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Abstract: Polypropylene (PP) exhibits excellent insulation properties, high thermo-stability, and
recyclable nature, thus expected to be the next-generation insulation material for HV cable application.
Chemical grafting modification is an effective technology to improve the electrical properties of
polypropylene. In this paper, we develop and report a new-type grafted PP insulation material by
water-phase grafting technology. The comprehensive properties including electrical, thermal, and
mechanical of it are tested and compared with traditional cable insulation material—crosslinked
polyethylene (XLPE). The results show that the grafted PP holds superior thermal properties and
enough mechanical flexibility. The electrical properties are of significant advantages, including
resistivity enhanced by nearly two degrees of magnitudes, AC/DC breakdown strength raised
by over 20%, and obviously suppressed space charge accumulation. These results indicate that
grafted PP is very suitable for application in HV cable systems, either AC or DC. This research lays a
foundation for the research and development of the next-generation recyclable polypropylene cables
at higher voltage levels.

Keywords: grafted polypropylene; recyclable insulation materials; properties

1. Introduction

Power cables will become mainstream in urban power transmission and distribution,
long-distance trans-sea power transmission, far offshore wind power, and onshore new
energy power transmission. With the low-carbon and environmental protection develop-
ment of power equipment, it is urgent to develop cable insulation materials with recyclable
nature, high economical efficiency, and high thermostability [1,2]. At present, cross-linked
polyethylene(XLPE) is widely used as power cable insulation material, but XLPE cannot
be recycled after the end of the cable lifetime, and the manufacturing processes of XLPE
cables include cross-linking and degassing, which increases energy consumption and car-
bon emissions. Therefore, in order to reduce the carbon emission of the whole life cycle
and realize recycling after the end of cable lifetime, polypropylene (PP) has drawn great
attention from both academia and industry because of its superior electrical properties,
high thermostability, and recyclable nature, as shown in below Table 1 [3–5].

The modification method of PP mainly consists of blending, copolymerization, nan-
odoping, and grafting modification. The blending is the PP matrix mixing with other
polymer matrices. The copolymerization modification is propylene monomer copolymer-
izing with other olefin monomers. The most commonly used blend/copolymerization
routes of PP insulation include polypropylene/elastomer blends [6], ethylene-propylene
copolymers [7], ethylene-octene copolymers [8], which can reduce the elastic modulus
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of PP, whereas also the electrical insulation properties. The nanodoping refers to doping
a certain amount of nanoparticles into a PP matrix, such as MgO [5], ZnO [9], SiO2 [10],
which can significantly improve the electrical insulation properties, but the agglomeration
of nanoparticles in PP matrix cannot be completely avoided, it restricts the feasibility of its
large-scale production [11]. The grafting modification is to graft the chemical groups onto
the molecular chains of PP, which is a modification method at a microscopic level to realize
the improvement of macroscopic electrical properties. The grafted groups can introduce a
deep trap into the material, thus improving the electrical insulation properties [12]. Fur-
thermore, compared with nanodoping, grafting modification has no agglomeration, which
is more suitable for large-scale industrial preparation and production.

Table 1. Comprehensive properties of PP versus XLPE [5].

Properties PP XLPE

DC volume resistivity (Ω·m) 1.7 × 1015 0.9 × 1015

DC breakdown strength (MV/m) 399 300
Operation temperature (◦C) Over 90 70–90

Thermal nature Thermoplastic Thermoset
Mechanical property Hard and brittle Soft and flexible

To evaluate the comprehensive performances of grafting modification, this paper
carries out an experimental study on the comprehensive properties of grafted polypropy-
lene insulation material for AC/DC distribution power cables. The AC and DC electrical,
thermal, and mechanical properties of grafted PP material were tested and analyzed. We
also selected two mature XLPE cable insulation materials as references to make a direct
comparison. This work reveals the pros and cons of PP-based and XLPE insulation ma-
terials, and it would provide a valuable reference for the research and development of
next-generation recyclable polypro-pylene cables at higher voltage levels.

2. Materials Preparation and Characterization

2.1. Materials Preparation

The styrene grafted polypropylene was marked as PPg, which was jointly developed
by Tsinghua University and Sinopec (Beijing) Chemical Industry Research Institute. The
PP matrix material used for PPg preparation was from Sinopec, and the brand name was
NS20. The molecular weight is about 370,000 g/mol. Water-phase grafting technology
was adopted for the preparation. Benzoyl peroxide (BPO) was used as the initiator in the
reaction process. The free radical formed by heat decomposition of the initiator, had taken
the hydrogen atoms of PP to form PP macromolecular radical. The PP macromolecular
radical resulted in a grafting reaction with the styrene monomer, as shown in Figure 1 [11].
The reaction of this technology is mild and easy to control, simple operation, of few residues,
high purity, and has the feasibility of large-scale preparation and industrial production.
For comparison, two commercial XLPE cable insulation materials in distribution lines
were selected and produced by Zhejiang Wanma Macromolecule Material Group Co., Ltd.
(Hangzhou, China) and Shanghai New Shanghua Polymer Material Co., Ltd. (Shanghai,
China), the card number YJ-35 and 4205EC-35 marked as XLPE1 and XLPE2 respectively.

By plate vulcanizer pressing, the three materials PPg, XLPE1, and XLPE2 were pre-
pared into film samples with the required thickness for each test. The XLPEs were first
pressed for 10 min at 120 ◦C and 15 MPa, then crosslinked for 15 min at 180 ◦C, during
which the polyethylene can chemically crosslink into a polymeric network. Finally, it was
cooled to room temperature through circulating water. The PPg was pressed for 10 min at
200 ◦C and 15 MPa, finally cooled to room temperature in the same manner. The prepared
samples were left in a vacuum oven for 24 h at 70 ◦C.
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Figure 1. The reaction of styrene grafted PP.

2.2. Materials Characterization

The Fourier transform infrared spectrometer (FTIR) was used for chemical group
characterization. Transmission mode was used with the scanning number of 32 and
resolution of 4 cm−1, and scanning range from 400 cm−1 to 4000 cm−1. To eliminate the
interference of unreacted and self-polymerized grafting monomer, the Soxhlet extraction
was adopted to remove the ungrafted styrene. The prepared grafted PP was extracted by
ethyl acetate for 24 h, then dried and prepared into a film sample as described in Section 2.1.
Then the FTIR absorption spectra of the purified samples were tested. Besides, to identify
the characteristic peaks of grafted PP, pure PP without any modification is also prepared
into a film sample and the FTIR is tested [13].

The Differential scanning calorimeter (DSC) was used for heat flow characterization.
The samples were heated to 200 ◦C and maintained for 5 min, then cooled to 30 ◦C at the
rate of 10 ◦C/min for testing the hot flow in the crystallization process. And the samples
were re-heated to 200 ◦C at the rate of 10 ◦C/min for testing in the melting process.

The universal tension tester was used to test the tensile properties. The samples were
dumbbell shaped with an average thickness of 200 μm, parallel part length of 33 mm,
narrow width of 6 mm, and a tensile rate of 20 mm/min. Each kind of material was tested
5 times, and the measurement results were the mean and standard deviation values.

The three-electrode resistivity test platform was used for DC volume resistivity testing,
and the DC leakage current was measured by an electrostatic current meter (Keithley 2635b,
USA). The average thickness of the sample was 100 μm. The test temperature was 30 ◦C
and 70 ◦C, respectively, and the electric field strength ranged from 5 kV/mm to 60 kV/mm
with the interval of 5 kV/mm. The current values in the stable segment were averaged as
the measured value.

The thermally stimulated depolarization currents (TSDC) were used for testing the trap
energy level distribution of materials [14]. The average thickness of the sample was 100 μm.
The samples were applied electric field strength of 5 kV/mm at a polarization temperature
of 70 ◦C for 30 min, then short-circuited for 5 min after rapidly cooled to −60 ◦C, and
finally heated to 120 ◦C at the rate of 3 ◦C/min meanwhile measuring the TSDC.

The HVDC tester was used to test the DC breakdown strength, and the HVAC tester
was used to test the AC breakdown strength. The samples with an average thickness of
100 μm were placed between the sphere-sphere electrodes. The electrodes and the sample
were immersed in silicone oil for preventing the flashover. The sample was applied voltage
at the rate of 1 kV/s until breakdown. The measured values of 15 different breakdown
locations were selected in each sample, and statistical analysis was adopted by the two-
parameter Weibull distribution [15].

The broadband dielectric spectrometer (BDS), modeled as Novocontrol Concept 80,
was used for testing dielectric properties. The average thickness of the sample was 100 μm.
The sample was applied 1 Vrms, the frequency from 1 Hz to 106 Hz, the temperature of
30 ◦C and 70 ◦C respectively.
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The pulsed electro-acoustic method (PEA) was used for testing the change of space
charge. The average thickness of the sample was 200 μm. The sample was applied a
polarized electric field of 30 kV/mm at room temperature, and a polarization time of
40 min.

3. Results and Discussion

3.1. FTIR

The results of infrared spectroscopy were shown in Figure 2. It can be seen that
compared with pure PP, new vibration peaks of the benzene ring skeleton of PPg appeared
at wavenumbers of 1500 cm−1 and 1600 cm−1, as shown in the yellow box. The three C-H
bond expansion peaks in benzene rings appeared from 3105 cm−1 to 3020 cm−1, as shown
in the green box. The vibration peak of the benzene ring skeleton appeared at 700 cm−1,
as shown in the blue box. It indicated that the purified PPg material was still able to
characterize the characteristic peaks of the styrene groups, which ensured the successful
grafting of the styrene groups on PP molecular chains.

 

Figure 2. FTIR of the three materials.

3.2. DSC

The melting and crystallization heat flow of the three materials were obtained by
the DSC test as shown in Figure 3. The thermal parameters of the materials were shown
in Table 2. The crystallinity was calculated by dividing the measured melting enthalpy
by 100% melting enthalpy, where 100% melting enthalpy of XLPE1 and XLPE2 was 290
J/g, and that of PPg was 209 J/g [15]. As shown in Figure 3 and Table 2, the melting
peak temperature of PPg was significantly higher than that of XLPE1 and XLPE2 by
approximately 50 ◦C, and XLPEs began to absorb heat above 85 ◦C, which limited the
increase of the current-carrying capacity of the cables. The PPg started heat absorption
above 135 ◦C, and the melting peak temperature exceeded 150◦C and was approximately
50 ◦C higher than XLPEs. Because polyethylene (PE) was a semi-crystalline plastic, the
crystallinity of XLPE decreases with the increase of crosslinking degree. The crystallinity of
PP was generally lower than that of PE, in addition, the steric hindrance effect produced by
the grafted benzene ring groups hindered the movement and order of PP molecular chains
to a certain extent, and finally decreases the crystallinity.
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Figure 3. DSC results of three materials.

Table 2. Thermal parameters of three materials.

Thermal Parameters XLPE1 XLPE2 PPg

The temperature of melting peak (◦C) 102.2 100.6 156.3
Temperature of crystallization peak (◦C) 92.7 90.6 116.5

Melting enthalpy (J/g) 104.1 102.4 49.9
crystallinity (%) 36.0 35.3 23.9

3.3. Mechanical Tensile Test

The stress-elongation curves obtained by the mechanical tensile test are shown in
Figure 4, and the corresponding parameters of mechanical properties are listed in Table 3.
As shown in the subplot of Figure 4, the overall tension modulus of PPg was higher than
that of XLPEs, due to the weaker intrinsic toughness of the PP matrix above the glass
transition temperature. The PPg had no thermosetting cross-linking structure and failed to
form a network structure, which made the PP molecular chains more extended. In addition,
the grafted styrene groups with a large volume, reduced the intermolecular binding forces,
and the molecular chains were more likely to slip, making the break elongation slightly
higher than XLPEs. The PPg with low crystallinity, made the reduction of macromolecules
subjected to stress during stretching, it also increased the break elongation. In a word,
the mechanical tensile properties of PPg could meet the requirements of minimum break
elongation of 200% and minimum tensile strength of 12.5 N/mm2 in cable insulation [16].

 

Figure 4. Stress-elongation curves of three materials.
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Table 3. Mechanical properties of three materials.

Mechanical Properties XLPE1 XLPE2 PPG

Tension modulus (MPPa) 120.9 ± 7.4 127.5 ± 7.3 538.3 ± 45.5
Elongation (%) 555.6 ± 19.7 622.1 ± 28.3 652.7 ± 32.3

Tensile strength (N/mm2) 28.8 ± 7.1 32.5 ± 1.9 31.8 ± 2.1

3.4. TSDC

The thermal stimulation current test obtained the change of current with temperatures,
and the relationship of trap density and depth was calculated by the improved TSDC
analysis method, the result of which is shown in Figure 5 [14]. The trap depth of PPg was
1.145 eV, XLPE1 of 0.995 eV, and XLPE2 of 1.031 eV. The results showed that PPg had deeper
traps and higher density. This is due to the grafted styrene groups introducing aromatic
ring structure into the PP molecular chains. The aromatic ring possesses delocalized Pi
bond, which is an electron-affinitive structure, therefore it can act as a deep charge trap,
meanwhile changing the electronic state distribution. Moreover, the grafted styrene groups
affected the crystallization behaviors of PP, the size of the spherulites became smaller and
the boundary became blurred. Thus, it increased the interface between the crystalline
region and the amorphous region and made the trap quantity increase. A large increase in
deep trap density could capture more carriers and reduce the migration of charges, which
was conducive to improving the resistivity and breakdown strength [12].

 

Figure 5. Trap distribution of three materials.

3.5. DC Volume Resistivity

The results of DC volume resistivity were shown in Figure 6, the applied electric field
strengths of 5 kV/mm, 15 kV/mm and 25 kV/mm, and the temperatures at 30 ◦C and
70 ◦C. The DC volume resistivity of XLPEs, at the high electric field and high temperature,
reduced by 2 orders of magnitude from that at low field and high temperature. The volume
resistivity of PPg was higher than XLPEs at different field strengths and temperatures, and
the reduction rate of that was much lower than XLPEs with the field strength and tempera-
ture increasing. It indicated that the volume resistivity of PPg was less dependent on the
field strength and temperatures. The higher volume resistivity of PPg could be attributed to
the grafted styrene groups introducing deep traps, which captured the carriers and reduce
the mobility of carriers [5,11], thereby reducing the leakage current and improving the
resistivity, corresponding to the trap level distribution in Figure 5. This indicated that the
DC leakage loss of PPg was lower than that of XLPEs at high temperatures, which were

6
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beneficial for the safe and stable operations of cables at conditions of high temperatures
and high field strength.

 
Figure 6. DC volume resistivity of three materials.

3.6. AC and DC Breakdown Strength

The AC and DC breakdown strength can be analyzed by Weibull distribution, as
shown in Equation (1):

P(E) = 1 − exp

(
−
(

E
EC

)β
)

(1)

where P(E) is the cumulative breakdown probability, and E is the experimental breakdown
strength value. EC is the fitted characteristic breakdown strength, which corresponds to
the electric field strength at the cumulative breakdown probability of 63.2%. The fitted
breakdown strength curves of the three materials are shown in Figures 7 and 8, respectively.
While the EC values are shown in Figure 9. The AC breakdown strength of PPg was higher
than XLPEs, and it was approximately 34.2% higher than XLPE2 at ambient temperature,
and approximately 38.9% higher than XLPE2 at high temperature. The DC breakdown field
strength of PPg was also higher than XLPEs, and it was approximately 20.9% and 23.0%
higher than that of XLPE1 and XLPE2 at ambient temperature, and approximately 105.2%
and 132.3% higher at high temperature respectively. It indicated that PPg still maintained
strong DC breakdown resistance at high temperatures, and the breakdown value was
close to that of XLPEs at ambient temperature. Meanwhile, the DC breakdown strength of
the three materials was higher than the AC breakdown strength of that. Concurrently, it
had been discovered that the DC breakdown field strength of the three aforementioned
materials exceeded their AC breakdown field strength. This phenomenon was attributed
to the homopolar injection of space charges, which provoked gradual movement towards
the interior of materials and eventual breakdown. The homopolar injection effectively
space charges inhibited further charges injecting. Conversely, during AC breakdown, the
alternating electric field resulted in charge injection accumulation at the interface between
the medium and electrode, leading to a distortion in local field strength. Furthermore,
the repeated trapping and detachment within the materials generated radiation energy,
inducing molecular chain breakage and high-energy electron collision ionization, ultimately
increasing the current carriers and resulting in AC breakdown [17].
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Figure 7. The Weibull distribution of AC breakdown field strength, where the lines are the corre-
sponding fitting curves of Weibull distribution.

Figure 8. The Weibull distribution of DC breakdown field strength, where the lines are the corre-
sponding fitting curves of Weibull distribution.

Due to the grafted styrene groups in PPg having introduced deep traps (as shown in
Figure 5), it captured the charge carriers during the breakdown process, greatly reduced
the kinetic energy and mobility thus suppressing the intermolecular energy exchange, thus
increasing the DC breakdown field strength [12]. The improvement of AC breakdown field
strength, on the one hand, can also be attributed to the introduced deep traps, on the other
hand, grafting the rigid styrene groups formed an entangled structure, which enhanced
the interaction of molecular chains and thus improved the breakdown properties in high
electrical and high thermal fields. It showed that PPg material had excellent breakdown
resistance for AC/DC general cable insulation.

8
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Figure 9. AC and DC characteristic breakdown field strength.

3.7. Dielectric Properties

The present study investigated the frequency-dependent changes in the relative per-
mittivity and dielectric loss tangent (tan δ) of three materials, as shown in Figures 10
and 11. The results indicated that the relative permittivity of the materials exhibited a
frequency-dependent behavior and decreased with an increase in temperatures, albeit with
a marginal shift in the curve. The rise of temperatures did not alter the general shape of
the tan δ curves, but only caused a rightward shift along the frequency axis. Notably, the
tan δ value of PPg displayed an initial increase followed by a decrease with an increase in
frequency, with a crossing point observed around the power frequency of 50 Hz. In the
high-temperature and low-frequency range (below 50 Hz), the tan δ value of PPg was lower
than its corresponding ambient temperature value, while it was higher than the ambient
temperature tan δ value in the medium-high frequency range (above 50 Hz). Similarly, the
tan δ of XLPEs increased initially and then decreased with frequency, with the peak of the
curve observed at a frequency level of 104 Hz.

 

Figure 10. Permittivity varies with frequency.
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Figure 11. Dielectric loss tangent varying with frequency.

The observed dielectric loss in the materials was attributed to the conduction and
polarization losses. The presence of styrene groups grafted in PPg enhanced the orientation
and interfacial polarization losses in the low-frequency range. This results in a slightly
higher tan δ value for PPg compared to XLPEs in this frequency range, with the difference
increasing with frequency. In the medium-high frequency range, the interfacial polariza-
tion strength weakened, and the dipole orientation polarization gradually dominates the
dielectric response behavior. The entanglement effect of the grafting chains formed by the
styrene groups suppressed the movement of the molecular chains, thereby weakening the
dipole orientation polarization and causing a significant decrease in the tan δ value of PPg
in the high-frequency range [18]. At high temperatures, the increased disorder and intense
movement of molecular chains made it challenging to establish polarization, resulting in a
decrease in relative permittivity and dielectric loss. As shown in Figure 11, the relative per-
mittivity of PPg at 30 ◦C and 70 ◦C was approximately 2.42 and 2.36, respectively, with tan
δ values at 50 Hz of 7.02 × 10−4 and 6.79 × 10−4. The tan δ value of XLPEs exhibited less
temperature dependence, and the collision ionization generated with increasing frequency
increased the carriers, resulting in an increase in the tan δ value of XLPEs.

3.8. Space Charge

It illustrated the distribution of space charges density and electrical field distribution
in the thickness direction of the three materials at ambient temperature in Figure 12. Among
them the electric field distribution is calculated by Poisson Equation (2) [5]:

E(x) =
1

εrε0

∫ d

0
ρ(x)dx (2)

where ε0 is the vacuum permittivity, and the εr is the relative permittivity of the sample.
d is the thickness of the sample. ρ(x) is the distribution of space charge obtained by PEA,
while E(x) is the electric field distribution. It was not observed the significant accumulation
of space charges or the distortion of the electrical field in PPg material. However, XLPE1
showed a small accumulation of the same polarity charges, which intensified the field
distortion near the electrode. On the other hand, XLPE2 showed a small accumulation
of opposite polarity charges, and the degree of field distortion was slightly lower than
that in XLPE1 due to the charge’s recombination. The accumulation of opposite polarity
charges in XLPEs was attributed to by-products generated during the cross-linking reaction,
while the accumulation of the same polarity charges was mainly caused by electrode injec-
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tion [19]. The styrene groups grafted in PPg exhibited an excellent ability to suppress the
accumulation of space charges and field distortion. It was due to the introduction of a large
number of deep traps after the grafting styrene groups, which captured carriers to reduce
carriers mobility. Additionally, the captured charges can form a local potential barrier
which can suppress the following injection of electrode charges. The ability to suppress the
accumulation of space charges could prevent local degradation problems caused by charges
accumulation in DC cable insulation, thereby improving the safe operation of DC cables.

Figure 12. Characteristics of space charges. (a–f) are the density of space charges and electrical field
strength in PPg, XLPE1, and XLPE2, respectively.

4. Conclusions

It was studied that grafted polypropylene insulation materials for AC/DC distri-
bution power cables, and their comprehensive properties were evaluated. The results
demonstrated that:

(1) The PPg has possessed superior AC/DC electrical properties compared to XLPE
materials, including higher DC volume resistivity at high temperatures, higher break-
down field strength, and a better suppression of space charges. The volume resistivity of
PPg at high temperatures was found to be 1 to 2 orders of magnitude higher than that
of XLPEs. Additionally, the characteristic breakdown field strength of PPg was higher
than that of XLPEs, with the DC characteristic breakdown field strength of PPg at high
temperatures being over 100% higher than that of XLPEs. The permittivity and dielectric
loss of PPg at high temperatures were slightly lower than those at ambient temperature,
and showed different dielectric properties from XLPEs. Furthermore, the degree of space
charge accumulation and electric field distortion in PPg were weaker than that in XLPEs.
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These findings indicated that PPg exhibited excellent material performances in AC/DC
distribution power cables at high temperatures and high field conditions.

(2) The PPg has possessed weaker mechanical properties compared to XLPE materials,
and with a higher tension modulus. Further research is needed to focus on optimizing
the matching of mechanical and electrical properties. However, the mechanical proper-
ties of PPg were found to meet the relevant standard requirements for the operation of
power cables.
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Abstract: Air gap defects inside a spacer reduce its insulation performance, resulting in stress
concentration, partial discharge, and even flashover. If such gap defects are located at the interface
between the insulation and conductor, a decrease in mechanical stress may occur. In this work, a
finite element method-based simulation model is developed to analyze the influence of gap defects
on the electrical and mechanical properties of a ±320 kV direct current gas insulated line (DC GIL)
spacer. Present findings reveal that a radially distributed air gap produces a more significant effect on
the electric field distribution, and an electric field strength 1.7 times greater than that of the maximum
surface value is observed at the air gap. The axial distribution dominates the distortion of the surface
stress by generating a stress concentration region in which the maximum stress of the air gap is twice
the pressure in the surrounding area.

Keywords: gas insulated line; insulation spacer; finite element method; air gap defect; simulation analysis

1. Introduction

With its advantages of low loss, large transmission capacity, and easy grid intercon-
nection, high voltage direct current (HVDC) transmission is steadily influencing the future
direction of modern power systems [1–3]. A GIL spacer offers unique advantages and
is thus widely used to pass through partial areas with large vertical drops and poor me-
teorological conditions [4–6]. Among the components of a GIL, the insulation spacer is
indispensable for tasks such as isolating the air chamber, electrical insulation, and mechani-
cal support [7,8].

The GIL is filled with SF6 gas [9] with a pressure of 0.45 MPa during operation. Ob-
vious internal stress concentration may occur under the external stress load or around
micro defects, which makes this region the weakest point of the spacer. However, bubbles
and other defects can be inserted into the spacer as a result of imperfect manufacturing
techniques or unstable equipment during production [10,11]. A micro defect can distort
the electric field of the spacer [12,13], which leads to partial discharge or surface flashover.
Compared to the AC spacer, the DC spacer offers relatively insufficient mechanical proper-
ties due to its flatter geometry. Accumulation of spatial charge under DC conditions further
significantly reduces the flashover voltage of the DC spacer [14]. However, research thus
far has focused mainly on charge accumulation and charge suppression and less on the
influence of interior defects on the electrical or mechanical properties of DC spacers [1,14].
Therefore, the potential factors leading to a decline in mechanical and electrical performance
under DC conditions need attention.

The specific stress on a spacer can be obtained in a mechanical water pressure test
by arranging strain sensors on its surface to measure the stress at each position [15].

Energies 2023, 16, 4006. https://doi.org/10.3390/en16104006 https://www.mdpi.com/journal/energies14
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Measuring electric field intensity is more complex and mainly involves an electric field
probe [16,17]. However, the probe will distort the electric field distribution, causing
measurement errors. Other methods, such as dust mapping and electroluminescence [18],
are also used, but it is difficult to obtain quantitative results by image reflection. It is also
difficult to accurately analyze the mechanical stress and electric field intensity distribution
by merely depending on experimentation. This issue can be overcome using the finite
element method (FEM) [19,20]. According to the geometric structure, stress environment,
and boundary conditions of the physical object, a simulation model can be developed
to promote accurate and real-time analysis of the electrical and mechanical properties
of an insulation spacer. One study [21] used the FEM method to simulate an insulation
spacer under a hydrostatic test to determine the strain and stress distributions along
the spacer surface. Another study examined the effect of adhering spherical conducting
particles (with different sizes and locations) on the electric field distribution [22]. The
group in [23] analyzed the electric field properties under two types of interface gaps
via a 2D model. The literature [24] investigates the partial discharges raised by floating
particles and nitrogen bubbles with different shapes and radii. All of these studies show
the feasibility and applicability of the FEM. However, a more comprehensive spatial model
including both electrical and mechanical properties should be constructed to investigate
the field distortion.

Given the need for such a model, an FEM-based simulation model is constructed
to investigate the electric field intensity and mechanical stress under various radially
and axially distributed air gap defects. The variation in electric field intensity and stress
versus radial or axial distance on the spacer surface is analyzed and discussed, and the
corresponding functional relationship is established. Present findings reveal that a radial air
gap influences the electric field distribution more significantly than an axially distributed air
gap that dominates the surface stress deformation in different ways. The conclusions benefit
a quantitative understanding of the impact of DC spacers on electrical and mechanical
properties due to various air gap defects.

2. Simulation Model

2.1. Geometry

In this work, a defect spacer is researched to determine how an air gap impacts the GIL
insulation performance. The FEM is used to achieve this purpose. Referring to previous
work [25], the geometry is shown in Figure 1 and contains three types of material. The
detailed material and geometric parameters are listed in Table 1.

Figure 1. GIL simulation model.
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Table 1. Geometric and material parameters of the simulation model.

No. Component
Geometry
Parameter

Material Material Parameter

1 Metal shell Length: 52 cm
Radius: 33 cm

Aluminum
alloy

Relative permittivity: 1 × 107

Young modulus: 71 GPa
Poisson’s ratio: 0.33

Density: 2700 kg/m3
2 Center conductor Length: 52 cm

Radius: 9.8 cm

3 Ground ring Radius: 1 cm

4 Insulation spacer Max thickness: 5 cm
Radius: 27 cm Epoxy resin

Relative permittivity: 4.95
Young modulus: 13 Gpa

Poisson’s ratio: 0.36
Density: 2300 kg/m3

5 Air gap Radius: 0.15 cm Air Relative permittivity: 1

2.2. Equation Derivation and Boundary Conditions

The insulation spacer in Figure 1 is operated at DC 320 kV. A DC voltage is preset at
the center conductor (labeled 2 in Table 1), then the electric field intensity is generated and
distributed along the upper and lower surfaces of the insulation spacer (labeled 4).

Given that the surface electric field intensity (E) is required to be less than 12 kV/mm
under normal operation, making the monitor of this index is rather fundamental. In the
simulation model, E can be also defined in terms of the negative potential ϕ:

E = −∇ϕ (1)

When the metal shell and ground ring are grounded (labeled 1 and 3 in Table 1), the
potential in the region between them satisfies

∇ · (∇ϕ) = 0 (2)

The differential equations corresponding to the adjacent interfaces can be defined to
describe transferred properties [26]. The subscript indicates each interface, n, is a normal
vector, and ε is the relative permittivity. When the potential distribution in the computation
regions is determined, the corresponding E can be naturally obtained via (1).

ϕ1 = ϕ2

ε1
∂ϕ1
∂n = ε2

∂ϕ2
∂n

(3)

In addition to the necessary electrical performance, excellent mechanical performance
is also required of a GIL insulation spacer because it always operates under a pressure of
0.45 MPa in a SF6 atmosphere. To check the damage to the insulation spacer caused by the
air gap, a 2.4-MPa pressure load is preset on the lower surface according to a hydrostatic
test [20]. Once the external load is applied, all points inside the insulation spacer are in a
state of stress balance.

During the simulation, the intersection between each spacer and the metal shell and
between each spacer and the central conductor is set as a fixed constraint, and the upper
surface and ground ring are treated as free boundaries. The epoxies filling the insulation
spacer can be treated as isotropic materials, which means the Young moduli in all directions
(Gxy, Gxz, Gyz) are the same:

Gxy = Gxz = Gyz (4)

Finally, the stress boundary condition of the computation region Γ is obtained from
the sum of boundary conditions of the external stress Γσ and internal deformation Γu:

Γ = Γσ + Γu (5)

16



Energies 2023, 16, 4006

2.3. Performance Analysis with a Defect-Free Model

A total of 3,644,364 degrees of freedom were generated during the simulation. Figure 2
presents results of mesh generation of the simulation results. Figure 3 presents the dis-
tributions of the electric field intensity (modulus) and principal stress of the insulation
spacer and its cross section without any defect. Figure 3b,d provide the cross profiles of
Figure 3a,c, which are formed by rotating 360 degrees with the Z axis as the symmetry axis
in Figure 3b,d.

Figure 2. Results of mesh generation of the simulation results.

Figure 3. Simulated distributions of (a,b) electric field intensity, and (c,b) first principal stress of the
defect−free simulation model.

Table 2 shows the maximum electric field intensities and principal stresses (Emax and
Pmax) corresponding to the upper and lower surfaces of the insulation spacer. The electrical
and mechanical performances of the defect-free model are sufficient for normal operation.
To show how mechanical stress affects the spacers, Figure 4a describes the distribution of
mechanical forces around the surface of the spacer, and Figure 4b presents the resulting
shape of the spacer when conditioning the deformation caused by mechanical forces.

Table 2. Electrical and mechanical performances of an insulation spacer without any defect.

Items Emax (kV/mm) Pmax (MPa)

Upper surface 2.929 14.365
Lower surface 3.427 25.632
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Figure 4. Simulated distributions of (a) mechanical forces and (b) deformation of the defect-free
simulation model.

3. Impact on Model Performance of a Radially Distributed Air Gap Defect

3.1. Arrangement of the Air Gap Defect along the Radial Direction of the Insulation Spacer

In this section, the air gap is arranged inside the insulation spacer and has a radial
distribution, as shown in Figure 5. The geometry of the air gap is simulated as a sphere
with a radius of 3 mm. The air gap caused by the poor wetting operation is mostly spherical
in the manufacturing process. Also, there is no uniform standard for the air gap shape
caused by other faults, thus the simple sphere is utilized. In addition, the size of the air gap
would not sharply alter the distribution of the electric field compared to that with diverse
radii [24]. The size of the air gap generated in the manufacturing process is generally not
too large, otherwise, it cannot pass the production inspection, while defects of too small a
size cannot be observed. Therefore, a sphere with a radius of 3 mm is selected. Finally, ten
equally spaced positions are distributed to install an air gap with similar distances between
these positions and the upper and lower surfaces, The involved material parameter is
permittivity, which is shown in Table 1. The distance between the center of the air gap and
the conductor is defined as the radial distance X-dis and is in the unit mm.

Figure 5. Radial air gap arrangement inside the insulation spacer.

The spacing between positions is 1 mm in Figure 5. The corresponding axial coordinate
varies as a function of X-dis to ensure similar distances of the upper and lower surfaces
of the insulation spacer. There is an intersection between the ground ring and the air gap
marked 10. The geometry of this air gap can be altered at the interface, and the air gap can
also be treated as a suspended contact defect (like a scratch on the surface). Ten simulations
were sequentially carried out to analyze the distributions of electric field intensity and
principal stress of the insulation spacer.
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3.2. Impact on Electric Field Distribution

The electric field distribution and its maximum (Emax) on the air gap surface are tabu-
lated in Table 3. The minimum electric field is 4.144 kV/mm, and the maximum appears at
the start and end points of this distribution line. This range reflects the intersection of the
spacer with the conductor and ground ring.

Table 3. Electric field distribution and its maximum value on the air gap surface.

