for
lower and upper

secondary school social
studies, geography, and

history/teaching
certificate for special

needs education
(visual impairment)

22 Blind

E Female 60s Parttime university
lecturer

Doctor of Philosophy
in art NA Blind

2.2.3. Data Collection and Ethical Considerations

A total of four in-person group semi-structured group interviews, with all participants
present were conducted. The number of group interviews was determined based on data
saturation. Each interview lasted approximately two hours.

A semi-structured interview protocol was developed specifically for this study based
on the research question. The protocol consisted of five open ended questions: “What are
your thoughts on the Van Hiele theory? In what ways does Van Hiele theory align with
or differ from students with blindness’ geometric learning?”; “What are your thoughts on
the levels? Does learning typically proceed through these levels?”; “What challenges do
students with blindness face in learning geometry?”; “How do you address these challenges
as a teacher?”; and “What factors do you think contribute to these challenges?” During the
initial meeting, the Van Hiele theory was introduced and explained to participants, along
with definitions of each level. Participants were encouraged to express their thoughts freely
so that the conversation flowed naturally. The lead author facilitated the interviews and
used the open-ended questions as a guide to ensure discussions remained relevant and did
not stray from the research focus.
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Prior to the interviews, participants were provided with a consent form, which the
first author read aloud, and written consent was obtained. All interviews were audio-
recorded, transcribed verbatim, and anonymized during transcription. This research was
approved by the Research Ethics Committee of the first author’s affiliated university (No.
Tsuku2023-232A).

2.2.4. Analysis

The data were analyzed inductively with the help of NVivo software, following the
guidance of Braun and Clarke (2006). This approach involved reading and re-reading the
data to identify initial ideas, systematically coding the entire dataset, and collating these
initial codes into potential themes. The first author, who has PhD training in qualitative
methods, performed this process. The themes were then reviewed with the co-author to
ensure their applicability across the entire dataset. Subsequently, the themes were refined,
named, and representative extracts were identified as exemplars for each theme. This
iterative process continued until thematic saturation was achieved.

3. Results

3.1. Results from the Analysis

The following four themes emerged from the analysis: “similar geometric thought
processes as sighted individuals”; “challenges exclusive to students with blindness at the
visualization level”; “visualization level requiring multiple tactics”; and “the need for
specialists to guide students with blindness with appropriate tasks and learning materials”.
Each theme is summarized in Table 2, along with illustrative data. The following sections
provide a detailed explanation of each theme.

Table 2. Themes and illustrative data.

Theme Illustrative Data

Similar geometric thoughts processes as
sighted individuals

“Yes, this (levels described by Van Hiele) makes sense. I agree with the
levels described by Van Hiele” (Participant B). “The process (described by
Van Hiele makes sense” (Participants A, C, D, E).

Challenges exclusive to students with
blindness at the visualization level

“Once the blind students can pass this level, the other levels will be just
like for the sighted” (Participant B).
“Level 0 is where you will see the challenges among students because they
have no vision to rely on” (Participants A, C).

Visualization level requiring multiple
tactics

“I have seen many children who can ‘touch’ but cannot understand what
they are touching” (Participant C).
“Good hand movement, along with the skills to obtain and integrate tactile
details in their head to understand the overall shape or form of an object,
is necessary. . . because you have no vision to rely on” (Participants A, B).
“Whether or not the blind child is interested in touching matters a lot”
(Participants B, D, E).

The need for specialists to guide
students with blindness with
appropriate tasks and learning materials

“Our hands naturally curve, making it easier to perceive 3D shapes.
However, with 2D shapes, one must intentionally control the fingers,
adjusting both pressure and direction to accurately perceive the shape”
(Participant A).
“When touching a contour line, the child needs to be able to distinguish
curved line from a straight line, which is hard for blind children who
cannot rely on vision. . .we usually have blind students practice using
shapes with curbed line, like a circle. . . and straight line, using like a
polygon, first so they understand the difference” (Participants A, B, C).
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3.1.1. Similar Geometric Thought Process as Sighted Individuals

All participants agreed that students with blindness follow the geometric thought
process outlined by Van Hiele. Furthermore, they confirmed that although students may
go back and forth between levels, there is a distinct thinking/learning sequence. Therefore,
level 0 serves as the foundational level necessary for students to progress to levels 1, 2, and
beyond, echoing past studies focused on sighted students.

3.1.2. Challenges Exclusive to Students with Blindness at the Visualization Level

While all participants agreed that students with blindness follow the thinking process
suggested by Van Hiele, they particularly emphasized the importance of the level 0, the
visualization level. Unlike sighted students, who typically progress through this level
with ease, some students with blindness encounter significant obstacles, preventing them
from advancing beyond visualization and causing delays in understanding more advanced
geometry. Participants remarked, “Once the blind students can pass this (the visualization)
level, the other levels will be just like for the sighted. Of course, some students will have
difficulty transitioning from the analysis level to the abstraction level, but that is similar to
sighted students, and the reason would not solely be due to vision” (Participant B).

3.1.3. Visualization Level Requiring Multiple Tactics

All participants highlighted the significant differences and complexities that students
with blindness face at level 0, particularly concerning visualizing shapes through touch.
One teacher emphasized, “I have seen students who can ‘touch’ but cannot understand
what they are touching. If you are sighted, you see and you understand what you are
seeing” (Participant C). Another teacher, who is blind, added, “The act of touching does
not equate to the act of seeing” (Participant A).

According to participants, visualizing shapes through touch requires a range of com-
plex skills and strategies, even if the shape is a simple, basic geometric form. These
challenges highlight the intricate haptic system that students with blindness must navi-
gate because of their impairment. For instance, participants noted that for children with
blindness to visualize geometric forms, the ability to effectively use both hands to capture
the object as a whole—and not just a portion—is foundational. While sighted students
typically perceive an entire object at once unless parts are covered, students with blindness
may touch only a portion of an object and may misidentify it. One teacher shared, “A blind
child who lacks basic hand exploration skills may touch only a portion of a rectangle, like
the upper right corner, and mistakenly identify it as a triangle” (Participant C).

Effective hand strategies are also crucial. Participants emphasized the need for tech-
niques where one finger remains on a fixed point while the other hand explores the overall
shape, aiding the child in building a complete mental image. Equally important is the
ability for students to distinguish fundamental features such as straight lines, curved lines,
and angles after mentally assembling the image. Two participants explained: “We first
practice distinguishing between curved and straight lines before introducing shapes like
circles and polygons. This helps students understand the differences within these shapes
when touching” (Participants B and C).

Furthermore, strategies for retaining and integrating the images obtained through
touch were highlighted. Participants noted, “Verbalizing is essential for categorizing the
information touched, allowing students to piece together the complex image in their minds”
(Participants A, B, and C).

Lastly, intrinsic motivation also played a key role, highlighting the active nature of tac-
tile exploration compared to the passive nature of visual perception. Participants expressed,
“Whether or not the blind child is interested in touching matters a lot” (Participants B, D,
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and E). Another participant elaborated, “When using vision, external information comes
automatically and unintentionally. When you are blind, information only comes in when
you touch actively and intentionally” (Participant A).

