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Preface to ”Flood Forecasting Using Machine

Learning Methods”

Nowadays, the degree and scale of flood hazards has been massively increasing as a result of

the changing climate, and large-scale floods jeopardize lives and properties, causing great economic

losses, in the inundation-prone areas of the world. Early flood warning systems are promising

countermeasures against flood hazards and losses. A collaborative assessment according to multiple

disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts

of flood hazards on inundation areas significantly contributes to model the integrity and precision

of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve

the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead

times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with

policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances

in computing technologies coupled with big-data mining have boosted data-driven applications,

among which Machine Learning technology, with its flexibility and scalability in pattern extraction,

has modernized not only scientific thinking but also predictive applications. This book explores

recent Machine Learning advances in flood forecast and management in a timely manner and

presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues,

with contributions to integrative solutions from a local, regional, or global perspective.

Fi-John Chang, Kuolin Hsu, Li-Chiu Chang
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Abstract: Flood disasters have had a great impact on city development. Early flood warning systems
(EFWS) are promising countermeasures against flood hazards and losses. Machine learning (ML) is
the kernel for building a satisfactory EFWS. This paper first summarizes the ML methods proposed in
this special issue for flood forecasts and their significant advantages. Then, it develops an intelligent
hydroinformatics integration platform (IHIP) to derive a user-friendly web interface system through
the state-of-the-art machine learning, visualization and system developing techniques for improving
online forecast capability and flood risk management. The holistic framework of the IHIP includes five
layers (data access, data integration, servicer, functional subsystem, and end-user application) and one
database for effectively dealing with flood disasters. The IHIP provides real-time flood-related data,
such as rainfall and multi-step-ahead regional flood inundation maps. The interface of Google Maps
fused into the IHIP significantly removes the obstacles for users to access this system, helps communities
in making better-informed decisions about the occurrence of floods, and alerts communities in advance.
The IHIP has been implemented in the Tainan City of Taiwan as the study case. The modular design and
adaptive structure of the IHIP could be applied with similar efforts to other cities of interest for assisting
the authorities in flood risk management.

Keywords: machine learning; early flood warning systems; hydroinformatics; database; flood
forecast; Google Maps

1. Introduction

The degree and scale of flood hazards have increased massively with the changing climate in the last
decades, and large-scale flash floods bring fast-moving and rapid-rising water with force, resulting in
tremendous life and property losses as well as social disruption worldwide. Building resilience to
natural disasters is one of the most pressing challenges for achieving sustainable urban development
in flood-prone regions. Early flood warning systems (EFWS) are promising countermeasures against
flood hazards and losses. The core of a satisfactory EFWS is the capability of sequentially providing
a reliable and accurate forecast of the regional flood inundation depths with sufficient lead time.
Machine Learning (ML) technologies have boosted mess applications because of its great flexibility
and scalability in extracting significant features from complex data structures and providing better

Water 2019, 11, 9; doi:10.3390/w11010009 www.mdpi.com/journal/water1
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performance and cost-effective solutions. Its popularity dramatically increased among hydrologists.
This special issue collects 18 original contributions addressing the state of the art of machine-learning
methods, conducting a high level of research and providing practical information on how to implement
ML methods for flood forecast along with case studies from different regions of the world. The selected
manuscripts presented in this special issue provide more insights into machine-learning methods and
strategies for accurate flood forecast. Contributions cover a wide range of topics, including:

1. The application of various ML methods with genetic algorithms and/or particle swarm
optimization methods for flood hydrograph predictions [1,2];

2. Improved Ensemble Various Artificial Neural Networks (ANNs) for hydrological series extension
and monthly streamflow forecasting [3–5];

3. Development of methodology for improving extreme learning machine method [6], random forest
algorithm [7] and adaptive neuro-fuzzy inference system (ANFIS) with optimization algorithms
for the forecast [8];

4. Improving the Muskingum Routing method using various optimization methods such as hybrid
bat-swarm algorithm [9], improved bat algorithm [10], and Wolf Pack Algorithm [11], or combined
with a particle filter-based assimilation model [12] for streamflow forecasts;

5. Using hybrid neural network models (self-organizing map and back-propagation neural
networks) to model the rainfall-runoff process for flood forecasts [13];

6. Using Deep Learning (DL), convolutional neural network (CNN), for extracting urban water
bodies based on remote-sensing imagery [14], and Long Short-Term Memory Network (LSTM)
for the Dongting Lake water level forecast [15] and rainfall-runoff Simulation [16];

7. Building ANN-based methods—the self-organizing map (SOM) and recurrent nonlinear
autoregressive with exogenous inputs (RNARX) to sequentially forecast area-wide inundation
depths shown on Google Earth [17];

8. Providing an extensive overview of the various ML algorithms used in flood prediction and
introducing the most promising prediction methods for both long-term and short-term floods [18].

Information systems play an important role in environmental and geoscience disciplines by providing
integrated multi-disciplinary platforms that combine data management, visualization, analysis, modeling,
and information communication capabilities. Recently, there has been growing interest in building flood
early warning systems (FEWS) for extreme storms in an urban city. This has illustrated the increasing
deployment of FEWS due to advances in ensemble weather forecasting, the availability of high-resolution
satellite data, and artificial intelligence techniques as well as improved technology for communication and
sharing of information. Among the most widely-used tools for online presentation of flood inundation
maps with the effectiveness of possible countermeasures, FEWS are now regarded as cost-efficient
alternatives to life-saving, damage prevention and the resilience enhancement of a society [19–22].
The provision of flood inundation maps regarding the extents and severity degrees of flood impacts
plays a vital role in FEWS, and these maps provide a fundamental building block of ready-to-access content
so that decisions can be made upon them. Given sufficient notice in a clear and informative manner,
disaster damages can be mitigated considerably. Real-time access, analytical processing, and interactive
visualizations are crucial to deliver a better understanding of flood-related issues [23]. Traditional systems
that share flood-related data and information, however, have limited capabilities of integrating distributed
data as well as visualizing and communicating modeling results. Recent advances in science and technology,
especially computer-based data processing capabilities and communication facilities, have enabled longer
lead times many steps ahead of flood forecasts along transboundary river basins. Developing early warning
systems for the riparian countries can contribute to the mitigation of flood risks and life-saving through
effective utilization of these new tools.

Over the last decades, many efforts have been devoted to flood defense strategies, which have
focused mainly on non-structural efforts such as flood alerts and warning systems based on flood-depth
forecasts [24–26]. Advances in computational techniques and the emergence of new data sources have
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provided hydrologists with tools to make management decisions on flood forecasting and flood risk
management. Following this track, hydroinformatics has emerged as an essential tool by combining
science, technologies and social considerations into a holistic coherent framework to timely deal
with collecting, modeling, visualizing, and sharing flood-related information and to improve the
applicability and accuracy of flood warnings [27–34]. ML methods are efficient tools for extracting
the key information from complex highly dimensional input–output patterns and are widely used in
various hydrological problems such as flood forecasts in this special issue [1–18] as well as groundwater
and water management issues [35–46]. Recently, technological advances in social media have improved
data gathering and dissemination, especially under the development of world-wide-web technologies.
The Internet of Things (IoT) is a system of devices that collect data in real time and transfer it through
a wireless network to a communication framework of control centers for analyzing the data and
providing suitable countermeasures. Recent studies have indicated that the combination of IoT and
machine-learning techniques could be beneficial to flood prediction [47,48]. Geographical information
systems (GIS) are a user-friendly interface designed to access geographical services such as viewing,
understanding, enquiring, interpreting and visualizing data [49–52]. The Google Maps Application
Programming Interface (API) provides a programming application interface to integrate Google Maps
into websites. A flood forecasting and warning system upon Google Maps can provide relevant
meteorological and hydrological information of an event at critical timings, along with operational
actions, results, impacts, and lessons learned. Recently, a spatial decision support system incorporated
with wireless sensor networks and volunteered geographic information sources has been deployed in
the town of São Carlos in Brazil, which has made flood risk management more effective [23]. Based on
an ontology-based approach linking environmental models with disaster-related data, a flood disaster
management system was explored to offer one-stop flood disaster management, and a subsequent
3D visualization was provided to improve the interpretability of disaster data and the effectiveness
of decision-making processes [53]. Effective flood risk management requires updated information to
ensure that the correct decisions can be made and that sufficiently accurate forecasts can be provided
to promote community confidence so that the community will respond adequately when receiving
warnings. The main challenge is to accurately forecast river flow in near real-time and to timely
forecast flood peaks for drainage basins using the same technology.

This study aims to develop a user-friendly real-time regional flood forecasting system based on
the state-of-the-art data-mining, visualization and system developing techniques such that actions
can be efficiently taken to alleviate flood risks endangering residents and properties in inundation
prone regions. We present a comprehensive flood warning platform, the intelligent hydroinformatics
integration platform (IHIP), that could integrate data, analysis, module, and visualization to provide
real-time Google-maps-based information of forecasted flood depths for urban areas in the Tainan City
of Taiwan. The web tools and emerging web technologies used in the IHIP system that access rainfall,
flood-related data, real-time flood forecasts, flood inundation maps, and interactive visualizations are
introduced in the next section. This is followed by the implementation efforts and the description
of the Google-maps-based flood depths information system in the study regions. The final section
concludes the findings of this study and recommends future work enabled by the implementation of
this system.

2. System

The purpose of this study is to provide a one-stop web-platform to visualize flood-related data
and online regional flood inundation maps. As the main stakeholders of the web-platform are the
public and authoritative officers, it is required to provide an interactive and user-friendly interface that
requires minimal technical skills to use and to directly handle the visualization and examination of
data within the platform, without external application. To achieve this goal, we develop an intelligent
hydroinformatics integrated platform (IHIP) that not only implements the latest scientific technologies
such as data acquisition, data assimilation and ML modeling for improving forecast capabilities but
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also organizes these issues in an integrative manner. The IHIP involves the processes of defining the
components, modules, interfaces, and data for a system to satisfy specified requirements. We further
develop the online display of flood inundation maps through a friendly web interface to visualize
regional flood depths and interact with users. The framework is established based on the architecture
that consists of five layers: data access layer; data integration layer; service layer; functional subsystem
layer; and end-user application layer (Figure 1). Their main functions are described as follows.

 

Figure 1. Architecture of the flood early warning system for river basins.

The data access layer provides simplified accesses to the real-time data of the web-database and
automatically stores them in the persistent storage of the database. The data integration layer is a relational
database and defines data relations which persistently store real-time data, model parameters, as well as
the information of catchments, administrative divisions, gauges, and geo-data.

The service layer involves five modules (i.e., data collection, data processing, data query,
flood forecast, and flood map display), manages the connections between the modules and database to
ensure the effective communication among different layers, and implements the user interface of the
end-user application layer.

The functional subsystem layer integrates subsystems of flood forecasting, flood map display,
and data management not only to perform an important task or specific feature but also to display
flood maps derived from the results of flood forecast models.

The end-user application layer is a rich web application interface that handles user interaction
and navigation of the data and resources, and it also provides full end-user access to flood forecast
results with a visualized geographic map-based website.

The data management, analysis, modeling and visualization of the IHIP provides the core
functions of the system, in which the access to data and services from distributed sources is through
the use of web services and application interfaces. The IHIP aims at improving the reliability and
accuracy of flood forecasts and alleviating the burden imposed on the web server that handles all data
queries, data visualization, and data analysis. The next sections will outline the modules, database and
data acquisition used in the IHIP in details.

4



Water 2019, 11, 9

2.1. Modules

To integrate the interactions and interchanges among layers and subsystems in the IHIP,
several modules are designed. Modular Programming is a technique used to divide the functionality
of a program into several independent and interchangeable modules, where each module executes
only one aspect of the desired functionality. For interpreting the system, we use the term “module” to
separate the independent functions and to explain the interactions and interchanges among modules and
subsystems. Here, a module means an object with specific functions supporting different sub-systems
when a sub-system interacts with the other part of the whole system. Different sub-systems may
require the same functions so that the modules can provide specific and independent functions.
This encapsulation is beneficial to the system, for instance, improving maintainability, reducing the
impact of a change in data sources on the system, and allowing new data sources to be included in
a flexible way. The relationships between four servers (i.e., web, model, database, real-time data),
six modules and three sub-systems are shown in Figure 2. The six modules (i.e., Data Connection,
Data Query, Data processing, Flood Forecast, Flood Map Display, and Web Server) are explained in
more details as follows.

 
Figure 2. Relationships between four servers, five modules and three sub-systems.

Data Connection Module: This module builds connections between any kinds of databases, such
as Microsoft SQL (Structured Query Language) Server or My SQL. It can build the connection between
the system and the database management system, subject to user demands.

Data Query Module: This module assists data operators in accessing the Flood Forecast database
for information such as query data, store data and forecasted flood data, and to acquire model
parameters for building flood forecast models.

Data Processing Module: This module conducts data pre-processing, including normalization,
transformation, inverse normalization, and missing data treatment.

Flood Forecast Module: This module implements a hybrid data-driven model (i.e., the recurrent
nonlinear autoregressive with exogenous inputs (RNARX) and the self-organizing map (SOM)) to
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build the regional flood inundation forecast model, where those models require automatic execution
with forecast results stored into the database of the flood forecasting system.

Flood Map Display Module: The Google Maps API of the Google Maps Server Module is used to
embed Google Maps into our website, on which site-specific data can be overlaid.

Web Server Module: This study focuses on online displaying and organizing regional flood
inundation data using up-to-date web technologies driven by the database. Ajax (Asynchronous JavaScript
and XML) is a growing web development technique for creating interactive web applications [54,55] and
is used in this proposed system. The Web Server Module can also automatically generate the Keyhole
Markup Language (KML) files for download purpose. The generated KML files containing placemarks,
polygons and textual descriptions can be displayed in Google Earth, ESRI ArcGIS Explorer, Adobe
PhotoShop, AutoCAD, and Yahoo Pipes.

2.2. Database and Data Acquisition

2.2.1. Database

The significant global impact of recurring flooding events on hazard management leads to
an increasing demand for comprehensive flood databases. Besides the programming for those modules
and servers in the IHIP, a database is a vital part of organizing data and information for building
forecasting models, maintaining the relations of the forecasted points, displaying the forecasted
results, and managing the models. The relational database is one of the kernel parts for building
a real-time visual map-based flood forecast system. This database can be divided into four parts: user
management, hydrologic data, model information, and spatial data, respectively, which are explained
in more detail as follows.

The user management part maintains the different roles of users, composed of username, password,
and authorization. Authorization specifies the access rights to resources related to information security,
computer security, and access control. During operation, the system uses these access control rules to
decide whether access requests shall be granted or rejected.

The hydrologic data part maintains real-time hydrologic data composed of gauge information
and observed gauge data. Real-time rainfall and streamflow data of each gauge have to be stored in
this database.

The model information part includes catchment information and model parameters required for
re-constructing and re-executing the flood forecast models.

The spatial data part includes administrative division information and geo-data information and
provides the information required for flood map display. It provides the forecast models with inputs,
maintains the parameters of these forecast models and their relationship, and offers the web-based
map display with the geo-data and forecasted flood depths.

Database relationships are defined among real-time data, flood forecast models of different river
basins, and geo-data for the map-based flood forecast display.

2.2.2. Data Acquisition

One of the most important tasks of the data access layer is to access real-time data because real-time
data are the key inputs of the flood forecast models. The Quantitative Precipitation Estimation and
Segregation Using Multiple Sensors (QPESUMS) use the Doppler radar, satellite infrared, rain gauge
and other data sources to make the Quantitative Precipitation Estimations (QPE) for severe weather
systems in Taiwan [56,57]. The Products of QPESUMS are presented in web page format which can
be acquired online through retrieving spatial rainfall data when a typhoon (or heavy storm) strikes
Taiwan. They are used in the case study of the Tainan City in Taiwan. All programs and related
databases are constructed in Microsoft SQL Server 2016, where Visual C# is used to develop four major
items: (1) extracting real-time hydrological data; (2) managing real-time data relevant to the models;
(3) storing the forecasted data; and (4) providing the information to the visual map-based display.
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3. System Implementation

With the support from the IHIP, administrators can activate the flood forecast module to obtain
real-time multi-step-ahead flood forecasts. The IHIP would integrate the data management module and
the forecast module. The forecast module would build the flood forecasting models based on model
types and their parameters stored in the flood forecasting system database in the beginning. The data
management module would periodically query rainfall data to feed into those flood forecasting models.
Then, the forecasting models would periodically compute flood depths, and the forecast module would
store these results in the flood forecasting system database. Flood depths are subsequently extracted
and integrated with rainfall data for every place in the investigative area at a preset time interval,
such as 1 h, during flood events. Users visit the constructed website and choose a specific county to
browse the flood forecasting results on Google Maps, with several display levels and zoom levels of
Google Maps through the web server module and Google Maps server module services.

The combined application of the GIS and hydrological modeling determines flood extents and
analyzes the role of the existing system. The ArcMap 10.0 (ArcGIS) software of the Environmental
Systems Research Institute (ESRI) is set for the main operations with the geographical data of the
case study area. The necessity of ArcMap 10.0 is high when developing the geometry of the area for
further 1D steady flow simulation. For this purpose, the HEC-GeoRAS for ArcMap 10.0 extension is
used, whereas the hydraulic modeling and calculations are set to be implemented in the river analysis
system software, HEC-RAS (Hydrologic Engineering Center’s River Analysis System), which is the
product of US Army Corps of Engineers.

3.1. Study Area

The proposed IHIP system is implemented in the Tainan City of southern Taiwan. Tainan is the
oldest city in Taiwan and is known for its history, temples, traditional lifestyles, and traditional snack
food. Tainan has a subtropical climate with an annual average rainfall of 2500 mm. The city enjoys
a mild and dry climate in winter while rains take place more frequently in summer. Summer is the
typhoon season here. Typhoons usually occur between June and November, with the highest number
of weather watches coming in August and September. Tainan City has a high population density and is
frequently affected by floods. Because of this, flood risk management research on the river catchments
in the city is carried out in this study area.

3.2. Online Display

The web server deals merely with sending requests and responses between clients and the IHIP.
We design a web page to display the real-time flood inundation forecasting results. The online system
display embeds Google Maps in the web page of this flood warning system and provides KMZ (zipped
Keyhole Markup Language, for used in Google Earth) files for download purpose. We create the ASP.
NET Web application using C# and access data from SQL server using ADO.NET. Considering the
diversity of browsers and devices, we adopt the Responsive Web Design (RWD) and choose the layout
with three different parts (header, main and footer) of a web page to make our website perform well
and look great on any device such as desktops and smartphones.

The online regional flood inundation forecast model can convert a great number of grids’ flood
depths into regional inundation maps in GIF format and KML format, and thus, the server sends the
related files to users without accessing the database. This also enhances server security, reduces the
amount of data transmission, makes the website management and maintenance easy, and shortens the
waiting time for loading a web page.

Figure 3 shows a web frame of the real-time flood warning system for Tainan City, which consists
of three parts: header; main page and footer. The header includes the title of the system, the legend
and the KMZ download button for displaying the forecasted results on Google Earth in user devices.
The system title and two drop-down lists for years and date times are also displayed. The main page
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is divided into two parts. The left part includes time of issue, lead time, tree views of boundary and
administration for displaying the forecasted results on Google Maps; the remaining space is divided
into two sub-parts: control panel and Google Maps. In the control panel, users can access different
forecast times, inundated areas, forecast lead times, or read different flood information by selecting
an option listed in the drop-down menu. The legend of the flood inundation level is shown in the
upper left corner. Here, we provide the quadratic-color flood warning system that shows warning
levels (coded by severity) in green, blue, yellow, and red colors such that users can easily visualize
(recognize) the inundating depths (conditions) in the whole area. A green warning means level 1
(the least severe) with flood depths ranging from 0.3 to 0.9 m; a blue warning means level 2 with flood
depths ranging from 0.9 to 1.5 m; a yellow warning means level 3 with flood depths ranging from 1.5
to 2.5 m; and a red warning means level 4 (the most severe) with flood depths above 2.5 m.

 

Figure 3. A web frame of the real-time flood warning system for Tainan City.

For the right part, click the toggle button of the inundated area to display this area in Google
Maps; click the KML download button to download the flood forecast file in KML format; use the
forecast time drop-down menu to display the forecasted results at different times; use the drop-down
menu to select the administrative area; and use the flood location information drop-down menu to
provide the flood depths in a variety of important locations. In the Footer, there are organization logos
and copyright information for this online display web page.

Figure 4 shows the presentation screen of the system on the display interface. Figure 4a selects
the administrative area (Districts, Villages of the Tainan City); Figure 4b provides the flood depths in
selected villages and Figure 4c displays the rainfall and the maximal flood inundation depths of the
selected gauges on Google Maps.
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(a) 

 

(b) 

 

(c) 

Figure 4. Main functions of the display interface. (a) Districts, Villages; (b) Table of flood information in
selected villages; (c) Rainfall information and the maximal flood inundation depths display on Google Map.
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First of all, users can choose the forecast time through the Report Time menu in the top right
corner, which is presented by the year, month, date, and hour (ex., 2018/08/23, 20:00), as shown
in Figure 4. After time selection, the system will fill in the forecast area, time interval, inundation
information, and others. As shown, the maximum inundation depth of each selected village will be
tabulated at the bottom left of the interface, and its location will be marked on the map simultaneously.
Furthermore, when clicking the Legend icon at the top of the screen, it will display the illustrations of
different colors or makers on the map. At last, the KMZ file can be downloaded by clicking the KML
download button on Google Earth.

The IHIP allows the monitoring of flooding in a community or a larger region within a single
interface and thus, reduces the dependence on tracking multiple sources of information. Second,
real-time data from stream gauges and flood forecasting models helps decision-makers and the public
take necessary actions to prepare for flood events. Third, the support for multiple devices allows
users to access data and information anywhere, and web service availability makes data within the
IHIP accessible from other information systems and applications. The IHIP offers a comprehensive
information system for improving real-time information management and knowledge transfer pertinent
to flood events.

4. Conclusions

A flood early warning system enables an advanced warning of probable flash floods and regional
inundation depths for disseminating alarms in flood-threatened areas. A real-time flood inundation map
can convey a strong message about the extents and severity degrees of flooding in inundation-prone
regions, together with the effectiveness of possible countermeasures. We develop an intelligent
hydroinformatics integration platform (IHIP) to provide online forecasting of regional flood depths
through the use of the latest hydroinformatics technologies such that actions can be efficiently taken to
mitigate flood risks. The holist framework of the IHIP coupled with the coherent sub-systems, modules,
database, and interfaces are introduced. We construct the database and data acquisition under the
Microsoft Windows Operating System platform. A web interface is designed to display the forecasts of
flood inundation depths in the study areas using the up-to-date web technologies driven by the database.
The established flood inundation maps can visualize the potential effects of flooding and communicate
scenario development with all stakeholders. The IHIP can be easily executed through the database to
simultaneously access the datasets and update the parameters and information obtained from model
outputs. The system can very quickly (in just a few seconds) carry out multi-step-ahead forecasts of
area-wide inundation maps and thereby lead to real-time flood forecasting. A quadratic-color flood
inundation map showing inundated levels in different colors in Google Maps can help users to easily
visualize (identify) the threats and impacts of floods on the whole area.

The IHIP is designed in an adaptive and integrated structure that can integrate information from
distributed sources and allows an easy development of similar systems for other regionals through
knowledge transfer. This system can disseminate flood-related data and information to the public such
as forecast flood occurrence and alert communities in advance for reducing flood damages.
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Abstract: Floods are among the most destructive natural disasters, which are highly complex to
model. The research on the advancement of flood prediction models contributed to risk reduction,
policy suggestion, minimization of the loss of human life, and reduction of the property damage
associated with floods. To mimic the complex mathematical expressions of physical processes of
floods, during the past two decades, machine learning (ML) methods contributed highly in the
advancement of prediction systems providing better performance and cost-effective solutions. Due to
the vast benefits and potential of ML, its popularity dramatically increased among hydrologists.
Researchers through introducing novel ML methods and hybridizing of the existing ones aim at
discovering more accurate and efficient prediction models. The main contribution of this paper is
to demonstrate the state of the art of ML models in flood prediction and to give insight into the
most suitable models. In this paper, the literature where ML models were benchmarked through
a qualitative analysis of robustness, accuracy, effectiveness, and speed are particularly investigated
to provide an extensive overview on the various ML algorithms used in the field. The performance
comparison of ML models presents an in-depth understanding of the different techniques within the
framework of a comprehensive evaluation and discussion. As a result, this paper introduces the most
promising prediction methods for both long-term and short-term floods. Furthermore, the major
trends in improving the quality of the flood prediction models are investigated. Among them,
hybridization, data decomposition, algorithm ensemble, and model optimization are reported as the
most effective strategies for the improvement of ML methods. This survey can be used as a guideline
for hydrologists as well as climate scientists in choosing the proper ML method according to the
prediction task.

Keywords: flood prediction; flood forecasting; hydrologic model; rainfall–runoff, hybrid & ensemble
machine learning; artificial neural network; support vector machine; natural hazards & disasters;
adaptive neuro-fuzzy inference system (ANFIS); decision tree; survey; classification and regression
trees (CART), data science; big data; artificial intelligence; soft computing; extreme event management;
time series prediction

1. Introduction

Among the natural disasters, floods are the most destructive, causing massive damage to human
life, infrastructure, agriculture, and the socioeconomic system. Governments, therefore, are under
pressure to develop reliable and accurate maps of flood risk areas and further plan for sustainable flood
risk management focusing on prevention, protection, and preparedness [1]. Flood prediction models
are of significant importance for hazard assessment and extreme event management. Robust and
accurate prediction contribute highly to water recourse management strategies, policy suggestions and
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analysis, and further evacuation modeling [2]. Thus, the importance of advanced systems for short-term
and long-term prediction for flood and other hydrological events is strongly emphasized to alleviate
damage [3]. However, the prediction of flood lead time and occurrence location is fundamentally
complex due to the dynamic nature of climate condition. Therefore, today’s major flood prediction
models are mainly data-specific and involve various simplified assumptions [4]. Thus, to mimic the
complex mathematical expressions of physical processes and basin behavior, such models benefit
from specific techniques e.g., event-driven, empirical black box, lumped and distributed, stochastic,
deterministic, continuous, and hybrids [5].

Physically based models [6] were long used to predict hydrological events, such as storm [7,8],
rainfall/runoff [9,10], shallow water condition [11], hydraulic models of flow [12,13], and further
global circulation phenomena [14], including the coupled effects of atmosphere, ocean, and floods [15].
Although physical models showed great capabilities for predicting a diverse range of flooding scenarios,
they often require various types of hydro-geomorphological monitoring datasets, requiring intensive
computation, which prohibits short-term prediction [16]. Furthermore, as stated in Reference [17],
the development of physically based models often requires in-depth knowledge and expertise regarding
hydrological parameters, reported to be highly challenging. Moreover, numerous studies suggest that
there is a gap in short-term prediction capability of physical models (Costabile and Macchione [15]).
For instance, on many occasions, such models failed to predict properly [18]. Van den Honert and
McAneney [18] documented the failure in the prediction of floods accrued in Queensland, Australia in
2010. Similarly, numerical prediction models [19] were reported in the advancement of deterministic
calculations, and were not reliable due to systematic errors [20]. Nevertheless, major improvements
in physically based models of flood were recently reported through the hybridization of models [21],
as well as advanced flow simulations [22,23].

In addition to numerical and physical models, data-driven models also have a long tradition
in flood modeling, which recently gained more popularity. Data-driven methods of prediction
assimilate the measured climate indices and hydro-meteorological parameters to provide better insight.
Among them, statistical models of autoregressive moving average (ARMA) [24], multiple linear
regression (MLR) [25], and autoregressive integrated moving average (ARIMA) [26] are the most
common flood frequency analysis (FFA) methods for modeling flood prediction. FFA was among the
early statistical methods for predicting floods [27]. Regional flood frequency analyses (RFFA) [28],
more advanced versions, were reported to be more efficient when compared to physical models
considering computation cost and generalization. Assuming floods as stochastic processes, they can
be predicted using certain probability distributions from historical streamflow data [29]. For instance,
the climatology average method (CLIM) [28], empirical orthogonal function (EOF) [30], multiple linear
regressions (MLR), quantile regression techniques (QRT) [31], and Bayesian forecasting models [32] are
widely used for predicting major floods. However, they were reported to be unsuitable for short-term
prediction, and, in this context, they need major improvement due to the lack of accuracy, complexity
of the usage, computation cost, and robustness of the method. Furthermore, for reliable long-term
prediction, at least, a decade of data from measurement gauges should be analyzed for a meaningful
forecast [32]. In the absence of such a dataset, however, FFA can be done using hydrologic models of
RFFA, e.g., MISBA [33] and Sacramento [34], as reliable empirical methods with regional applications,
where streamflow measurements are unavailable. In this context, distributed numerical models are
used as an attractive solution [35]. Nonetheless, they do not provide quantitative flood predictions,
and their forecast skill level is “only moderate” and they lack accuracy [36].

The drawbacks of the physically based and statistical models mentioned above encourage the
usage of advanced data-driven models, e.g., machine learning (ML). A further reason for the popularity
of such models is that they can numerically formulate the flood nonlinearity, solely based on historical
data without requiring knowledge about the underlying physical processes. Data-driven prediction
models using ML are promising tools as they are quicker to develop with minimal inputs. ML is a field
of artificial intelligence (AI) used to induce regularities and patterns, providing easier implementation
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with low computation cost, as well as fast training, validation, testing, and evaluation, with high
performance compared to physical models, and relatively less complexity [37]. The continuous
advancement of ML methods over the last two decades demonstrated their suitability for flood
forecasting with an acceptable rate of outperforming conventional approaches [38]. A recent investigation
by Reference [39], which compared performance of a number of physical and ML prediction models,
showed a higher accuracy of ML models. Furthermore, the literature includes numerous successful
experiments of quantitative precipitation forecasting (QPF) using ML methods for different lead-time
predictions [40,41]. In comparison to traditional statistical models, ML models were used for prediction
with greater accuracy [42]. Ortiz-García et al. [43] described how ML techniques could efficiently
model complex hydrological systems such as floods. Many ML algorithms, e.g., artificial neural
networks (ANNs) [44], neuro-fuzzy [45,46], support vector machine (SVM) [47], and support vector
regression (SVR) [48,49], were reported as effective for both short-term and long-term flood forecast.
In addition, it was shown that the performance of ML could be improved through hybridization
with other ML methods, soft computing techniques, numerical simulations, and/or physical models.
Such applications provided more robust and efficient models that can effectively learn complex flood
systems in an adaptive manner. Although the literature includes numerous evaluation performance
analyses of individual ML models [49–52], there is no definite conclusion reported with regards to
which models function better in certain applications. In fact, the literature includes only a limited
number of surveys on specific ML methods in specific hydrology fields [53–55]. Consequently, there is
a research gap for a comprehensive literature review in the general applications of ML in all flood
resource variables from the perspective of ML modeling and data-driven prediction systems.

Nonetheless, ML algorithms have important characteristics that need to be carefully taken into
consideration. The first is that they are as good as their training, whereby the system learns the target
task based on past data. If the data is scarce or does not cover varieties of the task, their learning falls
short, and hence, they cannot perform well when they are put into work. Therefore, using robust data
enrichment is essential through, e.g., implementing a distribution function of sums of weights [56],
invariance assessments to retain the group characteristics [57], or recovering the missing variables
using causally dependent coefficients [58].

The second aspect is the capability of each ML algorithm, which may vary across different types
of tasks. This can also be called a “generalization problem”, which indicates how well the trained
system can predict cases it was not trained for, i.e., whether it can predict beyond the range of the
training dataset. For example, some algorithms may perform well for short-term predictions, but not
for long-term predictions. These characteristics of the algorithms need to be clarified with respect
to the type and amount of available training data, and the type of prediction task, e.g., water level
and streamflow. In this review, we look into examples of the use of various ML algorithms for
various types of tasks. At the abstract level, we decided to divide the target tasks into short-term and
long-term prediction. We then reviewed ML applications for flood-related tasks, where we structured
ML methods as single methods and hybrid methods. Hybrid methods are those that combine more
than one ML method.

Here, we should note that this paper surveys ML models used for predictions of floods on sites
where rain gauges or intelligent sensing systems used. Our goal was to survey prediction models with
various lead times to floods at a particular site. From this perspective, spatial flood prediction was not
involved in this study, as we did not study prediction models used to estimate/identify the location of
floods. In fact, we were concerned only with the lead time for an identified site.

2. Method and Outline

This survey identifies the state of the art of ML methods for flood prediction where peer-reviewed
articles in top-level subject fields are reviewed. Among the articles identified, through search queries
using the search strategy, those including the performance evaluation and comparison of ML methods
were given priority to be included in the review to identify the ML methods that perform better
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in particular applications. Furthermore, to choose an article, four types of quality measure for each
article were considered, i.e., source normalized impact per paper (SNIP), CiteScore, SCImago journal
rank (SJR), and h-index. The papers were reviewed in terms of flood resource variables, ML methods,
prediction type, and the obtained results.

The applications in flood prediction can be classified according to flood resource variables,
i.e., water level, river flood, soil moisture, rainfall–discharge, precipitation, river inflow, peak flow,
river flow, rainfall–runoff, flash flood, rainfall, streamflow, seasonal stream flow, flood peak discharge,
urban flood, plain flood, groundwater level, rainfall stage, flood frequency analysis, flood quantiles,
surge level, extreme flow, storm surge, typhoon rainfall, and daily flows [59]. Among these key
influencing flood resource variables, rainfall and the spatial examination of the hydrologic cycle had
the most remarkable role in runoff and flood modeling [60]. This is the reason why quantitative
rainfall prediction, including avalanches, slush flow, and melting snow, is traditionally used for
flood prediction, especially in the prediction of flash floods or short-term flood prediction [61].
However, rainfall prediction was shown to be inadequate for accurate flood prediction. For instance,
the prediction of streamflow in a long-term flood prediction scenario depends on soil moisture
estimates in a catchment, in addition to rainfall [62]. Although, high-resolution precipitation forecasting
is essential, other flood resource variables were considered in the [63]. Thus, the methodology of this
literature review aims to include the most effective flood resource variables in the search queries.

A combination of these flood resource variables and ML methods was used to implement the
complete list of search queries. Note that the ML methods for flood prediction may vary significantly
according to the application, dataset, and prediction type. For instance, ML methods used for
short-term water level prediction are significantly different from those used for long-term streamflow
prediction. Figure 1 represents the organization of the search queries and further describes the survey
search methodology.

The search query included three main search terms. The flood resource variables were considered
as term 1 of the search (<Flood resource variable1-n>), which included 25 keywords for search queries
mentioned above. Term 2 of search (<ML method1-m>) included the ML algorithms. The collection
of the references [16,26,28,37,38,42,44] provides a complete list of ML methods, from which the 25
most popular algorithms in engineering applications were used as the keywords of this search. Term 3
included the four search terms most often used in describing flood prediction, i.e., “prediction”,
“estimation”, “forecast”, or “analysis”. The total search resulted in 6596 articles. Among them,
180 original research papers were refined through our quality measure included in the survey.

Figure 1. Flowchart of the search queries.

Section 3 presents the state of the art of ML in flood prediction. A technical description on the ML
method and a brief background in flood applications are provided. Section 4 presents the survey of
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ML methods used for short-term flood prediction. Section 5 presents the survey of ML methods used
for long-term flood prediction. Section 6 presents the conclusions.

3. State of the Art of ML Methods in Flood Prediction

For creating the ML prediction model, the historical records of flood events, in addition
to real-time cumulative data of a number of rain gauges or other sensing devices for various
return periods, are often used. The sources of the dataset are traditionally rainfall and water level,
measured either by ground rain gauges, or relatively new remote-sensing technologies such as satellites,
multisensor systems, and/or radars [62]. Nevertheless, remote sensing is an attractive tool for capturing
higher-resolution data in real time. In addition, the high resolution of weather radar observations
often provides a more reliable dataset compared to rain gauges [63]. Thus, building a prediction
model based on a radar rainfall dataset was reported to provide higher accuracy in general [64].
Whether using a radar-based dataset or ground gauges to create a prediction model, the historical
dataset of hourly, daily, and/or monthly values is divided into individual sets to construct and evaluate
the learning models. To do so, the individual sets of data undergo training, validation, verification,
and testing. The principle behind the ML modeling workflow and the strategy for flood modeling are
described in detail in the literature [48,65]. Figure 2 represents the basic flow for building an ML model.
The major ML algorithms applied to flood prediction include ANNs [66], neuro-fuzzy [67], adaptive
neuro-fuzzy inference systems (ANFIS) [68], support vector machines (SVM) [69], wavelet neural
networks (WNN) [70], and multilayer perceptron (MLP) [71]. In the following subsections, a brief
description and background of these fundamental ML algorithms are presented.

Figure 2. Basic flow for building the machine learning (ML) model.

3.1. Artificial Neural Networks (ANNs)

ANNs are efficient mathematical modeling systems with efficient parallel processing, enabling
them to mimic the biological neural network using inter-connected neuron units. Among all ML
methods, ANNs are the most popular learning algorithms, known to be versatile and efficient in
modeling complex flood processes with a high fault tolerance and accurate approximation [39].
In comparison to traditional statistical models, the ANN approach was used for prediction with
greater accuracy [72]. ANN algorithms are the most popular for modeling flood prediction since
their first usage in the 1990s [73]. Instead of a catchment’s physical characteristics, ANNs derive
meaning from historical data. Thus, ANNs are considered as reliable data-driven tools for constructing
black-box models of complex and nonlinear relationships of rainfall and flood [74], as well as
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river flow and discharge forecasting [75]. Furthermore, a number of surveys (e.g., Reference [76])
suggest ANN as one of the most suitable modeling techniques which provide an acceptable
generalization ability and speed compared to most conventional models. References [77,78] provided
reviews on ANN applications in flood. ANNs were already successfully used for numerous flood
prediction applications, e.g., streamflow forecasting [79], river flow [80,81], rainfall–runoff [82],
precipitation–runoff modeling [83], water quality [55], evaporation [56], river stage prediction [84],
low-flow estimation [85], river flows [86], and river time series [57]. Despite the advantages of
ANNs, there are a number drawbacks associated with using ANNs in flood modeling, e.g., network
architecture, data handling, and physical interpretation of the modeled system. A major drawback
when using ANNs is the relatively low accuracy, the urge to iterate parameter tuning, and the slow
response to gradient-based learning processes [87]. Further drawbacks associated with ANNs include
precipitation prediction [88,89] and peak-value prediction [90].

The feed-forward neural network (FFNN) [25] is a class of ANN, whereby the network’s
connections are not in cyclical form. FFNNs are the simplest type of ANN, whereby information moves
in a forward direction from input nodes to the hidden layer and later to output nodes. On the other
hand, a recurrent neural network (RNN) [91] is a class of ANN, whereby the network’s connections
form a time sequence for dynamic temporal behavior. Furthermore, RNNs benefit from extra memory
to analyze input sequences. In ANNs, backpropagation (BP) is a multi-layered NN where weights are
calculated using the propagation of the backward error gradient. In BP, there are more phases in the
learning cycle, using a function for activation to send signals to the other nodes. Among various ANNs,
the backpropagation ANN (BPNN) was identified as the most powerful prediction tool suitable for
flood time-series prediction [26]. Extreme learning machine (ELM) [92] is an easy-to-use form of FFNN,
with a single hidden layer. Here, ELM was studied under the scope of ANN methods. ELM for flood
prediction recently became of interest for hydrologists and was used to model short-term streamflow
with promising results [93,94].

3.2. Multilayer Perceptron (MLP)

The vast majority of ANN models for flood prediction are often trained with a BPNN [95].
While BPNNs are today widely used in this realm, the MLP—an advanced representation of ANNs—
recently gained popularity [96]. The MLP [97] is a class of FFNN which utilizes the supervised learning
of BP for training the network of interconnected nodes of multiple layers. Simplicity, nonlinear
activation, and a high number of layers are characteristics of the MLP. Due to these characteristics,
the model was widely used in flood prediction and other complex hydrogeological models [98].
In an assessment of ANN classes used in flood modeling, MLP models were reported to be more
efficient with better generalization ability. Nevertheless, the MLP is generally found to be more
difficult to optimize [99]. Back-percolation learning algorithms are used to individually calculate the
propagation error in hidden network nodes for a more advanced modeling approach.

Here, it is worth mentioning that the MLP, more than any other variation of ANNs (e.g., FFNN,
BPNN, and FNN), gained popularity among hydrologists. Furthermore, due to the vast number of case
studies using the standard form of MLP, it diverged from regular ANNs. In addition, the authors of
articles in the realm of flood prediction using the MLP refer to their models as MLP models. From this
perspective, we decided to devote a separate section to the MLP.

3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The fuzzy logic of Zadeh [100] is a qualitative modeling scheme with a soft computing technique
using natural language. Fuzzy logic is a simplified mathematical model, which works on incorporating
expert knowledge into a fuzzy inference system (FIS). An FIS further mimics human learning through
an approximation function with less complexity, which provides great potential for nonlinear modeling
of extreme hydrological events [101,102], particularly floods [103]. For instance, Reference [104] studied
river level forecasting using an FIS, as did Lohani et al. (2011) [4] for rainfall–runoff modeling for
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water level. As an advanced form of fuzzy-rule-based modeling, neuro-fuzzy presents a hybrid of the
BPNN and the widely used least-square error method [46]. The Takagi–Sugeno (T–S) fuzzy modeling
technique [4], which is created using neuro-fuzzy clustering, is also widely applied in RFFA [28].

Adaptive neuro-FIS, or so-called ANFIS, is a more advanced form of neuro-fuzzy based on the T–S
FIS, first coined [67,77]. Today, ANFIS is known to be one of the most reliable estimators for complex
systems. ANFIS technology, through combining ANN and fuzzy logic, provides higher capability
for learning [101]. This hybrid ML method corresponds to a set of advanced fuzzy rules suitable for
modeling flood nonlinear functions. An ANFIS works by applying neural learning rules for identifying
and tuning the parameters and structure of an FIS. Through ANN training, the ANFIS aims at catching
the missing fuzzy rules using the dataset [67]. Due to fast and easy implementation, accurate learning,
and strong generalization abilities, ANFIS became very popular in flood modeling. The study of
Lafdani et al. [60] further described its capability in modeling short-term rainfall forecasts with high
accuracy, using various types of streamflow, rainfall, and precipitation data. Furthermore, the results
of Shu and [67] showed easier implementation and better generalization capability, using the one-pass
subtractive clustering algorithm, which led several rounds of random selection being avoided.

3.4. Wavelet Neural Network (WNN)

Wavelet transform (WT) [46] is a mathematical tool which can be used to extract information from
various data sources by analyzing local variations in time series [50]. In fact, WT has significantly positive
effects on modeling performance [105]. Wavelet transforms supports the reliable decomposition of
an original time series to improve data quality. The accuracy of prediction is improved through discrete
WT (DWT), which decomposes the original data into bands, leading to an improvement of flood
prediction lead times [106]. DWT decomposes the initial data set into individual resolution levels
for extracting better-quality data for model building. DWTs, due to their beneficial characteristics,
are widely used in flood time-series prediction. In flood modeling, DWTs were widely applied in,
e.g., rainfall–runoff [51], daily streamflow [106], and reservoir inflow [107]. Furthermore, hybrid models
of DWTs, e.g., wavelet-based neural networks (WNNs) [108], which combine WT and FFNNs,
and wavelet-based regression models [109], which integrate WT and multiple linear regression (MLR),
were used in time-series predictions of floods [110]. The application of WNN for flood prediction was
reviewed in Reference [70], where it was concluded that WNNs can highly enhance model accuracy.
In fact, most recently, WNNs, due to their potential in enhancing time-series data, gained popularity in
flood modeling [50], for applications such as daily flow [111], rainfall–runoff [112], water level [113],
and flash floods [114].

3.5. Support Vector Machine (SVM)

Hearst et al. [115] proposed and classified the support vector (SV) as a nonlinear search algorithm
using statistical learning theory. Later, the SVM [116] was introduced as a class of SV, used to minimize
over-fitting and reduce the expected error of learning machines. SVM is greatly popular in flood
modeling; it is a supervised learning machine which works based on the statistical learning theory
and the structural risk minimization rule. The training algorithm of SVM builds models that assign
new non-probabilistic binary linear classifiers, which minimize the empirical classification error and
maximize the geometric margin via inverse problem solving. SVM is used to predict a quantity forward
in time based on training from past data. Over the past two decades, the SVM was also extended as
a regression tool, known as support vector regression (SVR) [117].

SVMs are today know as robust and efficient ML algorithms for flood prediction [118]. SVM and
SVR emerged as alternative ML methods to ANNs, with high popularity among hydrologists for
flood prediction. They use the statistical learning theory of structural risk minimization (SRM),
which provides a unique architecture for delivering great generalization and superior efficiency.
Most importantly, SVMs are both suitable for linear and nonlinear classification, and the efficient
mapping of inputs into feature spaces [119]. Thus, they were applied in numerous flood prediction
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cases with promising results, excellent generalization ability, and better performance, compared to
ANNs and MLRs, e.g., extreme rainfall [120], precipitation [43], rainfall–runoff [121], reservoir
inflow [122], streamflow [123], flood quantiles [48], flood time series [124], and soil moisture [125].
Unlike ANNs, SVMs are more suitable for nonlinear regression problems, to identify the global optimal
solution in flood models [126]. Although the high computation cost of using SVMs and their unrealistic
outputs might be demanding, due to their heuristic and semi-black-box nature, the least-square
support vector machine (LS-SVM) highly improved performance with acceptable computational
efficiency [127]. The alternative approach of LS-SVM involves solving a set of linear tasks instead
of complex quadratic problems [128]. Nevertheless, there are still a number of drawbacks that exist,
especially in the application of seasonal flow prediction using LS-SVM [129].

3.6. Decision Tree (DT)

The ML method of DT is one of the contributors in predictive modeling with a wide application
in flood simulation. DT uses a tree of decisions from branches to the target values of leaves.
In classification trees (CT), the final variables in a DT contain a discrete set of values where leaves
represent class labels and branches represent conjunctions of features labels. When the target variable in
a DT has continuous values and an ensemble of trees is involved, it is called a regression tree (RT) [130].
Regression and classification trees share some similarities and differences. As DTs are classified as
fast algorithms, they became very popular in ensemble forms to model and predict floods [131].
The classification and regression tree (CART) [132,133], which is a popular type of DT used in ML,
was successfully applied to flood modeling; however, its applicability to flood prediction is yet to be
fully investigated [134]. The random forests (RF) method [69,135] is another popular DT method for
flood prediction [136]. RF includes a number of tree predictors. Each individual tree creates a set of
response predictor values associated with a set of independent values. Furthermore, an ensemble
of these trees selects the best choice of classes [69]. Reference [137] introduced RF as an effective
alternative to SVM, which often delivers higher performance in flood prediction modeling. Later,
Bui et al. [138] compared the performances of ANN, SVM, and RF in general applications to floods,
whereby RF delivered the best performance. Another major DT is the M5 decision-tree algorithm [139].
M5 constructs a DT by splitting the decision space and single attributes, thereby decreasing the variance
of the final variable. Further DT algorithms popular in flood prediction include reduced-error pruning
trees (REPTs), Naïve Bayes trees (NBTs), chi-squared automatic interaction detectors (CHAIDs), logistic
model trees (LMTs), alternating decision trees (ADTs), and exhaustive CHAIDs (E-CHAIDs).

3.7. Ensemble Prediction Systems (EPSs)

A multitude of ML modeling options were introduced for flood modeling with a strong
background [140]. Thus, there is an emerging strategy to shift from a single model of prediction
to an ensemble of models suitable for a specific application, cost, and dataset. ML ensembles consist
of a finite set of alternative models, which typically allow more flexibility than the alternatives.
Ensemble ML methods have a long tradition in flood prediction. In recent years, ensemble prediction
systems (EPSs) [141] were proposed as efficient prediction systems to provide an ensemble of N
forecasts. In EPS, N is the number of independent realizations of a model probability distribution.
EPS models generally use multiple ML algorithms to provide higher performance using an automated
assessment and weighting system [140]. Such a weighting procedure is carried out to accelerate the
performance evaluation process. The advantage of EPS is the timely and automated management
and performance evaluation of the ensemble algorithms. Therefore, the performance of EPS, for flood
modeling in particular, can be improved. EPSs may use multiple fast-learning or statistical algorithms
as classifier ensembles, e.g., ANNs, MLP, DTs, rotation forest (RF) bootstrap, and boosting, allowing
higher accuracy and robustness. The subsequent ensemble prediction systems can be used to quantify
the probability of floods, based on the prediction rate used in the event [142–144]. Therefore,
the quality of ML ensembles can be calculated based on the verification of probability distribution.
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Ouyang et al. [145] and Zhang et al. [146] presented a review of the applications of ensemble ML
methods used for floods. EPSs were demonstrated to have the capability for improving model accuracy
in flood modeling [140–146]

To improve the accuracy of import data and to achieve better dataset management, the ensemble
mean was proposed as a powerful approach coupled with ML methods [140,141]. Empirical mode
decomposition (EMD) [142], and ensemble EMD (EEMD) [143] are widely used for flood prediction [144].
Nevertheless, EMD-based forecast models are also subject to a number of drawbacks [145]. The literature
includes numerous studies on improving the performance of decomposition and prediction models in
terms of additivity and generalization ability [146].

3.8. Classification of ML Methods and Applications

The most popular ML modeling methods for flood prediction were identified in the previous
section, including ANFIS, MLP, WNN, EPS, DT, RF, CART, and ANN. Figure 3 presents the major ML
methods used for flood prediction, and the number of corresponding articles in the literature over the
last decade. This figure was designed to communicate to the readers which ML methods increased in
popularity among hydrologists for flood modeling within the past decade.

Figure 3. Major ML methods used for flood prediction in the literature. Reference year: 2008 (source: Scopus).

Considering the ML methods for application to floods, it is apparent that ANNs, SVMs, MLPs,
DTs, ANFIS, WNNs, and EPSs are the most popular. These ML methods can be categorized as
single and hybrid methods. In addition to the fundamental hybrid ML methods, i.e., ANFIS, WNNs,
and basic EPSs, several different research strategies for obtaining better prediction evolved [137].
The strategies involved developing hybrid ML models using soft computing techniques, statistical
methods, and physical models rather than individual ML approaches, whereby the extra components
complement each other with respect to their drawbacks and shortcomings. The success of such hybrid
approaches motivated the research community to explore more advanced hybrid models. Figure 4
presents the progress of single vs. hybrid ML methods for flood prediction in the literature over the
past decade. The figure shows an apparent continuous increase and notable progress in using novel
hybrid methods. Through Figure 4, the taxonomy of our research was justified, based on distinguishing
hybrid and single ML prediction models.
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Figure 4. The progress of single vs. hybrid ML methods for flood prediction in the literature. Reference
year: 2008 (source: Scopus).

Furthermore, the types of prediction are often studied with different lead-time predictions due to
the flood. Real-time, hourly, daily, weekly, monthly, seasonal, annual, short-term, and long-term are
the terms most often used in the literature. Real-time prediction is concerned with anywhere between
few minutes and an hour preceding the flood. Hourly predictions can be 1–3 h ahead of the flood
forecasting lead time or, in some cases, 18 h or 24 h. Daily predictions can be 1–6 days ahead of the
forecast. Monthly forecasts can be, for instance, up to three months. In hydrology, the definitions
of short-term and long-term in studying the different phenomena vary. Short-term predictions for
floods often refer to hourly, daily, and weekly predictions, and they are used as warning systems.
On the other hand, long-term predictions are mostly used for policy analysis purposes. Furthermore,
if the prediction leading time to flood is three days longer than the confluence time, the prediction
is considered to be long-term [37,58]. From this perspective, in this study, we considered a lead time
greater than a week as a long-term prediction. It was observed that the characteristics of the ML
methods used varied significantly according to the period of prediction. Thus, dividing the survey on
the basis of short-term and long-term was essential.

Here, it is also worth emphasizing that, in this paper, the prediction lead-time was classified
as “short-term” or “long-term”. Although flash floods happen in a short period of time with great
destructive power, they can be predicted with either “short-term” or “long-term” lead times to the
actual flood. In fact, this paper is concerned with the lead times instead of the duration or type of
flood. If the lead-time prediction to a flash flood was short-term, then it was studied as a short-term
lead time. However, sometimes flash floods can be predicted with long lead times. In other words,
flash floods might be predicted one month ahead. In this case, the prediction was considered as
long-term. Regardless of the type of flood, we only focused on the lead time.

In this study, the ML methods were reviewed using two classes—single methods and hybrid
methods. Figures 5 and 6 represent the taxonomy of the research.
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Figure 5. Taxonomy of the survey—ML methods for flood prediction.

Figure 6. Taxonomy of the survey.

Step 1 involved running the queries one by one; step 2 involved checking the results of the search,
and initiating the next search; step 3 involved identifying the comparative studies on ML models
of prediction, refining the results and building the database; step 4 involved identifying whether
it was a long-term or short-term prediction; steps 5 and 6 involved identifying if it was a single or
hybrid method, constructing Table 1, and step 7 involved constructing the other Tables. The four tables
provide the list of studies on different prediction techniques, which entail the organized comprehensive
surveys of the literature.

4. Short-Term Flood Prediction with ML

Short-term lead-time flood predictions are considered important research challenges, particularly
in highly urbanized areas, for timely warnings to residences so to reduce damage [146]. In addition,
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short-term predictions contribute highly to water recourse management. Even with the recent improvements
in numerical weather prediction (NWP) models, artificial intelligence (AI) methods, and ML, short-term
prediction remains a challenging task [147–152]. This section is divided into two subsections—single
and hybrid methods of ML—to individually investigate each group of methods.

4.1. Short-Term Flood Prediction Using Single ML Methods

To gain insight into the performance of ML methods, a comprehensive comparison was required
to investigate ML methods. Table 1 presents a summary of the major ML methods, i.e., ANNs, MLP,
nonlinear autoregressive network with exogenous inputs (NARX), M5 model trees, DTs, CART, SVR,
and RF, followed by a comprehensive performance comparison of single ML methods in short-term
flood prediction. A revision and discussion of these methods follow so as to identify the most suitable
methods presented in the literature.

Table 1. Short-term predictions using single machine learning (ML) methods.

Modeling Technique Reference Flood Resource Variable Prediction Type Region

ANN vs. statistical [1] Streamflow and flash food Hourly USA

ANN vs. traditional [44] Water and surge level Hourly Japan

ANN vs. statistical [149] Flood Real-time UK

ANN vs. statistical [150] Extreme flow Hourly Greece

FFANN vs. ANN [151] Water level Hourly India

ANN vs. T–S [4] Flood Hourly India

ANN vs. AR [153] Stage level and streamflow Hourly Brazil

MLP vs. Kohonen NN [154] Flood frequency analysis Long-term China

BPANN [155] Peak flow of flood Daily Canada

BPANN vs. DBPANN [156] Rainfall–runoff Monthly and daily China

BPANN [157] Flash flood Real-time Hawaii

BPANN [158] Runoff Daily India

ELM vs. SVM [159] Streamflow Daily China

BPANN vs. NARX [160,161] Urban flood Real-time Taiwan

FFANN vs. Functional
ANN [162] River flows Real-time Ireland

Recurrent NN vs. Z–R
relation [163] Rainfall prediction Real-time Taiwan

ANN vs. M5 model tree [164] Peak flow Hourly India

NBT vs. DT vs.
Multinomial regression [165] Flash flood Real-time, hourly Austria

DTs vs. NBT vs. ADT vs.
LMT, and REPT [166] Flood Hourly/daily Iran

MLP vs. MLR [167,168] River flow and
rainfall–runoff Daily Algeria

MLP vs. MLR [98] River runoff Hourly Morocco

MLP vs. WT vs. MLR vs.
ANN [169] River flood forecasting Daily Canada

ANN vs. MLP [170] River level Hourly Ireland

MLP vs. DT vs. CART
vs. CHAID [171] Flood during typhoon Rainfall–runoff China

SVM vs. ANN [120] Rainfall extreme events Daily India

ANN vs. SVR [48] Flood Daily Canada

RF vs. SVM [69] Rainfall Hourly Taiwan
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Kim and Barros [148] modified an ANN model to improve flood forecasting short-term lead
time through consideration of atmospheric conditions. They used satellite data from the ISCCP-B3
dataset [172]. This dataset includes hourly rainfall from 160 rain gauges within the region. The ANN
was reported to be considerably more accurate than the statistical models. In another similar work,
Reference [44] developed an ANN forecast model for hourly lead time. In their study, various datasets
were used, consisting of meteorological and hydrodynamic parameters of three typhoons. Testing of the
ANN forecast models showed promising results for 5-h lead time. In another attempt, Danso-Amoako [1]
provided a rapid system for predicting floods with an ANN. They provided a reliable forecasting tool
for rapidly assessing floods. An R2 value of 0.70 for the ANN model proved that the tool was suitable
for predicting flood variables with a high generalization ability. The results of [149] provides similar
conclusions. Furthermore, Panda, Pramanik, and Bala [151] compared the accuracy of ANN with
FFANN, and the results were benchmarked with the physical model of MIKE 11 for short-term water
level prediction. This dataset includes the hourly discharge and water level between 2006 and 2009.
The data of the year 2006 was used for testing root-mean-square error (RMSE). The results indicated
that the FFANN performed faster and relatively more accurately than the ANN model. Here, it is
worth mentioning that the overall results indicated that the neural networks were superior compared
to the one-dimensional model MIKE 11. Nevertheless, there were great advancements reported in the
implementation of two-dimensional MIKE 11 [8].

Kourgialas, Dokou, and Karatzas [150] created a modeling system for the prediction of extreme
flow based on ANNs 3 h, 12 h, and 19 h ahead of the flood. They analyzed five years of hourly
data to investigate the ANN effectiveness in modeling extreme flood events. The results indicated it
to be highly effective compared to conventional hydrological models. Lohani, Goel, and Bhatia [4]
improved the real-time forecasting of rainfall–runoff of foods, and the results were compared to the
T–S fuzzy model and the subtractive-clustering-based T–S (TSC-T–S) fuzzy model. They, however,
concluded that the fuzzy model provided more accurate predictions with longer lead time. The hourly
rainfall data from 1989 to 1995 of a gauge site, in addition to the rainfall during a monsoon, was used.
Pereira Filho and dos Santos [153] compared the AR model with an ANN in simulating forecast stage
level and streamflow. The dataset was created from independent flood events, radar-derived rainfall,
and streamflow rain gauges available between 1991 and 1995. The AR and ANN were employed to
model short-term flood in an urban area utilizing streamflow and weather data. They showed that the
ANN performed better in its verification and it was proposed as a better alternative to the AR model.

Ahmad and Simonovic [155] used a BPNN for predicting peak flow utilizing causal meteorological
parameters. This dataset included daily discharge data for 1958–1997 from gauging stations. BPNN proved
to be a fast and accurate approach with the ability of generalization for application to other locations
with similar rivers. Furthermore, to improve the simulation of daily streamflow using BPNN,
Reference [156] used division-based backpropagation to obtain satisfying results. The raw data of
local evaporation and rainfall gauges of six years were used for the short-term flood prediction
of a streamflow time series. The dataset of one decade from 1988 was used for training and the
dataset of five subsequent years was used for testing. The BPNN model provided promising results;
however, it lacked efficiency in using raw data for the time-series prediction of streamflow. In addition,
Reference [157] showed the application of BPNN for assessing flash floods using measured data.
This dataset included 5-min-frequency water quality data and 15-min-frequency rainfall data of 20 years
from two rain gauge stations. Their experiments introduced ANN models as simple ML methods
to apply, while simultaneously requiring expert knowledge by the user. In addition, their ANN
prediction model showed great ability to deal with a noisy dataset. Ghose [158] predicted the daily
runoff using a BPNN prediction model. The data of daily water level of two years from 2013–2015
were used. The accurate BPNN model was reported with an efficiency of 96.4% and an R2 of 0.94 for
flood prediction.

Pan, Cheng, and Cai [159] compared the performances of ELM and SVM for short-term streamflow
prediction. Both methods demonstrated a similar level of accuracy. However, ELM was suggested
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as a faster method for parameter selection and learning loops. Reference [154] also conducted
a comparison between fuzzy c-means, ANN, and MLP using a common dataset of sites to investigate
ML method efficiency and accuracy. The MLP and ANN methods were proposed as the best methods.
Chang, Chen, Lu, Huang, and Chang [160] and Reference [161] modeled multi-step urban flood
forecasts using BPNN and a nonlinear autoregressive network with exogenous input (NARX) for
hourly forecasts. The results demonstrated that NARX worked better in short-term lead-time prediction
compared to BPNN. The NARX network produced an average R2 value of 0.7. This study suggested
that the NARX model was effective in urban flood prediction. Furthermore, Valipour et al. [24]
showed how the accuracy of ANN models could be increased through integration with autoregressive
(AR) models.

Bruen and Yang [162] modeled real-time rainfall–runoff forecasting for different lead times
using FFNN, ARMA, and functional networks. Here, functional networks [173] were compared with
an FFNN model. The models were tested using a storm time-series dataset. The result was that
functional networks allowed quicker training in the prediction of rainfall–runoff processes with
different lead times. The models were able to predict floods with short lead times. Reference [164]
estimated water level–discharge using M5 trees and ANN. This dataset was collected from the
period of 1990 to 1998, and the inputs were supplied by computing the average mutual information.
The ANN and M5 model tree performed similar in terms of accuracy. Reference [166] tested four DT
models, i.e., alternating decision trees (ADTs), reduced-error pruning trees (REPTs), logistic model
trees (LMTs), and NBTs, using a dataset of 200 floods. The ADT model was reported to perform
better for flash-flood prediction for a speedy determination of flood-susceptible areas. In other
research, Reference [165] compared the performance of an NBT and DT prediction model, using
geomorphological disposition parameters. Both models and their hybrids were compared in terms
of prediction accuracy in a catchment. The advanced DTs were found to be promising for flood
assessment in prone areas. They concluded that an independent dataset and benchmarking of other
ML methods were required for judgment of the accuracy and efficiency of the method. Reference [171]
worked on a dataset including more than 100 tropical cyclones (TCs) affecting a watershed for the
hourly prediction of precipitation. The performances of MLP, CART, CHAID, exhaustive CHAID,
MLR, and CLIM were compared. The evaluation results showed that MLP and DTs provided better
prediction. Reference [163] applied a dynamic ANN, as well as a Z–R relation approach for constructing
a one-hour-ahead prediction model. This dataset included three-dimensional radar data of typhoon
events and rain gauges from 1990 to 2004, including various typhoons. The results indicated that the
ANN performed better.

Aichouri, Hani, Bougherira, Djabri, Chaffai, and Lallahem [167] implemented an MLP model for
flood prediction, and compared the results with the traditional MLR model. The rainfall–runoff daily
data from 1986 to 2003 were used for model building. The results and comparative study indicated
that the MLP approach performed with better yield for river rainfall–runoff. In a similar research,
Reference [98] modeled and predicted the river rainfall–runoff relationship through training six years
of collected daily rainfall data using MLP and MLR (1990 to 1995). Furthermore, the data of 1996
were used for testing to select the best performing network model. The R2 values for the ANN and
MLR models were 0.888 and 0.917, respectively, showing that the MLP approach gave a much better
prediction than MLR. Reference [169] proposed a number of data-based flood predictions for daily
stream flows models using MLP, WT, MLR, ARIMA, and ANN. This dataset included two time series
of streamflow and a meteorological dataset including records from 1970 to 2001. The results showed
that MLP, WT, and ANN performed generally better. However, the proposed WT prediction model
was evaluated to be not as accurate as ANN and MLP for a one-week lead time. Reference [170]
designed optimal models of ANN and MLP for the prediction of river level. This study indicated
that an optimization tool for the ANN network can highly improve prediction quality. The candidate
inputs included river levels and mean sea-level pressure (SLP) for the period of 2001–2002. The MLP
was identified as the most accurate model for short-term river flood prediction.
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Nayak and Ghosh [120] used SVM and ANN to predict hourly rainfall–runoff using weather
patterns. A model of SVM classifier for rainfall prediction was used and the results were compared
to ANN and another advanced statistical technique. The SVM model appeared to predict extreme
floods better than the ANN. Furthermore, the SVM model proved to function better in terms of
uncertainty. Gizaw and Gan [48] developed SVR and ANN models for creating RFFA to estimate
regional flood quantiles and to assess climate change impact. This dataset included daily precipitation
data obtained from gauges from 1950 to 2016. RMSE and R2 were used for the evaluation of the
models. The SVR model estimated regional flood more accurately than the ANN model. SVR was
reported to be a suitable choice for predicting future flood under the uncertainty of climate change
scenarios [118]. In a similar attempt, Reference [69] provided effective real-time flood prediction using
a rainfall dataset measured by radar. Two models of RF and SVM were developed and their prediction
performances were compared. Their performance comparison revealed the effectiveness of SVM in
real-time flood forecasting.

Table 2 represents a comparative analysis of single ML models for the prediction of short-term
floods, considering the complexity of the algorithm, ease of use, running speed, accuracy, and input
dataset. This table was created based on the revisions that were made on the articles of Table 1 and also
the accuracy analysis of Figure 3, where the values of R2 and RMSE of the single ML methods were
considered. The quality of ML model prediction, in terms of speed, complexity, accuracy, and ease
of use, was continuously improved through using ensembles of ML methods, hybridization of ML
methods, optimization algorithms, and/or soft computing techniques. This trend of improvement is
discussed in detail in the discussion.

Table 2. Comparative analysis of single ML models for the prediction of short-term floods.

Modeling Technique Complexity of Algorithm Ease of Use Speed Accuracy Input Dataset

ANN High Low Fair Fair Historical
BPANN Fairly high Low Fairly high Fairly high Historical

MLP Fairly high Fair High Fairly high Historical
ELM Fair Fairly high Fairly high Fair Historical

CART Fair Fair Fair Fairly high Historical
SVM Fairly high Low Low Fair Historical

ANFIS Fair Fairly high Fair Fairly high Historical

4.2. Short-Term Flood Prediction Using Hybrid ML Methods

To improve the quality of prediction, in terms of accuracy, generalization, uncertainty, longer lead
time, speed, and computation costs, there is an ever increasing trend in building hybrid ML
methods. These hybrid methods are numerous, including more popular ones, such as ANFIS and
WNN, and further novel algorithms, e.g., SVM–FR, HEC–HMS–ANN, SAS–MP, SOM–R-NARX,
wavelet-based NARX, WBANN, WNN–BB, RNN–SVR, RSVRCPSO, MLR–ANN, FFRM–ANN,
and EPSs. Table 3 presents these methods; a revision of the methods and applications follows along
with a discussion on the ML methods.
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Table 3. Short-term flood prediction using hybrid ML methods.

Modeling Technique Reference Flood resource Variable Prediction Type Region

ANFIS vs. ANN [174] Flash floods Real-time Spain

ANFIS vs. ANN [175,176] Water level Hourly Taiwan

ANFIS vs. ANN [46] Watershed rainfall Hourly Taiwan

ANFIS vs. ANN [67] Flood quantiles Real-time Canada

ANN vs. ANFIS [177] Daily flow Daily Iran

CART vs. ANFIS vs.
MLP vs. SVM [134] Sediment transport Daily Iran

MLP vs. GRNNM vs. NNM [96] Flood prediction Daily Korea

SVM-FR vs. DT [178] Rainfall–runoff Real-time Malaysia

HEC–HMS–ANN vs.
HEC–HMS-SVR [179] Rainfall–runoff Hourly Taiwan

SAS–MP vs. W-SAS–MP [180] Flash flood and streamflow Daily Turkey

SOM–R-NARX vs. R-NARX [181] Regional flood Hourly Taiwan

Wavelet-based NARX vs.
ANN, vs. WANN [182] Streamflow forecasting Daily India

WBANN vs. WANN vs. ANN
vs. BANN [105] Flood Hourly India

ANN–hydrodynamic model [183] Flood prediction: tidal surge Hourly UK

RNN–SVR, RSVRCPSO [184] Flash flood: rainfall
forecasting Hourly Taiwan

AME and SSNN vs. ANN [185] Rainfall forecasting Hourly Taiwan

Hybrid of FFNN with linear
model [186] Flood forecasting: daily

flows Daily India

FFNN vs. FBNN vs.
FFRM–ANN [187] Flash floods Hourly Taiwan

ANN–NLPM vs. ANN [188] Rainfall–runoff Daily China

EPS of MLP vs. SVM vs. RF [189] Runoff simulations Real-time Germany

EPS of ANNs [190] Flood Daily Canada

Jimeno-Sáez, et al. [174] modeled flash floods using ANN and ANFIS, applying a dataset collected
from 14 different streamflow gauge stations. RMSE and R2 were used as evaluation criteria. The results
showed that ANFIS demonstrated a considerably superior ability to estimate real-time flash floods
compared to ANN. Chang and Chang [175] constructed an accurate water level forecasting system
based on ANFIS for 1–3 h ahead of the flood. The ANFIS successfully provided accurate water level
prediction. The hourly water level of five gauges from 1971 to 2001 was used. They concluded that the
ANFIS model could efficiently deal with a big dataset [176] through fast learning and reliable prediction.
A further comparison showed that the ANFIS hybrid model tuned by SVR provided superior prediction
accuracy and good cost-effective computation for nonlinear and real-time flood prediction. In addition,
the model with human interaction could provide better performance. In another similar research,
Reference [46] developed an ANFIS model based on a precipitation dataset, which provided reliable
hourly predictions with an R2 more than 0.85. The results were reported as highly satisfactory for the
typhoon season. Reference [67] used ANFIS for ungauged sites of 151 catchments; the results were
evaluated and compared to the ANN, NLR, NLR-R modes using a Jackknife procedure. The evaluation
showed that the ANFIS model provided higher generalization capability compared to the NLR and
ANN models. The ANFIS model implemented an efficient mechanism for forecasting the flood region,
and providing insight from the data, leading to prediction. Rezaeianzadeh (2014) [177] presented
a number of forecasting systems for daily flow prediction using ANN, ANFIS, MLR, and MNLR.
Furthermore, the performances of the models were calculated with RMSE and R2. This dataset
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included precipitation data from various meteorological stations. Furthermore, the evaluation showed
that MNLR models with lower RMSE values had a better performance than the ANFIS, MLR,
and ANN models. Furthermore, MNLR was suggested as a low-cost and efficient model for the
daily prediction of flow. In a similar attempt, Choubin, Darabi et al. (2018) [133] evaluated the accuracy
of ANFIS, considering three common ML modeling tools—CART, SVM, and MLP. The evaluation
suggested that the CART model performed best. Therefore, CART was strongly suggested as
a reliable prediction tool for hydro-meteorological datasets. Kim and Singh [96] developed three
models, namely generalized regression ANN (GRNNM), Kohonen self-organizing feature maps
ANN (KSOFM–NNM), and MLP, for flood prediction. Furthermore, the prediction performance was
evaluated, showing that KSOFM–NNM performed accurately compared to MLP and GRNNM in
forecasting flood discharge. The hybrid models, overall, were shown to overcome the difficulties
when using single ANN models. Reference [178] proposed an advanced ensemble model through
combining FR and SVM to build spatial modeling in flood prediction. The results were compared
with DT. This dataset included an inventory map of flood prediction in various locations. To build the
model, up to 100 flood locations were used for training and validation. The evaluation results showed
a high success rate for the ensemble model. The results proved the efficiency, accuracy, and speed of
the model in the susceptibility assessment of floods.

Young, Liu, and Wu [179] developed a hybrid physical model through integrating the HEC–HMS
model with SVM and ANN for accurate rainfall–runoff modeling during a typhoon. The hybrid models
of HEC–HMS–SVR and HEC–HMS–ANN had acceptable capability for hourly prediction. However,
the SVR model had much better generalization and accuracy ability in runoff discharge predictions.
It was concluded that the predictions of HEC–HMS were improved through ML hybridization.
Reference [180] proposed SAS–MP, which is a hybrid of wavelet and season multilayer perceptron for
daily rainfall prediction. The season algorithm is a novel decomposition technique used to improve
data quality. The resulting hybrid model was referred to as the W-SAS–MP model. This dataset
included the daily rainfall data of three decades since 1974. The W-SAS–MP model was reported as
highly efficient for enhancing daily rainfall prediction accuracy and lead time.

Chang, Shen, and Chang [181] developed a hybrid ANN model for real-time forecasting of
regional floods in an urban area. The advanced hybrid model of SOM–R-NARX was an integration
of the NARX network with SOM. Their big dataset included 55 rainfall events of daily rainfall.
The evaluation suggested that SOM–R-NARX was accurate with small values of RMSE and high R2.
Furthermore, compared to the cluster-based hybrid inundation model (CHIM), it provided hourly
prediction accuracy. Reference [182] proposed a model of wavelet-based NARX (WNARX) for the
daily forecasting of rainfalls on a dataset of gauge-based rainfall data for the period from 2000 to
2010. The prediction performance was further benchmarked with ANN, WANN, ARMAX, and NARX
models, whereby WNARX was reported as superior.

Partal [110] developed a model for the daily prediction of precipitation with ANN and WNN
models. In their case, WNN showed significantly better results with an average value of 0.79 at various
stations. In Reference [60], they compared WNN with ANFIS for daily rainfall. The results showed
that the hybrid algorithm of WNN performed better with an R2 equal to 0.9 for daily lead time.
Reference [105] proposed a hybrid model of wavelet, bootstrap technique, and ANN, which they called
WBANN. It improved the accuracy and reliability of the ANN model short-term flood prediction.
The performance of WBANN was compared with bootstrap-based ANNs (BANNs) and WNN.
The wavelet decomposition significantly improved the ANN models. In addition, the bootstrap
resampling produced consistent results. French, Mawdsley, Fujiyama, and Achuthan [183] proposed
a novel hybrid model of ANN and a hydrodynamic model for the accurate short-term prediction of
extreme storm surge water. The ANN–hydrodynamic model generated realistic flood extents and
a great improvement in model accuracy. Reference [184] proposed a hybrid forecasting technique
called RSVRCPSO to accurately estimate the rainfall. RSVRCPSO is an integration of RNN, SVR,
and a chaotic particle swarm optimization algorithm (CPSO). This dataset was obtained from three
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rain gauges from the period of 1985 to August 1997, which included the data of nine typhoon events.
The results suggested that the proposed model yielded better performance for rainfall prediction.
The RSVRCPSO model, in comparison with SVRCPSO, resulted in less RMSE learning and testing,
which gave way to superiority in prediction.

Pan et al. [185] proposed a monsoon rainfall enhancement (AME) based on ANNs, which was
a hybrid form of linear regression and a state-space neural network (SSNN). The performance of the
proposed model was benchmarked against the hybrid method of MLR–ANN. This dataset included
the total rain, wind, and humidity measures from 1989–2008 based on 371 rain gauge stations of
six typhoons. The results indicated that the method was highly robust with a better prediction
accuracy in terms of R2, peak discharge, and total volume. Rajurkar et al. [186] modeled rainfall–runoff
by integrating ANN and a simplified linear model. Furthermore, this dataset included the daily
measurements of rainfall in the period of 1963–1990. The hybrid model was found to be better for
providing a theoretical forecasting representation of floods with R2 equal to 0.728.

Hsu et al. [187] proposed a hybrid model from the integration of a flash-flood routing model
(FFRM) and ANN, called the FFRM–ANN model, to predict hourly river stages. The ANN algorithms
used in this study were the FFNN and FBNN. Data from eight typhoon events between 2004 and 2005
of rainfall and river stage pairs were selected for model training. The results indicated that the hybrid
model of FFRM–ANN provided an efficient FFRM for accurate flood forecasting. The comparison of
the hybrid method against each algorithm used in the study proved the effectiveness of the proposed
method. Reference [188] developed a hybrid prediction model by integrating ANN and a nonlinear
perturbation model (NLPM), defined as NLPM–ANN, to improve the efficiency and accuracy of
rainfall–runoff prediction. The model of NLPM–ANN was benchmarked against two models of
nonlinear perturbation model (LPM), and NLPM integrated with antecedent precipitation index (API)
i.e., NLPM–API, on a dataset of daily rainfall–runoff in the period of 1973–1999. They reported that the
NLPM–ANN worked better than the models of LPM and NLPM–API. The results of the case studies
of various watersheds proved the model accuracy.

Through an EPS model, Reference [189] aimed at limiting the range of the uncertainties in runoff
simulations and flood prediction. The classifier ensembles included MLP, SVM, and RF. Note that the
ensemble of MLP was a novel approach in flood prediction. The proposed EPS presented a number
of integrated models and simulation runs. The model validation was successfully performed using
a dataset from various rain gauges of precipitation data during the 2013–2014 storm season. Using the
EPS model decreased uncertainty in forecasting, which resulted in the prediction system being
evaluated as reliable and robust in estimating flood duration and destructive power. In another
case, Reference [190] developed an EPS model of six ANNs for daily streamflow prediction based on
daily high-flow data from the storm season of 2013–2014. The proposed model had a fast development
time, which also provided probabilistic forecasts to deal with uncertainties in prediction. The ensemble
prediction system was reported as highly useful and robust.

4.3. Comparative Performance Analysis

To evaluate a reliable prediction, the accuracy, reliability, robustness, consistency, generalization,
and timeliness are suggested as the basic criteria (Singh 1989). The timeliness is one of the most
important criteria, and it is only achieved through using robust yet simple models. Furthermore,
the performance of the prediction models is often evaluated through root-mean-square error (RMSE),
mean error (ME), mean squared error (MSE), Nash coefficients (E), and R2, also known as the correlation
coefficient (CC). In this survey, the values of R2 and RMSE were considered for performance evaluation.
CC (Equation (1)) and RMSE (Equation (2)) can be defined as follow:

CC =
∑N

i=1 (xi − x)(yi − y)√
[∑N

i=1 (xi − x)2][∑N
i=1 (yi − y)2]

(1)
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where xi and yi are the observed and predicted values and the i-th residue; x and y are their
means, respectively.

RMSE =

√
∑n

i=1 (Xobs,i − Xmodel,i)
2

n
(2)

where Xobs defines observed variables and Xmodel prediction values for year i, where generally R2 > 0.8 is
considered as an acceptable prediction. However, a lower value for RMSE suggests a better prediction.
Overall, forecasting models of floods are reported as accurate if RMSE values are close to 0, and R2

values are close to 1. The specific intended purpose, computational cost, and dataset would be our
major consideration criteria. Furthermore, the generalization ability, speed and cost of implementation
and operation, ease of use, low-cost maintenance, robustness, and accuracy of the simulation are other
important criteria for evaluation of the methods.

Here, it is worth mentioning that the value of RMSE can be different across various studies.
In addition, the values of RMSE in some studies were calculated for various sites. To present a fair
evaluation of RMSE, we made sure that the unit of RMSE was the same, and, for the multiple
RMSEs, the average was calculated. We also double-checked for any possible error. The comparative
performance analysis of single and hybrid ML methods for short-term flood prediction using R2 and
RMSE are presented in Figures 7 and 8 respectively.

Figure 7. Comparative performance analysis of single methods of ML for short-term flood prediction
using R2 and root-mean-square error (RMSE).
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Figure 8. Comparative performance analysis of hybrid methods of ML for short-term flood prediction,
using R2 and RMSE.

Generally, ANNs are suggested as promising means for short-term prediction. Despite performing
weakly in a few early studies, especially in the generalization aspect, better methodologies for
higher-performance ANNs in handling big datasets yielded better results. In this context, the BPNN
and functional networks are suggested as being difficult to be implemented by the user. However,
the models were shown to be reasonably accurate, efficient, and fast with the ability to deal with noisy
datasets. However, the NARX network performed better compared to BPNN. Nevertheless, accuracy
could be enhanced through integration with autoregressive models. MLP and DTs provide equally
acceptable prediction yields with ANNs. Among DTs, the ADT model provided the fastest and most
accurate prediction capability in determining floods. Although not as popular as ANNs, the rotation
forest (RF) and M5 model tree (MT) were reported as efficient and robust. References e.g. [69,136]
proposed RF-based models that were as effective as ANNs and suitable for long lead times.

Along with ANNs, the SVM was also seen as a relatively effective ML tool for rainfall–runoff
modeling and classification with better generalization ability and performance. In many cases,
SVM performed even better, especially for very short lead times [122,125]. In particular, SVM-based
models provided promising performances for hourly prediction. Nevertheless, the prediction ability
decreased for longer lead times. This issue was addressed using the LS-SVM model, which also showed
better generalization ability [127]. Generally, SVM was reported to be a suitable choice to evaluate
the uncertainty in predicting hazardous flood quantiles, which revealed the effectiveness of SVM in
real-time flood forecasting.

Overall, the reviewed single prediction models could provide relatively accurate short-term
forecasts. However, for predictions longer than 2 h, hybrid models such as ANFIS, and WNN
performed better. The performance comparisons of the ANFIS model with BPNN and AR models,
with average correlation coefficients higher than 0.80, showed the superiority of ANFIS in a wide range
of short-term flood prediction applications, e.g., water level, rainfall–runoff, and streamflow (for up
to 24 h). ANFIS demonstrated a considerably superior ability for estimating real-time flash flood
estimation compared to most ANN-based models, particularly 1–3 h ahead of flood, providing high
accuracy and reliability. More advanced ANFIS hybrid models tuned by SVR provided even better
prediction accuracy and good cost-effective computation for nonlinear and real-time flood prediction.
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Furthermore, ANFIS models presented higher generalization ability. However, by increasing the
prediction lead time, R2 decreased. For daily flow, MNLR was suggested with a superior performance
over the ANN, ANFIS, and MLR models. In cases where hydro-meteorological data are readily
available, CART was superior to ANFIS, SVM, and MLP; T–S fuzzy was also a good choice. On the
other hand, WNN performed significantly better than MLP, ANNs, and ANFIS for daily predictions.
For accurate longer lead-time predictions, decomposition techniques such as DWT, autoregression,
and the season algorithm provided great advantages.

Overall, the novel hybrid models designed using ML, soft computing, and statistical methods,
e.g., KSOFM–NNM, SOM–R-NARX, WNARX, HEC–HMS–SVR, HEC–HMS–ANN, W-SAS–MP,
WBANN, RSVRCPSO, and the ANN–hydrodynamic model, were shown to overcome the drawbacks
of most ML methods by enhancing the prediction accuracy and lead time, leading to more realistic
flood models with even better susceptibility assessment. On the other hand, novel ensemble methods
not only improved the accuracy robustness of predictions, but also contributed to limiting the range of
uncertainties in models. Among the EPS methods, the ensembles of ANN, MLP, SVM, and RF showed
promising results.

5. Long-Term Flood Prediction with ML

Long-term flood prediction is of significant importance for increasing knowledge and water
resource management potential over longer periods of time, from weekly to monthly and annual
predictions [191]. In the past decades, many notable ML methods, such as ANN [74], ANFIS [68,192],
SVM [193], SVR [193], WNN [51], and bootstrap–ANN [51], were used for long lead-time predictions with
promising results. Recently, in a number of studies (e.g., References [55,194–198]), the performances
of various ML methods for long lead-time flood predictions were compared. However, it is still not
clear which ML method performs best in long-term flood prediction. In this section, Tables 4 and 5
represent a summary of these investigations, and we review the performance of the ML models in
dealing with long-term predictions.

5.1. Long-Term Flood Prediction Using Single ML Methods

This section presents a comprehensive comparison on ML methods. Table 4 presents a summary
of the major single ML methods used in long-term flood prediction, i.e., MLP, ANNs, SVM, and RT,
followed by a comprehensive performance comparison. A revision and discussion of these methods
follow, identifying the most suitable methods presented in the literature.

Table 4. Long-term flood prediction using single ML methods.

Modeling Technique Reference Flood Resource Variable Prediction Type Region

ANNs [197] Water levels Seasonal Sudan
ANNs [87] Precipitation Monthly Australia
BPNNs [199] Heavy rainfall Seasonal India

BPNNs vs. BFGSNN [200] Reservoir levels Monthly Turkey
BPNN vs. MLP [201] Discharge Monthly Iran
ANNs vs. HBI [202] Stream Weekly Canada
SVM vs. ANN [203] Streamflow Monthly China

RT [204] Floodplain forests Annually Australia

For seasonal flood forecasting, Elsafi [197] proposed numerous ANNs and compared the results.
The water level data from different stations from 1970–1985 were selected for training, and the data
from 1986–1987 were used for verification. The ANNs worked well, especially where the dataset was
not complete, providing a viable choice for accurate prediction. ANNs provided the possibility of
reducing the analytical costs through reducing the data analysis time that used to face in e.g., [198].
Similarly, reference [87] used ANNs to develop a prediction model for precipitation. A historical
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dataset of 1900–2001 of different stations was considered and the ANN model was applied to various
stations to evaluate prediction performance. The authors summarized that the ANN models offered
great forecasting skills for predicting long-term evapotranspiration and precipitation. Reference [202]
used an ANN model for stream assessment for long-term floods. This dataset was collected from
more than 100 sites of numerous flood streams. They concluded that the ANN model, compared to
Hilsenhoff’s biotic index (HBI), significantly improved the prediction ability using geomorphic data.
However, the ANN had generalization problems. Nevertheless, the ANN in this case proved useful to
water managers.

Singh [199] used a number of BPNNs to build prediction models of heavy rains and floods.
This dataset included the period of 1871–2010 on a monthly time scale. The results indicated that the
BPNN models were fast and robust with simple networks, which made them great for forecasting
nonlinear floods. Reference [200] aimed to better analyze nonlinear floods through modeling with
BPNN and local linear regression (LLR)-based models for long-term flood forecasting. This dataset
included almost two decades of rainfall, outflow, inflows, evaporation, and water level since 1988.
Their evaluation concluded that LLR showed better prediction than the Broyden Fletcher Goldfarb
Shanno neural network (BFGSNN) model in terms of performance and accuracy with bigger values
of R2 and lower values of RMSE. However, BPNN outperformed the other methods with relatively
good results. Among the ANN variations, [151] proposed a BPNN model as the most reliable ANN for
long-term flood prediction. Reference [201] also compared the performances of ANNs with BPNN and
MLP in the long-term prediction of flood discharge. Promising results were obtained when using MLP.
However, generalization remained an issue.

Lin, Cheng, and Chau [203] applied an SVM model for estimating streamflow and reservoir
inflow for a long lead time. To benchmark, they used ANNs and ARMA. The prediction models were
built using monthly river flow discharges from the period of 1974–1998 for training, and 1999–2003 for
testing. Through a comparison of model performance, SVM was demonstrated as a potential candidate
for the prediction of long-term discharges, outshining the ANN. In a similar approach, Reference [205]
proposed an SVM-based model for estimating soil moisture using remote-sensing data, and the results
were compared to predictive models based on BPNN and MLR. Training was performed on the data
of the period of 1998 to 2002, and testing used data from 2003 to 2005. The SVM model was shown
to be more accurate and easier to build compared to BPNN and MLR. Reference [204], employed RT
to model forest flood. Data from 2009–2012 at 50 sites were used for model building. The prediction
of annual forest floods was reported through a combination of quantitative ground surveys, satellite
imagery, hybrid machine learning tools, and future validation.

Table 5 presents a comparative analysis of single ML models for the prediction of long-term floods
considering the complexity of algorithm, ease of use, running speed, accuracy, and input dataset.
This table was created based on revisions that were made on articles of Table 4, as well as the accuracy
analysis in Figure 9, where values of R2 and RMSE for the single ML methods were considered.
The quality of the ML model prediction, in terms of speed, complexity, accuracy, and ease of use,
improved continuously through the use of ensembles of ML methods, hybridization of ML methods,
optimization algorithms, and/or soft computing techniques. This trend of improvement is discussed
in detail in the discussion.

Table 5. Comparative analysis of single ML models for the prediction of long-term floods.

