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Preface

The evolution of land systems under the influence of human activities and natural processes
has emerged as a critical area of research in recent decades. With growing pressures from
urbanization, climate change, and socio-economic transformation, the need for innovative tools
and methodologies to analyze, model, and manage these systems has never been more urgent.
This reprint, “Spatiotemporal Data Analytics and Modeling of Land Systems: Shaping Sustainable
Landscapes”, seeks to address this gap by presenting a curated collection of cutting-edge studies
that advance our understanding of spatiotemporal dynamics in land-use systems. This reprint
spans a broad spectrum of topics, from the delineation of urban growth boundaries and forecasting
transportation land demand to assessing ecological environmental quality and applying machine
learning in land-use suitability analysis. It incorporates diverse methodologies, including GIS-based
multi-criteria evaluation, remote sensing ecological indices, and spatiotemporal modeling. The case
studies range from the Qinghai-Tibet Plateau and the Yangtze River Economic Belt in China to urban
contexts like Wuhan and Kelowna, Canada, offering insights into both global and localized land-use
challenges.

The primary aim of this reprint is to provide insights into spatiotemporal analysis and
modeling in the face of the number of challenges that emerge when applying this method to the
study of land systems. It intends to provide researchers, practitioners, and policymakers with
a comprehensive understanding of the tools and frameworks available to address contemporary
land system challenges. By integrating theoretical advancements with practical applications, the
works compiled here emphasize the value of spatiotemporal data analytics in shaping sustainable
landscapes. Readers will find detailed explorations of the drivers of land-use changes, innovative
modeling approaches for urban development, and methodologies for ecological resilience and
sustainability planning. The motivation for this compilation arises from the pressing need to balance
human development with nature conservation. As urbanization continues to transform natural
landscapes, the ability to predict, evaluate, and manage these changes becomes paramount. This
reprint aims to equip its audience with the knowledge and methodologies necessary to navigate these
complexities, promoting informed decision-making and sustainable land management practices. This
reprint is intended for an audience that includes academic researchers, graduate students, urban
planners, environmental managers, and policymakers. The diversity of topics and methods ensures
relevance for those working across disciplines such as geography, urban studies, environmental
science, and data science.

We are grateful to the authors whose contributions form the backbone of this reprint. Their
innovative approaches and rigorous analyses provide the foundation for this collection. The studies
featured here represent the forefront of research in land system modeling and spatiotemporal data
analytics, reflecting the collaborative efforts of experts from diverse academic and professional
backgrounds. We hope this reprint will serve as a valuable resource for those engaged in
understanding and managing the intricate dynamics of land systems, and that it may inspire further

research, innovation, and action towards achieving sustainable landscapes and resilient communities.

Wenwu Tang, Jianxin Yang, Minrui Zheng, and Jingye Li
Guest Editors






. land ﬁw\p\py

Editorial
Spatiotemporal Data Analytics and the Modeling of Land
Systems: Shaping Sustainable Landscape

Wenwu Tang !, Jianxin Yang %*, Minrui Zheng 3 and Jingye Li 4

Center for Applied GIScience, Department of Earth, Environmental and Geographical Sciences, School of Data
Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; wenwutang@charlotte.edu

2 School of Public Administration, China University of Geosciences, Wuhan 430074, China

School of Public Administration and Policy, Renmin University of China, Beijing 100872, China;
minruizheng@ruc.edu.cn

School of Public Administration, Hohai University, Nanjing 211100, China; jingye.li@hhu.edu.cn

*  Correspondence: yangjianxin@cug.edu.cn

1. Introduction

Dynamics in land systems are pivotal in driving socioeconomic development, biodi-
versity protection, and the provision of ecosystem services. However, land use activities
such as urban sprawl, deforestation, and agricultural practices may lead to a series of
challenges across ecological, social, or economic dimensions [1-4]. The dynamics of land
systems are often influenced by an interplay of biophysical and socioeconomic factors [5,6].
Biophysical factors relating to the climate, topography, or even soil provide foundational
conditions for land use activities, while anthropogenic factors—including, but not limited
to, population variability, economic development, and policy—play a driving role in the
land uses and land cover changes that shape our landscape across varying spatiotemporal
scales. Exploring the interactions among these factors and thereby gaining deeper insight
into the complexity of land systems often requires the support of spatiotemporal data
analysis and modeling capabilities. These capabilities are typically based on the integration
of Geographic Information Systems (GIS), remote sensing, and computational models [7,8].
Computational models include generic approaches (e.g., statistics, optimization, simulation,
or Artificial Intelligence (Al)) and domain-specific models. With this integration, we can
obtain the high-resolution data that are becoming increasingly available to investigate
spatiotemporal patterns and mechanisms related to land systems at various scales [9,10].
The use of spatiotemporal data analysis and modeling capabilities can enhance our un-
derstanding of how land systems respond to their internal drivers or external events (e.g.,
disasters), which is key to providing informed decision-making support for stakeholders
such as policy makers [11,12].

The modeling of land systems allows for the projection of future land development
dynamics in response to different scenarios, such as the impact of alternative policy in-
terventions or external events. These land system models are often dynamic [13-15],
empowering the study of the short- or long-term impact of land use activities driven by
constraints from the population, economy, and environment. This aids in identifying
potential challenges and opportunities associated with the development of land system:s,
which require sustainable land management and ecosystem resilience.

The aim of this Special Issue is to evaluate the role of spatiotemporal data analytics and
modeling in the study of land systems, and thus to contribute to the resolution of current
land development challenges. This Special Issue may offer insights into the development
of sustainable landscapes in terms of scientific advances and practical implications. Our

Land 2025, 14,1428 https://doi.org/10.3390/land 14071428
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Special Issue includes 13 research papers, covering three thematic topics: (1) ecological

and environmental functioning, (2) urban development, and (3) land change dynamics.

Table 1 summarizes these papers in terms of their study region, model type, and factor

type. A variety of models are noted, including statistical models, simulation models,

and optimization models. The spatial statistics model is also highlighted [16], which

is a special type of statistical model. Machine learning was also included in the table,

as machine learning algorithms [17-19] can be used to support both statistical analysis

(e.g., regression) and optimization (the search for optimal solutions). The factor type is

determined based on a typology that includes biophysical factors, regulation and policy,

infrastructure and accessibility, and socio-economic factors. Biophysical factors cover those

drivers related to, for example, topographic, environmental, and ecological dimensions.

Anthropogenic factors are more complicated, and are thus separated into regulation and

policy, infrastructure and accessibility, and socio-economic categories.

Table 1. Summary of the types of models and factors used in the articles in this Special Issue.

Author (Year) Study Region Type of Models Type of Factors
Shen and Gong (2024) anghal—leet Plateau, Statistical Modgl, Machine Biophysical Factors
China Learning
Regulation and Policy,
. . . . Infrastructure and
Zou, Fan et al. (2024) Wanning City, China Statistical Model Accessibility, Biophysical
Factors
. . . Statistical Model, Spatial Biophysical,
Li, Yang et al. (2024) Guiyang, China Statistics Socioeconomic Factors
Lin, Li et al. (2024) Central Yunnan Urban Statistical Model Regulation and Policy,

Cai, Song et al. (2024)

Wang, Zeng et al. (2024)

Zhang, Lin et al. (2024)

Wang, Wang et al. (2024)

Zhao, Ni et al. (2024)

Cai, Li et al. (2024)

Zhang, Xia et al. (2024)

Bilintoh, Pontius et al.
(2024)

Zhao, van Duynhoven et al.

(2024)

Agglomeration, China
Shanxi-Shaanxi-Inner
Mongolia Energy Zone,
China
Urban Agglomerations of
the Yellow River Basin,
China
Guangdong-Hong
Kong-Macao Greater Bay
Area, China

Yangtze River Economic
Belt, China

Mianning County, Eastern
Edge of the Qinghai-Tibet
Plateau, China

Hangzhou City, China

Wuhan City, China

The Plum Island
Ecosystems of northeastern
Massachusetts, USA

Kelowna, BC, Canada

Simulation, Spatial
Statistics

Spatial Statistics

Statistical Model, Spatial
Statistics

Machine Learning,
Statistical Model

Statistical Model

Statistical Model, Machine
Learning

Statistical Model,
Simulation

Statistical Model

Statistical Model, Machine
Learning

Socioeconomic Factors
Regulation and Policy,
Biophysical, Infrastructure
and Accessibility

Socioeconomic,
Biophysical Factors

Biophysical Factors

Infrastructure and
Accessibility,
Socioeconomic Factors
Infrastructure and
Accessibility, Biophysical
Factors

Biophysical Factors

Biophysical Factors,
Regulation and Policy,
Socioeconomic,
Infrastructure and
Accessibility Factors

Biophysical Factors

Biophysical, Infrastructure
and Accessibility Factors
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2. Topics
2.1. Ecological and Environmental Functioning

This theme encompasses studies of ecological or environmental functioning that
investigate the interactions between biophysical mechanisms and anthropogenic activities
at a landscape scale. Spatiotemporal analysis and modeling allow us to explore ecosystem
dynamics and how these ecosystems adapt to ecological or environmental stressors [6,20,21].
For example, Shen and Gong (List of Contributions, 1) presented a space-time analytics
framework to study how ecological quality on the Qinghai-Tibet Plateau varies over time
due to the impact of climate change and anthropogenic activities, including policies. This
space-time analytics framework drives the study of the ways in which this ecologically
vulnerable region are modified by various dynamic processes. In Cai, Song et al.’s (List
of Contributions, 2) study of ecosystems’ adaptive capacity, multi-scenario simulations
were used to assess ecosystems’ response to different disturbances in the Shanxi-Shaanxi
Inner Mongolia Energy Zone. Cai, Song et al. stressed the important role of resilience in the
mitigation of environmental degradation in their study of ecosystems” adaptive capacity.
Li, Yang et al. (List of Contributions, 3) explored how ecosystem services are influenced
by land change activities in Guiyang, China. With support from their spatiotemporal
analysis, the impact of land cover change on the value of ecosystem services was quantified,
further highlighting the importance of land management practices in ecosystem services’
valuation. In their ecological connectivity study, Zou, Fan et al. (List of Contributions, 4)
investigated the ecological networks in Wanning city, China. A framework that identifies
ecological corridors was developed by Zou et al. to evaluate ecological resilience in their
study region. Landscape metrics such as the largest patch index and degree of landscape
division were used to quantify landscape patterns in their study region. Cai, Li et al. (List
of Contributions, 5) conducted an assessment of urban ecological health in Hangzhou,
China. A suite of environmental indicators was combined in their assessment to guide
the development of landscape management practices. These studies demonstrate that
spatiotemporal data analytics are methodologically essential to the integration of multi-
data sources and modeling capabilities, which can increase our understanding of ecological
quality and resilience [21,22].

2.2. Urban Development

Urban development is another theme that receives considerable benefits from spa-
tiotemporal analytics and modeling within the context of land systems [23-25]. Zhang, Lin
etal. (List of Contributions, 6) conducted a study of urban development in the Guangdong—
Hong Kong-Macao Greater Bay Area, focusing on the impact of biophysical factors, includ-
ing topography, climate, soil, water bodies, and fault. Multicriteria evaluation and a spatial
statistical model were used to evaluate the land suitability and carrying-capacity potential
in their study region. Zhang, Xia et al. (List of Contributions, 7) delineated urban growth
boundaries over time under different development scenarios. A cellular automata-driven
urban simulation model was used in Zhang et al.’s study, which takes into account factors
from the biophysical and socioeconomic dimensions (e.g., population, GDP, topography,
proximity to transportation infrastructure, and land cover). Wang, Zeng et al. (List of
Contributions, 8) assessed the impact of urban expansion on carbon emissions in urban
agglomerations of the Yellow River Basin, China. The spatiotemporal patterns of urban
development and carbon emissions from 2000 to 2020 were evaluated using kernel density
estimation, Gini coefficient, landscape metrics (e.g., aggregation index, patch density, and
landscape shape index), and a geographically temporally weighted regression model. Lin,
Li et al. (List of Contributions, 9) investigated the spatially interacting dynamics of Central
Yunan Urban Agglomeration in China from 2000 to 2020 within the theoretical framework
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of urban symbiosis. The functioning and interactions of urban development at the county
level were evaluated in terms of production, living, and ecological functions. Each of
these functions was characterized by an indexing system of relevant factors (similar to
multicriteria evaluation) [26].

2.3. Land Change Dynamics

While urban development is a form of land change with a focus on urban dimensions,
land change is a broader and more inclusive theme. Zhao, Ni et al. (List of Contributions,
10) analyzed spatiotemporal changes in construction land in Mianning county, located on
the eastern side of the Qinghai-Tibet Plateau, China. The landscape expansion index and ge-
ographically weighted regression were used to investigate the changes in construction land
from 1990 to 2020 by considering influential factors from five dimensions: geomorphology,
geology, climate, river and vegetation environment, and socioeconomy.

Bilintoh, Pontius et al. (List of Contributions, 11) applied a Total Operating Character-
istics (TOC) [27] approach to quantify temporal changes in one land cover type (marsh) in
an ecological research site in Massachusetts, USA. Gains and losses of marsh, with reference
to the distance-to-marsh boundary or elevation, were evaluated over three time periods
(1938, 1972, and 2013). Bilintoh et al. demonstrated the importance of applying TOC to
assess the spatiotemporal characteristics of land gain and loss.

Zhao, van Duynhoven et al. (List of Contributions, 12) discussed the use of three
machine learning approaches (random forest, extreme gradient boosting, and support
vector machine) to generate land suitability maps for the city of Kelowna, British Columbia,
Canada. Land cover data in 2015 and land change data from 2015 to 2020 were used
to train these machine learning models to estimate the weights of alternative criteria.
These machine learning-derived land suitability maps were compared against traditional
approaches, relying on expert knowledge such as the Analytical Hierarchy Process [28].

The study of land change dynamics can be conducted at the regional level. Wang,
Wang et al. (List of Contributions, 13) proposed a framework that integrates meta-analysis,
statistical analysis, and neural network modeling to estimate land demand for the trans-
portation needs of the Yangtze River Economic Belt, China. Transportation land demands
for 127 cities in the study region were predicted based on the use of a suite of influen-
tial factors related to socio-economic development (e.g., GDP, population). This analysis
framework facilitates the exploration of spatiotemporal patterns of land demand for trans-
portation and their driving mechanisms at the regional level.

3. Summary and Perspectives

The studies collected in this Special Issue highlight the use of spatiotemporal data
analysis and modeling in the investigation of the dynamics in complex land systems. These
studies concentrate on three themes: ecological and environmental functioning, urban
development, and land change dynamics. Geospatial data at various spatial resolutions
(e.g., 30 m, 1000 m, and 3.5 km) were used to study dynamics in land systems at various
scales (from local to regional). A suite of nonspatial and spatial metrics (including landscape
metrics) were extracted from these geographic data and used in their corresponding
applications. The spatiotemporal analytics and modeling capabilities used in these studies
include spatial statistics (e.g., spatial autocorrelation analysis, geographically weighted
regression [29]), multicriteria evaluation, machine learning (e.g., neural networks, random
forests), and spatial simulation [30,31].

Spatiotemporal data analytics and modeling serve as a data-intensive scientific ap-
proach to the exploration of land system dynamics across various scales [32]. Spatiotem-
poral data analytics and modeling allow us to document and analyze what happened in
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the past and in various regions. Additionally, these capabilities (such as spatial simulation)
provide spatially explicit modeling support for exploring what may happen in the future
or in alternative scenarios [33-35]. Further, spatiotemporal data analytics and modeling
capabilities hold great promise for representing and investigating the complexity of land
systems, such as feedback loops, scale effect, emergence, and adaptation [36-39].

The use of Al [40,41] techniques such as neural networks or random forests is reported
in this Special Issue. These Al techniques are applied in a traditional way and most Al tech-
niques used in these studies remain conventional. As Al, exemplified by generative Al and
agentic Al [42-44], continues to advance, modern Al techniques will highly likely catalyze
a new wave of applications of spatiotemporal data analytics and modeling in the study of
land systems in the near future. Modern Al techniques hold great potential in boosting the
efficiency and effectiveness of spatiotemporal data analytics and modeling. Benefiting from
the autonomy of emerging Al techniques, such as generative Al and agentic Al, the steps
of spatiotemporal data analytics and modeling (e.g., preprocessing, model development
and integration, post-processing, and evaluation) can be substantially automated. This will
lead to a significant reduction in the time and cost required for modeling cycles cost, i.e., ef-
ficiency will increase. Furthermore, emerging Al techniques provide increasingly extensive
support for new or novel modeling algorithms (e.g., foundation models; see [45]). These
emerging Al algorithms may be of assistance when using spatiotemporal data analytics
and modeling to obtain a better representation of the complex properties of land systems,
such as nonlinearity, self-organization, scaling effects, and adaptation.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This manuscript provides guidance concerning how to use the Total Operating Characteris-
tic (TOC) when (1) analyzing change through time, (2) ranking a categorical independent variable,
and (3) constraining the extent for a gaining category. The illustrative variable is the marsh land-
cover category in the Plum Island Ecosystems of northeastern Massachusetts, USA. The data are an
elevation map and maps showing the land categories of water, marsh, and upland in 1938, 1971, and
2013. There were losses and gains near the edge of the marsh between 1938 and 1972 and between
1972 and 2013. The TOC curves show that marsh gained most intensively at intermediate elevations
during the first time interval and then had a weaker association with elevation during the second
time interval. Marsh gains more intensively from water than from upland during both time intervals.
The TOC curves also demonstrate that the marsh gains occurred where marsh was previously lost, a
phenomenon called Alternation. Furthermore, eliminating far distances and extreme elevations from
the spatial extent decreased the area under the curve (AUC) for distance and increased the AUC for
elevation. We invite scientists to use the TOC because the TOC is easier to interpret and shows more
information than the Relative Operative Characteristic.

Keywords: alternation; land change; marsh; TOC; AUC

1. Introduction

The Total Operating Characteristic (TOC) can help researchers understand land change
because the TOC analyzes the relationships between a ranked independent variable, such
as distance, and a binary variable, such as the presence or absence of a land category. The
TOC has gained increasing attention in the field of spatiotemporal analysis. This is because
the TOC shows the total information in an error or change matrix, which other popular
methods like the Receiver Operating Characteristic (ROC) fail to show. Pontius Jr and Si [1]
first proposed the TOC as a modification of the ROC, which has been popular in diverse
fields such as genetics [2,3], radiology [4], psychology [5,6], machine learning [7,8], and
remote sensing [9,10].

Pontius and Si [1] described the use of the TOC to analyze the change in a land-cover
category during a time interval. Subsequently, Bilintoh et al. [11] described how to use
the TOC to analyze the losses and gains of land-cover categories during two intervals.
Analyzing land change during more than one time interval provides an opportunity to
compare the patterns of losses and gains during consecutive time intervals, which can
reveal a change pattern called Alternation [12]. Alternation derives from pairing losses and
gains through time at the same location.

The TOC compares a binary variable to a ranked index variable. A threshold of the
ranked variable determines the diagnosis of an observation’s presence or absence based
on whether an observation’s index value exceeds a threshold [1]. For our application,
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we diagnosed the presence or absence of gains and losses of marsh based on multiple
indexes. The TOC can analyze ranked continuous variables such as elevation and distance.
Furthermore, the TOC can analyze categorical variables [13]. For instance, scientists might
want to analyze how a category such as urban gains from other categories such as forest or
agriculture. Using the TOC to analyze the relationship between land-cover categories can
reveal information about the categories that a gaining category targets or avoids.

Figure 1 shows the matrix for threshold t. The reference and the diagnosis can agree
in two ways: Hits (H;) and Correct Rejections (C;) at threshold ¢. Similarly, the reference
and the diagnosis can disagree in two ways: Misses (M;) and False Alarms (F;) at threshold
t. Figure 1 shows the two types of agreements and disagreements and the total number
of observations, which is P + Q (Pontius Jr and Si 2014 [1]). Scientists require four bits of
information to complete the matrix for threshold t. These pieces of information could be Hy;
M;y; Fy; and Cy. Alternatively, the bits could be P + Q; P; H; + F;; and H;. Other combinations
of the four bits of information are possible. Table 1 defines the mathematical notation

in Figure 1.
Reference Diagnosis Total
Presence Absence
Diagnosis Presence H, F H, + F,
Absence M, G M+ C
Reference Total Hi+ M, =P F+C=0 P+ 0

Figure 1. Contingency table showing the number of observations for a threshold (modified after [1]).

Table 1. Mathematical notation (modified after Pontius Jr and Si 2014 [1]).

Symbol Meaning

T Index for a threshold
Hits, which is the number of observations that are reference presence and diagnosed

H,
! presence at threshold ¢
Misses, which is the number of observations that are reference presence and
M; .
diagnosed absence at threshold ¢
r False Alarms, which is the number of observations that are reference absence and
t diagnosed presence at threshold ¢
Correct Rejections, which is the number of observations that are reference absence
Cy .
and diagnosed absence at threshold ¢
P Number of observations that are reference presence, also known as Abundance
Q Number of observations that are reference absence

The area under the curve (AUC) is a popular metric among scientists using the ROC
and the TOC. Some scientists consider particular AUC values to designate the results
as good, which is problematic because an arbitrary spatial extent of absence influences
the AUC. For example, Naghibi et al. [14] used the TOC to evaluate the accuracy of an
urban gain model in a region of Iran. However, we suspect that they failed to mask urban
areas at the initial time point, given the shape of the curve. Failing to mask pixels that
are not candidates for change can result in inflated AUC values, which may lead to a
flawed interpretation of the TOC curves. Similarly, Chakraborti et al. [15] used the TOC
to analyze LULCC in the Siliguri region of India, but we suspect they also failed to mask
urban areas at the first time point. Another situation exists where scientists include vast
regions that have zero probability of change, which inflates the AUC. This causes some
scientists to question the usefulness of the AUC, because the AUC increases when the
scientists arbitrarily include places where change is not plausible. The arbitrariness of the
spatial extent causes confusion when comparing the AUC values across case studies [16].

The TOC's ability to provide detailed information about the relationship between a
ranked variable and a reference binary variable makes the TOC a valuable method for
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evaluating land changes and the accuracy of models [13,17]. However, authors must
apply the TOC appropriately. This manuscript illustrates universal mathematical concepts
by using the TOC to analyze how the losses and gains of land-cover categories during
two time intervals relate to three types of variables: distance; elevation; and two land-
cover categories. In addition, this manuscript addresses two crucial concepts in TOC
analysis: (1) ranking a categorical independent variable and (2) constraining the extent of a
gaining category.

2. Materials and Methods
2.1. Study Region

Figure 2 shows the Plum Island Ecosystem (PIE) Long-Term Ecological Research site
in northeastern Massachusetts. The PIE’s marshes provide several ecosystem services,
including storm protection, biodiversity habitats, nutrient cycling, and carbon storage.
Rising sea levels threaten these ecosystem services. For example, sea-level rise could cause
the cordgrass Spartina alterniflora to become flooded, thus causing Spartina alterniflora to shift
to higher elevations. Measuring and visualizing these changes is crucial for understanding
the relationship between changes and the ecosystem function.

N Map of the USA showing the location
of Massachusetts

M

Legend
[[] Massachusetts State Boundary
[] stateBoundary

Legend

D Massachusetts State Boundary D Plum Island Ecosystem’s Boundary

Figure 2. Maps showing the location of the Plum Island Ecosystem site.

2.2. Data

Figures 3 and 4 show the data, which are land-cover maps in 1938, 1972, and 2013 and
an elevation map. Each land-cover map has a spatial resolution of 10 m by 10 m, where each
pixel shows one of three land-cover categories: water; marsh; and upland. The land-cover
maps were derived from the Georgia Coastal Ecosystems website [18]. The distance to the
edge of the marsh in the 1938 map in Figure 3 ranges between 0 and 865 m. A distance of
0 m indicates marsh, while a distance of 865 m indicates the furthest distance away from
the edge of the marsh.
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Figure 3. Plum Island Ecosystems’ land-cover maps at three points. White indicates no data.

Figure 4. Maps of elevation and distance to the edge of the marsh in 1938. White indicates no data.

2.3. Methods

We used the TOC Curve Generator version 1.2.7 [19] to generate the TOC curves. The
software requires the following inputs to generate a TOC curve: a binary variable; an
index variable; and an optional mask. The binary variable contains information about a
category’s presence or absence, where 1 shows the presence and 0 shows the absence of
the category. A mask restricts the spatial extent of the analysis. Figure 5 shows the binary
variables in the form of maps of marsh change, including gains, losses, and persistence
during each time interval. We then segmented each time interval’s maps into four binary
maps: gain and loss during the first time interval and gain and loss during the second time
interval. Thus, each pixel uses 1 to denote gain or loss while using 0 to denote other. The
second step is to create index variables. We used maps of the distance from the edges of
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the marsh at the start of each time interval, a map of elevation, and a map showing the two
non-marsh land categories at the beginning of each time interval.

[] Masked
[] Marsh Persistence
I Marsh Loss
Il Marsh Gain
[ water at Start
8 upland at Start

Meters

S
1000

Figure 5. Maps of change between 1938 and 1972 on the left and between 1972 and 2013 on the right.

Pontius [13] described the procedure for a TOC analysis involving a categorical index
variable. We adopted this procedure to create the TOC curves that show the relationship
between marsh gain and the other two categories during each time interval. We excluded
marsh from the categorical TOC curve because an observation must be non-marsh at the
initial time point to experience marsh gain during the time interval. We had two land
categories to rank after eliminating marsh. The land categories were water and upland.
We computed each category’s intensity of marsh gain to rank the water and upland. The
greater intensities received earlier ranks. An intensity is a ratio where the numerator is the
size of the marsh’s gain from the losing category while the denominator is the size of the
losing category [13].

The next step was to create masks to eliminate locations that were not plausible
candidates for the gain of marsh. Our approach examines the thresholds for the index
variable where the TOC curve touches the upper or lower bounds of the TOC parallelogram.
Thresholds to the right of the point that touches the upper bound must be on the upper
bound, so we considered those locations to be not plausible. Thresholds to the left of the
point that leaves the lower bound must be on the lower bound, so we also considered
those locations to be not plausible. This step is relevant for the TOC curves of a gaining
land-cover class. We therefore conducted this step for gains of marsh during the first and
second time intervals where the index variables were elevation and distance to the edge of
the marsh.

Figure 6a shows the TOC curve for distance to the edge of the marsh and marsh gain
during the second time interval, without applying a mask. We use the red rectangles to
zoom in on segments of the distances that did not experience marsh change. The zoomed
upper-right corner shows that the curve touches the upper bound at a distance of 310 m and
continues to hug the upper bound until the farthest distance. Any distance beyond 310 m
did not experience change, and so we excluded those large distances from the analysis.
Figure 6¢,d show the analysis for the masking of elevation. Figure 6¢ shows the entire
TOC before the masking of elevation, while Figure 6d shows the zoomed lower-left and
upper-right corners of Figure 6c.

12
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Figure 6. (a) The TOC curve for marsh gain between 1972 and 2013 and the distance to the marsh
edge in 1972; (b) zoomed segments showing the threshold at which the TOC curve reaches the upper
bound of the parallelogram; (c) the TOC curve for marsh gain between 1972 and 2013 and elevation;
and (d) zoomed segments showing the threshold at which the TOC curve leaves the left bound and
reaches the upper bounds of the parallelogram.

The zoomed version shows that the curve starts from the origin and hugs the horizon-
tal axis until after an elevation of —1.9. Any elevation below —1.9 m did not experience
change; thus, we excluded elevations below —1.9 m from the analysis. Similarly, the
zoomed upper-right corner shows that the curve touches the upper bound at an elevation
of 7 m and continues to hug the upper bound until the highest elevation. Thus, any eleva-
tion above 7 m did not experience change. We therefore excluded elevations above 7 m
from the analysis.

3. Results

Figure 7 provides the results for the marsh’s loss, while Figure 8 provides the TOC
curves for the marsh’s gain. The TOC curves start at the lower-left corner of the parallel-
ogram with coordinates (0,0), where the number of Hits and False Alarms is zero. Each
TOC curve consists of segments, where two thresholds bound each segment. Labels on the
segments give numerical thresholds when the index variable is numerical. Labels are words
when the index variable is categorical. The gray regions of Figures 7 and 8 show regions
where it is impossible for a TOC curve to reside. The left gray triangle is an impossible
region because Hits cannot be greater than Hits plus False Alarms. The right gray triangle
is an impossible region because Hits cannot be less than Hits plus False Alarms. The slope
of each TOC curve’s segment is the intensity with which change occurs. Scientists must
compare the steepness of a TOC curve’s segment to the uniform line. If a curve’s segment
is steeper than the uniform line, then the change occurs more intensively than across the
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Figure 8. The TOC curves for marsh gain between (a) 1938 and 1972 and (b) 1972 and 2013.

Figure 7a shows the TOC curves for marsh loss between 1938 and 1972, while Figure 8b
shows the TOC curves for marsh loss between 1972 and 2013. The steeper parts of the blue
curves show that marsh losses were most intensive closer to the marsh edge during both
time intervals. The steep parts of the orange curves show that marsh losses were most
intensive at the lowest and highest elevations during both time intervals. The steepest
part of the red curve shows that marsh losses were most intensive during the second
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time interval, where marsh gained during the first time interval, which is at the threshold
labeled Alternation.

Figure 8a shows the TOC curves for marsh gain between 1938 and 1972, while Figure 8b
shows the TOC curves for marsh gain between 1972 and 2013. The steepest parts of the blue
curves show that marsh gains were most intensive between 10 and 20 m from the marsh’s
edge. The steep part of the orange curves shows intensive marsh gains at intermediate
elevations. The green curves show that marsh gains slightly more intensively from water
than from upland during both time intervals. Finally, the first segment from the origin
for the red curve in Figure 8b shows that marsh gains were most intensive during the
second time interval, where marsh was lost during the first time interval. The TOC curve
for elevation shows the largest absolute deviation from 0.5.

4. Discussion

Examining changes during at least two time intervals presents an opportunity
to observe patterns that would be impossible within a single time interval [20,21].
Figures 7b and 8b display the relationship between the distance to change during the
first time interval and marsh change during the second time interval. Figure 7b demon-
strates that marsh losses were most intensive where marsh was previously gained, which
demonstrates Alternation. Alternation is a pattern where a category alternates between
presence and absence through time. Figure 8b shows that marsh gains were most intensive
where marsh was previously lost, which is also Alternation. Figures 7b and 8b show the
thresholds at which Alternation occurs. Alternation has several implications for interpret-
ing change patterns. For instance, Alternation may indicate a map error. For example,
if marsh persists on the ground during both time intervals, while the map erroneously
shows an absence of marsh at the middle time point, then the time series of maps will
erroneously show loss followed by gain. Alternatively, Alternation on the ground occurs
for some categories. Erosion followed by accretion along the edges of the marsh will cause
Alternation of the marsh. Cropland alternates when farming practices include sequential
cultivation and fallow years [22,23]. Increasing the number of time points increases the
possibility of observing Alternation, regardless of whether Alternation is a true change or a
result of map errors.

The AUC is a metric that measures the strength of a monotonic relationship between
the binary variable and the ranked variable [13]. The maximum AUC is 1, while the
uniform line has an AUC of 0.5. A common practice in the profession is to compare 0.5 to
the AUC of a ranked variable. However, the AUC does not provide detailed information
about the shape of the TOC curve; thus, scientists have cautioned against using the AUC
in assessing the performance of models [24,25]. Imagine a situation where a TOC curve
crosses the uniform line. This scenario indicates a non-monotonic relationship between
the dependent and ranked index variables, potentially resulting in an AUC of 0.5. This
scenario highlights the risk of exclusively using the AUC to assess the overall relationship.
Scientists may overlook a substantial non-monotonic relationship between the independent
and ranked index variables, evident from the shape of the TOC curve but not necessarily
conveyed by the AUC alone.

Some authors may be inclined to establish universal rules and anoint the AUC values
as poor, acceptable, good, excellent, etc. However, such universal rules do not address
particular research questions or applications precisely because they are universally applied.
Instead, these universal rules tend to cater more to the psychological desires of scientists
rather than serving scientific purposes [13]. Scientists should, therefore, focus on aligning
the interpretation of the AUC to the intended purpose of their research. Researchers
must decide whether the AUC is a relevant metric. For our example, the AUC is not
appropriate to compare the strength of the relationship with distance to the strength of the
relationship with elevation because elevation has a non-monotonic relationship with the
change intensity of the marsh. Therefore, we take a different approach to interpreting the
relationship between the uniform line and the other TOC curves. Specifically, we compare
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the slope of each curve’s segments to the slope of the uniform line to determine the change
intensities along the TOC curve.

Figure 7a,b show a monotonic decreasing trend in the relationship between marsh
loss intensity and distance to the edge during both time intervals. Figure 8b shows a
non-monotonic decreasing trend for the relationship between marsh gain intensity and
distance to the edge. Several factors could account for the observed patterns, ranging from
geomorphic processes to the misregistration of images at different time points. For instance,
this relationship could be because marsh changes along its edges, which a process of
erosion and accretion would cause. Elevation plays a critical role in a plethora of ecological
studies [26,27]. Figure 7a,b show that marsh loss occurs most intensively at lower and
higher elevations, avoiding intermediate elevations of marsh. The study region has three
distinct elevation patterns: (1) lower elevation dominated by water; (2) intermediate
elevation occupied by marsh; and (3) high elevation occupied by upland. Figure 8ab
show that marsh gains occur most intensively at intermediate elevations during the first
and second time intervals. The green lines in Figure 8a,b show that marsh gains slightly
more intensively from water than from upland. The horizontal distance of a segment for a
categorical variable shows the size of the category. The TOC curves show that the size of
water is greater than that of upland during both time intervals.

Masking the spatial extent to show data only for locations where the phenomenon is
plausible helps interpret the AUC. The masked parts of the maps in Figure 5 show where
the landscape has not experienced marsh change during the two time intervals. These
locations are primarily at the lowest and the highest elevations. Figure 5 shows that marsh
does not gain at the lowest elevations or the highest elevations. Failure to mask these areas
from the TOC analysis may result in flat segments in the TOC curve near the origin or the
upper-right corner of the parallelogram, thus impacting the AUC values. Several studies
exhibit this pattern [14,28]. Interpreting the AUC values resulting from the TOC analysis
that failed to mask the implausible region of interest leads to misleading conclusions. The
next logical question is how to define implausible regions for masking. A straightforward
approach is to examine the thresholds for the index variable at locations where the curve
leaves the lower bound and touches the upper bound of the parallelogram. Hits equal
zero at all thresholds to the left point where the TOC curve leaves the lower bound of the
parallelogram. Hits equal Prevalence at all thresholds to the right of where the curve first
arrives at the upper bound of the parallelogram. We gain no insight by the inclusion of
thresholds to the left of the threshold where the TOC curve leaves the lower bound or to
the right of where the curve arrives at the upper bound.

Section 2.3 described the procedure to eliminate the distances to the edge and eleva-
tions that do not experience the gain of marsh. Comparatively, Figure 6a has an AUC of
0.9, while the TOC curve for distance to the edge of the marsh in Figure 8b has an AUC
value of 0.6.

The green curves in Figure 8 analyze the relationship between marsh gains and land
cover in 1938 and 1972. The land-cover maps in 1938 and 1972 have the same categories:
water; marsh; and upland. The TOC requires ranking to establish a hierarchy among the
categories that lose. The hierarchy derives from the intensities with which the category
experiences gain of marsh; thus, the category with the greatest intensity is ranked first,
while the category with the least intensity is ranked last. The intensity of each category is
calculated as a ratio, with the numerator representing the size of the marsh’s gain from
the category and the denominator representing the size of the category. Water and upland
have, respectively, 9% and 8% intensities during the first time interval. Similarly, water
and upland have 8% and 6% intensities during the second time interval. Water has the
greater intensity during both time intervals; thus, the green TOC curves show the segment
for water first and upland second.
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5. Conclusions

Our manuscript provides scientists with a blueprint for using the TOC to analyze the
spatial and temporal patterns of losses and gains of a land category. We show the association
between change and four variables to illustrate the TOC's applicability to varying factors
that may influence change in a landscape. Our manuscript shows a change pattern called
Alternation, which pairs the losses and gains of a category during sequential time intervals
at the same location. We show how to rank a categorical variable for use in the TOC. In
addition, we provide a methodology to constrain the TOC analysis to relevant parts of the
spatial extent when analyzing a category’s gain. The constraint influences the AUC values
and the interpretation of the relationship between the binary and index variables.
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Abstract: China is currently experiencing rapid expansion in its transportation land. To promote
sustainable land use, accurately estimating transportation land demand is crucial. This study aims to
develop a comprehensive framework for urban transportation land forecasting within the Yangtze
River Economic Belt (YREB), providing support for optimizing regional land allocation. Employing
methods such as meta-analysis, statistical analysis, and BP neural network analysis, this study
forecasts the transportation land demand of 127 cities in the YREB. The study findings indicate
that cities with high transportation land demand are mainly distributed in the middle and upper
reaches of the Yangtze River. Moreover, the growth rate of transportation land in the upper reaches
significantly outstrips that in the middle and lower reaches, suggesting a focus shift in transportation
infrastructure construction toward the upper regions. Additionally, some cities within the YREB
face a mismatch between the supply and demand of transportation land, necessitating proactive
adjustments to their land supply plans to achieve a balance between supply and demand. The main
contribution of this study is the development of a comprehensive and adaptable framework that
guides the development of future strategies for optimal land allocation by forecasting transportation
land demand at a regional level.

Keywords: transportation land; influencing factors; land demand forecasting; land supply

1. Introduction

With the deepening of industrialization and urbanization, land scarcity has become
increasingly pronounced [1]. Transportation land, which is used for transport activities, is
essential infrastructure for daily life and economic production. The rapid concentration of
populations and urban expansion have intensified travel and logistics demands, leading to
a significant increase in the need for transportation infrastructure and, consequently, an
expansion of transportation land [2]. The demand for global land transportation infrastruc-
ture is rapidly increasing [3]. According to statistics from the International Energy Agency
(IEA), by 2050, it is projected that there will be at least 25 million kilometers of new roads
and 335,000 km of railways globally, representing a 60% increase in total land transportation
network length compared to 2010. In terms of land area requirements for transportation
infrastructure, roads, railways, and parking facilities are estimated to encompass an area
of 250,000 to 350,000 square kilometers by 2050, which is approximately equivalent to
the size of the UK and Germany, respectively [4]. Over the past decade, China has ex-
perienced rapid development in its transportation sector, accompanied by a substantial
expansion in the land area allocated for transportation [5]. Since 2015, the area allocated to
transportation land in China has surpassed all other types of construction land. By 2020,
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urban transportation land comprised 12.8% of the total urban construction land area. In
comparison, developed countries such as Germany (36.9% in 2015) and Japan (41.5% in
2020) allocate a larger percentage of their urban land to transportation, indicating that
China has a greater need for transportation land supply. Therefore, accurately forecasting
transportation land demand in China is crucial. It enables policymakers and planners to
understand future trends and the scale of transportation land needs, assisting them in
developing more effective land use plans.

Previous research has shown that the actual developed and utilized area of land can
significantly deviate from the planned area by government [6]. This deviation sometimes
reflects the insufficient consideration given during the planning process, highlighting
the need for timely adjustments to land use plans to better align with local development
needs [7]. Therefore, as the conflict between land supply and demand intensifies, accurately
estimating transportation land demand becomes crucial for devising targeted land supply
strategies. Investigating and modeling land use change patterns are essential for improving
land demand forecasting. Typically, land demand forecasting is mathematically modeled
by systematically considering the trends, correlations, similarities, and probabilities of vari-
ous factors [8-10]. Given the complex decision-making process involving socio-economic
systems in land use studies, identifying factors that influence the transportation system
is essential for the accurate forecasting of transportation land demand. The relationship
between transportation infrastructure development and socio-economic factors has been
widely discussed [11,12]. The positive interaction between transportation infrastructure
construction and economic development is widely recognized [13-16]. Moreover, fac-
tors such as population size, income level [17], consumption level [18], infrastructure
investment [19], industrial development [20], employment [21], urbanization [22], car
ownership [23], ecological protection [24,25], and policy directives [26] have an important
impact on the transportation development. Research on land demand forecasting has
predominantly focused on urban construction land [27], with fewer studies dedicated
to transportation land demand forecasting, which often emphasizes forecasting traffic
volumes and transport infrastructure demand [28-31]. As the availability of urban land
continues to decrease, there is growing attention to the demand for specific types of land to
support the development of detailed supply plans. These include demand forecasts for
residential, commercial, industrial, public service, and transportation land [32-34].

Research in land use forecasting typically falls into two main categories: One involves
constructing mathematical models using statistical methods to forecast the scale and struc-
ture of land use [35]. The other simulates the spatial and temporal expansion of land
uses incorporating spatial data from remote sensing and geographic information technol-
ogy [36,37]. Statistical methods such as trend extrapolation, indicator-based methods, and
multiple regression analysis are widely employed for forecasting the scale and type of
land demand [38]. Trend extrapolation forecasts future urban built-up land area based
on historical usage trends [39], focusing solely on land area changes and often neglecting
socio-economic drivers, which limits its use to short-term forecasting with considerable
uncertainty. Indicator-based methods establish quantitative models linking land use de-
mand to key influencers, setting fixed indicators for each land type based on historical
data analysis [40], such as residential land per capita, industrial land per unit of GDP, and
transportation land density [41]. Regression analysis is an effective method for forecasting
future land demand by modeling the relationships between land use and various eco-
nomic, demographic, and environmental factors [42-45]. Moreover, as research into land
use change intensifies, advanced algorithmic models such as system dynamics, decision
trees, neural networks, support vector machines, and random forests are increasingly
being applied to forecast land demand [46-48]. With advances in remote sensing and
GIS technology, modeling land use changes using satellite data has become a significant
research focus [49]. Current studies primarily focus on forecasting the expansion of urban
impervious surfaces and simulating the structural evolution of land use [50,51]. However,
forecasting the expansion of transportation land use through remote sensing is challenging
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due to the complex factors that influence it [52]. Therefore, statistical methods are still
better suited for macro-level land supply decision-making and development planning.

Unlike land demand driven primarily by economic objectives, such as residential,
commercial, and industrial purposes, transportation land demand focuses on support-
ing socio-economic benefits by facilitating services essential for human production and
lifestyle needs [53-55]. Consequently, accurately forecasting transportation land demand
and developing an effective land supply strategy are essential for the sustainable devel-
opment of regional transportation. The literature reviews reveal a predominant focus on
urban construction land demand forecasting, with limited empirical investigation into
transportation land demand at a regional level. Moreover, despite extensive discourse on
the relationship between transportation demand and its influencing factors, a systematic
review and comparison of these influencing factors are notably absent. This deficiency
has resulted in insufficient research on regional transportation land supply and demand,
thereby complicating the support for integrated regional development strategies and the
formulation of regional territorial spatial plans. The growth of transportation land is a
nonlinear and complex process influenced by various factors, necessitating the use of
specific rules, indicators, or models in the forecasting process. Therefore, this study aims
to develop a framework to forecast regional urban transportation land demand, thereby
assisting governmental bodies in strategic planning. The specific objectives of this study
are as follows: (1) to construct a framework using meta-analysis and data modeling for
forecasting regional urban transportation land demand and (2) to analyze the supply and
demand characteristics of urban transportation land at the regional level, thus guiding
future governmental land supply decisions. The main contribution of this study is the
development of a comprehensive framework for forecasting transportation land demand at
the regional level, offering a holistic perspective for decision-makers to effectively develop
and update land supply plans. The findings provide valuable insights for optimizing the
allocation of regional urban land resources.

The remainder of this paper is organized as follows: Section 2 outlines the research
framework, data sources, and methodology employed. Section 3 details the main factors
influencing transportation land demand, forecasts the area of urban transportation land in
the study area, and analyzes the supply and demand characteristics of transportation land.
Sections 4 and 5 discuss the study’s findings and provide conclusions, respectively.

2. Materials and Methods
2.1. Overview of the Study Area

The Yangtze River Economic Belt (YREB) includes nine provinces and two cen-
trally administered municipalities—Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei,
Hunan, Chongqing, Sichuan, Yunnan, and Guizhou—encompassing one hundred and
twenty-seven prefecture-level units across approximately 2.05 million square kilometers
(Figure 1). This region is a key strategic development area in China, focusing on construct-
ing a comprehensive three-dimensional transportation network that integrates land, water,
and air, anchored by the Yangtze River, which cuts across eastern and western China. The
population and economic output of the YREB collectively account for over 45 percent of
China’s totals, yet the region’s land area represents just 21.4 percent of the national territory,
highlighting significant land resource scarcity that constrains regional development. As
of 2020, the YREB boasted 44,620 km of operational railway, accounting for 30.49% of
China’s total. The highway network spanned 2.35 million kilometers, making up 45.14%
of the national total, while inland waterways reached 90,833 km, constituting 71.14% of
the nation’s total. Notably, the YREB handles nearly half of China’s passenger and freight
traffic, with both cargo volumes and passenger counts surpassing 40% of national lev-
els. As China’s golden waterway, the YREB needs to further rationalize the allocation of
transportation land to achieve the construction of a coordinated and sustainable integrated
three-dimensional transportation network.
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Figure 1. Study area.

2.2. Policy Timeline for the Transportation Development of the YREB

Since China’s reform and opening up, the transportation system in the Yangtze River
Economic Belt has undergone rapid development, with the length of transportation routes
expanding significantly and consistently accounting for over 40% of the nation’s total.
The evolution of transportation policy in the YREB can be categorized into three stages
(Figure 2). The first stage is the early conception stage (1980-1992). In the 1980s, China’s
central government put forward the strategic concept of “one line, one axis”. One line
refers to the coastal line, and one axis refers to the Yangtze River. The second stage, the
mid-term exploration stage (1992-2012), marked the YREB’s inclusion in a major national
development strategy for the first time. During the 14th National Congress of the Com-
munist Party of China (CPC) in 1992, it was proposed that Pudong’s development in
Shanghai should spearhead the further opening of Yangtze River cities, boosting the eco-
nomic growth of the Yangtze River Delta and the entire basin. In 2005, seven provinces
and two cities along the river signed the “YREB Cooperation Agreement” to enhance trans-
portation development, though administrative barriers often led to fragmented progress.
The “Rise of Central China” strategy, introduced by the State Council in 2006, emphasized
that accelerating transportation development was crucial for the region’s growth and its
coordinated development. In 2010, Hubei Province released the “Master Plan for the
Opening and Development of the YREB”, aiming to establish an integrated transportation
system centered around the Yangtze River waterway. The third stage, the comprehensive
development stage (2013 to present), began following the 18th National Congress of the
CPC, marking a period of accelerated transportation development within the YREB. In
2013, General Secretary Xi Jinping highlighted the vision of transforming the entire Yangtze
River basin into a golden waterway during an inspection in Wuhan. Subsequently, in 2014,
the State Council unveiled the “YREB Comprehensive Three-dimensional Transportation
Corridor Plan”, aiming to establish a complete three-dimensional transportation system by
2020. Following this, the Chinese government introduced several policies and plans that
significantly boosted the transportation development of the YREB.

An analysis of the YREB's policy timeline reveals that transportation construction has
been a crucial component of the region’s development. For this study, the YREB has been
chosen as the study area, aligning with China’s major strategic development initiatives.
Moreover, studying the demand for transportation land serves as a fundamental element
in supporting the coordinated and integrated development of regional transportation [56].
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Figure 2. Policy development timeline of the YREB.

2.3. Considerations for the Study Framework

Under the new economic normal, the contradiction between the supply and demand
of land resources in China remains a significant challenge. The scale of transportation
land supply directly affects the potential and direction of urban transportation develop-
ment. Over the past decade, transportation infrastructure in China has expanded rapidly,
making the area of land allocated for transportation the largest among all types of urban
construction land. Quantitative analysis of urban transportation land demand is essential
for optimizing the allocation of regional land, providing decision-makers with guidance for
future land supply plans to improve regional land use efficiency. This study aims to analyze
the demand for urban transportation land in the Yangtze River Economic Belt (YREB) across
four dimensions: identifying influencing factors, constructing models, verifying results,
and conducting empirical analysis. The main contribution of this research framework is the
development of an effective transportation land demand forecasting method system that
assists decision-makers in formulating or adjusting future land use plans more effectively.

Identifying the influencing factors is a crucial initial step in estimating urban trans-
portation land demand. To mitigate subjectivity in selecting factors, this study adopts a
meta-analysis and develops a structured framework for screening main influencing factors.
Initially, it involves reviewing the relevant literature and extracting essential information
to pinpoint factors affecting transportation land demand. Preliminary selection of these
factors is conducted through frequency analysis, with their validity further confirmed
using statistical methods, ultimately determining the main influencing factors (Figure 3).
Building on this, this study constructs a gray—BP neural network model under planning
constraints and forecasts the transportation land demand of 127 cities in the YREB for the
target year through influencing factor input, model training, and forecasting result output.
In addition, a spatial overlay analysis between the forecasted transportation land demand
and the planned transportation infrastructure network is conducted to further assess the
model’s reliability. Lastly, a matching analysis between the forecasted transportation land
demand and historical transportation land supply is performed, revealing supply—demand
characteristics and informing future transportation land supply strategies. Forecasts of
transportation land demand in regional cities offer valuable insights into the dynamics of
transportation land use and identify cities with a greater need for transportation land sup-
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ply. For cities experiencing a mismatch between transportation land supply and demand,
these forecasts can guide the optimization of land allocation by adjusting land supply
strategies accordingly.
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Figure 3. Research framework.

2.4. Data Sources

The data used in this article are categorized into three types: official statistical
data, spatial information data, and text data. The primary data for this study include
transportation land area and land supply area. In this context, “transportation land”
encompasses roads, railways, airports, ports, terminals, and transportation stations,
excluding rural roads (Figure 4). The transportation land area data (2009-2020) were
sourced from the land survey results shared via the application service platform of the
Ministry of Natural Resources of China (https://gtdc.mnr.gov.cn/Share#/, accessed on
30 December 2023). Data on transportation land supply (2011-2020) were obtained from
the China Land Market (https:/ /landchina.com/#/, accessed on 30 December 2023).
Socio-economic-related statistical data (2009-2020) were collected from the statistical
yearbooks and statistical communiqué of the provinces and cities within the study area.
Spatial information data include vector and raster data: vector data primarily define
the administrative boundaries of the study area (national, provincial, and city bound-
aries) and are sourced from the standard map service of the Surveying and Mapping
Department of the Ministry of Natural Resources of China (http:/ /bzdt.ch.mnr.gov.cn/,
accessed on 30 December 2023). Raster data mainly comprise transportation and land use
planning maps that include spatial information about planned road networks, railway
networks, waterways, and airports. Text data encompass provincial and municipal land
spatial planning, land use master plans, and state-owned construction land supply plans,
all of which are publicly released by the government.
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Figure 4. Sample map of transportation land. (a) Highway land (Guiyang Longdongbao Bus
Terminal); (b) railway land (Shanghai Hongqiao Railway Station); (c) port terminal land (Wuhan
Yangluo New Port); (d) airport land (Chongqing Jiangbei Airport).

2.5. Method
2.5.1. Determination of Main Factors Affecting Transportation Land Demand

We developed an empirical analysis methodology that integrates a systematic review
of the literature to identify and synthesize the factors influencing urban transportation land
demand. Initially, we adhered to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) protocol to identify potentially relevant studies from the
literature databases [57]. Subsequently, factors impacting urban transportation land de-
mand were derived through detailed literature review and critical information extraction.
These influencing factors were then screened through frequency analysis and expert judg-
ment. Finally, grey relation analysis and correlation analysis were employed to validate the
relevance and applicability of these impact factors.

(1) Methodology of the systematic literature review

The PRISMA protocol is extensively applied across diverse research fields, including
socio-economic, environmental, land management, and sustainable development studies.
It employs a structured approach to analyze data and evidence from existing research,
significantly reducing author bias and thus enhancing the scientific integrity of the find-
ings [58]. The PRISMA protocol outlines a four-stage systematic screening process for
including and excluding publications in a review. First, using a defined search strategy,
a total of 4055 papers were selected from the Web of Science (WoS) and China National
Knowledge Infrastructure (CNKI) databases, with search terms applied exclusively to titles.
The considered studies were limited to articles published in English or Chinese, including
those in other languages with English translations, across peer-reviewed journals, confer-
ences, and dissertations. The specific search terms used and the corresponding number
of articles identified are detailed in Table 1. Secondly, duplicates were removed, and titles
and abstracts were screened for relevance. Publications not directly related to our study
objectives were then excluded. Finally, we read the full text of the remaining studies, and
included 69 studies in our systematic review.