X-dis 11 mm 12 mm 13 mm 14 mm 15 mm

Emax

X-dis 16 mm 17 mm 18 mm 19 mm 20 mm

Emax

For each air gap, the electric field intensity on both ends is relatively low compared
with that of the remaining region, and its maximum is always at the center. The air gap
sharply increases around this position and causes a discharge breakdown once the electric
field intensity is more than 3 kV/mm (the breakdown voltage of air) [23]. In this case, the
accumulated discharge state gradually ages the epoxy materials and generates more charge
carriers, which in turn promotes the discharge intensity. Consequently, once the air gap
appears inside the insulation spacer, the maximum electric field strength on the air gap
surface can lead to breakdown and trigger partial discharge regardless of its radial distance
from the conductor. The discharge severity is positively related to the distance between the
air gap and the conductor or grounding terminal, as illustrated by the points at 11 mm and
20 mm. The distorted air gap can be treated as a surface scratch defect when it intersects
the ground ring. The distorted electric field intensity at 20 mm even exceeds 5.8 km/mm
and is 1.2 times larger than that at 11 mm. This result reveals that the suspension discharge
maintains a stronger intensity than that of the air gap discharge in the insulation spacer.

Figure 6 shows the distribution level along the surface and cross profile of the spacer
when the air gap is treated as a surface scratch. The resulting maximum electric field
intensity appears on the bottom surface and develops into the weakest point to form the
defect in the insulation spacer. Figure 7 compares the Emax in the air gap with that on the
upper and lower surfaces of the spacer and with that of a defect-free spacer. If the distance
between the air gap and the upper and lower surfaces is sufficient, Emax for each surface
is consistent with the defect-free state and is not affected by the air gap. The plot of Emax
versus radial distance (X-dis) is fitted in Figure 7b to quantitatively analyze the distribution
of Emax. Table 4 lists the resulting amplitude ratios of Emax corresponding to the air gap
(Emax_air) and its upper and lower surfaces (Emax_upperI and Emax_lower) according to:

ke_upper = Emax_air/Emax_upper
ke_lower = Emax_air/Emax_lower

(6)
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Figure 6. Electric field intensity distribution of an air gap at 20 mm.

Figure 7. (a) Electric field intensity at different positions. (b) Fitting analysis of electric field intensity
and radial distance.

Table 4. Amplitude ratios of electric field intensity of the air gap for the upper and lower surfaces.

X-dis 11 mm 12 mm 13 mm 14 mm 15 mm

ke_upper 1.657 1.470 1.415 1.420 1.419
ke_lower 1.416 1.257 1.209 1.214 1.213

X-dis 16 mm 17 mm 18 mm 19 mm 20 mm

ke_upper 1.421 1.412 1.405 1.456 1.999
ke_lower 1.215 1.207 1.201 1.244 1.708

3.3. Impact on Mechanical Stress Distribution

The insulation spacer manufactured with epoxy material has a tensile stress failure
threshold of 70 MPa, and the tensile stress at the bond between the spacer and the conductor
is 25 MPa. Consequently, a lower mechanical stress amplitude is required to ensure safe
operation [20]. Only the lower surface sustains the atmospheric pressure, so once the
single-side compression is considered, mechanical stress concentration should be avoided
as soon as possible. The distribution and maximum value (Pmax) of the major principal
stress on the air gap surface are shown in Table 5.
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Table 5. Mechanical stress distribution and maximum value on the air gap surface.

X-dis 11 mm 12 mm 13 mm 14 mm 15 mm

Pmax

X-dis 16 mm 17 mm 18 mm 19 mm 20 mm

Pmax

The observed variation is that Pmax on the surface of the air gap decreases with
increasing radial distance and gradually rises when it is close to the ground ring, similar
to the electric field distribution. The distortion can still be observed at the air gap at a
radial distance of 20 mm, corresponding to the scratch. The distribution of this scratch is
presented in Figure 8, where Pmax appears at the interface between the lower surface and
the metal shell. The same phenomenon is also observed in the other nine cases. The lower
surface is believed to be the boundary for sustaining the atmospheric pressure of 2.4 MPa.
The generation of the air gap does not change the distribution of the surrounding area as
sharply as the electric field intensity. Figure 9a further compares Pmax on the air gap with
that on the upper and lower surfaces of the spacer, with or without the preset defect. The
curve of Pmax on the air gap versus radial distance is then fitted in Figure 9b to highlight
the radial distance dependence of the mechanical stress distribution.

Figure 8. Mechanical stress distribution of an air gap at 20 mm.

Figure 9. (a) Mechanical stress at different positions. (b) Fitting analysis of mechanical stress and
radial distance.
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The Pmax on the upper and lower surfaces of a defect or a defect-free model is approx-
imately uniform and much higher than that of the air gap. With the air gap, Pmax on the
upper surface varies because it is assigned as the free boundary. The impact of Pmax on the
maximum stress on the upper or lower surface is quantified as the following:

{
kp_upper = Pmax_air/Pmax_upper
kp_lower = Pmax_air/Pmax_lower

(7)

The results are listed in Table 6. As with Figure 8, the mechanical stress is concentrated
in neither the air gap nor the inside region but is mainly distributed along the upper and
lower surfaces, especially the intersection point.

Table 6. Amplitude ratio of mechanical stress of an air gap compared with the ratios for the upper
and lower surfaces.

X-dis 11 mm 12 mm 13 mm 14 mm 15 mm

ke_upper 0.770 0.567 0.499 0.411 0.311
ke_lower 0.431 0.318 0.280 0.230 0.174

X-dis 16 mm 17 mm 18 mm 19 mm 20 mm

ke_upper 0.180 0.108 0.142 0.296 0.705
ke_lower 0.101 0.061 0.080 0.166 0.395

4. Impact on Model Performance under an Axially Distributed Air Gap Defect

4.1. Arrangement of an Air Gap Defect along the Axial Direction of the Insulation Spacer

In the last section, a radially distributed air gap defect was studied to discuss the
distortion of the electric field intensity and mechanical stress around the defect. The
global maximum of the electrical indicator appeared near the interface between the central
conductor and the insulation spacer. Thus, assigning the position at 11 mm as the radial
coordinate, we next investigate distortions caused by an axially distributed air gap by
changing the axial coordinate from 15 to 22 mm.

In contrast with the radial distribution, the first and last points of the axially distributed
air gap form a surface scratch, and the corresponding geometry is determined by the
interfaces of the upper and lower surfaces of the spacer. The generated surface scratch in
Figure 10 is more representative than that of the suspended contact in Figure 5. Eight air
gaps are arranged inside the insulation spacer, as shown in Figure 10.

Figure 10. Axial air gap arrangement inside the insulation spacer.
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4.2. Impact on Electric Field Distribution

The variation law implied by Table 7 is quite different from that in Table 3 because
it involves growth first, then a decrease. The global maximum is near the center inside
the insulation spacer because it is nearest to the interface between the insulation spacer
and the energized conductor. Thus, we can conclude that the maximum electric field
intensity on the air gap surface is positively correlated with the distance from the charged
interface. Furthermore, the observed surface electric field intensity is greater than 3 kV/mm,
regardless of how the air gap is distributed, indicating an easily triggered partial discharge.

Table 7. Electric field distribution and maximum value on the air gap surface.

X-dis 15 mm 16 mm 17 mm 18 mm

Emax

X-dis 19 mm 20 mm 21 mm 22 mm

Emax

Table 7 suggests that the electric field intensity is not sharply affected by the ap-
pearance of the surface scratch but reveals a minimum value along the distribution pass.
Figure 11 further shows the electric field intensity distribution at two surface scratches.

Figure 11. Electric field intensity distribution of a surface scratch at (a) 15 mm and (b) 20 mm.

The Emax values of an air gap corresponding to the upper and lower surfaces are
compared for models with and without defects, similar to the analysis in Figure 7. The
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result differs from Figure 7 in that the electric field intensity of several points at the start or
end position is lower than on the spacer surface. The distribution for the upper or lower
surface of either the defect or defect-free model is not affected, which is the same as what
is found in Figure 7. The relationship between Emax and axial distance is described via
fitting analysis in Figure 12. Finally, Equation (6) is used to calculate the amplitude ratio
of Emax corresponding to the air gap (Emax_air) and its upper or lower surface (Emax_upper or
Emax_lower). These amplitude ratios are shown in Table 8. The biggest ratio is only 1.641 and
much less than 1.999 in Table 4. Thus, the axially distributed air gap has less impact than
the radial gap on the electric field intensity distribution.

Figure 12. (a) Comparison of electric field intensities at different positions. (b) Fitting analysis of
electric field intensity and radial distance.

Table 8. Amplitude ratio of electric field intensity of an air gap compared with the ratios for the
upper and lower surfaces.

X-dis 15 mm 16 mm 17 mm 18 mm

ke_upper 1.117 1.332 1.541 1.641
ke_lower 0.959 1.141 1.314 1.397

X-dis 19 mm 20 mm 21 mm 22 mm

ke_upper 1.626 1.431 1.109 1.220
ke_lower 1.386 1.229 0.950 1.044

4.3. Impact on Mechanical Stress Distribution

The mechanical stress distribution of an air gap is shown in Table 9 for various axial
distances. Another trend can be found when this is compared with the radial distribution
in Table 5. According to Table 9, the stress amplitude of the air gap surface is negatively
related to the distance from the pressure side. The lower surface is assigned to be the
pressure side (with an atmospheric pressure of 2.4 MPa); thus, a smaller axial distance
means higher mechanical stress is generated on the surface of the air gap. Although another
surface scratch appears at an axial distance of 22 mm, it is located (placed) on the upper
surface, which is far away from the pressure side, causing minimum mechanical stress.
Figure 13 shows the stress distribution of surface scratches. In the picture, the maximum
stress on the entire spacer is also near the interface between the insulation spacer and the
metal shell.

Figure 14 presents the mentioned law of decrease in Pmax versus axial distance. When
an air defect is inserted inside the insulation spacer, the mechanical stress of the upper
surface varies with the changing axial distance and shows no functional relationship. In
contrast, a functional relationship between the Pmax of the air gap and axial distance is
determined by the fitting analysis in Figure 14b, which establishes a general decay tendency.
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Table 9. Mechanical stress distribution and its maximum value on the air gap surface.

X-dis 15 mm 16 mm 17 mm 18 mm

Pmax

X-dis 19 mm 20 mm 21 mm 22 mm

Pmax

Figure 13. Stress distribution of a surface scratch at (a) 15 mm and (b) 20 mm.

Figure 14. (a) Comparison of electric field intensities at different positions. (b) Fitting analysis of
electric field intensity and radial distance.
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The recorded Pmax for the air gap at 18 mm is higher than at the last point (17 mm).
This is attributed to the shorter distance from this point to the conductor than from other
points. The same results are also obtained in Figure 9. Consequently, the stress on the
air gap depends on the distance between the air gap and the pressure side or other inter-
faces (because these interfaces are also pressure boundaries and always sustain the local
maximum of the mechanical stress). The pressure increases with decreasing distance.

Table 10 shows the amplitude ratio of Pmax recorded for an air gap and upper and
lower surfaces of the insulation spacer. The air gap defect only occurs on the lower surface
of the insulation spacer, forming a surface scratch, and the mechanical stress at this time
reaches half of that of the surface level. Thus, the air gap on the spacer surface leads to an
obvious stress distortion, reducing the mechanical capacity of the defect insulation spacer
by concentrating the surrounding stress at this point.

Table 10. Electric field distribution and its maximum value on the air gap surface.

X-dis 15 mm 16 mm 17 mm 18 mm

ke_upper 0.729 0.608 0.592 0.672
ke_lower 0.479 0.421 0.393 0.468

X-dis 19 mm 20 mm 21 mm 22 mm

ke_upper 0.553 0.432 0.399 0.217
ke_lower 0.371 0.293 0.229 0.145

5. Conclusions

A radially distributed air gap does not affect the electric field intensity and stress
distribution of the upper and lower surfaces. The electric field intensity of the radially
distributed air gap is 1.2–1.7 times the maximum value on the spacer surface. In contrast,
the maximum stress on the air gap is only 0.08–0.77 times that on its surface. Therefore,
the air gap significantly affects the surrounding electric field distribution. A significant air
gap discharge occurs when the electric field intensity is greater than 3 kV/mm, causing a
breakdown and partial discharge.

For an axial air gap distribution, the electric field strength of the air gap surface grows
with increasing distance from the surface. The maximum value (4.795 kV/mm) occurs near
the center conductor, and the local electric field strength is minimum on the outer surface.
However, the maximum stress (12.292 MPa) of the air gap occurs on the lower surface.
Consequently, the radial air gap distribution contributes more significantly to the electric
field distribution, whereas the axial distribution dominates the distortion of the surface
stress in a different way.
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Abstract: Aiming to solve the partial discharge problem caused by defects in composite insulators,
most existing live detection methods are limited by the subjectivity of human judgment, the difficulty
of effective quantification, and the use of a single detection method. Therefore, a composite insula-
tor defect diagnosis model based on acoustic–electric feature fusion and a multi-scale perception
multi-input of stacked auto-encoder (MMSAE) network is proposed in this paper. Initially, during
the withstanding voltage experiment, the electromagnetic wave spectrometer and ultrasonic detector
were used to collect and process the data of six types of composite insulator samples with artificial de-
fects. The electromagnetic wave spectrum, ultrasonic power spectral density, and n-S map were then
obtained. Then, the network architecture of MMSAE was built by integrating a stacked auto-encoder
and multi-scale perception module; the feature extraction and fusion methods of the electromagnetic
wave spectrum and ultrasonic signal were investigated. The proposed method was used to diagnose
test samples, and the diagnostic results were compared to those obtained using a single input source
and the artificial neural network (ANN) method. The results demonstrate that the detection accuracy
of acoustic–electric feature fusion is greater than that of a single feature; the accuracy of the proposed
method is 99.17%, which is significantly higher than the accuracy of the conventional ANN method.
Finally, composite insulator defect diagnosis software based on PYQT5 and Keras was developed.
Ten 500 kV aging composite insulators were used to validate the effectiveness of the proposed method
and design software.

Keywords: composite insulator; defect identification; deep learning; feature fusion; electromagnetic
wave spectrum; ultrasonic

1. Introduction

Composite insulators are widely used in China due to their light weight, high strength,
good resistance to pollution, and ease of operation and maintenance [1,2]. However, in
the long-term operation process, the composite insulator will experience issues such as
hydrophobicity decrease, mechanical strength decrease, insulation strength decrease, shed
sheath fall, core rod fracture and degradation under the combined action of high field
strength, high mechanical stress, air pollution, and other factors, which pose a threat to the
safe operation of the power grid [3]. Under the influence of a strong electric field, partial
discharge will occur when there are defects within the composite insulator, resulting in
several physical and chemical effects, including an increase in leakage current, electric
field distortion, electromagnetic wave, and ultrasonic radiation [4–7]. As a result, it is
critical to investigate an effective composite insulator defect diagnosis method to improve
operational reliability.
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To solve the problem of composite insulator defect detection in operation, various
detection methods have been studied at home and abroad [8–11]. In [12], the phase
resolved partial discharge (PRPD) spectrum is used to determine the operating state of
an insulator using the pulse current method. In [13], the 3D electric field of an insulator
was simulated using finite element software, and the effect of surrounding air conductivity
on the electric field was evaluated. In [14], an electric field sensor based on the Pockels
effect was utilized to construct an insulator defect detection platform. In [15], the PD
signals of six artificial insulation defect models were measured using the UHF method,
which achieved the same accuracy as ANN and SVM, had a faster recognition speed, and
was robust with respect to certain samples. A non-destructive ultrasonic phased array
technology was utilized in [16] to detect defective silicone rubber composite insulator
samples. In [17], an electrical equipment insulation defect detection system based on
infrared and ultraviolet optoelectronics-sensing technology was developed. The insulation
condition of the electrical equipment was evaluated comprehensively using the signals of
infrared and ultraviolet optoelectronics sensors. However, most detection methods have
drawbacks, such as expensive equipment and environmental sensitivity.

Pattern recognition is the study of how machines observe the environment, learn
to extract useful features from the environment, and classify patterns rationally [18–21].
In [22], K-means clustering was applied to the PRPD spectrum, and different types of
discharges were distinguished through feature extraction and data processing. Based on
the support vector machine and probabilistic neural network, the authors of [23] extracted
the probability density function of the mean, standard deviation, peak, and skewness
of the wavelet packet coefficients by wavelet packet decomposition of PD signals and
confirmed that the support vector machine is more precise. In [24], the wavelet packet
decomposition of the PD signal was used to extract features, and the classification and
regression tree algorithm, the bagging algorithm, and the regression random forest were
used to locate the PD. In [25], a partial discharge pulse pattern recognition method based
on a fuzzy decision tree was proposed. First, the C4.5 algorithm was used to extract fuzzy
rules from the data, followed by the backpropagation training algorithm to fine-tune the
fuzzy rules’ parameters. The authors of [26] proposed a CWD time–frequency spectrum
based on variational mode decomposition and an optimized convolutional neural network
with cross-layer feature fusion. In [27], a feature map produced by variational mode
decomposition and the stacked sparse auto-encoder network were combined to determine
the four discharge types. The authors of [28] proposed a method for separating and
classifying pulse-shaped signals based on a fuzzy classifier that can identify and separate
multiple PD sources. However, most current defect-recognition algorithms rely on a single
physical signal, which is insufficient for a comprehensive evaluation of the detected target’s
condition. The application of deep learning can remedy this deficiency.

The gaps left by previous studies to be filled include: (1) most of the detection methods
of composite insulator defects have the subjectivity of human judgment, difficulty in
effective quantification, and limitation of a single detection method; and (2) the composite
insulator defect-recognition algorithm is mostly based on a single physical signal and
various detection methods cannot achieve information sharing.

This paper proposes a composite insulator defect diagnosis model based on acoustic–
electric feature fusion and deep learning. The main contributions of this paper are as
follows:

1. Electromagnetic wave and ultrasonic live detection tests of composite insulator defects
are carried out. Six typical defect insulator samples are made in the laboratory, and a
defect detection test platform is built. The electromagnetic wave spectrometer and
ultrasonic detector are used to measure the electromagnetic wave and ultrasonic
signal radiated by the unpressurized background noise, the intact insulator and
the defective insulator in a certain distance. FFT is used to analyze the spectral
characteristics of electromagnetic wave signals, and the ultrasonic signal is analyzed
by a power spectrum and n-S map. Combining electromagnetic wave and ultrasonic
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detection methods can scientifically and effectively reflect different types of insulator
defects.

2. A composite insulator defect diagnosis algorithm based on acoustic–electric feature
fusion and multi-scale perception multi-input of a stacked auto-encoder network
is proposed. The peak and average value spectrum of electromagnetic waves, an
ultrasonic power spectrum and n-S map are extracted by a stacked auto-encoder and
are reduced to similar dimensions to avoid one signal occupying too much weight
and weakening the influence of other signals on the results. The above data are
fused as the input of the multi-scale perception multi-input network. By stacking
multiple such structures, data information can be extracted on multiple scales without
increasing the number of network parameters, avoiding overfitting caused by too
many network layers and improving the accuracy of classification. By comparison, it
is proven that the detection accuracy of the proposed method is obviously better than
that of a single-feature input source and traditional ANN method.

3. Composite insulator defect diagnosis software is developed, and the aging composite
insulators replaced on-site are tested and verified. Based on the proposed acoustic–
electric feature fusion and MMSAE network, a composite insulator defect diagnosis
software is developed in PYQT5 and Keras environments. The software detection
and dissection analysis of ten 500 kV aging composite insulators replaced on-site
are carried out, which proves the accuracy of the proposed method and software. It
is helpful to comprehensively study and judge the operation state and defect type
of composite insulators on transmission lines, and this has practical engineering
significance.

The remainder of the article is organized as follows. Section 2 describes the acoustic–
electric feature test and results analysis of composite insulator defects. Section 3 describes
the construction and analysis of the composite insulator defect identification model based
on acoustic–electric feature fusion and the MMSAE network. In Section 4, examples and
analyses of engineering applications are provided. Finally, the conclusions are given in
Section 5.

2. Acoustic–Electric Features Test of Composite Insulator Defects

2.1. Test Circuit

Figure 1 depicts the test circuit diagram for the composite insulator defect acoustic–
electrical feature test. The test circuit contains a power frequency test transformer, a
composite insulator short sample, a protective resistance, and a ground electrode. The
test insulator samples in this paper are all 1/10 short samples of DC ± 1100 kV, and the
rated voltage is DC ± 110 kV. Therefore, under AC conditions, the peak voltage of the
test insulator is set to 110 kV, and the effective value of the AC voltage applied to the test
insulator by the test transformer is 77.8 kV.

Figure 1. Test circuit.
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During the test, data were collected from the front (0◦), side (90◦), and back (180◦) of
the defect, depending on the defect’s orientation. The data acquisition position is 3~4 m
away from the measured insulator. The electromagnetic wave and ultrasonic data of
background noise without pressurization, intact insulator, and various simulated degraded
insulators are measured, respectively.

2.2. Composite Insulator Defect Simulation

The primary cause of the failure of composite insulators is the uneven field strength
of the interface, which is a result of defects and an imperfect manufacturing process,
resulting in long-term carbonization channels and gradually developing into interface
breakdown discharge. Therefore, by embedding copper wire or a carbon rod between
the high-voltage end metal fittings and the first umbrella skirt to simulate conductive or
semi-conductive defects, the defects and high-voltage end metal fittings are equipotential
to simulate conduction-type defects and non-equipotential to simulate suspension-type
defects. Separating the interlayer between the umbrella skirt sheath and the core rod creates
an air gap space, which is then filled with a salt solution to simulate water vapor entering
the interlayer. By smearing carbon powder on the surface of the high-voltage umbrella skirt,
the leakage tracking defect caused by a flashover on the surface of the umbrella skirt can
be simulated. According to the failure mechanism of insulators [29–32], the following six
kinds of defects are simulated, as shown in Table 1. Figure 2 depicts the actual simulation
of various defects. The copper wire and carbon rod are embedded in the core rod and
sheath interface, each measuring 3 mm in diameter and 10 cm in length, with the ends
being sharply polished. The carbon powder weighs 5 g, and the coating is uniform.

Table 1. Types and methods of defect simulation.

Defect Type Starting Position Simulated Material

Intact

Conduction conductive High-voltage end metal
fittings

Copper wire
Conduction semi-conductive Carbon rod

Water vapor entry Salt solution

Suspension conductive
High-voltage end first

umbrella skirt

Copper wire
Suspension semi-conductive Carbon rod

Leakage tracking Carbon powder

2.3. Experiment Results and Analysis
2.3.1. Processing Method and Result Analysis of Electromagnetic Wave Data

The PDS100 electromagnetic wave spectrometer is used to record the RF signal emitted
by partial discharge. During gating time, the signal within the center frequency’s band-
width is detected, and the bandwidth of each band was 1.9 MHz. On the signals in the
frequency band corresponding to each center frequency, an FFT transform is performed,
and the spectrums corresponding to each frequency band are merged to form a complete
spectrum. The experiment adopted S.P.A.M mode, which simultaneously records the
spectrum’s peak and average values.

The frequency components of 50 MHz~1 GHz include a variety of continuous signals,
such as AM radio, mobile phone, and other communication signals. The background wave
without voltage is first recorded, then the background noise is subtracted from the spectrum
with voltage, and the frequency band amplitude of less than 0 is set to 0. Each spectrum
contains 501 detection center frequencies ranging from 50 MHz to 1 GHz. Figure 3 depicts
the electromagnetic wave spectrum results for each composite insulator defect.
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Copper Wire Carbon Rod Copper Wire

(a) (b) (c)

Carbon Rod

Carbon Powder

Salt Solution

(d) (e) (f)

Figure 2. Actual simulation of various defects: (a) conduction conductive; (b) conduction semi-
conductive; (c) suspension conductive; (d) suspension semi-conductive; (e) leakage tracking; (f) water
vapor entry.

(a) (b)

Figure 3. Four groups of electromagnetic wave spectrums of conduction conductive defect composite
insulators: (a) peak value; (b) average value.

In this paper, four groups of electromagnetic wave characteristic detection experiments
are carried out. The electromagnetic wave experimental results of conduction conductive
composite insulators are shown in Figure 3. In the four groups of experiments, the peak
value curve and the average value curve of the electromagnetic wave spectrum of the con-
duction conductive composite insulator have the same change trend. The situation of intact
and other defect types of composite insulators is consistent with that of conduction con-
ductive composite insulators. Therefore, in this paper, the electromagnetic wave spectrum
of the first group of experiments is taken as an example to summarize the characteristics of
intact and various types of defective composite insulators, as shown in Figure 4.
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Figure 4. Electromagnetic wave spectrum of various insulator defects.

Figure 4 reveals that the intact insulator’s electromagnetic wave spectrum contains a
discharge signal at 0~450 MHz, indicating that this is the electrical or corona signal of the
line or metal fittings. Comparing the electromagnetic wave spectrum of intact insulators
with each defect spectrum reveals the following characteristics.
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1. The peak spectrum and average spectrum of conduction defects have higher ampli-
tude at 0~80, 120~200, and 450~550 MHz. The peak spectrum of 350~450 MHz is
similar to that of an intact insulator, whereas the average spectrum is distinct.

2. The peak spectrum and average spectrum of suspension defects in the range 0~80 MHz
are not as high as those of conduction defects, but they are still relatively obvious. The
peak spectrum and average spectrum of 150~200 MHz have higher signals. The peak
spectrum of 350~450 MHz and the average spectrum of 150~400 MHz are obviously
different from the intact insulator signal.

3. Since there is little difference between the two types of frequency spectrums of the
leakage tracking defect and that of the intact insulator, it is assumed that there is no
obvious discharge in the defect.

4. The average spectrum and peak spectrum of the water vapor entry defect exhibit
intermittent discharge peaks at 40, 160, 360, and 450~550 MHz. The average spectrum
generally has a richer signal distribution and higher amplitude in the 50~600 MHz
band.

2.3.2. Processing Method and Result Analysis of Ultrasonic Data

Figure 5 shows the specific flow of the processing method and result analysis of
ultrasonic data. The SUD-300 ultrasonic detector is able to record ultrasonic signals radiated
by partial discharges with a frequency greater than 20 kHz. Because the ultrasonic signal
generated by partial discharge contains a wealth of signals at approximately 40 kHz, and
because the frequency band can effectively eliminate the interference signal, the detection
center frequency of the detector is selected at 40 kHz. Through the ultrasonic detector, the
signal is converted to a range of audible frequencies between 0 and 4 kHz.

The background noise of three locations devoid of voltage, the ultrasonic shapes of
intact insulators under a working phase voltage of 77.8 kV, and the ultrasonic shapes of
various fault-simulated insulators in the frequency range of 38~42 kHz are respectively
measured. The sampling frequency is 8 kHz, and the duration of each recording is 10 s.

(1) Wavelet packet denoising.
Since the experimental data acquisition in this paper was conducted in a laboratory,

it can be assumed that the data are nearly free of noise. However, ultrasonic equipment
operating in the field will be subject to various types of field noise, including wire corona
signal interference and instrument internal interference. In addition, in long-distance fault
detection, due to the scattering and attenuation characteristics of ultrasonic waves in the
measured object and air, the received signals cannot meet the application requirements.
Therefore, the collected signal must be denoised. The method of wavelet packet transform
threshold denoising is utilized in this paper.

White noise and background noise are superimposed with the original signal at
signal-to-noise ratios of 2, 5, 10, and 20 dB to test the filtering effect of the wavelet packet
denoising method. After many aspects of comparison, the final selection consists of soft
threshold function, unbiased likelihood estimation rules, wavelet function bior 2.4, and
decomposition layer 4.

(2) Improved n-S map based on the PRPD method.
This paper proposes a general n-S map method suitable for ultrasonic testing under

AC and DC conditions, based on the PRPD method. In the pulse current method, due to the
absence of phase information in the DC discharge, only the number of discharges n and the
apparent discharge q are selected as the pulse current characteristic quantity. Let n represent
the number of zero crossing points of the ultrasonic shape in the ultrasonic method. Then,
n can be analogous to the number of discharges in PRPD. Between the two adjacent zeros,
the area S bounded by the acoustic wave and the abscissa axis can be analogous to the
discharge amount in PRPD, and the area of all packages can be determined. The frequency
distribution histogram n-S spectrum and box diagram of different defects can be drawn
by statistical method. On this basis, various characteristic parameters are extracted for the
classifier’s input.
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Figure 5. Flow of processing method and result analysis of ultrasonic data.

A box plot is a statistical graph used to display a set of scattered data. Box plot
intuitively displays, from a statistical point of view, distribute characteristics of discrete
data and are unaffected by outliers. They can also be used to clean data.

All enveloped areas S of the acoustic wave and the abscissa axis are calculated using
the above method, and K at the upper and lower edges is 1.5. The data outside of this
range are labeled as abnormal, and the statistical relationship between the number of zero
crossings, n, and S is plotted, as shown in Figure 6. In the case of intact and leakage tracking,
the position and median of the box are close to zero, and there is almost no discharge event,
as shown in Figure 6. Water vapor entry defects discharge minimally, conduction defects
discharge severely, and suspension defects discharge with lesser intensity than conduction
defects.

Observing the received signal strength from various directions, the signal strength and
density are greatest in front of the defect. This is due to the fact that the ultrasonic signal is
received directly by the ultrasonic sensor through the air, rather than being blocked by the
core rod sheath. The signal strength on the back of the defect is typically weak, especially
for semi-conductive defects, which may be due to the fact that the core rod separates the
direction of the received signal from the signal source and attenuates the ultrasonic signal.
The outliers marked by red dots were removed and the box plot was redrawn, as shown in
Figure 7.
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Figure 6. n-S box plot.

Figure 7. n-S box plot after excluding outliers.

To compare the n-S map of different defects under the same standard after excluding
the outliers of S due to the large differences in amplitude and number of different types
of discharges, the upper limit of the range of S is set as the global maximum, and all S
are normalized to the range of (0, 1). As shown in Figure 8, this range was divided into
200 equal parts, and the n-S map was drawn with equal-spacing statistics.

Figure 8. Equal-spacing n-S map.
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As can be seen from the above figure, compared with the maximum envelope area
S: conduction conductive > conduction semi-conductive > suspension conductive ≈ sus-
pension semi-conductive ≈ water vapor entry > leakage tracking ≈ intact. From the
perspective of the number n, the number n of suspension defects, leakage tracking defects,
and water vapor entry defects in the small S region are relatively high, the number of
conduction defects is relatively low, and the number of intact insulators in all S regions is
low, confirming that leakage tracking defects and other defects are weak with discharge,
but the number of discharges is greater.

The degree of data distribution skewness can be measured by the calculation of
variance, skewness and kurtosis.

Variance is used to measure the degree of deviation between a random variable or a
set of data and its mathematical expectation. The formula is as follow:

σ(X) = E
{
∑[X − μ(X)]

2
}

(1)

where X is the statistical sample, μ is the sample mean, σ is the sample variance, and E
represents the mean. Variance can be used to accurately describe the degree of deviation
between the statistical data and the mean.

Skewness is a measure of the direction and degree of skew of statistical data distribution,
which is used to measure the asymmetry of statistical data distribution. It can be calculated
as follows:

Skew(X) = E

[(
X − μ

σ

)3
]

(2)

In the normal distribution Skewness = 0, positive bias distribution Skewness > 0, negative
bias distribution Skewness < 0.

Kurtosis is also called the kurtosis coefficient. It is used to characterize the concentration
of statistical data distribution near the mode. Intuitively reflected in the sharpness of the
curve peak, the formula is as follows:

Kurt(X) = E

[(
X − μ

σ

)4
]

(3)

Normal distribution Kurt = 3, in the case of the same σ, Kurt > 3 is the leptokurtic state,
corresponding to a thick tail; Kurt < 3 is the platykurtic state, corresponding to a thin tail.
Table 2 displays the results of calculating the skewness and kurtosis of the envelope area S
distribution for the seven types of ultrasonic signals listed above.

Table 2. The skewness and kurtosis of data S.

Area S Variance Skewness Kurtosis

Intact 0.0005 0.90 3.10
Conduction
conductive 0.0561 1.14 3.55

Conduction
semi-conductive 0.0362 1.27 3.97

Suspension
conductive 0.0076 1.85 5.72

Suspension
semi-conductive 0.0100 1.61 4.77

Leakage tracking 0.0003 0.92 3.13
Water vapor entry 0.0092 1.04 3.26

The frequency distribution of area S exhibits an evidently positive skewness distribu-
tion close to an exponential distribution and Skewness > 0, Kurtosis > 3. Consequently, the
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size of the adjacent interval of the frequency distribution histogram is selected in a specific
manner:

xi =
ai − 1

aN+1 − 1
(i = 0, 1, 2, . . . , N + 1) (4)

where xi is the selected abscissa point, [0,1] is the value range, and N is the number
of statistical histograms or the number of regions divided into S. The unequal interval
statistical method enables different defects to achieve good discrimination in areas with
dense S distribution and to expand the statistical range in areas with sparse S distribution,
thereby minimizing redundant data information. The value range of parameter a is (0,1)
∪ (1,+∞), which is related to the distribution pattern of data. When Skewness > 0, a > 0 is
taken; when Skewness < 0, 0 < a < 1 is taken, and the specific value is determined by specific
needs.

In this paper, the n-S map is drawn by special spacing statistics, as shown in Figure 9,
where a = 1.03, N = 200. The abscissa represents the statistical range sequence of the
area S, that is, the number of intervals in the series [xi, xi+1]. The n-S map of special
spacing demonstrates that special spacing can effectively avoid the situation in which data
concentration in a particular region leads to low regional resolution. Consequently, it also
has a good distinction effect on the skewness distribution, allowing it to more accurately
reflect the distinction between various defects in the ultrasonic signal.