Modeling Technique Complexity of Algorithm Ease of Use Speed Accuracy Input Dataset

ANN Fairly high Low Fair High Historical
BPNN Fairly high Low Fairly high Fairly high Historical
MLP high Fair High Fairly high Historical
SVR Fairly high Low Low High Historical
RT Fair Fair Fair Fairly high Historical

SVM Fairly high Low Low High Historical
M5 tree Fair Low Fair Fair Historical
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5.2. Long-Term Flood Prediction Using Hybrid ML Methods

A critical review on the long-term flood prediction using hybrid methods is presented in Table 6.
Valipour, Banihabib, and Behbahani [26] used a hybrid method of autoregressive ANN integrated with
sigmoid and radial activity functions. The proposed hybrid method outperformed the conventional
statistical methods of ARMA and ARIMA with lower values of RMSE. They reported that ARIMA
was suitable for the prediction of monthly and annual inflow, while the dynamic autoregressive ANN
model with a sigmoid activity function could be used for even longer lead time. This dataset included
monthly discharge from the period of 1960 to 2007.

Table 6. Long-term flood prediction using hybrid methods.

Modeling Technique Reference Flood Resource Variable Prediction Type Region

Autoregressive ANN vs.
ARMA vs. ARIMA [26] River inflow Monthly and yearly Iran

Hybrid WNN vs. M5
model tree [206] Streamflow water level Monthly Australia

WNN vs. ANN [207,208] Rainfall–runoff Monthly Italy

WNN-BB vs. WNN vs.
ANN [50] Streamflow Weekly and few days Canada

WNN vs. ANN [25] Urban water Monthly Canada

WNN vs. ANN [209] Peak flows Seasonal India

WNN vs. ANN [210] Rainfall Monthly India

WARM vs. AR [211] Rainfall Yearly Thailand

ANFIS vs. ANNs [212] Rainfall Seasonal Australia

ANFIS vs. ARMA vs.
ANNs vs. SVM [213] Discharge Monthly China

ANFIS, ANNs vs. SVM
vs. LLR [214] Streamflow Short-term Turkey

NLPM–ANN [215] Flood forecasting Yearly China

M-EMDSVM vs. ANN
vs. SVM [216] Streamflow Monthly China

SVR–DWT–EMD [217] Streamflow Monthly China

Surrogate modeling–ML
vs. ANN–Kriging model

vs. ANN–PCA
[218] Rainfall–runoff Yearly USA

EPS of ANNs: K-NN vs.
MLP vs. MLP–PLC vs.

ANNE
[219] Streamflow Seasonal Canada

EEMD–ANN vs. SVM
vs. ANFIS [220] Runoff forecast Monthly China

WNN vs. ANN vs.
WLGP [51] Streamflow Monthly Iran

Adamowski [25] developed models based on ANN and WNN, and compared their prediction
performances with statistical methods. WNN was proposed as the most accurate prediction model,
as previously confirmed by Cannas et al. (2005) [207] for monthly rainfall–runoff forecasting, and also
for further engineering application [208]. In a similar work, Reference [209] compared the performances
of ANN and WNN for the prediction of peak flows. They also reported WNN as most reliable
for simulating extreme event streams, whereby decomposition improved the results considerably.
Higher levels of wavelet decomposition further improved the testing results. The statistical performance
evaluation of RMSE showed considerable improvement in the testing results. Venkata Ramana [210]
also combined the wavelet technique with ANN for long-term flood prediction. They considered
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74 years of data for the period of 1901 to 1975. A dataset of 44 years was used for calibration, and the
remainder was used for validation of the model. Their results showed a relatively lower performance
for ANNs compared WNN models in modeling rainfall–runoffs. Cannas et al. [207] proposed WNN for
monthly rainfall–runoff prediction, which showed significant improvement over ANNs. In a similar
attempt, Kasiviswanathan, He, Sudheer, and Tay [50] used WNN and WNN–BB, which is an ensemble
of WNN utilizing the block bootstrap (BB) sampling technique, to identify a robust modeling approach
among ANN and WNN, by assessing accuracy and precision. This dataset included measurements
from 1912 to 2013 at several flow gauge stations. The results suggested WNN–BB as a robust model
for long-term streamflow prediction for longer lead times of up to one year. Tantanee et al. [211]
proposed a hybrid of wavelet and autoregressive models, called WARM, which performed more
effectively for long lead times. Prasad [206] proposed another similar hybrid model with the integration
of WNN and iterative input selection (IIS). The hybrid model was called IIS–W-ANN, and was
benchmarked with the M5 model tree. Their dataset included streamflow water level measurements
from 40 years. The IIS–W-ANN hybrid model outperformed the M5 tree. This study advocated that the
novel IIS–W-ANN method should be considered as an excellent flood forecasting model. Nevertheless,
the model could be further optimized for better performance using optimization methods introduced
in references [221–225]. In fact, such optimizers can complement IIS–W-ANN for fine-tuning the
hidden-layer weights and biases for better prediction. Mekanik [212] used ANFIS to forecast seasonal
rainfall. A comparison of the performance and accuracy of the ANN model and a physical model
showed promising results for ANFIS. Rainfall measurements of 1900–1999 were used for training
and validation, and the following decade was used for testing. The results showed that ANFIS
outperformed the ANN models in all cases, comparable to Predictive Ocean Atmosphere Model for
Australia (POAMA), and better than climatology. Furthermore, the study demonstrated the accuracy
of ANFIS compared to global climate models. In addition, the study suggested ANFIS as an alternative
tool for long-term predictions. ANFIS was reported as being easy to implement with low complexity
and minimal input requirements, as well as less development time. Reference [213] compared the
performances of ANFIS, ANNs, and SVM. This dataset included monthly flow data from 1953 to
2004, where the period of 2000–2004 was used for validation. ANFIS and SVM were evaluated as
being better for long-term predictions. References [224,226] compared the performances of ANFIS,
ANNs, and SVM for the monthly prediction of floods. The comparison results indicated that the ML
models provided more accuracy than the statistical models in predicting streamflow. Furthermore,
ANN and ANFIS presented more accuracy vs. SVM. However, for low-flow predictions, the SVM
and ANN models outperformed ANFIS. Reference [215] proposed a modified variation of a hybrid
model of NLPM–ANN to predict wetness and flood. To do so, the seasonal rainfall and wetness data
of various stations were considered. The NLPM–ANN model was reported as being significantly
superior to the models of previous studies. In another hybrid model, Reference [216] investigated the
performance of a modified EMD–SVM (M-EMDSVM) model for long lead times, and comparedits
accuracy with ANN and SVM models. The M-EMDSVM model was created through modification
of EMD–SVM. The evaluation results showed that the M-EMDSVM model was a better alternative
to ANN, SVM, and EMD–SVM models for long lead-time streamflow prediction. The M-EMDSVM
model also presented better stability, representativeness, and precision.

Zhu, Zhou, Ye, and Meng [217] contributed to the integration of ML with time-series decomposition
to predict monthly streamflow through estimation and comparison of accuracy of a number of models.
For that matter, they integrated SVM with discrete wavelet transform (DWT) and EMD. The hybrid
models were called DWT–SVR and EMD–SVR. The results indicated that decomposition improved
the accuracy of streamflow prediction, yet DWT performed even better. Further comparisons of SVR,
EMD–SVR, and DWT–SVR models showed that EMD and DWT were significantly more accurate than
SVR for monthly streamflow prediction.

Araghinejad [219] presented the applicability of ensembles for probabilistic flood prediction in
real-life cases. He utilized the K-nearest neighbor regression for the purpose of combining individual
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networks and improving the performance of prediction. As an EPS of ANNs, the hybrid model of K-NN
was proposed to increase the generalization ability of neural networks, and was further compared
with the results using MLP, MLP–PLC, and ANN. The hourly water level data of the reservoir from
132 typhoons in the period of 1971–2001 were used. The proposed EPS had a promising ability of
generalization and prediction accuracy.

Bass and Bedient [218] proposed a hybrid model of surrogate–ML for long-term flood prediction
suitable for TCs. The methods used included ANN integrated with principal component analysis
(PCA), Kriging integrated with PC, and Kriging. The models were reported as efficient and fast to build.
The results demonstrated that the methodology had an acceptable generalization ability suitable for
urbanized and coastal watersheds. Reference [220] contributed to improving decomposition ensemble
prediction models by developing an EEMD–ANN model for monthly prediction. The performance
comparison with SVM, ANFIS, and ANNs showed a significant improvement in accuracy.

Ravansalar [51] compared the performances of the prediction models of WNN, ANN, and a novel
hybrid model called wavelet linear genetic programming (WLGP) in dealing with the long-term
prediction of streamflow. The results showed an accuracy of 0.87 for the WLGP model. The comparison
of the performance evaluation showed that WLGP significantly increased the accuracy for the monthly
approximation of peak streamflow.

6. Comparative Performance Analysis and Discussion

In this section, the comparative performance analysis of ML methods for long-term prediction is
presented. Figure 9 represents the values of RMSE and R2 for single methods of ML, where ANNs,
SVMs, and SVRs show better results. Figure 10 represents the values of RMSE and R2 for hybrid methods
of ML, where decomposition and ensemble methods outperformed the more traditional methods.

Figure 9. Comparative performance analysis of single methods of ML for long-term prediction.
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ANNs are the most widely used ML method due to their accuracy, high fault tolerance,
and powerful parallel processing in dealing with complex flood functions, especially where datasets
are not complete. However, generalization remains an issue with ANN. In this context, ANFIS, MLP,
and SVM performed better than ANNs. However, wavelet transforms were reported to be useful
for decompositions of original time series, improving the ability of most ML methods by providing
insight into datasets on various resolution levels as appropriate data pre-processing. For instance,
WNNs generally produce more consistent results compared to traditional ANNs.

Either in short-term [227] or long-term rainfall–runoff modeling [50], overall, the accuracy,
precision, and performance of most decomposed ML algorithms (e.g., WNN) were reported as better
than those which were trained using un-decomposed time series. However, despite the achievement
of WNNs, the predictions were not satisfactory for long lead times. To increase the accuracy of the
longer-lead-time predictions up to one year, novel hybrids such as WARM, which is a hybrid of WNN
and an autoregressive model, and wavelet multi-resolution analysis (WMRA) were proposed. In other
cases, it was seen that the performance of models improved greatly through decomposition to produce
cleaner inputs. For example, wavelet–neuro-fuzzy models [228] were significantly more accurate and
faster than single ANFIS and ANNs. However, with an increase in the lead time, the uncertainty
in prediction increased. Thus, the evaluation of model precision should come into consideration in
future studies.

Data decomposition methods, e.g., autoregressive, wavelet transforms, wavelet–autoregressive,
DWT, IIS, and EMD, contributed highly to developing hybrid methods for longer prediction lead
time, good stability, great representativeness, and higher accuracy. These data decomposition methods
were integrated with ANNs, SVM, WNN, and FR, and they are expected to gain more popularity
among researchers. The other trend in improvement of prediction accuracy and generalization
capability involves EPS. In fact, recent ensemble methods contributed to good improvements in speed,
accuracy, and generalization. The EPS of ANNs and WNNs, using BB sampling, genetic programming,
simple average, stop training, Bayesian, data fusion, regression, and other soft computing techniques,
showed promising results and better performances than traditional ML methods. In ensembles,
however, it is noted that human decision as the input variable provided superior performance than
models without this important input. However, the most significant hybrid models were novel
decomposition–ensemble prediction models suitable for monthly prediction. Their performance
comparisons with SVM, ANFIS, and ANNs showed significant improvements in accuracy and
generalization. Figure 10 represents the comparative performance analysis of hybrid methods of
ML for short-term prediction. Here, it is also worth mentioning the importance of further signal
processing techniques (e.g., Reference [228]) for both long-term and short-term floods.

This paper suggests that the drawbacks to major ML methods in terms of accuracy, uncertainty,
performance, and robustness were improved through the hybridization of ML methods, as well as
using an ensemble variation of the ML method. It is expected that this trend represents the future
horizon of flood prediction.
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Figure 10. Comparative performance analysis of hybrid methods of ML for short-term prediction.

7. Conclusions

The current state of ML modeling for flood prediction is quite young and in the early stage of
advancement. This paper presents an overview of machine learning models used in flood prediction,
and develops a classification scheme to analyze the existing literature. The survey represents the
performance analysis and investigation of more than 6000 articles. Among them, we identified 180
original and influential articles where the performance and accuracy of at least two machine learning
models were compared. To do so, the prediction models were classified into two categories according
to lead time, and further divided into categories of hybrid and single methods. The state of the art of
these classes was discussed and analyzed in detail, considering the performance comparison of the
methods available in the literature. The performance of the methods was evaluated in terms of R2 and
RMSE, in addition to the generalization ability, robustness, computation cost, and speed. Despite the
promising results already reported in implementing the most popular machine learning methods,
e.g., ANNs, SVM, SVR, ANFIS, WNN, and DTs, there was significant research and experimentation
for further improvement and advancement. In this context, there were four major trends reported
in the literature for improving the quality of prediction. The first was novel hybridization, either
through the integration of two or more machine learning methods or the integration of a machine
learning method(s) with more conventional means, and/or soft computing. The second was the use of
data decomposition techniques for the purpose of improving the quality of the dataset, which highly
contributed in improving the accuracy of prediction. The third was the use of an ensemble of methods,
which dramatically increased the generalization ability of the models and decreased the uncertainty
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of prediction. The fourth was the use of add-on optimizer algorithms to improve the quality of
machine learning algorithms, e.g., for better tuning the ANNs to reach optimal neuronal architectures.
It is expected that, through these four key technologies, flood prediction will witness significant
improvements for both short-term and long-term predictions. Surely, the advancement of these novel
ML methods depends highly on the proper usage of soft computing techniques in designing novel
learning algorithms. This fact was discussed in the paper, and the soft computing techniques were
introduced as the main contributors in developing hybrid ML methods of the future.

Here, it is also worth mentioning that the multidisciplinary nature of this work was the most
challenging difficulty to overcome in this paper. Having contributions from the coauthors of both
realms of ML and hydrology was the key to success. Furthermore, the novel search methodology
and the creative taxonomy and classification of the ML methods led to the original achievement of
the paper.

For future work, conducting a survey on spatial flood prediction using machine learning models
is highly encouraged. This important aspect of flood prediction was excluded from our paper
due to the nature of modeling methodologies and the datasets used in predicting the location of
floods. Nevertheless, the recent advancements in machine learning models for spatial flood analysis
revolutionized this particular realm of flood forecasting, which requires separate investigation.
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Nomenclatures

WMO World meteorological organization
GCM Global circulation models
SPOTA Seasonal Pacific Ocean temperature analysis
ANN Artificial neural networks
POTA Pacific Ocean temperature analysis
QPE Quantitative precipitation estimation
CLIM Climatology average method
EOF Empirical orthogonal function
MLR Multiple linear regressions
QPF Quantitative precipitation forecasting
MNLR Multiple nonlinear regressions
ML Machine learning
MLR Multiple linear regression
ANN Neural networks
WNN Wavelet-based neural network
ARIMA Auto regressive integrated moving average
USGS United States Geological Survey
FFA Flood frequency analyses
QRT Quantile regression techniques
SPOTA Seasonal Pacific Ocean temperature analysis
SVM Support vector machines
LS-SVM Least-square support vector machines
AI Artificial intelligence

41



Water 2018, 10, 1536

VRM Vector Regression Machine
FFNN Feed-forward neural network
FBNN Feed-backward networks
MLP Multilayer perceptron
ANFIS Adaptive neuro-fuzzy inference system
BPNN Backpropagation neural network
SVR Support vector regression
LR Linear regression
FIS Fuzzy inference system
CART Classification and regression tree
LMT Logistic model trees
NWP Numerical weather prediction
NBT Naive Bayes trees
ARMA Autoregressive moving averaging
REPT Reduced-error pruning trees
DT Decision tree
ELM Extreme learning machine
EPS Ensemble prediction systems
SNIP Source normalized impact per paper
SRM Structural risk minimization
AR Autoregressive
SJR SCImago journal rank
ARMAX Linear autoregressive moving average with exogenous inputs
LMT Logistic model trees
ARMA Autoregressive moving averaging
ADT Alternating decision trees
NARX network Nonlinear autoregressive network with exogenous inputs
RMSE Root-mean-square error
RFFA Regional flood frequency analysis
NLR Nonlinear regression
AR Autoregressive
WARM Wavelet autoregressive model
NLR-R Nonlinear regression with regionalization approach
E Nash Sutcliffe index
FR Frequency ratio
SOM Self-organizing map
CHIM Cluster-based hybrid inundation model
FFRM Flash flood routing model
KGE Kling-Gupta efficiency
AME ANN-based monsoon rainfall enhancement
SSNN State-space neural network
SSL Suspended sediment load
NSE Nash–Sutcliffe efficiency
E-CHAID Exhaustive CHAID
CHAID Chi-squared automatic interaction detector
CLIM Climatology average model
HEC–HMS Hydrologic engineering left–hydrologic modeling system
SOM Self-organizing map
PBIAS Percent bias
NLPM Nonlinear perturbation model
RF Rotation forest
KSOFM-NNM Kohonen self-organizing feature maps neural networks model
DBP Division-based backpropagation
DBPANN DBP neural network
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NLPM-ANN Nonlinear perturbation model based on neural network
GRNNM Generalized regression neural networks model
IIS Iterative input selection
EEMD Ensemble empirical mode decomposition
ANNE Artificial neural network ensembles
DWT Discrete wavelet transform
SFF Seasonal flood forecasting
MP Water monitoring points
WBANN Wavelet–bootstrap–ANN
HBI Hilsenhoff’s biotic index
RT Regression trees
EMD Empirical mode decomposition
LLR Local linear regression
BFGS Broyden Fletcher Goldfarb Shanno
M-EMD Modified empirical mode decomposition
IIS Iterative input selection
SAR Seasonal first-order autoregressive
BFGSNN Broyden Fletcher Goldfarb Shanno neural network
GRNN Artificial neural networks including generalized regression network
T–S Takagi–Sugeno
WLGP Wavelet linear genetic programming
E Nash coefficients
TSC-T–S Clustering based Takagi–Sugeno
TCs Tropical cyclones
PCA Principal component analysis
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Abstract: Data scarcity is a common problem in hydrological calculations that often makes water
resources planning and engineering design challenging. Combining ensemble empirical mode
decomposition (EEMD), a radial basis function (RBF) neural network, and an autoregression (AR) model,
an improved EEMD prediction model is proposed for runoff series forward prediction, i.e., runoff series
extension. In the improved model, considering the decomposition-prediction-reconstruction principle,
EEMD was employed for decomposition and reconstruction and the RBF and AR model were used for
component prediction. Also, the method of tracking energy differences (MTED) was used as stopping
criteria for EEMD in order to solve the problem of mode mixing that occurs frequently in EEMD.
The orthogonality index (Ort) and the relative average deviation (RAD) were introduced to verify the
mode mixing and prediction performance. A case study showed that the MTED-based decomposition
was significantly better than decomposition methods using the standard deviation (SD) criteria
and the G. Rilling (GR) criteria. After MTED-based decomposition, mode mixing in EEMD was
suppressed effectively (|Ort| < 0.23) and stable orthogonal components were obtained. For this,
annual runoff series forward predictions using the improved EEMD-based prediction model were
significantly better (RAD < 11.1%) than predictions by the rainfall-runoff method and the AR model
method. Thus, this forward prediction model can be regarded as an approach for hydrological series
extension, and shows promise for practical applications.

Keywords: data scarce basins; runoff series; data forward prediction; ensemble empirical mode
decomposition (EEMD); stopping criteria; method of tracking energy differences (MTED)

1. Introduction

Hydrological data scarcity is a constant challenge for international hydrological research. In 2003,
the International Association of Hydrological Sciences (IAHS) launched an initiative called “predictions
in ungauged basins (PUB)” for the IAHS Decade at the 23rd International Union of Geodesy
and Geophysics (IUGG) in Sapporo, Japan. This initiative strongly promoted the development of
hydrological research in ungauged basins [1]. In 2013, a new science decade of IAHS was approved,
“Panta Rhei—Everything Flows”, which made global hydrological researchers aware of the slow
progress in developing innovative hydrological research methods to solve the problem of hydrological
data scarcity [2]. It is well known that runoff data are the most important hydrological data for
river-basin management and are fundamental to hydraulic engineering design and water-resource
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management. If a catchment has few or no runoff data, then it is difficult to carry out policies
and strategies in water-resource management. Therefore, it is important to develop innovative
methods to address the problem of runoff data scarcity to service global hydrological research and
engineering design.

To address the scarcity of runoff data, many researchers have proposed various prediction
methods. They are generally divided into two major categories: physics-based and data-driven
methods. The physics-based methods usually build a proper hydrological model in the few- or no-data
catchments according to the catchment condition, and obtain some unknown model parameters directly
from other river basins that have observed data. When meteorological data and underlying surface
data in the few- or no-data catchments are available, the hydrological processes can be simulated
to obtain the runoff data series in the ungauged basins or extend the series in the few-data basins.
In recent years, many physics-based methods have been proposed to undertake the predictions in
ungauged basins. Servat et al. [3] developed two rainfall-runoff models (GR3 and CREC) which can
do runoff prediction from ungauged basins on the basis of land use and rainfall distribution over the
year. McIntyre et al. [4] proposed a new approach to the regionalization of conceptual rainfall-runoff
models based on ensemble modeling and model averaging. Model parameters were calibrated for
10 gauged basins with hydrological conditions similar to those of the ungauged basins. Also, ensemble
predictions of runoff were done for ungauged basins. Wan et al. [5] developed a lumped conceptual
rainfall-runoff model for rapid runoff prediction in south Florida with a unique and complicated
hydrological setting. Li et al. [6] evaluated two regionalization approaches, spatial proximity and
physical similarity, by which two runoff models (SIMHYD and GR4J) were used to predict runoff from
the Yarlung Tsangpo River basin. Because these models are based on physical causes, the procedure
is very complex and highly susceptible to factors such as the integrity and accuracy of the data on
the river basin’s underlying surface conditions, spatial-temporal variance of meteorological data,
complexity of rainfall-runoff process, and limited understanding of circulation patterns of water in the
basins [7]. In recent years, the precision of predictions by hydrological simulations has been found
to be far from satisfactory in some regions, so hybrid models coupling physics-based models with
data-driven methods have gained more attention.

Data-driven methods are generally used to make short-term predictions or data extension using
mathematical methods and intelligent algorithms via the statistical characteristics of short observational
runoff series or unknown meteorological and hydrological black-box models in data-scarce basins or
reference watersheds. Besaw et al. [8] developed and tested two artificial neural networks (ANNs) to
predict runoff from the Winooski River basin with time-lagged records of precipitation and temperature
as input data. Mohamoud [9] employed flow duration curves for forecasting flow in ungauged
basins by combining dominant landscape and climate descriptors from 29 nearby catchments with
multiple regression. It is well-known that data-driven methods require less data and have a simpler
structure than physics-based methods. Furthermore, data-driven methods have a good prediction
performance without really simulating the rainfall-runoff process, and can avoid the complex physical
process and the influence of model uncertainty. Thus, data-driven methods are usually used as
alternative and similar or even superior to those of physics-based methods in ungauged basins where
hydrological model simulations cannot be carried out effectively. Nowadays, they have been widely
used in hydraulic engineering design. However, they are not universal and are affected by regional
conditions. For instance, in north-western China, due to the poor similarity of reference basins and
the complicated and changeable rainfall-runoff relationships in the region, rainfall data in the basin
and the hydrological characteristics in the reference basin cannot be used as data-driven model inputs
in the region. Therefore, the prediction of runoff series in such regions should preferably be based
on the existing short runoff data than the unsatisfied rainfall-runoff model or poor similarity of
the reference basin. Generally, data extension based on the existing runoff data is called forward
prediction, which means predicting a non-measured runoff process before the existing runoff records
by data-extension methods.
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In the steady state, time-series models and artificial intelligence algorithms, such as artificial
neural networks (ANNs) [10–14] and support vector machines (SVMs) [15–18], can make satisfactory
predictions. However, under the dual influence of global climate change and intense human activities
in recent years, runoff series have exhibited such characteristics as high complexity, non-stationarity,
non-linearity and multiple time-scales [19–21]. These characteristics make analysis of runoff
characteristics and conventional hydrological time-series forecasting more difficult. The precision of
conventional prediction methods does not satisfy the requirements of current engineering design and
hydrological research. Therefore, a new prediction method should be developed for hydrological data
extension to meet hydraulic engineering design demands.

The multiple time scales of hydrological time series refer to the existence of multi-level time scales
and local features in the hydrological series changes in the time domain. For multiple time-scales
issues with non-stationarity and non-linearity variables, many time-scale decomposition approaches
have been introduced to separate the different time scales in hydrological series for hydrological
prediction and to provide important support for system analysis and runoff prediction. For example,
the wavelet transform (WT) has been adopted by many researchers for analyzing hydrological time
series with multiple scales due to its excellence in situations with multiple resolutions in time and
frequency domains [22–25]. Essentially, a wavelet transform is a Fourier transform with an adjustable
window, and the signal should be stable in the WT window. Therefore, it is still susceptible to
the limitations of Fourier analysis. Although WT provides high resolution in both the frequency
domain and the time domain, certain limitations of this method may generate some false harmonic
waves. Thus, the selection of WT basis functions is critical and has a significant impact on the
wavelet decomposition performance. In order to promote the development of multiple time-scale
analysis approaches, Huang proposed a novel signal analysis method in 1998 called empirical mode
decomposition (EMD) [26]. This method is essentially the smoothing treatment of the signal, by which
the multi-scale fluctuation or trend components in the signal are decomposed to generate a series of
intrinsic mode functions (IMFs) and a residual. Comparing two approaches, it can be seen that
an EMD-based Hilbert spectrum and a wavelet spectrum have the same characteristics on the
linear framework, while the Hilbert spectrum has significantly higher resolution in both time and
frequency domains. Therefore, it is often considered that the EMD result can reflect non-stationary
and non-linearity characteristics in the original series more accurately than the WT method, and
EMD is regarded as a more effective way to process complex signals. In classical hydrology,
a hydrological time series can be regarded as a set of random components, periodical components
and trend component. When the decomposition result of the EMD is perfect, the high-frequency
components, the low-frequency components and the residual obtained by the decomposition can
be approximated as random components, periodic components, and the trend [27,28]. Nowadays,
EMD has become a new method for multi-time-scale analysis of non-stationary hydrological time series
and has been successfully applied in hydrological research around the world [29,30]. Based on the
EMD method, researchers have proposed “decomposition-prediction-reconstruction” coupling models
which improve the precision of hydrological prediction effectively [31–33]. However, limitations still
exist, such as mode mixing and IMFs’ orthogonality effect on the EMD performance and prediction
precision. Ideally, each component obtained after the decomposition should contain information on
one time scale. However, due to the defects of the decomposition method and the random fluctuations
in hydrological series, a component obtained after decomposition may contain different information
belonging to other components. That is called mode mixing, which will lead to an unclear physical
meaning of each component and confusion in further analysis. The orthogonality of EMD can be
understood mathematically in that each IMF decomposed is orthogonal and also can be understood
in the decomposing operation in that there is no energy loss of the original series in the process of
extracting components in the ideal state. Unfortunately, the total energy of the components is always
significantly different from the energy of the original series in the actual EMD process. To address
these issues, Wu and Huang proposed the ensemble EMD (EEMD) method to suppress mode mixing
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in EMD [34,35]. However, EEMD is not perfect, and mode mixing still occurs among low-frequency
components. So, it is inferred that a proper stopping criteria is critical for EMD, which can guarantee
that the EEMD method can provide satisfactory decomposition results [36]. For hydrological time
series, a proper stopping criteria not only improves the precision of fluctuation component extraction in
hydrological time-series data, but also preserves the long-range trend in the series to the greatest extent
possible, which significantly influences the accuracy of forward prediction. In the EEMD, the stopping
criteria is called the SD criteria, in which the standard deviation is used to stop the decomposition
procedure [26]. Later, G. Rilling proposed the so-called G. Rilling (GR) criteria [37], which leverages the
evaluation function σ(t) and the predefined threshold to control when the sifting process stops. In the
GR criteria, two conditions are to be fulfilled: the number of extrema and the number of zero-crossings
must differ at most by 1, and the mean between the upper and lower envelopes must be close to zero.
Compared with the SD criteria proposed by Huang, the GR can obtain the mean value of IMFs more
accurately. However, the effects of these criteria are still limited, and the energy loss during sifting and
orthogonality among IMFs are not fully addressed. Some problems such as mode mixing cannot still
be solved perfectly. To address these issues, Cheng proposed a new EMD sifting stopping criteria, the
method of tracking energy differences (MTED), aiming to solve the mode-mixing problem from the
perspective of energy. Currently, it has achieved excellent results in fault diagnosis [38].

In view of the above analysis, this paper investigated the applicability of the sifting stopping criteria
to hydrological time series. The MTED was selected as the sifting stopping criterion for decomposing
runoff series using EEMD. For forward prediction, a radial basis function (RBF) neural network, and an
autoregressive (AR) model were combined to create a “decomposition-prediction-reconstruction”-based
improved EEMD prediction model in order to predict short runoff series and further solve the problem of
runoff data scarcity encountered in hydrological research and engineering design.

2. Materials and Methods

2.1. Empirical Mode Decomposition (EMD)

EMD is a new and innovative self-adaptive time-frequency signal-processing method proposed
by Huang in 1998 [29]. This method is primarily designed for non-stationary and non-linear data.
Signal decomposition obtains multiple stable IMFs and a monotonic residual based on the data’s
own time-scale pattern. In hydrological applications, EMD converts a non-stationary hydrological
series into a series of hydrological components with clear patterns that have specific physical
meanings [33]. These components are more predictable and can improve the precision of forward
prediction significantly. Details of the EMD procedure are as follows:

• Step 1: Identify all local maxima and minima in the original time series X(t). The upper and lower
envelopes of the time series are obtained by cubic spline interpolation. The mean of the upper
and lower enveloping lines is m(t):

m(t) =
Xmax(t) + Xmin(t)

2
(1)

• Step 2: A new series h(t) is calculated by subtracting the mean m(t) from the original series X(t):

h(t) = X(t)− m(t) (2)

• Step 3: The EMD sifting stopping criteria determines whether sifting should stop. If the stopping
condition is met, h(t) is the IMF, and the next step is executed. If the stopping condition is not met,
then h(t) is used as the original series, steps 1 and 2 are repeated until the stopping condition is
met, and the first IMF, IMF1 c1(t), is calculated.
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• Step 4: The residual series r1(t) is obtained by subtracting the IMF c1(t) from the original series
X(t):

r1(t) = X(t)− c1(t) (3)

• Step 5: The residual series r1(t) is used as the new original series, and steps 1–4 are
repeated. All the IMFs, c1(t), c2(t), . . . , cn(t), are decomposed until cn(t) is a monotonic or
single-extreme-point residual.

2.2. EEMD

The EEMD method is an improvement of EMD method that reduces mode mixing and obtains the
actual time-frequency distribution of the signal [35]. The principle is to leverage the statistical features
(uniform frequency distribution) of Gaussian white noise. When white noise is added to a signal,
the signal becomes continuous on different scales to reduce mode mixing. Details of the decomposition
principle and procedure are as follows:

• Step 1: White noise ni(t) with a mean of 0 and standard deviation constant is added to the original
signal X(t) multiple times. The standard deviation of the white noise is set to 0.1–0.4 times the
standard deviation of the original signal (0.2 in this study):

Xi(t) = X(t) + ni(t) (4)

where Xi(t) represents the signal after the i-th addition of Gaussian white noise.
• Step 2: Each Xi(t) undergoes the EMD procedure. The IMF component obtained is denoted by

cij(t), and the residual term is denoted by ri(t). Among them, cij(t) represents the j-th IMF from the
decomposition of the signal after the i-th addition of Gaussian white noise.

• Step 3: Steps l and 2 are repeated N times. Based on the principle that the statistical mean of
an uncorrelated random series is 0, the IMFs are subjected to an overall averaging operation to
eliminate the impact of adding Gaussian white noise to the actual IMF multiple times. Finally, the
IMF obtained from EEMD is as follows:

cj(t) =
1
N

N

∑
i=1

cij (5)

where cj(t) represents the j-th IMF of the original signal obtained by EEMD. As the value of N
increases, the sum of IMFs for the corresponding white noise approaches 0. At this point, the
result of EEMD is as follows:

X(t) = ∑
j

cj(t) + r(t) (6)

where r(t) is the final residual, which represents the average trend of the signal. Any signal X(t) can
be decomposed into multiple IMFs and one residual via EEMD. IMF cj(t) (j = 1, 2, . . . ) represents
the signal’s components from high frequency to low frequency. Each frequency contains distinct
components and varies with the signal X(t).

2.3. Improved Ensemble Empirical Mode Decomposition (EEMD)

Whether the decomposed IMFs are proper or applicable is largely determined by the sifting
stopping criteria. Different criteria result in different IMFs from decomposition. Due to the limited
applicability of the SD criteria proposed by Huang [34,35] and the GR criteria proposed by
G. Rilling [37], the method of tracking energy differences (MTED) is introduced as the sifting stopping
criteria to improve the EEMD method.

The MTED is different from the other two sifting stopping criteria. It assumes that the IMFs are
finite and orthogonal to each other; that is, in an ideal state, when an IMF is sifted, no energy is lost
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during sifting. If the EEMD exhibits a smaller energy loss during sifting, it is more likely to guarantee
the orthogonality of IMFs and, therefore, the EEMD sifting is more appropriate. It is clear that the
MTED mainly works from the perspective of energy and ensures that each extracted IMF and residual
are orthogonal in terms of energy. Details of the procedure are as follows [38]:

EX =

∞∫
−∞

[
n

∑
i=1

ci(t)

]2

dt =
∞∫

−∞

c2
1(t)dt +

∞∫
−∞

c2
2(t)dt + · · ·+

∞∫
−∞

c2
n(t)dt = E1 + E2 + · · · En (7)

where EX is the total energy of the series; ci(t) is an IMF or residual of the original series after EEMD;
and E1, E2, . . . , En is the energy of the corresponding component.

During EEMD, if a component h(t) = X(t)− m(t) is obtained, then when h(t) is sifted from X(t),
the sum of the energy for h(t) and the rest of the series is as follows:

Etot =

∞∫
−∞

h2(t)dt +
∞∫

−∞

m2(t)dt = Eh + Em (8)

Then, the difference between the total series energy before and after h(t) is sifted is as follows:

Eerr = Etot − EX (9)

Normally, |Eerr| decreases as the number of sifting increases. If after the k-th sifting, |Eerr| is
greater than that it was after the (k − 1)-th sifting, then it is considered that |Eerr| has reached its
minimum after the (k − 1)-th sifting, no more sifting is needed, and this round of sifting stops. The h(t)
obtained from the (k − 1)-th sifting is selected as an IMF, and the next step of the EEMD is executed to
obtain other IMFs and the residual. If the condition is not met, then sifting is repeated until an IMF
is obtained.

2.4. Improved EEMD-Based Decomposition-Prediction-Reconstruction Model

To forward predict or extend short observational runoff series in data-scarce catchments, an
improved EEMD-based method and the prediction model are combined in this paper to create
an improved EEMD prediction model according to the “decomposition-prediction-reconstruction”
principle. As follows from the previous analysis, the low-frequency components and residual terms
of runoff time series calculated using EEMD have regular and stable fluctuation. Thus, an AR model
prediction can provide high precision. In comparison, the high-frequency component (IMF1) has
significant fluctuations and strong non-linearity and the AR model prediction designed for a stable
series is hardly satisfactory. Therefore, in this study, a RBF neural network, which is suitable for
processing non-linear series, was employed for prediction. Moreover, it was also discovered that IMF1
components from original runoff series obtained by EEMD demonstrated fluctuations and variations
consistent with rainfall series in the same basin. To avoid the problem that runoff predictions have
only statistical significance instead of physical representations, the rainfall series in the same period
was used in this paper as one of the input vectors for the RBF neural network. Additionally, since
runoff series exhibit strong auto-correlation and this may still exist in IMF1, a partial autocorrelation
function (PACF) and the Akaike information criteria (AIC) [39] were employed for autocorrelation
analysis and to select the inputs of the RBF neural network (the strongest three orders as additional
input vectors).

In general, the procedure for the improved EEMD prediction model is summarized as follows:
a short observed runoff series undergoes orthogonal decomposition via the improved EEMD method
to obtain several IMFs and one residual; i.e., a non-stationary runoff time series is decomposed
into multiple quasi-stable components and one trend component. Then, IMF1 undergoes forward
prediction using the RBF neural network, and the terms from IMF2 to the residual undergo forward
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prediction via the AR model. The forward predicted components are reconstructed to obtain runoff
data for years when measured data are missing. After verification, the obtained runoff series are
combined with the original series to generate a runoff series that meets length requirements for water
resources engineering design or hydrological research.

3. Results and Discussion

3.1. Case Selection

In some remote regions of north-western China, hydrological stations are scarce, and the length
of hydrological data series is seriously insufficient. With poor rainfall-runoff relations, data scarcity
has become a major issue for hydraulic engineering design and hydrological research development in
the region. Zhaoshiyao hydrological station in the Wuding River basin and the Suide hydrological
station in the Dali River (a tributary of the Wuding River) basin in north-western China are typical of
data-scarce stations. Thus, they were selected as research stations in this paper. Annual runoff data
series (1971–2010) at two hydrological stations were selected as the study subject, in which annual
runoff data in 1981–2010 (30 years) were used as training data, and annual runoff data in 1971–1980
(10 years) were used as verification data. The data were collected from hydrological manuals published
by the Hydrological Bureau of the Yellow River Conservancy Commission (YRCC).

3.2. Calculation and Analysis

3.2.1. Improved EEMD

The annual runoff data in 1971–2010 at two hydrological stations were reversed and decomposed
using the improved EEMD method. The MTED was used as the stopping criteria for EEMD sifting.
To verify the decomposition performance by the improved EEMD method, the results were compared
with the results obtained by decomposition methods based on the SD criteria and the GR criteria,
as shown in Figures 1 and 2.

In Figure 1a,b and Figure 2a,b show SD and GR criteria-based EEMD components, respectively,
and Figures 1c and 2c shows the MTED-based components. These figures show that with the three
sifting stopping criteria, four IMFs and one residual can be obtained from decomposition. However,
the same original series were decomposed into different components (different IMFs and different
residuals) based on the three sifting stopping criteria. When the SD criteria or the GR criteria was
used as the EEMD sifting stopping criteria, the decomposed components were highly fluctuating and
irregular. In particular, in the low frequency component (such as IMF4), the decomposed components
exhibited irregular waveforms. In other words, SD and GR criteria-based components exhibited severe
mode mixing such that this did not accurately show hydrological fluctuations or periodical changes.
Such fluctuating and irregular components were difficult to predict due to their weak regularity.
In contrast, the components obtained by the MTED were relatively stable, fluctuating around 0, and
had regular waveforms. After several rounds of sifting, the low-frequency components demonstrated
regular sinusoidal fluctuations. This means that the EEMD results obtained by the MTED were better
because mode mixing in the process was suppressed effectively, and the decomposed IMF component
was more stable, which provided a solid foundation for forward prediction in the next stage. It is worth
mentioning that the extraction of each component except IMF1 is based on the previous extracted
component in the decomposition process of EMD. Different sifting stopping criteria could make
extraction different, and the difference will enlarge along with the decomposition. Although the
difference is not obvious among the high-frequency components (such as IMF1 and IMF2) obtained
under three criteria, it is an objective reality and would lead to the curves of the low-frequency
components being obviously different, as shown in Figures 1 and 2. Compared with the MTED,
the low-frequency component obtained through SD- and GR-criteria show irregular fluctuations,
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which indicates that the MTED-based EMD performs better than SD and GR criteria-based EMD in
separating the multi-time scale information from the original series.

Figure 1. The decomposition results of runoff series based on (a) standard deviation (SD) criteria;
(b) G. Rilling (GR) criteria; and (c) the method of tracking energy differences (MTED) at the
Zhaoshiyao station.

Figure 2. The decomposition results of runoff series based on (a) standard deviation (SD) criteria;
(b) G. Rilling (GR) criteria; and (c) the method of tracking energy differences (MTED) at the
Suide station.
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To further verify the above statement, the orthogonality index Ort was used to evaluate the
superiority of the three sifting stopping criteria. Ort is an index that evaluates the orthogonality of the
IMF components, and its value closer to zero means that the IMF components are more orthogonal [40].
The principle is illustrated as follows [41]:

Original runoff data undergo EEMD, and then n IMF components and one residual are obtained.
The corresponding formula is as follows:

X(t) = ∑n
q=1 cq(t) + r(t) (10)

where cq(t) is the q-th IMF and r(t) is the residual which is defined as the last IMF component, i.e., r(t) is
defined as cn+1(t). Then, the original runoff data are represented as follows:

X(t) = ∑n+1
q=1 cq(t) (11)

The runoff data X(t) in the form of a square are as follows:

X2(t) = ∑n+1
q=1 c2

q(t) + 2∑n+1
q=1 ∑n+1

p=1 cq(t)cp(t)(q �= p) (12)

If all the IMF components are orthogonal, then the second term on the right side of the equal sign
in above formula should be zero. Therefore, the definition of the orthogonality index Ort is as follows:

Ort = ∑N
t=1

(
∑n+1

p=1 ∑n+1
q=1 cp(t)cq(t)

X2(t)

)
(p �= q) (13)

where N is the length of the runoff series.
Next, all IMFs and residuals decomposed with the three sifting stopping criteria are taken through

the Hilbert–Huang transform (HHT) to obtain their Hilbert spectrum [26]. After integrating the Hilbert
spectrum with respect to time, their Hilbert marginal spectrum is obtained, respectively, as shown
in Figures 3 and 4, in which it is seen that the Hilbert spectrum accurately reflects variations in the
component’s amplitude with time and frequency. The marginal spectrum statistically represents the
accumulated amplitude distribution of each component along the frequency. The orthogonality of
the components is represented by the coincidence of major frequencies in the marginal spectrum.
A smaller coincidence means the orthogonality is superior.

Figure 3. Cont.
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Figure 3. Hilbert spectrums and marginal spectrums of runoff components obtained based on (a) SD
criteria; (b) GR criteria; and (c) MTED at the Zhaoshiyao station.

Figure 4. Hilbert spectrums and marginal spectrums of runoff components obtained based on (a) SD
criteria; (b) GR criteria; and (c) MTED at the Suide station.

Table 1 lists the orthogonality indexes of the EEMD results with three sifting stopping criteria
at the two hydrological stations. “With the residual” means the residual is used as the last IMF
component in the calculation, and “without the residual” represents the fact that the residual has been
removed, and other IMFs are used in the calculation. It can be found whether or not the residual
is taken into the calculation, the MTED-based orthogonality index is closer to 0 than the indexes by
the SD criteria and the GR criteria. This indicates that, compared with the SD criteria-based or GR
criteria-based decomposition components, the MTED-based components are more orthogonal or with
less mode mixing. This statement is also supported to a certain extent in Figures 3 and 4. In the Hilbert
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spectrum of two figures, the horizontal axis represents time, the vertical axis represents frequency,
and the depth of the color describes the magnitude of the amplitude. Although the Hilbert spectrums
of three stopping criteria do not show a significant difference, it can be seen that the spectrum of
the MTED-based components are more recognizable and regular than SD criteria-based and GR
criteria-based components. Furthermore, a more significant superiority of MTED to SD criteria and GR
criteria can be seen in the marginal spectrum, in which the dominant frequency and frequency band
of each component can be recognized well. As shown in the marginal spectrum of Figures 3 and 4,
the dominant frequency of MTED-based components is significant while that of SD criteria-based and
GR criteria-based components is difficult to distinguish. The detailed representation is as follows:
the frequency band of MTED-based components is distributed relatively independently on different
frequencies while that of SD criteria-based and GR criteria-based components overlap in the frequency
range. In other words, Figures 3 and 4 show that MTED-based decomposition is superior to SD
criteria-based and GR criteria-based decomposition in decomposing the original series into several
components corresponding to different frequency bands (different time scales). All these indicate that
the SD criteria-based and GR criteria-based decomposition components have serious mode mixing and
poor orthogonality. Fortunately, the MTED-based improved EEMD method can suppress mode mixing
in the EEMD effectively, generating stable IMFs representing multi-scale physical information and
thereby illustrating hydrological periodical change hidden in the runoff data to the extent possible.

Table 1. Orthogonality index of runoff components based on three stopping criteria.

Orthogonality Index
Zhaoshiyao Station Suide Station

SD Criteria GR Criteria MTED SD Criteria GR Criteria MTED

Without residual −0.10 −0.10 −0.08 −1.24 −0.95 −0.23
With residual −1.72 −3.57 −0.66 −8.63 −9.86 −5.64

3.2.2. Radial Basis Function (RBF) Neural Network and Autoregression (AR) Model Prediction

The data of runoff components (1981–2010) decomposed by the improved EEMD were used as
training data. Through training, a RBF neural network and AR model was built and used for the
prediction, in which the RBF neural network was employed to forward predict or extend the IMF1
data during non-observed period (1971–1980) by coupling the rainfall data in the same period, and the
AR model was used to forward predict or extend other components’ data (IMF2–4 and the residual)
during the non-observed period. Next, all the predicted runoff components were combined to obtain
the predicted annual runoff data for the non-observed period.

To verify the prediction effect and compare the impact of three sifting stopping criteria (the SD
criteria, the GR criteria and the MTED) on runoff prediction, the prediction results by the EEMD
prediction models with three criteria were compared, as listed in Table 2. Here, measured runoff data
in the verification period were used as the benchmark for error analysis, and the relative average
deviation (RAD) and the Nash–Sutcliffe efficiency (NSE) were used as error evaluation indexes to
undertake comprehensive measurement and evaluation of the prediction performance. A smaller RAD
and a larger NSE represent higher prediction precision.

Table 2 shows the prediction performance of EEMD prediction models based on the SD criteria,
the GR criteria and the MTED, where it is clear that the MTED-based EEMD prediction model has
significantly more precision than the SD-based and GR-based models. This also supports the inference
about the applicability and superiority of MTED as a stopping criteria for EMD sifting.
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Table 2. Error assessment of improved EEMD prediction models based on three stopping criteria.

Error Evaluation Index
Zhaoshiyao Station Suide Station

SD Criteria GR Criteria MTED SD Criteria GR Criteria MTED

Relative average deviation (RAD)/% 9.45 9.39 6.86 25.24 25.60 11.10
Nash–Sutcliffe efficiency (NSE) 0.19 −0.24 0.40 0.34 0.29 0.89

3.3. Result Verification

To further verify the prediction performance of the improved EEMD prediction model,
two common forward prediction methods used in engineering design (the rainfall-runoff method and
the AR model) were selected for comparison, and measured runoff data during 1971–1980 were used
for verification. The rainfall-runoff method is primarily based on the rainfall-runoff correlation in the
research basin. Rainfall data was measured data in the study basin, and hence the missing annual
runoff data can be predicted by the rainfall-runoff regression equation established in the training
period (1981–2010). In the AR model, the measured runoff data from 1981 to 2010 were first sorted in
reverse time order. After determining the three most significant orders as model inputs, the reverse
data were implemented in the AR procedure to estimate the missing runoff data from 1980 to 1971.
Table 3 lists the results of evaluation by error in the prediction by the three forward prediction methods.
It shows that compared with the conventional rainfall-runoff method and the AR model method, the
improved EEMD prediction model had more precise prediction.

Table 3. Error assessment of forward prediction by three models.

Error Evaluation
Index

Zhaoshiyao Station Suide Station

AR Model
Method

Rainfall-Runoff
Method

Improved EEMD
Prediction Model

AR Model
Method

Rainfall-Runoff
Method

Improved EEMD
Prediction Model

RAD/% 11.03 15.13 6.86 27.76 19.67 11.10
NSE −0.87 −1.54 0.40 −0.02 −0.11 0.89

To test the usefulness of these three forward prediction methods in engineering design, 40-year
(1971–2010) runoff data series were generated, including 10-year predicted runoff data and 30-year
measured data, and these were then compared with 40-year measured runoff data via statistical
parameters. The results are shown in Table 4.

The table shows that the extended long runoff series by the improved EEMD model had similar
statistical parameters with the measured runoff data. If the designer used the extended data by the
improved EEMD prediction model for engineering design, he would get a better hydrological design
value to meet the engineering design requirements than by using the other two methods. However,
the designer is likely to result in design deviation and put the project at risk if he adopted the extended
data by the other two methods in order to undertake engineering design. Therefore, the improved
EEMD model is undoubtedly a better choice for engineering design and hydrological research when
hydrological data is scarce in a basin or region similar to north-west China, by which the obtained
design value has a significant advantage for the regional water resource supply-demand balance and
the safety of hydraulic project operation.

Table 4. Statistical parameters between extended runoff series by different models and observed series
at the Zhaoshiyao and Suide stations.

Statistical Parameters

Zhaoshiyao Station Suide Station

Mean
Mean Square

Error
Coefficient of

Variation
Mean

Mean Square
Error

Coefficient of
Variation

Original sequence 3.86 0.51 0.13 1.28 0.40 0.31
Improved EEMD prediction model 3.84 0.44 0.11 1.29 0.39 0.30

Rainfall-runoff method 3.70 0.38 0.10 1.22 0.33 0.27
AR model 3.75 0.37 0.10 1.26 0.33 0.26
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4. Conclusions

In this paper a new method, called the improved EEMD prediction model, is proposed to
forward predict or extend runoff series in data-scarce basins for serving regional hydraulic engineering
design. The model combines ensemble empirical mode decomposition (EEMD), a radial basis function
(RBF) neural network, and an auto-regression (AR) model, whereby the EEMD is employed for
decomposition and reconstruction, and the RBF and AR model are employed for forward predicting or
extending the IMFs and residual components. Also, three EMD sifting stopping criteria (the SD criteria,
the GR criteria and the MTED) are discussed and compared in this study to find the best criteria to
solve the problem of mode mixing and improve the decomposition quality of EEMD. Additionally,
two quantitative evaluation measures, the relative average deviation (RAD) and the Nash–Sutcliffe
efficiency (NSE), are used to evaluate the performance of the improved prediction model and compare
them with the AR model and a rainfall-runoff method.

The case study at two hydrological gauges located in north-west China, the Zhaoshiyao and
Suide stations, indicates that: (1) the improved EEMD using the MTED as sifting stopping criteria
suppresses mode mixing effectively (|Ort| < 0.23), ensuring that the IMFs are quasi-stable to preserve
the physical information and periodical change contained in the runoff data to the extent possible;
(2) the improved EEMD prediction model has lower RAD and NSE statistics, 6.86% and 0.40 at the
Zhaoshiyao station, respectively, and 11.10% and 0.89 at the Suide station, respectively, and these are
significantly better than the rainfall-runoff method and the AR model.

Comparative results indicate that this forward prediction model is undoubtedly a better choice
for engineering design and hydrological research when hydrological data is scarce in a basin or region
similar to north-west China.
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Abstract: Accurate information on urban surface water is important for assessing the role
it plays in urban ecosystem services in the context of human survival and climate change.
The precise extraction of urban water bodies from images is of great significance for urban
planning and socioeconomic development. In this paper, a novel deep-learning architecture is
proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS)
imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of
the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network
(CNN) architecture is designed that can extract useful high-level features of water bodies from
input data in a complex urban background and mark the superpixel as one of two classes: an
including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels
is generated. Experimental results show that the proposed method achieved higher accuracy for
water extraction from the high-resolution remote-sensing images than traditional approaches, and
the average overall accuracy is 99.14%.

Keywords: deep learning; convolutional neural networks; superpixel; urban water bodies;
high-resolution remote-sensing images

1. Introduction

Urban water bodies are important parts of the urban ecosystem that are of great significance
for urban environmental testing, urban heat-island effects, and urban ecosystem maintenance [1].
The changes in urban water bodies make a huge difference to human lives and may cause disasters,
such as surface subsidence, urban inland inundation and health problems [2]. Therefore, it is necessary
to know about urban water distribution and changes in the water area.

In recent years, satellite remote-sensing technology has developed rapidly and has the
characteristics of a wide observation range, short return period, and so on [3]. It has been widely used
in many fields such as military reconnaissance, environmental protection, mapping and geography [4].
Among current urban water-extraction technologies, a mainstream method uses remote-sensing
imagery to gather urban water information in a timely and accurate way [5]. Previous urban
water-resource surveys have been based on low- and medium-resolution images [6]. However,
small water bodies such as small ponds and narrow rivers cannot be extracted due to the limited
spatial resolution of these remote-sensing images. With the improvement of the spatial resolution of
remote-sensing images, many remote-sensing satellites (such as Gaofeng-2, Ziyuan-3, WorldView-2,
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IKONOS and RapidEye) can provide high-resolution images. Most high-resolution remote-sensing
images only have four bands (blue, green, red and near-infrared), lacking the SWIR necessary
to compute the modified normalized difference water index (MNDWI) and the automated water
extraction index (AWEI) indices [7]. A high-resolution spatial multi-spectral image has more detailed
spatial features information, which can greatly improve the accuracy of urban water body extraction [8].

Many algorithms have been proposed for identifying water bodies with remote-sensing imagery
including single-band threshold and multi-band threshold methods, water body index methods,
sub-pixel water mapping methods, and supervised and unsupervised classification methods [9,10].
The water body index method has the characteristics of fast calculation and high precision, so it is
widely used in practical applications. McFeeters proposed the normalized difference water index
(NDWI) model and the basic idea of this model is based on a normalized difference vegetation index
(NDVI) [11]. However, this model is unable to distinguish between dark shadow and water bodies [12].
Xu proposed the MNDWI which uses mid-infrared bands for normalization instead of near-infrared
and green bands, and has better results for urban water body extraction [13]. These improvements in
the water index are generally difficult to apply in high-resolution remote-sensing images due to limited
spectral resolution. Image classification methods such as supervised or machine learning are often
used to extract water bodies from remote-sensing images [14]. Generally, machine-learning methods
include neural network and support vector machine, and unsupervised classification methods include
k-means clustering and ISODATA clustering methods [15,16]. The above algorithms are mainly used
on low spatial resolution remote-sensing images. The existing algorithms have undergone less research
for urban water body extraction in high-resolution satellite images. At present, the main problem for
extracting an urban water body by low spectral resolution remote-sensing images is the ability to
distinguish between the building shadows and the water bodies which is one of the most difficult
tasks [17].

Deep learning is the learning process that simulates the human brain [18]. It can automatically
extract high-level features from low-level features of the input image [19,20]. In this study, a novel
method for the extraction of urban water bodies based on deep learning is proposed for high spatial
resolution multi-spectral images. A new convolutional neural network (CNN) architecture is designed
that can extract water and detect building shadows effectively even in complex circumstances and
predict the superpixel as one of two classes including water and no water.

The major contributions of this paper are:

(1) A novel extraction method for urban water bodies based on deep learning is proposed for
remote-sensing images. The proposed method combines the superpixel method with deep
learning to extract urban water bodies and distinguish shadow from water.

(2) A new CNN architecture is designed, which can learn the characteristics of water bodies from
the input data.

(3) In order to reduce the loss of image features during the process of pooling, we propose
self-adaptive pooling (SAP).

2. Materials and Methods

2.1. Study Areas

In this study, two categories of Chinese high-spatial resolution remote-sensing images were used
for urban water extraction: ZY-3 and GF-2 multispectral images. The detailed parameters of these
images are provided in Table 1, considering the complex urban water network differences in China.
The selected areas were located in Beijing, Tianjin and Chengdu. Four remote-sensing multispectral
images acquired from the ZY-3 and Gaofeng-2 satellites having different scene sizes (2000 pixels×
1800 pixels to 2000 pixels × 1900 pixels) are analyzed in this study as shown in Figure 1. The study
area covers three downtown districts which are surrounded by suburban water bodies such as lakes,
ponds, narrow rivers and aquatic parks.
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Table 1. Overview of Chinese ZY-3 and GF-2 multispectral datasets.

Satellite Parameters ZY-3 Multispectral Imagery GF-2 Multispectral Imagery

Product Level 1A 1A
Number of bands 4 4
Wavelength (nm) Blue: 450–520; Green: 520–590 Red: 630–690; NIR: 770–890

Spatial resolution (m) 5.8 4
Radiometric resolution (bit) 1024 1024

  

  

Figure 1. Study area and imagery materials. (a) ZY-3 multispectral imagery (Beijing, area coverage
2000 pixels × 1800 pixels), (b) ZY-3 multispectral imagery (Tianjin, area coverage 2000 pixels
× 1800 pixels), (c) Gaofeng-2 multispectral imagery (Beijing, area coverage 2000 pixels × 1900 pixels),
(d) ZY-3 multispectral imagery (Beijing, area coverage 2000 pixels × 1900 pixels).

All experiment images are Level 1A products, which have been adjusted for radiometric and
geometric correction. Reference water mapping is manually digitized by a visual interpretation process
of the high-resolution imagery with reference to Google Earth.

2.2. Self-Adaptive Pooling Convolutional Neural Networks (CNN) Architecture

A convolutional neural network (CNN) is a type of artificial neural network that draws inspiration
from the biological visual cortex [21–23]. Compared with the shallow machine-learning algorithm,
it has the advantages of strong applicability, parallel processing ability, and weight sharing, meaning
global optimization training parameters are greatly reduced. CNN has become a hot topic in the
field of deep learning [24]. The CNN architecture often consists of the input layer, convolution layer,
pooling layer, full connection layer and output layer, as shown in Figure 2.

The convolutional layer consists of multiple feature maps which consist of multiple neurons.
Each neuron is connected to the local area of the previous feature map by the convolution kernel [25].
The convolution kernel is a matrix of weights (such as 3 × 3 or 5 × 5 matrices for two-dimensional
images). The convolutional layer extracts different features of the input layer through convolution
operations. The first convolution layer extracts lower-level features such as edges, lines, corners,
and higher-level convolution layers extract more advanced features.
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Figure 2. The standard architecture of the convolutional neural network (CNN).

The input image is convolved in the convolutional and filtering layers. Generally, convolutional
and filtering layers require an activation function to connect [26]. We use Gi to represent the feature
map of the ith layer of the convolutional neural network. The convolution process can be described as:

Gi = f (Gi−1 ⊗ Wi + bi) (1)

where, Wi represents the weight feature vector of the ith convolution kernel, the operation symbol
⊗ represents a convolution operation of the ith layer of the image and the i − 1th layer of the image,
and bi is the offset vector. Finally, the feature map Gi of the ith layer is obtained by a linear activation
function f (•).

There are two kinds of activation functions, one is a linear activation function, and the other is
a non-linear activation function, such as sigmoid, hyperbolic and rectified functions. The rectified
function is currently the most used in the literature because neurons, with a rectified function,
work better to avoid saturation during the learning process, induce sparsity in the hidden units
and do not face the gradient vanishing problem, which occurs when the gradient norm becomes
smaller after successive updates in the back-propagation process [27]. So, in this paper, we use rectified
linear unit (ReLU) f (x) = max(x) as an activation function.

The pooling performs a sampling along the spatial dimensions of feature maps via a predefined
function (e.g., maximum, average, etc.) on a local region. Although the high-level feature maps are
more abstract, they lose a lot of detail due to the pooling operation. In order to reduce the loss of image
features during the process of pooling, this paper presents an adaptive pooling model.

Due to the complexity of the objects in high-resolution images, the traditional pooling model
cannot extract the image features very well. Therefore, this research takes two kinds of pooling areas in
the pooling layer as shown in Figure 3. The blank space indicates that the pixel value is 0, the shaded
area is composed of different pixel values, and a represents the maximum value area. The features of
the whole feature map are mainly concentrated at A as shown in Figure 3a. If pooling is done with
the average pooling model, the features of the entire feature map will be weakened. The features of
the feature map are mainly distributed in A, B, C as shown in Figure 3b. In the case of the unknown
relationship between A, B and C, the features of the entire feature map will be weakened by using
the maximum pooling model. This will eventually affect the extraction accuracy of the water body in
remote-sensing images.

There are two main models of pooling layer: one is the max pooling model as shown in
Equation (2), and the other is an average pooling model as shown in Equation (3). The feature
map obtained by convolution layer is Gij, the size of the pooling area is c × c, the pooling step length
is c, and bi is the offset. The max pooling model can be expressed as:

Fij =
c

max
i=1,j=1

(Gij) + bi (2)

The average pooling model can be expressed as:
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Fij =
1
c2 (

c

∑
i=1

c

∑
j=1

Gij) + bi (3)

where,
c

max
i=1,j=1

(Gij) represents the max element from the feature map G in the pooled region size c × c.

Figure 3. Different pooling areas. (a) The features of the whole feature map are mainly concentrated
at A; (b) The features of the feature map are mainly distributed in A, B, C.

In order to reduce the loss of image features during the process of pooling, this paper presents
an adaptive pooling model according to the principle of interpolation, based on the maximum pool
model and the average model. The model can adaptively adjust the pooling process through the
pooling factors u in the complex pooled area. The expression is:

Fij =
u
c2 (

c

∑
i=1

c

∑
j=1

Gij) + (1 − u)
c

max
i=1,j=1

(Gij) + bi (4)

where, u indicates pooling factor. The role of u is to dynamically optimize the traditional pooling
model based on different pooled areas. The expression is:

u =
a(bmax − a)

b2
max

(5)

where, a is the average of all elements except for the max element in the pooled area, bmax is the max
element in the pooled area. The range of u is (0, 1). The model takes into account the advantages of
both the max pooling model and the average model. According to the characteristics of different
pooling regions, the adaptive optimization model can be used to extract the features of the map as
much as possible, so as to improve the removal accuracy of the convolution neural network.

In order to verify that the self-adaptive pooling model can reduce the loss of features in the
pooling process that this paper proposes, an example image with the size of 300 × 300 pixels is
input into a simple network with a network structure of four layers. Figure 4a is the original image.
Figure 4b is the feature map obtained from the self-adaptive pooling model, Figure 4c is the feature
map obtained from the max pooling model, and Figure 4d is the feature map obtained from the average
pooling model.

From Figure 4b–d, the feature map obtained from the adaptive pooling model has obvious
features, but the max pooling model and the average pooling model weaken the image features.

As demonstrated in Figure 5, the overall architecture of the designed self-adaptive pooling
convolutional neural network (SAPCNN) contains one input patch, two convolutional layers, two
self-adaptive pooling layers, and two fully connected layers. An input patch is 3@28 × 28, consisting
of three channels, each with a dimension of 28 × 28. The first convolution layer is 128@24 × 24,
composed of 128 filters, followed by self-adaptive pooling of dimension 2 × 2 resulting in 128@12 ×
12. This process is followed by convolution layer and self-adaptive pooling; the convolution layer is
256@8 × 8, composed of 256 filters, and self-adaptive pooling is 256@4 × 4. All convolution layers
have a stride of one pixel, and the size of filters is 5 × 5. In this paper, the output of the last fully

73



Water 2018, 10, 585

connected layer indicates the probabilities that the input patch belongs to water or no water. This
means that the unit number of the output layer is two.

    

Figure 4. The feature map from the different pooling models. (a) the original image; (b) the feature
map obtained from the self-adaptive pooling model; (c) the feature map obtained from the max pooling
model; (d) the feature map obtained from the average pooling model.

Convolution 
Convolution 

Figure 5. Architecture of our designed CNN.

2.3. Pre-Processing

The convolutional neural networks extracts water bodies, but it does not guarantee continuous
water bodies and water boundaries. Similarly, with building shadow, vegetation shadow, and mountain
shadow, it does not guarantee compact contours and, hence, may misclassify water bodies. Therefore,
a pre-processing step is required to reduce misclassified water bodies.

Superpixel refers to the adjacent image blocks with similar color and brightness characteristics [28].
It groups the pixels based on the similarities of features between pixels and obtains the redundant
information of the image, which greatly reduces the complexity of subsequent image-processing tasks.

In this work, the image is segmented into superpixels, which are used as basic units to extract
water bodies. As a widely used superpixel algorithm [29], the simple linear iterative clustering (SLIC)
algorithm can output superpixels of good quality that are compact and roughly equally sized, but there
are still some problems such as the facrt that the number of superpixels should be designed artificially
and the ultra-pixel edges are divided vaguely. However, because SLIC obtains initial cluster centers by
dividing the image into several equal-size grids and its search space is limited to a local region [30],
the superpixels produced cannot adhere to weak water boundaries well and the water bodies will be
over-segmented. In this paper, the SLIC algorithm was improved by affinity propagation clustering
and by expanding the search space.

2.3.1. Color Space Transformation

Generally speaking, the color of water bodies is black and azure, with low reflectivity and high
saturation. According to the features of the reflection spectrum of water bodies, a water body’s region
is prominent in B1, B2, and B4 to the data used in this study. Similar to the RGB color model, the color
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space transformation to the hue, saturation, and intensity (HSI) color model is first performed using
these 3 bands [31]. The transformation from the RGB to the HSI color model is expressed as follows:

H =

{
θ

360 − θ

B ≤ G
B > G

(6)

S = 1 − 3 × min(R, G, B)
R + G + B

(7)

I =
R + G + B

3
(8)

θ = cos−1

⎧⎨⎩ [(R − G) + (R − B)]/2√
(R − G)2 + (R − B)(G − B)

}
(9)

where R, G, and B are the values of B1, B2, and B4 channels of input remote sensing image. H, S, and I
are the values of hue, saturation, and intensity components in the HSI space.

Figure 6 shows the HSI color space of an example remote sensing image. Figure 6a is original
RGB color image. Figure 6b is the intensity component image, Figure 6c is the hue component image,
and Figure 6d is the saturation component image. From Figure 6b–d, it can be seen that the water
bodies region is prominent in the H and S components. Therefore, the H and S components are used
in our improved SLIC algorithm.

    

Figure 6. Hue, saturation, and intensity (HSI) color space of a remote-sensing image. (a) Original image.
(b) Intensity component image. (c) Hue component image. (d) Saturation component image.

2.3.2. Adaptive Simple Linear Iterative Clustering (A-SLIC) Algorithm

The number of superpixels should be designed artificially as well as initial clustering. In this paper,
the idea of affinity propagation algorithm is introduced to reduce the dependence of segmentation on
initial conditions.

Usually, a weighted similarity measure combining color and spatial proximity is needed for the
SLIC algorithm. In this study, the ith pixel and jth pixel space distance is expressed as follows:

dxy =
√
(xi − xcj)

2 + (yi − ycj)
2 (10)

where, cj is the jth pixel cluster center.
We define the color difference between ith and jth pixels as:

dxy =
√
(xi − xcj)

2 + (yi − ycj)
2 (11)

We define the similarity measure between the ith pixel and jth cluster center cj is expressed as
follows:

d(i, j) = dc +
α

S
dxy (12)
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where, S is the area of the jth cluster in the current loop. The α parameter is used to control the relative
importance between color similarity and spatial proximity.

By defining the attribution function (Equation (13)) and the attraction function (Equation (15)),
the number and location of cluster centers are adjusted during the iteration to complete the superpixel
adaptive segmentation. The attribution function reflects the possibility that pixel i attracts pixel j into
its cluster [32]. The attribution function is expressed as:

β(i, j) =

⎧⎪⎨⎪⎩
min
i �=j

{0, α(j, j) + ∑
i′ �=i,j

max[0, α(i′, j)]} i �= j

∑
i′ �=j

max[0, α(i′, j)] i = j
(13)

The iteration relationship of the attribution function is expressed as:

βt(i, j) =

⎧⎪⎨⎪⎩
min
i �=j

{0, αt−1(j, j) + ∑
i′ �=i,j

max[0, αt−1(i′, j)]
}

i �= j

∑
i′ �=j

max[0, αt−1(i′, j)] i = j
(14)

The attraction function reflects the possibility of the j pixel attracting i pixel as its cluster [33].
The attraction function is expressed as:

α(i, j) = s(i, j)− max
j′ �=j

{β(i, j′) + s(i, j′)} (15)

The iteration relationship of the attraction function is expressed as:

αt(i, j) = s(i, j)− max
j′ �=j

{βt−1(i, j′) + s(i, j′)} (16)

where, s(i, j) = −d(i, j) is the similarity between i pixel and j pixel, s(i, j′) = −d(i, j′) is the similarity
between i pixel and non-j pixel, and t is the number of iterations.

Using both attraction and attribution functions, two types of messages are continuously
transmitted to possible clustering centers to increase their likelihood of becoming cluster centers.
So, the larger the sum of α(i, j) and β(i, j), the more likely the j pixel is a cluster center. In this case, the
greater the probability that the i pixel belongs to this class, then the point is updated as a new cluster
center. In order to reduce the computation complexity, the image is divided into n regions firstly and
calculates α(i, j) and β(i, j) in the local area. In this study, the main process of the A-SLIC algorithm is
as follows:

Step 1. For an image containing M pixels, the size of the pre-divided region in this algorithm is N,
then the number of regions is n. Each pre-divided area is labeled as η. In this paper, α(i, j) and β(i, j)
are defined zero, and t is defined one.
Step 2. HIS transformation is performed on each pre-divided area. In the ηth region, according to
Equation (10), the similarity between two pixels is calculated in turn.
Step 3. According to Equations (14) and (16), the sum of βt(i, j) and αt(i, j) is calculated and the
iteration begins.
Step 4. If βt(i, j) and αt(i, j) no longer change or reach the maximum number of iterations, the iteration
is terminated. The point where the sum of βt(i, j) and αt(i, j) is max is regarded as the cluster center
(Rη

i , where i = 1, 2, 3 · · ·Wη).
Step 5. Repeat steps 3 to 4 until the entire image is traversed, and adaptively determine the number of

superpixels (R′ =
n
∑

η=1
Wη). In this paper, the HSI value are the center of the pixel. Finally, complete the

superpixel segmentation.
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2.4. Network Semi-Supervised Training and Extraction Waters

Convolution neural network training requires a large number of samples, but building a sample
library requires a lot of time and manpower. In this paper, semi-supervised training is proposed.
We use principal component analysis (PCA) to initialize the network structure [9], and then the entire
network will be fine-tuned through the water label data.

Assume the input image has N scenes, its size is m × n. The convolution filter size is g1 × g2.
In the ith scene of the training image, all the image blocks of size g1 × g2 are extracted and expressed
as a vector form Xi = {xi,1, xi,2, xi,3 · · · , xi,nm}. Then the algorithm removes the mean of xi,nm and
expressed as a vector form Xi = {xi,1, xi,2, xi,3 · · · , xi,nm}. So the image block of training data can be
expressed as [9]:

X = {x1, x2, x3 · · · , xn} ∈ Rg1g2×Nnm (17)

where, i is the number of the scene image.
The principal component analysis method can minimize the reconstruction error to solve the

feature vector: ⎧⎨⎩ min
V∈Rg1 g2×H1

‖X − VVTX‖2

s, t.VTV = IH

(18)

where, IH is a unit matrix, V is the H feature vector of the covariance matrix (XXT). V represents the
main features of the input image block. The convolutional neural network Wh filter were initialized by
the principal component analysis, which can be expressed as follows:

Wh = mg1g2(Vh), h = 1, 2, 3, 4, 5 · · · H (19)

where, mg1g2(Vh) represents that vector V is mapped to Wh, Vh represents the hth main feature of
the image.

In the training stage, we use a semi-supervised training method to train networks. First, the image
of the training set is cut into the same size as the filter 5 × 5 according to Equation (17) to create the
training data set. According to Equations (18) and (19), the principal component analysis is used to
obtain the initialized filter weight. Training is carried out by optimizing the logistic regression function
using a stochastic gradient descent and mini-batch size of 128 with the momentum of 0.8. The training
is regularized by weight decay set to 0.0001, and dropout regularization for all fully connected layers
with the dropout ratio set to 0.1. The learning rate starts from 0.01 and is divided by 10 when the
error plateaus. Finally, the algorithm fine-tunes the entire network through the water label data to
complete the final network training. Through training, a SAPCNN classifier with two class predictions
is generated for the extraction of urban water bodies.

In the extraction stage, superpixels are first obtained from the test remote-sensing image using
the adaptive simple linear iterative clustering algorithm described in Section 2.3.2. Image patches
with a size of 28 × 28 centered at its geometric center pixel are extracted. Finally, image patches
size of 28 × 28 are inputted into the trained SAPCNN model. The procedure of water extraction is
demonstrated in Figure 7.
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Figure 7. Processing chain of water bodies extraction in the proposed framework.

2.5. Accuracy Assessment Method

Reference water mapping is manually digitized by a visual interpretation process of the
high-resolution imagery with reference to Google Earth. We evaluate the algorithm performance
for the water extraction in two aspects: (i) water classification accuracy, and (ii) water edge pixel
extraction accuracy. Therefore, six metrics are used including overall accuracy (OA), producer’s
accuracy (PA), user’s accuracy (UA), edge overall accuracy (EOA), edge omission error (EOE), and
edge commission error (ECE).

Unit rates (Equation (20)) based on the confusion matrix are utilized to evaluate the final water
maps produced using different method, including PA, UA and OA [4]. The definition is as follows:

PA =
TP

TP + FN
, UA =

TP
TP + FP

, OA =
TP + TN

T
(20)

where, T is the total number of the pixels in the experimental remote sensing image, and TP, FN, FP,
and TN are the pixels categorized by comparing the extracted water pixels with ground truth reference:
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TP: true positives, i.e., the number of correct extraction pixels;
FN: false negatives, i.e., the number of the water pixels not extracted;
FP: false positives, i.e., the number of incorrect extraction pixels;
TN: true negatives, i.e., the number of no-water bodies pixels that were correctly rejected.

This paper defines the evaluation water edge pixel extraction accuracy as follows: (1) Firstly,
obtain the boundary of water body by manual drawing. (2) The morphological expansion is performed
in the water body boundary obtained in step (1) to create a buffer zone centered on the boundary line
and having a radius of 3 pixels. (3) Finally, the pixels in the buffer area are judged. Suppose the total
number of pixels in the buffer area is M, the number of correctly classified pixels is MR, the number
of missing pixels is MO, and the number of false alarm pixels is Mc. Then EOA, EOE and ECE are
defined as:

EOA =
MR
M

× 100% (21)

EOE =
MO
M

× 100% (22)

ECE =
MC
M

× 100% (23)

3. Experiments and Discussion

The proposed algorithm was implemented using python on the PC with a Intel(R) Xeon(R)
E5-2630 CPU and GPU Nvidia Tesla M40 12G memory, and the designed SAPCNN algorithm
was implemented through the software library tensorflow [10]. Our training dataset was collected
from three ZY-3 multispectral images (south-west Beijing, China), two ZY-3 multispectral images
(north-west Tianjin, China), and two Gaofeng-2 multispectral image (south-west Chengdu, China).
In all experiments, the input patch was 3@28 × 28, and the output of the last fully connected layer
indicated the probabilities of the input patch, belonging to water or non-water. This means that the unit
number of the output layer is two. In this way, 8000 couples of patches are obtained from the training
set, where the number of water and non-water patches are 3000 and 5000, respectively. For a test
remote-sensing image, superpixels are first obtained by the adaptive simple linear iterative clustering
algorithm. Then, image patches size of 28 × 28 centered at its geometric center pixel are extracted
from each superpixel and input into the trained SAPCNN model to predict the class of this superpixel.
Finally, the extraction of the water bodies result from the test remote-sensing image is achieved by
using the predictions of all its superpixels.

3.1. Impact of the Superpixel Segmentation on the Performance of Water Mapping

In the proposed extraction water framework, the SLIC algorithm was used to cluster the remote
sensing image into small regions, which is improved through affinity propagation clustering and
expanding searching space. In order to verify the effectiveness of the A-SLIC method, we compared it
with SLIC.

Figure 8b–c shows some superpixel segmentation results using different superpixel segmentation
methods. Visual inspection of Figure 8b–c indicated that A-SLIC method and SLIC can obtain compact
superpixels, but the A-SLIC method can obtain more regular superpixels than the SLIC method.
The A-SLIC method can not only avoid over-segmentation in homogeneous sub-regions but can also
obtain regular superpixels (in the white box).

We used water extraction results to evaluate the two superpixel methods. Figure 8e–f shows the
extraction water results for the ZY-3 multispectral imagery (Beijing) in Figure 8a using the SAPCNN
structure (see the Figure 4) combined with different superpixel methods, where Figure 8d represents
the ground truth. It is obvious that all methods can extract most of the water bodies. However, for the
blurry water boundaries and small water regions, our improved superpixel method can achieve more
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accurate results through leading affinity propagation clustering, expanding searching space, and the
produced superpixels are easier to adhere to blurry water boundaries.

   
(a) ZY-3 multispectral 

imagery (Beijing).  
(b) Adaptive simple linear 

iterative clustering (A-SLIC). 
(c) SLIC.  

   
(d) Reference water 
mapping (Beijing). 

(e) Extraction water results 
using our improved SLIC. 

(f) Extraction water results 
using SLIC.  

Figure 8. Extraction water results using different superpixel segmentation methods. (a) ZY-3
multispectral imagery (Beijing); (b) Adaptive simple linear iterative clustering (A-SLIC); (c) SLIC;
(d) Reference water mapping (Beijing); (e) Extraction water results using our improved SLIC;
(f) Extraction water results using SLIC.

Six metrics (OA, PA, UA, EOA, EOE, and ECE) are used to evaluate the performance of water
extraction using different superpixel segmentation methods. Table 2 shows the statistical results for
SAPCNN framework using different superpixel segmentation methods.

From Table 2, compared with the SLIC method, the overall accuracy of water extraction and the
PA are the highest for the superpixel segmentation method proposed in this paper for the pre-treatment
of high-resolution images before water extraction. This is because the superpixel segmentation method
introduced the idea of affinity propagation and adaptively determined the number of superpixels and
the center of clustering, and the superpixel can well contain the water body boundary. Through the
aforementioned visual evaluation and quantitative evaluation, it is verified that the SAPCNN method
can effectively improve the water extraction accuracy and efficiency.

Table 2. Parameters of different superpixel segmentation water extraction method.

Image Name Parameter Our Method SLIC

Overall accuracy (OA) (%) 99.29 97.29
User’s accuracy (UA) (%) 92.16 93.46

ZY-3 multispectral imagery(Beijing)

Producer’s accuracy (PA) (%) 87.19 82.06
Edge overall accuracy (EOA) (%) 98.82 96.49
Edge omission error (EOE) (%) 0.42 1.39

Edge commission error (ECE) (%) 0.76 2.12
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3.2. Comparison between Different Model CNN Architectures

In this paper, SAPCNN is designed to extract water bodies. We compare our SAPCNN with two
different pooling model CNNs including a max pooling model CNN (the overall architecture of the
designed max pooling CNN contains one input patch, two convolutional layers, two max pooling
layers, and two fully connected layer) and an average pooling model CNN (the overall architecture of
the designed max pooling CNN contains one input patch, two convolutional layers, two max-pooling
layers, and two fully connected layer).

From Figure 9b–d, the feature map obtained from the adaptive pooling model has an obvious
water boundary. While the max pooling model and the average pooling model weaken the water
boundary. FromFigure 9f–h, the CNNs is used to enhance the separation and difference between water
and non-water, as well as to avoid spectral similarity between dark shadow and roads (in the red box).
However, water extraction results using traditional pooling model CNNs blurred the water boundary.

  

(a) ZY-3 multispectral imagery (Tianjin). (b) The feature map obtained from the self-
adaptive pooling model. 

  
(c) The feature map obtained from the max-

pooling model. 
(d)The feature map obtained from the 

average-pooling model. 

Figure 9. Cont.
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(e) Reference water mapping (Tianjin). (f) Extraction water results using our 
SAPCNN. 

  
(g) Extraction water results using max-

pooling model CNN. 
(h) Extraction water results using average 

pooling model CNN. 

Figure 9. Extraction water results using different pooling models.

In order to evaluate objectively the edge-detection accuracy of the three kinds of water-extraction
algorithms, three metrics are used: EOA, EOE, and ECE. Table 3 lists the boundary accuracy from
different pooling model CNNs in which the self-adaptive pooling CNN method yields good results
in two study areas. This is because the model can adaptively adjust the pooling process through
the pooling factors in the complex pooled area. Therefore, the self-adaptive pooling CNN has more
effective water extraction results compared with two tradition pooling CNNs.

Table 3. Parameters of different pooling CNNs water extraction method.

Image Name Parameter
Self-Adaptive

Pooling + CNN
Max Pooling +

CNN
Average Pooling +

CNN

EOA (%) 97.82 94.21 91.27
ZY-3 multispectral
imagery(Tianjin)

EOE (%) 0.94 2.63 6.24
ECE (%) 1.24 3.16 2.49
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3.3. Distinguishing Shadow Ability of Different Methods

In order to verify that our improved methods can distinguish between water bodies and shadows,
we compare our improved algorithm with SVM and NDWI. Two no-water bodies images were selected
as experimental image. Figure 10 shows the water extraction results using SAPCNN, SVM and NDWI
at the two no-water bodies’ images.

Visual inspection of Figure 10b indicated SAPCNN methods can distinguish between water
bodies and shadows. But, visual inspection of Figure 10c,d indicated SVM and NDWI methods cannot
distinguish between water bodies and shadows. Through the above mentioned visual evaluation,
it is verified that SAPCNN method can effectively distinguish between water bodies and shadows.

 

 

 

 

 

 

 

 
(a) (b) (c) (d) 

Figure 10. Comparison of water extraction results using SAPCNN, SVM and NDWI. (a) No-water
bodies images, (b) Extraction water results using SAPCNN, (c) Extraction water results using SVM,
(d) Extraction water results using NDWI.

3.4. Comparison with Other Water Bodies Extraction Methods

In this paper, our algorithm uses three band images (B1, B2, and B4), the remote sensing is image
first segmented into superpixels using the A-SLIC method, and the classes of these superpixels are
then predicted using our designed SAPCNN model to obtain the water extraction result. We compare
SAPCNN algorithm with SVM, the normalized difference water index (NDWI), and two extraction
water methods in [34,35]. Figure 11 shows the water extraction results using SAPCNN, SVM, NDWI,
and two extraction water methods in [34,35].

Original image 

  
Beijing Chengdu 

Figure 11. Cont.
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Reference 

  

SAPCNN 

  

Method of [34] 

  

Method of [35] 

  

Figure 11. Cont.
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SVM 

  

Normalized 
difference water 
index (NDWI) 

  

Figure 11. Comparison of water extraction results using SAPCNN, SVM, NDWI and two extraction
water methods in [34,35].

From Figure 11, it can be seen that SAPCNN successfully extracted most of the urban water
bodies with complete shapes, while the extracted results by SVM, NDWI, the method of [34], and the
method of [35] were incomplete. For example, SAPCNN extracted small ponds with complete shapes,
whereas the results on the extracted ponds in NDWI, SVM and two water extraction methods in [34,35]
were discontinuous (in the red box). From Figure 11, the water extraction results from the SAPCNN
are visually cleaner, but the water extraction results from the NDWI and the SVM cannot distinguish
between shadow pixels and water pixels. Here, the misidentified water pixels are found in residential
areas, particularly in shadows and dark roads (in Chengdu). The extra shadow reduction procedure in
the SAPCNN, the method of [34], and the method of [35] provides a larger improvement.

We evaluate the algorithm performance for the water extraction. Here, six metrics are used
including OA, PA, UA, EOA, EOE and ECE. Table 4 shows statistical results for different water
extraction algorithms on the test set. A good water extraction method has high values of OA and PA
and low values of EOE and ECE.

Accuracy assessments (Table 4) indicate that the SAPCNN has a good accuracy when extracting
urban water bodies. For the study area in Beijing, in the classification-level evaluation, we compared
the SAPCNN with SVM, NDWI, the method of [34], and the method of [35], and found that the
SAPCNN has a much higher overall accuracy (99.81%). In boundary evaluation of water bodies,
in comparison to the SVM and the NDWI, our method has a much lower total edge omission and edge
commission error (1.85%) and a much higher edge overall accuracy (98.15%). However, for the study
area in Chengdu with a large number of shadow areas, we compared the NDWI with the SVM and the
SAPCNN, and found that the NDWI has a much lower OA (69.17%) and PA (58.63%), and the SVM
has a much higher total EOE and ECE (9.56%). The total ECE and EOE of SAPCNN was only 2.68%
of that of SVM. The reason for this result is that the SVM and NDWI are more vulnerable to shadow
pixels than the SAPCNN.
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Table 4. Water mapping accuracy assessment results.

Study Area Approach OA PA UA ECE EOE EOA

Beijing

SAPCNN 99.81% 90.24% 94.18% 1.13% 0.72% 98.15%
Method of [34] 98.27% 89.21% 92.37% 2.61% 1.02% 96.37%
Method of [35] 97.38% 91.32% 88.91% 2.10% 0.83% 97.07%

SVM 88.21% 79.23% 81.54% 5.17% 1.34% 93.49%
NDWI 89.36% 83.54% 80.09% 4.14% 1.27% 94.59%

Chengdu

SAPCNN 98.31% 92.33% 91.87% 1.64% 1.04% 97.32%
Method of [34] 97.04% 91.79% 89.37% 3.03% 0.93% 96.04%
Method of [35] 96.21% 90.37% 88.26% 2.95% 1.04% 96.01%

SVM 71.23% 59.34% 63.54% 7.39% 2.17% 90.44%
NDWI 69.17% 58.63% 65.27% 5.21% 3.57% 91.22%

4. Conclusions

In this research, a novel water body extraction method based on deep learning is proposed for
high-resolution remote-sensing images. The proposed method combines an enhanced superpixel
method with deep learning to extract urban water bodies and distinguishes between shadow pixels
and water pixels. The remote-sensing image is first segmented into superpixels using the A-SLIC
method, and then a new CNN architecture is designed, which can mine high-level water features.
The proposed method was tested for three different cities of China having different water-body types
and topography, and results showed that the proposed method performed well with an accuracy of
98.31% to 99.81% and total EOE and ECE (2.68%). In addition, superpixel pre-processing reduces
the size of feature maps of the SAPCNN and computation complexity. This study concludes that the
proposed deep-learning methods can significantly improve urban surface water detection accuracy for
high-resolution remote-sensing imagery.
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Abstract: This paper introduces three artificial neural network (ANN) architectures for monthly
streamflow forecasting: a radial basis function network, an extreme learning machine, and the
Elman network. Three ensemble techniques, a simple average ensemble, a weighted average
ensemble, and an ANN-based ensemble, were used to combine the outputs of the individual
ANN models. The objective was to highlight the performance of the general regression neural
network-based ensemble technique (GNE) through an improvement of monthly streamflow
forecasting accuracy. Before the construction of an ANN model, data preanalysis techniques, such as
empirical wavelet transform (EWT), were exploited to eliminate the oscillations of the streamflow
series. Additionally, a theory of chaos phase space reconstruction was used to select the most relevant
and important input variables for forecasting. The proposed GNE ensemble model has been applied
for the mean monthly streamflow observation data from the Wudongde hydrological station in
the Jinsha River Basin, China. Comparisons and analysis of this study have demonstrated that
the denoised streamflow time series was less disordered and unsystematic than was suggested by
the original time series according to chaos theory. Thus, EWT can be adopted as an effective data
preanalysis technique for the prediction of monthly streamflow. Concurrently, the GNE performed
better when compared with other ensemble techniques.

Keywords: monthly streamflow forecasting; artificial neural network; ensemble technique;
phase space reconstruction; empirical wavelet transform

1. Introduction

Streamflow forecasting has been one of the key issues in hydrology in recent decades.
Enhancing streamflow forecasting accuracy is of great significance to various aspects of hydrological
system such as water allocation, flood control, and disaster relief. In recent decades, numerous methods
and hydrological models have been studied to obtain accurate streamflow predictions. These methods
can be grouped into two categories: conceptual models and empirical models [1]. Conceptual models,
also known as physically based models, are designed to simulate the physical mechanism of
hydrological processes [2]. However, because of insufficient data collection both in space and time for
conceptual models, these models may not be feasible for streamflow forecasting [3]. On the other hand,
empirical models are data-driven models which are built using historical information contained in the
hydrological time series as opposed to the physical processes of a certain catchment [4–6]. The various
empirical models involved in hydrological forecasting predominantly include time series models,
machine learning methods, and hybrid methods. Time series models, especially auto-regressive moving
average models, have been one of the most popular methodologies for streamflow forecasting over
the last decades. However, the results of the previous studies have shown that time series models only
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provide satisfactory results when the series are either linear or near-linear; they do not perform well
with non-linear series [1,7].