Table 1. Search terms, sources, and the corresponding number of papers identified.

Number of Publications Number of Publications
Search Term from WoS from CNKI Search Date
TITLE ((Transportation OR
Transport OR Traffic OR Highway 3170 885 6 November 2023

OR Road OR Railway OR Airport
OR Port) AND land)
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(2) Grey correlation analysis

Grey correlation analysis, a multivariate statistical method, assesses the presence of
connections and the degree of correlation among factors by comparing their change trends
and differentiation magnitudes. It introduces the grey correlation degree as a quantitative
index to gauge the correlation level between factors. Grey correlation analysis involves
three main steps: First, dimensionless processing on the original data of factors necessary
for this research is conducted. Second, the grey correlation coefficients between factors
are calculated. Third, the grey correlation degree among factors is determined. The gray
correlation degree is then utilized to compare and analyze the degree of connection between
factors. The specific calculation process is as follows:
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where x; is the normalized value of variable i. X; is the raw value of variable i. x;(1) is the
value of the first sample of variable i. y(k) is an ideal data set, and x(k) are the alternative
data sets of the same length. n is the number of samples. k is the k-th sample. ¢;(k) denotes
the grey relational coefficients. p denotes the dynamic distinguishing coefficient, in the
interval of 0-1; the value in this study is 0.5. r; denotes the grey relational degree.

2.5.2. Construction of Land Demand Forecasting Model of Gray—BP Neural Network
under the Constraints of Planning Objectives

The backpropagation (BP) neural network algorithm is a multilayer feedforward net-
work trained using the error backpropagation algorithm and stands as one of the most
commonly used neural network models [59]. Compared to traditional statistical methods
commonly used for land demand forecasting, such as trend extrapolation, regression analy-
sis, and indicator-based methods, the BP neural network model excels in iterative learning
through sample training and an error-limiting output mechanism, making it exceptionally
suitable for nonlinear prediction tasks. Moreover, it can handle multiple input variables
simultaneously, providing more comprehensive and accurate predictions. Existing research
has also confirmed that the BP neural network model achieves high accuracy in complex
land area demand forecasting [60]. However, forecasting land demand presents a complex
socio-economic challenge, as nonlinear forecasting methods often struggle to accurately
reflect the primary driving factors and their mechanisms. To address this, this study in-
tegrates grey system theory with the BP neural network model to improve the accuracy
of land demand forecasting. Additionally, the GM(1,1) grey model is well adapted to con-
straints such as short data series, small sample sizes, and limited information, facilitating
more precise predictions of short-term changes in sample data [61]. The specific forecasting
process of this study involves training the historical data (2009-2020) on transportation land
area and its influencing factors using a BP neural network to verify the model’s accuracy.
Based on this, the influencing factors for the target year (2025) are predicted using GM(1,1)
grey prediction and planning constraints, and these factors are then input into the trained
neural network model to forecast the transportation land area for the target year. The
computational procedures and formulas for both the BP neural network model and the
GM(1,1) prediction model are detailed below:
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1. BP neural network model

(1) Network initialization: Assign random numbers in the range of (-1, 1) to each
connection weight, set the error function e, and give the calculation accuracy ¢ and the
maximum number of learning times M. The formula is as in (4).

1¢ "2
f(x) = Ej; <Yi - Yj) (4)
where n represents the output node, y, represents the actual output value, and yj, represents
the target output value.
(2) Weight correction: Calculate the output for each unit in the hidden and output layers
based on the input sample values and expected output values; then, adjust the weights of
each neuron’s input nodes according to the gradient direction. The formula is as follows:

Awyy= —11 X aa—;: - X % X i (5)
ij j

where wj; is the connected weights from node i to node j in the output layer; 7 is the

learning efficiency value, and Ij is the transfer function of the jth hidden layer. The

output layer to the hidden layer are tansig functions, while the hidden layer to the output

layer are trainlm functions.

(3) Iteration: Select the next input mode and return to the second step. If the output
layer does not produce the desired result, it sends an error signal back along the original
connection pathway. Throughout the iteration process, the weights of each neuron are
adjusted to minimize the error signal, and the process continues until the output error
meets the specified accuracy requirement.

2. GM(1,1) prediction model

Based on grey system theory, the GM(1,1) prediction model can utilize limited informa-
tion to construct a model that closely approximates complete information by transforming
time series data into differential equations using the differential fitting method. This
model is extensively used in parameter prediction across socio-economic and ecological
fields, demonstrating high accuracy for short- to medium-term forecasts, particularly for
parameters with brief historical time series. The formula is as follows:

f((l)(k) _ <>A((0)(1) _ Z)ea(kl) + g,k =12,...,n (6)

where %(0) (1) is the original data sequence in the urban transportation land demand system.
%D (k) is the accumulated value of the original data sequence. k is the time series. a is the
development coefficient, which mainly controls the development trend of the system. b is
the gray action quantity, which reflects the relationship between data changes.

To ensure the accuracy of the grey model, an error test is essential. The GM(1,1) model
typically employs a post-test method for error testing. The formula used is as follows:

C=51/5g ()

P= P(‘s(o) (k) — §(°>’ < 0.674550) ®)

where C is a posterior difference ratio, P is the small error probability, Sy is the variance
in the original sequence, Sy is the variance in the residuals, and ¢(?) is the residual. When
C <0.35 and P > 0.95, the model is generally considered to be reliable, and the model can
be used for prediction.
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3. Results
3.1. Main Factors Affecting Transportation Land Demand

Through a literature meta-analysis, we extracted factors that influence the demand
for transportation land and grouped similar factors together. For instance, resident in-
come and per capita disposable income were categorized under income levels. Using
frequency analysis, we then filtered out infrequently mentioned factors, ultimately identify-
ing 10 main influencing factors: economic development level, population size, investment
level, urbanization level, urban construction level, industrial development level, income
level, industrial structure, employment, and consumption level. These factors cover eco-
nomic, demographic, social, and industrial aspects and commonly affect transportation
land demand. Specifically, areas with a high level of economic development typically
exhibit more frequent internal and external connections, thereby generally requiring more
transportation land. Additionally, areas with high population densities and significant
levels of urbanization see increased demand for travel. Social development levels, reflect-
ing human well-being, directly impact the development of transportation infrastructure.
Variations in industry types also influence inputs to the transportation sector.

Based on the screening of commonly influencing factors, a correlation matrix between
multiple variables is constructed using statistical data from 127 prefecture-level administra-
tive units in the YREB (Figure 5). By analyzing the correlation coefficients and significance
levels, we can verify the applicability of these main influencing factors and explore the
presence of multicollinearity among them. The results showed that, except for the cor-
relation between investment and urban construction level, which was significant at the
0.05 level (p < 0.05), all other correlations were significant at the 0.01 level (p < 0.01), indi-
cating a significant linear relationship between these influencing factors and transportation
land demand. Comparing correlation coefficients, the strongest linear relationship was
with urban construction level, with a coefficient exceeding 0.95. This was followed by
the urbanization rate, total industrial output value, and the number of urban employees,
all with coefficients above 0.6. Additionally, GDP, investment, and industrial structure
had correlation coefficients above 0.5. Correlation analysis reveals that all the 10 main
influencing factors obtained in this study have significant correlation with the transporta-
tion land area. In addition, the correlation analysis revealed a degree of multicollinearity
among the influencing factors, necessitating the elimination of influencing factors with
strong covariance to enhance the model’s accuracy. Consequently, we further refined the
influencing factors through grey correlation analysis.

The results of the grey correlation analysis indicate that fixed asset investment (X3)
has the most substantial impact, followed by population size (X2), urban construction level
(X4), industrial development (X6), consumption level (X8), GDP (X1), employment (X10),
income level (X7), urbanization rate (X5), and, finally, industrial structure (X9). Generally, a
grey relational degree above 0.8 signifies a high correlation between two factors, a degree
between 0.5 and 0.8 suggests a moderate correlation, and a degree below 0.5 implies a
negligible or non-existent correlation. The grey relational degrees of all influencing factors
exceed 0.5, confirming the suitability of the factors identified through the literature meta-
analysis. All factors, except for X9, demonstrated a grey relational degree above 0.8 with
transportation land demand. Due to the relatively low grey relational degree of X9 and its
correlation coefficient with multiple other independent variables exceeding 0.8, this factor
was excluded from further analysis. Consequently, this study identifies nine factors (X1,
X2, X3, X4, X5, X6, X7, X8, X10) as determinants in developing a demand forecast model for
urban transportation land (Table 2).
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Figure 5. Correlation matrix of main factors influencing urban transportation land demand. (X0,

X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 represent transportation land area, GDP, population,
investment, urban construction level, urbanization, industrial output, income level, consumption

level, industrial structure, and employment, respectively.) Arabic numerals represent the Pearson
correlation coefficient between the influencing factors. ***, ** are significance levels of 1%, 5%,
respectively. The curves in the figure are kernel density estimates for different influencing factors.

Table 2. Grey relational degree of factors affecting transportation land demand.

Influencing Factors Grey Relational Degree Description
Economic development level (X1) 0.85529 GDP
Population size (X2) 0.89608 Number of individuals present
Investment (X3) 0.90119 Fixed-asset investment
Urban construction level (X4) 0.88750 Urban construction land area
Urbanization rate (X5) 0.80576 Ratio of urban population to total population
Industrial development (X6) 0.87040 Gross industrial output value
Income level (X7) 0.83050 Per capita disposable income
Consumption level (X8) 0.85628 Total retail sales of consumer goods
Industrial structure (X9) 0.67864 Ratio of secondary and tertiary industries to GDP
Employment (X10) 0.85312 Employed population
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3.2. Forecasting Urban Transportation Land Demand in the YREB
3.2.1. An Empirical Result of Urban Transportation Land Demand Forecasting
Models—Shanghai Example

To elucidate the process of urban transportation land demand forecasting, this study
utilizes Shanghai, a leading city in the YREB, as a case study for empirical analysis. The
nine main influencing factors outlined in Section 3.1 serve as input neurons for the neu-
ral network. Socio-economic data from Shanghai, covering the years 2009 to 2020, are
employed as training samples. The BP neural network’s simulation and prediction code,
developed using MATLAB R2020b, was executed with a maximum of 5000 training iter-
ations and a minimum learning rate of 0.05. Following extensive debugging, the model
achieved a minimal fitting residual of 0.000077 with an optimal hidden layer size of 12.
The results from the trained BP neural network model demonstrate a low error margin,
with the relative error of the simulated values for each year being less than 0.01, an average
error of 0.0035, and a standard deviation of errors at 0.0031. These results indicate the high
accuracy of the prediction model trained using the BP neural network, demonstrating its
suitability for forecasting urban transportation land demand (Figure 6).
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Figure 6. BP neural network sample simulation training results.

Leveraging the existing planning objectives of Shanghai and a grey prediction model,
this study establishes the future values for each influencing factor for the year 2025 (Table 3).
Specifically, the constrained target values of GDP, total retail sales of consumer goods, and
per capita disposable income for 2025 are sourced from the Outline of Shanghai’s 14th
Five-Year Plan. Meanwhile, the constrained target values of population size and urban
construction land size are based on the Shanghai City Master Plan (2017-2035) and the
Shanghai Territory Development Plan (2021-2035), respectively. For influencing factors
without explicit planning targets, this study employs the grey prediction model to estimate
their predicted values. On this basis, the planned or forecasted values of the influencing
factors are substituted into the developed neural network simulation model to forecast the
theoretical demand area of transportation land in Shanghai. According to the forecasted
outcomes of this study, the urban transportation land area in Shanghai is predicted to
reach 346.16 square kilometers by 2025, indicating that about 30 square kilometers of
urban transportation land will need to be supplied during the 14th Five-Year Plan period
(2021-2025).

30



Land 2024, 13, 847

Table 3. Forecasting results of transportation land area and related influencing factors in Shanghai.

Factors ! Planned or Forecasted Value Methods and Constraints
X1 49,392.84 14th Five-Year Plan
X2 2500 City’s master plan
X3 3200 Territorial spatial plan
X4 0.9 GM (1,1) model
X5 39,136 GM (1,1) model
X6 10,265.15 GM (1,1) model
X7 1400 GM (1,1) model
X8 20,000 14th Five-Year Plan
X9 98,648.39 14th Five-Year Plan
Transportation land area 346.16 Gray-BP neural network model
in 2025 ' under planning constraints

1 The influencing factors X1, X2, X3, X4, X5, X6, X7, X8, and X9 represent GDP, population size, urban construction
land area, urbanization rate, gross industrial output value, fixed-asset investment, employed population, total
retail sales of consumer goods, and per capita disposable income, respectively.

3.2.2. Comparative Analysis of the Differential Characteristics of Urban Transportation
Land Demand in the YREB

Utilizing the grey-BP neural network land demand forecasting model, developed
under the constraints of the planning objectives, this study forecasts the transportation land
area for 127 cities in the YREB for the year 2025. By integrating these data with the trans-
portation land area data from 2020, this study derives the projected transportation land area
demand for these cities over the next five years. To eliminate potential biases in assessing
urban transportation land use due to administrative division size, this study quantifies the
scale of urban transportation land use through the ratio of urban transportation land area
to total urban area.

Examining the spatial distribution of transportation land within the YREB reveals that
the scale of urban transportation land in the lower reaches (Shanghai, Jiangsu, Zhejiang,
and Anhui) significantly exceeds that in the middle (Jiangxi, Hubei, and Hunan) and upper
reaches (Chongqing, Guizhou, Sichuan, and Yunnan). Furthermore, urban transportation
land exhibits marked spatial agglomeration, with high-scale transportation land primarily
located in three national urban agglomerations: the Yangtze River Delta urban agglomera-
tion, the Yangtze River middle reaches urban agglomeration, and the Chengdu-Chongqing
urban agglomeration. The scale of urban transportation land within each province of the
YREB also presents a pattern of spatial reduction from central and sub-central cities to their
surrounding cities. Furthermore, the scale of transportation land in cities within the YREB
exhibits a marked left-skewed distribution, suggesting that urban transportation land scale
across the YREB is predominantly low. This highlights significant polarization among cities
and an uneven distribution of transportation land resources across the region.

Cities exhibiting higher demand for urban transportation land are predominantly
located in the lower reaches of the Yangtze River. However, the analysis of the transporta-
tion land area growth rate between 2020 and 2025 indicates a faster expansion of urban
transportation land in the middle and upper reaches of the Yangtze River. This suggests a
strategic shift in the focus of transportation infrastructure development within the YREB
towards these regions. The frequency curve of transportation land area growth rates within
the YREB exhibits a bimodal distribution, with most cities distributed in the two ranges
of 10-15% and 20-25%. Cities within the 10-15% range are mainly located in the middle
and lower reaches of the Yangtze River, whereas those in the 20-25% range tend to be
in the upper reaches. Notably, 15 cities exhibited a transportation land area growth rate
exceeding 25%, with over 70% of these cities situated in the upper reaches. The coordinated
integration strategy for the YREB has catalyzed a pronounced regional radiating effect in
transportation land demand, leading to significant growth in the transportation land area
of cities surrounding these national urban agglomerations (Figure 7).
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Figure 7. Forecast of urban transportation land demand in the YREB in 2025. (a) Spatial distri-
bution characteristics of transportation land demand in the YREB; (b) frequency density curve of
transportation land scale and its change rate.

3.3. Validation of the Reasonableness of the Forecasted Results

To validate the rationality of the forecasted results from this study, the forecasted
transportation land areas were spatially overlaid with the planned transportation infras-
tructure for the 14th Five-Year Plan period, including the planned highway network,
railway network, high-grade waterways, and airports. A subsequent correlation analysis
was conducted between the forecasted transportation land areas and the planned trans-
portation infrastructure. The findings indicate that this study’s forecasted results largely
align with the planning objectives set by government departments (Figure 8). Specifically,
Chongging emerges as the city with the highest demand for transportation land and the
most extensive land transportation network planned from 2020 to 2025. Additionally,
Chonggqing is expected to construct two new civil airports within this period. In contrast,
cities with lower demand for transportation land tend to have a more limited transporta-
tion infrastructure layout, and most of these cities are third- or fourth-tier cities, such as
Maanshan, Huaibei, Xinyu, and Suining. Notably, underdeveloped marginal cities such
as Liangshan Yi Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture,
and Garze Tibetan Autonomous Prefecture have smaller forecasted transportation land
areas but larger planned transportation infrastructure networks. On the contrary, regional
core cities such as Chengdu and Guiyang have larger forecasted transportation land areas
but smaller planned transportation infrastructure networks.
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Figure 8. Validation of forecasted results. (a) Spatial characteristics of forecasted transportation
land demand and planned transportation network; (b) correlation analysis between forecasted
transportation land demand and the planned transportation network.

3.4. Analysis of Supply and Demand of Urban Transportation Land in the YREB

This study aligns the average annual demand for urban transportation land in the
YREB from 2020 to 2025 with the average annual land supply from the 2011-2020 period
(12th and 13th Five-Year Plans), providing a reference for future transportation land supply
decisions in cities within the YREB. The results indicate that the demand for transportation
land generally matches the historical supply in the YREB, with over half of the cities
showing demand levels consistent with past supply. This suggests that these cities can draw
from their historical land supply experiences when formulating new land supply plans.
Specifically, cities with higher transportation land demand typically have higher historical
land supplies and are often economically more developed or function as major regional
transportation hubs, such as Chongqing, Hangzhou, Hefei, Changsha, Wuhan, Chengdu,
and Kunming. Conversely, cities with lower transportation land demand, which have
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historically smaller land supplies, tend to be distant from the region’s core development
areas, such as Yaan, Panzhihua, Nujiang Lisu Autonomous Prefecture, and Diqing Tibetan
Autonomous Prefecture (Figure 9).
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Figure 9. Characteristics of transportation land supply and demand in the YREB.

Despite efforts to match the demand and supply of transportation land in the YREB,
significant mismatches still exist in some cities, with notable spatial disparities. Cities
facing a high demand but low supply of transportation land are predominantly located in
the upper reaches of the Yangtze River. These cities are often remote from core development
areas and face challenges in expanding transportation infrastructure due to geographical
constraints. Conversely, cities with low demand and high supply are mainly located in
the middle and lower reaches of the Yangtze River, often near regional core cities. The
influence of these core cities has intensified transportation infrastructure development
in the surrounding areas over the past decade. There is a significant spatial aggregation
in the mismatch between the demand for transportation land and the historical supply
across the YREB. Cities with a demand significantly exceeding supply are in the upper
reaches, whereas those with supply exceeding demand are primarily in the middle and
lower reaches. Most provincial capitals have a historical average supply of transportation
land that exceeds future demand. Thus, these cities should consider controlling their
transportation land supply when formulating land supply plans. In less developed cities,
it is common for the supply of transportation land to fall short of demand. The future land
supply plans in these areas could consider increasing the supply of transportation land.

4. Discussion
4.1. Implications and Applications

China is a country of public ownership of land, where land is centrally managed and
controlled by the State, and the government is responsible for the allocation, planning, and
approval of land use [62]. As the conflict between urban growth and land availability in
China intensifies, the rational allocation of land resources has become a crucial challenge
for government departments. The question of how to utilize limited land resources to
achieve sustainable development is a subject of ongoing debate [63,64]. Transportation
land serves as vital infrastructure supporting both people’s livelihoods and economic
activities, playing a significant role in a city’s capacity for population mobility, its economic
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growth potential, and the direction of its industrial development. Therefore, to promote
coordinated and integrated regional transportation development, it is essential to optimize
land use by addressing the variations in regional land demand. Developing the YREB
as a strategic priority for China, the sustainable use of land resources plays a crucial
role in supporting high-quality regional development. Furthermore, the YREB is actively
engaged in constructing a comprehensive three-dimensional transport system to enhance
both internal and external connections [65]. Consequently, accurately forecasting urban
transportation land demand in the region is essential for crafting effective land supply
strategies. However, studies focusing on regional urban transportation land demand are
scarce, posing challenges to decision-making for optimal land resource allocation at the
regional level. This study establishes a comprehensive framework for forecasting urban
transportation land at the regional level, serving as a reference for the YREB to devise
future transportation land supply plans and providing a foundation for systematic analyses
of urban transportation land demand in other regions.

The foundation for accurately estimating regional transportation land demand lies in
identifying the main factors that influence it. Compared to other types of built-up land,
transportation land serves a broader array of functions, leading to a more complex set of
factors influencing its demand. Therefore, decision-makers should thoroughly consider
future regional socio-economic development when formulating land use plans. The core
findings of this study reveal that socio-economic factors such as economic development,
population size, industrial development, urbanization level, scale of urban construction,
infrastructure investment levels, and the consumption and income of residents are the
primary factors driving future demand for transportation land. Development plans formu-
lated by central and local governments in China typically outline specific values for these
key socio-economic factors. Almost every city presents expected economic and population
sizes for the medium to long term within their national economic and social development
plans, providing crucial data for forecasting future demand for transportation land. This
study considers the factors affecting transportation land demand identified in previous
research and refines and synthesizes these factors through meta-analysis. Compared to
existing studies, the framework of influencing factors developed in this study is more
applicable and comprehensive [5]. Furthermore, the model constructed in this study incor-
porates the constraints of future socio-economic development objectives, ensuring that the
forecasted area of land for transportation aligns with future socio-economic goals and is
deemed reasonable.

The results of forecasting regional urban transportation land demand can elucidate the
spatial and temporal patterns of transportation development changes and provide essential
guidelines for developing targeted land supply plans for the region. Although China is ac-
tively constructing a comprehensive three-dimensional transportation system in the YREB,
this study reveals significant spatial disparities in the demand for transportation land
across the region’s cities, aligning with the phased patterns of transportation development
in China [66]. Initially, when transportation infrastructure is underdeveloped, the regional
demand for transportation land is substantial, aiming primarily to expand the land alloca-
tion area. As transportation land expands, regional transportation development gradually
matures, shifting the focus from increasing land supply to enhancing land use efficiency.
For instance, core cities or major transportation hubs in the YREB have largely completed
their comprehensive transportation networks, and their demand for transportation land is
gradually decreasing as they shift towards improving land use efficiency. However, most
cities in the YREB, characterized by limited transportation facilities and a single mode
of transport, are experiencing a significant surge in transportation land demand driven
by regional integration initiatives. Therefore, the allocation of regional transportation
land should be tailored to the specific stages of urban transportation development, imple-
menting differentiated land supply strategies. However, promoting integrated regional
transportation development does not imply a large-scale supply of transportation land to
areas with underdeveloped transportation infrastructure; instead, it requires ensuring that
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the transportation land supply plans can accommodate future development needs. The
excessive supply of transportation land can lead to large tracts of unused land, thereby
diminishing land use efficiency.

The alignment of supply and demand for regional transportation land constitutes
the foundation for decision-making in developing future land supply strategies. While
historical land supply data can serve as a reference for transportation land supply planning,
it is crucial to thoroughly assess whether past supply levels align with future land demand.
Therefore, analyzing the balance between supply and demand and identifying gaps in
regional transportation land availability are critical steps for policymakers in developing
future land supply strategies. By comparing the matching levels of transportation land
supply and demand across the region, it becomes clearer which cities need to adjust their
transportation land supply strategies. In cities with a high historical land supply but
low future demand, this suggests that the city’s transportation infrastructure is gradually
completing, and the area allocated for transportation land should be carefully controlled in
the future to prevent excess supply. Conversely, in cities with a low historical land supply
but high future demand, it indicates that transportation development is accelerating, and
the area dedicated to transportation land should be increased to ensure that the supply
meets the upcoming needs for transportation infrastructure construction.

4.2. Limitations and Prospects

Transportation land demand forecasting is a multifaceted study that necessitates a
comprehensive consideration of socio-economic development and policy orientation, which
leads to inevitable uncertainties in this study. To reduce the uncertainty associated with
forecasting, this study presents a robust forecasting method for urban transportation land
demand at the regional level, which enables decision-makers to identify areas with urgent
transportation land demand and those where supply should be controlled. This study
conducts transportation land demand forecasting for cities in the YREB using a unified
framework that comprehensively considers the impact of socio-economic factors on land
demand. However, the impact of policy factors on urban transportation land demand was
not considered, which could lead to discrepancies between forecasted and actual demands.
Typically, shifts in policy orientation can cause transportation land demand to diverge from
normal socio-economic development patterns. For instance, increased government support
for the development of regions with underdeveloped transportation infrastructure can
lead to a short-term surge in transportation land demand. Such forecasts are subject to
potential uncertainties due to policy changes. Guided by the principles of coordinated and
integrated development, the YREB is actively constructing a comprehensive transportation
system. We assume that local policy orientation within the YREB will remain relatively
stable during the study period, with policy factors having a pervasive and significant
influence across the region. This leads us to conclude that the primary determinant of
urban transportation land demand is the region’s own development needs. Future research
should further investigate the impact of policy changes on transportation land demand.

It is crucial to note that the forecasting framework in this study ensures high accuracy
for short- and medium-term transportation land demand forecasts. However, the model’s
uncertainty increases when applied to long-term land use forecasting (beyond ten years).
Despite this, short- and medium-term forecasts provide practical guidance for development
planning, while long-term planning focuses more on envisioning the future. Since this study
accounts for the common influencing factors affecting transportation land demand and
demonstrates robustness in short- and medium-term forecasts, the forecasting framework
developed here can be applied to other regions in China, such as the Beijing—Tianjin—-
Hebei region, the Yellow River High-Quality Development Area, and the Pearl River Delta
urban agglomeration. However, for practical applications, it is advisable for decision-
makers to thoroughly consider the local development context and policy orientations to
enhance the accuracy of the forecasting framework. Moreover, this study’s forecast of
urban transportation land was limited to considering each city’s own future development,
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without including spatial influences from the model. Future research should explore the
spatial interactions between cities and their neighboring or central counterparts, integrating
these spatial impacts into the forecasting model to enhance its interpretability.

5. Conclusions

Clarifying land demand is crucial for the optimal allocation of regional land resources.
In China, transportation land has been the largest category of construction land supplied
over the last decade. Consequently, the accurate forecasting of transportation land demand
is essential for developing effective future land supply strategies. This study presents a
comprehensive framework for forecasting regional urban transportation land by employing
a literature meta-analysis and statistical forecasting models and aligning with regional de-
velopment goals, supporting the sustainable development of transportation infrastructure
in the region.

The main achievement of this paper is the development of a comprehensive frame-
work for forecasting transportation land demand at the regional level, which significantly
guides the optimal allocation of regional transportation resources. This study finds that
socio-economic factors, including economic development level, population size, urban-
ization level, urban construction scale, industrial structure, industrial development level,
investment level, and resident income and consumption levels, predominantly influence
transportation land demand. By 2025, cities with large-scale transportation land in the
YREB will still be mainly concentrated in the lower reaches of the Yangtze River national
urban agglomeration, and most of these cities are municipalities directly under the central
government, provincial capitals, or core cities of regional development. However, trans-
portation land demand in these cities is decelerating, and optimizing land use structure is
becoming critical for enhancing land use efficiency. A high demand for transportation land
is increasingly found in the middle and upper reaches of the Yangtze River, indicating a
shift in the focus of transportation infrastructure development from the lower to the middle
and upper reaches. The forecasting results of this study align with the goals of comprehen-
sive transportation development planning set by government bodies, demonstrating the
feasibility and applicability of the proposed forecasting framework. Cities with significant
transportation land demand over the next five years are identified as major centers for
transportation development in the YREB.

Despite general stability in the supply and demand levels for transportation land
across most YREB cities, mismatches remain in some areas. Cities with historically high
land supply but low current demand are predominantly distributed in the middle reaches
of the Yangtze River. These cities have significantly increased their investment in trans-
portation infrastructure over the past decade. However, the decreasing demand for land
reminds these cities to control transportation land supply and prevent resource wastage by
avoiding idle land. Conversely, cities with historically low land supply but high current
demand are found in the upper reaches of the Yangtze River, typically distant from regional
development cores and with slower transportation growth. As regional integration and
development accelerate, enhancing transportation infrastructure in these cities is becoming
crucial, and the area allocated for transportation land should be appropriately increased in
the future.
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Abstract: Geographic Information System-based Multi-Criteria Evaluation (GIS-MCE) methods are
designed to assist in various spatial decision-making problems using spatial data. Deriving criteria
weights is an important component of GIS-MCE, typically relying on stakeholders” opinions or
mathematical methods. These approaches can be costly, time-consuming, and prone to subjectivity
or bias. Therefore, the main objective of this study is to investigate the use of Machine Learning
(ML) techniques to support criteria weight derivation within GIS-MCE. The proposed ML-MCE
method is explored in a case study of urban development suitability analysis of the City of Kelowna,
Canada. Feature importance values drawn from three ML techniques-Random Forest (RF), Extreme
Gradient Boosting (XGB), and Support Vector Machine (SVM)-are used to derive criteria weights. The
suitability scores obtained using the ML-MCE methodology are compared with Equal-Weights (EW)
and the Analytical Hierarchy Process (AHP) approach for criteria weighting. The results indicate that
ML-derived criteria weights can be used in GIS-MCE, where RF and XGB techniques provide more
similar values for criteria weights than those derived from SVM. The similarities and differences are
confirmed with Kappa indices obtained from comparing pairs of suitability maps. The proposed new
ML-MCE methodology can support various decision-making processes in urban land-use planning.

Keywords: multi-criteria evaluation (MCE); machine learning (ML); geographic information science
(GIS); random forest (RF); extreme gradient boosting (XGB); support vector machine (SVM); urban
suitability analysis

1. Introduction

The Multi-Criteria Evaluation (MCE) method is often used in decision-making for
solving problems related to suitability analysis where multiple criteria, often conflicting, are
considered simultaneously [1,2]. When integrated with Geographic Information Systems
(GIS), MCE can be used with geospatial data to address a wide range of spatial problems,
such as land suitability analysis [3], environmental management [4], ecological capacity
evaluations [5], or disaster risk assessment [6], to name a few. This integration also sup-
ports informed decision-making related to urban land-use developments by facilitating
structured analysis of complex spatial problems [7]. By including several criteria, such
as land-use zoning, environmental quality, transportation accessibility, or demographics,
GIS-MCE can be used to obtain the suitability of locations for various land-uses, thereby
aiding urban planning processes. Studies have demonstrated GIS-MCE in urban land-use
suitability analysis, with effective applications for identifying locations of new industrial ar-
eas [8], green spaces [9], managing urban developments [10,11], and planning infrastructure
placement [12].

A GIS-MCE procedure generally consists of six main steps: (1) defining the spatial
decision problem; (2) selecting criteria; (3) collecting relevant spatial data; (4) designing
and applying suitability functions to normalize criteria data layers; (5) assigning criteria
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weights to reflect their relative importance in the overall decision-making problem; and
(6) calculating the aggregated suitability scores that can be then presented as a suitability
map. One of the key steps of GIS-MCE is eliciting criteria weights because they directly
influence the output suitability scores [13,14]. Criteria weights in GIS-MCE are typically
determined using opinions from experts and stakeholders or via mathematical approaches
such as the Analytical Hierarchy Process (AHP) [15], the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) [16], or the Entropy Method [17]. Despite the
usefulness of GIS-MCE, determining criteria weights remains challenging. For example,
obtaining expert and stakeholder opinions is costly and time-consuming [18]. In contrast,
mathematical approaches offer a more structured and efficient way to derive criteria
weights. However, these methods are partially dependent on subjective opinions of spatial
analysts, stakeholders, or decision-makers that consequently introduce biases [19].

Proposed by Saaty in 1977, the AHP approach is the most common MCE criteria
weighting technique used in GIS software such as TerrSet [20] and ArcMap [21]. The
AHP involves making pairwise comparisons of all criteria to establish the hierarchy of
criteria. As such, the derived weights reflect the relative importance of each criterion
to the suitability problem. For example, urban development suitability might consider
criteria such as land-uses, demographics, or transportation accessibility. The decision-
maker can determine the weights for these criteria through pairwise comparisons, thereby
quantifying the relative importance of each criterion. However, the AHP approach relies on
subjective judgments from those who establish the relative importance of the criteria. These
judgments can vary among individuals and may be influenced by biases or incomplete
information, potentially leading to inconsistent or unreliable MCE suitability outputs [22].
Furthermore, the pairwise comparison process inherent to AHP becomes more complex
and difficult to manage when larger numbers of criteria are considered [23]. To manage
these challenges, the potential of Machine Learning (ML) techniques was recently explored
due to their capacity to handle and analyze large amounts of data [24].

In geospatial applications, ML is primarily used to classify Remote Sensing (RS) or
geospatial data [25,26] or to estimate new states of geospatial phenomena [27,28]. For
example, ML was applied in various geospatial applications such as estimating habitat [29]
or agricultural suitability [30], guiding infrastructure placement [31,32], predicting urban
growth suitability [33], or calculating flood susceptibility [34,35]. These studies directly
used values outputted by ML techniques to establish suitability or susceptibility scores.
Rather than using direct outputs of ML techniques, other recent studies have explored
leveraging feature importance analyses to derive criteria weights in GIS-MCE methods. For
instance, Singh et al. [36] used the feature importance analyses associated with a Random
Forest (RF) classifier to derive criteria weights in a GIS-MCE method in an agroforestry
suitability assessment. In that study, the relative importance of each factor involved in
training the classifier is used to derive factor significance directly from available geospatial
data. The relative importance values were standardized to become criteria weights for a
traditional GIS-MCE method. While this study has integrated ML techniques with GIS-
MCE, there is a need to further investigate the capacity of different ML techniques for
deriving criteria weights, which remains unexplored in different spatial contexts, including
urban land-use change and residential development suitability analyses.

For these reasons, the primary objectives of this research are to: (1) present a novel
methodology involving three ML techniques—Random Forest (RF), Extreme Gradient
Boosting (XGB), and Support Vector Machines (SVMs)—to derive criteria weights for GIS-
MCE to assist in an urban suitability decision problem and (2) compare the resulting
suitability scores of the ML-MCE method with those obtained using neutral Equal-Weights
(EW) and AHP approaches. The proposed methodology is applied to real-world datasets
for the City of Kelowna, British Columbia (B.C.), Canada. The main innovation of this
research is the use of ML techniques to generate criteria weights for GIS-MCE in urban
suitability analysis. The presented methodology can be applied in urban planning and
land use management.
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2. Methodology

An overview of the proposed methodology is shown in Figure 1. This study ad-
dresses the problem of finding suitable locations for new urban developments in the City
of Kelowna, Canada. To begin the MCE analysis, spatial criteria are selected, necessary
geospatial data are collected, and criteria layers are derived. Next, criteria layers are nor-
malized using developed suitability functions before spatial criteria can be integrated. The
selection of criteria and the specification of suitability functions are based on scientific
literature, as it was not possible to involve stakeholders and experts in this study. Criteria
weights are derived first using a neutral approach, such as EW, then the AHP approach.
These two sets of criteria weights are compared with those obtained through the proposed
ML-MCE method, which leverages the feature importance assessments of three ML tech-
niques (RE, XGB, and SVM). ML techniques were trained under two different regimes
to highlight the effects of training data configuration on derived criteria weights. The
derived weights are then aggregated via the Weighted Linear Combination (WLC) method
to compute suitability scores for each approach. The most common aggregation method in
GIS-MCE, the WLC method, involves multiplying each normalized criterion layer by its
assigned weight and summing the results to obtain a final suitability score for each raster
cell in the study area [37]. Finally, the resulting suitability scores are classified into four
suitability classes, and suitability maps are generated for comparisons and as a starting
point for a decision-making process.

Urban development suitability
City of Kelowna

Spatial criteria enumeration

Criteria layer normalization

ML
TR, o o N A P
&> @ & &= &
Feature Feature Feature
Importance Importance Importance
v v v v
Criteria Criteria Criteria Criteria Criteria
Weights Weights Weights Weights Weights
v v v v v
EW-wWLC AHP-WLC ‘ RF-WLC XGB-WLC SVM-WLC
Suitability Suitability Suitability Suitability Suitability
map map map map map

L | I 1

Comparisons

Figure 1. General overview of the proposed methodology.

2.1. Study Area and Datasets

The chosen study area for this research is the City of Kelowna, B.C., Canada (Figure 2),
due to its fast urban development. The City of Kelowna is situated along the eastern
shore of Okanagan Lake and is surrounded by a diverse landscape that includes urban
areas, agricultural lands, forests, waterbodies, and First Nation land. The city experienced
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significant population growth of 14% between 2016 and 2021, making it one of the fastest-
growing cities in Canada [38]. As a result, the municipality faces significant challenges
related to new urban developments due to its surrounding natural environment and
agricultural lands.
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Sy )
B\ L 2 City of Kelowna
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0 95 190 380 Kilometers
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Land-use for City of Kelowna
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B First Nation land - E € Kilometers

Figure 2. Study area: City of Kelowna, with major land-uses for the year 2015.

The geospatial data collected for this research are obtained from various sources,
including City of Kelowna Open Data [39], B.C. Open Data [40], and Open Government
Canada [41-43]. This comprehensive dataset encompasses information on road networks,
zoning, elevation, topography, infrastructure distribution, demographic statistics for the
year 2016, as well as land-use and land cover (LULC) data. The LULC data for the years
2015 and 2020 are used exclusively for the needs of training and testing ML techniques.
All geospatial data are rasterized to a 30m spatial resolution and are set in the Transverse
Mercator projection with the NAD 1983 UTM Zone 11 N coordinate system.

2.2. Selection of Criteria and Suitability Functions

Eleven criteria presented in Table 1 are selected as the most important factors con-
tributing to new urban development in general and within the City of Kelowna. Using the
Euclidean distance method [44], proximity to roads, commercial areas, residential areas,
industrial areas, parks, waterbodies, forest, and agricultural lands are derived from the
2015 LULC data. Next, the “Elevation” and “Slope” layers are obtained from a Digital
Elevation Model (DEM). Lastly, “Proximity to high population density” is derived from
a population density data layer. Specifically, population densities are calculated from the
2016 Canada Census data at the Dissemination Area (DA) level using the dasymetric map-
ping method [45,46], which refines population distribution within each DA to residential
land-use types. Based on the calculated average population density, each raster cell has
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been assigned a value of 1 if the population density is higher than the average and a value
of 0 if it is lower than the average. In addition to the eleven criteria, there are key constraint
areas where new urban development is not expected to occur that are excluded from the
suitability analysis, along with existing urban areas, road networks, waterbodies, First

Nation land, agricultural land reserves, and parks.

Table 1. List of the criteria with respective suitability functions in breakpoint notation and the

rationales for the urban development suitability analysis.

Criteria

Suitability Functions and Units

Rationale

Proximity to roads

Crit (Proximity to

roads) = {(30,0), (30,1), (120,1), (900,0)}

[m]

Within 30 m of roads poses safety risks. The 30 m to 120
m zone balances reduced negative impacts with good
road access. Beyond 900 m from roads is considered
inaccessible [47].

Proximity to commercial

Crit (Proximity to
commercial) = {(600,1), (3600,0)}
[m]

Commercial services need to be accessible and within
easy walking distance (600 m). Suitability decreases
beyond this distance until 3600 m, which is considered
beyond a walkable distance [48]

Proximity to residential

Crit (Proximity to
residential) = {(300,1), (900,0)}
[m]

New residential development typically happens at
locations within 300 m of existing residential areas, with
isolated areas being less preferred for new housing.
Beyond 900 m is considered too far [49].

Proximity to industrial

Crit (Proximity to
industrial) = {(600,0), (3600,1)}
[m]

Residential developments are generally planned at least
600 m away from industrial zones to minimize exposure
to pollution and noise. It is considered that at 3600 m,
industrial areas are beyond a walkable distance [50]

Proximity to parks

Crit (Proximity to
parks) = {(300,1), (1500,0)}
[m]

To ensure parks are in short walking distance from new
housing, the breakpoints are chosen from the city’s
current planning [51]

Proximity to waterbodies

Crit (Proximity to
waterbodies) = {(30,0), (30,1), (600,1),
(3000,0)}

[m]

Within 30 m of waterbodies poses safety risks. A
distance between 30 m and 600 m is considered
appropriate for enjoying scenery and leisure activities
[52]. The maximum distance from waterbodies within
the study area is 3000 m.

Proximity to forest

Crit (Proximity to
forest) = {(0,0), (300,1)}
[m]

Residential developments should maintain more than
300 m from forests to ensure forest and biodiversity
conservation [53].

Proximity to agricultural

Crit (Proximity to
agricultural) = {(30,0), (900,1)}
[m]

Agricultural land in the City of Kelowna is protected
and preserved. New residential development should
start at least from 30m which is an equivalent to the
width size of a minor road [50].

Elevation

Crit (Elevation) = {(500,1), (860,0)}
[m]

The minimum elevation in Kelowna is 335 m and the
maximum is 860 m. The suitable range for residential
development is usually within 100 m to 200 m of the
minimum elevation. It is difficult to construct residential
development at higher elevations [54].

Slope

Crit (Slope) = {(20,1), (40,0)}
[degree]

Slopes less than 20 degrees are considered suitable for
new developments, while slopes beyond 40 degrees are
considered too steep and unsafe for housing
developments [55].

Proximity to high
population density

Crit (Proximity to high population
density) = {(600,1), (3000,0)}
[m]

Residential area development tends to occur near
existing high-density population zones. Typically, areas
distant from these centers are less likely to experience
new development due to lack of infrastructure and
services [56].
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After criteria data layers are prepared, suitability functions are developed and applied
to normalize each criterion. The suitability functions in breakpoint notation and their
rationale are presented in Table 1. The choice of suitability function breaks is determined
based on information obtained from City of Kelowna policies and scientific literature. For
example, the criterion “Proximity to roads” is represented by the suitability function {(30,0),
(30,1), (120,1), (900,0)} [m]. This indicates that the suitability value remains at a minimum
of 0 when locations lie within 0 to 30 m from roads. Between 30 m and 120 m, the suitability
value linearly increases to reach a maximum value of 1. From 120 m to 900 m, suitability
declines linearly and remains 0 at locations beyond 900 m from existing roads. A value of 1
represents full satisfaction while a value of 0 represents no satisfaction. Each criteria data
layer is normalized with a corresponding suitability function such that all the values range
from O to 1 (Figure 3). The normalized data layers are then weighted and aggregated to
calculate the overall suitability scores for each raster cell.

Figure 3. Maps presenting the normalized criteria data layers for the City of Kelowna are (A) proxim-
ity to roads; (B) proximity to commercial; (C) proximity to residential; (D) proximity to industrial;
(E) proximity to parks; (F) proximity to waterbodies; (G) proximity to forest; (H) proximity to
agricultural; (I) elevation; (J) slope; and (K) proximity to high population density.
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Multicollinearity of Criteria

Before proceeding with the next steps of GIS-MCE analysis, it is important to examine
the interrelationships among criteria and identify possible correlations or redundancies. A
multicollinearity analysis involving the calculation of Variance Inflation Factors (VIFs) [57]
was applied using the following formula:

1

=g

@
where R? measures how well a given criterion can be estimated using the other criteria. A
VIF equal to 1 indicates no correlation or collinearity between a given criterion and any
others, while a VIF exceeding 5 suggests a high level of collinearity. The results of the VIF
analysis using the normalized criteria layers data are presented in Table 2. Since no criteria
exceeded a value of 5, it was concluded that no multicollinearity is present, so all criteria
were included in the GIS-MCE analysis.

Table 2. The VIF values for the normalized data layers.

Criteria VIF
Proximity to roads 1.605
Proximity to commercial 3.275
Proximity to residential 2.149
Proximity to industrial 1.633
Proximity to parks 2.022
Proximity to waterbodies 1.175
Proximity to forest 1.146
Proximity to agricultural 1.489
Elevation 1.347

Slope 1.140
Proximity to high population density 2.365

2.3. Criteria Weighting Approaches

This section presents in detail the approaches used for deriving criteria weights.

2.3.1. The Equal-Weights Approach

The simplest way of assigning criteria weights in MCE is by applying an EW approach,
where criteria are assigned equal importance [58]. This method serves as a baseline and
neutral criteria weighting approach that can be useful for procedures like sensitivity
analysis [59] and facilitating suitability map comparisons [60]. In this research, the EW
approach is used to enable comparisons with all other approaches. As this study considers
eleven criteria, each criterion is assigned approximately 9.09% (rounding to two decimal
places), summing to a total of 100%.

2.3.2. The Analytical Hierarchy Process Approach

The AHP approach involves conducting pairwise comparisons of all criteria that are
relevant to a spatial problem and organizing them in a hierarchical structure [61]. In the
AHP, the criteria are compared pairwise using a scale from 1 to 9, where values reflect
the relative importance of one element over another. For example, a value of 1 assigned
between two criteria indicates that they are considered “equally important”. Conversely, a
value of 9 indicates that one criterion is “extremely important” compared to the other. The
pairwise comparison is repeated for all criteria combinations to create a comparison matrix.
The sum of each column of the resulting matrix is then calculated and used as a divisor
for each cell in the matrix to generate new values for each matrix cell. The weight for each
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criterion is then calculated by taking the average of each row in the matrix. Furthermore,
the Consistency Index (CI) within the AHP approach measures the consistency of the
pairwise comparison judgments made by the spatial analyst or decision-maker [15,19].
Typically, a CI value less than 0.1 indicates an acceptable level of consistency in the pairwise
comparisons, suggesting that the judgments are reliable. Since the relative importance of
the criteria in the AHP is assigned manually, either by experts, decision-makers, or spatial
analysts, it is prone to subjective judgments, biases, or incomplete information [22]. This
can potentially lead to inconsistent or unreliable results for criteria weights. For this study,
the relative importance of the criteria is informed by the existing literature. Table 3 presents
the relative importance assigned to the criteria in the AHP pairwise comparison matrix
and the derived criteria weights for the purpose of urban suitability analysis. The obtained
CI value for the AHP comparisons is 0.03, indicating that the judgments involved in the
pairwise comparisons are within an acceptable level of consistency.

2.3.3. The Proposed ML Approach

The proposed ML approach involves deriving criteria weights based on feature im-
portance values from three ML techniques, namely RF, XGB, and SVM. Each technique is
defined for a classification task where the training target is a binary label, with 0 indicating
non-urban and 1 indicating urban locations. In this study, the impact of two training
regimes on feature importance values is also explored. The training regimes and procedure
for deriving criteria weights are described in the following sections.

Description of ML Training Regimes

The first training regime follows a traditional approach where the training label is
derived from one map at a single timestamp, representing land use [32,34]. However,
this setup tends to emphasize features related to longstanding urban developments rather
than recognizing factors and conditions that were important for setting up new urban
developments. As such, ML techniques may potentially be overfitted to specific features.
To address this issue, a second training regime is proposed to obtain feature importance
values specifically related to siting new urban developments. By including two maps to
supply information about locations that have become urban, each ML technique learns
to detect patterns and important features related to where new developments are most
likely to occur. The proposed two-map training regime also enables each ML classifier
to capture recent decision-maker priorities without the time-consuming task of acquiring
expert opinions. Likewise, the two-map training regime assumes that decision-makers are
better informed about the historical changes in a study area, thus allowing the ML method
to capture which factors they have prioritized. The results from both training regimes are
included in further steps of the MCE suitability analysis.

Evaluating Fit of ML Techniques

While feature importance values obtained from the RF, XGB, and SVM classifiers are
used to derive criteria weights, direct outputs of each classifier are used to evaluate the
fit of each ML technique. As such, the effects of one-map and two-map training regimes
are examined for each ML type with respect to the outputs and feature importance values.
The one-map training regime utilizes the eleven criteria outlined in Table 1 as the training
data features, while urban and non-urban areas drawn from the 2015 LULC data supply
the training target or label. In the one-map training regime, the ML techniques determine
the likelihood of urban area presence given the input feature values of each training data
sample. In contrast, the two-map training regime uses the same input features, while the
training labels are derived from the differences between LULC data available for 2015 and
2020. In this approach, the objective of the two-map training regime is to determine the
likelihood of new urban areas given the input feature values of each training data sample.
This method allows ML techniques to learn the relationship between the criteria and the
newly developed urban areas to derive feature importance values.
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Deriving Criteria Weights Using ML Feature Importance Analysis

Once each ML technique is trained, a feature importance analysis is conducted, and
resulting values are converted to criteria weights. In this study, feature importance values
help in understanding the contribution of each feature to the estimation of the target label.
Feature importance values are determined using properties inherent to the scikit-learn
and the XGBoost classifier implementations to support the identification of which features
contributed most to each classifier’s learned decision mechanisms. After feature importance
values are obtained from the respective ML techniques under each training regime, each set
of feature importance values is normalized so that the importance of all features sums to 1.
Normalized feature importance values can then be directly used in place of criteria weights
and further integrated into MCE analysis. The details of setting up the ML techniques and
evaluations are presented in the following subsections.

2.3.4. Operationalizing the Proposed ML Approach
ML Techniques

The ML techniques implemented in this study include RF [62], XGB [63], and SVM [64]
classifiers. The RF ensemble algorithm is a robust decision tree method capable of handling
high-dimensional data. The RF technique leverages a number of decision trees that con-
tribute to a majority vote used to obtain a final outputted value. The XGB technique is also
an ensemble tree-based algorithm, instead relying on a concept called gradient boosting that
involves refining a collection of weak learners at each iteration of training. XGB involves
training multiple decision trees sequentially, with each tree focusing on correcting the errors
of the previous one. In contrast, the SVM technique is based on a max-margin approach
that aims to delineate a hyperplane to maximize separation between positive and negative
training samples. To delineate the hyperplane, input features are first mapped to higher-
dimension feature spaces using a kernel function. This underlying procedure enables SVM
to generalize to unseen data, reducing the risk of overfitting. The RF technique benefited
from the default scikit-learn parameters of the Random Forest Classifier, which creates 100
decision trees in the ensemble. Next, the number of XGB estimators was set to 100 and
the maximum tree depth was set to 5. Lastly, a linear kernel was used for SVM and the
regularization parameter (C) was set to 1.

Preparing ML Training Datasets

The next step requires the preparation of a training dataset. A training dataset consists
of two components: training features and a training label. Training features are the inde-
pendent variables or attributes provided as inputs to ML techniques, while the training
label is the dependent variable or output. To form the training dataset for the one-map
training regime, training features are derived from the eleven criteria data layers. The
training label denotes the presence or absence of urban land-use for the year 2015, where a
binary value of 0 indicates “non-urban” and 1 indicates “urban”. To configure the training
dataset for the two-map training regime, the same training features are maintained from
the one-map training regime. However, the LULC data from 2015 and 2020 are used to
identify new and recent urban developments. In the two-map training regime, the training
label instead denotes persistent non-urban areas with a value of 0, while locations that
have undergone development in the interval are assigned a value of 1. Details regarding
the training configuration for both methods are listed in Table 4.

Next, a stratified random sampling approach is employed to form a balanced training
dataset such that the ML techniques are not biased toward majority samples. The sampling
approach is based on previous studies that mitigated imbalances by ensuring there are
equal numbers of positive and negative targets for the ML techniques to learn [35,65].
Specifically, 2000 points are sampled from the study area, where 50% of the training dataset
labels have a value of 0 and the latter have a value of 1. This is to ensure the training
dataset is balanced to mitigate ML biases toward the majority label in both the one-map
and two-map methods [35]. The training samples are subsequently split into training and
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testing sets, with 70% of the points being used to fit the ML techniques and the remaining
30% reserved for testing [66,67].

Table 4. The configuration for the two ML training regimes.

One-Map Training Regime Two-Map Training Regime
Training features Eleven criteria data layers Eleven criteria from data layers
Training label 2015 LULC 2015 and 2020 LULC

0: non-urban areas in 2015 0: persistent non-urban areas

Training label values 1: urban areas in 2015 1: areas that became urban between
' 2015 and 2020

Evaluation of ML Techniques

To evaluate the ML classifier parameterization and quality of fit, assessments were
conducted with respect to the withheld testing dataset. The assessment involves using
both the Receiver Operating Characteristic Area Under Curve (ROC-AUC) and F1 score
with their respective components, as demonstrated in previous studies [29,35,68,69]. The
emphasis of the assessment is to confirm that the ML techniques trained with one-map and
two-map training regimes are operational for the respective tasks as opposed to comparing
or optimizing predictive accuracy or performance.