3.1.4. The Need for Specialists to Guide Students with Blindness with Appropriate Tasks
and Learning Materials

The size of the object and whether it is two-dimensional or three-dimensional also
appeared to significantly affect the ability of children with blindness to reach level 0. Larger
objects that exceed the size of a child’s palm presented additional challenges, requiring
more advanced dual-hand manipulation skills.

All participants agreed that touching two-dimensional shapes requires more technique
than touching three-dimensional shapes. One teacher explained: “Our hands naturally
curve, making it easier to perceive 3D shapes. However, with 2D shapes, one must inten-
tionally control the fingers, adjusting both pressure and direction to accurately perceive the
shape” (Participant A).

All participants, who also taught students with blindness daily, mentioned how they
supported them in developing these skills and tactics. Specifically, they provided adequate
two-dimensional and three-dimensional models and offered verbal cues on how to tactically
touch and retain tactilely perceived information in their minds.

4. Discussion

This exploratory research aimed to clarify the characteristics of geometric learning
among students with blindness and to identify the factors contributing to the challenges
faced by this population. Through interviews with specialists in the education of students
with blindness and using the Van Hiele theory of geometric thought as a framework, it
sought to provide practical insights for mainstream schoolteachers on how they could
effectively support and enhance the learning experiences of students with blindness.

Participants confirmed their agreement with the structure and processes outlined in
the Van Hiele theory, aligning with previous research by Argyropoulos (2002). The findings
suggest that the geometry learning process for students with blindness follows a closely
aligned pattern to that of their sighted peers, indicating that much of the learning can occur
alongside sighted peers in mainstream classrooms.

However, participants also noted specific challenges for students with blindness
at level 0, the visualization level. While the Van Hiele theory consists of five levels,
participants’ statements primarily focused on level 0, suggesting that this stage requires
particular attention for students with blindness. This finding is in line with Argyropoulos
(2002), whose experimental study with students with blindness identified that while many
struggled to reach level 1, some faced challenges even in achieving level 0. Although the
methodologies differ, both studies highlight the significant difficulties that students with
blindness encounter at the visualization level. In contrast, research on sighted students
has shown that while many struggles to progress beyond level 3 or are in a transitional
stage between Levels 0 and 1, they generally do not face challenges in reaching level 0
itself (Ma et al., 2015; Škrbec & Čadež, 2015; Trimurtini et al., 2022). Thus, this study
further underscores that students with blindness encounter unique difficulties that sighted
students do not.

Furthermore, participants identified bimanual exploration, hand coordination, and
cognitive integration as important skills for students with blindness to reach level 0. As
these skills are specific to those who rely on tactile perception, this highlights the need
for differentiated teaching that focuses on developing these skills. This underscores the
importance of implementing differentiated teaching which addresses these particular skills,
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early, as reaching the level 0 is a gateway for learning basic and more advanced geometry
alongside the sighted peers in the mainstream school settings.

Finally, the choice between 2D and 3D representations was identified as an important
factor in supporting students with blindness in reaching the visualization level. Tools that
are too large or overly simplified 2D representations may place excessive cognitive demands
on students, potentially hindering their progress. This underscores the importance of not
only implementing differentiated teaching early in students’ schooling but also carefully
selecting learning materials and adopting teaching strategies that are tailored to the unique
characteristics of tactile perception.

Although the skills highlighted above have not previously been discussed in direct
connection with geometry learning using the Van Hiele theory, past research emphasized
their significance for students with blindness. For instance, Kershman (1977) identified
subskills necessary for tactile discrimination, including active touch, fine hand move-
ments, and whole-hand explorations. Additionally, in research on haptic perception,
Lederman and Klatzky (2009) defined how haptic perception relies on multiple sensory
inputs—such as cutaneous and kinesthetic input—along with working memory to retain
images formed through tactile exploration. For example, when geometric figures are small
enough to fit under a fingertip, they can be identified primarily through kinesthetic input.
However, larger objects requiring the use of both hands (palms and fingers) demand
additional reliance on cutaneous input and working memory, making the visualization
process more complex.

From the above findings, it is evident that students who rely on haptic perception
encounter unique challenges in reaching the visualization level of the Van Hiele theory,
challenges that sighted students do not face. Several factors specific to students with
blindness significantly impact their ability to “visualize” geometric shapes due to the
nature of haptic perception, which mainstream teachers should be aware of. The role of
specialists, such as teachers of students with visual impairments who understands the
principles of haptic perception and can select appropriate learning tools is critical. Teachers
with this specialized knowledge should collaborate closely with mainstream teachers and
teaching assistants who may directly be involved in supporting children with blindness in
the classroom to ensure students of this population can fully access and receive meaningful
geometry instruction in mainstream classrooms.

Lastly, this research is not without limitations. As an exploratory study, it relied
primarily on insights from a specific group of individuals in Japan. Future research should
include a more diverse range of participants from various regions and cultures to enhance
the broader applicability of these findings.

5. Conclusions

This study highlights that students with blindness encounter unique challenges that
sighted students do not. To address these challenges, the study proposes effectively using
differentiated teaching focusing on specific skills needed to reach level 0, such as bimanual
exploration, hand coordination, and cognitive integration. Furthermore, special attention
should be given to both the content of instruction and the learning tools used, ensuring they
align with the characteristics of haptic perception. Since level 0 serves as a gateway to both
basic and advanced geometry, it is crucial that differentiated teaching is provided early in
students’ school lives. This support should involve collaboration with specialists in the
education of students with visual impairments, who can guide the selection of appropriate
tools to facilitate skill development.
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Abstract: This paper describes how plan-do-study-act cycles engaged a classroom mentor teacher
and student teacher in a professional collaboration that resulted in two inquiry activities for high-
school geometry classes. The PDSA cycles were carried out in four high school geometry classes,
each with 30 to 35 students, in a mid-Atlantic urban school district in the U.S. The four geometry
classes were co-taught by the second and third authors of this paper. The data consisted of classroom
documents (e.g., activity prompts, tasks), classroom observations, student feedback about activities,
and monthly PDSA reports. The PDSA cycles had a direct effect on the professional learning of the
teachers. The resultant classroom activities used a data collection approach to engaging students
in inquiry to learn about trigonometry functions and density. Student learning behaviors were
noticeably improved during these activities compared with traditional mathematics instruction. We
concluded that the data collection sequence provided an accessible entry point for students to begin
scientific inquiry in mathematics. The process opened the conceptual space for students to develop
curiosity about mathematical phenomena and to explore their own research questions. The use of
culturally relevant topics was especially compelling to students, and the open-ended nature of these
exploratory activities allowed students to see mathematics through their own cultural lenses.

Keywords: mathematics education; inquiry; student-generated data; improvement science; teacher
classroom research

1. Introduction

Teacher preparation programs are considered one of the most effective leverage points
for long-term improvement in teacher performance and retention of productive teach-
ers [1–3]. Yet, the reform-based practices promoted by universities seldom find their way
into the secondary mathematics classroom, limiting the ability of these programs to trans-
form the field. Several contributing factors have been identified to explain this discrepancy,
such as lack of reform-teaching models, greater intellectual demands on teachers, and resis-
tance to change [4]. Gainsburg [4] also noted that the demands of reform-based teaching
are especially burdensome for new teachers.