As a result of this limitation of time series models, in recent years, various machine learning
methods have been applied in the forecasting of non-linear hydrological systems. Among the various
machine learning methods, artificial neural networks (ANNs), which include backpropagation neural
network (BPNN), radial basis function (RBF) neural network, generalized regression neural network
(GRNN), Elman neural network, and multi-layer feed-forward (MLFF) network, are among the most
popular techniques for hydrological time series forecasting. Chen et al. [8] applied three different
ANN models, namely a MLFF network, a RBF network, and a GRNN, to predict the streamflow,
and copula–entropy (CE) was utilized to identify the inputs of the networks. Results showed
that the MLFF network with the CE method obtained better results in comparison with traditional
linear correlation analysis. Chang et al. [9] successfully introduced BPNN, Elman neural network,
and NARX network into the forecasting of one-to six-steps ahead of floodwater storage pond water
levels. The results indicated that the proposed NARX model could be beneficial for the control of
urban floods. Hosseini-Moghari and Araghinejad [10] utilized the recursive and direct versions of
Multi-Layer Perceptron (MLP), RBF and GRNN neural networks for forecasting droughts at short-,
mid-, and long-term time scales, respectively. Results showed that the recursive models obtained
better results at smaller time scales of the Standard Precipitation Index while the direct models showed
better performance at longer time scales.

Numerous successes have been obtained in the applications of ANNs for time series
forecasting; rooms exists to improve single ANN method performance. One trend to enhance
the performance of ANN models for time series forecasting is to employ data-preprocessing
techniques [11,12]. Wang et al. [13] presented a hybrid approach which combined ensemble empirical
mode decomposition (EEMD) and artificial neural networks for medium and long-term runoff
forecasting. Results of this study indicated that EEMD could enhance forecasting accuracy of
medium and long-term runoff time series. Zhu et al. [14] developed signal decomposition techniques,
including discrete wavelet transform (DWT) and empirical mode decomposition (EMD), to improve
the forecasting accuracy of the support vector machine (SVR) models for monthly streamflow
prediction. Results have shown both EMD and DWT can improve the forecasting accuracy of monthly
streamflow, while DWT performed better EMD in enhancing the forecasting accuracy of the SVM
model. Seo et al. [15] compared and evaluated three hybrid models for forecasting daily river stages:
the wavelet package-ANN (WPANN) model, the wavelet package-adaptive neuro-fuzzy inference
system (WPANFIS) model, and the wavelet package-SVM (WPSVM) model. The results obtained
indicated that the WPANFIS models provided better prediction results than the WPANN and WPSVM
models. Although WT- and EMD-based data preprocessing techniques have shown their efficiency
in promoting the performance of machine learning forecasting methods, the performance of WT is
sensitive to the selection of mother wavelets and EMD is likely to be encountered with the mode mixing
problem. The Empirical Wavelet Transform (EWT) proposed by Gilles [16] solves these problems.
The efficiency of EWT as a data preanalysis method to improve the forecasting accuracy of machine
learning methods has been demonstrated in Hu and Wang [17] and Wang and Hu [18] for mean
half-hour wind speed and mean 15 min wind speed forecasting, respectively.

To construct an ANN model for streamflow forecasting, one of the most important steps is to
determinate appropriate input vectors. Numerous studies have confirmed and verified the existence of
chaotic behavior in hydrological time series as that generated by the underlying stochastic processes,
the phase space reconstruction (PSR) method has been utilized as an alternative approach to select
relevant and important input variables for ANN models [19]. Guo et al. [20] introduced the PSR
method to determine the inputs of the SVR streamflow prediction model to overcome the drawbacks
in the empirical judgment within the structure of the forecasting model. Hu et al. [21] investigated
the cross-scale chaotic behaviors of the runoff processes in an inland river of central Asia by using the
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PSR technique and chaos theory. Ouyang et al. [22] successfully introduced the PSR method in the
construction of an input matrix for SVR models for forecasting monthly rainfall.

Several papers have studied the employment of a single ANN [23], while other have compared
the performance of different ANN architectures. Because an ensemble model often can obtain more
accurate results than its constituent components, employing ensemble techniques has become a
popular topic in recent years to enhance the generalizability and reliability of ANNs. Ensemble
techniques have already been successfully applied to numerous time series predictions such as wind
and solar power forecasting [24] as well as heating energy consumption predictions [25]. In this
study, the objective was to investigate the efficiency of various ensemble techniques including simple
averaging ensemble (SAE), weighted averaging ensemble (WAE), and GRNN-based ensemble (GNE)
through the combination of the outputs of various single ANN models. Additionally, to take advantage
of both the superior performance of EWT in data preanalysis and the PSR technique in selecting input
vectors, the EWT and PSR methods were exploited in the proposed ensemble forecasting models.
Mean monthly streamflow observation data from Wudongde hydrological station in Jinsha River Basin,
China was used to demonstrate the efficiency of the proposed GNE ensemble model.

2. Methodology

2.1. Artificial Neural Networks

2.1.1. Radial Basis Function Neural Network

Radial basis function neural network is type of multilayer and feed-forward neural network
(FNN) [26]. Similar to traditional ANNs, the RBF neural network consists of three layers which include:
an input layer which composed of input variables, a hidden layer where the input variables are
transformed by a nonlinear function, and a linear output layer which produces the network response.
In comparison with the most commonly used sigmoidal functions employed by a FNN, the hidden
layer of a RBF neural network uses Gaussian transfer functions as activation functions. The Gaussian
activation function can be written as:

φi(x) = exp
(
−‖x − ci‖2/2q2

i

)
(1)

where x = [x1, x2, . . . , xn]
T is the input vector with N dimensions, ci = [ci1, ci2, . . . , cin]

T is the center of
the ith neuron in the hidden layer, qi is the width of the Gaussian function, and || || is the Euclidean
Norm. The response of the jth node in the output layer can be written as

yj(x) =
h

∑
i=1

wijφi(x)j = 1, 2, . . . , m (2)

where wij is the connecting weight between the ith hidden node and the jth output node.

2.1.2. Extreme Learning Machine

Extreme Learning Machine (ELM) developed by Huang et al. [27] is a new type of single hidden
layer feed-forward network (SLFN). Given a set of N samples (xi, ti), i = 1, 2, . . . , N, the ELM network
with L hidden neurons and activation function g can be referred to as:

fL =
L

∑
i=1

βig
(
ai·xj + bi

)
(3)

where xi = [xi1, xi2, . . . , xin]
T ∈ Rn; ti = [ti1, ti2, . . . , tim]

T ∈ Rm, ai = [a1i, a2i, . . . , ani] is the weight
vector that connects the n input neurons with the ith hidden neuron; βi = [βi1, βi2, . . . , βim]

T is the
weight vector that connects the ith hidden neuron with the m output neurons; bi is the bias.
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Equation (3) can be abbreviated as:
Hβ = T (4)

where

H =

⎡⎢⎣ h(x1)
...

h(xN)

⎤⎥⎦ =

⎡⎢⎣ g(a1·x1 + b1) · · · g(aL·x1 + bL)
... · · · ...

g(a1·xN + b1) · · · g(aL·x1 + bL)

⎤⎥⎦
N×L

(5)

β =

⎡⎢⎣ β1
T

...
βL

T

⎤⎥⎦
L×m

andT =

⎡⎢⎣ t1
T

...
tN

T

⎤⎥⎦
N×m

(6)

and H is the output matrix of the hidden layer. The output weights of ELM can be obtained by
calculating the least square solution of the following equation:

‖Hβ̂ − T‖ = ‖HH†T − T‖ = min
β

‖Hβ − T‖ (7)

The least square solution can be given as:

�
β = H†T (8)

where H† denotes the Moore-Penrose generalized inverse of H [27].

2.1.3. Elman Neural Network

Elman neural network is a kind of dynamic recurrent neural network [28]. In addition to the
input layer, hidden layer, and output layer, an Elman network has a special recurrent layer which
connects every input unit to a hidden unit; every hidden unit has a corresponding time delay [9].
The recurrent layer is used to store the output information of the hidden layer within a certain time
delay; that information is then used as the input for the hidden layer. Therefore, the outputs of the
Elman network depend not only on the preset inputs but also on the previous states of the hidden
units [9]. In this study, the Elman network was trained using a gradient descent with momentum;
the transfer functions of hidden and output layers were of sigmoid and linear types, respectively.

2.1.4. General Regression Neural Network

The GRNN was first introduced by Specht [29] and was a variation of RBF. Assuming a random
vector X and the joint continuous probability density function p(X, y) is known, the regression of Y on
x can be given by [29,30]:

E[y|X] =

∫ ∞
−∞ yp(X, y)dy∫ ∞
−∞ p(X, y)dy

(9)

where E[y|X] is the conditional expect of the output y given the input vector X. The joint density
p(X, y) is usually unknown and can be estimated by the Gaussian kernel estimator:

p̂(X, y) =
1

n(2π)(d+1)/2σ(d+1)

n

∑
j=1

exp

[
−

D2
j

2σ2

]
exp

[
−
(
y − yj

)2
2σ2

]
(10)

where D2
j =
(
X − Xj)T(X − Xj), n is the number of observations, d is the dimension of X, and σ is the

smoothing parameter.
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According to Equations (9) and (10), the general version of GRNN can be obtained as follows:

ŷ(X) =

n
∑

j=1
yj exp

(
− D2

j
2σ2

)
n
∑

j=1
exp
(
− D2

j
2σ2

) (11)

where ŷ(X) is the probability estimate function of y(x).

2.2. Phase Space Reconstruction

To transfer a one-dimension time series into a multi-dimensional phase-space, Packard et al. [31]
proposed a PSR method. The PSR method can fully uncover the hidden information of the time
series. For a given time series x(i), i = 1, 2, . . . , n, the key of the PSR method is to find the embedded
dimension m and the parameter of time delay τ, such that{

Xk = {x(k), x(k + τ), · · · , x(k + (m − 1)τ)}
Yk = {x(k + mτ)} k = 1, 2, · · · , n − (m − 1)τ (12)

where Xk represents the kth phase point of the input vector and Yk represents the kth phase point of
the output vector.

In this study, the auto-correction function (ACF) value and Average Mutual Information (AMI)
were utilized to determine the time delay τ; the Cao method [32] was utilized to determine the
embedded dimension m. Generally, the time delay τ is selected when the ACF first passes through
zero value or the AMI arrives at the first minimum [33]. The value of m is determined according to
Cao [32], once E1 stops changing when d is greater than some value d0. Subsequently, the minimum
embedding dimension is selected as d0 + 1. Readers may refer to Cao [32] for more information about
the Cao method.

Only time series with chaotic characteristics can obtain accurate forecasting results using chaotic
theories. After the time delay and embedded dimension are determined, the chaotic characteristics of
the time series should be confirmed. The most commonly used method is the maximum Lyapunov
exponent method. If the maximum Lyapunov exponent λ of the time series is positive, then the time
series shows chaos features. Otherwise, τ and m needs to be redefined. In this study, the small data sets
method proposed by Rosenstein et al. [34] was used to calculate the maximum Lyapunov exponent of
a time series.

2.3. Empirical Wavelet Transform

Empirical wavelet transform developed by Gilles [16] is used to decompose the given signal
into a collection of amplitude modulated–frequency modulated (AM-FM) signals according to
the information contained in the Fourier spectrum of the signal. For a given time series x(t),
the decomposition processes using EWT can be described in the following five steps.

Firstly, the Fourier spectrum F(ω) of the original time series was calculated using Fast Fourier
Transform Algorithm;

Secondly, the boundaries ωi were determined by proper segmentation of the Fourier spectrum:

ωi =
fi + fi+1

2
f or1 ≤ i ≤ N − 1 (13)

where { fi}, i = 1, 2, . . . , N denotes the frequencies corresponding to the local maxima and f0 = 0,
fN = π.
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Thirdly, the empirical wavelets ψi(ω) and scaling function ϕi(ω) were constructed:

ψi(ω) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , i f (1 + γ)ωi ≤ |ω| ≤ (1 − γ)ωi+1

cos
[

π
2 β
(

1
2γωi+1

(|ω| − (1 − γ)ωi+1)
)]

, i f (1 − γ)ωi+1 ≤ |ω| ≤ (1 + γ)ωi+1

sin
[

π
2 β
(

1
2γωi

(|ω| − (1 − γ)ωi)
)]

, i f (1 − γ)ωi ≤ |ω| ≤ (1 + γ)ωi

0 , otherwise

(14)

ϕ1(ω) =

⎧⎪⎨⎪⎩
1 , i f |ω| ≤ (1 − γ)ω1

cos
[

π
2 β
(

1
2γω1

(|ω| − (1 − γ)ω1)
)]

, i f (1 − γ)ω1 ≤ |ω| ≤ (1 + γ)ω1

0 , otherwise

(15)

where β(x) = x4(35 − 84x + 70x2 − 20x3), γ < mini

(
ωi+1−ωi
ωi+1+ωi

)
.

Fourthly, and the approximate and detail coefficients were calculated:

Wx(i, t) = 〈x(t), ψi(t)〉 =
∫

x(τ)ψi(τ − t)dτ = F−1[x(ω)ψ(ω)] (16)

Wx(1, t) = 〈x(t), ϕ1(t)〉 =
∫

x(τ)ϕ1(τ − t)dτ = F−1[x(ω)ϕ1(ω)] (17)

Finally, the original signal was reconstructed to obtain different modes:

x(t) = Wx(1, t)× ϕ1(t) +
N

∑
i=2

Wx(i, t)× ψi(t) (18)

Readers may refer to Gilles [16] for more information about EWT.

2.4. Ensemble Techniques

The generalizability and reliability of an ANN model can be often improved by appropriate
ensemble techniques. Because the forecasting results of the individual models can vary in different
data points, the error of the individual networks can be compensated by combining the outputs [25].
In this study, three kinds of ensemble techniques, namely, SAE, WAE, and GNE, were introduced to
combine the outputs of different ANNs and were studied.

2.4.1. Simple Averaging Ensemble

The SAE takes advantage of the concept of the arithmetic mean. Consider an ANN ensemble
model with K sub-ANNs, the output of the SAE model can be defined as:

y =
1
K

K

∑
k=1

yk
i i = 1, 2, . . . , N. (19)

where yk
i is the output of the kth sub-ANN and N denotes the length of the data set.

2.4.2. Weighted Averaging Ensemble

In the WAE model, the weighted means of the outputs of the sub-ANNs constructed the ensemble
output. The output of the WAE model with K sub-ANNs can be defined as:

yi =
K

∑
k=1

wkiyk
i i = 1, 2, . . . , N. (20)
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where wki denotes the weight of the kth model at point i and
K
∑

k=1
wki = 1, wki ≥ 0. The specific value

of wki is determined according to the absolute error between the observed values and the simulated
values. The weights of different models at different points are variational, and the point with smaller
absolute error will be given bigger weight. The weight can be calculated as:

wki =
1/|eki|

K
∑

k=1
1/|eki|

(21)

where |eki| denotes the absolute error of the kth model at point i.

2.4.3. Artificial Neural Network-Based Ensemble

Because the spread of the GRNN model is the only parameter to be optimized, error caused by
uncertainty in the parameters can be decreased. Thus, the GRNN network was chosen as the ensemble
technique to enhance the performance of the single ANN. In the GNE model, the forecasting results
of the RBF, ELM, and Elman networks were taken as input variables, while the target variable was
taken as the output variable. The GRNN network was trained to obtain the best model parameter.
The forecasting result of the GRNN network was taken as the result of the GNE model. The weight
coefficients of the RBF, ELM, and Elman models were variational and the accurate weight of these
models could not be obtained because of the black-box principle of the GRNN neural network.
The structure of the GRNN ensemble forecasting model, using the RBF, ELM, and Elman models,
is shown in Figure 1.

 

Figure 1. The structure of the GNE model based on RRF, ELM and Elman networks.
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2.5. Model Performance Evaluation

It is important to apply multiple error measure indices when evaluating the forecasting ability of
the developed models. Four measures, the root mean square error (RMSE), the mean absolute error
(MAE), the mean absolute percent error (MAPE), and the coefficient of correlation (R,) have been used
in this paper [35]. Among the four statistical measures, RMSE was sensitive to the extremely large
or small values of a time series and reflected the degree of variation, the MAE reflected the actual
forecasting error in a more balanced perspective, and the MAPE was a measure of accuracy for the
forecasted streamflow series with no units. The RMSE, MAE, and MAPE are defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(
qp(i)− qo(i)

)2 (22)

MAE =
1
N

N

∑
i=1

∣∣qp(i)− qo(i)
∣∣ (23)

MAPE =
1
N

N

∑
i=1

∣∣qp(i)− qo(i)
∣∣

qo(i)
× 100% (24)

where qp(i) and qo(i) are the predicted and observed monthly streamflow series, respectively, and N is
the length of the data.

The R describes the degree to which two data sets are related and ranges from −1 to 1. The larger
the absolute value of the correlation coefficient, the more the predicted and observed data is related.
The correlation coefficient is defined as:

R =
(1/N)∑N

i=1

(
qp(i)− qp

)
(qo(i)− qo)√

(1/N)∑N
i=1

(
qp(i)− qp

)2 ×
√
(1/N)∑N

i=1(qo(i)− qo)
2

(25)

where qp and qo indicate the average value of the predicted and observed runoffs, respectively.

2.6. Modeling Framework

Figure 2 illustrates the detailed procedures of schematic structures of the various models used
in this study. The proposed EWT-GNE model could be implemented in four steps. The first step
was the denoising process of the original streamflow time series. In this step, the streamflow series
was divided into four independent modes using the EWT algorithm. The mode with the highest
frequency was removed to eliminate redundant noise. In the second step, the PSR method was
used to construct the phase space matrix, namely, the input matrix of the neural networks. In the
third step, three individual ANN models, RBF, ELM, and Elman networks, were used to forecast the
monthly streamflow time series independently. The three varying architectures of ANNs were chosen
because they are three of the most representative ANNs that have been used for forecasting. The RBF
network is one of the most widely used FNNs. The ELM network is a new type of SLFNs in which
weights and biases are randomly assigned. The Elman network is a type of dynamic recurrent neural
network. The last step was to group the results of the three individual models using GRNN. In this
part, the forecasted outputs of the RBF, ELM, and Elman networks were taken as input variables of
the GNE model. The forecasting result of the GRNN model was the result of the proposed EWT-GNE
model. The GRNN network was chosen as an ensemble technique because it has only one parameter to
be optimized. Accordingly, errors caused by parameter uncertainty can be decreased. The left portion
of Figure 2 illustrates the modelling framework of the models without the EWT denoising technique,
while the right portion of Figure 2 illustrates that of the models with the EWT denoising technique.
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Figure 2. A schematic view of the modeling framework.

3. Model Construction and Development

3.1. Study Area and Data Collection

The Jinsha River is located in the upper portion of the Yangtze River and originates in the
Tanggula Mountains. It flows through Sichuan, Yunan and Tibet provinces in China. The upper
portion of the Yangtze River located in Zhimenda, Yushu in Qinghai Province is called the Jinsha
River, the length of which is 2326 km and the height difference is 3280 km. The catchment area of
Jinsha River basin is 473,000 km2. The Jinsha River Basin can be subdivided into upper, middle,
and lower sections. The monthly streamflow data of the Wudongde hydropower station, which is
located in the lower portion of the Jinsha River basin, is studied in this paper. The catchment area of
the Wudongde hydropower station is 406,100 km2, which accounts for 86% of the total area of the
Jinsha River basin. The average annual discharge is 3810 m3/s and the total runoff is 1200 billion m3.
The observed data ranged from January 1958 to December 2012, with a total length of 55 years (660
months). The first 525 months of the streamflow data (January 1958 to September 2001) were selected
for training. The remaining 135 months (October 2001 to December 2012) were used for validation.
Figure 3 illustrates the locations of the Jinsha River basin and the Wudongde hydrological station.

3.2. Data Preprocessing Using Empirical Wavelet Transform

Before submitting the streamflow series into the forecasting model, the original series was
preprocessed using EWT. The original streamflow series was divided into four independent modes.
The mode with the highest frequency was discarded. A visual representation of the decomposed
subseries and the comparison between the original and denoised series is shown in Figure 4. Following
preprocessing, the peaks of the original series were weakened and the troughs were lowered.
The oscillations of the monthly streamflow time series were eliminated to a certain extent using EWT.
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Figure 3. Locations of the Jinsha River basin and the Wudongde hydrological station.

 

Figure 4. Visual representation of the decomposed subseries and the comparison between the original
and reconstructed series.

3.3. Determination of Phase Space Reconstruction Parameters

After the denoising process was completed, the one-dimensional denoised streamflow series was
reconstructed into a multi-dimensional phase space matrix for forecasting. To determine the delay
time τ of the PSR method, the ACF and AMI values of the original and reconstructed series were
calculated. As can be seen in Figure 5, for both the original and the reconstructed series, the AMI
values reached the first minimum at lag 3; the ACF values also attained zero. Because the ACF and
AMI values gave the same determination of delay time τ, τ was chosen as 3 for both the original
and the reconstructed time series. After determining the delay time, the Cao method was used to
determine the embedded dimension m. As can be seen in Figure 5, because E1(m) almost stopped
changing when m was greater than 11, m was chosen as 12 for the original time series, while 8 was
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chosen for the reconstructed series. After the determination of τ and m, the maximum Lyapunov
exponent λm was computed for both series. λm was calculated as 2.263 and 4.142 for the original series
and the reconstructed series, respectively. Since the largest Lyapurov exponent was determined to
be positive, the streamflow series was identified as chaotic. Additionally, the maximum Lyapunov
exponent of the original series was much larger than the reconstructed series, which demonstrated
that the reconstructed streamflow time series was less disordered and unsystematic than the original
time series, according to chaos theory. Discarding the mode with the highest frequency eliminated
the redundant noises of the original monthly streamflow time series. Subsequently, the EWT method
could be used as a data preanalysis technique in the forecasting of the monthly streamflow series in
this study.

Figure 5. The auto-correction function (ACF) & Average Mutual Information (AMI) values and Cao
method results plot for the original and reconstructed streamflow series.

3.4. Parameter Settings of Different ANNs

The diversity of the submodels was realized through the use of various ANN architectures.
For the three submodels, the total number of hidden neurons was determined using a gird search
(GS) algorithm to assure fair and valid comparisons. The search range was set as [m, 2n + 20], where n
denotes the number of input neurons, m is set as 2n − 20 if n is bigger than 10; otherwise m was set at 1.
The searching step was set at 1. The transfer functions of hidden and output layers were of sigmoid
and linear types for the Elman neural networks, respectively, while that of the hidden layer of the
ELM network was linear. With regard to the RBF neural network, the spreads ranged from 0.1 to 4.0,
with 0.1 increment to obtain the best forecasting performance. The spread was the only parameter
to be optimized for the GRNN network. The spreads ranged from 0.02 to 0.1, with 0.01 increment.
The optimal parameters for neural networks used in this study for streamflow forecasting are shown
in Table 1.

Table 1. Optimal parameters of the ANN models used for streamflow forecasting.

Models RBF EWT-RBF ELM EWT-ELM Elman EWT-Elman GNE EWT-GNE

Neurons 20 20 43 35 9 20 – –
Spread 1.4 1.8 – – – – 0.045 0.029
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4. Results and Analysis

The comparison and analysis of results can be divided into four steps. First, the comparisons
between the methods with and without EWT were conducted to demonstrate the effectiveness
of the EWT-based preprocessing method in increasing the accuracy of streamflow time series
forecasting. Second, the performance of the three ANN models, e.g., the RBF, Elman, and ELM
models, were analyzed to investigate their ability in monthly streamflow forecasting as well as
to recommend the most appropriate model. Thirdly, comparisons among the predictions of the
various individual and ensemble models were investigated to verify the efficiency of the ensemble
techniques. Finally, the performance of the various ensemble techniques, including SAE, WAE,
and GNE, were compared to highlight the effectiveness of the GRNN-based ensemble technique.

The performance evaluation indices of the 12 models developed in this study, including RBF,
ELM, Elman, SAE, WAE, and GNE model, with and without the EWT algorithm, in the training
and validation periods are shown in Tables 2 and 3, respectively. It can be concluded from the
preliminary analysis of results between the non-denoising models and the EWT-based models that
the performances of the latter were superior to that of the former in terms of the four performance
indices. It can be seen from Tables 2 and 3 that the EWT-based models performed much better than
the corresponding non-denoising models. The RMSE, MAE, and MAPE values of the former were
all smaller than the latter, while the R value was significantly larger. To display the efficiency of the
EWT-based denoising technique, the model performance of the Elman and GNE models with and
without EWT in the validation period are shown in Figure 6, where the solid lines on the left represent
both the predicted and the observed values, while the right shows the scatter plots. It can be seen
from Figure 6 that the EWT-based models (EWT-Elman and EWT-GNE) approximated the original
streamflow time series better than the corresponding non-denoising models (Elman and GNE), and the
scatters distributed more tightly around the least-square regression line.

Table 2. The forecasting results of the models in the training period.

Models
RMSE
(m3/s)

MAE
(m3/s)

R
MAPE

(%)
Models

RMSE
(m3/s)

MAE
(m3/s)

R
MAPE

(%)

RBF 1175.70 710.11 0.931 17.751 EWT-RBF 748.72 480.94 0.973 13.508
ELM 1138.34 711.62 0.935 19.445 EWT-ELM 712.07 462.07 0.975 13.046

Elman 1071.81 641.72 0.943 15.380 EWT-Elman 715.71 463.51 0.975 13.551
SAE 1103.51 648.95 0.939 15.513 EWT-SAE 711.13 443.49 0.975 11.362
WAE 1070.36 574.04 0.943 12.268 EWT-WAE 693.70 399.46 0.976 9.204
GNE 920.53 548.81 0.958 13.055 EWT-GNE 613.16 385.95 0.982 10.237

Table 3. The forecasting results of the models in the validation period.

Models
RMSE
(m3/s)

MAE
(m3/s)

R
MAPE

(%)
Models

RMSE
(m3/s)

MAE
(m3/s)

R
MAPE

(%)

RBF 1351.04 796.64 0.898 20.342 EWT-RBF 854.68 574.94 0.959 17.446
ELM 1308.82 796.89 0.903 19.350 EWT-ELM 833.07 554.03 0.961 15.679

Elman 1292.60 796.78 0.906 20.045 EWT-Elman 821.11 543.21 0.962 14.455
SAE 1293.75 752.28 0.906 17.159 EWT-SAE 820.40 538.90 0.962 13.699
WAE 1264.56 677.82 0.910 14.016 EWT-WAE 796.13 481.35 0.965 11.410
GNE 1246.47 753.16 0.913 17.602 EWT-GNE 790.35 527.15 0.965 13.541
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Figure 6. Forecasting results of the Elman (GNE) and EWT-Elman (EWT-GNE) models in the
validation stage.

To further demonstrate variations in the forecasting performance between the non-denoising
models and the EWT-based models, the improved percentages between the two kinds of methods were
calculated. The RMSE, MAE, R, and MAPE differences within the EWT-Elman model and the Elman
model were 33.22%, 27.77%, 3.39%, 11.89% in the training stage and 36.48%, 31.82%, 3.39%, 27.89% in
the validation stage, respectively. For the EWT-GNE model and the GNE models, the RMSE, MAE, R,
and MAPE differences were 35.55%, 32.27%, 2.75%, 24.16% and 36.56%, 29.99%, 5.77%, 22.93% in the
training and validation stages, respectively. The comparisons between the EWT-based models and the
non-denoising models have demonstrated that the EWT denoising process is effective in improving
the prediction accuracy of the monthly streamflow.

From the results of Tables 2 and 3, it can also be seen that the Elman model performed the best
in comparison with the RBF and ELM models; additionally, the performance of the RBF model was
the worst. The differences between ELM and Elman models were not significant with respect to
RMSE, MAE, MAPE, and R criteria. The RMSE, MAE, MAPE, and R of the Elman model consistently
performed either equal to or better than the ELM model. The improvements of the RMSE, MAE, MAPE,
and R of the Elman model to ELM model were 1.44%, 1.95%, −0.10%, and 7.81% in the validation
stage, respectively.

It can also be seen in Tables 2 and 3 that all ensemble models performed better than the individual
models. The ensemble models (GNE and EWT-GNE) performed better than the corresponding
best-performing individual model (Elman and EWT-Elman). The RMSE, MAE, R ,and MAPE
differences between the GNE and Elman models were 11.23%, 11.20%, 1.31%, 12.24% in the training
stage and 3.62%, 5.49%, 0.74%, 12.35% in the validation stage. In contrast, those between the
EWT-GNE and EWT-Elman models were 14.33%, 16.73%, 0.68%, 24.46% in the training stage and 3.75%,
2.96%, 0.35%, 6.32% in the validation stage, which demonstrated the effectiveness of the proposed
GRNN-ensemble technique in enhancing the predicting ability of ANN models.

From a detailed comparison of the different ensemble models with EWT, according to
Tables 2 and 3, it can be seen that the four indices of both the EWT-WAE and EWT-GNE models
were superior to those of the EWT-SAE model. The EWT-GNE model performed slightly better than
the EWT-WAE model. The improvement of RMSE, MAE, R, and MAPE was 11.61%, 3.38%, 0.58%,
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−11.22% in the training stage and 0.73%, −9.52%, 0.03%, −18.68% in the validation stage between
EWT-WAE and EWT-GNE models. Additionally, to display the differences between the various
ensemble models, the forecasting results of the EWT-SAE, EWT-WAE, and EWT-GNE models are
shown in Figure 7. From the illustrations of Figure 7, it can be seen that the predicted values of
the EWT-GNE approximated the observed values better than the EWT-SAE model, with the scatters
distributed more tightly around the regression line. Thus, the superiority of the proposed GRNN-based
ensemble technique over the other ensemble techniques was demonstrated.

 

Figure 7. Forecasting results of the simple averaging ensemble (SAE), weighted averaging ensemble
(WAE) and GRNN-based ensemble (GNE) models with EWT in the validation stage.

5. Conclusions

The present study developed and tested an ANN ensemble model for monthly streamflow
forecasting through an application to a case study in China. Three neural network architectures
(RBF, ELM, and Elman) were used as sub-ANNs for forecasting. Results demonstrate that all three
ANNs performed well, with the best performance achieved by the Elman network. To improve
the generalizability and prediction accuracy of the ANNs, various ensemble techniques as the SAE,
the WAE, and the GNE were proposed to combine the outputs of the sub-ANNs. The ensemble models
achieved better prediction results compared with individual models, with the GRNN-ensemble model
having performed the best. As a result of the volatility of the monthly streamflow time series, EWT was
used to filter noise. The denoised streamflow time series was less disordered and unsystematic than
the original time series according to chaos theory. The models with the EWT-based denoising process
outperformed the non-denoising ones. Overall, results show that the proposed EWT-GNE model
can be used as a successful tool for monthly streamflow forecasting. The proposed GRNN-ensemble
technique can decrease the unpredictability of single ANN forecasting models, and the EWT algorithm
can filter the noises of the streamflow series, providing more accurate forecasting results.
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In the future, one can apply the techniques developed in this study to streamflow data in different
time scales and from other hydrological stations. Hydro-meteorological data such as rainfall [8,14],
precipitation, and streamflow data from adjacent hydrological stations [30] can be considered as
model inputs to enhance streamflow forecasting accuracy. Additionally, the newest machine learning
techniques, such as deep learning [36], can be considered in terms of streamflow forecasting.
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Abstract: This study proposed a hybrid neural network model that combines a self-organizing map
(SOM) and back-propagation neural networks (BPNNs) to model the rainfall-runoff process in a
physically interpretable manner and to accurately forecast typhoon floods. The SOM and a two-stage
clustering scheme were applied to group hydrologic data into four clusters, each of which represented
a meaningful hydrologic component of the rainfall-runoff process. BPNNs were constructed for
each cluster to achieve high forecasting capability. The physical hybrid neural network model was
used to forecast typhoon flood discharges in Wu River in Taiwan by using two types of rainfall data.
The clustering results demonstrated that the rainfall-runoff process was favorably described by the
sequence of derived clusters. The flood forecasting results indicated that the proposed hybrid neural
network model has good forecasting capability, and the performance of the models using the two
types of rainfall data is similar. In addition, the derived lagged inputs are hydrologically meaningful,
and the number and activation function of the hidden nodes can be rationally interpreted. This
study also developed a traditional, single BPNN model trained using the whole calibration data for
comparison with the hybrid neural network model. The proposed physical hybrid neural network
model outperformed the traditional neural network model in forecasting the peak discharges and
low flows.

Keywords: hybrid neural network; flood forecasting; self-organizing map

1. Introduction

Flood forecasting is an important nonstructural measure for flood mitigation during flash floods
caused by typhoons. Machine learning methods have been widely employed to develop flood
forecasting models. Among them, the artificial neural network (ANN) and its hybrids are competent
techniques widely used for flood forecasting. For example, ANNs have been successfully employed to
forecast rainfall and flood for decades [1–7]. Support vector machines (SVMs), which have the same
network architecture as the radial basis function neural network [8], have recently gained popularity
and exhibited good performance in rainfall and flood forecasting [9–17]. In addition, the neurofuzzy
system, which combines the ANN and fuzzy inference system, has been favorably applied in various
hydrologic forecasting studies [18–25].

Although ANN-based models exhibit high forecasting performance, they are regarded as a black
box and their physical interpretation is unattainable. For instance, Zhang et al. [26] and Lange [27]
noted that the ANN has no explicit form for analyzing the relationship between inputs and outputs
and that explaining the results obtained by the networks is difficult. Some studies have attempted
to interpret the physical meaning of the derived network structure and results of ANN models.
Jain et al. [28] demonstrated that the hidden neurons in the ANN rainfall-runoff model approximate
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various components of the hydrologic process, such as infiltration, base flow, and surface flow. Chen
and Yu [12] and Chen [29] demonstrated that the input data mined to construct the hidden nodes of an
SVM network are informative hydrologic data that characterize a flood hydrograph, particularly the
data around the peak flood and in the rising limb.

Separate ANN models trained using different input–output data sets have been proposed to
improve forecasting performance. For example, Furundzic [30] used the self-organizing map (SOM) to
decompose input–output data into three sets and develop separate ANNs for each data set. Abrahart
and See [31], Hsu et al. [32], and Jain and Srinivasulu [33] also applied the SOM to partition data into
different clusters corresponding to the different segments of the hydrograph and developed separate
ANN models for each cluster. They concluded that the performance of the separate ANNs is better
than that of a single ANN trained using the whole dataset. The partitioning of data is based on the fact
that different magnitudes of hydrologic data are produced by different physical processes. A separate
ANN can more closely model a specific dataset corresponding to a hydrologic component. However,
most studies that applied data partitioning focused on the decomposition method and performance
improvement. Efforts in physically partitioning data and interpreting the hydrologic process have
been limited.

The present study, which also partitioned data into clusters and constructed separate ANNs,
focused on the derivation of physically interpretable clusters. The SOM was applied to group
hydrologic data into four clusters. The sequence of these clusters physically represents the
rainfall-runoff process of a storm event according to the quantity of the rainfall and discharge
data. A two-stage clustering scheme was used to obtain the expected meaningful clusters.
A back-propagation neural network (BPNN) was employed to construct the forecasting model for
each cluster to forecast flood discharge. The proposed hybrid neural network model that combines
the SOM and BPNN characterizes the rainfall-runoff process in a physically interpretable manner.
The physical hybrid neural network model was used to forecast typhoon flood discharges in Wu River
in Taiwan. Two types of forecasting model were constructed with respect to two sets of rainfall data
(the basin average rainfall and rainfall from different rain gauges). The clustering results prove that the
proposed clustering scheme captures the behavior of the rainfall-runoff process and properly divides
the hydrologic process into different components. Flood forecasting results reveal that both types of
forecasting models have favorable forecasting capability with high coefficient of efficiency values and
low mean absolute errors. In addition, the proposed hybrid neural network model was compared with
a single traditional neural network model that was constructed using the whole dataset. The following
section introduces the proposed physical hybrid neural network model including the methodologies
of SOM and BPNN. Section 3 provides information of the study area and typhoon flood data. Section 4
presents the model development process and the flood forecasting performed by the hybrid neural
network model. A comparison of the proposed model to the traditional BPNN model is presented as
well. The last section outlines the conclusions of this study.

2. Physical Hybrid Neural Network Model

2.1. Rainfall-Runoff Clusters Based on the Hydrologic Process

The rainfall-runoff process can be divided into several temporal steps corresponding to respective
hydrologic phenomena. This study grouped rainfall-runoff data into clusters to represent different
components of the rainfall-runoff process. An example of a typical rainfall event is shown in Figure 1a.
Such an event generally begins with low rainfall (R), followed by intense, heavy rainfall, and finally
ends with sprinkling rainfall. A storm hydrograph recorded during a storm rainfall event is presented
in Figure 1b. At the beginning of the event, the discharge (Q) rises slowly and the discharge increment
(ΔQ) is small. As the high intensity rainfall continues, the discharge increases rapidly to the peak
discharge during the rising limb of the hydrograph. In the major part of the rising limb, the discharge
increment is large. After cessation of the intense rainfall, the discharge declines sharply, but the
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discharge increment remains large. In the lower part of the recession limb, the discharge decreases
slowly to the base flow and the discharge increment is small.

On the basis of the typical rainfall-runoff event illustrated in Figure 1, the rainfall-runoff process
can be divided into several steps, as shown in Figure 2. At the beginning of a rainfall event, the rainfall
is generally low and does not significantly contribute to the runoff. The rainfall-runoff data during this
step are low rainfall and small discharge increments, and the data are grouped as Cluster A. Next, the
rainfall increases and becomes large; however, the initial losses and high infiltration losses during this
period cause only a gradual increase in the discharge. The high rainfall and small discharge increment
data during this period are grouped as Cluster B. Subsequently, the infiltration losses decrease and
increasingly more surface runoff reaches the basin outlet. The discharge increases rapidly to the crest
segment of the hydrograph. The high rainfall and large discharge increment data are grouped as
Cluster C. When the rainfall diminishes and the discharge starts to decrease, the data with low rainfall
and large discharge increment are grouped as Cluster D. Subsequently, the segment of a hydrograph
with low rainfall and small discharge increment is similar to the initial part of the hydrograph, and
the corresponding data are thus also grouped as Cluster A. Thus, the rainfall-runoff process can be
described by the sequence through Clusters A, B, C, D, and A. For an actual storm hydrograph, the
rainfall-runoff phenomenon can be more complex, and the translation and storage effects can be
significant in large watersheds. However, the proposed four clusters represent the rainfall-runoff
process for a typical storm hydrograph.
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Figure 1. Example of a typical rainfall and runoff event. (a) Rainfall hyetograph; (b) Flood hydrograph.

2.2. Hybrid Neural Network Model

The proposed hybrid neural network model based on physically clustered hydrologic data is
illustrated in Figure 3. The input rainfall and discharge increment data are grouped into four clusters
using the SOM. Each cluster meaningfully corresponds to a typical step in the rainfall-runoff process.
Then, BPNNs are constructed with respect to each cluster to forecast the discharge increment. The
discharge forecasts are obtained when the forecasted discharge increment is added to the observed
discharge at the present time. The detailed methodology of the SOM and BPNN has been well
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documented in the literature. Therefore, a brief description of the two neural network models is
provided herein.
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Figure 2. Rainfall-runoff clusters based on the hydrologic process.

 

Figure 3. Structure of the proposed hybrid neural network model.

2.2.1. SOM

The SOM, proposed by Kohonen [34], is an unsupervised-learning neural network that automatically
groups input data into several clusters without assigning the target outputs. The SOM uses a competitive
learning strategy to map the input data onto a low-dimensional topological map. The process of
constructing an SOM neural network is described briefly as follows.

The SOM network comprises one input layer and one output layer (the topological map), and the
input neurons are fully connected to the output neurons. Let the input variables xi (i = 1, 2, . . . , m)
form an input vector X, where m is the number of input neurons. Each output neuron uj (j = 1, 2, . . . ,
n) on the topological map has a weight wij with respect to each input variable xi, and n is the number
of output neurons. The SOM is trained iteratively using randomly assigned initial weights. The SOM
algorithm calculates the similarity between the input vector X and weight vector Wj for each output
neuron. The similarity is defined as the Euclidean distance dj:
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dj = ‖X − Wj‖ =

(
m

∑
i=1

(xi − wij)
2

)1/2

(1)

The output neuron whose weight vector is closest to the input vector has the minimum distance
and is declared the winning neuron. The weights of this winning neuron u∗

j and its neighboring
neurons uj are then adjusted to approach the input vector. A typical neighborhood function is the
Gaussian function hj:

hj = exp

⎛⎝−‖uj − u∗
j ‖2

2σ2

⎞⎠ (2)

where σ is the width of the topological neighborhood. The neighborhood function hj and width σ are
usually set to decrease monotonically during the iterative process. The adjusted weight at iteration
time r + 1 is defined as

Wj(r + 1) = Wj(r) + η(r) · hj(r) · [X − Wj(r)] (3)

where η is the learning rate (0 < η < 1) and is also set to decrease during the iterative process. Iterations
are performed until the weight vector converges. Thereafter, similar input vectors are mapped to a
specific region (cluster) on the topological map, and several clusters are automatically grouped.

2.2.2. BPNN

The BPNN, developed by Rumelhart et al. [35], is the most representative and popularly
used neural network. A supervised multilayer feed-forward neural network, the BPNN uses the
back-propagation algorithm for network training. The BPNN typically comprises three layers: the
input, hidden, and output layers. Let the input variables xi (i = 1, 2, . . . , m) be the neurons in the input
layer, and ŷk (k = 1, 2, . . . , p) be the output variable of the k-th neuron in the output layer. The BPNN
output ŷk is expected to fit the target (actual) output yk. The BPNN (with n neurons in the hidden
layer) can be expressed in the following form:

ŷk =
n

∑
j=1

wjk · F

(
m

∑
i=1

wij · xi + bj

)
+ ck (4)

where wij is the weight connecting the i-th neuron in the input layer to the j-th neuron in the hidden
layer; bj is the bias of the j-th hidden neuron; wjk is the weight connecting the j-th neuron in the hidden
layer to the k-th neuron in the output layer; ck is the bias of the k-th output neuron; and F( ) is the
activation function of the hidden neuron. Among the various activation functions that exist, linear,
sigmoid, and hyperbolic tangent functions are the most widely used functions.

In the learning process of the back-propagation algorithm, the weights of the network are adjusted
to minimize the objective function E:

E =
1
2

p

∑
k=1

(ŷk − yk)
2 (5)

To minimize E, the gradient descent method is used to tune the weights along the negative
direction of the gradient of E. The iteration of weight adjustment is repeated until convergence is
reached. The detailed process of determining the weights can be found in the literature [36,37].

3. Study Area and Hydrologic Data

The study area is Wu River, located in central Taiwan (Figure 4). Wu River flows through the
metropolitan area of Taichung City and empties into the Taiwan Strait. Wu River encloses a basin area
of 2026 km2 and has a mainstream length of 119 km. The average annual precipitation in the Wu River
basin is approximately 2087 mm, much of which is typhoon rainfall.
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Figure 4. Wu River basin and locations of the gauge stations.

The downstream Dadu Bridge discharge station (Figure 4) near the metropolitan area is the
forecasting object. This study collected hourly discharge data from Dadu Bridge and hourly rainfall
data from eight rainfall gauges (named G1 to G8 and shown in Figure 4). Data for thirteen typhoon
flood events with complete records were obtained. Among these flood events, 10 events (488
datasets) were used for calibration and three events (206 datasets) that caused flooding disasters
in the downstream metropolitan area were used for validation. Table 1 lists the characteristics of the
typhoon flood events, including the date and name of the typhoon, total amount of average rainfall
(Thiessen polygon method) in the Dadu Bridge Basin, and peak discharge at Dadu Bridge.

Table 1. Characteristics of collected typhoon flood events.

Event No. Date Typhoon Total Rainfall (mm) Peak Discharge (m3/s) Note

01 4 August 1998 Otto 100.9 1440 Calibration
02 30 July 2001 Toraji 290.4 10,000 Calibration
03 16 September 2001 Nari 165.0 2930 Calibration
04 20 June 2012 Talim 95.5 1067 Calibration
05 1 August 2012 Saola 452.1 7199 Calibration
06 12 July 2013 Soulik 358.6 11,004 Calibration
07 21 August 2013 Trami 319.6 2011 Calibration
08 29 August 2013 Kongrey 127.0 1786 Calibration
09 7 August 2015 Soudelor 138.8 720 Calibration
10 28 September 2015 Dujuan 134.9 967 Calibration
11 31 July 1996 Herb 415.3 5630 Validation
12 1 July 2004 Mindulle 898.4 14,802 Validation
13 22 July 2014 Matmo 193.8 1704 Validation

4. Model Development and Forecasting Results

4.1. Determining the Input Variables

This study analyzed the lags between the discharge at Dadu Bridge with various lagged rainfall
and discharge variables. The derived lagged variables were used as inputs of the proposed hybrid
neural network model to forecast the discharge at Dadu Bridge. This study applied the linear transfer
function (LTF) to determine the lagged variables by applying the least-squares technique to construct
a linear function with lagged input variables. The t-test was employed to examine the statistical
significance of the input variables. An advantage of using the LTF is that the lagged variables can
be objectively determined by the statistical significance test. The process of using the LTF and the
statistical significance test to determine the lags of input variables can be found in Chen et al. [38].
The time step for the analysis of lags and the following flood forecasting is one hour in this study.
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This study used two types of hourly rainfall data as input variables: multiple rainfall data from
eight rain gauges and average rainfall data. The most significant lags between the discharge at Dadu
Bridge and the rainfall from each rain gauge were determined by the LTF. The lag for rain gauges G1
and G2 was 1 h, and the lag for G3 was 2 h. Rain gauges G4, G5, and G6 exhibited a lag of 3 h, and G7
and G8 exhibited a lag of 4 h. The determined lags were hydrologically rational. When the distance of
a rain gauge to Dadu Bridge was longer, the most statistically significant time lag was also longer. For
the average rainfall, the Thiessen polygon method was used to calculate the average rainfall in the
Dadu Bridge watershed. The lagged average rainfall variables for 1–4 h were statistically significant at
the 5% significance level, with the most significantly lagged variable for 3 h. The lagged discharge
variables (discharge increment) were also examined. Only the lagged discharge variable for 1 h was
statistically significant at the 5% significance level.

Let the hourly discharge of Dadu Bridge at the present time t be Q(t). For flood forecasting,
the forecasted discharge with the lead-time of 1 h is Q̂(t + 1). When the multiple rainfall data from
eight rain gauges are used as inputs according to the most significant lags, the input variables are
denoted as RG1(t), RG2(t), RG3(t − 1), RG4(t − 2), RG5(t − 2), RG6(t − 2), RG7(t − 3), and RG8(t − 3),
where RG1(t) indicates the rainfall variable for rain gauge G1 at time t; the same notation applies to
the other rain gauges. Let the discharge increment be ΔQ(t), which is defined as ΔQ(t) = Q(t) − Q(t
− 1). The proposed hybrid neural network model using multiple rainfall data (denoted as f I[ ]) for
forecasting the one-hour-ahead discharge increment ΔQ̂(t + 1) can be formulated as

ΔQ̂(t + 1) = fI [ΔQ(t), RG1(t), RG2(t), RG3(t − 1), RG4(t − 2),
RG5(t − 2), RG6(t − 2), RG7(t − 3), RG8(t − 3)]

(6)

When the discharge increment ΔQ̂(t + 1) is computed by the model and added to the observed
discharge Q(t), the one-hour-ahead discharge Q̂(t + 1) can be forecasted. The model that uses the
basin average rainfall data RA(t) (denoted as f II[ ]) is formulated as

ΔQ̂(t + 1) = fII[ΔQ(t), RA(t), RA(t − 1), RA(t − 2), RA(t − 3)] (7)

For convenience, the hybrid neural network model using multiple rainfall data is hereafter termed
Model I, and that using average rainfall data is termed Model II.

4.2. Clustering by Using the SOM

According to the proposed hybrid neural network model, input data were grouped into four
hydrologically meaningful clusters formed by using the SOM. A two-stage clustering process (Figure 5)
was proposed based on the properties of the rainfall and discharge data. In the first stage, input
variables were grouped into two clusters (low and high rainfall clusters) by using only the rainfall
data. In the second stage, the low rainfall cluster was further separated into two clusters (small and
large discharge increment clusters) by using the discharge increment data. The high rainfall cluster
was also divided into small and large discharge increment clusters. Consequently, four hydrologically
meaningful clusters (with low and high R vs. small and large ΔQ) were obtained. This study applied
the two-stage scheme to ensure that the rainfall and discharge increment data could be grouped into
the expected four clusters. Because two forecasting models, Model I and Model II, were proposed
corresponding to the two types of input rainfall variables, the clustering process was performed with
respect to both the multiple rainfall data and average rainfall data.

Table 2 lists the clustering results for the calibration events (totally 488 datasets). The numbers of
clusters corresponding to the two types of rainfall data are comparable. Cluster A (low R and small
ΔQ) has the most data, and Cluster C (high R and large ΔQ) has the fewest data. The clustering results
corresponding to the number of clusters are rational. The initial and final parts of the hydrograph
(grouped as Cluster A) normally contain a large portion of the whole dataset. The rapidly rising limb
of the hydrograph (grouped as Cluster C) encloses fewer data.
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Figure 5. Process of the two-stage clustering scheme.

Table 2. Number of clusters for the calibration data sets.

Cluster Model I(Multiple Rainfall) Model II(Average Rainfall)

Cluster A (Low R, Small ΔQ) 222 231
Cluster B (High R, Small ΔQ) 98 89
Cluster C (High R, Large ΔQ) 33 35
Cluster D (Low R, Large ΔQ) 135 133

Table 3 lists the ranges (minimum and maximum) of rainfall R and discharge increment ΔQ for
different clusters with respect to the average rainfall data. The average rainfall �4.66 mm was grouped
into the low rainfall cluster, and that �4.67 mm was grouped into the high rainfall cluster at the first
clustering stage. During the second-stage clustering process, the discharge increment data were further
classified, and four clusters were obtained. The ranges of clusters are comparable to the physical
meaning of clusters. According to the ranges listed in Table 3, Cluster A (low R and small ΔQ) has
small rainfall and discharge increment data, and Cluster C (high R and large ΔQ) encloses the largest
range among the clusters.

Table 3. Ranges of rainfall and discharge increment for different clusters.

Cluster
Rainfall (mm) Discharge Increment (m3/s)

Min. Max. Min. Max.

Cluster A 0 4.66 −80 261
Cluster B 4.67 45.21 −303 4756
Cluster C 4.84 51.83 −3170 6280
Cluster D 0 4.56 −750 841

Figure 6 illustrates the clustering results of the SOM for the calibration events using three large,
medium, and small flood events as an example. The clustering results concerning the multiple rainfall
data (left panel) and average rainfall data (right panel) are similar. Event 02 (upper panel) is a large
flood with a single peak caused by a concentrated and severe storm. The rainfall and discharge (also
the discharge increment) data are large. Therefore, very few data (only two for the average rainfall
case) are grouped as Cluster A. However, the rainfall-runoff process from Cluster B to Clusters C
and D is appropriately identified by the clustered data. Event 03 (middle panel) is a medium flood
with multiple peaks caused by a series of intermittent storms. The hydrologic process shown by the
clusters is somewhat complicated. Nevertheless, progress from Cluster A to Clusters B, C, and D can
be observed, with some data of Cluster C in the peak segment. Event 10 (lower panel) is an event with
small peak discharge and low rainfall. The hydrograph is favorably described by the clusters; however,
no data is grouped as Cluster C due to the low rainfall and discharge.
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Figure 6. Clustering results of the self-organizing map (SOM) for three calibration events.

The SOM clustering was validated using the validation events, and the results are as follows.
Two of the three events that caused flooding disasters in the metropolitan area were relatively large
flood events. The greater numbers of Clusters C and D (with large discharge increments) than those
of Clusters A and B (with small discharge increments) listed in Table 4 indicate the circumstances.
Figure 7 presents the clustering results for the validation events. Event 11 is a large flood, with lots of
data around the peak grouped as Cluster C and no data grouped as Cluster A. Event 12 is an extremely
large flood with a peak discharge much higher than is present in the calibration data (cf. Table 1).
Many high discharge data were reasonably classified as Cluster C. The clustering results show a clear
progression from Cluster A to Clusters B, C, and D for the first hydrograph, and also an obvious
sequence of Clusters B, C, D, and A for the second hydrograph. Event 13 is a small flood event that
shows a similar result as Event 10 in the calibration set. The hydrograph is well explained by the
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clusters; however, no data is grouped as Cluster C. The calibration and validation results prove that
the proposed clustering method based on the hydrologic process meaningfully depicts the physical
processes behind rainfall and discharge data.

Figure 7. Clustering results of the SOM for the validation events.
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Table 4. Number of clusters for the validation datasets.

Cluster
Model I

(Multiple Rainfall)
Model II

(Average Rainfall)

Cluster A (Low R, Small ΔQ) 42 43
Cluster B (High R, Small ΔQ) 40 40
Cluster C (High R, Large ΔQ) 59 60
Cluster D (Low R, Large ΔQ) 65 62

4.3. Flood Forecasting Using the Hybrid Neural Network Model

For each cluster, BPNNs were constructed with respect to the structures of Model I and Model II.
The calibration data used in constructing the BPNNs were linearly normalized to the interval between
0 and 1 according to the minimum and maximum values in the calibration data. The hidden nodes and
activation functions of the BPNNs were determined through trial and error. Table 5 lists the calibration
results regarding the number of hidden nodes and types of activation functions. The numbers of
hidden nodes of the BPNNs using multiple rainfall data are generally greater than those of the BPNNs
using average rainfall data. The multiple rainfall data possess a more complex spatial pattern than the
average rainfall data. Therefore, more hidden nodes are required to describe the complex relationship
between the inputs and output. An interesting result is the derived activation functions. The BPNNs
corresponding to Cluster A (small R and small ΔQ) and Cluster C (large R and large ΔQ) use the linear
function. The BPNNs for Cluster B (large R and small ΔQ) and Cluster D (small R and large ΔQ) use the
sigmoid function. When the rainfall and discharge increment data in a cluster have similar properties
(i.e., all small or all large), the linear function is sufficient to model the input–output relationship.
When the data in a cluster are different (i.e., small vs. large), the nonlinear sigmoid function is used to
model the complex input–output relationship.

Table 5. Calibrated numbers of hidden nodes and types of activation functions.

Cluster
Model I Model II

Number of
Hidden Nodes

Activation Function
Number of

Hidden Nodes
Activation Function

Cluster A (Low R, Small ΔQ) 3 Linear 2 Linear
Cluster B (High R, Small ΔQ) 3 Sigmoid 2 Sigmoid
Cluster C (High R, Large ΔQ) 2 Linear 2 Linear
Cluster D (Low R, Large ΔQ) 4 Sigmoid 2 Sigmoid

With the constructed SOMs and BPNNs, the hybrid neural network model was established for
flood forecasting with respect to the calibration and validation events. Performance indices—the
coefficient of efficiency (CE), mean absolute error (MAE), and error of time to peak discharge
(ETP)—were obtained as follows:

CE = 1 −

n
∑

t=1

(
Q(t)− Q̂(t)

) 2

n
∑

t=1

(
Q(t)− Q

) 2
(8)

MAE =

n
∑

t=1

∣∣Q(t)− Q̂(t)
∣∣

n
(9)

ETP = T̂p − Tp (10)

where Q(t) is the observed discharge at time t; Q̂(t) is the forecasted discharge; Q is the average
observed discharge; n is the number of data; Tp is the time to peak for observed discharge; and T̂p is
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the time to peak for forecasted discharge. CE is a dimensionless index with a value of unity indicating
perfect fit. MAE is an index that directly describes the average forecast error with the same unit of the
data. ETP is positive if the forecasted peak discharge is delayed. This lag often exists in hydrological
forecasting. The model that has a smaller absolute value of ETP is better in forecasting performance.

Table 6 lists the performance indices of the hybrid neural network model for the calibration and
validation events. The CE values for the calibration data are 0.97 and 0.98 corresponding to Model I
and Model II, respectively, whereas the MAE values are 92.9 and 68.2 m3/s, which are small compared
to the discharge magnitude of the flood events. For the validation events, CE is 0.94 and 0.91 and MAE
is 188.0 and 248.2 m3/s, respectively. ETPs for calibration events range from −2 to 1 h; ETP is zero for
half of the events. The average ETPs are small as shown in Table 6. The performance indices prove
that the proposed hybrid neural network model favorably forecasts the flood discharge and that the
performance of Model I and Model II is similar.

Table 6. Performance indices of the hybrid neural network model.

Data Model Type CE MAE (m3/s) ETP (h)

Calibration
Model I 0.97 92.9 –0.2
Model II 0.98 68.2 –0.1

Validation
Model I 0.94 188.0 0.3
Model II 0.91 248.2 0.0

Figures 8 and 9 present the forecasted hydrographs for the calibration and validation events,
respectively. In general, the forecasted hydrograph matches the observed hydrograph. However, the
forecasted discharge for Cluster C is not as close as that for the other clusters. During the model
learning process, only 33 and 35 datasets were used to train the BPNNs for Cluster C (Table 2).
Although the BPNNs trained using fewer data have larger errors, Event 12 has a peak discharge much
higher than the calibration data. The forecasted discharges around the crest segment are reasonable,
indicating that the hybrid neural network model extrapolates successfully. Overall, the forecasting
results demonstrate that the proposed hybrid neural network model accurately forecasts typhoon
floods, including small, medium, and large events, and the two types of model (Model I and Model II)
have comparable capability.

4.4. Comparison with Traditional Neural Network Model

This study also developed a traditional neural network model to assess and compare its
performance with that of the hybrid neural network model. The traditional neural network model,
which does not group data into clusters, uses all the calibration data to construct a single BPNN
using the same calibration scheme as the hybrid neural network model. The single BPNN was also
trained by using the two types of rainfall variable (Model I and Model II). The constructed traditional
BPNNs have three hidden nodes that use the sigmoid activation function. Table 7 lists the performance
indices of the traditional neural network model. The CE value for calibration is 0.95, which is a
little lower than the CE values (0.97 and 0.98) of the hybrid neural network model. However, the
CE value of 0.85 for validation is considerably lower than those (0.94 and 0.91) of the hybrid neural
network model. The MAE and the ETP values of the traditional BPNN are larger than those of the
hybrid neural network model (cf. Tables 6 and 7). Although the traditional BPNN also exhibits
good forecasting performance in view of the performance indices, the hybrid neural network model
apparently outperform the traditional neural network model.

Figure 10 displays the forecasted hydrographs obtained using the hybrid and traditional neural
network models pertaining to the validation events. In general, the two sets of the forecasted
hydrographs have similar patterns. However, the hydrographs obtained using the traditional BPNN
exhibit minor underestimation for large discharges (especially for the peak discharge in Event 12) and
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overestimation for small discharges (especially for the case in Event 13). The traditional BPNN was
trained using small and large discharge data simultaneously. The learning mechanism matches the
whole calibration data. Thus, the single BPNN does not perform very well in some cases of small and
large discharges. However, the proposed hybrid neural network model was trained using different
clusters with respective small and large datasets. The hybrid neural network model is more robust
and flexible for various rainfall-runoff processes.

 

Figure 8. Flood forecasting results of the proposed model for calibration events.

117



Water 2018, 10, 632

Figure 9. Flood forecasting results of the proposed model for validation events.

Table 7. Performance indices of the traditional neural network model.

Data Model Type CE MAE (m3/s) ETP (h)

Calibration
Model I 0.95 229.2 –0.1
Model II 0.95 242.4 –0.5

Validation
Model I 0.85 339.8 –1.0
Model II 0.85 359.1 0.7
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Figure 10. Comparison of the flood forecasting results for the hybrid and traditional neural
network models.

5. Conclusions

ANNs, usually regarded as black boxes, suffer from a lack of physical interpretation of the
constructed model architecture. This study proposed a physical hybrid neural network model that
combines the SOM and BPNNs and applied this proposed model to real-time flood forecasting.
The SOM was used to group the rainfall and discharge data into four clusters with clear physical
meanings to characterize the rainfall-runoff process. Then, a BPNN was constructed for each cluster
with specific properties of rainfall and discharge data, which gave the BPNNs higher capability and a
network structure that could be meaningfully discussed.

Typhoon flood discharges at Dadu Bridge and rainfall from eight rain gauges in the Wu River
basin in Taiwan were used as the study data. Two types of rainfall data (multiple rainfall and average
rainfall) were used to construct two types of hybrid neural network model (Model I and Model II). The
lagged input variables of the models were determined by using the LTF. The derived lags of the rainfall
variables are hydrologically rational and represent the distance from the rain gauge to the basin outlet.

The clustering results of the SOM pertaining to calibration and validation events prove that
the hydrologic process is meaningfully described by the clusters. The rainfall-runoff process can

119



Water 2018, 10, 632

be identified by the sequence of Clusters A, B, C, D, and A. The training of the BPNNs reveals that
more hidden nodes are required to describe the complex relationship between multiple rainfall and
discharge. The simple linear activation function was adopted in the clusters with similar data, whereas
the nonlinear sigmoid activation function was used in clusters where the rainfall and discharge data
were different.

Flood forecasting using the hybrid neural network model revealed that the proposed model
successfully forecasts flood discharge with high efficiency and small errors. Both Model I and Model II
have comparable forecasting performance. This study also developed a traditional neural network for
comparison with the hybrid neural network model. The traditional neural network model that was
trained with the whole calibration dataset did not perform favorably in some cases of small and large
discharges. With respect to the performance indices and forecast hydrographs, the proposed physical
hybrid neural network model exhibits robust flood forecasting and outperforms the traditional neural
network model.
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Abstract: Flood prediction and control are among the major tools for decision makers and water
resources planners to avoid flood disasters. The Muskingum model is one of the most widely used
methods for flood routing prediction. The Muskingum model contains four parameters that must
be determined for accurate flood routing. In this context, an optimization process that self-searches
for the optimal values of these four parameters might improve the traditional Muskingum model.
In this study, a hybrid of the bat algorithm (BA) and the particle swarm optimization (PSO) algorithm,
i.e., the hybrid bat-swarm algorithm (HBSA), was developed for the optimal determination of these
four parameters. Data for the three different case studies from the USA and the UK were utilized to
examine the suitability of the proposed HBSA for flood routing. Comparative analyses based on the
sum of squared deviations (SSD), sum of absolute deviations (SAD), error of peak discharge, and error
of time to peak showed that the proposed HBSA based on the Muskingum model achieved excellent
flood routing accuracy compared to that of other methods while requiring less computational time.

Keywords: bat algorithm; particle swarm optimization; flood routing; Muskingum model

1. Introduction

Floods cause huge economic and social effects on the surrounding environment [1,2], such as
breaking levees [3], inundating houses, disrupting transportation systems [4], damaging crops and
eroding fertile lands [5]. Thus, flood prediction and flood control are important issues for policy makers
and designers [6,7]. Hydrological and hydraulic models are used for flood prediction. The estimation
of flood discharge hydrograph at a downstream location given the discharge hydrograph upstream is
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known as flood routing [8,9]. Hydraulic models based on numerical methods can be used for flood
routing, but they involve complex unsteady flow equations [10]. Hydrological models use the spatially
lumped continuity equation and a storage equation for flood routing. These models need a small
amount of data to predict floods [11]. The Muskingum model is an important hydrological model
for flood routing. This model has multiple parameters that should be obtained to accurately predict
floods [12], and different versions of the model have been applied for flood routing. One strategy
is the optimization method by which the parameters are computed as decision variables [13].
The evolutionary algorithms exhibit a high degree of ability for solving complex optimization problems.
These algorithms are efficient, accurate, and flexible [14]. Thus, parameters of the Muskingum model
can be computed using evolutionary algorithms.

1.1. Background

Luo and Xie [15] applied the clonal selection algorithm (CLA) to flood routing in China, and CLA
decreased the sum of absolute deviations (SAD) by approximately 20% compared to that of the genetic
algorithm (GA). The difference between the simulated peak discharge and the observed discharge
was small, approximately 0.5 m3/s. Using the initial values of the Muskingum parameters as decision
variables, CLA optimized the objective function to obtain the best parameter values.

The Nelder-Mead simplex algorithm was used for flood routing in the USA [16]. This method
obtained the best values for the 3 Muskingum model parameters. Thus, the peak discharges were
predicted to be better than those of other nonlinear programming methods.

Barati et al. [17] applied a dynamic wave method for flood routing, and the results indicated
that some of the parameters, such as Manning roughness or bed slope, were effective. Thus, accurate
determination of these parameters is important for flood routing equations.

Karahan et al. [18] applied hybrid harmony search (HS) and particle swarm optimization (PSO)
to estimate the Muskingum parameters and indicated that the computational time for the new hybrid
model was less than those of PSO and HS. In addition, peak discharge was estimated with the least
difference with the observed discharge.

Fallah-Mehdipour [19] applied PSO, GA and nonlinear programming methods for flood routing
and indicated that PSO simulated the flood discharges with lower SAD and sum of squared deviation
(SSD) values than those of other algorithms. In PSO, the Muskingum parameters were considered as
decision variables.

Easa [20] introduced a four-parameter nonlinear Muskingum model for flood routing and showed
that the four-parameter model estimated flood discharge better than the three-parameter model did.
The GA was used to obtain the optimal values of the Muskingum parameters.

Nelder-simplex and hybrid PSO were evaluated as new methods to estimate Muskingum
parameters [21]. The results showed that the new method decreased the computational time compared
to that of the simple PSO and GA. Additionally, there was a small difference between the estimated
discharge and the observed discharge.

Honey bee mating (HBM) optimization was used for flood routing by a three-parameter nonlinear
Muskingum model for one flood in the USA [22]. Results indicated that the SSQ (sum of squared
deviations) and SAD values of the model significantly decreased compared to those of the GA and
PSO methods. Additionally, the time of peak discharge was predicted well. The convergence of HBM
was faster than those of GA and PSO. A new charged search system (CSS) and PSO hybrid method
was used for flood routing based on two- and three-parameter nonlinear Muskingum models [23].
Results indicated that the new evolutionary hybrid algorithm needed a sensitivity analysis for the
accurate determination of parameters, and the three-parameter model predicted peak discharge more
accurately than GA and HS. Additionally, basing PSO and CSS on more population diversity increased
the convergence speed of the algorithm.

A nonlinear Muskingum model that considers lateral flow was used for flood routing [24].
This model used the cuckoo algorithm and predicted peak discharge more accurately than other
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models. The shuffled frog leaping algorithm (SFLA) based on a three-parameter Muskingum model
was used for flood routing [25]. Results showed that the SSD and SAD values for the SFLA were
lower than those of the GA, PSO and nonlinear programming methods. Additionally, the correlation
coefficient based on the SFA between the observed and estimated discharges was more than those of
the GA, PSO and nonlinear programming methods.

A new version of the Muskingum model with nine parameters was used for flood routing in
another study [26]. The Karun River in Iran was considered as an important case study for the research.
The study showed that the results were better than those of previous Muskingum models, but the new
model needed more computational time.

A real-coded adaptive GA was used for flood routing, considering lateral flow along the river
reach [14]. The study considered a river in China with important floods. Results indicated that the
three-parameter nonlinear Muskingum model based on adaptive GA simulated flood discharges,
yielded the least values of SSQ and SAD.

Gene-expression programming (GEP) and the weed algorithm (WA) were used for flood
routing [1]. Some important floods in the USA were considered as case studies for the study. The results
indicated that GEP had a convergence speed that was approximately 100 times higher than that of WA;
in addition, the computed SSD for the estimated discharges was lower than that of WA.

The literature review shows that the evolutionary algorithms have high ability for predicting flood
routing, but there are some limitations for these algorithms; they all use the same procedure within the
Muskingum model for flood routing. The Muskingum models have parameters with unknown values,
and these parameters are applied to the algorithms as decision variables. Computation of the objective
function can show the best value for each parameter. In fact, the parameters are input as the initial
population to the algorithms, and then, the different operators are applied based on the process of
each algorithm [1,10,22]. Basically, there are two major limitations: First, there is no assurance that the
computed value for Muskingum’s parameters are optimally achieved, second, the convergence rate
was relatively high as the required computed values are four parameters.

For example, some algorithms such as the GA can become trapped in the local optimums and
cannot compute the best values for the parameters [10]. Some literature reviews have reported that
some algorithms have immature solutions because the convergence process happens abruptly as
with PSO [21]. Some algorithms (e.g., GA [10]) require more computational time for the convergence
process, and some algorithms such as Anti Bee Colony and Shark Algorithm need to accurately
determine many random parameters, which leads to complex processes for optimization. Thus, the
presentation of a better method that could hybridize the advantages of two different methods and
hence has the potential to overcome those drawbacks and achieve better results with high convergence
rate is necessary. The present study attempts to develop one of the known algorithms based on a
hybrid process for the flood routing. The Bat Algorithm (BA) is developed based on the motivation
that the algorithm has problems such as trapping in the local optimums and slow convergence, and
the algorithm is based on the high ability of bats to perceive sounds [21]. Thus, the PSO is suggested
for the hybrid process to improve the BA, and the hybrid process prevents the abrupt convergence of
the PSO. The next section presents the innovation and objectives of this study. Then, the optimization
methods are explained, and the results and conclusions for three case studies are explained in the
following sections.

1.2. Innovation and Objectives

The bat algorithm (BA), as an optimization method, is based on living bats and the powerful
ability of bats to receive sounds from their surroundings. It is used widely in different fields of image
processing [27], data sensing systems [28], the determination of the seismic safety of structures [29],
the design of wireless sensors [30], and water resource management [31]. However, the algorithm has
some weaknesses, such as the probability of being trapped in the local optimums and slow convergence
in some complex engineering problems, so it is necessary to modify the BA. This paper reports on a
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hybrid algorithm (HA) based on PSO and BA. The new HA substitutes the weaker BA solution with
the best PSO solution, which can prevent trapping in the local optimums and increase the convergence
speed. Additionally, with the hybrid model, the BA population diversity and exploration ability
increase as the optimal solution is obtained. These improvements are the motivations underlying the
introduction of the new HA in this paper. The new HA was used for flood routing by a four-parameter
Muskingum model in two case studies. These two case studies have been investigated widely as
benchmarks in the literature, so there is comprehensive information for the comparison of the new
HA with other evolutionary algorithms. This study used the HA to find the optimal values of the
four parameters of the Muskingum model, extracted the output hydrographs for two case studies,
and then compared the results with those generated by other types of Muskingum models and other
evolutionary algorithms used in previous studies.

2. Methods

2.1. Muskingum Model

The linear Muskingum model is based on the continuity equation and a storage equation [32–34]:

dst

dt
= It − Ot (1)

St = K[xIt + (1 − x)Ot] (2)

where St is the storage (L3); It is the inflow (L3·T−1); Ot is the outflow (L3·T−1); K is the storage time
constant, which varies from 0 to 30 (T); and x is the weighting factor, which varies from 0 to 0.5.
Previous studies have shown that the linear Muskingum model does not perform well for some rivers;
thus, nonlinear Muskingum models have been suggested [33]:

St = Kt[xIt + (1 − x)Ot]
m (3)

St = K[xIm
t + (1 − x)Om

t ] (4)

The models of Equations (3) and (4) have an additional parameter (m), and the dimension of K
is (L3(1−m)·Tm). The current study uses a four-parameter nonlinear Muskingum model based on the
model introduced by Easa [20], with a reported high flood routing ability:

St = K[xIα
t + (1 − x)Oα

t ]
m (5)

Equation (5) is similar to Equation (3). However, in Equation (5), parameter m is related to the
nonlinear form of the storage equation, while in Equation (3), m is related to the linear form of the
storage equation. Equation (5) can cover previous equations; that is, if α = m = 1, Equation (5) will be
the same as Equation (2). If m = 1(or)α = 1, Equation (5) covers Equations (3) and (4). The outflow for
Equation (3) is computed as follows:

Ot =

[(
1

1 − x

)(
St

K

) 1
m −
(

x
1 − x

)] 1
α

(6)

Then, Equation (6) is inserted into Equation (1), and the change in storage is computed based on
the following equation:

ΔSt

Δt
= It −

[(
1

1 − x

)(
St

K

) 1
m −
(

x
1 − x

)
Iα
t

] 1
α

(7)
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Finally, the storage for the next step time is computed based on the following equation:

St+1 = St + Δt (8)

2.2. Bat Algorithm

The BA is based on the powerful echolocation ability of bats, which can generate loud sounds
and receive the echoes of the sounds as they return from the surroundings. The BA is based on the
following assumptions [31]:

(1) All bats use echolocation to identify prey and obstacles based on received sound frequencies.
(2) All bats fly randomly with the velocity (vl) at position (yl), and the frequency, loudness and

wavelength values are fl , A0 and λ, respectively.
(3) The loudness changes from a large positive (A0) to a small positive value (Amin).

The sounds generated by bats have a pulsation rate (rl) that varies from 0 to 1. The value 1
means that the pulsation rate has reached a maximum value, and 0 means that the pulsation rate has
reached a minimum value. The velocity, frequency and position are updated based on the following
equations [31]:

fl = fmin + ( fmax − fmin)× β (9)

vl(t) = [yl(t − 1)− Y∗]× fl (10)

yl(t) = yl(t − 1) + vl(t)× t (11)

where fl is the frequency, fmin is the minimum frequency, fmax is the maximum frequency, Y∗ is the
best position for the bats, t is the time step, yl(t − 1) is the position of the bats at time t − 1, vl(t) is the
velocity, and β is the random vector.

A random walk is considered as the local search for the BA:

y(t) = y(t − 1) + εA(t) (12)

where ε is the random value between −1 and 1; and A(t) is the loudness.
The pulsation rate and loudness are updated for each level. When the bats find prey, the pulsation

rate increases and the loudness decreases for each level. The pulsation rate is updated, based on the
following equation:

rt+1
l = r0

l [1 − exp(−γt)]At+1
l = αAt

l (13)

where α and γ are the constant parameters. The BA is shown in Figure 1.

2.3. Particle Swarm Optimization

For a d-dimensional search space, the population is formed by Xi = (xi1, xi2, .., xiD)
T , and the

velocity is given by Vi = (vi1, vi2, .., viD)
T . The best previous position is given by Pi = (pi1, pi2, .., piD)

T ,
and the g index is used for the global solution. The velocity and the position are updated, based on the
following equations:

vn+1
id = χ

⎡⎣wvn
id +

c1r1
(

pn
id − xn

id
)

Δt
+

c2r2

(
pn

gd − xn
id

)
Δt

⎤⎦ (14)

xn+1
id = xn

id + Δtvn+1
id (15)

where d is the number of dimensions, χ is the constriction coefficient, N is the size of the swarm, w is
the inertial weight, c1 and c2 are the acceleration coefficients, r1 and r2 are the random numbers, Δt is
the time step, xn+1

id is the new position, vn+1
id is the new velocity vector, and n is time index.
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First, the random population of the swarm is initialized, and then the objective function is
computed to determine the local and global leaders. Finally, the velocity and the position are updated,
and the cycle continues until the convergence criterion is satisfied.

 

Figure 1. Bat Algorithm procedure.

2.4. Hybrid PSO and BA

The new HA acts based on a communication strategy between two algorithms. The idea of this
strategy is that the parallel performance of the two algorithms allows the weaker solutions of one
algorithm to be substituted with those of the other algorithm. The parallel structure has subgroups
that are based on the division of the population. The subgroups act independently for each iteration.
Thus, the objective function is computed for each group, and the weaker solutions of each group are
selected and substituted with the better solutions of the subgroups of the other algorithm. The total
number of iterations is R, and the total populations is N. Moreover, N1 and N2 are equal, i.e., N/2.
Figure 2 shows the performance of the HA.

The algorithm acts based on the following levels:

(1) The random parameters for both algorithms (PSO + BA) are initialized, and the initial populations
for the two algorithms are considered.

(2) The first initial values for the hydrological parameters (K, x, m and α) are considered at the start
of the algorithm.

(3) The variation in storage is computed based on Equation (7). The initial outflow is the same
as inflow.

(4) The accumulated storage is computed based on Equation (8).
(5) The outflow is computed based on Equation (6).
(6) The time step is compared with the total flood time. If it is less than the total time, the algorithm

goes to step 3; otherwise, the algorithm goes to the next level.
(7) The objective function is computed for the two algorithms and all members that can be seen in

the algorithms.
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(8) The velocity and position for the PSO algorithm are updated based on Equations (14) and (15),
and the velocity, frequency and position are updated based on Equations (9)–(11).

(9) The best particles migrate from the PSO algorithm to the BA, and there is a condition for BA
similarity. In fact, the specific number of best members for each algorithm is known and is
substituted for the worst solutions of the other algorithm.

(10) The convergence criteria are considered. If the criteria are satisfied, the algorithm finishes;
otherwise, the algorithm returns to the second step.

Figure 2. Hybrid algorithm procedure.

The following indexes are used for comparison of the different methods [35–38]:

(1) The sum of the squared deviations between observed and estimated discharges is considered the
objective function and is computed based on the following equation:

Minimize(SSQ) =
n

∑
t=1

(Ost − Obt)
2 (16)

(2) The SAD between estimated and observed discharges is computed based on the following
equation:

Minimize(SAD) =
n

∑
t=1

|Obt − Ost| (17)

(3) The mean absolute error (MARE) between estimated and observed discharges is computed based
on the following equation:

MARE =
1
N

N

∑
i=1

|Obt − Ost|
Obt

(18)
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(4) The error for peak discharge (EO) is computed based on the following equation:

EO =

∣∣∣Opeak,bt − Opeak,st

∣∣∣
Opeak,bt

(19)

(5) The error for peak time is computed based on the following equation:

ET =
∣∣∣Tpeak,bt − Tpeak,st

∣∣∣ (20)

where Ost is the simulated discharge, Obt is the observed discharge, Tpeak,bt is the peak time of
observed discharge, Tpeak,st is the peak time of simulated discharge, and N is the number of data.

3. Case Studies

In this section, brief introduction on the selected case studies have been reported. The first one is
the Wilson flood event. The Wilson flood was selected for comparative analysis because it has been
widely studied in the literature, resulting in a comprehensive body of information for comparison
between the new hybrid method and other methods. This is a benchmark experimental problem that
was considered by Wilson [33–37]. The time flood is equal to 120 h, and the peak occurs at a time step
of 60 h with a value of 85 cm.

On the other hand, the second case study is the Karahan flood event. The Karahan flood, known
as a benchmark problem in flood routing, is based on the 1960 flood of the Wye River in the United
Kingdom [14,33–36]. The Wye River from Everwood to Belmont does not have any tributaries, and it
has a small lateral flow, which is considered an important problem for flood routing. The flood time is
198 h, and the peak time is at the step time of 102 h.

Finally, the third case study is the Viessman and Lewis flood event. The Viessman and Lewis [39]
multi-peak flood hydrograph was also selected as a benchmark study in this research.

4. Results and Discussion

4.1. Wilson Flood

4.1.1. Sensitivity Analysis for Different Algorithms for the Wilson Flood

Tables 1–3 show the inflow and outflow values calculated by different methods. The evolutionary
algorithm parameters do not have specific values at the start of the algorithm. Thus, sensitivity analysis
was used to obtain the parameters. The objective function selected for this study was SSQ, and the
variation in the objective function value was computed for various values of parameters. The best value
for each parameter was selected when the objective function value was the minimum. For example,
the population size for the HA varied from 20 to 80. When the size was 60, the SSQ value was 4.234
and led to the lowest objective function value. Further, the maximum frequency varied from 3 to 9.
When the maximum frequency was 7 Hz, the objective function had the best value. The minimum
frequency varied from 0.1 to 0.4, and the best value for the minimum frequency was 0.2. In addition,
the maximum loudness varied from 0.2 to 0.8, and the best value based on the objective function value
was 0.6 dB. The other parameters are listed in Table 1. For example, the acceleration coefficient varied
from 1.6 to 2.2. The best value for this parameter was 2, because the SSQ, which was 4.233, was the
lowest. Further, the inertia coefficient varied from 0.3 to 0.9. The best value was 0.7 because the SSQ
was 4.234.
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4.1.2. Ten Random Results for Different Algorithms for Wilson Flood

Table 4 shows 10 random results for different algorithms. The average solution for the HA was
4.234, while the average solutions were 5.554 and 5.342 for the PSO algorithm and BA, respectively.
Thus, the objective function or error value decreased by 23.71% and 20.7% compared to those of the
PSO algorithm and BA, respectively. The computational time for the HA was 20 s, while it was 27 s and
25 s for the PSO algorithm and BA; thus, the computational time decreased by 25% and 20% in the HA
compared to those in the PSO algorithm and BA, respectively. Additionally, the coefficient of variation
for the HA was smaller than that for the PSO algorithm and BA and was therefore nonsignificant, which
implied that the one-run program for the HA was reliable. Figure 3 shows the convergence method for
the three algorithms, and it is apparent that the HA converged faster than the PSO algorithm and BA
did. In fact, the researchers present the 10 or 15 random solutions to show the variation of solutions.
It is apparent that the all runs for the HA are close to the average solution and that all runs are reliable
as the final solution. Although the BA and PSO have the solutions that are closest to the average
solution, the other factors are important for the selection of the best methods. Table 4 shows that the
hybrid method based on soft computing is the best method because the minimum, maximum and
average solutions for the 10 results are close to each other. Additionally, the computation time for the
HA is less than other methods (based on a PC with an i5 2.4 GHz CPU and 500 GB RAM), and the
average of the error objective function based on HA is less than those of the other two methods.

Table 4. Ten random results for average solutions for Wilson flood.

Run Number HA BA PSO

1 4.234 5.342 5.555
2 4.233 5.348 5.555
3 4.234 5.342 5.555
4 4.234 5.342 5.555
5 4.234 5.342 5.559
6 4.233 5.342 5.560
7 4.234 5.342 5.555
8 4.234 5.342 5.555
9 4.234 5.342 5.555

10 4.234 5.342 5.555
Average 4.234 5.342 5.555

Computational time 20 s 27 s 25 s
Variation coefficient 0.00007 0.0003 0.0004

Figure 3. Simulated discharges based on different methods for the Wilson flood.

4.1.3. Discussion of the Wilson Flood Results

Table 5 shows the performance of the HA, PSO algorithm and BA based on the 4PMM
(four-parameter Muskingum model). The computed SSQ based on the HA was 4.234, and the HA
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method decreased the SSQ by 23.7% and 20.74% compared to those of the PSO and BA methods,
respectively. The SAD value based on the HA decreased by 25% and 24% compared to those of the PSO
algorithm and BA, respectively. The error between the simulated discharge and the observed discharge
was shown by the EO, and the minimum value, 0.0111, was related to the HA. Additionally, the three
methods predicted the peak time well, with an ET equal to zero. Table 6 compares the performances of
different models based on the current research and previous studies. The performance of the HA based
on the 4PMM was better than that based on the 3PMM because the error index for the 4PMM HA was
lower than that for the 3PMM HA. For example, SSQ and SAD for the 4PMM were 4.234 and 3.125,
respectively, while they were 12.25 and 10.95 for the 3PMM. Table 6 shows the performance of GA,
HS, and the imperial competitive algorithm (ICA) based on the literature. The highest value of SSQ
was related to GA based on the 3PMM; thus, this model had the worst performance. The SAD for the
ICA was 23.46, which indicated that this model had the worst performance based on SAD and 3PMM
(three-parameter Muskingum model). When the performances of the BA and PSO algorithm based on
the 3PMM were compared with that based on the 4PMM, the models based on the 4PMM had the best
performance because of their smallest index errors. All the models in Table 6 predicted the peak time
well, with an ET value equal to zero. Table 7 shows the inflow and outflow and the peak value for the
observed discharge, which was 85 cm when the time was 60 h. The results showed that peak discharge
based on the HA was closer to the observed value. Table 8 shows the values of different coefficients for
the Muskingum models. Generally, the results showed that the HA based on the 4PMM performed
better than the other models did, with an SSQ value that decreased by 65%, 72% and 47% compared to
those of the BA (3PMM), PSO algorithm (3PMM) and HA (3PMM), respectively. The values for other
indexes supported this trend. Figure 3 shows that the HA based on the 4PMM performed better than
the PSO and BA based on the 4PMM during the flood. Additionally, the comparison of results with
other research shows the superiority of HA compared to the other algorithms. The honey bee mating
algorithm was considered for flood routing [34]. SSQ based on 3PMM was 37.451, while the 3PMM
and HA have smaller values for SSQ. Thus, HA has a better performance than HBMO.

Thus, all sections for the HA show the superiority of the method compared to the other
methods. Although, the Muskingum method based on four parameters has more parameters than
the Muskingum model based on three parameters, it is important to have a simulated hydrograph
that matches with the observed flood. This section shows that prediction of peak discharge is the first
priority in flood hydrographs. The observed peak in the hydrograph is 85 cm, while the simulated
peak discharge is 85.011 cm. Clearly, the new method has good performance for this issue. The method
is the best method for flood routing among other evolutionary algorithms because the peak time
can be computed accurately. Table 5 shows the peak time predicted based on HA so that there is no
delay between the computed time based on HA and the real time. The flood-emergency management
authorities can make the best decisions based on the importance of the different projects.

Table 5. Comparison of results based on four-parameter Muskingum model for Wilson flood.

Method SSQ SAD MARE EO ET

HA 4.234 3.125 0.012 0.00111 0
PSO 5.555 4.128 0.017 0.00251 0
BA 5.342 4.117 0.015 0.00167 0
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Table 6. Comparison of results for Wilson flood.

Method SSQ SAD MARE EO ET

GA [40]
(Three-parameter Muskingum) 38.230 23.00 0.0912 0.0083 0

HS [40]
(Three-parameter Muskingum) 36.780 23.40 0.0878 0.0107 0

ICA [40]
(Three-parameter Muskingum) 36.801 23.46 0.0745 0.0105 0

BA (current research)
(Three-parameter Muskingum) 12.25 10.95 0.0215 0.0079 0

PSO (current research)
(Three-parameter Muskingum) 14.78 12.72 0.0325 0.0081 0

HA (current research)
(Three-parameter Muskingum) 8.215 6.515 0.0205 0.0043 0

Table 7. Inflow and outflow for flood routing.

Time Inflow (cm) Outflow (Observed-cm) Hybrid Method (cm) BA (cm) PSO

0 22 22 22.0 22.0 22.0
6 23 21 22.0 23.0 23.0

12 35 21 21.0 22.5 23.5
18 71 26 25.0 25.0 26.0
24 103 34 34.0 35.0 35.5
30 111 44 43.5 44.0 44.0
36 109 55 54.0 55.0 55.5
42 100 66 66.0 67.0 68.0
48 86 75 74.0 74.0 75.0
54 71 82 81.5 82.0 83.0
60 59 85 85.0011 85.00251 85.00267
66 47 84 84.0 84.0 84.0
72 39 80 81.0 80.5 81.0
78 32 73 74.0 73.0 74.0
84 28 64 64.0 65.0 66.0
90 24 54 54.0 55.0 56.0
96 22 44 44.0 44.0 45.0
102 21 36 36.0 37.0 38.0
108 20 30 30.5 31.0 31.0
114 19 25 25.5 26.2 26.9
120 19 22 23.0 24.0 25.0
126 18 19 20.0 21.0 22.0

Table 8. Extracted coefficients for the four-parameter Muskingum model.

Method K x m α

HA 0.164 0.2879 3.781 0.4678
BA 0.152 0.2768 3.567 0.4567

PSO 0.144 0.2645 3.123 0.3789

4.2. Karahan Flood

4.2.1. Discussion of the Karahan Results

The parameters used for the HA were maximum frequency, minimum frequency, maximum
loudness, initial population, acceleration coefficient, and inertia coefficient; which were computed
based on sensitivity analysis described in the previous section (maximum frequency: 7; minimum
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frequency: 3; maximum loudness: 0.95; initial population: 50; acceleration coefficient: 2; and inertial
weight: 0.7).