The ROC-AUC score relies on the True Positive Rate (TPR) and the False Positive
Rate (FPR). The TPR, also known as “recall”, quantifies the proportion of true positive (TP)
predictions or correctly classified positives relative to all TP predictions and false negative
predictions (FN) [35]. Meanwhile, the FPR represents the proportion of false positive
predictions (FP) relative to all actual negatives, which includes FP and True Negative (TN).
The ROC curve depicts the relationship between the TPR and FPR of ML outcomes, serving
as a graphical representation for assessing the performance of a binary ML classifier. Values
obtained from calculating the area under the ROC curve (ROC-AUC) range from 0 to 1,
with higher values indicating better ML performance. An ROC-AUC of 0.5 implies that the
ML technique performs no better than random guessing, and a value of 1.0 signifies perfect
classification [70]. The F1 score is determined using precision and recall. Precision equals
the ratio of TP to all positive results (TP+FP), which includes those that were misidentified.
The F1 score provides a single measure that balances precision and recall. Resulting values
similarly adhere to a range of 0 to 1, where 1 indicates perfect precision and 0 indicates that
the ML classifier could not classify any data sample correctly [71].

2.4. Deriving Suitability Scores and Suitability Maps

After the criteria weights are established with the various weighting approaches, the
criteria represented by normalized data layers are aggregated using the WLC method to
derive the final suitability score for each raster cell. The calculation of output suitability
scores S, for a spatial problem r; has been accomplished using the following WLC
formula [37]:

Stry) = 21 w;fj(ri) )
e

where w; is the weight of importance assigned to criterion j and fj(r;) is the suitability
function for ; for the j* criterion. The output suitability scores range from value 0 to 1,
where 0 represents locations that are completely unsuitable while 1 represents the most
suitable locations for the decision problem. In this study, a value of 1 indicates areas that
are the most suitable for urban development. The resulting suitability scores are classified
into several classes to produce suitability maps depicting locations that range from poor to
excellent suitability for the new urban development in the study area. Suitability maps are
derived for each weighting method for the purpose of comparison.
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True Positive Rate

3. Results and Discussion

To prepare and normalize the data layers for this study, the ArcGIS Pro (version
3.2) software is used [72]. Next, the AHP criteria weights are developed using Microsoft
Excel [73]. The ArcGIS Pro software was used to prepare the ML training datasets and
implement the proposed ML weighing approach. Specifically, an ArcGIS Python Notebook
and ArcPy [72] were used. An ArcGIS Python Notebook provides an interactive means of
writing and running Python code within ArcGIS Pro. The ML approach is implemented
using functions from the ArcPy, scikit-learn [74], and xgboost [63] Python libraries to prepare
training datasets, to train each classifier, to perform the feature importance analysis, and to
obtain the criteria weights.

3.1. Evaluating the ML Techniques

Figure 4 presents the obtained ROC curves and the AUC values for each ML technique
and training regime. The high AUC values indicate that the ML techniques and their
parameters have been effectively configured. As the ML techniques in this research are not
intended to produce any predictions, the ROC values were determined with respect to data
withheld for testing purposes presented in Section 2.3.4.

ROC curve for ML technigues in two training regimes

RF one-map (area = 0.95)
XGB one-map (area = 0.95)
SVM one-map (area = 0.90)
RF two-map (area = 0.93)

XGB two-map (area = 0.92)
SVM two-map (area = 0.85)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4. ROC-AUC for ML techniques in both one-map and two-map training regimes.

Table 5 presents the evaluation results for the ML techniques using the two different
training regimes described in Section 2.3.3. Regardless of the training data setup used, RF
and XGB exhibit high recall, precision, and F1 scores. Conversely, SVM’s performance
under both training regimes shows lower recall scores.
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Table 5. The evaluation results from one-map and two-map training regimes.

Training

. Technique Recall Precision F1 Score
Regime

RF 80.69% 84.17% 0.82

One-map
training XGB 84.83% 82.00% 0.83
SVM 68.28% 79.84% 0.74
RF 74.30% 76.00% 0.75

Two-map
training XGB 74.30% 76.88% 0.76
SVM 52.51% 71.21% 0.60

3.2. Comparing Derived Criteria Weights under Each Training Regime

The criteria weights obtained from all weighting approaches, including the RF, XGB,
and SVM techniques under both training regimes, are summarized in Table 6a. Additionally,
Table 6b summarizes the ranking of the criteria by each approach along with the average
ranking for each criterion.

Comparing the criteria rankings of the AHP and ML approaches, “Proximity to roads
consistently ranks among the top three criteria affecting urban development. Additionally,
“Elevation” and “Slope” are identified as the least important criteria in the AHP, and the
RF technique was trained with both one-map and two-map regimes. The overall criteria
rankings from the AHP closely align with those obtained using the RF and XGB techniques
under the two-map training regime. However, the SVM technique presents a different
weight distribution compared to the AHP under both training regimes.

Regarding the criteria weights obtained from the proposed ML approach, RF and
XGB yield very similar criteria weight outcomes while SVM presents different results in
both training regimes. Under the one-map training regime, “Proximity to agricultural” is
ranked as the most important criterion of both RF and XGB techniques, with a weight of
over 25%. “Proximity to forest” was also allocated a high criteria weight based on its larger
contribution within the RF and XGB techniques. In contrast, “Slope” was determined as
the most important criterion of the SVM technique, with a normalized weight of 25.8%.
The most important criteria determined with the SVM technique can indicate a different
stakeholder viewpoint that prioritizes certain criteria as being the most important. For
example, “Slope” is often regarded as one of the least important criteria while “Proximity
to roads” is typically considered one of the most important criteria by stakeholders and
decision-makers [75-77]. Evidently, the feature importance values obtained from ML
techniques trained under the one-map training regime are influenced by longstanding
urban locations in the City of Kelowna. As such, the one-map training regime may have
limited applicability regarding uncovering factors associated with favorable new urban
development locations in real-world decision-making processes.

In contrast, the goal of the two-map training regime was to obtain feature importance
values that take new urban developments into consideration (Table 4). By accounting for
the actual recent study area changes that occurred between two timesteps, the obtained
values can be seen as reflections of the choices of criteria weights developed by stakeholders
and decision-makers. As such, the “Proximity to roads” criterion was identified as the
most important criterion of both the RF and XGB techniques (Table 6). “Proximity to high
population density” is also ranked higher in both techniques trained using the two-map
training regime. The criteria weights associated with the SVM technique also are more
realistic regarding “Proximity to roads,” which ranked as the second most important, while
“Slope” was allocated less weight. By comparing the criteria weights obtained under the
two-map training regime with those specified manually in previous studies, the proposed
ML approach reduces the difficulties of criteria weight derivation.

”
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Table 6. (a) List of the criteria weights obtained by each weighting approach, with the top three
criteria and weights being presented in bold. Due to rounding, some summations may not be exactly
100%. (b) Ranking of the criteria weights obtained by each weighting approach and the average
ranking of the criteria, with the top three average ranking criteria being presented in bold.

(a) One-Map Training Regime Two-Map Training Regime
Criteria EW(%) AHP(%) RF(%)  XGB(%)  Su)! RF (%) XGB (%) SVM (%)
Proximity to roads 9.09 29.8 10.75 18.17 23.7 18.1 23.7 18.4
Proximity to commercial 9.09 8.9 9.63 3.13 1.8 10.7 6.6 1.8
Proximity to residential 9.09 19.5 4.37 5.82 1.4 5.6 7.7 0.3
Proximity to industrial 9.09 5.6 6.54 3.54 3.3 10.9 11.9 9.2
Proximity to parks 9.09 54 4.66 471 1.5 9.4 5.1 7.8
Proximity to waterbodies 9.09 54 6.65 3.63 0.6 9.0 52 7.7
Proximity to forest 9.09 54 21.92 14.13 15.8 10.0 13.4 32.9
Proximity to agricultural 9.09 3.2 27.11 26.89 15.0 9.5 8.4 9.9
Elevation 9.09 32 1.05 9.77 6.4 3.3 6.8 10.4
Slope 9.09 2.3 2.00 6.84 25.8 2.5 3.1 12
Proximity to high pop. density 9.09 113 532 3.38 47 11.0 8.1 0.4
Total 100 100 100 100 100 100 100 100
(b) One-Map Training regime Two-l\f:gp)i;reaining Average Criteria
Ranking
Criteria AHP RF XGB SVM RF XGB SVM
Proximity to roads 1 3 2 2 1 1 2 1.7
Proximity to commercial 4 4 11 8 4 8 8 6.7
Proximity to residential 2 9 6 10 9 6 11 7.6
Proximity to industrial 5 6 9 7 3 3 5 54
Proximity to parks 6 8 7 9 7 10 6 7.6
Proximity to waterbodies 6 5 8 11 8 9 7 7.7
Proximity to forest 6 2 3 3 5 2 1 31
Proximity to agricultural 9 1 1 4 6 4 4 4.1
Elevation 10 11 4 5 10 7 3 7.1
Slope 11 10 5 1 11 11 9 8.3
Proximity to high pop. density 3 7 10 6 2 5 10 6.1

After comparing the criteria weights attributed to each ML technique under both
training regimes, the two-map training regime is considered to be a better-informed ap-
proach for training ML techniques, obtaining feature importance values and deriving
criteria weights for the task of determining suitable locations for new urban developments.
Therefore, the criteria weights associated with the two-map ML techniques are further
compared with the traditional approaches in the subsequent sections.

3.3. Comparing Effects of Sample Size on Derived Criteria Weights

Additional tests have been conducted to determine if the number of training points
influences the outputs of the ML techniques. For example, the RF technique was trained
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using the two-map regime with 2000, 4000 and 6000 training points. The results demon-
strate consistent criteria weight distributions and rankings (Table 7) regardless of the choice
of number of training points. This is consistent with findings from [78], which found
that lower numbers of training data samples even improved outcomes. Therefore, the
presented results following this section are produced using 2000 data samples to train each
ML technique.

Table 7. List of the criteria weights and rankings obtained by RF with 2000, 4000, and 6000 training
points. The top three average ranking criteria are bolded.

Criteria RF 2000 Criteria RF 4000 Criteria RF 6000 Criteria Average

(%) Ranking (%) Ranking (%) Ranking Ranking
Proximity to roads 18.1 1 19.1 1 18.6 1 1.0
Proximity to commercial 10.7 4 10.8 2 11.5 3 3.0
Proximity to residential 5.6 9 55 9 55 9 9.0
Proximity to industrial 10.9 3 10.2 4 11.2 4 3.7
Proximity to parks 9.4 7 9.7 6 9.0 6 6.3
Proximity to waterbodies 9.0 8 8.6 8 8.7 7 7.7
Proximity to forest 10.0 5 10.0 5 8.5 8 6.0
Proximity to agricultural 9.5 6 9.4 7 9.2 5 6.0
Elevation 3.3 10 3.7 10 3.4 10 10.0
Slope 2.5 11 2.6 11 2.7 11 11.0
Proximity to high pop. density 11.0 2 10.4 3 11.7 2 2.3

Total 100 100 100

3.4. Analyzing Obtained Suitability Maps

After integrating the criteria weights using the WLC aggregation method, the obtained
suitability scores are classified into four classes using the equal interval classification
method. The classes are defined as follows: excellent (0.76-1.00), good (0.51-0.75), moderate
(0.26-0.50), and poor (0.0-0.25) suitability for urban development. Figure 5 presents
suitability maps created using criteria weights derived from the EW, AHP, and respective
ML techniques trained with the two-map regime in the WLC aggregation method. Areas
classified as having excellent suitability are interpreted as having the highest potential
for future urban development. At the other extreme, “poor” suitability indicates areas
unsuitable for new urban developments within the study area. For comparison purposes,
suitability maps produced using the criteria weights obtained from the RE-WLC approach
under both one-map and two-map training regimes are presented in Figure 6 to support
visual assessments of the effects of the training data methods.

Additionally, the surface area (in km?) of derived suitability for each class is summa-
rized in Figure 7 and Table 8 to quantify the differences between the various weighting
approaches. The EW approach identified the smallest amount of “poor suitability” area
and a moderate amount of area classified as excellent. Conversely, the suitability map
created with the AHP-WLC approach shows the largest area as having excellent suitability,
almost double that of the RF-WLC and XGB-WLC approaches. The RE-WLC and XGB-WLC
approaches demonstrate similar values for surfaces under the same suitability classes. On
the other hand, the SVM-WLC approach presents a distinct outcome compared to the other
approaches. The outcome generated using the SVM-WLC approach depicts the least area
as having “excellent” suitability, almost close to zero, with most of the area classified as
having “moderate” suitability.
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Figure 5. Output suitability maps for the City of Kelowna with four suitability classes derived from
the five approaches: (A) EW-WLC; (B) AHP-WLC; (C) RE-WLC; (D) XGB-WLC; (E) SVM-WLC.

I Excellent Moderate [ study area boundary N
0 2 4 8 Kilometers
Good I Poor A

Figure 6. Output suitability maps for RE-WLC obtained with (A) one-map training and (B) two-map
training regimes.
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Figure 7. Surface area associated with each suitability class from each criteria weighting approach.

Table 8. Surface area and proportion of study region with urban development potential assigned to
each suitability class, where bold values indicate highest surface area under specific suitability class.

Criteria Weighting Technique

EW-WLC AHP-WLC RF-WLC XGB-WLC SVM-WLC
Surface area for each class km? % km? % km? % km? % km? %
Excellent 10.09 27.11 14.76 39.65 8.20 22.02 7.33 19.69 0.31 0.84
Good 17.87 48.01 13.37 35.91 16.00 42.98 17.98 48.31 15.67 42.11
Moderate 9.26 24.87 8.43 22.65 12.92 34.70 11.79 31.67 20.66 55.50
Poor 0 0 0.67 1.79 0.11 0.30 0.12 0.33 0.58 1.56
Total 37.22 100 37.22 100 37.22 100 37.22 100 37.22 100

3.5. Comparing Suitability Maps

Results from GIS-MCE analysis, such as suitability scores and maps, are typically used
in further deliberations of stakeholders to guide decision-making processes. Given that
developing suitability maps is not equivalent to making predictions of new land-use states,
the techniques for validating suitability maps are limited. Instead, suitability maps serve as
a starting point for stakeholder discussions that would lead to final decisions about where
new urban developments should be sited. Nevertheless, to compare the suitability maps
developed with the various approaches, the respective outcomes are examined using visual
and areal cross-comparison techniques, the Kappa Index of Agreement (KIA), and a visual

comparison with recent real-world imagery obtained for the City of Kelowna.

3.5.1. Suitability Map Cross-Comparison

The cross-comparison technique [79] was used to generate the agreement/disagreement
maps with respect to the “excellent” suitability class for all criteria weighting methods.
Focusing on comparing the “excellent” class is important because potential stakeholders
and urban developers will be the most interested in locations identified as having the
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highest suitability for new urban developments. The EW-WLC map is used as a neutral
suitability map by which to base the comparisons. Figure 8 presents the cross-comparison
maps obtained from each weighting approach with the WLC method, indicating locations
where the highest suitability scores obtained overlap or differ. The areas in agreement are
shown in red, while disagreeing areas are shown in blue on the maps. Overall, it can be
observed that SVM-WLC generates the smallest area with “excellent” suitability and shows
the most disagreement with all other approaches. Conversely, the AHP-WLC map depicts
the largest area under the “excellent” suitability class (Figure 7, Table 8) while simulta-
neously showing a significant amount of locational disagreement with other approaches
(Figure 8). Regardless, the RE-WLC and XGB-WLC show the most agreement with this
suitability class among all MCE approaches.

With respect to the neutral baseline (EW-WLC), both the RF-WLC and XGB-WLC
approaches exhibit high agreement between “excellent” areas. The similarities between
EW-WLC, RE-WLC, and XGB-WLC can be attributed to the selection of criteria and several
local trends observed in transformed values of factors (Figure 3). For example, “Proximity
to Roads” and “Proximity to Residential” display similarly high values in some areas,
thus contributing to the observation that the EW-WLC approach has assigned “Excellent”
suitability classes to several similar areas identified via the RE-WLC and XGB-WLC ap-
proaches. Meanwhile, both the RE-WLC and XGB-WLC approaches assign “Proximity to
Roads” one of the highest criteria weights. Due to the numerous combinations of criteria
weights that can lead to an “excellent” class being assigned to certain areas by the EW-WLC
approach, this demonstrates the importance of comparing criteria weights with the existing
literature (Section 3.2) and the need for inspections of the local factor values contributing
to high suitability values. Despite the observed local similarities between the RF-WLC
and XGB-WLC approaches with the neutral baseline, the agreement with other suitability
classes deviates, as observed in Figure 5.

3.5.2. Quantifying Agreement between Suitability Maps

Following the visual and areal cross-comparisons of each suitability map, the similarity
between the suitability class locations in each pair of maps is quantified using the Kappa
Index of Agreement (KIA) [52,80,81] given that suitability maps are not the result of a space-
time process. KIA values are presented in Table 9 and, when approaching 1, suggest high
agreement between suitability classes present in the two maps being compared. Conversely,
KIA values approaching 0 indicate low alignment of suitability classes at most locations
compared across the study region.

Table 9. Summary of Kappa Index of Agreement (KIA) values obtained by comparing each pair of
suitability maps.

vs. AHP-WLC REF-WLC XGB-WLC SVM-WLC
EW-WLC 0.75 0.84 0.83 0.40
AHP-WLC - 0.75 0.70 0.32
REF-WLC - - 0.90 0.54
XGB-WLC - - - 0.55

Across each pair of compared suitability maps, the KIA values confirm previous
evaluations. Additionally, the KIA values further confirm the similarities between the
suitability maps attributed to the RF and XGB techniques. For example, RE-WLC and
XGB-WLC exhibit the highest agreement of any pair of suitability maps based on the KIA
value of 0.90 (Table 9). In contrast the SVM-WLC map is associated with the lowest KIA
values obtained from all suitability map comparisons. The minimum KIA value (0.32)
is associated with the comparison between AHP-WLC and SVM-WLC, indicating that
these two maps exhibit the least similarity of suitability class locations across the study
region. Considering the KIA values attributed to the overall comparisons of EW-WLC and
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RE-WLC (0.84), and EW-WLC and XGB-WLC (0.83), the deviating locational agreement
between suitability classes other than “excellent” as previously discussed (Section 3.5.1)
are also confirmed.
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Figure 8. Cross-comparison maps for excellent suitability class obtained by each MCE-WLC approach.
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3.5.3. Examining Suitability Maps versus Real-World Images

In order to confirm the applicability of the proposed ML-MCE method and obtained
suitability scores, a manual visual verification with an alternative source of “field observa-
tions” is conducted with respect to recent Google Earth satellite imagery. As the RE-WLC
yields very similar results to XGB-WLC and attained the highest ROC-AUC score among
the ML techniques trained under the two-map regime, the RE-WLC suitability map was
compared to areas with and without recent urban developments in the study area. Figure 9
presents a comparison of the RF-WLC suitability map with real-world satellite imagery
from 2023, focusing on areas of “moderate” and “poor” suitability. The highlighted lo-
cations identified to have low suitability show that no urban development has occurred
since. This also suggests that the RF-WLC suitability map concurs with knowledge about
the criteria. For example, areas determined to be less accessible (Figure 3A), more isolated
from current urban developments (Figure 3C), and closer to industrial zones (Figure 3D)
are appropriately identified as less suitable for new urban developments.

Two-Map RF-WLC Suitability Map

Suitability classes
== Excellent
Good
Moderate
== Poor
[ Study area boundary

15 3 6 Kilometers
| DO WS WS R W O -

Figure 9. Comparisons of obtained “moderate” and “poor” suitability classes for City of Kelowna

using the RF-WLC approach with Google Earth imagery for year 2023.

Next, Figure 10 presents a comparison of the suitability maps obtained with the
RE-WLC approach trained under both the one- and two-map regimes versus real-world
satellite imagery for the year 2023. Focusing on the areas of “excellent” suitability, the
visual assessment indicates that areas identified as highly suitable for new urban develop-
ments using the two-map RF-WLC approach corresponded with some recent new urban
developments in the study area. Overall, the visual assessment further confirms that the
two-map training regime for ML techniques is well suited for deriving criteria weights in
the proposed ML-MCE method. In contrast, the RE-WLC suitability maps attributed to the
one-map training regime show that many of the selected locations do not have the highest
suitability scores. This suggests that urban developers and planners in the City of Kelowna
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are indeed considering the areas with characteristics or criteria identified with the two-map
ML-MCE methodology proposed in this study.
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Figure 10. Comparisons of areas identified to have “excellent” suitability in the City of Kelowna
using the RF-WLC approach versus Google Earth imagery obtained for the year 2023.
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3.6. Limitations and Future Directions

Although the comparison of ML techniques and training regimes showed the value of
deriving criteria weights with two timesteps for urban development suitability, there remain
several limitations and opportunities for improvement. In real-world implementation, ML
techniques and software may not be widely accessible to urban planners, as the proper
setup, training, and testing of ML techniques may be a challenge for municipal planners.
Next, while the four-class equal interval breaks used to assign suitability classes are easier
to visualize and understand, the real variation of the suitability values obtained from each
approach require additional comparisons at finer-level classes or on a continuous scale
in future studies. Another limitation of this work is that the WLC method used in this
study is based on a Simple Additive Scoring (SAS) method, which takes the mean of all the
components in the analysis [75]. When the number of criteria increases, the importance of
criteria decreases, oversimplifying the decision-making process of many complex spatial
problems like urban land-use suitability analysis. To overcome this issue in future studies,
a more complex MCE method can be applied, such as the Ordered Weighted Averaging
(OWA) or Logic Scoring of Preference (LSP) methods. Another limitation of this study
is that it only considered eleven criteria, while complex urban planning spatial decision
problems may require a much larger number of criteria, especially for larger study areas
and urban metropolitan regions. Investigating the limits of the number of criteria remains
unexplored with the ML-MCE method and could be explored in future work. Lastly, the
ML techniques in this study are trained using the same normalized criteria data layers used
for the EW and AHP approaches. Future studies should explore and compare the effects of
integrating domain knowledge in data layer pre-processing procedures versus standard
ML data normalization strategies.

4. Conclusions

This research explores the integration of ML with GIS-MCE for determining criteria
weights and with the aim to analyze urban development suitability. Focusing specifically
on a case study in the City of Kelowna, results indicate that approaches such as the neutral
EW and the traditional AHP produce different criteria weights than weights obtained
via feature importance analyses of the three ML techniques. Among the ML techniques
explored, the criteria weights derived from RF feature importance values closely aligned
with those of XGB, while SVM shows markedly different criteria weights. Additionally, this
study examined the differences in criteria weights, distributions, and rankings that result
from different training regimes. A traditional one-map training regime for ML techniques
is compared with the proposed two-map training regime for deriving feature importance
related to new urban developments specifically. The results demonstrate that the two-map
training regime is more suitable for this case study and enables criteria weights that are
more likely to align with perspectives of potential stakeholders and urban planners. After
comparing the suitability maps created using the RE-WLC approach with the 2023 Google
Earth satellite images, the visual assessments confirmed the effectiveness of the proposed
ML-MCE method in real-world urban planning in the City of Kelowna.

Overall, the proposed ML-MCE method provides a novel, data-driven, and systematic
framework for combining geospatial data and ML techniques for urban development
suitability analysis. This framework has the potential to assist in city planning and urban
land-use management by supporting decision-makers.
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Abstract: The implementation of an urban growth boundary (UGB) can effectively control urban
sprawl and promote efficient land use, which is crucial for future urban development. However,
most of existing studies overlook the reuse of existing idle and inefficient land within the city in
the delineation of UGBs. With China’s urban construction shifting from incremental development
to stock development, this study focuses on Wuhan and presents a set of technical approaches for
delineating UGBs with a stock development orientation. First, a built-up area composite index
(POI&ISA) is constructed based on point of interest (POI) kernel density analysis and impervious
surface index extraction to evaluate constructive levels in 2010 and 2020 and identify the urban vitality
zone. Then, we combine the current land use status and control policies to divide the urban spatial
development potential into five categories: urban vitality land, urban non-vitality land, other vitality
land, other non-vitality land, and restricted development land. Finally, the PLUS model is applied in
the analysis of the driving forces of land use change in Wuhan, simulating the UGBs in three stages of
incremental development (2020-2030), incremental and stock development (2030-2040), and stock de-
velopment (2040-2050). Finally, the PLUS model simulation projects the UGB areas to be 436.436 km?2,
474.617 km?, and 520.396 km? for the years 2030, 2040, and 2050, respectively. The predicted timespan
of urban development extends up to 30 years, serving as a reliable reference for Wuhan’s long-term

and near-term planning.

Keywords: stock development; POI&ISA index; urban growth boundary; PLUS model; Wuhan city

1. Introduction

The rapid development of technology and globalization have led to an unprecedented
growth in the global urbanization process. From 1985 to 2015, the global urban area
increased from 362,700 km? to 653,400 km?, nearly doubling. While this swift urbanization
has presented significant economic and population development opportunities, it has also
given rise to challenges such as excessive internal urban pressure and difficulties in urban
expansion [1,2]. To address these challenges, organizations such as the United Nations
Conference on Housing and Sustainable Urban Development have stressed the importance
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of unlocking urban potential and promoting sustainable urban development [3]. This is
crucial to prevent chaotic urban expansion and marginalization.

China, as one of the most populous countries globally, has undergone rapid urbaniza-
tion. However, the prevailing development paradigm prioritizing “quantity over quality”
has led to a myriad of issues, including resource depletion, environmental degradation, and
inefficient land utilization [4,5]. The trajectory of urbanization is gradually shifting from
the “incremental era” to the “stock era”. This transition underscores that the conventional
approach of solely advocating urban expansion and spatial development is no longer
conducive to current urban progress. Instead, a more sustainable approach is needed. Stock
development, which emphasizes the optimal utilization of existing urban resources over
mere urban boundary expansion, involves comprehensive investment and transformation
of cities to modernize urban functions, repurpose urban spaces, and rejuvenate urban
development [6-8]. This change in the concept of urban development undoubtedly puts
more emphasis on sustainability [9].

The urban growth boundary (UGB) is a crucial tool for managing urban expansion [10].
Its origins can be traced back to the Garden City theory proposed by British scholar Howard
in his seminal work Garden Cities of To-Morrow in 1898 [11]. The theory aimed to curb urban
sprawl by establishing a robust “green belt” between the central city and surrounding towns
to segregate them and prevent indiscriminate urban sprawl. In the 1930s, the United States
government began establishing new towns in rural areas with development potential to
alleviate the “urban disease” in large cities. These new towns were surrounded by farmland
and trees, forming a barrier that restricted the disorderly expansion of urban areas. They
were called green belt towns. In1938, the British government enacted the Green Belt Act,
marking the beginning of large-scale green belt construction in London. Subsequently, in
1976, the city of Salem, USA, defined the UGB as the delineation between urban and rural
areas, beyond which urban development is restricted [12]. Over time, its definition has
expanded to encompass various regulatory aspects, including local government oversight
of expansion [13]. In China, since the incorporation of delineating UGBs in the “Urban
Planning Formulation Means” in 2006, numerous scholars have undertaken related research,
and many large cities have carried out the delineation of UGBs [14-17]. The UGB holds
significant importance in steering prudent urban development, conserving the ecological
environment, and augmenting urban quality [18,19].

In prior research, scholars have extensively explored UGBs and proposed various
methods for their delineation, both domestically and internationally. These methods
include dynamic simulation approaches, backward deduction methods, and comprehensive
methodologies [10]. The dynamic simulation method is qualitative and treat the city as a
complex dynamic system that evolves with societal changes and economic progress [20,21].
To employ this method, it is essential to consider a multitude of factors influencing urban
development and constraints on urban expansion, such as population size, GDP, and land
demand [22]. Ultimately, geographic simulation models yield simulated results for UGBs.
However, this method is highly subjective and heavily reliant on researchers’ experience.
The backward deduction method is quantitative and begins with policies and laws related
to urban expansion and ecological preservation to demarcate areas restricted or prohibited
for development [23-25]. This approach establishes clear rigid boundaries for future urban
expansion or internal renewal. Nonetheless, it can only delineate rigid boundaries, lacking
flexibility to respond to various changes with uncertainty. The comprehensive method
integrates dynamic simulation and backward deduction methods, considering both future
urban development needs and delineating rigid boundaries during urban expansion. It
reflects the dynamic change in urban construction space more scientifically, and has been
increasingly applied in the delineation practice of UGBs [26,27].

To accurately delineate UGBs, it is crucial to conduct dynamic simulation of future
urban development. One commonly used method is the cellular automata (CA) model,
which is a kind of discrete grid dynamical model that considers time, space, and state
as discrete variables. It also takes into local spatial interactions and causal relationships

68



Land 2024, 13,1174

over time, making it an effective tool for simulating the simulate the spatiotemporal
evolution process of complex systems and is widely utilized for delineating UGBs [28].
Several expanded iterations of the CA model have been developed for delineating UGBs,
including the conversion of land use and its effects at small regional extent (CLUE-S) [29,30],
slope-land use—exclusion—urban—transportation-hillshade (SLEUTH) [31], artificial neural
network cellular automata (ANN-CA) [32], and future land-use simulation (FLUS) [33].
Among these models, the CLUE-S model stands out for its ability to comprehensively
consider both natural and human factors. By using iterative method, it can integrate spatial
and non-spatial analyses to better simulate land use change scenarios at small scales [34].
The SLEUTH model can combine large-scale spatial databases and various resolution
remote sensing data to simulate and predict changes in urban land use from micro to macro
and from 10 years to 100 years on spatial and temporal scales [35]. ANN-CA is a simple
model that does not require manual determination of model structure, conversion rules,
and model parameters. Instead, it uses neural networks to replace conversion rules and
automatically obtains model weight parameters through sample training of the neural
network [36]. The FLUS model is a simulation and prediction model that can effectively
deal with the complexity and uncertainty of mutual conversion between various land use
types within the national territory under the influence of human-land relationships [37].
However, in the transition phase of most models, the competition and interaction among
different land types are often neglected. The patch-generating land use simulation (PLUS)
model, a derivative of the CA model, effectively tackles the complexity and uncertainty of
urban growth by considering the combined impact of natural and human activities. This
approach enhances simulation accuracy and enables the delineation of UGBs [38—40].

Although many cities in China have experienced land urbanization faster than popu-
lation urbanization, the current delineation of UGB only takes the incremental expansion of
cities into account. This delineation process often overlooks the reuse of existing idle and
inefficient land within the city, resulting in a tendency to overestimate the determined scale
of urban development. In the case of urbanization shifting from incremental development
to stock development, it is necessary to coordinate the redevelopment within the city and
the external expansion, delineate the UGBs at different stages scientifically, and ensure the
orderly and efficient development of urban space.

This paper presents technical approaches to delineate UGBs in a manner that promotes
intensive development and reduces the extensive use of land. This study focuses on Wuhan
City, Hubei Province, China and aims to achieve three objectives: (1) identify urban vitality
zone and non-vitality zones; (2) divide the urban spatial development potential; and
(3) simulate future UGBs for different periods. The remainder of this paper is structured
as follows: Section 2 provides a detailed description of the study area and data sources.
Section 3 presents a set of technical approaches and main processes in detail for delineating
UGBEs, including the POI&ISA index, classification of urban spatial development potential,
and PLUS model. Section 4 shows the delineation results of UGBs in 2030, 2040, and 2050.
Finally, Section 5 summarizes the main contributions of this research.

2. Study Area and Data
2.1. Overview of the Study Area

Wuhan is located in the eastern part of Hubei Province, in the central region of China
(Figure 1). The terrain is mostly flat, with hills and low mountains situated in the north
and south. The western and southern regions have higher elevations, while the eastern
and northern regions are lower. Wuhan situated at the confluence of the Yangtze River and
the Han River, and the urban area has numerous lakes. The city has a typical subtropical
monsoon climate, with four distinct seasons, ample sunshine, abundant rainfall, and
plentiful water and heat resources.
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Figure 1. Study area.

Since the late 1970s, the Wuhan government implemented a strategy to expand the
city in all directions. This involved integrating neighboring towns and cities into the
scope of administrative division, eventually forming 13 districts. It includes seven central
urban districts—Hongshan District, Wuchang District, Jianghan District, Jiang’an District,
Qingshan District, Qiaokou District, and Hanyang District—and six new urban districts:
Jiang xia District, Xinzhou District, Hannan District, Caidian District, Dongxihu District,
and Huangpi District. For a long time, the urban area of Wuhan has been expanding
mainly within the boundaries of the seven central urban districts, along the banks of the
Yangtze River and the Han River. However, in recent years, due to the rapid development
of the economy and society and the acceleration of urbanization, not only has the tradi-
tional urban area of Wuhan continued to expand, but the urban scale of six new urban
districts has also greatly increased. From 1988 to 2011, the urban built-up area of Wuhan
increased rapidly [38].

Despite the rapid urban expansion in Wuhan, its internal land use efficiency is subop-
timal, resulting in the wastage of different types of land. Additionally, the significance of
the old urban areas is gradually diminishing. The Wuhan City Master Plan (2010-2020)
emphasizes the importance of transforming old urban areas, enhancing their vitality, and
promoting the intensive and economical use of land to achieve sustainable development
and ensure the long-term growth of Wuhan. At the same time, the plan proposes to actively
promote the development of new cities and build 24 new cities and new city clusters. There-
fore, it is necessary to scientifically delineate the UGB of Wuhan and guide the sustainable
use of land.

2.2. Data Sources

This study utilized data from four main sources: remotely sensed imagery data, land
use and control line data, point of interest (POI) data, and additional impact factors data
(Table 1). Remotely-sensed imagery data of Landsat 5 in 2010 and Landsat 8 in 2020
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were used for Wuhan. Land use data from 2010 to 2020 were acquired from Chinese
Academy of Sciences Resource and Environmental Science Data Platform. Land control line
data included the ecological red line and basic farmland preservation area from relevant
planning schemes such as Wuhan Land Use Master Plan and 1:2000 Ecological Control
Line Plan. The POI data used in this study were acquired via the application programming
interface provided by Baidu Maps. These data included businesses, restaurants, attractions,
commercial services, and public services, which represented real geographic entities. Each
data segment includes information such as name, address, category, and latitude and
longitude coordinates.

Table 1. Data classification and sources.

Classification Data Name Data Source
Geospatial Data Cloud
Remotely sensed imagery data Wuhan City Landsat 5 and Landsat 8 data  (https://www.gscloud.cn/) (accessed on
17 May 2022)
Chinese Academy of Sciences Resource and
Wuhan City land use data for 2010 Environment Science Data Center
d 2020 https: .resdc. d
Land use and control line data " g Fefl))srlja/r‘/;;v(;g;;s /) accessedon
Ecological red line data Overall land use planning of Wuhan City
Basic farmland data and 1:2000 ecological control line planning
. . Baidu Maps (https://map.baidu.com/)
Points of interest (POI) data POI (accessed on 22 September 2022)
Geospatial Data Cloud
DEM (https:/ /www.gscloud.cn/) (accessed on
17 May 2022)
Slope Extraction of DEM data
PD Chinese Academy of Sciences Resource and
Additional impact factors data GDP Environment Science Data Center
Administrative boundary (https:/ /www.resdc.cn/) (accessed on
Expressways 31 December 2021)
Primary roads Open Street Map
Secondary roads (https:/ /www.openstreetmap.org/)
Railways (accessed on 10 March 2023)

The additional impact factors data mainly involve traffic network data, digital ele-
vation model (DEM), population density (PD), and gross domestic product (GDP). The
Wuhan traffic network data were sourced from the Open Street Map platform and encom-
passes highways, primary roads, secondary roads, and railways. DEM, PD, and GDP are
all from Chinese Academy of Sciences Resource and Environmental Science Data Platform.

To ensure consistency with the study area’s extent, two remote sensing images for
each year collected were mosaiced using ENVI 5.3, and the other acquired data underwent
clipping and masking using ArcGIS 10.8. Simultaneously, the spatial coordinates were set
to WGS_1984_EASE-Grid_2.0_Global, with 4440 rows and 5106 columns, maintaining a
uniform resolution of 30 x 30 m, as required.

3. Methods and Processes

The research process is divided into three main steps: Firstly, we construct a POI&ISA
index of the study area to identify urban vitality zones in both 2010 and 2020. Secondly, we
divide the urban spatial development potential based on the current land use status and
control policies. Finally, we apply the PLUS model to simulate the UGBs oriented towards
stock development in different periods. The research framework is illustrated in Figure 2.
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Figure 2. Research processes.

3.1. POI&ISA Index
3.1.1. Kernel Density Estimation

The kernel density estimation is based on a regular circle with a specific bandwidth
around any point of interest in the study area. The weights are determined by the distance
from the center point, with closer distances receiving greater weight. The estimated density
of each point is the weighted density of all the points in the area. The calculation formula

is as follows:

1 m 2.\

L=
S el ML L
where Qi is the kernel density of point i, D is the bandwidth, Ej is the weight of research
object j, L;; is the Euclidean distance between point i and research object j, and m is the
number of research object j within the bandwidth.

In general, the density of interest points in urban areas is higher than in rural areas.
Therefore, this study conducts kernel density analysis on five major types of points of
interest within the administrative districts of Wuhan, namely, transport facilities, public
facilities, healthcare, education, and business services, during the two periods of 2010
and 2020. The kernel density analysis was performed using ArcGIS 10.8 software, with a
bandwidth of 1000 m and a kernel size of 30 m, to meet the requirement of the impervious
surface index pixel. The resulting kernel density distribution of POIs in Wuhan is depicted
in Figure 3.
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Figure 3. Kernel density of POIs in Wuhan. (a) 2010, (b) 2020.

The figure illustrates the POI kernel density values in Wuhan City for the years 2010
and 2020. It is evident that the areas with high kernel density in Wuhan are primarily
situated within the seven central urban districts, especially in the regions along the Yangtze
and Han rivers. In contrast, the six new districts exhibit high kernel density only in the
areas where the respective district governments are located and, in some parts, adjacent
to the central urban districts. However, these areas are less concentrated and relatively
smaller in scale.

A comparison of the results from the two years clearly indicates that over the decade, the
high kernel density areas in Wuhan have expanded to some extent. The added high-density
zones in the city center are mainly concentrated along the Han River and Yangtze River, while
in the new urban areas, expansion is primarily around district administrative centers.

3.1.2. Extraction of Impervious Surface Index

This study adopts the V-I-S model proposed by Ridd [41], recognizing the varying
spectral reflectance of features across different bands in remote sensing images. After
performing radiometric calibration, atmospheric correction, and mosaic cropping on the
remote sensing images, we identified four spectral feature combinations: high albedo, low
albedo, bare soil, and vegetation. We then applied a linear spectral mixture decomposition
model to extract the impervious surface index of Wuhan in 2010 and 2020 by summing up
the abundance of the high albedo end-members and the low albedo end-members.

The linear spectral mixture decomposition model expresses the reflectance of a single
image element in each spectral band as a linear combination of its unit component re-
flectances and their respective abundances. This is calculated using the following formula:

M
Ly =Y hiLip +ap
=1

where L the spectral reflectance in band b; M is the number of end-elements; /; is the
proportional weight of end-element i in the image element; L;; is the reflectance of end-
element i in the b-band; and g, is the value of the unmodelled residual error.

To ensure accurate extraction results of the impervious surface index, this study
removes the water body through a mask before applying the linear spectral mixture

73



Land 2024, 13,1174

decomposition model. The resulting impervious surface index of Wuhan in 2010 and 2020
is presented in the Figure 4.

(a) (b)

Impervious Surface Index Impervious Surface Index

Value

|
- )

Figure 4. Impervious surface index in Wuhan. (a) 2010, (b) 2020.

The impervious surface index ranges from 0 to 1, with higher values indicating a higher
proportion of artificial surface and lower values indicating a lesser proportion, as illustrated
in the figure. In terms of regional distribution, areas with high impervious surface index in
Wuhan are mainly concentrated in the seven central urban districts. Furthermore, other
areas with high impervious surface index are concentrated around the district offices of
each new urban district, as well as some new cities and new city clusters.

A comparison of the impervious surface results between the two periods reveals
that the extent of impervious areas in Wuhan has increased considerably over the decade,
reflecting the rapid development of urban construction. The expansion trend is categorized
into two forms. The first form is characterized by high impervious surface index areas in
the central urban districts, which radiate in all directions. For example, impervious surfaces
have expanded along the Han River towards and the Yangtze River. The second form is
based on the sites of each new district government or other areas with high impervious
surface index, expanding into suitable development areas. For instance, the area with high
impervious surface index in Huangpi District has expanded in all directions.

3.1.3. POI&ISA Index Construction

It is important to note that using only POI kernel density or impervious surface index
to extract urban vitality zones can lead to inaccurate results. For instance, some villages
with complete public service facilities may have high POI kernel density values, but they
do not necessarily belong to the category of urban vitality zones. Similarly, some mining
and industrial areas may have high impervious surface indexes, but they do not meet the
requirements of urban vitality zones and should not be classified as such. To minimize these
shortcomings, this paper proposes using the POI kernel density and impervious surface
index to construct the built-up area integrated index (POI&ISA index). This approach
avoids the limitations of using only the POI kernel density and impervious surface index
to extract urban vitality zones, while also reducing errors in the extraction process. To
construct the POI&ISA index, this paper sets the weights to 0.5 and combines the two
types of data using the geometric mean. This eliminates the influence of extreme values
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and differences in data magnitude. The formula for calculating the POI&ISA index is as

follows:
POIISA; = \/POI; x ISA;

POI&ISA; in the formula is POI&ISA index, PO is the kernel density value at point 7,
and ISA; is the impervious surface index at point 7.

In ArcGIS 10.8, the POI kernel density data and impervious surface index data were
imported. The raster calculator tool was then used to obtain the POI&ISA index. The
results are shown below (Figure 5).
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Figure 5. POI&ISA index in Wuhan. (a) 2010, (b) 2020.

The figure illustrates that the seven central urban districts of Wuhan have high
POI&ISA index in both 2010 and 2020, indicating their strong foundation for develop-
ment. These districts are situated adjacent to the Yangtze and Han Rivers, providing them
with prominent location advantages. With flat terrain, well-developed infrastructure, high
road network density, and a relatively prosperous economy, these areas are conducive
to both production and living, resulting in large populations, high densities of artificial
surface, well-developed secondary and tertiary industries, and high urban vitality. Sur-
rounding these high-value areas are sub-high-value zones distributed in gradients, which
are crucial regions for Wuhan'’s urban expansion. In the six new urban districts, regions
with higher POI&ISA index are classified into two main categories. The first category
includes areas where new urban district government offices are located, such as Xinzhou
and Huangpi District. The second category are mainly some new cities such as Zhifang,
Yangluo, and Wujiashan. Although these areas have relatively low levels of development
compared to the central urban districts, they have great potential for future growth due to
their location advantages and government support.

A comparison of the POI&ISA index of Wuhan between the two periods reveals that
newly expanded areas with high POI&ISA index are primarily developed by spreading
from the original high POI&ISA index areas. These areas have faster economic development,
higher population density, and better infrastructure. The POI&ISA index of some new cities
and new city clusters like Wujiashan, Caidian, Yangluo, Zhifang, Changfu, Zhuancheng,
Qianchuan, and Beihu are increasing significantly, leading to an expansion of areas with
high POI&ISA index.
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3.1.4. Extraction of Urban Vitality Zones

Urban vitality zones are identified based on the obtained POI&ISA index by determin-
ing a threshold value. This is achieved by selecting several different POI&ISA index using
the ArcGIS10.8 reclassification tool. The generated zones are then equated into a regular
circle and a Densi-Graph folded line graph is constructed by taking the corresponding
radius increment Ad of the circle as the Y-axis according to the area formula of the circle.
The critical point between the high and low POI&ISA index is considered as the point of
sudden change of slope, which indicates the boundary of the urban vitality zones. The
resulting Densi-Graph folding line is shown below (Figure 6).
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Figure 6. Densi-Graph diagram of Wuhan. (a) 2010, (b) 2020.

The figure illustrates a sudden change in slope for the POI&ISA index in 2010 and
2020 at approximately 25. Therefore, the POI&ISA index of 25 are selected as the demarca-
tion points between urban vitality and non-vitality zones for the two periods, as shown
in Figure 7.
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Figure 7. Urban vitality zone extraction results in Wuhan. (a) 2010, (b) 2020.

The total area of urban vitality zones increased from 978.94 km? in 2010 to
1171.076 km? over the following ten years, representing a 19.62% cumulative increase,
or 192.136 km?. Urban vitality zones are concentrated in seven central urban areas. In the
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six new urban districts, urban vitality zones are classified into three types: those distributed
along rivers and lakes, those located in the streets where the district governments are
situated, and discrete areas in each district that are more developed.

When comparing the results of urban vitality zones between the two periods, three
main trends in the expansion of Wuhan's urban vitality zone were identified. The first
trend is the continuous improvement of the original urban vitality zones by filling in the
central urban districts, allowing for their ongoing development. The second trend is the
expansion of the urban vitality zones along the Yangtze River to Wujiashan, Caidian, and
Yangluo, as well as Changfu, Zhifang, and Panlong. The third trend involves expanding
the areas surrounding the district government offices in each new urban districts or the
better-developed areas to include surrounding regions. For example, this could include the
expansion of former areas such as Qianchuan in Huangpi District, Zhucheng in Xinzhou
District, and Shamao in Hannan District.

3.2. Classification of Urban Spatial Development Potential

The extracted urban vitality zones should be combined with Wuhan’s land use data,
ecological protection zones, basic farmland protection zones, and water body data. These
combined data can then be used to identify five types of land: urban vitality land, urban
non-vitality land, other vitality land, other non-vitality land, and restricted development
land (Table 2). These types of land can be identified using tools such as “intersection

inverse”, “merge”, and “reclassification” in ArcGIS 10.8. Figure 8 shows the results of
identifying five types of land.

Table 2. Identification of the five land types.

Land Types Specific Description Development Potential Description
o Belong to urban land, with high Low development potential, should be
Urban vitality land POI&ISA index preserved for the future
Belong to urban land, but with low
. POI&ISA index, and not within ecological It serves as the primary source of land for
Urban non-vitality land . . .
protection areas or basic farmland future urban expansion

protection areas

Not classified as urban land, ecological

Other vitality land protection areas, or basic farmland In the future development process, it is
y protection areas, but with high more likely to be developed into urban areas
POI&ISA index
Not cla.551f1ed as urban 'land, ecological In the future development process, the
o protection areas, or basic farmland 1. .
Other non-vitality land . . likelihood of development into urban areas
protection areas, and with low is low
POI&ISA index
This type of land includes ecological It constitutes the impassable, rigid
Restricted development land protection areas, basic farmland protection ~ boundaries during the future urban
areas, and water bodies in Wuhan development process

The concentration of urban vitality land in Wuhan can be observed in Jiang’an, Han-
nan, Qiaokou, Hanyang, Qingshan, and Wuchang Districts, and the western and southern
parts of Hongshan. The urban non-vitality land is primarily situated in the eastern part of
Qingshan District. The other vitality land is mainly distributed in the periphery of urban
vitality land, and other non-vitality land is generally in the periphery of other vitality land.
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Figure 8. Land types of urban spatial development potential in Wuhan. (a) 2010, (b) 2020.

When comparing the land type classification results of urban spatial development
potential in 2010 and 2020, Wuhan's urban vitality land development trend can be divided
into two scenarios. Firstly, the land within the urban vitality zones has gradually improved,
increasing the internal vitality of these zones. Secondly, the increasing efficiency of land
use in the surrounding areas gradually converts the non-vitality land into urban vitality
land. The trend in Wuhan’s development of other vitality land is primarily to transform
some of the non-vitality zones into vitality zones. The number of patches and the ratio to
the total area of each land type in Wuhan are presented in Table 3.

Table 3. Area and percentage of patches of various types of land in 2010 and 2020.

Land Types Year Area (km?) Number of Patches  Proportion
Comwas 20 T me o
P— o
Othervialty land 00 A1 i 127
——
et dmetid 30 AT e

The table shows that Wuhan’s urban vitality land increased by 26.1252 km? between
2010 and 2020, while urban non-vitality land decreased by 13.7655 km?2. In addition,
other vitality land increased by 576.9722 km?, and other non-vitality land decreased by
592.2513 km?. It is worth noting that the area of urban vitality land and other vitality land
significantly increased. The most significant change is in the area of other vitality land,
which has grown to 2.21 times its size in 2010. This reflects the effectiveness of the Wuhan
government’s efforts to develop low-vitality areas.
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3.3. PLUS Model
The PLUS model, developed by Liang Xun et al. [33], is based on the FLUS model. It

comprises two primary components: the land expansion analysis strategy (LEAS) and the
multi-class random patch seeding model (CARS) based CA.

3.3.1. LEAS

The driving factors in this paper are selected based on the principles of data acces-
sibility, relevance, and accuracy. According to the study area’s natural geographic and
socioeconomic profiles, eight indicators from socioeconomic, natural environment, and traf-
fic network were selected as driving factors (Table 4). Figure 9 show the spatial distribution
of these driving factors.

Table 4. Driving factors and their meanings and units.

Type of Driving Factor Driving Factor Meaning Unit
Soci o Population density Population density of each grid ~ People/km?
ocloeconomc factor Per capita GDP Per capita GDP of each grid Ten thousand yuan/km?
L envi f Elevation Elevation value of each grid Meters
Natural environment factor Slope Slope of each grid Degrees

Distance to primary Roads Dl.s tance f}'om the center of each Meters
grid to primary roads

Distance from the center of each

. Distance to secondary roads . Meters
Transportation network factor gl‘ld to secondary roads
. . Di f hy f each
Distance to highways istance from the center of €ach  yro o
grid to highways
. . . i ter of each
Distance to rail transit DI.S tance from th.e center ot eac Meters
grid to rail transit
(d) N
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Figure 9. Spatial distribution of driving factors. (a) PD, (b) per capita GDP, (c) elevation, (d) slope,
(e) primary road, (f) secondary road, (g) highway, (h) rail transit.
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3.3.2. Simulation Parameter Settings of CARS

In the PLUS model, a binary image with only 0 and 1 is required to specify the
conversion of land types. Here, 0 indicates that the land use type cannot be converted to
other land use types, while 1 indicates that it can be converted as required. This study
aligns with the requirements of Wuhan’s Territorial Spatial Master Plan (2021-2035) and
designates basic farmland, water bodies, and ecological reserves as non-convertible areas
in the simulation of the future.

The conversion rule specifies whether a land type can be converted during the simula-
tion process. To indicate whether a particular type of land can be converted, the land type
conversion matrix assigns a value of 1, while a value of 0 indicates it cannot be converted.
In this paper, we present a matrix (Table 5) that is based on the relevant literature and
policy requirements.

Table 5. Land type transfer matrix.

1s Urban Non- I Other Non- Restricted

Land Types Urban Vitality Land Vitality Land Other Vitality Land Vitality Land Development Land
Urban vitality land 1 0 0 0 0

Urban non-

vitality land ! ! 0 0 0

Other vitality land 1 1 1 0 0

Other non-

vitality land ! ! ! ! 0

Restricted 0 0 0 0 1

development land

It specifies that urban vitality land can only be converted into other urban vitality land
and not into any other type of land. Urban non-vitality land can be converted into urban
vitality land and other vibrant sites, but not into other land types. Other vitality land can
be converted into urban vitality land, urban non-vitality land, and other vitality land, but
not into other types of land. Other non-vitality land can be converted into other land types
except for restricted development land. Restricted development land cannot be converted
to any other land type.

Domain weights have been set to determine the expansion intensity of a specific land
type, ranging from 0 to 1. A higher value indicates easier expansion and lower chances of
conversion to other land types. The weight is determined based on experience or expansion
of each land type. This paper presents the results of various experiments conducted to
determine the optimal domain weights in different contexts (Table 6).

Table 6. Domain weights.