Figure 9. Special spacing n-S map.

From the distribution range of S, conduction defect > suspension defect > water vapor
entry > leakage tracking > intact, which verifies the intensity of different defect discharge
intensities. According to the number n, the conduction and water vapor entry defects
have greater values in the region with a higher S sequence, the numerical fluctuation of
suspension defects in the entire sequence region is small, and the n of the intact insulator
and leakage tracking defects are predominantly distributed in the region with lower S
sequence.

(3) Power spectral density estimation.
The power spectral density function, also known as the power spectrum, is a function

that represents the variation of signal power with frequency in each unit frequency band, or
the signal power distribution in the frequency domain. The Blackman–Tukey method and
Welch method are used to generate two power spectra. Compared to the Blackman–Tukey
method, the spectral estimation of the Welch method is smoother, and the selection of the
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window function reduces the possibility of modal mixing, thereby improving the resolution
of power density spectral estimation.

The following frequencies are based on the actual frequency of the converted signal
because the ultrasonic instrument converts the ultrasonic signal to the human ear to identify
the acoustic wave, which is equivalent to reducing the frequency of the acoustic wave
from 18~22 kHz to 0~4 kHz. All power spectral density estimation results are shown in
Figure 10.

(a) (b)

Figure 10. Power spectral density estimation: (a) Blackman−Tukey method; (b) Welch method.

Comparing the power spectral density estimations of the Blackman−Tukey method
and the Welch method reveals that their amplitudes and graphs are similar. The Welch
method is smoother, which is the result of piecewise averaging. Compared to the
Blackman−Tukey method, the Welch method suppresses noise but also loses some signal
detail components.

Comparing different defect signals, all exhibit the shape of high before and low after,
with the maximum power density of the conductive defect being the highest, reaching
−60 dB, the amplitude of the suspension defect being slightly lower, followed by water
vapor entry, and the maximum power density of the intact insulator and the leakage
tracking being the smallest, approximately −80 dB, which can be interpreted as signal
interference caused by corona. Intact insulators, leakage tracking, and water vapor entry
defects exhibit a partial rising edge in the frequency range of 0 to 100 Hz.

3. Composite Insulator Defect Identification Method Based on Acoustic–Electric
Feature Fusion and MMSAE Network

3.1. Overall Network Architecture

This paper presents a method for diagnosing composite insulator defects based on
acoustic–electric feature fusion and multi-scale perception multi-input of a stacked auto-
encoder network. Figure 11 depicts the overall network architecture and feature dimensions
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of the method. The multi-input feature data are combined via their respective feature
extraction layers and are fed into the classification layer.

Figure 11. Overall network architecture of the proposed method.

The feature data include the electromagnetic wave peak spectrum, electromagnetic
wave average spectrum, special spacing n-S map, and power spectral density calculated
using the Blackman–Tukey method.

The feature extraction layer is constructed based on the MMSAE network. This paper
first designs an auto-encoder-based multi-scale perception module and then realizes feature
extraction and dimension reduction by stacking and connecting the encoding portions of
multiple improved auto-encoders.

The classification layer consists of the fusion layer, the hidden layer, and the output
layer. The supervised feature extraction layer is optimized, the entire network is trained
using the backpropagation algorithm, and the optimal training results are stored. The
entire network uses the Adam optimizer, the output layer activation function is softmax,
the loss function is categorical cross-entropy, and the output is seven dimensions. The
remaining layer activation functions are RELU, and the loss function is MSE.

3.2. MMSAE Network

This paper proposes a multi-scale perception module based on an auto-encoder, whose
structure is shown in Figure 11. The improved auto-encoder consists of three hidden layers.
After inputting the data Xi, the output of the first hidden layer Encoder_layer1 and the
second hidden layer Encoder_layer2 are combined by the batch normalization Dense_BN
layer and the Dropout layer, and then by output data Xi+1 after passing through the third
hidden layer Encoder_layer3, Dense_BN layer, and Dropout layer. Among them, the
batch normalization of the input of each layer can accelerate the convergence speed of the
model. The Dropout layer is appropriately added to each layer, and the parameter is set
to 0.3, improving the robustness and generalization ability of the network and preventing
overfitting.

Finally, a complete MMSAE network is constructed by cascading the encoding parts
of the aforementioned multiple improved auto-encoders, which can fully utilize the feature
information of different complexities of deep and shallow layers without increasing the
number of network parameters and obtaining richer multi-scale features. At the same time,
it can prevent overfitting caused by too many network layers and improve classification
accuracy.
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3.3. Acoustic–Electric Feature Fusion Method
3.3.1. Electromagnetic Wave Spectrum Feature Extraction

Subtracting their respective background waves from the peak spectrum and average
spectrum of all electromagnetic waves yields a matrix containing 2 × 501 × 1 corresponding
data samples. Signal features are extracted using a stacked auto-encoder, and the network
for feature extraction is pretrained. Each sample has two input variables and is entered
separately into the SAE, each AE has four hidden layers, and each SAE contains three AEs.
Thus, three decoding processes are formed. Finally, two feature extraction networks with
six hidden layers are generated to reduce the input from 2 × 501 × 1 to 2 × 100 × 1.

3.3.2. Ultrasonic Feature Extraction

(1) n-S map.
After the signal is denoised by wavelet packet and the outliers of S are removed by

box diagram, considering the influence of the recorded audio length on the number of
envelope area S, the maximum and minimum values of its own data are used instead of
the global maximum and minimum values when normalizing the n of the n-S map, so as to
express the frequency distribution relationship of S with different sizes without considering
the absolute number. The data dimension of the n-S map described previously is 200 × 1,
and the data in each sample are also input into the SAE containing two AEs by the stacked
auto-encoder. As a result, two decoding processes are generated, as well as an extraction
network with four hidden layers. The input of 200 × 1 is reduced to 50 × 1.

(2) Power spectral density.
The power spectral density is calculated by the Blackman–Tukey method. The fre-

quency domain is subdivided into 4000 intervals, and the input data for the stacked
auto-encoder is 4000 × 1. Each SAE is composed of four AEs, resulting in four decoding
processes. Finally, a network for feature extraction with eight hidden layers is generated,
and the input is reduced from 4000 × 1 to 150 × 1.

3.3.3. Feature Fusion and Classification

Intact insulators and six kinds of defects are represented by 0~6. The sample number,
type, and data quantity are shown in Table 3. The sample number is converted to one-
hot encoding as a label. The dataset is disordered, and the training set, validation set,
and test set are divided at a ratio of 6:2:2. Through the aforementioned stacked auto-
encoder, the four signal features are reduced to similar sizes to prevent one signal from
occupying an excessive amount of weight and weakening the effect of the other signals
on the results. In addition, the feature extraction method and classification network can
fuse more diagnostically relevant data and ensure the detection’s comprehensiveness and
precision by combining the benefits of various detection methods.

Table 3. Sample list.

Number Type Data Quantity

0 Intact 72
1 Conduction conductive 120
2 Conduction semi-conductive 120
3 Suspension conductive 72
4 Suspension semi-conductive 72
5 Leakage tracking 72
6 Water vapor entry 72

3.4. Diagnostic Results and Analysis
3.4.1. Fusion Diagnosis Results and Analysis

Figure 12 depicts the accuracy and loss-value of the algorithm during the training
process. After 500 generations of training, the accuracy of the training set and the validation
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set converges to 1, and the loss-value curve indicates that the model training effect is
satisfactory.

Figure 12. Accuracy and loss-value of fusion data training set and validation set.

The accuracy of the final test set obtained from the confusion matrix of Figure 13
reaches 99.17%. With strong discharge, the algorithm can accurately distinguish between
conduction and suspension defects, and with weak discharge, it can distinguish between
leakage tracking, water vapor entry, and an intact insulator.

Figure 13. Confusion matrix of fusion data.

3.4.2. Comparison and Analysis of MMSAE and ANN Results

As a mainstream artificial intelligence algorithm, ANN has been widely used in the
field of insulator defect classification and recognition and has a high recognition accu-
racy [33,34]. Therefore, under the condition of keeping the parameters of the hidden layer
dimension, the number of hidden layers, the number of iterations, the optimizer, the activa-
tion function, and the objective function consistent, the ANN and the MMSAE network
proposed in this paper are used to diagnose ultrasonic, electromagnetic wave spectrum
and acoustic–electrical fusion, respectively. Table 4 provides the results. Among them,
reasonable model evaluation metrics can quantify the classification model’s performance.
The main evaluation indexes are recall, precision, F1 score, and total accuracy.
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Table 4. Identification results of MMSAE and ANN.

Defect Type Index

MMSAE ANN

Fusion (%)
Ultrasonic

(%)
Electromagnetic

Wave (%)
Fusion (%)

Ultrasonic
(%)

Electromagnetic
Wave (%)

0
Recall 95 82.35 90 86.36 50 85

Precision 100 73.68 94.74 100 31.58 89.47
F1-score 97.44 77.78 92.31 92.68 38.71 87.18

1
Recall 100 100 100 100 100 100

Precision 100 94.12 100 100 100 100
F1-score 100 96.97 100 100 100 100

2
Recall 100 100 100 100 100 100

Precision 100 100 100 100 100 100
F1-score 100 100 100 100 100 100

3
Recall 100 84.21 100 100 100 100

Precision 100 100 100 100 100 100
F1-score 100 91.43 100 100 100 100

4
Recall 100 76.92 100 100 68.75 100

Precision 100 52.63 100 100 57.89 100
F1-score 100 62.50 100 100 62.86 100

5
Recall 100 70.59 92.86 92.31 40.91 85.71

Precision 93.33 80 86.67 80 60 80
F1-score 96.55 75 89.66 85.71 48.65 82.76

6
Recall 100 47.06 100 100 50 100

Precision 100 61.54 100 92.31 61.54 100
F1-score 100 53.33 100 96 55.17 100

Total accuracy 99.17 80.83 97.5 96.67 73.30 95.83

The following conclusions can be obtained from the above table:

1. The training effects of the two networks are compared. As training sample sets, the
fusion, ultrasonic, and electromagnetic wave data are utilized. The total accuracy ob-
tained by training on the MMSAE model was 99.17%, 80.83%, and 97.5%, respectively,
and that on the ANN was 96.67%, 73.30%, and 95.83%, respectively. It demonstrates
that the training effect of MMSAE using any data is superior to that of ANN when
using the same data.

2. Comparing the classification results of different training data, the fusion method
shows the best effect on the two models, MMSAE and ANN, with 99.17% and 96.67%
accuracy, respectively. The electromagnetic wave method is 97.5% and 95.83%, re-
spectively. The ultrasonic method has the lowest effect, which is 80.83% and 73.3%,
respectively. The classification results indicate that acoustic–electrical joint detection
can combine the benefits of the two individual detection methods to achieve superior
detection results.

3. Using the F1 score to compare the recognition of various defects, MMSAE trained
with fusion data has a good recognition effect on all defects. In the detection of
electromagnetic wave data, type 0 and type 5 are difficult to identify. The F1 score in
MMSAE is 92.31% and 89.66%, respectively, and the F1 score in ANN is 87.18% and
82.76%, respectively. Nonetheless, the electromagnetic wave spectrum method can
achieve an overall superior classification effect. In the detection of ultrasonic data,
type 0, type 4, type 5, and type 6 were difficult to identify, and the F1 score in MMSAE
is 77.78%, 62.50%, 75%, and 53.33%, respectively. The F1 score in ANN is 38.71%,
62.86%, 48.65%, and 55.17%, respectively. This indicates that the F1 score is correlated
positively with the discharge intensity of each defect type.
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4. Engineering Cases

This paper develops a composite insulator defect diagnosis software based on PYQT5
and Keras. The software utilizes the MMSAE network-based multi-source feature fusion
diagnosis method. In order to verify the effectiveness of the proposed composite insulator
defect identification method and the developed diagnostic software, ten 500 kV aging
composite insulators that were replaced on-site were subjected to testing, as shown in
Figure 14.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14. Field aging composite insulators: (a) No. 1; (b) No. 2; (c) No. 3; (d) No. 4; (e) No. 5; (f) No. 6;
(g) No. 7; (h) No. 8; (i) No. 9; (j) No. 10.

The electromagnetic wave spectrum and ultrasonic data for the three composite
insulators listed above were collected. The processed data were entered into the software
for diagnosing defects in composite insulators, and the acoustic–electric fusion method
was selected. The software diagnosis results are shown in Table 5.

To verify the accuracy of the software’s diagnostic results, the insulators were dissected,
and the core rod’s surface sheath was removed. Figure 15 depicts the details of the core rod
of each insulator. The dissection verification results are shown in Table 5.
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Table 5. Diagnosis and dissection results of engineering cases.

No. Software Diagnostics Dissection Verification

1 Conduction conductive Conduction conductive
2 Conduction semi-conductive Conduction semi-conductive
3 Water vapor entry Water vapor entry
4 Suspension conductive Suspension conductive
5 Suspension semi-conductive Suspension semi-conductive
6 Water vapor entry Water vapor entry
7 Water vapor entry Water vapor entry
8 Conduction conductive Conduction conductive
9 Leakage tracking Leakage tracking

10 Conduction semi-conductive Conduction semi-conductive

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 15. Aging composite insulators after dissection: (a) No. 1; (b) No. 2; (c) No. 3; (d) No. 4;
(e) No. 5; (f) No. 6; (g) No. 7; (h) No. 8; (i) No. 9; (j) No. 10.

In Figure 15, there is no adhesion between the sheath and the core rod of composite
insulators No. 1, No. 2, No. 8, and No. 10, the umbrella skirt sheath is severely pulverized,
and the surface of the core rod defect is yellow-white. Cutting the surface of the core rod at
the defect, the glass fiber used to make the core rod immediately fractured and pulverized.
The defect extends from the high-voltage end metal fittings to the low-voltage end and is
located on the side of the core rod. The defects are spirally extended around the mandrel,
and the extension length is No. 8 > No. 10 > No. 1 > No. 2, indicating that the longer the
extension, the more serious the defects. After analysis, it is determined that composite
insulators No. 1 and No. 8 have a conduction conductive defect, and No. 2 and No. 10
have a conduction semi-conductive defect.
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The sheath of No. 3, No. 6, and No. 7 composite insulators closely adheres to the
core rod, and the core rod defect only appears between the high-voltage end metal fittings
and the first umbrella skirt. There is no obvious pulverization on the surface of the defect,
which proves that the discharge is relatively weak. It has been determined that composite
insulators No. 3, No. 6, and No. 7 have a water vapor entry defect.

The interface adhesion between the sheath and the core rod of composite insulators
No. 4 and No. 5 is weak, the powdering of the shed sheath is more serious, and the surface
of the core rod defect also shows yellow-white. The defects are located in the middle area
of the mandrel and extend to both sides. The extension length of No. 4 is greater than that
of No. 5, indicating that the defect is more serious. After analysis, it is determined that
composite insulator No. 4 has a suspension conductive defect, and No. 5 has a suspension
semi-conductive defect.

The surface of the shed sheath at the defect of composite insulator No. 9 is cracked
and seriously pulverized. Under the combined action of electric field and electrolyte, the
surface of the core rod is partially carbonized, and finally, a conductive path is formed. After
analysis, it was determined that composite insulator No. 9 has a leakage tracking defect.
The consistency between software diagnosis and anatomical analysis results validates the
effectiveness of the MMSAE algorithm and defect-recognition software.

5. Conclusions

In view of the limitations of existing live defect-detection methods for composite
insulators, this paper proposes a multi-scale perception multi-input deep learning network
and develops a composite insulator defect diagnosis model based on acoustic–electric joint
detection. The following are the conclusions:

1. Based on the discharge characteristics of defective composite insulators, six common
defects are simulated artificially. The electromagnetic wave peak spectrum, electro-
magnetic wave average spectrum, ultrasonic n-S map, and power spectral density of
various defects can distinguish composite insulators with various defects.

2. The network architecture of MMSAE is proposed based on acoustic and electrical
information. First, the multi-source input data are pre-trained, then the output is
fused, and finally, the final fine-tuning is performed to solve the problem that different
types of field-based detection methods cannot share information. At the same time,
the feature extraction method and classification network are extensible, allowing
for the fusion of additional diagnostically useful data. By combining the benefits
of various detection methods, the comprehensiveness and accuracy of detection are
ensured.

3. Based on the model evaluation index’s total accuracy and F1 score, it is demonstrated
that acoustic–electric fusion is more effective than the use of two detection methods
separately. In the ultrasonic method, electromagnetic wave spectrum method, and
acoustic–electric fusion method, it is demonstrated that MMSAE achieves greater
accuracy than conventional ANN networks.

4. The composite insulator defect diagnosis software is used to identify the defects of the
aging composite insulator on site. The consistency between the software diagnosis
results and the anatomical analysis results validates the efficacy and applicability of
the MMSAE algorithm and the defect identification software.

The method proposed in this paper can fully serve the state detection of transmission
lines. In future research, improvement and in-depth mining analysis of the technology can
be carried out from the following two aspects: on the one hand, with the emergence of
more detection methods, the algorithm structure and label categories can be expanded. On
the other hand, by adding more environmental factors to the training samples, the feature
set can be continuously expanded to improve the sample library. Finally, it provides ideas
for the multi-source feature fusion composite insulator online diagnosis system with more
perfect functions, more accurate identification and diversification.
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Abstract: To overcome the incomplete decomposition of vibration signals in traditional motor-
bearing fault diagnosis algorithms and improve the ability to characterize fault characteristics and
anti-interference, a diagnostic strategy combining dual signal reconstruction and deep learning
architecture is proposed. In this study, an improved complete ensemble empirical mode decompo-
sition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD)-based signal
reconstruction method is first introduced to extract features representing motor bearing faults. A
feature matrix construction method based on improved information entropy is then proposed to
quantify these fault features. Finally, a fault diagnosis algorithm architecture integrating a multi-scale
convolutional neural network (MSCNN) with attention mechanisms and a bidirectional long short-
term memory network (BiLSTM) is developed. The experimental results for four fault states show
that this model can effectively extract fault features from original vibration signals and, compared to
other fault diagnosis models, offer high diagnostic accuracy and strong generalization, maintaining
high accuracy even under varying speeds and noise interference.

Keywords: motor bearings; fault diagnosis; feature extraction; signal reconstruction; deep learning

1. Introduction

Electric motors are ubiquitous in the realm of rotating machinery and find extensive
application across electrical and energy-related industries. However, their operation often
occurs under harsh conditions, making them prone to failures that can lead to shutdowns
and pose significant threats to production safety. To ensure safe and continuous opera-
tions while mitigating economic losses associated with maintenance and repair, rapid and
accurate fault diagnosis of motor bearings is essential [1,2].

Traditionally, fault diagnosis methods for electric motor bearings have relied on
signal processing techniques [3–5]. These methods typically analyze vibration signals
or current signals in the time domain, frequency domain, or both, to diagnose bearing
faults. Commonly used signal processing methods include empirical mode decomposition
(EMD) [6], variational mode decomposition (VMD) [7], and wavelet transform [8]. While
EMD is capable of processing non-linear and non-stationary signals using adaptive basis
functions, it may suffer from mode mixing, which can degrade the accuracy of signal
decomposition [9]. Ensemble empirical mode decomposition (EEMD) addresses this issue
by effectively suppressing mode mixing [10]. VMD, as a newer adaptive signal processing
method, transforms the signal decomposition process into a variational problem, thereby
achieving adaptive separation of signals without mode mixing or endpoint effects [11,12].
Despite these advancements, the non-stationary and non-linear characteristics of real-world
bearing vibration signals present challenges for feature extraction. As a result, traditional
signal processing approaches alone make it hard to provide adaptive fault diagnosis. The
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development of fault classification methods integrating multiple methodologies has become
a leading direction in this field.

With the advent of artificial intelligence, deep neural networks have demonstrated
unique advantages in handling data with non-linear relationships. Numerous studies
have applied deep learning algorithms to establish mappings between signals and faults,
facilitating fault diagnosis for electric motor bearings [13]. The limitations of traditional
CNNs have led to the emergence of a new type of CNN called CapsNet, which overcomes
the problems of CNN position information loss and feature reuse [14]. Additionally,
Ref. [15] indicated that traditional deep learning-based bearing fault diagnosis methods
assume that the training and testing data follow the same distribution. However, in practical
scenarios, the distribution of bearing data may vary, invalidating this assumption and
leading to a significant decline in diagnostic performance. To address this issue, the concept
of transfer learning has been introduced in deep learning, allowing knowledge gained from
other data or models to be transferred to the current task, thereby effectively resolving this
problem. Similarly, algorithm architectures based on combined recurrent networks have
also been proposed to overcome similar problems. For instance, a combined Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM) model was proposed for
bearing fault diagnosis [16] using time–frequency images and vibration signals as inputs
for multi-dimensional feature extraction and fusion. Another study introduced a hybrid
CNN-LSTM neural network for end-to-end rolling bearing fault diagnosis [17]. Yet another
approach combined the CNN and bidirectional LSTM (BiLSTM) to adaptively extract
features for bearing fault diagnosis [18]. Although these integrated methods have shown
promise, they still face challenges in complex vibration environments, including incomplete
signal decomposition, weak correlation between defect features and signals, and limitations
in model interpretability and generalization.

To address these issues, we propose a novel fault diagnosis model based on signal
reconstruction and feature dependency. In our research, we first combine Improved
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN)
and VMD to extract effective vibration signal components under complex noise conditions.
We then introduce an improved signal entropy-based method to quantify defect features,
yielding parameters corresponding to different fault states. Finally, we utilize attention
mechanisms to enhance the interpretability and generalization capabilities of the MSCNN-
MSBiLSTM model for fault diagnosis. Our results demonstrate that the proposed model can
adaptively adjust its parameters based on signal features, achieving a diagnostic accuracy
of 95% under laboratory conditions. Thus, the methodology presented here offers a new
algorithmic framework for the fault diagnosis of electric motor bearings.

2. Experimental Platform and Data Description

To substantiate the efficacy and practical applicability of the proposed diagnostic
methodology, this study analyzes a publicly available dataset provided by Case Western
Reserve University (CWRU). The CWRU rolling element bearing fault simulation test rig,
depicted in Figure 1a, was utilized [19].

Data acquisition was performed at a sampling frequency of 15 kHz, with the motor
operating at a speed of 500, 700, and 900 rpm. Three distinct fault diameters of 0.21 mm,
0.33 mm, and 0.52 mm were simulated, representing inner race, outer race, and rolling
element faults, respectively, along with a healthy condition. A sling window technique
with a fixed sample length (4096) and a fixed sampling interval (2000) was employed to
extract signal samples from the CWRU dataset.

Specifically, the vibration signals generated by the motor’s rolling bearings constitute
a one-dimensional time series with temporal characteristics. The raw measurement signals
corresponding to the four conditions, including healthy (HEA), inner race fault (IRF), outer
race fault (ORF), and rolling element fault (REF) are illustrated in Figure 1b. The data used in
the current database are collected under the same platform and conditions, so the samples in
the dataset follow the same generation process or distribution. To evaluate its homogeneity
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and representativeness, the mean standard deviation is performed on the signals of 4000
samples (including four types of states), and the results are shown in Figure 1c.

  
(a) (b) 

 
(c) 

Figure 1. (a) CWRU rolling bearing for fault simulation test bench in [17], (b) original signal of rolling
bearing corresponding different states, (c) the standard deviation of all specimens.

Additionally, the original data are divided into datasets Φ1, Φ2, and Φ3 according to
the three speeds. Then, for each given speed, 1000 samples were randomly selected and
subsequently divided into training, testing, and verifying sets at a 7:2:1 ratio. This process
then yielded a training set consisting of 2800 samples and a testing/verifying set containing
800/400 samples, both of which included all four defect categories (HEA, IRF, ORF, and
REF), as tabulated in Table 1.

Table 1. Details of the training and test corresponding to various speeds.

Dataset Training Set Test Set Verification Set State

Φ1/Φ2/Φ3/Φ4

175 50 25 HEA
175 50 25 IRF
175 50 25 ORF
175 50 25 REF

Total 2800 800 400

3. Signal Decomposition and Feature Extraction Model

3.1. Signal Reconstruction Method Based on ICEEMDAN and VMD

Step I. Acquisition of high-frequency characteristics of signals

CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise) is a signal processing method designed to decompose complex signals into several
Intrinsic Mode Functions (IMFs) [20]. While CEEMDAN reduces modal aliasing, it faces
challenges in the early stages of decomposition due to the presence of significant noise
and similar-scale features in the fault signals, which hinder the precise selection of IMFs.
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Kernel Principal Component Analysis (KPCA) can effectively extract non-linear features
and reduce dimensionality by mapping data into a high-dimensional feature space, thereby
efficiently handling complex datasets [21].

Therefore, incorporating KPCA into the CEEMDAN framework not only preserves the
non-linear characteristics of the data but also eliminates redundant information, aiding in
the extraction of more representative and discriminative non-linear principal components.
This paper employs cross-analysis to determine the optimal component set, ensuring the
retention of critical information during dimensionality reduction and the extraction of
appropriate fractal dimensions of non-linear principal components. The flowchart of the
improved CEEMDAN algorithm is presented in Figure 2.

 

Figure 2. Computation scheme of ICEEMDAN.

For bearing vibration signals, the first IMF component derived from the ICEEMDAN
algorithm primarily encapsulates the high-frequency elements or the most dynamic portions
of the original signal. Since high-frequency components are indicative of mechanical faults,
the first IMF is crucial for early fault detection and diagnosis. The outcomes of signal decom-
position for the four states using ICEEMDAN are illustrated in Figure 3 (one sample from
each state listed in Table 1 was randomly chosen for demonstration, and IMFs are preset as
6).

Step II. Acquisition of high-frequency characteristics of signals

Since the first IMF from ICEEMDAN encompasses high-frequency components, VMD
can further separate distinct characteristic frequencies within this high-frequency infor-
mation [7], offering a more precise spectral analysis. This additional decomposition aids
in clearly identifying these features, thereby improving the accuracy of fault detection.
Additionally, the VMD algorithm effectively distinguishes between different frequency
components, aiding in noise reduction and preserving more relevant signal features. The
detailed V-IMF components derived from the VMD decomposition of IMF1, as illustrated
in Figure 3, are shown in Figure 4 (the number of V-IMF components is preset as 7).
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(a) (b) 

  
(c) (d) 

Figure 3. Signal decomposition results via ICEEMDAN. (a) HEA, (b) IRF, (c) ORF, and (d) REF.

  
(a) (b) 

  
(c) (d) 

Figure 4. Sub−signal decomposition results (V−IMF) via VMD. (a) HEA, (b) IRF, (c) ORF, and (d) REF.
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3.2. Fault Feature Extraction Method Based on Improved Information Entropy (IIE)

Fault signals often introduce non-periodic or abrupt components into the signal.
Information entropy highlights these anomalies, assesses the significance of various modes,
and determines the purity of the signal, thereby assisting in fault diagnosis [22]. For the
IMF components of vibration signals, a more ordered system corresponds to lower entropy
values. The specific method for calculating information entropy is as follows.

For any variable X, the expression for information entropy H(X) is as follows:

H(X) = −
n

∑
i=1

pilgpi (1)

In (1), pi is the ratio of the energy of the i-th IMF component to the total energy, and
the IMF component is obtained from VMD (in Figure 4). The calculation formula for pi is
as follows:

pi =
Ei
E , E =

n
∑

i=1
Ei

s.t. Ei =
∞∫

−∞
x2(t)dt =

∞∫
−∞

[
n
∑

i=1
xi(t)

]2
dt

(2)

where x(t) is the input signal sequence concerning time t and Xi is the i-th signal.
When information entropy is used to describe bearing motion, fault-induced periodic

impacts lead to a more ordered signal. Thus, IMF components containing fault signals
will exhibit lower entropy values. However, during the early stages of bearing faults, the
features may be less pronounced, resulting in lower identification rates. To address this,
improvements to entropy are necessary, such as amplifying individual IMF features.

Additionally, kurtosis, an important indicator for describing waveform peaks and
evaluating fault impacts, can enhance the model’s sensitivity to impact information. The
entropy can be refined using kurtosis and is defined as follows:

Qi =
Ki
Hi

(3)

In (3), Qi is the improved information entropy of the i-th IMF component and Hi
and Ki are the information entropy and kurtosis indicators of the i-th IMF component,
respectively. Since information entropy only represents the corresponding amount of IMF
information, and due to environmental noise and other reasons, fault information does not
show obvious entropy values.

Then, the number of IMFs decomposed from each specific signal segment is constant, and
the improved information entropy of IMFs will have an upper limit value of the following:

max(Q) = − ln
1
n

(4)

In (4), n is the number of IMFs obtained by decomposition and Q is information entropy.
The average improved information entropy of a single set of original signals is as follows:

−
Q =

� · · · ∫ Q dQ1 dQ2 · · ·dQn� · · · ∫ dQ1 dQ2 · · ·dQn
=

n

∑
i=2

Qi
2n

(5)

Compared to the unmodified entropy in (3) to (5), IIE uses kurtosis to improve the model’s
sensitivity to impact information and address the issue of low recognition rates of entropy in
less distinct fault components. Finally, relying on the above calculation process, the information
entropy corresponding to the V-IMF obtained from VMD decomposition is calculated and used
as the feature input (4000 × 7) for training CNN BiLSTM with different samples.

To examine the discrimination of these features in the case of state evaluation, t-
distributed stochastic neighbor embedding (t-SNE) [23] is thus used for visualizing the
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formed feature input, and the resulting pictures are presented in Figure 5. The t-SNE algo-
rithm, known for its efficiency and visualization capabilities in dimensionality reduction,
aims to visualize the discrimination of features corresponding to different fault states. In
Figure 5, 4000 signals with improved entropy (fault features, seven dimensions) are used
as input, resulting in a three-dimensional fused feature representation (which lacks specific
physical meaning). The visualization in Figure 5 shows that the signal features of different
fault states (indicated by different colors) exhibit distinct regional distributions.

 

Figure 5. The t-SNE results for visualizing the discrimination of feature input corresponding to
various states.

4. Fault Diagnosis Model Based on Data-Driven and Deep Learning

4.1. MSCNN-BiLSTM-Based Fault Diagnosis Model Integrating an Attention Mechanism

In this study, spatial features are initially extracted using a feature selection layer and
a multi-scale feature extraction layer, followed by temporal feature extraction through a
BiLSTM layer. A self-attention mechanism is then introduced for adaptive fusion of all
features, culminating in fault diagnosis results via a Softmax layer. The preliminary feature
screening significantly impacts model performance. Bearing fault features are typically low-
frequency signals; thus, larger convolution kernels are employed to enhance low-frequency
feature extraction and suppress high-frequency noise, while also accommodating the
periodic nature of vibration signals by providing a broader receptive field.

Consequently, the model utilizes large convolution kernels for initial feature screening,
followed by batch normalization and max pooling layers to accelerate convergence and
mitigate gradient issues. An optimized Inception module is employed to construct a
multi-scale feature extraction module, thereby improving feature extraction capabilities at
various scales. To further refine the network structure and enhance fault diagnosis accuracy,
batch normalization is applied after each convolution operation to expedite training and
prevent overfitting. Additionally, channel attention modules are integrated with post-post-
feature extraction to generate and continuously optimize channel-specific weights. The
self-attention mechanism effectively mitigates redundant feature interference and prevents
loss of critical information, thus improving diagnostic performance. The mathematical
expression for this process is as follows:

Aatt(Q, P, V) = Softmax

(
f
(
Q, PT)√

dp

)
V (6)

where Q, P, and V represent the query value, calculated value, and weight, respectively; f (Q,
PT) is used to calculate the similarity between Q and P; dp is the feature vector dimension;
and Softmax is a normalization function.

The feature extraction subnetwork and channel attention modules are alternately
arranged to construct a multi-scale feature extraction module. This module continuously
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refines fault data by emphasizing critical features and suppressing noise, thereby enhancing
diagnostic efficiency. Subsequently, features from different channels are merged and
processed through a max pooling layer to retain essential characteristics and reduce model
parameters. Spatial features extracted from the multi-scale feature extraction module are
then fed directly into the BiLSTM layer to capture temporal information from vibration
signals. Outputs from the BiLSTM layer are input to a self-attention mechanism to improve
the network’s focus on global key features. Dimensionality reduction and information
integration are performed via global average pooling, and the fault diagnosis results are
ultimately produced by a Softmax classifier.

4.2. Computation Scheme and Parameter Values

Based on the previous sections, high-frequency signal components used to characterize
fault features were obtained through ICCEMDAN and VMD decomposition. Subsequently,
improved entropy was employed to achieve quantitative descriptions of different fault
signals. Finally, a fault state evaluator was established using the entropy feature matrix
based on the algorithm framework shown in Figure 6, with the entire algorithm framework
illustrated in Figure 7.

 

Figure 6. Multi-scale feature extraction module structure.

 

Figure 7. Entire algorithm framework for fault diagnosis.

In the current work, the main hyper-parameter (HP) includes the number of IMFs
in both ICEEMDAN and VMD, as well as the learning rate of MSCNN-BiLSTM. It can
significantly affect the overall performance of algorithms; the selection of the optimal
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value of them is thus rather fundamental. Given the small parameter range and only three
optimization variables in this case, iterative computation to determine optimal parameters
is more suitable.