Table 9 compares the performances of different algorithms based on the 4PMM for the Karahan
flood. The SSQ of the HA and the 4PMM was 30,235, and the SSQ of the HA decreased by 5.85%
and 2.8% compared to those of the PSO algorithm and BA, respectively. The SAD for the HA based
on the 4PMM was 625, which were 0.32% and 7.54% lower than those of the PSO algorithm and BA,
respectively. The difference between the simulated peak discharge and the observed discharge was
nonsignificant; the EO of the HA equaled 0.101, a value that was 7.3% and 6.4% lower than those of the
PSO algorithm and BA. The best performance based on MARE was related to the HA, which produced
the lowest MARE value. Additionally, the three methods predicted the peak discharge well, with very
low EO values. The GA had the worst performance of the methods, as shown in Table 10. The SSQ for
the HS method was 39,944, which was the highest SSQ value produced by the models based on the
4PMM and 3PMM. The HA based on the 3PMM performed better than the other methods based on
the 3PMM, as the SSQ of the HA decreased by 11.38%, 18%, 7.1%, 3.4% and 6.3% compared to those
of the GA, HS, ICA, BA and PSO algorithm, respectively. The HA based on the 3PMM produced the
lowest SAD value of all the 3PMM-based models. The performances of the HA, PSO algorithm and BA
based on the 4PMM were comparable to the corresponding performances based on the 3PMM, but the
4PMM algorithm performed better than did the 3PMM algorithm. For example, the SSQ values of the
HA, PSO algorithm and BA based on the 4PMM were 2.8%, 3.4% and 0.27% lower than those for the
HA, PSO algorithm and BA based on the 3PMM, respectively. Table 11 shows the inflow and outflow
for different methods and the peak discharge, which was 830 cm when the step time was 96 h. These
results show that the discharges estimated by the HA were near to the observed discharges. Table 12
shows the extracted coefficients for different algorithms. Figure 4 shows the HA based on the 4PMM
had the best performance during the flood, with a good match between the observed discharges and
the discharges estimated by the HA. The general results for this section show that the HA based on
3PMM and 4PMM can predict the peak time well such that the ET parameter for HA based on 3PMM
and 4PMM equals zero. Another point is related to the value of predicted discharge such that the EO
index shows the ability of the different methods. 4PMM models based on HA, PSO and BA have a
better performance: If the EO based on the table equals to 0.701, the EO based on Table 9 and FPMM
models is less than 0.701. Although the 3PMM needs less parameters, the time and value peak can
be predicted accurately based on 4PMM. Clearly, the importance of the model accuracy to decision
makers can be considered in the selection of 3PMM and 4PMM.

Table 9. Comparison of results based on the four-parameter Muskingum model for Karahan flood.

Method SSQ SAD MARE EO ET

HA 30,235 625 0.22 0.101 0
PSO 32,119 697 0.25 0.109 0
BA 31,112 676 0.24 0.108 0

134



Water 2018, 10, 807

Table 10. Comparison of results for Karahan flood.

Method SSQ SAD MARE EO ET

GA [40]
(Three-parameter Muskingum) 35,123 1980 0.910 0.701 0

HS [40]
(Three-parameter Muskingum) 37,944 2161 0.924 0.798 0

ICA [40]
(Three-parameter Muskingum) 37,825 2054 0.914 0.787 0

BA (current research)
(Three-parameter Muskingum) 32,228 712 0.420 0.115 0

PSO (current research)
(Three-parameter Muskingum) 33,229 735 0.454 0.125 0

HA (current research)
(Three-parameter Muskingum) 31,125 697 0.254 0.105 0

Table 11. The inflow and outflow for flood routing.

Time Inflow (cm) Outflow (Observed-cm) Hybrid Method (cm) BA (cm) PSO (cm)

0 154 102 102.0 102.0 102.0
6 150 140 139.23 138.23 154.2

12 219 169 170.21 171.24 152.1
18 182 190 185.12 183.24 179.4
24 182 209 202.34 200.11 190.9
30 192 218 212.23 198.23 185.4
36 165 210 207.11 192.32 186.9
42 150 194 192.12 189.23 180.2
48 128 172 170.21 169.24 164.1
54 168 149 147.21 146.74 143.7
60 260 136 137.21 139.23 152.8
66 471 228 219.21 212.23 196.3
72 717 303 300.11 298.21 267.3
78 1092 366 358.11 354.23 351.4
84 1145 456 436.32 426.73 431.8
90 600 615 612.21 623.24 617.4
96 365 830 830.101 830.108 830.109
102 277 969 894.12 879.12 836.70
108 227 665 665.101 665.108 665.109
114 187 519 519.21 523.12 549.10
120 161 444 435.68 424.32 416.90
126 143 321 315.23 312.11 305.0
132 126 208 210.21 212.21 221.40
138 115 176 169.21 166.24 163.38
144 102 148 142.12 139.23 131.20
150 93 125 119.21 115.67 110.0
156 88 114 109.21 100.21 96.40
162 82 106 110.21 112.11 89.20
168 76 97 92.21 89.23 82.70
174 73 89 82.12 79.43 76.30
180 70 81 80.23 78.12 73.00
186 67 76 79.14 75.12 69.80
192 63 71 70.14 70.11 66.7
198 59 66 70.23 69.12 62.40
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Table 12. The extracted coefficients for the four-parameter Muskingum model.

Method K x m α

HA 0.610 0.404 3.781 1.125
BA 0.578 0.311 2.896 1.112

PSO 0.578 0.309 2.789 1.105

Figure 4. Simulated discharges by different algorithms for Karahan flood.

4.2.2. Ten Random Results for Karahan Flood

Table 13 shows the averages of 10 random results for different methods. The average solution of
the HA was lower than that of the PSO algorithm and BA. Additionally, the computational time for
the HA was 17% and 29% lower than those for the BA and PSO algorithm, respectively. Additionally,
the coefficient of variation for the HA was a small value, which proved that the HA based on one
computer program run can be reliable, producing high-quality solutions. Table 13 helps determine
the best decision based on time, value of objective function and variation coefficient. The least value
for the error objective function is provided by the HA based on the least value of the error objective
function. Additionally, the least probable time is related to the HA, and all the runs for the HA have
the smallest probable variations. Thus, the method encourages the decision makers to select HA based
on the mentioned indexes. Additionally, Table 14 shows the sensitivity analysis for the HA and 4PMM
model. The best population size for the HA is 60, and the best value for the maximum frequency and
minimum frequency is 7 and 3. Other parameters can be seen in Table 14.

Table 13. Investigation of different methods for Karahan flood.

Run Number HA BA PSO

1 30,235 31,112 32,119
2 30,237 31,117 32,119
3 30,235 31,112 32,119
4 30,235 31,112 32,119
5 30,235 31,112 32,119
6 30,235 31,112 32,119
7 30,237 31,112 32,122
8 30,235 31,117 32,112
9 30,235 31,112 32,119

10 30,235 31,112 32,119
Average 30,235.4 31,113 32,119

Computational time 19 s 23 s 27 s
Variation coefficient 0.00002 0.00005 0.00007
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4.3. Discussion of the Viessman and Lewis Flood Results

The Viessman and Lewis Fi [39] multi-peak flood hydrograph was selected for this section.
Table 15 shows the performances of different models in analysing the Viessman and Lewis flood.
The results were compared with those of the WA in the literature, and this is a synthetic problem [33–37].
The highest SSQ for this flood, 73,312, was produced by the WA based on the 3PMM. The HA based
on the 4PMM performed better than did the other models. The SSQ, SAD and MARE values of the
HA based on the 4PMM had the lowest values. The BA based on the 4PMM performed better than
did the WA and PSO algorithm based on the 3PMM. For example, the SSQ of the BA based on the
4PMM was 47,224, which was 14%, 3.8%, 16.72% and 35% lower than those of the PSO algorithm
(4PMM), BA (3PMM), PSO algorithm (3PMM) and WA (3PMM), respectively. Additionally, the HA,
PSO algorithm and BA based on the 4PMM outperformed the PSO algorithm, BA and HA based on
the 3PMM. Figure 5 shows that the estimated discharge of the HA based on the 4PMM matched the
observed discharge during the flood well. Furthermore, Table 16 shows the sensitivity analysis for
the 4PMM and HA. The best size population for the HA is 60 because it has the least value for the
objective function. The maximum loudness for the HA is 0.60, and the other parameters can be seen in
Table 16. The comparison of results with other research studies shows the superiority of 4PMM and
HA. For example, one study considered flood routing based on improved PSO based on correction
of Wight inertia and a Muskingum flood with two parameters. The MARE index is 0.911, while the
MARE for the HA and 4PMM is 0.794. HA acts better than the improved PSO and the Muskingum
model with two parameters [34].

Moreover, Table 17 shows the 10 random results for different methods, and it can be seen that the
value of the error objective function for the 4PMM and HA is less than PSO and BA. Additionally, the
computational time based on HA and 4PMM is less than those of other methods. The solution for the
HA is high quality because the variation coefficient is small compared to those of the other methods.
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Table 17. Investigation of different methods for Karahan flood.

Run Number HA PSO BA

1 45,225 55,124 47,224
2 45,226 55,124 47,226
3 45,225 55,127 47,224
4 45,225 55,124 47,224
5 45,225 55,124 47,224
6 45,225 55,124 47,224
7 45,225 55,124 47,224
8 45,225 55,124 47,224
9 45,225 55,124 47,224
10 45,225 55,124 47,224

Average 45,225 31113 47,224
Computational time 15 s 17 s 19 s
Variation coefficient 0.000004 0.000006 0.00005

Figure 5. Extracted hydrograph for Viessman and Lewis flood based on 4PMM.

5. Conclusions

The present study considers flood routing based on the new hybrid BA and PSO algorithm.
The new algorithm is based on the substitution of the weaker BA solutions with PSO. The structure of
the new HA, with the elimination of the weaker BA solutions, enables the escape from local optimums.
Three case studies that are benchmark studies in the flood routing field were used in this study, and
the 4PMM was selected for analysis. For the Wilson flood case study, the computational time of the
HA method was 25% and 20% lower than those of the PSO algorithm and BA methods, respectively.
The SSQ computed by the HA was 4.234, which was 23.7% and 20.74% lower than those computed by
the PSO algorithm and BA, respectively. Generally, the Wilson flood results showed that the HA based
on the 4PMM performed better than the other models, with an SSQ value 65%, 72% and 47% lower
than those of the BA (3PMM), PSO algorithm (3PMM) and HA (3PMM), respectively; the values of the
other indexes agreed with this result. The results for the Karahan flood case study showed that the
performances of different models based on the BA, PSO algorithm and HA with the 4PMM were better
than those of the same models with the 3PMM. In the Karahan flood case study, the HA based on
the 3PMM performed better than the other methods based on the 3PMM did, with an SSQ value that
was 11.38%, 18%, 7.1%, 3.4%, and 6.3% lower than those of the GA, HS, ICA, BA and PSO methods,
respectively. For the Viessman and Lewis flood case study, the SSQ, SAD and MARE of the HA based
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on the 4PMM were the lowest. The HA based on the 4PMM performed better than did the BA and
PSO based on the 3PMM. The results indicated that the HA based on substitution of weaker solutions
of each algorithm with the strong solutions can decrease the computational time, and the chance of
obtaining the best solutions increased significantly. With the new strategy, there is no problem with
trapping in the local optimums because the elimination of weaker solutions can lead to exits from the
local optimums.

However, the HA based on the 4PMM had the best performance of all the models, suggesting that
it should be used in future studies with other advanced Muskingum models and more parameters,
such as 7- or 9-parameter Muskingum models, to evaluate the skill of HA for flood routing
prediction modelling.
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Abstract: Machine learning (soft) methods have a wide range of applications in many disciplines,
including hydrology. The first application of these methods in hydrology started in the 1990s and
have since been extensively employed. Flood hydrograph prediction is important in hydrology
and is generally done using linear or nonlinear Muskingum (NLM) methods or the numerical
solutions of St. Venant (SV) flow equations or their simplified forms. However, soft computing
methods are also utilized. This study discusses the application of the artificial neural network
(ANN), the genetic algorithm (GA), the ant colony optimization (ACO), and the particle swarm
optimization (PSO) methods for flood hydrograph predictions. Flow field data recorded on an
equipped reach of Tiber River, central Italy, are used for training the ANN and to find the optimal
values of the parameters of the rating curve method (RCM) by the GA, ACO, and PSO methods.
Real hydrographs are satisfactorily predicted by the methods with an error in peak discharge and
time to peak not exceeding, on average, 4% and 1%, respectively. In addition, the parameters of the
Nonlinear Muskingum Model (NMM) are optimized by the same methods for flood routing in an
artificial channel. Flood hydrographs generated by the NMM are compared against those obtained
by the numerical solutions of the St. Venant equations. Results reveal that the machine learning
models (ANN, GA, ACO, and PSO) are powerful tools and can be gainfully employed for flood
hydrograph prediction. They use less and easily measurable data and have no significant parameter
estimation problem.

Keywords: machine learning methods; St. Venant equations; rating curve method; nonlinear
Muskingum model; hydrograph predictions

1. Introduction

Flood routing in a river is important to trace the movement of a flood wave along a channel length
and thereby calculate the flood hydrograph at any downstream section. This information is needed for
designing flood control structures, channel improvements, navigation, and assessing flood effects [1].

There are basically two flood routing methods: (1) hydraulic methods that are based on numerical
solutions of St. Venant equations or their simplified forms as the diffusion wave or the kinematic wave;
and (2) hydrologic methods that are based solely on the conservation of mass principle [2], such as
the Rating Curve Method (RCM) [3], Muskingum method (MM) or nonlinear Muskingum method
(NMM) [4]. The above methods require substantial field data; such as cross-sectional surveying,
roughness, flow depth and velocity measurements that are costly and time consuming. When lateral
flow becomes significant, the flood prediction is affected by high uncertainty [5]. In addition, numerical
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solutions of the St. Venant equations require a fair amount of data which is often not available and can
encounter convergence and stability problems [2].

In the 1990s, the first applications of the artificial neural networks led to the realization that machine
learning methods can handle nonlinear problems efficiently and satisfactorily without being restricted by
the mathematical operations of integration and/or differentiation [6]. This even led to the development
of new machine learning algorithms in the 1990s and the 2000s, such as harmony search (HS), gene
expression programming (GEP), and genetic programming (GP). Machine learning (soft) methods
are data driven and do not require substantial data and parameter estimation, as in the case of the
distributed physically-based hydrologic models. The important advantages of these models are their
relatively simple coding, low computational cost, fast convergence, and adaptiveness to new data [6,7].

Flood hydrograph predictions are performed using several soft computing methods, such as
the artificial neural network (ANN) [8], the genetic algorithm (GA) [9,10], and the Fuzzy logic
methods [11]. Most recently, the performance of some of the machine learning algorithms against
the Variable Parameter Muskingum Model (VPMM) was compared [12]. In this context, it is of
considerable interest to investigate how well the machine learning methods work in the real field
and this study attempts to answer to the demand presenting real flood hydrograph predictions by
the ANN, the GA, the ACO, and the PSO and compares the performances against those of the RCM.
The flood hydrographs observed along an equipped branch of Tiber River, central Italy, with significant
lateral flow contribution is used for testing the methods. In addition, the study tests the performance
of these machine learning methods, based on the NMM, against that of the St. Venant equations by
flood routing in an artificial channel having different bed slopes.

2. Material and Methods

2.1. Artificial Neural Network (ANN)

The artificial neural network is a processor made up of neurons. It can learn and store information
through the training process. ANNs can handle nonlinearity and, therefore, have a wide application in
many disciplines, including the flood hydrograph prediction in hydrology. In general, the three-layer
network, as shown in Figure 1, is conceptualized in flood hydrograph prediction problems. In such
network (see Figure 1); the compacted input values (xi) are first entered into the input layer neurons.
They are multiplied by the connection weights (vij) and then passed on to the hidden layer neurons.
Each neuron sums all the received weighted information (xivij) and then passes the sum through an
activation function to produce an output (zi), which in turn, becomes the input signal for the output
layer neuron. The output from each inner layer neuron is multiplied by the related connection weight
(wij) and then passed on to the output neuron, which sums all the received signal (ziwij) and passes it
through an activation function to produce the network output (yi).

Figure 1. Three-layer network.
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The optimal values of the connection weights can be found by the back propagation algorithm,
which minimizes the error function by using the gradient decent method. The minimized error
function, E, is expressed by Equation (1), as follows [11]:

E =
p

∑
i
(ti − yi)

2 (1)

where yi is the network output, ti is the user-specified target output, and p is the number of
training patterns.

The connection weights (wij) are updated at each iteration using Equation (2), as follows [11]:

Δwij(n) = αΔwij(n − 1)− δ
∂E

∂wij
(2)

where Δwij (n) = wij
old − wij

new at the present iteration (n), and Δwij (n − 1) = wij
old − wij

new at the
previous iteration (n − 1). δ is the learning rate and α is the momentum factor, taking values between 0
and 1. In this study, tangent hyperbolic (tanh) activation function (Equation (3)) was employed.

f (sum) =
2

1 + e−2sum − 1 (3)

where sum is the total information received by the neuron. The tangent hyperbolic function is bounded
in between −1 and +1 and, therefore, all the values were compacted by Equation (4) into −0.9 and +0.9.

zi =

[
1.8(xi − xmin)

xmax − xmin

]
− 0.9 (4)

where zi is the standardized value, xmin is the minimum value in the set; and xmax is the maximum
value in the set. Details of ANNs are available in the literature [11].

2.2. Genetic Algorithm (GA)

Genetic algorithm (GA) was developed by Holland [13]. The concept is based on the survival
of the fittest. It employs chromosomes, each of which consists of many genes. Each gene stands for
a decision variable (or a model parameter) and each chromosome stands for a possible optimal solution.
Note that each gene is formed from a string of many 0 and 1 digits. The fitness of a chromosome, F(Ci),
in a gene pool, which can contain many chromosomes, is found by Equation (5):

F(Ci) =
f (Ci)

∑N
i=1 f (Ci)

(5)

where N is the total number of chromosomes, Ci is the ith chromosome, f(Ci) is the functional value of
the ith chromosome, and F(Ci) is the fitness value of the ith chromosome.

Once the fitness of each chromosome is calculated by Equation (5), then the selection process
is performed using either the roulette wheel or the ranking method [14]. Pairing is done after the
selection process, then the crossover and mutation operations are applied to each paired chromosome
to produce new generations (offsprings). Figure 2 presents the crossover and mutation operations.
As seen, the genes of the first two chromosomes (parent chromosome I and parent chromosome II) were
cut from the third digit on the left and interchanged. This yielded a new pair of chromosomes (offspring
I and offspring II). The original values 185 and 234 became 249 and 170, respectively. The mutation
operation was applied onto the fourth digit from the left of each offspring by simply reversing digit
1 to 0 and digit 0 to 1, respectively. After the mutation operation, 249 and 170 became 233 and 186,
respectively. More details on GA can be found in other studies [11,14,15].
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Figure 2. Example for crossover and mutation operations.

2.3. Particle Swarm Optimization (PSO)

The PSO was developed by Kennedy and Eberhart [16]. The concept is based on the movement
of a flock. The individuals in the flock move in search space while adjusting their position and
velocity according to the neighboring individuals [17]. The position of an individual, xi, is adjusted by
Equation (6) [18]:

xi+1 = xi + vi+1 (6)

where xi and vi are the particle’s position and velocity vectors, respectively. The particles velocity, vi,
is adjusted by Equation (7) [18]:

vi+1 = μ
[
wvi + c1r1(pi − xi) + c2r2

(
pg − xi

)]
(7)

where pi is the position of the best candidate solution; pg is the global best position, μ is the constriction
coefficient (μ = 1) [19], w is the inertia weight (w = 0.4–0.9) [20], c1 and c2 are the acceleration coefficients
(c1 = c2 = 2), and r1 and r2 are random values in (0, 1) [21]. The inertia weight is updated by Equation (8)
at each iteration [18]:

witer = wmax − wmax − wmin
itermax

iter (8)

where witer is the inertia weight in each iteration, itermax is the maximum number of iterations, and wmax

and wmin are the maximum and minimum inertia weights, respectively. Details of PSO are given in [16,18].

2.4. Ant Colony Optimization (ACO)

The ACO was developed by Dorigo [22] who wondered how the ants find the shortest path
between their nest and a food source. It was found that ants are completely blind but communicate
through a chemical tracer called pheromone. Each ant leaves a pheromone on its path. Hence, it is
likely that ants will choose the path having the most concentrated pheromone. This suggests that if
there are long and short paths between the nest and the food source, then the ants will eventually
choose the shortest path.
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The probability that option Li(j) path is chosen at cycle k and iteration t (Pi(j)(k,t)) can be computed
by Equation (9) [23]:

Pi(j)(k, t) =

[
Pi(j)(t)

]α[
μi(j)(t)

]β

∑Li(j)

[
Pi(j)(t)

]α[
μi(j)(t)

]β
(9)

where Pi(j)(t) is the pheromone concentration associated with option Li(j) at iteration t; μi(j) = Li(j)/ci(j) is
the heuristic factor which favors options having smaller local costs; ci(j) is the set of costs associated
with options Li(j). α and β are the exponents controlling the relative importance of pheromone and
local heuristic factor, respectively.

The pheromone trail is updated using Equation (10) [23]:

Pi(j)(t + 1) = δPi(j)(t) + ΔPi(j) (10)

where ΔPi(j) is the change in pheromone concentration associated with option Li(j) and δ is the
pheromone persistence coefficient (δ < 1). Employing δ has many advantages, such as the greater
exploration of the search space, avoidance of premature convergence and costly solutions. More details
of ACO algorithm can be found elsewhere [22,23].

2.5. Data and Catchment

The models were applied to predict real event-based flood hydrographs (Table 1).
The hydrographs were recorded along an equipped branch of Tiber River, central Italy (see Figure 3).
Santa Lucia station is the upstream station and Ponte Felcino station is the downstream station
(Figure 3). Santa Lucia and Ponte Felcino stations have about 935 km2 and 2035 km2 drainage areas,
respectively. The distance between these two stations is 45 km and the wave travel time of the flood
events, as presented in Table 1, is, on the average, almost 3.5 h. The duration of each event is also
presented in Table 1.

The ANN model employed the flow stage data recorded at both stations to predict the flow
discharge at Ponte Felcino station. Other machine learning models (PSO, ACO; GA), based on the
RCM, employed the cross-sectional area data at both stations and flow discharge data at the upstream
station to predict the flow discharge at the downstream station. The 4 events, marked as * in Table 1,
were used for calibrating (training in the case of ANN) the models. Since the data was recorded every
half an hour and considering the duration of these events in Table 1, the total number of training
patterns (input data sets at the calibration stage) amounted to 1012. The total number of data sets used
for the validation (testing) stage was 740. More details on the catchment and data can be found in
other studies [3,8–10,24].

Table 1. Main characteristics of observed flood events.

Santa Lucia Station Ponte Felcino Station
TL (h) Duration (h)

Qb
(
m3/s

)
Qp
(
m3/s

)
Qb
(
m3/s

)
Qp
(
m3/s

)
December 1990 8 418 9 404 2 98

January 1994 35 108 50 241 3 122
May 1995 * 4 71 8 138 4 217

January 1997 * 18 120 36 225 3 77
June 1997 * 5 345 10 449 5 114

January 2003 24 58 50 218 3 150
February 2004 * 22 91 55 276 3 98

Qb = base flow rate; Qp = peak discharge; TL = travel time; * events employed for the training.
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Figure 3. Tiber River Basin at Ponte Felcino gage site.

3. Results and Discussion

3.1. Real Hydrograph Predictions

Flow stage data measured every half an hour at Santa Lucia (upstream station) and Ponte Felcino
(downstream station) constituted the input vector of the network, while the flow discharge measured
at Ponte Felcino station was the target output. Thus, the network contained 2, 7, and 1 neurons in the
input, hidden, and output layers, respectively. The ANN model was trained with 4 events, marked
as * in Table 1 and the total number of training patterns was 1012. The ANN model was trained with
δ = 0.04, α = 0.02 and 3000 iterations. The network, by the back propagation algorithm, found the
optimal values of the connection weights by minimizing the following objective function:

E =
N

∑
i=1

(
Qobs

d − Qmodel
d

)2
(11)

where N is the number of observations, Qobs
d is the observed discharge at the downstream station,

and Qmodel
d is the model-predicted downstream station discharge.

The trained ANN model was then employed to predict hydrographs of other three events
(December 1990, January 1994, and January 2003 in Table 1). Considering the duration of these events
(see Table 1), the total of data sets used in the testing stage was 740. Figure 4 shows the predicted
hydrographs, where the performance of ANN was tested against that of the rating curve method
(RCM) developed by Moramarco et al. [24] who proposed the relation given by Equation (12):

Qd(t) = α
Ad(t)

Au(t − Tl)
Qu(t − Tl) + β (12)

where Qu is the upstream discharge; Qd is the downstream discharge; Au is the upstream
cross-sectional flow area; Ad is the downstream cross-sectional flow area; Tl is the wave travel time;
and α and β are the model parameters, estimated using the same relation, given by Equation (12),
for the base flow and peak flow cases [3].
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The other methods (GA, PSO, and ACO) were also tested against the RCM. These optimization
methods, using the same flow hydrographs (the ones used in the training of the ANN) and by
minimizing the same error function (Equation (11)) found the optimal values of the RCM parameters.
We herein named them accordingly. For example, when the optimal values of the RCM are found
using the GA method, we called it GA_RCM model. In the GA_RCM modeling, 80 chromosomes,
80% cross-over rate, and 4% mutation rate were used. The search space was (−3, 3) and (−10, 10) for α

and β, respectively. It took 4200, 4600 and 6000 iterations for ACO_RCM, GA_RCM and SPO_RCM,
respectively, to reach the optimum solutions. Table 2 presents the optimum values obtained by
these methods.

Table 2. Optimal values of the Rating Curve Method parameters.

Algorithm α β

GA 1.22 −5.86
PSO 1.20 −5.90
ACO 1.23 −5.84

As seen in Figure 4, the machine learning models simulated observed hydrographs satisfactorily.
They captured the rising and recession limbs, and peak rates with no delay. Table 3 summarizes
the percentage errors for predicting the peak rates and time to peaks. The negative sign means
underestimation for the peak rate and early capturing of the peak rate for the timing. As seen, the models
made around 5% (or less) error in predicting the peak rates. This error was around 10% for the classical
RCM model. The machine learning methods captured the timing of the peaks with less than 1% error,
while it was around 5% for the RCM. Also, the mean absolute error (MAE) and the root mean square
error (RMSE) values for each run in Figure 4 were presented in Table 3. As seen, the ANN, the GA_RCM
and the ACO_RCM models produced, on average, around 7 m3/s MAE and 9 m3/s RMSE values.
These values are, on average, MAE = 11 m3/s and RMSE = 13 m3/s for the PSO_RCM model. The RCM
made high errors as 13 m3/s MAE and 17 m3/s RMSE.

Note that the classical RCM needs to estimate different α and β parameters for each event for
the same river reach [8]. On the contrary, herein only a single set of parameters was calibrated by the
machine learning algorithms for the same river reach having different inflow flood hydrographs.

Tayfur et al. [8] proposed that ANNs are good interpolators but they cannot be used for the
extrapolation purposes. That is, when they are trained by low peak hydrographs they cannot predict
high peak ones. On the other hand, Tayfur et al. [10] showed that GA_RCM does not have this
shortcoming of the ANN.
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Figure 4. Flood Hydrograph simulations: (a) December 1990; (b) January 1994; and (c) January 2003.

Table 3. Error measures (EQp: % error in peak discharge, and ETp: % error in time to peak).

December 1990 January 1994 January 2003

EQp (%)

ANN −5 4 5
GA_RCM 10 −3 −1
PSO_RCM 2 −4 10
ACO_RCM 2 −3 −2

RCM 10 10 12

ETp (%)

ANN 0 0 0
GA_RCM 0 2 0
PSO_RCM 0 2 −2
ACO_RCM 0 2 0

RCM −10 −2 4

MAE (m3/s) Mean

ANN 8.5 5.6 8.7 7.6
GA_RCM 12.7 4.4 4.7 7.3
PSO_RCM 6.2 12.0 15.4 11.2
ACO_RCM 4.6 3.5 9.1 5.7

RCM 10.4 13.2 14.9 12.8

RMSE (m3/s) Mean

ANN 10.3 7.0 9.2 8.8
GA_RCM 15.7 7.1 6.1 9.6
PSO_RCM 8.5 14.7 17.6 13.6
ACO_RCM 6.4 6.3 9.8 7.5

RCM 16.2 17.7 15.9 16.6
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3.2. Hydrograph Predictions in an Artificial Channel Reach

For this purpose, we considered flood routing in an artificial channel reach of 38 km,
with a rectangular cross-section of 40 m width and the Manning roughness value of 0.032. The GA,
PSO and ACO methods were used to find the optimal values of the parameters (K, x, m) of the nonlinear
Muskingum (NMM) flood routing method, which can be expressed as follows [25]:

I(t)− O(t) =
dS(t)

dt
(13)

S(t) = K[xI(t) + (1 − x)O(t)]m (14)

where I(t), O(t) and S(t), respectively, denote the inflow, outflow and reach storage at time t; and x
and K, respectively, denote the parameters of the method known as the weighing parameter and
flood wave travel time between inlet and outlet sections of the routing reach, and m is the exponent
of the weighted discharge. We herein name the models GA_NMM, PSO_NMM, and ACO_NMM.
For example, if the parameters of the NMM are found by applying the GA method, then it is called
herein as GA_NMM model.

The performance of the ANN, GA_NMM, ACO_NMM and PSO_NMM methods were tested
against that of the numerical solutions of the physically-based equations of one-dimensional St.
Venant equations:

∂A
∂t

+
∂Q
∂x

= ql (15)

∂Q
∂t

+
∂(Qu)

∂x
+ gA

∂h
∂x

= gA
(

So − S f

)
(16)

where A is the cross-sectional flow area, Q is the flow rate, ql is the unit lateral flow, g is the gravitational
acceleration, u is the flow velocity, So is the channel bed slope and Sf is friction slope (energy gradient).
These equations are well established in the literature [1,2].

By the GA_NMM, ACO_NMM and PSO_NMM, the optimal values of the coefficients (K, x, and m)
of the NMM model (see Equations (13) and (14)) were found by minimizing MAE function:

MAE =
1
N

N

∑
i=1

|QNMM − QSV | (17)

where QNMM is the computed flow discharge by the NMM (Equations (13) and (14)), and QSV is the
computed flow discharge by the St. Venant (SV) equations (Equations (15) and (16)).

The inflow hydrograph, similar to the one shown in Figure 5, with maximum peak of 900 m3/s,
time to peak of 26 h, and base flow rate of 120 m3/s, was routed in the same channel reach having
three different bed slopes (So: 0.001, 0.0007, and 0.0003) by the St. Venant equations and the generated
outflow hydrographs were used to obtain the optimal values of the NMM by the machine learning
methods. The search space was 0–1 for K, 0–0.5 for x and 1–3 for m. It took 3000, 3600 and 4000 iterations
for GA, ACO and SPO, respectively, to reach the optimum solutions. Table 4 presents the optimal
values of NMM. Figure 5 presents the validation runs for a different inflow hydrograph having 100
m3/s base flow rate, 800 m3/s peak discharge, and 50 h for the time to peak. The inflow hydrograph
was routed three times in the same channel reach having different bed slopes. Note that a single set of
parameter values given in Table 4 were obtained for the same reach having different bed slopes. Also,
note that with the same hydrographs that are used for the calibration of the other methods (GA_NMM,
PSO_NMM, and ACO_NMM). In the training stage of the ANN, 5000 iterations and 0.04 for δ and α

were employed.
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Figure 5. Hydrograph simulations: (a) Slope = 0.001, (b) Slope = 0.0007, and (c) Slope = 0.0003.
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Table 4. Optimal values of the Nonlinear Muskingum Model parameters.

Algorithm K x m

GA 0.0057 0.45 2.20
PSO 0.0056 0.45 2.21
ACO 0.0059 0.45 2.21

As seen in Figure 5, the machine learning algorithms can successfully be employed for simulating
flood hydrographs. They are able to capture the peak discharge values as well as the timing of the
peaks and the flood volumes, and the rising and recession limbs of the hydrographs. Their performance
is as good as that of the St. Venant model. When Perumal et al. [12] investigated the performance of
some of the machine learning algorithms against that of the VPMM using a compound channel reach
of 40 km, they calibrated the NMM model parameters separately for each river reach having different
bed slopes. Herein, a single set of parameters was obtained for the same river reach having different
bed slopes.

Any nonlinear search method, such as the multivariate Newton’s method, could be used to obtain
the optimal values of the NMM. However, the machine learning methods are basically a nonlinear
search and optimization methods that do not rely on the mathematical properties of a function,
such as the continuity and the differentiability. Hence, they can be used in solving nonlinear,
nonconvex, and multimodal problems for which deterministic search techniques incur difficulty
or fail completely. Furthermore, the machine learning methods have advantages such as the simple
coding, low computational cost, fast convergence, and adaptiveness to new data. The machine learning
methods including the recurrent neural networks and neuro-fuzzy networks can also be employed for
multi-step-ahead flood and water level forecasting purposes [26,27].

4. Concluding Remarks

The following conclusions are drawn from this study:

1. Machine learning methods can make good predictions of flood hydrographs, using substantially
less data, such as easily measurable flow stage. Hence, they can be conveniently adopted
for predictions in poorly gauged stations, which is the common case in developing countries.
The machine learning methods can be employed in conjunction with the physically based models
employing the data acquired by newly developed technologies (the remote sensing, satellite).

2. It is proved by using field data that machine learning algorithms, such as GA, ACO, and PSO are
optimization methods without being considered black box models. Since there is a mathematical
relation, they both have interpolation and extrapolation capabilities. One more advantage of
these models is that one can propose a new equation, such as RCM, provided that it physically
makes sense, and by one of these methods, one can find optimal values of the coefficients and
exponents of the equation. These methods are robust and efficient and have low computational
cost and fast convergence.

3. It is shown that RCM model, whose parameters were optimized by the machine learning
algorithm, (GA-RCM, PSO_RCM and ACO_RCM), was able to successfully predict event-based
individual storm hydrographs having a different magnitude of lateral inflows at the investigated
river reach of the Upper Tiber River basin in central Italy. It closely captured the trends, time to
peak, and peak rates of the storms with on average, less than 1% and 5% errors, respectively.

4. Likewise, the machine learning-based nonlinear Muskingum models (NMM) can successfully be
employed for predicting flood hydrographs. They are able to capture the peak discharge values
as well as the timing of the peaks and the flood volumes, and the rising and recession limbs of
the hydrographs. Their performance is as good as the St. Venant model.

5. The use of machine learning for discharge prediction is essential for hydrological practices,
considering that often, for many river gauging sites, the maintenance is missing, and streamflow
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measurements are more and more limited to few strategic gauged river sections. The option to
monitor only water levels at gage sites makes these approaches very appealing for their capability
to relate, by RCM, local stages and remote discharge.
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Abstract: Design of hydraulic structures, flood warning systems, evacuation measures, and traffic
management require river flood routing. A common hydrologic method of flood routing is the
Muskingum method. The present study attempted to develop a three-parameter Muskingum model
considering lateral flow for flood routing, coupling with a new optimization algorithm namely,
Improved Bat Algorithm (IBA). The major function of the IBA is to optimize the estimated value of
the three-parameters associated with the Muskingum model. The IBA acts based on the chaos search
tool, which mainly enhances the uniformity and erogidicty of the population. In addition, the current
research, unlike the other existing models which consider flood routing, is based on dividing one reach
to a few intervals to increase the accuracy of flood routing models. Three case studies with lateral
flow were considered for this study, including the Wilson flood, Karahan flood, and Myanmar flood.
Seven performance indexes were examined to evaluate the performance of the proposed Muskingum
model integrated with IBA, with other models that were also based on the Muskingum Model with
three-parameters but utilized different optimization algorithms. The results for the Wilson flood
showed that the proposed model could reduce the Sum of Squared Deviations (SSD) value by 89%,
51%, 93%, 69%, and 88%, compared to the Genetic Algorithm (GA), Particle Swarm Optimization
(PSO) algorithm, Pattern Search (PS) algorithm, Harmony Search (HS) algorithm, and Honey Bee
Mating Optimization (HBMO), respectively. In addition, increasing the number of intervals for flood
routing significantly improved the accuracy of the results. The results indicated that the Sum of
Absolute Deviations (SAD) using IBA for the Karahan flood was 117, which had reduced by 83%,
88%, 94%, and 12%, compared to the PSO, GA, HS, and BA, respectively. Furthermore, the achieved
results for the Myanmar flood showed that SSD for IBA relative to GA, BA, and PSO was reduced by
32%, 11%, and 42%, respectively. In conclusion, the proposed Muskingum Model integrated with
IBA considering the existence of lateral flow, outperformed the existing applied simple Muskingum
models in previous studies. In addition, the more the number of intervals used in the model, the better
the accuracy of flood routing prediction achieved.

Keywords: flood routing; Muskingum model; hydrologic models; improved bat algorithm; Wilson flood;
Karahan flood
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1. Introduction

Flood routing is fundamental to the design of structural, as well as nonstructural, flood control
measures [1]. Routing involves the calculation of changes in the magnitude, velocity, and shape of a
flood wave, as a function of time at one or several points of the river [2]. There are two types of flood
routing methods: Hydraulic and hydrological. Hydraulic methods have complex computations and are
more data-intensive, but describe the complete flood wave profile, whereas hydrological methods are
much simpler, but yield the flood hydrograph at the end of a reach [3–7]. The hydrologic methods need
only the inflow hydrograph for a river reach. A common hydrologic method is the Muskingum method,
which has several versions with parameters ranging from two to five. The two and three parameter
versions of the Muskingum methods are more popular. In recent years, optimization methods,
especially evolutionary algorithms, for estimating the Muskingum parameters have been popular [3].
A brief background of such algorithms is now given.

1.1. Background

The flood routing models mainly include two different types of modeling: the hydraulic and
hydrologic models. The hydraulic model is usually developed in a one or two-dimensional domain.
Full three water shallow models and two diffusive models were used for an urban site, and the
results had the same difference with each other because of different representation of a numerical and
hydraulic method in the model algorithm process [5]. Hunter et al [6] successfully set three explicit
hydraulic models based on the inertia, diffusive, and shallow water models for flood simulation.
The results indicated that the models with the shallow water equation were simple and could provide
good accuracy, for the prediction of depth and velocity of the flood [5]. Dottori and Todini [7] evaluated
two-dimensional models based on the diffusive wave for urban floods, and the results indicated that
the model could simulate the overall phenomenon well. Kim et al. [8] evaluated the different meshes in
diffusive models, to investigate the effect of different meshes on the flood hydrograph. Prestininzi [9]
applied the diffusive models based on the impulsive wave for inundation areas, and the results showed
the model could simulate the flood conditions even in complex topography, based on a good match
of simulated results with the observed data. Aricò et al. [10] applied diffusive wave equation based
on 2-D numerical models for a slow varying flood, and the results showed that the simulated depth
of the flood had a relatively good match with observed data. Classical, explicit finite differences in
the hydraulic models and simple Muskingum model were used to investigate the flood routing [11].
It has been reported that the applied numerical methods had numerical instability, for some case
studies. As a result, the Muskingum model showed superior performance compared to the same
applied hydraulic models [11]. It has been reported that the 2-D models could be developed, based on
the availability of enough information about topography and topology. With this information, a 2-D
hydraulic model could successfully simulate the flood characteristics for different urban conditions.
In fact, digital maps helped to identify all the required information about the boundary conditions,
and to differentiate between numerous transitions within the urban hydraulic modes [12].

In addition, it has been reported that the 2-D models had had trouble in application to particular
cases under small water depths, especially when the status comes close to wet/dry boundary
conditions, so that there is a need for specific algorithms for simulation [6]. Costabile et al. [13] reported
that the main advantages of the one-dimensional model over the 2-D models for flood routing, are a
simpler run process and low computational time where topographic data was unnecessary.

Fassoni-Andrade et al. [14] considered the development of a one-dimensional model based on the
equation of hydrological models, which include the continuity equation and mass equation, such as the
equation of the Muskingum models [14]. It was observed that one-dimensional flow routing inertial
models, based on the explicit solution were superior to the other models. These models simplified
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the Saint-Venant equation, and the main advantages of these models were good simulated results
with a simple structure. Singh and Arvamuthan et al. [15] applied two hydraulic models that were
developed based on the Kinematic and diffusion waves, in addition, the results were compared to the
Muskingum model for the flood routing. The results showed that the simulation of hydraulic models
was dependent on the kinematic wave number, so that when the value of this parameter was not
considered based on accurate computation, the results for the hydraulic model could be worse than
hydrologic models. Costabile et al. [16] reported that 2-D models could overcome the limitation of
1-D models, when the case study characterized as unsteady flow in irregular topography. The reports
showed that if the flow was not one dimensional for the urban hydraulic, the one-dimensional channel
network should be used instead of a one-dimensional model. In addition, the results showed the
significant difference between 1-D and 2-D models to simulate the velocity and depths.

However, the results showed that the complex nonlinear form characteristic, numerical stability,
high computational time, and complexity in the run process of hydraulic models, meant that the
simpler and more accurate models have high importance [13]. In fact, the hydraulic models need to
measure the flow depth and discharge based on applying stream gaging. These models are known
as complex models and difficult to use, whilst the hydrologic models need only to use the discharge
data. In addition, the hydrologic models can be effective for the initial planning level, where the
measuring system is undeveloped for accurate measurement [13]. For example, Chatila [17] simulated
flood routing based on the Muskingum model and EXTRAN hydraulic model. The hydraulic model
developed was based on finite difference. Both hydrologic models and hydraulic models, were applied
on simple and compound channels for flood routing. The results revealed that the Muskingum
model had achieved higher accuracy compared with the hydraulic model because of its flexibility
in calibration, where even the river bed geometry was not considered for this model. It has been
demonstrated that the Muskingum model could simulate the peak discharge, achieving a close fit with
the actual one, compared to the hydraulic model. Furthermore, it has been reported that hydraulic
models are dependent too many assumptions, such as reach geometry, channel slope, and flow velocity,
which causes the application of some hydraulic models to be limited to the specific case studies.

The Muskingum model is a useful and important hydrological model, due to its high accuracy and
simplicity. Hydrological models could be accomplished after estimating the value of parameters, on the
other hand, hydraulic models are required to simulate the complex boundary hydraulic conditions
that causes an increase in the computational time [17].

Therefore, this model was used as a model with free access, fast computation, highly accuracy, and
low cost. Furthermore, it can be used as a good tool, instead of complex hydraulic models, for flood
simulation. Additional background of the application of the Muskingum model and its integration
with an evolutionary algorithm, will be presented and discussed hereinafter [18].

Under a two parameter Muskingum method, Luo and Xie [19] applied the immune clonal
selection algorithm (ICSA) for flood routing in a river in China, and found that the algorithm
had faster convergence than the GA and PSO; and routed discharges had a high correlation with
observed discharges.

Geem [20] obtained the two parameters of Muskingum method using a harmony search algorithm
(HAS) for the Wilson flood in the USA, and obtained less root mean square between the predicted and
observed discharges, than for GA and PSO, and less computational time.

Nelder-Mead simplex algorithm (NMSA) was considered for flood routing, and a case study
in the USA [21]. The parameters of the Muskingum model were considered as decision variables,
and the results indicated that the RMSE (root mean square error) based on NMSA decreased by 20%,
compared to the genetic algorithm [21].

Karahan et al. [22] applied a hybrid of GA, HAS, and nonlinear programming to a three-parameter
Muskingum method for flood routing in a river, and found the hybrid algorithm more accurate.
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Orouji et al. [23] used a genetic programming algorithm (GPA) for flood routing by the
Muskingum method, and showed that GPA was more accurate than GA and PSO. The Muskingum
model by 4 parameters was considered under different case studies [23].

Four parameters were considered as decision variables, and the results indicated that the model
based on the considered parameters with the genetic algorithm decreased the RMSE and mean absolute
error (MAE) by 20% and 25%, respectively, compared to the nonlinear programming methods [24].

The hybrid PSO and harmony search algorithm was considered for flood routing [25]. The results
indicated that the new hybrid method could increase the convergence velocity of the harmony
algorithm, and decreased the error indexes, RMSE, and MAE, compared to the simple harmony
and particle swarm algorithm.

Ouyang et al. [26] applied a hybrid of PSO and GA for Muskingum flood routing and showed that
the hybrid algorithm was faster, and more accurately predicted the peak discharge and time to peak.

Under the three-parameter Muskingum method, Geem [27] found the harmony algorithm (HA) to
have higher convergence than PSO and GA. Under the four-parameter Muskingum method, the Frog
Leaping Algorithm (FLA) was found to have a lower computational error, than PSO and GA [28].
Niknazar and Afzali [29] used an improved Honey Bee Algorithm (IHBA) to optimize three parameters
of the Muskingum method, and found it to be superior to GA and PSO.

Using an Invasive Weed Optimization Algorithm (IWOA) for parameter optimization,
Hamedi et al. [2] found the five-parameter Muskingum method to be more accurate than the
four-parameter version. With PSO for parameter estimation, Moghadam et al. [30] found the four-
parameter Muskingum method to be more accurate, than the three-parameter Muskingum method
with GA and linear programming.

Using the gravitational search algorithm for parameter optimization, Kang et al. [31] found the
four-parameter Muskingum method to be accurate for flood routing. Flood routing for a case study
in China based on real code genetic algorithm was considered [3], and the results indicated that the
four-parameter Muskingum model based on genetic algorithm decreased the RMSE and MAE of the
two- and three-parameter Muskingum models.

Barati et al. [21] applied different kinds of GPA to the four-parameter Muskingum method for
flood routing, and found the fixed genetic programming to be more accurate. For flood routing using
the Muskingum-Cunge method, Wang et al. [23] found PSO to yield better results than GA.

In 2018, Lee [32] developed and applied an advanced Muskingum flood routing model by
considering continuous stream flow, utilizing weighted inflow. Several statistical indicators have
been used to evaluate the performance of the suggested model. The proposed model provided
acceptable results, compared to those obtained from previous studies. The results showed that the
vision corrected algorithm (VCA) had experienced a relatively small error index compared to the GA,
PSO, and nonlinear programming models, for different flood case studies.

The literature review showed that the evolutionary algorithm has a high ability for obtaining the
parameter values of the Muskingum model, but some algorithms have limitations, such as trapping in
local optimums, slow convergence velocity, or insufficient accuracy for the simulation [33]. For example,
the GA can trap in the local optimums or the PSO may have an immature solution due to fast
convergence [1,27]. Some evolutionary algorithms have many random parameters, and accurate
determination of these parameters is difficult. Thus, the improvement of previous algorithms or
definition of new algorithms is necessary.

1.2. Problem Statement

Flood routing is nonlinear and multimodal, with noise. The most widely used model for flood
routing is the Muskingum model. One of the main components of the Muskingum model procedure,
is the inclusion of a particular number of parameters ranging between two and five, which have
to be estimated based on the case study characteristics to be able to accurately route the flood.
There are different procedures to estimate the Muskingum model parameters. Actually, the better
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the estimation of the parameters’ value, the better the prediction of the flood routing characteristics
achieved [33–37]. Having an optimization algorithm that is able to optimize the value of these
parameters, whether two or three, is needed to enhance the ability of the Muskingum model to
identify the flood routing characteristics. Thus, a robust algorithm that leads to the global optimal
solution is needed. Bats exhibit a mysterious behavior that has long been attractive. They are able
to orientate themselves to their surroundings and food acquisition, without depending on their
eyesight. Bats consistently emit echolocation signals. Through analyzing the returning echoes
in the auditory system, bats can distinguish their environment and find preys. By continuously
watching and concentrating on the abilities of bats, scientists have suggested different bat-inspired
algorithms (i.e., bat algorithm (BA) and bat intelligence (BI) algorithm) for the solution of optimization
problems [33,34]. Bozorg-Hadad et al. [35] used BA to optimize the use of a repository to reduce
hydroelectricity energy shortage. This algorithm has been shown to have a faster convergence, than GA
and PSO. Ahmadinafar et al. [36] used a hybrid BA to exploit a 10-repository system to increase
energy production, which reduced computational time compared to other evolutionary algorithms.
Studies have shown that BA is a powerful method but it has weaknesses, such as trapped in the local
optimum or premature convergence [37,38]. Thus, it needs to be improved.

1.3. Objective

In the light of the above, the use of Muskingum model showed its success when applied in
flood routing prediction, but it has a few limitations. For example, it cannot be used for the complex
boundary condition. In addition, one of the weaknesses of the model is the consideration of the lateral
flow. In fact, most of the previous researches ignore the lateral flow while using the simple Muskingum
model. Therefore, if lateral flow exists and has high volume, the Muskingum model simulates the flood
without consideration of lateral flow [23–31], and hence, the achieved accuracy is relatively low. In fact,
simplification of the Muskingum equation was a reason to omit the effect of lateral flow for flood
routing, whilst there is lateral flow in the reach when the flood happens in nature. Although, there are a
few number of references considering the lateral flow, some of them are limited to specific case studies
with the low flow lateral condition and using Muskingum models with a simple structure [39–42].

Limited studies showed that the consideration of the lateral flow, with the help of hydraulic
models, could simulate the actual situations that close to the real conditions [12]. Osolivan et al. [17]
reported the disadvantages of the hydraulic models for flood routing in the floodplain. Their reports
showed that the initial and boundary conditions, and the resistance characteristics of main channels in
the floodplain, are neccessary for the hydraulic modeling.

The present study develops the new Muskingum model for flood routing considering lateral
flow. In addition, the Muskingum Model has been coupled with a new Improved Bat Algorithm (IBA),
to optimize the estimation of the three-parameter Muskingum model.

The objective of this study, was to couple the three-parameter Muskingum method (TPMM) with
an improved bat algorithm (IBA) for flood routing, with a multi-reach method and consideration
of lateral flow. Citing easy trapping in the extremum for bat algorithm, an improved bat method is
suggested and used to simulate flood routing. Chaos search tool is defined to enhance the uniformity
and ergodicity of the population. Adapting weight is defined to balance the local and global search
tools, for the bat algorithm. One of the advantages of the new bat algorithm is related to decreasing
the search range, based on dynamic contraction.

The innovation of the study is the use of a new bat algorithm for flood routing lateral flow.
Moreover, whilst previous studies usually considered one reach for flood routing without lateral
flow, the present study compared the effect of dividing a river into different reaches on flood routing,
and the prediction of peak discharge.
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2. Materials and Methods

2.1. Flood Routing

The Muskingum method of flood routing is based on the continuity equation and a
storage-discharge relation [30]. The present study considers the lateral flow for the flood routing for
the case studies based on a ration of inflow rate Olateral = βIt, while the other studies do not consider
the effect of lateral flow for flood regime, and thus it adds one term to the equation of the Muskingum
model with three parameters. If β coefficient equals to zero, the lateral flow has not been considered
for the flood routing.

dst

dt
= Ot − (1 + β)It (1)

St = K[X(1 + β )It + (1 − X)Ot] (2)

where Ot is the output flow at time t, It is the input flow at time t, St is the storage at time t, dst
dt is

the storage time variation at time t, K is the time coefficient of storage, and X is the weighting factor
showing the effect of input and output flows on storage.

Equation (2) expresses a linear relation between storage, and input and output flows. However, a non-
linear has also been presented as:

St = K[X(1 + β )It + (1 − X)Ot]
m (3)

where m is an exponent. Using Equations (1) and (3), one can obtain [21]:
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Using St, ΔSt, the storage later can be expressed as:

St+1 = St + ΔSt (6)

Flood routing can be done using the following steps:

1. Consider initial values for parameters K, X, β, and m and enter them into the optimization
algorithm, in the form of initial population.

2. Calculate the storage based on Equation (3), assuming the equality of input and output flow.
3. Calculate the change in storage relative to time, based on Equation (5).
4. Calculate the storage based on t + 1, according to Equation (6).
5. Calculate the output flow at t + 1, based on Equation (4).
6. Repeat steps 2 to 5.

2.2. Optimization of Multi-Reach Muskingum Coefficients

The multi-reach Muskingum method is introduced to enhance the accuracy of the Muskingum
method. The river under study was divided into several smaller reaches, and for each reach,
routing was done separately. In other words, for each reach, parameters X, K, β, and m were calculated
separately, and the output hydrograph was obtained based on the input flood hydrograph and
the assumed values of X, K, β, and m for the first reach [3,21,28,31]. This output hydrograph was
considered as the input hydrograph for the second reach, and so on. For the second reach, the assumed
values of X, K, β, and m were used, and the output hydrograph was calculated. This process was
repeated for all the reaches, until the output hydrograph of the last was obtained. By comparing
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the computed hydrograph with the observed hydrograph, the error was calculated, and to reach the
minimum error, Muskingum coefficients were optimized at all reaches. Figure 1 shows the division of
the river into several reaches.

Figure 1. Discretization of the river stream.

2.3. BAT Algorithm

Bat algorithm (BA) is based on bat sound reproduction and sound reflection. The difference
in loudness that comes from the surrounding environment, allows the bat to identify the barrier
from food. Bats produce very high sound pulses and listen to their return from the objects around.
Each pulse remains only for a few milliseconds. BA is based on the following assumptions [30,39–41]:

1. All bats have a high ability to receive sound, so that they can detect food after producing
loud sounds.

2. Bats fly randomly at a velocity at place yl, capable of producing sound with f min frequency and λ

wavelength. The sound produced by bats also has loudness A0.
3. The loudness of sound, of the bats ranges from A0 to Amin.

Each sound produced by the bat has a pulse rate (r), between 0 and 1. The sound frequency speed
and position of the bats are updated as:

fl = fmin + ( fmax − fmin)× β (7)

vl(t) = [yl(t − 1)− Y∗]× fl , t = 1, 2, . . . T (8)

yl(t) = yl(t − 1) + vl(t), t = 1, 2, . . . , T (9)

where fl is the frequency of sound of bats, fmin is the minimum frequency, fmax is the maximum
frequency, β is the random coefficient between 0 and 1, vl(t) is the velocity of the bat, Y∗ is the best
position of the bat, yl(t) is the position of the bat, and T is the number of periods evaluated.

The following equation is used for local search in the bat algorithm:

y(t) = y(t − 1) + εA(t), t = 1, 2, . . . , T (10)

where ε is the random variable between −1 and 1, and A(t) is the loudness of sound. Loudness and
pulse rates are updated, according to each stage of the iteration. For example, zero sound loudness
means that the bat has found its prey and has temporarily stopped the search.

rt+1
l = r0

l [1 − exp(−γt)]At+1
l = αAt+1

l (11)
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where α and γ are fixed as constant coefficients. For any value of α between 0 and 1, and γ greater than
zero, At

l → 0 and rt
l → t0

l are true. Figure 2 shows the mathematical procedure of the bat algorithm.
In addition, it should be noted that the random walk is considered as a parameter for the local search,
for the bat algorithm.

Figure 2. The flow chart of the bat algorithm.

2.4. Improved Bat Algorithm (IBA)

The initial arrangement for the initial version of the BA is defined randomly, and it can be a reason
for the uneven distribution that causes premature convergence. The chaos is a technique for improving
different algorithms, where the basic idea is related to the exchange of members in the range of (−1,1).
The logic mapping function is used for modulating the algorithms. Then individuals are inserted into
the chaos sequence, so that it should satisfy the chaos variable space. Then, linear transformation
is used to return the members to the corresponding position. The convert space is shown based on
following mathematical equation:

Li =
2
(
xa

i − a
)

(b − a)
− 1 (12)

where xa
i : the initial position of the members.

The following equation is used to show the logic mapping function:

Li+1 = 1 − 2 × L2
i (13)

Then, the elements and values are returned to the corresponding position by the following
linear transformation:

y0
i =

1
2(b − a )

Li +
1

2(b + a)
(14)

Furthermore, adapting weight is applied to the bat algorithm to have a good balance between
global search ability and local search ability.

yt
l = w(t) ·yt−1

l + vt
l (15)
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The weight is computed based on the following equation:

w(k) =
wmax·(wmax − wmin)·(Tmax − k)

Tmax
(16)

wmax: the initial weight, wmin: the final weight, and k: the current iteration number.
The final level is related to the application of dynamic contraction, for adjusting the convergence speed:

ymin,i = max{ymin,i, x∗ − rand × (ymax,i − ymin,i)}
ymax,i = min{ymax,i, x∗ − rand × (ymax,i − ymin,i)} (17)

where ymin,i: the lower bound position, and ymax,i; the upper bound position.
The algorithm functions using the following steps:

1. Adjust the random parameters for the algorithm, such as loudness, pulsation rate, frequency,
and other parameters.

2. The individual position is computed using Equations (13)–(15), and then the objective function is
computed for each member, and the best solution is considered as Y∗.

3. The frequency and velocity are updated using Equations (7) and (8), and the position is computed
using Equation (17).

4. The randomness value is compared with rl, and if rl is less than the randomness value,
the distribution of the best position is acted based on 0.01 times the random disturbance.

5. The local search is considered for this level. If the loudness is less than rand, the loudness should
be updated and the pulsation rate should be improved using Equation (12).

6. Compute the objective function and change the range using Equation (16).
7. The convergence criterion is checked and if it is satisfied, the algorithm finishes or else the

algorithm goes to step 2.

2.5. Genetic Algorithm (GA)

In GA, the initial version of the population is composed of different solutions [40]. During an
iterative process, subsequent populations are generated to improve the objective function. At each
stage, some members from the current population are selected to generate individuals or children of
the next generation, based on the fact that the likelihood of selecting people with better performance
than others is more likely [41]. The selected individuals produce the next population based on two
genetic operators, composition and mutation. The following equations can be used for the composition
operator [33].

Popnew
i = αPopold

i + (1 − α)Popold
j (18)

Popj
new = αPopold

j + (1 − α)Popold
i (19)

where Popnew
i is the i-th child, Popold

i is the i-th parent, Popold
j is the j-th parent, Popj

new is the j-th child,
and α is a coefficient between 0 and 1. Moreover, mutation is based on the following equation:

Popnew
i,j = Varlow

i,j + β
(

Varhi
j,i − Varlow

j,i

)
(20)

where Varlow
i,j is the lower limit of the i-th gene in the j-th chromosome, Varhi

j,i is the upper limit of
the i-th gene in the j-th chromosome, and β is a random coefficient between 0 and 1. In composition,
the production of both new individuals is done by changing the gene. The mutation operator is used
for the change in chromosomes and transforming their genes to create diversity in the population.
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2.6. Particle Swarm Algorithm (PSO)

Initially, the process starts with a particle set. Each particle is considered as a random solution.
In the next step, searches are performed sequentially to achieve the optimal answer. The i-th particle
is associated with a position in an s-dimension space, where the value of s shows decision-making
variables of the problem [42]. The values of s variables, which determine the positions of particles are
a possible solution for the optimization problem. Each particle i is completely determined by three
vectors. Vector Xi is the current position of the particle, Yi is the best position where the particle is
iterated, and the vector of the particle velocity is shown by Vi. Then the particle position and particle
velocity vector are updated as:

Viter+1
i = wViter

i + c1rand
(

Yiter
i − Xiter

i

)
+ c2rand

(
Yiter∗ − Xiter

i

)
(21)

Xiter+1
i = Xiter

i + Viter+1
i (22)

where Viter+1
i is the new velocity of the particle, the personal learning coefficient c2 is the global

learning coefficient, Yiter∗ is the best solution among the solutions, and Xiter+1
i is the new position of

the particle. Moreover, w is the coefficient of inertia.

Indices of Error Measurement

1. The sum of squared deviations (SSD): SSD index is used as the objective function in the present
study. The index calculates the total of squared deviations between observed and real discharges [28,42–46]:

Minimize(SSQ) =
n

∑
t=1

(Obt − Ost)
2 (23)

where Oobt is the observed discharge, Ost is the simulated discharge, and n is the number of data.
2. The sum of absolute deviations (SAD): SAD is the total sum of total deviations between

observed and predicted discharges [20,30]:

Minmize(SAD ) =
n

∑
i=1

(Obt − Ost) (24)

3. Error of Peak discharge (EP): EP index measures the difference between predicted and observed
discharges [43–46].

EQp =

∣∣∣Opeak
observed − Opeak

routed

∣∣∣
Opeak

observed

(25)

4. Error of time to peak (ETP): The ETP index measures the difference between predicted and
observed time differences of discharge [24,37,38].

ETp =
[

Tpeak
observed − Tpeak

routed

]
(26)

Tpeak
observed is the observed discharge, and Tpeak

routed is the time related to the routed discharge.
5. Mean absolute relative error (MARE): The mean of the relative error between observed and

predicted discharges:

MARE =
1
N

n

∑
i=1

(
Qobserved

t − Qrouted
t

)
Qobserved

t
(27)

N is the number of data.
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6. Varex Q (Variance index): This indicator shows the proximity of predicted and observed
hydrographs with each other.

VarexQ =

⎡⎢⎢⎢⎣1 −

N
∑

i=1

(
Oobserved

t − Orouted
t

)
N
∑

i=1

(
Oobserved

t − Oobserved
mean

)
⎤⎥⎥⎥⎦× 100 (28)

Oobserved
mean is the observed average discharge. The closer the coefficient is to one, the more accurate

the ability to predict the flood will be.
7. The agreement index (d) based on follow equation, shows the performance of the model well,

so that the value of index can change from 0 to 1 [45,46].

d = 1 −

N
∑

i=1

(
Oobserved

i − Orouted
i

)2

N
∑

i=1

(∣∣∣Orouted
i − Oobserved

i

∣∣∣+ ∣∣∣Oobserved
i − Oobserved

i

∣∣∣) (29)

Oobserved
i : average of observed data.

3. Results and Discussion

This paper considered three case studies for flood routing. Two case studies were considered
as bench problems, which have been used by different researchers using many methods for flood
routing (Wilson and Karahan floods), and one case study was related to a river in Myanmar that had an
important flood. The Wilson flood is considered as an important case study and different researchers
tested different algorithms on this case study [2,3,28–30], and thus a comprehensive study can be
considered for this case study. The Karahan flood is considered as one of the case studies that have
been investigated by different researchers as a benchmark problem [28–31,35].

3.1. Wilson Flood

Wilson Flood [44] is one of the most important benchmark applications, to investigate the
performance of the Muskingum model and other hydrologic models. In fact, this flood pattern
was generated under experimental conditions. Different mathematical models were examined using
this flood data pattern, which received great attention from researchers in examining their models.

The data was extracted from Wilson [44]. This information includes single peak inflow and
outflow hydrographs with lateral flow. In addition, the applied algorithms in this research consider the
lateral flow, although as shown in Table 4, previous researches have ignored the lateral flow because of
low value, as shown in Table 6.

Several methods, such as the Segmented Least Square Method (SLSM), Hook and Jeeves
(HJ)method, in combination with the Conjugate Gradient (HJ + CG), HJ method, in combination
with Davidson Fletcher-Powell (HJ + DFP), nonlinear least squares (NONLER), Genetic Algorithm
(GA), Harmony Search (HS), Particle Swarm Optimization (PSO), and Honey Beaming Optimization
(HBMO), have used this flood without consideration of lateral flow. Given that evolutionary algorithms
have random parameters, sensitivity analysis was used to determine the exact values of parameters.
The evolutionary algorithms have random parameters, where the accurate values of these algorithms
are computed based on sensitivity analysis. It means that the variation of objective function is
determined versus the variation of parameter values, and when the objective function has the best
value for a parameter, the value of this parameter is introduced as the optimal. The SSD was considered
as an objective function for the current study. The frequency parameters were used to update the

166



Water 2018, 10, 1130

velocity and then the position of bats was computed based on velocity. When the objective function
value is minimized, the value of the different parameters is considered at its optimal value.

Tables 1–3 show the sensitivity analysis of IBA parameters, BA, GA, and PSO for flood routing in
a single reach. The objective function was considered SSD for this study.

The best population associated with IBA was 60, with the lowest SSD. Moreover, the maximum
frequency was 5, with the objective function as 5.01. The maximum loudness of sound was 0.6, with a
random walk rate of 5. Furthermore, the mutation rate for GA was 0.6, and the recombination rate
for GA was 0.7. In addition, the personal and global learning coefficient in PSO was 2, and the inertia
coefficient was 0.6. When the inertia coefficient was 0.6, the objective function had the least value
(10.82), and thus, the best value for the inertia coefficient was selected to be equal to 0.6 for the PSO.
Other parameters can be seen in the Tables 1–3.

Table 1. Analysis for the performance of Improved Bat Algorithm (IBA) algorithm (Wilson flood).

SSD

Objective
Function (cms)

Random
Walk Rate

Objective
Function (cms)

Maximum
Loudness

Objective
Function (cms)

Maximum
Frequency

Objective
Function (cms)

Population
Size

6.23 1 6.01 0.2 6.12 1 6.23 20
5.66 3 5.89 0.4 5.78 3 5.89 40
4.12 5 4.12 0.6 4.12 5 4.12 60
5.14 7 5.24 0.80 5.76 7 5.15 80

Table 2. Analysis for the performance of the Genetic Algorithm (GA) (Wilson flood).

SSD

Objective
Function

Crossover Rate
Objective Function

(cms)
Mutation Rate

Objective Function
(cms)

Population
Size

46.12 0.10 47.12 0.20 45.39 20
43.21 0.30 42.24 0.40 38.94 40
39.19 0.50 39.24 0.60 39.23 60
40.12 0.70 40.23 0.80 40.12 80

Table 3. Analysis for the performance of the Particle Swarm Optimization (PSO) (Wilson Flood).

SSD

Objective
Function (cms)

w
Objective

Function (cms)
c2

Objective
Function (cms)

c1
Objective

Function (cms)
Population Size

12.22 0.2 11.21 1.6 12.11 1.6 12.24 10
10.90 0.4 10.89 1.8 11.89 1.8 10.45 30
10.82 0.6 10.80 2.0 10.82 2.0 10.80 50
11.32 0.8 11.12 2.2 11.24 2.2 11.23 70

Table 4 compares IBA with other evolutionary algorithms, for a single reach routing. The SSD
value for IBA was 4.123, with SSD being reduced by 89%, 51%, 93%, 69%, 88%, and 97% compared to
GA, PSO, PS, HS, HBMO, and SLSM, respectively. In addition, the SAD index was 7.112, reduced by 69%,
22%, 75%, 69%, 81%, and 84% relative to GA, PSO, PS, HS, HBMO, and SLSM, respectively. In addition,
EP and MARE showed the superiority of IBA to other methods. VarexQ index for IBA, compared to other
methods, showed more consistency with the predicted hydrograph. Furthermore, the performance
of IBA was better than BA, so that SSD, SAD, and other error indexes for IBA were less than BA.
For example, SSD and SAD for IBA were 4.123 and 7.112, whilst SSD and SAD for BA were 5.123 and
8.114. In addition, focusing on the peak discharge value, it could be depicted that the computed peak
discharge based on IBA (85.11) was the most nearest estimated value to the real observed one (85),
and in general, showed a worthy match with observed discharge during the whole period. In addition,
for the estimation of the peak time which was predicated based on IBA, it was same to the observed

167



Water 2018, 10, 1130

one 60 h. For further assessment, Table 5 shows the performance of all the models, and it could be
observed that the proposed IBA in the present study outperformed all the other models.

3.2. Multi-Interval Flood Routing (Wilson Flood)

It can be seen from Table 5 that SSD, SAD, and MARE for IBA, BA, GA, and PSO for three reaches
were less than for two reaches, and their values for two reaches were less than for the single reach.
The best results by IBA were obtained for three reach flood routing. For flood routing using single,
two, and three reaches, all evolutionary algorithms predicted the peak discharge accurately, such that
the difference with the observed value was 0. For example, SSD for IBA, for one reach was 4.123,
whilst it was 3.988 for three reaches. SSD and SAD for IBA for one, two, and three reaches were
1 and 85%, compared to other algorithms, and thus, IBA better performed than other algorithms.
The results based on Varex Q showed that the generated hydrograph based on IBA with consideration
of more value for Varex Q had a better performance than the other algorithms, and it had a high
match with the observed hydrograph. The investigation of Ep showed the value of the index had
decreased from 50% to 97% based on IBA, compared to the other methods for two and three intervals.
In addition, the value of MARE had decreased from 6% to 56% based on IBA, for the two and three
reaches. Furthermore, the agreement index (d) showed a better performance for IBA, achieving a value
closer to 1 compared to the other algorithms.

An increase in the number of reaches for evolutionary algorithms increased the accuracy of flood
routing. Figure 3 shows the performance of IBA for flood routing with one, two, and three reaches,
which is more consistent with observed discharges. Moreover, the computational time showed better
performance for the IBA, compared to the other algorithms. For example, the computational time for
the IBA based on one reach was 5 s, whilst it was 7, 8, and 9 s for the BA, PSO, and GA, respectively.

Table 4. Computed error indexes for Wilson flood.

Method K X m SSD SAD EP ETP MARE VarexQ

SLSM 0.0010 0.2500 2.3470 143.600 46.40 0.0216 0 0.0561 98.33
HJ + CG 0.0069 0.2685 1.9291 49.640 25.20 0.0059 0 0.0301 99.59
HJ + DFP 0.0764 0.2677 1.8987 45.640 24.80 0.0035 0 0.0331 99.63
NONLR 0.0600 0.2700 2.3600 41.280 25.20 0.0083 1 0.0251 99.60

GA 0.1033 0.2873 1.8282 39.230 23.80 0.0082 0 0.0311 99.70
HS 0.0833 0.2873 1.8630 36.780 23.40 0.0107 0 0.0312 99.63

PSO 0.0755 0.2981 3.681 8.820 9.771 0.0005 0 0.0261 99.93
PS 0.4891 0.2714 1.8281 62.65 29.48 0.2901 0 0.0345 99.25

HMBO 0.6304 0.3399 1.8533 36.242 37.451 0.7001 0 0.0281 99.69
BA 0.0311 0.2934 0.8235 5.123 8.112 0.0004 0 0.0312 99.96

Present study IBA 0.0312 0.2997 1.8678 4.123 7.112 0.0002 0 0.0245 99.98
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Figure 3. The simulated Hydrographs for Wilson flood using different methods.
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3.3. Karahan Flood

Karahan et al. [22] routed a flood using various algorithms. This study considered the 1960 flood
on the River Wye, UK. River Wye is 69.75 km from Erwood to Belmont with consideration of lateral
inflow, which was ignored in the previous studies, as shown in Table 7. In this study, the proposed
model was evaluated considering the flood routing based on lateral inflow, which occurred in this
Karahan flood. The data was extracted from Karahan [22].

This flood was also used in the present study. The population used for IBA was 50, the maximum
frequency was 5, the minimum frequency was zero, and the maximum sound loudness was 95%.
In addition, the number of chromosomes for GA was 50, the probability of mutation was 0.6, and the
recombination rate was 0.7. Furthermore, the number of particles used in the particle swarm algorithm
was 50, the inertia coefficient was 0.7, and the personal and global learning coefficients were 2. Table 6
shows a comparison of algorithms used in flood routing in a single reach. The value of SSD for IBA
was 17,120.21, which had reduced by 81%, 87%, 84%, and 10% compared with PSO, GA, HS, BA,
respectively. In addition, SAD for IBA was 117, which had reduced by 83%, 88%, 94%, and 12%
compared to PSO, GA, HS, and BA, respectively. The other error indices also showed a more favorable
performance of IBA, compared to other algorithms. The predicted peak discharge difference with
observed discharge was 0.002 cm, which was less than the other algorithms (Table 6). The time
difference between predicted and observed discharge peak time for IBA was one hour, whilst this
time for other algorithms was 6 hours, so IBA had a better performance. In addition, VarexQ for
IBA had a larger value than other methods, which indicated a better performance. The difference of
peak discharge based on IBA with observed peak was 69 cms (the closest value to the observed one),
whilst it was 135 cms, 134 cms, and 70 cms for HS, PSO, and BA, respectively.

Table 7 compares IBA, BA, GA, and PSO in flood routing (Karahan flood) for single, two, and three
reaches. SSD for IBA for three reaches was 16,098.21, which was 6 percent lower than for a single reach
with IBA. Moreover, SAD for IBA for three reaches was 102, which had decreased by 12% compared
to a single reach. Thus, IBA had an improved performance in routing with three reaches relative to
single and two intervals. This was also true for the other algorithms, as shown in Table 5. Figure 4 also
shows the superior performance of IBA based on three reaches. SSD using IBA for three reaches was
reduced by 46%, 51%, and 5.3% compared to GA, PSO, and BA, respectively. Furthermore, SAD using
IBA for three, two, and one reaches was reduced by 23–89%, compared to the other algorithms. As a
result, IBA had a better performance than BA, GA, and PSO because the error indexes had the lowest
value using the IBA, compared to the other algorithms. Examining the computation time showed that
IBA achieved the optimal value of the objective function “under any number of multi-reach interval”
faster than the other algorithms. The lowest value of the MARE index was the one associated with
the IBA, on the other hand, this value decreased by 12% and 91% when using two and three reaches,
respectively. Furthermore, the d index showed the IBA algorithm and simulated hydrographs using
IBA had a better match with the observed hydrograph. Many studies did not consider investigate
whether parameters generated by calibration could show different floods on the same river reach.
In this article, this issue was considered. The optimal parameters based on IBA and three intervals
for the flood event in December 1960, were used to obtain the output hydrograph for a flood on the
same river on the another flood event in January 1969, based on the inflow hydrograph on January
1969, and it was considered as the first scenario. Then, the output hydrograph was extracted based on
application of obtained parameters of Muskingum models for January 1969. It meant that the model
was calibrated with the 1960 storm “first scenario”.
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Figure 4. Simulated hydrograph for Karahan flood.

Table 6. Inflow and outflow for Karahan flood.

Time (h) Inflow (cms)
Observed

Outflow (cms)
HS [2,25] GA PSO BA

Present Study
IBA

0 154 102 154 132 102 102 102
6 150 140 154 152.21 154 137.89 137.24
12 219 169 152 153.44 152.1 165.78 166.12
18 182 190 181 178.11 179.4 185.43 186.11
24 182 209 191 190.45 190.9 209.01 207.12
30 192 218 185 185.1 185.4 212.32 214.33
36 165 210 187 188.21 186.9 204.45 205.24
42 150 194 179 179.45 180.20 191.32 192.12
48 128 172 162 163.11 164.10 10.45 171.25
54 168 149 141 142.11 143.70 141.44 141.38
60 260 136 154 151.12 152.8 132.22 133.56
66 471 228 198 197.11 196.3 221.14 222.21
72 717 303 264 265.21 267.3 299.12 301.12
78 1092 366 344 349.10 351.4 387.12 385.21
84 1145 456 416 423.11 431.8 451.22 453.12
90 600 615 599 600.12 617.4 610.34 611.21
96 365 830 871 872.32 881.5 826.34 827.12
102 277 969 834 835.11 836.6 899.34 900.12
108 277 665 689 690.11 696.2 667.24 665.21
114 187 519 535 534.11 549.2 522.34 520.21
120 161 444 397 400.1 416.8 455.67 453.11
126 143 321 283 287.10 305.10 314.32 316.11
132 126 208 202 203.11 221.4 212.22 210.25
138 115 176 152 155.21 164.9 177.54 170.10
144 102 148 124 131.10 131.20 151.23 145.11
150 93 125 106 108.12 110.0 127.34 119.14
156 88 114 94 106.21 96.04 116.34 112.10
162 82 106 88 88.23 89.20 107.21 105.10
168 76 97 82 81.21 82.70 92.12 93.43
174 73 89 75 76.11 76.30 91.23 88.11
180 70 81 73 73.10 73.10 82.34 80.21
186 67 76 69 69 69.80 78.12 75.10
192 63 71 66 66 66.7 72.34 69.21
198 59 66 62 62 62.40 65.21 64
SSD - - 37,944.14 32,944.14 31,099.52 19,122.23 17,120.21
SAD 2162 1012 695 134 117
EP 0.278 0.078 0.090 0.068 0.002

ETP 6 6 6 1 1
MARE 0.33 0.10 0.09 0.02 0.01
VarexQ 83.29 84.78 98.05 98.12 99.15
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The value of SSD for the first scenario was 878 and the peak value was 280 cms, whilst the
observed peak value was 285 and there was a small difference between the observed and the simulated
peak value (Figure 5). The SSD for the second scenario was 869 and the peak value was 282 cms.
Although, the second scenario acted better than the first scenario, the results for the first scenario were
acceptable. The results were so similar because of the accurate sensitivity analysis considered for the
Muskingum model for the objective function and different parameters, such as in pervious sections.
Although the proposed model structure successfully predicted the flood routing, further research could
consider different Muskingum models based on more parameters to investigate the performance of
IBA. In addition, application of these models helps the hydraulic designers to have the accurate value
for the peak discharge and the flood characteristics, to be able to optimally design the target structure.
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Figure 5. The first and second scenario for calibration of model.

3.4. Chindwin River

One of the most important Myanmar Rivers is the Chindwin River, shown in Figure 6.
This river, over the past twenty years, has experienced many floods. Due to severe flood conditions,
the construction of hydraulic structures and living conditions in the downstream areas are difficult and
there is high lateral inflow for this basin. Therefore, it is important to predict river flood conditions.
The length of the river is 114 km and the surface of the basin is 7485 km2. A historical flood considered
in this study occurred in July 2004, and the Mawliak Station recording the flood is shown in Figure 5.
Table 8 shows a comparison of different methods for the first flood with flood routing using a single
reach. Comparing IBA, BA, GA, and PSO based on routing with a single reach, SSD for IBA relative
to GA, BA, and PSO was reduced by 32%, 11%, and 42%, respectively. For routing with two reaches,
SSD for IBA was reduced by 33%, 34%, and 12% compared to PSO, GA, and BA, respectively. For three
reaches, SSD for IBA was reduced by 44%, 50%, and 37% compared to PSO, GA and BA, respectively.
The SAD index for the three routings indicated the superiority of IBA. Comparison of routing with
three, two, and one reaches indicated that three reaches improved routing. SSD in relation to routing
with two and one reaches had reduced by 39% and 20%, respectively. ETp showed that there was no
time lag in forecasting of peak flow by different algorithms. VarexQ showed that three-reach routing
was better than two and one reach routings. Additionally, MARE for IBA-based routing had reduced
by 64% and 62%, relative to one and two reach routing, respectively. Figure 7 shows that the three
reach flood routing was superior to that based on two and single reaches. The results indicated that the
IBA has the less computational time compared to the other algorithms, as shown in Table 6. In addition,
considering the attained value of the d index, it was obvious that IBA had the best performance
compared to the other algorithms.
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Figure 6. The location of the River in Myanmar.
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Figure 7. Simulated hydrograph for Myanmar River using IBA.

To enhance further, the used structure of the proposed Muskingum model coupled with IBA showed
the highest abilities, for studying the flood plain with back water. Furthermore, such enhancement for the
Muskingum model could be successfully applied as an easy and inexpensive method for computing the
time and shape, for an overbank flood, when there is back water and inertia influences along a river
channel. In fact, with the new nature-inspired optimization algorithms, the traditional Muskingum
method could be integrated with the hydrodynamic software packages, such as HEC-RAS model.
The development procedure could be carried out by utilizing HEC-RAS software as the model input for
hydrographs and geometric characteristic, to estimate the travel times and attenuations peak, whilst the
weighted coefficient (X) value could be achieved based on the optimization model and Muskingum
model, as shown in Figure 8. As a result, the proposed model in this research showed the potential to
be suitable and appropriate for studying and analyzing flood propagation and flood mapping.

175



Water 2018, 10, 1130

Figure 8. Advanced Muskingum model for flood plain with complex boundary condition.

4. Conclusions

The present study investigated the potential of utilizing a three-parameter Muskingum model
coupled with Improved Bat Algorithm (IBA) to accurately predict flood routing. Three different case
studies have been used in this study, to evaluate the performance of the proposed model. These three
case studies were the Wilson flood, Karahan flood, and Myanmar River. Seven different performance
indices were used to examine and compare the performance of the proposed model over other
algorithms. In addition, discretization of the river stream was considered to improve model accuracy.
The results showed that IBA outperformed all other algorithms and was able to reduce the SSD
by percentages ranging between 20% and 84%, compared with the other algorithms. In addition,
the achieved results using the IBA could predict the peak discharge accurately, with a value very
close to the observed one. Under the Karahan flood, IBA considerably achieved the minimum level
of error indices for a single reach, compared to other algorithms. Finally, IBA in flood routing with
three intervals had a better performance than with single and two reaches. The division of the river
into different reaches increased the accuracy of flood routing. The performance of IBA for the river
in Myanmar, also showed that the simulated hydrograph with three reaches was more accurate.
For example, the computational time for the IBA based on three intervals was 2, 4, and 6 s less than,
BA, PSO, and GA, respectively. Furthermore, the EP for the IBA was 33%, 96%, and 97% less than
BA, PSO, and GA, respectively. As a result, the proposed Muskingum model coupled with the IBA,
could be considered as a strong alternative method for predicting flood routing characteristics.
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Abbreviations

IBA Improved Bat Algorithm
GA Genetic Algorithm
PSO Particle Swarm Optimization
PS Pattern Search
HS Harmony Search
HBMO Honey Bee Mating Optimization
NMSA Nelder-Mead Simplex Algorithm
GPA Genetic Programming Algorithm
RMSE Root Mean Square Error
MAE Mean Absolute Error
HA Harmony Algorithm
FLA Frog Leaping Algorithm
(IHBA) Improved Honey Bee Algorithm
(IWOA) Invasive Weed Optimization Algorithm
(BA) Bat Algorithm
BI Bat Intelligence
TPMM Three-Parameter Muskingum method
SSD Sum of Squares
SAD Sum of Absolute Deviations
EP Error of Peak
ETP Error of Time to Peak
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Abstract: This study presents three new hybrid artificial intelligence optimization models—namely,
adaptive neuro-fuzzy inference system (ANFIS) with cultural (ANFIS-CA), bees (ANFIS-BA),
and invasive weed optimization (ANFIS-IWO) algorithms—for flood susceptibility mapping (FSM)
in the Haraz watershed, Iran. Ten continuous and categorical flood conditioning factors were chosen
based on the 201 flood locations, including topographic wetness index (TWI), river density, stream
power index (SPI), curvature, distance from river, lithology, elevation, ground slope, land use,
and rainfall. The step-wise weight assessment ratio analysis (SWARA) model was adopted for the
assessment of relationship between flood locations and conditioning factors. The ANFIS model,
based on SWARA weights, was employed for providing FSMs with three optimization models to
enhance the accuracy of prediction. To evaluate the model performance and prediction capability,
root-mean-square error (RMSE) and receiver operating characteristic (ROC) curve (area under the
ROC (AUROC)) were used. Results showed that ANFIS-IWO with lower RMSE (0.359) had a better
performance, while ANFIS-BA with higher AUROC (94.4%) showed a better prediction capability,
followed by ANFIS0-IWO (0.939) and ANFIS-CA (0.921). These models can be suggested for FSM in
similar climatic and physiographic areas for developing measures to mitigate flood damages and to
sustainably manage floodplains.

Keywords: flood susceptibility modeling; ANFIS; cultural algorithm; bees algorithm; invasive weed
optimization; Haraz watershed
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1. Introduction

Floods that occur in a short duration with high peak discharge [1] are considered as the worst
weather-related natural hazard worldwide causing huge losses of life and property as well as deep
social impacts [2–4]. Floods are more hazardous than other natural catastrophic hazards, because
they affect more than 20000 lives per year and adversely impact nearly 75 million people worldwide,
especially through social impacts such as homelessness, major changes in human lives, and the
environment [5,6]. In Asia, more than 50% of economic damages as well as over 90% of all human
deaths are caused due to floods [7,8].

Many floods have recently occurred in Iran, especially in the northern parts, such as floods in 2012
at Noshahr, in 2013 at Neka and Behshahr, in 2013 and 2015 at Sari, and 2016 at Noshahr, which caused
huge financial and human losses [9,10]. The frequencies and damages of these floods may increase in
future due to severe climate change and extensive land-use changes in the country [11]. It is noted
that a complete flood prevention is not possible; however, its spatial prediction can help mitigate
its human and socio-economic losses [12]. Thus, one of the key points in flood management plans
is the identification of flood prone areas so that damages can more likely be reduced by avoiding
more construction and physical development in these regions. Therefore, it seems logical to seek
approaches that can more and more accurately detect flood prone areas within watersheds. Flood
measurement and modeling have been always considered two options for such an identification [13].
Since measurement of flood characteristics specifically during the event is hard, costly, and time
consuming [14], modeling has been extensively used by scientists especially from the age of digital
hydrology. A vast array modeling approaches, ranging from simple linear and empirical models to
sophisticated non-linear physically-based models, have been used for flood simulations since then;
however, a comprehensive and integrated flood modeling approach has not been achieved yet, due to
the complexity, non-linearity, and dynamic structure of floods and their watersheds. Thus, the issue
of flood occurrence forecasting and its mapping using physically-based rainfall-runoff models has
remained as a challenge [15,16]. The weakness of one-dimensional, linear, and empirical hydrological
methods is that watershed river morphology is not stable, and has dynamic characteristics, and they
also take a black box view to the watershed such that they cannot provide any insight into the
flooding process [17]. These models are also unable to depict rapid watershed responses [18–20].
Even though physically-based models can, to some extent, handle watershed and flood complexity,
they cannot fully describe total complexity of watersheds and their hydrological phenomena [21–23].
They also require field work and a huge bulk of data as well as prohibitive computational costs and
parameter estimation [12,14,24]. These shortcomings of classic hydrological models are required to
be overcome by new approaches. Tehrany et al. [2] and Bui et al. [25] reported that in recent years,
due to aforementioned drawbacks, GIS with data-driven and data mining techniques have offered new
insights into natural disaster prediction which can be brought to bear on modeling multi-dimensional
floods, an issue which little is known about.

A literature review reveals that all studies in the field of flood hazard modeling can be classified
into two main groups including geological–geomorphological and hydrological–hydraulic methods.
The first group is based on the field surveys and monitoring of evidence of overflows using remote
sensing data [13]. The flood in the second group is simulated and mapped based on the peak flows for
specific events or for return periods, thereby obtaining the extent of the water surface [18]. A need
to huge amount of data which are not readily available in developing countries and also a need to
a great deal of time for model calibration in ungagged hydrometric stations are the weaknesses
of the hydrological–hydraulic methods. The generated results by geological–geomorphological
methods are also more reasonable than the 1D hydrological–hydraulic methods when river channel
is changeable over time and has a high erosive potential [19]. In this regard, some studies have been
conducted on flood modeling using hydrological–hydraulic methods including Horritt et al. [21],
Di Baldassarre et al. [22], Grimaldi et al. [23], Nguyen et al. [20], and Tyrna et al. [26].
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However, many studies have recently been conducted to identify natural hazard prone areas
around the world [9,27–31] and to FSM using geological–geomorphological methods such as frequency
ratio (FR) [32], weights-of-evidence (WOE) [28], logistic regression (LR) [33], analytical hierarchy
process (AHP) [34], artificial neural network (ANN) [35], decision tree (DT) [36], adaptive neuro-fuzzy
inference system (ANFIS) [25], ANFIS-genetic algorithm (GA) [37], bagging–LMT hybrid model and
random forest [38], and ANFIS-particle swarm optimization (PSO) [39]. Application of machine
learning methods in flood studies has been shown by many researchers [40]; however, no general
agreement has yet been reached on the selection of the best model for any natural hazard assessment,
such as flood susceptibility. Thus, new models are needed and should be tested. Tehrany et al.
2014 [28] have claimed that machine learning is the main source of methods for data driven modeling
which can be applied for flooding modeling. Because floods are complex, it is difficult to model
them [41], but because data mining and artificial intelligence models have a non-linear structure,
they are more proper than other methods. Artificial neural networks have been widely used for
natural hazard assessment among other machine learning tools because of their computational
efficiency [25,42,43]; however, the modeling may face with errors in some cases due to their poor
prediction [25]. Therefore, to bring the disadvantages of the ANN model under control; because
ANFIS model high accuracy—which is a hybrid of ANN and fuzzy logic—it has been proposed
by some researchers [44–47]. The ANFIS model has a better performance than the two individual
models [48,49], but it has some limitations due to its weakness to find the best weight parameters
which heavily influence its prediction performance [25] and it is better that these weights searched and
determined by using optimization of soft computing techniques. However, there are some optimization
methods that have different structures and function distributions to find the weighs of parameters.
Additionally, the results of each optimization algorithm are different in each study area due to
change in the geo-environmental factors. Therefore, detecting new hybrid algorithms to find the best
weights and accessing the reasonable results is a crucial issue in the flood modeling process. The main
differences between the current study and other studies in the field of flood susceptibility assessment
is that this study uses new hybrid algorithms including ANFIS-CA, ANFIS-BA, and ANFIS-IWO
for spatial prediction of floods in the Haraz watershed in the northern part of Iran. Although some
optimization and machine learning algorithms have been applied for flood modeling over the world,
these optimization methods have not been before explored for flood assessment.