Land Types Urban Vitality =~ Urban Non- Other Other Non- Restricted
Domain Weigth Land Vitality Land Vitality Land  Vitality Land  Development Land

2030 0.5 0.15 0.15 0.25 0.3
2040 0.5 0.25 0.25 0.35 0.3
2050 0.5 0.45 0.5 0.55 0.3

To analyze land use expansion, it was crucial to convert the 2010 and 2020 land use
data of Wuhan into the “unsigned char” format required by the PLUS model. Then, we
overlayed the land use data from both years to identify the changed raster cells. The
resulting files were imported into the LEAS module of the PLUS model to determine the
probability of various land types. The land type data and the driving factor file were used
to assess the likelihood of different land types occurring. The parameters for the random
forest regression were set as follows: a sampling rate of 0.01, meaning approximately 1% of
the pixels are used for training, with 20 regression trees and a maximum of 8 features, not
exceeding the number of driving factors. The running parameters were set to 6 to ensure
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the module ran efficiently. This process yielded the development probabilities for five land

types (Figure 10).
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Figure 10. Development probabilities of five land types. (a) Urban vitality land, (b) urban non-vitality
land, (c) other vitality land, (d) other non-vitality land, (e) restricted development land.

When calculating the development probability of each type of land, the PLUS model
can also determine the contribution of each driving factor to different land types.

Figure 11 illustrates the factors that contribute to the expansion of urban vibrant land.
PD, GDP, rail transit, and primary roads have the highest impact, while elevation and
slope have the least impact. On the other hand, the expansion of urban non-vitality land is
mainly influenced by GDP, highways, slope, and PD, while rail transit and secondary roads
have minimal impact. Regarding the expansion of other vitality land, GDP rail transit and
primary roads have the highest impact, while elevation and slope have the least impact.
Similarly, for the expansion of other non-vitality land, GDP, primary roads, and secondary
roads contribute the most, while rail transit and slope have minimal impact. In terms of
restricted development land, primary roads and PD have the most significant impact, while

elevation and slope have minimal impact.
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Figure 11. Contribution of each driving factor to different land types.

4. Results and Analysis
4.1. Multi-Stage Simulation Forecasting
4.1.1. Modelling Projections of Urban Growth Boundaries in Three Phases

This study outlines the simulation of Wuhan's future growth boundary, divided into
three phases: incremental development (2020-2030), incremental and stock development
(2030-2040), and stock development (2040-2050).

During the incremental development stage, the expansion strategy is based on incre-
mental expansion, focusing on developing other vitality land to expand the urban boundary.
This study assumes that the change rule of land types in this stage is consistent with the
previous one, where restricted development land is prohibited from development. The
table below shows the number of image elements for each type of land in 2030, obtained
through Markov chain plate simulation of the PLUS model (Table 7).

Table 7. Incremental development-phase land requirements.

s Urban Non- 1 Other Non- Restricted
Land Use Types Urban Vitality Land Vitality Land Other Vitality land Vitality Land Development Land
2020 425,955 27,833 1,169,669 2,777,688 5,130,368
2030 461,510 23,020 1,599,169 2,317,446 5,130,368

During the incremental and stock development phase, the expansion strategy is to
develop vitality land while upgrading non-vitality land in the city. This study assumes
that the rule for changing land types in this stage remains consistent with the previous one,
and that restricted development land is still prohibited from development. The table below
shows the number of image elements for each type of land type in 2040, obtained through
the PLUS model Markov chain plate simulation (Table 8).

During the stock development stage, there is relatively low demand for incremental
development. Instead, the focus is on developing non-vitality land to enhance the expan-
sion characteristics of urban vitality. This study assumes that the rule for changing land
types in this stage remains consistent with the previous stage. The development of land
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for rigid edges is restricted. Using the PLUS model Markov chain plate simulation, the
number of similar elements of different land types in 2050 was determined. The results are
presented in the Table 9 below.

Table 8. Demand for land in both incremental and stock development phases.

s Urban Non- 1 Other Non- Restricted
Land Use Types Urban Vitality Land Vitality Land Other Vitality Land Vitality Land Development Land
2030 461,510 23,020 1,599,169 2,317,446 5,130,368
2040 506,834 19,049 1,941,799 1,933,463 5,130,368
Table 9. Demand for land at stock development stage.
N Urban Non- s Other Non- Restricted
Land Use Types Urban Vitality Land Vitality Land Other Vitality Land Vitality Land Development Land
2040 506,834 19,049 1,941,799 1,933,463 5,130,368
2050 560,287 16,923 2,210,832 1,613,103 5,130,368

4.1.2. Dynamic Analysis of Simulation Results

The probabilities for the development of each type of land use were determined using
land use data from 2010 and 2020. These parameters were then used in the PLUS model
to simulate land use in the three phases mentioned above (Figure 12). The simulation
produced results for each phase, and the attribute table tool was used to calculate the area
of each type of land use in different phases and create a table (Table 10).

(a)

Legend Legend
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I b vicaliy land I v vitaiiy tand (e)
[ rban non-vitality land 2 ;[ Utban non-viuaity land N

[ other vitaity tand [ other vitality land
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e I:IOLhH non-vitality land E Othernon-vitality land
I resticted development land

[ Restricted development land

Legend

I Urbon vitality land

[ urban non-viatity land
[ other vitaity tand

|:| Other non-vitality land
- Restricted development land

Figure 12. Simulation results of land use in Wuhan at different stages. (a) Incremental development
stage from 2020 to 2030, (b) incremental and stock development stage from 2030 to 2040, (c) stock
development stage from 2040 to 2050.

After several comparative analyses, it was concluded that the simulation results
align with the general law of urban development and can better predict future urban
development. The provided figures and tables illustrate that from 2020 to 2050, the area
of urban vitality land will continue to expand, while the area of non-vitality land will
decrease. The area of restricted development land will remain unchanged due to its rigid
boundaries, which cannot be overcome during the city’s future expansion. The following
sections describe the specifics of each of the three phases.

During the incremental development stage, the area of each land type increased or
decreased by varying amounts. Specifically, the area of urban vitality land increased by
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31.9995 km?, while the area of urban non-vitality land decreased by 4.3317 km?. The
area of other vitality land increased by 386.55 km?, while the area of other non-vitality
land decreased by a larger amount, which was 414.2178 km?. It is important to note that
these changes are in comparison to the year 2020. The simulation results indicate that
urban vitality land is expanding through infill, primarily from surrounding urban vitality
zones. Expansion from urban non-vitality land and other non-vitality land is minimal. The
increase in other non-vitality land comes from within that category. The new increase in
other vitality land is mainly distributed in the Wujiashan and Changfu areas.

Table 10. Area of five land types at different stages.

Both Incremental
Incremental

Land Types 2020 Development (2030) Development and Stock Stock Development (2050)

Development (2040)
Urban vitality land 383.3595 415.359 456.1506 504.2583
Urban non-vitality land 25.0497 20.718 17.7606 15.2307
Other vitality land 1052.7021 1439.2521 1747.0026 1989.7488
Other non-vitality land 2499.9192 2085.7014 1740.1167 1451.7927
Restricted development land 4617.3312 4617.3312 4617.3312 4617.3312

During the phases of incremental and stock development, the area of each land type
increased by 40.7916 km? compared to 2030. The area of urban vitality land increased, while
the area of urban non-vitality land decreased by 2.9574 km?. Additionally, the area of other
vitality land increased by 307.7505 km?, and the area of other non-vitality land decreased
by 345.5847 km?2. The expansion of urban vitality land is primarily concentrated in its
original base and the surrounding areas. Qiaokou and Hongshan District have experienced
the most significant expansion.

During the stock development stage, the area of each site increases by 48.1007 km?
compared to 2040. The area of urban vitality land also increases by 48.1007 km?, while the
area of urban non-vitality land decreases by 2.5299 km?. Additionally, the area of other
vitality land increases by 242.7462 km?, and the area of other non-vitality land decreases by
288.324 km?. The analysis of the simulation results map reveals that urban vitality land is
expanding in all directions and filling its interior.

4.2. Delineation of UGBs

This study considers the urban vitality land and urban non-vitality land within the
simulation results of each stage as the scope of the UGB. Based on the delineation of
the UGB, this study concludes that the UGBs of Wuhan will expand to 436.463 km?,
474.617 km?2, and 520.396 km?2 in 2030, 2040, and 2050, respectively. As shown in Figure 13,
al, a2, a3, and a4 are the enlarged maps of several major urban built-up areas in 2030, while
b1, b2, b3, and b4 as well as c1, ¢2, c3, and c4 correspond to 2040 and 2050, respectively.

In terms of overall distribution, Wuhan’s UGB exhibits a pattern of “one center and
multiple clusters”. The “one center” refers to the old urban area of Wuhan, main within
the seven central districts. The “multiple clusters” mainly consist of the core areas of some
new cities and new city clusters. In terms of spatial form, there are some gaps within
the main patches of Wuhan’s UGB in 2030. However, by 2040 and 2050, the gaps that
are not restricted for development are filled and each patch gradually expands outward
and aggregates with each other. Overall, as Wuhan's urban development shifts from
incremental to stock development mode, the shape of its UGB is also optimized.
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(a) 2030 (b) 2040 (c) 2050

T Urton Growih Boundary

Figure 13. UGBs of Wuhan at different stages. (a) UGB in 2030, (b) UGB in 2040, (c) UGB in 2050.

5. Conclusions and Discussion

This study presents a scientific and rational prediction of the future UGB in the
study area of Wuhan. This study uses a built-up area composite index (POI&ISA index)
constructed by superimposing POI kernel density and impervious surface index. This
index can be applied to extract vitality zones in Wuhan and further classify urban spatial
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development potential into five categories based on current land use status: urban vitality
land, urban non-vitality land, other vitality land, other non-vitality land, and restricted
development land in 2010 and 2020. The LEAS is then used to identify the development
potential of different land types and the contribution of various driving factors by extracting
land type expansion. Then, the future demand for each type of land is predicted through
Markov chain. Based on these analyses, different expansion strategies oriented towards
stock development are set to obtain the simulation results of the UGBs of Wuhan for the
periods of 2030, 2040, and 2050. The UGB delineation process proposed in this paper
considers the excavation of inefficient and idle land in different stages of the future, which
is undoubtedly more in line with the future trend of urban spatial development under
the background of stock development and will guide smart growth of cities and efficient
utilization of urban land. The delineation of UGBs in three periods for Wuhan can also
provide certain references for controlling the increasingly imbalanced urban expansion
of Wuhan.

Compared to previous studies, this study has three innovative contributions: (1) When
evaluating urban vitality, a comprehensive evaluation is carried out by constructing a built-
up area composite index (POI&ISA index). This method can provide a more integrated
perspective to extract urban vitality zones and urban non-vitality zones more accurately,
reducing the error generated by using only a single factor to extract urban vitality zones.
It also provides a better data basis for subsequent land type classification and simulation.
(2) This study predicts the urban expansion scenarios of Wuhan in three different periods
in the future, spanning up to 30 years. As China’s urbanization enters the middle and
later stages of development, urban development is gradually shifting from large-scale
incremental construction to stock quality improvement. The results provide a reference for
near-term urban development planning and can also aid in the city’s long-term planning.
(3) The PLUS model is employed to simulate future UGBs expansion. This model is
relatively new and has broad application prospects. It integrates the rule mining method
based on land expansion analysis and the CA model based on multiple types of random
patch seeds. This integration is effective in mining the driving factors of land expansion
and predicting the patch-level evolution of the land use landscape.

Although this study has made significant research contributions, it still has some
limitations. Firstly, the development process of the city is impacted by multiple factors
and facets. However, the PLUS model selects driving factors from three categories: natural
environment factors, socioeconomic factors, and traffic network factors, with a total of
eight types of data. Thus, this study may have shortcomings in the selection of driving
factors. Secondly, the parameter settings in the PLUS model will have a direct impact on the
final simulation results. This study relies heavily on the existing results of other scholars
and repeated experiments to improve parameter setting. While efforts have been made to
minimize its impact on the simulation results, some subjectivity may present. In addition,
this study sets three urban development scenarios for the periods of 2020-2030, 20302040,
and 2040-2050, respectively, focusing on incremental development, balanced development
between incremental and stock, and stock development. Although the gradual transition of
urban development is considered, the proportion of incremental and stock development in
actual urban development is often difficult to accurately determine, especially considering
that different cities are at different stages of development. Therefore, the results of the UGB
delineation in this study are mainly aimed at guiding the direction of urban development.
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Abstract: The integrity and resilience of our environment are confronted with unprecedented chal-
lenges, stemming from the escalating pressures of urban expansion and the need for ecological
preservation. This study proposes an Improved Remote Sensing Ecological Index (IRSEI), which
employs humidity (WET), the Normalized Difference Vegetation Index (NDVI), Land Surface Temper-
ature (LST), a standardized Building—Bare Soil Index (NDBSI), aerosol optical depth (AOD), and the
comprehensive salinity index (CSI). The IRSEI model was utilized to assess the ecological quality of
Hangzhou over the period from 2003 to 2023. Additionally, the random forest model was employed
to analyze the factors driving ecological quality. Furthermore, the gradient effect in the horizontal
direction away from the urban center was examined using the buffer zone method. Our analysis
reveals the following: (1) approximately 95% of the alterations in ecological quality observed from
2003 to 2023 exhibited marginal improvements, declines, or were negligible; (2) the transformations
in IRSEI during this period, including variations in surface temperature and transportation networks,
exhibited strong correlations (0.85) with human activities. Moreover, the influence of AOD and
the comprehensive salinity index on IRSEI demonstrated distinct spatial disparities; (3) the IRSEI
remained generally stable up to 30 km outside the city center, indicating a trend of agglomeration
in the center and significant areas in the surroundings. The IRSEI serves as a robust framework
for bolstering the assessment of regional ecological health, facilitating ecological preservation and
rejuvenation efforts, and fostering coordinated sustainable regional development.

Keywords: ecological quality; spatiotemporal evolution; influencing factor; random forest; Hangzhou city

1. Introduction

Environmental protection and sustainable development constitute pivotal areas of con-
temporary research. In the context of economic growth and urban expansion, alterations
in land use/cover and the repercussions of human activities have reshaped ecological
landscapes and impacted their quality [1]. China has experienced remarkable strides in
economic advancement and urbanization over recent decades; however, the consequences
of prioritizing rapid development at the expense of ecological integrity and natural assets
during initial expansion phases have become evident. Ecological challenges now emerge
as pivotal factors influencing and constraining China’s socioeconomic progress [2]. In
2006 and 2015, the Ministry of Environmental Protection issued trial and revised Technical
Specifications for the Evaluation of the State of the Ecological Environment, which were
presented as industry standards. These specifications proposed an ecological index (EI)
encompassing factors such as biological richness, air pollution, water network density,
vegetation coverage, land degradation, and related elements. Subsequently, in 2021, the
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Ministry of Ecology and Environment introduced two trial measures for regional ecolog-
ical quality evaluation, primarily targeting county and administrative divisions [3]. The
evaluation outcomes are based on the overall ecological quality of the region. However,
visualizing and comprehending the spatial distribution of ecological quality, as well as
analyzing its spatial disparities and changes, remain challenging.

Remote sensing spatial information technology offers rapid, real-time, and large-scale
monitoring capabilities, finding widespread application in studying ecological environ-
ments [4-7]. To better manage the urban environment and protect people’s lives, a tool
that can effectively evaluate and monitor the status of the urban ecological environment is
needed. Therefore, the Remote Sensing Ecological Index (RSEI) was developed by Xu [8,9].
It integrates multiple intuitive indicators to reflect the ecological environment and can
realize rapid monitoring and evaluation of the regional ecological environment [10]. The
RSEI is based on remote-sensing information and established through principal component
analysis by coupling greenness, humidity, dryness, and heat indices that reflect ecological
environment status [8-11]. Through dynamic monitoring and analysis of ecological envi-
ronment quality in these regions, it can provide a scientific basis for ecological environment
protection and restoration. The popularity of RESI has been demonstrated in diverse
natural ecosystems (such as forests, farmlands, deserts, and wetlands) [12] and man-made
environments (mining areas, cities, and industrial areas) [13-15]; however, there are still
some limitations when using RSEI. RSEI mainly selects indicators based on ecological
environment characteristics, which may ignore the impact of social, economic, cultural,
technological, and other factors on the ecological environment. Previous studies have re-
ported a lack of homogeneity in application scenarios, randomness in models, and limited
applicability in extreme ecological scenarios such as deserts and land degradation areas,
but have ignored air quality in the atmosphere, among other factors [14,16]. Moreover, it
fails to reveal what gradient effect RSEI has in the horizontal direction. In future studies,
more indicators can be considered for the RSEI evaluation system.

Air pollution, particularly PM2.5, exerts a significant impact on the ecological quality
within and surrounding major central cities. Aerosol optical depth (AOD) is extensively
utilized to investigate the spatial distribution of PM2.5 and serves as a suitable proxy for an
air quality index [17-19]. The comprehensive salinity index (CSI), with ecological factors
such as air quality and vegetation cover, measures the soil fertility that impacts vegetation
growth [20,21]. These effects may further influence local climate and air quality. While salin-
ization may not be a widespread issue in Hangzhou overall, it can occur in specific areas or
under certain conditions, significantly affecting soil quality and agricultural production.
Remote-sensing technology enables a comprehensive evaluation of Hangzhou's ecological
quality, providing a scientific foundation for land management and agricultural production.
Furthermore, air quality is a vital component of ecological quality that directly affects
human health and quality of life [22]. As a densely populated and economically developed
city, Hangzhou faces considerable concerns regarding air quality [23]. Salinization and air
quality are frequently neglected in regional ecological assessments, potentially leading to a
distorted understanding of these interactions and the overall impacts on ecological quality.
To address the deficiencies of remote-sensing ecological indices in characterizing ecosys-
tems and air quality, this study introduces salinization and air quality indices based on
RSEI and develops a comprehensive and Improved Remote-Sensing Ecological Index (IR-
SEI). Incorporating the salinization factor and air quality into Hangzhou's remote-sensing
ecological quality assessment is crucial for comprehensively and accurately understanding
Hangzhou's ecological quality.

By integrating remote-sensing technology with air quality monitoring data, we can
gain a thorough understanding of Hangzhou's air pollution situation, encompassing the
primary pollution sources as well as the distribution and transmission paths of pollutants.
This information will facilitate the government in formulating targeted air pollution control
measures aimed at enhancing Hangzhou’s air quality. Furthermore, the incorporation
of salinization factors and air quality into remote-sensing ecological quality assessments
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can reveal the interactions and influence mechanisms among various ecological quality
elements. The primary objectives of this paper are threefold:

1.  To develop an integrated IRESI assessment model that incorporates air quality and
salinization indicators, providing a comprehensive assessment framework;

2. To assess and analyze the ecological environment quality of Hangzhou from 2003 to
2023 using the IRSEI model, with the aim of identifying trends and patterns and explor-
ing the driving mechanisms through the application of the random forest algorithm;

3. To evaluate the urban-rural echelon effect of ecological quality in the horizontal
direction of the urban central area by constructing buffer zones, in order to gain a
deeper understanding of the spatial distribution and changes in ecological quality
within the urban landscape.

2. Materials and Methods
2.1. Research Area

Hangzhou City was chosen as the research area for ecological monitoring and evalu-
ation. Hangzhou serves as the capital of Zhejiang Province in southeastern China (refer
to Figure 1). The urban area spans from approximately 29°11’ to 30°34’ N in latitude
and 118°20' to 120°44’ E in longitude. As of 2022, the city’s population was 12.4 million.
Renowned for its West Lake, Hangzhou's traditional urban core lies along the northeast-
ern bank of this iconic water body. Over the past two decades, the Qianjiang CBD (also
known as Qianjiang New Town) has undergone significant development east of the central
city. The research area administers 10 districts, 2 counties, and 1 county-level city, which
mainly include Shangcheng District, Gongshu District, Xihu District, Binjiang District,
Xiaoshan District, Yuhang District, Linping District, Qiantang District, Fuyang District,
Lin’an District, Tonglu County, Chun’an County, and Jiande City. Within the urban land
area, mountains and hills, plains, and various water bodies occupy 65.6%, 26.4%, and 8%
of the total area, respectively. Situated south of the Qiantang River, the study area is charac-
terized by highly developed regions, cultivated land, and small-scale forested areas. Over
the past decade, extensive land-use transformations have occurred, converting farmlands
and wetlands into highly developed areas. Furthermore, the region has experienced rapid
urbanization, leading to ecological challenges and a decline in ecological quality.
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2.2. Data Sources

This study primarily utilized remote-sensing images, Land Use and Land Cover
(LULC), population, and economic data. Landsat Thematic Mapper (TM) and Operational
Land Imager (OLI) remote-sensing images, along with MCD19A2 data, were predominantly
employed to conduct the IRSEI evaluation, while other datasets were utilized for the IRSEI
influencing factor analysis. Furthermore, Landsat TM/OLI images with high quality,
featuring less than 10% cloud cover, were obtained between 30 June and 30 December
of the respective years spanning from 2003 to 2023. In the Northern Hemisphere, the
summer period, specifically spanning from June to September, is a crucial time when plant
growth reaches its peak. During this phase, vegetation cover exhibits its most luxuriant
state, enabling satellite remote-sensing data to capture and reflect the growth status of
vegetation with greater precision. The decision to utilize satellite datasets spanning from
30 June to 30 December rather than annual data is primarily based on considerations of
seasonal vegetation changes, phenological characteristics, and specific research objectives.
Additionally, this selection aids in reducing the complexity of data processing and analysis.
Following the acquisition of MCD19A2 data for the entire year, the annual mean AOD
from 2003 to 2023 was computed to ensure the comparability of the research findings. The
MCD19A2 data product is a gridded Level-2 product derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) on both the Terra and Aqua satellites, utilizing the
Multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm for land AOD.
This product is generated daily with a resolution of 1 kilometer, providing crucial aerosol
information for Earth science research. The MCD19A2 product is widely used in various
research fields such as aerosol science, atmospheric environment, and climate change.

The dataset preprocessing involved calibration and preprocessing by Google Earth
Engine (GEE), utilizing a multi-spectral band grey value or digital number (DN), sensor
reflection value conversion, and Spectral Hypercube Rapid Line-of-Sight Atmospheric
Analysis (FLAASH). The nearest pixel method was employed in this study to rectify images
from different periods by 0.5 pixels. Two polynomials and root-mean-square error analysis
were utilized, and the cropped portion of the remote-sensing image was ultimately included
within the research scope.

2.3. Research Methods
2.3.1. Research Framework

Humidity (WET), NDVI, Land Surface Temperature (LST), a standardized Building-
Bare Soil Index (NDBSI), AOD, and the comprehensive salinity index (CSI) were em-
ployed to represent the regional ecological quality. The overall framework for calculat-
ing and analyzing the IRSEI consisted of three main steps. Firstly, the IRSEI index of
Hangzhou was determined using principal component analysis. Secondly, the ecological
indicators of Hangzhou were analyzed considering their spatiotemporal differences and
changes. Finally, the factors influencing IRSEI and horizontal changes in ecological quality
were studied.

2.3.2. IRSEI Model

The NDVT s typically utilized for monitoring vegetation growth, directly reflecting
the quality of the regional ecological environment. LST is closely associated with vegetation
growth, crop yield, the surface water cycle, urbanization, other natural phenomena and
processes, and human activities. It serves as a heat index, reflecting the surface ecological
environment. The Kauth-Thomas transformation method, a linear transformation based
on multi-spectral imaging, derives moisture components reflecting soil and vegetation
moisture information (WET). The dryness index, indicating soil dryness, can detrimentally
impact the ecological environment. Given that urban construction land predominates in
our study area, the dryness index was represented by combining the Bare Soil Index (SI)
and Construction Index (IBI) into a standardized Building—Bare Soil Index (NDBSI). WET,

92



Land 2024, 13,1152

NDVI, LST, NDBS]I, CSI, and AOD indices were utilized to represent the ecological quality
of Hangzhou (Table 1).

Table 1. IRSEI parameter and formula.

IRSEI Indices Equations

Reference

I_wet(TM) = 0.0315p(Blue) + 0.2021p(Green) +
0.3102p(Red) + 0.1594p(NIR) —
0.6806p(SWIR1) — 0.6109p(SWIR2)
I_wet(ETM+) = 0.2626p(Blue) +
0.2141p(Green) + 0.0926p(Red) + 0.0656p(NIR)
— 0.7629p(SWIR1) — 0.5388p(SWIR2)
I_wet(OLI) = 0.1511p(Blue) + 0.1973p(Green) +
0.3283p(Red) + 0.3407p(NIR) —
0.7117p(SWIR1) — 0.4559p(SWIR2)
MNDWI = (p(Green) — p(SWIR1))/(p(Green)

+ p(SWIR1))
Greenness index NDVI Normalized Difference  \yryyy_ (o(NIR) — p(Red))/ (p(NIR)+p(Red))
Vegetation Index
FVC=(NDVI-NDVI_soil)/(NDVI_veg-
NDVI_soil)
e_water = 0.995 (NDVI<0)
Land Surface e_building = 0.9589 + 0.086 x F(veg) — 0.0671
Temperature x F2veg (0 < NDVI < 0.7)
e_natural = 0.9625 + 0.0614 x F(veg) — 0.0461
x Fveg (NDVI > 0.7)
L=¢gxDN+b
Tb =K2/In(K1/L + 1)
LST =Tb/{1 + [(ATb)/p]In e } — 273.15
NDBSI = (SI+IBI)/2
SI = [(p5+p(Red)) —
(p(NIR)+p1)]/[(p5+p(Red)) + (p(NIR) +
p(Blue))]

IBI = [2p(SWIR1)/(p(SWIR1) + p(NIR)) —
(p(NIR)/ (p(NIR) + p(Red)) +
p(Green)/(p(Green) +
p5))N2p(SWIR1)/(p(SWIR1) + p(NIR)) +
(p(NIR)/ (p(NIR)+p(Red)) +
p(Green)/(p(Green) + p(SWIR1)))]
CSI=(SI — T+ NDSI + SI3)/3

Comprehensive SI — T = (p(Red)/p(NIR)) x 100
Salinity Index NDSI = (p(Red) — p(NIR))/(p(Red) + p(NIR))
SI3 = Sqrt(p?g + p*r)

The AOD data are collected by the MAIAC
(Multi-angle Implementation of Atmospheric
Correction) algorithm from MCD19, a new
aerosol product of MODIS

Humidity index WET /

Heat index LST

Normalized Difference

Dryness index NDBSI Built-up and Soil Index

Salinity index CSI

Air index AOD Aerosol Optical Depth

(2]

(2]

(2]

(2]

[2,20]

(18]

1. Humidity index (Iyet)

The humidity index is closely linked to the ecological environment’s quality. Low
humidity indicates severe soil degradation, low vegetation coverage, and a poor ecological
environment, while high humidity suggests sufficient soil moisture, abundant vegetation
cover on the surface, and a favorable ecological environment. In this study, the humidity
index was denoted as the I_wet component. Due to the different sensors of the Landsat
TM/ETM+ and Landsat OLI images, the extraction formulas for the humidity index varied
(Table 1).
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2. Greenness index (I,,4,;)

The NDVI s closely related to vegetation coverage, biomass, and leaf area index, which
are commonly used to monitor vegetative growth. The NDVI was selected to represent the
green index using the formula, as shown in Table 1.

3.  Heatindex (I;pq¢)

Fractional vegetation cover (FVC) refers to the percentage of the vertical projected
area of vegetation in the soil relative to the total statistical area. Vegetation coverage was
based on Landsat NDVI, and a mixed-pixel binary model was adopted where NDVI is the
normalized vegetation index, NDVI_soil is the normalized vegetation index value of the
bare land surface, and NDVI_veg is the normalized vegetation index value of complete
vegetation cover. NDVI_soil and NDVI_veg selected NDVI_max and NDVI_min with a
confidence level above 95%. The g and b represent the offset values of the thermal infrared
band; DN is the grey value of the pixel affected by remote sensing; L denotes the radiation
brightness; LST is the surface temperature; and K1 and K2 are the calibration parameters,
and various sensors use different values; Tb indicates the brightness temperature of the
sensor; ¢ is the specific emissivity; and A is the central wavelength of the thermal infrared
band; p is 1.438 x 1072 mk.

4. Dryness index (I4,)

In this study, areas from bare soil and buildings were extracted by setting appropri-
ate thresholds, and the NDBSI was then calculated using the area ratio as a weighted
reference standard.

5. Salinity (1)

The CSI provides a more accurate reflection of the ecological impacts of salinization
compared to other indices. Utilizing comprehensive learning, the CSI integrates the salinity
index (SI-T), Normalized Difference Built-up and Soil Index (NDBSI), and salinity index 3
(SI3) to enhance the stability and reliability of the detection results. The CSI denotes the
comprehensive salinity index. When calculating the CSI, it is necessary to normalize SI-T,
NDSI, and SI3 to (0,1) to ensure that the CSI is obtained under the same standard and make
the results representative.

6.  Airindex (Ipg)

Aerosols are suspensions of liquid or solid particles dispersed in air or gases that
circulate through numerous atmospheric chemical cycles and constitute an essential com-
ponent of the atmospheric environment. Among the most fundamental optical properties
of aerosols, AOD has emerged as a crucial parameter for studying atmospheric turbidity,
providing insights into changes in aerosol distribution to a certain extent. The distribution
of AOD is typically influenced by geographical factors, population density, and industrial
distribution, making it an indicator of atmospheric turbidity and pollution. AOD accurately
reflects the air quality concerning particulate matter within a specific area, exhibiting the
highest degree of spatial coupling with pollutant emissions. Consequently, AOD was
selected as a representative measure of air quality.

2.3.3. Random Forest Algorithm

The random forest algorithm is an ensemble learning method that enhances the
generalization ability of a model by combining the predictions of multiple decision trees
and incorporating randomness [24]. It is capable of addressing both classification and
regression problems. One of its key features is its ability to rank the importance of different
features, which aids in identifying the independent variables that contribute the most
to model predictions and assessing the influence of each independent variable on the
dependent variable. In this study, Python was utilized for machine learning purposes.
The random forest regressor code was used to construct the regression model, obtain
factor importance, and explain its effect on the dependent variable. The random forest
algorithm was employed to analyze the driving forces behind IRSEI changes, with the
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selected independent variables being elevation (DEM), road conditions, humidity, green
capital, heat, dryness, salinity, and air quality. The modeling process was performed using
Python 3.12.

2.3.4. Equal Area Buffer Analysis Method

In the process of urbanization, the transformation from rural to urban areas leads to
changes in economic, social, and environmental aspects. Therefore, the gradient effect of
ecological quality in the horizontal direction between urban and rural areas is subject to
the comprehensive influence of various factors such as urban-rural distance. By rationally
utilizing the gradient effect, the dynamic balance and coordination of ecological quality
between urban and rural areas can be effectively promoted, thereby enhancing the quality
of the ecosystem. Taking the urban center of Hangzhou as the starting point of the circle,
a circular buffer zone with a radius of 1km is established, and 500 concentric circles with
gradually decreasing radii and equal areas are diverged outward, covering the main areas
of the main urban area of Hangzhou. This study focuses on the relationship between
ecological quality and the distance from the city center in this area from 2003 to 2023,
analyzing the gradient effect of ecological quality in the horizontal direction between urban
and rural areas.

3. Results and Discussion
3.1. Spatial Distribution Characteristics of Ecological Factors

By comparing the spatial distribution of the six ecological factors in Hangzhou from
2003 to 2023 (refer to Figure 2), we observed that high NDVIand WET values were primarily
distributed around the main urban area. The spatial distribution characteristics of NDVI
were consistent with land types, with high-value areas primarily consisting of vegetated
areas such as forests and grasslands, while low-value areas mainly comprised central urban
and residential areas. The spatial distribution of the NDBSI value was affected by the
distribution of impervious ground and the degree of dryness of bare soil; hence, NDBSI
values around water and forest areas were low, whereas those in cultivated land and human
settlement areas were high. The spatial distribution of the LST value was influenced by
human activities, the natural environment, and climate, with the highest values observed
in the central urban area. AOD reflects the basic air quality situation, with variations in its
spatial distribution caused by multiple factors such as human activities, natural climate,
and the surrounding region. The results are consistent with other studies [17,18,25]. The
CSI reflected changes in salinity and alkalinity, adversely affecting ecosystem structure
and functions. The implementation of land management and ecological protection policies
in Hangzhou in recent years, such as soil improvement and vegetation restoration, has
also reduced the amount of saline—alkaline land. In arid areas, the adverse effects of soil
salinization on the dynamic change in ecological quality cannot be ignored, and CSI also
shows a correlation. For large areas, the salinity index reflects the regional ecological quality
due to the diversity of soil texture and the topographic characteristics of landform [20].

In 2003, the LST values of Chun’an and Jiande were significantly higher than those
of the central region, while the AOD values of the central and western regions were
significantly higher than those of other regions. By 2008, the central city exhibited the
highest NDBSI value, and the northwest of Lin’an District showed the highest AOD value.
In 2013, the LST value of the main urban area was high, and the central part of Lin’an
District exhibited a high AOD value. By 2018, the CSI in the central part of Fuyang was
significantly lower than in 2003 and 2008, with the central part showing a high LST value.
In 2023, most areas of Lin’an, Chun’an, and Tonglu exhibited high AOD values.
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Figure 2. Spatial distribution map of ecological factors.

3.2. Spatiotemporal Distribution of Ecological Quality in Hangzhou

Combined with the spatial distribution characteristics of the ecological indicators (as
discussed in Section 3.1) and the weights of each indicator (refer to Table 2), the spatial
distribution characteristics and causes of the IRSEI in 2003, 2008, 2013, 2018, and 2023
were analyzed (refer to Figure 3). The comparatively low IRSEI values in the Gongshu,
Shangcheng, West Lake, and Binjiang areas from 2003 to 2023 primarily resulted from the
difference between urbanization and LST. In 2003, owing to the influence of AOD and
NDBS], the IRSEI in the central urban area was low. In 2013, the band area between Fuyang,
Tonglu, and Jiande had a low IRSEI value, primarily due to the high AOD and poor air
quality. In 2018, the IRSEI values in Gongshu and other central urban areas were low
because of the high LST, whereas the spatial differences in WET, NDBSI, and AOD led to
high IRSEI values in the central and northern parts of the region. Overall, the differences
in the spatial distribution of AOD and air quality consistently had a significant impact
on the IRSEL The differences in the spatial distribution of WET and humidity also had a
considerable impact on the IRSEI values.

Table 2. Principal component analysis.

PC1
Ecological Index

2003 2008 2013 2018 2023

NDVI 0.534 0.592 0.619 0.591 0.655

WET 0.182 0.146 0.155 0.104 0.116
LST —0.130 —0.179 —0.282 —0.331 —0.251
NDBSI —0.586 —0.529 —0.519 —0.484 —0.442
AOD —0.565 —0.556 —0.485 —0.497 —0.528
CSI —0.006 —0.068 —0.085 —0.215 —0.136

Eigenvalue 0.265 0.369 0.366 0.517 0.489
Contribution 76.81% 76.49% 83.65% 76.21% 84.33%

RSEI 4.14 4.23 4.25 4.25 4.32
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Figure 3. Spatial distribution map of ecological quality in Hangzhou.

Overall, the spatial distribution of the IRSEI in Hangzhou from 2003 to 2023 reveals
that the six central urban areas exhibited significantly lower values than those of the remote
urban areas, and the city center had lower values than the surrounding areas. Influenced
by urban construction and expansion, the proportion of impervious water surfaces in the
six central urban areas was high, resulting in overall low ecological quality (Table 3). From

2003 to 2023, the IRSEI values in Shangcheng, Xiacheng, Jianggan, Gongshu, Xihu,
Binjiang districts were notably lower than those in other districts, with most below
As a central urban area, Shangcheng District contains a large non-construction area,
its average ecological quality is higher than that of other central urban areas. Junan
Kende had the highest IRSEI values, ranging between 0.55 and 0.85.

Table 3. Area and proportion of ecological quality level in Hangzhou (unit: km?/%).

and
0.40.
and
and

Ecological 2003 2008 2013 2018 2023
Quality
Poor 6167  033% 7428 0.40% 291.23 1.58% 479.41 4.73% 339.82 3.21%
Fair 688.65  3.72%  939.83  511% 118634  642%  1079.32  10.65%  1068.11  10.08%
Moderate 190521 10.30% 2026.69 11.01% 188238  10.18%  1719.81  1697% 173554  16.39%
Good 971829 52.55%  6576.60  3573% 535851  28.99%  5046.68  49.80% 483147  45.61%
Excellent 611842 33.09% 8787.77  47.75%  9768.68  52.84%  10,13423 100.00%  10,592.28  100.00%

From 2003 to 2023, as shown in Figure 3, the overall IRSEI in Hangzhou exhibit

ed a

steady changing trend. Hangzhou boasted a large proportion of forest area, with a forest

coverage rate as high as 78.63%, indicating rich forest resources. Chun’an, particularly

rich

in forested wetlands, is home to the artificial Qiandao Lake. The ecological quality of the
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region’s forestland remained high and stable, strongly influencing the ecological quality of
the entire city.

Figure 4 illustrates the proportion of IRSEI grades and their conversions from 2003
to 2023. The grade transformation reveals that IRSEI values remained stable during this
period, consistent with previous studies” conclusions. The areal proportion of grades 0-0.2
was the lowest, fluctuating between 0.33% and 2.55%; that of grades 0.2-0.4 was the second-
lowest, fluctuating between 3.68% and 6.30%; the largest proportion belonged to grades
0.8-1.0, fluctuating between 33.18% and 57.05%. The proportions of grades 0.4-0.6 and
0.6-0.8 varied considerably, fluctuating from 9.25% to 52.82%. Between 2003 and 2008, there
was a significant improvement in ecological quality, with approximately half of the area in
grades 0.6-0.8 transitioning to grades 0.8-1. From 2008 to 2013, ecological quality continued
to improve, with the area of grade 0.8-1.0 increasing from 47.84% to 53.05%. However,
urban expansion led to significant land consumption, including farmland, forests, and even
ecological protection areas for urban construction. This expansion resulted in severe air and
water pollution, with emissions from traffic, industry, and residents negatively impacting
the ecological environment. Consequently, the proportion of grade 0-0.2 increased from
0.40% to 1.56%. Ecological quality showed slight improvement from 2013 to 2018, remaining
stable from 2018 to 2023.

2003 2008 2013 2018 2023
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Figure 4. Spatial distribution map of ecological quality in Hangzhou.

3.3. Influencing Factor Analysis of Ecological Quality Changes in Hangzhou

Table 4 presents the degrees of influence of the AOD, CSI, WET, LST, NDVI, NDBSI,
ROAD, and DEM variables on IRSEI value changes. The influence of each factor on
the IRSEI exhibited significant spatial heterogeneity, with the coefficient of LST being
large and the coefficients of AOD and WET being exceedingly small. This indicates that
human activities, represented by LST, were the most significant and direct factors affecting
ecological quality, while the direct influences of air quality and elevation changes on
ecological quality were minor.
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Table 4. Change in ecological classification in Hangzhou (unit: km?/%).

Factors AOD LST WET CSI NDVI NDBSI ROAD DEM
RMSE_noise 0.08 0.08 0.08 0.05 0.06 0.15 0.12 0.07
Contribution 0.16 0.41 0.15 0.07 0.09 0.06 0.04 0.02

For further analysis and understanding of the microscopic characteristics of ecological
quality change in Hangzhou, a concentric ring with a radius of 1 km was established in the
central urban area of Hangzhou to analyze the spatial horizontal distribution characteristics
of areas with significant variations in Hangzhou (Figure 5). The area of these rings is the
same, in order to truly reflect the true density of the change in ecological quality from
different urban centers. From 2003 to 2008 and from 2008 to 2013, significant variations
near the central urban area changed slightly in terms of their horizontal extent; however,
after 2008 to 2013, these differences expanded, consistent with the areas of IRSEI variation.
Between 2003 and 2023, areas experiencing significant changes in ecological quality con-
flicted in Hangzhou, distributed within ranges of 1-3 and 5-10 km. This trend suggests
that the changes in IRSEI from 2003 to 2023 were closely related to urban expansion, popu-
lation change, and economic development. Additionally, influenced by the construction of
ecological civilization and adjustments in the development structure, the IRSEI remained
generally stable up to 30 km outside the city center, indicating a trend of agglomeration in
the center and significant areas in the surroundings. Overall, the area within the scope of
the ecological quality changes increased as the increase in distance to the center of Nanjing
City slowed, and near Nanjing City, land use change is more intense and the ecological
quality of change is more obvious, illustrating that the change of land use will have great
influence on ecological quality, which is consistent with other studies [2,15,21,26].
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Figure 5. Regional-level distribution map of ecological quality decreased significantly in Hangzhou.

Hangzhou's overall ecological quality was high, demonstrating the positive impact
of the municipal government’s close attention to ecological environmental protection and
sustainable development. In recent years, Hangzhou has implemented a series of measures
to improve and enhance ecological quality, including strengthening pollution controls,
promoting greening projects, and optimizing the industrial structure. Additionally, water
quality in Hangzhou has significantly improved. The proportion of high-quality water in
sections above the municipal control level remained high, with excellent assessment results
for cross-administrative river-crossing sections, and centralized drinking water sources
above the county level maintained a 100% water quality rating. These achievements are
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attributed to Hangzhou's strict supervision of sewage treatment and discharge as well as
the implementation of ecological water replenishment and other measures. Remarkable
progress has been made in air quality. Through the implementation of an air pollution
prevention and control action plan and the strengthening of industrial pollution controls
and vehicle exhaust emission controls, Hangzhou’s air quality has significantly improved.
The average concentration of PM; 5 in urban areas has decreased annually, while the
air quality rate has remained high. Hangzhou has also focused on ecological protection
and restoration. Biodiversity in Hangzhou has been effectively protected through the
implementation of ecological protection and restoration projects and the strengthening of
the construction and management of ecological functional areas, such as nature reserves
and forest parks. Concurrently, Hangzhou has actively promoted green development,
optimized its industrial structure, developed a low-carbon and circular economy, and
reduced pressure on the ecological environment. IRSEI takes into account various factors
affecting the ecological environment more comprehensively by adding indicators such as
AOD and CSI as well as utilizing principal component analysis for model construction.
This improvement enables IRSEI to more accurately assess the quality of the ecological
environment. IRSEI has been practically applied and validated in some areas, such as
Hainan Island and the confluence area of the three rivers in Yibin City. These application
cases demonstrate that IRSEI can more accurately reflect the quality of the ecological
environment and its dynamic changes, providing a decision-making basis for ecological
environmental protection and sustainable development.

These changes (Table 3) have primarily occurred because Hangzhou has focused
closely on ecological protection and restoration in recent years. Through the implemen-
tation of ecological protection and restoration projects and the strengthening of the con-
struction and management of ecological functional areas, such as nature reserves and forest
parks, Hangzhou's biodiversity has been effectively protected. Concurrently, Hangzhou has
also actively promoted green development, optimized its industrial structure, developed a
low-carbon and circular economy, and reduced pressure on the ecological environment.

3.4. Dynamic Monitoring of Ecological Quality in Hangzhou

To further analyze their spatial differences, the IRSEI changes were divided into seven
categories according to the changes in the IRSEI index.

Table 5 displays the shifts in the ecological quality of Hangzhou City from 2003 to 2023.
Over the past two decades, changes in ecological quality have primarily fallen into three
categories—slight improvement, no change, and slight deterioration—accounting for 85%
of the total change. The proportion of slight improvement surpassed or closely approached
24% from 2003 to 2008, significantly outweighing the proportions of slight, moderate,
and significant deteriorations. Between 2008 and 2013, the proportion of slight variations
exceeded 16%, with evident improvement accounting for nearly 19.15%. From 2013 to
2018, the proportions of slight improvement and deterioration remained relatively stable.
Furthermore, the proportion of evident improvement was 8.3% from 2000 to 2005, markedly
higher than that of evident worsening (1.64%). Between 2018 and 2023, as well as from 2003
to 2023, the proportion of slight improvement (13.69% and 31.42%, respectively) notably
exceeded that of less slight improvement (8.77% and 10.85%, respectively). This pattern
underscores the continuous and steady enhancement of Hangzhou's regional ecological
quality from 2018 to 2023.

An examination of the spatial distribution differences in IRSEI variations (Figure 6)
from 2003 to 2023 revealed that IRSEI values generally improved across most regions. Be-
tween 2008 and 2013, while some parts of the central urban area experienced improvements
in IRSEI values, others witnessed a decline. Moving on to the period between 2013 and
2018, the IRSEI in areas near the north of the central city displayed improvement, whereas
those near the south witnessed a slight deterioration, attributable to the predominant
direction of urban expansion towards the south during this timeframe. In the interval from
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2018 to 2023, several regions exhibited no change in IRSEI, while others demonstrated a
balance between improvements and deteriorations.

Table 5. Change in ecological classification in Hangzhou (unit: km?/%).

Change 2003-2008 2008-2013 2013-2018 2018-2023 2003-2023
_ Slight 4396.89  24.02% 350090  19.15% 248721  13.58% 251889  13.69%  5779.39 31.42%
improvement
Generally better 66.26 0.36% 83.73 0.46% 135.72 0.74% 171.93 0.93% 194.95 1.06%
Slgjl‘)ﬁtcjr“ﬂy 3.45 0.02% 241 0.01% 13.50 0.07% 22.66 0.12% 15.12 0.08%
No change 1151478  62.91% 1141447  6243% 1338137  73.06%  13,863.75  7533%  9905.65 53.85%
Slightly worse 216212  11.81% 301027  16.46%  2051.84  11.20%  1614.63 8.77% 1996.25 10.85%
Generally worse 147.87 0.81% 221.00 1.21% 192.35 1.05% 161.91 0.88% 399.58 2.17%
Slgle;fs"‘:ﬂy 12.65 0.07% 52.44 0.29% 54.83 0.30% 51.64 0.28% 103.64 0.56%

(3) 2013-2018

(5) 2003-2023
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Figure 6. Spatial distribution map of ecological quality in Hangzhou, 2003-2023.

4. Conclusions

This study evaluated the ecological quality of Hangzhou City from 2003 to 2023. Over
the past 20 years, ecological quality fluctuated significantly due to urban expansion. From
2003 to 2008, ecological quality improved, mainly due to enhancements in farmland, forests,
and water areas. The average IRSEI in Hangzhou rose gently from 4.13 to 4.32. Changes
in Hangzhou's ecological quality were linked to urban expansion, increased construction
land, and reduced ecological land. However, intensified ecological protection, controlled
urban expansion, and improved land intercrossing and fragmentation contributed to an
overall enhancement in ecological quality. This study’s main findings are as follows:

1.  Opverall, differences in the spatial distributions of AOD and CSI, representing air
quality and salinization damage to the ecosystem, had a certain impact on the regional
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IRSEI but were not dominant factors. The differences in the spatial distributions of
LST and NDBSI also significantly impacted the regional IRSEI. Surface temperature,
air quality (measured by aerosol optical depth, AOD), and humidity (as denoted by
WET) substantially impact the ecological status as indicated by the IRSEI;

2. During 2003-2023, the IRSEI in Hangzhou exhibited a steady changing trend, with
the area of grade 0-0.2 increasing from 33.18% to 57.05%, significantly improving
ecological quality. The changes in the IRSEI from 2003 to 2023, such as surface
temperature and traffic networks, were closely related to human activities, and the
effects of AOD and CSI on IRSEI were spatially heterogeneous;

3.  In Hangzhou, areas experiencing drastic changes in ecological quality were located
within the ranges of 1-3 km and 5-10 km from the city center, while the IRSEI remained
generally stable at distances of at least 30 km from the city center.
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Abstract: Studying the spatiotemporal evolution and driving forces behind construction land amidst
the intricate ecological and geological setting on the eastern edge of the Qinghai-Tibet Plateau offers
invaluable insights for local sustainable development in a landscape transition zone and ecologically
fragile area. Using construction land data from four phases, spanning 1990 to 2020, in Mianning
County, this study employs methodologies like the Landscape Expansion Index (LEI) and land use
transfer matrix to delineate the spatiotemporal evolution characteristics of construction land. A com-
prehensive set of 12 influencing factors across five categories—geomorphology, geological activity,
climate, river and vegetation environment, and social economy—were examined. The Geographically
Weighted Regression (GWR) model was then employed to decipher the spatial distribution pattern of
construction land in 1990 and 2020, shedding light on the driving mechanisms behind its changes over
the three decades. The research reveals distinct patterns of construction land distribution and evolu-
tion in Mianning County, shaped by the ecological and geological landscape. Notably, the Anning
River wide valley exhibits a concentrated and contiguous development mode, while the Yalong River
deep valley showcases a decentralized development pattern, and the Dadu River basin manifests
an aggregation development mode centered around high mountain lakes. Over the study period,
all three river basins witnessed varying degrees of construction land expansion, transitioning from
quantitative expansion to qualitative enhancement. Edge expansion predominantly characterizes
the expansion mode, complemented by leapfrog and infilling modes, accompanied by conversions
from cropland and forest land to construction land. An analysis of the spatial pattern and drivers
of construction land change highlights human-induced factors dominating the Anning River Basin,
contrasting with natural factors prevailing in the Yalong River Basin and the Dadu River Basin.
Future efforts should prioritize climate change considerations and environmental capacity, aiming
for an ecologically resilient spatial pattern of construction land.

Keywords: geomorphic gradient; geological environment; Landscape Expansion Index (LEI);
spatiotemporal evolution; driving force analysis; Geographically Weighted Regression (GWR); east-
ern edge of the Qinghai-Tibet Plateau

1. Introduction

Construction land serves as a multifaceted indicator, offering insights into the spatial
layout, expansion trends, land use efficiency, decision-making processes, and interactions
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with the natural environment within human activity domains. Through the vigilant
monitoring and systematic study of construction land patterns and dynamics, we gain a
deeper comprehension of human activities” impact on land resources and the environment,
thus facilitating the formulation of scientifically informed land use planning and policies [1,
2]. Remote sensing technology [3-5] and land use surveys [6,7] provide essential tools for
delineating the distribution patterns and dynamic changes of construction land. Several
key indicators are instrumental in characterizing land use changes, including the speed
of construction land expansion [8,9], alterations in construction land structure [10,11],
land use intensity [12,13], land conversion rates [14], the nexus between construction land
and population [15,16], and the economic construction land elasticity coefficient [17,18],
among others.

The spatial distribution and dynamic changes of construction land are the culmi-
nation of both internal and external factors, which can be categorized into natural and
human influences [19,20]. Over extended periods, natural driving forces predominantly
shape the spatial patterns of construction land, characterized by gradual and stable trans-
formations [21]. Conversely, regions endowed with favorable geographical conditions
often experience human factors as the primary drivers of construction land change [22,23].
Particularly in mountainous regions with intricate terrain, the impact of natural factors
is profound [24,25]. Natural factors encompass geological, topographical, climatic, and
hydrological elements [26]. Geological factors include geological structure, lithological
stratigraphy, seismic activity, and geological hazards [27,28]. Terrain features comprise
altitude, slope, and aspect, among others [29,30]. Climate considerations encompass pre-
cipitation, temperature, and related variables [31,32]. Hydrological factors entail water
resource distribution, accessibility, and submerged water levels [33,34]. Human factors
encompass economic, social, technological, and policy dimensions. Economic factors span
the level and stage of economic development, industrial structure, gross domestic product
(GDP), investment, income levels, etc. [35-38]. Social elements involve population size and
density, urbanization levels, and developmental stages [39-41]. Technical aspects encom-
pass transportation, technology, construction practices, environmental protection measures,
etc. [42-44]. Policy dimensions include land use planning, taxation and management
policies, immigration, and relocation strategies [45—48].

Prior research has employed a diverse array of statistical and spatial analysis models to
scrutinize the spatial patterns, dynamic shifts, and driving forces underlying construction
land dynamics. These methodologies include linear regression analysis [49,50], multi-
ple regression models [51-53], principal component analysis [54,55], logistic regression
analysis [56-58], multi-index coupling models [59], system dynamics models [60-62], net-
work/spatial lag models [63], random forest models [64], geographically weighted regres-
sion models [65,66], and Geodetector models [67,68]. Among these methodologies, those
rooted in geographic spatial foundations hold particular promise, offering comprehensive
insights into the multifaceted impacts of various factors across different spatial contexts.
Consequently, the application of models such as Geodetector models and geographically
weighted regression models is witnessing a notable surge in popularity.