Although research is scarce on how to effectively prepare new mathematics teach-
ers [5,6], many aspects of effective professional development (PD) have been well studied
(e.g., Desimone [7]; Loucks-Horsely et al. [8]). Structuring teacher preparation as initial
professional development, consistent with Bangel et al. [9] and Pollock et al. [10], allows the
preparation program to benefit from existing knowledge about effective PD. By “effective,”
we mean that the experience supports the development of teachers as professionals and re-
sults in significant improvements in classroom practice [11,12]. The inclusion of teachers in
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PD design and the application of professional learning promotes their growth as profession-
als [13] and situates PD experiences within particular school and classroom contexts [14].
Other characteristics of effective PD are an emphasis on student learning and classroom
practice, a focus on specific academic content, and sustained opportunities for teachers to
collaborate and provide peer feedback [7,8,15]. The Professional Development: Research,
Implementation, and Evaluation framework (“PrimeD;” [16,17]) was designed to synthe-
size research and theory about effective PD. In the present study, PrimeD was applied to a
teacher preparation program to support the professional learning of new and experienced
teachers simultaneously. Through iterative cycles of whole-group activities and classroom
implementation, the connection between professional learning and classroom practice is
made explicit. Plan-do-study-act (PDSA) cycles [18] provide an organizational structure to
classroom implementation.

In this article, we present a case study of a teacher candidate and classroom mentor
teacher (hereafter “mentor”) who, through plan-do-study-act (PDSA) cycles [18], developed
a series of reform-based lesson activities throughout the full-time student teaching semester.
The overarching questions driving the project were:

1. How do PDSA cycles support pedagogical innovation in the classroom?
2. How can reform-based teaching be transferred from theoretical ideas to classroom

practice during full-time student teaching?

The candidate and mentor were participants in a teacher preparation program guided
by PrimeD and developed a series of reform-based lesson activities during the full-time stu-
dent teaching semester. The experiences of the candidate and mentor provide insights into
the dynamics and ramifications of framing teacher preparation as professional development
through PrimeD.

2. Background

PrimeD structures professional learning through four phases: design, implementation,
evaluation, and research. In Design Phase I, participants map out a challenge space that
includes a mission, vision, goals, targets, and strategies. In Implementation Phase II,
participants form a networked improvement community (NIC) and meet regularly as a
group. Change ideas developed during NIC meetings are taken to the classroom using plan-
do-study-act (PDSA) cycles. Participants return to the whole-group meetings with results
from their PDSA cycles. Phase III Evaluation consists of both formative and summative
feedback. In Research Phase IV, research about the PD program is conducted, and findings
from PDSA cycles are generalized across contexts.

Using PrimeD to structure teacher preparation is a unique and comprehensive ap-
proach for examining how to translate learning from a preparation program into actual
teaching practices in the field. A lack of coherence between theory and practice may explain
why some teachers do not use the strategies learned in their preparation program in their
classrooms [4,19]. The implementation of PrimeD [16,17] to structure teacher preparation
directly addresses such incoherence by explicitly connecting a well-defined, commonly-
agreed-upon challenge space to pedagogical strategies that are used in coursework and
field experience settings and refined through an iterative improvement process.

2.1. The PrimeD Framework: A PD Framework for Teacher Preparation

The PrimeD framework was initially developed through a systematic review of the
literature [20] and through the evaluation of a state-wide PD program [17]. PrimeD applies
the principles of improvement science to professional learning [21–23]. The use of PrimeD
situates teacher preparation as PD, consistent with Bangel et al. [9] and Pollock et al. [10].
PrimeD organizes PD into four phases that work in a cyclic nature and occur iteratively
throughout a PD program (Figure 1).
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Figure 1. Condensed Model of the PrimeD Framework (adapted from [16]).

2.1.1. Phase I Design and Development

Phase I is foundational to every other phase in PrimeD. It goes beyond simply plan-
ning PD (e.g., courses, seminars, and field experiences in a teacher preparation program).
Stakeholders come together to map out a challenge space—an explicit description of needs,
vision, goals, targets, and strategies for meeting the challenges being addressed by and
faced within the program [21]. In teacher preparation, participants include university
faculty, classroom teachers, field experience supervisors, and teacher candidates. The chal-
lenge space is more than a list of obstacles or difficulties; it embodies the program’s call to
action to improve professional practice (e.g., classroom teaching, professional learning, and
leadership) and expresses a pragmatic vision of the potential for systemic and systematic
change [16]. Each course, class session, and field experience should be purposeful and
intentionally aligned with the challenge space. But perhaps more importantly in teacher
preparation, structural supports are needed to bind course and field experiences together
into a coherent system wholly focused on achieving particular goals and outcomes defined
by the challenge space [4,19,21].

2.1.2. Phase II Implementation

A program using PrimeD as its framework intends to engage teachers and teacher
candidates as professional partners. The role of PD providers is to engage participants col-
laboratively with research and tools to support professional decision-making. As Datnow
and Stringfield [24] noted:

The fundamental difference between an amateur and a professional in any field is
not one of intelligence or willingness to work hard. Rather, it is that professionals
are trained at accessing their own research field, and therefore are much less likely
to spend time repeating the others’ prior mistakes. Educational reforms seem to
have a less-than-glorious tradition of replicating major aspects of previous failed
efforts. (p. 197)

Network improvement communities (NICs) and plan-do-study-act (PDSA) cycles [18,21]
are the primary components of PrimeD Phase II and provide participants with opportunities
to direct their own professional learning and apply their learning to the classroom. An NIC
focuses on a problem of practice and develops change ideas to address that problem in
the field through PDSA cycles. A problem of practice addresses obstacles to learning in
the classroom that are focused on instructional practices and are actionable, observable,
and measurable. PDSA cycles are intended to be rapid, small-scale changes that build
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over time into measurable improvement at scale [21]. For example, a teacher may change
the way new topics are introduced and may refine the strategy each class period of the
day. One advantage of pursuing PDSA cycles in groups is that the same trial can be tried
out by multiple teachers in multiple settings to provide a more comprehensive test of the
strategies studied.

2.1.3. Phase III Evaluation

As professionals, teachers participate in establishing what is best practice [25]. Engag-
ing candidates in evaluation lays a foundation for professionalism throughout their careers.
Evaluation cycles in PrimeD include feedback mechanisms to the challenge space (arrow
from Phase III to Phase I in Figure 1).

Participants engage in regular self-evaluation through the PDSA cycles and peer
evaluation through small- and large-group presentations at NIC meetings. Facilitators
observe discussions at the NIC meetings as a formative assessment. Two to three local
and non-local evaluators observe NIC meetings and provide monthly feedback about
the quality of the NIC meetings and alignment to PrimeD. This feedback is used by NIC
planning teams to guide subsequent meetings. The planning teams consist of faculty and
representatives from the participant groups (e.g., mentors and candidates).