Therefore, we use ICEEMDAN and VMD to decompose all signals (4000 signals, the
length of the signal is 4096), with the mean residuals serving as criteria for selecting the
number of decompositions; accuracy on the validation set (400 signals) is used to choose
the learning rate for MSCNN-BiLSTM. The criteria values corresponding to different
parameters are shown in Figure 8. Under the condition of ensuring the highest accuracy of
signal decomposition and the evaluation results, the number of IMFs in ICEEMDAN and
VMD is five and seven, respectively, and the learning rate for MSCNN-BiLSTM is 0.006.

(a) (b) (c) 

Figure 8. The criteria values correspond to different parameters: (a,b) are the number of IMFs, (c) is
the learning rate.

Given that model parameters significantly impact signal processing results and the
final evaluation outcomes, the parameters listed in Table 2 were used throughout all sample
data preprocessing, feature extraction, and training. Finally, Figure 9 presents the accuracy
(using a test set in Table 1) during the 50 iterations, in which the computation is completed
by a computer with a 2nd Gen Intel(R) Core(TM) i9-12900K CPU at 3.20 GHz and a 64 bit
Win 11 system with 16.0 GB of RAM. The Matlab Deep Learning Toolbox is used in this
work for fault diagnosis. The computation time is 144 s. Obviously, the final accuracy of
the test set is close to 98%.

Table 2. Parameter values used in the contained models.

Parameters used in ICCEMDAN

Number of IMFs STD of added noise Ensemble members Window length
5 2% 30 1/4

Parameters used in VMD

Number of IMFs Penalty factor Convergence threshold Iterations
7 10 1 × 10−6 50

Parameters used in MSCNN-BiLSTM

Minimum batch size Iterations Learning rate Solver
64 50 0.006 “adam”

Number of states Gradient threshold Learning rate decline cycle Learning rate decline factor
4 1 20 0.25
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Figure 9. The diagnosis accuracy during the iterations.

5. Verification for Fault Diagnosis

5.1. Diagnosis Results Analysis

The training and testing sets with sample sizes of 2800 and 800, respectively, are
used to train the fault assessment for motor bearings in four different states. The internal
parameters and training process of the evaluator are detailed in Table 2 and Figure 9.
Additionally, a validation set with a sample size of 400 (details in Table 3) is used to
assess the accuracy of the constructed evaluator. First, the ICCEMDAN decomposition is
applied to the 400 validation vibration signals based on the computation process shown
in Figure 8. Then, the first IMF component obtained is further decomposed using VMD
to obtain 7 V-IMF components. Next, the improved entropy of each V-IMF is calculated
and used as feature inputs for the fault evaluator. Finally, the evaluation state is obtained
through the CNN-BiLSTM model with an attention mechanism. Figure 10a shows the final
confusion matrix, and Figure 10b compares the evaluations and actual states for different
fault conditions. It can be seen that the reported evaluator achieves an overall assessment
accuracy of 99.25%, with fault assessment accuracy reaching 100% for HEA and ORF states.

Table 3. Details of the used verification set.

HEA IRF ORF REF

Number 89 104 101 106
Labeled as 1 2 3 4

(a) (b) 

Figure 10. (a) Confusion matrix of the evaluation results. (b) Comparison of the evaluated and
actual states.
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5.2. Comparison of Fault Diagnosis Accuracy via Different Models

To demonstrate that the current model combining multiple processing methods is op-
timal, this section conducts comparative experiments using the same sample data. Specifi-
cally, the models ICEEMEDAN-VMD-IIE-CNN, VMD-IIE-CNN-BiLSTM, and ICEEMDAN-
IIE-CNN-BiLSTM are selected. The algorithm parameters and computational conditions
are consistent with those described in Section 5.1.

Then, Figure 11 presents the confusion matrices for the three combined models men-
tioned above. Table 4 shows the fault state assessment accuracy for each model. The
differences in classifiers have a minimal impact on overall accuracy, while the reconstruc-
tion (decomposition) methods for signals are crucial for the assessment. In summary, it
is evident that the method reported in this paper effectively extracts fault features from
samples, ensuring high accuracy in state evaluation.

   
(a) (b) (c) 

Figure 11. Accuracy of the evaluation results. (a) ICEEMEDAN-VMD-IIE-CNN, (b) VMD-IIE-CNN-
BiLSTM, (c) ICEEMDAN-IIE-CNN-BiLSTM.

Table 4. Accuracy comparison of the evaluation results of various combinations.

Reported Model
ICEEMEDAN-

VMD-IIE-CNN
VMD-IIE-CNN-

BiLSTM
ICEEMDAN-IIE-

CNN-BiLSTM

Accuracy 99.25% 95.75% 82% 85%

Table 4 compares the proposed ICEEMEDAN-VMD-IIE-CNN with VMD-IIE-CNN-
BiLSTM and ICEEMDAN-IIE-CNN-BiLSTM to highlight the contribution of ICEEMEDAN-
VMD. According to this comment, we added the additional methods (SVM, GRNN, and
DPRNN), and a detailed table of comparison with the state-of-the-art methods is tabulated
in Table 5.

In the experiments, “×” indicates non-applicability, with decomposed signals used as
feature inputs. The SVM parameters are set with a penalty factor of 0.1 and a radial basis
function kernel; the GRNN parameters include a spread parameter of 0.5. The DPRNN
parameters are configured as follows: seven layers, a stride of 1, ReLU activation function,
a dropout rate of 0.3, a learning rate of 0.001, a batch size of 64, and the Adam optimizer.
All other computational and sample conditions remain consistent.

According to the results, the impact of different classifiers on the evaluation outcomes
is not significant when the signal reconstruction and feature extraction methods are the
same. This is because the input features already exhibit good separability, as demonstrated
by the TSNE results in Figure 5 in the revised manuscript.
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Table 5. Accuracy comparison of the evaluation results corresponding to various models.

No. Signal Reconstruction
Feature

Selection
Classifier Accuracy

1 ICEEMEDAN-VMD IIE MSCNN-BiLSTM 99.25%
2 ICEEMEDAN-VMD IIE CNN 82%
3 ICEEMDAN IIE CNN-BiLSTM 85%
4 ICEEMEDAN-VMD × MSCNN-BiLSTM 86.5%
5 ICEEMEDAN-VMD IIE SVM 93.75%
6 ICEEMEDAN-VMD IIE GRNN 95.25%
7 ICEEMEDAN-VMD IIE DPRNN 96.5%
8 ICEEMEDAN IIE DPRNN 86.25%
9 VMD IIE DPRNN 84.75%

10 ICEEMEDAN-VMD × DPRNN 88.5%

6. Conclusions

Given the faced shortcomings, this work proposed an intelligent strategy for fault
diagnosis via the combination of signal reconstruction and deep learning, and the current
findings lead to the following conclusions.

The strategy of combining ICEEMDAN and VMD enables adaptive signal decompo-
sition, streamlining fault feature extraction through improved information entropy and
avoiding the complexities of manual feature extraction while significantly enhancing com-
putational efficiency. The developed fault classifier not only captures multi-scale spatial
and temporal features but also integrates a channel attention mechanism, which improves
the model’s ability to select and extract fault features.

The comparative experimental results demonstrate that the proposed model exhibits
strong generalization and versatility, maintaining high fault diagnosis accuracy (99.25%)
under varying speeds and noisy conditions, outperforming comparison models. However,
due to the low number of training and test samples, as well as the optimization of hyper-
parameters and algorithm architecture, further testing and research are needed to assess its
applicability to other bearing faults and mixed fault scenarios.
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Abstract: This paper proposes a novel optimization method for fault current limiter (FCL)
reactance configuration based on joint simulation and penalty function constraint opti-
mization. By integrating MATLAB and ATP for joint simulation, the method accurately
derives the constraint conditions of the objective optimization function, providing critical
data support for the optimization process. To address the challenges of high computational
complexity and solution difficulties in constrained optimization, the Penalty Function
Method (PFM) is employed to transform the original constrained optimization problem
into a standard unconstrained optimization problem, significantly reducing computational
complexity and ensuring the feasibility of the solution. On this basis, the Gravitational
Search Algorithm (GSA) is applied to compute the optimal reactance value. Through com-
parative analysis of engineering case studies, the superiority of the GSA over the Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) in optimization performance is
validated, further confirming the accuracy and efficiency of the proposed method. The
results indicate that this method not only achieves precise calculation results but also
significantly improves computational efficiency. Moreover, the integration of PFM and GSA
demonstrates excellent robustness, providing reliable technical support for the optimized
deployment of fast-switching fault current limiters in large-scale power grids.

Keywords: fault current limiter; optimal configuration of reactance value; joint simulation;
penalty function method; gravitational search algorithm

1. Introduction

With the continuous expansion of China’s power grid, the levels of short-circuit
current across various voltage levels have been rising year by year, posing unprecedented
challenges to the stability of the power system [1,2]. Taking the Hebei power grid as
an example, calculations of the short-circuit withstand capacity of 220 kV transformers
revealed that 73 transformers (accounting for 87%) had medium- and low-voltage side
windings that did not meet the required standards. Among these, a significant number of
transformers had major safety concerns on their medium-voltage side. Even more critically,
in recent years, multiple incidents of medium-voltage side equipment damage due to
short-circuit current impacts have occurred in the Hebei power grid, further highlighting
the vulnerability of the system under short-circuit fault conditions.

Traditionally, solutions such as adjusting the grid structure or changing the operational
mode are used to limit short-circuit currents [3]. However, these approaches require
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long construction periods, incur high costs, and may trigger a series of chain reactions,
thereby reducing the overall stability and reliability of the power grid [4]. Additionally,
installing fault current limiters (FCLs) on transmission lines can lead to increased reactive
power losses during normal operation, affecting the power flow distribution [5]. Although
installing FCLs at the transformer neutral points can limit short-circuit currents to some
extent, unbalanced currents may still flow through the neutral point during operation,
resulting in some power losses [6].

To address these challenges effectively, researchers have proposed using FCLs to
limit short-circuit currents while avoiding energy losses from unbalanced currents during
normal operation [7]. Recently, with advancements in fast-switching technology, fast-
switching fault current limiters (FSFCLs) have gained widespread application. Compared
to traditional FCLs, FSFCLs offer numerous advantages, including faster switching speeds,
better economic performance, and higher reliability, making them an effective solution to
the short-circuit current issue [8].

Existing studies have primarily focused on the FCL devices themselves and their
applications on transmission lines [9,10]. For example, Gong Xianfu et al. [11] compared
the effectiveness of installing short-circuit current limiting devices at transformer neutral
points versus on transmission lines. Their results indicated that installing such devices
near transformers not only reduces costs but also better suppresses short-circuit currents.
Xia Shengguo et al. [12] conducted electromagnetic transient simulations to evaluate the
effectiveness of FCLs with highly coupled split inductors on transmission lines. Professor
Zhao Chengyong and colleagues [13] proposed a novel FCL topology for HVDC systems,
which limits short-circuit current peaks by rapidly engaging energy-absorbing resistors
and coordinating with DC circuit breakers. While these studies have focused on innovative
devices and topologies, less attention has been given to selecting the optimal parameters
and configuring the inductance.

In practical applications, traditional methods for calculating fault current limiter
inductance typically involve setting an initial inductance value, followed by extensive short-
circuit calculations for different installation positions, transformer operating modes, and
fault types. These calculations provide short-circuit current values for various scenarios,
ensuring that the currents do not exceed the permissible limits [14]. Additionally, the
potential overvoltage across the neutral point insulation when installing a fast-switching
fault current limiter must be calculated to ensure it remains below the transformer’s
insulation rating [15]. However, since inductance is inversely proportional to short-circuit
current and directly proportional to overvoltage, this process often requires multiple trial
calculations, making it time-consuming and inefficient. This inefficiency is especially
problematic in large-scale grids, such as the Hebei power grid, where numerous variables
and transformers need to be considered.

To enhance the efficiency of fault current limiting reactance configuration, this paper
proposes an optimization method based on joint simulation and penalty function constraint
optimization. The method sets the reactance value as the optimization objective and
first utilizes joint simulation with MATLAB R2021b and ATP-EMTP to derive constraint
conditions, providing precise data support for the optimization process. Subsequently,
the PFM is introduced to transform the original constrained optimization problem into
a standard unconstrained optimization problem, significantly reducing computational
complexity and effectively addressing constraint issues. On this basis, the GSA is employed
to compute the optimal reactance value. Through a comparative analysis of engineering
cases, the superiority of the GSA over GA and PSO is demonstrated, further validating
the accuracy and efficiency of the proposed method. The results indicate that the method
not only delivers precise calculation results but also significantly improves computational
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efficiency. Moreover, the integration of PFM and GSA exhibits excellent robustness, making
the method particularly suitable for the optimization and deployment of fast-switching
fault current limiters in large-scale power grids. This optimization method effectively
reduces computation time while providing reliable technical support for the widespread
application of fast-switching fault current limiters in power systems.

2. Materials and Methods

2.1. Working Principle of FSFCL

The fast-switching fault current limiter consists of a current-limiting reactor, fast switch,
overvoltage protection, controller, and current transformer (as shown in Figure 1) [8].
During normal operation, the fast switch remains closed, resulting in minimal device losses
and no impact on the power grid. When the current transformer detects a fault current,
the fast switch rapidly opens, and the current-limiting reactor is engaged to effectively
control the fault current within the safe operating range of the transformer. After the fault
is cleared, the fast switch closes again, ensuring the stable operation of the power grid [16].
The physical model of FSFCL is shown in Figure 2.

 

Figure 1. Schematic diagram of FSFCL structure.

 
Figure 2. The physical model diagram of FSFCL.

2.2. Current-Limiting Reactor Inductance Optimization Model
2.2.1. Objective Solution Model for Current-Limiting Reactance Value

The cost of a fast-switching fault current limiter is primarily influenced by the equip-
ment and installation costs. Since the fast-switching fault current limiter is mainly com-
posed of a current-limiting reactor, fast switch, controller, and current transformer, most
of the costs are difficult to reduce. The cost of the current-limiting reactor is positively
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correlated with the equivalent inductance of the reactor. Therefore, the objective function
min f is set as the equivalent inductance value x of the current-limiting reactor in the fault
current limiter.

min f = x (1)

The optimization of the fast-switching fault current limiter configuration must also
satisfy the following constraint:

(1) Short-Circuit Current Constraint

To ensure the reliable operation of transformers, constraints should be imposed on
short-circuit currents. According to the literature [17], when a short-circuit occurs in the
nearby area, the short-circuit surge current through the windings increases significantly. If
it exceeds 90% of the permissible short-circuit current, it may lead to the risk of transformer
damage. Therefore, it is required that the maximum short-circuit current of each winding
does not exceed 90% of the allowable short-circuit current. The short-circuit current
constraint is thus set as follows: {

I1(x)− αIB ≤ 0
I2(x)− αIB ≤ 0

(2)

where I1(x) represents the maximum short-circuit current in each winding during a two-
phase ground fault; I2(x) represents the maximum short-circuit current in each winding
during a two-phase ground fault; α is a constant of 0.9, and IB denotes the maximum
allowable short-circuit current that can pass through each winding of the transformer.

(2) Overvoltage constraint

To prevent the overvoltage at the transformer neutral point from exceeding the insula-
tion level and causing accidents after the current-limiting reactor is connected, constraints
should be set for the neutral point overvoltage. According to the literature [18], the operat-
ing voltage of the equipment at the neutral point on the 110 kV side of the transformer is
72.5 kV. Its rated lightning impulse withstand voltage should be less than 325 kV, and the
rated short-time power frequency withstand voltage should be less than 140 kV. Therefore,
the following constraints are set for overvoltage:

{
U1(x)− v1 < 0
U2(x)− v2 < 0

(3)

where U1(x) is the rated lightning impulse withstand voltage of the current-limiting reactor;
U2(x) is the rated short-time power frequency withstand voltage of the current-limiting
reactor; v1 is the maximum lightning impulse withstand voltage, equal to 325 kV; v2 is the
maximum short-time power frequency withstand voltage, equal to 140 kV.

2.2.2. Objective Optimization Mode Based on the Penalty Function Method

The Penalty Function Method [19] adds a penalty term to the objective function with
constraints, transforming a constrained optimization problem into an unconstrained one,
thus avoiding the situation where no feasible solution can be found. In this study, the
constraints, including short-circuit current and overvoltage, are converted into penalty
function forms. These penalty terms are then incorporated into the objective function
concerning the fault current limiter reactance value, resulting in a fitness function. This
combined fitness function is used to efficiently solve the equivalent impedance value of the
fault current limiter.
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By introducing penalty functions ki (i = 1, 2, 3, 4) and combining with Equations (1)–(3),
the transformed conventional unconstrained optimization equation is as follows:

minF(x, ki) = f (x) +
4

∑
i=1

ki · max(0, gi(x)) (4)

where gi(x) is derived from the constraint conditions as the penalty equation, as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(x) = I1(x)− αIB

g2(x) = I2(x)− αIB

g3(x) = U1(x)− v1

g4(x) = U2(x)− v2

(5)

3. Results and Discussion

3.1. Joint Simulation Method Based on ATP and SIMULINK

In this study, both Simulink and ATP-EMTP simulation tools were utilized, as each
offers distinct advantages in specific application scenarios. Simulink excels in modeling
low-frequency dynamics and control systems, making it particularly suitable for analyzing
power frequency components in single-phase and two-phase ground fault currents (Ik1/Ik2),
where steady-state or quasi-steady-state conditions dominate. Its electrical network models
enable rapid solutions and facilitate the integration of control strategies, such as the timing
and logic of fast-switch actions. However, for high-frequency electromagnetic transient
analysis, Simulink may introduce larger errors or require more complex models.

In contrast, ATP-EMTP is highly precise for high-frequency phenomena, such as
lightning overvoltage, due to its support for smaller simulation time steps and the use of
distributed parameter models for transmission lines and BCT models for transformers. This
allows ATP-EMTP to better capture high-frequency transient behaviors, including neutral
point overvoltage (UTV/UAC). Although ATP-EMTP can also analyze short-circuit currents,
it is less convenient for co-simulation with control systems and other tools like MATLAB,
and it demands more computational resources for high-frequency transient handling.

By combining both tools, this study achieved a comprehensive and accurate ap-
proach to address various analysis tasks. This dual-tool strategy leverages the strengths of
each—ensuring high-precision electromagnetic transient analysis with ATP-EMTP and flex-
ible control system integration with Simulink—while mitigating the limitations associated
with using a single tool.

3.1.1. Simulink Short-Circuit Current Simulation Calculation

To accurately assess the severe, short-circuit faults that may occur on the medium-
voltage side under the most adverse conditions, short-circuit current simulation calculations
need to be carried out. The simplified system topology is shown in Figure 3. In this paper,
it is assumed that the transformer and its respective system sides all operate at maximum
load, and the fault location is set at the near end of the medium-voltage side of the
transformer [20].

Upon analysis, it was found that installing a current-limiting reactor at the high-
voltage side neutral point does not significantly increase the zero-sequence impedance
at the fault point, resulting in unsatisfactory fault current limitation. Additionally, the
increased impedance on the high-voltage side can cause an increase in the zero-sequence
fault current flowing into the low-voltage side windings during an unbalanced ground
fault, potentially creating new safety hazards. Therefore, it is advisable to install the
current-limiting reactor at the medium-voltage side’s neutral point.
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Figure 3. Power system topology diagram of a 220 kV substation.

The simulation model built in Simulink is shown in Figure 4, where the fault type
can be set at the lightning symbol position in the figure. In this model, the input is the
equivalent inductance value of the fast-switching fault current limiter. When the fault type
is a single-phase ground fault, the short-circuit current value Ik1 is calculated. When the
fault type is a two-phase ground fault, the short-circuit current value Ik2 is calculated.

 
Figure 4. Simulink asymmetric short-circuit simulation model.

3.1.2. ATP-EMTP Overvoltage Simulation Calculation

During normal system operation, the neutral-point reactance only affects the zero-
sequence loop and does not influence voltage or power flow. However, when an unbalanced
short-circuit fault occurs on the line, the zero-sequence current flows through the neutral-
point current-limiting reactor to the ground, which will cause the neutral-point voltage
to rise [21]. If this voltage exceeds a certain threshold, it may lead to overvoltage at
the transformer neutral point, surpassing the insulation withstand level, and potentially
resulting in serious insulation failures. Therefore, before installing the fast-switching
fault current limiter, overvoltage calculations must be performed considering the system
wiring and transformer parameters to ensure the voltage remains within the insulation’s
withstand range.
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In this paper, ATP-EMTP simulation software (The version number of the simulation-
software used is GNU-Mingw32 ATP) is used to model the power frequency and transient
overvoltage conditions after a current-limiting reactor is installed at the neutral point of a
220 kV substation’s main transformer [22]. When building the simulation model, the sur-
rounding power grid was simplified, and equivalent processing was applied, following the
principle of maintaining power flow and node voltage unchanged to ensure the accuracy
of the simulation data [23].

The simulation model is shown in Figure 5 and primarily consists of a transformer
and the power grids on each side. The transformer model employs the SAT-saturated
transformer model with a capacity of 120 MVA and a rated voltage of 220/121/11 kV.
Both the excitation losses and short-circuit losses are set according to actual values. Three
transformers operate in parallel on the high and medium-voltage sides, while the low-
voltage side operates independently, with only one transformer grounded.

Figure 5. Simulation Circuit of a 220 kV Substation Power System.

For the power grids on each side:
1. High-Voltage Side: The 220 kV grid is modeled using a three-phase ideal voltage

source and three-phase symmetrical parallel resistors for equivalence, with a peak phase
voltage of 179.6 kV.

2. Medium-Voltage Side: The 10 kV grid consists of four transmission lines with
lengths of 15.93 km, 3.35 km, 8.51 km, and 31.49 km, respectively. The ends of each
transmission line are modeled using three-phase symmetrical Y-connected grounding
resistors as equivalent loads.

3. Low-Voltage Side: The 11 kV grid is modeled using three-phase symmetrical
Y-connected grounding resistors for equivalence.

In the simulation, the fault current limiter is simplified to a current-limiting reactor.
Two types of asymmetrical fault conditions are set near the medium-voltage side outlet of
the transformer: one is phase A grounded through a 0.01 Ω resistor, and the other is phases
B and C grounded through a 0.01 Ω resistor.

The input to this model is the equivalent reactance value of the fast-acting switch-
based fault current limiter, and the outputs are the rated transient withstand voltage U1

and the rated short-time power frequency withstand voltage U2.
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3.1.3. Joint Simulation Method of ATP-EMTP and MATLAB

To achieve joint simulation between ATP-EMTP and MATLAB, it is necessary to
control the parameters in ATP-EMTP through MATLAB, modifying the model to meet the
overvoltage calculation requirements under different operating conditions. Additionally,
the waveform data output from ATP-EMTP calculations is saved in the “.pl4” file, which is
an encrypted file, making data reading difficult.

To adjust model parameters, MATLAB’s text reading and modification functions are
used to read and modify the model parameters and component states in the ATP-EMTP
model configuration file.

To read the output results from ATP-EMTP, the STARTUP toolbar in the ATP-EMTP
Tools toolbar is opened. In the “FMTPL4” option on the seventh tab, enter “6 × 1013.6” to
convert the encrypted “.pl4” file output by ATP-EMTP into readable decimal data.

After solving these two issues, a joint simulation between MATLAB and ATP-EMTP
was achieved by calling the “.tpbig” program in MATLAB. The detailed joint simulation
process is shown in Figure 6.

Figure 6. ATP-EMTP and MATLAB Joint Simulation Flowchart.

3.2. Gravitational Search Algorithm-Based Optimization with Joint Simulation and
Comparative Analysis
3.2.1. Gravitational Search Algorithm-Based Optimization with Parameter Adaptation
and Performance Comparison

However, the Penalty Function Method suffers from issues such as high compu-
tational cost and slow convergence speed [24]. Therefore, this study proposes using a
GSA with adaptive dynamic adjustment of penalty parameters to avoid slow convergence
caused by excessively large penalty parameters in the early stages, while ensuring effective
penalization of constraint violations.

Gravitational Search Algorithm (GSA), a global optimization technique based on the
law of gravity in nature, has been widely applied in various fields. As GSA has become a
well-established method with numerous references available, this paper provides only a
brief introduction to it [25–28].

The fundamental concept of GSA is to simulate the interaction between objects in a
gravitational field to search for the optimal solution to a problem. In this algorithm, each
solution is treated as an object, and the gravitational force between objects is determined by
their mass and the distance between them. Larger mass objects exert a stronger gravitational
pull on smaller ones, making their movement more pronounced. This allows larger objects
to effectively guide smaller ones toward the global optimum.
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During initialization, a set of solutions is randomly generated, with each solution’s
mass proportional to its fitness. For each pair of objects i and j, the gravitational force Fij(t)
at the t-th iteration is calculated using the gravitational formula:

Fij(t) = G
Mi(t)× Mj(t)

Rij
2(t)

(6)

where G is the gravitational constant, Mi(t) and Mj(t) are the masses of objects i and j at
the t-th iteration, and Rij(t) is the distance between them at the same iteration. The size
of the gravitational force determines the degree of attraction between the objects, thereby
influencing their movement direction and speed.

During each iteration, the positions of the objects are updated according to the gravi-
tational forces, following the update formula:

xi(t + 1) = xi(t) +
N

∑
j=1

Fij·(xj(t)− xi(t)) (7)

where xi(t) is the position of object i at the t-th iteration, and xj(t) is the position of object j.
The gravitational force Fij between objects i and j affects their movement toward each other.
The parameter N denotes the number of particles in the population. With each iteration, the
objects gradually move toward the optimal solution. As the iteration count increases, the
gravitational force decreases, causing the objects’ velocities to reduce until they converge
to the optimal solution or meet the stopping criterion.

To validate the superiority of GSA over conventional optimization methods in FCL
reactance configuration, we conducted comparative analyses with Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) under two scenarios.

1. Single Reactance Optimization
Based on the practical validation provided in the case study in Section 3.3, which

focuses on the Hebei power grid, a comparative analysis of the GSA, GA, and PSO was
conducted. Using the example of a FCL installed at the neutral point of a 220 kV transformer,
the following parameter settings were applied: for the PSO algorithm, the inertia weight
is set to 0.6, and the learning factors are set as c1 = 1.7 and c2 = 1.5 [29]; for the GA, the
crossover probability is set to 0.8, and the mutation probability is set to 0.1 [30]. The
comparison results are summarized in the Table 1.

Table 1. Comparison of the Convergence Performance of Different Optimization Methods.

Algorithm
Average Convergence

Iterations
Optimal Solution x

(mH)
Solution Std. Dev σ

(mH)
Computation Time (s)

GSA 83 15.9 <0.01 948.1

GA 33 15.9 <0.01 363.7

PSO 134 15.9 <0.01 1436.8

The results show that in the optimization of a single current-limiting reactance value,
the convergence rate follows GA > GSA > PSO, with all three algorithms stably converging
to the same optimal solution (15.9 mH) and a standard deviation below 0.01 mH. Addition-
ally, the results indicate that computation time is primarily influenced by the number of
iterations, as each algorithm iteration takes less than 0.1 s, while the simulation step for
each iteration exceeds 10 s. Although GA exhibits the fastest convergence, practical applica-
tions prioritize robust global search capabilities to ensure stable identification of the global
optimal solution. In real-world engineering scenarios, where multiple FSFCLs are installed

70



Energies 2025, 18, 1077

at various points, the optimization of reactance values evolves into a multimodal problem
with numerous local optima, making GSA’s global search advantage critically important.

2. Multi-Reactance Optimization
Consider the following scenario: three FSFCLs are installed at the neutral points of a

220 kV substation, and one FSFCL is installed on each of five feeder lines. The objective
function in this case can be simply set as:

min f =
8

∑
j=1

λjxj (8)

where xj represents the current-limiting reactance value of each FSFCL, and λj represents
the influence weight of each reactance value. In this scenario, the weights λj are assumed
to be set as 1, 0.5, 2, 1, 1.5, 2, 1, and 0.5, respectively.

The constraints are assumed to remain unchanged. At this point, different combi-
nations of reactance values may lead to similar objective function values, meaning the
objective function has multiple local optima. After running the program for 100 iterations,
the results are summarized in Table 2.

Table 2. The Global Optimal Solution Hit Rate of Different Optimization Methods.

Algorithm Global Optimal Solution Hit Rate

GSA 92%

GA 78%

PSO 67%

Through the above simple case, it can be observed that the GSA demonstrates superior
global search capabilities compared to the other two methods, making it more suitable
for practical engineering applications in the optimization and selection of current-limiting
reactance values.

3.2.2. Gravitational Search Algorithm Key Parameter Settings

The main advantage of GSA lies in its strong global search capability, which helps
in preventing entrapment in local optima. This feature makes it especially suitable for
high-dimensional, complex optimization problems. By utilizing gravitational interactions
between objects, GSA promotes comprehensive exploration of the solution space and
demonstrates excellent convergence and optimization performance.

To further enhance the application of GSA in optimizing FCL reactance configurations,
several key parameters are carefully designed as follows:

1. GSA Parameter Design
(1) Gravitational Constant Evolution
The gravitational constant G is dynamically adjusted using an exponential decay

function to balance exploration and exploitation:

G(t) = G0 · e−α(t/T)β

(9)

where β = 0.7; G0 = 100, and α = 20, are empirical coefficients derived from power grid
optimization studies [31].

(2) Initialization Strategy
1) Position Initialization
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Adopting the asymmetric sampling method from [32]:

xi(0) = xmin +
[
(rand + 0.1i)1.5

]
· (xmax − xmin) (10)

2) Mass Initialization
Fuzzy-transformed fitness values characterize object masses:

Mi(0) =
exp(−Fi/σ)

∑N
j=1 exp(−Fj/σ)

(11)

where Fi represents the fitness value of the i-th object, σ is the standard deviation of the
fitness values (used to normalize the distribution), and N is the population size.

3) Velocity Initialization:
Initial velocities vi(0) = 0 minimize early-stage divergence risks.
(3) Population Parameters
1) Population Size
The population size N is as follows [33]:

N ≥ 10 · n (12)

where n is the problem dimension (n = 1 in this study).
However, considering practical application scenarios where the selection of current-

limiting reactance values for multiple FSFCLs may be required, the number of devices
typically does not exceed ten. Taking into account convergence efficiency, solution accuracy,
and computational cost, a population size of N = 100 was ultimately chosen.

2) Maximum Iterations
Based on the convergence analysis in [34], the maximum number of iterations, D,

should meet the following condition:

P(D) ≥ 99.8% (13)

where P(D) denotes the probability of convergence within D iterations.
During the actual iterative computation process, the iteration count required for solu-

tion convergence occasionally exceeds 100. Therefore, the maximum number of iterations
is set to 200 in this study to ensure a sufficient convergence probability while maintaining a
certain margin.

During the iterations, the penalty factor is dynamically adjusted based on the cur-
rent constraint violations. The penalty factor in this study is initially set to 1 and in-
creases proportionally with each iteration, intensifying the penalty for constraint violations.
This dynamic adjustment mechanism ensures that the algorithm prioritizes solutions
that satisfy the constraints throughout the search process, guiding the algorithm toward
feasible solutions.

When the objective function value changes very little over several iterations and
satisfies the convergence criteria, it indicates that the algorithm has found a solution close
to the optimal one. At this point, the algorithm can be terminated. Through this iterative
process, the optimal reactance value for the fault current limiter (FCL) is determined.

The selection of Δk = 1.1 in this study is based on the dynamic adjustment theory [24],
which employs a linearly increasing penalty coefficient to prevent insufficient constraint
weighting during the early iterations. This incremental strategy has been validated as
effective in the IEEE CEC 2017 benchmark tests.

In addition to the penalty factor’s incremental adjustment, the selection of the initial
penalty parameter kn0 requires careful consideration. A balance must be achieved between
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its impact on constraint satisfaction and convergence performance. If kn0 is set too small,
the algorithm may fail to adequately penalize constraint violations, leading to unacceptable
errors. Conversely, if kn0 is set too large, it may increase computational complexity and
reduce algorithm efficiency. Therefore, the selection of kn0 must be approached with caution
in practical applications.

For the computational scenario in this study, both current and voltage constraints
are critical. Violating these constraints would lead to unacceptable outcomes, making it
essential to set kn0 sufficiently large to strictly enforce the constraints while avoiding overly
small values. To evaluate the impact of different initial penalty parameter values, in the
context of the case study in Section 3.3 of this paper, an analysis was conducted using kn0

values of 0.001, 0.01, 0.1, 1, 10, and 100. The results of this analysis are shown in Table 3.

Table 3. Comparison of convergence performance under different kn0 values.

kn0 Average Convergence Iterations Optimal Solution x (mH)

0.001 82 8.9

0.01 83 14.1

0.1 83 15.7

1 83 15.9

10 82 15.9

100 83 15.9

As shown in Table 3, all parameter settings achieve convergence with nearly identical
convergence iterations. However, when kn0 is relatively small (e.g., 0.001 or 0.01), the result-
ing optimal reactance value fails to meet the constraint conditions and shows significant
deviation from the expected value. As kn0 increases, the optimization results gradually
stabilize, and the constraints are strictly satisfied.