In China, research on the drivers of land use change, including alterations in con-
struction land, took root in the 1990s. Existing scholarship predominantly delves into
the spatial characteristics and mechanisms governing construction land expansion, the
driving forces propelling such expansion, and the ecological environment’s response to this
growth [54]. Research endeavors span diverse spatial scales, encompassing national [17,69],
provincial [17,69], urban agglomerations [70], urban cores [71,72], peri-urban areas [73],
and municipal and county levels [74,75]. However, scholarly attention dedicated to con-
struction land and its transformations in China’s western regions [76], particularly on
the eastern periphery of the Qinghai-Tibet Plateau, remains relatively scant. Positioned
within a transition zone of diverse topographical and climatic attributes, the geological and
topographical complexity of the plateau’s eastern edge, coupled with its variable climate,
imparts unique regional characteristics to the spatial distribution and evolution of construc-
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tion land. Although some studies have undertaken the geomorphological zoning [77] and
city/autonomous prefecture-level analyses [24] of construction land distribution character-
istics in this area, there remains a dearth of a thorough analysis elucidating the formation of
its spatial patterns and dynamic changes. The inadequate spatial quantification and consid-
eration of geological, climatic, and accessibility factors pose notable limitations. Addressing
this gap, urgent attention is warranted to investigate the patterns, dynamics, and causal
mechanisms underpinning construction land at the scale of typical cities, prefectures, and
counties on the eastern fringes of the Qinghai-Tibet Plateau. Such endeavors are essential
for a nuanced understanding of the driving forces stemming from natural and human
factors, thereby furnishing a robust decision-making framework for optimal regional land
resource allocation.

In addressing the limitations of prior research concerning regional coverage and
indicator selection, this study undertakes a comprehensive examination of the intricate
ecological and geological milieu within the transitional zone along the eastern fringe of
the Qinghai-Tibet Plateau. Mianning County, traversing the geomorphic boundary of
the plateau and encompassing the Yalong River Basin, Anning River Basin, and Dadu
River Basin, serves as the focal area for this investigation. Leveraging Landsat satellite
remote sensing imagery with a spatial resolution of 30 m, coupled with land survey data
and field verification data, we obtained land use data spanning four distinct periods,
1990, 2000, 2010, and 2020, with a particular emphasis on construction land dynamics.
Sequentially, the study achieves the following research objectives: (I) the identification
of spatial characteristics pertaining to construction land; (II) the exploration of temporal
and spatial variations in construction land; (IIT) the analysis of the factors contributing to
the spatial pattern formation of construction land during the 1990 and 2020 phases; and
(IV) the elucidation of the causes and mechanisms driving changes in construction land
from 1990 to 2020.

2. Study Area and Data Processing
2.1. Study Area

Situated within the transition zone stretching from the eastern Qinghai-Tibet Plateau
to the Sichuan Basin (Figure 1), Mianning County lies within the Liangshan Yi Autonomous
Prefecture, Sichuan Province, China. The geographic coordinates of the research area span
from 101°38’ E to 102°25’ E longitude and 28°05" N to 29°02’ N latitude, encompassing a
total land area of approximately 4420 km?. The terrain within the research area exhibits an
elevation gradient, characterized by higher elevations in the north and lower elevations in
the south, with peaks reaching up to 5306 m and valleys descending to as low as 1255 m.
The average elevation across the area is 2737 m, with an average topographic relief of
251 m.

From a tectonic perspective, the study area resides within the northern segment of
the Sichuan—Yunnan structural belt, marked by significant geological structures such as
the Xiaojin River Fault, the Jinhe-Chenghai Fault, and the Anning River Fault. The study
area is divided into three basins: the Anning River Basin in the central and eastern parts,
which includes Gaoyang Street, Yihai, Hui’an, Ruoshui, Fuxing, Hongmo, Shilong, Hebian,
Lugu, Zeyuan, and Manshuiwan; the Yalong River Basin in the west, encompassing Heai,
Jinping, Mianshawan, Jianmei, Mofanggou, and Lizhuang; and the Dadu River Basin in
the north, which includes Yele. The economic landscape of the county exhibits a notable
geographical gradient, driven by a combination of natural and socio-economic factors.
Notably, construction land is predominantly concentrated within the Anning River and
Yalong River basins, mirroring the intricate interplay between geological features and
human activities.
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Figure 1. Location of the study area.

2.2. Data Sources
2.2.1. Construction Land Data

The study utilized Landsat-5 TM and Landsat-8 OLI images, comprising a total of four
phases and eight scenes, obtained from the US Geological Survey website (http:/ /glovis.
usgs.gov, accessed on 26 March 2024). The temporal span averaged 10 years with a spatial
resolution of 30 m (Figure 2), and there were no significant fluctuations in construction
land at each selected time node. If the cloud cover exceeds 5% for a given year, data from
neighboring years will be utilized for synthesis or replacement. By integrating data from
the first, second, and third land use surveys of Mianning County, we derived land use data
for the years 1990, 2000, 2010, and 2020 through interpretation, investigation, and correction
processes (Figure 3). Routes and sampling verification across the three basins indicate
that the accuracy of construction land identification exceeds 95%. Construction land
encompasses six secondary categories: urban construction land, independent industrial
and mining land, transportation land, rural residential land, water conservancy facility
land, and special land [78]. The study area primarily emphasizes the first four secondary
land categories. However, owing to the resolution constraints of Landsat satellite data, this
study does not differentiate between these secondary categories within construction land;
instead, it consolidates them into a unified category of construction land.

(b)2000 (¢)2010 (d)2020

0 5 10km 5 0 5 10km . L 0 5 10km
L L L

Figure 2. The fourth phase of Landsat remote sensing images.
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Figure 3. Land use types in the fourth phase.

2.2.2. Impact Factors

Drawing upon prior studies [79,80] and taking into account the geological and geo-
graphical conditions of Mianning County, we primarily consider factors closely related
to the evolution of construction land based on their representativeness, comprehensive-
ness, and accessibility (Table 1). Natural factors that constrain or drive the evolution of
construction land include geomorphology, geology, climate, rivers, and vegetation [81-83].
Conversely, human factors such as cropland, town accessibility, and road accessibility play
a relatively active role in driving the spatiotemporal evolution of construction land [84-86].

Table 1. Data of influencing factors on the evolution of construction land.

Variable Category Variable Name Definition and Units Data Sources Resslf)?fllglon
Elevation represents
ELEVATION macroscopic
hol
. geomorphology (m) Geospatial data
Geomorphological SLOPE Slope represents ground cloud @ 30 m
cutting condition (°)
ASPECT Aspect represents
ground orientation
ED FAULT Euclidean distance of China Geological S b Vector
_ fault (m) ina Geological Survey
Geological activities Sichuan Provincial Institute of
KD_GEOHAZARD * Kernel' density of Land Space Ecolqglcal Restoration Vector
geological hazard and Geological Disaster
Prevention and Control
TEM * Annual precipitation (mm) National Qinghai 1km
Climatic A 1 Tibet Plateau
PRE * nnual mean Scientific Data 1 km
temperature (°C) Center
Euclidean distance of National Geomatics
Rivers and ED_RIVER river (m) Center of China Vector
vegetation - - - -
environment NDVI * Normalized Difference Remote sensing extraction from 30m
Vegetation Index Landsat satellite data
. Remote sensing interpretation
*
KD_CROPLAND Kernel density of cropland from Landsat satellite data 30m
Socio-economic ED_TOWN Euclidean distance of National Geomatidcs Vector
town (m) Center of China
ED_ROAD * Euclidean distance of National Geomatics Vector

road (m)

Center of China

2 http:/ /www.gscloud.cn/ (accessed on 26 March 2024); ® https:/ /www.ngac.org.cn/ (accessed on 26 March
2024); € https:/ /data.tpdc.ac.cn/ (accessed on 26 March 2024); d http:/ /www.ngcc.cn(accessed on 26 March 2024).
The symbol * indicates that the indicator has two periods of data from 1990 and 2020, and the change of the
indicator from 1990 to 2020 needs to be calculated.

108



Land 2024, 13,993

During the study period from 1990 to 2020, the geomorphology exhibited relatively
stable characteristics; hence, geomorphological data from a single period were selected.
Digital elevation data (ASTER GDEM) with a spatial resolution of 30 m were acquired
from the Geospatial Data Cloud website (http://www.gscloud.cn, accessed on 26 March
2024). ASTER GDEM (Figure 4a) was utilized to derive slope (Figure 4b) and aspect
(Figure 4c) data. These three factors, elevation, slope, and aspect, were employed to

characterize the influence of geomorphology on the spatial pattern and temporal changes
of construction land.
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Figure 4. Influencing factors of construction land: (a) elevation, (b) slope, (c) aspect, (d) Euclidean
distance of fault, (e) Euclidean distance of rivers, (f) Euclidean distance of towns, (g) annual precipi-
tation in 1990, (h) annual precipitation in 2020, (i) average annual temperature in 1990, (j) average
annual temperature in 2020, (k) NDVI in 1990, (1) NDVI in 2020, (m) cropland kernel density in

1990, (n) cropland kernel density in 2020, (0) Euclidean distance of roads in 1990, and (p) Euclidean
distance of roads in 2020.
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Geological considerations primarily involve faults and geological hazard factors.
Throughout the study period, there was no significant activity observed along fault lines;
therefore, a single period of geological data was utilized to extract fault information. Vector
data regarding faults were obtained from the China Geological Survey (https://www.ngac.
org.cn, accessed on 26 March 2024), and fault Euclidean distance data (Figure 4d) were
generated to depict the influence of geological structures on construction land. Geological
disaster occurrences exhibit notable spatiotemporal variations. We compiled geological
disaster point data from 1990 to 2020, sourced from the Sichuan Provincial Institute of Land
Space Ecological Restoration and Geological Disaster Prevention and Control. Using the
kernel density analysis method, raster data for two time points, 1990 (Figure 5a) and 2020
(Figure 5b), were generated, and changes in geological disaster kernel density between
these years were calculated (Figure 5c). The kernel density analysis is a spatial analysis
method that can effectively display the concentration and spatial distribution trends of
point data, particularly capturing the spatial distribution patterns of data without prior
assumptions. These analyses were conducted to delineate the impact of geological disasters
on the spatial distribution and dynamic changes of construction land.

N N N
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Figure 5. Geo-hazards factors affecting construction land: (a) kernel density of geo-hazards in 1990,
(b) kernel density of geo-hazards in 2000, and (c) kernel density changes of geo-hazards from 1990
to 2020.

The influence of climate on construction land primarily revolves around two factors:
annual precipitation and annual average temperature, sourced from the National Qinghai-
Tibet Plateau Scientific Data Center (https://data.tpdc.ac.cn, accessed on 26 March 2024).
The data span the period from 1990 to 2020. For the analysis of construction land patterns
and evolution, data from 1990 (Figure 4g,i) and 2020 (Figure 4h,j) are predominantly
utilized, along with change data spanning from 1990 to 2020.

Rivers and vegetation primarily influence the surrounding environment of construc-
tion land. Rivers typically undergo localized changes in width, and, for this study, single-
period data sourced from the National Geomatics Center of China (http://www.ngcc.cn,
accessed on 26 March 2024) were utilized. The Euclidean distance calculation method
was applied to the river vector data to generate raster data (Figure 4e). Vegetation data
were derived from Landsat remote sensing imagery for the years 1990 (Figure 4k) and
2020 (Figure 4l). The Normalized Difference Vegetation Index (NDVI) was computed to
characterize the impact of vegetation.

Social and economic factors primarily encompass the influence of cropland density,
town accessibility, and road accessibility. Cropland kernel density is utilized to depict
the impact of cropland, with data sourced from remote sensing interpretation of Landsat
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imagery. Changes in cropland kernel density from 1990 (Figure 4m) to 2020 (Figure 4n) were
calculated. Town points within Mianning County and surrounding areas were extracted
from the National Geomatics Center of China to assess town accessibility. Euclidean
distance was employed to describe the spatial impact of each town point. As town locations
remained constant, single-period data were used to illustrate their spatial impact (Figure 4f).
Road data from 1990 and 2020 were collected and revised to analyze road accessibility. The
Euclidean distance of roads in 1990 (Figure 40) and 2020 (Figure 4p) was calculated, and
changes in the road Euclidean distance from 1990 to 2020 were analyzed to understand the
role of roads in the spatial pattern and changes in construction land.

2.3. Methods
2.3.1. Landscape Expansion Index

The Landscape Expansion Index (LEI) is employed to quantitatively characterize the
spatial expansion patterns of construction land, delineated into three modes (Figure 6):
leapfrog (LEI = 0), edge expansion (0 < LEI < 50), and infilling (50 < LEI < 100). The
edge expansion mode entails the augmentation of construction land based on existing
areas, with the surrounding topography, economic conditions, and other factors meeting
the requirements for construction land development [87]. The leapfrog mode involves
selecting suitable areas for construction due to the saturation of existing construction land
or constraints imposed by terrain, economic factors, and other considerations. The infilling
mode primarily involves intensifying the use of existing construction land by adding or
renovating within its boundaries. The calculation formula is as follows [88]:

A

LEI =100 X —
Ay + Ay

)

where Ay is the intersection point between the newly expanded construction land patch
buffer zone and the original construction land, and Ay is the intersection of the buffer zone
and non-construction land.
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(a) Edge expansion mode (b) Leapfrog mode (c) Infilling mode
Figure 6. Three modes of landscape expansion.

2.3.2. Geographically Weighted Regression

The Geographically Weighted Regression (GWR) model serves as a spatial extension
of conventional regression models, offering the capability to estimate local parameters [89].
In this model, parameters for each spatial point within the entire framework are indepen-
dently quantified, typically utilized to assess the presence of spatial non-stationarity in
the relationship between the dependent and independent variables [90]. The GWR model
proves useful in discerning the influence of various natural and human factors on the
spatial distribution pattern and evolution of construction land. Extending traditional global
regression, the GWR model incorporates geographic location parameters. The calculation
of Formula (2) is as follows:

p
vi = Bo (i, vi) + Y Br(pi,vi)xie +€;, i =1,2,...1n 2)
k=1
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where y; is the dependent variable, x is the independent variable of the explanatory factor,
Bo(ui, vi) represents the intercept at position i, Bi(y;, v;) represents the local parameter
estimation of the explanatory variable x;; at position i, and ¢; is the random error term at
point i.

The estimation coefficients of GWR are weighted based on the observed values and
the spatial proximity of a specific point i, and the rectangular equation can be used to
estimate the parameters:

Bluo) = (X"W (i 0)X) " X Wi, 00)Y ©

where (1, v) represents the unbiased estimate of the regression coefficient 8, W (;, v;)
is the weighting matrix, and X and Y are the matrices of independent and dependent
variables. W(p;, v;) ensures that observations close to a specific location have greater
weight, expressed using a Gaussian weighted kernel function:

wij = exP(—bj) 4

where w;; represents the weight of observation j at position i, d;; represents the Euclidean
distance between regression point i and adjacent observation j, and b represents the basic
width of the kernel function.

Stationarity exists when the variable x;; does not vary with position i, and the GWR-
based stationarity index is used to estimate spatial stationarity [89]:

ST — ﬁGWRJ'qr

" 2x GLM _se ©®)

where SI is the stationarity index, Bgwr_igr is the standard error interquartile range of the
GWR coefficient, and GLM_se is the standard error of the global regression analysis. When
SI <1, the explanatory variable y and the dependent variable x achieve spatial stationarity.

AIC can be used to determine the significance of the coefficients to compare relative
measures of model performance [91]; the smaller the AIC is, the more reliable the model is,
and AICc represents the limited sample size correction result of the AIC:

n+tr(S)

AICC == 27117’[(6-) + nln(ZT[) + n(m

) (6)
where 7 is the number of samples, & is the estimated value of the residual standard
deviation, and ##(S) represents the trajectory of the hat matrix, and, when the AICc value is
lower than three, the model performs better.

The GWR model is employed to elucidate the factors contributing to the spatial dis-
tribution of construction land in 1990 and 2020, as well as the drivers of its evolution
from 1990 to 2020. For analyzing the spatial pattern of construction land in these years,
the independent variables include ELEVATION, SLOPE, ASPECT, ED_FAULT, TEM, PRE,
ED_RIVER, NDVI, KD_CROPLAND, ED_TOWN, and ED_ROAD corresponding to the
respective years. The dependent variables are the kernel density of construction land
in 1990 and 2020, respectively. To investigate the causes of the evolution of construc-
tion land from 1990 to 2020, six static factors (ELEVATION, SLOPE, ASPECT, ED_RIVER,
ED_FAULT, and ED_TOWN) and six dynamic factors (KD_GEOHAZARD, TEM, PRE,
NDVI, KD_CROPLAND, and ED_ROAD) from 1990 to 2020 are considered as independent
variables. The dependent variable is the change in construction land kernel density from
1990 to 2020. To ensure the stability and explanatory power of the GWR model, we con-
ducted a spatial autocorrelation analysis and checked for multicollinearity in the data. The
results indicate that there is spatial correlation in the data, while there is no multicollinear-
ity among the explanatory variables. During the calculation process, the raster data are
transformed into point data to form a dataset, which is subsequently analyzed using GWR
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4.0 software [92] developed at NCG (National Center for Geocomputation, National Uni-
versity of Ireland Maynooth) and the Department of Geography, Ritsumeikan University,
Japan (https:/ /gwr.maynoothuniversity.ie, accessed on 26 March 2024) to derive relevant
results such as GWR estimation coefficients. Outliers are then removed from the GWR
estimation coefficients. Finally, Kriging interpolation is applied to create a grid map of
GWR estimation coefficients at the county scale.

3. Results
3.1. Spatiotemporal Characteristics of Construction Land
3.1.1. Temporal Changes in Construction Land

Within the study period, construction land exhibited sustained growth and displayed
significant phased patterns (Table 2 and Figure 7). Figure 7 shows that high-density areas of
construction land are primarily distributed along river valleys and relatively gentle slopes.
Additionally, regions with significant changes in kernel density are also located in these
areas. The area of construction land was 41.55 km? in 1990, 58.66 km? in 2000, 82.75 km?
in 2010, and 95.26 km? in 2020, representing a 2.29-fold increase compared to 1990. Over
the period from 1990 to 2020, construction land sustained a rapid and continuous growth
trend, with a total increase of 53.71 km?, corresponding to an average annual growth rate
of approximately 2.80%, equivalent to 1.79 km? per year. During the growth phases of
construction land, the period from 1990 to 2000 marked the initial stage of growth, while
2000 to 2010 witnessed the fastest growth phase. Subsequently, from 2010 to 2020, the
growth rate stabilized, reflecting a stage of conservation and intensive growth. The number
of construction land patches observed in each phase were 700 in 1990, 820 in 2000, 914 in
2010, and 1059 in 2020. From 1990 to 2010, the average patch area of construction land
exhibited a generally increasing trend, indicating expansion into areas with favorable
conditions. Conversely, from 2010 to 2020, the average patch area of construction land
declined, suggesting that the scale of the newly expanded construction land was more
constrained by land use conditions, resulting in a reduction in larger-scale expansion.

Table 2. Statistical characteristics of changes in construction land.

Statistical Indicators 1990 2000 2010 2020

Total area of construction land (km?) 41.55 58.66 82.75 95.26

Number of patches on construction land 700 820 914 1059
Average patch area of construction land (m?) 59,355 71,536 90,540 89,956

Area increase compared to the previous 10 years (km?) - 17.11 24.09 12.51
Percentage increase compared to 1990 (%) - 41.18 99.16 129.26
Percentage increase compared to the previous 10 years (%) - 41.18 41.07 15.11

The reciprocal conversion between construction land and other land use types remains
relatively stable. Analyzing land use conversion from 1990 to 2020 reveals that the area

converted to construction land far exceeds the area converted from construction land.

Cropland, forestland, grassland, wetland, and other land types have all undergone varying
degrees of conversion to construction land, with cropland and forestland accounting for
77.27% and 14.89% of the total converted area, respectively. Conversely, construction land
has also been converted to other land types during different periods, primarily to cropland
and forestland. Between 2000 and 2010, approximately 1.95 km? of construction land was
transferred out, primarily occurring in localized relocation areas such as those designated
for targeted poverty alleviation, ecological migration, and construction projects.
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Figure 7. Kernel density of construction land in different periods: (a) 1990, (b) 2000, (c) 2010, (d) 2020,
and (e) from 1990 to 2020.

3.1.2. Spatial Changes in Construction Land

According to the Landscape Expansion Index definition, three expansion modes
emerge at different stages, with construction land in the study area predominantly charac-
terized by the edge expansion mode, complemented by the leapfrog mode and infilling
mode. In terms of the patch area proportion, the edge expansion mode represents the
highest share of new construction land area, comprising approximately 64.83%, while
the leapfrog mode accounts for 35.06%, and the infilling mode constitutes only 0.11%.
Regarding the patch number proportion, patches exhibiting the edge expansion mode
represent 71.30% of the total number of new construction lands, followed by the leapfrog
mode at 28.69%, and the infilling mode at a mere 0.01%.

At the watershed scale, the distribution of the three expansion modes varies across
different study periods. In the Anning River Basin, the expansion model of new construc-
tion land from 1990 to 2020 is primarily characterized by the edge expansion mode, with
its proportion showing a trend of an initial decrease followed by an increase. The leapfrog
mode exhibits an initial increase followed by a decrease, reaching 23.83% from 2000 to 2010.
In the Yalong River Basin, the leapfrog mode and edge expansion mode proportions in the
expansion modes of new construction land are roughly equivalent, with the leapfrog mode
emerging as the primary expansion mode. Between 2000 and 2010, the number and area
of new construction land in the Yalong River Basin were limited and mainly occurred in
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the leapfrog mode. In the Dadu River Basin, approximately 80% of the new construction
land adopts the edge expansion mode, while approximately 19% adopts the leapfrog mode,
with the infilling mode accounting for a negligible proportion.

3.1.3. Typical Spatial Patterns of Construction Land

Influenced by resource availability and environmental factors, the distribution and
expansion of construction land in Mianning County have given rise to three distinctive
spatial patterns: the Wide Valley Spatial Pattern, the Deep Valley Spatial Pattern, and the
High Mountain Lake Basin Spatial Pattern.

The characteristics of the Wide Valley Spatial Pattern (Figure 8) are as follows: Con-
struction land primarily spans the expansive valley of the Anning River, displaying a
gradual decline in density as the distance from the river increases. The basin terrain is
characterized by flat, broad areas with fertile soil, conducive agricultural conditions, well-
established industrial infrastructure, a thriving economy, and a significant concentration
of construction land. Rapid and edge expansion serve as the primary growth pattern for
construction land within this mode.

Figure 8. Wide Valley Spatial Pattern in the Anning River Basin (obtained on 25 April 2021, data from
Century Space).

The Deep Valley Spatial Pattern (Figure 9) is characterized by the following features:
Influenced by the rugged terrain, construction land is dispersed across numerous areas and
exhibits localized concentrations. This mode can be further subdivided into three distinct
cases. In the first scenario (B1), construction land is predominantly situated on flat slopes
or valley bottoms near rivers, with landform types primarily comprising river terraces
and alluvial fans. In the second scenario (B2), scattered and smaller-scale construction
land is dispersed across small platforms within the middle of slopes. In the third scenario
(B3), construction land is primarily located on upper slopes or even terraces near the
summit of the slope. Changes in construction land predominantly occur in the form of the
leapfrog mode and the edge expansion mode. These areas (B3) represent pivotal zones for
construction land expansion within the Yalong River Basin.
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Figure 9. Deep Valley Spatial Pattern in the Yalong River Basin (obtained on 14 February 2022, data
from Century Space).

The High Mountain Lake Basin Spatial Pattern (Figure 10) in the Dadu River Basin
is distinguished by the following features: Construction land is concentrated around the
Yele Basin, alternatively referred to as the Yele Reservoir. It primarily occupies the alluvial
fan adjacent to the reservoir, forming a small cluster distribution centered around animal
husbandry, agriculture, and tourism.

Figure 10. High Mountain Lake Basin Spatial Pattern in the Dadu River Basin (obtained on 30 March
2021, data from Century Space).
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3.2. Characteristics of Multi-Factor Influences on Construction Land
3.2.1. Impact of Multiple Factors on Construction Land in 1990

In 1990, the spatial distribution pattern of construction land in the Yalong River Basin
and Dadu River Basin was primarily influenced by natural factors, whereas both human
and natural factors exerted similar control effects in the Anning River Basin (Figure 11). To
effectively characterize the influence of other factors on construction land, the characteristics
of GWR estimation coefficients were statistically analyzed using the 2020 construction land
and its 1 km buffer zone (Table 3). The 1 km buffer zone was established based on the
spatial expansion of construction land from 1990 to 2020, extending outward by two to
three times the initial distance. This method was also applied to compute the statistics
of the 2020 GWR estimation coefficient and the 1990-2020 GWR estimation coefficient.
The Anning River Basin, boasting a larger scale of construction land, exhibited larger
GWR estimation coefficients compared to the Yalong River Basin and Dadu River Basin.
In the Anning River Basin, factors such as ED_TOWN, PRE, ED_ROAD, SLOPE, TEM,
and KD_CROPLAND demonstrated significant impacts. Similarly, in the Yalong River
Basin, significant impacts were observed for SLOPE, ELEVATION, ED_TOWN, PRE, and
KD_CROPLAND. In contrast, in the Dadu River Basin, relatively significant impacts were
attributed to KD_CROPLAND, SLOPE, ED_TOWN, and ELEVATION.
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Figure 11. Estimated coefficient of GWR for the impact factors of construction land in 1990: (a) eleva-
tion, (b) slope, (c) aspect, (d) Euclidean distance of fault, (e) annual precipitation in 1990, (f) average
annual temperature in 1990, (g) NDVI in 1990, (h) Euclidean distance of rivers, (i) cropland kernel
density in 1990, (j) Euclidean distance of roads in 1990, and (k) Euclidean distance of towns.

117



Land 2024, 13, 993

Table 3. Average estimated coefficient of GWR for the impact factors of construction land in 1990.

Factor Categories Factor Anning River Basin Yalong River Basin Dadu River Basin

ELEVATION —0.0721 —0.0329 0.0606

Geomorphological SLOPE —0.3728 —0.0403 —0.0825
ASPECT 0.0051 0.0089 0.0429
Geological activities ED_FAULT —0.0384 0.0001 0.0487

Climatic PRE 0.5499 0.0179 —0.0180
TEM —0.2675 0.0021 0.0261

Rivers and vegetation ED_RIVER 0.0537 —0.0017 —0.0130

environment NDVI —0.1253 —0.0023 —0.0572
KD_CROPLAND 0.1811 0.0137 0.1129

Socio-economic ED_TOWN —0.6444 —0.0310 —0.0697
ED_ROAD —0.4343 —0.0045 0.0055

In terms of geomorphic factors, SLOPE exerts a greater influence compared to ELE-
VATION and ASPECT. ELEVATION demonstrates a negative correlation with the kernel
density of construction land in both the Anning River Basin and the Yalong River Basin.
In regions characterized by lower elevations, the conditions are more favorable for the
establishment of construction land. However, in the Dadu River Basin, this is manifested
by a broader distribution of construction land around higher-altitude waterlogging basins.
SLOPE exhibits a negative correlation with the distribution of construction land across all
three watersheds, indicating that steeper slopes tend to limit the placement of construction
land. Conversely, ASPECT demonstrates a positive correlation with construction land, with
sunlit and semi-sunlit slopes being more attractive for construction land development.

The geological activity factor solely assesses the influence of ED_FAULT. The GWR
analysis results indicate its relatively minor correlation with the arrangement of construc-
tion land. In the Yalong River Basin and Dadu River Basin, construction land tends to be
situated in regions farther from faults. Conversely, in the Anning River Basin, the presence
of a wide valley landform attributed to the Anning River fault reduces its sensitivity to the
impact of the construction land layout.

Within the realm of climatic factors, precipitation and temperature exert divergent
effects across the three river basins. In the Anning River Basin, precipitation exhibits a pri-
marily positive correlation with the kernel density of construction land, while temperature
demonstrates a predominantly negative correlation, emerging as the two pivotal natural
factors with significant influence. Conversely, in the Yalong River Basin, both precipitation
and temperature showcase positive correlations with the kernel density of construction
land, with precipitation wielding a greater impact. Meanwhile, in the Dadu River Basin,
precipitation showcases a negative correlation with the kernel density of construction land,
whereas temperature displays a positive correlation, indicative of the inclination towards
warmer conditions within high-altitude basins, sought after for human settlement envi-
ronments. This nuanced interplay of climatic factors underscores the intricate relationship
between environmental dynamics and the spatial distribution of construction land across
diverse geographical terrains.

In terms of environmental factors related to rivers and vegetation, both ED_RIVER and
NDVI exhibit predominantly negative correlations with the kernel density of construction
land across the three river basins, with the exception of ED_RIVER in the Anning River
Basin, which displays a positive correlation with the construction land kernel density.
Regions with construction land tend to feature lower NDVI values and the proximity to
rivers. However, in the Anning River Basin, the influence of major rivers on water sources
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for construction land is relatively mitigated due to the support of the water network system,
thus weakening their control effect.

Concerning socio-economic factors, regions characterized by concentrated cropland,
proximity to urban areas, and accessibility to roads exert a more pronounced influence
on the distribution of construction land. The Anning River Basin and Dadu River Basin,
where cropland is more densely concentrated, exhibit a greater impact on the distribution
of construction land compared to the Yalong River Basin, where cropland is more dispersed.
Moreover, the Anning River Basin and Dadu River Basin, situated adjacent to more sur-
rounding towns, demonstrate a higher kernel density of construction land distribution
in areas closer to these towns, in contrast to the Yalong River Basin. Construction land
in areas proximate to the road network within the Anning River Basin and Yalong River
Basin exhibits a wider distribution. However, in 1990, the Dadu River Basin experienced
relatively poor accessibility of construction land to main roads.

3.2.2. Impact of Multiple Factors on Construction Land in 2020

By 2020, the GWR analysis results of the spatial pattern of construction land remained
generally consistent with those of 1990, albeit with changes in the intensity and spatial
impact range of certain factors (Figure 12). To effectively analyze the impact of various
factors on the formation of the spatial pattern of construction land, the 2020 construction
land and its 1 km buffer zone were utilized as statistical areas to discern differences in the
roles of various factors across the three watersheds (Table 4 and Figure 12). In the Anning
River Basin, alongside the heightened influence of natural factors such as precipitation, the
spatial pattern of construction land continues to be strongly influenced by human factors.
Conversely, in the Yalong River Basin and the Dadu River Basin, the impact of human
factors has further intensified, with urban and road accessibility exerting particularly
pronounced effects in the Dadu River Basin.

The impact of geomorphic factors on the distribution of construction land remains
consistent with the overall trends observed in 1990. Elevation continues to exhibit a
negative correlation with the kernel density of construction land across all three watersheds,
although the strength of this effect has diminished compared to 1990. While the slope
demonstrates a negative correlation with the kernel density of construction land in the
Anning River Basin and Yalong River Basin, it displays a positive correlation in the Dadu
River Basin. This suggests the expansion of construction land towards areas characterized
by steeper slopes. The aspect exhibits a positive correlation with the kernel density of
construction land in all three watersheds, with the distribution of construction land in the
Dadu River Basin showcasing a greater sensitivity to aspect variations.

The influence of geological factors on construction land primarily centers around the
Euclidean distance of faults. In the Anning River Basin and the Yalong River Basin, as
construction land expands, its spatial correlation with faults and the platforms or negative
topography resulting from their effects has intensified. Conversely, in the Dadu River Basin,
characterized by fewer faults, construction land tends to steer clear of fault-related effects.

The influence of precipitation and temperature, among climate factors, has intensified
in the Anning River Basin and Dadu River Basin, but has relatively weakened in the Yalong
River Basin. In the Anning River Basin, the positive correlation between construction land
distribution and precipitation has notably increased, while the negative correlation with
temperature has decreased. Conversely, in the Yalong River Basin, the positive correlation
between temperature and the distribution of construction land outweighs the positive
correlation between precipitation and construction land. In the Dadu River Basin, both
the negative correlation between precipitation and the distribution of construction land
and the positive correlation between temperature and the distribution of construction land
have experienced significant increases.
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Figure 12. Estimated coefficient of GWR for the impact factors of construction land in 2020: (a) eleva-
tion, (b) slope, (c) aspect, (d) Euclidean distance of fault, (e) annual precipitation in 2020, (f) average
annual temperature in 2020, (g) NDVI in 2020, (h) Euclidean distance of rivers, (i) cropland kernel

density in 2020, (j)Euclidean distance of roads in 2020, and (k) Euclidean distance of towns.

Table 4. Average estimated coefficient of GWR for the impact factors of construction land in 2020.

Factor Categories Factor Anning River Basin Yalong River Basin Dadu River Basin
ELEVATION —0.0612 —0.0032 —0.0274
Geomorphological SLOPE —0.3451 —0.0310 0.0615
ASPECT 0.0441 0.0053 0.0555
Geological activities ED_FAULT -0.1219 —0.0394 0.0304
Climatic PRE 0.8412 0.0087 —0.2833
TEM —0.1833 0.0865 0.1639
Rivers and vegetation ED_RIVER —0.1535 0.0037 —0.0525
environment NDVI —0.3773 —0.0198 —0.0066
KD_CROPLAND 0.0322 0.0385 0.1548
Socio-economic ED_TOWN —0.6054 —0.0477 —0.1697
ED_ROAD —0.3355 —0.0078 0.1079
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Among the river and vegetation factors, the water system of the Anning River Basin
exhibits a strong correlation with construction land, followed by the Dadu River Basin.
Conversely, the Yalong River Basin, characterized by deep-cut terrain and a reliance on
spring water sources, displays a relatively weak correlation with rivers. Across all three
river basins, there exists a negative correlation between the distribution of construction
land and NDV], indicating a comparatively low vegetation coverage in construction land
and its surrounding areas. The strength of this relationship follows the order of the Anning
River Basin, the Yalong River Basin, and the Dadu River Basin.

Among socio-economic factors, the influence of cropland in the Anning River Basin
has relatively diminished, whereas its impact has intensified in the Yalong River Basin
and Dadu River Basin. The town accessibility’s impact remains largely consistent in the
Anning River Basin but has increased in the Yalong River Basin and Dadu River Basin,
particularly in the latter. The road accessibility’s impact has decreased relatively in the
Anning River Basin but has grown in significance in the Yalong River Basin and Dadu
River Basin. Notably, in the Dadu River Basin, the distribution of construction land has
expanded into areas not directly linked to main roads.

3.2.3. Impact of Multiple Factors on Construction Land from 1990 and 2020

From 1990 to 2020, all three river basins underwent varying degrees of land use change.
While the Anning River Basin was primarily influenced by human factors, the Yalong
River Basin and Dadu River Basin were predominantly shaped by natural factors (Table 5
and Figure 13). In the Anning River Basin, factors such as ED_ROAD, ED_TOWN, and
KD_CROPLAND, and geomorphological factors exerted a significant impact on the changes
in construction land. In the Yalong River Basin, significant influences stemmed from
KD_GEOHAZARD, PRE, KD_CROPLAND, and ED_ROAD, among others. Meanwhile,
in the Dadu River Basin, significant factors included PRE, ED_TOWN, SLOPE, TEM,
ED_ROAD, and ED_RIVER.

Table 5. Average estimated coefficient of GWR for the impact factors of construction land changes
from 1990 to 2020.

Factor Categories Factor Anning River Basin Yalong River Basin Dadu River Basin

ELEVATION 0.1013 0.0027 —0.0610

Geomorphological SLOPE —0.3099 —0.0100 0.1436

ASPECT —0.0246 0.0085 0.0529
ED_FAULT —0.0303 —0.0187 —0.0318

Geological activities

KD_GEOHAZARD 0.1437 0.1634 0.0666

PRE —0.0263 0.0795 —0.2337
Climatic

TEM —0.0009 0.0225 0.1342
Rivers and vegetation ED_RIVER —0.1388 —0.0081 —0.0697
environment NDVI —0.2684 —0.0168 —0.0418
KD_CROPLAND —0.3261 0.0634 —0.0381
Socio-economic ED_TOWN —0.3404 0.0370 —0.1796
ED_ROAD 0.3986 —0.0541 —0.1158
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Figure 13. Estimated coefficient of GWR for the impact factors of construction land changes from
1990 to 2020: (a) elevation, (b) slope, (c) aspect, (d) Euclidean distance of fault, (e) annual precipitation
changes from 1990 to 2020, (f) average annual temperature changes from 1990 to 2020, (g) NDVI
changes from 1990 to 2020, (h) Euclidean distance of rivers, (i) cropland kernel density changes from
1990 to 2020, (j) Euclidean distance of changes from 1990 to 2020, (k) Euclidean distance of towns,
and (1) changes in kernel density of geological hazards from 1990 to 2020.

Among the geomorphic factors, SLOPE has a more pronounced impact on the changes
in construction land compared to ELEVATION and ASPECT, particularly evident in the
Anning River Basin. Steeper slopes present a greater resistance to the expansion of con-
struction land. In the Yalong River Basin, the slope exhibits a weak negative correlation
with the expansion of construction land, whereas, in the Dadu River Basin, it shows a
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positive correlation, indicating land expansion in areas with slightly steeper slopes around
the reservoir.

Among the geological activity factors, ED_FAULT shows no significant impact. How-
ever, changes in KD_GEOHAZARD are positively correlated with the expansion of con-
struction land, indicating the influence of human construction activities on the geological
environment, with the Yalong River Basin and Anning River Basin showing more pro-
nounced effects.

In terms of climate factors, the changes in PRE and TEM from 1990 to 2020 exhibit
a weak negative correlation with the expansion of construction land in the Anning River
Basin, a positive correlation in the Yalong River Basin, and a negative correlation in the
Dadu River Basin. This indirectly reflects the relative significance of climate change on
construction land in high-altitude areas.

For the rivers and vegetation environmental factors, NDVI exhibits a negative corre-
lation in all three watersheds, indicating a decrease in local vegetation coverage due to
the expansion of construction land or the occurrence of construction land in areas with a
reduced NDVI. ED_RIVER indicates that areas close to rivers provide more opportunities
for construction land expansion, especially in the Anning River Basin. However, the overall
impact of ED_RIVER is relatively weak.

Social economic factors exert a strong driving force on the expansion of construction
land. The GWR analysis results of KD_CROPLAND indicate that, in the Anning River Basin
and Dadu River Basin, construction land expands into areas where KD_CROPLAND has
decreased, indicating a mutual conversion relationship between the two. Conversely, in the
Yalong River Basin, there is a positive correlation between the density of construction land
and changes in KD_CROPLAND. The GWR analysis results of ED_TOWN show that there
is more expansion of construction land near towns in the Anning River Basin and Dadu
River Basin, while the opposite is observed in the Yalong River Basin. Additionally, the
GWR analysis results of ED_ROAD reveal that construction land expansion has occurred
in areas relatively distant from roads in the Anning River Basin, whereas, in the Yalong
River Basin and Dadu River Basin, the intensity of construction land expansion is higher in
areas close to roads, particularly in the Dadu River Basin.

4. Discussion
4.1. Analysis of Spatiotemporal Change in Construction Land
4.1.1. Analysis of Temporal Changes in Construction Land

The development of construction land in Mianning County unfolds across three dis-
tinct stages, closely aligned with the county’s broader economic and social trajectory. From
1990 to 2000, construction land witnessed a rapid expansion, spurred by vibrant pillar
industries such as livestock, poultry, mulberry, pepper, fruit cultivation, and building
materials. During this period, the county’s population surged from 276,830 to 308,100, with
a robust average annual GDP growth rate exceeding 20%. The subsequent period, spanning
from 2000 to 2010, marked a sustained and accelerated growth in construction land. Mian-
ning County diversified its economic base, fostering six key industries including rare earth
mining, hydropower, building materials, tourism, livestock, poultry, and economic forestry.
With an average annual population growth of 5500, the total population surged to 371,000,
while the average annual growth rate of GDP value stood at 14%. Transitioning into the
period from 2010 to 2020, the county’s development landscape evolved, integrating new
drivers such as new urbanization and infrastructure construction alongside the established
six pillar industries. This phase heralded a comprehensive development pattern, under-
pinned by a multi-industry approach. Despite a slight decrease in population growth to an
average of 3700 annually, the total population reached 408,000, with the annual average
growth rate of GDP maintained at 5-7%. Over the entire 1990-2020 period, the expansion
of construction land primarily relied on the conversion of cropland, forestland, and grass-
land to construction land, notably emphasizing the conversion of cropland. This trend
underscores the intimate relationship between construction land, cropland, and human
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activities, along with the favorable natural and human environmental conditions associated
with these land types.

4.1.2. Analysis of Spatial Changes in Construction Land

When examining the expansion scale of construction land, it becomes evident that
larger watersheds tend to exhibit a greater spatial expansion intensity. The Anning River
Basin emerges as the primary area for construction land expansion, followed by the Yalong
River Basin, and, finally, the Dadu River Basin. In terms of the proportion of the area cov-
ered by the three types of construction land expansion models, a clear hierarchy emerges,
with the edge expansion mode occupying the largest proportion, followed by the leapfrog
mode, and, lastly, the infilling mode. As construction land resources become increasingly
scarce, there is a notable shift towards conservation and intensive growth strategies. This
trend underscores the evolving approach of the Mianning County government in construc-
tion land planning, development, and governance, reflecting a commitment to sustainable
land management practices and efficient resource utilization.

The edge expansion mode stands out as the predominant method for construction
land expansion across various stages. Its prominence can be attributed to its effectiveness
in addressing key issues such as continuity, convenience, economy, and efficiency in
expanding construction land [93]. This mode leverages the existing built environment,
transportation networks, and infrastructure, maximizing their utilization. Throughout
different stages of overall land use planning and national territory spatial planning in
Mianning County, the government has underscored the importance of strengthening the
marginal expansion of construction land through policy guidance and planning control.
Consequently, this expansion model plays a pivotal role in optimizing the spatial structure
of land use and enhancing the overall land use efficiency.

The leapfrog mode represents a unique approach heavily influenced by the geological,
geographical, and socio-economic factors prevalent in Mianning County. Particularly
notable in the deep-cut valleys of the Yalong River and the Yele Mountain Lake basin
area, where space suitable for the continuous expansion of construction land is limited,
this mode arises as a response to challenges such as mineral development, hydropower
generation, and ecological poverty alleviation. Centralized relocation and resettlement
efforts are often employed to address these issues, giving rise to a typical leapfrog pattern.
Similarly, in the Anning River Basin, driven by infrastructure projects such as highway and
high-speed rail construction, water conservancy hub development, urban expansion, and
industrial park expansion, the leapfrog expansion of construction land of varying scales
has occurred. Notably, the leapfrog expansion scale in the Anning River Basin surpasses
that of the Yalong River Basin and the Dadu River Basin. Overall, the leapfrog mode
emerges as a distinctive strategy, tailored to the specific conditions and development needs
of Mianning County, showcasing its adaptability in navigating complex socio-economic
and environmental landscapes [94].

Infill expansion represents a localized construction land expansion model observed in
specific areas of Mianning County. This model emerges primarily due to the acute scarcity
of construction land resources in certain regions, presenting a unique approach to land
consolidation, renewal, and development within existing construction land boundaries [95].
For instance, in older urban areas like Gaoyang Street, Ruoshui Town, and Lugu Town, idle
or underutilized land has undergone revitalization and repurposing, thereby enhancing the
urban functionality of these locales. Similarly, in areas such as Jinping, Jianmei, and He’ai,
the effective development of inefficient urban land has been achieved through the integra-
tion and optimization of internal transportation networks and infrastructure. Moreover,
in smaller villages experiencing population growth, there have been instances of newly
developed internal areas enclosed by existing construction land, facilitating the efficient
utilization of available resources. Overall, infill expansion serves as a strategic response
to address the pressing need for land optimization and utilization in Mianning County,
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fostering sustainable urban development and maximizing the efficiency of construction
land usage.

4.1.3. Analysis of Spatial Patterns of Construction Land

The emergence of the three distribution patterns of construction land—namely, the
Wide Valley Spatial Pattern, Deep Valley Spatial Pattern, and High Mountain Lake Basin Spa-
tial Pattern—is predominantly influenced by natural factors, with human modification and
adaptation to the natural environment playing a significant role in shaping these patterns.

The Anning River Wide Valley Spatial Pattern is primarily shaped by a confluence of
factors, including topography, natural resources, environmental conditions, socio-economic
development, and policy planning and guidance. Influenced by the Anning River and its
tributaries, the wide plain area facilitates ample space for construction land. With abundant
water resources and fertile soil, this region fosters favorable conditions for agricultural
production and residential settlement. Moreover, its pristine ecological environment
and scenic landscapes attract a population influx and industrial clustering, contributing
to the expansion of construction land. The well-developed transportation network in
the plain area facilitates efficient logistics and human mobility, further enhancing its
appeal for industrialization and urbanization. The concerted efforts of the governments
of Liangshan Prefecture, Xichang City, and Mianning County have led to the formulation
of comprehensive land development and utilization plans, along with supportive policies
tailored to the Anning River Valley. These initiatives have played a pivotal role in shaping
the spatial distribution pattern of construction land in the Anning River wide valley area.

The Deep Valley Spatial Pattern is heavily influenced by geological structures, land-
forms, cropland availability, and transportation accessibility. In areas adjacent to the
riverbed of the deeply incised Yalong River, the terrain of river terraces or alluvial fans
tends to be relatively flat, facilitating the construction of land corridors along the riverbanks
and promoting material exchange. Additionally, these areas are conducive to agricultural
irrigation, domestic water supply, and industrial activities, contributing to the centralized
distribution of construction land. Meanwhile, construction land in other areas of the deep
valley, such as Jinping, is predominantly located on the upper and middle terraces of the
mountains, influenced by local residential customs and traditions. These areas are chosen
for their natural advantages, as they are less susceptible to floods and geological hazards,
and are close to water sources such as mountain springs and streams, facilitating domestic
water usage and agricultural irrigation. Benefiting from favorable sunshine exposure condi-
tions, high humidity, and fertile soil, these regions are suitable for agricultural development,
with relatively abundant animal and plant resources available for utilization. Consequently,
a typical pattern emerges, characterized by the concentrated settlement at the bottom of
the valley and a dispersed layout on the upper and middle slopes.

The High Mountain Lake Basin Spatial Pattern is primarily shaped by a combination
of factors, including topography, climate, cropland availability, engineering construction,
and transportation accessibility. Geological tectonic movements and river-lake erosion
contribute to the formation of a relatively flat terrain around the lake, accompanied by
high-quality cropland resources. Furthermore, the elevated location of these areas enhances
the sensitivity of temperature and precipitation to the ecological environment, resulting
in favorable water—heat combinations and oxygen conditions in the Yele Lake Basin and
its surroundings, making it highly conducive to human habitation. The development of
the Yele Reservoir, initiated in 2001, and subsequent hydropower projects, coupled with
supporting infrastructure and tourism development efforts, have played a significant role
in shaping the distribution of construction land in this region. Over time, construction land
has gradually concentrated around the edges of the lake basin or in relatively flat mountain
valleys, forming a distribution pattern centered around the Yele Reservoir.
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4.2. Analysis of the Causes of Changes in Construction Land
4.2.1. Geomorphic Factors

The layout and evolution of construction land in mountainous regions are significantly
influenced by geomorphic factors such as elevation, slope, and aspect [77]. Among these
factors, the slope exerts the most pronounced impact on the distribution and dynamic
evolution of construction land, followed by elevation and aspect. This hierarchy stems from
the direct influence of the slope on the stability and load-carrying capacity of construction
land foundations. In contrast, the elevation and aspect play crucial roles in determining
the types of land use and the efficiency of land utilization.

Slope Factor

The slope directly influences construction conditions [96]. In regions characterized
by relatively flat macroscopic landforms, the layout and expansion of construction land
predominantly occur in areas with smaller slopes, while areas with steeper slopes tend to
have less construction land. For instance, in the Anning River Basin, construction land
is primarily concentrated in areas with slopes of less than 25°, with newly expanded
construction land between 1990 and 2020 mainly situated in areas with slopes of less than
6°. Similarly, in the Yalong River Basin, construction land is primarily found in areas
with slopes of less than 35°, with newly expanded construction land between 1990 and
2020 predominantly located in areas with slopes of less than 22°. In the Dadu River Basin,
construction land is distributed within a range of slopes of less than 30°, with newly
expanded construction land mostly situated in areas with slopes of less than 20°.

Elevation Factor

The elevation plays a pivotal role in determining the type, scale, and efficiency of
construction land [97]. It is negatively correlated with the overall kernel density of construc-
tion land. Differences in climate, soil, and location conditions across different elevations
contribute to distinct characteristics. The Anning River Basin, situated at lower elevations,
boasts a relatively flat terrain, fertile soil, a mild climate, and favorable location, rendering
it conducive to the construction land layout. In contrast, the Yalong River and Dadu River
basins, characterized by higher elevations, feature a more complex terrain, variable climate,
fragile ecology, and less convenient transportation, thereby increasing the cost of construc-
tion land. The main distribution range of construction land in the Anning River Basin
typically spans between 1600 and 2200 m, while, in the Yalong River Basin, it ranges from
1500 to 2500 m, and, in the Dadu River Basin, it lies between 2600 and 3000 m. Notably,
from 1990 to 2020, there was a trend of construction land expansion towards lower altitude
areas in all three basins.

Aspect Factor

In mountainous regions, the aspect plays a role in the evolution process of mountain
slope micro-topography, indirectly influencing the layout and evolution of construction
land [98]. However, compared to the slope and elevation, the influence of the aspect
in the research area is relatively minor. This is primarily due to the strong correlation
between buildings or structures and slope direction. In mountainous areas, construction
land with smaller spatial scales is distributed across all slope directions. More than half
of the construction land in the Yalong River Basin and Dadu River Basin is situated on
shady slopes, while, in the Anning River Basin, it predominantly occupies sunny slopes
and flat lands. This distribution pattern reflects the limited availability of construction land
resources and the complexity involved in selecting slope directions. From 1990 to 2020, the
newly expanded construction land in the three watersheds predominantly favored sunnier
areas. This trend underscores the ongoing competition for construction land resources and
the strategic consideration of maximizing sunlight exposure for various purposes.

126



Land 2024, 13, 993

4.2.2. Geological Activities Factors

The influence of geological activities on the spatial distribution pattern and evolu-
tion of construction land is multifaceted, often exerting a comprehensive impact through
geological structures, stratigraphic lithology, and geological disasters [99].

Fault Factor

Faults play a significant role in shaping the layout of construction land, affecting
the foundation stability, earthquake risk, groundwater movement, building design and
construction, and land use safety. Consequently, there is a tendency for construction land
to be situated away from faults [100].

However, due to the limited availability of land resources in mountainous areas,
construction land often needs to be located in relatively favorable positions near faults.
The maximum impact distance of faults on construction land in the Anning River Basin is
approximately 8 km, with an average impact distance of about 2 km. In the Yalong River
Basin, the maximum impact distance is around 3 km, with an average impact distance of
about 1 km. Similarly, in the Dadu River Basin, the maximum impact distance is about
7 km, with an average impact distance of approximately 2.4 km.

Initially, in 1990, the impact of faults on the layout of construction land was relatively
small. However, by 2020, as the demand for construction land increased, construction land
inevitably encroached closer to fault areas, leading to a gradual increase in the correlation
between construction land and the Euclidean distance between faults. This trend is particu-
larly pronounced in the Anning River Basin, where construction land expansion has been
significant, followed by the Dadu River Basin, and, finally, the Yalong River Basin, where
the expansion of construction land is greatly influenced by landforms.

Geological Disaster Factor

Geological disasters are among the most prevalent natural calamities in mountainous
regions, often resulting in significant casualties and economic losses [101]. The overall
spatial pattern of land use, particularly construction land, is highly susceptible to the
adverse effects of geological disasters [102].