2.1.4. Phase IV Research

Teachers regularly carry out action research in their classrooms [26] and seek out
research that is directly applicable to the classroom [27]. Teachers may at the same time
think of “research” as a hands-off activity with little connection to the classroom [18].
Methods such as design-based research are especially useful to support partnerships
between researchers and practitioners with a goal of generating outcomes that are both
practical and contribute to theory [26]. PrimeD recognizes that viewing research as a
seamless component of PD adds access, richness, and complexity to the process and has
been shown to improve professional learning outcomes for teachers (e.g., [28–31]).

Teachers ideally conduct research as a normal function of their practice; that is, they
test and evaluate their approach to teaching every day, seeking causal explanations for
outcomes they observe. But these types of efforts are often contextually limited. The
connection between implementation (Phase II) and research (Phase IV) activities (one-way
arrow in Figure 1) situates classroom research activities as a first step toward generalizing
results to be useful for a larger audience. While implementing PD innovations in Phase
II’s PDSA cycles, teachers create research questions from their classrooms. Results are
generalized in Phase IV, when they are shared with the larger group to be tried and vetted
to determine what works and does not work for desired outcomes under various conditions
and why [32]. The NIC may use a variety of approaches and designs to generalize results
beyond specific classroom contexts.

The inclusion of Phase IV in teacher preparation indicates an intention to prepare
candidates to engage in professional research as teachers. Through the NIC and PDSA
cycles, candidates observe mentor activities, ask questions, engage collaboratively, and
develop the necessary foundations for contributing to the knowledge base. Mentors,
supervisors, and faculty help to hone candidates’ professional judgment as they draw
conclusions about their classroom research.

2.2. Reformed Teaching, Inquiry, and Constructivism

The mathematics teaching field has recognized for centuries the need to reform tradi-
tional teaching techniques to improve learners’ conceptual and relational understanding,
critical thinking, and reasoning (e.g., [33,34]). Traditional epistemology in U.S. mathematics
classrooms views the teacher as an authority who conveys knowledge to students, who are
largely viewed as blank slates [35,36]. Constructivism views learning as the construction of
meaning by the learner rather than the passive reception of knowledge [37].
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Piaget described the process of knowledge acquisition through a constructivist per-
spective. When students encounter new information that fits into their existing conceptual
framework, the new information is assimilated (not requiring reconstruction of students’
schemas/conceptual frameworks). For example, when a student believes that when two
numbers are multiplied the product is always larger than the original two numbers, and
every multiplication example they encounter results in larger products, their conceptual
framework will be reinforced, leaving intact their belief about multiplicative structures.
Sometimes, however, the information is recognized as not aligning to their current schema,
requiring accommodation, in which case a restructuring of the schema is required to resolve
the cognitive dissonance [38]. Teachers can encourage accommodation in mathematics by
choosing tasks and activities within the range of their students’ assimilation abilities but
which have elements that introduce some degree of cognitive dissonance [38]. From the
above example, students who encounter multiplication examples that result in products
smaller than the original numbers must accommodate the new information when it does
not fit their current understanding.

The constructivist perspective requires substantial shifts in traditional educational
practice, such as decentering teacher authority, valuing social contexts, and emphasizing
students’ natural curiosity [37]. Reformed teaching is founded upon constructivist epis-
temology, including lesson pedagogy and a classroom culture that supports change [39].
Reformed teaching is typically inquiry-based, meaning that students engage in exploration
and experimentation prior to a formal presentation. The National Research Council [40]
summarized scientific inquiry through eight practices:

1. Asking questions;
2. Developing and using models;
3. Planning and carrying out investigations;
4. Analyzing and interpreting data;
5. Using mathematics and computational thinking;
6. Constructing explanations;
7. Engaging in argumentation from evidence;
8. Obtaining, evaluating, and communicating information. (p. 42)

The term “practice” is used to emphasize that students must simultaneously coordi-
nate knowledge and skill [40]. The expectation for inquiry-based teaching is that students
will themselves engage in the practices and not merely learn about them secondhand. By
treating mathematics as a scientific endeavor, teachers promote the building of abstract
knowledge from simpler, concrete experiences, and student explorations precede formal
presentations. Students engage in predictions, hypotheses, and estimation as well as de-
signing experiments to test their conjectures. Students engage in constructive criticism of
one another’s ideas [39]. These pedagogical approaches directly support constructivist
views of learning by building new knowledge from pre-existing knowledge in learning
communities and tapping into students’ natural curiosity.

3. Methods

This classroom study followed PDSA cycles [18], which provided a structure for
multiple classroom trials with refinements at each iteration. The trials were carried out
in four high school geometry classes, each with 30 to 35 students in a mid-Atlantic urban
school district in the U.S. The four geometry classes were co-taught by the second and
third authors of this paper. By “co-taught,” we mean that both teachers were involved in
the design of the lessons. The teacher candidate led the enactment of the lessons with the
mentor providing support, observing and taking notes, and providing feedback on both
the design and enactment of the lessons.

3.1. PDSA Cycles in the NIC

The teachers in the present study were part of a networked improvement community
(NIC). The overarching problem of practice was focused on how to improve mathematics
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teaching through inquiry. PDSA cycles provided the structure for participants to plan, enact,
reflect, and refine a change idea (teaching strategy) that was decided upon during a monthly
NIC meeting. The classroom artifacts, data and evidence, and participant reflections were
brought back to the subsequent NIC meeting. The NIC then refined the overall strategies
as a group based on the participant reports. The PDSA classroom research process mirrors
design-based research in that the innovations and techniques evolve through each iteration.

The NIC met monthly throughout an entire school year. Participants developed their
problem of practice during the fall semester (September through December) and tried out
their initial change ideas. By the beginning of the spring semester (January through May),
the change idea had been refined and was ready for more intensive try-outs. Participants
completed at least one PDSA form each month, which represented a variable number
of PDSA cycles. While lessons throughout the school year were affected by the PDSA
cycles, the lessons presented in the present study represent the culmination of the teachers’
reflections and refinements.

3.2. Data and Measures

Data consisted of classroom documents (e.g., activity prompts, tasks, assessments),
classroom observations, student feedback about activities, and monthly PDSA reports.
Student views were collected through classroom discussions, informal student interviews,
and open-ended survey questions. Both the mentor and candidate took notes and observed
student behaviors during lesson activities. Teacher views were collected through interviews
and PDSA forms.

The degree to which the candidate’s teaching improved in terms of reform-based
teaching was measured through the formal observations of a field experience supervisor
(not an author) and the mentor and scored on the Reformed Teaching Observation Protocol
with equity-based performance descriptors (RTOP-E). With 25 indicators on the RTOP-E,
each indicator is rated from 0 (no evidence) to 4 (fully reformed practice) for a possible
total of 100 points. Level 2 performances are considered to be more traditional with some
reformed elements, and Level 3 performances are considered to be more reformed with
some traditional elements.