Considering both convergence accuracy and computational efficiency, this study
selects kn0 = 1 as the initial penalty parameter. This value ensures that the constraints are
strictly enforced while maintaining computational efficiency and solution accuracy.

The overall calculation process proposed in this paper is shown in Figure 7.

Figure 7. Flowchart for Adaptive Dynamic Adjustment of Penalty Parameters and Solution of
Objective Function.
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3.3. Case Study Analysis

This paper takes the No. 1 main transformer of a 220 kV substation in the Hebei
power grid as an example to analyze the situation of asymmetric short circuits occurring
on the medium-voltage side of the transformer. The high-voltage side of the transformer is
independently powered, and the high- and medium-voltage sides operate in parallel with
two other transformers that have nearly identical parameters, while the low-voltage side
operates independently.

The basic parameters of the transformer are as follows: rated voltage of 220/121/11 kV,
rated capacity of 120/120/60 MVA, short-circuit impedance of 14.1%, 24.0%, and 7.32%,
connection group YNyn0D11, and the transformer core is a three-phase five-column type.

The current-limiting target for the windings on each side of the transformer is set to
1.94/2.85/17.90 kA.

Using the optimization configuration method proposed in this paper, the optimal
inductance value calculated is 15.9 mH. The variation and convergence process of the
current-limiting reactance values obtained through iterations is shown in Figure 8.

Figure 8. Convergence Curve of the Objective Function Using the GSA.

Based on the convergence curve, the current-limiting reactor value shows significant
oscillations during the first 20 iterations, ranging from approximately 16 mH to 30 mH,
indicating that the GSA is still in the global search phase and has not yet converged.
Between the 20th and 45th iterations, the oscillations decrease, and the reactor value
gradually stabilizes around 16mH, reflecting partial convergence. From the 50th iteration
onward, the reactor value becomes increasingly stable, achieving full convergence near the
80th iteration and locating a region close to the optimal solution.

At this reactance value, the short-circuit current values for each winding under differ-
ent fault conditions, as well as the maximum transient overvoltage and maximum power
frequency steady-state overvoltage at the neutral point of the medium-voltage side, are
presented in Table 4.

Table 4. Calculation Results under Various Fault Conditions.

Fault Conditions
High-Voltage Side

Winding Current (kA)
Medium-Voltage Side
Winding Current (kA)

Low-Voltage Side
Winding Current (kA)

Single-phase ground fault 0.92 2.78 7.05

Two-phase ground fault 1.80 2.85 4.54
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In both fault scenarios, the current-limiting targets are achieved, and the short-circuit
current constraints are met. Additionally, the maximum transient overvoltage on the
medium-voltage side neutral point is 74.6 kV, and the maximum power–frequency steady-
state overvoltage is 49.8 kV. Both values are lower than the insulation level of the 110 kV
side neutral point equipment, thus satisfying the overvoltage constraint requirements.

Based on the comprehensive analysis presented above, this paper ultimately ascertains
the optimal limiting reactance value for the equipment to be 15.9 mH. A corresponding
fault current limiter has been fabricated accordingly. The subsequent step entails preparing
for commissioning and field application. The specific physical prototype is depicted in the
Figures 9 and 10.

 
Figure 9. Photograph of the current-limiting reactor.

 
Figure 10. Overall physical image of the fault current limiter.
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4. Conclusions

This paper proposes a novel optimization method for FSFCL reactance configuration
based on joint simulation and penalty function constraint optimization. By integrating
MATLAB and ATP-EMTP for joint simulation, the method effectively derives the constraint
conditions of the objective optimization function, providing critical data support for the
optimization process. To address the challenges of high computational complexity and
solution difficulties in constrained optimization problems, the PFM is employed to trans-
form the constrained optimization problem into a standard unconstrained optimization
problem, significantly reducing computational complexity and ensuring solution feasibility.
Subsequently, the GSA is applied to compute the optimal reactance value. Through a
comparative analysis based on engineering case studies, the superiority of the GSA over
GA and PSO is validated, further confirming the accuracy and efficiency of the proposed
method. The results demonstrate that the method not only achieves precise parameter
calculations but also significantly enhances computational efficiency. By combining PFM
and GSA, the proposed approach exhibits excellent robustness, providing reliable technical
support for the application and deployment of fast-switching fault current limiters in
large-scale power grids.
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Abstract: Accurately detecting defect-induced photon emissions enables early defect de-
tection and characterization. To address this, a defect evolution state recognition model
based on phase-resolved photon counting and dimensionality reduction calculations is
proposed under alternating current (AC) excitation. Initially, photon information from
protruding metal defects simulated using needle–plane electrodes during partial discharge
(PD) evolution is analyzed in SF6. Subsequently, phase-resolved photon counting (PRPC)
techniques and statistical analysis are employed to extract feature parameters for quantita-
tive characterization of defect-induced photon responses. Finally, a t-distributed stochastic
neighbor embedding (t-SNE) dimensionality reduction analysis is utilized to establish
criteria for categorizing defect evolution states. The findings reveal that metal-particle-
triggered optical PRPC maintains the obvious polarity effect, and the entire evolution of
the discharge can be divided into three processes. These research findings are expected to
advance the accurate assessment of operational risks in gas-insulated systems.

Keywords: electroluminescence; epoxy resin insulation; defect detection; photon counting;
phase-resolved photon counting

1. Introduction

Gas-insulated equipment (GIE) is widely utilized in ultra-high-voltage transmission
networks in China due to its excellent properties [1,2]. However, various defects (gas gap,
scratch, metal particles, etc.) unavoidably exist inside gas-insulated equipment and evolve
under prolonged exposure to strong electric fields, leading to discharge faults [3].

To characterize these defects, methods based on PD signals have been extensively
reported [4,5]. Research indicates that defect types and sizes influence discharge character-
istics, reflected in their phase-resolved partial discharge (PRPD) patterns [4,5]. Statistical
analysis of PRPD patterns enables the quantitative analysis of defect states. Nevertheless,
conventional PD detection methods are prone to false alarms and misses due to noise
in field environments. In contrast, optical detection offers inherent advantages such as
immunity to electromagnetic interference and equipment vibrations, enhanced by the fully
enclosed structure of GIE [6]. Given this, the optical-based detection method is regarded as
a potential tool for detecting defects in GIE.

Reviewing the existing research, optical-based studies are always performed under
either direct current (DC) or AC conditions. A quite different measurement result can
be observed when the applied voltage is in different forms [7]. It is revealed that the

Energies 2025, 18, 1649 https://doi.org/10.3390/en18071649
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optical signal can be more readily collected under AC excitation compared with DC con-
ditions. The reason for the above phenomena is attributed to the difference in the charge
transportation mechanism [8]. In particular, two types of luminous phenomena can be
observed in the entire AC phase, but the luminous phenomenon can be observed at a
higher voltage that triggers excitation or ionization and even the discharge of the charges
inside the insulation materials. Consequently, research under AC excitation deserves more
attention. F. Baudoin et al. established a bipolar charge transport model using polyethy-
lene’s electroluminescence to explain the microscopic principles of charge transport and
luminescence in dry nitrogen [9]. Bamji identified the electroluminescence onset voltage
as a threshold for polymer degradation, marking the onset of insulation deterioration in
a vacuum [10]. Additionally, B. Qiao highlighted that optical emission from PD is typi-
cally orders of magnitude higher than electroluminescence in liquid nitrogen [11]. Thus,
electroluminescence (EL) marks the initial stage of PD development, offering high sensi-
tivity for detecting micro-defects and early warnings based on accurate photon emission
measurements [12]. Given that SF6 is currently the most widely used insulating gas in
GIE, research by Ren Ming et al. on optical measurements in SF6 across different wave-
lengths and discharge types demonstrated significant spectral differences in the spectrum
for various defects [13,14]. Moreover, reference [15,16], which studied photon radiation,
quantitatively explored electroluminescence characteristics induced by defects, showing
significantly lower onset voltages and intensity correlating with defect severity compared
to PD. The findings also revealed that one promising optical approach is phase-resolved
photon counting (PRPC), which enables the detailed characterization of defect-induced
photon emissions.

However, existing studies primarily focus on photon responses under different defect
conditions, with limited reporting on the evolution of photon features during defect
evolution. Given this, to explore photon emission information during defect evolution
for the quantitative characterization of defects, this paper explores PRPC techniques to
establish a more accurate defect assessment framework. Initially, it investigates the PRPC
features of protruding metal defects under increasing excitation voltages, proposing multi-
physical features for a quantitative description of the PRPC pattern through statistical
analysis. Furthermore, it employs t-SNE [17] dimensionality reduction to analyze the
different stages of defect evolution. The findings provide insights into defect severity
classification and operational risk assessment.

2. Experimental Platform and Measurement Results

2.1. Experimental Platform

An aluminum needle (length is 10 mm, and tip curvature diameter is 1 mm) was
utilized to simulate a metal protrusion in GIE equipment. The distance between the needle
tip and the ground electrode was fixed at 7 mm. The simulation electrode and measurement
circuit are plotted in Figure 1, in which the applied voltage was a growing 50 Hz AC voltage,
and the released photons were recorded by a photon counting sensor (H8259-1, Hamamatsu
Photon, Hamamatsu, Japan) with a resolution of less than 35 ns, a dark count of less than
80 s−1, and an available spectral region of 185 to 850 nm. The counting unit was used for
transforming the output pulses into the counting results as well as providing the voltage.
Then, a data recorder (Pico Scope 2000, Pico Technology, St. Neots, UK) was used to trigger
the synchronizing measurements and for the visualization of the measurement results.
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(a) 

 

(b) 

 

Figure 1. (a) Measurement platform and circuit for photon counting measurement, (b) electrode
model for simulating a metal protrusion defect in GIE equipment.

Then, a growing AC voltage with a range from 4.5 to 11.5 kV was applied, since the
inception of the photons occurred at around 4.0 kV. As per to [15], to observe more photons
compared with a higher pressure, all the performed tests were carried out under 0.1 Mpa
SF6. The data record was divided into 15 steps, and each step lasted 20 min (the first 10 min
was used to ensure stable luminescence) to collect the photon counting data with 200 AC
cycles at room temperature. The scheme for applying the voltage is shown in Figure 2.

 
Figure 2. The phase of the applied voltage and the scheme for increasing the voltage.

2.2. Measurement Results

The metal protrusion shown in Figure 1b was tested under 15 voltages, and a total
of 9 voltages were selected and used for plotting the PRPC pattern shown in Figure 3.
Specifically, the PRPC pattern was generated by correlating the time-domain photon
counting pulses with the phase angle of the applied AC voltage. High-frequency sensors
captured the pulses, recording their amplitude, timestamp, and phase angle relative to the
voltage cycle’s zero-crossing reference. Each pulse was assigned to a phase bin, followed
by statistical aggregation of the pulse counts and amplitude distributions within each bin.
This phase–amplitude–density correlation enabled the non-invasive diagnosis of insulation
degradation by linking the stochastic optical behavior to the voltage waveform’s periodic
characteristics.
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Figure 3. The PRPC of metal protrusion defects under an increasing applied voltage.

In Figure 3, each picture contains 2000 sampling points, and the photon pulse was
counted in the corresponding gate time, where the unit is the photon pulse intensity
(photons/microsecond). The PRPC was used to establish the polarity effect and amplitude
distribution of defect-induced photon signals. As shown in Figure 3, the initial photon pulse
intensity was 5 under the 4.5 kV AC voltage, and a value of merely 10 was reached when
the voltage increased to 5.5 kV. However, a tenfold increase phenomenon was observed
when the applied voltage reached 6.5 kV. Subsequently, the voltage increased through
12 stages, resulting in an eightfold increase in photon emission, with an average growth
rate of 66%, markedly lower than the preceding phase. This can be attributed to the fact
that at lower voltages, PD had not yet been initiated, and the photons originated from air
ionization near the defects. Beyond 5.5 kV, PD initiation occurred, rapidly intensifying
the photon emission. Further voltage escalation steadily promoted the photon emission,
resulting in a smooth linear increase. A similar phenomenon was also observed in [6],
in which the evolutionary process of luminescence caused by an increasing voltage was
divided into four stages.

In addition, Figure 3 also illustrates the polarity effects evident in the PRPC induced
by the metal protrusions. At different excitation voltages, the peak values in the spectra
consistently aligned with the voltage peaks. At lower excitation voltages, the photon pulse
intensity under positive polarity exceeded that under negative polarity. However, with
the increase in the voltage, the PRPC revealed a steady rise in the photon pulses under
a negative polarity, surpassing those under a positive polarity. This phenomenon was
attributed to the following mechanism.

At lower excitation voltages, during the positive half-cycle, the protrusion with a
positive charge attracted free electrons in the surrounding medium, forming a concentrated
electric field region. This field was sufficient to ionize the surrounding gas molecules,
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generating electron–ion pairs that triggered a partial discharge. Due to enhanced electric
field effects during the positive half-cycle, discharge events were more frequent, resulting
in a higher photon emission. At higher voltages, both the positive and negative half-cycles
sustained a sufficient electric field strength to induce a partial discharge. However, as the
voltage increased, the discharge activity became more pronounced during the negative half-
cycle. This was primarily due to the sustained strong electric field around the protrusion,
even when it carried a negative charge during the negative half-cycle. Additionally, in the
negative polarity discharge, the production and collision ionization of high-speed electrons
were more efficient, resulting in increased photon emission.

3. Discharge State Analysis

3.1. Features for Characterizing the PRPC Pattern

The variation law presented in Figure 3 shows that the photons were released by
different mechanisms as the voltage increased, and the distinct pattern feature caused by
the PRPC can be thus used to analyze the discharge state.

It was observed that a higher applied voltage led to a higher photon pulse. Then, the
photon pulse repetition rate Prr is defined as follows:

Prr = ∑N
i=1Φ(i)/t (1)

where Φ(i) is the pulse intensity of sampling point i in Figure 3, t is the measurement time,
and t was equal to 4 s, and N is the total number of sampling points, where N = 2000.

Then, to quantify the degree of dispersion of the pulse amplitude or phase distribution,
the standard deviation (Std) defined in Equation (2) was used.

Std =

√
∑N

i=1 [Φ(i)− Φaver]
2

N
(2)

Φaver is the average value of the photon pulse intensity. A high Std means that there
may be multiple discharge modes or unstable discharges.

In addition, skewness (Ske) [18] describes the asymmetry of the distribution of PRPC,
and kurtosis (Kur) [19] reflects the sharpness of the distribution curve, as defined in Equa-
tions (3) and (4):

Ske =
∑N

i=1
[
Φ(i)− Φaver]4

N · Std
3 (3)

Kur =
∑N

i=1
[
Φ(i)− Φaver]4

N · Std
4 (4)

As depicted in Figure 3, the photon pulse in both the positive and negative AC
cycles changed with the voltage, and the corresponding pulse ratio (Rspn) is thus defined
as follows:

Rspn =
∑O

j=1 Φ(j)

∑
p
k=1 Φ(k)

(5)

In (5), O and P are the total number of pulses in the positive and negative AC cycles.
Further, to normalize the impact of the voltage, the normalized ratio of the mean

photon pulse to the voltage (Rmv) is defined in Equation (6). U is the applied AC voltage.

Prr =
∑N

i=1 Φ(i)/N
U

(6)
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In the experiment, 20 repeated measurements were taken on the defect’s PRPC under
the same voltage, and the corresponding data (300 samples) were then substituted into the
defined formulas.

Then, the distribution between the calculated features and the voltage was plotted, as
shown in Figure 4, and the fitting curves were also established to explore the variation law.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. The distribution of the feature parameters versus the applied voltage. (a) Pulse repetition
rate, (b) pulse standard deviation, (c) pulse skewness, (d) pulse kurtosis, (e) ratio of positive pulse to
negative pulse, (f) ratio of mean pulse to voltage.

Figure 4 illustrates that Prr, Std, and Rmv increased gradually with the increase in
the voltage. This evolution suggests that the number of photons released during the
defect discharge process significantly increased as the voltage reached a certain level and
gradually saturated. Conversely, Ske and Kur exhibited a gradual decrease and stabilization.
This trend was attributed to the initial discharges from the metal protrusions potentially
generating strong local discharges only at specific phase angles, hence the sharp peaks
in the PRPC spectra. However, as the discharge progressed, it could occur over a wider
phase range, resulting in a flatter distribution and a reduced peak height and sharpness.
In addition, as shown in Figure 4e, the value of Rspn first increased and then decreased,
consistent with the variation pattern shown in Figure 3. When the number of negative
periodic photon pulses was greater than the number of positive periodic pulses, Rspn was
less than 1.

3.2. Discharge Pattern Identification

Figures 3 and 4 demonstrate that both the spectral and quantitative features of defect-
induced discharges evolved systematically with the applied voltage. Therefore, quantitative
analysis based on these patterns enables the assessment of the discharge development
(severity). While Figure 4 presents six distinct feature parameters, their contributions
to identifying the discharge processes are rather different. To address this issue, the
feature fusion method is regarded as a useful approach to solve the high-dimensional
issue. t-SNE outperforms principal component analysis (PCA) [20], linear discriminant
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analysis (LDA) [21], and singular value decomposition (SVD) [22] (all linear methods) in
nonlinear data visualization, effectively capturing the local similarities of complex manifold
structures, while PCA/SVD focus on global variance and LDA relies on linear separability.
Compared to UMAP [23], UMAP tends to preserve a more global structure, which may lead
to blurred local details, while t-SNE’s local optimization strategy makes similar clusters
more compact and separates dissimilar clusters more distinctly. Additionally, UMAP is
more efficient for large-scale data (greater than 10k samples), while t-SNE generates clearer
cluster boundaries in smaller datasets (less than 5k samples), making it more suitable
for exploratory analysis in research. Thus, a feature fusion approach based on the t-SNE
model [15] was established, and the main steps include:

i. Calculate the similarity matrix: Calculate a similarity matrix based on the similarity
between each pair of data points in a high-dimensional dataset.

ii. Initialization of embedding space: Randomly initialize a position for each data point
in a low-dimensional space.

iii. Define t-distribution probability distribution: Use the t-distribution to define the
conditional probability distribution between data points in both the high-dimensional
and low-dimensional spaces.

iv. Optimization process: By minimizing the Kullback–Leibler divergence of the conditional
probability distribution, adjust the position of the data in the low-dimensional space.

v. Iterative optimization: Iteratively update the position of each data point in the low-
dimensional space until the stopping condition is met.

vi. Visualization and analysis: Finally, use the optimized data point positions in the
low-dimensional space for visualization and analysis.

Then, the TSNE reduces the six-dimensional feature parameter matrix to three dimen-
sions. Figure 5 illustrates the visualized distribution of features after dimensionality reduc-
tion, which indicates that the evolution stages of the discharge can be divided into three
categories, which can be defined as slight discharge (SD), moderate discharge (MD), and
severe discharge (SED). Then, Table 1 lists the distribution center and classification results.

 

Figure 5. The sample distribution by TSNE calculation (colors indicates the diverse samples).
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Table 1. The classification center and discharge state.

Item
Discharge State

SD MD SED

Classification center (0.16, 0.59, 0.90) (0.66, 0.96, 0.09) (0.80, 0.10, 0.25)
Included voltages (kV) 4.5 to 6.5 7.0 to 8.5 9.0 to 11.5

By analyzing the distribution results shown in Figure 1, it was found that the samples
under an excitation voltage range of 4.5~6.5 kV were located in the same region, with
their corresponding coordinate center at (0.16, 0.59, 0.90). Therefore, the 100 sample points
within this voltage range could be classified as the SD state. Similarly, the sample points
in the second distribution region, composed of 80 samples from the 7.0~8.5 kV range,
corresponded to the MD state, with their coordinate center at (0.66, 0.96, 0.09). Finally,
the remaining 120 sample points belonged to the SED state, with their corresponding
coordinate center at (0.80, 0.10, 0.25).

The research results show that the photon emission intensity at the defect site was pos-
itively correlated with the nearby electric field strength. A linear increase in the excitation
voltage led to an exponential increase in the photon emission intensity, indicating a change
in the dominant mechanism of the defect-induced luminescence process. According to
previous studies [16], the iterative process of the luminescence mechanism for insulating
systems should involve EL inside the solid insulation, ionization near defects, sporadic
discharges near defects, and, finally, a stable discharge process. However, compared to
epoxy insulating systems, the key difference in the insulating system studied here is the
use of metal tip defects, meaning there is no EL process within the solid insulation. There-
fore, it can be inferred that the defect-induced luminescence process in this study can
be divided into three stages. The results shown in Table 1 and Figure 5 (three discharge
states) confirmed this hypothesis. In summary, through clustering analysis of defect lu-
minescence (discharge) states, the operational risks and potential hazards to GIE can be
qualitatively described.

4. Conclusions

This work used photon counting to measure PD signals induced by metal protrusions
and analyzed the discharge characteristics during the PD evolution process based on the
PRPC pattern. The PRPC exhibited a significant polarity effect on the specimens when
the applied voltage exceeded 5.5 kV, as shown in Figure 3. Specifically, the intensity of
the photon pulses steadily increased with the increase in the excitation voltage, while
the photons in the negative half-cycle first decreased and then increased compared to the
photon pulses in the positive AC half-cycle. This phenomenon was mainly attributed
to changes in AC polarity and changes in charge concentration near the needle tip. To
further quantify the above changes, statistical analysis based on multiple features was
proposed. Then, the quantitative relationship between the excitation voltage and these
parameters was studied using fitting analysis. Finally, based on dimensionality reduction
analysis, the diverse stages of the PD evolution were discussed, and their classification
criteria were determined.

Given the increasing environmental requirements, research on SF6 alternative gases
has gained widespread attention. Therefore, achieving optical measurements and defect
detection in different gas environments has become particularly interesting. The authors’
further research will focus on the photon emission characteristics induced by defects under
different gas compositions.
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Abstract: Due to its advantages, such as its corrosive sulfur-free property and high purity,
gas-to-liquid (GTL) oil is regarded as an excellent alternative to conventional naphthenic
mineral oil in the oil/paper composite insulation of UHV converter transformers. In such
application scenarios, under the condition of voltage polarity reversal, charge accumulation
is likely to occur along the liquid/solid interface, which leads to the distortion of the electric
field, consequently reducing the breakdown voltage of the insulating material, and leading
to flashover in the worst case. Therefore, understanding such space charge characteristics
under polarity-reversed voltage is key for the insulation optimization of GTL oil-filled
converter transformers. In this paper, a typical GTL oil is taken as the research object
with naphthenic oil as the benchmark. Electroacoustic pulse measurement technology is
used to study the space charge accumulation characteristics and electric field distribution
of different oil-impregnated paper insulations under polarity-reversed conditions. The
experimental results show that under positive–negative–positive polarity reversal voltage,
the gas-impregnated pressboard exhibits significantly higher rates of space charge density
variation and electric field distortion compared with mineral oil-impregnated paper. In
stage B, the dissipation rate of negative charges at the grounded electrode in GTL oil-
impregnated paper is 140% faster than that in mineral oil-impregnated paper. In stage C,
the electric field distortion rate near the electrode of GTL oil-impregnated paper reaches
54.15%. Finally, based on the bipolar charge transport model, the microscopic processes
responsible for the differences in two types of oil-immersed papers are discussed.

Keywords: voltage polarity reversal; gas-to-liquid oil; space charge; electroacoustic pulse
measurement technology; bipolar charge transport model

1. Introduction

High-voltage direct current (HVDC) transmission is a key technology to realize the
west-to-east transmission of electricity under the dual-carbon strategy in China, and the
converter transformer, as the core equipment for power transmission in the extra-high
voltage system, mainly adopts oil–paper insulation structure [1]. In this application context,
traditional naphthenic oil has many disadvantages, e.g., high corrosive sulfur content, large
aromatic hydrocarbon proportion, and low fire resistance [2]. Therefore, the search for more
environmentally friendly and stable insulating liquids has been a core issue that requires
in-depth research for converter transformers in HVDC transmission scenarios. Gas-to-
liquid (GTL) oil, derived from natural gas via Fischer–Tropsch conversion, has advantages
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such as low aromatic hydrocarbons and high purity, and has the potential to become an
alternative to naphthenic oil in converter transformers. In practical operation, converter
transformers would be subjected to direct current (DC), alternating current (AC), polarity-
reversed, and other complex operating voltages, of which, polarity reversal voltage is likely
to cause the space charge accumulations in insulation materials, consequently distorting the
local electric field and causing flashover [3]. Therefore, understanding such space charge
characteristics under polarity-reversed voltage is key for the insulation optimization of
GTL oil-filled converter transformers.

For the space charge measurements in oil–paper insulation, the effects of variables,
such as externally applied electric field, ambient temperature, and aging degree of the
testing samples on space charge and electric field characteristics inside insulation ma-
terials, have been carefully studied in the previous literature. Katsumi [4] et al. used
Kerr’s photoelectric technique to measure the electric field distribution of the oil–paper
insulation, carried out an experimental study on 3 mm oil–paper insulation under 10 kV
polarity reversal voltage, and found that the discharge was different under two polarity
reversal cases, i.e., negative–positive and positive–negative voltage reversals, due to the
different polarities of space charge accumulated on the surface of the oil–paper insulation.
Zhang et al. measured the space charge distribution inside the oil–paper insulation at
different temperatures using the pulsed electroacoustic (PEA) technique and found that
the double-layer transient electric field conforms to be capacitive at room temperature,
whereas the rapid change in charge density at the oil–paper interface at 60 ◦C leads to the
double-layer transient electric field distribution to conform to be resistive [5]. Zhou et al.
studied the effect of aged oil and paper on the space charge characteristics at the oil/paper
interface through the PEA measurement technique, and found that, under the polarity
reversal electric field, the aging state of the oil dominates the surface charge accumulation
processes [6,7]. However, up to now, research on the differences between GTL oil and tradi-
tional naphthenic oils in terms of space charge accumulation and dissipation characteristics
during polarity reversal is rare.

With the advances of computing technology, finite element simulation provides an
effective supplement to the experimental work on space charge accumulations. He et al.
used bipolar charge transport and hydrodynamic drift diffusion theory to establish a
composite insulation model, and studied the impact of DC voltage amplitude, charge
mobility, and other factors on spaces discharges at the oil/paper interface [8]. Based on
the bipolar charge transport theory, Li et al. establishes a numerical model for calculating
charge distributions along multi-layer liquid–solid insulation interfaces under AC and DC
composed voltage stresses, as well as the influence of insulation board thickness and aging
state on space charge accumulation rates [9].

Although a large amount of research has been conducted on the space charge char-
acteristics of oil–paper insulation under polarity-reversed voltages, the space charge ac-
cumulation of GTL oil under voltage polarity reversal conditions and the corresponding
mechanism is still unclear. In order to solve these problems, this paper builds a PEA testing
system to measure the space charge and electric field distributions of GTL oil-impregnated
paper under voltage polar reversal conditions, with a traditional naphthenic oil as the
benchmark. The differences in space charge density, charge change rate, and electric field
at the ground electrode are discussed. In addition, based on the bipolar charge transport
model, a numerical model is built to calculate the differences in the charge mobilities of
these two oils on space charge and electric field distributions.
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2. Experimental Methodology

The insulating oil samples used in this paper are isoparaffinic GTL oil (Shell Diala
S4 ZX-I) and naphthenic oil (Shell Diala S3 ZX-I), and the insulating paper is a special
paperboard for transformers that meets the requirements of IEC 60554-3-5-2020 [10]. The
key parameters for the two oil samples in new conditions are shown in Table 1 [11,12].

Table 1. Key parameters for GTL oil and naphthenic oil.

Items
Experimental

Methods
Shell Diala S3 ZX-IG Shell Diala S4 ZX-I

Density/(kg/m3) IEC 60867 [13] 878 805
Flash point/(◦C) ISO 2719 [14] 140 191
Pour point/(◦C) ISO 3016 [15] −60 −42

Conductivity/(S/m) IEC 60247 [16] 3.9 × 10−13 8.9 × 10−13

Dielectric loss factor IEC 60247 [16] 0.00281 0.00053
Relative permittivity IEC 60247 [16] 2.02 2.00

AC Breakdown voltage
pretreatment/kV IEC 60156 [17] >30 70

AC Breakdown voltage
after treatment/kV IEC 60156 [17] >70 78

Before the experiments, two types of insulating oils and paper cardboard were pre-
treated as follows. The insulating oils were heated at 85 ◦C by vacuum for 48 h to ensure
the water content was less than 10 ppm.

The insulating cardboards were firstly cut into 60 × 60 × 0.5 mm slides with a total
of 20. These small samples were then subjected to a drying treatment under 105 ◦C and
133 Pa with a duration of not less than 48 h, and then cooled down to room temperature
and impregnated with dried oil samples in vacuum condition to obtain the desired oil-
impregnated paper samples.

Two types of oil-immersed paper specimens were then applied with polarity reversal
voltage as shown in Figure 1. The samples were first applied with +10 kV voltage for 1200 s.
Then, the voltage polarity was reversed to −10 kV within 10 s and held for 1200 s. A second
reversal within another 10 s restored the initial polarity voltage for 1200 s. In other words,
the whole voltage polarity reversal test was divided into three stages, i.e., stage A (0–1200 s)
for initial DC polarization; stage B (1200–2410 s) for the first polarity reversal to the end of
negative polarity polarization; and stage C (2410–3620 s) for the second polarity reversal to
the end of positive polarity polarization. The voltage reversal time met the voltage reversal
time (<2 min) specified in the IEC 61378-2 standard [18] for the converter factory polarity
reversal test [19]. The practical test platform is shown in Figure 2. The test temperature was
controlled at 20 ± 0.1 ◦C by oil circulating bath, the polarity reversal voltage was applied
to the semiconductor (SC) high-voltage electrode, where the specimen generated charge
accumulation under the action of the applied electric field, and the grounded aluminum
(Al) electrode’s PVDF thin film piezoelectric transducer received the vibration acoustic
wave and converted the vibration acoustic wave into the electrical signal that is linear with
the distribution of the space charge [5]. The test pulse width was 10 ns and the frequency
was 1 kHz. Due to the inherent attenuation characteristics of the piezoelectric sensor for
receiving sound signals, the experimental results focus on the charge data at the proximal
end of the grounded electrode [20].
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Figure 1. Polarity reversed voltage waveform.

 

(a) (b) 

 
(c) 

Figure 2. Space charge measuring technology. (a) The principal diagram for PEA testing circuit
(b) The principal diagram for PEA testing chamber (c) Practical view of the experimental setup.

3. Experimental Results and Discussions

3.1. Stage A

The positive DC voltage, as shown in stage A of Figure 1, was applied to the high
voltage electrode of the PEA test chamber. The internal charge distribution of the two
specimens is shown in Figure 3. The space charge induced in the grounding electrode in the
naphthenic oil-impregnated paper specimen decreases from −21.08 C/m3 to −18.71 C/m3,
and the charge of the gas oil-impregnated paper specimen decreases from −25.27 C/m3 to
−20.73 C/m3. The negative polar charge accumulated at the grounding electrode decreases
gradually under the DC stresses.
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(a) (b) 

Figure 3. Space charge distribution in oil-paper insulation under positive polarity voltage.
(a) Naphthenic oil. (b) GTL oil.

At the initial energization time of 0 s, the space charge has not accumulated yet, the
space electric field is equal to the applied electric field, with the increase in polarization
time, and the uneven distribution of space charge accumulation leads to a space field
strength more than 20 kV/mm. The field strength at the vicinity of the grounding electrode
of the gas oil-impregnated paper is higher than that of the naphthenic oil-impregnated
paper after the two specimens are polarized for 1200 s.

3.2. Stage B

Figure 4 shows the space charge accumulations of the two specimens in stage B.
When the voltage polarity has not been reversed, the negative polar charge near the
grounding electrode is dissipated more due to migration and recombination. At the end
of the voltage polarity reversal, the space charge of the two samples at the grounding
electrode reaches the maximum value, and the space charges at the grounding electrode
of the naphthenic oil and GTL oil-impregnated papers are 21.9 C/m3 and 29.4 C/m3,
respectively. The negative polar stagnant charge occurs near the grounding electrode, and
the phenomenon is due to the hysteresis effect of the charge in the process of polarity
reversal. The peak value of the density of the stagnant charge of the naphthenic oil- and
the GTL oil-impregnated papers are −4.21 C/m3 and −4.16 C/m3, respectively. After
1200 s of negative DC field polarization, the space charge at the grounding electrode of
GIL oil-immersed paper was reduced to 21.01 C/m3, and that at the grounding electrode
of naphthenic oil-immersed paper was 18.41 C/m3. The field strengths of the two types
of oil-impregnated paper samples are shown in Figure 4. The aberrant electric field of
mineral oil reached a relatively smooth state after 1200 s of depolarization of the negative
DC field, and has a high symmetry compared with the positive DC polarization for 1200 s.
In contrast, the field intensity inside the specimen is lower than that before polarization
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after the GTL oil-impregnated paper is polarized under a negative DC field for 1200 s,
whereas it does not have symmetry compared with the electric field after polarization for
1200 s under a positive polarity DC field.

 

 

 

 

(a) (b) 

Figure 4. Space charge distribution and field strength of oil-impregnated paper under positive to
negative voltage. (a) Naphthenic oil. (b) GTL oil.