As of 2020, Mianning County has experienced over 180 geological disasters, encom-
passing every town, including debris flows, landslides, and collapses. These disasters
are predominantly concentrated along fault lines such as the Xiaojin River Fault, the
Jinhe—Chenghai Fault, the Anning River Fault, and the Yalong River, among others.

From 1990 to 2020, the kernel density of geological disasters increased by 0.27 in the
Yalong River Basin, by 0.11 in the Anning River Basin, and by 0.01 in the Dadu River Basin.
The kernel density of construction land in these basins exhibited a positive correlation with
the kernel density of geological hazards, as evidenced by the GWR estimated coefficients:
0.1634 in the Yalong River Basin, 0.1437 in the Anning River Basin, and 0.0666 in the Dadu
River Basin.

This strong spatial overlap between construction land and geological disasters un-
derscores the disruption of the geological environment due to human activities, including
construction endeavors. Geological disasters not only jeopardize the safety of construction
land sites but also impede the road accessibility between construction lands, particularly in
areas like Jinping, Mianshawan, and He’ai, where the Yalong River has carved deep valleys.

While efforts to prevent and control geological disasters have made considerable
strides, continued monitoring and mitigation measures are imperative, especially in the face
of changing climate conditions [103]. Optimizing the layout and intensity of construction
land in the future will remain crucial for mitigating geological disaster risks and ensuring
sustainable development.

4.2.3. Climatic Factors

Climatic factors primarily influence agricultural production by integrating precipi-
tation and temperature, thereby shaping the layout of construction land. Additionally,

127



Land 2024, 13, 993

climate impacts the human settlement environment, indirectly influencing residents’ se-
lection of construction land sites [104]. Over the period of 1990 to 2020, Mianning County
has experienced two overarching trends—a decrease in precipitation and an increase in
temperature—aligning with climate changes observed on the eastern edge of the Tibetan
Plateau [105]. Notably, changes in precipitation have a more pronounced impact on the
expansion of construction land compared to changes in temperature, likely due to precipita-
tion’s influence on agricultural production and the occurrence of geological disasters [106].

In the Anning River Basin, the precipitation was 897 mm with an average annual
temperature of 12.06 °C in 1990. By 2020, precipitation decreased to 879 mm, while the
average annual temperature rose to 12.77 °C. Over this period, precipitation decreased by
18 mm, while the temperature increased by 0.71 °C. Climatic factors exert a substantial
influence on the construction land pattern in this basin, although the impact of climate
change on the expansion of construction land is relatively mitigated by human activities.

Conversely, the Yalong River Basin experienced a decrease in precipitation from
865 mm and an average annual temperature of 11.50 °C in 1990 to 822 mm and 12.41 °C,
respectively, in 2020. Here, precipitation decreased by 43 mm, and the temperature in-
creased by 0.91 °C. While climatic factors have a lesser impact on the construction land
pattern in this basin, the deep incision of the landform diminishes the influence of climate
on construction land expansion.

In the Dadu River Basin, the precipitation decreased from 887 mm with an average
annual temperature of 7.48 °C in 1990 to 881 mm and 8.49 °C, respectively, in 2020. During
this period, precipitation decreased by 6 mm, while the temperature increased by 1.01 °C.
Climatic factors wield a substantial influence on the construction land pattern in this
basin. Furthermore, climate change significantly impacts the expansion of construction
land due to the heightened climate sensitivity resulting from the high altitude, akin to the
socio-economic environment’s response to climate change in the high-altitude areas of the
Himalayas [107].

4.2.4. River and Vegetation Environmental Factors
River Environmental Factor

As shapers of the landscape environment, rivers serve as vital suppliers of water
resources [108] and contribute to the water environment [109]. Rivers play a crucial role
in determining the location and development of construction land, with areas in close
proximity to rivers offering greater development conveniences [110,111].

The expansion of construction land in Mianning County from 1990 to 2020 demon-
strates a trend towards the closer proximity to rivers. In the Anning River Basin, the
density of construction land was positively correlated with the Euclidean distance from the
river in 1990, reflecting the risks of flooding in areas near the river, conflicts with cropland
development, and challenges in infrastructure construction. The average distance between
construction land and the river was approximately 1282 m.

However, with the completion of the Dagiao Reservoir in 1999 for power generation
and the improved management of the Anning River, alongside enhancements in riverside
infrastructure construction, the average distance between the newly expanded construction
land and the river decreased to 870 m from 1990 to 2020. Consequently, the density of con-
struction land and the Euclidean distance from the river exhibited a negative relationship.

In the Dadu River Basin, the layout of construction land and its changes were nega-
tively correlated with the Euclidean distance from the river. In 1990, the average Euclidean
distance between construction land and the river in this basin was 1221 m. However, since
the construction of the Yele Reservoir in 1998, leading to rising water levels in reservoirs
and rivers, the average distance between construction land and rivers or reservoirs has
decreased by approximately 300-500 m by 2020.

In the Yalong River Basin, the average Euclidean distance between construction land
and the river was 1363 m in 1990. The average distance between the expanded construction
land and the river from 1990 to 2020 was reduced to 1181 m. The river’s sensitivity to the
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layout and changes in construction land is relatively low in this area, primarily because
construction land is predominantly distributed in limited spaces on both sides of the Yalong
River Valley.

Vegetation Environmental Factor

The vegetation environment plays a crucial role in influencing construction land.
Robust vegetation offers stable ecological services, providing a favorable ecological back-
ground for construction land [112]. Conversely, vegetation degradation can result in issues
such as soil erosion, reduced biodiversity, and diminished agricultural productivity, thereby
complicating the development and utilization of construction land. Through the implemen-
tation of key ecological projects, increased support for ecological initiatives, reinforced soil
and water conservation efforts, promotion of comprehensive soil erosion management, and
intensified ecological forestry construction, Mianning County has witnessed significant
improvements in its vegetation environment [113,114].

Using NDVI as an indicator of the vegetation environment, Mianning County ex-
perienced varying degrees of improvement in vegetation cover in areas designated for
construction land from 1990 to 2020 [115]. The NDVI increased by 0.12 in the Anning River
Basin, 0.18 in the Yalong River Basin, and 0.01 in the Dadu River Basin, providing a rela-
tively favorable ecological backdrop for construction land. However, due to construction
activities leading to the conversion of other land types with relatively high NDVI values to
construction land, NDVI is negatively correlated with construction land density in all three
watersheds, indicating the relatively low vegetation coverage of construction land and its
surrounding areas.

Furthermore, the expansion of construction land contributes to a decline in NDVL This
impact is most pronounced in the Anning River Basin, where the construction land density
and the intensity of change are highest, while relatively less significant in the Yalong River
Basin and Dadu River Basin.

4.2.5. Socio-Economic Factors

Socio-economic factors play a pivotal role in driving the dynamic evolution of land
use and are closely intertwined with human factors in the distribution and evolution of
construction land [24,116]. In the Anning River Basin, socio-economic factors contributed to
46% of the impact on land use spatial distribution in 1990. However, due to the heightened
influence of climate factors, this overall impact decreased to 31% by 2020. Over the period
spanning from 1990 to 2020, socio-economic factors accounted for approximately 50% of
the overall impact on construction land expansion, a proportion roughly equivalent to that
of natural factors.

Similarly, in the Yalong River Basin, socio-economic factors exerted an impact of
approximately 32% on the land use spatial distribution in both 1990 and 2020, as well
as on construction land expansion during the same period, reflecting a relatively stable
pattern of human activity throughout this timeframe. Conversely, in the Dadu River Basin,
socio-economic factors influenced the land use spatial distribution to a degree of around
35% in 1990. However, owing to factors such as engineering construction and infrastructure
enhancement, this impact increased to 39% by 2020. In the expansion of construction land
from 1990 to 2020, socio-economic factors accounted for about 29% of the overall impact,
indicating a stronger influence of natural factors in this context.

Cropland Factor

Construction land and cropland share similar location and environmental require-
ments, characterized by a high spatial adjacency and a reliance on land type conver-
sion [117]. In both 1990 and 2020, there existed a positive correlation between the density
of construction land and cropland in Mianning County. However, the strength of this
correlation weakened in the Anning River Basin, while increasing in the Yalong River Basin
and Dadu River Basin from 1990 to 2020.
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Over the same period, the expansion of construction land in the Anning River Basin
resulted in a significant reduction in cropland, particularly in areas near rivers, towns,
industrial parks, and transportation arteries. Similarly, in the Dadu River Basin, the
expansion of construction land led to a slight decrease in cropland from 1990 to 2020,
primarily occurring in the vicinity of the Yele Reservoir. Conversely, in the Yalong River
Basin, there was a positive correlation between changes in construction land and cropland
from 1990 to 2020, reflecting two distinct trends.

Firstly, the enhancement of local cropland in the Yalong River Basin contributed to an
increase in cropland, while the expansion of construction land resulted from the conversion
of non-cropland areas. Secondly, certain areas in the Yalong River Basin underwent a
conversion from farmland to forests, accompanied by the withdrawal of construction
land [118].

Town Accessibility Factor

The accessibility between administrative centers such as counties, towns, and town-
ships can be utilized to gauge the clustering characteristics of human activities or population
data [119]. The distance from the administrative center, to a certain extent, reflects the
extent of the jurisdiction and socio-economic influence, directly influencing the distribution
pattern of construction land. Moreover, this distance affects the speed and direction of the
construction land expansion.

In Mianning County, the residences of town governments, along with the surrounding
construction land, naturally emerge in areas with relatively favorable local transportation
conditions. The average Euclidean distance between construction land and towns is
approximately 21 km in the Anning River Basin, 25 km in the Yalong River Basin, and
27 km in the Dadu River Basin. The impact of accessibility to towns on the distribution and
changes of construction land follows this order: Anning River Basin > Dadu River Basin >
Yalong River Basin.

Road Accessibility Factor

Road accessibility significantly influences land use types, patterns, and values, and
the economic and social environment derived from land use [120]. The road network plays
a crucial role in shaping the distribution pattern and evolution of construction land, with
the impact gradually diminishing as the distance from the road increases.

Mianning County has developed a comprehensive transportation system compris-
ing highways, railways, and aviation, positioning itself to integrate into the Chengdu
2-h transportation circle in the future. Main roads in the research area, such as the G5
Beijing Kunming Expressway, National Highway G108, and National Highway G248, typi-
cally feature a concentrated construction land distribution. These areas boast convenient
transportation, fostering the aggregation of economic activities and population flow. As
influenced by land use planning and construction, the road network continues to enhance,
infrastructure support strengthens, investment and population gather, construction land
expands, and the structure and function of construction land optimize accordingly.

In the Anning River Basin, the impact of roads on the construction land layout de-
creased from 1990 to 2020, with the increase in road density supporting the construction
land expansion. Conversely, in the Yalong River Basin, the impact of roads on the construc-
tion land spatial distribution increased during the same period, with new construction
land concentrated in areas closer to roads. In the Dadu River Basin, the Euclidean distance
of roads correlates positively with construction land density in 1990 and 2020, indicating
construction land distributed at a certain distance from the main road, while the expansion
from 1990 to 2020 occurred closer to roads.
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4.3. Implications and Limitations
4.3.1. Implications

Construction land distribution in Mianning County is intricately influenced by natural
and human factors. Geological and climatic conditions along the eastern Qinghai-Tibet
Plateau drive variations in land use across the Anning, Yalong, and Dadu River basins.
Considering the national territory spatial planning of Mianning County, customized de-
velopment strategies are essential, taking into consideration the distinctive characteristics
of each basin. Efficient land use in the Anning River Basin is paramount, while stricter
controls are needed for the environmentally sensitive Yalong and Dadu River Basins. These
strategies aim to promote sustainable development while preserving local ecosystems.

The Anning River Basin, pivotal for industry and agriculture, must address climate
change and balance urban—rural development. Guided urban and rural planning is crucial
for resource allocation and infrastructure development. The strategic expansion of con-
struction land should target key areas like urban centers and industrial parks, ensuring
economic growth while protecting the environment.

The Yalong River Basin, rich in hydropower and tourism resources, faces challenges
due to its topography. Organic growth in favorable areas like Jinping is advisable, while
stricter controls are needed in less favorable regions. Centralized construction zones and
relocation initiatives can optimize resource use and mitigate environmental impacts.

The Dadu River Basin, prone to geological disasters, requires proactive measures
for climate adaptation and disaster prevention. Sustainable development, focusing on
ecotourism and hydropower, is recommended. The development around the Yele Reservoir
scenic area aligns with ecotourism principles, enhancing resilience to climate change and
promoting harmony with nature.

4.3.2. Limitations

This article employs Landsat data for extracting construction land information. How-
ever, due to the spatial resolution limitation of 30 m, finer details, such as roads in deep
valleys and scattered residential areas, may not be adequately captured. Consequently, the
spatial distribution and changes in construction land may not have reached a refined level.
To enhance future research, it is suggested that we integrate high spatial resolution satellite
remote sensing and UAV technology.

The spatial pattern and dynamic changes in construction land are influenced by
various factors. While this article considers 12 factors, the selection and quantification
of human factors could be refined. For instance, factors like construction land location
customs and policies are challenging to quantify, and the regional and hierarchical nature
of the economic impact may be difficult to accurately characterize. Future research could
delve deeper into the influence of the regional geological background on the eastern edge of
the Tibetan Plateau, comprehensively consider the response and adaptation of construction
land changes driven by multiple factors such as climate change and the regional economy,
and explore a synergistic model of the human-land coupling system in the landscape
transition zone.

5. Conclusions

This study delves into the spatiotemporal evolution characteristics of construction land
in Mianning County, situated on the eastern edge of the Qinghai-Tibet Plateau. Employing
methodologies such as the landscape expansion index, geographic information system
spatial analysis, and geographically weighted regression analysis, it delves into the causes
behind the spatial distribution and changes in construction land. Here are the key findings:

The unique geological and climatic conditions on the eastern edge of the Qinghai-Tibet
Plateau create a foundation for environmental gradients. These gradients play a crucial
role in determining the distribution and evolution of construction land in the Anning River,
Yalong River, and Dadu River basins at a macro level. Influenced by the region’s resources
and environment, the distribution and expansion of construction land in Mianning County
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have manifested into three typical spatial patterns: the Wide Valley Spatial Pattern, Deep
Valley Spatial Pattern, and High Mountain Lake Basin Spatial Pattern. The development
of construction land in Mianning County can be categorized into three stages: 1990-2000,
2000-2010, and 2010-2020. These stages align with the broader national economic and
social development trends of the county, catering to the spatial growth requirements for
both production and daily life through the allocation of construction land resources. The
predominant expansion mode of construction land in the study area is edge expansion,
supplemented by the leapfrog and infilling modes. Over the period of 1990 to 2020, all three
river basins witnessed varying degrees of land use change. While human factors primarily
drove the changes in the Anning River Basin, natural factors played a more significant role
in the Yalong River Basin and Dadu River Basin.

These conclusions shed light on the intricate interplay between geological, climatic,
and anthropogenic factors in shaping the spatiotemporal dynamics of construction land in
Mianning County, offering valuable insights for sustainable land management practices in
similar regions.
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Abstract: As urbanization in China progresses, urban spatial development is transitioning from
rapid expansion to more intensive and compact growth. This study examined the role of physical
geography and environmental factors in shaping the urban spatial development in the Guangdong-
Hong Kong-Macao Greater Bay Area (GBA). Based on the current natural conditions, we selected
evaluation indices from topography, hydrogeology, climatic conditions, and natural disasters. These
indices were used to create a carrying capacity and suitability evaluation system for development
land under natural constraints. Finally, the spatial development potential of the city was finalized
by taking into account the current state of the built-up area of the city. Meanwhile, we employed
the Optimal Parameters-based Geographical Detector and assessed the impact of 14 natural factors
on the spatial development of urban built-up areas. In 2020, the GBA had 52,168.77 km? of land
suitable for construction, of which 34,241.13 km? was highly suitable (61.29%) and 17,927.64 km? was
moderately suitable (32.09%). At the Bay Area level, 90.15% of the development potential remains
untapped; at the city level, Zhaoqing City has the highest potential at 99.56%, while Macao has the
lowest at 26.83%. Key factors influencing urban development include silty sand content, annual
average relative humidity, and cumulative temperature above 0 °C, with varying impacts across
different urban scales. At the Bay Area level, the silty sand content, annual average relative humidity,
and cumulative temperature above 0 °C are the main influencing factors on the spatial development
of urban built-up areas; at the city level, the main factors are annual average relative humidity and
cumulative active temperature above 0 °C. This study reveals the important influence of natural
environmental factors on urban spatial development, which is conducive to promoting sustainable
development of land resources in GBA.

Keywords: urban spatial development potential; construction land carrying capacity evaluation;
suitability assessment for development land; geographic detector; Guangdong-Hong Kong-Macao
Greater Bay Area

1. Introduction

Land is an essential non-renewable resource to human survival providing the basic
materials for human production and livelihoods. Their sustainable utilization can also be
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defined as a critical factor in societal sustainable development [1]. Land carrying capacity
refers to the ability of land resources to sustainably support socio-economic activities over
a period of time, including the production, living, and ecological functions of the land [2].
Land suitability assessment is an evaluation of the appropriateness of land for specific uses
based on its natural conditions and socio-economic demands [1]. Land carrying capacity
and land suitability assessment are fundamental bases for assessing land use conditions
and planning land utilization. Effective management of urban spatial development is a
challenge faced by planners and managers, among which carrying capacity assessment
remains one of the useful planning tools [1,3]. Utilizing the carrying capacity to assess
the suitability levels of construction land is an effective measure. This approach guides
urban development and construction, thereby achieving sustainable urban development.
For urban areas with rapid socio-economic development, accelerated urbanization, and
significant imbalances in urban—rural land use, there is an urgent need to conduct studies
focusing on the carrying capacity assessment of construction land [4-6].

In recent years, most scholars have initiated research into land-carrying capacity,
focusing on the interactions among population, land, and food. As land development
progressed, issues such as spatial imbalances in land use became apparent, prompting more
comprehensive studies on overall land carrying capacity. In recent years, various methods,
techniques, and frameworks have been used to assess land-carrying capacity [7]. The
evaluations of land-carrying capacity typically concentrate on urban [8], regional [9], and
specialized areas [5]. Common methodologies for assessing land-carrying capacity were
utilized in various ways including systems dynamics [10], ecological footprint models [11],
and multi-criteria evaluation [12]. The primary indicators selected for these assessments
often relate to environmental capacity [13], population density [14], and ecological ca-
pacity [15]. However, existing studies predominantly focus on the carrying capacity of
pre-urban development, relying on natural constraints like topography, climate, and hy-
drology to gauge the development potential of undeveloped land. These studies frequently
overlook the link between existing urban areas and the potential for urban expansion
under natural constraints. Clarifying this relationship is significant for understanding the
dynamics between urban development and the natural environment.

The concept of urban spatial development potential refers to the economic growth,
social progress, and environmental improvement of inherent conditions and potentials
over a specified period. This interdisciplinary concept includes the economy, society, and
environment, aiming to evaluate and predict a city’s future development opportunities.
Researchers assess urban development potential across several domains. In the economic
domain, scholars focus on factors such as a city’s growth potential [16], the optimization of
its industrial structure [17], and innovation capabilities [18]. In the social domain, studies
emphasize the urban population structure [19], cultural development [20], and public
health [21]. In the field of technological innovation, the focus is on the city’s capacity for
innovation [22], low-carbon development [23], and smart industries [24]. Additionally,
natural environmental factors, such as geographical location, climate, and natural resources,
not only influence the quality of the urban ecological environment but also the city’s
capacity for sustainable development [25,26]. Previous assessments of urban development
potential have predominantly concentrated on social, economic, and technological factors,
often neglecting the complex interactions between natural environmental elements and
urban development.

Assessing land suitability based on land-carrying capacity facilitates the effective
utilization and management of land resources, thereby promoting sustainable develop-
ment. Although various scholars have explored land-carrying capacity and land suitability
from diverse perspectives, in-depth investigations into the alignment between natural
constraints and current urban development are still scarce. Exploring the impacts of phys-
ical geography and environmental factors on urban spatial development offers insights
into current and future potentials, which can provide a scientific basis for national spatial
planning and the evolution of urban forms. Currently, China’s urban spatial development

138



Land 2024, 13, 783

is transitioning from rapid expansion to a more intensive and compact form. This transition
underscores the importance of analyzing the effects of physical geography and environmen-
tal factors on both present and future urban spatial potentials, providing a scientific basis
for national spatial planning and the evolution of urban forms. This study focuses on the
Guangdong-Hong Kong-Macao Greater Bay Area (GBA) to develop an evaluation index
system for the carrying capacity of construction land under natural constraints. It assesses
the connection between the current state of urban construction land and its potential for
suitable development under these constraints, attempting to answer the following two
scientific questions: (1) Is the developed urban area in GBA fully utilizing the “urban
spatial development potential” under natural constraints? (2) How did the different natural
constraints impact the urban development space?

2. Materials and Methods
2.1. Study Area

The GBA is recognized as one of the world’s four major bay areas, situated in the
southern coastal region of China, spanning from 21°26’ to 24°28' N latitude and 111°14’
to 115°24' E longitude (Figure 1). It encompasses nine cities in the Pearl River Delta
(including Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan,
Jiangmen, and Zhaoqing) and two Special Administrative Regions, Hong Kong and Macao.
Collectively, these areas cover approximately 56,000 km?, which constitutes 31.2% of
Guangdong Province and only 0.6% of China’s national territory. By the end of 2022, the
GBA housed roughly 86.3011 million people and generated an economic output surpassing
CNY 13 trillion, making it one of the most open and economically dynamic regions in
China. This area is pivotal to the Belt and Road Initiative and China’s broader national
development strategy.

24°N

23°N

22°N

‘57 Elevation/m
2 * G- P High: 1616
0 100 200 km Guangdong-Hong Kong- 0 50 100 km ) )
[—T— - Macao Greater Bay Area ; : I—-I—IJ - L0w‘|—146 z
TH2°E 113°E 114°E 115°E o

Figure 1. Location of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA). (a) Location of
Guangdong Province in China. (b) Location of GBA in Guangdong Province. (¢) GBA administrative
division and elevations.

The geographic landscape of the GBA features high terrain in the northwest and
lower elevations in the southeast, with mountains predominantly in the northern sections
near Zhaoqing, Guangzhou, and Huizhou, and plains chiefly in the central and coastal
regions. The area benefits from a unique geographical setup, which is “surrounded by
mountains on three sides and where three rivers converge”, complemented by an extensive
coastline, numerous ports, and a large sea area. It experiences a subtropical monsoon
climate with an average annual temperature of 22 °C. The rainy season lasts from April to
September, providing ample sunlight, warmth, and water resources which enrich the region.
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The favorable natural geographical conditions have supported significant development;
between 1990 and 2020, residential and construction land in the GBA expanded by 115.21%,
reaching 9183.47 km?. This land type has seen the greatest increase in the area and the
fastest rate of change within the region [27]. Since 2010, the scale of construction land has
tended towards stabilization, with improvements in the regularity and compactness of its
form. Urban construction has thus entered a transitional phase from rapid expansion to
intensive and compact development [28].

2.2. Data Sources

This study utilized elevation, soil, hydrology, climate, climatic zoning data, and
built-up area data (Table 1) to develop a framework for assessing the carrying capacity
and suitability of urban development land under natural constraints. This framework
also facilitated the mapping and analysis of urban spatial development potential within
the study area. All data were standardized to a uniform projection coordinate system,
WGS_1984_Web_Mercator_Auxiliary_Sphere, and resampled to a 30 m resolution using
the resampling tool in ArcGIS. Table 1 provides detailed information on the multi-source

data utilized in this study.

Table 1. Data sources.

Type of Spatial

Time of

Dataset Sources Dataset Resolution Dataset Note
Geospatial Data Cloud site, Computer
Network Information Center, Chinese Extraction of
Elevation data Academy of Sciences. tif 30 m 2009 elevation, slope, and
(http:/ /www.gscloud.cn, accessed on aspect data.
15 November 2023)
Harmonized World Soil Database, HWSD Extraction of silt
Soil data (https:/ /data.tpdc.ac.cn/en/data/, tif 1:4 million 2009 sand content y
accessed on 15 November 2023)
OpenStreetMap
Drainage data (https:/ /www.openstreetmap.org, shp — 2020 —
accessed on 15 November 2023)
Resource and Environmental Science Data
Climatic zoning Platform of Chinese Academy of Sciences sh _ 1978 L
data (https:/ /www.resdc.cn/, accessed on p
21 November 2023)
Acti Swiss Federal Institute for Forest, Snow For extracting data
ctive . .
accumulated and Land§cape Research tif 1km 1981-2010 on active cumulative
temperature (https:/ /chelsa-climate.org/downloads/, temperatures greater
accessed on 15 November 2023) than 0 °C
Extraction of mean
annual wind speed,
Resource and Environmental Science Data ter:ln?ei:ltrtll r;zarlnael;n
Meteorology data | 1atform of Chinese Academy of Sciences tif 1km 1960-2010 annual sunshine
(https:/ /www.resdc.cn/, accessed on h 1
21 November 2023) ours, mean aniua
relative humidity,
and annual
precipitation data
National Earthquake Data Center
Fault data (https:/ /data.earthquake.cn/index.html, shp _ _ _
accessed on 15 November 2023)
Science Data Bank
Built-up area data (https:/ /www.scidb.cn/en, accessed on shp — 2020 —
15 November 2023)
Resource and Environmental Science Data
Administrative Platform of Chinese Academy of Sciences
shp — 2022 —

division data

(https:/ /www.resdc.cn/, accessed on
15 November 2023)
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2.3. Methods

2.3.1. Construction of a Land-Carrying Capacity and Suitability Evaluation System under
Natural Constraints

Evaluation Index Selection

The development of urban built-up areas is complex and influenced by multiple
natural factors. Previous studies have highlighted several critical factors affecting urban
development. (1) Topography: Plains and river valleys, characterized by flat terrain and
fertile land, are generally more conducive to agriculture and construction, resulting in rapid
urban expansion. Conversely, challenging topographic conditions such as mountains, hills,
or deserts impose limitations on urban growth. (2) Water Resources: Essential for urban
development, an adequate water supply supports residential life, industrial production,
and agricultural irrigation. Consequently, cities near rivers, lakes, or other bodies of water
tend to expand more rapidly. (3) Climate Conditions: Mild climates are favorable for
human habitation and agriculture, attracting more population and investment, which in
turn promotes urban expansion. In contrast, extreme climates—such as high temperatures,
severe cold, or drought—can hinder urban development. (4) Natural Disasters: Earth-
quakes, floods, typhoons, and other natural disasters can severely damage cities and affect
their expansion. In areas prone to disasters, urban planning and construction must be
carried out more cautiously to mitigate risks.

Considering previous studies and the specific characteristics of the GBA, along with
data availability and the quantifiability of indicators, we established a system compris-
ing eight criteria to evaluate the carrying capacity of development land under natural
constraints within the GBA. Combined with the existing research [29-31], we determined
the evaluation system. The evaluation system includes (1) slope; (2) aspect; (3) silty sand
content; (4) water resources; (5) climatic zone; (6) accumulated temperature above 0 °C;
(8) wind effect index; (9) distance from fault lines.

Evaluation Metrics Quantification and Grading

Each indicator is classified into three to five levels, as outlined in Table 2. These levels
correspond to five categories of carrying capacity: high, relatively high, moderate, medium,
and relatively low. These categories are assigned scores of 9, 7, 5, 3, and 1, respectively. For
instance, the “slope” indicator uses the following classifications: <3° (9 points), 3 to 8°
(7 points), 8 to 15° (5 points), 15 to 25° (3 points), and >25° (1 point).

Table 2. Evaluation factors and indicators for grading the carrying capacity of development land.

Indicators for Grading the Carrying Capacity of Development Land

Evaluation Factor High Middle-High Middle Middle-Low Low
(9 Points) (7 Points) (5 Points) (3 Points) (1 Point)
<3° 3to 8° 8 to 15° 15 to 25° >25°
Slope . St
Corrected elevation and relief
Southwest-facing
slope, West slope, East Northeast slope,
Aspect Southern slope Southeast-facing slope Northwest slope Northern slope
slope
Silty sand content <60% —_— 60% to 80% —_— >80%
Precipitation >1400 mm 800 to 1400 mm 400 to 800 mm 200 to 400 mm <200 mm
Distance to rivers <1 km 1to2km 2to5km —_— >5 km

and lakes 2
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Table 2. Cont.

Indicators for Grading the Carrying Capacity of Development Land

Evaluation Factor High Middle-High Middle Middle-Low Low
(9 Points) (7 Points) (5 Points) (3 Points) (1 Point)
Northern
Boreal zone, subtropical zone, Plateau climate
Climatic zone Temperate zone,  Central subtropical ¢ —_— —_—

Accumulated
temperature above
0°C
Wind efficiency
index
Distance to fault
lines

. ical cli
Subtropical zone zone, Southern Subtropical climate

subtropical zone

>7600 °C 5800 to 7600 °C 4000 to 5800 °C 1500 to 4000 °C <1500 °C
—99 to —10,
—299 to —100 —_ 400 to —300 —_ >—10, <—400
>36,000 m 8300-36,000 m 1600-8300 m <1600 m _

Note: ! Elevation adjustment: Areas with elevation above 4900 m are degraded by two levels, while those between
3000 and 4900 m are degraded by one level. Terrain Undulation Correction: Locations with more than 200 m
of terrain undulation have their construction land carrying capacity reduced by two grades, and those with
undulations between 100 and 200 m are reduced by one grade. > Water resource adjustment based on precipitation
and proximity: Sites rated as 3 for distance to rivers and lakes have their water resource rating degraded by one
level. Sites rated as 1 for proximity see their precipitation rating degraded by two levels.

Assessment of the Indices

Each 30 m resolution pixel unit is used as an evaluation unit. To calculate the cumu-

lative impact score for each evaluation unit, the quantification and grading results of the
previously mentioned evaluation factors are combined. The formula used is as follows:

n
%ZE%M (1)
]:

In this formula, Si represents the composite carrying capacity score for the i-th cell.

The score contributed by the j-th evaluation indicator in the i-th cell is weighted by W,
which is the weight value of the j-th evaluation indicator. The total number of evaluation
indicators is denoted by n.

In ArcGIS 10.8, the eight evaluation indicators for the GBA are analyzed using the

raster calculator and an equal weight method to sum all indicators. The total scores of these
indicators produce grid values ranging from 49 to 97. We further classified these scores into
five categories by the natural breaks method. The intervals for these categories are detailed
in Table 3. Additionally, the water system in the GBA was considered a no-development
zone, received the lowest scores, and was automatically categorized as areas with low
carrying capacity. Urban areas that achieve high or middle-high carrying capacity scores
are identified as highly suitable for urban construction. Conversely, areas with middle
or middle-low capacity scores are considered moderately suitable, while those with low
carrying capacity are deemed unsuitable for urban development. The categories of high
suitability and middle suitability are collectively referred to as “suitable areas”.

Table 3. Carrying capacity and suitability classification criteria.

Value Carrying Capacity Grade Suitability Grade
49-70 Low Unsuitable
70-76 Middle-low Middle
77-82 Middle Suitability
83-87 Middle-high High

88-97 High Suitability
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2.3.2. Evaluation of Urban Spatial Development Potential

Urban spatial development potential quantifies the extent of land within the urban
administrative boundaries that is suitable for development, excluding current built-up
areas. This potential is directly related to the proportion of the remaining suitable areas
within these boundaries compared to the total suitable areas in the city. The potential can
be quantified using the following formula:

M= —c @)

where M represents the urban development potential. C is the area of land suitable for
construction within the administrative boundaries of the study area, and C; is the area of
land suitable for construction currently within the built-up areas of the study area.

2.3.3. Optimal Parameters-Based Geographical Detector

The geographic detector is a novel spatial statistical method developed by Wang
Jinfeng et al. (2020) [32] to examine the effects of various factors and their interrelationships
across multiple spatial units. The traditional model of this detector necessitates manual
adjustments for discretizing continuous data, a process that may introduce subjectivity and
issues with inadequate discretization. To address these challenges, this study employed
the Optimal Parameters-based Geographical Detector [29] to analyze the driving forces
behind urban development in the GBA. This approach evaluates factors such as eleva-
tion, slope, temperature, and humidity to discern spatial differentiation in urban built-up
areas and identify the principal driving forces. The formula used for the calculation is
presented below:

hi Nyo?

=1

g=1-—97" ®)

where g represents the detection value of factor X on the dependent variable Y; L is the
number of categories for factor X; Nj, and N are the numbers of units in category h and the
study area, respectively; 07,2 and o? are the variances of the y-values in category h and the
entire study area, respectively. The range of g is [0, 1], where a higher g value indicates a
greater influence of the selected factor X on the change in variable Y, and vice versa.

This study evaluated the influence of 14 natural factors on the spatial differentiation
of urban built-up areas using geographic detectors. The factors analyzed were as follows:
elevation (X1), slope (X2), aspect (X3), terrain undulation (X4), silty sand content (X5),
distance from water bodies (X6), average annual temperature (X7), annual precipitation
(X8), average annual wind speed (X9), annual sunshine duration (X10), average annual
relative humidity (X11), accumulated temperature above 0 °C (X12), wind effect index
(X13), and distance from fault lines (X14).

The calculation was performed using the “GD” package [29] in R version 4.3.1, where
each continuous factor was discretized for geographic detector analysis. This study calcu-
lated the g values for each variable under different categorization methods: equal interval,
natural breaks, quantile, geometric interval, and standard deviation. The method yielding
the highest g value was deemed the optimal discretization for that variable, with cate-
gorizations ranging from 3 to 7 categories. For example, the optimal discretization of
the accumulated temperature above 0 °C in Guangzhou in 2020 was achieved using the
quantile classification method with six categories (Figure 2). Similarly, the accumulated
temperature above 0 °C in Guangzhou in 2020 was classified into six categories using
the same quantile interval method. This approach of selecting the optimal discretization
method based on the highest g value is consistently applied across different continuous
factors and across other years.
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Figure 2. (a) Classification method of accumulated temperature above 0 °C in Guangzhou in 2020.
(b) The optimal interval of accumulated temperature above 0 °C in Guangzhou in 2020.

3. Results
3.1. Distribution of Suitability and Carrying Capacity for Development Land under
Natural Constraints

The results from the single-factor assessments were spatially overlaid. This process
generated the final carrying capacity assessment for construction land in the GBA, as
shown in Figure 3a. The results showed that the GBA has been categorized into five
distinct zones based on the carrying capacity: low, middle-low, middle, middle-high, and
high. Subsequently, these zones were further grouped into three categories reflecting their
suitability for development: unsuitable, moderately suitable, and highly suitable areas,
which are illustrated in Figure 3b. The areas and proportions of each carrying capacity and
suitability zone are detailed in Table 4.

(@ (b)

[ JLow
[ Middle - low
Middle

-3 95{ I Middle - high .
0 40 80 km - - High 0 40 80 km

A LA I Unsuitable Area
. & { [ Middle Suitable Area
T [l High Suitable Area

Figure 3. (a) Distribution of the carrying capacity grade in the GBA; (b) distribution of the carrying
capacity and suitability grade in the GBA.
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Table 4. Summary of carrying capacity and suitability grade area.

Carrying 2 s o Suitability 2 . o
Capacity Grade Area/km Proportion/% Grade Area/km Proportion/%
Low 3694.99 6.61 Unsuitable 3694.99 6.61

Middle-low 5515.54 9.87 Middle
Middle 12,412.10 22.22 Suitable 17,927 64 32.09
Middle-high 20,871.65 37.36 High
High 13,369.48 23.93 Suitable 3424113 61.29

The highly suitable areas are the most extensive, covering 34,241.13 km? and com-
prising 61.29% of the total area. The moderately suitable areas measure 17,927.64 km?,
comprising 32.09% of the total area. The unsuitable areas, being the smallest, occupy
3694.99 km?2, which represents 6.61% of the total area.

3.2. Analysis of Urban Spatial Development Potential under Natural Constraints

The overall urban spatial development potential of the GBA and its constituent cities
is detailed in Figure 4 and Table 5. In 2020, the area of suitable zones already utilized in the
urban built-up areas was 5137.15 km?, which accounted for 9.85% of the total suitable area
within the administrative boundaries of the GBA. The remaining suitable area within the
administrative region amounted to 47,031.62 km?, representing 90.15% of the total suitable
area. This indicates that as of 2020, 90.15% of the areas suitable for urban development
within the GBA remained undeveloped, highlighting the significant potential for further
urban spatial development.

At the city level, Zhaoqing still has 99.56% of urban spatial development potential,
which ranks first in the GBA, followed by Huizhou (98.99%), Jiangmen (98.04%), Zhuhai
(88.96%), Hong Kong (86.48%), Zhongshan (86.41%), and Guangzhou (81.93%), which have
urban spatial development potentials beyond 80%. Foshan has 76.72% of urban spatial
development potential. Dongguan (49.09%), Shenzhen (45.28%), and Macao (26.83%) have
urban spatial development potential of less than 50%. Macao (26.83%) has the lowest urban
spatial development potential among all the cities in the GBA.

Zhaoqing

99.56% ¢, Guangzhou Huizhou
81.93% 98.99%

Hong Kong
Jiangmen : 2 . 86.48%
98.04% o

. 99.56%

- 26.83%

0 40 80km ‘ 2.‘5{'
| IS I |

Figure 4. Urban spatial development potential of the GBA.
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Table 5. Summary of suitable areas in the GBA.

Built-Up Area Administrative Division

Area Area of Suitable % of Suitable Remaining % of Suitable
Area/km? Areas Suitable Area/km? Areas
GBA 5137.15 9.85 47,031.62 90.15
Guangzhou 1235.37 18.07 5602.84 81.93
Shenzhen 1026.34 54.72 849.29 45.28
Zhuhai 162.91 11.04 1312.70 88.96
Foshan 826.95 23.28 2725.43 76.72
Huizhou 107.47 1.01 10,513.77 98.99
Dongguan 1159.19 50.91 1117.92 49.09
Zhongshan 222.07 13.59 1412.51 86.41
Jiangmen 171.05 1.96 8535.81 98.04
Zhaoging 61.41 0.44 14,047.08 99.56
Hong Kong 141.57 13.52 905.89 86.48
Macao 22.82 73.17 8.37 26.83

3.3. Analysis of Urban Development Area Driving Forces under Natural Constraints

The results of the optimized parameter geographic detector from 2020 indicate that,
within the GBA, all influencing factors, except aspect (X3), had g values above 0 and
p values below 0.05. This demonstrates that, aside from aspect(X3), the remaining factors
significantly explain the spatial heterogeneity of urban built-up areas, as detailed in Table 6
and Figure 5. The ranking of the explanatory power of each influencing factor is as follows:
silty sand content (0.5669), average annual relative humidity (0.2208), growing degree
days above 0 °C (0.1642), annual precipitation (0.1442), wind effect index (0.1137), average
annual wind speed (0.1125), terrain undulation (0.1073), elevation (0.1043), average annual
temperature (0.0858), slope (0.0621), annual sunshine duration (0.0523), distance to water
systems (0.0485), distance to fault lines (0.0319), and aspect (0.0001).

Regional variations affect how these factors influence the spatial heterogeneity of
urban built-up areas. For example, silty sand content (X5) exhibits strong explanatory
power over 0.4 in the overall GBA, as well as in Foshan and Jiangmen, marking it as the most
influential factor in these areas, but its explanatory power is notably weaker in Hong Kong,
Macao, Zhaoqing, Zhongshan, and Zhuhai, where it falls below 0.1. Terrain undulation
(X4), average annual relative humidity (X11), and accumulated temperature above 0 °C
(X12) are significant explanatory factors in at least two regions each. In particular, terrain
undulation (X4) is the most influential in Shenzhen and Dongguan, with values of 0.3838
and 0.2278, respectively. Average annual relative humidity (X11) holds significant influence
in Zhuhai and Zhongshan, with values of 0.2282 and 0.2021, respectively. Accumulated
temperature above 0 °C (X12) shows strong influence in Guangzhou and Hong Kong, with
values of 0.3799 and 0.2036, respectively.

The g values of the influencing factors for each prefecture-level city, as well as the
Special Administrative Regions of Hong Kong and Macao, were ranked from highest to
lowest, and the top three factors, along with their frequency of occurrence, were tabulated
(Table 7). The factors appearing in the top three are X11, X12, X8, X5, X1, X4, X9, X13, X7,
and X10. Factors X11 and X12 appeared six times each; X8 appeared four times; X4, X5, and
X9 appeared three times each; X7 and X13 appeared twice; and X10 appeared once. This
indicates that at the city level, the development of urban built-up areas is predominantly
influenced by the annual average relative humidity (X11) and the accumulated temperature
above 0 °C (X12).
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Figure 5. q value ranking map of the GBA.

Table 7. Summary of the frequencies of the main factors.

Factor X11 X12 X8 X1 X4
Frequency 6 6 4 3 3

Factor X5 X9 X7 X13 X10
Frequency 3 3 2 2 1

4. Discussion

From a regional perspective, the GBA has not yet fully tapped into its urban spatial
development potential. Macao utilized 22.82 km? of suitable area in its urban built-up areas,
which constituted 73.17% of all suitable areas within the Macao Special Administrative
Region. This makes it the city with the highest proportion of utilized suitable areas in the
GBA. Consequently, Macao has only 26.83% of its suitable construction area remaining,
indicating the lowest urban spatial development potential at 26.83%. In contrast, Zhaoging
utilized only 61.41 km? of suitable area, a mere 0.44% of the total suitable area within
administrative boundaries, marking the lowest proportion in the GBA. Accordingly, Zhao-
qing possesses the highest urban spatial development potential among all cities in the GBA,
at 99.56%. Meanwhile, the Hong Kong Special Administrative Region possesses a devel-
opment potential of 86.48%, challenging prior studies that highlighted a scarcity of urban
land [33-35]. Despite significant development in Hong Kong Island and in the Kowloon
districts, substantial areas suitable for development still exist under natural constraints,
particularly in the New Territories.

At the municipal level, average relative humidity and accumulated temperature above
0 °C significantly influence urban built-up areas. Previous studies have indicated that
higher humidity exacerbates physiological stress from high temperatures, subsequently
increasing mortality rates [36-38]. These findings suggest that humidity and temperature
substantially affect human health and indirectly influence urban development. At the
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overall level of the GBA, silty sand content is the primary factor affecting spatial hetero-
geneity in urban areas. Similar to Zurui Ao et al. (2024)’s findings, the geological structure
beneath cities plays a crucial role in urban subsidence, impacting surface stability and
leading to structural damage [39]. This underscores the importance of soil conditions in
urban development at the Bay Area level. Additionally, Juan Huang (2015) and other
researchers partly attribute Hong Kong’s limited built-up area to flawed land development
policies [40,41], indicating that both natural conditions and urban policies significantly
shape urban built-up areas [42], meriting further research.

This study’s evaluation of urban spatial development potential under natural con-
straints presents several limitations. Firstly, there is significant room for improvement
in the multi-indicator comprehensive evaluation approach. The selection, grading, and
assignment of indicators introduce substantial uncertainty in the results. Despite efforts
to objectify these processes, they inherently reflect subjective decisions by the evaluator,
aiming to fulfill specific evaluation objectives but not necessarily capturing land suitability
accurately. Secondly, the research data lacked refinement. First, the soil and elevation data
are not synchronized in time, which, due to the absence of up-to-date officials, could impact
the accuracy of the study. Furthermore, the spatial resolution of the data is insufficient for
detailed analysis. Different sizes of spatial statistical grids affect the results of the model.
Although the Optimal Parameters-based Geographical Detector is employed in this study,
the selection of grid size for data extraction still directly influences data discretization and
consequently impacts the analytical outcomes. Finally, the study does not consider the
impact of other complex influences on urban areas. While it utilizes the differentiation and
factor detection sub-models of the geographic detector model, which effectively identify
key variables impacting urban development, it overlooks the complexity of urban systems.
The urban environment is a complex and dynamic system, characterized by constant evo-
lution and uncertainty. Its trajectory is influenced by a variety of factors, including climate
change, technological innovation, and social unrest [43—45]. Urban development under
natural constraints is typically influenced by multiple interacting factors, not just isolated
variables. Moreover, in addition to external influences on cities, internal changes in cities
also play a significant role in urban development [46].

To address the deficiencies identified in this study, future research should focus on
several key areas: First, enhancing the evaluation indicator system is crucial. Further
extensive research is necessary to refine the selection, grading, and assignment of land
evaluation indicators, ensuring that they align with the evaluation’s objectives and enhance
both the comprehensiveness and accuracy of the indicators. Second, more refined data
can be applied in future research. Employing finer grids would provide more detailed
data, improving the model’s accuracy in capturing local characteristics and dynamics in
urban spatial development. Third, there is a need to consider the impact of different factors
on urban built-up areas. For example, climate change would affect urban built-up areas,
leading to changes within these areas themselves. This will enable a more comprehensive
analysis and understanding of the complex interrelationships in the urban environment.

5. Conclusions

This study conducted a quantitative analysis of urban spatial development potential
in the GBA, elucidating the relationship between the region’s current urban space and
its potential for future development under natural constraints. The findings indicate
that Zhaoqing has the highest development potential at 99.56%, followed by Huizhou
(98.99%), Jiangmen (98.04%), Zhuhai (88.96%), Hong Kong (86.48%), Zhongshan (86.41%),
Guangzhou (81.93%), Foshan (76.72%), Dongguan (49.09%), and Shenzhen (45.28%), with
Macao having the least at 26.83%. This ranking highlights significant variability in available
urban development space across GBA cities under natural constraints. Further analysis
reveals that different cities are affected by natural constraints to varying degrees. At the Bay
Area level, urban development is predominantly influenced by silty sand content, average
annual relative humidity, and accumulated temperature above 0 °C, contributing 0.5669,
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0.2208, and 0.164 to spatial heterogeneity, respectively. At the city level, the same factors of
relative humidity and temperature are the primary influences on urban built-up areas. The
results of this study provide a scientific foundation for urban land space planning and the
future development of urban forms in China during its transitional period. Future research
should explore the effects of various influencing factors, including interactions between
natural constraints and the impact of human policy factors, to promote sustainable and
efficient urban spatial development.
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Abstract: Continued urban expansion (UE) has long been regarded as a huge challenge for climate
change mitigation. However, much less is known about how UE affects carbon emissions (CEs),
especially in the urban agglomerations of the Yellow River Basin (UAYRB), China. In this regard,
this study introduced kernel density analysis, the Gini coefficient, and Markov chains to reveal the
UE patterns and carbon emissions intensity (CEI) in the UAYRB at the county level, and explored
the spatial heterogeneity of the impact of UE on CEI with the geographically and temporally
weighted regression model. The results show that both CEI and UE in the UAYRB showed a steady
growing trend during the study period. The kernel density of CEI and UE revealed that CEI in the
UAYRB was weakening, while the UE rate continuously slowed down. The Gini coefficients of
both CEI and UE in the UAYRB region were at high levels, indicating obvious spatial imbalance.
The Markov transfer probability matrix for CEI with a time span of five years showed that CEI
growth will still occur over the next five years, while that of UE was more obvious. Meanwhile,
counties with a regression coefficient of UE on CEI higher than 0 covered the majority, and the
distribution pattern remained quite stable. The regression coefficients of different urban landscape
metrics on CEI in the UAYRB varied greatly; except for the landscape shape index, the regression
coefficients of the aggregation index, interspersion and juxtaposition index, and patch density
overall remained positive. These findings can advance the policy enlightenment of the high-quality
development of the Yellow River Basin.

Keywords: urban expansion; carbon emissions; landscape pattern index; geographically and
temporally weighted regression; urban agglomerations; Yellow River Basin; China

1. Introduction

Global warming is a huge challenge facing humankind [1]. Greenhouse gases (GHGs)
generated by human activities are the culprit [2]. It is reported that 2% of global urban areas
generate approximately 75% of the global carbon emissions (CEs). The past century has
witnessed a great change in urban population growth and urban expansion worldwide [3].
From 2000 to 2010, global urban areas grew by an average of 5694 km? per year, resulting
in a net loss of 22.4 Tg carbon per year [4]. Urban expansion (UE) can also indirectly affect
carbon stocks, which is difficult to fully quantify [5]. Research found that, from 1985 to 2015,
approximately 12% and 9% of UE came at the expense of grassland and forest, respectively,
while UE in China is expected to create a 1800 km corridor of coastal cities from Hangzhou
to Shenyang [3]. China has been experiencing unprecedented urbanization since economic
liberalization began in 1978 [6]. According to the National Bureau of Statistics, in 2015,
China’s urban built-up area was 1.6 times that in 2005, reaching 52,102 km?. The non-
negligible eco-environmental issues caused by continuing UE has concerned the global
academics [7-9]. Urban agglomerations will be the main front of UE since it remains the
primary form of urbanization until at least 2035 [10]. As the strategic core area of national
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economic development, urban agglomerations shoulder the historical responsibility of
carrying the shift in the world’s economic center of gravity [11,12]. Although agglomeration
has promoted economies of scale and facilitated better infrastructure and services, the
development of urban agglomerations has also been accompanied by unprecedented energy
consumption, leading to growing challenges in eco-environmental issues related to climate
change [13-16]. Owing to intensive human socioeconomic activities, urban agglomerations
are inevitably becoming the major generators of CEs [10]. However, the spatial relationship
between UE and CEs has not been comprehensively and thoroughly examined. Existing
research has mostly focused on the impact of UE on CEs of city individuals, while studies
are rare at the scale of urban agglomerations from the perspective of urban landscape
metrics [17].

Currently, research is substantial concerning UE, and has mainly focused on the follow-
ing aspects. (1) Characterization of UE. Quantitative indexes, such as expansion intensity
and expansion direction, have been widely used to characterize the UE pattern [18,19].
Meanwhile, the extensive use of 35S has facilitated better understanding the spatiotemporal
evolution of UE [20]. Jiao et al. (2018) proposed a new landscape metric to characterize the
evolution process of UE and observed an increasingly decentralized spatial pattern [21].
(2) UE simulation. Since UE is a prevailing phenomenon worldwide, whether it exhibits
some particular features arouses the attention of scholars. Seto et al. (2012) found that
urban areas will increase by 1.2 million km? by 2030 under the current population den-
sity trend [3]. Guo et al. (2022) introduced the patch-based land use simulation (PLUS)
model to simulated UE of the Harbin-Changchun urban agglomerations under ecological
constraints and found that the PLUS model can better simulate UE at the scale of urban
agglomerations [22]. Nevertheless, although exhibiting similar population or economic
growth, countries will vary in the probabilities of UE. Seto et al. (2012) found that UE
likelihood in individual countries tends to exhibit both high spatial variability and high
spatial concentration, while some countries with low probabilities of UE show a high uncer-
tainty of expansion pattern, such as Turkey [3]. (3) Drivers of UE. Natural, socioeconomic,
and political factors are widely believed to be the traditional driving factors of land use
change [23]. However, the unified analysis framework of drivers of urban land expansion
has not reached a consensus [22]. Meanwhile, factors affecting UE vary greatly among
regions. For example, the leading contributor to UE in China is GDP, while that in India
and Africa is population [18]. (4) Impacts of UE on the eco-environment. The impacts of
UE on the eco-environment can be divided into two perspectives of direct and indirect
impacts. UE can directly affect natural habitats by converting them to urban use [24].
Mao et al. (2018) revealed that urbanization-induced wetland loss reached 2883 km? from
1990 to 2010 [25]. Among them, economically developed urban agglomerations are the
hotspots of urbanization-induced wetland loss in China. Furthermore, UE from 1992 to
2016 has resulted in an average 0.8% loss of dryland habitat quality [26]. Liu et al. (2019)
conducted research at the global scale to reveal the impacts of UE on terrestrial net primary
productivity (NPP) and found that global terrestrial NPP loss equaled ~9% of the CEs
from fossil fuel and cement emissions worldwide [4]. Although research is substantial
on the direct impact of UE on the eco-environment, the indirect impact of UE on natural
habitats is more severe than the direct one [9]. It is estimated that cropland expansion
contributes the greatest to natural area losses globally, while the indirect impact of UE on
natural area losses is significantly underestimated [9]. Ren et al. (2022) found that dryland
UE has indirectly affected nearly 60% of threatened species [26]. We can conclude that the
environmental impacts of UE have been extensively studied, while studies on the impacts
of UE on CEs still leave much to be carried out, especially at the urban agglomerations
level as they have become the major driver of CEs.