The RTOP-E was based on the RTOP+ [39,41,42] and explicitly incorporated the
equitable teaching practices described in Catalyzing Change in High School Mathematics [43].
For example, Row 1 was revised to include students’ cultural identity (RTOP-E new text
italicized): “The instructional strategies and activities respected students’ cultural identity
and prior knowledge and the preconceptions inherent therein.” Performance descriptors
were revised to include expectations of equity explicitly, especially at Levels 3 and 4 of the
rubric. For example, Row 1, Level 3, on the RTOP-E stated, “The teacher actively solicits
student ideas and cultural experiences, and discussion of these ideas and experiences takes
place throughout the lesson, but lesson direction is teacher determined”. Level 4 stated,
“The teacher actively solicits student ideas and cultural experiences and builds the lesson
from these ideas and experiences as a starting point. The direction of the lesson is shaped
by student ideas and experiences”. The revisions were made by a team of mathematics and
STEM faculty, then shared with an expert panel for feedback to enhance content validity.
The RTOP-E indicators and performance descriptors were used in monthly NIC meetings
to structure conversations about effective pedagogy. These conversations included scoring
sample lesson videos on the RTOP-E and supported a common understanding of the
measured constructs and performance descriptors (construct validity) and how to score the
RTOP-E consistently (inter-rater reliability).

The supervisor and mentor independently scored three lessons, one near the end of
the Phase I internship in November, one at the beginning of the Phase II internship in
February, and one at the end of the Phase II internship in April. The supervisor and mentor
scores were the same for 53/75 scores (70.6%) and were adjacent (a difference of 1) for
14/75 scores (18.7%), meaning that they were in agreement (exact or adjacent) for 89.3%
of the indicators. The intraclass correlation (ICC) was 0.704, which was considered good
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based on Cicchetti’s criteria [44]. For simplicity, the supervisor’s scores were used in the
present analysis.

4. Results

The NIC brought participants (mentors, teacher candidates, field experience super-
visors, faculty, and alumni) together monthly to discuss the program challenge space,
classroom change ideas, and strategies for implementing a change idea. The challenge
space was developed by a team of participants and was organized by teacher knowledge,
teacher orientation, teacher practice, and student outcomes (see Appendix A). Participants
were invited to help to plan monthly NIC meetings and agree upon a focus within the
challenge space. The NIC meetings focused primarily on the teacher practice category of
the challenge space, especially using reform-based teaching practices [26] and the RTOP-E
as a framework to discuss various challenge space goals.

Teachers in the NIC focused on the problem of practice of how to build connections
between new mathematics content and students’ pre-existing knowledge and experi-
ences. One change idea that the mentor and teacher candidate explored was the use of
an inquiry-based activity process to engage student pre-existing knowledge to build new
understanding. As part of the “Plan” for PDSA cycles, and based on Watson [45] and
Lamar and Boaler [46], it was hypothesized that a data collection inquiry process would
facilitate student engagement in inquiry-based activities such as those described by An-
derson et al. [47] and Engle and Conant [48]. It was also hypothesized that this type of
engagement would improve learning of mathematics concepts that are typically taught
procedurally at the high school level in the U.S. (for example, mathematical formulas and
their proofs) [36]. By “engagement,” we mean that students attempted at least one lesson
activity, task, question, or problem.

4.1. Teaching Mathematics through Inquiry

The approach to inquiry in this setting began with student data collection and pattern
analysis as a scaffolded entry to theoretical concepts. Through student discussions and de-
bating of ideas, students were able to engage meaningfully with the material and continue
developing their conceptual understanding.

While this process may seem fairly straightforward to those familiar with inquiry,
many mathematics curriculum materials in the U.S. are not written in a way that sup-
ports student-led inquiry. Traditional mathematics teaching is not inquiry-driven, fo-
cusing instead on practicing procedures with a notable absence of mathematical reason-
ing [36,43,49–51]. In many ways, the teachers were “starting from scratch,” determining
how to adapt their curriculum to be a more robust learning experience for their students, es-
pecially those who struggled. The PDSA cycles provided them with a structure to organize
their own learning of how to teach through experimentation, reflection, and adjustment.
Table 1 presents an example plan developed during an NIC meeting.

Table 1. Example plan for PDSA cycles.

Prompt Response

Challenge or goal of this PDSA cycle. Collaboration with data collection
Context (e.g., grade level, course, topic) 10th grade, geometry, density
Expected duration of this PDSA cycle. (e.g., 10/15 min). One lesson, modeling data collection will be at the beginning of the

lesson
Change idea or strategy for meeting your challenge Model data collection before the students collect their own data
Prediction(s)/hypotheses (What you think the change
idea/strategy will accomplish?)

Modeling the data collection will show students how to complete
procedures. Avoid confusion when starting the collaboration and data

collection
Evidence to collect Student work and student ability to complete data collection on their

own/with minimal help from the teacher
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The inquiry process developed through the PDSA cycles began with student data
generation and development of a question about a phenomenon rather than procedures
to be memorized, consistent with Anderson et al. [47]. Students gathered data, looked for
patterns, drew conclusions, and discussed how to interpret the evidence. Student reflection
was followed by reinforcement activities that helped students make connections between
their exploration and mathematical procedures. This process addresses the tenets of Engle
and Conant’s productive disciplinary engagement [48]: using problems to engage students
with content, giving students authority to investigate the problems, and facilitating their
exploration with relevant resources and support. Lessons that use this process will engage
students primarily in the Common Core Mathematics Practice #7, Look for and Make Use
of Structure, but may also address Practice #4, Model with Mathematics [51]. The modeling
of data collection shown in Table 1 was an important component that was added and
refined during the PDSA cycles in response to student feedback. As cycles were completed,
the teachers refined the change idea into a general process, shown in Figure 2.

• 
• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Figure 2. Inquiry learning process in a data collection context developed through PDSA cycles.

Two activities illustrate the inquiry process from Figure 2 and how the PDSA cycle
process enhanced the lessons. The first activity, Inquiry into Trigonometric Ratios, focused
on the development of deep connections between the various trigonometric functions. The
second activity, Population Density, used a culturally relevant approach to developing
conceptual understanding of density. Candidate and mentor reflections and notes, student
feedback, and independent classroom observation notes were incorporated into the activity
descriptions.

4.1.1. Example PDSA Lesson 1: Inquiry into Trigonometric Ratios

In this introductory lesson to trigonometric ratios, the objective was: Students will be
able to explain the relationship between sine and cosine of complementary angles verbally and alge-
braically. We (mentor and student teacher) began the lesson by modeling a separate, simpler
trigonometric concept with the goal of teaching students how to use the trigonometric
functions on an online calculator. Students used the Desmos Graphing Calculator [52],
which includes all six trigonometric functions. Student perceptions of the calculator com-
ponent of the lesson, collected through a classroom survey, were mostly positive, with
some students explicitly stating that they “liked using the calculators to solve problems”.
This whole-class introduction asked students to generate data by choosing angle values
between 0 and 90 degrees then filling out the table in Figure 3.
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Figure 3. Introductory table for calculator exploration of trigonometric relationships.

After students completed the table, the teachers asked them to notice and wonder
about the values they found [53]. Notice and Wonder is a method of open-ended pattern
exploration that encourages students to look for whatever patterns they can find and ask
questions about anything confusing. Students were able to identify that sin(A) = 1

csc(A)
,

along with the other reciprocal identities. The class used these observations to write
equations describing the relationships between all six trigonometric functions.