3.3. Stage C

Figure 5 shows the space charge and space electric field changes in the specimens
at stage C (2410–3620 s). At the end of the polarity reversal, the space charge density at
the grounding electrode of naphthenic oil- and the GTL oil-impregnated papers reaches
−22.2 C/m3 and −28.42 C/m3, respectively, whereas the stagnant positive polar charge
densities at the electrodes reach the highest values of 1.7 C/m3 and 0.6 C/m3, respectively,
with respect to the stagnant charge reductions by 2.51 C/m3 and 3.56 C/m3 at the polarity
reversal in stage B, respectively.

After 1200 s of polarization by the positive polarity DC field, the charges at the
grounding electrode of the naphthenic oil- and GTL oil-impregnated paper were reduced
by −2.84 C/m3 and −4.59 C/m3, respectively. At the end of the applied voltage polarity
reversal, there are still obvious electric field protrusions near the ground electrode in
both oil–paper insulations. The peak electric field strength at the protrusion in mineral
oil–paper reaches 20.45 kV/mm, whereas that in gas-to-liquid oil-impregnated paper
reaches up to 23.52 kV/mm. At 3620 s, the maximum values near the grounding pole
of the two specimens were 20.5 kV/mm and 26.11 kV/mm, respectively, and the field
strength distortion rate in the gas-fed oil-immersed paper insulation reached 54.15%, which
demonstrated easier insulation failure.
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(a) (b) 

Figure 5. Space charge distribution and field strength of oil-impregnated paper under negative to
positive polar voltage shifting period. (a) Naphthenic oil. (b) GTL oil.

The differences in the variation in space charge at the grounding electrode between
mineral insulating oil- and GTL oil-impregnated paper are shown in Figure 6, where
there is a significant difference in the dynamic characteristics of the charge of the two
oil-impregnated paper insulating specimens at the grounding electrode. In terms of the
total amount of space charge density, space charge is injected more into the GTL oil-
immersed paper. It can be seen by comparing the slope characteristics of the curves, that
the rate of charge change in the naphthenic oil-impregnated paper specimens under the
three electric field conditions (stage A, B, and C) is always lower than that of the GTL
oil-impregnated paper specimens. The rate of space charge transport within the GTL
oil-immersed paper is faster, especially in the negative polarity DC field (1210–2410 s),
the charge decay characteristics of the space charge inside the gas oil-impregnated paper
specimen are more obvious, and the rate of charge dissipation at the grounding electrode is
about 140% higher than that of the conventional naphthenic oil-impregnated paper.

  
(a) (b) 

Figure 6. Variation in space charge at the grounding electrode of two oil-impregnated papers. (a) Line
graph. (b) Histogram.

94



Energies 2025, 18, 3152

4. Numerical Calculations for Microscopic Analyses

In the experiment, it was found that the charge dynamic properties of the two oil-
impregnated papers near the grounded electrode showed obvious differences, i.e., after the
first voltage inversion, the charge dissipation rate and the amount of retained charge of the
two have the largest difference. This suggests that the difference in charge transport ability
within the material changes the equilibrium state of charge movement and complexity and
affects the charge distribution. To verify this conjecture, a bipolar charge transport model
is constructed using COMSOL 6.2, a multi-physics field coupling simulation platform, to
study the dynamic process of different charge carriers’ mobilities during the electric field
polarity reversal [21]. The right-hand side of Equations (1)–(4) describe the inter-charge
carrier transitions among four morphology charge carriers, namely, free electrons (eμ),
trapped electrons (et), free positive charge (hμ), and trapped positive charge (ht), as well as
the effect on the space charge distribution, respectively. It is verified that the model can
effectively reflect the characteristics of the charge behavior inside the solid medium:
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∂ρet
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Net0
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∂ρht
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ρhμ

Nht0
)− Dhρht (4)

where S0, S1, S2, and S3 are the composite coefficients, Be and Bh are the trapped coefficients
of free electrons and free positive charges, respectively, and De and Dh are the de-trapped
coefficients of trapped electrons and positive charges, respectively [8].

The electron and positive charge injection densities satisfy the Schottky injection equation:

Je = AT2 exp(− qwei
KbT

+
q

KbT

√
qE

4πε0εr
) (5)

Jh = AT2 exp(− qwhi
KbT

+
q

KbT

√
qE

4πε0εr
) (6)

where A is Richardson’s constant, T is the temperature set by the simulation, and Kb is
Boltzmann’s constant. The model is based on Poisson’s equation to establish the con-
nection between the space charge and the transient space electric field in the oil–paper
insulating medium:

−∇ · (εrpε0∇ϕ) = ρeμ + ρhμ + ρet + ρht (7)

For the simulation, the model sets the thickness of the insulating cardboard to 0.5 mm
and takes the data of a truncated line in the direction of the thickness of the insulating
cardboard as the object of analysis. The simulation parameters are listed in Table 2. The
mobility, as a core parameter, was reasonably configured based on the experimentally
measured values from the tests in References [22,23]. The other parameter settings refer
to References [8,9], where the polarity reversal voltage waveform is positive polarization
voltage in 0–1200 s, polarity reversal time in 1200–1210 s, depolarization time ranges from
1210 to 3010 s, and the applied polarization field strength is 20 kV/mm. The principal
model is shown in Figure 7.
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Table 2. Simulation parameters for numerical calculations.

Parameters Numerical Value Unit Meaning

ε0 8.854 × 10−12 F/m Vacuum dielectric constant

εr 3.7 1 Relative dielectric constant of paperboard

Be 0.008 1/s Entrapment factor of free electrons

Bh 0.007 1/s Entrapment factor for free positive charge

ωei 1.18 eV Injection barrier for free electrons

ωhi 1.20 eV Injection barrier for a free positive charge

μeμ 5 × 10−15 m2/(V·s) Small mobility of free electrons

μeμ 5 × 10−13 m2/(V·s) Large mobility of free electrons

μhμ 4 × 10−15 m2/(V·s) Small mobility of free positive charge

μhμ 4 × 10−13 m2/(V·s) Large mobility of free positive charge

S0 0 m3/(s·C) Composite coefficients of incoming electrons and incoming positive charges

S1 1 × 10−5 m3/(s·C) Complexity factor of free electrons with incoming positive charge

S2 1 × 10−5 m3/(s·C) Composite coefficient of free positive charge and incoming electrons

S3 1 × 10−5 m3/(s·C) Composite coefficient of free electrons and free positive charges

A 1.2 × 106 A/(m·K)2 Richardson’s constant

Kb 1.3806 × 10−23 J/K Boltzmann’s constant

0 1

0.5

Thicknesses
/mm

Length/mm

High-Pressure Electrodes

Grounding electrode
 

Figure 7. Oil paper compression and splitting model.

Figure 8 shows the comparison between the experimental and simulated space charges
before and after polarity reversal. The correlation coefficients between the experimental and
simulation data reach 0.940 and 0.794 before and after polarity reversal, respectively. These
results demonstrate that the simulation exhibits good consistency with the experimental
observations in characterizing the dynamic evolution trends of space charges.

It is worth noting that the spatial internal charge density obtained from the simulation
is lower than the experimental value, which mainly stems from the fact that the charge trap
effect existing in the actual insulating paper has not been fully modeled. The narrower range
of charge distribution near the electrodes in the simulation may be related to the fact that
the actual specimen has a higher trap density near the electrodes. By tuning the parameters,
it is possible to isolate the influence of a single physical factor on charge transport.

Figure 9 shows the space charge distribution curves inside the insulation for different
mobilities. In the initial polarization stage, the charge polarity near the electrode is domi-
nated by the field injection mechanism and the space charge at the electrode continues to
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accumulate with the increase in the pressurization time. Additionally, the charge at the
grounded electrode under the large and small mobility is −0.62 C/m3 and −0.31 C/m3,
respectively, at the time of 1210 s. With the increase in free charge carrier mobility, both the
spatial charge density and distribution range within the insulating material exhibit signifi-
cant enhancement. This phenomenon arises because charge carriers with lower mobility
are more likely to be captured by traps near the electrodes during their migration through
the dielectric medium, thereby reducing internal space charge density. In contrast, rapid
carrier migration promotes the deeper trapping of charges along the material thickness
direction, manifesting as extended spatial charge distribution characteristics toward the
dielectric bulk. Poisson’s equation predicts that the maximum electric field intensity shifts
to the material interior rather than remaining localized near the electrodes.

(a) (b) 

Figure 8. Comparison of experimental and simulated space charge before and after polarity reversal.
(a) Comparison of experimental and simulated space charge before polarity reversal. (b) Comparison
of experimental and simulated space charge after polarity reversal.

  
(a) (b) 

Figure 9. Spatial charge density distribution with different mobility. (a) Space charge density
distribution at high mobility. (b) Space charge density distribution at small mobility.

At 1810 s, under applied voltage, polarity reversal is observed: the ground electrode
exhibits positive charges while the high-voltage electrode accumulates negative charges,
marking the initiation of new charge accumulation. The simulation data show that at
2410 s, the peak stagnant charge density obtained from the full neutralization of the newly
injected charge with the original charge in the low-mobility material is −0.01 C/m3. In
contrast, high-mobility materials retain a higher stagnant charge density of −0.04 C/m3

due to greater internal charge accumulation during polarization. Space charges of the same
polarity concentrate near electrodes, while opposite-polarity residual charges persist in the
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dielectric bulk. Consequently, the interfacial field strength at the ground electrode dimin-
ishes, and the field maximum shifts toward the material interior. By 3010 s, residual charges
vanish in low-mobility dielectrics, whereas high-mobility dielectrics retain pronounced
charge trapping near electrodes.

Polarity reversal leads to stagnant charge density not only related to the aforemen-
tioned mobility, but also to the formation of defects in the cardboard material. The traps
formed by defects are categorized into deep traps and shallow traps [24,25]. Shallow traps
give rise to the short-term capture of charges and space charges are prone to de-trapping
motions. Charges in deep traps require a higher energy to break free from the confinement
to become free charges that can migrate, which makes the charges in space continue to pile
up and trigger an electric field distortion; a distorted electric field will further interfere
with the shallow trajectory of the subsequent charges. The formation of charge distribution
and electric field changes shows a dynamic coupling effect. Figure 10 shows the carrier
transport process inside oil-impregnated paper [26]. During DC polarization, the whole
process involves a complex balance of charge injection, trapping, de-trapping, migration,
and composite behavior. The stagnant charge near the electrode and the increase in the
trap density is due to the polarization process. The anisotropic charge is still difficult to
dissipate after the electric field is reversed and the polarity of the charge near the electrode
remains unchanged for a short period of time, presenting an obvious charge stagnation
phenomenon. Traps near the electrodes induce the aggregation of same-polarity charges,
which partially counteract the external electric field, leading to a relative reduction in field
strength near the electrode regions. Conversely, in the bulk region of the specimen, the
absence of such charge compensation results in an enhanced electric field intensity, with the
peak field strength typically localized within the material interior. It reflects the regulatory
effect of traps in the oil–paper medium on the electric field distribution of charges.

Figure 10. Charge carrier transport processes inside oil-impregnated paper.

5. Conclusions

In this paper, both experiments and simulations on the space charge accumulations in a
typical GTL oil-immersed paper insulation are taken as the research object with naphthenic
oil-immersed paper insulation as the benchmark. The main research findings are as follows:

(1) The experimental results demonstrate that under positive–negative–positive polarity
reversal voltage, the gas-impregnated pressboard exhibits significantly higher rates of
space charge density variation (140% faster negative charge dissipation at the ground
electrode in stage B) and electric field distortion (54.15% distortion rate near electrodes
in stage C) compared with mineral oil-impregnated paper.

(2) A simulation model based on bipolar carrier theory was developed to investigate
space charge accumulation and field distortion mechanisms in oil–paper insulation
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under polarity reversal. The simulation results indicate that enhanced mobility
reduces space charge accumulation at the electrodes while increasing bulk charge
density, thereby mitigating interfacial electric fields. However, excessive mobility may
exacerbate post reversal residual charge retention, intensifying field distortion.

(3) The analysis of carrier transport mechanisms in oil-impregnated paper reveals the
critical regulatory role of traps in charge/field distribution. Future research should
explore modifying transformer oil–paper composites with titanium dioxide nanopar-
ticles. This modification strategy shows potential for accelerating space charge dis-
sipation, optimizing trap energy distribution, and alleviating interfacial field dis-
tortion in gas-impregnated pressboard [27], though its practical feasibility requires
systematic investigation.
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Abstract: Cross-linked polyethylene (XLPE) cables will gradually experience aging un-
der various stresses during long-term operation, which may lead to faults and seriously
affect the safe and stable operation of the power system. This article prepares aged ca-
ble samples by accelerating the thermal aging of XLPE cables, and combines frequency-
domain dielectric spectroscopy (FDS) and the polarization–depolarization current method
(PDC) for detection and analysis. By measuring the dielectric loss of aged cables using
frequency-domain dielectric spectroscopy, it was found that the dielectric loss value in the
low-frequency region significantly increases with aging time, indicating that aging leads
to an increase in polarity groups and polarization loss. The high-frequency dielectric loss
also significantly increases with the strengthening of dipole polarization. At the same time,
using the polarization–depolarization current method to measure the polarization current
and depolarization current of cables, it was found that the stable value of polarization
current increases with aging time, further verifying the changes in the conductivity and
polarization characteristics of insulation materials. Combining the broadband dielectric
response characteristics of FDS (0.001 Hz–1 kHz) with the time-domain charge transfer
analysis of PDC, the molecular structure degradation (dipole polarization enhancement)
and interface defect accumulation (space charge effect) of cable aging are revealed from
both frequency- and time-domain perspectives. The experimental results show that the
integral value of the low-frequency region of the frequency-domain dielectric spectrum
and the stable value of the polarization depolarization current are positively correlated
with the aging time, and can make use of effective indicators to evaluate the aging state of
XLPE cables.

Keywords: frequency-domain dielectric spectroscopy; insulation aging; polarization
depolarization current; XLPE cable

1. Introduction

Power cables are integral elements of modern power transmission and distribution
systems, with their insulation status holding paramount significance for the operational
reliability of the power grid. Compared with overhead lines, cable systems achieve com-
pact urban space utilization through underground installation. However, their long-term
operation under electro-thermal coupled stress leads to insulation aging, which has become
a major hidden hazard threatening the safe operation of power systems [1]. Cross-linked
polyethylene (XLPE), as a common insulation material, undergoes molecular chain fracture

Energies 2025, 18, 3169 https://doi.org/10.3390/en18123169
101



Energies 2025, 18, 3169

after aging, which generates free radicals and triggers chain degradation reactions. This
leads to changes in crystallinity and polar groups. Such microstructural deterioration
results in macroscopic property degradation through reduced mechanical performance,
lowered insulation resistance, and increased dielectric loss, ultimately causing a decline in
dielectric performance [2]. Statistics have shown that over 60% of cable failures are caused
by insulation aging. Therefore, accurate evaluation of power cable aging has become a vital
issue in power system operation and maintenance.

Traditional AC withstand voltage tests often adapt 2–3 times the rated voltage to
verify insulation strength. Although the AC test can determine overall insulation with-
stand capability, the high voltage may accelerate dielectric damage, with the results only
providing a binary judgment of pass or fail. They cannot quantify the degree of aging or
provide predictive capability for insulation status. Against this background, both time-
domain and frequency-domain dielectric response technologies have gained widespread
attention due to their non-destructive testing characteristics. Peter Werelius applied high-
voltage dielectric spectroscopy (HVDS) to study the aging characteristics of XLPE cables.
The experiments revealed that aging induced voltage nonlinearity, which was a unique
dielectric response manifested as significant dispersion in complex permittivity under
increasing test voltages [3]. S. Hvidsten demonstrated that traditional dielectric loss mea-
surements have significant limitations in detecting local defects in long cables, as intact
sections may mask localized aging signals. They found that the nonlinearity in the dielectric
spectrum was not affected by the cable length ratio [4]. Wang Wei systematically studied
the effects of combined thermal and electrical aging on the insulation properties of XLPE
cables. Their results showed that the dielectric loss peak increased by up to 300% in the
10−2–101 Hz frequency range, indicating that the accumulation of polar groups intensified
dielectric relaxation [5]. Du Boxue carried out accelerated thermal aging experiments
on XLPE cable press sheets and observed a strong consistency among physicochemical
indicators such as oxidation induction time, carbonyl index, and elongation at break in
assessing aging degree. Broadband dielectric impedance spectroscopy (BDIS) tests further
revealed a strong correlation between the low-frequency dielectric spectrum and the aging
state [6]. The polarization–depolarization current (PDC) method is an efficient offline and
non-destructive technique for insulation diagnostics. Its principle involves applying a
DC voltage to the test cable to induce polarization, followed by monitoring the variation
in polarization and depolarization currents to evaluate the insulation performance and
aging status. Bhumiwat developed a field-applicable, non-destructive dielectric response
diagnostic method for motor insulation based on the PDC technique [7]. The study found
that the unaged insulation exhibited power-law decay in PDC curves, whereas in aged insu-
lation, polarization phenomena (e.g., interfacial water adsorption and thermal degradation
byproducts) increased polarization current, deviating from the power-law behavior and
exhibiting a steady-state component [7]. Dakka M.A. investigated the dielectric property
changes in underground XLPE cable insulation during the aging process using the PDC
method. Their study showed that the integral value of the low-frequency depolarization
current increased with polarization time and varied significantly with aging [8]. Yang
Fan et al. applied PDC measurements to XLPE cables at different aging stages, focusing
on the low-frequency behavior of the depolarization current. The results demonstrated
that aged cables had faster current decay and higher steady-state currents than new ones,
indicating slower charge dissipation and the presence of residual charges [9]. Cai Gang
proposed a dual-parameter diagnostic method based on PDC analysis for aged cables, in-
corporating both DC conductivity and nonlinear coefficients. Experimental results revealed
that the aged samples exhibited a two-order-of-magnitude increase in DC conductivity,
accompanied by increased nonlinearity. This combined parameter approach addressed the
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limitations of relying solely on conductivity, which improves the accuracy and reliability of
insulation diagnostics [10].

Adapted from the PDC and FDS experimental results, this paper constructs cable
aging condition parameters and performs correlation analysis with aging degree using the
Pearson correlation coefficient method. We also compare the sensitivity and applicable
scope of the two diagnostic techniques, providing a theoretical basis for insulation condition
assessment of power cables.

2. Experimental Scheme

2.1. Thermal Aging Test

The experiment takes the YJV62 single-core cable produced by Hengrui Co., Ltd.
(Lianyungang, China) as the test sample. The insulation material of the cable is made of
XLPE with a rated voltage of 10 kV. In the preparation stage, it is necessary to process
the cable into a three-electrode system, as shown in Figure 1. Firstly, a cable segment
with a length of 0.6 m was cut and stripped of the outer sheath, armor, insulation sheath,
and copper shielding layer. The exposed outer semi-conducting layer was taken as the
measuring electrode. Then, a wire stripping tool was employed to remove the 4 cm material
of the insulation layer, and the exposed copper conductor cores were made use of at both
ends as high-voltage electrodes for measurement. Afterwards, we stripped off the 3 cm
semi-conducting layers at both ends of the cable, added two copper shielding rings at
each end of the insulation layer, and grounded them as protective electrodes. The semi-
conducting layer must be treated as above, otherwise surface leakage current may occur,
seriously influencing the experimental results’ accuracy [11,12].

Figure 1. The cable segment sample with three electrodes used in the measurement.

The prepared cable samples were then placed in a constant-temperature aging oven for
thermal aging. The acceleration temperature range is usually between 120 and 140 ◦C, as it is
found that a higher temperature may melt the XLPE sample, while a lower temperature will
not effectively accelerate the aging process. So, we chose to take 135 ◦C as the accelerating
temperature [13]. During the test, the samples were suspended within the aging chamber to
prevent contact with the chamber walls or stacking, thereby ensuring uniform exposure. For
each aging period, at least three cable samples were prepared to ensure data reliability. The
different sample groups were removed weekly and cooled naturally to room temperature
in a dry environment before subsequent measurements were carried out.

2.2. High-Voltage Dielectric Spectroscopy Test

The IDAX-300 dielectric response analyzer produced by Megger (Fort Collins, CO,
USA) was adapted in FDR measurements in this study, which allows testing in the fre-
quency range from 10−4 Hz to 104 Hz and maximum voltage of 2 kV. Figure 2 shows
the schematic diagram of the FDS measurement. A sinusoidal test signal of 100 V was
applied in the experiment, with a selected frequency sweep range of 10−3 Hz to 103 Hz. A
higher frequency cannot efficiently reflect the property change by aging, and an even lower
frequency will cost too much time but provide no further information. Each measurement
session lasts 60 min. During the test, the response current signal was transmitted back to
the analyzer by the low-voltage electrode, which was then transferred to a computer via
a data interface and processed by specialized software to derive the dielectric response
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characteristics of the cable insulation. The schematic diagram of the test principle is shown
in Figure 3. After the test, the cable samples were grounded to discharge. Multiple repeated
tests were conducted following the above steps.

 

Figure 2. Schematic diagram of frequency domain dielectric spectrum testing of cable segment
samples.

 
Figure 3. The cable segment sample with different thermal aging times. The cable insulation shows a
darker color with longer thermal aging time.

2.3. Polarization and Depolarization Current Test

Figure 4 presents a schematic diagram of the PDC measurement setup. The sys-
tem primarily consists of a high-voltage power supply, high-voltage relays, a protection
circuit, a pico-ammeter, a shielding enclosure, a controller, and a signal acquisition and
storage module.

 

Figure 4. Schematic diagram of polarization depolarization current test for cable segment samples.

Before the experiment, the high-voltage relays S1 and S2 remained in the open state,
with both the cable conductor and the outer semi-conducting layer grounded. Once the
measurement started, the high-voltage DC power supply first charged the filter capacitor.
Then, the relay S1 was closed to apply the polarization voltage to the cable. To prevent
damage to the pico-ammeter and avoid distortion due to the initial surge current, the
relay S2 was closed with a delay of 1 s after S1 closure, initiating the measurement of the
polarization current. The recorded polarization current comprises the leakage current and
absorption current. After the test, S1 was opened and the cable conductor was grounded,
initiating the depolarization process. All current signals were transmitted via the pico-
ammeter to the computer, where the polarization and depolarization waveforms were
generated using the Lab-VIEW (21.0.1). A photograph of the cable PDC testing platform is
shown in Figure 5.
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Figure 5. The photo of the polarization depolarization current testing platform.

3. Frequency-Domain Dielectric Spectrum Experimental Results
and Analysis

3.1. Dielectric Spectrum Testing of Aged Cables

The dielectric spectroscopy measurement was performed on XLPE cable segment
specimens subjected to different thermal aging durations by an IDAX frequency-domain
dielectric response analyzer. The testing was conducted over a frequency range from
0.001 Hz to 1 kHz. To better visualize the dielectric loss factor at low frequencies, the
horizontal axis is presented on a logarithmic scale. The dielectric response results of the
XLPE cable segments are shown in Figure 6.

Figure 6. Frequency-domain dielectric spectrum test results of thermally aged cables. The values of
dielectric loss increase significantly with the thermal aging time at 0.001 Hz and 1000 Hz.

Across the entire frequency spectrum, the dielectric loss factor (tanδ) of the unaged
XLPE cable remains nearly constant, indicating a structurally uniform material with min-
imal frequency-dependent polarization response. As thermal aging time increases, the
dielectric loss factor rises at all frequencies, which is reflected in the dielectric spectra
as an overall upward shift in the curve. Simultaneously, the frequency dependence of
tanδ becomes more pronounced. Particularly, the apparent increases in dielectric loss are
observed at both low and high frequency extremes, especially after prolonged aging, where
tanδ values become substantially higher. The growth in dielectric loss in the initial stage is
relatively slow, but it accelerates obviously with the continued aging. Overall, the dielectric
loss behavior of aged samples exhibits a characteristic shape in the dielectric spectrum: a
relatively flat middle region with sharp increases at both ends.

In the low-frequency region, as the frequency decreases from 0.1 Hz to 0.001 Hz, the
tanδ of XLPE specimens gradually increases. For unaged cables, this frequency dependence
remains minimal. However, with increasing thermal aging time, the slope of the tanδ–
frequency curve in the low-frequency range becomes steeper, and the difference in tanδ

values among different aging durations becomes more distinct. This makes the tanδ–
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f characteristics increasingly sensitive to aging, enabling more effective differentiation
between varying aging states. In the most severely aged condition, the tanδ value at
0.001 Hz reaches as high as 0.37. The increase in dielectric loss at low frequency mainly
corresponds to the increase in conduction current due to thermal aging. This will be
discussed in the next section, together with the polarization current results.

In the high-frequency region, the dielectric loss factor (tanδ) of XLPE specimens
gradually increases with rising frequency. With prolonged thermal aging, the dielectric loss
becomes markedly more severe. After 7-week aging, the tanδ value peaks at 0.83 at 1000 Hz,
reflecting significant deterioration in the dielectric performance of the cable insulation at
higher frequencies. The increase in dielectric loss at high frequency corresponds to the
increase in polar groups which enhances the reorientation polarization at relatively high
frequency. The increased polar groups are considered to be generated by the broken bonds
and increased C-O bond due to thermal oxidation.

3.2. Relationship Between Cable Insulation Thermal Aging Time and High-Voltage
Dielectric Spectrum

An increase in polar groups in a material will increase the relative permittivity of
the material. To make this clear, the relative permittivity of the cables at different aging
stages was calculated at selected frequencies of 1000 Hz, 50 Hz, 1 Hz, 0.1 Hz, 0.01 Hz, and
0.001 Hz. The variation in relative permittivity with aging time at these frequencies is
illustrated in Figure 7.

Figure 7. The changes in relative permittivity of aged cables at different frequencies. The permit-
tivity increases with the thermal aging time, and the permittivity shows an even greater change at
lower frequency.

As shown in Figure 7, the relative permittivity of XLPE cables exhibits a significant
increase with prolonged thermal aging, rising from 2.44 in the unaged state to 2.99 under
severe aging conditions. This change is attributed to thermal degradation, which induces
molecular chain fracture and the formation of polar groups such as carbonyl and carboxylic
acid groups. These polar groups possess much higher dipolar polarization capability com-
pared to the non-polar polyethylene matrix, thereby enhancing the overall polarizability of
the XLPE material and significantly increasing εr.

In unaged XLPE, the dielectric response is primarily governed by electronic displace-
ment polarization and a small amount of impurity ion migration, both of which respond
almost instantaneously and exhibit negligible frequency dependence over a wide frequency
range. However, as aging progresses, especially by the ninth week of thermal aging, a clear
frequency dependence of εr emerges. For severely aged cables, εr increases from 2.91 at
1000 Hz to 2.99 at 0.001 Hz. This frequency-dependent behavior in aged samples reflects
the dynamic nature of polarization responses. The results in Figure 7 show that the relative
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permittivity of XLPE increases with the thermal aging. This is consistent with the increase
in polar groups due to thermal aging.

To further analyze the dielectric behavior, the integral values of dielectric loss
(tanδ) over the low-frequency range (0.001 Hz–1 Hz) and the high-frequency range
(100 Hz–1000 Hz) were quantitatively evaluated. Figure 8 presents the trends in these
integrals as a function of aging duration, highlighting the distinct evolution of dielectric
loss characteristics in different frequency domains.

Figure 8. Integrated values of low-frequency dielectric spectra of thermally aged cables in the
frequency domain. The integrated values of dielectric losses increase the changing rate of dielectric
losses, and become more sensitive with the aging condition.

Comparing Figures 6–8, it can also be seen that the trend of integral values of dielectric
loss show similar trends with the relative permittivity on the relationship with aging time.
However, the changing rate of the integral values are much higher than the values of
relative permittivity and the values of dielectric loss at a specific frequency. This shows
that the integral values of dielectric loss are more sensitive with the changes in aging.

At low frequencies, dielectric loss is primarily dominated by conductive losses. As
the frequency increases, the relaxation polarization cannot establish itself in time, and
the dielectric material exhibits minimal relaxation loss. With increasing aging time, the
dielectric loss factor at low frequencies significantly increases, with more pronounced
changes occurring as aging time lengthens. Thermal aging causes the long chains of cross-
linked polyethylene (XLPE) to break, generating a large number of polar groups, which
leads to an increase in the low-frequency dielectric loss factor of XLPE. Furthermore, the
dielectric loss increases more at lower frequencies.
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In the high-frequency region, dielectric loss is mainly governed by dipolar polarization
or reorientation polarization and the rapid movement of molecular chains. These processes
have short response times and are highly sensitive to changes in the material’s microstruc-
ture. Thermal aging results in the breakdown of the XLPE cross-linking network, leading
to molecular chain fracture and making dipoles more responsive to high-frequency electric
fields. The enhanced mobility of molecular chains accelerates the polarization response,
resulting in an increase in high-frequency tanδ.

The dielectric loss factor shows a strong correlation with aging time, which suggests
that the dielectric loss integral values can be used to characterize the overall aging state of
the cable. To overcome the limitations of analyzing a single frequency range, a composite
aging parameter, denoted as A2, is proposed in this study to comprehensively represent
the synergistic degradation characteristics of high-frequency and low-frequency dielectric
responses. The definition of this parameter is given by the following equation:

A2 =
1
2
·
∫ 1000

10 tan δn( f )d f∫ 1000
10 tan δ0( f )d f

+
1
2
·
∫ 0.1

0.001 tan δn( f )d f∫ 0.1
0.001 tan δ0( f )d f

(1)

Here, tanδn represents the dielectric loss value of the cable aged for n weeks, and tanδ0

represents the dielectric loss value of the unaged cable.
Adapted from the experimental data, the criterion values for different aging periods

were calculated, and the results are shown in Table 1. The criterion value A exhibits a
monotonic increasing trend with aging time, rising from 9.36 to 69.28 over the 1-week to
7-week period. This demonstrates a strong correlation with the aging time. Even though
the results in Table 1 are from a single experiment for each aging time, the duplicated
samples show the similar values and quite the same trend.

Table 1. Integral values of dielectric loss of cable insulation with different aging times.

Aging Time
No

Aging
1 Week
Aging

3 Week
Aging

5 Week
Aging

7 Week
Aging

Low-frequency integration (10−4) 3.8 13.9 38.1 61.8 88.6
High-frequency integration 6.457 97.28 251.96 406.25 508.87

A2 1 9.36 24.52 39.59 51.06

The prediction error of the model is less than ±5%, indicating that the criterion A2 effec-
tively quantifies the aging degree of the cable insulation. Compared to the single-frequency
model, the composite criterion significantly enhances the stability of the evaluation results
by integrating information from multiple frequency bands. This makes it particularly
suitable for complex scenarios involving non-uniform aging or local defects.

4. Polarization and Depolarization Current Testing

4.1. Polarization and Depolarization Current Tests on Cables

The polarization–depolarization current method is a commonly used technique for
assessing the aging state of cable insulation. Under the same DC voltage, the longer
the polarization testing time, the more thoroughly the cable insulation material becomes
polarized. After applying the DC voltage, the polarization current initially decreases
exponentially and then gradually stabilizes. After 20 min of voltage application, the
polarization current has essentially stabilized, and the depolarization current also becomes
stable after approximately 10 min. The polarization and depolarization currents at 20 min
and 40 min are similar, with charge accumulation slowing down after 20 min. Considering
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the accuracy and convenience of the measurement, a polarization time of 20 min was
selected for subsequent cable polarization–depolarization current measurement tests.

To investigate the effect of aging time on the polarization–depolarization characteris-
tics of cable insulation materials, this study conducted current response tests on thermally
aged cable samples under multiple voltage levels; 1 kV, 3 kV, and 5 kV DC voltages were
applied to XLPE cable samples at different aging periods. Both the polarization and
depolarization measurements lasted 20 min. The test results are shown in Figure 9.

  
(a) Unaged cable polarization current (b) Unaged cable depolarization current 

(c) Cable polarization current for 1 cycle of aging (d) Cable depolarization current for 1 cycle of aging 

  
(e) Cable polarization current for 3 cycles of aging (f) Cable depolarization current for 3 cycles of aging 

  
(g) Cable polarization current for 5 cycles of aging (h) Cable depolarization current for 5 cycles of aging 

  
(i) Cable polarization current for 7 cycles of aging (j) Cable depolarization current for 7 cycles of aging 
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Figure 9. Polarization-depolarization current measurement results of aged cable samples under
different polarization voltages.

As the voltage increases, both the polarization and depolarization current decay
rates decrease, and the stable values of the polarization current increase. In the early
stages of aging, the cable insulation material exhibits good performance, resulting in
relatively small levels of polarization and depolarization currents. Consequently, the stable
polarization–depolarization current values for the 1-week-aged cable samples are close
to the noise level at all three voltage levels. Despite implementing shielding measures,
external environmental and measurement equipment noise still interfered with the actual
measurements. This interference is particularly noticeable in the polarization current,
while the depolarization current is less affected. In the later stages of aging, significant
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changes in the polarization and depolarization current characteristics are observed. The
polarization current’s decay rate slows significantly, and at 5 kV, it takes around 15 min
for the polarization current to stabilize, indicating that the dramatic increase in deep trap
density is hindering charge migration. The steady-state value increases, and the difference
in steady-state polarization current values becomes more pronounced with higher testing
voltages, with a clear discrepancy between high and low voltage steady-state values.