2. Study Area

The Haraz watershed is one of the most flood-influenced basins in the Mazandaran province,
which was selected for pilot study area. The watershed location is at the south part of Sari a capital
city of Mazandaran Province, Iran (Figure 1). It lies between longitudes of 51◦43′ and 52◦36′ E, and the
latitudes of 35◦45′ and 36◦22′ N, covering an area of about 4014 km2. The altitude varies from 300 to
5595 m. The climate of the study area based on De Martonne climatic classification system is very
humid and its average annual rainfall is 430 mm. The entire study region is high land and mountainous
area, for which slopes of 0–6◦ cover only 5% and ground slope varies from 0–66◦. Rangelands cover
92% of the study area, and—geologically—the area is predominantly occupied by Jurassic formations.
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Figure 1. Flood inventory map and location of the Haraz watershed on Iran map.

3. Data Preparation and Analysis

The methodology of the present study is shown in Figure 2, including the following steps.

 

Figure 2. Methodological flowchart used in this study for FSM in the Haraz watershed.

3.1. Flash Flood Inventory

An inventory map is indispensable for future spatial prediction of any natural hazard
assessment [50] considering single or multiple events in a specific region for recent and past events [51].
Therefore, the first step in any natural hazard susceptibility assessment is the preparation of the
inventory map containing historical records [52]. In the current research, flood inventory map with
201 flood locations was generated using flood historical data from 1995 to 2015 that was finally checked
during an extensive field survey.
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3.2. Dataset Collection for Spatial Modeling

In any natural hazard prediction, spatial relationship between hazard occurrence and conditioning
factors should be analyzed [53]. In this research, 10 flood conditioning factors were based on
the literature review, data availability, and characteristics of the study area, selected for flooding
assessment—including ground slope, altitude, curvature, SPI, TWI, land-use, rainfall, river density,
distance to river together with lithology—in a raster format with spatial resolution of 30 m in
Environmental Systems Research Institute (ESRI) ArcGIS 10.2 [11,54].

It is very likely for one factor to have a high impact on flooding in a specific watershed while it may
not show any influence in another watershed [35]. Since topographical factors are highly significant to
identifying flood prone areas and also have a direct impact on the results of modeling [55], a digital
elevation model (DEM) of the study area was extracted from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global DEM with a 30 × 30 m grid size. Five geomorphic
factors—such as ground slope, altitude, curvature, SPI, and TWI—were then constructed from DEM.
When the ground slope increases, runoff infiltration duration decreases as well and flow velocity
increases. Therefore, high volume of runoff enters the river and as result causes floods [2]. The ground
slope map was constructed with eight categories [29]: 0–0.5, 0.5–2, 2–5, 5–8, 8–13, 13–20, 20–30,
and larger than 30◦ (Figure 3a). According to previous studies [9,10,29,32], altitude has been considered
as one of the most effective factors, and since water flows from higher to lower altitudes in mountainous
areas, areas of watershed located in lower altitudes have a higher potential for flood occurrence [18].
The altitude map was prepared with nine classes (Figure 3b): 328–350, 350–400, 400–450, 450–500,
500–1000, 1000–2000, 2000–3000, 3000–4000, and > 4000 m. Flat and concave areas have a higher
potential for flooding [2,28,32]. Curvature of the study area was constructed in three categories
(Figure 3c): <−0.1, −0.1–0.1, and >0.1, namely concave, flat, and convex, respectively.

Hydrological conditioning factors, such as SPI and TWI, affect the spatial variation of flood
occurrence. SPI is the erosive power of overland flow [56] and TWI is a topographic index developed
by Kirkby and Beven [57] and Beven et al. [58]. TWI indicates water accumulation in a watershed.
As the ground slope and catchment area increase, the amount of SPI would increase. The SPI map was
constructed with nine categories (Figure 3e): 0–80, 80–400, 400–800, 800–2000, 2000–3000, and >3000
(all of them should be 1000). The TWI map was constructed with six classes (Figure 3d): 1.9–3.94,
3.95–4.47, 4.48–5.03, 5.04–5.71, 5.72–6.96, and 6.97–11.53.

River density and distance to river play notable roles in extend and magnitude of flood
occurrence [59]. River network used to prepare river density and distance to river maps. River density
was calculated by dividing the river length (m) by the basin area (km2) [48] and grouped into six
categories, including (Figure 3e): 0–0.401, 0.401–1.17, 1.92–2.67, 2.67–3.66, and 3.66–7.3 km/km2.
Field survey revealed that there are many flood occurrences adjacent to rivers, and the more the distance
to river, the lower the probability of flood occurrence. The distance to river map was constructed using
river and multiple ring buffer command in ArcGIS 10.2 and divided into eight classes (Figure 3h): 0–50,
50–100, 100–150, 150–200, 200–400, 400–700, 700–1000, and > 1000 m. A lithology map of the study
area with 1:100,000 scale showed six groups of formations including: Teryas, Quaternary, Permain,
Cretaceous, Jurassic, and Tertiary (Figure 3i). Land-use type is considered as a conditioning factor that
has a significant role in flooding [9]. The areas with higher vegetation density, such as forest regions,
can control surface runoff and infiltrate the water; therefore, there is negative spatial relationship
between vegetation density and flood occurrence [11]. Land-use map was generated from Landsat
8 Operational Land Imager (OLI) imagery for 2013 in Environment for Visualizing Images (ENVI)
5.1 software (The Board of Trustees of the University of Illinois, Illinois, IL, USA) and classified into seven
classes—namely grassland (rangeland), bare land, forest, garden, farming land, residential, and water
body—using neural network algorithm and supervised classification (Figure 3j). Rainfall is the most
prominent conditioning factor for flood occurrence. About 20 years, from 1991 to 2011, meteorological
data was used in order to prepare rainfall maps and then classified into six classes (Figure 3g): 183–333,
334–379, 380–409, 410–448, 449–535, and 536–741 mm using a simple kriging method.
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Figure 3. Cont.
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Figure 3. Flood conditioning factor maps in the study area: slope degree (a), altitude (b), curvature (c),
SPI (d), TWI (e), river density (f), distance to river (g), lithology (h), land-use (i), and rainfall (j).

3.3. Preparation of Training and Testing Dataset

It should be noted that FSM is considered to have a binary classification in which flood index
is divided into two classes, including flood or non-flood; therefore, 201 non-flood locations were
first selected by Google Earth on hilly and mountainous regions that are not inundated during
flood events [9,10]. To validate model capabilities, the inventory dataset should be divided into two
groups [60], one for model construction (training dataset) and the other for model validation (testing
dataset). For building the training dataset, 70% of both flood and non-flood locations were randomly
selected (141 locations) and then combined together, afterwards to build the testing dataset, 30% of the
remaining (60 locations) were incorporated together. Both of training and testing datasets transformed
to raster format and overlaid with ten flood conditioning factors at the end. For both datasets, a value
of 1 was assigned to flood pixels and a value of 0 to non-flood pixels.

3.4. Analysis of Spatial Correlation

SWARA method was used to display the spatial relationship between flood occurrence locations
together with each conditioning factors. The SWARA method is one of the new multiple-criteria
decision-making (MCDM) techniques developed in 2010 [61]. In this technique, the highest rank
is apportioned to the most valuable criteria and the lowest rank is allocated to the least valuable
criterion and finally, the mean values of ranks are taken into account to obtain the overall ranks [62].
The advantage of this method is that it enables the expert’s opinion in relation to the accuracy of
weighting to be assessed in model performance [61]. Another advantage of this method in comparison
to other MCDM techniques is that experts can converse and work together, which makes for more
accurate results. The SWARA method view point is different from other MCDM methods such as AHP,
Analytic network process (ANP), etc. [63]; however, this method leads policy makers to make better
decisions according to their goals. The Step-wise weight assessment ratio analysis (SWARA) method
was used only for determining the initial weights as input for modeling. In this study, we invited some
hydrology experts to prioritize and rank the order of sub-classes of each conditioning factor.

According to Keršuliene et al. [61], the importance relativity of the mean value, Sj was
determined by

Sj =
∑n

i Ai

n
(1)

where n stands for the number of experts, i is counter in sigma, Ai shows the offered ranks by the
experts for each factor, and j represents the number of the factor.

Afterwards, the coefficient Kj is determined by

Kj =

{
1 j = 1
Sj + 1 j > 1

(2)
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The recalculated weight Qj is calculated as

Qj =
Qj−1

Kj
(3)

The comparative weights of evaluation criteria are verbalized as

Wj =
Qj

∑m
j=1 Qj

(4)

where Wj presents the relative weight of the jth criterion, and m shows the total number of criteria.

3.5. Flood Spatial Prediction Modeling

In the present study, three new ensemble models—ANFIS-CA, ANFIS-BA, and ANFIS-IWO—were
selected to determine the most susceptible flood areas as well as their comparison.

3.5.1. Adaptive Neuro-Fuzzy Inference System

Takagi and Sugeno [64] presented ANFIS that was obtained from ANN and fuzzy logic [65]
by catching the advantages of both in one framework. The ANN’s learning capability is automatic.
However, this model cannot describe how it acquires the output from decision making. On the contrary,
the fuzzy logic can produce output out of fuzzy logic decision, but it does not have the ability to
automate learnings [66]. An ANFIS, derived from nature, generates input and output data pairs, so it
has been successfully used in diverse fields at solving nonlinear issues and indicating problems [67].
The architecture of ANFIS training is shown in Figure 4. The ANFIS is a feed forward neural network
with multi-layer structure. In general, the layers of ANFIS are constructed from six layers with the
following function:

Layer 1 (input layer): Layer 1 is the layer of input with the amount of x and y passed to the
number of neurons in the next layer.

Layer 2 (fuzzification layer): Every node i in Layer 2, also called the ‘fuzzification layer’, consists of
an adaptive node (square node) which has a node function Ai or Bi−2 as the linguistic label related to the
input node i. Therefore, in Layer 2, fuzzy membership function, is computed which determines ‘full’,
‘partial’, or ‘none’ membership levels. The output function is calculated according to the equations

Q1,i = μAi
(x1) for i = 1, 2 (5)

Q1,i = μBi−2
(x2) for i = 1, 2 (6)

Several membership functions for fuzzifying used many research such as triangular, trapezoidal,
Gaussian, and Bell functions. In this research, we used the Bell function such that μAi

(x1) is given by

μAi
(x1) =

1

1 +
(

x−ci
ai

)2bi
(7)

where ai, bi, and ci are the parameters of the Bell function that are so-called premise parameters [65,68].
Layer 3 (antecedent layer): All nodes in this layer are fixed nodes labeled as . In this layer,

the aim is to calculate the firing strength for each rule, called wi and the following equation computes
the outputs

Q2,i = wi = μAi
(x)·μBi

(y) for i = 1, 2 (8)

Layer 4 (strength normalization layer): All nodes in this layer are fixed nodes (square nodes)
labeled N. Each node calculates the individual rules firing strength ratio to the total number of all
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rules firing strengths. Output is called the normalized firing strength, determined for each node by
the equation

Q3,i =
wi

∑ wi
=

wi

w1 + w2
= wi for i = 1, 2 (9)

Layer 5 (consequent layer): This layer is the adaptive layer for every node which is known as
the defuzzification layer. Every node is an adaptive square node with the node function. It can be
defined as

Q4,1 = wi·fi = wi·(pix + qiy + ri) for i = 1, 2 (10)

where pi, qi, and ri are the consequent parameters of function fuzzy inference system (fi).
Layer 6 (inference layer): This layer is a single node which calculates the total number of all

received signals from the defuzzification layer in order to generate the overall output shown by circle
and labeled ∑ and fout is final output. It can be described as

Q5,1 = ∑ wi.fi =
∑ wi.fi

∑ wi
= fout (11)

Several researches have recently optimized the parameters of fuzzy membership in ANFIS
by using metaheuristic algorithms which has improved the results [69,70]. In this study, cultural
algorithms (CA), bees algorithm (BA), and invasive weed optimization algorithm (IWO) were used for
optimizing premise parameters of bell function.

 

Figure 4. General ANFIS architecture of first order Takagi–Sugeno fuzzy model [65]: (a) Multi-layer
perception fuzzy reasoning; (b) equivalent ANFIS structure.

Hybrid models can find the relationships between the SWARA values of each conditioning
factor through training dataset. In the modeling process, the optimization algorithms have been
performed in three steps (Figure 5) including (i) dividing dataset into two datasets in a 70/30% ratio for
model building (training dataset) and model validation (testing dataset), respectively; (ii) construction
of bell function in an ANFIS as a membership function and determination of the clusters were
performed. Each cluster follows the bell function, that each function parameter of bell function has
been optimized by cultural algorithm (CA), bees algorithm (BA), invasive weed optimization algorithm
(IWO). We defined the cost function (RSME) and utilize training dataset for optimizing parameters
of the bell function of ANFIS; iii) the prediction power of each model has been calculated by the
testing dataset.
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Figure 5. Flowchart of modelling process in this study.

3.5.2. Cultural Algorithm

Cultural algorithm (CA) is an evolutionary algorithm introduced by Reynolds [71]. CA expresses
an ideal framework of various theories of social evolution with the concept of collective intelligence
developed in the 19th century. CA is a computational model of cultural evolution in solving
optimization problems that need a vast amount of domain knowledge to steer the collective decisions of
individuals in the population. CA has been applied to problems by extensive data, numerous domain
limitations, many objectives, and multiple agents in a vast distributed social network. Concluded
from social structures, CA compounds evolutionary systems and agents using multiple knowledge
sources for the evolution process. Cultural algorithms include two major parts: the space of population
and the atmosphere of belief [72]. These two spaces are connected via a communication protocol
describing how to link both spaces with the rules for people who believe in their own experiences.
These interactions are shown in Figure 6. The population space can include any population-based
computational models, like genetic algorithms and evolutionary programming [73]. The belief space
supports the information reservoir which every one of their experiences is for other individuals to
learn them indirectly.

Figure 6. Spaces of a cultural algorithm [74].
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3.5.3. Bees Algorithm

Another heuristic algorithm is the bees algorithm, which is bee swarm-based. Originally,
this algorithm introduced by Pham et al. [75], which is inspired by the foraging behavior of a
group of bees when they try to find food resources around their hives [75]. First, the scout bees
are distributed uniformly and randomly in different directions to be able to find flower patches in each
spot. After identifying the flower patches, the scout bees go back to the hive and start a special dance
which is known as the ‘waggle dance’ and it is used for communicating with other group members to
share information regarding the flower patches they have already identified. This information may
include the direction, the distance to the hive, as well as the amount of nectar existing in the flower
patches. The accumulated information shared by these scout bees helps the hive or, in other words,
the colony, have a proper assessment of all flower patches available. After accomplishing this phase,
the scout bees escort another kind of bees known as the ‘recruit bees’ to go to the discovered flower
patches. Different quantities of recruit bees are assigned to each scout bee based on the distance of
flower patches as well as the amount of available nectar. In other words, if one flower patch has a
higher quality than another one, more recruit bees follow them. Afterwards, the recruit bees constantly
assess the flower patch quality while doing the harvest process until the flower patch quality declines.
Then, they will leave the flower patch immediately. However, if patch has a steady and satisfactory
quality, it will be announced via another waggle dance.

Figure 7 shows the flowchart for bee algorithm. First of all, to implement this algorithm, n numbers
of bees are uniformly distributed in a random manner throughout the search space. The algorithm
then starts assessing the fitness for each determined site by the scout bees until the most prope—or
optimized—bee is chosen as the ‘elite bee’. The sites of these bees are selected form vicinity of searches’
area and the algorithm explores in the selected sites bees in order to find the best bees at the time when
numbers of bees are at its high level. For each site, only the most appropriate bee is being chosen to
survive for the next generation. The remaining bees are randomly assigned around the scouting area
for new potential solutions. The phase continues so long as the algorithm reaches convergence.

 

Figure 7. Flowchart of the BA for flood susceptibility mapping in Haraz watershed [76].
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3.5.4. Invasive Weed Optimization Algorithm

Based on the method which originally developed by Mehrabian and Lucas [77] to optimize
growth’s place of weeds and their reproduction, IWO algorithm is another meta-heuristic algorithm
which has been used to imitate the colonizing weeds’ behavior. Among the specifications of this
algorithm, its simple form, few input parameters, strong robustness, as well as ease of understanding
have made it popular for application in problematic nonlinear optimization [78–80]. Furthermore,
the IWO algorithm has more optimized solutions for problems in comparison with other algorithms
such as particle swarm optimization (PSO) and shuffled frog leaping algorithm (SFLA) and in some
cases even it has a better performance than the stated algorithms [78]. The IWO algorithm has five
components as follows:

(1) Initialization

It involves a random distribution of restricted weeds in the searching space with d dimension
that it is number of factors of flood, which in fact is the earliest population of solutions.

(2) Reproduction

During the growing period, weeds are allowed to reproduce a specific number of seeds according
to their fitness. As a matter of fact, numbers of reproduced seeds or their Smin starts from worth fitness
and increases to reach Smax for the weeds with the best fitness, as shown in Figure 8.

 

Figure 8. Procedure of seed reproduction at weeds’ colony [77].

(3) Spatial Dispersal

Reproduced seeds are being distributed by chance all over the searching region. So that they can
be located close to their family with the average value which is equal to zero and has non-identical
variances. Additionally, in every iteration, the standard deviation (SD) decreases from σmin to σmax

and is calculated with via non-linear equation which is

σiter =
(itermax − iter)n

(itermax)
n (σmin − σmax) + σmax (12)

where itermax is the number of last iteration, σiter is the corresponding iteration’s SD, n is the nonlinear
modulation index between 2 and 3, σmax is maximum value’s SD and σmin is minimum value’s SD [81].

(4) Competitive Exclusion

All weeds together with their seeds are combined to create the population for the next generation.
If the population surpasses a definite maximum, the weeds with less fitness will be eradicated.
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Reproduction and competition pave the way for the reproduction of the fittest weeds. Therefore, if they
produce fitter seeds, seeds can remain alive in the competition.

(5) Termination Condition

Steps 2 to 4 are repeated when the iteration reaches to the maximum defined amount and weeds
have the maximum fitness that are closest to optimal solution.

3.5.5. Performance Assessment

Quantitative approaches to determine the accuracy of the models are different between observed
and estimated values, defined as a forecasting error. In the current study, the capability of models for
flood prediction was evaluated using a statistical criterion namely root-mean-squared error (RMSE) as

RMSE =

√
∑n

i=1(Oi − Ei)
2

N
(13)

where Oi and Ei are observation and prediction of flood probability values, respectively, in training
and testing datasets, and N is all samples.

3.6. Model Validation and Comparisons

All in all, forecasting capability of flood spatial modeling was analyzed for training and testing
datasets [11] using ROC and AUROC, as a standard useful technique to evaluate the prediction
capability of models [82,83], the ROC curve is a graph with specificity on the x-axis and sensitivity on
the y-axis. Specificity is the number of incorrectly classified floods per total predicted non-floods while
sensitivity is the number of correctly classified floods per total predicted floods [84]. The higher the
AUROC value is, the better the prediction capability of models will be better [85]. The AUROC can be
formulated as

AUROC =
∑ TP + ∑ TN

P + N
(14)

where TP and TN are the number of floods that correctly classified as floods and non-floods,
respectively. P and N are the number of total pixels which defines as floods and non-floods,
respectively [38]. Results of model performance on training data (success rate) shows a degree
of fit of a flood model with the training dataset, indicating how suitable the built model is for flood
susceptibility evaluation; therefore, this is not an appropriate method to show the capability of model
prediction [51,86,87]. Performance of model using testing/validating dataset (prediction rate) shows
how good a model is; thus, this approach should be used for evaluation of model prediction capability.
In this research, both success and prediction rates were performed using the training and testing
datasets with flood susceptibility index.

3.7. Inferential Statistics

3.7.1. Freidman Test

In the present research, a non-parametric test—namely the Freidman [88] test which is one
of the most credible tests for multiple comparisons [89]—was used to find significant differences
between models. This test has ranking for each row by considering the rank values of each columns.
The null hypothesis (H0) for the current research shows that there is no difference between prediction
capabilities of flood models. If the amount of the p-value (significance) is smaller than the significance
level (α = 0.05), then the null hypothesis is rejected. The biggest weakness of this technique is that it
only shows whether there is difference among the models performance or not, and it does not have
any capability to display pairwise comparisons among the models.
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3.7.2. Wilcoxon Test

To overcome Freidman’s test weakness, another non-parametric test—Wilcoxon test—was used.
This test is used when the aim is to compare two related samples, matched samples, or paired data.
The Wilcoxon test prepares pairwise comparisons between all performed flood susceptibility models.
The null hypothesis for Wilcoxon test is similar to Friedman’s test. The p-value and z-score were
applied to assess the differences between flood susceptibility models.

4. Results

4.1. Spatial Relationship between Flood Occurrence and Conditioning Factors

The spatial correlations between flood occurrence and conditioning factors were evaluated,
as shown in Table 1. The highest value of SWARA belonged to the first class of 0–0.5 (0.4); therefore,
the steeper the ground slope, the lower the flood occurrence probability. The SWARA values decrease
when elevation increases and the lowest elevation of 328–350 m had the highest impact (0.63) on the
flood occurrence. Generally, the lowest and highest elevations had the highest and lowest influences
on flood occurrence, respectively. In the case of curvature, the concave landscape had the highest
influence on flooding (0.46), followed by flat (0.43) and then convex (0.11). For SPI, the highest value
belonged to class of 2000–3000 (0.32) and values decreased by SPI reducing. The TWI value had a direct
impact on flood occurrences events; the greater the TWI, the higher the flood occurrence probability.
For the present study, the highest (0.08) and lowest (0) SWARA values belonged to the highest (6.9–11.5)
and lowest (1.9–3.9) TWI values. For river density, the class of 2.67–3.66 and 3.66–7.3 showed the
highest probability (0.37) and the class of 0–0.4 had the lowest probability (0) of flooding. Results
revealed that the more the river density, the higher the flooding probability. The SWARA values
showed a decreasing trend when the distance to rivers increased, as the highest and lowest SWARA
values belonged to the distance of 0–50 m (0.59) and more than 700 m (0), respectively. According
to [2,9,10,28], the most prone areas to flood occurrence were the areas with the lowest elevation, lowest
ground slope, flat area, and that were closest to rivers. In the case of lithology, Teryas formations had
the highest impact on flooding (0.31), followed by Quaternary (0.21), Permain (0.21), Cretaceous (0.15),
Jurassic (0.07), and Tertiary (0.06) formations. Results showed that the land use of water bodies had the
highest influence on flooding (0.75), followed by residential area (0.15), garden (0.06), forestlands (0.02),
grasslands (0.01), farmlands (0), and barren lands (0). The lowest amount of rainfall (188–333 mm) had
the highest impact (0.4) on flooding. In the study area, the more the rainfall, the lower the flooding
probability, due to the fact that—in mountainous areas—rainfall would increase with elevation increase;
however, flooding occurs at lower elevations.

Table 1. Spatial relationship between flood-conditioning factors and flooding occurrences locations by
SWARA method

Sub-Factor Class
Comparative

Importance of Kj

Average Value

Coefficient
Kj = Sj + 1

wj = (Qj − 1))/kj Weight wj/Σwj

Slope 0–0.5 1.00 1.00 0.40
0.5–2 0.80 1.80 0.56 0.22
2–5 0.20 1.20 0.46 0.18
5–8 0.60 1.60 0.29 0.11

8–13 1.15 2.15 0.13 0.05
13–20 1.50 2.50 0.05 0.02
20–30 0.55 1.55 0.01 0.00
>30 2.70 3.70 0.01 0.01

Elevation 328–350 1.00 1.00 0.63
350–400 0.35 1.35 0.16 0.10
400–450 3.70 4.70 0.21 0.13
450–500 0.55 1.55 0.10 0.06
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Table 1. Cont.

Sub-Factor Class
Comparative

Importance of Kj

Average Value

Coefficient
Kj = Sj + 1

wj = (Qj − 1))/kj Weight wj/Σwj

500–1000 0.65 1.65 0.06 0.04
1000–2000 3.95 4.95 0.01 0.01
2000–3000 0.00 1.00 0.01 0.01
3000–4000 0.00 1.00 0.01 0.01

>4000 0.00 1.00 0.01 0.01

Curvature Concave 1.00 1.00 0.46
Flat 0.05 1.05 0.95 0.43

Convex 3.00 4.00 0.24 0.11

SPI 0–80 3.70 4.70 0.09 0.03
80–400 0.70 1.70 0.41 0.13
400–800 0.30 1.30 0.70 0.22

800–2000 0.10 1.10 0.91 0.29
2000–3000 1.00 1.00 0.32

>3000 3.95 4.95 0.02 0.01

TWI 1.9–3.94 0.05 1.05 0.03 0.00
3.94–4.47 3.50 4.50 0.03 0.00
4.47–5.03 2.70 3.70 0.15 0.01
5.03–5.72 0.65 1.65 0.55 0.04
5.72–6.96 0.10 1.10 0.91 0.07
6.96–11.5 1.00 1.00 0.08

River density 0–0.401 3.95 4.95 0.01 0.00
0.401–1.17 3.95 4.95 0.03 0.01
1.17–1.92 2.50 3.50 0.15 0.06
1.92–2.67 0.85 1.85 0.54 0.20
2.67–3.66 1.00 1.00 0.37
3.66–7.3 0.00 1.00 1.00 0.37

Distance to river 0–50 1.00 1.00 0.59
50–100 1.75 2.75 0.36 0.22
100–150 0.85 1.85 0.20 0.12
150–200 1.20 2.20 0.09 0.05
200–400 2.70 3.70 0.02 0.01
400–700 2.70 3.70 0.01 0.00

700–1000 3.00 4.00 0.00 0.00
>1000 0.00 1.00 0.00 0.00

Lithology Teryas 1.00 1.00 0.31
Quaternary 0.50 1.50 0.67 0.21

Permain 0.00 1.00 0.67 0.21
Cretaceous 0.40 1.40 0.48 0.15

Jurassic 1.10 2.10 0.23 0.07
Teratiary 0.10 1.10 0.21 0.06

Land use Water bodies 1.00 1.00 0.75
Residential area 3.90 4.90 0.20 0.15

Garden 1.55 2.55 0.08 0.06
Forest land 2.00 3.00 0.03 0.02
Grassland 0.70 1.70 0.02 0.01

Farming land 3.95 4.95 0.00 0.00
Barren land 0.00 1.00 0.00 0.00

Rainfall 188–333 1.00 1.00 0.40
333–379 0.10 1.10 0.31 0.12
379–409 1.20 2.20 0.45 0.18
409–448 0.35 1.35 0.34 0.13
448–535 0.05 1.05 0.29 0.12
535–471 1.15 2.15 0.14 0.05

4.2. Model Comparison between the Proposed New ANFIS Ensemble Models

The newly designed three ANFIS ensemble optimization models—namely ANFIS-CA, ANFIS-BA,
and ANFIS-IWO—were used with MATLAB R2016 and ArcGIS 10.2. These models were trained,
like other smart models, based on a part of data. Therefore, all data of flood and non-flood points were
divided into two categories with the ratio of 30 and 70 percent used as training and test data, respectively.
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Training and testing datasets were used as fundamental elements of these models. The training dataset
for these three hybrid models was applied to find the relationship between SWARA and values of
flood (1) and non-flood (0) locations and finally using testing data, the accuracy of the built model
was investigated. Accuracy of training and testing is shown in Figure 9a–f. According to Figure 9a,c,e,
the RMSE for ANFIS-CA, ANFIS-BA, and ANFIS-IWO in the training was 0.314, 0.274, and 0.067,
respectively. Thus, the hybrid model of ANFIS-IWO showed a better performance with training dataset
and had a higher degree of fit; however, the best optimized model was the one which predicted the
results of the test data with a higher accuracy. The values of RMSE for testing datasets are shown in
Figure 9b,d,f. The values of RMSE for ANFIS-CA, ANFIS-BA, and ANFIS-IWO in testing process were
0.449, 0.365, and 0.359, respectively. Therefore, the ANFIS-IWO optimization algorithm indicated a
better performance for both training and testing phases, followed by ANFIS-BA and ANFIS-CA.

  
(a) (b) 

  
(c) (d) 

Figure 9. Cont.
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(e) (f) 

Figure 9. RMSE value of training of (a) ANFIS-CA, (c) ANFIS-BA, (e) ANFIS-IWO and for testing data
samples (b) ANFIS-CA, (d) ANFIS-BA, and (f) ANFIS-IWO.

In addition, it should be noted that the processing speed of the models is also important nowadays.
The processing time of 1000 iterations was then estimated as 1, 120, 260 s and 1100 s for the ANFIS-BA,
ANFIS-CA, and ANFIS-IWO hybrid models by coding, respectively. As a result, the processing speed
of ANFIS-CA had the least time, and the ANFIS-BA model had the highest process time. On the other
hand, we examined the convergence of each model in the training phase (Figure 10).

 

Figure 10. Cumulative curve of speed processing from applied models.

The convergence curve was gained by graphing the calculated function of cost in each iteration of
three models (Figure 11). Results showed that cost-function values of the ANFIS-CA model were fixed
in the 25th iteration, which indicates an iteration convergence of this model in comparison to other
models. On the contrary, ANFIS-BA and ANFIS-IWO models converged in 450th and 625th iterations
indicating the slow speed of these models in achieving convergence, respectively.
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Figure 11. Speed of convergence of applied models.

4.3. Model Configuration and Generating of FSMs Using ANFIS Ensemble Models

As the main aim of flood susceptibility modeling was the reorganization of prone areas with higher
probability of flooding; therefore, three optimization models—namely cultural, bees, and invasive
weed optimization algorithms—were combined with SWARA-ANFIS to optimize the model for
identifying flood prone areas with higher accuracy. ANFIS hybrid models were built using the training
dataset and SWARA method values which were standardized between 0 and 1 in MATLAB R2016
software, The MathWorks, Inc, Massachusetts, MA, USA. Then, the constructed models were applied
to the entire study area to create flood susceptibility probability (indices) and finally these indices
for each pixel size (pixel-by-pixel) was used to create the final FSMs in ArcGIS 10.2 for the Haraz
watershed. In the next step, indexes were reclassified into five classes (very low, low, moderate, high,
and very high susceptibility) using the quantile method [18]. Three FSMs were then developed for
comparative visualization, as shown in Figure 12a–c. Results demonstrated that the areas near rivers
with lower slopes and altitudes had higher probabilities of flooding.
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Figure 12. FSM using ANFIS-IWO (a), ANFIS-CA (b), and ANFIS-BA (c) for Haraz watershed.

4.4. Validation of Flood Susceptibility Maps

For validation of the three FSMs, both success and prediction rate curves were applied. The ROC
plots are shown in Figure 13a,b. For the training phase, the ANFIS-IWO had the highest AUROC
(0.948), followed by ANFIS-BA (0.946) and ANFIS-CA (0.942), implying that ANFIS-IWO had a
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fitter degree with training dataset. The validation of three obtained maps for the testing dataset
revealed that ANFIS-BA (0.944) had a higher flood prediction capability for the Haraz watershed,
followed by ANFIS-IWO (0.939) and ANFIS-CA (0.932). According to the relationship between
AUROC and prediction capabilities of models, these models showed excellent performances based
on the following classification: 0.5–0.6 (poor), 0.6–0.7 (average), 0.7–0.8 (good), 0.8–0.9 (very good),
and 0.9–1 (excellent) [25,90].

(a) 

 
(b) 

Figure 13. Model validation by success rate (a) and prediction rate (b) for three hybrid models.

As the most appropriate model to predict FSM for the Haraz watershed was the ANFIS-BA
algorithm, the other two hybrid models had overestimated the results in very low, high, and very high
susceptibility classes and underestimated in low and moderate classes (Figure 14). It can be seen that,
according to the ANFIS-BA algorithm, the very high susceptibility class covered 17% of the study area,
and analysis of flood location revealed that about 63% of total flood locations was located in this class.
Overall, the very high and high classes contained about 85% of the total flood locations. The low and
moderate classes covered about 50% of the study area according to the ANFIS-BA algorithm.

Results of the Freidman and Wilcoxon tests are shown in Tables 2 and 3. They revealed that
since the p-value was less than 0.05 (0.00) and chi-square was more than 3.84 (standard value),
the null hypothesis was rejected, indicating there were significant differences among the three flood
susceptibility models.

The Wilcoxon test was carried out to check the statistical significance of pairwise differences
between flood models. Based on the judgment, there were significant differences between ANFIS-CA
and ANFIS-BA and ANFIS-CA and ANFIS-IWO; however, there was no significant difference between
ANFIS-BA and ANFIS-IWO algorithms.
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Figure 14. Percentages of different flood susceptibility classes in the Haraz watershed.

Table 2. Freidman test achievement

Number Flood Models Mean Ranks Chi-Square p-Value (Significance)

1 ANFIS-CA 1.68
16.6 0.002 ANFIS-BA 2.08

3 ANFIS-IWO 2.24

Table 3. Results of Wilcoxon signed-rank test

Number Pairwise Comparison z-Score p-Value (Significance) Judgment

1 ANFIS-CA vs. ANFIS-BA −3.225 0.001 Yes

2 ANFIS-CA vs.
ANFIS-IWO −3.906 0.000 Yes

3 ANFIS-BA vs.
ANFIS-IWO −1.128 0.259 NO

5. Discussion

Flooding is known as the most frequent and destructive natural hazard. The occurrence of floods
is increasing worldwide and its human losses and socio-economic damages pose huge pressure on
communities. This trend is occurring in northern Iran as well, especially in the Haraz watershed.
This huge burden of floods on human societies has brought about geophysicists, hydrologists,
water resources engineers, geologists, and geomorphologists to study this phenomenon from different
aspects such that its management can be met and its financial damages can be mitigated. One of the
most important tasks of these scientists is to identify the areas within a watershed through different
tools that are very vulnerable to flood generation. Field work might be preferable; however, it is
costly, time-consuming, and hard to conduct. Therefore, a modeling approach is always an alternate
tool to direct measurement of flood characteristics. The present study introduces three novel hybrid
models—ANFIS-CA, ANFIS-BA, and ANFIS-IWO algorithms—for identifying flood prone areas of
the Haraz watershed with a high precision and compares their prediction capabilities. In this study,
the SWARA method was adopted to select the most effective factors and the most effective class of
each of 10 conditioning factors. Our finding indicated that all factors had significant relationships with
floods such that they were all selected for flood susceptibility modeling. Three flood susceptibility
maps were generated using three above-mentioned novel hybrid models and they were then classified
into five classes.
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A comparison between the results of modeling process and five flood susceptibility classes
including very low, low, moderate, high, and very high susceptibility classless on the terrain was taken
place. Basically, in the very high and high susceptibility classes, all hybrid models covered low lands
(flats) and the areas around the rivers. Most of observation floods are occurred due to overbanking
the flow. Also, the floodplains over the study area are surrounded by this class of susceptibility.
This region located generally in the elevations less than 400 m above sea level, slope angle less than 8%
in concave slopes with rainfall more than about 400 mm and the distance less than 200 m from the
rivers. The obtained results of modeling process indicated that the ANFIS-CA and ANFIS-IWO have
occupied more pixels of very high susceptibility class in comparison to ANFIS-BA algorithm.

In the low and moderate susceptibility class, with increasing the distance from the rivers, the areas
where are covered by floods will be decreased. This region generally occupied by slope between 8%
and 12%, elevation above sea level between 400 and 2000 m, concave and convex slopes, and the
distance from the river between 200 and 700 m. The results of modeling process concluded that the
ANFIS-BA hybrid model has covered most areas of the study area in comparison to the ANFIS-CA
and ANFIS-IWO hybrid models.

The very low susceptibility class mainly included the mountainous areas and hill slopes which
are much far away from the rivers compared to the other susceptibility classes. In term of topography,
this zone is usually located in the areas where the slope angle and elevation above-sea level are
more than 20% and 2000 m, respectively. The slope shape in this class is mainly concave and convex
slopes and the distance from the river is more than 700 m. The modelling process revealed that
the ANFIS-BA hybrid model has the least areas over the study area unlike to the ANFIS-CA and
ANFIS-IWO hybrid models.

Three ANFIS ensemble optimization approaches—including ANFIS-CA, ANFIS-BA and
ANFIS-IWO—were designed to flood modeling of the Haraz watershed for which the entire dataset
was divided into two series; 70% of the data for training of models and the rest for testing. Results of
model evaluation using RMSE for the best degree of fit in the training phase and the best prediction
accuracy in the testing phase revealed that the ANFIS-IWO optimization algorithm indicated a better
performance in training and testing phases, followed by ANFIS-BA and ANFIS-CA, while all three
models provided acceptable results for flood modeling. However, results of the AUC showed that
ANFIS-IWO had the best degree of fit in the training phase which was coincident with the results
of RMSE; whereas, in the testing phase, the results of AUC revealed that ANFIS-BA had the best
prediction power than other models. The most important disadvantage of RMSE was that it acted
based only on error assessments; therefore, better approaches must be found to resolve this weak
spot, as the model should be chosen based on its abilities. Treating the ROC and AUC based on true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) showed more accurate
evaluation of the models than RMSE [39]. According to AUC, the ANFIS-IWO had the fittest degree
to the training data; however, the ANFIS-BA had the highest prediction capabilities compare other
methods in testing phase. As the testing dataset was not used for modeling, the model evaluation must
be performed based on the testing dataset. The challenge here is determining how it is possible for a
model to show highest degree of fit in the training phase (ANFIS-IWO) but not to have the highest
prediction power in the testing phase. Termeh et al. [39] stated that this situation can take place in the
models with the over fitting problem. The BA algorithm used a series of parameters including number
of scout bees, best patches, as well as elite patches in the selected patches, amount of employed bees in
the elite patches, number of recruited bees in the non-elite best patches, the neighborhood size for each
patch, number of iterations, together with difference between first and last iterations value; make it
robust. The bees algorithm has local and global searching capabilities that find the best locations.
Finally, three designed models were also evaluated for processing speed and convergence criterion.
Results indicated that although ANFIS-CA had the lowest prediction power than other models but
acquired the lowest processing speed and the highest speed of convergence.
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Some studies focused on spatial prediction of floods using machine learning and optimization
algorithms over the world. In this case, Chapi et al. [38] introduced a new machine learning algorithm,
namely bagging-logistic model tree (BA-LMT) for flood modelling. They concluded that the proposed
ensemble model had outperformed the LMT, the logistic regression, the Bayesian logistic regression,
and the random forest algorithms. Khosravi et al. [36] compared some soft computing benchmark
machine learning algorithms—such as logistic model trees (LMT), reduced error pruning trees (REPT),
naïve Bayes trees (NBT), and alternating decision trees (ADT)—for flash flood susceptibility mapping.
They revealed that the ADT model had the highest prediction capability, followed by the NBT, LMT,
and REPT algorithms, respectively. The results of above mentioned studies indicated the capability of
machine learning algorithms in spatial prediction of floods. However, there are some other studies
which conducted on optimization as evolutionary algorithms for flood susceptibility assessment such
as Bui et al. [25], Hong et al. [24], Ahmadlou et al. [70] and Termeh et al. [39]. Among these studies,
Bui et al. [25] introduced a new hybrid model of neural fuzzy inference system and metaheuristic
optimization including evolutionary genetic and particle swarm optimization (MONF) for flood
mapping. The obtained results were confirmed and compared with the J48 decision tree, the random
forest, the multi-layer perceptron neural network, the support vector machine, and the adaptive
neuro fuzzy inference system (ANFIS) algorithms. Additionally, Hong et al. [24] concluded that the
new hybrid optimization algorithm of ANFIS-differential evolution (ANFIS-DE) outperformed and
outclassed of the ANFIS-genetic algorithm (ANFIS-GA). Also, the results of Termeh et al. [39] indicated
the highest capability of ANFIS-PSO ensemble model in comparison to ANFIS-DE and ANFIS-GA
models. The mentioned studies indicated that the optimization algorithms for flood modeling in the
different study areas over the world had more power prediction in comparison to machine learning
algorithms. Basically, the results of this study which illustrated the ability of new optimization
algorithm—namely bees—for flood susceptibility assessment in the study area are in agreement with
other mentioned studies over the world. The bees algorithm is a more robust optimization algorithm
in comparison to the CA and IWO algorithms in the study area.

What is pointed out from the above-mentioned studies is that each model has its own advantages
and disadvantages. Thus, the new models must be applied and the model with the highest prediction
power selected for further and future decisions. Moreover, it is better to state that some of machine
learning models have weaknesses; thus, new hybrid models should be continuously introduced to
resolve this problem [32]. The current research like other studies has some uncertainties especially in (1)
variable factors, such as rainfall, land-use; (2) impact of climate change on flood occurrences; (3) impact
of human activities on flood occurrences; and (4) determination of flood inundation map along with
flood susceptibility maps. Thus, for future cases, it is recommended that 2-D flood inundation maps
of flood-prone areas achieved by the current research should be produced using some commonly
hydraulic models such as Hydrologic Engineering Center-River Analysis System (HEC-RAS) software.

6. Conclusions

FSM especially in ungauged watersheds has a scientific and practical value in the context
of basin-scale water resources management and is a base for hazard and risk mapping. It can be
considered as a useful tool for land-use planning, decision making, and flood disaster management.
Due to complexity and non-linearity structure of watersheds, floods cannot be modeled by employing
classic statistical and physically-based distributed methods; therefore, for the determination of flood
prone areas in the Haraz watershed, Iran, with high accuracy, new hybrid artificial intelligence
models were used. To fulfill this purpose, 201 flood locations were collected and randomly divided
into two groups for training and validation dataset, and 10 flood conditioning factors were then
selected. ANFIS weighted by SWARA method was applied to make an initial flood susceptibility
model and three optimization models—namely CA, BA, and IWO—were adopted to optimize the
models. These optimization techniques find optimal parameters and also decrease the problems of
local minimum and are therefore appropriate for the training of artificial intelligence methods and
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optimizing their results as well, especially for solving complex problems such as flood prediction. It is
obvious that more precise flood susceptibility maps can decrease the cost and damages from flooding.
Finally, FSMs were constructed using ANFIS-CA, ANFIS-BA, and ANFIS-IWO and then classified
into five categories using the quantile method in order to produce the susceptibility maps and the
results of the achieved map represented very low, low, moderate, high, and very high susceptibility
areas. Finally, these three new hybrid optimization models were evaluated using ROC and AUROC.
Results revealed that ANFIS-IWO algorithm had a better degree of fit with the training dataset but
ANFIS-BA had a higher prediction capability in FSM using the testing dataset followed by ANFIS-IWO
and ANFIS-CA.

Author Contributions: D.T.B., K.K., S.L., H.S., M.P., V.P.S., K.C., A.S., S.P., W.C. and B.B.A contributed equally to
the work. K.K. and M.P collected field data and conducted the flood mapping and analysis. K.K., H.S., M.P., K.C.,
A.S. and S.P wrote the manuscript. D.T.B., S.L., V.P.S., W.C. and B.B.A provided critical comments in planning this
paper and edited the manuscript. All the authors discussed the results and edited the manuscript.

Funding: This research was financial supported by International Partnership Program of Chinese Academy
of Sciences (grant no. 115242KYSB20170022), Iran National Science Foundation (INSF) through the research
project no. 96004000, and Universiti Teknologi Malaysia (UTM) based on the Research University Grant
(Q.J130000.2527.17H84).

Acknowledgments: We express our thanks to Editor-in-Chief of the Water journal and our two anonymous
reviewers. With their comments and suggestions, we were able to significantly improve the quality of our paper.

Conflicts of Interest: No potential conflict of interest was reported by the authors.

References

1. Elkhrachy, I. Flash flood hazard mapping using satellite images and GIS tools: A case study of Najran City,
Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space. Sci. 2015, 18, 261–278. [CrossRef]

2. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel
ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk Assess. 2015, 29,
1149–1165. [CrossRef]

3. Youssef, A.M.; Pradhan, B.; Hassan, A.M. Flash flood risk estimation along the St. Katherine road, southern
Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 2011, 62, 611–623.
[CrossRef]

4. Lee, E.H.; Kim, J.H.; Choo, Y.M.; Jo, D.J. Application of flood nomograph for flood forecasting in urban areas.
Water 2018, 10, 53. [CrossRef]

5. Sarhadi, A.; Soltani, S.; Modarres, R. Probabilistic flood inundation mapping of ungauged rivers: Linking
GIS techniques and frequency analysis. J. Hydrol. 2012, 458, 68–86. [CrossRef]

6. Luu, C.; von Meding, J. A flood risk assessment of quang nam, vietnam using spatial multicriteria decision
analysis. Water 2018, 10, 461. [CrossRef]

7. Dutta, D.; Herath, S. Trend of Floods in Asia and Flood Risk Management with Integrated River Basin
Approach. In Proceedings of the 2nd APHW Conference, Singapore, 5–8 July 2004; pp. 55–63.

8. Smith, K. Environmental Hazards: Assessing Risk and Reducing Disaster; Routledge: London, UK, 2013.
9. Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment

and its mapping in iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical
models with multi-criteria decision-making technique. Nat. Hazards 2016, 83, 947–987. [CrossRef]

10. Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping
using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index,
and weighting factor models. Environ. Monit. Assess. 2016, 188, 656. [CrossRef] [PubMed]

11. Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel forecasting approaches using
combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag.
2018, 217, 1–11. [CrossRef] [PubMed]

12. Chapi, K. Monitoring and Modeling of Runoff Generating Areas in a Small Agricultural Watershed.
Ph.D. Thesis, University of Guelph, Guelph, Canada, 2010.

203



Water 2018, 10, 1210

13. Chapi, K.; Rudra, R.P.; Ahmed, S.I.; Khan, A.A.; Gharabaghi, B.; Dickinson, W.T.; Goel, P.K. Spatial-temporal
dynamics of runoff generation areas in a small agricultural watershed in southern Ontario. J. Water Resour. Prot.
2015, 7, 14–40. [CrossRef]

14. Fenicia, F.; Kavetski, D.; Savenije, H.H.; Clark, M.P.; Schoups, G.; Pfister, L.; Freer, J. Catchment properties,
function, and conceptual model representation: Is there a correspondence? Hydrol. Process. 2014, 28,
2451–2467. [CrossRef]

15. Kisi, O.; Nia, A.M.; Gosheh, M.G.; Tajabadi, M.R.J.; Ahmadi, A. Intermittent streamflow forecasting by using
several data driven techniques. Water Resour. Manag. 2012, 26, 457–474. [CrossRef]

16. Ganguli, P.; Reddy, M.J. Probabilistic assessment of flood risks using trivariate copulas. Theor. Appl. Climatol.
2013, 111, 341–360. [CrossRef]

17. Refsgaard, J.C. Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol.
1997, 198, 69–97. [CrossRef]

18. Cea, L.; Bladé, E. A simple and efficient unstructured finite volume scheme for solving the shallow water
equations in overland flow applications. Water Resour. Res. 2015, 51, 5464–5486. [CrossRef]

19. Costabile, P.; Costanzo, C.; Macchione, F. A storm event watershed model for surface runoff based on 2D
fully dynamic wave equations. Hydrol. Process. 2013, 27, 554–569. [CrossRef]

20. Xia, X.; Liang, Q.; Ming, X.; Hou, J. An efficient and stable hydrodynamic model with novel source term
discretization schemes for overland flow and flood simulations. Water Resour. Res. 2017, 53, 3730–3759.
[CrossRef]

21. Bellos, V.; Tsakiris, G. A hybrid method for flood simulation in small catchments combining hydrodynamic
and hydrological techniques. J. Hydrol. 2016, 540, 331–339. [CrossRef]

22. Liang, D.; Özgen, I.; Hinkelmann, R.; Xiao, Y.; Chen, J.M. Shallow water simulation of overland flows in
idealised catchments. Environ. Earth Sci. 2015, 74, 7307–7318. [CrossRef]

23. Singh, J.; Altinakar, M.S.; Ding, Y. Numerical modeling of rainfall-generated overland flow using nonlinear
shallow-water equations. J. Hydrol. Eng. 2014, 20. [CrossRef]

24. Rahmati, O.; Naghibi, S.A.; Shahabi, H.; Bui, D.T.; Pradhan, B.; Azareh, A.; Rafiei-Sardooi, E.; Samani, A.N.;
Melesse, A.M. Groundwater spring potential modelling: comprising the capability and robustness of three
different modeling approaches. J. Hydrol. 2018, 565, 248–261. [CrossRef]

25. Bui, D.T.; Pradhan, B.; Nampak, H.; Bui, Q.-T.; Tran, Q.-A.; Nguyen, Q.-P. Hybrid artificial intelligence
approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy
modeling in a high-frequency tropical cyclone area using GIS. J. Hydrol. 2016, 540, 317–330.

26. Tyrna, B.; Assmann, A.; Fritsch, K.; Johann, G. Large-scale high-resolution pluvial flood hazard mapping
using the raster-based hydrodynamic two-dimensional model flood FloodAreaHPC. J. Flood Risk Manag.
2018, 11, S1024–S1037. [CrossRef]

27. Al-Abadi, A.M.; Shahid, S.; Al-Ali, A.K. A GIS-based integration of catastrophe theory and analytical
hierarchy process for mapping flood susceptibility: A case study of teeb area, southern Iraq. Environ. Earth Sci.
2016, 75, 1–19. [CrossRef]

28. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble
weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [CrossRef]

29. Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support
vector machine model with different kernel types. Catena. 2015, 125, 91–101. [CrossRef]

30. Youssef, A.M.; Pradhan, B.; Sefry, S.A. Flash flood susceptibility assessment in Jeddah city (Kingdom of
Saudi Arabia) using bivariate and multivariate statistical models. Environ. Earth Sci. 2016, 75, 12. [CrossRef]

31. Fotopoulos, F.; Makropoulos, C.; Mimikou, M.A. Validation of satellite rainfall products for operational flood
forecasting: The case of the Evros catchment. Theor. Appl. Climatol. 2011, 104, 403–414. [CrossRef]

32. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision
tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504,
69–79. [CrossRef]

33. Pradhan, B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote
sensing. J. Spatial Hydrol. 2010, 9, 1–18.
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55. Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modeling approach on flood
inundation mapping. J. Hydrol. 2009, 377, 131–142. [CrossRef]

56. Moore, I.D.; Grayson, R.B. Terrain-based catchment partitioning and runoff prediction using vector elevation
data. Water Resour. Res. 1991, 27, 1177–1191. [CrossRef]

57. Kirkby, M.; Beven, K. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J.
1979, 24, 43–69.

205



Water 2018, 10, 1210

58. Beven, K.; Kirkby, M.; Schofield, N.; Tagg, A. Testing a physically-based flood forecasting model (topmodel)
for three UK catchments. J. Hydrol. 1984, 69, 119–143. [CrossRef]

59. Glenn, E.P.; Morino, K.; Nagler, P.L.; Murray, R.S.; Pearlstein, S.; Hultine, K.R. Roles of saltcedar (Tamarix spp.)
and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river. J. Arid Environ. 2012,
79, 56–65. [CrossRef]

60. Chung, C.-J.F.; Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping.
Nat. Hazards 2003, 30, 451–472. [CrossRef]

61. Keršuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new
step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [CrossRef]
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Abstract: A regional inundation early warning system is crucial to alleviating flood risks and reducing
loss of life and property. This study aims to provide real-time multi-step-ahead forecasting of flood
inundation maps during storm events for flood early warnings in inundation-prone regions. For decades,
the Kemaman River Basin, located on the east coast of the West Malaysia Peninsular, has suffered from
monsoon floods that have caused serious damage. The downstream region with an area of approximately
100 km2 located on the east side of this basin is selected as the study area. We explore and implement a
hybrid ANN-based regional flood inundation forecast system in the study area. The system combines
two popular artificial neural networks—the self-organizing map (SOM) and the recurrent nonlinear
autoregressive with exogenous inputs (RNARX)—to sequentially produce regional flood inundation maps
during storm events. The results show that: (1) the 4 × 4 SOM network can effectively cluster regional
inundation depths; (2) RNARX networks can accurately forecast the long-term (3–12 h) regional average
inundation depths; and (3) the hybrid models can produce adequate real-time regional flood inundation
maps. The proposed ANN-based model was shown to very quickly carry out multi-step-ahead forecasting
of area-wide inundation depths with sufficient lead time (up to 12 h) and can visualize the forecasted
results on Google Earth using user devices to help decision makers and residents take precautionary
measures against flooding.

Keywords: ANN-based models; flood inundation map; self-organizing map (SOM); recurrent
nonlinear autoregressive with exogenous inputs (RNARX)

1. Introduction

Floods are the most common natural disasters, and the increasing trend of flood occurrence
has been frequently reported worldwide over the last few decades [1–3]. As climate change
continues and extensive urbanization worsens, the situation will persist in the vicinities of rivers [4].
Asia and the Pacific Region are the most disaster-prone areas in the world, where floods are the
most frequent disasters and have large economic impacts on the region [5]. Recent disasters in
Southeast Asia—Typhoon Haiyan (Yolanda) in Philippines (2013) and massive floods in Thailand
(2011)—have necessitated the demand for effective flood management schemes, as annual damage
estimates far outstretch current management expenditure. The societal cost-benefit analysis of a flood
forecasting scheme, compared to a flood management scheme, is different from site to site. Early flood
warnings with sufficient lead time offer authorities as well as residents precautions and preventive
measures to alleviate consequences and minimize negative impacts. Consequently, there is the
increasing need for flood forecasting with lead-times long enough to allow for flood mitigation actions.
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Additionally, a real-time flood inundation map showing inundated areas and the corresponding
inundating depths could convey a clear message about the flood’s scope and severity, thus enabling
decision makers and residents to take adequate countermeasures. Subject to various influential factors
like rainfall, soil moisture, river-stage conditions, and geomorphological characteristics, as well as a
lack of sequential flood inundation datasets during storm events, real-time urban flood inundation
forecasting is a great challenge [6].

Several studies have been devoted to developing flood inundation simulation models suitable for
urban flood management and providing sequential high-resolution inundation depths responsive to
storm events [7–9]. Nevertheless, these models required substantial computational efforts in order
to deliver iterative solutions and thus could not effectively make real-time inundation forecasts.
Practically, hydrologists need to deal with the limited response time to flash flood disasters in
urban areas, and therefore multi-step-ahead flood inundation forecasting could be very helpful
in managing contingencies and alleviating flood risks. Researches have now moved on from
mathematical simulation modelling or physical-based flood forecasting methods to collaboration
between methodologies focusing on data-mining approaches and/or physical-based modellers [10,11].
In the last two decades, many studies have developed and/or implemented machine-learning
techniques, e.g., artificial neural networks (ANNs) for typhoon flood forecasting [12], runoff
forecasting [13,14], real-time multi-step-ahead water level forecasting [15], classification of regional
groundwater variations and inter-relations among variables [16], and building multi-relations between
fish species and water quality [17]; support vector machines for river flow prediction [18]; fuzzy
logic for flow forecasting [19], real-time flood forecasting [20], and water level forecasting [21];
extreme learning machine for stream-flow forecasting [22]; and non-dominated sorting genetic
algorithm-II for optimizing water utilization and hydropower output without minimizing flood
risks [23]. ANNs generalize relationships between input and output patterns without requiring
the physical mechanism behind the process, which is suitable for effectively handling regional
rainfall-inundation datasets [24–27]. However, we notice that most of the previous works focused on
one-dimensional processes and only very limited studies attempted two-dimensional flood inundation
forecasts due to highly dynamic complex spatio-temporal processes involved. Thus, there is a
continuous need to conduct in-depth research in regional flood inundation disaster management
using the latest scientific tools such as machine learning techniques.

This study aims at establishing a flood early warning system for inundation-prone regions of the
Kemaman River Basin in Malaysia. The study basin and its vicinities have frequently suffered from
monsoon floods, impacting the socio-economic, agricultural and sub-urban areas of the settlement.
We propose an integrated methodology that couples flood inundation simulation and machine learning
models to create real-time multi-step-ahead flood inundation maps during storm events. The forecasted
regional flood inundation map can be shown on Google Earth to help decision-makers and residents
take necessary countermeasures against flooding.

2. Study Area and Materials

Floods in Malaysia have great social-economic impacts, and are considered threatening.
Being located in the southern part of Terengganu on the east coast of West Malaysia (Figure 1a),
the Kemaman River Basin is a region that experiences frequent and severe floods. Flooding has been a
major issue in the study catchment since the early 1990s. Storm events result in flooding with short
concentration times and a rise in the power and speed of the river flow, causing severe damage to
settlements and infrastructures, especially in downstream regions. For instance, the concentration
time for Event 7 was less than 12 h and the maximum flow rate reached 1142 m3/s (Table 1).
Therefore, the downstream region that covers an area of approximately 100 km2 located on the
east side of the Kemaman River Basin is selected as the study area for building real-time regional
multi-step-ahead flood inundation forecast models (Figure 1e,f).
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The climate of the study basin is generally tropical monsoonal—uniform temperature around 26 ◦C,
high humidity (70–95%) and average annual rainfall of 2770 mm. Historical rainfall and water level
data of 10 rainfall and three runoff gauge stations spreading over the study area were collected from
the Department of Irrigation and Drainage (DID) of Malaysia; they were used for model calibration and
verification. Based on the availability of rainfall and discharge data, eight recent extreme flood events
occurring between 2000 and 2015 were selected for this study, as shown in Table 1. The rainfall and river
flow stations in the Kemaman River Basin are illustrated in Figure 1b,c, respectively.

 

 

Figure 1. Information of Kemaman River Basin in Malaysia: (a) geological location, (b) rainfall stations and
(c) river flow stations (St.), (d) study area, (e) topology of the study area, and (f) land use and main rivers.
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Table 1. Real storm events and their characterization.

Event
Beginning

(yy/mm/dd)
Ending

(yy/mm/dd)
Duration (h)

Maximum Flow (m3/s) Accumulated Average
Rainfall (mm)

Maximum Average
Inundation Depth (m)St*. #4131453 St. #4232401 St. #4332401

1 2001/12/20,
5:00 a.m.

2001/12/27,
9:00 a.m. 172 731 814 84 453 1.70

2 2003/12/5,
12:00 p.m.

2003/12/12,
9:00 a.m. 165 554 433 183 396 1.67

3 2006/12/20,
2:15 a.m.

2006/12/26,
8:30 a.m. 150 534 207 87 268 1.48

4 2008/12/31,
19:30 a.m.

2009/1/8,
7:30 a.m. 180 478 487 96 390 1.74

5 2012/1/10,
7:15 a.m.

2012/1/17,
4:00 p.m. 177 453 506 39 255 1.70

6 2012/12/13,
0:15 a.m.

2013/1/13,
0:00 a.m. 744 509 920 75 973 3.28

7 2013/11/28
9:30 p.m.

2013/12/6,
9:30 p.m. 192 745 1142 63 996 4.17

8 2014/12/13,
12:00 p.m.

2015/1/1,
4:00 p.m. 460 634 801 57 1653 3.35

* River flow station.

The ranges of event duration, maximum average inundation depth, and accumulated average
rainfall were recorded as 150 h, 744 h; 1.48 m, 4.17 m; and 255 mm, 1653 mm, respectively. The highest
accumulated flood depth (4.17 m) occurred in Event 7, where the accumulated average rainfall reached
996 mm and the maximum flow achieved 1142 m3/s. In this study, rainfall in a flood depth hydrograph
denotes the average rainfall of each sub-catchment at a time-step of 3 h.

Taking Event 7 as an example, Figure 2 illustrates the rainfall histogram and the average
inundation depth hydrograph of Event 7.

Figure 2. Rainfall histogram and average inundation depth hydrograph for Event 7.

3. Forecast Models

To establish a flood early warning system, we propose an integrated methodology that
couples flood inundation simulation models and machine learning-based forecast models to provide
multi-step-ahead flood inundation maps during storm events. The hybrid modelling process explored
in this study consists of five stages: (1) dividing the study area (100 km2) into 10,744 grids (75 m × 75 m);
(2) synthesizing the sequential regional inundation depths for real and designed events by using a
two-dimensional flood routing simulation model; (3) clustering regional inundation maps by using the
self-organizing map (SOM) algorithm; (4) building a forecast model by using the recurrent nonlinear
autoregressive with exogenous inputs (RNARX) for obtaining the average regional inundated depth
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(ARID) under rainy conditions; and (5) adjusting the weight of the selected neuron in the SOM
based on the forecasted ARID to obtain a real-time adapted regional inundation map. It is noted
that we removed the cells covering river channels and the cells with highest observed inundation
depths less than 10 cm (for example, inundation did not occur at cells at relatively high elevations).
Consequently, about 40% of the cells were removed, i.e., the number of grids reduced from 17,778 to
10,740. Thus, the input dimension (number of grids) of the SOM largely reduced, such that the model
(SOM) is easier to train and converge. Besides, because the study area is located downstream (estuary)
and its terrain in general is relatively flat, we consider the designed grid size (i.e., 75 m × 75 m) suitable
for presenting flood inundation variation during storm periods.

The average regional inundation depth (ARID) is calculated by the following equation:

ARID =
∑ inundation depth in each grid

the number o f grids
(1)

These models are briefly introduced in the following subsections.

3.1. Simulation Model

Historical observed data of inundation depths are rarely available, such that there are almost no
historical hydrographs of regional inundation depths of historical storm events. Hydraulic models,
in general, are a more physical-based approach to modeling the motion of a water body through
its geo-morphological environment, taking into account the effects of gravity and friction at the
water/bed interface to produce flood levels at various locations along the river and the flood plain [28].
Therefore, the flood routing simulation model would be the best alternative for generating the synthetic
hydrographs of flood depths for various storm events; it will help understand the induced flood
hazards and identify the responses of mitigation measures. InfoWorks ICM (ICM Suite upgrade, HR
Wallingford Asia Sdn Bhd, Kuala Lumpur, Malaysia), a commercial software package and an advance
of Infoworks RS, is a two-dimensional flood routing simulation tool that combines an advanced flow
simulation engine, hydrological and hydraulic models, GIS, and database in a single environment [28].
This model relies profoundly on the accuracy of topographical data [29]. InfoWorks ICM (RS) has
been satisfactorily utilized to develop flood risk maps for Northern Ireland [30] and Malaysia’s River
Basin [31]. This tool offers explanations for the effects of varying runoff rates from sub-catchments and
forms a tight-coupling of GIS functionality and hydrodynamic flow simulation.

In this study, InfoWorks ICM is implemented to mimic the effects of flood mitigation measures
under various real and synthetic events. The main components of the InfoWorks ICM consist of an ISIS
flow simulation engine, a geographic information system (GIS), and a database. The model carries out
two-dimensional flood routing simulation in consideration of hydraulic facilities/modeling [32,33].
The two-dimensional (2D) hydrodynamic model routes water over in the Digital Elevation Model
(DEM) forced by upstream boundary conditions such as a meteorological forcing, or a hydrograph
and downstream boundary conditions of water levels. The model generates accurate and reproducible
flood extent maps, which not only show the extent and depth of a flood, but can also be animated to
show the progression of a flood event. The scenario setting for simulating events was designed and
described as follows.

(1) Observed distribution: 8 real events (rainfall data).
(2) Synthetic distribution: a total of 12 designed events were generated, based on different

combinations of rainfall durations (12, 24, 48 and 72 h) and return periods (20, 50 and 100 years)
at main gauge stations.

Figure 3 shows the maximum simulated flood map derived from the 2D flood model (InfoWorks
ICM) based on a 5 m resolution digital elevation and rainfall information of a storm event (a
cumulated rainfall of 1653 mm in December 2014). We note that this simulation model may not
necessarily yield the exact flood depths but can provide the magnitudes of water depths and flood
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extents. Consequently, the simulation model (InfoWorks ICM) with designed rainfall hyetographs are
implemented to generate the regional inundation maps and provide the inundation depth of each grid
element for all scenarios. The generated inundation maps could then be used to train and validate
ANN-based models.

Coupling the observed and simulated datasets, the RNARX firstly makes 3 h-up to 12 h-ahead
forecasts (ARID); next, the forecasted ARID can be mapped onto the SOM topological map to select
the best matched cluster in the SOM, and then all the weights in the matched cluster can be adjusted
using linear interpolation to obtain a 3 h- (or, 6 h-, 9 h-, 12 h-) ahead regional flood inundation map.

Figure 3. Maximum simulated flood map derived from the 2D flood model (a rainfall of 1653 mm in
December 2014).

3.2. ANN-Based Models

In this study, we explore a hybrid SOM−RNARX model that integrates the SOM and the RNARX
to sequentially forecast regional multi-step-ahead flood inundation maps. The key idea is to integrate
the essence of both ANNs to produce two-dimensional visible regional flood inundation maps.

3.2.1. Self-Organizing Map (SOM)

The SOM is an effective clustering method that can classify high-dimensional datasets to form a
meaningful topological map; it offers the advantages of information extraction and visualization [34].
For instance, the SOM was implemented as a clustering tool to classify inundation maps [35], groundwater
levels [36,37], fishery data [17,38], and river flow stations [39]. The SOM consists of an input layer and
a clustering layer with nodes distributed over a two-dimensional map. Bearing in mind its clustering
capability and visual interpretation, the SOM in this study is implemented to form a two-dimensional
topological map that presents the main features of regional flood inundation depths and extends under
various hydrological conditions during storm events (Figure 4). The map size of the SOM must be
determined, which is usually done by trial-and-error procedures, because there are no theoretical guidelines
to determine optimal map size [40]. Due to the large input dimension (i.e., 10,744 grids) and relatively
stable variations of regional inundation depths, we only try three different map sizes (i.e., 3 × 3, 4 × 4,
and 5 × 5) to form regional inundation topological maps in this study case.
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3.2.2. Recurrent Configuration of Nonlinear Autoregressive with Exogenous Inputs (RNARX)

The nonlinear autoregressive with exogenous input (NARX) network is a powerful dynamic
model for time series prediction [41]. Several studies have demonstrated that the recurrent
configuration of the RNARX network (RNARX) could suitably forecast time series with long-range
dependence present in data [42–45]. Besides, there is a common lack of real-time observed inundation
depths, which is a great challenge for building a reliable real-time model. To solve the problem,
the RNARX network offers the advantage of using model outputs as parts of inputs to train the
model and use the configured model for real-time forecasting in test (or real) cases. To tackle the
problem of no actual real-time observations available during model construction, the recurrent scheme
of the RNARX network utilizes model outputs as parts of model inputs in training, validation and
testing stages. That is to say, this recurrent network could be trained with imperfect information but
similar characteristics of input-output patterns in all three phases (i.e., training, validation and testing
phases), such that the configured network would maintain a similar forecasting capability in all phases.
The constructed network and its synaptic weights would be fixed in the validation and testing phases
to evaluate its reliability with new events. For multi-step-ahead forecasting tasks, current forecast
values could be sequentially fed back to the input layer to provide one-step further forecasts.

 

Figure 4. Cluster the spatial distributions of inundation maps by the SOM (4 × 4 neurons).
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Assuming the unit time delay and the output-memory order are given, this nonlinear function of
the RNARX can be expressed by Equation (2):

z(t) = f [z(t − 1), . . . , z(t − q); U(t)] (2)

where U(t) and z(t) are the input vector and output value at a time step t, respectively, and f [·] is the
nonlinear function, q denotes the number of time steps.

The RNARX is commonly trained in two modes: parallel (P) and series-parallel (SP) modes. In the
P mode, the forecasted outputs (z (t − i), i = 1 − q) are fed back into the input layer, represented by
Equation (2). In the SP mode, the output regressor in the input layer is formed by observational values
(d (t − i), i = 1 − q), as shown in Equation (3):

z(t) = f [d(t − 1), . . . , d(t − q); U(t)] (3)

The architecture of the RNARX model is illustrated in Figure 5.

Figure 5. Architecture of the RNARX network. X and Ẑ denote observed and forecasted values, respectively.

In this study, we implement the RNARX for flood forecasting. The RNARX model is configured
by using model outputs as parts of model inputs, and its weights are adjusted by using the
conjugate gradient back-propagation learning algorithm to search for the minimum errors during
network training.

3.3. ANNs-Based Regional Inundation Depth Forecasting

We next discuss how to integrate the SOM and the RNARX for forecasting regional flood
inundation maps. The hybriding process consist of three major schemes (Figure 6). The first scheme
involves clustering regional inundation maps using the SOM. The second scheme involves building
a forecast model using the RNARX to obtain the ARID under rainy conditions. The third scheme
involves adjusting the weight of the selected neuron in the SOM based on the forecasted ARID to
obtain a real-time adapted regional inundation map. To be more specific, the ARID of a neuron in the
SOM can be obtained by weightedly summing (averaging) the inundation depths in all grids of the
neuron, and then the neuron with a value that is the closest to the forecasted value is selected as the
best matched (selected) neuron. The ARID of the selected (winning) neuron can be further modified
by a linear interpolation method to adjust all the regional inundation depths in the neuron. Using this
approach, the regional inundation maps stored in the SOM can be instantly updated during storm
events, and the accuracy of the forecasted inundation map will significantly increase. We would like to
note that real-time rainfall information might be the only information available for modelling in real
applications, and therefore the proposed methodology does provide an effective and promising way
for real-time forecasting regional flood inundation maps and their extents. The proposed methodology
can be repeatedly implemented for obtaining multi-step-ahead forecasts.
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3.4. Evaluation Indexes

The performance of the proposed approach is evaluated by the coefficient of determination (R2)
and the root mean square error (RMSE), as shown below:

R2 =

⎡⎣ ∑N
i = 1
(
Di − D

)(
Yi − Y

)√
∑N

i = 1
(
Di − D

)2
∑N

i = 1
(
Yi − Y

)2
⎤⎦2

(4)

RMSE =

√
∑N

i = 1(Di − Yi)
2

N
(5)

where Di and Yi are the forecasted value and the observed (simulated) value of the ith data, respectively.
D and Y are the mean values of the forecasted values and the observed values, respectively.

Figure 6. Methodology of the hybrid SOM–RNARX model.
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4. Results and Discussion

4.1. SOM Clustering

There are 225 (relevant to Events 1, 3, 5 and 7) datasets (i.e., regional inundation depths) to be
classified into the neurons of the SOM in the training phase. Each neuron in the SOM contains 10,774 grids
distributed over the study area. The classification results of the spatial distributions of inundation maps
are shown in Figure 7. We find that the SOM networks with map sizes of 4 × 4 can produce well the
clustering topology of regional inundation depths. The two-dimensional (4 × 4) topological map clearly
presents the overall results of the neurons, which exhibits the variation trend of regional inundation depths
ranging from [0–1 m] to [0–over 7 m]. The topological relationships between individual neurons and their
neighboring neurons are visible and distinguishable. In Figure 7, the ARID of each neuron is shown at the
top right corner of the neuron. The bottom-left section of each neuron is light yellow in color, showcasing
the lowest input values (ARID = 0.055 m), while the top-right section of each neuron is dark blue in color,
denoting the highest input values (ARID = 3.439 m).

 

Figure 7. Topology of 4 × 4 clustering maps.
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The constructed topological map can easily display the difference between these two corners
(bottom-left neuron and top-right neuron); moreover, the topological images of the neurons nearby
each of these two corners are quite similar. These figures show that the SOM network can effectively
cluster high-dimensional (10,744 grids) data to extract (and present) meaningful topological structures.

4.2. Forecasting Average Regional Inundation Depths (ARID)

Four ARID forecasting models are individually constructed for three- up to twelve-hour-ahead
forecasting by using RNARX networks based on a large number of rainfall-total inundated volume
patterns. There are 7 real events and 12 designed events used to build and/or test the forecast models.
Data allocation for model construction is shown in Table 2. The inputs consist of the current observed
three-hour rainfall of three sub-catchments and the recurrently forecasted ARIDs at time step of T
+ n − 1 while the output is the n-step-ahead (T + n) ARID. Table 3 shows the input combinations
of the RNARX models at various time steps. For instance, the input dimension is 4 (three observed
values and one recurrent forecasted value) and the output dimension is only 1 for T + 4 (12 h-ahead).
After implementing an intensive trial-and-error procedure based on the training and validation
datasets, the most suitable RNARX network is identified to have only one hidden layer with five nodes,
which would in general produce admirable forecast performances.

Table 2. Dataset allocation for constructing RNARX models.

Dataset Real Events Designed Events

Training

Event 3
Event 5
Event 6
Event 7

100yearreturnperiod_12hourRainfall
50yearreturnperiod_24hourRainfall
20yearreturnperiod_48hourRainfall
50yearreturnperiod_48hourRainfall
20yearreturnperiod_72hourRainfall

100yearreturnperiod_72hourRainfall

Validation Event 2
Event 4

20yearreturnperiod_12hourRainfall
20yearreturnperiod_24hourRainfall

100yearreturnperiod_48hourRainfall

Testing Event 8
50yearreturnperiod_12hourRainfall

100yearreturnperiod_24hourRainfall
50yearreturnperiod_72hourRainfall

Table 3. Input combinations for the RNARX model.

Forecast Time-Step
Input Factors Kemaman River

Average Rainfall
Cherul River

Average Rainfall
Flood Depth

T + 1 (3 h-ahead) T − 2 T − 2 -
T + 2 (6 h-ahead) T − 1 T − 1 -
T + 3 (9 h-ahead) T T -
T + 4 (12 h-ahead) T T T + 3

Table 4 shows the summarized RNARX results for 3 h-up to 12 h-ahead forecasting of ARID in
terms of RMSE and R2. The R2 values of 3–9 h ahead forecasting are greater than 0.90 in these three
phases, which indicate that the constructed models can well forecast ARIDs with very high correlation,
while those of 12 h-ahead forecasting are also greater than 0.87. It appears that the models can forecast
ARIDs accurately and reliably. We notice that the 3 h-ahead, 6 h-ahead and 9 h-ahead forecasting
models produce very similar results because these three models have the same inputs and parameters.
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Table 4. Performance of 3 h-up to 12 h-ahead forecasting of ARID using RNARX based on 7 real events
and 12 designed events.

Forecasting Time-Step
RMSE (m) R2

Training Validation Testing Training Validation Testing

3 h-ahead 0.28 0.30 0.34 0.92 0.90 0.90
6 h-ahead 0.28 0.30 0.34 0.92 0.90 0.90
9 h-ahead 0.29 0.30 0.33 0.91 0.90 0.90
12 h-ahead 0.31 0.34 0.35 0.90 0.87 0.89

Figure 8 illustrates the simulated and forecasted ARIDs obtained from the RNARX model at
two different horizons for Event 7. The results indicate that the RNARX perform well at both shorter
forecast horizon (3 h) and longer forecast horizon (12 h). Therefore, it is suitable to use the RNARX to
make forecasts on ARIDs.

(a) 

(b) 

Figure 8. Simulated and forecasted ARIDs obtained from the RNARX model for Event 7. (a) 3 h-ahead
simulated and forecasted ARIDs; (b) 12 h-ahead simulated and forecasted ARIDs.

4.3. ANNs-Based Models for Forecasting Regional Inundation Maps

In this hybrid stage, the forecasted ARID of the RNARX network is used to adjust the selected
SOM neuron whose ARID is the closest to the forecasted ARID of the RNARX network. Table 5 shows
the results of the simulation model for Event 7 in the study area (10,744 grids) with respect to different
inundation depths (i.e., All, 0–1 m, 1–2 m, 2–3 m, and >3 m) and time steps ranging from the beginning
of flooding at T = 75 to the end of flooding at T = 120. As shown, when T = 75 and T = 81, more
than half of the grids have small inundation depths (i.e., 0–1 m) and the numbers of grids for higher
inundation depths (i.e., 2–3 m and over 3 m peak) gradually increase over time. When T = 105, almost
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half the grids have inundation depths exceeding 3 m, and ARIDs reach the maximum at T = 120 and
then decrease toward the end of flooding.

Table 5. Numbers of grids with respect to different inundation depths obtained from the simulation
model over time for Event 7.

Time (h) All 0–1 m 1–2 m 2–3 m >3 m

T = 75 10,744 7274 1361 1231 908
T = 81 10,744 6530 1617 1376 1251
T = 87 10,744 4488 2176 1964 2146
T = 93 10,744 3466 2053 2452 2803

T = 108 10,744 1400 1195 2473 5706
T = 120 10,744 614 780 1707 7673

Table 6 shows the forecast performance (R2 and RMSE) of the hybrid SOM−RNARX model
with respect to different inundation depths over time for Event 7, taking the simulation model as a
benchmark. We find that the forecast model in general can provide very accurate and reliable results,
in terms of small RMSE values and very high R2 values.

Table 6. Performances of the SOM−RNARX model (time step = 3 h) with respect to different inundation
depths over time for Event 7, taking the simulation model as a benchmark.

Time (h) Time Step
All 0–1 m 1–2 m 2–3 m >3 m

RMSE * R2 RMSE RMSE RMSE RMSE

T = 75

T + 1 (=3 h) 0.45 0.94 0.52 0.38 0.16 0.09
T + 2 (=6 h) 0.44 0.94 0.51 0.36 0.14 0.10
T + 3 (=9 h) 0.45 0.94 0.52 0.38 0.17 0.09
T + 4 (=12 h) 0.49 0.94 0.55 0.45 0.25 0.17

T = 81

T + 1 0.65 0.97 0.53 0.79 0.81 0.84
T + 2 0.64 0.97 0.52 0.77 0.79 0.81
T + 3 0.66 0.97 0.53 0.79 0.82 0.85
T + 4 0.68 0.97 0.54 0.81 0.85 0.90

T = 87

T + 1 0.38 0.99 0.36 0.45 0.40 0.34
T + 2 0.37 0.99 0.35 0.43 0.39 0.31
T + 3 0.39 0.99 0.36 0.45 0.41 0.35
T + 4 0.08 1 0.06 0.08 0.08 0.12

T = 93

T + 1 0.19 1 0.16 0.2 0.2 0.19
T + 2 0.19 1 0.10 0.16 0.19 0.19
T + 3 0.19 1 0.16 0.21 0.21 0.19
T + 4 0.12 1 0.09 0.12 0.13 0.12

T = 108

T + 1 0.25 1 0.11 0.07 0.12 0.32
T + 2 0.25 1 0.11 0.07 0.12 0.32
T + 3 0.24 1 0.11 0.07 0.11 0.31
T + 4 0.18 1 0.12 0.08 0.08 0.23

T = 120

T + 1 0.42 1 0.48 0.57 0.34 0.42
T + 2 0.42 1 0.48 0.57 0.34 0.42
T + 3 0.42 1 0.48 0.57 0.34 0.42
T + 4 0.34 1 0.49 0.61 0.43 0.34

* Unit: m.

Figure 9 shows the regional flood inundation depths over time (from T = 75 to T = 120) for Event 7 in
consideration of (1) forecasted results, (2) simulated results, and (3) differences between the forecasted
and simulated results. We can find that the inundation depths range from low value (T = 75) to high
value (T = 120) and the forecasted results agree with the simulated results. It appears that the proposed
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model could perform well because the differences in all the grids of the region are relatively small (less
than 0.3 meter in most regions and time-steps). We conclude that the constructed models can produce
suitable and reliable multi-step-ahead inundation forecasts and can be used to build a flood early warning
system for the study area. We also notice that the proposed methodology can very quickly carry out
multi-step-ahead (3 h up to 12 h) forecasting of area-wide inundation depths, with computation time less
than few seconds, and thereby leading to real-time regional flood inundation forecasting.

 

Figure 9. Regional flood inundation depths at different time steps ranging from T = 75 (beginning) to
T = 120 (ending) for Event 7 in consideration of (1) forecasted results, (2) simulated results, and (3)
differences between the forecasted and simulated results, respectively.
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4.4. Development of the Flood Early Warning System

The final output of this study is the display of the on-line real-time flood early warning system,
where the inundation status in the study area can be visualized online. The system display embeds
Google Map in the webpage of this system and provides Keyhole Markup Language (KMZ) files for
download. Users can see the regional flood inundation depths and quickly find a location’s inundation
depth. Figure 10 shows the real-time regional flood inundation forecasting results displayed on the
Web. It consists of three parts: Header, Main Page, and Footer. The header composes of the title of the
system, the legend and the KMZ download button, which visualize the forecasted results on Google
Earth in user devices. The left portion of the main page includes time of issue, lead time, tree views of
boundary and administration for selecting the forecasted results of interest on Google Map. The rest
of the main page is partitioned into two sub-parts: control panel and Google Map. The legend of the
flood inundation level is shown in the upper left corner (Figure 10). A quadri-color flood warning
system is built in this study, where blue denotes a warning of Level 1 indicating 0.1–0.3 m flood depths;
green denotes a warning of Level 2 indicating 0.3–0.9 m flood depths; yellow denotes a warning of
Level 3 indicating 0.9–1.5 m flood depths; orange denotes a warning of Level 4 indicating 1.5–2.5 m
flood depths; and red denotes a warning of Level 5 indicating flood depths exceeding 2.5 m. The main
function of the display interface is to show the inundation area over Google Map, to display the
maximum inundation depth with its location in each sub-district, and to provide a KMZ file download
of results that can be browsed on Google Earth.

 

Figure 10. Regional flood inundation information on the designed Web.

5. Conclusions

This study aims at exploring an inundation forecasting approach for future forecast horizons based
on the combination of a clustering technique (SOM) of a set of high-resolution inundation maps and an
inundation depth forecasting model based on an artificial neural network (RNARX). We then establish
a web-based (online) flood early warning system that enables the issuing of an advanced warning of
possible flash floods and/or regional inundation depth. We propose a novel hybrid SOM−RNARX
model for real-time forecasting of the spatial distribution of flood inundation in the study area of
the Kemaman River Basin in Malaysia. We demonstrate that the regional inundation maps stored in
the SOM can be instantly updated during storm invasion periods and the accuracy of the forecasted
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inundation maps can be significantly increased through real-time ARID forecasts obtained from the
RNARX network. The proposed methodology and the primary results are summarized as follows:

(1) The input datasets for the SOM consist of high-dimensional spatial inundation depths (with a
grid resolution of 75 m × 75 m) of the study area obtained from the 2-D simulation model based
on a number of real storm events. The main features of the spatial inundation distributions can be
well distinguished by an SOM with 4 × 4 neurons to obtain a distinguishable topology. The SOM
network can effectively cluster the high-dimensional (10,744 grids) inundation depths to extract
and present their topological structures.

(2) The results suggest that the RNARX network configured with current regional rainfall information
and the model’s recurrent output can well capture the main features of the input-output patterns
to provide stable and reliable forecasts of ARIDs.

(3) The proposed model integrates the favorable essence of both networks (SOM & RNARX) and
fuses their corresponding results to provide real-time visible regional multi-step-ahead flood
inundation maps with high resolution; their nowcasts are reliable and adequate (with small
RMSE and high R2 values).

(4) Regarding the execution efficiency of the developed system for the study area, the system can
very quickly (in just a few seconds) carry out three to twelve-hour-ahead forecasting of area-wide
inundation maps and thereby lead to real-time flood forecasting.
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Abstract: Sustainable water resources management is facing a rigorous challenge due to global
climate change. Nowadays, improving streamflow predictions based on uneven precipitation is
an important task. The main purpose of this study is to integrate the ensemble technique concept
into artificial neural networks for reducing model uncertainty in hourly streamflow predictions.
The ensemble streamflow predictions are built following two steps: (1) Generating the ensemble
members through disturbance of initial weights, data resampling, and alteration of model structure;
(2) consolidating the model outputs through the arithmetic average, stacking, and Bayesian model
average. This study investigates various ensemble strategies on two study sites, where the watershed
size and hydrological conditions are different. The results help to realize whether the ensemble
methods are sensitive to hydrological or physiographical conditions. Additionally, the applicability
and availability of the ensemble strategies can be easily evaluated in this study. Among various
ensemble strategies, the best ESP is produced by the combination of boosting (data resampling)
and Bayesian model average. The results demonstrate that the ensemble neural networks greatly
improved the accuracy of streamflow predictions as compared to a single neural network, and the
improvement made by the ensemble neural network is about 19–37% and 20–30% in Longquan
Creek and Jinhua River watersheds, respectively, for 1–3 h ahead streamflow prediction. Moreover,
the results obtained from different ensemble strategies are quite consistent in both watersheds,
indicating that the ensemble strategies are insensitive to hydrological and physiographical factors.
Finally, the output intervals of ensemble streamflow prediction may also reflect the possible peak
flow, which is valuable information for flood prevention.

Keywords: ensemble technique; artificial neural networks; uncertainty; streamflow predictions; sensitivity

1. Introduction

The frequency and intensity of extreme rainfall events have significantly increased due to climate
change in past years. Heavy rainfall is the major cause of flood disasters; therefore, there is an
urgent need to construct reliable flood prediction models. Due to special geographical and climatic
conditions, the Zhejiang province, China, has always been a flood disaster-prone area. Thus, strategies
to effectively deal with flood threats have become a priority. Since the influence of global climate
change has become increasingly significant, the former balance of rainfall–runoff mechanisms is failing.
The occurrence and intensity of extreme hydrological events are more frequent than those in previous
years. To reduce the impact of flood hazards, the development of hydrological prediction models is
necessary and urgently required.

Water 2018, 10, 1341; doi:10.3390/w10101341 www.mdpi.com/journal/water226
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Artificial neural networks (ANNs) have been widely used in solving a wide range of hydrological
problems, such as rainfall–runoff modeling [1,2], regional flood frequency analysis [3], groundwater
modeling [4–7], hydrological time series modeling, and reservoir operation [8,9]. Hydrological
prediction models based on ANNs can effectively identify the relationship between the input and
output in hydrological systems, which can overcome the weaknesses of the conventional method
of parameterized modeling. For complex rainfall–runoff modeling, ANNs can also produce reliable
outputs through historical data learning. Thus, ANNs have become popular and are generally applied
in streamflow predictions over the past decade to lessen flood-induced damage.

However, the uncertainty of ANNs comes from several factors, such as the selection of input
variables, model structures, initial weights, and calibration data [10,11]. One way to reduce the ANNs’
uncertainty is to integrate the ensemble technique into ANN models. Research in the field of ensemble
streamflow predictions (ESP) has been remarkably increasing in order to avoid model errors due
to single deterministic results of hydrological prediction [12,13]. Nowadays, ensemble prediction
has developed into multimode, multianalysis prediction techniques, which consider the models’
uncertainty at the initial state and from mode architecture [14]. Because of the flexible geometry of
ANNs, they have been recognized as feasible models for ensemble techniques [15].

Tiwari and Chatterjee [16] developed hourly water level forecasting models using bootstrap based
ANNs (BANN). Their results indicated that BANN-hydrologic forecasting models with confidence
bounds can improve their reliability for flood forecasts. Kasiviswanathan et al. [17] constructed a
prediction interval for ANN rainfall runoff models based on ensemble simulations, which showed
that generated ensembles predict the peak flow with less error, and most of their observed flows
fall within the constructed prediction interval. To forecast urban water demand, a new hybrid
wavelet–bootstrap-neural network model was built and performed more accurate forecasting than
the traditional neural network, bootstrap-based neural networks, ARIMA (autoregressive integrated
moving average), and ARIMAX (autoregressive integrated moving average model with exogenous
input variables) models [18]. Ensemble neural network models have also been successfully applied in
potential evapotranspiration prediction [19], probabilistic prediction of local precipitation [20], and
short-term forecasting of groundwater levels [21].