Once they had completed this introductory activity as a class, students were given
another chart to use for data collection (Figure 4). One row of values was provided as an
example for students to use as guidance.

51 0.777 0.629 49 0.629 0.777 

      

      

      

      

Figure 4. Follow-up exploratory table to develop sine and cosine relationships.

We allowed students to choose whether to work independently or collaboratively.
Most chose to work collaboratively. Based on task assessment and teacher reflections, some
students struggled to understand the notation in the column titles. Many students began
the activity by asking us what went in each column rather than interpreting the notation at
the top of each column. Instead of simply answering these questions, we asked students to
look at the notation and take an “educated guess” as to what we were looking for, then we
asked guiding questions until they figured it out, for example, “What does the title of this
column tell us to do? What does ‘’sin(A) mean? What is A?” Such productive struggle was
embraced because it ended up helping them to build a stronger understanding of variable
meaning and substitution. By the end of the activity, most students were referencing the
notation and interpreting what each column required computationally, completing the
charts without teacher support.

Students then engaged in another Notice and Wonder activity without teacher guid-
ance [53] as a way to help students move deeper into pattern analysis (Step 2 in Figure 3).
The candidate and mentor observed that students readily noticed columns that were iden-
tical in value. They also used the column headings to write equations describing the
relationship between the sine and cosine of complementary angles, for example, noticing
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that sin(A) = cos(B) when m∠A + m∠B = 90◦. Based on classroom survey data, students
found this part of the lesson intriguing; for example, students stated, “sin/cos = tan was
very interesting to learn.”

Student feedback on the survey was mostly positive, and students were able to meet
the lesson objective. As part of the Act step in the PDSA cycle, we considered ways to
improve the lesson going forward. Several students on the survey noted that the numerical
analyses were difficult, with statements such as “I didn’t like all the numbers”, “I didn’t
like looking at all the numbers and getting mixed up”, and “The numbers being different,
sometimes it confused me, thinking I was wrong”. We realized upon reflection that this
data collection method was too separate from the tangible work we had been doing with
triangles in class prior to the lesson. We also noted that, in an introductory lesson to
trigonometric ratios, greater emphasis needed to be placed on the reference angle. In
subsequent lessons, students struggled to transfer their learning from this lesson to the
triangle contexts, which supported our analysis of the lesson.

Upon reflection during a PDSA cycle, it was determined that an exploration that
includes a visual representation offers a way to enhance these kinds of connections and
emphases with students. For example, a Geogebra app such as the one shown in Figure 5
allows students to discover that, regardless of the size or orientation of the triangle, the
ratios of the side lengths stay constant.

 

Figure 5. Screenshot of the Trigonometric Ratio Geogebra app [54].

The slider a1 defines the measure of ∠A. Points A and B can move to change the side
lengths but not the measures of the angles. Point C is fixed to maintain the right angle at
Point B. As Point A and Point B are moved, the side lengths change, but the angle measures
and ratios of the side lengths remain constant. With the slider, students can discover that
even a slight change to the angle measure changes the ratios of the side lengths. The color
coding of the segments and text in the image helps reinforce how the labels of opposite
and adjacent are specific to the angle of interest. The app includes sample questions that
teachers can use to guide students through the exploration process to discover the one-to-
one relationship between angle measures and trigonometric ratios. For example, students
can move Point A to several new positions, as shown in Figure 6.
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Figure 6. Moving Point A in Figure 4 shows different side lengths but constant trigonometric
ratios [54].

By contrast, any change in the angle measure will change the trigonometric ratios, as
shown in Figure 7. The sample questions provide a pre-planned experiment. Once students
are already familiar with experimentation, the activity can be modified to allow them to
design their own experiment.

 

Figure 7. Changing the slider changes the measures of Angle A and Angle C and the trigonometric
ratios [54].

Through such an exploration, students are able to make predictions/hypotheses about
the triangles and side length ratios and conduct an experiment. This type of applet could
be used as an extension of the original exploration but would be more powerful if it were
used to create the initial data for the calculator activity (Columns 1–4 in Figure 3). Once
students are able to connect the triangle ratios to the values for sine, cosine, and tangent,
they will likely be more ready to investigate the secant, cosecant, and cotangent functions
(and their relationships to sine, cosine, and tangent) with a calculator.

154



Educ. Sci. 2023, 13, 919

4.1.2. Example PDSA Lesson 2: Exploration of Population Density

Building from the trigonometry lesson, our PDSA change idea of using student inquiry
through data exploration was applied to a geometry lesson about density. Density as
a concept is often taught conceptually, usually with a real-world tie to physics that is
difficult for some students to grasp when learning about density for the first time. Rather
than introducing density through a physics application, we chose to take a more general
approach, describing density as simply “an amount of stuff in an amount of space.” This
approach opened doors for us to explore density in a multitude of ways that included, but
was not restricted to, an amount of mass in a specific volume. Using population density as
an entry point, students collected data (Step 1 in Figure 2) and used their data to design
and conduct a research investigation.

We began the lesson by prompting students to recall previous examples of density
that we had worked with in class. We also recalled the framing:

Density =
stuff
space

(1)

With some prompting, students were able to generate an equation for population
density:

Population Density =
Population

SquareMiles
(2)

Based on the PDSA cycle reflections from the trigonometry lesson, we included teacher
modeling of the data collection process by finding the population density of Baltimore City,
where our school is located. As a class, we used an online search engine to find recent data
on the population of Baltimore and the land area of Baltimore, and then we substituted this
into our equation to find the population density.

We asked students to reflect individually on why population density might be impor-
tant to them or other members of the community and pose a question to explore. Having
students pose research questions and design their own investigations moved our overall
change idea deeper into reformed teaching from the trigonometry lesson, from a class ex-
ploration of a phenomenon to a student-led, open-ended inquiry (as described by Sawada
et al. [39]). This trajectory was purposeful in the evolution of our change idea: as Blair [55]
noted, teachers may restrict an inquiry’s activity in the hope of engaging the whole class.
Rather than incorporating other inquiry pathways later in the trigonometry lesson (more
consistent with Blair’s un-planning process), we opted to instead incorporate more inquiry
pathways in the density lesson. This approach allowed us to continue enhancing our ability
to conduct inquiry-based lessons without falling behind in the required district curriculum.

Most student research questions in this lesson filled the sentence frame “How does
population density affect ______________?” Topics chosen by students included police
interactions, number of schools, and commute times. Students then researched on the
internet to find the population density of three locations. Ideally, these locations spanned
different geographic areas, including a city, suburb, and rural area. They also found a data
point related to their research question. They used their data to fill out the prompts shown
in Figure 8.

Lastly, students completed a reflection question in which they answered their original
research question based on the data they collected. Most students reflected that they
had enjoyed this lesson more than usual, and some students displayed a deep interest
in their research questions. This topic sparked interest from students that had typically
had trouble focusing in class. Students enjoyed picking their own research questions as
well as collecting their own data. Some students struggled to find data, which led to some
discussion on how to research and what questions to type into an online search engine to
find the data we are looking for.
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Figure 8. Example population density student data information form.