The polarization current is mainly made up of the capacitance current and conduction
current. The capacitance current is determined by the capacitance of the cable and the
applied voltage. So, the higher the voltage, the higher the polarization current at the
beginning of the voltage application. The conduction current takes the dominant part of
the polarization current after several tens of seconds, once the capacitance charge on the
electrodes of the cable has been fully charged. The thermal aging process can influence
both the capacitance current via permittivity and the conduction current.

4.2. Relationship Between Thermal Aging Development and Polarization–Depolarization Current

To determine the influence of aging on the polarization–depolarization currents,
Figure 10 compares the PDC test results for cable samples subjected to 5 kV voltage
at different aging stages. Under a constant polarization voltage, as the aging degree of the
cable samples increases, the measured steady-state polarization current gradually rises.
For the 1-week-aged cable samples, the depolarization current decays to the noise level
around 300 s, then increases due to external interference. For the 3-week- and 5-week-aged
cable samples, the depolarization current stabilizes around 800 s, while for the 7-week-aged
cable samples, the depolarization current stabilizes around 1200 s.

Figure 10. Polarization and depolarization currents of different aged cables under the same voltage.
Both the polarization and depolarization currents increase with the aging time. The polarization
current at the end of measurement time increases with the aging time, and the total dissipated charge
amount during the depolarization process increases with the aging time.

As the aging time increases, the peak value of the polarization current increases,
showing that the capacitance current increases with the aging time. It corresponds to the
increase in relative permittivity as shown in Figure 7. The conduction current at the end of
the polarization also increases with the aging time. This is due to the increase in charge
density and/or mobility caused by thermal aging. The increase in conduction current also
consists with the increased dielectric loss at low frequency.

The conductivity of the cable sample can be calculated using the polarization current
value. The average current over the last 100 s of the polarization is taken as the conduction
current. The conductivity is then calculated using the following formula:

σ =
J
E
=

I
U

ln r2
r1

2π(L1 + g)
(2)

where σ represents the conductivity (S·m−1), J is the conductive current density (A·m−2),
E is the electric field strength (V·m−1), I is the conductive current (A), U is the applied
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voltage (V), r is the radius at the middle of the insulation layer (m), r1 represents the radius
of the copper core (m), r2 is the radius at the outer surface of the insulation layer (m), L is
the length of the outer semi-conductive layer (m), and g is the distance between the copper
shielding ring and the outer semi-conducting layer (m).

As shown in Table 2, the calculated conductivity of the aged cable increases with the
aging time.

Table 2. Conductivity of cables in different aging states.

Aging Time 1 Week 3 Weeks 5 Weeks 7 Weeks

electrical conductivity/×10−17 S·m−1 1.86 7.31 8.81 11.9

The conductivity measurements at different aging durations reveal a significant in-
crease in the electrical conductivity of aged cables. Notably, the 7-week-aged cable exhibits
an order-of-magnitude enhancement in conductivity compared to the 1-week aged spec-
imen. This phenomenon can be attributed to oxidation reactions between the insulation
material and atmospheric oxygen during aging, which generate polar molecules and free
radicals. These chemical byproducts act as charge carriers to enhance conductivity, thereby
compromising the insulation performance of the cable. These results are also consistent
with the results of lower-frequency dielectric loss. Both of the results suggest an increase in
the conduction current with the thermal aging time. But the increasing rate of conductivity
during aging is not the same as the low-frequency dielectric loss. This is because the
conductivity obtained from the PDC is a quasi-steady state, while the lower-frequency
dielectric loss obtained from FDS is a dynamic result. It is hard to directly compare the
results of FDS at 0.001 Hz with the results of PDC at 1000 s.

The conduction current is determined by the charge density, mobility, and electric
field. The influence of thermal aging on the conduction current of the cable insulation
should relate to the change in charge density and mobility. The charge dissipates in
the depolarization process are all accumulated during the polarization process. So, by
integrating the depolarization current, the dissipated space charge amount during the
depolarization can be obtained. It also reflects the charge accumulation inside the sample
during the polarization. The formula for calculating the charge amount is as follows:

Q =
∫ td

0

∣∣∣idp(t)
∣∣∣dt (3)

In the formula, Q represents the total charge (C), td is the total time during the
depolarization phase (s), and idp(t) is the depolarization current (A).

The charge density of the cable refers to the charge per unit volume within the cable,
which can be calculated by dividing the total charge of the cable by the volume of the
cable’s insulation layer. The specific formula is:

ρ =
Q

π
(
r2

2 − r2
1
)

L
(4)

where ρ represents charge density (C·m−3).
Currently, there is no feasible experimental method to directly measure the carrier

mobility. As the conductivity and charge density have been obtained with the above
method, the apparent charge mobility can be calculated as follows:

μ =
σ

ρ
(5)
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where μ represents carrier mobility (m2·(V·s)−1).
In the depolarization test after a 5 kV polarization, the charge amount and carrier

mobility of cable samples with different aging times were calculated by integrating the
depolarization current, as shown in Table 3. It was observed that both the total charge
and the carrier mobility increased as the aging time increased, which is consistent with the
changes in conductivity. It should be noted that the charge density and charge mobility did
not change linearly with the aging time. At the beginning of the aging, the charge amount
and mobility increased sharply in the first 3 weeks, and then increased slightly afterwards.
The increase in charge density is mainly due to the degradation of insulation causing a
higher charge injection rate at the electrode interface. The increased charge mobility is
probably due to the weaker charge blocking ability with more broken bonds.

Table 3. The charge amount, density, and mobility of insulation with different aging times.

Aging Time 1 Week 3 Weeks 5 Weeks 7 Weeks

The total amount of charge/C 1.5 × 10−9 2.6 × 10−9 2.8 × 10−9 3.3 × 10−9

Charge density/C·m−3 8.74 × 10−6 1.52 × 10−5 1.63 × 10−5 1.92 × 10−5

Charge mobility/m2·(V·s)−1 2.13 × 10−12 4.81 × 10−12 5.41 × 10−12 6.19 × 10−12

5. Correlation Analysis of Cable Aging State Parameters

To evaluate and compare the capability of different aging state parameters in charac-
terizing aging time, statistical analysis was conducted by the Pearson correlation coefficient
(r) and significance testing. The Pearson correlation coefficient was employed to quantify
the linear correlation between two variables, as in:

r =
n ∑ xiyi − ∑ xi − ∑ yi√

n ∑ x2
i − (∑ xi)

2·
√

n ∑ y2
i − (∑ yi)

2
(6)

The conductivity, charge density (ρ), carrier mobility (μ), total charge (Q), low-
frequency integral, high-frequency integral, and aging parameter A of aged cable were
analyzed for their correlation with aging time, with a significance level set at α = 0.05. The
analysis results are shown in Table 4.

Table 4. Correlation analysis of aging state parameters.

Pearson Correlation Coefficient (r) p

Electrical conductivity σ 0.972 0.0281
Charge density ρ 0.750 0.0250

Carrier mobility μ 0.803 0.0197
The total amount of charge Q 0.952 0.0479

Low-frequency integration 0.990 0.0157
High-frequency integration 0.992 0.1255

Aging parameter A 0.998 0.0438

The results indicate that all parameters exhibit strong positive correlations with aging
time (r > 0.7), confirming their reliability as indicators for insulation aging characteriza-
tion. In the FDS test, the high-frequency integral ratio shows a correlation coefficient of
r = 0.992 with aging time, demonstrating the sensitivity of high-frequency components to
microscopic mechanisms of thermal aging. The low-frequency integral ratio also shows
a strong positive correlation (r = 0.990), although its growth rate is slower, reflecting
the gradual accumulation of deep polarization effects. The aging parameter A, which
integrates both high- and low-frequency features, achieves an enhanced correlation of
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r = 0.998, outperforming single-frequency-band analyses. The evolution pattern of dielec-
tric spectral integrals during thermal aging has clear physical significance of high-frequency
integral domination in early degradation, while low-frequency integrals reflect long-term
polarization damage. The proposed parameter A not only enables effective integration of
multi-frequency information but also provides a theoretical foundation for rapid insulation
assessment in practical application.

In the PDC test, charge amount, charge density, carrier mobility, and conductivity
all increase significantly with aging time. Among these, conductivity has the highest
correlation coefficient (r = 0.972), indicating its highest sensitivity to aging status. Not only
does conductivity exhibit strong correlation, but its value also increases exponentially with
aging time, making it a clear differentiator of aging stages and the most effective parameter
for evaluating insulation aging status.

6. Conclusions

In this study, thermal aging of XLPE cables is investigated through accelerated aging
experiments of varying durations. Samples from different aging cycles are subjected to
FDS and PDC tests. The main findings are concluded as follows:

(1) FDS measurement on aged cables reveals a general upward trend in dielectric loss.
The low-frequency dielectric loss factor of XLPE increases with aging duration. The
lower the frequency, the greater the increment in dielectric loss. The integral of the
dielectric loss from FDS measurement also shows a monotonic increase with aging
time, indicating that the integral value serves as an effective indicator for XLPE
insulation aging state evaluation.

(2) From the PDC tests, it can be seen that the decay rates of the polarization and depo-
larization currents significantly decrease after aging, while the steady-state values
increase. DC conductivity, space charge density, and carrier mobility are calculated
and adapted from the measurement results. Both conductivity and carrier mobility
increase notably with aging duration, suggesting that these parameters can be used
as reliable indicators of cable insulation aging.

(3) Correlation analysis between aging time and parameters extracted from FDS and PDC
tests, including conductivity, charge density (ρ), carrier mobility (μ), charge amount
(Q), low-frequency integral, high-frequency integral, and aging parameter (A) shows
the strongest correlation between the conductivity and the aging time (r = 0.9, p < 0.05).
Outperforming charge density and mobility, the DC conductivity is better suited for
aging assessment. In FDS tests, the high-frequency integral exhibits a non-significant
correlation with a significance level p > 0.05, whereas the low-frequency integral
demonstrates a strong correlation coefficient of 0.99 (p < 0.05), indicating a robust
relationship with cable aging degradation. This establishes the low-frequency integral
as a reliable metric for characterizing the insulation aging state of cables.
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Abstract: The remaining lifetime of the cable insulation is an important but hard topic for
the industry and research groups as there are more and more cables nearing their designed
life in China. However, it is hard to accurately and efficiently obtain the ageing characteristic
parameters of cross-linked polyethylene (XLPE) cable insulation. This study systematically
analyzes the evolution of the remaining insulation lifetime of XLPE cables under different
ageing states using the step-stress method combined with the inverse power model (IPM)
and a physical-driven model (Crine model). By comparing un-aged and accelerated-
aged specimens, the step-stress breakdown tests were conducted to obtain the Weibull
distribution characteristics of breakdown voltage and breakdown time. Experimental
results demonstrate that the characteristic breakdown field strength and remaining lifetime
of the specimens decrease significantly with prolonged ageing. The ageing parameter of
the IPM was calculated. It is found that the ageing parameter of IPM increases with the
ageing time. However, it can hardly link to the other properties or physic parameters of the
material. The activation energy and electron acceleration distance of the Crine model were
also calculated. It is found that ageing activation energy stays almost the same in samples
with different ageing time, showing that it is a material intrinsic parameter that will not
change with the ageing; the electron acceleration distance increases with the ageing time, it
makes sense that the ageing process may break the molecule chain of XLPE and increase
the size of the free volume. It shows that the Crine model can better fit the physic process
of ageing in theory and mathematic, and the acceleration distance of the Crine model is a
physical driven parameter that can greatly reflect the ageing degree of the cable insulation
and be used as an indicator of the ageing states.

Keywords: ageing model; Crine model; cross-linked polyethylene (XLPE); remaining
lifetime; step-stress method

1. Introduction

Due to its excellent insulation performance, mechanical strength, and thermal con-
ductivity, cross-linked polyethylene (XLPE) has been widely used in high-voltage direct
current cable insulation systems and serves as the primary insulating material for 10 kV
to 220 kV power cables [1]. With the continuous growth of societal electricity demand,
requirements for cable operational stability have become increasingly stringent. As early
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installed cables approach extended service periods, many cables deployed before 2003 have
now operated for over 20 years. The failure rates of the cable will rise with the reduction
in the insulation lifetime, as the bathtub curve and the application data suggest. So, the
remaining ageing lifetime of these old cables has become a critical concern for the cable
operators. Effective monitoring of XLPE cable insulation and accurate assessment of its
remaining lifetime are essential for enhancing power system reliability.

High-voltage cables are typically designed for a 30- or 40-year service life. However,
factors such as manufacturing processes, installation quality, and operational stresses
(electrical, thermal, and mechanical) significantly impact XLPE insulation performance [2].
Statistical analyses of cable failures reveal that operational failure rates follow a bathtub
curve. With many XLPE cables nearing their 30-year design lifetime, insulation degradation
has become increasingly prominent [3]. Harsh installation environments and inherent local
defects further accelerate ageing, leading to frequent insulation failures. The growing num-
ber of ageing cables in service has imposed substantial pressure on maintenance operations.

Merely evaluating XLPE insulation status proves insufficient for precise remaining
lifetime prediction. Premature cable replacement incurs unnecessary economic costs, while
delayed action jeopardizes system safety. Thus, developing an engineering-applicable cable
lifetime assessment methodology enables scientifically optimized maintenance planning
and targeted resource allocation, minimizing wasteful expenditures.

Extensive research has been conducted globally on insulation material lifetime eval-
uation, with models broadly categorized into empirical and physical types. Empirical
models like the Dakin model and inverse power model, derived from statistical electrical
ageing patterns, are widely used in industrial testing and ageing assessments due to their
simplicity and ability to reflect characteristic ageing trends [4,5]. However, these models
lack direct correlation with intrinsic ageing mechanisms. For instance, the ageing lifetime
exponent in the inverse power model remains an empirical parameter without explicit
physical meaning or connection to material properties.

To address these limitations, researchers have developed physical models based on
microscopic processes, including the Lewis kinetic model [6], DMM space charge model [7],
and Crine thermodynamic model [8]. The Lewis model interprets ageing as a chemical
dynamic process where charge carriers gain energy under electric fields, causing structural
damage through impact ionization and bond rearrangement. The DMM model emphasizes
space charge effects in insulation ageing, proposing a lifetime model based on space
charge dynamics. The Crine model conceptualizes ageing as a thermally activated process
requiring overcoming energy barriers [8].

The Crine model frames polymer ageing as a thermally activated transition from un-
aged to aged states, necessitating the surmounting of ageing activation energy barrier [8].
Electric fields reduce the required activation energy by introducing electrostatic forces from
charged particle. The ageing activation energy barrier exhibits linear variation with electric
field intensity, influenced by the ageing activation energy difference between initial and
final states. It is considered that a critical field strength exists at the exponential-to-non-
exponential transition point, beyond which micro-void or defect formation may initiate.
Below this threshold, ageing is suppressed, though sub-threshold ageing remains possible
under specific conditions.

While the inverse power model retains broad applicability, it is an empirical model
with good mathematic fitting with the experimental results but hardly links to the physics
of the insulation materials. Moreover, it cannot be sufficiently used in the estimation of
ageing states of the insulation.

116



Energies 2025, 18, 3179

This study compares the inverse power model and Crine model with step-up test data,
investigates Crine-based ageing mechanisms, and explores methods of assessing insulation
ageing states using the Crine model.

2. Experimental Setup

2.1. Sample Preparation

The cross-linked polyethylene (XLPE) insulation samples are obtained from a YJV62
single-core cable with a rated voltage of 10 kV, produced by Jinda Cable from Tianjin, China.
The XLPE samples are made by a numerically controlled machine tool via ring cutting. All
the samples have a thickness of 0.2 mm, as shown in Figure 1. A portion of the un-aged
cable insulation layer from the middle section was ring-sectioned to obtain cable insulation
slice samples. The obtained XLPE cable insulation material slices and remaining un-aged
cable sections were subjected to thermal ageing in an oven. The acceleration temperature
range is usually set between 120 and 140 ◦C, as it is found that a higher temperature may
melt the XLPE sample and a lower temperature will not effectively accelerate the ageing
process. So, we choose to use 135 ◦C as the accelerating temperature [9]. The cables were
thermally aged for 0, 3, and 5 weeks. The aged cables were sectioned to obtain slices of the
aged cable insulation material, which were labelled according to the ageing weeks, as AS0,
AS3, AS5, etc.

 
Figure 1. XLPE cable insulation slice sample.

The ring-sectioned cable slices are inherently curved, uneven, and marked with cutting
scratches, which adversely affect the accuracy of experimental measurements. To obtain
transparent and flat slice samples, the cable slices were placed in a 0.2 mm thick stainless-
steel mould, with silicone oil-coated PET films placed on both the top and bottom surfaces
to prevent adhesion. After heating the flat-plate vulcanizing press to 120 ◦C, the samples
were placed inside and pressed under a pressure of 15 MPa for 40 s. Upon removal, they
were sandwiched between water-cooled plates for cooling.

2.2. Accelerated-Ageing Test Platform

Acquisition of ageing lifetime exponents or other critical parameters for insulation
material lifetime models necessitates accelerated-ageing tests, which predominantly em-
ploy the constant voltage method and step-up voltage method—each offering distinct
advantages suited to different testing scenarios. The constant voltage method applies
a steady voltage until specimen breakdown, providing simplicity and reliability but re-
quiring extended test durations with inherent limitations including time inefficiency, low
data acquisition rates under low-voltage conditions, and significant data dispersion. In
contrast, the step-up voltage method, grounded in the cumulative ageing lifetime model,
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operates on the premise of irreversible ageing damage accumulation in insulation materials.
This approach demonstrates superior efficiency, shorter testing cycles, and reduced data
scatter. By incrementally elevating the applied voltage at predetermined time-steps until
breakdown occurs, this method capitalizes on the cumulative effects inherent to solid
insulation, particularly effective for materials lacking self-healing properties.

The Nelson model postulates that material residual lifetime is determined by the syner-
gistic effects of voltage stress and breakdown probability at corresponding stress levels [10].
By conceptualizing insulation breakdown as a consequence of voltage stress accumulation,
progressive voltage escalation enables evaluation of solid insulation’s endurance capability
and remaining service life.

Figure 2 schematically illustrates the step-up voltage ageing test configuration with
the following definitions:

Figure 2. Schematic diagram of gradually increasing pressure method for accelerating ageing
test pressure.

Vs: Initial voltage;
Tr: Time step duration;
Vr: Voltage increment per step;
Vf: Breakdown voltage;
Tf: Final step duration.
In accelerated-ageing tests the prepared sheet samples are cleaned with alcohol and

placed between the upper and lower electrodes, ensuring the samples are fully immersed
in insulating oil. First, a constant voltage breakdown test is conducted at room temperature
to determine the sample’s breakdown voltage range. For the step-stress method, the initial
voltage is typically set to 60% of the room-temperature breakdown voltage [11]. The
voltage gradient is selected to ensure at least three test steps before breakdown occurs,
with gradient time intervals (e.g., 5 min, 10 min, 30 min) chosen. Voltage is continuously
increased until the sample breaks down, and the breakdown time and voltage are recorded.
The accelerated-ageing test setup is illustrated in Figure 3. In this study, the initial voltage
was set to 45 kV, the voltage gradient to 5 kV, and three time-steps of 200 s, 600 s, and 1800 s
were applied. The temperature is 25 ◦C, and the humidity is about 40%. To ensure the
accuracy of the test, 6 samples are used in each group to reduce the dispersity of the data.
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Figure 3. Step-stress method accelerated ageing test pressure test diagram.

3. Measurement Results

The step-up voltage accelerated-ageing test was performed on aged cable insulation
sheet samples to record the time required for the voltage level to incrementally increase
from the initial voltage according to predefined time-steps until breakdown occurred. The
results are shown in Table 1.

When the number of samples in the step-up voltage test is sufficiently large, the total
breakdown time can be assumed to follow a Weibull distribution. Figure 4 illustrates the
Weibull distribution of breakdown times for XLPE cable slices subjected to step-up voltage
ageing tests under different time-steps. In the statistical analysis a confidence level of 0.95
was set. Additionally, the scale parameter of the Weibull distribution is defined as the
characteristic ageing time, representing the typical time at which the material is likely to
reach breakdown under specific conditions. Using the characteristic ageing times obtained
from each experimental group, the corresponding characteristic breakdown voltages were
further determined.

Table 1. Gradual voltage rise test data of cable slices in different ageing states.

Sample
Step Duration

(s)
No.

Breakdown
Voltage (kV)

Total Time
(s)

Last Step
Time (s)

AS0

200

1 95 2135 90
2 85 1678 33
3 90 1920 75
4 95 2194 149
5 90 1887 42
6 85 1762 117

600

1 80 4519 274
2 85 4884 39
3 85 4954 109
4 80 4337 92
5 90 5494 49
6 85 5191 346

1800

1 80 12,696 51
2 80 13,725 1080
3 75 11,186 341
4 90 12,509 1664
5 65 10,546 1501
6 70 9327 282
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Table 1. Cont.

Sample
Step Duration

(s)
No.

Breakdown
Voltage (kV)

Total Time
(s)

Last Step
Time (s)

AS3

200

1 75 1374 129
2 90 2017 172
3 95 2187 142
4 85 1783 138
5 80 1461 16
6 85 1679 34

600

1 90 5459 14
2 80 4399 154
3 80 4505 260
4 80 4336 91
5 70 3446 401
6 80 4519 274

1800

1 70 10,832 1787
2 65 8100 855
3 65 8933 1688
4 80 12,723 78
5 75 11,645 800
6 75 11,420 575

AS5

200

1 80 1474 29
2 80 1550 105
3 70 1106 61
4 85 1768 123
5 80 1528 83
6 90 1935 90

600

1 70 3167 122
2 80 4273 28
3 65 2522 77
4 60 1993 148
5 90 5801 356
6 85 5165 320

1800

1 70 9117 72
2 75 10,873 28
3 75 11,768 728
4 65 7381 136
5 70 9195 150
6 65 7956 711

Table 2 presents the Weibull distribution parameters of XLPE sheet samples with
different ageing degrees under three step durations. The results show that the characteristic
breakdown voltage of the same sample decreases with increasing step duration. Under
a fixed step duration, XLPE sheet samples with prolonged ageing time exhibited lower
characteristic breakdown voltages.
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(a) AS0 

 
(b) AS3 

 
(c) AS5 

Figure 4. Distribution of breakdown time for XLPE sheet specimens (Black: tr = 200 s, Red: tr = 600 s,
Blue: tr = 1800 s).
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Table 2. Weibull distribution parameters of cable slices in different ageing states.

Sample Step Duration (s)
Characteristic Breakdown

Voltage (kV)
Characteristic

Ageing Time (s)
Last Step Time (s)

Un-aged
200 90 2015 170
600 85 5077 232

1800 75 12,308 1463

AS3
200 90 1874 29
600 80 4701 456

1800 75 11,284 439

AS5
200 85 1697 52
600 80 4290 45

1800 70 10,539 1194

4. Analysis

4.1. Insulation Ageing Lifetime Evaluation Based on Inverse Power Model

The inverse power model, which is the most widely used empirical model in engineer-
ing [11,12], can be used to estimate the electrical ageing life of materials. It is expressed by
Formula (1) as follows:

t2 = t1

(
U2

U1

)n
(1)

where n is the ageing exponent of the inverse power model, t1 is the electrical ageing life at
U1, and t2 is the electrical ageing life at U2.

Equation (1) can be expressed as follows:

C = Unt (2)

In the inverse power model, C is a constant, and the higher the applied voltage, the
shorter the time required for insulation breakdown. Due to the uncertainty in insula-
tion failure time, the ageing life also exhibits uncertainty. Consequently, the insulation
breakdown time is treated as a probability function.

Equation (2) can be modified based on the step-up voltage test as follows:

C = ∑ trVn
i + t f Vn

f (3)

where tr is step duration/s; Vi is voltage level at each step/kV; tf is final step time/kV; Vf is
breakdown voltage/kV. It should be noted that the value of C is usually regarded as an
accumulated ageing ‘amount’, however, its unit depends on the value of n and it actually
has no real physical meaning.

To determine the lifetime exponent n, this study defines three step durations tr1, tr2,
and tr3, with the final step voltage levels set as Vf1, Vf2, and Vf3, and the final step times as
tf1, tf2, and tf3, Equation (3) can be reformulated as follows:

⎧⎪⎨
⎪⎩

C1 = ∑ tr1Vn
i + t f 1Vn

f 1

C2 = ∑ tr2Vn
i + t f 2Vn

f 2

C3 = ∑ tr3Vn
i + t f 3Vn

f 3

(4)
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Since directly solving Equation (4) is challenging, the value of n is predefined to
facilitate computation, and the ageing life accumulation parameter C is calculated with this
preset value. By taking the logarithm of both sides, we obtain the following:

⎧⎪⎨
⎪⎩

ln(C1) = ln(t1) + n ln(V1)

ln(C2) = ln(t2) + n ln(V2)

ln(C3) = ln(t3) + n ln(V3)

(5)

According to Equation (5), three straight lines are plotted in the lnV-lnt coordinate
system, as shown in Figure 5. These lines correspond to material ageing data under three
different step durations. Assuming that they are under the same temperature condition, the
data from these varying time intervals maintain consistency with their respective lifetime
exponent n and the three lines are parallel to each other. If the ageing life accumulation
parameter C differs for each step duration, the intercepts of each line with the coordinate
axes will also vary. By defining the true value of the lifetime exponent as n0, the ageing life
accumulation parameter C should remain constant under this value, causing the three lines
to coincide. However, due to experimental deviations and data uncertainty, it is generally
impossible for the three curves to perfectly overlap. As the value of n gradually approaches
the true n0, the spacing between the curves continuously decreases. Thus, the n value that
minimizes this spacing is considered the true lifetime exponent.

Figure 5. Data analysis in lnV-lnt coordinate system.

In Figure 5, the sum of the absolute values and the variance of the pairwise distances
between the three straight lines can serve as criteria to determine whether the value of n
has reached the true value. The distance between any two lines can be expressed by the
following formula:

d12 = cos α12 ·
∣∣∣∣ ln C1

n
− ln C2

n

∣∣∣∣ = |ln C1 − ln C2|√
n2 + 1

(6)

The following formulas can be used to describe the sum of the distances between
straight lines (denoted as sum) and the variance of the distances (denoted as var):

sum = ∑ dij (7)

var =
√

∑ dij
2 (8)

Within the range of 1–30, we select the n value that yields the lowest sum and var
values as the true value.

The dependence of total inter-curve spacing and variance on the ageing lifetime
exponent n in the inverse power model is demonstrated in Figure 6. It can be seen that the
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values of the sum and var all decrease first and then increase. There is a lowest point in the
figure which is related to the true value of the ageing parameter of the IPM. So, the ageing
parameters of samples with different ageing states can be calculated, and the specific data
are listed in Table 3.

(a) AS0 

 
(b) AS3 

(c) AS5 

Figure 6. The variation in sum (black line) and var (red line) values of XLPE cable insulation sheet
pattern with n value.

Table 3. Inverse power model characteristic parameters.

AS0 AS3 AS5

C1 1.6 × 1059 2.67 × 1059 9.74 × 1060

C2 1.13 × 1059 1.06 × 1060 9.56 × 1060

C3 1.69 × 1059 4.79 × 1059 1.04 × 1061

C 1.47 × 1059 6.2 × 1059 9.90 × 1060

n 11.5 11.7 12.1

It seems that the value of C increases with the ageing time. If it strictly reflects the
accumulated ageing ‘amount’, it suggests that the sample with long ageing time can
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withstand a higher accumulated ageing ‘amount’ than the un-aged sample. This does
not make sense as the sample with ageing history should have more accumulated ageing
amount before the ageing test, and then the tested accumulated ageing ‘amount’ of the
aged sample should be smaller than the un-aged sample. So, here there is a chaos of the
physical links between the ageing process and the parameter of IPM.

It can also be seen that the ageing parameter of IPM n increases from 11.5 to 12.1 with
the ageing process. Both the values of C and n determine the ageing life curve (the V-t plot),
as shown in Figure 7. The ageing parameter n does not have a clear physical meaning, but
it defines the slope of the lnV-lnt, where the bigger the n value the gentler the slope, as
shown in Figure 7.

Figure 7. The ageing life curve of samples with different ageing states based on the inverse
power model.

It can also be seen that the line for the un-aged sample is above the other lines, with a
higher intercept at the Y axis. It shows that the un-aged sample has a higher breakdown
voltage than the other samples. The intercept of the X axis at the voltage of 10 kV reflects
the estimated lifetime of the sample. It can be seen that the un-aged sample has a longer
estimated lifetime than the aged sample.

However, it still does not have a solid physical meaning which can directly link to the
physics of the ageing process. And it can hardly explain why the n value increase and how
it may link to the insulation property. And it should be noted that the value of C strongly
depends on the value of n, as n is the index of V. That is why C cannot truly and strictly
reflect the accumulative ageing ‘amount’. Both the values of n and C of IPM cannot be used
as a parameter to reflect the ageing state of the insulation.

4.2. Insulation Ageing Lifetime Evaluation Based on Crine’s Model

The Crine model assumes that polymer ageing is a thermally activated process re-
quiring the overcoming of a free energy barrier, as shown in Figure 8. It considers that
the microcavity or free volume is the origin position of the ageing. The ageing happens
when the electrons in the free volume obtain higher energy than the ageing activation
energy barrier ΔG0 and break the chain of polymer to make a bigger defect. The applied
electric field will increase the energy of the free electrons with an acceleration distance λ.
In the assumption of the Crine model, λ is limited by and equal to the maximum length
of microcavities or free volume. The variation in activation energy barrier correlates with
the material’s initial and final free energy states and is influenced by van der Waals bond
strength. When the electric field-induced change in activation energy exceeds the interbond
cohesive energy, bond rupture occurs. Above the critical field strength, the charges in
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microcavities have big enough energy to break the chemical chain of the material, leading
to a reduction in the insulation property.

Figure 8. The diagram of the ageing process of the Crine model.

The Crine model formula under high field strength can be expressed as follows:

t ≈ h
2kT

e
ΔG0−eλE

kT (9)

where T is the absolute temperature/K; k is the Boltzmann constant; h is the Planck constant;
E is the electric field strength/V·m−1; ΔG0 is the activation energy of ageing/eV; and λ is
the acceleration distance equal to the maximum length of microcavities or free volume in
XLPE/m.

Under constant temperature conditions it is assumed that λ and ΔG0 remain un-

changed. Let K = eλ
kTd and L = h

2kT e
ΔG0
kT , which can be considered constants. Equation (9) is

rewritten in the following exponential form:

Note: The placeholders “K = eλ
kTd ” and “L = h

2kT e
ΔG0
kT ” are retained as in the original

text, likely indicating that specific expressions for K and L were omitted.

teKU = L (10)

where L can be regarded as a parameter quantifies the accumulative degradation due to
ageing. Then, set the test parameters to be consistent with calculating the ageing parameter
of the inverse power model. According to the step-stress, Equation (10) can be written in
the following form:

L = ∑ tiekUi + t f eKUf (11)

where similarly to solving the problem of the ageing parameter for the inverse power
model, the values of K are firstly set in a range. And then the values of sum and var for
different K values can be calculation. Then the true value of K can be determined when
both sum and var are with minimum value. Tests conducted over a wide range show that
the true value generally falls within the range of 0.0001 to 0.001. Figure 9 illustrates the
variation in the sum and var values with the ageing parameter K for XLPE cable insulation
sheet samples at room temperature based on the Crine model.

It can be seen that the values of K decrease first and then increase. It is similar to the
condition of Figure 6. The lowest point of K corresponds to the condition in which the
three sets of data have the smallest dispersity and is with the true values. Substituting the
obtained K and L values into the equation allows for the calculation of acceleration distance
λ and ageing activation energy barrier ΔG0, with the results presented in Table 4.
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(a) AS0 

(b) AS3 

(c) AS5 

Figure 9. The variation in sum (black line) and var (red line) values of XLPE cable insulation sheet
pattern with K value.

Table 4. The feature parameters of the Crine model.

AS0 AS3 AS5

K 0.000145 0.000149 0.00016
L1 1.66 × 108 1.40 × 108 1.49 × 108

L2 1.79 × 108 1.50 × 108 1.93 × 108

L3 1.65 × 108 1.46 × 108 1.93 × 108

L 1.7 × 108 1.45 × 108 1.78 × 108

ΔG0 (eV) 1.269 1.265 1.27
λ (m) 0.739 × 10−9 0.753 × 10−9 0.809 × 10−9

As shown in Table 4, the ageing activation energy ΔG0 shows very small variation
with the different ageing states. The biggest error between the values of ΔG0 is just 0.4%.
It shows that the ageing activation energy ΔG0 does not change with the ageing process
and can be considered as a material intrinsic parameter. The value of the ageing activation
energy ΔG0 may corresponds to the bond energy of PE chain, the cross-linking network,
and the band energy of the XLPE insulation. However, more work is still needed to reveal
this detailed relationship.
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λ is the acceleration distance of the free electron, and equals the maximum length of
microcavities or free volume. Table 4 demonstrates that as ageing time increases, the value
of λ increases, leading to greater electron acceleration distances within the microcavities
or free volume. It consequently makes the electrons with higher energy more likely to
cause damage on XLPE chains. Then the lifetime of the aged sample becomes shorter than
the un-aged sample. The test results also make sense as the ageing process may break the
polymer chain of XLPE, and make larger sized microcavities or free volume. So the value of
the acceleration distance can be regarded as an indicator for the estimation of the insulation
lifetime. In the case of unchanged ageing activation energy, the bigger the acceleration
distance, the shorter the insulation lifetime.