While many studies have applied ensemble techniques to the hydrologic field, there is still
a shortage of studies about the sensitivity of ESP. In this paper, the main objective is to integrate
the ensemble technique concept into ANNs, hereafter termed ensemble neural networks (ENNs),
for reducing the uncertainty in streamflow predictions. ENNs are then applied to two watersheds
with different area and hydrological conditions to discuss the sensitivity on ESP. Four methods are
used for generating the ensemble members, and three methods are selected to combine the outputs
of ensemble members. A total of twelve ensemble strategies are built separately in two different
watersheds to validate if the best ESP is consistent and if the best ensemble combination is sensitive to
hydrological and physiographical changes. The methodologies of the artificial neural network and
two resampling techniques, stacking average, and Bayesian model average, are briefly described in the
following section. The study area and hydrological data are provided in Section 3. Section 4 shows the
results and comparison of twelve ESP models and the sensitivity analysis of two watersheds. Finally,
the conclusions are given in Section 5.

2. Methodology

This study aims at integrating the ensemble technique concept into ANNs for constructing
accurate ensemble streamflow prediction models and identifying both spatial and hydrological
sensitivity of ensemble strategies at two distinct watersheds. The related methods are presented
as follow.
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2.1. Back Propagation Neural Network

The basic concept of artificial neural networks is to simulate the information processing system
of biological neural networks by imitating the human nervous system with computer hardware and
software. ANNs are composed of many nonlinear operation units, neurons, and links located between
the arithmetic units, which usually compute in parallel and dispersedly. The ANNs can be trained
through information (data) importing. In this study, the back-propagation neural network (BPNN) [22]
is used to construct the streamflow prediction model. The model architecture is shown in Figure 1.
The hyperbolic tangent sigmoid transfer function (‘tansig’ in Matlab) and linear transfer function
(‘purelin’ in Matlab) are used as the activation functions in hidden and output layers, respectively.
The number of neurons in the hidden layer is four, which was determined by trial and error. The rainfall
and streamflow at the current and previous time step are used as input variables, and the predicted
streamflow is the model output. The BPNN applies the steepest descent method to adjust the
weights for minimizing the output error. In the learning process, the weights are adjusted by an
error convergence technique to obtain the desired output for a given input dataset.

Figure 1. The architecture of the streamflow prediction model.

2.2. Ensemble Neural Network

The ENN is introduced by integrating the ensemble technique concept into neural networks.
The principle of the ensemble method is to construct several specific groups with different model
outputs (i.e., a collection of members) to predict a certain target (streamflow in this study), and the
difference of each model output provides the probability distribution information of the prediction
target. As mentioned above, previous research on artificial neural networks showed that the uncertainty
can be classified into three parts: Uncertainties of data, uncertainties of initial values, and uncertainties
of the model structure (including the parameters of the model). The ensemble technique has been
developed to consider the uncertainties of several sources to avoid network error existing in a single
predicted result.

In general, the construction of ENNs can be divided into two steps: Generating ensemble members
and integrating the outputs obtained from ensemble members. Methods to generate ensemble members
in this study include the disturbance of the initial value, the resampling of the training dataset (Bagging
resampling and Boosting resampling), and the alteration of model structure (number of neurons in
the hidden layer). The methods selected for combining the outputs of ensemble members include
arithmetic averaging, the Bayesian model averaging [15,23], and stack averaging. Another important
issue is related to the number of ensemble members. According to Chiang et al. [24], the suggested
number of ensemble members used for hydrological forecasting is twenty, which is based on a
compromise between output accuracy and computational time. Their recommendation holds for
different model types and model structures (i.e., conceptual models and neural networks). Thus,
twenty ensemble members were used in this study.
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2.3. Generating Ensemble Members

As mentioned, the model uncertainty mainly comes from initial values, model structures, and
data. Thus, ensemble member generation focuses on reducing these uncertainties. First, a single neural
network (SNN), which only uses a calibrated single back-propagation neural network, is generally
given random initial values when calibrating the model structure and model parameters. However,
ENN in this study starts from a plurality of random initial weights, computes the local optimum
value, and extracts useful information to increase the probability of accurate predictions. Subjected to
the influence of random initial values, the results obtained may vary in each calibration. Therefore,
each network model is trained several times to minimize error of the objective function, which can be
regarded as a local optimization. This procedure is repeated 20 times to obtain 20 ensemble members
with different initial weights.

Uncertainty from the ANN model structure mainly comes from the number of hidden neurons,
since the input and output dimension was fixed in this study. Because the number of ensemble member
is 20, the number of hidden neurons from 1 to 20 is assigned to the 20 ensemble members in sequence
by using the model structure alternating strategy (ENN4, ENN8, and ENN 12 in Table 1). For example,
the hidden neuron for ensemble member 1 is 1, the hidden neuron for ensemble member 2 is 2, and
so on. The remaining two strategies of generating members used the best number of hidden neuron,
which is the same as the single BPNN (four neurons).

As for the uncertainty of training data, a common method to eliminate its influence is the
resampling technique, in which the samples are selected from the original amount of data according to
certain rules for enhancing the amount of training sample. The resampling methods applied in this
study are the bagging resampling algorithm and boosting resampling algorithm.

The bagging method is proposed for obtaining an aggregated predictor from multiple generated
datasets of individual predictors [25]. The assumption of this method is that, given a standard training
dataset T of size N, the distribution probability of each element of the training data is uniform, that is, 1/N.
Then, the training dataset of a member network, TB, is generated by sampling by replacing N times from
the original training dataset T using these probabilities. This process is repeated, and each member of a
neural network is generated with a different random sampling, assigned from the original training set.

The boosting algorithm is a method for reducing bias and variance in machine learning and can
improve model performance by producing a series of predictors trained with a different distribution of
the original training data. The algorithm trains the first member of the neural network with the original
training set, and the training dataset of a new member of the neural networks is assigned based on
the performance of the previous member of the ensemble. The learning processes in which predicted
values produced by the previous member differ significantly from their observations are adjusted with
higher probability of being sampled. In this case, these data will have a higher chance to exist in the
new training dataset than those correctly predicted, and therefore different members of ensemble are
specialized in different parts of the observation space. There are many boosting algorithms, and the
procedure of the second version of ADABoost was used in this study [26].

2.4. Integrating Ensemble Members

2.4.1. Arithmetic Averaging

Arithmetic averaging is the simplest averaging method and a popular method for the ensemble
technique to combine the models’ outputs. Generally, combination using single averaging is defined as:

y =
1
K

K

∑
k=1

yk
i , i = 1, 2, . . . , N (1)

where K represents the number of ensemble members, y represents output, and N represents the total
number of data points.
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2.4.2. Stack Averaging

In general, stacking is not a specific algorithm but a generic name [27]. It means that, when
training on part of the training dataset, the performance of the learning machine on the training
dataset was not part of the training set for that particular machine giving additional information [28].
The main procedure of stacking is to combine the networks by tuning their weights over the feature
space. The outputs obtained from a set of level 0 generalizers (ensemble members) are fed to level 1
generalizer, which is trained to produce appropriate output. The stacking algorithm was developed by
Breiman [29], who suggested minimizing the following function:

W =
m

∑
i=1

[xi −
N

∑
k=1

ckx̂k
i ], ck > 0 (2)

The stacked average produces estimates for the coefficients c1, c2, . . . , ck, which are used to
construct the ensemble prediction:

x̂i =
N

∑
k=1

ckx̂k
i , i = 1, 2, . . . , m (3)

Equation (3) minimizes squared absolute differences between observations and predictions.
This process could be dominated by those patterns with large errors when it is used to calculate the
coefficients. A better choice, as adopted in this study, is to minimize the squared relative difference:

H =
m

∑
i=1

(

xi −
N
∑

k=1
ckx̂k

i

xi
)2, ck > 0 (4)

2.4.3. Bayesian Model Average

The Bayesian model average (BMA) is capable of obtaining reliable overall predictive values
through calculating different weights for all selected models [30–32]. The probability density function
of prediction y based on BMA is as follows:

p(y|D) =
K

∑
k=1

p( fk|D) · pk(y| fk, D) (5)

where p( fk|D) represents the posterior probability of the k-th neural network model prediction trained
by observed data D. In fact, p( fk|D) is equal to the k-th model fk corresponding to weights wk, which

is larger when the model performance is better, and
K
∑

k=1
wk = 1, wk > 0. pk(y| fk, D) represents the

posterior distribution of prediction y in neural network model fk and data D. The posterior distribution
of the mean and variance BMA analogic variables can be expressed as:

E(y|D) =
K

∑
k=1

p( fk|D) · E[pk(y| fk, D)] =
K

∑
k=1

wk fk (6)

Var(y|D) =
K

∑
k=1

wk

(
fk −

K

∑
k=1

wk fk

)2

+
K

∑
k=1

wkσ2
k (7)

where σ2
k is the variance of analogic variables under the conditions of observed data D and

model fk. Essentially, BMA is the weight of the k-th neural network model’s weighted average.

230



Water 2018, 10, 1341

The variance of analogic variables includes error between models and within models. In Equation (7),
K
∑

k=1

(
fk −

K
∑

k=1
wk fk

)2

is the error between models, and
K
∑

k=1
wkσ2

k is the error within models.

3. Applications

The BPNN was used in building the single and ensemble forecasting models. As for the ensemble
scenario, there were a total of twelve ENN models that are implemented for ESP, and these ENN
models were derived from the combinations of four generating methods and three combination skills.
Detailed information is displayed in Table 1.

Table 1. Combinations of ensemble neural networks.

Integrating Member

Arithmetic
Average

Bayesian Model
Average

Stacking
Average

Generating
member

Disturbance of initial value ENN1 ENN5 ENN9
Bagging resampling skill ENN2 ENN6 ENN10
Boosting resampling skill ENN3 ENN7 ENN11

Alteration of model structure ENN4 ENN8 ENN12

3.1. Study Area and Data Description

Longquan Creek is the source of the Oujiang River, which is the second largest river in the
Zhejiang province in China (Figure 2). In Figure 2, the triangle represents the watershed outlet and
the circles represent the rain gauge locations. Longquan Creek flows to the East sea of China, with
a drainage area of 1440 km2 and length of 160 km. The watershed receives an annual rainfall of
about 1807 mm, and more than 80% of rainfall comes from the monsoon period (from April to June).
The hydrological features of Longquan Creek are rapid streamflow and short period of flood peak, due
to uneven distribution of rainfall and mountainous topography. This results in the Longquan Creek
watershed being a flood-prone area.

 

Figure 2. Study area of Longquan Creek and the Jinhua River watersheds and the locations of gauges.
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The Jinhua River is the largest tributary of the Qiantang River, which is the largest river in the
Zhejiang province (Figure 2). The Jinhua River flows to the East sea of China, with a drainage area
of approximately 6781 km2 and length of 200 km. Jinhua River watershed is located in a subtropical
climate zone. The rainwater of this watershed mainly comes from typhoons. The watershed receives
an annual rainfall of approximately 1450 mm. Due to the characteristics of typhoon rainfall (high
intensity in a short duration), Jinhua River watershed is also a flood-prone area.

These two watersheds were selected in this study to determine if the ensemble strategies are
sensitive to hydrological and physiographical factors. The differences between Longquan Creek and
the Jinhua River watershed can be summarized as follow: (1) The watersheds have different shapes
and sizes; (2) the rainfall type is monsoon and typhoon rainfall, respectively, and (3) Longquan Creek
is located in a mountainous area (upstream) and the Jinhua River is located in a midstream, flat area.
Two types of data, hourly streamflow (Q) and average hourly rainfall (P), were used as input variables
to build ensemble streamflow predictions in this study. This study used the Pearson correlation
coefficient [33] to find the high correlation input variables. The time-dependent variables Q(t), Q(t − 1),
Q(t − 2), and P(t − 3), where t is the current time, were selected in the Longquan Creek basin, and
Q(t), Q(t − 1), Q(t − 2) and P(t − 10) were selected in the Jinhua River basin.

A total of 37 flood events occurred in Longquan Creek, and 70 flood events occurred in the Jinhua
River during the collection period of 1994 to 2013. Even though the number of events is different,
the sample sizes are sufficient to train the neural networks in both watersheds. The arrangement of
data in training, validation, and testing phases follows the ratio of 3:1:1. Table 2 shows the statistics of
streamflow measurements in three independent datasets. The statistics includes maximum, minimum,
mean, and standard deviation (STD) of streamflow.

Table 2. The statistics of streamflow in three datasets (m3/s).

Statistic
Longquan Creek Jinhua River

Training Validation Testing Training Validation Testing

Max. 3040 2430 2640 4200 3810 3640
Min. 13 7 11 2 6 3
Mean 248 216 202 514 575 510
STD 323 318 256 550 628 528

3.2. Evaluation Criteria

The coefficient of determination (R2), root mean square error (RMSE), and Gbench index
(Gbench) were used in this study to evaluate the accuracy of a single neural network and ensemble
neural network.

(i) Coefficient of Determination (R2)

R2 = 1 −

N
∑

t=1

(
Qobs(t + n)− Qpre(t + n)

)2
N
∑

t=1

(
Qobs(t + n)− Qobs

)2 (8)

where Qobs(t + n) and Qpre(t + n) are the observed and predicted flow at time t + n, Qobs(t)
is the mean of the observed runoff, and N is the number of data points. The value of R2

varies between negative infinity and one. Values approaching one indicate higher accuracy in
model performance.
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(ii) root mean square error (RMSE)

RMSE =

√√√√√ N
∑

t=1

(
Qobs(t + n)− Qpre(t + n)

)2
N

(9)

The merits of models can be significantly reflected through RMSE values when assessing peak
values of variables.

(iii) Gbench index (Gbench)

Gbench = 1 −

N
∑

t=1

(
Qpre(t + n)− Qobs(t + n)

)2
N
∑

t=1
(Qobs(t + n)− Qbench(t))

2
(10)

where Qbench(t) represents the benchmark series of real observed runoff at time t. Gbench is
negative if the model performance is poorer than the benchmark, zero if the model performs
as well as the benchmark, and positive if the model is superior. Values closer to one indicate a
perfect fit [34].

4. Results and Discussions

In this study, the single BPNN was calibrated using the training dataset, and the validation dataset
was applied to check the overfitting issue. Then, the twelve ensemble strategies were integrated into
BPNN models to build the ensemble streamflow predictions. Results obtained from SNN and ENNs in
both watersheds are described below, as well as the comparison of model accuracy and the sensitivity
of ensemble strategies.

4.1. Comparison of a Single Neural Network and Ensemble Neural Network

Table 3 shows the test results of forecasted streamflow for 1–3 h lead time in Longquan Creek
watershed by the SNN and twelve ENN models. In general, the results produced by all ensemble
models are better than the single network model. Among various ensemble strategies, the combination
of boosting and BMA (ENN7) provided about 19–37% improvement in terms of RMSE at different lead
times compared to the single model. The overall performance of ENN7 was better than other ensemble
strategies for 1–3 h ahead streamflow predictions. Compared to other ENN models, the ENN7 model
has a higher R2, lower RMSE, and higher Gbench, indicating that the combination of the boosting
algorithm and Bayesian model average is more reliable for streamflow predictions. Additionally,
according to the comparison of the evaluation criteria (Table 3), it can be seen that the single artificial
neural network was capable of producing accurate streamflow predictions with the coefficient of
determination (R2) being higher than 0.9 for 1–3 h ahead streamflow predictions. In addition, the use
of the ensemble technique effectively increased the output accuracy, which means the integration of
the ensemble technique and ANN provides a better option for hydrological predictions.

Table 4 lists the results of the testing dataset obtained from the SNN and twelve ENN models in
the Jinhua River watershed. Similar to those by the Longquan Creek watershed, the results produced
by ENN models are better than those of the single model. Among various ensemble strategies, the
ENN7 model still provided the best performance compared to other ENN models in terms of higher
R2, lower RMSE, and higher Gbench values. Even though the performance of all ENN models is similar
at a lead time of one hour, the results have significant difference as the lead time increases. Compared
to the SNN, the improvement made by the ENN7 model is about 20–30% for 1–3 h ahead streamflow
predictions in terms of RMSE. The results also demonstrate that the combination of the boosting
algorithm and Bayesian model average had a better predictive capability for long-term streamflow
predictions. Figures 3 and 4 show the scatterplot of observations and predictions produced by the SNN
and ENN7 models in the Longquan Creek and Jinhua River watershed, respectively. It is obvious that
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the performance obtained from the ENN7 model is much better than that of the SNN model in both
watersheds. According to Tables 3 and 4 and Figures 3 and 4, an important result can be found, which
is that the best ensemble strategy (the combination of member generalization and member integration)
is neither sensitive to hydrological nor physiographical conditions in terms of streamflow prediction.
Therefore, the boosting resampling algorithm is suggested for generating ensemble members and the
Bayesian model average is recommended for integrating the outputs of ensemble members.

Table 3. Testing results obtained from the single neural network (SNN) and 12 ensemble neural
networks (ENNs) in the Longquan Creek watershed.

Criteria R2 RMSE Gbench

Lead Time 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 h

SNN 0.984 0.955 0.928 32.2 54.3 69.0 0.375 0.489 0.587
ENN1 0.993 0.976 0.945 21.9 39.4 60.0 0.712 0.731 0.688
ENN2 0.993 0.977 0.947 21.6 38.8 59.3 0.720 0.740 0.696
ENN3 0.993 0.976 0.945 21.6 39.8 60.3 0.720 0.726 0.685
ENN4 0.993 0.978 0.944 21.6 38.2 60.7 0.720 0.746 0.680
ENN5 0.993 0.976 0.946 21.7 39.5 59.8 0.718 0.730 0.690
ENN6 0.993 0.979 0.950 21.4 37.4 57.5 0.726 0.757 0.713
ENN7 0.994 0.980 0.953 20.2 36.0 55.6 0.754 0.775 0.732
ENN8 0.993 0.975 0.936 21.8 40.2 65.3 0.715 0.719 0.631
ENN9 0.993 0.976 0.943 21.6 39.5 61.3 0.720 0.730 0.674
ENN10 0.991 0.976 0.950 23.8 40.0 57.7 0.659 0.723 0.711
ENN11 0.990 0.979 0.949 25.8 37.3 57.8 0.600 0.759 0.711
ENN12 0.993 0.971 0.928 22.1 43.8 69.0 0.706 0.668 0.587

Table 4. Testing results obtained from the SNN and 12 ENNs in the Jinhua River watershed.

Criteria R2 RMSE Gbench

Lead Time 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 h

SNN 0.996 0.990 0.980 32.3 53.1 75.5 0.827 0.776 0.730
ENN1 0.998 0.993 0.986 23.0 43.3 62.1 0.913 0.851 0.817
ENN2 0.998 0.994 0.987 23.3 42.1 61.1 0.910 0.859 0.823
ENN3 0.998 0.993 0.986 25.9 44.2 62.1 0.888 0.845 0.817
ENN4 0.998 0.992 0.986 23.3 46.0 63.8 0.910 0.832 0.807
ENN5 0.998 0.993 0.987 23.1 42.9 61.8 0.912 0.854 0.819
ENN6 0.998 0.994 0.987 23.5 42.0 60.8 0.909 0.860 0.825
ENN7 0.998 0.994 0.987 22.6 41.8 60.3 0.915 0.862 0.828
ENN8 0.998 0.993 0.985 23.2 44.5 64.0 0.911 0.843 0.806
ENN9 0.998 0.993 0.986 22.7 43.0 62.9 0.915 0.853 0.813
ENN10 0.998 0.994 0.986 23.1 42.5 62.1 0.912 0.857 0.817
ENN11 0.998 0.994 0.987 23.2 42.0 61.1 0.910 0.860 0.823
ENN12 0.998 0.993 0.985 24.2 45.4 64.7 0.903 0.836 0.802
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(a) R2 = 0.984 (b) R2 = 0.994 

 
(c) R2 = 0.955 (d) R2 = 0.980 

(e) R2 = 0.928 (f) R2 = 0.953 

SNN ENN7 

Figure 3. Scatterplots of observations and predictions produced by the SNN and ENN7 models in the
Longquan Creek watershed.
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(a) R2 = 0.996 (b) R2 = 0.998 

(c) R2 = 0.990 (d) R2 = 0.994 

(e) R2 = 0.980 (f) R2 = 0.987 
SNN ENN7 

Figure 4. Scatterplots of observations and predictions produced by the SNN and ENN7 models in the
Jinhua River watershed.
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4.2. Peak Flow Prediction

The most important mission is to accurately predict peak flow. Compared to the deterministic
prediction from the single model, the ensemble models provide the probabilistic outputs to reduce
the uncertainty of model predictions. Figures 5 and 6 illustrate the comparison between SNN and
ENN7 models for the largest peak flow during the testing phase in the Longquan Creek and Jinhua
River watershed, respectively. In Figures 5 and 6, the circles represent the actual streamflow, the grey
area represents the predictive interval consisting of twenty ensemble members, and the black line
represents the model prediction. Generally, both SNN and ENN7 models produced reliable predictions
for the lead time of one hour in both watersheds. However, as the lead time increases, the predictive
hydrograph produced by SNN has a significant time-lag problem, which may result in the failure
of flood warning or flood prevention. The predictive hydrograph obtained from ENN7 has much
better predictions, and the time-lag problem is insignificant. Furthermore, the SNN underestimated
the streamflow in the rising limb and overestimated the streamflow in the recession limb for 2 h and 3
h lead time in both watersheds. On the other hand, the outputs of ENN7 fit the observations well and
the predictive interval produced by twenty ensemble members covers almost the whole of the actual
streamflow, indicating the ENN7 model maintained robust predictive capability for 2 h and 3 h ahead
streamflow prediction. In Figures 5 and 6, it is seen that most of the observed peak flow is covered
by the predictive interval (gray area). In the other words, this demonstrates that ENN can effectively
reduce the quantitative uncertainty of hydrologic models [35,36].

Based on the presented results, it is found that the model accuracy in the Jinhua River watershed
is slightly better than that in the Longquan Creek watershed. This is mainly because the Longquan
Creek watershed is located upstream, where the flow velocity is much higher than that in midstream
and downstream. Thus, further analysis of peak flow prediction must be discussed. Table 5 displays
the peak flow predictions obtained from the ENN7 model on the first three largest flood events from
the testing dataset in both watersheds. The relative error of model predictions in the Longquan
Creek watershed and the Jinhua River watershed are within 10% and 5%, respectively, for 1–3 h
ahead streamflow prediction, suggesting that the ENN model was able to produce reliable peak
flow predictions.
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Lead time = 1 h 

(a) (b) 

Lead time = 2 h 
(c) (d) 

Figure 5. Cont.

 
Lead time = 3 h 

(e) (f) 

Figure 5. Comparison between SNN and ENN7 models for the largest peak flow of the testing phase
in the Longquan Creek watershed. (a) SNN, lead time = 1 h; (b) ENN7, lead time = 1 h; (c) SNN, lead
time = 2 h; (d) ENN7, lead time = 2 h; (e) SNN, lead time = 3 h; (f) ENN7, lead time = 3 h.
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Lead time = 1 h 

(a) (b) 

 
Lead time = 2 h 

(c) (d) 

Figure 6. Cont.

 
Lead time = 3 h 

(e) (f) 

Figure 6. Comparison between SNN and ENN7 models for the largest peak flow of the testing phase
in the Jinhua River watershed. (a) SNN, lead time = 1 h; (b) ENN7, lead time = 1 h; (c) SNN, lead
time = 2 h; (d) ENN7, lead time = 2 h; (e) SNN, lead time = 3 h; (f) ENN7, lead time = 3 h.
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Table 5. Peak flow prediction produced by ENN7 in both watersheds.

ENN7
Lead Time = 1 h Lead Time = 2 h Lead Time = 3 h

Qp Qp’ (m3/s) Error (%) Qp’ (m3/s) Error (%) Qp’ (m3/s) Error (%)

Longquan Creek Basin

Event 1 1191 1215 2 1261 6 1181 −0.8
Event 2 2640 2618 −0.8 2510 −5 2466 −6.5
Event 3 1410 1403 −0.5 1524 8 1280 −9

Jinhua River Basin

Event 1 2520 2523 0.1 2507 −0.5 2508 −0.5
Event 2 3040 3062 0.7 3045 0.2 3165 4.1
Event 3 3640 3665 0.7 3611 −0.8 3731 2.5

Qp: Actual peak flow; Qp’: Forecasted peak flow.

4.3. Sensitivity of Ensemble Neural Networks

To understand whether the ensemble models are sensitive to hydrological and physiographical
conditions, Figures 7 and 8 show the peak flow predictions of the three largest events and the RMSE of
the testing dataset at the two watersheds, respectively. It is clear from the boxplot (Figure 7) that the
peak flow predictions of twelve ENN models are quite stable and consistent for 1–3 h ahead prediction.
Figure 8 indicates the overall performance of twelve ENN models in the testing phase. In general,
longer lead time may cause larger bias of model output (larger RMSE value when lead time = 3 h,
see Figure 8). However, for the streamflow prediction, the results still show a consistent trend of the
twelve ENN models in both watersheds for 1–3 h ahead prediction, in which the ENN7 has the lowest
RMSE in both the Longquan Creek and Jinhua River watershed. This result demonstrates that the
ESP with the combination of the boosting resampling algorithm (generating member) and Bayesian
model average (integrating member) was better than others. Figure 8 also shows the trends of RMSE
values of the 12 ENNs in both watersheds. There are three ensemble combinations with different
trends of RMSE values in both watersheds (ENN3 and ENN11 when lead time = 1 h, ENN4 when
lead time = 2 h). The results indicate that RMSE values depend on ensemble combinations. However,
the figure demonstrates that there are similar trends (9 of 12 are similar) in both watersheds (lower
sensitivity of ensemble neural networks). In summary, the results displayed in Figures 7 and 8 also
indicate the ENN models not only present a higher accuracy of predictive capability, but also reveal
their lower sensitivity in ESP.
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(a) Longquan Creek 

(b) Jinhua River 

Figure 7. The boxplot of peak flow prediction on the first three largest events obtained from 12 ENN
models (a) Longquan Creek; (b) Jinhua River.

(a) Lead time = 1 h 

Figure 8. Cont.
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(b) Lead time = 2 h 

(c) Lead time = 3 h 

Figure 8. The comparison of ENN models at both watersheds (a) Lead time = 1 h; (b) Lead time = 2 h;
(c) Lead time = 3 h.

5. Conclusions

Streamflow prediction is critical for assessing imminent flood risk and evaluating and planning
flood mitigation activities. In general, uncertainty and sensitivity are two important considerations
in hydrological modeling. The main purpose of this study was to integrate the ensemble technique
concept into artificial neural networks to reduce uncertainty and discuss the sensitivity in streamflow
predictions. The results show that the ENNs were able to effectively reduce the uncertainty in
hydrological modeling, compared to the SNN. Additionally, the best ensemble strategy was identified
through both case studies as the combination of boosting resampling and Bayesian model average.
The main achievements and innovations of this study are concluded as follows: (1) The ENN models
greatly improved the accuracy of streamflow prediction compared to SNN models for 1–3 h ahead
prediction in both watersheds. The improvement made by the ENNs is about 20% to 40% in terms
of RMSE; (2) the relative error of peak flow predictions in both the Longquan Creek and Jinhua
River watershed obtained from the ENN7 model demonstrates that the ensemble model is capable of
reflecting the possible maximum flood, which is a valuable reference for flood prevention; (3) the best
ensemble strategy integrated into the ANN-based hydrological models in two study watersheds is the
same, indicating that the ensemble strategy has low sensitivity to the hydrological and physiographical
factors. In other words, the artificial neural network combined with ensemble technique can be
applicable for generating streamflow predictions in different flood-prone areas.
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Abstract: Flood forecasting plays an important role in flood control and water resources management.
Recently, the data-driven models with a simpler model structure and lower data requirement attract
much more attentions. An extreme learning machine (ELM) method, as a typical data-driven
method, with the advantages of a faster learning process and stronger generalization ability, has been
taken as an effective tool for flood forecasting. However, an ELM model may suffer from local
minima in some cases because of its random generation of input weights and hidden layer biases,
which results in uncertainties in the flood forecasting model. Therefore, we proposed an improved
ELM model for short-term flood forecasting, in which an emerging dual population-based algorithm,
named backtracking search algorithm (BSA), was applied to optimize the parameters of ELM. Thus,
the proposed method is called ELM-BSA. The upper Yangtze River was selected as a case study.
Several performance indexes were used to evaluate the efficiency of the proposed ELM-BSA model.
Then the proposed model was compared with the currently used general regression neural network
(GRNN) and ELM models. Results show that the ELM-BSA can always provide better results than
the GRNN and ELM models in both the training and testing periods. All these results suggest that
the proposed ELM-BSA model is a promising alternative technique for flood forecasting.

Keywords: flood forecasting; extreme learning machine (ELM); backtracking search optimization
algorithm (BSA); the upper Yangtze River

1. Introduction

Flood forecasting is not only an effective tool to reduce many risks posed by floods on life,
property, and infrastructures, but can also provide valuable decision-making information for water
resource managers [1–4]. However, due to streamflow affected by human activities and various
hydro-meteorological factors, such as rainfall, topography, and surface heterogeneity, the runoff
process exhibits highly non-linear, non-stationary, and complexly dynamic behaviors. Therefore,
accurate flood forecasting, especially in the short-term (hourly or daily scale), has been recognized as a
challenging work in hydrology.

Until now, plenty of hydrological models have been established to realize the flood forecasting [1].
These prediction models can be broadly classified into two kinds, namely physical-based models
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Water 2018, 10, 1362

(also called knowledge-based models) and data-driven models (DDMs). The first group of
models usually imitate the complex behaviors in the hydrologic cycle system by conceptualizing
physical processes and basin characteristics, which often depends on detailed information and deep
understanding about physical mechanisms of hydrological processes. Additionally, fine modelling
of physical-based forecasting models using a full set of mathematic equations for each part in the
hydrological cycle (i.e., interception, infiltration, evaporation) can theoretically reflect the real-world
hydrological cycle more accurately, but this can lead to many intractable complications, such as
the massive parameters to be estimated, the plenty of data requirements, and the expensive
computational costs [5–8]. Compared with the physical-based models, the DDMs with a simpler
model structure and less demanding data attract much more attention as an alternative forecasting
tool in the cases that cannot reach the modelling conditions of physical-based models. Moreover,
the rapid developments in computer sciences and some new technologies regarding machine learning,
data mining, and optimization algorithms provide new opportunities for the DDMs in the application
of various study domains including flood forecasting.

Over the last several decades, various DDMs were developed for flood forecasting, such as
the artificial neural networks (ANNs) [1,9–12], adaptive neural-based fuzzy inference systems
(ANFIS) [13,14], and support vector machines [15]. Among them, single hidden-layer feedforward
neural networks (SLFNs), as the most widely used DDMs, show a strong ability to characterize any
nonlinear mapping relationship, and have been taken as effective tools in solving many practical
problems, such as flood forecasting [10,16–18], water level forecasting [19,20], and wind speed
forecasting [21,22]. Although SLFNs have been successfully applied for modeling hydrological
time series, they still suffer from several inherent disadvantages such as a slow learning process,
easy plunging into local minima, and an over-fitting problem.

Recently, a novel learning algorithm for SLFN models, called the extreme learning machine
(ELM), was developed by Huang et al. [23]. Compared with other typical SLFNs using gradient-based
learning (GL) algorithms that learn parameters of a network in an iterative way, ELM is not involves
less calculation work, higher learning speed, and stronger generalization ability, but also has no
requirements for some parameters, such as terminating condition and learning rate. Considering
these features, ELM has been applied as a promising non-linear fitting tool in massive complicated
engineering applications [9,21,22]. For example, Yaseen et al. [24] applied the ELM for predicting the
monthly streamflow discharge rates in a semi-arid region in Iraq and demonstrated its superiority over
support vector regression (SVR) and general regression neural network (GRNN) models. In the same
year, Deo and Şahin [20] testified the performance of ELM over conventional ANNs in forecasting mean
streamflow water level based on many hydro-meteorological factors. More recently, Zhou et al. [9]
developed a GRNN-based ensemble technique (GNE) for monthly streamflow forecasting, in which
the results of three famous ANNs, namely radial basis function, ELM, and Elman networks, were fed
into a GRNN model as the inputs.

Despite many successful applications of ELM in flood forecasting, it also results in an
ill-conditioned problem in some cases because of its random mechanism in generating input weights
and hidden layer biases. Therefore, it is necessary to introduce some effective techniques/tools to
improve the generalization performance of the single ELM. To date, many endeavors have been made
to enhance the stability of the basic ELM. The most famous way is that an evolutionary algorithm was
adopted to search the optimal hidden node parameters of ELM. Han et al. [25] proposed a hybrid
learning algorithm, in which an improved particle swarm optimization (IPSO) algorithm was applied
to adjust the parameters of an ELM. Results showed that the developed IPSO-ELM approach had
better generalization performance than the conventional ELM and the other evolutionary ELMs based
on a differential evolution algorithm (DE) or PSO algorithm. Recently, a novel dual population-based
iterative evolution algorithm, namely backtracking search optimization algorithm (BSA), was proposed
in 2013 [26]. Since then, BSA has been used as an effective technique for searching global optimization.
Unlike other widely used evolutionary algorithms (EAs), such as PSO, covariance matrix adaptation
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evolution strategy (CMAES), artificial bee colony algorithm (ABC), adaptive DE algorithm (JDE),
comprehensive learning PSO (CLPSO), and self-adaptive DE algorithm (SADE), BSA has a simpler
architecture with only one control parameter, and is insensitive to the initial value of its control
parameter. All these features make BSA more effective, adaptive, and faster than other popular EAs.
As such, BSA has already been applied to cope with many complex numerical optimization problems
as an effective global searching algorithm [26]. However, until now, the capacity of BSA for dealing
with the regression problems in the hydrological domain has never been explored.

Therefore, the major objective of this study is to develop a new, improved ELM (ELM-BSA)
techniques for daily flood forecasting, which fuses the advantages of ELM and BSA. In the proposed
ELM-BSA model, BSA was applied to find the suitable hidden node parameters of ELM, which
can further promote the robustness of the standard ELM. The Yangtze River was selected as a case
study. The measured daily streamflow data from the Yichang gauging station, the control site of the
Three Gorges Reservoir (TGR), was employed to testify the performance of the proposed method.
Moreover, two basic DDMs, namely ELM and GRNN models, which are recognized as the most
efficient methods for flood forecasting [9,16,27], were selected as benchmark models for comparisons.

The paper is organized as follows. Section 2 introduces the proposed ELM-BSA method for
short-term flood forecasting. Section 3 presents a case study of the upper Yangtze River and gives the
forecasting results and comparisons with two basic data-driven models. All the conclusions of this
study are summarized in Section 4.

2. Methodologies

2.1. Flood Forecasting Based on the Data-Diven Model

An analytic expression of a flood forecasting model can be defined as:

Q(t) = ϕ(Q(t − d1 + 1), R(t − d2 + 1), E(t − d3 + 1)) (1)

where Q(t) is the predicted streamflow at time t; Q(t − d1 + 1) represents the previous flow up
to t − d1 + 1 time steps; R(t − d2 + 1) stands for the antecedent rainfall with t − d2 + 1 time steps;
E(t − d3 + 1) is the other relevant factors up to t − d3 + 1 time steps that have main contributions to
the flow at current time t, such as potential evapotranspiration, temperature, and/or the flow from
major control stations in the upper reaches; di, I = 1, 2, 3 is the length of time lag for the relevant factors;
and ϕ(•) is a hydrological system transfer function to characterize the complicated nonlinear mapping
relationship in a basin between flow and the relevant factors. Two kinds of methods can be used to
estimate the ϕ(•). The first one is by using physical models (such as Xin’anjiang hydrological model).
The second one is by using the data-driven models (i.e., ANN models).

Generally, flood forecasting based on data-driven models can be an alternative method for flood
forecasting in some situations, such as when the observed data in the study area are inadequate
and/or the potential physical mechanisms of hydrological phenomenon are unknown or only partially
understood [8,28]. Moreover, DDMs are easy to establish and can provide acceptable forecasting
results with less input data (only rainfall and/or flow data). Considering all these advantages of
data-driven models, in this study we developed a new data-driven model named ELM-BSA for
flood forecasting. In the new method, ELM, a novel data-driven model, was adopted as a base
forecasting module to simulate the hydrological system transfer function ϕ(•). Meanwhile, BSA was
applied to find the optimal input weights and biases of hidden layer nodes in the ELM to improve the
stability of forecasting. The related methods and theories used in the new model, as well as its whole
implementation, are presented as follows.

2.2. Extreme Learning Machine

An extreme learning machine (ELM) is an emerging fast-learning algorithm for SLFNs that usually
has a three-layer structure with one input layer containing m nodes, one hidden layer containing
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h neurons, and a single output layer possessing p nodes (in flood forecasting, p is usually set to 1).
Usually, the ELM model first randomly selects its input weights and hidden layer biases, and then
analytically calculates its output weights using a least squares method instead of iterative adjusting.
Therefore, ELM not only possesses the ability of an extremely fast learning speed, but also avoids
frequent human intervention, which can provide better performance. These advantages make ELM
more and more popular in handling many complex engineering problems.

For a given training sample set
(
Xj, tj

)
with N pairs of observed data, where Xj is a

multiple-dimensional input vector and tj is the target/desired output, the simulated output of ELM
can be estimated using:

yj =
h

∑
i=1

βig
(
ωiXj + bi

)
, j = 1, 2, · · · , N (2)

where yj is the output vector of the ELM model using the input vector Xj; βi denotes the weight vector
connecting the ith hidden neuron to output layer neuron; g is the activation function for the hidden
layer in ELM; ωi are the input weights connecting input layer neurons with the ith hidden layer neuron;
and bi and g

(
ωiXj + bi

)
are the threshold and output of the ith hidden node, respectively.

The objective of an ELM is to search for a suitable set of β, ω, and b to approximate all training
sample pairs with zero error:

N

∑
j=1

‖tj − yj‖ =
N

∑
j=1

‖tj −
h

∑
i=1

βig(ωiXj + bi)‖ = 0 (3a)

Equation (3a) can be reorganized to be:

Hβ = T where

H =

⎡⎢⎢⎢⎢⎣
g(ω1X1b1) g(ω2X1b2) · · · g(ωhX1bh)

g(ω1X2b1) g(ω2X2b2) · · · g(ωhX2bh)
...

...
...

g(ω1XNb1) g(ω2XNb2) · · · g(ωhXNbh)

⎤⎥⎥⎥⎥⎦
N×h

β = [β1 β2 · · · βh]
−1
h×1, and T = [t1 t2 · · · tN ]

−1
N×1

(3b)

where H is the output matrix of the hidden layer; β is the weights vector connecting the hidden layer
nodes with the output layer neurons; and T represents the target output.

Once the random generation of the input hidden weights and biases of the hidden layer has been
completed, ELM analytically calculates the hidden-output weights by searching a minimal norm least
square solution of the following linear equation:∥∥Hβ̂ − T

∥∥ = min
β

‖Hβ − T‖ → 0 (4)

The optimal estimated least squares solution of the above equation is:

β̂ = H†T (5)

where H† denotes the Moore–Penrose generalized inverse of the hidden-layer output matrix H.

2.3. Backtracking Search Optimization Algorithm

Inspired by swarm behaviors, i.e., natural selection and information exchange between the
populations, Civicioglu [26] proposed a novel population-based evolutionary algorithm called a
backtracking search algorithm (BSA), which is a global searching technique to settle complex numerical
optimization problems. In BSA, besides the famous operators used in the genetic algorithms (GAs)
(i.e., the selection, mutation, and crossover operators), several particular mechanisms have also been
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employed, such as a memory system in which a population generated from a randomly selected
historical generation is stored. Specifically, there are two populations in the BSA. One is the historical
population and the other is the evolution population. In each iteration, the historical population is
updated through random selection from both the historical population and the evolution population.
Then, a new temporary population, called the trial population, is generated based on the mutation
and crossover mechanisms. Finally, the trial population is used to update the evolution population
based on a greedy selection mechanism. According to the research conducted by Civicioglu [26],
the implementation of BSA consists of five major processes: initialization, selection-I, mutation,
crossover, and selection-II. These five stages are simply summarized as follows:

(a) Initialization

In this phase, individuals of the historical population oldPop and evolution population Pop are
randomly initialized within the predefined search space using a uniform distribution U as follows:

Popi,j = U
(

lowj, upj

)
,

oldPopi,j = U
(

lowj, upj

)
,

i = 1, 2, · · · , Npop; j = 1, 2, · · · , D (6)

where Npop and D are the size of population and the dimension, respectively; and
[
lowj, upj

]
are the

preset upper and lower boundaries of the variables to be optimized.

(b) Selection-I

In this stage, an option is provided to update the oldPop at the start of each iteration according to
the following “if-then” rule:

if R1 < R2 then oldPopi,j = Popi,j, R1, R2 ∈ U(0, 1) (7)

where R1 and R2 are two random numbers distributed uniformly from 0 to 1 to judge whether the
historical population should be replaced by the evolution population in the current generation.

When oldPop is determined, the sequence of the individuals in oldPop is then changed by a random
shuffling function permuting(·):

oldPop := permuting(oldPop) (8)

where “:=” indicates the update operator.

(c) Mutation

In this step, the temporary population, called trial population trialPop, is initialized using

trialPop = Pop + F · (oldPop − Pop)
F = 3 · rndn, rndn ∼ N(0, 1)

(9)

where (oldPop − Pop) denotes the search direction matrix whose amplitude can be controlled by a
control parameter F.

Due to the utilization of oldPop in the mutation operation, BSA can learn partial experiences from
previous generations.

(d) Crossover
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The final form of the trial population is determined in this stage. The crossover operator starts
with a generation of a binary integer-valued matrix (mapNpop×D) to determine which elements of
population have to be manipulated. The crossover operator is realized using

trialPopij =

{
Popij, if mapij = 1
trialPopij, otherwise

(10)

(e) Selection-II

In this phase, the population of the next generation is generated according to a greedy selection
strategy. The trial individuals with better fitness values are used to update the corresponding
individuals in population Popij:

Popij =

{
trialPopij, if fitness

(
trialPopij

)
< fitness

(
Popij

)
Popij, otherwise

(11)

2.4. The Proposed ELM-BSA Model for Flood Forecasting

As discussed in the introduction, ELM can save the calculation time by randomly generating
network parameters instead of arduously tuning them. Compared with the traditional SLFNs with
GL algorithms, ELM not only has a faster training speed and better generalization capability but also
avoids the predefining computational parameters including the learning rate and stopping criteria.
These advantages of ELM make it more suitable for solving the complex non-linear optimization
problem, i.e., flood forecasting. Unfortunately, the random generation of input weights and hidden
layer thresholds in ELM may provide some non-optimal or unnecessary network parameters which
may reduce the prediction reliability, increase uncertainty of forecasting results, and produce
unacceptable results for practical applications. To settle this problem, we proposed an ELM-BSA
model, in which the input weights and thresholds of hidden layer neurons were optimized using BSA
in the training period.

The construction of the ELM-BSA for flood forecasting is set to m-h-1 due to there being only one
node in the output layer. The implementation of the proposed model is described as follows:

Step 1: Normalize the original time series into the range [0, 1] using Equation (12), and then
partition the normalized series into two parts: training and testing datasets.

Qnor
i =

Qi − Qmin

Qmax − Qmin
(12)

where Qnor
i and Qi are the normalized and observed streamflow, respectively; and Qmin and Qmax

represent the minimum and maximum values of the original data, respectively.
Step 2: Initialize the related parameters of the proposed ELM-BSA model, such as the population

size Npop and the maximum iteration K.
Step 3: Define the architecture of the ELM and its activation function of hidden neurons, which is

set to the sigmoid function in this study.
Step 4: Set the initial iteration number k = 1, and then initialize the historical population oldPop

and evolution population Pop according to Equation (6). Each individual contains all parameters of
the hidden layer, hence the ith individual in the kth generation can be written as

para(i, k) =
[
ωT

1,(i,k), ωT
2,(i,k), · · · , ωT

h,(i,k), b1,(i,k), b2,(i,k), · · · , bh,(i,k)

]
(13)

where ωT
1,(i,k), ωT

2,(i,k), · · · , ωT
h,(i,k) represent the weight vector that connect the input nodes with the

hidden layer neurons; and b1,(i,k), b2,(i,k), · · · , bh,(i,k) are the thresholds for the hidden layer neurons.
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Step 5: Calculate the output weights and initialize fitness values of all individuals of the
population Pop using Equations (14) and (15), respectively.

β̂(i,k) = H†
(i,k)T

H(i,k) =

⎡⎢⎢⎢⎢⎢⎢⎣
g
(

ω1,(i,k)X1 + b1,(i,k)

)
g
(

ω2,(i,k)X1 + b2

)
· · · g
(

ωh,(i,k)X1 + bh,(i,k)

)
g
(

ω1,(i,k)X2 + b1,(i,k)

)
g
(

ω2,(i,k)X2 + b2

)
· · · g
(

ωh,(i,k)X2 + bh,(i,k)

)
...

...
...

g
(

ω1,(i,k)XN + b1,(i,k)

)
g
(

ω2,(i,k)XN + b2

)
· · · g
(

ωh,(i,k)XN + bh,(i,k)

)

⎤⎥⎥⎥⎥⎥⎥⎦
N×h

(14)

f [para(i, k)] =

√√√√ 1
N

N

∑
j=1

(
tj − yj

)2
=

√√√√ 1
N

N

∑
j=1

(tj −
h

∑
i=1

βig
(
ωiXj + bi

)
)2 (15)

where H†
(i,k) is Moore–Penrose generalized inverse of the hidden-layer output matrix H(i,k) for the ith

individual in the kth generation; yj and tj are the calculated and target output in the training stage,
respectively; and N is the total number of the training samples.

Step 6: Generate the historical population OldPop using the selection-I operator and obtain the
initial form of the trial population trialPop using mutation operator.

Step 7: Apply the mutation operator on both the historical population and the trial population
trialPop to generate the final form of the trial population.

Step 8: Calculate the fitness values of all individuals at the current generation, and then update
individuals of the next generation through selection-II strategy.

Step 9: Set k = k + 1. If the maximum iteration is reached, go to Step 10; otherwise, go to Step 6.
Step 10: Apply the well-tuned ELM model to the forecasting phase using the validated dataset.

Note, the output values of the forecasting model should be de-normalized to the range of the target
output dataset.

2.5. Performance Indexes

Several indexes including coefficient of correlation (r), Nash–Sutcliffe coefficient of efficiency
(NSE), root mean square error (RMSE), and mean absolute error (MAE) were employed to evaluate the
performance of the proposed model. Equations for these indexes are given as follows.

r =

⎛⎜⎜⎝ ∑N
i=1
(
Qobs,i − Qobs

)(
Qfore,i − Qfore

)
√

∑N
i=1
(
Qobs,i − Qobs

)2√
∑N

i=1

(
Q f ore,i − Qfore

)2

⎞⎟⎟⎠, −1 < r < 1 (16)

NSE = 1 −

⎛⎜⎝∑N
i=1

(
Qobs,i − Q f ore,i

)2

∑N
i=1
(
Qobs,i − Qobs

)2
⎞⎟⎠, NSE ≤ 1 (17)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Qobs,i − Q f ore,i

)2
, RMSE > 0 (18)

MAE =
1
N

N

∑
i=1

∣∣∣Qobs,i − Q f ore,i

∣∣∣, MAE > 0 (19)

where Qobs,i and Q f ore,i are the ith observed and predicted values of runoff, respectively; Qobs and Qfore
are the average values of the observed and forecasted runoff, respectively; and N is the length of the
data set.
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Moreover, the Chinese flood forecasting standard recommend the use of the qualified rate (QR) to
evaluate the flood forecasting performances [29]. A predicted peak value is regarded as “qualified”
when the relative absolute error (RAE) between the predicted and the measured streamflow value is
within the given threshold value [30]. The QR can be calculated using

QR =

N
∑

i=1
numi

N × 100% where

numi =

{
1, i f (RAEi ≤ ε)

0, otherwise
, RAEi =

|Qobs,i−Q f ore,i|
Qobs,i

(20)

where RAEi is the relative absolute error (RAE) of the ith datum; numi is set to 1 when RAE is less than
or equal to the predefined threshold value (ε), which is regarded as qualified forecasting. The ε is set to
20% in accordance with the Chinese forecasting standard (GB/T 22482-2008) [31].

3. Case Study

3.1. Study Area and Data

To validate the efficacy of the proposed model, the Yangtze River, which is the longest river
in Asia and the third longest river in the world, was selected as a case study because abundant
and detailed historical daily runoff data have been collected. The Yangtze River, which is nearly
6300 km long, originates from east of the Tibetan Plateau and flows eastward to the East China Sea in
Shanghai city [10].

This study mainly focused on the upper Yangtze River, which covers a total area of nearly
1 million km2, accounting for about 56% of the whole area of the Yangtze River, with a total length
of 4529 km, up to 75% of the entire length of the Yangtze River. Flood events frequently occur in this
region. During the historical years, extreme flood events, especially for the years 1870, 1954, 1998, 2010,
and 2016, have caused heavy casualties and property losses. For example, in 2016, the whole Yangtze
River basin suffered from a monstrous flood, which led to economic losses of 146.9 billion Chinese
Yuan and affected nearly 60.74 million people [32,33]. Accordingly, flood forecasting is an essential
task for modern flood prevention and disaster relief of the upper Yangtze River.

Floods in the Yangtze River usually occur in monsoon season between June and September.
During this period, the temporal and spatial distribution characteristics of regional rainfall depend
heavily on monsoon activities and seasonal movement of subtropical anticyclones. Floods in the
middle-lower Yangtze River mainly come from the upper region of the Yichang Station, a control
hydrological station of the Three Georges Reservoir (TGR) which is situated at an intersection point of
the upstream Yangtze River and the middle reaches [34,35]. The main tributaries in the upper Yangtze
River from upstream to downstream are Yalong, Min, Tuo, Jialing, and Wu Rivers as shown in Figure 1,
where the control stations of each tributary are also given. In this study, the Jinsha River, rather than
the Yalong River, was taken into account, because the Yalong River flows into the Jinsha River, which is
considered part of the Yangtze River [10]. As shown in Figure 1, six gauging stations named Pingshan,
Gaochang, Lijiawan, Beibei, Wulong, and Yichang located in these rivers were considered. Each of
them has a concurrent mean daily flow data from the year 1998 to year 2007. The historical streamflow
of Yichang Station and its upstream stations were taken as alternative input factors, and the streamflow
of Yichang station at time t was considered as output. In other words, the proposed forecasting model
aims to predict the outflow of the TGR. The data set was divided into subsets, in which the daily
streamflow data from the year 1998 to 2005 was employed for model calibration, and the data from the
year 2006 to 2007 for model validation.
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Figure 1. Locations of hydrological stations in the study area.

3.2. Establishment of the Flood Forecasting Models

Determination of model inputs is the most significant step for the data-driven forecasting
model. The data-driven approaches may provide unreliable results when the inputs contain
irrelevant or redundant information. However, there is no uniform approach to determine the input
variables. According to a review conducted by Bowden et al. [11], the major approaches for input
determination/selection in hydrological forecasting can be divided into three groups: trial and error
method, linear method, and non-linear method. Considering the demerits and merits of these methods,
a linear method called partial cross-correlation (PCC) [11] and a nonlinear approach called entropy
based-partial mutual information (PMI) proposed by Chen et al. [10] were selected and compared.
In the entropy based-PMI method, entropy theory, a famous tool to derive distribution functions [36,37],
was combined with copula functions to predigest the solving process of PMI. Therefore, using these
three techniques, seven different input combination schemes were obtained as shown in Table 1, where
ϕ(·) indicates the complicated nonlinear mapping function between the input factors and the output
results and Qps, Qgc, Qljw, Qbb, Qwl , and Qyc indicate the streamflow of the Pingshan, Gaochang,
Lijiawan, Beibei, Wulong, and Yichang gauging stations, respectively, and t represents the current time.

Table 1. Different input sets calculated by trial and error, PCC and PMI approaches.

Schemes Number of Input Variables Established Models

M1 1 Qyc(t) = ϕ
[
Qyc(t − 1)

]
M2 2 Qyc(t) = ϕ

[
Qyc(t − 1), Qyc(t − 2)

]
M3 3 Qyc(t) = ϕ

[
Qyc(t − 1), Qyc(t − 2), Qyc(t − 3)

]
M4 4 Qyc(t) = ϕ

[
Qyc(t − 1), Qyc(t − 2), Qyc(t − 3), Qyc(t − 4)

]
M5 5 Qyc(t) = ϕ

[
Qyc(t − 1), Qyc(t − 2), Qyc(t − 3), Qyc(t − 4), Qyc(t − 5)

]
M6 6 Qyc(t) = ϕ

[
Qyc(t − 1), Qwl(t − 4),
Qbb(t − 3), Qljw(t − 2), Qgc(t − 2), Qps(t − 1)

]
M7 7 Qyc(t) = ϕ

(
Qyc(t − 1), Qyc(t − 2), Qwl(t − 2),
Qbb(t − 2), Qljw(t − 3), Qgc(t − 3), Qps(t − 1)

)

The input sets of the first five schemes M1 to M5 were designed according to the trial and error
method, and schemes M6 and M7 were determined by Chen et al. [10] based on the PCC and PMI
approaches, respectively. It can be seen that the first five schemes M1 to M5 only considered the
historical runoff of the Yichang station (Qyc), whereas schemes M6 and M7 used both the anterior
runoff from the Yichang station and those from all control stations of the main tributaries located on
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the upper Yangtze River as input variables. All of the seven input sets were fed into ELM-BSA, GRNN,
and ELM models to train.

In addition, the number of hidden neurons also plays an important role for establishment of the
forecasting models. To obtain the suitable number of hidden neurons, a grid search algorithm was
employed in this study. For the proposed ELM-BSA model, the parameters of the BSA were set to
Npop = 30 and K = 100. All forecasting models established in this study were encoded based on the
Matrix Laboratory (MATLAB R2015a) platform manufactured by Mathwork Incoperation, Springfield,
MA, USA.

3.3. Sensitivity Analysis of Different Input Sets

To testify the efficiency of the proposed ELM-BSA model, the GRNN and ELM models were
selected as benchmark models. Input selection is one of the important steps for flood forecasting based
on the data-driven method. Hence, all seven input schemes mentioned in Table 1 were taken into
account in this study. The GRNN, ELM, and the proposed ELM-BSA models were employed for flood
forecasting of the Yichang station located on the Yangtze River. Five performance indexes were used
to evaluate the efficiency of the above three forecasting models. The data set was divided into two
sub-sets. The first 8 years (from the year 1998 to year 2005) was used for model calibration and the
remaining 2 years (from the year 2006 to year 2007) were used for model validation. Results of the three
models for both the training and testing periods are given in Table 2, where the model with the best
performance is highlighted in bold. It can be seen that compared with the GRNN and ELM models,
the proposed ELM-BSA model performed better based on the values of the three indexes, no matter
what the input combinations were. The most appropriate model inputs were not the same for the three
forecasting models and the response of each forecasting model was not identical when using the same
input sets. In other words, accurate forecasting results were not only affected by the inputs, but also by
the model structure and its corresponding parameters. This also indicates that obtaining the accurate
flood forecasting results is a complicated and challenging task under the comprehensive effects of
model inputs, structures, and parameters.

Table 2. Performances of the ELM-BSA, ELM, and GRNN models in both the training and testing periods.

Schemes

Training Period Testing Period

r NSE
RMSE
(m3/s)

MAE
(m3/s)

QR r NSE
RMSE
(m3/s)

MAE
(m3/s)

QR

GRNN

M1 0.9684 0.9377 2734 1939 0.9632 0.9598 0.9183 2735 1865 0.8319
M2 0.9791 0.9584 2234 1573 0.9800 0.9645 0.9271 2583 1792 0.8571
M3 0.9264 0.8579 4128 3012 0.8319 0.8925 0.7759 4530 3159 0.6597
M4 0.8605 0.7399 5585 4152 0.6828 0.8047 0.6062 6006 4374 0.5084
M5 0.7950 0.6314 6649 4972 0.6166 0.7195 0.4844 6872 5098 0.3992
M6 0.9793 0.9589 2220 1592 0.9664 0.9642 0.9191 2722 1907 0.8319
M7 0.9781 0.9565 2283 1617 0.9737 0.9562 0.9111 2853 1879 0.8487

ELM

M1 0.9681 0.9371 2746 1956 0.9674 0.9611 0.9226 2663 1715 0.9286
M2 0.9778 0.9561 2294 1562 0.9706 0.9729 0.9440 2265 1457 0.9580
M3 0.9187 0.8439 4327 3088 0.8508 0.9010 0.8019 4260 2823 0.7311
M4 0.8471 0.7175 5821 4271 0.6859 0.8123 0.6347 5785 4036 0.5420
M5 0.7807 0.6094 6845 5139 0.5809 0.7298 0.4916 6824 4983 0.4370
M6 0.9742 0.9490 2473 1788 0.9674 0.9681 0.9320 2495 1747 0.9076
M7 0.9771 0.9547 2331 1608 0.9664 0.9724 0.9415 2315 1538 0.9160
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Table 2. Cont.

Schemes

Training Period Testing Period

r NSE
RMSE
(m3/s)

MAE
(m3/s)

QR r NSE
RMSE
(m3/s)

MAE
(m3/s)

QR

ELM-BSA

M1 0.9681 0.9372 2745 1957 0.9622 0.9609 0.9222 2669 1729 0.9286
M2 0.9787 0.9578 2251 1519 0.9685 0.9743 0.9477 2188 1390 0.9454
M3 0.9199 0.8461 4296 3062 0.8424 0.9022 0.8046 4231 2804 0.7311
M4 0.8497 0.7220 5775 4227 0.6933 0.8106 0.6328 5800 3978 0.5798
M5 0.7853 0.6167 6780 5093 0.5945 0.7276 0.4907 6830 4900 0.4580
M6 0.9747 0.9501 2447 1762 0.9643 0.9690 0.9340 2458 1627 0.9328
M7 0.9787 0.9578 2250 1516 0.9706 0.9743 0.9477 2188 1388 0.9454

It can be seen from Table 2 that when the GRNN model was used, the model with the M2 input set
produced the best forecasting results in both the training and validation periods. Similarly, the ELM
based on the M2 yielded the best forecasting results for both the training and testing periods. For the
proposed ELM-BSA method, it demonstrated that the model with the M7 input sets showed better
performances. Overall, the most suitable input sets for the GRNN, ELM, and ELM-BSA models were
M2, M2, and M7 respectively.

To further compare the predicted streamflow with the observed flow, the predicted and observed
flow were drawn in the same figure as shown in Figure 2, where the x-axis represents the observed
flow and the y-axis represents the predicted flow. If the model works well, the predicted flow should
be equal to the observed flow. Results of the three flood forecasting models with seven input schemes
M1–M7 in the validation period are shown in Figure 2. The regression coefficient R2 was also calculated
and displayed in Figure 2. If the predicted and observed streamflow being compared are similar,
the scatter points should approximately lie on the line y = x, namely the diagonal line shown in
Figure 2. It can be seen that according to the R2 and fitting results, the input schemes M1, M2, M6,
and M7 for both of the three models could always provide better results than other input schemes.
For the forecasting models based on the input set selected by the PMI method, M7 provided slightly
better results than those based on the inputs chosen by the PCC approach, namely M6. It can also be
seen from Table 2 and Figure 2 that the three models with input schemes M1 and M2 showed better
performances than those models with the schemes M3 to M5. This means that when more anterior
flows, such as the flows at lag time t-3, t-4, and t-5, are considered, the performance of the models
became worse, which means more inputs bring noise to the forecasting system. Meanwhile, models
based on different input sets yielded different results, while the best input sets were not identical for all
forecasting models. According to the results of Figure 2 and Table 2, the best input combinations for the
GRNN, ELM, and ELM-BSA models were M2, M2, and M7, respectively. Figure 2 also demonstrates
that the proposed ELM-BSA model with the M7 input set performed best among all the combinations
of inputs and models with the R2 value of 0.9492.

Table 3 summarizes the best performance results calculated using the three models with different
input sets. It indicates that compared with other methods, there were significant improvements when
the ELM-BSA was used. The ELM-BSA model provided better forecasting results than the GRNN and
ELM models for daily streamflow forecasting. For the validation period, compared with the GRNN
model, when the ELM-BSA model was used, the performance indexes r, NSE, RMSE, and QR increased
by 1.05%, 3.12%, and 13.64%, respectively, and the indexes RMSE and MAE decreased by 19.63% and
27.22%, respectively. Similarly, compared with the standard ELM model, when the ELM-BSA was
used, the indexes r, NSE, RMSE, and QR increased by 0.15%, 0.4%, and 1.32%, respectively, and the
indexes RMSE and MAE decreased by 3.42% and 4.72%, respectively. Therefore, the proposed method
increased the flood forecasting model accuracy.
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Figure 2. Scatter plots of observed (Obs) and predicted (Fore) runoff provided by the GRNN (the first
row), ELM (the second row), and ELM-BSA (the third row) models with different input sets.

Table 3. The performance of the best GRNN, ELM, and ELM-BSA models for flood forecasting at the
Yichang station.

Model R NSE RMSE (m3/s) MAE (m3/s) QR

GRNN (M6) 0.9642 0.9191 2722 1906.7 0.8319
ELM (M2) 0.9729 0.9440 2265 1456.5 0.9580

ELM-BSA (M7) 0.9743 0.9477 2188 1387.7 0.9454
Improvement (ELM-BSA vs. GRNN, %) 1.05 3.12 19.63 27.22 13.64
Improvement (ELM-BSA vs. ELM, %) 0.15 0.40 3.42 4.72 1.32

As streamflow in the flood season has a great impact on the scientific decision-making of modern
water resources management and planning, the number of forecasting values whose relative error
beyond the specific range (±15%, ±20%, and ±25%) are given in Table 4, where the number and
proportion of over-ranging points for each forecasting model in the testing period are shown. Results
indicate that the total number of over-ranging points of the ELM-BSA model was always less than
the other two models for each specific range. This means that the ELM-BSA model performed better
than GRNN and ELM for the daily streamflow forecasting. The advantages of the ELM-BSA model
for high streamflow forecasting can be visually seen in Figure 3, where the residual values of the best
ELM-BSA, GRNN, and ELM models in the validation period are presented, and the ±20% intervals
of the observed streamflow is also presented. Results show that the ELM-BSA produced the best
performance because it provided fewer residual values falling outside the ±20% range than the other
two models. For example, its residual value out of the reference range between the date 6 July 2007,
and 5 August 2007 (marked in Figure 3) was comparatively less serious. Meanwhile, the ELM-BSA
model produced smaller maximum residual values than the other two models, while the GRNN
performed even worse than the ELM. Additionally, the GRNN model was not suitable for the low and
high streamflow parts due to its remarkable over-estimation and under-estimation. All these results
imply that the proposed model was superior to the other models for flood forecasting.
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Table 4. Number of forecasting values whose relative error was beyond the specific range.

Model
GRNN ELM ELM-BSA

Number Proportion Number Proportion Number Proportion

Beyond ±15% 59 24.79 54 22.69 26 10.92
Beyond ±20% 34 14.29 22 9.24 13 5.46
Beyond ±25% 20 8.40 8 3.36 8 3.36

Figure 3. Residual values of the three models in the validation period.

3.4. Sensitivity Analysis of Different Training Sample Sizes

Another important factor affecting the forecasting accuracy of data-driven forecasting models is
the number of training samples. Hence, in this sub-section, five schemes were designed and employed
to further test the performances of the proposed ELM-BSA model with different training data sizes.
In each case, the same dataset, the data from the last two years (from the year 2006 to year 2007),
was used for model validation. Performances of the ELM-BSA model in these five scenarios are
given in Table 5. Meanwhile, Figure 4 shows the values of indexes RMSE and NSE calculated using
ELM-BSA with different training data sizes. ELM-BSA with a different number of training data
demonstrate different forecasting results and all these results can comply with the Chinese flood
forecasting standard [31]. Hence, these models developed in this study can be applied to practical use.
Meanwhile, the forecasting accuracies of the ELM-BSA model were always better than the other two
models in all cases, because the ELM-BSA model could yield the largest NSE values and the lowest
RMSE values in the validation period among these three forecasting models. In the training period,
the forecasting accuracies grew with the increase of training data size, except for the GRNN model
with Case 3. In the validation period, the ELM and ELM-BSA models provided stable NSE values
for Cases 1–4, while there is a sudden drop of NSE in Case 5 for ELM. The forecasting accuracies of
GRNN in the validation period increased with the increase of the training samples, except for Case 2.
The ELM and ELM-BSA could generate stable RMSE values for Cases 2–4 in the training period and for
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Cases 1–4 in the testing period. As for GRNN, its performances in the testing stage seemed to be better
when the training samples were increased, whereas its performance fluctuated in the training period
with an increase of the training samples. Additionally, Figure 4 clearly shows that the training number
in the Case 3 was the best one for all the forecasting models, because in this condition, the accuracies
in both training and testing periods for every forecasting model were well-balanced. These results
indicate that more samples adopted to train forecasting model may be conductive to enhancing the
forecasting accuracy of the training stage but may be detrimental to the performance in the testing
phase in the condition where the number of training samples exceeds a specific range. Therefore, in the
real engineering applications, it is important to balance the sample sizes of the training and testing
datasets, which will be helpful to promote the robustness and accuracy of the forecasting models.
All the above results prove the superiority of the ELM-BSA model in the aspects of both robustness
and accuracy when compared with the other two widely used forecasting models. This is due to
the fact that the ELM-BSA model processes the merits of both the BSA and ELM, which enhances its
generalization ability and robustness.

Table 5. Results of GRNN, ELM, and ELM-BSA in five cases with different training sample sizes.

Case Year Period r NSE RMSE (m3/s) MAE (m3/s) QR

GRNN

Case 1 1994–2005
training 0.9723 0.9451 2200 1507 0.9664
testing 0.9611 0.9201 2705 1924 0.8151

Case 2 1995–2005
training 0.9731 0.9469 2082 1474 0.9681
testing 0.9561 0.9082 2900 1970 0.8193

Case 3 1996–2005
training 0.9650 0.9255 2477 1742 0.9636
testing 0.9658 0.9255 2613 1911 0.8109

Case 4 1997–2005
training 0.9740 0.9485 2130 1499 0.9856
testing 0.9652 0.9282 2565 1806 0.8277

Case 5 1998–2005
training 0.9791 0.9584 2234 1573 0.9800
testing 0.9645 0.9271 2583 1792 0.8571

ELM

Case 1 1994–2005
training 0.9711 0.9431 2241 1479 0.9517
testing 0.9741 0.9483 2175 1367 0.9538

Case 2 1995–2005
training 0.9724 0.9455 2108 1414 0.9580
testing 0.9741 0.9482 2178 1385 0.9538

Case 3 1996–2005
training 0.9726 0.9459 2110 1402 0.9608
testing 0.9740 0.9481 2181 1379 0.9538

Case 4 1997–2005
training 0.9747 0.9500 2097 1409 0.9664
testing 0.9739 0.9477 2189 1380 0.9580

Case 5 1998–2005
training 0.9778 0.9561 2294 1562 0.9706
testing 0.9729 0.9440 2265 1457 0.9580

ELM-BSA

Case 1 1994–2005
training 0.9714 0.9436 2231 1465 0.9517
testing 0.9747 0.9496 2148 1352 0.9454

Case 2 1995–2005
training 0.9727 0.9461 2097 1391 0.9597
testing 0.9748 0.9498 2143 1351 0.9454

Case 3 1996–2005
training 0.9728 0.9463 2103 1392 0.9594
testing 0.9745 0.9491 2159 1368 0.9454

Case 4 1997–2005
training 0.9748 0.9503 2091 1405 0.9652
testing 0.9745 0.9486 2169 1380 0.9454

Case 5 1998–2005
training 0.9787 0.9578 2250 1516 0.9706
testing 0.9743 0.9477 2188 1388 0.9454
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Figure 4. NSE and RMSE values of ELM-BSA, GRNN, and ELM in five cases with different training
sample sizes.

In summary, all the above results obtained from Sections 3.3 and 3.4 indicate that the ELM-BSA
model is a powerful tool to model the daily streamflow and can produce more reliable performance
compared with GRNN and ELM. It provides an effective alternative for flood forecasting.

4. Conclusions

Reliable and robust flood forecasting plays an essential role in effective/scientific flood control
and many activities associated with water resources management. On the basis of an extreme learning
machine (ELM) and an emerging dual population-based evolutionary algorithm named backtracking
search optimization algorithm (BSA), this paper developed an improved extreme learning machine
named ELM-BSA for short-term flood forecasting. In the new forecasting model, BSA was used to
find the appropriate hidden node parameters of ELM, and then the well-tuned ELM was applied
to do one-step-ahead forecasting. For the purpose of evaluating the performance of the developed
model, the standard ELM and a widely-used GRNN model were taken as reference models. The upper
Yangtze River was selected as a case study. Experiments with different input combination schemes and
training sample sizes indicated that the proposed ELM-BSA model was superior to the current ELM
and GRNN models. For example, compared with the GRNN model, the improvements achieved by
the ELM-BSA model regarding the indexes NSE and RMSE values in the validation period were 3.12%
and 19.63%, respectively. Moreover, when the sample size changed within a proper range, the accuracy
of the developed model fluctuated in a smaller scope than those of the ELM and GRNN models,
which demonstrated the stability of the proposed model. Therefore, the ELM-BSA model is a powerful
tool for flood forecasting. It is necessary to apply this new method to real-time flood forecasting.
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Abstract: To study the Dongting Lake water level variation and its relationship with the upstream
Three Gorges Dam (TGD), a deep learning method based on a Long Short-Term Memory (LSTM)
network is used to establish a model that predicts the daily water levels of Dongting Lake. Seven
factors are used as the input for the LSTM model and eight years of daily data (from 2003 to 2012)
are used to train the model. Then, the model is applied to the test dataset (from 2011 to 2013)
for forecasting and is evaluated using the root mean squared error (RMSE) and the coefficient
of determination (R2). The test shows the LSTM model has better accuracy compared to the
support vector machine (SVM) model. Furthermore, the model is adjusted to simulate the situation
where the TGD does not exist to explore the dam’s impact. The experiment shows that the water
level of Dongting Lake drops conspicuously every year from September to November during the
TGD impounding period, and the water level increases mildly during dry seasons due to TGD
replenishment. Additionally, the impact of the TGD results in a water level decline in Dongting Lake
during flood peaks and a subsequent lagged rise. This research provides a tool for flood forecasting
and offers a reference for TGD water regulation.

Keywords: deep learning; LSTM network; water level forecast; the Three Gorges Dam; Dongting Lake

1. Introduction

The large freshwater lakes of the world are an extremely valuable resource, not only because 68%
of the global liquid surface freshwater is contained within lakes but also because of their importance
to the economies, social structure, and viability of riparian countries [1]. Dongting Lake is the second
largest freshwater lake in China and is also renowned for its wetland resources [2]. Wetlands are an
area of transition between dry land and water bodies, and wetlands are often described as kidneys of
the earth for their great contributions to flood control, groundwater replenishment, water purification,
agriculture, and biological diversity [3]. Wetlands vary seasonally because water bodies change
dramatically between dry and wet seasons. Therefore, the change in water levels could influence the
biodiversity community patterns and functions in lake ecosystems [4]. Thus, it is of great significance
to study lake water level variations. In this case, when studying the lake water level changes in
Dongting Lake, consideration of the influence of the upstream Three Gorges Dam (TGD) is inevitable.
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The TGD is a hydroelectric gravity dam that spans the Yangtze River in the town of Sandouping,
Yiling District, Yichang, Hubei Province, China. The TGD is the world’s largest water conservancy
project with a total reservoir storage capacity of 39.3 billion m3 [5]. Like any other hydraulic project
in the world, the TGD has a large impact on the surrounding geological and environmental systems.
Its function of flood control and hydroelectric generation can alter the downstream hydrologic
regime by affecting the streamflow of the Yangtze River, the total runoff quantity, water quality,
and duration of extreme runoff [6,7]. Additionally, as one of the most controversial projects in the
world, the TGD has impacted the landscape, wildlife, agriculture, and other areas [8]. For Dongting
Lake, the river–lake relationship becomes increasingly complicated [9], which makes it increasingly
challenging to determine how the water level of Dongting Lake is affected by the TGD; however,
this relationship is worthy of study.

The research on lake water level variations has a long history, and a considerable number of
cases have been studied. The methods used in these studies can be summarized into two categories:
physics-based methods and data-driven methods [10–12]. Physics-based methods analyze the lake
water level based on the physical process, which is often completed through solving hydrodynamic
equations. For example, Lai et al. [13] applied the coupled hydrodynamic analysis model to the middle
Yangtze River to compute the variation in the water regime induced by water storage. Wu et al. [14]
conducted physical model experiments to study the effects of the TGD on the water level in Lake
Poyang, which is in the lower reach of the Yangtze River. Jiang and Huang [15] used the Saint Venant
equations of river dynamics to study the impacts of the TGD project on the water level of Chenglingji
station through modeling of the hydrologic process of the Yangtze River and used this model to predict
the water level at Chengilingji station. Data-driven methods involve the use of scientific computing
models to simulate the relationship between lake water level and its influencing factors. Different kinds
of models have been constructed to stimulate certain scenarios. For example, Liu et al. [16] proposed
a multivariate conditional model based on copulas for streamflow prediction and the refinement
of spatial precipitation estimates and compared the model with support vector regression (SVR)
and the adaptive neuro-fuzzy inference system (ANFIS). Khedun et al. [17] used a copula-based
model to examine the dependence structure between the large-scale climate indices and average
monthly seasonal precipitation and then used it to forecast precipitation anomalies in different climate
divisions of Texas, USA. Liu et al. [18] developed a Bayesian wavelet-support vector regression model
(BWS model) using local meteohydrological observations and climate indices as potential predictors
for streamflow forecasting and proved its effectiveness for one- and multistep-ahead streamflow
forecasting at two sites in Dongjiang basin, southern China. Also, Coulibaly [19] studied the potential
of the echo state network (ESN) to make long-term predictions of lake water levels and applied the
ESN to the Great Lakes. Coppola et al. [20] used an artificial neural network (ANN) to predict transient
water levels in a complex multilayered groundwater system under various conditions. Wang et al. [21]
used a support vector regression method to model the relationship between the water level of the lake
and the amount of water released from the reservoir. All these methods have enabled progress in this
research area; however, simulating a system as complicated as the relationship between a dam and
lake levels remains undeniably challenging.

In this article, the deep learning method is proposed to address this problem. Different from other
methods, deep learning networks allow computational models composed of multiple processing layers
to learn representations of data with multiple levels of abstraction, and these networks simulate the
way the human brain works [22]. The deep learning method has been applied in speech recognition,
visual object recognition, object detection and many other domains, such as drug discovery and
genomics, and has great potential in dealing with sequential data such as text and speech [23]. In this
study, deep learning is used as an approach to establish a model that can portray the relationship
between the water level of Dongting Lake and the influence of the TGD. With this model, it is feasible
to predict the water level of Dongting Lake on a daily basis and shed light on the weight of the TGD
influence and therefore provide a reference for flood control and the dam’s operation.
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2. Materials and Methods

2.1. Study Area and Data

Dongting Lake is on the south bank of the Jingjiang River, which is another name for the
Yangtze River in a specific segment in the middle reach of the Yangtze River region (approximately
28◦30′ N–30◦20′ N, 111◦40′ E–113◦10′ E) [24,25]. Dongting Lake is not only the landmark that divides
the provinces of Hubei and Hunan, but also the second-largest freshwater lake in China. As shown
in Figure 1, Dongting Lake is directedly linked to the Yangtze River in the north, and the water is
fed through three entrances: Songzi, Taiping, and Ouchi, which are often called the Jingjiang Three
Outlets [26]. There are also four major rivers that drain into Dongting Lake to the south and west:
the Xiangjiang, Zishui, Yuanjiang, and Lishui Rivers. The water in Dongting Lake flows back into
the Yangtze River through Chenglingji in Yueyang. Dongting Lake can be divided into three parts:
East Dongting, West Dongting, and South Dongting Lakes. Among these lakes, East Dongting Lake is
the largest, which comprises 50% of the whole area [27]. Therefore, this lake is the main study object in
most cases. The water level of Dongting Lake changes seasonally, and there can be a wide disparity
between dry seasons and wet seasons. Generally, wet seasons occur from April to September with
higher water levels, and October to March are considered dry seasons with relatively lower water
levels [28].

The TGD is situated in the Xiling Gorge of the Yangtze River and is the world’s largest hydraulic
project with a normal pool level of 175 m after completion. The construction of the TGD was a
17-year, tri-phase project, and the dam is expected to withstand a 100-year flood [8]. On June 1, 2003,
the impounding process was officially initiated, and the TGD was first put into use; from that point,
the TGD has influenced the water flow in the lower reaches of the Yangtze River with main functions
including flood control, power generation, shipping, and water supply. The regulation of water level
in the TGD is based on flood peak reduction and drought flow recharge. Thus, during the flood season,
the upstream flood peak is drastically reduced to alleviate the pressure of downstream flood prevention,
and during the drought season, the discharge is supplemented to attempt to alleviate downstream
drought conditions while increasing channel depth and improving the ecology [29]. The impoundment
of the TGD is implemented every year approximately from September to October [30].

The data needed in this study for Dongting Lake were obtained from the website of the Hunan
hydrology official network (http://www.hnsw.com.cn/Default.aspx), which provides data containing
water level, water discharge, flood alert level, and others. The TGD data for this study were acquired
from the China Three Gorges Corporation official website (http://www.ctg.com.cn/sxjt/sqqk/index.
html), which chronicles in detail the daily discharge of the reservoir.
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Figure 1. River–lake system of Dongting Lake.

2.2. Methodology

Recurrent neural networks, often known as RNNs, are networks which contain loops.
As Fausett [31] said, the RNN is an ANN with arbitrary connections between neurons. The key
point is that the recurrent connections allow a “memory” of previous inputs to persist in the network’s
internal state and thereby influence the network output [32]. However, for standard RNN structures,
the previous information often decays or blows up exponentially as it cycles around the network’s
recurrent connections. This effect is often referred to in the literature as the vanishing gradient
problem [33]. To solve this problem, Long Short-Term Memory networks (usually abbreviated to
“LSTMs”) are introduced by Hochreiter and Schmidhuber [34]. LSTMs are a special type of RNN
designed to avoid the long-term dependency problem, and the structure is illustrated in Figure 2.
In Figure 2, xt refers to the vector at time step t, which is the input vector, and ht is the output
hidden vector. ht contains information from ht−1, and together with the input vector at time t (xt),
the information is passed on to the next time step t + 1, ensuring the information will persist.
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Figure 2. Structure of the LSTM network.

Inside the LSTM cells, the most important concept is gates [34], which contain a sigmoid neural
net layer and a pointwise multiplication operation and serve as a filter to optionally allow information
through to protect and control the cell state. Typically, an LSTM has three of these gates: a forget gate,
an input gate, and an output gate. The forget gate controls the information that is allowed through,
whereas the input gate decides which values are used to update the information, and the output gate
combines the results above and delivers a filtered output. The following Equations (1)–(6) demonstrate
in detail how the LSTM cell maps an input vector sequence x to a hidden vector sequence h. In
these equations, ft, it, ot, and Ct refer to the forget gate, input gate, output gate, and memory cell
vectors, respectively, and Wf, Wi, Wo, and WC are the weighted parameter matrices. σ and tanh are the
activation functions computed as Equations (7) and (8).

ft = σ
(

Wf [ht−1, xt] + b f

)
(1)

it = σ(Wi[ht−1, xt] + bi) (2)

C̃t = tanh(WC[ht−1, xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

σ(x) =
1

1 + e−x (7)

tanh(x) =
ex − e−x

ex + e−x (8)

With each LSTM cell functioning in this manner and multiple LSTM cells stacked together,
the LSTM network can constitute a complicated structure, which better serves the discovery of
complex relationships between inputs and outputs [35]. Considering the structure of the collected
data, we propose to consider this problem from the time series perspective. Because LSTMs have been
proven to have better success in capturing long-term dependencies within a sequence [36], we suggest
using the LSTM network to address the problem.

2.3. LSTM Model Establishment

2.3.1. Variable Selection

The water level data of Dongting Lake are quintessential to this study. Because the water level
change at Chenglingji station can reflect the changes in all of Dongting Lake’s water levels [37],
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the water level at Chenglingji station is used to represent the water level of Dongting Lake. Eleven
years of daily data are extracted for this study, which covers the time period from 2003 to 2013 and is
the amount of time the TGD has been actively used. The lake water level varies continuously, and this
information is set to persist through the network. Many factors can contribute to changes in the water
levels of Dongting Lake, because the lake is a very intricate system. In this study, we consider the
water inflow and rainfall. As introduced in the study area section and shown in Figure 1, Dongting
Lake is fed by the Yangtze River to the north and four other rivers to the south and west, which are the
Xiangjiang, Zishui, Yuanjiang, and Lishui Rivers. The inflow of the Yangtze River is directly linked to
the water discharge of the upstream TGD, whereas the inflow of the Xiangjiang, Zishui, Yuanjiang, and
Lishui Rivers can be measured by the discharge data at the Xiangtan, Taojiang, Taoyuan, and Jinshi
Stations, respectively. The rainfall at Dongting Lake also plays an important role in the water level
variations in Dongting Lake and should be considered as a factor. The precipitation at Dongting Lake
can be represented by the precipitation measured at the nearest weather station, which is the Yueyang
weather station. Therefore, the daily precipitation data are obtained from the Yueyang weather station
from 2003 to 2013. As a result, six factors are considered to determine the daily water level of Dongting
Lake: the daily average TGD discharge, daily average discharge at Xiangtan Station, daily average
discharge at Taojiang Station, daily average discharge at Taoyuan Station, daily average discharge at
Jinshi Station, and daily average precipitation.

Quantitatively, a Grey relational analysis (GRA) was conducted to examine these six factors’
correlation to the water level variation. GRA is a measure of the difference between data sequences
and can be used to analyze the degree of correlation between these sequences [38]. Let the reference
sequence and sequence for comparison be represented as xo(k) and xi(k), i = 1, 2, ..., 6; k = 1, 2, ..., n,
respectively, where n is the total number of observations. Here, xo(k) is the water level sequence and
xi(k) is the sequence of the other factors, namely the TGD discharge sequence, Xiangtan discharge
sequence, Taojiang discharge sequence, Taoyuan discharge sequence, Jinshi discharge sequence,
and the precipitation sequence. The Grey relational grades are calculated following the procedures
below [39]:

1. A series of various units must be transformed to be dimensionless using a normalization method.
For instance, a comparability sequence xi(k) is transformed as follows:

x∗i (k) =
xi(k)− min(xi(k))

max(xi(k))− min(xi(k))
(9)

In Equation (9), x∗i (k) is the sequence after data preprocessing, max(xi(k)) stands for the largest
value of xi(k), whereas min(xi(k)) stands for the smallest value of xi(k).

2. Calculate the Grey relational coefficients using the preprocessed sequences. The Grey relational
coefficient is defined as below:

γi(k) =
min
∀j∈i

min
∀k

∣∣x∗o (k)− x∗i (k)
∣∣+ ρ max

∀j∈i
max
∀k

∣∣x∗o (k)− x∗i (k)
∣∣∣∣x∗o (k)− x∗i (k)

∣∣+ ρ max
∀j∈i

max
∀k

∣∣x∗o (k)− x∗i (k)
∣∣ (10)

In Equation (10), ρ is the distinguishing coefficient and normally ρ is set at 0.5.
3. Calculate the Grey relational grade ri, which is the mean value of each Grey relational coefficient

and is defined as follows:

ri =
1
n

n

∑
k=1

γi(k) (11)

The GRA results are listed in Table 1, showing correlations between each of the six factors and the
water level variable, which is the target variable. From Table 1, we can see these factors have similar
correlation with the target variable and the TGD discharge factor has the strongest correlation.
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Table 1. GRA results.

Variables
TGD

discharge
Xiangtan
discharge

Taojiang
discharge

Taoyuan
discharge

Jinshi
discharge Precipitation

Grey relational
grade

0.7242 0.6699 0.6798 0.6570 0.6140 0.6197

As a result, these six factors as well as the daily average water level data are chosen as the seven
variables required for the LSTM network, with the water level variable being the target variable.
The seven variables are listed in Table 2 (variable is shortened to var), and the values of the variables
are shown in Figure 3, from which we can see a synchronized seasonal change.

Table 2. Selected variables.

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7

Water level TGD
discharge

Xiangtan
discharge

Taojiang
discharge

Taoyuan
discharge

Jinshi
discharge Precipitation

Figure 3. Data display of the selected variables.

2.3.2. Data Processing

Because LSTMs are sensitive to the scale of the input data, specifically when the sigmoid or tanh
activation functions are used, it is preferable to scale the data before putting them into use. In this
study, we scale the data using z-score standardization, which converts the dataset into a new dataset
with a zero mean and unit variance [40]. The z-score is calculated using Equation (12), where μ is the
dataset mean and σ is the dataset standard deviation.

z =
x − μ

σ
(12)
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Furthermore, the dataset contains the seven variables covering eleven years, and the time series data
with multiple variables cannot be used directly for the LSTM network. The data must be restructured
to a supervised learning dataset. Here, we apply the sliding window method, which uses the value
at the previous time step to predict the value at the next time step. Thus, the data are reorganized,
as shown in Table 3. The water level variable is the target variable, whose value at time t will be
predicted based on the seven variables from time t − 1. Now, the problem is reframed to a supervised
learning prediction problem.

Table 3. Converting variables to a supervised dataset for the LSTM network.

Var1 (t − 1) 1 Var2 (t − 1) Var3 (t − 1) Var4 (t − 1) Var5 (t − 1) Var6 (t − 1) Var7 (t − 1) Var1 (t)

Water level TGD
discharge

Xiangtan
discharge

Taojiang
discharge

Taoyuan
discharge

Jinshi
discharge Precipitation Water

level
1 Var1 (t − 1) refers to variable 1 at time t − 1, and the same is true for the other variables.

Like other supervised learning problems, the dataset is split into a training dataset and a test
dataset. Here, we use the first eight years of data (2003–2010) as the training data set and the last three
years (2011–2013) as the test data set. Then, we split the training and test sets into input and output
variables, with the last column from Table 3 being the output variable and the remainder being the
input variables. Finally, the inputs are reshaped into the 3-D format expected by LSTMs, which include
“samples, time-steps, and features”.

2.3.3. LSTM Network Design

The LSTM network design follows the “rough to fine” principle. That is, first, we come up with
a base model with simple structures and default settings and then we tune the model with different
hyperparameters. After that, we update the model, thus enhancing its skills, and finally we have the
best model to forecast water levels.

Base Model Design

We designed the LSTM network with a hidden layer and an output layer with one neuron in each
layer to predict the water level. The input shape will be one timestep with eight features, and the mean
squared error (MSE) will be used for the loss function. The batch size and epoch hyperparameters are
set at 1 and 100 respectively. The activation function is set as default, which is tanh.

A rolling forecast scenario is used for model construction, which means that each time step of
the test dataset will be walked one at a time. The model will make a forecast for the current time step,
then the actual expected value from the test set will be taken and made available to the model for the
forecast on the next time step [41]. All forecasts on the test dataset will be collected and an error score
will be calculated to summarize the performance of the model.