4.2. Participation in Lessons Affected by PDSA Change Ideas

The PDSA cycle outcomes reported here were conducted in four high school geometry
classes. Student participation in the lessons was generally higher in the PDSA-affected
lessons (“PDSA lessons” hereafter) than in comparable lessons before and after. Partici-
pation was operationalized as either engagement (at least one activity, task, question, or
problem) or full participation (completing all independent work). For comparability, lessons
were chosen that required independent work using an online district platform (Imagine-
Math [56]) intended to increase student accessibility and participation in the lessons. Table 2
provides an example of the numbers and percents of students who participated during one
PDSA lesson compared with ImagineMath Lessons, before and after.

Table 2. Numbers and percents of students that participated in PDSA and comparison lessons.

PDSA Lesson (Inquiry through Trigonometric
Ratios)

Comparison Lessons: No (and Percent) That
Engaged in Any Work (at Least One Question)

Class
No.

Students

No. (and Percent)
That Completed

Independent Work

No. (and Percent)
That Engaged in Any
Work (at Least One

Question)

Lesson 1
before PDSA

Lessons

Lesson 2 after
PDSA Lessons

Lesson 3 after
PDSA Lessons

1 22 8 (36.4) 13 (59.1) 2 (9.1) 2 (9.1) 3 (13.6)

2 27 18 (66.7) 21 (77.8) 9 (33.3) 12 (44.4) 18 (66.7)

3 29 15 (51.7) 16 (55.2) 3 (10.3) 10 (34.5) 5 (17.2)

4 31 19 (61.3) 20 (64.5) 3 (9.7) 12 (38.7) 15 (48.4)

Based on task assessments, participation was generally higher in the example PDSA
lesson. The candidate and mentor compared participation rates for individual students and
found that students with consistently low participation rates had higher participation rates
in the PDSA lessons. While there are many potential contributing factors to participation
rates in a lesson, student feedback on the classroom survey was also quite positive for the
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approach of examining data. For example, multiple students stated in a class survey, “I
liked picking my own numbers.” Students considered the lessons to be more accessible.

4.3. Teacher Candidate Growth in Reformed Teaching

Lessons led by the teacher candidate were scored three times by a field experience
supervisor. The supervisor’s observations provided an independent measure of her ability
to use reform-based teaching methods. The lesson observed at Time 1 was an exploration
of rotational symmetry. The lesson observed at Time 2 was an introduction to identifying
trigonometric ratios on a right triangle, a precursor to the trigonometric pattern exploration
described in Section 4.1.1 above. The lesson observed at Time 3 was the density lesson
described in Section 4.1.2 above. As shown in Figure 9, most of the growth occurred during
the Phase II Internship, which is the full-time student teaching semester.

 

Figure 9. Teacher candidate RTOP-E scores. Time 1 = Phase I internship, mid-November.
Time 2 = Beginning of Phase II internship, late January. Time 3 = Second half of Phase II, late
March.

This growth trend is consistent with prior cohorts [42] and comparable to the cohort
means at each time point. A repeated-measures ANOVA (RM-ANOVA) was used to
analyze differences across time. Mauchly’s test of sphericity indicated that the assumption
of sphericity was not violated, W(df = 2) = 0.921, p = 0.386. The RM-ANOVA showed that
the growth was significant, F(2, 48) = 3.197, p = 0.05.

The supervisor noted at Time 1 that the lesson included multiple opportunities for
student collaboration and discussion within groups. He noted, “[the candidate] comfortably
discussed the activity with various groups and visited all of the groups during the period.”
Issues to be addressed focused on classroom management issues and equitable access
to technology used in the lesson and equitable participation of students in whole-class
discussions.

At Time 2, the supervisor noted that the lesson acknowledged students’ cultural
perspectives. Students were given opportunities to lead discussions. Issues to be ad-
dressed focused on suggestions for multiple ways to represent and clarify the trigonometric
reference angle.

At Time 3, the supervisor remarked on several strengths of the lesson, especially its
cultural relevance: “the ability to make mathematics relevant to students and show how
it can be used to plan for living in various environments, urban and suburban. Relating
mathematics to different content areas such as urban planning. Allowing students to use
research in the development of mathematical concepts.” Issues to be addressed included

157



Educ. Sci. 2023, 13, 919

planning for students to write a summative paragraph of their findings and to share their
work in class.

5. Discussion and Conclusions

The present study focused on how PDSA cycles support pedagogical innovation in
the classroom (Research Question 1) and how reform-based teaching can be transferred
from theory into practice during full-time student teaching (Research Question 2). The
PDSA cycles provided a structure for improving pedagogy in subsequent lessons. The
results showed that the integration of candidate and mentor observations and reflections,
student feedback, and independent observation feedback provided the data needed for
the candidate to improve the way inquiry was used in the lessons. The RTOP-E scores
demonstrated that measurable growth in the candidate’s use of reform-based teaching was
observed by the supervisor and mentor.

The PDSA cycles for this project focused on engaging students in pre-exploration and
collaborative discussions. Student participation was noticeably improved during these
activities compared with traditional mathematics instruction. For example, the candidate
and mentor observed that students who frequently gave up on exploratory activities instead
engaged in productive struggle. The strong connections to their local community in the
density project led to student excitement about the mathematics, expressed to the candidate
and mentor through the classroom survey and informal class discussions. As noted in
Section 4.1.2, students led their own investigations by posing their own questions and
designing their own experiments. The supervisor noticed that students led more of the
classroom discussions in this lesson compared with prior observed lessons. The willingness
of students to take on more responsibilities during the trigonometry activities (e.g., leading
classroom discussions) surprised the teachers and spurred them to give more responsibility
for the learning to the students in the density lesson (e.g., picking their own research
questions).

Based on the improved participation rates, we concluded that the student data collec-
tion sequence provided an accessible entry point to begin scientific inquiry in mathematics.
The process provided an opportunity for students to develop curiosity about mathematical
phenomena and to explore their own research questions. Such open-ended opportunities
are sometimes described as “opening the conceptual space” (e.g., Niesser et al. [57]) because
they allow students to understand the content in multiple ways and through multiple
perspectives rather than through a narrow interpretation provided by a lecturer. Such an
approach allows students to analyze conceptions that are partially correct and determine
whether such conceptions are valid in various contexts [58]. In the present study, students
analyzed data to determine the extent to which the patterns they noticed held true. Ac-
cording to survey results, the use of culturally relevant topics was especially compelling to
students, and the open-ended nature of these exploratory activities allowed students to see
mathematics through their own cultural lenses.

As shown in Table 1, the PDSA cycles provided a structure in which both mentor
and candidate could direct their own professional learning. The NIC meetings provided
a monthly forum in which the mentor and candidate explored mathematics pedagogy
with a community of educators, planned strategies for improving their classroom practice,
and received feedback on their change ideas. Between NIC meetings, the mentor and
candidate completed multiple PDSA cycles and wrote up the results and reflections on a
PDSA form. Both mentor and candidate found that the PDSA cycles provided structure
to their daily reflections, especially the explicit focus on planning to collect data about
outcomes resulting from the change idea. We concluded that the PDSA process opened up
communication between the teacher candidate and the mentor to mutually support their
professional learning as they enacted, studied, and refined their pedagogical change ideas.