The ageing lifetime curve based on the Crine model is shown in Figure 10. It can
be seen that the ageing lifetime gradually decreases with increasing ageing time, and
the remaining lifetime of aged specimens is significantly shorter than that of un-aged
specimens. The result is similar to the trend of the IPM, but still has some differences.

Figure 10. The ageing life curve of samples with different ageing states based on the Crine model.

The first difference is that the slope of lnV-lnt changes in the ageing life curve based
on the Crine model rather than the IPM. The reason is that the higher the electric field, the
higher energy the electrons are supposed to observe from the electric field. And then the
electrons are more probable to cause damage to the sample in the higher electric field than
in the lower electric field. However, due to the existence of the activation energy, it behaves
differently with the IPM. When the lifetime is very short, the voltage should be very near
to the breakdown voltage. It is more reliable for the Crine model, as the voltage changes
slightly with the lifetime when the lifetime is shorter than 10 s. But the IPM suggests that
the voltage may continuously increase as there is a decrease in the lifetime. It does not
make sense. Similarly, when the voltage is very low, the lifetime of insulation based on
the Crine model tends to reach a maximum value rather than continuously increase, as
suggested by the IPM. This is also due to the limited activation energy. The electrons cannot
only obtain energy from electric field but also from the thermal kinetic activities. They still
have a very small possibility to cause damage in the condition of limited activation energy.
So, the Crine model describes a more reasonable lifetime trend than the IPM.

The second difference is that the Crine model predict a much shorter lifetime than the
IPM at the voltage of 10 kV. The 5 weeks aged samples have about 1.29 years remaining
lifetime in the Crine model, while they have a 142,694 years lifetime in the IPM. Even
though it is in the condition of room temperature, it is still inaccurate that the 5 weeks aged
sample has such a long remaining lifetime. However, it is still hard to clearly figure out
which prediction is more reliable, as the long-term test has many factors which are hard to
control and takes too much time and cost.
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With the discussions above, it can be seen that the key parameters of the Crine model
have clear physical meaning, while the IPM can only fit the mathematic pattern of the data.
The activation energy barrier of the Crine model does not change with the ageing process,
so that it can be considered as a material intrinsic parameter that is determined by the
nature of the bond, cross-linking network, and band energy of the XLPE. The acceleration
distance of the Crine model increases with the ageing time, so it can be regarded as an
indicator of the ageing state. Conversely, the key parameters of the IPM do not have clear
physical meaning and their change with ageing time cannot be sufficiently used as an
indicator of ageing states. Furthermore, the Crine model describes a more reasonable
ageing lifetime pattern than the IPM, especially when the voltage is high and low. So, the
Crine model has a greater potential to be used in the remaining lifetime estimation of the
cable insulation or other materials.

5. Conclusions

This paper tests the remaining lifetime of aged and un-aged XLPE samples with the
step-stress method. The inverse power model and the physical-driven Crine model are
employed in the analysis, and the calculation method of the key parameters of the two
models are proposed. The characteristics of remaining lifetime and key ageing parameters
of the samples with different ageing states are discussed regarding the two models. The
following conclusions are drawn:

1. The step-stress method can efficiently obtain the lifetime data of the insulation samples.
It is found that the longer the ageing time, the shorter the remaining lifetime of the
XLPE sample.

2. The ageing parameters n and C of the IPM increase with the ageing time, but they
can hardly link to the physics of the ageing process, and they cannot be used as an
indicator of the ageing state.

3. The activation energy barrier of the Crine model does not change with the ageing
process, and so it can be considered as a material intrinsic parameter determined by
the material nature. The acceleration distance of the Crine model increases with the
ageing time, and it can be regarded as an indicator of the ageing state.

4. The Crine model describes a more reasonable ageing lifetime pattern than IPM,
especially when the voltage is high and low. The Crine model has a greater potential to
be used in the remaining lifetime estimation of the cable insulation or other materials.
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Abstract

Synthetic ester insulating oils are extensively utilized in power transformers due to their
exceptional insulating properties, thermal stability, and environmental compatibility. The
dissolved gas analysis (DGA) technique, which is employed to diagnose internal faults
in transformers by monitoring the concentration and composition of dissolved gases in
oil, is thought to be effective in detecting typical faults such as overheating and partial
discharges in synthetic esters. However, owing to the significant differences in the prop-
erties of traditional mineral oil and synthetic esters, the existing DGA-based diagnostic
methods developed for mineral oils cannot be directly applied to synthetic esters. A deep
understanding of the microscopic processes occurring during the gas generation and dif-
fusion of synthetic esters is an urgent necessity for DGA applications. Therefore, in this
study, we systematically investigated the diffusion behavior of seven typical fault gases in
synthetic ester insulating oils within a temperature range of 343–473 K using molecular
dynamics simulations. The results demonstrate that H2 exhibits the highest diffusion
capability across all temperatures, with a diffusion coefficient of 33.430 × 10−6 cm2/s at
343 K, increasing to 402.763 × 10−6 cm2/s at 473 K. Additionally, this paper explores the
microscopic mechanisms underlying the diffusion characteristics of these characteristic
gases by integrating the Free-Volume Theory, thereby providing a theoretical foundation
for refining the fault gas analysis methodology for transformer insulating oils.

Keywords: synthetic ester; dissolved gas analysis; molecular dynamics; diffusion
coefficient; free volume

1. Introduction

As the global energy system is showing a low-carbon and environmentally sustainable
trend, the demand for sustainable and high-performance insulating materials for power
equipment is becoming increasingly critical. Synthetic ester insulating oils, characterized
by their high ignition points, biodegradability, excellent dielectric strength, and thermal
stability, have emerged as promising alternatives to traditional mineral oils, particularly
for power transformers with stringent environmental requirements as well as high-voltage
and large-capacity applications, offering significant advantages [1,2]. Despite the excellent
performance of synthetic esters in terms of environmental friendliness and thermal stability,
the characteristic gas diffusion mechanism of synthetic ester oils under the influence of
typical internal discharge or overheating faults in transformers is still unclear, which has
led to the challenge of fault diagnosis based on the dissolved gas analysis (DGA) technique
in oil. Furthermore, the diagnostic criteria of traditional DGA methods are based on
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mineral oil systems, whereas the diffusion behavior and equilibrium characteristics of
dissolved gases in synthetic esters may differ markedly from those in mineral oils due
to inherent differences in viscosity, polarity, and molecular structure. Direct application
of the existing diagnostic criteria may lead to underestimation or misjudgment of gas
concentration thresholds and increase the risk of fault misdiagnosis due to discrepancies in
diffusion kinetics. Therefore, there is an urgent need to elucidate the diffusion mechanisms
of characteristic gases in synthetic esters, as doing so would contribute to the refinement
and optimization of fault diagnosis methods for synthetic-ester-immersed transformers
based on DGA technology [3–6].

Recent research on synthetic esters has predominantly focused on optimizing their
electrical properties, thermal aging characteristics, and compatibility with solid insulating
materials. Studies have demonstrated that synthetic esters exhibit superior dielectric
strength and lower dielectric loss compared to mineral oils, along with a slower increase
in acid value during prolonged thermal aging [7,8]. Additionally, synthetic esters show
enhanced compatibility with cellulose insulating paper, which helps mitigate the aging
of an insulating material [9,10], and their oxidative stability at elevated temperatures is
significantly superior to that of mineral oils [11]. However, most of the existing studies have
concentrated on macroscopic physical parameters (e.g., dielectric constant, viscosity, etc.)
and analyses of aging products, with limited attention given to the systematic exploration of
the diffusion kinetics of dissolved gases within the synthetic ester system [12,13]. Although
a few experimental investigations have compared the gas solubility differences between
synthetic esters and mineral oils, the experimental conditions often hinder the elucidation
of the diffusion mechanism at the molecular level, resulting in an incomplete understanding
of migration patterns [14].

In the DGA technique, internal transformer faults are diagnosed by monitoring the
concentration and proportion of dissolved gases in the oil, and the technique’s effectiveness
relies on an accurate knowledge of the gas diffusion mechanism [15]. At present, the
traditional DGA technique based on mineral oil is highly mature, and its diagnostic logic
and gas concentration thresholds have been fully verified through long-term engineering
practice, but such methods are not directly applicable to the fault analysis of natural
ester insulating oils, and it is doubtful whether this technique’s theoretical framework
is applicable to synthetic ester systems [16,17]. In view of the characteristics of natural
ester insulating oils, some scholars preliminarily explored the DGA diagnostic framework
adapted to natural esters by experimentally modifying the gas solubility parameter and
adjusting the threshold value of the proportion of fault gases [18–20]. However, despite
some scholars’ attempts to experimentally study the macroscopic characteristics of synthetic
esters, there is a lack of studies determining their characteristic gas diffusion behaviors and
gas diffusion kinetic mechanisms. These bottlenecks have constrained the development of
DGA diagnostic criteria applicable to synthetic esters, and there is an urgent need to reveal
the gas diffusion mechanisms of synthetic esters at the molecular dynamics level [21–23].

To address the above issues, we employed molecular dynamics simulations to sys-
tematically investigate the diffusion behaviors of seven typical fault-characteristic gases
in synthetic ester insulating oil within the temperature range of 343 K to 473 K. Utilizing
the molecular dynamics simulation approach, a synthetic ester molecular model and a gas
miscible system were developed. This study further examines the influence mechanism of
temperature gradients on the gas diffusion behavior of the insulating oil at the microscopic
level through the calculation of mean square displacements (MSDs) and gas diffusion
coefficients in conjunction with the free-volume theory. The findings of this research can be
applied to the design optimization of DGA technology for synthetic ester insulating oils,
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thereby facilitating the reliable operation and intelligent maintenance of environmentally
friendly transformers.

2. Simulation Methodology

2.1. Molecular Diffusion Modeling of Synthetic Esters

We constructed a molecular dynamics model of a synthetic ester composed of Pen-
taerythritol tetranonanoate (PENTA-TNA, C41H76O8) and its composite system with fault-
characteristic gases. The structure of a single synthetic ester molecule consists of a pentaery-
thritol backbone and four isononyl ester groups, which confer excellent thermal stability
and outstanding electrical properties. To accurately characterize the macroscopic prop-
erties of this system, an initial model was constructed using 10 PENTA-TNA molecules,
and periodic boundary conditions were applied to eliminate size effects. Furthermore,
multi-stage dynamic relaxation and geometric optimization were performed to eliminate
potential atomic-level anomalous contact and high-energy configurations in the initial
model, facilitating the model’s stabilization to a reasonable state. Specifically, the steps
include achieving a 100 ps thermal equilibrium under the NPT ensemble, realizing 100 ps
energy stabilization under the NVE ensemble, pressure adjustment under the low-pressure
NPT ensemble, and 10,000-step geometric optimization based on the conjugate gradient
method. After carrying out these optimization steps, the final PENTA-TNA molecular
model, with a unit cell length of 23.28 Å and a density of 0.917 g/cm3, was obtained, as
shown in Figure 1.

10C41H76O8

C H O

Figure 1. Molecular modeling of a synthetic ester.
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In this study on the diffusion behavior of dissolved gases in oil, a composite molecular
model containing seven characteristic gases was constructed based on the PENTA-TNA
base oil model. During the construction of the molecular models for small gas molecules us-
ing Materials Studio, small gas molecules and synthetic ester molecules were differentiated
by color: C in the small gas molecules was colored dark gray, H was given in emerald green,
and O was given in light blue. As shown in Figure 2, these molecular models are complete
and strictly adhere to the standard requirements for initial configurations in molecular
dynamics simulations. In this study, 10 gas molecules were randomly embedded in the
base oil model formed by 10 PENTA-TNA molecules, and the overall density was set to
0.95 g/cm3 to match the physical property requirements under actual operating conditions.
As exemplified by the CH4 diffusion model shown in Figure 3, this system maintains the
stable configuration of the base oil while ensuring accurate description of short-range
interactions, such as van der Waals forces, through reasonable molecular spacing.

H2 CO CO2 C2H4

CH4 C2H2 C2H6

Figure 2. Gas molecule modeling.

Figure 3. Molecular modeling of mixed oil-and-gas system. (Hydrogen and carbon atoms in CH4 are
shown in green and gray, respectively, and oxygen, hydrogen, and carbon atoms in the molecule are
shown in red, gray, and white, respectively).

2.2. Simulation Parameter Settings

We constructed a computational framework based on the PCFF force field to simulate
the diffusion behavior of dissolved gases in synthetic esters using molecular dynamics.
The force field builds upon the core parameters of the CFF91 force field and significantly
enhances simulation accuracy for complex organic molecular systems by extending the
functional expressions for bond length vibration, bond angle bending, dihedral torsion, and

134



Energies 2025, 18, 3276

non-bond interactions in polymeric systems. To address the non-bond interactions between
the synthetic ester and gas molecules, the van der Waals forces were computed using the
Atom-Based truncation method, which reduces computational load within a reasonable
range and improves simulation efficiency. The electrostatic interactions are handled using
the Ewald summation method, which accurately describes long-range Coulomb forces
while also maintaining computational efficiency.

Additionally, in terms of thermodynamic control algorithms, a hierarchical multi-level
control approach was applied. Firstly, temperature regulation was achieved through the
Andersen thermostat algorithm, whose random collision mechanism effectively maintained
the thermal equilibrium of the system and prevented local thermal anomalies. Secondly,
pressure control was carried out using the Berendsen method, ensuring stable convergence
of the system under a standard pressure of 0.1 MPa, thereby simulating the actual work-
ing environment of transformers. Lastly, the Velocity Verlet algorithm was employed for
dynamic integration, balancing energy conservation with trajectory accuracy to ensure
the authenticity of molecular motion behavior. The three-dimensional system constructed
during the simulations mitigates finite-size effects by employing periodic boundary condi-
tions, which enables a more accurate simulation of molecular diffusion behavior in real
oils [24,25].

Before conducting molecular dynamics simulations, it is essential to optimize the
geometric structure of a system and relax the pressure. Specifically, the process is divided
into the following steps:

(1) A preliminary composite model of synthetic ester oil molecules and gas molecules
is constructed and undergoes 10,000 steps of geometric structure optimization to
eliminate potential atomic overlaps and non-physical contact.

(2) Pressure relaxation is performed under the NPT ensemble for 100 ps to allow the system’s
density to converge to 0.95 g/cm3, ensuring the accuracy of subsequent simulations.

After the above steps were completed, a 600 ps molecular dynamics simulation was
carried out under the NVT ensemble conditions. The simulation process was divided into
two parts: the first 100 ps were used to achieve a stable molecular state, and the remaining
500 ps were used for data collection to analyze the diffusion characteristics of dissolved
gas molecules. The recording interval of the molecular trajectory was reduced to 1 ps in
order to capture the complete gas diffusion process, providing a reliable data foundation
for the calculation of diffusion coefficients.

Furthermore, considering that the actual operating temperature of transformer insu-
lating oil typically ranges from 313 K to 423 K, four simulation temperatures were selected
to represent different operating conditions pertaining to the transformer: 343 K represents
the normal operating state; 393 K represents the temperature under high load or mild
overheating conditions; 423 K corresponds to the early stage of thermal failure; and 473 K
represents a high temperature close to the point of discharge failure. By performing molec-
ular dynamics simulations under these temperature conditions, the diffusion coefficients
of each characteristic gas in synthetic ester were calculated, and the micro-mechanisms
of the effect of temperature on the diffusion characteristics of the gases were analyzed in
combination with the free volume, which provides data support for the optimization of
DGA technology.

3. Results and Discussion

3.1. Characteristic Gas Diffusion Properties

In the synthetic ester system, the diffusion characteristics of gas molecules of different
types exhibit significant differences. This study utilizes the mean squared displacement
(MSD) curve to clearly describe the diffusion characteristics of gases in the oil and their
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correlations with temperature. According to molecular dynamics theory, the mean squared
displacement is defined as the statistical average of the deviation of the positions of all
particles in the system relative to a reference position over a time interval t. The expression
is given below:

MSD(t) =
〈∣∣∣r(t)− r(0)|2

〉
(1)

where r(t) is the particle’s position at a given time, r(0) is the initial reference position, and
〈X〉 represents the statistical average within the system.

Figure 4 presents a schematic of the mean squared displacement (MSD) for various
characteristic gases, depicted using a log–log dependence. Of all the gasses, H2 demon-
strates the strongest diffusion ability under all temperature conditions, maintaining the
highest mean squared displacement (MSD) compared to the other gases. This is primarily
attributed to the minimal molecular weight of H2, provoking the least resistance from oil
molecules, as well as the pronounced effect of temperature increases on enhancing its diffu-
sion capacity. As depicted in Figure 4a,b, at 343 K, the MSD of H2 is an order of magnitude
higher than that of the other gases, and as the temperature rises to 473 K, its diffusion
advantage remains evident. This reflects the highly efficient diffusion characteristics of
lightweight non-polar molecules in synthetic esters. Additionally, in the later stages of
hydrogen diffusion, deviations from the mean squared displacement (MSD) curve can be
observed under varying temperature conditions. For instance, as shown in Figure 4a, the
tail of the curve exhibits a sharp upward trend, whereas in Figure 4d, the tail demonstrates
a sudden decline. This phenomenon can be attributed to two factors: first, the exceptionally
high diffusion ability of H2 molecules, which makes them more susceptible to thermal
fluctuations or boundary effects in small-scale systems, and, second, the limited number
of particles within the simulated system, making the system prone to inducing statistical
fluctuations, particularly for highly diffusive gases.

For the gases CO and CO2 oxide, the MSD of CO2 is consistently higher than that of
CO, with the difference being particularly noticeable at lower temperatures. However, as
the temperature increases, the diffusion capabilities of the two gases gradually converge.
For example, at 473 K, the MSD of CO2 is only slightly higher than that of CO. This
phenomenon could be attributed to the increased thermal motion of oil molecules at higher
temperatures, which reduces the system’s viscosity and thus diminishes the impact of
molecular weight differences on diffusion. Furthermore, the diffusion processes of CO and
CO2 are primarily dominated by the physical properties of the insulating oil, as their polar
nature leads to lower solubility in weakly polar synthetic ester oils.

In addition, the diffusion characteristics of hydrocarbon gases exhibit complex tem-
perature sensitivity. At 343 K, C2H2 has the highest MSD, indicating that, under this
temperature condition, its diffusion ability is the strongest among hydrocarbon gases. This
may be related to the lower spatial hindrance resulting from its linear molecular structure,
as shown in Figure 4a. As shown in Figure 4b, when the temperature rises to 393 K, C2H4

exhibits the highest MSD among hydrocarbon gases, likely due to its double-bond structure,
which allows intermolecular forces to be overcome at higher temperatures. Figure 4c,d
reveal that CH4 shows a significant enhancement in diffusion ability at higher temperatures
(423–473 K), possibly due to the decrease in synthetic ester viscosity during the temperature
rise, with the simple spherical molecular structure of CH4 benefiting the most from this
decrease. However, C2H6 consistently demonstrated the slowest diffusion rate among
the hydrocarbon gases, likely due to the inhibitory effect of its greater molecular weight
and branched structure. This variation in diffusion order under different temperature
conditions suggests that the diffusion characteristics of hydrocarbon gases are not only
closely related to temperature but also influenced by the molecular structure of each gas,
intermolecular interactions, and solubility in the oil.
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(a) The temperature condition of 343 K. (b) The temperature condition of 393 K. 

 
(c) The temperature condition of 423 K. (d) The temperature condition of 473 K. 

Figure 4. MSD plots of diffusion behavior of characteristic gases.

Overall, the diffusion abilities of characteristic gases align with the following trend:
H2 > hydrocarbon gases > CO and CO2. However, the relative diffusion capabilities fluctu-
ate dynamically with temperature. Moreover, the diffusion characteristics are determined
by factors such as molecular weight, polarity, molecular structure, and the properties
of insulating oils. The exceptional diffusion ability of H2 is primarily attributed to its
extremely low molecular weight, while the complex temperature-dependent behavior of
hydrocarbon gases reveals the influence of molecular structure on the diffusion process. The
findings of this study provide an important theoretical basis for optimizing gas-monitoring
technologies based on diffusion characteristics.

3.2. Characteristic Gas Diffusion Coefficient

The diffusion coefficient is a key parameter for quantitatively describing the migration
ability of gas molecules in insulating oils, and it is calculated based on the linear relationship
between the mean squared displacement (MSD) and time. By analyzing the MSD curves in
Figure 4, it can be observed that within the time range of 25 ps to 500 ps, the MSD of all
the gases exhibits a strong linear relationship with time, indicating that molecular motion
is primarily governed by free diffusion during this period. To accurately calculate the
diffusion coefficient (D), it is necessary to select the linear segment of the MSD curve for
linear regression fitting. The slope (k) obtained from this fitting is then used to establish a
quantitative relationship with the diffusion coefficient:

D =
k
6

(2)

where the coefficient 6 indicates that the diffusion system is three-dimensional.
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Additionally, the goodness of fit for the linear regression is represented by the correla-
tion coefficient R2, and it can be calculated using the following formula:

R2 = 1 − ∑ (li − l̂i)
2

∑ (li − l)
2 (3)

where li represents the actual MSD values; l̂i represents the fitted MSD values; and l
represents the mean MSD values.

Based on the aforementioned method and by combining the MSD values of the
characteristic gases, the diffusion coefficients of seven characteristic gases in the synthetic
ester were calculated at four different temperatures: 343 K, 393 K, 423 K, and 473 K. The
results reveal the temperature-dependent behavior of gas diffusion and its correlation with
molecular characteristics. As shown in Table 1, the diffusion coefficients of the characteristic
gases significantly increased when increasing the temperature, with H2 exhibiting the most
notable diffusion capacity. At 343 K, the diffusion coefficient of H2 was 33.430 × 10−6 cm2/s,
and as the temperature increased, it rose to 402.763 × 10−6 cm2/s at 473 K, marking a
12-fold increase, far exceeding that of the other gases. This can be attributed to the extremely
low molecular weight of H2 and its weak intermolecular forces, making it highly sensitive
to temperature changes.

Table 1. Characteristic gas diffusion coefficients at four temperatures.

H2 CO C2H2 CH4 CO2 C2H6 C2H4

343 K
Slope, k 2.006 0.434 0.799 0.862 0.943 0.918 0.539

Fitted correlation coefficient, R2 0.976 0.980 0.987 0.991 0.973 0.998 0.990
Diffusion coefficient D/×10−6 cm2/s 33.430 7.225 8.992 14.365 15.722 15.295 8.992

393 K
Slope, k 6.936 1.087 2.010 1.627 1.786 0.511 2.010

Fitted correlation coefficient, R2 0.990 0.994 0.994 0.990 0.997 0.926 0.999
Diffusion coefficient D/×10−6 cm2/s 115.607 18.113 13.915 27.112 29.770 8.510 33.494

423 K
Slope, k 10.911 1.804 1.809 2.665 2.656 1.114 1.685

Fitted correlation coefficient, R2 0.994 0.994 0.993 0.972 0.981 0.988 0.992
Diffusion coefficient D/×10−6 cm2/s 181.85 30.074 30.154 44.410 44.263 18.559 28.088

473 K
Slope, k 24.166 3.377 5.983 6.187 3.998 4.411 4.741

Fitted correlation coefficient, R2 0.999 0.998 0.992 0.995 0.990 0.997 0.997
Diffusion coefficient D/×10−6 cm2/s 402.763 56.278 99.719 103.119 66.631 73.524 79.014

Hydrocarbon gases such as CH4, C2H2, C2H4, and C2H6 also exhibited significant
increases in diffusion coefficients at 473 K compared to the values at 343 K, surpass-
ing 70 × 10−6 cm2/s. For example, the diffusion coefficient of CH4 increased from
14.365 × 10−6 cm2/s to 103.119 × 10−6 cm2/s. Among these gases, C2H2 showed the
most significant temperature-dependent diffusion change, with its diffusion coefficient
increasing from 18.992 × 10−6 cm2/s to 99.719 × 10−6 cm2/s, indicating that its linear
molecular structure allows for more efficient diffusion into the insulating oil at higher
temperatures. In contrast, oxide gases such as CO and CO2 exhibited lower diffusion coeffi-
cients than H2 and hydrocarbons but still showed a steady increasing trend. The diffusion
coefficient of CO2 increased from 15.722 × 10−6 cm2/s at 343 K to 66.631 × 10−6 cm2/s at
473 K, while that of CO increased from 7.225 × 10−6 cm2/s to 56.278 × 10−6 cm2/s, with
growth factors of 4.2 and 7.8, respectively.

Furthermore, the behavior of the diffusion process can be further characterized by the
slope, k. The data shows that the diffusion behavior of the characteristic gases intensifies
with an increase in temperature. It is noteworthy that the slope for C2H6 exhibited an
unusual decrease at 393 K (0.511) but recovered and resumed growth at higher temperatures,
suggesting that the molecular interactions or solubility of C2H6 might change in this specific
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temperature range, temporarily inhibiting its diffusion. The reliability of the diffusion
model was verified through the fitting correlation coefficient (R2), particularly at 473 K,
where all the gases exhibited R2 values above 0.99, confirming that the constructed diffusion
model effectively describes the diffusion characteristics of the characteristic gases.

In conclusion, the relative strength of gas diffusion and its temperature response
characteristics provide a reference for the dynamic monitoring of dissolved gases in trans-
former insulating oil. For example, the highly sensitive diffusion characteristics of H2 at
high temperatures highlight its potential advantage in early fault warning. These findings
foster a deeper understanding of the diffusion mechanisms of gases in insulating oil from a
molecular dynamics’ theory, laying a theoretical foundation for optimizing DGA-based
detection technologies based on diffusion characteristics.

3.3. Analysis of the Free Volume

The Free-Volume Theory (FVT) is an important theoretical model used to explain the
diffusion behavior of molecules in liquids or polymers. Its core assumption is that there
are unoccupied spaces within a liquid, referred to as free volume (VF). The free volume
arises from the random motion of molecules and provides the spatial channels required for
the migration of gas molecules. In addition, the free volume of a gas molecule is affected
by the nature and size of the molecule. The free-volume fraction (FFV) is obtained by
calculating the ratio of free volume to total volume. Also, the free-volume fraction (FFV)
is temperature-dependent; as the degree of thermal motion of molecules increases, the
free-volume fraction within the system also increases, thereby enhancing the diffusion
capacity of gases [26,27]. The expression for the free-volume fraction is

FFV =
VF

(VO + VF)
(4)

where VO is the total volume of the system.
Based on the Free-Volume Theory (FVT), we quantitatively analyzed the free-volume

characteristics of the synthetic ester and characteristic gas mixture system in the tempera-
ture range of 343 K to 473 K using the Connolly surface method and the Atom Volume and
Surface tool in Materials Studio software 2020.

As shown in Table 2, as the temperature increases from 343 K to 473 K, the VO value
slightly decreases, while the VF value significantly increases, leading to an increase in FFV
from 0.20–0.25 to 0.31–0.37. This indicates that with the rise in temperature, the thermal
motion of the oil molecules intensifies, enlarging the intermolecular gaps and forming
more interconnected free-volume regions. As illustrated in Figure 5a–d, the blue regions
in the figures represent the free-volume regions, which provide more favorable pathways
for gas diffusion. As shown in Figure 5a,d, at 343 K, the distribution of free volume is
sparse, and the FFV of H2 is only 0.20. However, at 473 K, the free-volume region reaches
a maximum, and the connectivity of the blue areas is enhanced. As shown in Figure 6a,
the FFV of H2 increases to 0.31, corresponding to an almost 11-fold increase in its diffusion
coefficient. This suggests that at higher temperatures, the molecular model of the synthetic
ester shows a significant increase in the intermolecular gaps, facilitating the diffusion of H2

in the insulating oil.
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Table 2. Free volume fraction coefficients at four temperatures.

H2 CO C2H2 CH4 CO2 C2H6 C2H4

343 K
VO/Å3 10,350.02 10,485.33 10,533.40 10,529.35 10,505.37 10,666.58 10,625.38
VF/Å3 2646.90 3142.39 3464.01 3269.71 3281.19 3356.80 3195.41

FFV 0.20 0.23 0.25 0.24 0.24 0.24 0.23

393 K
VO/Å3 10,160.35 10,393.38 10,427.70 10,257.76 10,396.42 10,531.99 10,533.93
VF/Å3 3372.90 3366.26 3770.76 4197.00 3944.10 4437.33 3675.62

FFV 0.25 0.24 0.27 0.29 0.28 0.30 0.26

423 K
VO/Å3 10,104.14 10,371.54 10,459.69 10,437.51 10,300.77 10,447.81 10,475.45
VF/Å3 4037.57 3794.67 3797.13 3965.30 4510.79 4450.45 4269.83

FFV 0.29 0.27 0.27 0.28 0.30 0.30 0.29

473 K
VO/Å3 10,004.15 10,161.04 10,069.42 10,126.33 10,319.65 10,322.82 10,165.65
VF/Å3 4418.79 4601.97 5883.93 4889.77 4559.66 5706.45 5360.52

FFV 0.31 0.31 0.37 0.33 0.31 0.36 0.35

  
(a) The temperature condition of 343 K. (b) The temperature condition of 393 K. 

  
(c) The temperature condition of 423 K. (d) The temperature condition of 473 K. 

Figure 5. Free-volume modeling of H2 gas in synthetic ester oils under different temperature
conditions. (The blue color in the figure indicates the free volume region in the molecular model).
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(a) FFV for monomolecular gas (b) FFV for oxide gases (c) FFV for hydrocarbon gases 

Figure 6. Trends in FFV values in molecular modeling.

Further analysis of the free-volume variation characteristics of different gases reveals
that these characteristics are closely related to the molecular properties of each gas. For
small-molecule gases such as H2 and CO, the FFV is relatively low at low temperatures,
being 0.20 and 0.23, respectively, at 343 K. However, at high temperatures, the increase
is significant, reaching 0.31 at 473 K, which is consistent with the trend of their diffusion
coefficients. In the case of hydrocarbon gases, C2H2 exhibits a significantly higher FFV of
0.37 at 473 K due to its high polarity and weak intermolecular interactions, as shown in
Figure 6c, so it more easily diffuses into the free-volume regions at higher temperatures
in comparison to other hydrocarbons. Although CO2 also exhibits an increase in FFV to
0.31 at high temperatures, its diffusion coefficient increase is relatively low due to its larger
molecular size and stronger intermolecular forces, as shown in Figure 6b.

From the above analysis, it can be concluded that the increase in FFV directly reduces
the diffusion resistance of gas molecules. For example, the 12-fold increase in the diffusion
coefficient of H2 corresponds to a 55% increase in its FFV. Furthermore, the variation in
the FFV for different gases is in general agreement with the variation in their diffusion
coefficients. Therefore, the strong correlation between the free-volume model and the
diffusion data validates the applicability of the Free-Volume Theory (FVT) to explaining
gas diffusion behavior in synthetic esters. This analysis not only clarifies the microscopic
mechanism of temperature’s influence on gas diffusion ability but also provides a theoretical
basis for revising fault gas analysis methods in transformer insulating oils.

4. Conclusions

In this study, based on molecular models of synthetic esters and characteristic gas
molecules constructed using the Materials Studio platform, we employed the PCFF force
field and thermodynamic algorithms to quantitatively characterize the diffusion coefficients
and free-volume distribution characteristics of gases at various temperatures. Additionally,
by integrating molecular dynamics simulations with Free-Volume Theory, the diffusion
mechanisms and temperature-dependent behaviors of seven characteristic gases (H2, CH4,
C2H2, C2H4, C2H6, CO, and CO2) in synthetic esters were systematically examined within
the temperature range of 343–473 K. The results reveal the following.

(1) Under varying temperature conditions, the diffusion coefficients of all the gases
studied exhibit a nonlinear increase with an increase in temperature. Hydrogen gas
(H2), due to its extremely low molecular weight and weak intermolecular forces,
shows a dramatic increase in the diffusion coefficient, from 33.430 × 10−6 cm2/s
at 343 K to 402.763 × 10−6 cm2/s at 473 K, reflecting a 12-fold increase. This rate
of increase is significantly higher than that observed for the other gases. Among
the hydrocarbons, C2H2, with its linear molecular structure, demonstrates a notable
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advantage in diffusion at elevated temperatures, reaching 99.719 × 10−6 cm2/s at
473 K.

(2) As the temperature increases, the free-volume fraction (FFV) of each molecular system
rises substantially, ranging from 0.20 to 0.37. This increase is primarily due to ther-
mal effects, which expand the intermolecular gaps and diffusion channels, thereby
reducing resistance to gas migration. Furthermore, by correlating changes in diffusion
coefficients with variations in FFV, it was observed that the 12-fold increase in the
diffusion coefficient of H2 corresponds to a 55% increase in its FFV. This correlation
further substantiates the applicability of Free-Volume Theory (FVT) in explaining the
diffusion behavior of gases in synthetic esters.

This paper fosters a deeper understanding of the gas diffusion mechanisms in synthetic
esters at the molecular scale, offering theoretical insights for the enhancement of fault gas
analysis methods in transformer insulating oils. It contributes to improving the efficiency
of monitoring the operational status of power equipment, thereby enhancing the safety
and stability of power systems.
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