Model Evaluation

The root mean square error (RMSE) is used for evaluation because the RMSE finds large errors
and results in a score that is in the same units as the forecast data. Also, the coefficient of determination
(R2) is used to measure prediction performance. These two indexes are calculated using Equations (13)
and (14) as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (14)
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In the equations, n stands for the number of values, yi refers to the actual water level, ŷi refers
to the predicted water level, and yi stands for the mean actual water level. RMSE measures the
average of the squares of the errors, so the closer the RMSE is to 0, the better. The coefficient of
determination measures how well the regression predictions approximate the real data points, and if
R2 is 1, it indicates that the predictions perfectly fit the data. That is, the closer R2 is to 1, the better the
prediction model.

Model Optimization

Model optimization involves tuning hyperparameters, such as epoch, batch size, neuron numbers,
activation function, layers, and the optimization algorithm; a grid search method is implemented in
this process. For epoch, batch size, and neuron numbers, the grid search follows the “rough to fine”
principle, which means large strides are used in the first round of the grid search to find the most
appropriate range and then small strides are used instead to home in on the best hyperparameters.
A validation dataset is created by splitting 30% from the training dataset and the RMSE is used for
evaluating the model performance. As a result, the hyperparameters of epoch, batch size, and neuron
numbers were set at 200, 32, and 13 for the LSTM network respectively.

For the activation function, as introduced in Section 2.2, the LSTM network involves two kinds of
activation functions: the sigmoid activation function and the tanh activation function. The sigmoid
function is associated with “gates,” which is the core structure of the LSTM network, so it cannot be
changed. However, the tanh function is used for data output and it can be replaced. In this case, a wide
range of functions are considered, which include “softmax,” “softplus,” “softsign,” “ReLu,” “tanh,”
“sigmoid,” “hard sigmoid,” “linear,” and “ELU” (exponential linear unit). Each of the functions will be
tested for the LSTM network, and in our case, each were run 10 times given that the random initial
conditions for an LSTM network can result in very different results each time a given configuration
is trained. Each time, the RMSE error will be recorded, and the results will all be illustrated in a
box-and-whisker plot shown in Figure 4. From this plot, we can see that the activation function
“sigmoid” had the best overall performance and hence was chosen as the activation function for the
LSTM network. The sigmoid activation function is defined by Equation (7).

Figure 4. Box-and-whisker plot for activation function selection.
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In training, the loss function lets us quantify the quality of any particular set of weights. The goal
of optimization is to find the weights that minimize the loss function. Gradient descent is a commonly
used optimization algorithm for finding the minimum of a function. To minimize a loss function J(θ)
using gradient descent, it updates the parameters in the opposite direction of the gradient at the current
point. The learning rate η determines the size of the steps to take to reach a (local) minimum. Stochastic
gradient descent (SGD) is a fundamental gradient descent algorithm that performs a parameter update
for each training example x(i) and y(i) as follows [42]:

θ = θ− η · ∇θ J
(

θ; x(i); y(i)
)

(15)

In Equation (15), θ stands for the model’s parameters, and ∇θ J
(

θ; x(i); y(i)
)

is the gradient at
the current example. There are also a lot of variations of gradient descent algorithm. For example,
Momentum is a method that helps accelerate SGD in the relevant direction and Nesterov accelerated
gradient (NAG) adjusts the gradient descent direction. Adagrad is an algorithm that adapts the learning
rate to the parameters, performing larger updates for infrequent and smaller updates for frequent
parameters. Adadelta is an extension of Adagrad that seeks to reduce its aggressive, monotonically
decreasing learning rate. Root mean square prop (RMSprop) is an algorithm proposed by Geoff
Hinton [42], which is also an extension of Adagrad, that aims to solve the rapid decreasing learning
rate problem. Adaptive moment estimation (Adam) is another method that combines RMSprop and
momentum. Additionally, the AdaMax method is a variation of Adam, and Nadam is the combination
of NAG and Adam. We explored the applicability of different optimization algorithms including SGD,
RMSprop, Adagrad, Adadelta, Adam, Adamax, and Nadam. The RMSEs of each algorithm exerted on
the LSTM network are calculated and shown in Figure 5. From this box-and-whisker plot, we can see
that aside from SGD and Adagrad, the other four algorithms had similar performances, but RMSprop
has the potential of reaching the lowest RMSE. As a result, RMSprop was chosen as the optimization
algorithm for the model.

Figure 5. Box-and-whisker plot for optimization algorithm selection.
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The most important difference between RMSprop and SGD is that RMSprop keeps a moving
average of the squared gradient for each weight. Let gt be the gradient of the objective function at the
current parameter at time step t. The RMSprop algorithm updates parameters as follows [42]:

E
[

g2
]

t
= γE

[
g2
]

t−1
+ (1 − γ)g2

t (16)

θt+1 = θt − η√
E[g2]t + ε

gt (17)

In Equations (16) and (17), γ is the decay rate, which is normally set at 0.9, and ε is a smoothing term
that avoids division by zero (often set at 1 × 10−6). Also, a good default value for the learning rate η

is 0.001.
As for different numbers of hidden layers, the base model uses one LSTM layer and so we explore

the possibility of multiple layers. We stack two LSTM layers together as the two-layer structure with
13 neurons on the first layer and half on the second layer. Similarly, we stack three LSTM layers
together as the three-layer structures with 13 neurons on the first layer and two-thirds the number of
neurons on the second layer and one-third on the third layer. Other multi-layer structures are designed
the same way and each model with different layers is evaluated through experiment. The RMSE results
are shown in Figure 6. From the figure, it can be seen that the two-layer structure had significantly
better performance. Hence, we updated the model with two LSTM layers.

Figure 6. Box-and-whisker plot for layer number selection.

Piecing all the hyperparameters together, the LSTM network has been optimized and updated,
thus the LSTM model for water level forecast is completed.

3. Results

We used the eight-year dataset (from 2003 to 2010) to train the LSTM network and then used this
trained model to predict the daily water level for the next three years of data (from 2011 to 2013), thus
testing the performance of the model. The experiment was carried out using Keras (version: 2.1.3)
with the Tensorflow backend (version: 1.4.0). Keras is a high-level neural networks API developed
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and maintained by Google engineer François Chollet, and TensorFlow is an open-source symbolic
tensor manipulation framework developed by Google. The result is shown in Figure 7. From the
figure, we can see that the actual value line and predicted value line were nearly coincident.

Figure 7. Forecasting results of the Dongting Lake water level using the LSTM model.

Quantitatively, with forecasts and actual values both inverted to their original scale, the RMSE
and coefficient of determination (R2) were calculated to evaluate the model. The result showed the
RMSE was 0.083, and the coefficient of determination was 0.999, which showed high precision. Because
one of the main characteristics of deep learning is that it is stochastic, the model is very likely to obtain
a different result every time we run the network. However, after a great deal of tests, the RMSE was
always within the range of 0.080–0.100. The coefficient of determination stayed at 0.999, which showed
the robustness of the LSTM network. Table 4 shows the results of running the model 10 times on the
test dataset. The test results suggest that this deep learning network is a sound prediction model and
capable of portraying the relationship between the TGD and Dongting Lake water level.

Table 4. Test results of running the LSTM model 10 times on the test dataset.

No. RMSE R2

1 0.083 0.999
2 0.091 0.999
3 0.099 0.999
4 0.090 0.999
5 0.086 0.999
6 0.086 0.999
7 0.085 0.999
8 0.085 0.999
9 0.088 0.999

10 0.087 0.999

4. Discussion

4.1. Support Vector Machine Comparison Experiment

For comparison, we used a support vector machine (SVM) method to solve the same
problem. SVMs are developed based on statistical learning theory and employ the structural risk
minimization (SRM) principle for a global solution [43]. SVMs have demonstrated good performance
in regression [44] and time series forecasting and prediction [45,46]. For these reasons, an SVM model
was chosen for a comparison experiment. We built the SVM model based on the idea proposed by
Wang et al. [21]. We selected the discharge of the TGD, Xiangtan, Taoyuan, Jinshi, and Taojiang, as well
as the precipitation, as the inputs and consider the water level as the target variable. We used these
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input factors to predict the water level of Dongting Lake, turning this subject into an SVM regression
problem. The input and output variables are shown in Table 5.

Table 5. Input and output variables for the SVM model.

Input Output

Var1 Var2 Var3 Var4 Var5 Var6 Target
variable

TGD
discharge

Xiangtan
discharge

Taojiang
discharge

Taoyuan
discharge

Jinshi
discharge Precipitation Water level

The training and test datasets were divided in the same manner as before, with the first eight
years of data (2003–2010) used as the training dataset and the last three years of data (2011–2013) as
the test dataset. The data were also scaled before being inputted into the SVM model. For the SVM
model, we chose the epsilon-SVR model with the Radial Basis Function (RBF) being the kernel function.
Other parameters for the model were optimized through the genetic algorithm used on the training
dataset. The genetic algorithm (GA) was developed by Holland. The concept is based on the survival
of the fittest [47]. It uses genes and chromosomes to represent variables and solutions and imitates the
biological process to select the best one. Furthermore, as a result, the cost (c), gamma (g), and epsilon
(p) parameters were set at 1.175, 11.239, and 0.035, respectively. Then, the established SVM model was
used on the test dataset for prediction, and the result is illustrated in Figure 8 below.

Figure 8. Forecasting results of Dongting Lake water levels using the SVM model.

From Figures 7 and 8, we see that the prediction deviation using the LSTM model was far less than
when using the SVM model. Quantitatively, the calculated RMSE of the SVM model was 1.157, which
was much larger than the LSTM model, and the R2 was 0.873, which was well under the 0.999 LSTM
model performance.

Additionally, Figures 7 and 8 indicate that the SVM model tended to make higher predictions
during low water periods and lower predictions during high water periods; whereas the LSTM model
had an overall satisfying performance. Statistically, we analyzed the water level distribution from the
test dataset through percentile and split the data at 33.3% and 66.7%, thus separating the water level
data into low, medium, and high categories [18]. Then we calculated the RMSE of the actual water
level and the predicted values in each category for both models; the results are shown in Figure 9.

Figure 9 shows that the LSTM model had relatively much smaller RMSEs in all three water level
ranges. Additionally, the LSTM model had the best performance for high water levels and the RMSE
difference between these three ranges was minute. In contrast, the SVM model had much larger RMSEs
in all ranges and especially for low water levels and high water levels. In summary, the LSTM model
could deliver better results and was more suitable for predicting the water level of Dongting Lake.
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Figure 9. Model performances in different water level ranges.

4.2. TGD’s Impact on Dongting Lake Water Level

The LSTM network above has already captured the relationship of the TGD discharge and the
water level of Dongting Lake. That is, given a certain amount of TGD discharge and other variables,
we were able to predict the water level. This finding can shed some light on how the discharge of the
TGD can affect the water level of Dongting Lake and provide a reference for water dispatch and flood
control plans.

If we changed the TGD discharge variable and keep the other variables fixed, we could separate
the TGD discharge impact from the complicated system and determine how it influenced the water
level of Dongting Lake. We replaced the TGD discharge variable with the dam’s daily inflow data for
the purpose of stimulating a situation where the TGD did not exist and determined how the water level
of Dongting Lake changed accordingly [48]. We called this the mock data. The mock data included the
inflow data of the TGD from 2003 to 2013, and the other variables were the same as before. We put
the mock data into the LSTM network and obtained predictions for the water level of Dongting Lake
from 2003 to 2013, and we called this result the mock water level. The difference was evaluated by
subtracting the actual water level from the mock water level, which is shown in Figure 10.

 

(a) 2003 (b) 2004 

Figure 10. Cont.
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(k) 2013 

Figure 10. Water level difference between reality and simulation every year with (a–k) showing years
2003–2013, respectively.

In 2003, as shown in Figure 10a, large disparities appear in June. The water level dropped
significantly in June compared to the mock data. This was because the TGD started its first
impoundment in June 2003 until the water level of the dam reached 135 m at the end of June [49].
That time is when the TGD began to be actively used and started its first phase of operation. Based on
this simulation experiment, the water level of Dongting Lake dropped 0.31 m on average during the
TGD impoundment in June, and the largest drop on a single day was up to 0.65 m. There was also a
noticeable drop in the water levels of Dongting Lake in November 2003 because the TGD impounded
water again at that time, which enabled the dam water level to reach 139 m.

Through 2004 and 2005, the TGD did not operate regularly, so the impact on the water level
variation was not large. Figure 10b,c shows that the water level of Dongting Lake dropped in the first
half of the year in 2004 and 2005, and the water level rose slightly in the second half of the year in 2005.

In September 2006, the TGD started its second phase of operation, pushing the dam water level to
156 m. The impounding process lasted from September until the end of October, during which time
there was a major drop in the water level of Dongting Lake, as shown in Figure 10d. The water level of
Dongting Lake dropped 0.26 m on average according to the simulation experiment, and on extreme
occasions, the drop was as much as 0.66 m.

In 2007, as illustrated in Figure 10e, the water level of Dongting Lake had a relatively large drop
in July and August due to the flood control dispatch of the TGD.

In 2008, as shown in Figure 10f, there was a sharp drop in the water level in October and
November. The reason for this decline is that the TGD implemented its third phase of operation, and the
impounding process completed the goal of reaching the 175 m reservoir water level. Accordingly,
the Dongting Lake water level dropped by 0.34 m on average during that time, and the largest drop in
a single day was as much as 0.86 m.

In 2009, there was a relatively large increase around March as a result of the TGD’s water
replenishment strategy during dry seasons. The water level of Dongting Lake showed a substantial
drop in October and November because of the impoundment of the TGD (see Figure 10g).

In 2010, as we can see in Figure 10h, the water level variation was different from before, and what
makes this year special was that the Yangtze River experienced one of the largest floods during summer.
The flood peak in July was the third largest flood peak ever recorded in the Yangtze River hydrological
record, and the flood reached more than 70,000 m3 flow per second [50]. Nevertheless, the water
level of Dongting Lake did not increase much as a result. In fact, the lake level dropped 0.22 m
after the TGD discharge was reduced to 30000 m3/s (maximum outflow), as opposed to 70000 m3/s
(maximum inflow) if the TGD does not exist. The water level increased substantially in August after
the flood, which was when the TGD opened sluices to release the flood water. By doing so, the TGD
managed to stagger the flood peak to alleviate the rise in water level in Dongting Lake. Then, the water
level showed a moderate decline in September and November due to the impoundment of the TGD.

277



Water 2018, 10, 1389

In 2011, there was a mild increase in the water level for the first half of the year because of the
dispatch of TGD water replenishment, which started on December 29, 2010, and ended on June 10,
2011. The replenishment raised the water level by 0.16 m on average, and the largest increase reached
0.3 m in the experiment (see Figure 10i). There was a drastic drop in September and October because
the TGD was impounding water in order for the dam water level to reach 175 m again, and the drop
was as much as 1.2 m.

In 2012, the water level of Dongting Lake increased slightly from January to June due to TGD
water replenishment, and the peak increase was 0.48 m (see Figure 10j). Similar to 2010, the Yangtze
River observed a large flood again in July, but the water level of Dongting Lake declined by 0.15 m
during the first flood peak. Then, the water level rose considerably in August when the TGD opened
the sluice and released the flood water. The water level dropped again in the fall because of the TGD
impoundment, and the dam water level reached 175 m again on October 30.

In 2013, the water level of Dongting Lake showed a steady increase in the first quarter of the year
with an average increase of 0.15 m due to the TGD water replenishment, and the lake showed some
mild, intermittent decreases during wet seasons (see Figure 10k). There was a major decline from
September to November when the TGD entered its impounding period until the reservoir water level
again reached 175 m, and the largest drop of 0.75 m occurred on a single day.

5. Conclusions

In this article, a deep learning model based on an LSTM network was proposed to predict the
daily water level of Dongting Lake. Seven variables were selected as input factors quintessential to
the water level variations, and eight years of daily data (from 2003 to 2012) were used to train the
model. Then, the model was tested on the daily data for the next three years (from 2011 to 2013).
The experiments showed that the LSTM model predicted the water level of Dongting Lake with high
precision and delivered better results compared to an SVM model.

This LSTM prediction model also established the connections between the water level of Dongting
Lake and the TGD discharge. Eleven years of mock data (from 2003 to 2013) were used to simulate
a situation where the TGD does not exist to examine how the water level of Dongting Lake differed
from reality. Through this experiment, we made the following conclusions:

1. The water level of Dongting Lake dropped conspicuously when the TGD is being impounded,
which occurred annually from September to November. The drop was approximately 0.3 m on
average and could be as large as 1.2 m in a single day.

2. The water level increased mildly during dry seasons because of the TGD water replenishment
strategy, which demonstrated the water conservancy effects of the dam.

3. There was a decline in the water level of Dongting Lake during flood seasons (mostly July during
flood peaks) and a lagged increase occurred later, proving that the dam’s effects on flood control
and staggering the flood peak.

Overall, the TGD discharge control and its water regulation plans had a strong impact on the water
level variation of Dongting Lake. With the forecasting model proposed in this article, the daily water
level of Dongting Lake could be predicted, which will help with flood control and water regulation.
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Abstract: In order to overcome the problems in the parameter estimation of the Muskingum model,
this paper introduces a new swarm intelligence optimization algorithm—Wolf Pack Algorithm
(WPA). A new multi-objective function is designed by considering the weighted sum of absolute
difference (SAD) and determination coefficient of the flood process. The WPA, its solving steps of
calibration, and the model parameters are designed emphatically based on the basic principle of the
algorithm. The performance of this algorithm is compared to the Trial Algorithm (TA) and Particle
Swarm Optimization (PSO). Results of the application of these approaches with actual data from the
downstream of Ankang River in Hanjiang River indicate that the WPA has a higher precision than
other techniques and, thus, the WPA is an efficient alternative technique to estimate the parameters
of the Muskingum model. The research results provide a new method for the parameter estimation
of the Muskingum model, which is of great practical significance to improving the accuracy of river
channel flood routing.

Keywords: Muskingum model; wolf pack algorithm; parameters; optimization; flood routing

1. Introduction

In recent years, frequent floods have caused serious losses to people’s lives and property [1].
Therefore, it is urgent to identify the flood routing rules to reduce flood losses. As a classic solution
of flood routing, the Muskingum model continues to be a popular method for flood routing [2].
The Muskingum model was first developed by McCarthy [3]. In practical application, the key
problem for applying the Muskingum model is parameter estimation [4,5], which is a highly nonlinear
optimization problem. The studies on the Muskingum model mainly include the parameter estimation
method and model improvement.

Traditional parameter estimation methods mainly include the Trial Algorithm (TA), the moment
method, the least squares method, and the differential algorithm [5,6]. However, these methods are
limited by the optimal estimation of the channel storage curve, which has led to a significant error
between the calculated results and the observed data. In recent years, intelligence algorithms have
been widely used in solving the nonlinear problem accurately and efficiently [7]. Many researchers
have applied various techniques to estimate the parameters of the Muskingum model in recent
years. For example, Luo and Xie [4] applied the immune clonal selection algorithm to estimate
the parameters of the Muskingum model, getting a higher precision than the other techniques.
Mohon [8] proposed the genetic algorithm to estimate the parameters of two nonlinear Muskingum
routing models. Chen and Yang [9] applied the Gray-encoded accelerating genetic algorithm in the
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parameters optimization of the Muskingum model. Chu and Chang [10] used the Particle Swarm
Optimization (PSO) algorithm to estimate the Muskingum model parameters, which improves the
accuracy of the Muskingum model for flood routing. Barati [11] applied the parameter-setting-free
technique, interfaced with a harmony search algorithm to the parameter estimation of the Muskingum
model, and found good model parameter values. Zhang et al. [12] applied the Shuffle Complex
Evolution Algorithm (SCE-UA) to optimize and estimate the discharge proportion coefficient x
of the Muskingum equation and the number of streams subsections partitioned for mainstreams
and tributaries. Niazkar and Afzali [13] proposed a hybrid method, which combined the Modified
Honey Bee Mating Optimization and Generalized Reduced Gradient algorithms, reducing the sum
of the squared (SSQ) value for the double-peak case study. Ouyang et al. [14] applied the invasive
weed optimization (HIWO) algorithm to the parameter estimation of nonlinear Muskingum models.
Although various techniques were applied to estimate the parameters of the nonlinear Muskingum
flood routing model, the application of the model still suffers from a lack of an efficient method for
parameter estimation. An efficient method for parameter estimation in the Muskingum model is still
required to improve computational precision.

The improved Muskingum model mainly includes parameter setting and optimization
criteria [15,16], and studies on model improvement have had a significant breakthrough in recent years.
Zhang et al. and Vatankhah [17,18], for example, used a nonlinear Muskingum flood routing model
with variable exponent parameters, producing the most accurate fit for outflow data. Moghaddam
et al. [19] proposed a new Muskingum model with four parameters, the sum of the squared (SSQ)
or absolute (SAD) deviations between the observed and estimated outflows considered as objective
functions. Although the new Muskingum model becomes more complex, it improves the fit to observed
flow, especially in multiple-peak hydrographs. Luo et al. [20] proposed a multi-objective estimation
routine of the Muskingum model, involving single-peak, multi-peak, and non-smooth hydrographs,
proving that the multi-objective estimation procedure is consistent and effective in estimating the
parameters of the Muskingum model. Easa [21] pointed out models that adopt the outflow criterion
result in a poor fit to the observed storages, presenting a new approach that incorporates both criteria
in the estimation process and aids trade-off analysis.

This paper proposes a parameter estimation of the Muskingum model based on a new
intelligent algorithm—the Wolf Pack Algorithm (WPA). In this paper, several floods with different
magnitudes from river channels (Ankang hydropower station–Ankang city and Ankang hydropower
station–Shuhe) of the Hanjiang River were first selected to estimate their respective parameters.
Secondly, an improved multi-objective of the Muskingum model as well as that of the WPA and its
solving steps are proposed. Thirdly, the results from the different algorithms in terms of the weighted
sum of absolute difference and the coefficient of determination between the observed and routed
outflows are compared to verify the performance of the WPA. Finally, conclusions are drawn based on
the results.

2. Materials and Methods

2.1. Research Area

The Ankang to Shuhe section of Hanjiang River in China was chosen as the study area (Figure 1).
The length of the river section is 109.36 km, accounting for 7% of the total reach of the Han River,
with a drop of 61 m and an average gradient ratio of 0.06% of the river bed. Due to the steep slope of
the mountain basin, the poor permeability of the rock formation, and poor adjustment of the channel,
the flood process is very fast, the peak shape is thin, the inter-annual variability of the flood is larger,
and the flood variation coefficient is larger. The parameters of the river and flood data are shown in
Tables 1 and 2.
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Figure 1. Map of the Hanjiang River and the location of major reservoirs.

Table 1. Data of river section.

Reach Height Difference (m) River Length (km) Gradient (%)

Ankang Reservoir–Ankang city
(Reach 1) 11.24 18.31 0.06

Ankang Reservoir–Shuhe Reservoir
(Reach 2) 61.00 109.00 0.06

Table 2. Data of flood.

Reach Flood Event
Flood Peak

(m3/s)
Total Amount of
Floods (108 m3)

Flood Peak Time (h)

Ankang Reservoir–
Ankang city

20100821 7260 173 1
20120707 8420 241 1
20120901 7645 171 1

Ankang Reservoir–
Shuhe Reservoir

20130722 7178 44 7
20140909 7607 67 6
20140914 6637 52 7

2.2. Muskingum Model

2.2.1. Model Basic Principle

The Muskingum model is a traditional method for solving river flood routing, which is mainly
solved by the continuity equation and the dynamic equation [22]. In order to obtain the flood routing
equation, the water balance equation and storage equation are solved by:

Q2 = C0 I2 + C1 I1 + C2Q1 (1)⎧⎪⎨⎪⎩
C0 = −Kx+0.5Δt

K−Kx+0.5Δt
C1 = Kx+0.5Δt

K−Kx+0.5Δt
C2 = K−Kx−0.5Δt

K−Kx+0.5Δt

(2)

where Q1 and Q2 are the outflow of the downstream section at the beginning and the end of the period,
respectively, I1 and I2 are the inflow of upstream section at the beginning and the end of the period,
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K is channel storage coefficient, and x is specific gravity coefficient of flow. C0, C1, and C2 are the flow
routing coefficients.

2.2.2. Design of Objective Function

The optional parameters of the Muskingum model can be x and K, or C0, C1, and C2. If K and
x are chosen as the optimization variables, it is necessary to ensure that the water storage capacity
of the river is a single linear relationship with the reservoir flow during the optimization process,
which is difficult to determine, given the range of variables. Meanwhile, there is no need to go deep
into the physical parameters of the model, because of the intelligent algorithm based on the black box
model [23]. Therefore, C0 and C1 are chosen as the optimization variables. The results of river flood
routing are mainly reflected in the flood process and the flood peak of the simulation.

The results of river flood flow evolution are mainly reflected in the degree of fitting of flood
process and flood peak to the actual flood. Some studies indicated that the success of a calibration
process is highly dependent on the objective function chosen as a calibration criterion [19]. The most
commonly used objective function for the calibration procedure is the SSQ errors between observed
and computed outflow [4,5,20,24], but some research has indicated that the SSQ is not necessarily
correct [16,25]. Considering the above reasons, the objective function established in this paper can be
described as follows:

Objective 1: Minimum weighted sum of absolute difference (SAD):

f1 = min
n

∑
i=2

[Q0(i)|C0 Ic(i) + C1 Ic(i − 1) + C2Q0(i − 1)− Q0(i)|] (3)

s.t. : C0 ∈ [−1, 1]
C1 ∈ [−1, 1]

C2 = 1 − C0 − C1 ∈ [−1, 1]
(4)

where Q0(i) is the actual outflow of the downstream section at a time i, Ic(i − 1) and Ic(i) are the
simulated flow for the upstream section at time (i − 1) and i, respectively, Q0(i − 1) is the simulated
flow for the upstream section at time (i − 1), and n is the length of the time series used for calibration.
C0, C1, and C2 are the flow routing coefficients.

The SAD will give the minimum difference between observed and computed outflow [9,19,26].
Objective 1 is the SAD multiplying the corresponding weight taken from the observed flow at the
corresponding time, which will increase large flow influence on the parameter estimation, especially
on the flood peak. Thus, the weight can increase the simulation accuracy of the flood peak.

Objective 2: Maximum coefficient of determination Dc:

f2 = maxDc = max

⎡⎢⎢⎣1 −

n
∑

i=1
(Qc(i)− Q0(i))

2

n
∑

i=1
(Q0(i)− Q0)

2

⎤⎥⎥⎦ (5)

where Dc is the coefficient of determination, Qc(i) is the computed value at time i, Q0(i) is the observed
value at time i, Q0 is the mean value of the observed flood process, and n is the number of time series
used for calibration [22].

The deterministic coefficient is an indicator to measure the consistency between the flood forecast
and the observed process. In this paper, the coefficient of determination as Objective 2 can ensure that
the simulated flow process is the closest to the observed values [27,28].

In order to reduce the multi-objective calculation and adaptation algorithm, the comprehensive
multi-objective function chosen in this paper is as follows:

f = max(φ1(− f1) + φ2 f2) (6)
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where f is the comprehensive objective, f1 and f2 are Objective 1 and Objective 2, respectively, and φ1

and φ2 are the weight coefficient of different objectives, respectively.

3. Methodology

3.1. Wolf Pack Algorithm (WPA)

The Wolf Pack Algorithm is a novel swarm intelligence algorithm with strong local search ability
and global convergence. It consists of the leading wolf, fierce wolves, and explore wolves, including
three kinds of intelligent behaviors: Scouting, summoning, and beleaguering. Simultaneously, with a
productive rule for the leading wolf, which is that the winner can dominate all, it is a renewable
mechanism, namely survival of the fittest, for a pack of wolves. It has been applied in the field of
mathematics, physics, and hydropower station optimization, achieving good calculation results [29–31].
In this paper, the WPA is used for the parameter estimation of the Muskingum model. Combining the
principle of the WPA with the objective function, we designed a WPA for solving Muskingum model
parameters. The procedure of our algorithm for parameter optimal estimation of the Muskingum
model is shown as follows:

Step 1: (Initial wolves) We must initially determine the size of the algorithm population n and the
number of iterations gen, the probe wolf scale factor a, the population regeneration factor b, the step
factor S, the distance determination factor W, and the maximum number of scouting Tmax. The Model
Parameter (C0, C1) is regarded as the position of the artificial wolf (x1, x2) in a two-dimensional
decision space. The position of the wolf pack is initialized in the range of C0 and C1, as shown in
Equation (7):

xi,j = 2 × rand − 1 i = 1, 2, . . . , n; j = 1, 2 (7)

where xi,j is the initial position of the i-th wolf in the j-th decision space; rand is a uniformly distributed
random number in the interval [0,1].

Step 2: (Scouting) Choose the objective function f as the prey odor concentration Yt(i) and
calculate the prey odor concentration at the location of the artificial wolf. According to the Yt(i), sort all
artificial wolf positions in descending order, then select the first artificial wolf of the sorted population
as a head wolf, whose location is regarded as xlead and the prey odor concentration is Ylead. Choose the
second to S + 1 artificial wolves as the explore wolves that total S = Round(a ∗ n), and the remaining
artificial wolves as the fierce wolves. The explore wolves scout to conduct a fine search, until the
maximum number of walks is reached or the maximum global optimal solution is found.

Step 3: (Summoning) The fierce wolfs quickly approach the head wolf to achieve the global
convergence of solution, until the Euclidean distance dis(i) between all fierce wolves and the head
wolf is less than the judgment value of distance dnear or a contemporary global optimal solution is
found. The calculation formula of the distance judgment value is:

dnear =

D
∑

d=1

∣∣∣maxd − mind
∣∣∣

D ∗ W
=

2
W

(8)

where dnear is the judgment value of distance; D is the spatial dimension; W is the distance determining
factor; maxd, mind are the upper and lower limits of the decision variable xi,j, respectively.

Step 4: (Sieging) Under the command of the head wolf, other artificial wolves further update the
location to achieve local fine optimization.

Step 5: (Competitive update) According to the population, update factor b, calculate the amount of
the population, update R and regenerate R artificial wolves, which can be alternated with the previous
generation of artificial wolves with a low fitness value to ensure the diversity of solutions and to avoid
falling into the local optimal.
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Step 6: Determine whether the maximum number of iterations has been reached; if it has, output
the optimal global solution. If not, proceed to the next generation calculation and return to Step 2 until
the maximum number of iterations is reached.

The WPA flow chart for solving the Muskingum model parameters is shown in Figure 2.

Initial  wolves 

Scouting behavior 

Discriminating 
conditions 1

Summoning behavior 

Discriminating 
conditions 2

Discriminating 
conditions 3

Competitive  update 

Update  head  wolf 

Optimal solution 

probe wolf scale factor
population regeneration factor

step factor
distance determination factor

the maximum number of scouting

Begin 

flow routing coefficients
C0 C1 C2  = 1-C0-C1

 multi-objective function Determine head  wolf 

Sieging behavior 

C0 C1 C2

Yes No Yes 

Yes 

No 

No 

Figure 2. Flow chart of parameter estimation.

3.2. Parameter Sensitivity Analysis

The WPA involves a relatively large number of parameters; the main sensitivity parameters are the
distance determination factor W and the step factor S. Therefore, this paper focuses on the discussion
of parameters W and S on the algorithm. In order to determine the distance determination factor W
and the step factor S, the parameters were set as follow: Artificial wolf population size n = 20, explore
wolf proportion factor a = 4, population update factor b = 2, the maximum number of scouting
Tmax = 2, the number of iterations gen = 30. With the Muskingum principle, the algorithm is used
to solve D-dimensional space problem (D = 2), and the upper and lower limits of the variables are
maxd = 1 and mind = −1, respectively.

The WPA’s raid step:

stepd
b =

2(maxd − mind)

S
=

4
S

(9)

where stepd
b is the step size of the d-dimensional space; S is the step factor; maxd, mind are the upper

and lower limits of the decision variable xi,j, respectively.
In the summoning act, the condition of the artificial wolf raid termination is dis < dnear, so the

rapid step should meet the following formula:

D

∑
d=1

stepd
b < dnear (10)
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where the parameters are the same as above.
From Formula (10):

S > 4W (11)

where the parameters are the same as above.
From the above derivation, it can be seen that the normal operation of the algorithm can be

satisfied when the step factor S and the distance determination factor W satisfy the formula (11).
Fixed distance determination factor W = 20, set S = 100, 105, 110, 115, 120, and 130, respectively.

For each S, run the program code 20 times independently, select the evaluation index of the algorithm,
the absolute deviation of the flood process, and the observed and simulated flood peak deviation.
The absolute deviation of the flood process and the formula are as follow:

δ =
n

∑
i=1

|(Q0(i)− Qc(i))| (12)

where δ is the absolute deviation of the flood process, m3/s.
The flood peak deviation is:

f =
1
n

n

∑
i=1

∣∣∣(Qpeak
obs,i − Qpeak

sim,i)
∣∣∣ (13)

where f is the flood peak deviation; Qpeak
obs,i and Qpeak

sim,i are the observed and simulated maximum outflow
at peak flow event number i, respectively; n is the number of simulations times.

The evaluation index values are taken from the average of 20 independent runs. Taking the flood
event of 20100821 as an example, the results are shown in Table 3.

Table 3. Sensitivity analysis of step factor.

W S δ (m3/s) Flood Peak Deviation (m3/s)

20

100 7892.7 6.33
104 7892.4 6.31
110 7891.9 6.29
115 7891.7 6.29
120 7891.6 6.29
130 7891.6 6.29

As shown in Table 3:
(1) With the increase of the S value, δ decreases slightly from 7892.7 m3/s to 7891.6 m3/s,

which indicates that the larger the step size, the finer the search, and the closer the flood forecast results
are to the actual flood process.

(2) When W = 20, the variation range of δ and flood peak are not large, which indicates that the
step size of the WPA has little influence on the forecast results in a certain range.

Keeping in mind that the smaller the searching step, the more time consuming the process is,
the initial selection of S = 120, that is S = 6W. W = 20, 30, 40, 50, 60, and 70 are selected to simulate
the same flood, and the results are shown in Table 4.

As shown in Table 4:
(1) With the increase of W, δ decreases slightly, and the minimum value appears at W = 60.

The peak deviation is also minimized, and then the W value increases; the optimization effect has no
obvious change.

(2) The range of δ is not significant, and indicates that the parameter W of the wolves algorithm
on the two-dimensional nonlinear optimization problem has little influence on the algorithm, and the
algorithm is more applicable.
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Table 4. Sensitivity analysis of distance judgment factor.

W S δ (m3/s) Flood Peak Deviation (m3/s)

20 120 7891.6 6.29
30 180 7891.4 6.20
40 240 7891.2 6.20
50 300 7891.0 6.12
60 360 7890.8 6.12
70 420 7890.8 6.12

With the increase of W, the raid step will be smaller, and the optimization result is too fine,
which will cause the artificial wolf to turn from difficult to besieging. Thus, the algorithm has the
possibility of entering an infinite loop.

In order to further analyze the influence of different weight coefficients on the forecast results,
we set different weight coefficients using the same method. The results are shown in Table 5.

Table 5. Multi-objective weight coefficient analysis.

φ1 φ2 δ (m3/s) Flood Peak Deviation (m3/s)

0.9 0.1 7916.9 6.16
0.8 0.2 7914.8 6.16
0.7 0.3 7912.9 6.18
0.6 0.4 7906.1 6.19
0.5 0.5 7901.0 6.19
0.4 0.6 7896.6 6.19
0.3 0.7 7891.1 6.20
0.2 0.8 7891.7 6.22
0.1 0.9 7891.6 6.26

As shown in Table 5:
(1) With the decrease of φ1, peak deviation increased slightly, with an increase 0.1 m3/s only.

When φ1 is 0.8 or 0.9, the flood peak deviation takes the minimum, which indicated that the weight
factor of Objective 1 focuses on the minimum deviation of flood peak.

(2) With the increase of φ2, the absolute deviation of the flood process is gradually reduced from
7916.9 m3/s to 7891.6 m3/s, and reaches the minimum value when φ2 is 0.7, which indicated that the
weight factor of Objective 2 focuses on the total error of the entire flood process.

According to comprehensive analysis, the weight coefficient φ2 had a great influence on the fitting
effect of the whole flood process and φ1 had little effect on the flood peak simulation. Therefore,
φ1 = 0.3 and φ2 = 0.7 were selected for the multi-objective weight value.

4. Results and Discussion

In this paper, we took flood forecasting of Ankang hydropower station to Ankang city and Ankang
hydropower station to Shuhe hydropower Station as examples. Considering the length of the two
Reaches, the actual demand, and the characteristics of the inflow, the calculation time steps of Reach 1
and Reach 2 were 1 h and 6 h, respectively. The improved Muskingum method (WPA), Particle Swarm
Optimization (PSO), and Trial Algorithm (TA) were selected to compare to the observed outflow.
In the WPA, the values of distance determination (W) and the step (S) were both 100. The maximum
number of iterations was 50. The value of the artificial wolf population size (n) was 20. The values of
the explore wolf proportion (a) and population update (b) were 4 and 2, respectively. In the TA [22],
the parameters (k, x) of this algorithm are shown in Table 6. In the PSO algorithm, a population of
50 individuals was used. The maximum number of iterations in the program was 100. The values of
the acceleration constants c1 and c2 were both set to 0.2.
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The corresponding parameters estimated by the WPA, TA, and PSO are listed in Table 6. It can be
seen from Table 6 that the parameters obtained from the three methods are all technically reasonable,
but do show marked differences. The estimated value of the parameters differ very little between the
WPA and PSO, but the parameters of TA vary quite significantly with WPS and PSO.

Table 6. Parameter estimation results obtained from different methods.

Flood Event 20100821 20120707 20120901 20130722 20140909 20140914

TA
k 1.50 1.50 1.50 1.00 1.00 1.00
x 0.10 0.10 0.10 0.20 0.20 0.20

PSO
k 0.21 1.18 0.88 1.48 1.37 1.17
x −4.17 0.23 −0.43 0.23 −0.42 0.11

WPA
k 0.58 1.23 0.86 1.46 1.56 1.20
x −0.88 0.24 −0.42 0.22 −0.68 0.12

The comparison of the observed and simulation results of these three methods is presented in
Figures 3 and 4.

As shown in Figures 3 and 4:
(1) No matter the length of the river, the simulation results of the WPA and PSO compared to

those of the TA have a high fitting effect. It is embodied in the following aspects: The simulated peak
values are the same as the observed ones, and the simulation process of the backwater segment is
almost coincident with the observed process. However, the simulated values by the WPA and PSO in
the rising water segment are different from the observed ones. Compared with the observed values,
the deviation errors of the simulation values of the WPA are smaller than those of the PSO, and the
deviation errors of the simulation values of the TA are the biggest.

(2) The fitting degree of the flood process in short reach is higher than that of the long river section
by the WPA, PSO, and TA. Regardless of the length of the river, the error of the TA is the largest,
and the WPA simulation deviation is slightly lower than that of the PSO.

In order to visualize the fitting effect of the three methods, the 20140909 flood of Ankang Power
Station to Shuhe Power Station was selected as an example (Table 7), and the correlation diagram of
observed and simulated flow are drawn in Figure 5.

As shown in Figure 5:
(1) The flooding process of the WPA simulation has 4 points falling on the line, and the trend line

coefficient of WPA simulated flood process is 0.99, which is close to 1 compared to that of the PSO and
TA, which indicates that the WPA has a high precision in the simulation of the whole flood process.

(2) The simulated flood peeks of the WPA fall in the straight line y = x, which indicates that the
simulation value is equal to the observed. The peak values of the PSO and TA fall on the upper side of
the line y = x, which indicates that the WPA has better simulation effect on peak value.

In order to further assess the precision of the WPA on the flood process and flood peak
transmission time, the absolute deviation (δ) of flood process, flood peak deviation, and flood peak
transmission time error are selected as the evaluation indices. Tables 8 and 9 show the indices values
by the WPA, PAO, and TA of different floods.
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Figure 3. Simulation results of different floods in Reach 1. 
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Figure 3. Simulation results of different floods in Reach 1.
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Figure 4. Simulation results of different floods in Reach 2.

As shown in Tables 8 and 9:
(1) The WPA and PSO simulation results have a significant advantage over the results of the TA.

Compared to that of the TA, the depreciation of absolute deviation cumulative value of flood process
calculated by the WPA and PSO are 53% and 52%, respectively. The depreciation of absolute deviation
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of flood peak calculated by the WPA and PSO are 99% and 77% based on the 20140909 flood of Ankang
power station–Shuhe hydropower station, respectively.

(2) The maximum deviations of the WPA, PSO, and TA are 9.5 m3/s, 197.1 m3/s and 865.8 m3/s,
respectively. Moreover, the minimum deviations are 0.3 m3/s, 15 m3/s, and 402 m3/s, respectively,
which indicate that the flood peak simulated by the WPA and PSO has obvious advantages over
that of the TA. In the 20140909 flood simulation, flood peak deviations are 9.5 m3/s by the WPA and
197.1 m3/s by the PSO, respectively. Flood peak deviation simulated by the WPA is much smaller than
that of the PSO, which indicates that the WPA can significantly improve peak forecast accuracy.

Table 7. 20140909 flood simulation of Ankang Power Station to Shuhe Power Station.

Time Inflow (m3/s)
Outflow (m3/s) Relative Error (100%)

Observed TA WPA PSO TA WPA PSO

0 1315 2405.47 1196.50 2405.47 2405.47 50.26% 0.00% 0.00%
6 3105 2682.43 1585.65 2956.10 2682.43 40.89% 10.20% 2.73%
12 4671 3783.79 3076.53 3784.10 3783.79 18.69% 0.01% 5.22%
18 4830 4351.65 4358.84 4141.88 4351.65 0.17% 4.82% 5.96%
24 4916 5026.62 4813.45 4400.83 5026.62 4.24% 12.45% 11.93%
30 5998 4813.56 4914.02 5102.37 4813.56 2.09% 6.00% 5.96%
36 6652 5010.76 5867.91 5709.84 5010.76 17.11% 13.95% 14.74%
42 8318 6846.56 6631.47 6836.78 6846.56 3.14% 0.14% 0.00%
48 8505 7217.19 8082.39 7395.13 7217.19 11.99% 2.47% 4.20%
54 8251 7607.34 8473.15 7616.87 7607.34 11.38% 0.13% 2.59%
60 6247 7101.53 8221.21 6816.21 7101.53 15.77% 4.02% 0.01%
66 6120 5917.64 6654.63 6574.14 5917.64 12.45% 11.09% 13.25%
72 5649 5839.00 6438.00 6196.58 5839.00 10.26% 6.12% 7.21%
78 3390 5446.03 5613.68 4897.68 5446.03 3.08% 10.07% 7.84%
84 2390 3789.75 3409.38 3925.44 3789.75 10.04% 3.58% 3.53%
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Figure 5. Correlation of observed and simulation data.

Table 8. Analysis of Ankang hydropower station–Ankang city simulation results.

Floods 20100821 20120707 20120901

Method TA PSO WPA TA PSO WPA TA PSO WPA

δ (m3/s) 13,960 7892 7865 11,404 10,606 10,607 197,269 5529 5528
Flood peak deviation (m3/s) 34.3 6.5 0.5 33 51.6 51.4 87.76 52.1 51.7

Flood peak time transmission error (h) 1 0 0 0 0 0 1 0 0
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Table 9. Analysis of Ankang hydropower station–Shuhe hydropower station simulation results.

Floods 20130722 20140909 20140914

Method TA PSO WPA TA PSO WPA TA PSO WPA

δ (m3/s) 4666 2221 2162 9141 4422 4278 4389 2697 2678
Flood peak deviation (m3/s) 402.0 19.5 0.3 865.8 197.1 9.5 409.0 15.0 8.6

Flood peak time transmission error (h) 0 0 0 0 0 0 0 0 0

5. Conclusions

In this paper, a new multi-objective Muskingum model was established and solved by a new
algorithm called the WPA, and its performance was verified by using the Ankang to Shuhe section of
Hanjing River datasets. The following work has been done:

(1) After a brief literature review, a novel parameter estimation approach based on the WPA
was proposed for parameter estimation of the nonlinear Muskingum flood, which considered two
calibration objectives in the calibration procedure: (1) The weighted sum of absolute difference between
the routed and observed outflows, and (2) the coefficient of determination between the routed and
observed outflows.

(2) The proposed approach is compared to the other methods (TA, PSO) for an example case from
the Hanjiang River, and the results demonstrate that the WPA can achieve a high degree of accuracy to
estimate the parameters and results in accurate predictions of outflow.

(3) In this study, however, the parameters of WPA, such as the distance judgment factor and
the step factor, have limited its application range. A possible reason is that different rivers have its
applicable parameters. In future research, more floods in different rivers basins will be used to expand
its range of applications.
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Abstract: Flash-flood forecasting has emerged worldwide due to the catastrophic socio-economic
impacts this hazard might cause and the expected increase of its frequency in the future. In mountain
catchments, precipitation-runoff forecasts are limited by the intrinsic complexity of the processes
involved, particularly its high rainfall variability. While process-based models are hard to implement,
there is a potential to use the random forest algorithm due to its simplicity, robustness and
capacity to deal with complex data structures. Here a step-wise methodology is proposed to derive
parsimonious models accounting for both hydrological functioning of the catchment (e.g., input data,
representation of antecedent moisture conditions) and random forest procedures (e.g., sensitivity
analyses, dimension reduction, optimal input composition). The methodology was applied to
develop short-term prediction models of varying time duration (4, 8, 12, 18 and 24 h) for a catchment
representative of the Ecuadorian Andes. Results show that the derived parsimonious models can
reach validation efficiencies (Nash-Sutcliffe coefficient) from 0.761 (4-h) to 0.384 (24-h) for optimal
inputs composed only by features accounting for 80% of the model’s outcome variance. Improvement
in the prediction of extreme peak flows was demonstrated (extreme value analysis) by including
precipitation information in contrast to the use of pure autoregressive models.

Keywords: flash-flood; precipitation-runoff; forecasting; lag analysis; random forest; machine learning

1. Introduction

Flooding is nowadays the most common natural disaster worldwide [1]. Its occurrence is expected
to further intensify during coming years due to the increase in the frequency of extreme precipitation
events [2]. As a result, during last decades, real-time flood forecasting has become an emerging field
of research for water management and risk analysis [3]. In highland catchments, extreme flash flood
events have the potential to cause serious damage to downstream infrastructure and produce large
socio-economic impacts. In the Andean region of Ecuador, flash-flood events cause human losses
and perturb the everyday life of people (e.g., interruption in the water supply service, damage in
transportation network) [4]. According to a report of the Andean community for the period 1970–2007
(see http://www.comunidadandina.org), 263 flash-floods events and 357 landslides (as a side effect,
mostly reported in the city of Cuenca) have caused 429 human deaths as well as partial and complete
destruction of 1568 and 581 houses, respectively.

Water 2018, 10, 1519; doi:10.3390/w10111519 www.mdpi.com/journal/water296



Water 2018, 10, 1519

The flash-flood hydrological response is highly non-linear since stream flow processes are
complex phenomena exhibiting high spatial and temporal variability [5–8]. The main flash-flood
driving forces are spatial and temporal precipitation variability, topography and soil humidity
characteristics [8,9]. Nevertheless, in the Andean region, flash-flood forecasting is challenging
considering that information other than precipitation and discharge is not commonly available due
to budget constraints, the remoteness of the study areas and more importantly due to the extreme
variability of the main driving forces previously mentioned. As a result, a simple, yet useful, approach
is the development of precipitation-runoff forecasting models. Regional and local topography together
with climatic influences are responsible for the spatio-temporal variation of precipitation, which is
more prominent in mountainous areas. Specifically, in the Andean region, precipitation experiences
extreme variability [10–12], and its characteristics are different for the eastern and western slopes of
the Andean cordillera [13,14].

For predictive modeling, the use of machine learning (ML) techniques has recently and remarkably
increased [15]. ML models rely on data-driven black-box processes aimed to infer from observations
the stochastic dependency between the past and future [15]. These models are characterized by a
more compact representation and high predictive potential, with considerably fewer parameters and
variables when compared to fully distributed models [7].

Several ML methods have been developed: artificial neural networks (ANNs), support vector
machines (SVMs), and decision trees (DTs), among others. Nevertheless, these methods exhibit some
weaknesses such as overfitting for ANNs [16], the complexity of mathematical functions for SVMs [17]
and the considerable effort needed to pre-process data for DTs [18]. In addition, unlike DTs, ANNs and
SVMs are not able to estimate the relative importance of the features used in the model’s input [19].
Random forest (RF) is a multiple DT-based algorithm (see [20]) characterized for its high predictive
accuracy and its ability to perform a feature sensitivity analysis [21–23]. The RF algorithm can be
used for classification and regression applications. However, although promising, RF (specially for
regression) has been rarely used and evaluated in water resources studies [22].

For classification purposes, the study of Wang et al. [19] proposes a holistic approach for regional
flood hazard risk assessment based on spatial information inducing flooding. Likewise, accurate
results in flood mapping were obtained for small urban areas ([24]), large cities ([25]) and even for very
large regions (entire mountainous area of China, [26]). However, for regression applications, studies
focusing on flood forecasting are hardly documented. Albers et al. [27], for instance, determined the
relative importance of contributing upstream discharges to the main river during flood events rather
than focusing on a numerically forecasting of flash-flood events.

Determination of the size of the forecast horizon (lead time) is critical in time series prediction [15].
The predictive ability decreases as the number of time steps to forecast increases as result of error
accumulation, accuracy reduction and lack of information [20,28]. On the other hand, identification of
the regressor size (number of previous time steps from precipitation and discharge time series) aims to
avoid the addition of irrelevant features that add extra noise to the training process. However, the loss
of relevant features might, in some instances, also reduce prediction success [20].

In the pursuit of model parsimony, a further step is the optimization of the input composition
through a feature reduction process. It can be done through a feature selection technique (sensitivity
analysis) aimed to assure high accuracy, speed, robustness, efficiency and interpretability [29,30].
This technique consists of an educated retention of the most relevant features (predictors) that
will reduce the model input dimension, improving its computation time without compromising
its effectiveness.

The aim of this study is to develop a step-wise input data selection strategy together with a
sensitivity analysis for building up an optimal forecast hydrological model based on the RF algorithm,
applied to a mountain catchment. The catchment of study is representative of the Andean region
of Ecuador.
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2. Study Area and Dataset

The study area is the Tomebamba catchment towards its outlet at the Matadero-Sayausí station,
which corresponds mainly to a páramo ecosystem located in the south-eastern flank of the Andean
cordillera of Ecuador (Figure 1). The Tomebamba catchment is part of the Cajas National Park, which
was declared by UNESCO as a World Biosphere Reserve in 2013. Elevation of the study area ranges
from 2800 to 4100 m above the sea level (m.a.s.l.), and covers an approximate area of 300 km2. It drains
to the upper part of the Tomebamba river (area of the catchment ≈ 332 km2), and lately to the Amazon
river towards the Atlantic Ocean. The importance of the catchment is related to its water supplier role
for domestic, agricultural and industrial purposes for the city of Cuenca (third largest city in Ecuador
with more than 580,000 inhabitants), and even for hydro-power generation in the region.

Figure 1. Location of the Tomebamba catchment at Matadero-Sayausí outlet in the Andean cordillera
of Ecuador, South America (UTM coordinates).

Climate at the Tomebamba catchment is governed by continental air masses from the Amazon
river basin, by the seasonal shift of the Inter Tropical Convergence Zone (ITCZ), and by the cold water
upwelling of the Humboldt ocean current. As a result, convective and orographic cloud formations
occurs [31]. Although precipitation (in terms of volume) mainly falls as drizzle (≈1 mm/h), higher
intensity events are also experienced in the catchment (up to 140 mm/h) [32,33].
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According to the classification system of the Food and Agriculture Organization (FAO) of the
United Nations [34], the prevailing soil types in the Tomebamba catchment are andosol and histosols.
Furthermore, studies by [35,36] in a comparable Andean micro-catchment have revealed the dominance
of interflow as the major contributor to runoff generation. This is due to the inner soil properties
of water storage (andosols) and organic matter content (histosols) together with the presence of
wetlands and the slope of the catchment. As a result, flash-flood events are not exclusively caused by
extreme precipitation events. Non-extreme precipitation events can trigger flash-floods when the soil is
saturated due to the high retention capacity of the catchment. High flows are explained by the presence
of histosols, whereas in contrast, low flows generation is controlled by the slope of the catchment.

Lack of spatial information describing the main flash-flood driving forces in the region limited the
variables to be used as inputs to punctual measurements (time series) of precipitation and discharge.
Data comprises precipitation and runoff hourly time series for a period of 2.5 years (from January
2015 to July 2017). To account for the variability of precipitation in the catchment, precipitation
time series were obtained from 3 tipping-bucket rain gauge stations (Toreadora at 3955, Virgen at
3626 and Chirimachay at 3298 m.a.s.l.), which were installed within the catchment and along its
altitudinal gradient. On the other hand, discharge time series were obtained for the outlet of the study
catchment, at the Matadero-Sayausí station (2693 m.a.s.l.), for which the corresponding drainage area
was delineated (Figure 1).

The length of the study period was further divided for training (from January 2015 to July 2016)
and validation (from July 2016 to July 2017) purposes. Mean annual precipitation volumes for the study
period were 1109, 1021 and 909 mm for Chirimachay, Toreadora and Virgen stations, respectively.

Figure 2 shows the precipitation (average of 3 stations) and the discharge hourly time series for
the study period. An analysis of historical discharge extreme high events in the Tomebamba catchment
(from 1997 to 2017) together with local media reports from the last decade served to determine a
threshold value of 50 m3/s as an indicator of a dangerous event affecting the everyday life of the
community and usually leading to a flood event in the catchment. This reference value has a return
period of 4 months (calculated with WETSPRO, using peak-over-threshold values, see [37]). For the
study period, 12 independent events were above this threshold value.

Figure 2. Precipitation (averaged for Toreadora, Virgen and Chirimachay stations) and discharge
hourly time series for the study period (January 2015 to July 2017). Note the horizontal red dashed line
at a discharge of 50 m3/s (historical indicator of a flood event).
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3. RF Technique

RF is a supervised ML algorithm that ensembles multiple decorrelated DTs [20]. A decision tree is
a stochastic model that relates a response/outcome to explanatory variables or features. Each decision
tree can be seen as a set of conditions, hierarchically organized, and successively applied to a dataset.
Decorrelation among trees is assured by growing trees from different randomly resampled training
sets (bagging technique) from the original dataset [22]. For regression applications, multiple DTs
provide independent numerical predictions of the phenomenon of interest (i.e., discharge), contrary
to class labels for classification. At the end, the outcome corresponds to the mean prediction of all
individual trees.

Starting from the root (parent) node of a tree, and at every node, data is recursively partitioned
into two self-similar child nodes by following simple rules related to the data and until a specified
stop condition is reached [38]. To split a node, a random selection of features is used by the RF
algorithm (instead of using all features). For this, a random component is used to resample and to
select the optimal successive directions (features) for splitting the data with the purpose to obtain
purer nodes than the parent. By minimizing node impurity, the collection of outcomes of a tree is the
most homogeneous possible. Every terminal node comprises a simple regression model that applies in
that node only. A detailed description of the method can be found in [20].

Strengths of the RF algorithm are related to its simplicity due the few parameters that need
to be tuned, higher accuracy when compared to other ML techniques, and robustness as result of
a bagging process [20]. It is capable of dealing with small size samples, high-dimensional spaces,
and complex data structures [23]. The RF algorithm was used by means of the scikit-learn package
for ML in Python R© [39]. The main functions, attributes and methods employed can be found in
http://scikit-learn.org.

3.1. Algorithm

The RF algorithm for regression applications is as follows:

(i) Construct each one of the decision tree models based on a random selection of a number of
bootstrap samples (n_ estimators parameter) drawn with (or without) replacement from the
training dataset. Each bootstrap is composed by a different subset (roughly two-thirds) of the
dataset, in a process known as out-of-bag (OOB) [19]. The OBB technique aims to get unbiased
estimates of the regression as well as to get estimates of the importance of the variables used for
the tree construction process [40].

(ii) Determine a number of features (max_ features parameter) to perform the best split decision from
the total number of predictor variables of the dataset (n_ features). The condition max_ features
< n_ features ensures the nonexistence of duplicated DTs in the forest. Consequently, by
assuring variety, the problem of over-fitting is avoided. Ref. [20] recommends max_ f eatures =√

n_ features, for regression problems.
(iii) Split each node of each decision tree into two descendant nodes by using the best split criteria.

The calculation of the best splits are chosen based on the mean squared error (MSE) for regression
problems. The minimum number of samples required to split a node is controlled by the
min_ samples_ split parameter.

(iv) Grow n_ trees as much as possible (largest extent) by repeating steps 1 to 3 until a number of nodes
have been reached. The optimal number of trees is reached when the OOBerror stops decreasing.
The depth of each tree is controlled by the max_ depth and the min_ samples_ leaf parameters;
where min_ samples_ leaf is the minimum number of samples required to be at a leaf node. This is
aimed to reduce the structural complexity of the models in what is called pruning criteria [22].

(v) Determine the prediction as the mean response from all regression trees [20].
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3.2. Determination of Model Hyper-Parameters

Before using the RF algorithm, its model hyper-parameters, which basically control the structure
and level of randomness of the forest [41], must be defined. For this, a random grid-search procedure
was implemented to determine the optimal hyper-parameters for each model that will be built
up. It consists on the assessment of the model residual mean for different combinations of the
hyper-parameters on the training dataset. For this, a 3-fold cross-validation was performed to avoid
overfitting. The training data was split into 3 folds; the model was iteratively fitted on the 2 folds and
evaluated on the third one. Table 1 shows the ranges of the different values of the most important
hyper-parameters (according to [39]) that were evaluated. From those hyper-parameters, n_estimators
and max_ f eatures are generally agreed as the most important ones during calibration (significant
impact on error rate) [19,27].

Table 1. Grid of the hyper-parameters used for a 3-fold cross-validation.

Hyper-Parameter Values

n_estimators * 50–700
max_features ’auto’, ‘sqrt’ and ‘log2’

min_samples_split 2, 5 and 10
min_samples_leaf 1, 2 and 4

max_depth * 10–700

* Increment of 10 units.

3.3. Input Data Composition

The determination of the optimal model input plays a key role in model performance since it
provides the basic information about the system [29]. For a precipitation-runoff forecasting model,
the input coming from precipitation at the current time alone is not sufficient for the model to perform
adequately. Therefore, additional information can be derived from previous time steps of precipitation
and discharge. Nevertheless, an autoregressive exogenous analysis is necessary to determine the
number of lags (features) of precipitation and discharge that have a significant influence on the
predicted flow.

Physically, the addition of precipitation lags aims to mimic the antecedent soil moisture conditions
of the catchment, which might play a key role in flash-flood forecasting (humid regions). It accounts
for the fact that during dry periods, the soil is below field capacity, and therefore, it needs additional
rain water first to reach field capacity and then to generate discharge. Conversely, during wet periods,
the soil is at or above field capacity and needs less water to generate discharge. As a result, simulations
of runoff for dry and wet periods are characterized by underestimation and overestimation of discharge,
respectively [42].

To determine the number of lags to be used, [43] proposed a qualitative analysis that relies on
statistical properties such as cross-, auto- and partial-auto-correlation of the data series. This method
avoids a long trial-and-error-procedure when identifying the optimal composition of the input.
For discharge, the autocorrelation function (ACF) and the partial autocorrelation function (PACF)
with 95% confidence levels can suggest the influencing antecedent flow patterns in the discharge at a
given time [6,43,44].

For precipitation, the number of regressors can be determined either through a Pearson cross-correlation
applied to the data series [43], or according to the concentration time of the catchment [44]. The above
input selection procedure relies on the linear relationship between the variables; however, the effect of
an additional variable is not assessed.
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4. Model Evaluation

Model performance or efficiency was determined by comparing the model outputs and the
observed time series. For this, goodness-of-fit statistics and graphical interpretation techniques
were applied together since both approaches complement each other. The shortcoming of applying
only goodness-of-fit statistics is that they restrict the model assessment by representing the mean
performance of the model without considering the unbalanced influence of outliers and/or extreme
high (floods) or low (droughts) values [37].

4.1. Goodness-of-Fit Statistics

Model residual mean (ME) measures the average systematic difference between simulated and
observed values. In contrast, the model residual variance (S2

EQ) measures the average random
differences. For high number of observations, the MSE equals approximately the sum of the squared
model residual mean and the model residual variance. As a result, the MSE comprises a systematic
(bias in the model) and random component (after bias correction) [37].

The disadvantage of using MSE, S2
EQ and ME is their high dependence on the magnitude of

variable of interest (i.e., discharge). Thus, the coefficient of efficiency also named the Nash-Sutcliffe
model efficiency (NSE), which is less sensitive to high extreme values [45], was applied to measure the
overall model accuracy. The NSE is a dimensionless and scaled version of the MSE; it is the fraction of
variability in the observations explained by the model, and it can be calculated as follows:

NSE =

[
1 − ∑n

i=1
(
Qm(i)− Qo(i)

)2
∑n

i=1
(
Qo(i)− Qo

)2
]
=

[
1 − MSE

S2
Qo

]
(1)

where Qo is the mean observations value. The NSE ranges between −∞ and 1.0, being NSE = 1 the
optimal value.

The systematic error, which is the objective function, can be minimized through calibration.
On the contrary, the random component cannot be removed since it is related to the inherent stochastic
nature of the inputs.

Although ideal, the use of target functions designed for extreme high flows such as the mean
peak difference (see [46]) was not possible due to the relatively small dataset available for the study
catchment. The reason is the poor training of the trees in the forest when the objective function if
specialized in extreme high values. Therefore, to use target functions larger datasets are required
to capture a more complete spectrum of extreme events. Nonetheless, a solution to this issue relied
in training the model for all flows, enriching the input of the model with additional information
specifically aimed to improve the prediction of extreme high flows, and then assessing the efficiency of
the model via means of graphical analyses focused on extreme high values (floods).

Graphical Analysis

The need to perform a more complete evaluation of model performance (analysis of extreme
high values) is related to the fact that model residuals (ME and S2

EQ
) increase with higher flows. For this,

a Box-Cox transformation of discharges was applied; it was calculated with the following equation:

Box − Cox(q) =
qλ − 1

λ
(2)

where q is discharge and the parameter λ can be calibrated graphically until reaching homoscedasticity
in the residuals (constant standard deviation). However, according to [37], a value of lambda = 0.25 is
commonly used for runoff, and thus it was adopted for this study.
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Another issue related to model residuals is their common serial dependence on scales (time step)
and flow magnitudes—it will be higher for shorter time steps [37]. For peak flows (floods), the serial
dependence is strong for short time steps (i.e., hourly scales or smaller than the recession constant of
the quickest sub-flow component). The evaluation of flows occurring at all time steps will imply a
higher representativeness for low flows; therefore, the selection of nearly independent observations is
necessary. Independent events were obtained by splitting the discharge time series in events and using
one value per event (technique developed by [37]).

Finally, the assessment of a model under extreme conditions relied on an indirect indicator, the
flow frequency distribution for extreme high values. The analysis focused on the behavior of the
distribution towards the tail (i.e., higher values for peak frequency distribution). A comparison of
discharge values with a visual inspection of the shape of the tail for both historical observations and
simulations was applied to conclude whether model performance is acceptable for extreme conditions.

4.2. Feature Selection Analysis

Model parsimony was approached via a reduction of the input dimension using a procedure
known as feature selection. It is aimed to shorten computation times by determining the relative
importance of each of the features of the input and trimming off the less important ones. In some cases,
feature selection even improves model accuracy [47]. Different techniques for feature selection are
available; e.g., based on a variance sensitivity analysis, based on univariate statistical tests, recursive
elimination, among others.

For this study, the variance sensitivity analysis was applied by following a simple procedure
introduced by [48]. It measures the variance of the output produced by a single feature without
considering interactions between features. The selection criteria rely on the fact that a relevant feature
to the model will produce a higher output variance. The variance (Vk) produced by a single feature,
and therefore, its relative importance (Rk) can be calculated as follows:

Vk =
∑L

j=1(ŷt−k(j)− ŷt−k(j))2

L − 1
(3)

Rk =
Vk

∑m
i=1 Vi

× 100 (4)

where, ŷt−k is the model output obtained by holding all m input features at their average values except
ŷt−k, which varies according to the sample or time step, along the interval j ∈ {1, ..., L}.

Finally, based on the Rk-values obtained, the selection principle was to retain a number of features
accounting for at least 80 % of the total relative importance. The remaining features can be considered
unimportant and therefore removed.

5. Step-Wise Methodology

The step-wise methodology proposed in this study (Figure 3) consists in setting up several RF
models to forecast discharge for a specified forecast horizon until finding the optimal or parsimonious
one in terms of model efficiency. Special attention is given to the forecast of extreme high values
(floods) via an analysis of their flow frequency distribution. At every step, a new model is composed
by a particular input data (time series) based on the information of precipitation and discharge, and
according to a lag analysis aimed to include only relevant information.

For this purpose, an autoregressive model, whose input is merely composed by discharge lags,
was defined as the base model. The dimension of the input of the base model is then gradually
increased by adding extra information such as precipitation observations at the current time and lags
(to mimic soil moisture conditions in the catchment). Model hyper-parameters are tuned for every
new model (input data composition scenario).
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The outcome of the RF model is the prediction of discharge at a certain time, which lately forms
a discharge time series for the specified forecast horizon. The last step, whose objective is to derive
parsimonious models, is to reduce the dimension of the input based on a sensitivity analysis that
determines the most relevant precipitation features accounting for the 80% of the output’s variance.
The step-wise approach proposed in this study is firstly used for building up a 4-h discharge forecasting
model, and later on, the arising results will serve to develop models with longer forecast horizons of
varying time (8, 12, 18 and 24 h).

Figure 3. Scheme of the step-wise methodology for developing precipitation-runoff forecasting models.

6. Results and Discussion

The following subsections, unless specifically mentioned, correspond to a 4-h discharge
forecasting model.

6.1. Determination of the Number of Discharge and Precipitation Lags

Figure 4 shows the ACF and PACF plots, respectively, from which the number of discharge lags
were determined. The ACF and the corresponding 95% confidence band was estimated from lag
1 to lag 400 (h), and the highest autocorrelation occurred at the first lag. A significant correlation
was revealed up to lag 300 (around 13 days). Thereafter, the correlation fell within the confidence
band (Figure 4a). The systematic ACF decay demonstrated the presence of a dominant autoregressive
process. Similarly, the PACF and its 95% confidence levels were estimated from lag 1 to 25. The PACF
revealed a significant correlation up to lag 8. The dominance of the autoregressive process over the
moving-average is proved by the rapid decay of the PACF (Figure 4b). As a result, it seemed reasonable
to include discharges up to 8 lags (h) as additional inputs.
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(a) (b)

Figure 4. (a) Autocorrelation function (ACF) and (b) Partial autocorrelation function (PACF) of the
Matadero-Sayausí discharge series. Gray hatch indicates the 95% confidence band.

Figure 5 illustrates the Pearson’s cross-correlation between each precipitation station and the
discharge time series to determine the number of precipitation lags to be used. Results revealed the
highest correlation, for all stations, at lag 4 (maximum correlation of 0.3323 for Toreadora). In contrast,
the concentration time of the catchment was estimated in 2.3, 3.4, 5.2 and 5.9 h according to the
equations of Kirpich, Giandotti, Ven Te Chow and Temez, respectively (a summary of the equations
can be found in [49]). The average concentration time (4.3 h), according to the mentioned equations,
matches with the number of lags determined by the cross-correlation analysis.

Figure 5. Pearson cross-correlation comparison between the Toreadora (3955 m.a.s.l.), Virgen
(3626 m.a.s.l.) and Chirimachay (3298 m.a.s.l.) precipitation stations and the Matadero-Sayausí
(2693 m.a.s.l.) discharge station. Note the horizontal line at a cross-correlation of 0.20.

6.2. Base Model: Discharge Lags as the Sole Input

The use of 8 discharge lags as the input of the base model (model A) was confirmed by a sequential
process that gradually added one lag at the time until the NSE-values calculated for the training period
stopped significantly (0.005) improving. Although the addition of more than 8 lags resulted in a slight
increase of the NSE-values in the training period, the NSE-values in the validation period started
deteriorating (as a result of overfitting).

Model efficiencies of the base model, whose input consisted of 8 features, obtained NSE-values
of 0.880 and 0.652 for the training and validation periods, respectively. Moreover, according to the
sensitivity analysis, the relative importance of each of the discharge lags decreased slightly and
proportionally from 13.6 % (lag−1) to 11.6% (lag−8).
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6.3. Precipitation Lags as Additional Inputs

To improve the base model, its input was enriched with precipitation information coming from
three stations (Toreadora, Virgen and Chirimachay) from which data were available. The number of lags
was determined according to the cross-correlation between each precipitation station and the discharge
time series. For this, similar to [29,43], a cross-correlation threshold of 0.2 was selected, indicating that
24, 10 and 15 lags should be used for Toreadora, Virgen and Chirimachay stations, respectively.

The input of this new model (model B) was composed by precipitation information at the current
time from 3 stations, their corresponding lags and discharge lags (60 features in total). Results indicated
NSE-values of 0.954 and 0.758 for the training and validation periods, respectively.

6.4. Feature Selection

Figure 6 shows the relative importance of each of the features of model B. Results clearly show
the predominance of the discharge information over precipitation. The total relative importance of
the precipitation information was 44.8%. Based on the sensitivity analysis, the contribution of the
three rainfall stations was 26.9, 13.5 and 14.8% for Toreadora, Virgen and Chirimachay, respectively.
No relation was found between the relative importance of the precipitation station and its altitude nor
distance to the outlet.

Figure 6. Feature relative importance of the 4-h discharge forecasting model B. Darkest bars indicate
the features selected for a reduced version of the input (model C).

As a final stage, precipitation at the current time and 9 lags for all stations (from lag−1 to lag−9)
were selected since they accounted for the 80.36 % of the total relative importance of model B. As a
result, 38 features in total were used as inputs of model C (see darkest bars in Figure 6). Efficiency of
model C slighted improved (0.018) when compared to model B. Results indicated NSE-values of 0.972
and 0.761 for the training and validation periods, respectively. Figure 7 presents the model results for
both the training and validation periods. Moreover, a comparison between the results of models B and
C showed a correlation coefficient (R2) of 0.996. Both the slight change of model efficiencies and the
comparison of results suggested that 36.7 % of the features were successfully trimmed off, achieving a
parsimonious model.

In contrast, to study the usefulness of the addition of precipitation information, the lags of each
station were gradually and simultaneously included in the input until reaching the best NSE-values for
the training period. Results proved that only 4 lags per station were enough to achieve the best model
performance (0.973). Results obtained NSE-values of 0.973 and 0.764 for the training and validation
periods, respectively. Only an improvement of 0.001 of efficiency (training period) was obtained when

306



Water 2018, 10, 1519

compared to model C. Thus, the criteria of including precipitation information until reaching the 80%
of the relative importance was confirmed.

(a) (b)

Figure 7. Model results of the parsimonious 4-h discharge forecasting (model C) (a) Training period,
from January-2015 to July-2016. (b). Validation period, from July-2016 to July-2017.

6.5. Graphical Analysis

To complement goodness-of-fit statistics, Figure 8a shows the empirical extreme value distribution
of peak flows for both observations and simulations (models A and C). The use of a pure autoregressive
process (model A) underestimated systematically, to a greater degree, peak flows for 0.3-year return
period onwards when compared to model C.

Additionally, Figure 8b shows the correlation between the predictions of models A and C
(vertical axis) and the observed flows (horizontal axis) for high flows. The mean error and the standard
deviation correspond to the results of model C. Model residuals are represented by the horizontal
and vertical differences between each point and the bisector line. The dependence of the standard
deviation on the flow magnitude was disrupted (constant standard deviation) after applying the
Box-Cox transformation with a λ-value of 0.25. Predictions of model A indicate higher scatter (higher
standard deviation of peak flow deviations from the bisector line) and higher bias (systematically
lower mean peak flows) when compared to model C. Consequently, peak flows were systematically
more underestimated by model A than model C. The improvement in the prediction of peak flows
when precipitation data were included as additional inputs is therefore evident—it is considerably
more significant for extreme high values. For instance, the 4-h forecast of a particular peak discharge
of 69 m3/s was improved from 39 (model A) to 61 m3/s (model C).

Overall assessment of the 4-h forecasting model indicates a good match between observations
and simulations for flows up to 60 m3/s (being 7.1 m3/s the mean discharge of the time series).
This confirms the validity of the derived model for the forecasting of discharges historically indicating
floods in the catchment (threshold value of 50 m3/s). The fact that flows above this threshold were
correctly simulated determined the sufficiency of 2.5 years for calibration/validation when the objective
is to provide an alarm indicating a flood risk in the catchment.
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(a) (b)
Figure 8. (a) Empirical extreme value distribution of peak flows; (b) Comparison of nearly independent
peak flow maxima.

6.6. Forecasting Models of 8, 12, 18 and 24 h

The step-wise methodology applied for building up a 4-h forecasting model was further tested
for longer prediction horizons of 8, 12, 18 and 24 h. Table 2 resumes their corresponding input
compositions, which show that the input dimension of the best model increased (precipitation lags)
accordingly to the increase of the forecast horizon analyzed. More than 8 discharge lags were only
needed for the 24-h forecasting model.

Table 2. Input data composition and model efficiencies for forecasting models and their parsimonious
versions for prediction horizons of 4, 8, 12, 18 and 24 h.

Forecast Horizon Discharge Toreadora Virgen Chirimachay Total NSE NSE
[h] Lags Lags Lags Lags Features Training Validation

4 8 24 10 15 60 0.954 0.758
4 * 8 9 9 9 38 0.972 0.761

8 8 32 19 23 85 0.868 0.581
8 * 8 15 15 15 56 0.867 0.580

12 8 36 23 27 98 0.828 0.506
12 * 8 18 18 18 65 0.829 0.503

18 8 42 29 33 115 0.772 0.442
18 * 8 21 21 21 74 0.771 0.439

24 15 48 35 39 140 0.772 0.385
24 * 15 21 21 21 81 0.767 0.384

* Parsimonious version.

Feature selection based on the variance analysis was successfully performed for all forecasting
models when a fixed cross-correlation threshold of 0.2 and a target of cumulative 80 % of relative
importance were used for all forecast horizons. The percentage of reduction of features without
compromising model performance were 36.7, 34.1, 33.7, 35.7 and 42.1% for forecasting models of 4, 8,
12, 18 and 24 h, respectively. Additionally, a comparison between model results of the full and optimal
models showed correlation coefficients (R2) of 0.985, 0.996, 0.996, and 0.997 for forecast horizons of
8, 12, 18 and 24 h.

Model efficiencies in terms of NSE-values for the training and validation periods are shown
in Table 2. Results proved that the ability of a model to forecast discharge decreases as the forecast
horizon increases. Regarding the effectiveness of the feature selection analysis, only a slight change
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(maximum 0.003) was observed in the NSE-values for the validation period; in some cases feature
selection improved model efficiencies.

Figure 9a compares the empirical peak flow extreme value distribution of all forecast horizons
(4, 8, 12, 18 and 24 h) for both observations and simulations. Only the optimal models were used for
this analysis. The underestimation of extreme values towards the upper tail of the distribution became
stronger as the forecast horizon increased. The lower bias of shorter forecast horizons in the empirical
distribution is also reflected in the cumulative hydrograph volume (Figure 9b).

(a) (b)

Figure 9. (a) Empirical extreme value distribution of peak flows, and (b) Comparison of cumulative
flow volumes for forecasting models of 4, 8, 12, 18 and 24 h.

Similarly, Figure 10 shows higher scatter and bias for longer forecast horizons, which resulted
in higher forecast errors when the forecast horizon increased. Strong discharge underestimations
(up to 300% for the 24-h forecasting model) are explained by the simplicity of precipitation-runoff
forecasting models, which lack of relevant information describing the flash-flood generation process
in mountainous areas. Particularly, in páramo ecosystems, disregard of directly measured soil
moisture information limits the forecasting of extreme high and low flows. As a result, the problem
of underestimation of low flows and overestimation of high flows was observed in the peak flow
empirical extreme value distribution.

Figure 10. Comparison of nearly independent peak flow maxima for forecasting models of 4, 8, 12, 18
and 24 h.
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Another factor that compromises the forecasting of extreme high flows is the insufficient
representation of the spatial variability of precipitation in the catchment with only three rain gauges
stations. Precipitation events might occur in areas out of the coverage of rain gauges, specifically, rain
formation processes that are driven by local topography.

Besides the lack of relevant information feeding the models, the use of a relatively small dataset
(2.5 years) for training and validation might also reduce the ability of the RF models to forecast
discharge. This is due to the incomplete spectrum of discharge magnitudes captured by a small dataset,
specially when extreme high flows are of interest. As a result, the RF models will not perform well for
data points beyond the scope of the training dataset due to the average of the results of each tree in the
forest and as well as the rules established for partitioning data during the training process. Results of
the combined effect of the lack of relevant information and the dataset limitation can be also seen in
Figure 9a, where higher errors were found for longer forecast horizons.

7. Conclusions

The development of an adequate runoff and flash-flood forecasting model is needed due to the
susceptibility of lowland areas to the catastrophic socio-economic impacts of flash-floods. However,
the development of such model is a complex procedure that deals with non-linear stream flow
generation processes. Specifically, the use of precipitation-runoff forecasting models is targeted, as an
efficient solution, for regions with lack of key-spatial information explaining the flash-flood generation
process. When a model is approached through ML techniques, small datasets, high dimensionality
and the difficulty to identify the importance of input features limit the proper construction of a model,
and consequently, model performance optimization. Hence, to account for this issues, the use of
RF models was proposed in this study to assess short-term discharge forecasting models of varying
duration time (4, 8, 12, 18 and 24 h) for a mountainous region with data limitation issues.

The methodology proposed in this study have improved the current knowledge of the
precipitation-runoff relations in terms of prediction over a catchment located at a high altitude.
The RF ability to predict extreme values decreased as the forecast horizon increased according to
goodness-of-fit statistics together with graphical analysis. Additionally, an extreme value analysis
served to prove the improvement in the prediction of extreme peak values as a result of the addition of
precipitation information to pure autoregressive models.

Input dimensionality reduction, applied through a feature selection method based on a sensitivity
analysis, was performed for all forecasting scenarios by retaining the features accounting for 80% of
the model’s variance. Significant correlation coefficients between the model results of the full and
its parsimonious version, and a slight difference in NSE-values proved that the selection of the most
important features was successfully achieved. Feature selection aimed to reduce the complexity of the
model and to identify the processes involved in discharge prediction. At the same time, computation
times were optimized.

The approach hereby proposed have the potential to be applied in different catchments sizes;
however, a maximum extension of around 1000 km2 is suggested. This value intends to cover
all the catchments associated with an Andean community. For larger catchments, the use of
spatial information is encouraged since other relevant factors to the flash-flood generation process
(e.g., topography, soil types and land uses) can be correctly represented by the most common remote
sensing products. This is not the case for the Andean region, where only exceptionally fine detail,
which is not feasible to obtain, would improve the model performance of RF models.

Emerging advances in ML techniques, specifically the use of the RF algorithm, have shown
to serve as a powerful tool in short-term runoff forecasting. However, the use of the RF technique
has been hardly documented on flood hazard assessment and particularly flash-flood forecasting.
Further exploration of this technique for flash flood forecasting is therefore encouraged. Expansion of
the rain gauge network or the inclusion of remote sensing imagery together with ground validation
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is suggested to improve the representativeness of precipitation in mountain catchments. Likewise,
addition of soil moisture measurements is proposed for enriching the model to further evaluation.
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Abstract: Considering the high random and non-static property of the rainfall-runoff process, lots of
models are being developed in order to learn about such a complex phenomenon. Recently, Machine
learning techniques such as the Artificial Neural Network (ANN) and other networks have been
extensively used by hydrologists for rainfall-runoff modelling as well as for other fields of hydrology.
However, deep learning methods such as the state-of-the-art for LSTM networks are little studied
in hydrological sequence time-series predictions. We deployed ANN and LSTM network models
for simulating the rainfall-runoff process based on flood events from 1971 to 2013 in Fen River basin
monitored through 14 rainfall stations and one hydrologic station in the catchment. The experimental
data were from 98 rainfall-runoff events in this period. In between 86 rainfall-runoff events were
used as training set, and the rest were used as test set. The results show that the two networks
are all suitable for rainfall-runoff models and better than conceptual and physical based models.
LSTM models outperform the ANN models with the values of R2 and NSE beyond 0.9, respectively.
Considering different lead time modelling the LSTM model is also more stable than ANN model
holding better simulation performance. The special units of forget gate makes LSTM model better
simulation and more intelligent than ANN model. In this study, we want to propose new data-driven
methods for flood forecasting.

Keywords: LSTM; rainfall-runoff; flood events

1. Introduction

Flooding always carries a lot of debris and waste like dead animal bodies and hazardous materials.
The debris could make serious threats to mankind’s health and could destroy reservoirs and roads
worsening the situation. The best way to cope with these issues is to build flood management systems
for the decision-making process of critical situations [1,2]. In hydrological processes, rainfall is taken
major components and decided the drought or flooding events. Recently, there are mainly three types
of models for simulating the relationship of rainfall and runoff [3,4]:conceptual models, physical-based
models and black box models. A conceptual model is a representation of a system, made of the
composition of concepts which are used to help us to know, understand, or simulate a subject the
model represents [5]. A physical-based model is a smaller or larger physical copy of an object to study
hydrological process [6]. A black box model is a system which can be viewed in terms of its inputs and
outputs without any knowledge of its internal working [7].

With accurate modelling of rainfall-runoff dynamics, it could not only provide a flood warning to
reduce hazards but also enhance proper reservoirs management during the drought periods. However,
it is difficult to fully understand the relationship between precipitation and runoff. It is because of
temporal and spatial variability of basin characteristics, rainfall, coverage of vegetation, as well as
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factors in the rainfall-runoff process such as physical-based distributed hydrological model. Therefore,
rainfall-runoff modelling is a hot field of study in hydrology research [8].

Among these three types of models, the conceptual and physical maybe the best two models
to understand the process of rainfall-runoff. While these models also need more basin parameters
like soil moisture, soil type, slope, shape, topography, temperature, evapotranspiration. The different
watershed parameters also contain very complex relationships to construct these models [9]. Besides,
In the rural region it is hard to get these watershed parameters. Therefore, black models have been
increasingly emphasized during these years again [10].

These black box models are used more and more as the data-driven techniques are developing [11].
The Artificial Neural Networks (ANN), one of the data-driven techniques, have been widely used in
hydrology as an alternative to physical-based and conceptual models [12,13]. These ANN techniques
are based on artificial intelligence (AI), which is among the most famous skills in recent years.
These skills could capture non-linearity and non-stationarity related to hydrological applications.
Thus, data-driven methods based on AI have gained more attention for rainfall-runoff simulation [14].

In the last two decades, AI has been widely used for efficient simulating of nonlinear systems
and capturing noise complexity in the datasets. For example, ANN and fuzzy logic are two popular
AI-based approaches in flood prediction. Comparing with the classical black box models such as Auto
Regressive (AR), Moving Average (MA), Auto Regressive Moving Average (ARMA), Auto Regressive
Integrated Moving Average (ARIMA), Auto Regressive Integrated Moving Average with exogenous
input (ARIMAX), Linear Regression (LR), and Multiple Linear Regression (MLR) which are linear,
AI-based models are nonlinear models which are able to capture non-stationarity and non-linearity
features. As a result, more and more researchers have developed models that are able to overcoming
the drawbacks of conventional models [15].

In the above, conventional machine learning techniques only have the ability to process
natural data in their raw form without other insight information. However, Deep learning allows
computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. It could discover intricate structure in the data sets and
change its internal parameters by using the backpropagation algorithms. Two of the most hot research
points in deep learning are enhancing computer vision using CNN and modelling sequential data
through RNN [16,17].

With conventional machine learning methods, we must extract features from data that are strongly
correlated with dependent variables like ANN, Support Vector Machine (SVM), Multi-Layer Perceptron
(MLP) etc. Deep learning could automatically extract features via the hidden layers. The hydrological
process is always a kind of typical time sequential data. The traditional time-series simulation and
prediction mainly rely on memoryless models [18] such as ANN and autoregressive (AG) models,
they predict the next step in a time-series from a fixed number of previous steps. The RNNs can be
trained to learn sequential or time-varying patterns by facilitate time delay units through feedback
connections. The RNNs is particularly suitable for hydrological prediction in the context of giving a
precise and timely prediction of time-series in the systems.

More modern RNN architectures were proposed since the late 1990s and one of the most successful
RNN architectures is the Long Short-Term Memory (LSTM). This architecture has memory cells
replaced the traditional hidden layer mode. The memory cells could store, write and read data via
gates that open and close. These memory cells just like data in computer memory. LSTM is a dynamic
model that has been used to simulate and predict sequences as music, text and motion capture data [19].
Besides, LSTM can be trained for sequence generation by processing real data sequences one step at a
time and predicting what comes next.

However, to our knowledge, there are not so many studies using deep learning in hydrology,
especially for large time-series datasets. Zhang [19] used LSTM networks to enhance internet of things
for combined sewer overflow monitoring. Through a comparison of MLP, Wavelet Neural Network
(WNN), LSTM and Gated Recurrent Unit (GRU), the LSTM and GRU had better performance for
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multi-step-ahead time-series prediction. The same result was also gotten in the managing sewer in-line
storage control using hydraulic model and recurrent neural network. The LSTM exhibits the superior
capability for time-series prediction [19]. Kratzert [20] modeled rainfall-runoff with LSTM network.
He found that LSTM could learn long-term dependencies between the provided inputs and outputs
of the network. Using this approach, they achieved better model performance, which underlined
the potential of the LSTM for hydrological modeling applications. The same conclusion also found
in Fischer [17] making prediction of financial market using LSTM. He found the LSTM networks
to outperform memory-free classification methods, i.e., A Random Forest (RAF), Deep Neural Net
(DNN), and Logistic Regression Classifier (LRC). Thus, the LSTM network maybe a better choice for
rainfall-runoff prediction.

In north-western China, there are complicated and changeable rainfall-runoff relationships [21].
The climate undergoes big changes in these years and underlying surface are changing with the
development of China Society. Therefore, the prediction of runoff series in such regions should
preferably be based on the existing long data with the memory networks. This novelty memory neural
networks could better model the rainfall-runoff process and make accurate prediction. These methods
possess human-like expertise with a specific domain adapt themselves and learn to do better in
changing environments. Thus, it is a new try to use LSTM network to predict runoff and it is suitable
for this changeable situation.

The objective of this study is to build real-time data-driven models that enable to simulate and
predict rainfall-runoff from available data. This data-driven modelling analyzes relations between
precipitation and runoff time-series. In this study, we selected 98 flooding events from 1971 to 2013
in Jingle hydrology station catchment basin. We use two types of neural network, namely ANN
and LSTM. Although the machine learning algorithms such as RNNs provide real-time forecasting,
it cannot give us an insight of the rainfall-runoff process. Besides, there are rare applications of
LSTM in flood forecasting, as state of the art RNN architecture, the effectiveness of LSTM needs to
be investigated. In this study, we hypothesized that the AI-based models have better performance
in prediction rainfall-runoff and the modeling results in new architecture artificial neural network of
LSTM may outperform ANN.

2. Methods

2.1. Artificial Neural Network

The ANN functions are similar to the human brain and nervous system which are a form
of AI. ANNs can be trained with datasets to conduct prediction models and learn the intrinsic
relationships without parameters [22]. These ANN models are being used as an efficient tool to
reveal nonlinear relationship between inputs and outputs. Unlike conceptual models, using ANN
models only dealing with mathematical relationship between inputs and outputs which are not
defined. The commonly used ANN model (feed forward neural network) comprises of three layers
of input, hidden and output (Figure 1). Each layer possesses a set of nodes (neurons) in which they
are fully connected with nodes in the following layer. The model has a feed forward phase in which
inputs signals propagate in forward direction (layer by layer) to reach output layer and an error
backward propagation process which modifies the connection strengths (weights). Error is defined
as the difference between computed and observed values of the target variable. Generally, the ANN
model can be mathematically formulated as:

Ok = g2[
M

∑
j=1

Wkjg1(
N

∑
i=1

Wjixi + Wjo) + Wko] (1)

where xi is the input value to node i, Ok is the output at node k, g1 is activation function (nonlinear)
for the hidden layer and g2 is activation function (linear) for the output layer. N and M represent
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the number of neurons in the input and hidden layers, respectively. Wjo and Wko are biases of the jth
neuron in the hidden layer and the kth neuron in the output layer. Wji is the weight between the input
node i and the hidden node j, and Wkj the weight between the hidden node j and the output node k.
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Figure 1. ANN architecture with one hidden layer (typical three-layer feed forward artificial neural
networks) [10].