With the rapid development of urbanization in China, the impact of UE on CEs is
one of the current research hotspots in the field of environment and economy [27-30], and
understanding the impact of UE on CEs is crucial to the formulation of effective low-carbon
development policies. However, little is known about how UE affects CEs, especially in
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the UAYRB. To this end, this study introduced kernel density, the Gini coefficient, and
Markov chains to reveal the UE and CEI patterns in the UAYRB at the county level, and
explored the spatial heterogeneity of the impact of UE on CEI with the geographically
and temporally weighted regression (GTWR) model, and this provides a new perspective
and methodological framework for urban CEs research. The impact of UE on CEs in the
UAYRB in China has profound economic implications and practical significance. First,
understanding the correlation between UE and CEs allows for more efficient resource
allocation. Secondly, encouraging low-carbon sustainable urban development can promote
the development of green technologies and industries, which, in turn, can create new jobs
and promote economic growth. In terms of policymaking, identifying the impact of UE
on CEs can provide decision makers with information that can help them to formulate
effective urban planning and environmental policies to curb CEs while managing UE. This
study theoretically explores and analyzes the impact of UE on CEs to provide new ideas
for the theory of urban development and low-carbon transition. In the past, related studies
lacked an exploration of the UAYRB as a specific region, and, by revealing the dynamic
impact of UE on CEs, we provide experience and an important reference for CEs reduction
studies in similar regions. And, methodologically, the kernel density analysis and Gini
coefficient proposed for use in this study provide theoretical support and methodological
exploration for further research in this area.

Studies on the impacts of UE on CEs are not scarce. Krayenhoff et al. (2018) found a
nonlinear interaction between GHG-induced warming and corresponding UE in American
cities [8]. Liu and Zhang (2022) found that the positive trade-offs between UE and ecological
construction could mitigate CEs growth in China’s urban agglomerations [10]. Cheng et al.
(2022) revealed that cities with a larger population tend to have lower per capita CEs [31].
Actually, compared with low-density communities, high-density communities tend to have
lower per capita energy use [32,33]. Urban population expansion is usually accompanied
by urban area expansion, but an easily overlooked fact is that urban areas around the
world are expanding twice as fast as their populations on average [18,34]. Much has been
carried out to curb such expansion. However, contrary to what we believe—that land use
planning is an effective way to curb UE [35]—it actually stimulates fragmented UE [36],
though it is regarded as uneconomic, inefficient, and environmentally unfriendly [7,37].
The landscape pattern index can well characterize the UE pattern, which can facilitate
better understanding the impacts of UE on CEs.

How urban area expansion affects CEs in the urban agglomerations area with the
rapid development of urbanization remains an urgent issue that requires a prompt solution,
most notably regarding urban agglomerations of the Yellow River Basin (UAYRB). As an
important ecological barrier, food base, and economic zone in China, the Yellow River Basin
concentrates a large amount of chemical, energy, and production industries, making it an
ecologically fragile region with a high concentration of CEs and pollution [38]. The inherent
problems of unbalanced development and unfriendly ecological environment in the Yellow
River Basin require being solved by the development of urban agglomerations from point
to area [39]. Within this context, this research intends to address the gaps mentioned above
by proposing the following research objectives. (1) What are the UE patterns and CEs
intensity (CEI) in the UAYRB? (2) What is the spatial heterogeneity of the impact of UE on
CEl in the UAYRB?

2. Materials and Methods
2.1. Study Area

From west to east, the Yellow River flows through 9 provinces and regions, with a
total length of 5464 km and an area of 795,000 km?, accounting for 8.28% of the country’s
total. It is the second longest river in China and the fifth longest in the world. The Yellow
River and its coastal basin are among the most important birthplaces of the Chinese nation,
and they are also the main battlefield of national environmental civilization construction.
In 2021, the State Council of the Central Committee of the Communist Party of China
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upgraded the ecological protection and high-quality development of the Yellow River
Basin to a major national strategy, highlighting the strategic position of the Yellow River
Basin in the overall situation of national development and socialist modernization [39].
The UAYRB consists of 7 urban agglomerations, Shandong Peninsula Urban Agglomer-
ations (SPUA), Central Plains Urban Agglomerations (CPUA), Guanzhong Plain Urban
Agglomerations (GPUA), Lanxi Urban Agglomerations (LXUA), Jinzhong Urban Agglom-
erations (JZUA), Hohhot-Baotou—-Ordos-Yulin Urban Agglomerations (HBOYUA), and
Ningxia Urban Agglomerations (NXUA) along the Yellow River (Figure 1). The seven
urban agglomerations account for about 33.6% of the area of the Yellow River Basin, and
the proportion of the population and main economic indicators in China’s urban agglom-
erations is roughly between 20% and 25%. At the same time, that of the nine provinces
and regions in the Yellow River Basin is as high as 60~70% [40]. It is a high-density
population-gathering area in the Yellow River Basin, an important area for high-quality
economic development, a heavy-loaded area for inheriting the Yellow River culture and
promoting Chinese civilization, and a key area for comprehensive environmental pollution
control and ecological protection. Therefore, it has a very important strategic position in
the high-quality development of the Yellow River Basin.
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Figure 1. Study area.

2.2. Data Sources

The data in this study involved CEs and land use data. CEs data were sourced from
the open-source data inventory (https://db.cger.nies.go.jp/dataset/ ODIAC/, accessed
on 7 May 2024) [41]; these CEs data successfully estimate the spatial distribution of fossil
fuel CEs on a global scale by combining night-time lighting data and emission location
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profiles of individual power plants using an innovative emission modeling approach. The
spatial resolution is 1000 m. The land use change data were downloaded from the Data
Center for Resources and Environmental Sciences and the Chinese Academy of Sciences
(https:/ /www.resdc.cn/, accessed on 7 May 2024). The spatial resolution is 30 m. This
study used the proportion of urban land and the landscape pattern index to characterize
UE [42]. The proportion of urban land is the ratio of urban land area to the area of the study
unit, and the landscape pattern indexes were calculated in Fragstats v4.2.1 (Oregon State
University, Corvallis, OR, USA).

2.3. Methods

This study aims to analyze the impact of UE on CEs. We adopt a series of models to
assess the association between them to achieve this goal. Through these models (Figure 2),
we expect to reveal the impact of UE on CEs and provide a scientific basis for formulating
low-carbon development policies. To demonstrate the impact of UE on CEs in the UAYRB,
this study uses the urban land area share and the landscape pattern index to characterize
the spatiotemporal changes of UE, and, at the same time, we use the CEI as an indicator to
analyze the changes in CEs. By calculating these indicators, we use kernel density analysis
to reveal the dynamic change patterns of UE and CEI and analyze the imbalance of UE
and CEI based on the Gini coefficient. In addition, we apply Markov chains to predict
future changes in the trends of UE and CEI and reveal the impact of UE on CEI through the
GTWR model. The core analytical approach of this study focuses on showing the changing
patterns of UE and CEs in the UAYRB and further exploring the mechanism of UE’s impact

on CEL
| = o m oo
‘ Sttt dismien l Spatiotempcmfl distribution !
: : | :
E E UE patterns -/ | E
: P e | @ = 2000 |
' 2000 '__||i Percentage || Spatial pattern of | e ‘/E 2005 '
i 2005 ! i ofurban ! urbanlandscape #{. ; o v 2010 1
E v 2010 i [\ landarea ;i metrics D) UAYRB’s CEI and : V 2015 E
i v 2015 i \@ UE characteristics E v 2020 E
| ! 5 |

I 1
1 1
1 1
1 1
! S T S
b == L ossi ous 0 o 530 !
(BN SN ooow o os ooms o oo |
1 M 1
1\ years_/ S
1 e od ! 0811 0.184. 0005 0 a 1
' L ML o e om0 .
1 S N " o 0 0 1 34 !
NV T N L 0sos  oiss 0007 0002 sss 1
1 years ./ wmo T s e e )
;oyears - . L S S S
i W M s aws oks ome w1
1 1
| W0 o em om w4
L o o e e e e 1
UE patterns Spatial h ity of the impact of UE on CEI «—— CEI

1
. 1
! 2 4 y !

. . { X
Regression coefficient of P - H
Regression coefficient of urban landscape metrics d o g !
UE on CEI in the UAYRB Tt T - on CEI in the UAYRB 1
during 2000 — 2020 ILY' =By (v, + 3, (09,1, ) UL, +§ﬂk (¥ 1) Xy 5} during 2000 — 2020 - v
________________________________ Ay 1
- ik \
ke o
- P & 1
1
1
1
1
1

Figure 2. Basic flowchart of the method.
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2.3.1. UE Measurement

This study uses the proportion of urban land to visualize the spatial pattern and
changes in UE. We also introduced four landscape metrics—aggregation index (Al), in-
terspersion and juxtaposition index (IJI), patch density (PD), and landscape shape index
(LSI)—to describe the urban landscape in the UAYRB [43-45]. The Al examines the con-
nectivity between patches of each landscape type and is used to measure the degree of
aggregation of urban land. The IJI is used to assess the degree of interlocking and jux-
taposition between different land types. PD expresses the density of urban land in the
landscape, which can reflect the heterogeneity and fragmentation of urban land. The LSI, as
a landscape shape index, reflects the changes in the shape of land use patches in the process
of urbanization, and a high LSI value may indicate that UE has led to a more complex
shape of land use patches. These indicators can visualize the changing characteristics of
UE in the UAYRB.

2.3.2. CEI Assessment

The measurement of CEI in this study is expressed as the ratio of total CEs to area for
each unit [46], and the unit is t CO, /km?2. The calculation equation is as follows:

CEI; = CE;/ AREA; 1)

where CEl; is the CEs intensity in year t; CE; is CEs in year t; and AREA; is the area of
administrative units.

2.3.3. Kernel Density

Kernel density estimation is a nonparametric estimation, which has the advantage of
not relying on sample data and has been widely used by scholars [47,48]. The dynamic
evolutionary trend of the research elements is estimated by the density function to reveal
its changing rules. Here, we introduced the method of kernel density estimation to explore
the dynamic evolution law of UE and CEI in the UAYRB. We used the Gaussian function
as the kernel function and referred to Yang et al. (2023a) to calculate the kernel density
analysis [49].

2.3.4. Gini Coefficient

The Gini coefficient is often used to measure the degree of imbalance and insufficiency
of regional economic development [50]. This study introduced the Gini coefficient to
analyze the CEI and the spatial imbalance of the UE of the UAYRB. The Gini coefficient is
applied to assess the uneven spatial distribution of UE and CEI, thus revealing the uneven
spatial distribution of UE on CEL It can provide us with a new perspective to understand
the relationship between UE and CEL

2.3.5. Markov Chain

Markov chains are characterized by non-aftereffects, analyzing the transfer patterns
based on the current state of change in the study elements and thus predicting the future
trend of change [49,51]. Markov chains are introduced to analyze the trend of interconver-
sion between different orders of magnitude by constructing Markov transfer probability
matrices. Here, we introduced Markov chains to analyze the future trends of UE and CEI in
the UAYRB. Markov chain analysis can help us understand the spatiotemporal evolution of
UE and thus predict the future trend of CEL By analyzing the Markov chain of UE, we can
reveal the long-term impact of UE on CEI and provide a scientific basis for future urban
planning and CEI control.
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2.3.6. GTWR Model

This study employed the global regression (ordinary least squares method, OLS)
model without considering spatial factors to investigate the impact of UE on CEI in Chinese
urban agglomerations. The model was constructed as follows:

7
CEIl; = Bo + B1UL; + Z BiXyi + € (2)
k=2

where i represents a district or county, CEl; represents the CEs intensity value of a district
or county i, UL; represents the UL of district or county 7, Xy; represents the urban landscape
pattern index affecting the CEI of district or county i, and ¢; is the residual term.

The changes in urban land and CEI are panel data with multiple time series, while
changes in urban land do not immediately cause changes in CEI, and their effects may have
some lag effect [52]. The GWR only considers the spatial relationship of the cross-sectional
data at a single time, which is insufficient for studying time-series data. GTWR solves this
problem. The equation is as follows:

m
Y; = Bo(ui, vi, ti) + B (uj, 05, ) UL; + Y Bre(uz, 03, ) Xig + € 3)
k=2

where (u;, vj, t;) is the sample point with spatial coordinates and timestamps, m is the
number of samples, ¢; is the random error term, and B is the estimated local regression
coefficients. To make the time-series variation more apparent, in this study, the regression
results of every five years are averaged to compare the changes in driving mechanisms on
a ten-year scale.

3. Results
3.1. CEI in the UAYRB

The CElIs of the UAYRB in 2000, 2005, 2010, 2015, and 2020 were 10.131, 18.191, 26.816,
30.991, and 32.712 t CO, /km?, respectively, showing a steady growing trend during the
study period. The highest CEI in 2020 reached 1732.712 t CO, /km?, almost three times as
much as that in 2000. However, the mean CEI of the UAYRB is no more than 40 t CO,/km?,
with the highest value of only 32.712 t CO,/ km? in 2020. The standard deviation of CEI
in the study period exhibited a rocketing upward trend, indicating an obvious spatial
difference in the CEI of the UAYRB. Spatially, the high CEI was concentrated in the SPUA
and CPUA and scattered in the GZUA and JZUA during the study period (Figure 3). As
time went by, the CEI in these areas showed an increasing trend, while the proportion of
high CEI increased accordingly. The SPUA and CPUA showed the most obvious change
characteristics. The regions with low CEI west of the HBOYUA, west and the north of the
LXUA, and south of the NXUA exhibited no evident changes during the study period.

3.2. UE Patterns in the UAYRB

The proportions of urban land in the UAYRB in 2000, 2005, 2010, 2015, and 2020 were
6.7%, 7.8%, 10.3%, 10.8%, and 11.4%, respectively, showing an obvious increasing trend
during the study period (Figure 4). Similar to the spatial pattern of CEI, the regions with a
high proportion of urban land were concentrated in the SPUA and CPUA. Meanwhile, some
major cities of the other urban agglomerations also have a high proportion of urban land.
Over time, the spatial pattern of the regions with a high proportion of urban land showed a
westward expansion trend. The SPUA and CPUA were still urban agglomerations with the
most significant changes. Compared to the study period of 2000-2005, 2005-2020 witnessed
the proportion of urban land increasing more evidently.
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Figure 3. CEI in the UAYRB during 2000-2020. (a—e) are the CEI in the UAYRB in 2000, 2005, 2010,
2015, and 2020, respectively.
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Figure 4. UE patterns in the UAYRB during 2000-2020. (a—e) are the UE pattern in the UAYRB in
2000, 2005, 2010, 2015, and 2020, respectively.

160



Land 2024, 13, 651

To better reveal the spatial pattern of UE, we introduced four landscape metrics of
AL IJI, PD, and LSI to describe the urban landscape in the UAYRB (Figure 5). Statistically,
the Al in the UAYRB in 2000, 2005, 2010, 2015, and 2020 was 96.648, 96.655, 96.244, 96.284,
and 95.982, respectively, exhibiting an overall declining trend but remaining relatively
stable during the study period. Spatially, an Al greater than 90 covered the vast majority of
regions, while an Al greater than 96 shrunk quite obviously over time, especially in the
west of the UAYRB. The counties with a high IJI were most concentrated in the HBOYUA,
LXUA, and NXUA, while the SPUA and CPUA clustered in low -IJI counties. Notably,
the spatial pattern of a high IJI showed an eastward expansion trend over time. PD in
the UAYRB in 2000, 2005, 2010, 2015, and 2020 was 0.026, 0.029, 0.052, 0.054, and 0.065,
respectively, showing a steady growing trend. Spatially, SPUAs remained the regions
with higher PD, while counties with high PD tended to move west over time. The LSI in
the UAYRB in 2000, 2005, 2010, 2015, and 2020 was 2.112, 2.286, 3.854, 4.046, and 4.404,
respectively, also showing a growing trend. However, the spatial distribution pattern of
the LSI was quite different from the former three. In 2000 and 2005, an LSI lower than
15 covered almost the whole UAYRB. As time passed, counties with a high LSI mainly
occurred in the HBOYUAH and the JZUA.

Al I PD LSI

85.543 - 88.000 92.001-96.000 0.000-12.500 [N 40.001 -60.000 0.000~0.010 M 0.101-0.200 1.178-2.000
88.001-90.000 96.001-99.878 12.501-25.000 [N 60.001—100.000 0.011-0.030 | 0.201-0.800 2.001-5.000
[ 90.001-92.000 25.001 -40.000 0.031-0.100 5.001-15.000

Figure 5. Spatial pattern of urban landscape metrics in the UAYRB during 2000-2020.
3.3. Kernel Density of CEI and UE

The kernel density contours of the normalized CEI and UE are shown in Figure 6.
If the position of the contour lines is located near the 45° diagonal, it indicates that the
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study elements did not change drastically during the study period. Figure 6a and 6b
show the kernel density results for CEI over a 5-year and 10-year period, respectively.
It was found that the region of high values of CEI was continuously shifting to lower
values, which also indicates the weakening of CEI in the UAYRB. Furthermore, this was
further corroborated by the fact that the CEI shifted sharply to lower values over time.
Figure 6¢ and 6d show the trend of UE transfer over a 5-year and 10-year time span,
respectively. The results show that the kernel density contour peak was located near 45°,
indicating the basic stability of the UE and the continuous slowing down of the UE rate
in the UAYRB region. However, it is worth noting that, in some of the lower-value areas,
a significant shift in UE to higher values may occur, which suggests that the potential for
large-scale UE still exists in some counties.
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Figure 6. Kernel density contour map of CEI and UE. (a) is the kernel density of CEI with a time span
of 5 years. (b) is the kernel density of CEI with a time span of 10 years. (c) is the kernel density of UE
with a time span of 5 years. (d) is the kernel density of UE with a time span of 10 years.

3.4. Gini Coefficient of CEI and UE

The Gini coefficient of CEI and UE in the UAYRB during the study period is shown in
Figure 7. The result of the Gini coefficient reveals the imbalance of CEI and UE. Generally
speaking, the Gini coefficients of both CEI and UE were at high levels, indicating an
obvious spatial imbalance of CEI and UE in the UAYRB region. As for the change in the
Gini coefficient of CEI (Figure 7a), the CEI generally showed a downward trend, but the
change was not dramatic. The Gini coefficient of CEI decreased by 3.357% during the
study period, indicating that a slight decrease in the spatial imbalance of CEI occurred. The
change in the Gini coefficient of UE showed an overall decreasing trend, and its decrease
was greater than that of CEI, which is the same as in previous studies. Specifically, the
decline in UE amounted to 13.506%. Urban land expansion has gradually taken on a
regionally balanced pattern, partly attributed to China’s strategy of balanced regional
development.
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Figure 7. Gini coefficient of CEI and UE.

3.5. Markov Chain of CEI and UE

Markov chains are used to predict the future tendency of CEI and UE, and the con-
structed Markov transfer probability matrix is shown in Table 1. We broke CEI and UE into
L (Low), ML (Middle-Low), MH (Middle-High), and H (High) using quartiles as interval
points. The Markov transfer probability matrix for CEI with a period of five years showed
that CEI growth will still occur over the next five years. However, when combined with
the Markov transfer probability matrix for CEI with a period of 10 years, this tendency
to converge to higher values kept weakening. This demonstrates the slowing growth
rate of CEI as well. From the Markov transfer probability matrix of UE, the tendency to
converge to higher values was more obvious than that of CEI for the five years, indicating
the existence of the probability of larger-scale UE still occurring in the next five years. As
the time span increases, the likelihood of UE shifting to higher values increases further,
indicating that the UE remained in an increasing process.

Table 1. Markov transfer probability matrix of CEI and UE.

Variables Time Span Type L ML MH H Number
L 0.881 0.119 0 0 530
ML 0.013 0.812 0.175 0 527
> MH 0 0 0.889 0.111 496
H 0 0 0 1 491
CEL L 0.811 0.184 0.005 0 419
ML 0.012 0.650 0.337 0 412
10 MH 0 0 0.777 0.223 354
H 0 0 0 1 348
L 0.808 0.183 0.007 0.002 558
ML 0.006 0.691 0.291 0.013 540
5 MH 0 0 0.859 0.141 467
H 0 0 0.0167 0.983 479
UE L 0.642 0.308 0.044 0.007 455
ML 0.007 0.392 0.565 0.036 439
10 MH 0 0 0.688 0.313 304
H 0 0 0.027 0.973 335

Notes: L denotes low-level type; ML denotes medium-low-level type; MH denotes medium-high-level type; H
denotes high-level type.
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3.6. Spatial Heterogeneity of the Impact of UE on CEI

The regression coefficient of UE on CEI in the UAYRB in 2000, 2005, 2010, 2015, and
2020 was 1.111, 1.149, 1.210, 1.277, and 1.382, respectively, showing an increasing trend
(Figure 8). Overall, counties with regression coefficients above 0 covered the majority,
maintaining a relatively stable distribution pattern. Although areas with regression coeffi-
cients lower than 0 also exhibited similar stable distribution patterns, mainly concentrated
west of the UAYRB, the proportion of the lowest regression coefficient shrunk to a few
counties in the west of LXUA over time. The regression coefficient in the whole LXUA and
NXUA, the majority of areas of HBOYUA, remained negative during the study period. By
comparison, the regression coefficient in the JZUA and the SPUA was always positive. The
regression coefficient stayed between 0.001 and 2.000. In 2020, the regression coefficient
of two counties in the CPUA shifted from positive to negative. The spatial pattern of the
negative regression coefficient in the west of the GZUA showed a decrease at first but then
an increasing trend.

b

P 4112 --2.000

[ -1.999-0.000
0.001 —2.000
2.001 - 4.000
4.001 -8.000

0 500 1000 km
L

Figure 8. Regression coefficient of UE on CEI in the UAYRB during 2000-2020. (a—e) are the regression
coefficient of UE on CEI in the UAYRB in 2000, 2005, 2010, 2015, and 2020, respectively.

The regression coefficients of different urban landscape metrics on CEI in the UAYRB
varied greatly (Figure 9). Except for the LSI, the overall regression coefficients of the
remaining three landscape metrics were positive. The regression coefficients of the Al
on CEI in 2000, 2005, 2010, 2015, and 2020 were 14.500, 18.821, 22.325, 24.808, and 27.128,
respectively, showing a growing trend. Spatially, similar to the distribution pattern of the
regression coefficient of UE on CEI, the CPUA and SPUA concentrated the high regression
coefficient. The proportion of the low regression coefficient in the west showed a tendency
to shrink. The regression coefficients of the IJI on CEI in 2000, 2005, 2010, 2015, and
2020 were 0.358, 0.433, 0.475, 0.512, and 0.528, respectively, showing an increasing trend.
However, the regression coefficients in some areas were negative, concentrated in the east
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of the SPUA and the whole GZUA. It is noteworthy that the regression coefficients in
the whole GZUA was positive in 2000. Meanwhile, the spatial distribution of negative
regression coefficients in the east of the SPUA and the north of the HBOYUA narrowed over
time. The regression coefficient of PD on CEI showed a steady downward trend during
the study period, but remained positive. However, its spatial distribution pattern changed
significantly. The regression coefficient in the west of the UAYRB was generally higher
than that in the east. The south of the CPUA remained the region with a low regression
coefficient while the southwest of the NXUA remained the region with a high regression
coefficient. The regression coefficient of the LSI on CEI remained negative. The most
significant changes happened in the GZUA, while the remaining regions almost stayed
the same with limited changes. Regions with the lowest regression coefficient tended to
narrow while the high regression coefficient expanded to the east of the GZUA and the
southwest of the CPUA.

2000°

0 250 500km
[

b
2005

I 0.076 -5.000 35.001 - 50.000 I -2.148--1.000 1.001 -2.000 I 7.011 -10.000 25.001 - 40.000 I -11.063 - -7.000 -2.999 --1.000

[ 15.001-20.000 | 50.001-65.000 [ -0.999-0.000 [T 2.001-3.200 [0 10.001 - 15.000 [ 40.001 - 49.000 [071-6.999--5.000 [ -0.999-0.000
20.001 - 35.000 0.001 - 1.000 15.001 -25.000 -4.999 - -3.000

Figure 9. Regression coefficient of urban landscape metrics on CEI in the UAYRB during 2000-2020.

4. Discussion
4.1. Comparing with Previous Findings

Compared with previous studies, this study explored the impact of UE on CEs
more comprehensively. It filled the research gap on the UAYRB, a region where current
related studies have focused on specific scale units, such as global [53], national [54,55],
provincial [56], and prefectural [57-60]. And, fewer scholars have studied the impact
of UE on CEI using the county as a unit of study in the UAYRB. Some scholars also
found that the CEs of the UAYRB increased sharply in general from 2000 to 2020 [61,62],
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and showed a pattern of high in the middle-east and low in the northwest [63], and
that UE exacerbated CEs [53], which was in line with the results of this study. In
addition, the urban spatial pattern influences the CEs status [64], and existing studies
have focused on three aspects of urban landscape patterns: urban sprawl, urban form
complexity, and urban compactness. It has been recognized that urban form (the
spatial pattern and structural features of urban land use) is related to urban CEs;
nevertheless, there are only a few studies that have empirically assessed the direct
impacts and their relationship with CEs. Fang et al. (2015) found a positive association
between the growth of urban areas and CO; in 30 provincial capitals in China, that an
increase in urban continuity had a dampening effect on CEs, that an increase in the
complexity of urban shapes positively affected CEs, that measures to make China’s
existing cities more compact may actually help to reduce CEs, and that increased
fragmentation or irregularity of urban form may lead to increased CEs [60]. Ou et al.
(2013) quantitatively analyzed the aspects of the impact of different urban shapes on
CEs and found that increased fragmentation or irregularity of urban shapes may also
lead to more CEs and that a compact development pattern of urban land use helps to
reduce CEs [59]. The regression results of this study were the similar as those of the
above studies. It was found that the regression coefficient between the LSI and CEI was
negative, indicating that there was a negative association between the LSI and CEI, and
the larger the value of the LSI, the more complex the landscape shape and the fewer
CEs. This suggests that increased continuity in the urban landscape has a dampening
effect on CEs. The positive regression coefficient between the Al and CEI indicates
that CEs increase as urban form complexity increases. High LSI values may indicate a
higher complexity of landscape patches, representing a richer ecosystem or green space
environment within the city, helping to absorb and fix a large amount of CEs, thereby
reducing CEs [65]. High Al values may indicate that urban interior landscape patches
are more closely connected, reflecting the increasing degree of urbanization, resulting
in more intensive and convenient transportation, concentration of industrial activities
and intensification of land use, which may lead to more transportation emissions and
energy consumption, as well as more industrial and commercial consumer electronics,
thereby increasing CEs [66]. In addition, the positive regression coefficients between
PD and the IJI and CEI also indicate that the increase in these urban landscape metrics
may lead to increased CEs.

4.2. Spatiotemporal Differences in the Impact of UE on CEI

UE is a prevailing phenomenon in most parts of the world [67]. It is projected that
urban areas are expected to triple between 2000 and 2030 [3]. Corresponding to UE, CEs in
the past century have also witnessed a rocketing rise [68], leading to an increase in global
average surface temperature [69]. It is estimated that such a global warming phenomenon
will continue in the next century [70]. Urban areas account for 71% of global CEs, while
that will increase to 76% by 2030 [71]. However, the situation in China is even more
severe. It is reported that 84% of China’s commercial energy usage comes from urban
areas [72], while every 1% increase in urbanization in China is associated with a 1% increase
in CEs [73,74]. Although research found that some counties in China have achieved the
decoupling relationship of urbanization and CEs, such a status is not stable [75]. Much
has been carried out to reveal the eco-environmental effects of UE. However, much less is
known about the spatial heterogeneity of the impact of UE on CEs.

This study analyzed the impact of UE on CEs and their spatial heterogeneity in the
UAYRB, China. The results show that both the CEI and UE of the UAYRB showed an
obvious increasing trend during the study period. The spatial distribution of them also
showed similar distribution patterns, both concentrated in the SPUA and CPUA. These
two urban agglomerations have developed relatively rapidly, and their favorable location
and vast plain area enable them to take the lead in the entire Yellow River Basin. Moreover,
the kernel density contours of the normalized CEI and UE revealed the weakening of CEI
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and the potential for large-scale UE in some counties in the UAYRB. Xing et al. (2022)
found the same evolution trend of CEI and a similar kind of UE in the urban agglomeration
in south-central Liaoning province [76]. They found that, from 2010 to 2016, the average
annual expansion rate of the urban agglomerations in south-central Liaoning province
increased from 3.93% to 5.8%, with the expansion intensity increased from 0.211 to 0.525 [76].
However, the UE rate in the UAYRB region continuously slowed down. That is also the case
in the Changsha-Zhuzhou-Xiangtan Urban Agglomerations [77-79]. Tian and Zhao (2024)
found that UE in the Changsha-Zhuzhou—Xiangtan Urban Agglomerations decreased in
2015-2020 compared to the previous period [79]. Meanwhile, the finding in the three coastal
agglomerations in China by Wen et al. (2019) also confirmed that UE is a major trend in
the development of urban agglomerations [80]. Generally, affected by differences in urban
resource endowment, development mode, and development direction, the UE and CEs of
different cities also differ in the development process, showing spatial imbalance among
regions. With the advance of time, the degree of CEs will change and the evolution trajectory
of different cities will also change with different development processes. Meanwhile, in
this study, the Gini coefficients of both CEI and UE were at high levels, indicating an
obvious spatial imbalance of CEI and UE in the UAYRB region. It is noteworthy that UE has
gradually taken on a regionally balanced pattern in the UAYRB during the study period,
which can be partly attributed to the implementation of some development strategies in
China. Such a phenomenon can also be found in the Changsha—Zhuzhou—Xiangtan Urban
Agglomerations [79]. After the proposal of a “two-type society” in 2007, the CEs reduction
of urban land in urban agglomerations has gradually achieved remarkable results [81].
Meanwhile, since the 18th National People’s Congress, “ecological civilization construction”
has been carried out, carbon-saving and emission reduction work have been continuously
promoted, and the CEs of all districts and counties have been effectively controlled.

The synergistic relationship between UE and CEs has been confirmed in many studies.
Tian and Zhao (2024) adopted Pearson correlation analysis and found that there was a high
positive correlation between urban land area and CEs; that is, an increase in urban land
area would lead to a simultaneous increase in CEs [79]. Xing et al. (2022) also confirmed
the same synergistic expansion state of UE and CEs [80]. However, such synergies will
change over time. As shown in this study, the Markov chain of CEI and UE revealed the
slowing growth rate of CEI, while UE remained a continuing increasing process. This also
proves to some extent that the effect of emission reduction policies implementation may
be beginning to show. However, the spatial distribution of the impacts of UE on CEIl may
reveal that such policy effects may vary greatly among regions. In areas where UE and CEI
values are high, the impacts of UE on CEI remain mostly positive with a lower regression
coefficient, while, in places where UE and CEI values are low, the impacts of UE on CEI
remain mostly negative with a higher regression coefficient. The difference in the response
degree to the policy, the intensity of implementation, and the level of technology in different
regions are the main reasons for the difference in the effectiveness of policy implementation.
Areas with a relatively backward economic level, such as the LXUA and NXUA, have
policies that restrict economic development but favor environmental protection that are
often not well implemented. Meanwhile, policies are often ineffective when implemented
due to the insufficient level of technology to support the low-carbon development of
energy-consuming industries in the urbanization process in these regions. Therefore, the
spatiotemporal differences in the impact of UE on CEs can be quite different, leading to
significant spatial differences in the high-quality development level of the UAYRB, with the
high-quality development index in the middle and lower reaches higher than that in the
middle and upper reaches [82]. This conclusion is unanimously supported by Fang (2020)
and Sun et al. (2022). Fang (2020) found that the higher upstream the Yellow River Basin,
the lower the development of urban agglomerations [40], while Sun et al. (2022) revealed
that the coordination degree of the upstream urban agglomerations is lower than that in
the middle and lower reaches [39].
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4.3. Policy Implications

Within the context of dual-carbon goals and new urbanization, ensuring stable eco-
nomic growth while reducing CEs is one of the most important tasks for achieving high-
quality urban development. UE is one of the most important manifestations of urban
agglomerations development, and a reduction in the level of CEs in response to UE is con-
ducive to the low-carbon development of urban agglomerations [79]. This study analyzed
the impact of UE on CEs in the UAYRB region and proposed policy recommendations for
low-carbon development in the following areas.

Although the UE rate in the UAYRB has slowed down, it is still in the expanding
progress and some counties have the potential for large-scale UE. Once the process is out
of control, it will inevitably lead to an unnecessary waste of resources and inefficient use of
land. The expansion of urban land may also bring the possibility of occupying cultivated
land, forest land, and other ecological land, which further aggravates the ecological and
environmental problems of the city [83]. Therefore, it is highly recommended to formulate
relevant legal policies to strictly control the urban sprawl. Meanwhile, strong penalties
for illegal sprawl should be applied to enforce the policy to the end. In addition, urban
planning is an important means of limiting urban sprawl [84], and construction land
development needs to be carried out in strict accordance with the requirements of urban
planning to ensure the sustainable development of cities. Local governments should
abandon the idea of land finance and prioritize the healthy governance of cities and the
realization of green and sustainable development to meet the needs of the people’s happy
lives [85].

Due to the needs of economic development, some regions are still at a stage of high CEs.
In addition, although relevant energy-saving and emission reduction measures have been
taken, they have not achieved the desired effect of emission reduction. For these areas, land
resources should be used economically and intensively to avoid the disorderly expansion
of urban land in the study area and realize the compact development of urban space. The
proportion of tertiary industry should be increased, some high-polluting industries should
be eliminated, advanced technologies should be introduced to improve CEs efficiency,
and research and development of key technologies should be accelerated to achieve CEs
reduction. At the same time, green areas should be increased to achieve carbon sink increase
so as to achieve a strong decoupling as soon as possible and to enter into the stage of a
low-carbon economy.

According to the spatial pattern of urban land use in the urban agglomerations of the
UAYRB from 2000 to 2020 in the results of the study, including the Al, IJI, PD, and LSI,
first of all, the overall decreasing trend of the Al indicates that the urban landscape of the
UAYRB as a whole shows a certain degree of a discrete trend during the study period, which
may be related to factors such as UE and land use changes. Second, the spatial pattern of
the IJI shows a tendency to expand to the east. PD and the LSI continued to grow during the
study period. According to the regression coefficients of urban landscape indicators on CEI
in the research results, we can focus on areas with high regression coefficients, prioritize
the formulation of targeted environmental protection policies and measures to cope with
the trend of their growth in urban landscape indices, and design targeted environmental
protection programs according to the distribution of the regression coefficients in different
areas. For example, ecological protection and greening can be strengthened in CPUA and
SPUA areas. In the process of policy formulation, it is necessary to consider the trends and
spatial distribution patterns of the above indicators, strengthen the ecological protection
and restoration of urban fringe areas, optimize the urban layout, and rationally guide urban
development and low-carbon transformation.

4.4. Limitation and Future Directions

Although we tried to reveal the impact of UE on CEs in UAYRB with a series of
analysis models, certain limitations still exist in this research. First of all, this study only
analyzed the impact of UE on CEI, while the impacts of UE on CEs per GDP, CEs per person,
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or total CEs were still not clear. Different ways of quantifying CEs may produce more
pronounced differences in results. In addition, this study explored the impact of the urban
landscape pattern index on CEs with the GTWR model, while the internal mechanism of
the impact of UE on CEs has not yet been clarified. Meanwhile, in this study, the impact of
UE on CEs was analyzed only at the county scale, while a smaller scale can capture more
regional differences. Therefore, the next step can be to conduct a smaller-scale analysis
based on improved data accuracy to capture more features of regional differences. These
limitations point to future research directions.

5. Conclusions

In this study, we analyzed the UE patterns and CEI in the UAYRB at the county level
with kernel density, the Gini coefficient, and Markov chains, and revealed the spatial
heterogeneity of the impact of UE on CEI with the GTWR model. The results show that
CEI and UE in the UAYRB both showed a steady growing trend during the study period.
The kernel density contours of the normalized CEI and UE revealed that the region
with high values of CEI was continuously shifting to lower values, while the UE rate
continuously slowed down in the UAYRB region. The Gini coefficients of both CEI and
UE were at high levels, indicating obvious spatial imbalance in the UAYRB region. The
Markov transfer probability matrix for CEI with a time span of five years showed that
CEI growth will still occur over the next five years, while that of UE was more obvious,
indicating the existence of the probability that larger-scale UE will still occur in the next
five years. Counties with a regression coefficient of UE on CEI higher than 0 covered
the majority, remaining as having a relatively stable distribution pattern. The regression
coefficients of different urban landscape metrics on CEI in the UAYRB varied greatly;
except for the LSI, the regression coefficients of the Al, IJI, and LSI remained positive.
The study findings can enlighten policy implications for the high-quality development
of the Yellow River Basin. The above analysis showed that, during the study period,
CEs and UE in the UAYRB have continued to increase, showing obvious uneven spatial
distribution. Looking forward to the next five years, the trend of CEs and UE will
continue to grow, while the growth rate of CEs will gradually slow down and UE may
be further accelerated in the following decade. The urban landscape showed a clear
trend of discretization. Based on the urban landscape index and regression results,
the characteristics of each region of the UAYRB must be fully considered in order to
rationally guide urban development paths and realize low-carbon transformation.
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Abstract: The energy-driven expansion of artificial surfaces has resulted in severe ecological problems.
Scientific evaluation of regional ecological resilience under different scenarios is crucial for promoting
ecological restoration. This study chose the Shanxi-Shaanxi-Inner Mongolia Energy Zone (SEZ) and
modeled an ecological resilience evaluation based on resistance, adaptability, and recovery. Land-use
change and ecological resilience from 1980 to 2020 were then analyzed. Moreover, the SEZ land-use
patterns and ecological resilience in 2030 were simulated under business as usual (BAU), energy
and mineral development (EMD), and ecological conservation and restoration (ECR) scenarios. The
results showed that (1) the SEZ was dominated by cultivated land, grassland, and unused land.
(2) Ecological resilience showed a changing trend of decreasing and then increasing, with high
ecological resilience areas mainly located in the Yellow River Basin, whereas low ecological resilience
areas spread outward from the central urban areas. (3) The ecological resilience level was the lowest
under the EMD scenario and the highest under the ECR scenario. This study not only expands the
analysis framework of ecological resilience research but also provides scientific support for ecological
conservation in ecologically fragile areas with intensive human activity worldwide.

Keywords: ecological resilience; PLUS model; multi-scenario simulation; land use

1. Introduction

Energy development zones, as a crucial energy supply to ensure sustainable global
socio-economic development, contain an abundance of energy resources, including oil,
natural gas, coal, and renewable resources. Energy development dominates production
and construction activities in these zones, and energy-based industries play a major role in
regional economic development [1]. Energy development zones are one of the areas with
the most intense human activities [2]. For a long time, the irrational development of energy
and mineral resources has been accompanied by the piecemeal expansion of construction
land, occupying a large amount of ecological space [3], which poses a serious threat to the
ecosystems. Therefore, scientific evaluation and prediction of the ability of ecosystems
in energy development zones to withstand risks is an effective measure to address the
growing unsustainability problems.

The concept of ecological resilience characterizes the ability of ecosystems to absorb,
resist, adapt, and recover from disturbance [4], and is of great significance in guiding energy
development zones to promote ecologically sustainable development. Resilience was first
introduced into the field of ecology by the ecologist Holling [4], and research achievements
such as resilience concept identification [5,6] and indicators for resilience evaluation [7,8]
have provided theoretical support for ecological resilience research. However, in practical
application, it is even more important to construct a reasonable quantitative methodolog-
ical framework for regional ecological resilience. Current research is focused on three
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main aspects. Firstly, there is a focus on the impact of human activities on the ecological
resilience process [9]. Research has shown that the expansion of construction areas and
a development mode that purely pursues economic benefits can reduce the quality of
ecosystem services [10]. Secondly, there have been studies combining the research methods
of systems theory and ecology to evaluate the level of ecological resilience at different
scales [11], explore its evolution process, and formulate development plans [12,13]. Lastly,
attribution analysis of ecosystem change has been conducted to analyze the influencing
factors of ecosystem change [14,15], and it was found that the level of urbanization, urban
spatial patterns, and topographic conditions are key factors affecting ecological resilience.
These studies provide a solid foundation and different perspectives for assessing ecological
resilience.

As a hot research topic, the complex connotations of resilience have not been con-
sistently finalized. For example, Macgillivray and Grime [16] believed that there may
be a trade-off between resilience and resistance; Hodgson et al. [17] proposed that con-
cepts of resistance and recovery can complement each other. Previous research [10,11]
has illustrated that multiple processes influence resilience evaluation and that a single
indicator cannot simply be used to measure resilience. This implies that it is necessary
to establish appropriate evaluation frameworks based on different research objects. In
2019, Grafton et al. [18] proposed that social-ecological systems can be measured using
the “3R model”, which refines the dynamic process of resilience and has been initially
explored in empirical case studies [19]. They explored resistance, recovery, and robustness
as three important attributes of socio-ecological system resilience, and such definitions
provide scientific and practical guidance on how different systems can achieve resilience.
However, for energy development zones, which are vulnerable to human activities, the
situation is somewhat different. It is crucial to focus on the adaptability of the ecosystems
to disturbances [20] during ongoing activities like mining operations. Thus, this paper
considers adding an “adaptability” index to modify the existing “3R” conceptual model to
explore whether ecosystems can positively adapt to external disturbance by adjusting their
internal processes when the disturbance continues to occur. In summary, this paper argues
that the ecological resilience of energy development zones can be viewed as the ability
of regional ecosystems to respond at different stages of disturbance. Ecological resilience
is discussed comprehensively from three aspects: the resistance of the ecosystem in the
transient or short-term period when the disturbance occurs, the adaptability during the
continuation of the disturbance, and the recovery after the disturbance ends. These three
are interconnected and indispensable and work together for ecological resilience, although
their focus varies at different periods when disturbance occurs.

Some existing methods of constructing an ecological resilience evaluation index sys-
tem through statistical data gradually show the drawbacks of different statistical calibers,
missing data, and subjectivity [21,22]. In addition, most of the existing methods for measur-
ing regional ecological resilience adopt the “scale-density-form” ecological resilience model
based on administrative boundaries [21,23], which focuses on the impacts of human activi-
ties on the ecological environment, and less on natural factors such as land use, climate
change, and topographic conditions. Land use, as a visual manifestation of the interaction
between natural and human factors on the earth’s surface [24,25], is an intrinsic driver of
the evolution of ecological resilience in the SEZ [24], and land-use data are easier to access
and collect than statistical data. Therefore, this paper uses land-use change as an endoge-
nous drive to portray the changing law of ecological resilience. Furthermore, during the
economic transformation and ecological civilization construction in energy development
zones, conducting multi-scenario simulations can help clarify the future regional land-use
expansion dynamics [26,27]. This, in turn, can offer valuable guidance in preparing for
potential disturbances in regional ecosystems caused by uncertain risks [28]. Compared
to traditional land-use simulation models [27,29,30], the PLUS model integrates the Land
Expansion Analysis Strategy (LEAS) and CA model using a multi-class stochastic patch
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seed. This integration results in a more precise and efficient land-use simulation model [31].
The paper chose the PLUS model as a tool to simulate trends in land-use changes.

The issue of declining ecological resilience based on land-use changes must be brought
to the forefront of global attention, particularly in typical energy zones [32,33]. Energy
development zones are confronted with the critical problem of uncontrolled expansion
of construction land and degradation of ecological land. This creates a conflict between
economic development and ecological protection [34,35], which must be regulated and
optimized in advance. This paper focuses on the SEZ, a critical energy security base in
China with a delicate ecological environment, as a case study site. The objective is to deepen
the basic meaning of ecological resilience and establish a practical and adaptable assessment
framework for ecological resilience based on land-use change in energy development zones
worldwide. The results could offer initial insights into protecting ecological resilience and
optimizing land use in ecologically fragile energy development areas worldwide. The
potential links among resistance, adaptability, and recovery are explained and used to
develop the ecological resilience evaluation model. Local spatial autocorrelation and the
PLUS model are then used with the aim of (1) elucidating spatial and temporal changes
in land use and ecological resilience in the SEZ from 1980-2020; (2) exploring spatial
differentiation patterns of ecological resilience and the spatial agglomeration pattern of
energy development enterprises in the SEZ in 2020; (3) simulating evolution patterns of
regional land use and ecological resilience in 2030 under the three scenarios of business as
usual (BAU), energy and mineral development (EMD), and ecological conservation and
restoration (ECR).

2. Research Framework
2.1. Conceptual Framework for Ecological Resilience Evaluation in the SEZ

Ecological resilience is a dynamic process that is constantly changing and challenging
to characterize with just one variable [17]. A conceptual breakdown of ecological resilience
is crucial. This paper considers a comprehensive portrayal of the ecological resilience
of the SEZ in terms of resistance, adaptability, and recovery and needs to elucidate the
interconnections among these three aspects.

As shown in Figure 1, the focus on the ability of ecosystems to respond to external
disturbances may differ at different stages. When ecosystems located in energy develop-
ment areas respond to external disturbances such as mining operations and land expansion
for construction, their ability to resist the disturbances in the transient or short term by
relying on their conditions [17], such as the natural environment and biodiversity, is called
resistance. In reality, ecosystems often require a longer period to respond to external
disturbances to assess their ability to adapt to such disturbances. Contrary to episodic
natural hazards like floods and earthquakes that threaten the region’s ecological resilience,
human activities such as mining operations, while constituting external disturbances to
the SEZ’s ecological resilience, are crucial for sustaining and driving local and broader
economic benefits. Therefore, more attention needs to be paid to the ability of ecosystems
to continuously adapt themselves as disturbances continue. This paper introduces the
index of “adaptability” as an important aspect of ecological resilience evaluation based
on the 3R model [18]. Ecosystems are considered resilient if they can adapt positively to
external disturbances over an extended period [20]. The ability of an ecosystem to transition
from a disturbed state to a stable state is referred to as recovery [19], which is a specific
manifestation of ecological resilience after the end of external disturbances. Ecosystems
in energy development zones may have the three abilities of resistance, adaptability, and
recovery described above, but with different emphases, in the overall process of facing
external disturbances. Energy development zones’ ecosystems may have a higher chance
of recovering to a stable state through human interventions like land reclamation and refor-
estation. However, this does not necessarily mean that their ability to resist risks initially
and adapt to disturbances in response to risks is also high. Thus, a complete assessment
of regional ecological resilience requires considering all three aspects. Unlike the early
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prevention of natural disasters, this paper did not introduce the concept of early prevention
into the SEZ ecological resilience evaluation model but expressed it by simulating future
trends through multiple scenarios.

Irresistible
point in time

Transient
{or short-term)

During
Mining operation Resistance | Adaptability
Expansion of I
construction land
Disturbance —»  Srart
Stable state Recovery B
After

Figure 1. The conceptual framework for ecological resilience evaluation in the SEZ.

2.2. Framework for the Selection of Indices

Ecosystem resistance refers to the ability of an ecosystem to maintain its structural
functions against short-term and transient external disturbances [17,36]. This aligns with
the concept of ecosystem services. The benefits that ecosystems and ecological processes
provide to sustain human survival and development are called ecosystem services [37].
From the perspective of human-nature coupling, healthy and resistant ecosystems should
sustainably provide a range of valuable ecosystem services to fulfill human requirements
while maintaining structural and functional integrity [38]. In the face of external per-
turbations like climate change, human activities, and natural disasters, these pressures
can diminish both the quantitative and qualitative aspects of ecological services [39,40].
Consequently, ecosystems must be able to deliver sufficient and sustainable ecosystem
services [41]. Ecosystems with limited services may become so fragile that they are unable
to resist external disturbances and when disturbed struggle to provide ecosystem services
and functions at the same level of value as before [40]. According to the Millennium Ecosys-
tem Assessment, over 60% of ecosystem services are currently degraded. This degradation
can lead to ecosystems losing the ability to support and protect themselves from external
disturbances, which can ultimately pose a threat to both regional and global ecological
security [42]. Hence, assessing the value of an ecosystem’s services rendered at specific
intervals over time can, to some extent, reflect the integrity of its structure and functioning,
along with its resistance and ability to withstand risks.

This requires appropriate valuation of ecosystem services, which can be done using
either value quantity or physical quantity assessments. Fixed-point observations facilitate
the application of the physical quantity method in small-scale areas, yet obtaining data for
large-scale areas poses a greater challenge [43]. Ecosystem service value (ESV) is a measure
of the amount of value of ecosystem service functions using a monetization method [41],
which is widely used in empirical studies due to its simplicity and practicality. The
ecosystem service value approach was initially utilized in a study by Costanza et al. [44]
for global ecosystems and biospheres, where the global ecosystem services” value was
calculated. Then Xie et al. [45] developed a Chinese ESV equivalent factor table on this
basis, which has been widely applied. Moreover, the ESV method, known for its ease of
aggregating various services, proves suitable for comparative analyses of ecosystem service
dynamics across different time frames and land-use scenarios. This paper employs ESV
calculations to delineate ecosystem resistance.
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Ecological adaptability is the ability of an ecosystem to continuously adjust itself in
response to persistent external perturbations and internal demands [16,46]. The more stable
the landscape structure of an ecosystem is, the more adaptable it is to external disturbances.
The ecosystem landscape index was employed to characterize ecosystem adaptability,
with landscape heterogeneity and connectivity reflecting the stability of the ecosystem
landscape structure. Concerning these factors, the Shannon diversity index is sensitive
to the non-equilibrium distribution status of each patch type in the landscape, and the
area-weighted fractal dimension reflects the complexity of landscape patch shapes, both
of which reflect landscape heterogeneity well; landscape fragmentation characterizes the
degree of fragmentation in which the landscape has been segmented, and was used to
measure landscape connectivity in this paper.

Ecosystem recovery reflects the ability and potential of an ecosystem to recover from
a disturbed state to a stable state after an external disturbance has ended. Referring to
the ecological resilience model and coefficients proposed by Peng et al. [38], this study
believes that when an ecosystem encounters disturbances, unused land that has not been
affected by human activities has a greater capacity for resilience, whereas the human-
dominated construction land has a lower recovery and suffers from greater damage in the
face of disturbance.

3. Materials and Methods
3.1. Study Area

The SEZ (37°21'-40°16’ N, 108°56'-111°29’ E) is located in the middle and upper
reaches of the Yellow River in China, at the junction zone of Shanxi and Shaanxi Provinces
and the Inner Mongolia Autonomous Region, and covers a total of three provinces (au-
tonomous regions), five cities, and 13 counties (districts, banners) (Figure 2).
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Figure 2. Location of the SEZ.

The SEZ is situated in the northern transitional zone of China, where agriculture and
animal husbandry are intertwined, and consists of five major geomorphological types:
loess hilly and gully areas, windblown sand areas, earth-rock mountainous areas, alluvial
plains, and arid grassland areas. In addition, the SEZ is a key national soil erosion control
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area and a key supervision area for soil and water conservation, with abundant reserves of
energy and mineral resources, such as coal, oil, and natural gas. In 2020, the region had a
population of 3.97 million, a GDP of CNY 6157.46 billion, and a construction land area of
2247.22 km?. With intensive human activity and a prominent ecological status, the region
is a national energy security guarantee base and an area sensitive to global climate change,
making it an ideal case study for regional ecological resilience.

3.2. Data Sources

The research data in this paper are mainly land-use data, the driving factor data

needed for the PLUS model, and other socio-economic data. The specific research data are
shown in Table 1.

Table 1. Detail of all data.