The mentor and supervisor both noticed in their observations that the teacher candi-
date developed stronger classroom communication skills; for example, the ability to clearly
convey mathematical ideas to students (e.g., using multiple representations as noted at
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Time 2 observation). The mentor found that she became more acclimated to shifting respon-
sibility for thinking to her students, which was also shown in the supervisor feedback. She
also noticed an increase in the number of lessons developed by the candidate that focused
on discovery, exploration, and inquiry rather than processes and procedures outside the
formally observed lessons.

The PrimeD framework guided the teacher preparation program, structuring the
program challenge space and directing the process for developing pedagogical change ideas
as a professional community and testing those ideas in specific classroom contexts. PrimeD
is recommended as one way to structure teacher preparation to facilitate professional
learning. The results of the present case study provide encouraging results for teachers to
use data collection and inquiry activities to frame mathematics as a vibrant, interesting,
and relevant scientific endeavor.
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Appendix A

Appendix A.1. Secondary Mathematics Challenge Space

Development of the challenge space is ongoing and includes input from classroom
mentor teachers, mathematics coaches and supervisors, and teacher candidates and pro-
gram completers. The goals of the program are viewed through four constructs: teacher
knowledge, teacher orientation (e.g., attitudes, beliefs, self-efficacy), teacher practice, and
student outcomes. Teacher knowledge and orientation influence each other and inform
teacher practice. Teacher practice includes reflection on student outcomes, thereby rein-
forcing or refining teacher knowledge and orientation and informing the program (i.e., a
feedback loop).

 

Figure A1. Model of outcome relationships in a teacher education program [42]. Note: “Student” is
used to refer exclusively to children in PreK-12 classrooms; “Teacher” refers to teacher candidates as
well as PreK-12 classroom teachers.
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Appendix A.2. Vision

The mathematics teacher preparation program is designed to help candidates explore,
enact, and insist upon equitable teaching practices to support robust mathematics learning
communities. Learning communities are defined as collaborative groups that are pursuing
common goals for mathematics learning experiences. Learning communities that are
safe, humanizing, collaborative, and culturally aware empower participants to direct their
engagement in scientific inquiry and the examination of diverse ideas and perspectives.
Candidates enter the field ready to improve the quality of mathematics teaching and
learning for each and every student in their classrooms, schools, and districts and to
become societal change agents in the field.

Appendix A.3. Goals

Teacher Knowledge

• Subject Matter Knowledge. Teachers have a robust knowledge of mathematics, under-
standing how concepts and procedures are interrelated and how to frame mathematics
knowledge in a meaningful way to help students learn (Mathematics Knowledge for
Teaching).

• Pedagogical Content Knowledge. Teachers develop robust pedagogical knowledge to
support deep mathematics learning in their classrooms, including the use of tools for
teaching mathematics (Knowledge for Teaching Mathematics).

• Knowledge of Orientation. Teachers understand and respect the relevance of the
affect of each member of a learning community (e.g., attitudes, culture, beliefs, values,
confidence, and anxiety) in learning mathematics.

• Knowledge of Discernment. Teachers understand that discernment encompasses the
connections between cognition, metacognition, and learning and decision-making pro-
cesses. Knowledge of discernment includes understanding developmental processes
and the socio-emotional and sociocultural components of learning.

• Knowledge of Individual Context. Teachers understand that learning and decision-
making processes take place within the context of the intersectionality of social categories.

• Knowledge of Environmental Context. Teachers understand the importance of build-
ing an inclusive and equitable environment to support a robust learning community.

Appendix A.4. Teacher Orientation

Orientation plays an important role in how teachers approach the profession individ-
ually as well as in collaboration with students, colleagues, schools, and the community.
Orientation includes, but is not limited to, constructs such as attitudes, perceptions, self-
efficacy, beliefs, confidence, self-concept, motivation, value of mathematics, interest in
mathematics, enjoyment of mathematics, enjoyment of teaching, usefulness of mathemat-
ics, mathematics goals, professional goals, attributions of success/failure, mathematics
anxiety, professional anxiety, professional dispositions, commitment to lifelong learning,
and perceptions of power and agency.

These orientations can be about a wide range of topics, including, but not limited
to, mathematics, teaching and learning, assessment, students, socio-cultures, families and
caregivers, collaboration, the profession, and schools and districts.

Teachers examine orientation as an ongoing part of their growth and learning to ensure
that all aspects of the profession are approached through a productive lens. Teachers are
willing to change their views when appropriate.

Appendix A.5. Teacher Practice

• Culture. Teachers establish a culture of access and equity through classroom structures
and culturally relevant pedagogy to support each and every student in learning and
participating in mathematics deeply. These classroom structures empower students
to value diverse perspectives by elevating their voices, providing leadership oppor-
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tunities, and developing a strong learning community. Teachers model vulnerability,
viewing mistakes as learning opportunities. Varied approaches are visible and valued.

• Active Engagement. Teachers actively engage students in learning mathematics
and/or science with meaning.

• Conceptual Understanding. Teachers explicitly foster, model, and insist upon con-
ceptual understanding and coherence for all learners at all levels as a primary means
for promoting procedural understanding in mathematics. Teachers insist that all
teaching activities and learning experiences embrace the development of conceptual
understanding as the fundamental core of learning and form the foundation for peer
discussions.

• Connections. Teachers structure lessons through a phenomena-first approach, recog-
nizing that authentic contexts are the foundation of the lesson and frame the content
to be learned. Contexts are not simply enrichment that happens after the “real” lesson
if at all.

• Reasoning. Inquiry-based projects are incorporated in every unit. Quantitative reason-
ing is modeled as scientific inquiry (claim, evidence, rationale).

• Questioning. Questioning is purposefully crafted to foster higher-order thinking
and alternative modes of thinking about mathematics. Teachers pose questions of
their students and encourage their students to ask deep, rich questions about their
mathematical reasoning and that of their peers.

• Assessment. The ability to provide students feedback through formative (ongoing)
and summative (reflective) assessment is differentiated from and valued more than
grades. Assessments are ongoing, are aligned to standards, and (in)form teacher prac-
tice. Teachers understand that assessment can take many forms including formative
(ongoing) and summative (reflective) assessment. Teachers incorporate a variety of
assessments to ensure that each and every student has an opportunity to express their
current understanding, including, but not limited to, observations, student-to-student
and student-to-teacher dialogue, projects, performance tasks, interviews, portfolios,
presentations, exit slips, and dynamic technology-based activities. Teachers recog-
nize that understanding develops over time and leverage opportunities to reassess
throughout the learning process.

Appendix A.6. Student Outcomes

Teachers assess and reflect upon a wide range of student outcomes to inform their
practice, such as social and emotional well-being, persistence, goal setting, achievement,
thinking/reasoning/explaining, orientation, cognition and meta-cognition, and learning
behaviors.
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