2.2. RNN

Recurrent neural networks (RNNs) are powerful model for sequential data. Recurrent neural
network are a strict superset of feedforward neural networks, augmented by the inclusion of recurrent
edges that span adjacent time steps, introducing a notion of time to the model [19]. While RNNs
may not contain cycles among the conventional edges, recurrent edges may form cycles, including
self-connections. At time t, nodes receiving input along recurrent edges receive input activation from
the current example xt and also from hidden nodes ht−1 in the network’s previous state. The output ŷt

is calculated given the hidden state ht at that time step. Thus, input xt−1 at time t − 1 can influence the
output ŷt at time t by way of these recurrent connections (Figure 2).

We can show in two equations that all calculations are necessary for computation at each time
step on the forward pass in a simple recurrent neural network:

h(t) = σ(Whxx + Whhh(t−1) + bh) (2)

ŷ(t) = so f tmax(Wghh(t) + by) (3)

where Whx is the matrix of weights between the input and hidden layers and Whh is the matrix of
recurrent weights between the hidden layers at adjacent time steps. The vectors bh and by are biases
which allow each node to learn an offset.
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Figure 2. A simple RNN architecture with one hidden layer (recurrence using the previous hidden
state). W, U, V are parameters for weights [23].

2.3. LSTM

LSTM networks belong to the class of recurrent neural networks (RNNs), i.e., neural networks
whose “underlying topology of inter-neuronal connections contains at least on cycle”. They have been
introduced by Hochreiter and Schmidhuber [24] and were further refined in the following years. LSTM
networks are specifically designed to learn long-term dependencies and are capable of overcoming the
previously inherent problems of RNNs, i.e., vanishing and exploding gradients (Figure 3).

LSTM networks are composed of an input layer, one or more memory cells, and an output layer.
The number of neurons in the input layer is equal to the number of explanatory variables. The main
characteristic of LSTM networks is contained in the hidden layer consisting of so called memory cells.
Each of the memory cells has three gates maintaining and adjusting its cell state st: a forget gate ( ft),
an input gate (it), and an output gate (ot).

Figure 3. The architecture of LSTM memory block [17].

At every time-step t, each of the three gates is presented with the input xt (one element of the ) as
well as the output ht−1 of the memory cells at the previous time-step t − 1. Hereby, the gates act as
filters, each fulfilling a different purpose:

• The forget gate defines what information is removed from the cell state.
• The input gate specifies what information is added to the cell state.
• The output gate specifies what information from the cell state is used

The sequential update formula are
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Input node
g(t) = tanh(Wgxx(t) + Wghh(t−1) + bg) (4)

Input gate
i(t) = σ(Wixx(t) + Wihh(t−1) + bi) (5)

Forget gate
f (t) = σ(Wf xx(t) + Wf hh(t−1) + b f ) (6)

Output gate
o(t) = σ(Woxx(t) + Wohh(t−1) + bo) (7)

Cell state
s(t) = g(t) � i(t) + s(t−1) � o(t) (8)

Hidden gate
h(t) = tanh(s(t))� o(t) (9)

Output layer
y(t) = (Whyh(t) + by) (10)

where σ is the sigmoidal function, � is element wise multiplication, x(t) is the input vector (forcings
and static attributes) for the time step t, Ws are the network weights, bs are bias parameters, y is the
output to be compared to observations, h is the hidden state, and s is called the cell state of memory
cells, which is unique to LSTM.

2.4. Performance Evalution Criteria

In this study, performance of different models is assessed by statistical error measures and
characteristic of flood process error including the coefficient of determination (R2), root mean square
error (RMSE), Nash-Sutcliffe Efficiency (NSE), mean absolute error (MAE), error of time to peak
discharge (ETp) and error of peak discharge (EQp).

R2 =
(∑n

i=1(yi − y)(y′i − y′))2

∑n
i=1(yi − y)2 ∑n

i=1(y
′
i − y′)2 (11)

where y′i (m3/s) and yi (m3/s) represent the discharge of the simulated and observed hydrographs
at the time i, y (m3/s) and y′ (m3/s) denote the average observed and simulated discharge at the
time i and n is the data points number. The coefficient of determination, R2, known as the square of
the sample correlation coefficient, ranges from 0 to 1 and describes the amount of observed variance
explained by the model. A value of 0 implies no correlation, while a value of 1 suggests that the model
can explain all of the observed variance.

RMSE =

√
∑n

i=1(yi − y′i)2

n
(12)

The root mean square error, RMSE, evaluates how closely that predictions match to observations,
Values may range from 0 (perfect fit) to +∞ (no fit) based on the relative range of the data.

NSE = 1 − ∑n
i=1(yi − y′i)

2

∑n
i=1(yi − y)2 (13)

The Nash-Sutcliffe Efficiency, NSE, measures the model’s ability to predict variables different
from the mean and gives the proportion of the initial variance accounted for by the model. Where
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NSE ranges from 1 (prefect fit) to −∞. Values less than zero indicate that the observation mean would
be a better predictor than the model.

MAE =
∑n

i=1 |y′i − yi|
n

(14)

The mean absolute error, MAE, measures the difference between observed and modelled results.
It is an average of the absolute errors, where y′i is the simulation and yi is the observation.

ETp = |Tm,p − To,p| (15)

The error of time to peak discharge, ETp, measures the model’s time accuracy of peak runoff
discharge prediction. Where Tm,p (hour) and To,p (hour) are the peak time for the modelled and
observed peak runoff discharge, respectively.

EQp =
(ym,p − yo,p)

yo,p
× 100% (16)

The error of peak discharge, EQp, measures the model volume accuracy of peak runoff
discharge prediction. Where ym,p (m3/s) and yo,p (m3/s) are the modelled and observed peak runoff
discharges, respectively.

2.5. The Approach and Modelling Process

In this study, data preparation and handing is entirely conducted in Python 3.5, relying on the
packages numpy and pandas. Our LSTM and ANN networks are developed with keras on top of
Google TensorFlow, a powerful library for large-scale machine learning on heterogenous systems.

We define the LSTM with 50 neurons in the first hidden layer and 1 neuron in the out layer for
predicting discharge. The input shape will be 1 time step with 16 features. We will use the Mean
Absolute Error (MAE) loss function and the efficient Adam version of stochastic gradient descent [25].

The type of ANN used in this study is a multi-layer-feed-forward perceptron (MLP) trained with
the use of back propagation learning algorithm. The MLP network consists of input layer, hidden layer,
and output layer. The final connection weights are kept fixed at the completion of training and new
input patterns are presented to the network to produce the corresponding output consistent with the
internal representation of the input/output mapping. In this study, the Levenberg–Marquardt (LM)
algorithm is used for training the MLP network. The LM algorithm is often the fastest back propagation
algorithm, and has been highly recommended as a first-choice supervised algorithm, although it does
require more memory than other algorithms. Further information on the back propagation learning
algorithms can also be found in Dawson [26].

The simulation function of discharge is shown as:

Qt = f (Qt−n, Rt−n, Xt−n) (17)

in which Qt is current flow, Qt−n is antecedent flow (at t − 1, t − 2, ..., t − n time steps), Rt−n is
antecedent rainfall (at t − 1, t − 2, ..., t − n), and Xt−n represents any other factors identified as
affecting Qt (e.g., year type, percentage impervious area, storm occurrence). In this paper, we used the
14 rainfall stations and antecedent flow to forecast the runoff. We have chosen different values of n
with 1, 2, 3, 4, 5, 6 (hour) indicating 6 types of lead time.

3. Case-Study

Fen River Basin (35◦20′–39◦00′ N latitude, 110◦30′–113◦32′ E longitude) is located in Shanxi
Province, North China (Figure 4). The Fen River is one of the largest tributaries of the Yellow River in
its middle reach, joining the Yellow River in Hejing County. The river basin is bounded by Taihang
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Mountain to the east, and Lvliang Mountain to the west, which also form the boundary between Yellow
River and Fen River. Located in the eastern Loess Plateau of China, the climate of the Fen River Basin
is temperate and sub-humid, with mean annual precipitation of 450 mm. In this area, the landforms
are usually capped by a thick layer of loess due to dust deposition during the Quaternary. The study
region is the catchment of Jingle hydrology station. The Jingle station was constructed in April on 1943
which was control station in main upstream of Fen River. The area of Jingle station controled basin is
2799 km2 and the length of main stream is 83.9 km with average slope 0.67%. There are four tributaries
in this basin, namely Hong river, Mingcun river, Dongnian river and Xinian river.
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Figure 4. Location of the study site and the gauge stations. (a) Description of Fen River basin in Shanxi
Province of China; (b) Description of Shanxi Province in Chian; (c) The control catchment of Jingle
Station in Fen River and distribution of rainfall gauge stations.

The annual mean precipitation in Jingle control basin is about 538.38 mm, the amount of mean
flood in 24 h is about 50–55 mm, the maximum rainfall in the single site over 24 h is 109.6 mm.
The average peak runoff and maximum peak runoff is 594 and 2230 m3/s. The rainfall station is
shown by Figure 4c. The downstream Jingle discharge station is the forecasting object. This study
collected hourly discharge data from Jingle station and hourly rainfall data from fourteen gauges.
Data for 98 flood events from 1971 to 2013 with complete records were obtained. Among these flood
events, 82 events (4962 datasets) were used for calibration and 12 events (1488 datasets) were used
for validation red In this paper, we have chosen the typical rainfall-runoff process for validation to
make the network models more representative, namely, the big volume discharge, the normal volume
discharge in different periods from 1971 to 2013.
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4. Results

Every flood event is so different with rainfall duration, peak discharge, rainfall center (Table 1) that
the process rainfall-runoff is difficult to learn. The Figure 5 illustrates that the statistical characteristics
of 12 flood events data for validation. The upper boundary of Figure 5 is not above 150 (m3/s).
The rapid flooding with large volume discharge in a short time makes many outliers in the dataset,
but this typical large flooding is not common only 6 events (6.1%) (peak discharge above 1000 (m3/s))
over the period from 1971 to 2013. Thus, we also seriously considered the sudden bigger data in
constructing models. From Figure 5a, ANN model made some bigger forecasting values comparing
with observed data when discharge data was exceeded 1200 (m3/s). While the LSTM model is better
than ANN model at the same situation. The Figure 5b is shown the cumulative distribution of observed
and modelled data. The three Lines almost coincided indicating that ANN and LSTM models have
similar forecasting preferences in low volume discharge simulation. It also illustrates that the value
of discharge among 0–200 (m3/s) takes percentage of almost 90%. From the analysis of dataset
characteristics, we could find it is difficult for rainfall-runoff simulation taking into account sudden
big and small volume of discharge. However, the above results lead to preliminary conclusion that
ANN and LSTM models have better performances in flooding forecasting.

Table 1. Characteristics of collected flood events in Jingle discharge station.

Event No. Date Total Rainfall (mm) Rainfall Duration (h) Rainfall Center Peak Discharge (m3/s)

1 1 July 1971 8.86 36 Ninghuabao 164.50
2 23 July 1971 63.40 69 Chunjingwa 261.21
3 31 July 1971 10.44 12 Dongzhai 286.00
4 7 August 1971 21.07 42 Ninghuabao 184.14
5 15 August 1971 7.60 16 Chunjingwa 145.00
6 27 August 1971 15.71 36 Chunjingwa 112.00
7 31 July 1972 11.98 15 Huaidao 142.43

... ... ... ... ...
92 10 October 2007 43.88 57 Chashang 106.00
93 23 September 2008 70.49 88 Qidongzi 132.00
94 10 August 2010 70.50 24 Songjiaya 67.00
95 11 July 2011 41.88 24 Dujiacun 54.35
96 26 July 2012 40.57 41 Ninghuabao 134.00
97 30 July 2012 41.95 41 Chashang 61.90
98 17 July 2013 29.91 32 Jingle 74.40
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for the 12 flood events of validation using ANN and LSTM models.
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In the above study, we discussed statistical features of validation data. Then, the estimated
hydrograph was used to compare performance of different models in validation (Figure 6).
Even though the flooding process is difficult for simulation, the ANN and LSTM models all simulated
well in general. Comparing with the peak discharge simulation, the value of ANN modelled were
always bigger than observed data. In the low value of discharge simulation, the ANN modeled values
appeared abnormal fluctuations. From estimated hydrograph Figure 6, it shows that LSTM model
is more stable and simulated very well than ANN model. Thus, the LSTM model has better ability
in nonlinearity simulation. Table 2 makes comparison of performances of ANN and LSTM models
for runoff prediction. This is quantitative analysis of ANN and LSTM models using 6 preference
criteria. The values of R2 and NSE are all beyond 0.95 in the LSTM modelling results in calibration and
validation periods. Comparing with ANN model, the LSTM model values of RMSE, MAE, ETp and
EQp are all less than ANN indicating better performances in rainfall-runoff simulation. Especially, the
ANN values of EQp are almost 4 times bigger than LSTM model. These cases illustrate that the LSTM
model have accurately simulated peak discharge. The prediction of peak discharge of flood is critical
for hydrological process simulation. Thus, the new model of LSTM with complicated architecture is a
good choice for rainfall-runoff simulation and flood forecasting.

Table 2. Comparison of performances of ANN and LSTM models for runoff prediction (lead time = 1 h)
at calibration (86 flood events) and validation (12 flood events) periods.

Events Modes R2 RMSE (m3 s−1) NSE MAE (m3 s−1) ETp (h) EQp

Calibration

86 events series ANN 0.81 124.21 0.83 47.23 5.4 12%
LSTM 0.95 45.12 0.97 12.4 2.6 4%

Validation

12 events series ANN 0.83 35.6 0.83 23.6 3.7 14%
LSTM 0.96 12.4 0.96 6.3 1.4 3%

After quantitative and qualitative analysis of ANN and LSTM models, we also scatter the observed
and simulated discharge values (Figure 7). The values of ANN and LSTM models’ R2 are 0.832 and
0.957, respectively. The LSTM model has higher values of R2 indicating that this model could well
reflect the relationship between observed and simulated discharge. From the Figure 7a, the data is
scattered more loose in ANN model, while it is relatively closer to the line in LSTM model (Figure 7b).
It is clearly shown that LSTM model is better than ANN model in runoff prediction which has better
correlation with observed data. Besides, the values are almost near the fit line in the two models.
However, the two models all appear some abnormal values. The reason of this phenomenon is
that ANN and LSTM models have some fluctuations under the suddenly changes in rainfall and
discharge data.

We have talked about general characteristics of ANN and LSTM models in above study. However,
some special features need to deeply insight into ANN and LSTM models for hydrological process
simulation. The Figure 8 shows observed and estimated hydrographs of the ANN and LSTM models
at the validation stage in 12 flood events. Among the 12 flooding events, only peak discharge of event
2 was beyond 1000 (ms/s). The ANN model has bed ability of peak discharge prediction comparing
with LSTM model. In the flooding event 1, 3, 4, 8, 9, and 11, the simulated peak discharge always
higher than observed. These modelled values of peak discharge were not to be trusted in flooding
event 7, 8 and 11 with abnormally bigger values. However, the LSTM model was proved more reliable
in prediction of peak discharge. We can take flooding event 4, 7, 9 and 10 that ANN model always has
much sensitivity to rainfall. The simulated values of ANN model fluctuate abnormally comparing with
observed values no matter big or small volume discharge. While the LSTM model don’t appear these
performances. The differences in ANN and LSTM model architectures are memory cells. The various
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memory cells have ability to filter data and memory data features making as deep learning function
to simulate rainfall-runoff process. The disadvantages of ANN model are obvious. Compared with
ANN and LSTM models in these flooding event simulation, it is proved that LSTM model is more
intelligence than ANN model in predicting rainfall-runoff.
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Figure 6. The observed and estimated hydrographs (12 flood events of validation) using ANN and
LSTM models.
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Figure 8. Observed and estimated hydrographs of the ANN and LSTM model at the validation stage
in 12 flood events.
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We have already discussed ANN and LSTM models simulation performances using lead time
1 h in above. The Table 3 illustrates runoff forecasting at different lead times (1–6 h) by ANN and
LSTM model. In general, LSTM model had better simulation results than ANN model at different
lead times. In the calibration and validation stage, the values of performances criteria in LSTM model
are all better than ANN models. Comparing with different lead time situations, the values of R2 and
NSE were reducing with the increasing lead time. The values of RMSE, MAE and ETp did not show
clearly changing law. The LSTM values of EQp was the smallest in lead time at 1 h. While the ANN
model had badly performances in lead time at 6 h as the values of R2 and NSE near 0.7. Even though
LSTM prediction ability was inducing with large lead time, the values of R2 and NSE still above
0.8. Compared with the ANN model, LSTM also has the low value of ETp and EQp. These results
illustrate that the LSTM has the better performances in forecasting peak discharge in each flood event.
These results mean that the chosen of LSTM model is suitable for the rainfall-runoff modeling. From all
of these results, we can considerer LSTM network suitable using in hydrology research.

Table 3. The performances of runoff forecasting at different lead times (1–6 h) by ANN and LSTM
model for series flood events.

Lead Time (h) Data Models R2 RMSE (m3 s−1) NSE MAE (m3 s−1) ETp (h) EQp

1
Calibration ANN 0.81 124.21 0.83 47.23 5.4 12%

LSTM 0.95 45.12 0.97 12.4 2.6 4%

Validation ANN 0.83 35.6 0.83 23.6 3.7 14%
LSTM 0.96 12.4 0.96 6.3 1.4 3%

2
Calibration ANN 0.83 132.2 0.86 42.13 11.4 13%

LSTM 0.95 42.12 0.94 13.4 2.4 7%

Validation ANN 0.79 23.6 0.85 23.1 2.7 12%
LSTM 0.93 15.4 0.95 6.3 1.8 13%

3
Calibration ANN 0.78 164.21 0.79 56.23 14.4 11%

LSTM 0.91 47.12 0.91 13.4 2.8 6%

Validation ANN 0.81 25.6 0.78 23.6 4.2 15%
LSTM 0.92 14.4 0.91 7.3 1.4 16%

4
Calibration ANN 0.81 144.21 0.82 48.23 11.4 12%

LSTM 0.91 65.12 0.91 15.4 2.8 12%

Validation ANN 0.72 37.8 0.81 25.6 3.1 11%
LSTM 0.91 13.4 0.93 11.3 1.6 15%

5
Calibration ANN 0.78 135.21 0.81 48.23 11.4 12%

LSTM 0.87 49.12 0.81 17.4 4.6 8%

Validation ANN 0.74 38.6 0.79 24.6 5.7 16%
LSTM 0.84 22.4 0.91 6.3 1.4 17%

6
Calibration ANN 0.71 144.21 0.73 67.23 18.4 17%

LSTM 0.84 48.12 0.96 13.4 2.7 12%

Validation ANN 0.75 25.6 0.79 23.6 3.7 14%
LSTM 0.83 14.4 0.85 8.3 2.4 18%

5. Discussion and Conclusions

The process of rainfall-runoff simulation is critical for hydrology [27]. However, the process of
rainfall-runoff is a complex problem for the hydrological modelling. Saturated and infiltration excess
runoff could all appear in one rainfall-runoff event in semi-dry and semi-humid region. Conducting
suitable models is more complicated into semi-dry and semi-humid regions. The mechanism of
runoff generation is more complicated than humid region. Considering the features of climate and
hydrological process, lots of watershed belong to semi-dry and semi-humid region in China. Thus,
the performances of physical models and conceptual models were badly used that the correlation
coefficients were around 0.6 in this semi-dry and semi-humid regions [28,29]. However, in a recently
study of rainfall-runoff simulation, various artificial networks were used for the simulation and
prediction [30]. In this study, we use the traditional network as ANN and the new deep learning
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network as LSTM for the simulation. In generally, LSTM model is better than the traditional
ANN model. Because of the typical flood characteristics, the ANN models can not make accurate
simulation [31], but the ANN models are still better than the physical models in this region. It is the
progress of the AI based techniques making the revolutionary strides for hydrology [4].

Compared with other network models, Kan [31] used a hybrid data-driven (network model
and physical model) models for event-based rainfall-runoff simulation. PEK model (hybrid model)
outperformed other models with values of NSE and R2 are 0.51 and 0.73, respectively in validation
stage. However, the results of this study all better than Kan’s. There are two factors as inputs and
model architecture that affect results of model outputs. In this paper, we used 14 rainfall stations data
and antecedent discharge as the inputs. The dataset in this paper was larger than Kan’s. We used the
network model with memory cells (LSTM) that was progressed than his model. Thus, we got the better
simulation performances. Lin [30] forecasted the typhoon-rainfall with a hybrid neural network model
(the Self-Organizing Map (SOM) and Multilayer Perceptron Network (MLPN)). In Lin’s study, SOM
network was used for classification rainfall and then the MLPN was used for prediction. This model
can forecast more precisely than the model developed by the conventional neural approaches, but the
values of NSE were below 0.85. These values were also smaller than LSTM modeling results in this
study. The reason was that LSTM model with memory cells could learn more from the datasets and
accurately make simulation.

However, the hydrological cycle process significantly changed under human activities and
climate changes in Loess Plateau where have implemented project of returning farmland to forest
and protecting natural forecast from 1980s. The changeable environments also make influence on
rainfall-runoff process [32]. It is important to test if the LSTM or ANN model could be used in this
region. Compared with simulated 12 flooding events (lead time 1 h Figure 8), the values of correlation
efficient were beyond 0.95 indicating that LSTM model was adaptable among different situations.
Besides, the ANN model had bad adaptability with many abnormal simulations in changeable
environment. In this study, LSTM model still had better performance when lead time was 6 h.
Thus, LSTM could be used in this region for flooding prediction.

Compared with the previous study in rainfall-runoff modeling, the results of LSTM modeling
have the higher values of R2 and NSE. The LSTM model had perfect performances in this paper, while
it needed to be validated in numerous watersheds. Thus, the more and more studies need to study
deep learning model (LSTM) application in hydrology. And finding the meaning of intrinsic structure
parameters of LSTM can also improve our learning of hydrology process. Then, the AI techniques may
accurately be applied in hydrology.

In this research, we used ANN and LSTM models for forecasting hourly runoff discharges in
Jingle hydrology station control catchment basin. Comparing with conceptual and physical-based
models, these black box models can well simulate rainfall-runoff process with excellent performance
evaluation criteria. Compared with flooding events simulation, ANN model is more sensitive that
has many abnormal fluctuations, while LSTM model is more intelligence than ANN model. In this
study, the runoff is changed in time-series that the data is time related. The ANN model is constructed
by fitting the different characteristics of the current state and making prediction. While LSTM model
not only take full advantage of the current data characteristics but also use its gate structure to decide
to remember or forget the previous features. With the progress of AI techniques, the deep learning
methods of long short-term memory network could be better used in the hydrological simulation.
The values of R2 and NSE in LSTM model are bigger than 0.9 when lead time is 1 h. With increment
of lead time, values of performance criteria (R2 and NSE) were slightly decreasing, but the values of
LSTM model were still beyond 0.8 with good simulation abilities. It is because of LSTM is very effective
in modeling time-series data, it can also be applied to weather forecasting, for example rainfall, fog
and haze, stream flow et al. In this paper, we considered the data of the preceding hours to predict
the runoff of the next hours. In the future, we could forecast different length of time or not only
runoff forecasting, we can predict the entire sequence of data at the next moment. This deep learning
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networks have better performances in hydrological time-series prediction. More researches will be
needed in modelling hydrological process using deep machine learning.
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Abstract: Reliable real-time flood forecasting is a challenging prerequisite for successful flood
protection. This study developed a flood routing model combined with a particle filter-based
assimilation model and a one-dimensional hydrodynamic model. This model was applied to an indoor
micro-model, using the Lower Yellow River (LYR) as prototype. Real-time observations of the water
level from the micro-model were used for data assimilation. The results show that, compared to the
traditional hydrodynamic model, the assimilation model could effectively update water level, flow
discharge, and roughness coefficient in real time, thus yielding improved results. The mean water
levels of the particle posterior distribution are closer to the observed values than before assimilation,
even when water levels change greatly. In addition, the calculation results for different lead times
indicate that the root mean square error of the forecasting water level gradually increases with
increasing lead time. This is because the roughness value changes greatly in response to unsteady
water flow, and the incurring error accumulates with the predicted period. The results show that the
assimilation model can simulate water level changes in the micro-model and provide both research
method and technical support for real flood forecasting in the LYR.

Keywords: flood forecasting; data assimilation; particle filter algorithm; micro-model; Lower
Yellow River

1. Introduction

Floods are among the most severe hazards in the world, causing loss of life and excessive damage
to property. Thus, if floods can be reliably forecast, proper actions can be initiated to mitigate the
damages during the flood event. The ability to provide reliable forecast of river water levels for a short
period following a storm with significant precipitation is very important for both flood control and
river regulation [1]. This study focused on the development of a flood routing model for real time
flood forecasting.

In general, flood routing can be classified into two categories: the hydrologic method and the
hydraulic method [2]. However, the hydrologic method for a hydrologic system cannot achieve the
desirable degree of accuracy and lacks water level and detailed flow information [3]. In contrast,
the hydraulic method can be widely applied to special problems, e.g., to forecast discharges and stages
at cross-sections along rivers [4–7]. However, due to input uncertainty, model structure uncertainty,
and parameter uncertainty in hydraulic models, flood forecast reliability tends to decrease with
increased forecast lead period, so that the simulated results rarely fit the measurements. This is even
worse in real-time flood forecasting. Hence, the hydraulic model needs to be improved to enable
real-time flood forecasting.
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The data assimilation algorithm continuously integrates real-time observational data into
numerical models and adjusts both the motion state and parameters, which greatly improves
the prediction accuracy of the models. Compared to other assimilation algorithms, the particle
filter (PF) assimilation algorithm is suitable for both nonlinear and non-Gaussian systems. It can
effectively estimate the uncertainties of the model and improve the prediction accuracy of the model
simulation [8–10]. Han and Li [11] and Pan [12] compared the differences between the PF algorithm
and the Kalman filter (KF) algorithm, and found that the PF algorithm can better solve the problem
of a nonlinear non-Gaussian error in the model. In the nonlinear Lorenz system, the PF algorithm
achieves better stability and accuracy than the KF algorithm [13–16]. Moradkhani et al. [17] used the PF
algorithm to estimate the model parameters and state variables in the hydrological model, and found
that the results fitted the observed values well. These studies showed that the PF algorithm is a very
efficient method to solve problems of nonlinear systems such as flood routing systems. However, it is
still rarely applied to real-time flood forecasting.

The purpose of this study was to verify and evaluate the accuracy of the assimilation model
system for real-time flood prediction in a laboratory micro-model. Although this model can also
be applied to river prototypes, due to the difficulty and cost for obtaining real-time hydrological
data, a micro-model was established based on the Lower Yellow River (LYR) for flood experiments.
An automatic flow control system and a real-time water level monitoring system were installed on the
model to control the upstream flow discharge and the acquisition of real-time water level data of the
observation points. The PF algorithm was applied to increase the quality of the predicted water levels.
The practical motivation of this study was to improve the application of indoor data assimilation
systems, and apply it to real-time forecasting of real floods in the LYR in future. This will improve
forecasting accuracy, increase the lead time, and provide sufficient response time for flood control and
disaster relief prior to the flood event.

2. Materials and Methods

2.1. Study Area and LYR Micro-Model

The study area is located in the lower reach of the Yellow River, in central China, stretching from
the Xiaolangdi Reservoir to the Yellow River estuary, and comprising a distance of approximately
800 km (Figure 1a). The bed slope varies from 0.010% to 0.012%. The drainage area of the LYR is
23,000 km2. The width between the levees varies from 1 to 4 km; however, the width of the main
channel is only about 500 m. Most of the cross-sections are compound sections. The wide flood plains
between dykes are extensively cultivated. Here, more than 2000 natural villages had formed by 1900
and nearly 1.8 million people live on these flood plains. The total area of the flood plains is 3956 km2,
accounting for 85% of the total area between the levees.

It is possible to use the real LYR as a study case for the verification of the validity of the assimilation
model. However, it is expensive to establish a stable data acquisition and transmission system on
such a long river. To verify the performance of the assimilation model under various hydrological
conditions, an extended data acquisition duration is required. Thus, a micro-model was constructed
using the LYR as a prototype in our laboratory to obtain real-time data more conveniently. This model
was first designed in reference to digital elevation model (DEM) data of the LYR and then corrected
by the cross-section data measured in 2013 before the flood season. The model has a total length of
27.38 m with a longitudinal ratio 1:28,000 and a total of 57 cross-sections along the river, including
Huayuankou, Jiahetan, Gaocun, Shilou, Aishan, Luokou, and Lijin (Figure 1b). Two automatic control
systems are assumed for the model, one at the inlet that controls the inlet flow and one at the outlet
that controls the downstream water level. There is also an automatic observation system at the water
level observation point (see in Figure 1b), which obtains the water level in real time.

331



Water 2018, 10, 1612

(a)

(b)

Figure 1. Map of the Lower Yellow River (LYR): (a) the location of the LYR; and (b) plan view of the
micro-model in the laboratory.

2.2. Experimental Setup

All measuring equipment was calibrated prior to the experiment. Designed sequential processes
of inlet flow discharge and outlet water levels were input into the controlling computer. Once the flood
started, the water level observation system began to continually collect water level data at an interval
of 10 s.

To verify the performance of the assimilation model under different hydrological conditions,
several test events were designed in reference to the peak flow and flood duration in the prototype.
Nine experiments were conducted for this study. The first three experiments constituted a calibration
group which was used to calibrate the roughness coefficient of the hydrodynamic model only, while the
further six experiments were used for the verification of the assimilation model. These six verification
experiments were labeled Experiment 1–6 and were divided into two groups with three typical flow
processes each. The first group was used to verify the prediction accuracy of the assimilation model
for flood events without floodplain flooding, with one floodplain flooding, and with multi-floodplain
flooding. The ranges of flow discharge were 3.6–7.2 m3 h−1, 3–7.92 m3 h−1 and 7.2–11.88 m3 h−1,
respectively. The second group was used to verify the prediction accuracy of the assimilation model
during flood events with different numbers of flood peaks due to the periodically changing flood that
may occur in the proto-river. All flow discharges in this group remained within 7.2–16.2 m3 h−1.
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2.3. Hydrodynamic Assimilation System

The hydrodynamic assimilation system mainly consists of a hydrodynamic mathematical model,
an assimilation model, and a real-time data acquisition system. Details of the mathematical model
principle and the model coupling method are described below.

2.3.1. Hydrodynamic Mathematical Model

The one-dimensional hydrodynamic model has been widely used in flood forecasting due to
its advantages of simple execution, short calculation time, and high real-time efficiency [18,19];
consequently, it was also used herein to meet the timeliness requirement of flood forecasting.
The unsteady one-dimensional free surface flow in an open channel was described by the Saint-Venant
equations [4]. The four-point implicit finite-difference scheme was used to discretize the governing
equations. The equations were then solved by successively applying the double sweep Thomas
algorithm under given boundary conditions and initial conditions [7]. The upstream conditions are
inflow discharges and the downstream boundary conditions are outflow water levels.

The Manning coefficient of roughness reflects the roughness of the inner boundary of the channel
and characterizes the resistance to water flow. The roughness value not only depends on the physical
properties of the channel, but also on the state of the water flow. The overall roughness coefficient of
a given cross-section is a composite value that includes the entire influence of water flow resistance.
Typically, the roughness coefficient is determined by the measured hydrological observation data.
Considering the change of channel characteristics along the river and the unsteadiness of the flooding
flow, the spatiotemporal variation of the roughness coefficient should be considered in a flood
forecasting hydrodynamic model. Therefore, it is the most important parameter that needs to be
continually adjusted in the assimilation model.

2.3.2. PF-Based Assimilation Model

The PF algorithm is a method that combines the Monte Carlo method with Bayesian estimation.
It uses a set of random particles with correlated weights to approximate the probability density function
and obtain the optimal probabilistic interval estimation. When the number of particles is sufficient,
the posterior probability distribution of the state variables can approximate the true probability
distribution [20,21]. Supposing a set of random weighted samples can be independently obtained from
the posterior probability distribution of state variables, the posterior probability distribution of state
variables can be expressed by the following formula:

p (Xt|X1:t) ≈
N

∑
i=1

wi,tδ (Xt − Xi,t) (1)

where p (Xt|X1:t) represents the posterior probability distribution of state variables at time t; Xi,t and
wi,t represent the ith particle and its weight, respectively, at time t; Xt represents the data observation
at time t; N represents the number of particles; and δ (•) represents the Dirac delta function.

The water level, flow discharge, and roughness coefficient of each cross-section along the river
constitute a basic particle in the PF algorithm. Each basic particle characterizes a possible river flood
state. The probability distribution of the river flood state can be represented by the particle set.
During the assimilation process, the water level observation data of each station is used to evaluate the
accuracy of the prior predicted water level value at the calculation section. The fractional likelihood
weight of each station is then computed as:

wi,j,t =
1

2πσt
exp

(
−
(
Zi,j,t − Yj,t

)2
2σ2

t

)
(2)
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where wi,j,t and Zi,j,t represent the fractal weight and the prior predicted water level value of the ith
particle at the jth station at time t, Yj,t represents the observed water level at the jth station at time t,
and σt represents the standard deviation of the likelihood function at the jth station at time t, which can
be reduced to constants for different stations and at different times [22].

However, the main deficit of the PF is its degradation. It is possible that most particles carry less
weight and only few particles are effective after updating the particle weights, which is called “particle
degeneracy” [23]. Typically, whether particles in the filter are degraded is assessed through effective
number of particles [24]:

Neff =
1

∑N
i=1 (wi,t)

2 (3)

where Neff represents the effective number of particles. When Neff is below a specified value,
resampling is required. Resampling as proposed by Gordon et al. [9] can solve this problem. The aim
of such resampling is the elimination of less-weighted particles and copy more heavily-weighted
particles. The resampling algorithm samples the set of particles {xi,t, wi,t}N

i=1 by the probability wi,t
for N times and obtains a new set of particles {xj,t, 1/N}N

j=1 after sampling. Finally, the posterior
probability distribution of the state is obtained by a weighting calculation.

Random noise is added to the resampled particle set to properly perturb the data to ensure particle
diversity. The proposed method mainly disturbed the roughness parameter:

n̂i,t = ni,t−1 + ζ, ζ ∼ N
(

0, 0.0042
)

(4)

2.3.3. Coupling of Hydrodynamic Model and Assimilation Model

The hydrodynamic assimilation system is built by integrating the one-dimensional hydrodynamic
model and the PF algorithm. Therefore, the real-time flood routing model of the river channel is mainly
divided into two phases. The first phase is the hydrodynamic model forecasting phase. The flood
routing process in each particle state is calculated according to known future time boundary conditions.
The second phase is the PF correction phase, which updates the particle set at the moment when the
observation data becomes available. Furthermore, prior distributions of particles are corrected to the
posterior distributions whose mean value are closer to the real process. Both phases are interdigitated
and coupled. The specific coupling procedure is shown in Figure 2 and is described in the following:

(1) At the initial time, a random sample from the initial distribution of the water level, flow discharge,
and roughness of each cross-section along the river as well as a set of Np particles with equal
weights are obtained.

(2) The hydrodynamic model is used to calculate the water level and flow discharge at the present
time step for each particle and a set of calculation results is obtained for all particles.

(3) The assimilation module is used for present time step if the water level observation data is
available. The weight of the particle set is updated using Equation (2) and referring to the
observed water level data. The particles with prior water level values closer to the measured
water level values obtain a larger weight calculated by a likelihood function. If the updated
particles are degraded, resampling is initiated using the method proposed by Gordon et al. [9]
and the roughness coefficient is perturbed using Equation (4).

(4) The assimilation module is exited and the procedure starts at Step (2), continuing the
hydrodynamic model calculation for the next time step.

Finally, the water level, flow discharge, and roughness calculated at the present time step are
completely different from those of the hydrodynamic model without PF. The state of the water flow and
the drag coefficient are corrected, which in turn affects all subsequent calculations. Through continuous
model coupling and correction, the prediction results are closer to the true value.
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Figure 2. Flow chart of the hydrodynamic assimilation system.

2.4. Model Setup and Evaluation Index

2.4.1. Numerical Model Setup

The topographical data used for the numerical model were consistent with the micro-model and
had a total of 57 computational cross-sections. The boundary condition was set to the measured water
discharge at the inlet and a synchronous water level at outlet. The initial conditions were set to the
discharge and water level of each section determined by the boundary condition at the first moment.
The time step was set to 1 s to satisfy Courant stability conditions. The initial roughness coefficient of
the river was calibrated using the experiments of the calibration group and was set to the calibrated
result of 0.05.

For the assimilation model, the initial discharge, water level, and roughness of each particle
were derived by perturbing the initial values of each cross-section along the river. Furthermore,
the perturbing noises were 0.01 Q0, 0.001 mm and 0.002, respectively. The perturbation of the boundary
conditions was similar.

2.4.2. Model Performance Evaluation Index

The root mean square error (RMSE) and the mean relative error (MARE) were used to
quantitatively describe the accuracy of the particle set mean. The specific definition is shown in
the following:

RMSE =

√√√√ 1
M

M

∑
m=1

(x̄m − zm)
2 (5)

MARE =
1
M

M

∑
m=1

|x̄m − zm|
zm

(6)
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where M represents the number of observations, zm represents the mth observation value,
and x̄m represents the mean value of the particle set corresponding to the mth observation time.
Smaller calculation results of RMSE and MARE indicate higher accuracy of the simulation results.

The quantile-quantile plot (Q-Q plot) was also used as a visual method with which to examine
the reliability of the probability distribution. In the Q-Q plot, the x-axis is a theoretic quantile of
a uniform distribution and the y-axis is the actual quantile of the observation. If the plot follows a 1:1
line, the probabilistic prediction is perfectly reliable. A detailed description of the Q-Q plot can be
found in Laio and Tamea [25]. The Q-Q plot has a corresponding quantitative indicator-reliability α:

α = 1 − 2
M

∑
m=1

|ym − m
M |

M
(7)

where ym represents the normalized observation quantile. The reliability α ranges between 0 and 1.
A larger α value indicates a better degree of coincidence of the quantile-quantile curve with the 1:1
line, and better reliability of the probability distribution interval of the particle set.

3. Results and Discussion

3.1. Model Correction Performance

3.1.1. Determination of the Number of Particles

In the assimilation model, a larger number of particles indicates better correction performance.
However, with increasing number of particles, the computation load also increases greatly.
Sensitivity analysis on particle number was conducted by choosing one of the experiments. Figure 3
shows the relationship between the number of particles and the water level root mean square errors.
The water level RMSEs decreased with increasing number of particles. Especially, the RMSEs
decreased sharply when the number of particles was below 50. To ensure the simulation accuracy of
the model and short calculation time, the number of particles was set to 100.

Figure 3. Relationship between the number of particles and the water level RMSE.

3.1.2. Correction of Water Level and Roughness Coefficient

The observed water levels of the last six verification experiments were chosen to verify the
correction performance of the assimilation model. The total run time of each experiment was 1 h
and the assimilation correction time step was consistent with the water level acquisition time step
(both 10 s). Figure 4 shows a comparison between observed and predicted water level processes both
with PF and without PF (only traditional hydrodynamic model) for the experiments. Figure 4 shows
that the predicted water level without PF deviates greatly from the observed curve with increasing
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time, while the level predicted with PF is closer to the observed value. This is because the assimilation
model incorporates the observed value in real-time, and parameters of the model are constantly
optimized to let the result approach the actual value. In addition, many values fall within the 90%
confidence intervals.

Figure 4. Comparison between observed and predicted water level processes. The dots represent the
observed values. The black line represents the mean of the particles simulated by assimilation model.
The dotted line represents the water level calculated by the hydrodynamic model. The gray shaded
area represents the 90% confidence interval.
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Table 1 shows the RMSEs and MAREs of water levels predicted with and without PF for different
experiments. The RMSE of each experiment after assimilation was close and small. Compared to
the results without PF, the RMSEs of the predicted value with PF decreased by 75%, 80%, 81%, 90%,
87% and 86%, respectively. The MAREs of the predicted value with PF also decreased by 73%, 82%,
89%, 81%, 86% and 86%, respectively. The reliability of the predicted results was also calculated and
found to be above 0.8. More than 90% of the observed values fall into the 90% confidence interval,
which illustrates that the assimilated results are reliable. The results shown in Figure 4 and Table 1
indicate that the assimilation model can effectively improve the obtained prediction accuracy.

Table 1. Correction performance for different experiments.

Experiments
Water Level RMSE (mm) Water Level MARE (mm)

Reliability α 90% Confidence Interval
Without PF PF Without PF PF

Experiment 1 2.65 0.66 2.80% 0.75% 0.86 97.5%
Experiment 2 3.67 0.75 4.77% 0.84% 0.93 91.6%
Experiment 3 4.27 0.79 4.41% 0.50% 0.86 98.3%
Experiment 4 6.90 0.70 5.90% 1.10% 0.83 99.2%
Experiment 5 5.83 0.78 4.17% 0.59% 0.88 98.3%
Experiment 6 5.62 0.77 4.06% 0.58% 0.85 97.5%

The probability distribution of the water level simulated at each time step was also analyzed.
Since the water level changes greatly at t = 40 min, the prior (before assimilation) and posterior
(after assimilation) distributions of the water level were compared at this time step to access the
performance of the assimilation model at this critical time. The correction result of the water level at
this particular time step can better represent the performance of the model. Figure 5 shows histograms
of the prior and posterior distributions of the water level of these six verification experiments.

Figure 5 illustrates the differences between the mean value of the water level for both the prior and
posterior distribution of particles. The prior distribution of the particle set is more scattered, without
obvious aggregation near the observed value, while the posterior distribution of the particle set is
concentrated near the observed data. Compared to the prior distribution of particles, the posterior
distribution of particles is closer to the observed values. This result indicates that the PF method can
effectively utilize the observation data and maintain more particles near the observation data. This also
proves that this method achieves good correction performance for the water level.

Figure 6 shows the roughness retrieved from the observed data over time. The curves indicate the
real-time correction processes of roughness, and the straight line indicates the fixed value used in the
hydrodynamic mathematical model. Figure 6 shows that the changing process of the corrected
roughness is rather complicated. Different experiments show that the roughness continuously
fluctuated but changed gently in the increasing phase of the flow process. However, during the
decreasing phase of the flow process, the roughness changed sharply and increased continuously.
This phenomenon is more apparent in Experiments 4–6. This characteristic is consistent with previous
studies on the analysis of the change in the resistance characteristics of the channel in the LYR [26].
Within a certain flow range, the roughness coefficient is inversely proportional to the flow rate. This is
mainly due to the form resistance of both the side walls and the riverbed.
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Figure 5. Histograms of prior (gray) and posterior (colorless) distributions of water levels in different
experiments. The observed value is marked with a black triangle. The black dotted line indicates the
mean value of the prior distribution of particles and the black solid line indicates the mean value of the
posterior distribution of particles.
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Figure 6. Dynamic variation process of roughness. The straight line indicates the fixed value used in
the hydrodynamic model.

3.2. Model Prediction for Different Lead Times

As state above, the correction performance of the PF-based assimilation algorithm is good.
Therefore, the corrected flow discharge, water level, and roughness were used as initial conditions
for the flood prediction at the next time step. The boundary conditions of the future moments
should have been predicted via the hydrological model; however, since this study focused on flood
routing forecasting and its uncertainty, the historical observation data at the boundary section was
appropriately disturbed as the boundary conditions. The lead times were set to 10 s, 20 s, 30 s, and 60 s.

Figure 7 shows the relationship between the lead times and the RMSEs of water level
predictions for different experiments. The following results were obtained: (1) Under different
inflow conditions, the RMSEs of the predicted water level increases significantly with increasing lead
time. (2) Comparison between the experiments of both verification groups showed that there is little
difference of the RMSEs when the lead time remained below 30 s; however, the RMSEs of the second
group was clearly larger than that of the first group for a lead time above 30 s. The main reason is
that the roughness value used to predict the flooding process in the future is the current roughness
value, which changed constantly during the actual flood process. The water flow fluctuations are more
complicated in the second group and the magnitude of the change of the incoming water flow exceeds
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that of the first group. The uncertainty of the roughness coefficient obviously increased with increasing
lead time.

Figure 7. RMSEs of water level prediction for different lead times in different experiments.

Figure 8 shows the Q-Q plots of water level predictions for different experiments in response to
different lead times. The Q-Q plots are close to the 1:1 uniform line for a lead time of 10 s. The fitting
effect of the quantile of observed values and the 1:1 uniform line is deteriorating with increasing lead
times. In general, with increasing lead time, the reliability of the probability prediction interval of
the water level gradually decreases; however, it can still represent the uncertainty of the water level
forecast result well.

Figure 8. Cont.
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Figure 8. Q-Q plots of the water level prediction for different lead times in different experiments.
T indicates the different lead times.

3.3. Influence of the Flooding Lead Time

Theoretically, the hydrodynamic model itself does not have a foreseeable period, and the flood
propagation process can only be calculated under given boundary conditions. For the hydrodynamic
model to predict the future flood propagation process, the boundary conditions need to be predicted
in advance. These boundary conditions should be predicted using both the weather forecasting
model and the hydrological model. However, even if the boundary conditions are correctly chosen,
the predicted results of the hydrodynamic model are not necessarily satisfactory, as can be seen in
the simulated results of the hydrodynamic model without PF in Figure 4. This is because the given
roughness (or the corrected roughness at the previous time step) and the initial field of water flow
(the result of the previous time step) cannot adequately represent the hydraulic conditions during
the following period of time. When the lead time is small, the model parameters and the initial
field of water flow exert less impact on the future water level forecast. However, when the lead
time is sufficiently large, the given roughness and flow conditions are quite different from the actual
conditions; consequently, the simulated water level results will greatly deviate.

At the same time, even if the lead time remains identical, the PF-based assimilation model achieves
different degrees of improvement for the prediction results of both designed sets of experiments,
compared to the hydrodynamic model (as shown in Figure 4). The correction performance of the PF
algorithm is not affected by complex changes of the water conditions, which shows that the assimilation
model has good applicability for water level prediction under different scenarios. It can be inferred
that, under the same accuracy requirements, the PF-based assimilation model can increase the flooding
lead time, thus gaining time for both flood prevention and emergency evacuation. With reference to
the designed scale of the geometry, slope, and roughness of the LYR micro-model, the lead time of 30 s
is equivalent to about 7.4 h in the prototype of the Yellow River. Therefore, the improvement of the
flood forecasting accuracy and the increase of flooding lead time achieved by the assimilation model
are of great significance for flood control and disaster relief.

3.4. Application to Real Rivers

It should be emphasized that the flood routing model presented here is universal and not
regionally limited. It can not only be used for indoor physical models but also for various practical
river channels. However, the premise is that a real-time data automatic acquisition system needs to be
established on the actual river channel, and the obtained data have to be continuously transmitted to
the hydrodynamic assimilation system for the prediction. The upstream and downstream boundary
conditions of the future of the river also need to be specified correctly. The hydrodynamic model
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developed here only simulates the flow routing without considering other forcing data. To truly
improve the accuracy of flood prediction for longer lead times in an actual river channel, a complete
flood forecasting system has to be established. In addition to the model presented in this paper,
two other basic elements are required: (i) a rainfall forecasting model; and (ii) a rainfall–runoff
forecasting model [2]. Further coupling of these models requires future research. In addition,
the hydrodynamic model developed in this study needs to be further improved against actual
river conditions, e.g., considering over-bank flow, sediment transport, curved circulation, and dam
scheduling.

4. Conclusions

This study verified and evaluated the accuracy of an assimilation model system for real-time
flood prediction at micro-model scale in the laboratory. A PF-based assimilation model was coupled
with a one-dimensional hydrodynamic model to simulate the water level under different boundary
conditions. Real-time water level observations at observation points along the channel were assimilated
into the modeling system to achieve probabilistic forecasting.

We used the assimilation model system to predict the flood process against six different
experiments. All results indicate that the RMSEs and MAREs of the water level predicted by
the assimilation model were much lower than the results of the hydrodynamic model without PF.
These results prove the precision and accuracy of water level forecasting with the assimilation model.
With increasing lead time, the RMSEs of the predicted water level increased significantly. However,
the RMSEs of the results predicted by the assimilation model were much smaller than those predicted
by the hydrodynamic model without PF, indicating that the assimilation model can enlarge the flooding
lead time. Of course, further coupling of hydrological and weather forecasting models will increase
the applicability of the assimilation model. The application of this PF-based assimilation model to
flood forecasting is of great significance toward improving the accuracy of real flood forecasting in the
LYR. It enables more accurate decisions for future floods without delay, thus reducing property losses
on both sides of the Yellow River.
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Abstract: Hydrometeorological forecasts provide future flooding estimates to reduce damages.
Despite the advances and progresses in Numerical Weather Prediction (NWP) models, they
are still subject to many uncertainties, which cause significant errors forecasting precipitation.
Statistical postprocessing techniques can improve forecast skills by reducing the systematic biases in
NWP models. Artificial Neural Networks (ANNs) can model complex relationships between input
and output data. The application of ANN in water-related research is widely studied; however, there
is a lack of studies quantifying the improvement of coupled hydrometeorological model accuracy
that use ANN for bias correction of real-time rainfall forecasts. The aim of this study is to evaluate
the real-time bias correction of precipitation data, and from a hydrometeorological point of view,
an assessment of hydrological model improvements in real-time flood forecasting for the Imjin River
(South and North Korea) is performed. The comparison of the forecasted rainfall before and after
the bias correction indicated a significant improvement in the statistical error measurement and a
decrease in the underestimation of WRF model. The error was reduced remarkably over the Imjin
catchment for the accumulated Mean Areal Precipitation (MAP). The performance of the real-time
flood forecast improved using the ANN bias correction method.

Keywords: ANN; hydrometeorology; flood forecasting; real-time; postprocessing

1. Introduction

Climate change has increased extreme rainfall events, and as a result, damage from floods has
significantly increased. Heavy rainfalls occurring over different areas often lead to various flooding
problems. Therefore, societies need to improve flood risk management. Hydrometeorological forecasts
provide future estimates to reduce damage and provide warnings of extreme events. Coupling numerical
weather prediction (NWP) and hydrological models allows meteorology and hydrology connection to
generate real-time flood forecasting. Real-time flood forecasting has been investigated worldwide in
previous studies using hydrometeorological data [1–3].

Although NWP models have improved significantly, the restrictions of the physical processes
in NWP models lead to unavoidable errors in the forecasting of meteorological properties due to
nonlinearity and the chaotic atmospheric system. In analyses of the accuracy of the forecasted values
of atmospheric models, the most frequent errors are related to the model error, initialization, boundary
conditions of atmosphere, land and sea surface, model formulation and model parametrization during
the forecast period [4]. These errors influence the output of the meteorological models.

NWP models are restricted to representing the physical processes of the chaotic atmosphere.
A precise forecast of precipitation is one of the challenges of NWP models. The biased output
of these models is still a concern for hydrometeorological prediction studies [5]. NWP models
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are subject to many uncertainties, which cause significant errors in the forecasting of real-time
precipitation. In coupled hydrometeorological studies, one critical issue before running a rainfall-runoff
model is to reduce the input forcing errors that are produced by the meteorological model.
Therefore, postprocessing of the model outputs of the real-time forecast data would result in a better
match with the observation records. Statistical postprocessing methods improve real-time forecast
accuracy by relating the model outputs to the observed values.

Several studies have shown that statistical postprocessing improved forecast performance by
reducing systematic biases [6,7]. The main purpose of statistical bias correction is to develop a
relationship between the modeled and observed data. Commonly used statistical methods are the
quantile-based mapping method [8] and regression approaches that include linear relationships [9] and
nonlinear relationships [10]. In real-time flood forecasting, a comparison of different postprocessing
methods such as Bayesian Model Averaging (BMA), classic poor man ensemble (PME) and Multimodel
SuperEnsemble Dressing (MSD) indicated that the MSD approach provided better precipitation data
for floods in Italy [11]. Six different bias correction methods (including linear scaling (LS), local intensity
scaling (LOCI) scaling, Daily Translation (DT), daily bias correction (DBC), quantile mapping based on
an empirical distribution (QME) and quantile mapping based on a gamma distribution (QMG)) were
applied in ten North American river basins to determine the sensitivity of the bias correction methods
on climate models [12]. All bias correction methods improve the precipitation forecasts, but DT, DBC,
QME, and QMG resulted in the most significant improvements to the simulations [12].

An Artificial Neural Network (ANN) can predict and modeling input and output data [5].
ANN is more practical than other techniques due its ability to handle complex nonlinear systems.
In previous studies, ANN was applied for various purposes such as precipitation estimation [13–15],
hydrological modeling [16–19], hydrometeorological studies [20,21], flood forecasting [22–24] and
flood inundation [25,26]. Three new hybrid artificial intelligence optimization models (adaptive
neuro-fuzzy inference system (ANFIS) with cultural (ANFIS-CA), bees (ANFIS-BA), and invasive
weed optimization (ANFIS-IWO) algorithms) were presented for flood susceptibility mapping in Iran.
The results showed that ANFIS-IWO had better performance and ANFIS-BA exhibited the better
prediction capability [27]. The application of ANN for the prediction of water resource variables
has been reviewed in 43 papers [28]; in addition, 210 papers (from 1999 to 2007) in which ANN was
developed for river flow prediction including quantity and quality were reviewed [29]. ANN was
applied to predict seasonal rainfall for the next 5 years and a multilayer neural network to predict
rainfall time series was employed successfully in India [30]. The bias correction of the climate modeled
temperature and precipitation was carried out using ANN over northern South America; compared
with linear regression, ANN had a superior performance [5]. Recent reviews on the application of
ANN have been reported in [31].

There is a lack of studies in the literature on the quantification of the accuracy improvement
of coupled hydrometeorological models using ANN for the bias correction of real-time rainfall
forecasts. The aim of this study is to evaluate the real-time bias correction of precipitation data
from a hydrometeorological point of view. In addition, an assessment of forecast improvements to
hydrological models that result in real-time flood forecasting of coupled hydrometeorological models is
performed. To accomplish this aim, a variety of tests are conducted to quantify the accuracy assessment
of real-time precipitation and flood forecasts using coupled hydrometeorological models. The present
study provides details regarding the real-time precipitation accuracy improvement in addition to the
forcing of the bias-corrected rainfall as input to the hydrological model. An evaluation of the accuracy
enhancement of real-time flood forecasting of hydrometeorological models is also given.
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2. Study Area and Data

2.1. Imjin Basin

The target area for this study is the Imjin River basin, which passes through the demilitarized
zone (DMZ) in North and South Korea between 37◦44′23” N 126◦31′19” E and 39◦11′12” N 127◦36′21”
E. The length and the area of the Imjin River watershed are 273.5 km and 8139 km2, respectively.
In addition, 62.9% of the area of the basin is in North Korea, and the other 37.1% is in South Korea.
Because approximately two-thirds of the Imjin River is in North Korea, it is considered a transboundary
river. Details regarding the study catchment are mapped in Figure 1. The source of the Imjin River
is in North Korea, it then passes through South Korea where it joins the Han River, and it finally
empties into the Yellow Sea. The Imjin River has complex topography with an altitude range from
155 m to 1570 m with a mean elevation of 680.5 m above mean sea level. The average annual rainfall
is approximately 1100 mm, which mostly occurs during the late summer and fall [32]. The study
area consists of 38 sub-basins that are defined by characteristics such as elevation, direction of the
streamflow and soil conditions of the entire basin.

Figure 1. Location, sub-basins, river network and water level gauging stations of the Imjin River basin.

2.2. Hydrological and Meteorological Data

The Imjin River has experienced various flash floods during past years. The most extreme events are
selected for consideration for flood forecasting in the Imjin River basin. In 2002, Typhoon Rusa ripped
through South Korea in the Gangneung area between 31 August and 1 September, affecting the eastern
and southern parts of Korea with almost 1000 mm of rainfall in 30 h [33,34]. The typhoon caused the
submergence of 9000 houses and killed 113 people. In 2002 event, continuous low and high humid
east wind led to the creation of frontal precipitation by cold air [34]. In 2007, Typhoon Wipha in North
Korea brought heavy rain between 7–14 August and 18–20 September. Approximately 500–700 mm of
rainfall caused flooding in North Korea for seven days. The westward-travelling Typhoon Wipha in 2007,
caused heavy frontal precipitation was accompanied by strong wind that was developed by mesoscale
disturbances in China [35]. On July 27, 2011 heavy rainfall led to extreme flooding in Seoul, South Korea.
In Seoul, as a mega city with a high population concentration, 536 mm of rainfall over three days resulted in
severe damage, 980 flood victims, 62 people reported as dead or missing and 19,215 inundated houses [36].
The conventional rainfall in 2011 was developed by convective systems which moved from the Yellow Sea
to Seoul [37]. The percentage of the liquid precipitation in the study period was 100%.

The estimated flood damage costs due to intense rainfall events indicate the need for integrated
flood management for disaster prevention. This is especially important for two countries with
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different natural environments, national defenses, and political problems. The Imjin River is the
seventh longest river in the Korean peninsula and encountered severe flooding during past years.
Therefore, the hydrological and meteorological models are coupled to provide information to prepare
for severe events, provide early alerts for imminent disasters and to minimize the flood induced
hazards in this important area. Other applications of the flood forecasting system are primarily related
to military operations. The Imjin River basin has a military region named Paju-si, which includes
river-crossing operations. Flood hazards directly influence military operations and require the use of
detailed and widely applicable hydrological models.

In this study, hydrometeorological components are coupled for real-time rainfall-runoff forecasting
for the transboundary Imjin River. The observation data used in this study underwent a quality control
procedure, which verified the values and filled in any missing values by the Inverse Distance Weighting
(IDW) method, to complete the hourly data from at all stations.

The IDW formula is as follows:

R(s0) =
n

∑
i=1

wi × R(si) (1)

wi =
d−2

i0

∑1
i=1 d−2

i0

(2)

where R(s0) is the revised rainfall (mm) at s0, R(si) is the observed rainfall (mm) at si, n is the number
of observed stations, wi is the weight of si and di0 is distances from the points to the point estimated.
IDW is a deterministic spatial interpolation and one of the most popular methods of interpolation.

3. Methodology

3.1. WRF Model

The WRF model has been developed as a mesoscale model for research and operational NWP
model studies. The WRF model can be used for different aspects of atmospheric and operational
forecasting research at various scales such as forecasting extreme events and is especially useful for
heavy rainfall predictions at a high spatial resolution [38,39]. The WRF model is a very useful tool for
numerical weather predictions and data assimilation in estimating meteorological data such as rainfall,
solar radiation, temperature, dew point, and wind speed by reproducing climate features at ultrafine
temporal and spatial resolutions [40].

The initial and boundary conditions were obtained using external sources, such as the static
geographic data provided by the United States Geological Survey (USGS) and Moderate Resolution
Imaging Spectroradiometer (MODIS) data set and the gridded data provided by regional and
global models including the North American Mesoscale Forecast system (NAM) and the Global
Forecast System (GFS) [41]. The weather charts employed in this study were provided by the
National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) and have a resolution of
1◦ × 1◦. In summary, using the definitions of all computational grids, geogrid interpolates terrestrial
time-invariant fields, then Ungrib extracts the meteorological fields from the GRidded Information in
Binary (GRIB) formatted files, and Metgrib horizontally interpolates the meteorological data to the
simulation domains. Time-splitting techniques are used by the Advanced Research WRF (ARW) solver
to integrate the fully compressible nonhydrostatic equations of motion. The Euler equations are in flux
form and are formulated using a terrain that follows mass vertical coordinates. Finally, the second- or
third- order Runge-Kutta method is applied for time-split integration [41].

In this study, WRF version 3.5.1 was applied to perform real-time forecasting of the meteorological
data by using the WRF Double-Moment 6-Class (WDM6) microphysical scheme. The WRF model
provided an ultrafine scale of temporal and spatial resolution (10 min and 1 km × 1 km respectively)
that covers Korea and the surrounding region. The real-time forecast data had a 10-min temporal
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resolution over a 72-h time series which was repeated every 6 h. The schematic construction of the
real-time forecast of the WRF model is shown in Figure 2.

Figure 2. The schematic construction of the real-time forecast of the WRF model.

3.2. Sejong University Rainfall-Runoff (SURR) Model

The SURR model was developed by the Water Resource and GIS Laboratory, Sejong University [42]
and is based on the event-oriented storage function model (SFM) by [43]. The SURR considers
the rainfall loss using a soil moisture accounting model for streamflow simulation and prediction.
The SURR is a semi-distributed continuous rainfall-runoff model that uses physical foundations to
estimate the hydrological components including soil moisture and surface, lateral and groundwater in
conjunction with the basin and channel routing to simulate the runoff. The governing equations of the
SURR model for flow generation are as follows.

dSsb(t)
dt

= Qsur(t) + Qlat(t) + Qgw(t) (3)

Qsur(t) = (Q′
sur(t) + Qsurstor(t − 1))(1 − exp [−surlag]) (4)

Qlat(t) = (Q′
lat(t) + Qlatstor(t − 1))(1 − exp [−latlag]) (5)

Qgw(t) = Qgw(t − 1)· exp [− ∝gw ·Δt] + Wrchrg(t)·(1 − exp [− ∝gw ·Δt]) (6)

Qsb(t) = (
Ssb(t)

Ksb
)

1
Psb

(7)

dSch(t)
dt

= ∑ (
Ssb(t)

Ksb
)

1
Pch − Qch(t) (8)

Qch(t) = (
Sch(t)

Kch
)

1
Pch

(9)

where Ssb(t) and Qsb(t) are the storage content and outflow of the storage in the basin and Sch(t) and
Qch(t) the storage content and outflow of the channel at time t, respectively. Qsur(t) and Q′

sur(t) are
the surface runoff with and without the lag effect consideration at time t; Qsurstor is the surface runoff
which stored in the watershed at time t − 1 and surlag is surface runoff lag coefficient. Qlat(t) and
Q′

lat(t) are the lateral flow with and without the lag effect consideration at time t; Qlatstor is the lateral
flow which stored in the watershed at time t − 1 and latlag is lateral flow lag coefficient. Qgw(t) is
groundwater flow contributing to the discharge from each sub-basin at time t; ∝gw base flow recession
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constant; Wrchrg(t) is recharge entering the aquifer and Δt is the calculation time interval. Ksb, Psb, Kch
and Pch are the storage function constants in the basin and channel, respectively.

The input of the SURR model is MAP and Mean Areal Evapotranspiration (MAE) for each of the
sub-basins. The observed and forecasted meteorological data can be applied to drive the SURR model
for streamflow simulation and forecasting, respectively. The evapotranspiration is calculated using the
FAO Penman-Monteith (PM) formula. The FAO PM method is recommended as a standard method
for estimating evapotranspiration (ET). The FAO PM method can be expressed as Equation (1):

ET =
0.408Δ(Rn − G) + γ 900

T+273 u2(es − ea)

Δ + γ(1 + 0.34u2)
(10)

where ET is the evapotranspiration (mm day−1), Rn is the net radiation at the crop surface (MJ m−2

day−1), G is the soil heat flux density, which is relatively small for daily and ten-day periods (MJ
m−2 day−1), T is the mean daily air temperature at a height of 2 m (◦C), u2 is the wind speed at a
height of 2 m (m s−1), es is the saturation vapor pressure (KPa), ea is the actual vapor pressure (KPa),
es − ea is the saturation vapor pressure deficit (KPa), Δ is the slope vapor pressure curve (KPa ◦C−1),
and γ is the psychrometric constant (KPa ◦C−1). The meteorological data are used to calculate the ET,
and then, Thiessen polygons are used by GIS to estimate the MAE for each sub-basin. The rainfall and
evapotranspiration data have hourly temporal resolutions, which were spatially interpolated by the
Thiessen polygons method using GIS. A detailed description of the SURR model is reported in [42].

The hydrologic models simulate the response of the basin to a given rainfall. Therefore, as an initial
assessment, the calibration and verification of the hydrological model could be performed to ensure
that the results are accurate and stable. The SURR model was calibrated for the Imjin basin using the
observed rainfall and streamflow, and the optimized parameters resulted in a good agreement between
the observed and simulated streamflow during the verification periods. The Nash-Sutcliffe Efficiency
(NSE) by [44], the Relative Error in Volume (REV) and Kling-Gupta Efficiency (KGE) proposed by [45]
were used to compare the results in the calibration and verification periods.

The NSE, REV and KGE equations (following the KGE equation represented in [46]) are as follows:

NSE = 1 − ∑n
i=1 (Oi − Si)

2

∑n
i=1 (Oi − O)

2 (11)

REV =
∑n

i=1 Si − ∑n
i=1 Oi

∑n
i=1 Oi

× 100 (12)

KGE = 1 −
√
(r − 1)2 + (∝ −1)2 + (β − 1)2 (13)

∝=
σs

σo
(14)

β =
μs

μo
(15)

where Oi is the observed data, Si is simulated data, O is the average of observed data, r is the correlation,
∝ is the ratio of the simulation to the observed streamflow standard deviation and β is the ratio of the
mean of the simulated and observed streamflow.

The NSE is selected to evaluate the performance of the hydrological model since it shows goodness
of fit for the hydrological model. The NSE is a model performance evaluation criterion which is
used worldwide. However, the NSE calculates the differences between the observed and simulated
streamflow in squared values. This may lead to over- and underestimation of model performance
during the high and low flow respectively [47]. Therefore, the REV efficiency criterion is also selected
to measure the ratio of the absolute error of the simulated and observed data to the observed data.
To overcome the model skill overestimation in NSE criterion the KGE as an alternative metric is
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selected to measure the hydrological model performance. A comparison between NSE and KGE is
discussed in [45]. The above-mentioned criteria are used to indicate whether the results of the model
simulation in calibration and verification process are reasonable or not.

With the NSE range set between 1 (i.e., the ideal value) and negative infinity, values lower than
zero indicate that the mean value of the observed streamflow could have better estimate than the
model provides. According to the calibration and verification of the SURR model, the results of the
streamflow simulations are reasonable and stable with NSEs close to 1. The REV is a measure of
precision; it is the ratio of the absolute error of the simulated and observed data to the observed data.
The REV can vary among negative infinity to positive infinity and the ideal value is zero. In this study,
the results of the calibration and verification for the values of the NSE, REV and KGE showed that
the SURR model can well reproduce the observed streamflow in Gunnam, Jeonkuk and Jeogseong
stations. The results of the calibration and verification are shown in Table 1.

Table 1. Statistical analysis for the simulated discharge for the calibration and verification periods in
the SURR model.

Metric

Calibration Period
23 July–4 September 2007

Calibration Period
1 July–22 August 2008

Verification Period
21 June–4 August 2009

Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong

NSE 0.69 0.78 0.71 0.70 0.83 0.79 0.57 0.85 0.79
REV −0.48 −0.12 −0.52 0.37 0.03 0.08 0.16 −0.22 0.03
KGE 0.53 0.62 0.51 0.47 0.85 0.69 0.75 0.68 0.80

Metric

Verification Period
9 July–20 August 2010

Verification Period
16 June–2 August 2011

Verification Period
31 July–13 September 2012

Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong

NSE 0.62 0.71 0.67 0.71 0.89 0.85 0.59 0.78 0.66
REV 0.23 −0.34 −0.07 −0.09 −0.19 −0.11 −0.28 −0.20 −0.05
KGE 0.42 0.61 0.65 0.87 0.76 0.88 0.47 0.79 0.71

3.3. Bias Correction of Real-Time Forecasts

The NWP models approximate mathematically the physical dynamics using nonlinear differential
equations; however, these approximations include uncertainties due to the complex system of the
atmosphere [48]. Advancements in meteorological forecast models did not solve the issues related to
the inevitable biases. Despite the efforts to incorporate all sources of uncertainty into the forecast and
the methodologies applied to generate the forecast ensembles, the results are still subject to errors and
systematic biases [49]. Statistical postprocessing increases the accuracy of the forecast data by decreasing the
errors. ANN, as a postprocessing method, can determine the complex relationships between the inputs and
outputs. ANN has been widely used in the hydrology and modeling of water resource systems [5,12–29].

3.3.1. Description of ANN

ANN is biologically inspired from neurons in the brain and consists of the interaction of computational
units. ANN establishes a relationship between the input and target and produces a correct response by
following the processes of human brain activities such as saving information, learning, and training [5].
The structure of an ANN includes the input layer (including the input nodes connected to the input
variables), hidden layer (it can be one hidden layer or more layers which include the hidden nodes) and
output layer (including the output nodes that deliver the output data). Different weights are connected
to the nodes (units) of the layers in different forms such as the Feedforward Neural Network (FNN),
Convolutional Neural Network (CNN) and Recurrent Neural Networks (RNN). A three-layer FNN is
illustrated in Figure 3. Here, i, j and k are the number of nodes for the input, hidden and output layers,
respectively. Furthermore, Xi is the input variable, Oj is the output variable, Wji is the connected weight
from the input layer to the hidden layer, and Wkj is the connected weight from the hidden layer to the
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output layer. In this study, the FNN is applied to construct the neural network. The weights and bias nodes
in the feedforward network are connected in one forward direction.

Figure 3. An example schematic of a feedforward network.

ANN is characterized by the simulation and response processes to learn the correct response
for each input through training. The general function between input and output is called a transfer
(activation) function, which can be a linear or nonlinear function. In this study, the nonlinear sigmoid
function is applied for the neural networks. The transfer function converts the summation of the
weights (w) and inputs (x) and (b) bias to an output vector by the following equation:

y = f (∑ w × x + b) (16)

The inputs are multiplied by weights and then fed to the first hidden layer. The weights can be
chosen by minimizing the following error function:

E =
1
2
[Tarj − Oj(w, x)]2 (17)

where Oj is the output of the output layer and Tarj is the corresponding target. The procedure of input
weight adjustment is called training (learning). In this study, The Levenberg-Marquardt (trainlm) was
chosen as the training function and the back propagation generalized delta rule (BPGDR), is applied as
the training algorithm that minimizes the error function based on the differences between the modeled
and desired outputs. The BPGDR formulation can be summarized in two parts as follows:

1. is for the output weights, which are connected to the output nodes:

Δwkj = η
∂E

∂wkj
(18)

2. is for the hidden weights, which are connected to the hidden nodes:

Δwji = η
∂E

∂wji
(19)

where wkj and the wji are the output and hidden weights, respectively, E is the error function, and η is
the learning rate.

3.3.2. Application of ANN for Real-Time Bias Correction

ANN learns the error structure from historical data and corresponding observations.
Then, the trained network can be used to reproduce bias-corrected predictions. To apply bias correction
in a real-time forecast system, the current time is selected, and the training data set is considered
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until the current time. The remaining data are then considered as the validation data set. In the
training set, the observation is the target, and the forecast is the input data. The objective of using
ANN is to find a nonlinear relationship between the input and the target data to achieve the minimum
error between the input and target data. A network with few neurons restricts the network learning
ability while one with many neurons may lead to overfitting and poor generalization of the network.
Different numbers of the neurons used to construct the model and results showed that by increasing the
number of neurons the model performance improved; after 32 neurons the results did not dramatically
improved (Figure 4). There are 38 sub-basins in the study area, therefore the 38 neurons were chosen.
The stopping criterion used in this study is early stopping; this avoids the overtraining and overfitting
of the model for the training data set.

Figure 4. The results of the regression for different number of the neurons.

The schematic of choosing the training and validation data for the ANN construction in this study
is provided in Figure 5.

Figure 5. The schematic of the selection of training and validation set data in the real-time forecast of
the WRF model output data.

The evaluation criteria used in this study include the Relative Bias (RB), Mean Relative Error
(MRE), and the Mean Absolute Error (MAER), as given in Table 2, NSE and REV. In the formulas, Oi is
the observed data, and Fi is the forecast data. The RB metric is selected to compare the forecast and
observed values by calculating the absolute bias which is normalized by the sum of the observed values.
The MRE was also selected to compare the simulated and observed values, the MRE shows the average
of the relative error which is the uncertainty of the measurement compared to the measurement.
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To show the average of the absolute differences between observed and forecast data the MAER was
selected to have a comparison between the simulated and observed values.

Table 2. Statistical measures used to evaluate the performance.

Index Formula

Relative Bias (RB) RB = ∑n
i=1 (Oi− fi)
∑n

i=1 Oi

Mean Relative Error (MRE) MRE = 1
n

n
∑

i=1

Si−Oi
Oi

Mean Absolute Error (MAER) MAER = 1
n

n
∑

i=1
|Oi − fi|

4. Results

4.1. Real-Time Accuracy Improvement of the Precipitation

In real-time flood forecasting, it is undeniable that the accuracy of the real-time precipitation plays
the most important role in achieving accurate real-time flood forecasts. In this study, ANN is applied
for the bias correction of the real-time precipitation produced by the WRF model. A comparison of the
observed rainfall and with/without bias-adjusted real-time WRF rainfall indicated that the accuracy
improved with the ANN bias correction (Table 3). The commonly used statistical error measurements
such as MRE, RB, REV and MAER compared the skill of model forecasts and observations for error
measurement. The results showed that the ANN real-time bias correction improved all statistical
terms for the forecast rainfall. A comparison of the results indicated that the use of the bias correction
method improved the real-time forecast error measurement statistics by 70.09, 81.61 and 70.49% for the
2002, 2007 and 2011 events, respectively.

Table 3. Results of the improvements to the flood events in 2002, 2007 and 2011.

Event Forecast data MRE RB REV MAER

2002
WRF 38.45 67.73 38.78 114.47

Bias-adjusted WRF 11.64 42.91 7.74 31.17
Improvement (%) 69.71 57.84 80.05 72.77

2007
WRF 42.40 35.42 23.20 105.84

Bias-adjusted WRF 10.55 4.03 4.13 20.67
Improvement (%) 75.12 88.62 82.22 80.47

2011
WRF 65.61 85.81 61.54 59.83

Bias-adjusted WRF 27.24 13.75 14.82 21.55
Improvement (%) 58.09 83.98 75.92 63.98

Further investigations are performed to assess the sum, minimum, maximum and percentage of
the underestimation of the observed, forecast and bias-corrected forecast rainfall for the 2002, 2007 and
2011 events. Table 4 shows the results of the MAP analysis for the flood events before and after bias
correction using ANN. The results obtained before and after real-time ANN bias correction led to an
accuracy improvement of MAP by increasing the underestimation and the skill of real-time forecast
WRF data. According to the results, after applying the ANN bias correction, the underestimation
improved by 65.79, 23.69 and 73.68% for the 2002, 2007 and 2011 events, respectively.
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Table 4. Statistics of the MAP for the 2002, 2007 and 2011 flood events.

Event Data ∑∑∑ (mm) Min (mm) Max (mm) Underestimation (%) Error Reduction (%)

2002
Observation 11100.52 196.19 351.40 - -

WRF 6795.70 132.64 246.12 97.37 -
WRF-revised 11959.45 288.62 362.03 31.58 75.28

2007
Observation 1904.96 299.06 641.59 - -

WRF 14622.80 158.51 450.84 78.95 -
WRF-revised 18255.56 356.49 596.11 55.26 89.53

2011
Observation 17445.92 293.18 743.25 - -

WRF 6709.83 52.56 218.64 100 -
WRF-revised 18021.18 306.21 593.00 34.21 88.74

In the present study, a comparison between the observed and forecast accumulated MAP in
all sub-basins is performed to compare the accuracy before and after bias correction. It is evident
from Figure 6 that after bias correction, the accumulated WRF data have improved significantly.
The scatterplot of the observed, real-time, and bias-corrected real-time forecast MAP indicated that the
ANN bias correction method applied to the Imjin basin increased the real-time forecast accuracy by
decreasing the underestimation of the precipitation in all the sub-basins. A comparison of the results
of the accumulated observed rainfall and the real-time forecast WRF data showed that the ANN bias
correction method used in this study was able to reduce the biases of real-time precipitation with the
desired accuracy.

Figure 6. The scatterplot of the accumulated observed MAP and mean ensemble of real-time WRF data
before and after bias correction for the events in (a) 2002, (b) 2007 and (c) 2011.

The spatial distribution of the MRE on the catchment scale indicted that the ANN bias correction
led to a decrease of the MAER in all the sub-basins (Figure 7). The results of the MRE assessment of
the 38 sub-basins indicated that the error reduction of the forecast MAP varies by sub-basin in the
study area. The results of the ANN real-time bias correction showed that the average improvements
of the MRE over the catchment are 69.71, 61.24 and 53.90% for the 2002, 2007 and 2011 events,
respectively. By applying the forecast bias correction, the forecast capability and the accuracy of the
model predictions improved remarkably.

4.2. Real-Time Flood Forecasting Accuracy Improvement

In this section, the real-time flood forecast accuracy evaluation is performed by comparing the
observed, simulated and forecasted values. The simulation floods were estimated using the observation
MAP as input to the SURR model, while the forecast was obtained using the real-time WRF data as the
input to the SURR model. The statistical error measurements (NSE, KGE, MRE and REV) were used to
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compare the performance of hydrologic simulations and forecasts before and after bias correction and
determine the average deviations.

In this study, we used gauge and WRF precipitation data to drive the hydrological model to
simulate and forecast flood events. Here, the 72-h real-time forecast data at a spatial resolution of
1 km × 1 km and a temporal resolution of 10 min are used as input to the SURR model over the
Imjin basin; furthermore, the bias-corrected WRF data are used as the input data for the SURR model.
The coupling system of the SURR and WRF model includes the use of the observed precipitation until
the start of the forecast time, and then continues to apply the WRF data for a 72-h forecast lead time.
The observed and real-time WRF data (bias-corrected and raw data) are used to run the hydrological
model, and this process is repeated for the next 6 h to the end of the forecast time. Among the various
forecast ensembles, only one stream flow forecast is shown with the relevant precipitation to indicate
the real-time forecast discharge variation over time due to space limitations. According to the findings
of this study, by applying the bias-adjusted WRF data, the accuracy improvement was suggested by
the increasing NSE and KGE and decreasing MRE and REV (Table 5).

Figure 7. The comparison of the spatial distribution of the MRE in 38 sub-basins before (upper part)
and after bias correction (down part) for the events in (a) 2002, (b) 2007 and (c) 2011.

The performance of the SURR model in simulating the streamflow along with the SURR-WRF
coupled model before and after bias correction in forecasting the streamflow at the Gunnam, Jeonkuk
and Jeogseong stations in the 2002, 2007 and 2011 events are illustrated in Figure 8. The observed
stream flow (black dashed curve), the forecast stream flow using WRF data (blue curve), the forecast
stream flow using bias-corrected WRF data (green curve) and the simulated streamflow (red curve) are
presented in Figure 8. The Jeonkuk station has no observation data for the 2002 event.
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Table 5. Comparison of results for the statistical error measurement for the 2002, 2007 and 2011 events.

Index Station SURR SURR-WRF SURR-Revised WRF Improvement (%)

Event 2002
NSE

Gunnam
0.26 −18.27 −7.24 60.21

MRE −0.09 −0.95 −0.24 74.74
REV 0.16 0.70 0.43 38.57
KGE 0.41 −1.20 −0.52 56.67
NSE

Jeogseong
0.68 −19.85 −8.68 56.27

MRE −0.25 0.80 0.26 67.50
REV 0.03 0.53 0.27 49.06
KGE 0.60 −1.14 −0.68 40.35

Event 2007
NSE

Gunnam
0.69 −4.57 −2.01 56.02

MRE −0.58 −0.60 −0.56 6.67
REV −0.48 −0.57 −0.52 8.77
KGE 0.53 −5.03 −3.98 20.87
NSE

Jeonkuk
0.78 −6.63 −0.82 87.63

MRE −0.60 −0.77 −0.37 51.95
REV −0.12 −0.22 −0.18 18.18
KGE 0.62 −2.77 −1.65 40.43
NSE

Jeogseong
0.71 −10.30 −5.71 44.56

MRE −0.69 −0.78 −0.65 16.67
REV −0.52 −0.54 −0.59 9.26
KGE 0.51 −3.30 −2.24 32.12

Event 2011
NSE

Gunnam
0.80 −0.47 0.07 85.11

MRE −0.49 −0.79 −0.51 35.44
REV −0.08 −0.59 −0.37 37.29
KGE 0.81 −0.26 −0.09 65.38
NSE

Jeonkuk
0.81 −0.87 −0.06 93.10

MRE −0.63 −0.67 −0.58 13.43
REV −0.34 −0.73 −0.42 42.47
KGE 0.60 −0.79 −0.21 73.42
NSE

Jeogseong
0.90 −1.06 −0.23 78.30

MRE −0.06 −0.56 −0.07 87.50
REV −0.45 −0.60 −0.32 46.67
KGE 0.81 −1.22 −0.46 62.29

The observed and real-time forecast precipitation (with/without bias correction) events are shown
separately in different panels. Comparing the flood observation and simulation, the rising and falling
limb and amplitude of the simulated flood, which used observed precipitation, is quite similar to
the observations, while the forecasted flood by the WRF model followed similar trend by significant
underestimation. This result can be explained by the fact that observation and real-time forecast
precipitation are two various sources of input data that are forced into the SURR model.
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Figure 8. Cont.
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Figure 8. Comparison of simulated, observed and forecasted flows (before and after bias correction)
and observed and forecasted rainfall (before and after bias correction) for 2002, 2007 and 2011 events.
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5. Discussion

The NWP models determine the future state of the weather by forcing current weather conditions
into the atmospheric models. The chaotic and nonlinear system of the atmosphere and complex nature
of precipitation made precipitation difficult to forecast accurately with the NWP models. In general,
the NWP models forecast less accurate precipitation rates than indicated by the observed precipitation
rates. The precipitation intensity [50] and location [51] are challenging for precipitation forecasting.
The initial and boundary conditions such as horizontal resolution, domain size as grid spacing and
physical parameterization schemes are directly related to the NWP model results in heavy precipitation
forecasting [37,52]. The Quantitative Precipitation Forecast (QPF) accuracy in three-dimensional
primitive-equation atmosphere circulation models, such as WRF, can be influenced by different
initializations, microphysics, and planetary boundary layer (PBL) schemes [53]. In this study, the WRF
real-time forecast data, in comparison with the observed data, had systematic biases; the errors related
to the NWP model forecasts were reflected in the underestimation of the real-time precipitation forecast
by the WRF model. The cumulative MAP had the underestimations of 97.37, 78.95 and 100% for the
2002, 2007 and 2011 events, respectively. Because the Imjin River is a transboundary river, a reliable
streamflow forecast is needed for this watershed. Improving the streamflow forecast in the Imjin basin
is a highly important task especially during heavy rainfall and extreme events. For a reliable flood
forecast, an accurate forecast of rainfall is needed, but the use of raw WRF data caused large biases in
the flood forecast.

The aim of the present study is to improve real-time flood forecasting by applying ANN as a
postprocessing technique. Considering all real-time forecast cases, it can be concluded that on average,
hydrological forecasts based on the WRF model forecast reproduced stream flow with a significant
underestimation. ANN was able to construct a relationship between the input and output data to
reduce the biases between the observed and forecast rainfall data. Therefore, the use of the ANN
bias correction resulted in the improvement of the real-time flood forecasts in the Imjin basin for the
Gunnam, Jeonkuk and Jeogseong stations. By applying the ANN bias correction, errors in precipitation
forecasts are modified, which resulted in the real-time precipitation forecast accuracy enhancement,
which is not uniform over the forecast interval. The results indicated that there was significant
improvement in the statistical errors in the forecast MAP before and after applying the bias correction
method. By using the ANN bias correction, the underestimation of the real-time forecast data and the
accumulated forecast MAP improved by 65.57, 30.03 and 65.79% for the 2002, 2007 and 2011 events,
respectively. The use of the bias-corrected precipitation resulted in the significant improvement in the
real-time flood forecasting by 57.53, 33.31 and 57.70% for the 2002, 2007 and 2011 events, respectively.
The promising results indicated that the ANN bias correction in the Imjin River had resulted in the
improved performance of real-time flood forecasting.

The forecast verification indicated a noteworthy increase in forecast performance with ANN,
compared to the raw model outputs. The precipitation real-time forecast accuracy enhancement can
translate to the improvement in real-time flood forecasts. However, the results of the real-time flood
forecasts were still underestimated because a perfect estimate of real-time forecast rainfall quantity is
not easily obtained. This complexity is the result of the two sources of precipitation, which are quite
different. The spatial and temporal variation in the rainfall characteristics were not captured well by
the WRF model in the real-time forecast data. Typically, the forecasted floods underestimated the peak
floods, and the forecasted flood errors are related to the inaccuracies in the real-time forecasted rainfall.
Considering all real-time forecast cases from the start of the forecasting time until the end of the
forecasting time, on average, it can be concluded that hydrological forecasts based on meteorological
model inputs were able to reproduce the shape and the timing of the calculated stream flow fairly
well. However, the underestimation of the WRF model bias-corrected precipitation was affected by
the real-time forecast discharge in all events. Another reason for the uncertainties in real-time flood
forecasting after bias correction could be related to the fact that the hydrological model calibration
was performed with rain gauge data and observed streamflow data; however, the coupled SURR-WRF
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model used the real-time forecasted rainfall. These different sources of rainfall were used as inputs for
the hydrological models. Therefore, it could be expected that the hydrological response in forecasting
the streamflow would not match the simulated streamflow very well. For the real-time flood forecasts,
although the real-time flood forecasts are not perfectly matched the observed values even after
applying the bias correction, available forecast data are preferred over completely ignoring future
events of interest. Due to the importance of the Imjin basin for both North and South Korea, available
information regarding flood forecasts in the studied area is valuable.

6. Conclusions and Recommendations

In hydrometeorological studies, the performance of coupled hydrometeorological models is
directly dependent on the accuracy of the forecasted precipitation. Because the NWP models
cannot forecast precipitation accurately, postprocessing of the output of NWP models is necessary.
The postprocessing of the real-time systems can be performed using historical data and forecasts by
ANN bias correction. In this study, ANN is applied for the bias correction of the real-time forecast of
the WRF model. The bias correction is estimated to quantify the accuracy improvement of the rainfall
and corresponding flood forecasts in a transboundary river. The main conclusions of this study are
summarized below:

(1) Applying ANN for bias correction improved the forecast performance by reducing MRE, RB,
REV and MAER by 69.71, 57.84, 80.05 and 72.77%, respectively, in the 2002 event; by 75.12,
88.62, 82.22 and 80.47%, respectively, in the 2007 event; and by 58.09, 83.98, 75.92 and 63.98%,
respectively, in the 2011 event.

(2) The sum, minimum, maximum and the underestimation of the WRF real-time forecast data were
improved after applying the ANN bias correction to the real-time WRF data.

(3) By applying the ANN bias correction, the underestimation of WRF data improved 65.79, 23.69 and
73.68% in the 2002, 2007 and 2011 events, respectively. The error was also reduced by 75.28,
89.53 and 88.74% over the Imjin catchment in terms of the accumulated MAP in the 2002, 2007 and
2011 events, respectively.

(4) The error comparison in each sub-basin indicated that the average percentage of MRE reduction
in the catchment was 69.71, 61.24 and 53.90% for the 2002, 2007 and 2011 events, respectively.

(5) By applying the ANN bias correction, the performance of the SURR-WRF coupled models in
real-time flood forecasts increased by increasing the NSE and KGE and reducing the MRE and
REV for Gunnam, Jeonkuk and Jeogseong stations.

Additional analyses could be performed to compare the benefits of using different QPF
postprocessing techniques such as radar data assimilation, regression methods and Kalman filtering.
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