Category Data Years Spatial Resolution Data Sources
CAS (https:/ /www.resdc.cn/,
Land-use data Land use 1980-2020 30m accessed on 19 November 2023)
Annual average temperature 2020 1000 m CAS
Annual average precipitation
Soil type - 30m CAS
Environmental data Geospatial Data Source
DEM 2020 30m (https:/ /www.gscloud.cn/,
accessed on 19 November 2023)
Calculated from DEM data in
Slope 2020 30 m ArcGIS
GDP 2019 1000 m CAS
POP 2019 1000 m CAS
Distance to primary road
Distance to the secondary road
Distance to the tertiary road OpenStreetMap (https:
Socio-economic - - / /www.openstreetmap.org/,
data Distance to railway accessed on 20 November 2023)
2020 30m

Distance to highway

Distance to open water

Distance to county
(district/banner) governments

Baidu Maps
(https:/ /map.baidu.com/,
accessed on 20 November 2023)

Land-use data. The land-use data were obtained from the Resource and Environ-
ment Science Data Center of the Chinese Academy of Sciences (CAS). According
to the classification rules formulated by the CAS [47], land use was classified into
six types: cultivated land, woodland, grassland, water body, construction land, and

Driving factor data. When using the PLUS model for multi-scenario simulations, driv-
ing factors must be produced, including environmental factors and socio-economic
factors. In addition to those shown in Table 1, the distance to the county (district,
banner) administrative center and individual road levels were calculated using the

1.

unused land;
2.

ArcGIS 10.3 Euclidean distance tool;
3.

Other socio-economic data. Grain sowing area and production data in the SEZ were
obtained from the 2001-2021 Statistical Yearbooks of each county and district. Grain
prices were obtained from the “National Compendium of Agricultural Product Costs
and Benefits”. Energy development enterprises in the SEZ were selected from the
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2020 list of key pollutant discharge units by the ecological environment bureaus of
each county (district, banner), and the coordinate information was obtained from the
Baidu coordinate picking platform and transformed into WGS84 coordinates.

3.3. Methodology for the Calculation of Indices

Based on clarifying the connotation of ecological resilience in the SEZ, this paper
referred to the relevant studies [48,49], and chose suitable calculation methods for each
index to precisely depict the resistance, adaptability, and recovery of ecosystems in the SEZ.

3.3.1. The Resistance Index

The ESV equivalent factor table was corrected by using one standard equivalent value
equal to 1/7 of the average grain yield market value in the SEZ [50]. Taking the average
grain yield of 3351.03 kg-hm~2 from 13 counties (districts and banners) in the SEZ from
2000 to 2020 as a substitute for the grain yield, and taking the national average grain selling
price of CNY 2.26-kg ! from 2011 to 2020 as the grain price, the ESV equivalent factor in
the SEZ was calculated to be CNY 1081.90-hm~2, and the ESV of land-use types in the SEZ
was obtained (Table 2).

Table 2. Coefficients of ESV of different land-use types in the SEZ (CNY-hm~2-a~1).

Ecosystem Ecosystem Cultivated Water Construction  Unused
Services Sub-Services Land Woodland Grassland Body Land Land
Food production 919.62 313.75 108.19 865.52 0 0
Supply Raw material
services production 432.76 714.05 151.47 248.84 0 0
Water supply 21.64 367.85 86.55 8968.95 0 0
Gas regulation 724.87 2347.72 551.77 833.06 0 21.64
Climate regulation 389.48 7032.35 1449.75 2477.55 0 0
Regulation Environmental
corvices purification 108.19 2088.07 476.04 6004.55 0 108.19
Hydrological 292.11 5128.21 106026 110,613.46 0 32.46
regulation
Soil conservation 1114.36 2867.04 670.78 1006.17 0 21.64
Support Nutrient cycle 129.82 21638 54.09 75.73 0 0
services rgglgtcenar}ce
lociversity 140.65 2607.38 605.86 2758.85 0 21.64
protection
Cultural — \ hetic landscape 64.91 1146.81 270.48 2044.79 0 10.82
services
The calculation formula for the SEZ ecosystem resistance is as follows:
) 6
Resi = Zi:l Aix VCj 1

where Resi is the ecosystem resistance index characterized by the ESV function. A; is the
area of land-use type i, and VC;; is the jth ESV of land-use type i.

3.3.2. The Adaptability Index

Landscape heterogeneity and connectivity are equally important in describing ecosys-
tem landscape structure, so their weights can be set as equal [38]. The formula is as follows:

Adap = 0.255HDI + 0.25AWM + 0.5C )
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where Adap is the ecosystem adaptability index, SHDI is the Shannon diversity index, AWM
is the area-weighted average patch fractal dimension, and C is landscape fragmentation, all
of which were calculated using Fragstats 4.2 software.

3.3.3. The Recovery Index
The calculation formula for the SEZ ecosystem recovery is as follows:

Reco = Zle A;x RC; 3)

where Reco is the ecosystem recovery index, A; is the area of land-use type i, RC; is
the resilience coefficient of land-use type i, which was determined with reference to
Peng et al. [38].

3.3.4. The Resilience Index

The ecosystem resistance, adaptability, and recovery were normalized to [0,1] using
the extreme deviation standardization method, and then the ecological resilience index was
calculated. The formula is as follows:

Resilience = (Resi x Reco x Adap)'/® 4)
where Resilience indicates the ecological resilience index.

3.4. Spatial Autocorrelation Model

The local autocorrelation LISA [51] was used to analyze the spatial distribution of
ecological resilience and the energy development enterprise density agglomeration. The

formula is as follows: . _
I n(X; — X) Ty Wy(X; — X) 5)
= —\2
1 (X - X)

where 7 is the number of grids into which the SEZ is divided or the number of energy
development enterprises; X;, X; is the value of the ecological resilience or energy devel-
opment enterprise kernel density for spatial locations 7, j; W;; is the weight matrix of the
adjacency relationship between geographical units; and X is the average of the ecological
resilience value or the kernel density of energy-developing enterprises.

3.5. Land-Use Change Simulation Based on the PLUS Model
3.5.1. PLUS Model

The PLUS model mainly consists of two parts: the LEAS and the CA model based
on multiple random patch seeds (CARS) [31]; thus, the PLUS model can explore the
driving factors of land expansion and better simulate the evolution of land-use patches.
The LEAS module uses a random forest algorithm to sample the expansion portion of
land use in different years and calculates the development probability of each land-use
type and the driving factor contribution to the expansion of land use. The CARS module
integrates random seeding and threshold-diminishing mechanisms to forecast future land-
use distribution while considering development probability constraints.

In this paper, 14 driving factors (Table 1) were chosen for simulating land use in
the SEZ in 2030. Moreover, water systems and nature reserves were set as restricted
development areas. Before conducting the simulation, land-use distribution data for 2020
were simulated based on historical trends. In comparison with the actual land-use data in
2020, the results demonstrated high accuracy, with an overall accuracy of 89.2%.

3.5.2. Multi-Scenario Settings

Referring to the “Regulations on the Development and Construction of Soil and
Water Conservation in the Border Region of Shanxi-Shaanxi-Inner Mongolia” and existing
studies [10,26,52], in response to the actual situation of abundant mineral resources and
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the severe soil erosion phenomenon in the SEZ, this study set up three types of land-use
change simulation scenarios: BAU, EMD, and ECR.

1. BAU scenario: Based on the actual development of the SEZ, according to the land-use
change trend from 2010 to 2020, the area of each land-use type in 2030 was calculated
using a Markov chain, which is the original 2030 prediction result generated by the
PLUS model;

2. EMD scenario: Since the implementation of the Western Development Strategy in 2000,
the large-scale development of energy and mineral resources and the construction of
supporting facilities in the SEZ have led to an accumulation of waste soil and slag,
which has blocked rivers. In addition, coal mining has damaged the natural ecosystem
structure and changed landscape patterns and geomorphology. Accordingly, this
study identified a 50% increase in the probability of conversion of cultivated land,
woodland, grassland, and water bodies to unused land. Additionally, a 30% increase
in the probability of conversion of cultivated land, woodland, grassland, and water
bodies to construction land was determined. Moreover, there was a 30% decrease
in the probability of conversion of construction and unused land to cultivated land,
woodland, grassland, and water bodies, and a 20% increase in the probability of
conversion of construction land to unused land.

3. ECRscenario: Under the promotion of a series of ecological restoration projects, such
as returning farmland to woodland (grassland), the area of regional soil erosion has
been significantly reduced, and the ecological construction results were remarkable.
Therefore, this study designated the water system and nature reserve within the
SEZ as a restricted development area. Simultaneously, it strictly limited the transfer
of woodland, grassland, and water bodies, reducing the probability of conversion
to construction and unused land by 50%. It also aimed to decrease the probability
of cultivated land being converted to construction and unused land by 30% and
increase the probability of unused and construction land being converted to woodland,
grassland, and water bodies by 30%.

4. Results
4.1. Land-Use Change Characteristics

From 1980 to 2020, the land use in the SEZ was dominated by grassland (>48%), culti-
vated land (>23%), and unused land (>12%). During the 40-year study period, there was a
significant increase in the area of construction land in the SEZ, with a rise of 156,332.34 hm?.
Notably, the construction land area remained relatively stable during the initial two decades
but experienced a rapid expansion in the subsequent two decades. The figures highlight the
swift expansion of construction land in tandem with China’s rapid economic growth in the
21st century. Moreover, the area of ecological land has undergone significant changes in the
past two decades. With the gradual implementation of economic development initiatives
such as the “Western Development” policy, extensive deforestation and land clearing in
the SEZ led to an 8.62% decline in woodland area from 2000 to 2010. Subsequently, from
2010 to 2020, as the Chinese economy transitioned from traditional rugged development
practices to a greater focus on high-quality economic growth and ecological conservation,
the woodland area exhibited a notable increase (Table 3 and Figure 3).

In this paper, a land-use transfer chord diagram was visualized by Origin for a more
specific conversion relationship between each land-use type. There was no significant
change in land-use transfer between 1980 and 1990. However, between 1990 and 2000, there
was an expansion in the area of grassland. The largest transfer was observed from unused
land to grassland, which accounted for 159,106.14 hm?. As can be seen from the thickness of
the chords, the interconversion between the three land types dominant in the SEZ was more
pronounced and correlated during this decade. The period from 2000 to 2010 witnessed
significant transformations, notably the noticeable transfer between construction land and
other land-use types. The largest conversion occurred from grassland to construction land,
amounting to 31,729.23 hm?. Additionally, noteworthy conversions include cultivated
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land to woodland (25,783.2 hm?) and to grassland (80,029.26 hm?), reflecting the emphasis
placed by local governments on initiatives such as the “Returning Cultivated Land to
Woodland (Grassland)” policy. In the period from 2010 to 2020, there was a sharp increase
in the area of construction land, primarily converted from grassland (77,831.55 hm?) and
cultivated land (21,482.28 hm?). Notably, the woodland area also expanded during this
decade, predominantly converted from unused land.

Table 3. Land-use area and proportion in the SEZ from 1980 to 2020.

Year Index Cu}f;:llzted Woodland Grassland Water Body Con]s;r:ll;tlon U{l::sd
1980 1,385,167.45 354,129.67 2,607,425.24 143,906.9 68,390.21 850,749.27
1990 1,384,814.49 355,127.44 2,594,057.03 138,313.8 69,435.17 868,012.62
2000 Area (hm?) 1,369,351.74 357,458.13 2,715,066.99 138,911.80 71,399.83 757,659.37
2010 1,332,817.65 326,925.14 2,828,018.35 127,356.69 130,247.36 664,509.28
2020 1,285,290.65 357,009.95 2,702,636.34 136,160.51 224,722.55 703,839.01
1980-1990 —352.96 997.77 —13,368.21 —5593.1 1044.96 17,263.35
1990-2000 Variation —15,462.75 2330.69 121,009.96 598 1964.66 —110,353.25
20002010 (hm?) —36,534.09 -30,532.99 112,951.36 -11,555.10 58,847.52 -93,150.09
2010-2020 —47,527.00 30,084.81 -125,382.01 8803.82 94,475.19 39,329.73
2000-2020 -84,061.09 —448.19 -12,430.65 -2751.29 153,322.72 -53,820.36

a.1980-1990 b.1990-2000

¢.2000-2010

[ | Cultivated land [l Woodland [ Grassland
[ waterbody [l Construction land | | Unused land

Figure 3. (a—d): Chord diagram of land-use transfer in the SEZ from 1980 to 2020. (The chord diagram
is utilized to depict the correlation between multiple land-use types. The line segment that connects
two points on a circle is referred to as a chord. Each chord represents the transformation between

two land-use types, and the thickness of the chord represents the size of the transferred area.)
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4.2. Ecological Resilience Spatial and Temporal Patterns

This study calculated the ecosystem resilience index in the SEZ from 1980 to 2020,
using grid units, and divided the resilience index into three grades: low (0.00-0.23), medium
(0.23-0.35), and high (0.35-0.80) by using the natural breaks (Jenks) method, to analyze the
SEZ ecosystem resilience’s spatial and temporal changes from 1980 to 2020 (Figure 4).

N

Ao 50 km
L

Level of ecological resilience
Low level (0.00-0.23)

[ Moderate level (0.23-0.35)

I High level (0.35-0.83)

Figure 4. (a—e): Spatial and temporal changes in the ecological resilience level in the SEZ from 1980
to 2020.

Between 1980 and 2000, there was only a slight decrease in ecological resilience, with
the average decreasing from 0.264 to 0.263. The spatial distribution did not change much
during this period. However, between 2000 and 2010, the mean value of ecological resilience
decreased significantly to 0.256. Specifically, the woodland area in the southern part of
Xing County, Shanxi Province, diminished dramatically, leading to a significant decrease
in ecological resilience. This is possibly because the region neglected the protection of
ecological land while constructing production spaces and mineral resource transportation
roads, resulting in a significant shrinkage in ecological land area. From 2010 to 2020,
regional ecological restoration projects led to a significant increase in vegetation coverage,
and the average ecological resilience value was 0.260 in 2020. The ecological recovery of
the Yellow River Basin in the northern part of the SEZ was evident. However, a significant
portion of land in the central towns of Shenmu City and Yuyang District in Shaanxi Province
has been converted into production and habitable land, resulting in a decrease in ecological
land area and an increase in landscape fragmentation. This has led to the formation of a
low-value agglomeration area of ecological resilience that spreads outward from the central
urban area.

4.3. Spatial Relationship between Ecological Resilience and Energy Development

In this study, a kernel density analysis of energy development enterprises in the SEZ
was conducted using ArcGIS 10.3 software. In addition, univariate and bivariate local
spatial autocorrelation analyses were performed on the regional ecological resilience level
and the energy development enterprise kernel density for 2020 using Geoda 1.16 software
(Figure 5).
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Figure 5. Spatial relationship between ecological resilience and energy development in the SEZ in
2020. ((a) Kernel density map of energy development enterprises; (b) local spatial autocorrelation map
of ecological resilience level; (c) local spatial autocorrelation map of ecological resilience level—energy
development enterprises).

Energy development enterprises were primarily concentrated in the central part of
Shenmu City, forming a high-value circle of high kernel density levels spreading outward
from the central urban area rich in energy and minerals (Figure 5a). Shenmu City is China’s
largest coal-producing county (city), with abundant resources and superior mining condi-
tions; thus, the advantages of mineral resources have attracted a huge energy development
industry chain and promoted the agglomeration of energy and mineral sewage enterprises.

The local spatial autocorrelation result of the ecological resilience level (Figure 5b)
indicates that the areas with high ecological resilience values tended to cluster along
the Yellow River in the northern part of the SEZ, illustrating that effective ecological
management has significantly enhanced the ecological resilience of the Yellow River Basin
in regards to sand and water problems. The bivariate spatial autocorrelation result of the
analysis of the ecological resilience level and the kernel density of energy development
enterprises (Figure 5c) reveals that energy development enterprises were concentrated in
the central part of the SEZ, and there was a spatial clustering distribution of low resilience
and high kernel density of energy development enterprises. The clustering of energy
development enterprises is likely to have resulted in excessive discharge of wastewater
and waste residues generated during production activity, contaminating the ecological
environment. Furthermore, the concentration of enterprises has also led to the expansion of
construction land, encroaching on ecological land, and decreasing the ecological resilience
level in the surrounding areas. Concurrently, regions with a high intensity of human
activity and a high risk of pollution where energy development enterprises were clustered
were prone to ecological deterioration and a decrease in ecological resilience level, making
them focal points that need to be regulated and controlled.

4.4. Multi-Scenario Simulation
4.4.1. Land Use under Different Scenarios

Because the SEZ is extensive, the land-use distribution map of the entire area cannot
effectively illustrate the differences in land use in various scenarios. Therefore, selected
areas within the three localities, along the Yellow River in the northern part of the SEZ, the
downtown area of Shenmu City, and the woodlands of Xingxian County, are highlighted to
provide detailed insights (Figure 6).
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Area share of land use types in three scenarios

13.65% 14.87% 12.58%
23.07% 22.75% 0,

23.28%

County (Banner)
" Yellow River

N “_ River and streams
A I:I Boundary of SEZ
\:l Boundary of counties Land use types
0 40 km E Cultivated land - Woodland - Grassland
- Water body - Construction land D Unused land

Figure 6. Prediction results of land use in the SEZ in 2030 under three scenarios.

In general (Table 4), under the BAU scenario, cultivated land area in the SEZ will de-
crease by 2.9% in 2030, and grassland area will decrease by 3.8% compared with those areas
in 2020. The woodland and water body areas will increase by 8.6% and 6.1%, respectively.
This indicates that under the BAU scenario, the SEZ will continue its basic land-use change
trend from 2010 to 2020.

Table 4. Areas of land use in 2020 and various scenarios in 2030.

. Cultivated Construction Unused
Scenario Index Land Woodland Grassland Water Body Land Land
2020 1,285,290.65 357,009.95 2,702,636.34 136,160.51 224,722 55 703,839.01
BAU Aven (hen? 1,248,048.81 387,605.88 2,599,639.65 144,434.97 291,278.43 738,682.29
EMD rea (hm®) 4930 900.15 377,966.50 2,533,097.43 142,015.19 321,362.89 804,347.85
ECR 1,259,151.26 400,574.91 2,690,466.04 147,884.74 230,908.65 680,704.40

Under the EMD scenario, cultivated land and grassland area will decrease, and
construction land area in the SEZ in 2030 will rise significantly by 43% compared to the
actual land-use area in 2020, indicating that under this scenario, energy exploitation and
related construction activity will occupy the ecological space, exacerbating soil erosion and
land desertification problems.

Under the ECR scenario, the woodland and water body areas in the SEZ in 2030
will rise significantly by 12.2% and 8.6%, respectively, compared with those of 2020. The
increase in construction land area will be limited to 2.8% compared to 2020. This indicates
that under this scenario, ecological land will be protected, construction land expansion will
be suppressed, and ecological functions such as regional ecological protection and water
conservation will be restored.
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4.4.2. Ecological Resilience under Different Scenarios

The spatial distribution of the SEZ ecological resilience, resistance, adaptability, and
recovery in 2030 under the BAU, EMD, and ECR scenarios is shown in Figure 7.

a. BAU resistance b. BAU adaptability c. BAU recovery d. BAU resilience

f. EMD adaptability

i. ECR resistance j- ECR adaptability k. ECR recovery 1. ECR resilience

Resistance Adaptability Recovery Resilience

i - - i oz
| Low: 0 . | Low 0 R— [ Moderate (0.23-0.35)

0 100 km B ek 035-081)

L |

Figure 7. Spatial distribution of ecological resistance, adaptability, recovery, and resilience in the
SEZ in 2030 under three scenarios. ((a—d) The BAU scenario; (e-h) the EMD scenario; (i-1) the
ECR scenario).

1. BAU scenario. The proportions of low, medium, and high ecological resilience under
the BAU scenario are 40.2%, 44.7%, and 15.1%, respectively. Among them, the propor-
tion of low-level resilience increases by 1.8% compared to that of the actual situation
in 2020, indicating that if not restricted, the SEZ’s ecological resilience will decrease
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further. The areas with high ecological resilience and resistance are located in the
Yellow River Basin in the northern part of the SEZ, and the low-value adaptability area
is located in the woodlands of the eastern part of Xing County in Shanxi Province. The
high-value recovery areas are located in the western part of Yuyang District, Shaanxi
Province, where unused land predominates, with less anthropogenic-dominated
construction land, and a better recovery capacity;

2. EMD scenario. The proportions of low, medium, and high ecological resilience are
44.3%, 42.6%, and 13.1%, respectively. Ecological resilience is low in Shenmu City,
located in the central part of the SEZ, and Hengshan County, in the southern part of
the SEZ. The overall low level of ecological adaptability in the SEZ may be explained
by the significant growth of construction land area under this scenario, resulting in
landscape fragmentation and reduced landscape connectivity;

3. ECR scenario. The proportions of low, medium, and high ecological resilience are
37.5%, 46.4%, and 16.1%, respectively. Areas with high ecological resilience and
resistance are mostly concentrated in the Yellow River Basin and the eastern part
of Xing County, Shanxi Province. In addition, the overall ecological adaptability is
high, indicating that under the ECR scenario, the SEZ emphasizes ecological land
protection, reduces construction land encroachment on ecological land, and reduces
landscape fragmentation. This will increase landscape heterogeneity and connectivity,
and there will be a high level of ecological resilience in the future.

5. Discussion
5.1. Expansion Trend of Construction Land in the SEZ

To analyze the expansion trend of construction land in the SEZ more specifically,
this paper divided the construction land into three types: urban land, rural land, and
mining and transportation land, based on the classification rules of the land-use data used.
Furthermore, the paper simulated the land use in 2030 under the BAU scenario. The
expansion trends for the three land-use types are presented in Figure 8 from 2000 to 2030,
as the changes from 1980 to 2000 were not apparent.

Figure 8. (a—d): Evolution of the three types of construction land between 2000 and 2030.

Since the 21st century, China’s diversified development has brought about dramatic
shifts, including changes in the spatial patterns of construction land expansion [53]. As is
shown in Figure 8, from 2000 to 2010, the construction land in the SEZ was characterized
by a dominance of rural land, primarily concentrated along the Yellow River in the north-
ern areas. Meanwhile, during this period, there was a significant increase in urban land,
amounting to 10,476.21 hm?2, which was clustered in the urban centers of Dalad Banner,
Dongsheng District, and Yuyang District. This shift indicates that the acceleration of urban-
ization in the SEZ has led to the expansion of urban land. In 2020, the most notable feature
was the rapid growth of mining and transportation land use, which became the dominant
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construction land in the region. Mining and transportation land was mainly concentrated in
the central part of the SEZ, as well as in Dongsheng District and Shenmu City. Both of these
areas are important coal resource bases in China, and energy development activities drive
the rapid expansion of mining and transportation land use. According to the simulated
2030 BAU scenario, the expansion of mining and transportation land will continue and
dominate the regional construction land in the Coal Resource Zone. In addition, as can be
seen in Figure 9, the overall area of construction land in the SEZ grows rapidly between
2000 and 2030; however, this growth is accompanied by a rapid decline in cultivated land
and ecological land (woodland, grassland, water body, and unused land), which will pose
a significant threat to the ecological resilience of the region.

a. Changes in the area of three types of construction land b. Changes in three types of land-use areas
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Figure 9. Evolution of different types of land use between 1980 and 2030. ((a) Changes in the area of
mining and transportation land, rural land, and urban land; (b) Trends in the area of construction
land, cultivated land, and ecological land).

Energy development projects and construction activities within energy development
zones play a crucial role in driving regional economic growth. However, as the analy-
sis presented above shows, it is evident that such resource development activities have
adversely impacted the regional ecosystem. The expansion of construction land, mainly
for mining and transportation, has caused a decline in the region’s ecological resilience.
China’s economic progress has been challenged by the need for ecological conservation,
especially in energy development zones. Balancing energy extraction, economic growth,
and ecological protection has led to a focus on the gradual allocation of construction land as
a potential solution to this dilemma. Based on the simulated results for 2030, it is expected
that the main land-use change within the SEZ will be the continuous growth of construction
land, driven by energy development. In light of this, the SEZ may need to prioritize the
effective use of construction land, rather than solely focusing on controlling its growth. For
instance, implementing comprehensive management strategies for coal mining subsidence
areas and strengthening land reclamation efforts can help to effectively restore the use of
construction land resources.

5.2. Comparison of Multi-Scenario Ecological Resilience Simulation Results

Compared to the BAU scenario, the ecological resilience in the SEZ in 2030 under
the EMD scenario declines significantly, with a 4.1% increase in the low-level proportion
and a 2% decrease in the high-level proportion. This suggests that energy extraction must
be accompanied by a focus on protecting and restoring ecosystems. In the eastern part
of the SEZ, the ecological resilience of Pianguan, Baode, and Xing counties in Shanxi
Province declines with the shrinkage of woodland and grassland areas, illustrating that the
construction land area encroaches upon ecological land during production and construction
activity. Furthermore, the ecological adaptability in the EMD scenario is significantly lower.
This could be attributed to the substantial increase in construction land area under the EMD
scenario, leading to sporadic accumulation and infiltration into other land-use types. This,
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in turn, causes landscape fragmentation and reduces landscape connectivity. Therefore,
the energy zones must take decisive measures to prohibit private mining of iron ore
resources and other activities that have a detrimental impact on the environment. It is
imperative to adopt and implement advanced technology to modernize traditional mining
practices, promote sustainable mining, and enhance mineral resource recovery rates and
comprehensive utilization rates. Furthermore, it is necessary to reduce the dependence on
highly polluting resources and ensure a sustainable supply of energy and raw materials for
various industries.

Under the ECR scenario, the ecological resilience in 2030 is higher than that in the BAU
and EMD scenarios, with a high level of ecological resilience accounting for 16.1% of the
area. This shows that the woodland and water bodies in the SEZ are effectively protected
under the ECR scenario, resulting in an increase in ecological resilience in woodlands and
along water bodies. Ecological conservation projects are essential for protecting regional
ecology, improving ecological quality, enhancing ecological resilience, and promoting
sustainable regional development. The SEZ is a key area for the ecological protection and
restoration of the Yellow River Basin. In March 2000, the State Council implemented a
policy of returning cultivated land to woodland (grassland) to increase vegetation cover
and control soil erosion. In this context, the SEZ has successfully implemented ecological
projects such as the construction of silt embankments and terraces, the “Three Norths”
protective forests, and Yellow River Basin water loss and soil erosion comprehensive
management, effectively reducing the degree of erosion of the regional slopes and channels,
further promoting regional ecological restoration, and improving the ecological resilience.
Additionally, the ecological resistance and adaptability in the ECR scenario are higher,
indicating that construction land expansion in the ECR scenario is effectively suppressed
and the ecological land is restored, which contributes to the enhancement of ecosystem
service functions and a decrease in landscape fragmentation in the SEZ.

The above analyses demonstrate that in energy zones like the SEZ, ecological con-
servation is essential for improving regional ecological resilience. In 2017, the concept
of “high-quality development” introduced by the state shifted from traditional rough
development to prioritizing green development for the harmonious coexistence of humans
and nature. Therefore, it is crucial to prioritize ecological principles and pursue moderate
development in actual development efforts. This may involve focusing on the develop-
ment of ecological industries that align with the primary goal of ecological conservation,
particularly in the counties and central towns within the region. Additionally, ongoing
efforts to enhance ecological construction should be prioritized to ensure the integrity of
the ecosystem is maintained to the fullest extent possible.

5.3. Research Insights

Regarding the SEZ, ecological resilience is generally low in the intensive areas of en-
ergy development enterprises and their surroundings, indicating that industrial production
activities such as energy extraction have seriously affected the surrounding land-use types.
Extraction of energy and mineral resources is temporary [54]; therefore, it is necessary to
strengthen land restoration in these areas by comprehensively integrating and rehabili-
tating land that has been damaged by energy and mineral extraction. In 2011, the State
Council issued the Regulations on Land Reclamation, which required the remediation of
land destroyed by production and construction activity to make it available for use. Under
the EMD scenario established in this study, construction and unused land areas increased
by 43% and 14.3%, respectively, compared with those of 2020. Thus, ecological restoration
of industrial and abandoned energy and mineral development production land is required
to reduce landscape fragmentation caused by the occupation of ecological land for produc-
tion and construction to improve regional ecological resilience. Moreover, governments
should set up and implement the “Who Destroys, Who Compensate” concept of ecological
compensation in energy-rich regions, to make full compensation for the economic and
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societal losses. Moreover, it is essential to enhance the efficiency of productive and habitable
land to mitigate the adverse effects of construction land expansion [55,56].

It is a fact that mining activities cause environmental disturbances. Nevertheless, it is
necessary to take into account the evolution of the Chinese economy and to observe the
rules of economic and social development. Given that coal remains a primary component
of China’s energy structure, and electricity plays a central role, it is imperative to pursue
a balanced approach that integrates protection and development. This entails enhancing
the level and efficiency of resource utilization. The results of this paper underscore the
importance of ecological conservation in preserving the ecological resilience of energy zones.
However, relying solely on technical governance measures may not be sufficient to establish
a resilient ecological civilization in these zones. Higher government authorities must
implement management measures that guarantee the adoption of ecological conservation
and governance techniques. This can be accomplished by incentivizing social funds to
invest in ecological conservation within energy zones and promoting ecological restoration
in mineral and resource-based areas through preferential policies, including tax incentives
and financial subsidies.

5.4. Shortcomings and Prospects

First, in Section 3, this paper chose the simpler method of ESV to measure ecological
resistance, which may have some limitations. Due to the complexity of the economic
valuation of ecosystem services, the methodology of ESV has been questioned in practical
applications [57,58]. Criticisms include concerns regarding the mechanistic nature of value
assignment and the unilateral nature of evaluation criteria. Research on the ecological
significance of ecosystem services may be neglected due to excessive focus on calculating
their economic value. For example, the economic value of unused land is difficult to
account for, which may result in a portion of the ecological value of its regulation and
support not being captured. In addition, ecosystem change is a dynamic process, and the
area-weighted approach to calculating the total value of ecosystem services may cause
functional de-differentiation and impede the identification of faster-changing ecosystem
services [42], leading to less accurate construction of ecosystem resistance.

Second, in the previous study, to ensure that the results of the simulation are compa-
rable to the actual land use, we classified the land use into six types, which may limit the
reliability of specific land-use types. For example, previous research [59] classified open-pit
coal mines as a land-use type based on specific research needs, which can improve the
analysis accuracy of coal mine land-use types. Although we discussed the refinement and
modeling of the construction land, we did not proceed to calculate the ecological resilience
of the refined land types due to the indicator calculation method chosen. However, we
believe that the different types of construction land have varying levels of resistance, re-
covery, and adaptability, and this should serve as a basis for future research to investigate
the impact on ecological resilience after refining the land-use types. Furthermore, the
development of energy zones was not limited to the three scenarios set in this study. In the
future, we can consider scenarios that coordinate economic development and ecological
protection, seeking a balance between the two, rather than just considering one aspect.
Simulation results can better support planning policies when the scenario setting is coupled
with multi-objective optimization functions.

6. Conclusions

This study analyzes land-use change characteristics of the SEZ from 1980 to 2020,
explores the spatial and temporal variation laws of regional ecological resilience, reveals
the spatial agglomeration pattern of regional ecological resilience and energy development
enterprises and their correlations, and finally simulates the spatial pattern of land use and
ecological resilience of the SEZ in 2030. The results show that the land-use type of the SEZ
is dominated by cultivated land, grassland, and unused land, and the construction land
area increased dramatically in the 21st century. The ecological resilience level in the SEZ
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showed a trend of first decreasing and then increasing. From a spatial perspective, the high
ecological resilience value area was distributed in a belt shape in the Yellow River Basin,
whereas the central urban area of the city spread outward to form a low ecological resilience
agglomeration area. The ecosystem resilience level was high in southeastern Xing County,
Shanxi Province, whereas the ecological resilience level was low in Fugu County, Shenmu
City, and Hengshan County, Shaanxi Province. The expansion of energy-based enterprises
and resource-based cities drove construction land expansion, resulting in generally low
ecological resilience in these areas.

Although the BAU scenario showed an increasing trend in woodland and water bod-
ies, the decrease in regional ecological resilience was still mainly due to the expansion of
the construction land area. The increase in construction land area under the EMD scenario
was particularly prominent, leading to a low level of ecological resilience, which does
not support sustainable regional development. However, the ECR scenario was more
conducive to improving ecological resilience and realizing sustainable development in
the SEZ. Therefore, during energy zone development, it is necessary to focus on ecologi-
cal environmental conservation and sustainable ecosystem management to continuously
improve regional ecological resilience.
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Abstract: Integrative development is an effective way to enhance urban potential and implement
resource-optimal relocation, especially in urban agglomeration regions. Conventionally, the evalua-
tion of urban integration is usually studied from one aspect of urban interaction intensity or urban
functional similarity, but considering both together can better reflect the integrative condition of
urban agglomeration. This paper introduces the symbiosis theory into the exploration of urban
integration. The production-living-ecological function is taken to analyze urban function, and the
improved radiation model is adopted to measure urban interaction. Under the framework of symbio-
sis theory, we integrate urban function and urban interaction to indicate the integrative condition
of urban agglomeration from a production-living—ecological aspect. Urban agglomeration in the
Central Yunnan Urban Agglomeration is taken as the study area. The results show that (1) spatial
variations occur in high-value areas with distinct functions. The east emphasizes production and
living, while the west leans towards ecology. (2) Urban agglomeration is in its early developmental
stages without stable symbiosis. Interactions among counties mostly show sporadic point symbiosis,
lacking stability. It mainly radiates outward from the central area, with more stable interactions
in high-value areas, often causing inter-city competition. (3) Urban agglomeration integration is
generally low, with distinct high-value production and ecological areas. The central, eastern, and
southern regions exhibit strong production and living interactions, while the west benefits from
ecological interactions. These findings can offer some insights for informing relevant policies and
fostering the integrated development of urban agglomerations.

Keywords: integrative development; production-living—ecological function; symbiosis theory;
interactive relationship; urban agglomeration

1. Introduction

The acceleration of economic globalization and urbanization has led to the rapid
growth of urban populations, resulting in urban expansion and restructuring of urban
areas [1]. The regional development model has transitioned from independent development
of a single city to integrated development facilitated by resource interaction across multiple
cities [2]. The regional development model has shifted from the independent development
of individual cities to a city agglomeration or group with the core city at its center, driving
the collective development of surrounding cities. Urban agglomeration develops as a
unified entity, with each city mutually interacting and progressing together. It has been
viewed as the predominant model for regional development in China. The integrated
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development of urban agglomerations is crucial for stabilizing internal dynamism and
enhancing county competitiveness. Simultaneously, the integrated development of urban
agglomerations is a crucial component of sustainable development. When examining
the sustainable development level of urban agglomerations, it is essential to consider
interactions and spillover effects between towns within the agglomerations, along with
variations in the developmental levels of individual towns [3]. The goal of integrated
development is to achieve rapid resource circulation and optimal allocation, including
industrial specialization, market expansion, distribution of living resources, and synergistic
CO, reduction effects [4-7]. Such integration allows the entire urban agglomeration system
to not only generate income from individual cities but also realize economies of scale when
organized as a whole. Integrative development within urban agglomeration is crucial for
enhancing regional competitiveness, optimizing regional resource allocation, and fostering
regional sustainable development [8].

In summarizing scholars’ research on the integration of urban agglomeration, two re-
search frameworks are generally involved. The first framework examines the interaction
between counties, with a focus on the element flow among inner cities, such as eco-
nomic interactions [9,10], production transportation [11], population flow [12], information
flow [13,14], etc. Quantification of inter-county flow is often achieved through the use of
methods such as the gravity model and its extensions [15,16], the field strength model [17]
and the radiation model [18]. Additionally, the structure of the urban network is analyzed
using social network analysis methods and complex network models to examine the in-
terweaving of flow elements. The second framework focuses on urban functions. These
researches typically explore urban functional similarities by analyzing economic comple-
mentarities [19], industrial structure similarity [8], commodity price convergence [20], etc.
New economic geography models and trade theories are commonly employed for analysis
within this research framework. Furthermore, regarding urban elements involved in related
research, urban economy and industry have been widely concerned in the exploration of
urban integration. Transportation, as a foundation for urban connectivity, has also been ex-
tensively studied. As research progresses, scholars have begun to address other integration
issues, such as green development [21], ecosystem service value [22], coordinated emission
reduction [7], culture tourism industries and culture development [23], etc.

Previous research has made significant contributions to exploring the integrated
development of urban agglomerations. However, there are still unresolved issues that
require in-depth investigation. First, the research’s focus on urban connection cannot
well capture the features of individual cities, and the research conducted based on the
individual function features analysis may ignore the interactive condition among member
cities. Combining urban interaction and urban function to comprehensively delineate
urban development processes requires further research. Second, the integrated degree of
the urban area is mostly assessed by synthesizing multiple indicators into a comprehensive
measure. However, cities within an urban agglomeration have diverse functional positions,
and the overall indicator might lack specificity in describing urban connections. While the
overall degree of closeness is generally assessed, the specific modes of city connectivity
remain underexplored.

To fix the gap, this paper endeavors to (1) introduce the symbiosis theory into the study
of urban agglomeration integration. The symbiosis theory was originally defined as the
coexistence of different species according to a certain relationship [24]. Counties are viewed
as symbiotic units to observe how they co-exist in a symbiotic environment. The application
of symbiosis theory in exploring the integrative development of urban agglomerations can
be an effective approach to consider both urban interaction and urban function. (2) Utilizing
the functions of production, living, and ecology to elaborate the integrated development of
urban areas. Economy, society, and ecology are commonly regarded as the three subsystems
of cities, which encompass the functions of production, living, and ecology [25]. These
three functions comprehensively summarize the different functions provided by counties
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within urban agglomeration and serve as a suitable framework for distinguishing diverse
functions among different urban agglomerations.

In this paper, urban function is summarized into the aspects of production, living, and
ecology. An index system is built to establish the three functions of each town in urban
agglomeration. Based on the developed condition of the urban production-living—ecology
function, urban interaction and urban functional distance are separately measured by
the improved radiation model and functional distance model. Adopting the framework
of symbiosis theory, urban interaction and urban function are integrated to explore the
integrative degree of urban agglomeration from the aspects of productive integration, living
integration, and ecological integration. The Central Yunnan Urban Agglomeration (CYUA),
which lies in southwestern China, is taken as a study area. The CYUA serves as the central
hub of China’s radiance toward South Asia and Southeast Asia. It strategically intersects
the “Belt and Road” and the “Yangtze River Economic Belt” initiatives. Positioned as a
significant economic growth pole in the western region of China, research on this area can
promote prosperity and stability in border areas. We analyze the urban production-living—
ecology function, urban interaction condition, urban symbiotic modes, and integrated
development condition in the CYUA from 2000 to 2020. Some policy suggestions are
proposed to guide the integrative development of the CYUA. This study provides a research
framework for exploring the integrated development of urban agglomerations, not only
for the CYUA but also for other counterpart areas.

2. Materials and Methods
2.1. Study Area

We chose the Central Yunnan Urban Agglomeration (CYUA) as the study area. The
CYUA is located in the southwest mountainous plateau region of China, covering Kunming
City, Qujing City, Yuxi City, Chuxiong Prefecture, and 7 counties in the northern Honghe
Prefecture, a total of 49 counties, as shown in Figure 1. It has a land area of 111,400 square
kilometers, a permanent population of 21.27 million, and a GDP of CNY 1.02 trillion,
accounting for 28.3%, 44.1%, and 61.6% of the province, respectively. It has the most
intensive transportation facilities, the highest degree of development, and the highest level
of development in Yunnan Province. It is also the most important industrial agglomeration
area in Yunnan Province [26]. However, compared with other urban agglomerations in
China, the flow of regional elements in the inner CYUA is not frequent. According to
the standards of the seventh national census results, the urban agglomeration has only
1 mega-city (5-10 million people), 2 medium-sized cities (1-3 million people), 5 type I
small cities (200,000-500,000 people), and 33 type II small cities (Less than 200,000 people).
Furthermore, researchers have pointed out that the urban function of member cities of
the CYUA represents an extent of similarity. Investigating the integrative condition of the
CYUA with regard to urban interaction and function is imperative not only to steer its own
progress but also to be pivotal for the advancement of Yunnan province.

2.2. Data Source and Processing

The data used in this study mainly include socioeconomic statistical data, basic ge-
ographic information, road network data, and land use data. We use socioeconomic
cross-sectional data from the CYUA every five years from 2000 to 2020. These data are col-
lected from the Yunnan Statistical Yearbook (2000-2020) and the China Statistical Yearbook
(county-level) (2000-2020). Basic geographic information is acquired from the National
Geomatic Center of China. Road networks are obtained from the Open Street Map. Based
on the traffic situation in different years, Google Earth is compared to adapt to the actual
situation of the region at a specific time. Land use classification data with 30 m precision
are obtained from the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences. The spatialization processing of all the GIS data is performed in
ArcGIS 10.2.
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Figure 1. Location of study area.

2.3. Methodology

In order to establish a reasonable system to classify urban functions and combine
the characteristics of a single county and the interaction between multiple counties to
jointly evaluate the integrated development of urban agglomerations, four issues should be
considered: firstly, an index system is constructed to measure the production, living, and
ecological functions of each town within the CYUA from the year 2000 to 2020. Secondly,
based on the production, living, and ecological functions of each town, the improved
radiation model is applied to obtain interaction intensity and interaction direction between
towns; the functional distance model is employed to identify the specific interaction func-
tions between towns. Thirdly, a symbiotic model is proposed to identify the organizational
mode and behavioral pattern of towns based on interaction intensity, interaction direction,
and interaction function. Finally, the urban integration index is constructed to explore the
degree of coordinated participation of the CYUA and each town within it.

2.3.1. Evaluation Index System of Production-Living-Ecological Function

Based on the connotation of production, living, and ecological functions, we establish
an index system of production-living—ecological functions. First, data from different
standards need to be normalized. Second, the critic weight method is used to determine the
weight of each index in the index system. Finally, by utilizing the aforementioned approach,
we calculate the production, living, and ecological function indices of each county within
the urban agglomeration, which allows us to better characterize the attributes of each
county. The specific steps are as follows:

2.3.2. Establishment of Index System

We refer to the index systems used in previous studies [27,28] to select and consider
the rationality and availability of data and establish an index system based on the status of
the study area. Twenty-two indicators are selected to establish the evaluation index system
presented in Table 1.

197

105° 00



Land 2024, 13, 258

Table 1. Index system of the production-living—ecological function.

Level 1 Indicators Secondary Indicators Serial Number Weight
Average fiscal revenue per land X1 0.091
Economic density X2 0.11
Grain production X3 0.181
Production function The total output value of
agriculture, forestry, animal X4 0.177
husbandry, and fishery
Total tourism revenue X5 0.101
Numper of units of .1ndustr1a.1 X6 0.135
enterprises above designated size
The proportion .of secor}dary and X7 0.206
tertiary industries
The total retail sales of social X8 011
consumer goods
Population density X9 0.128
Living function Average sal'ary of employees in X10 0.227
each city and county
Number of beds in health
institutions per 10,000 people X1l 0-164
Number of students in primary X12 0.187
and secondary schools
Numbe}' of beds per 10,900 peqple X13 0.184
in social welfare adoption units
Forest cover rate X14 0.176
Bio abundance index X15 0.164
Ecological function NDVI mean X16 0.12
& Carbon storage based on invest X17 0.16
Ecosystem service value X18 0.069
Water coverage X19 0.312

2.3.3. The CRITIC Method

The CRITIC (Criteria Importance Through Inter-criteria Correlation) method is used to
calculate weights. It is an objective weighting method [29]. This method uses two fundamental
weights to evaluate the relative importance of different indicators based on the strength of
contrast and conflict between them. The strength of contrast is evaluated using the standard
deviation to measure the size of the gap between the same index in the indexing scheme,
while the conflict is reflected by the correlation coefficient between the indicators. Based on
these concepts, the method constructs an indicator that contains both types of information,
which indicates the amount of information contained in the j;;, indicator. The formula for
calculating this indicator is as follows:

Cj:(Tj

-

(1 — 1’1']'). (1)

i=1

The larger the C;, the greater the amount of information contained in the j;, evaluation
indicator, so the objective weight of the jy, indicator is as follows:

o 949 2
=g =1 @

2.3.4. The Improved Radiation Model for Urban Interaction

The radiation model, applied in urban studies, draws on the analysis of material dis-
persion and absorption processes in physics [30]. Considering the existence of intervening
opportunities in urban interaction processes [18], the model characterizes the interaction
intensity, which is influenced by the background conditions of both interacting parties.
These background conditions include urban interaction potential, urban external capacity,
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urban interaction channels, and urban interference intermediaries. The specific model
framework is shown below:

T. mimj
! (mi + sij) (mi +m; + Sij) !

Ty = 3)

where Ti]- is the size of the interaction from location i to location j; m; and m; represent
the interaction potential of location i and location j, which refers to the self-foundation of
interaction between towns, characterized by the production, living, and ecological functions
of towns in this study; T; characterizes the external function of towns, measured using
the location entropy model of the three functions of towns, where the size of the location
entropy reflects whether the function has an external function. The specific formula is

as follows:

P'PZ‘

_ Py
Lgij = TP 4)
1,L; >1
L..— (i
g <0, qu']' < 1>I ©®)
T; = )} Lij[Pij = Pi(P;/P)], ©)

where P;;, P;, Pj, and P represent the magnitude of the j functional quantity of town i, the
sum of all functional quantities of town I, the weighted sum of all urban energy in the
urban agglomeration, and the sum of all functional quantities in the urban agglomeration.
When the location quotient > 1, it is considered that the function has an outward function;
that is, the category function exceeds the average level in the region and can provide the
category of services to other regions.

sij represents the potential size of intervening opportunities that may exist in the inter-
action between town i and town j. Based on the shortest path analysis of the road network,
the interaction potential of the towns passed through is summed up and represented as the
interfering intermediary between town i and town j. The formula is as follows:

n
sij = Zi, )
-1

where s;; represents the potential interference opportunities that may exist in the interaction
process between town i and town j, and n represents the number of towns passed through
in the shortest path between town i and town j during the interaction process. Z; represents
the interaction potential of town k.

2.3.5. The Evaluation of Urban Functional Distance

This study uses the urban functional distance model to analyze the functional differ-
ences between counties. Based on urban production, living, and ecological function, the
functional similarity between counties is evaluated. Generally, the larger the functional dis-
tance between towns, the lower the functional similarity between counties and the stronger
the complementarity; otherwise, the higher the similarity, the stronger the competition.
The specific formula is as follows:

Dij = </(xi_xj)2+ (yi—yj)2+...+ (zi—z]«)z, (8)

FD;; = (D — D;)/\/¥. (D — Di)*/m, )

where D;; represents the functional distance between town i and town j. x, y. . .z represents
the functions of the county and FDj; is the functional distance index between town i and
town j, which this paper characterizes by the production, living, and ecological functions
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of the county. When FD;; > 0.5, it is considered that the functional heterogeneity between
cities and towns is large and complementary. When FD;; < 0.5, it is considered that the
functional homogeneity between cities and towns is large and competition is formed. When
—0.5< FD;; <05, it is considered that the functional attributes between towns are not clear.

2.3.6. The Identification of Urban Symbiotic Pattern

Symbiosis, as a concept in ecology, emphasizes cooperation among populations. Sym-
biotic units, symbiotic patterns, and symbiotic environments are the three fundamental
elements of the symbiosis theory framework. In urban symbiosis research, cities are usually
taken as the basic unit, and symbiotic patterns refer to the ways in which cities interact
with each other. The intermediary required for interaction is called the symbiotic interface,
and other elements that affect symbiosis besides the symbiotic interface are referred to
as the symbiotic environment. The symbiotic patterns between cities are based on their
own attributes and are influenced by the symbiotic interface and environment. Symbiotic
evolution is inherent in symbiotic systems, and local measures affecting city conditions can
destabilize the region, prompting changes in the urban symbiosis system. The evolution
of the symbiosis system bears similarities to the integration process of urban agglom-
erations, making the application of symbiosis theory a valuable approach to evaluate
regional integration.

There are two symbiotic modes in the urban symbiosis system: organizational models
and behavioral models. We use symbiosis patterns classification [31] to classify the organiza-
tional patterns and behavioral patterns of urban agglomerations. The organizational model
gauges the size and intensity of interactions between cities, emphasizing the “absolute
value” of these interactions. Behavioral patterns, on the other hand, capture the manner and
nature of urban interactions, collectively forming a comprehensive symbiotic relationship.
Symbiosis entails both positive and negative effects on the entities involved. Symbiotic
units engage in both struggle and cooperation, driven by a mechanism of competition and
cooperation that propels mutual advancement and individual excellence.

The organizational pattern is identified based on the interaction intensity and direction
between cities, including four categories: point symbiosis, intermittent symbiosis, continu-
ous symbiosis, and integrated symbiosis, which characterize the connections between cities
from accidental and occasional interactions to gradually evolving into selective interactions
with continuity, and finally reaching a stable state of integrated symbiosis driven by en-
dogenous forces, as shown in Table 2. In this study, the global natural breakpoint method
is used to classify the interaction intensity.

Table 2. Symbiotic organizational pattern type.

.. The D f
Organizational Pattern eliegree o Urban Urban Development Model
Interaction
. .. An interaction and connection Independent development
Point symbiosis L E
occur by chance under self-organization
. .. Have some selective External forces gradually
Intermittent symbiosis . . .
interaction influence urban development
. .. There i ti .
Continuous symbiosis ere' 1sa cor} nuous Town-linked development
interaction
I . ith . .
L nteraFtllons W1t. Cf)ntmulty, Integrated and coordinated
Integrated symbiosis stability, continuity, and

. development of cities and towns
endogenous dynamics

The behavioral pattern is identified from the functional differences of towns, and
through the comparison of the positive and negative functions between towns, it is divided
into six categories: mutual benefit symbiosis, parasitism, competition symbiosis, partial
harm symbiosis, partial benefit symbiosis, and irrelevant symbiosis, as shown in Table 3.
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Table 3. Types of symbiotic behavioral patterns.

Fyij
[0.5, +o0) (—0.5,0.5) (—00,0.5]
Fyji
[0.5, +00) mutualism partial k.)en.eflt parasitism
symbiosis

(—0.5,0.5) partial l.)en.eﬁt irrelevant symbiosis partial .ha}‘m

symbiosis symbiosis
(-00,0.5] arasitism partial harm competition

o p symbiosis symbiosis

2.3.7. The Evaluation of Integrative Degree of Urban Agglomeration

The degree of urban agglomeration integration is an important indicator of the degree
of urban agglomeration development. We devise an Urban Agglomeration Integration
Index by leveraging the organizational and behavioral models of urban agglomeration.
This index assesses the extent of active participation of each county within the urban
agglomeration integration framework, based on a benign symbiosis model, throughout the
urban agglomeration’s development. The fundamental framework is outlined as follows:

Int — Index; = wUIijJr /SUMyy. (10)

Among them, Int — Index; represents the integration index of town i, wU];j, represents
the weighted interaction intensity from town 7 to town j under the benign symbiosis mode,
and SUMyy represents the weighted total value of all interaction intensities of town 7.

Throughout the development of an urban agglomeration, it undergoes a non-linear,
spiraling process. Cities within the agglomeration, at different stages, work towards a
common goal, engaging in varying degrees of coordinated action. We adopt the coordinated
development standard of urban agglomeration to identify the integrative condition of urban
agglomeration exhibited by the Int-Index; [32], as delineated in Table 4. In instances where
the integration level falls below 10%, it is referred to as the assist stage, with cities operating
independently and engaging in limited collaboration. Upon reaching an integration degree
of 10-20%, it is called the cooperative stage. Cities are still relatively independent of each
other but are beginning to strengthen their ties, cooperation, and contact. Upon reaching
an integration degree of 20-30%, it is called the coordination stage, accompanied by an
escalation in conflicts between cities, passing multiple conflicts; only the joint cooperation
of cities can solve the problem. Subsequently, when the integration degree reaches 30-40%,
the coordination level of urban agglomerations has entered the concordant stage, marked
by a substantial increase in inter-city conflicts; cities begin to form alliances to form a
community with a shared future. Advancing to an integration degree of 40-50%, it is
referred to as the collaborative stage; at this stage, the total number of problems and
contflicts faced by each city and the conflicts resolved through collaborative methods are
basically the same, and cities exhibit a heightened inclination for mutual development.
Upon attaining an integration degree of 50-70%, it is referred to as the co-vibration stage. At
this stage, there are far more regional problems and conflicts resolved through collaborative
methods among cities than through non-collaborative methods. At the 70-85% integration
range, cities establish a closely-knit cooperation mechanism, signifying the attainment of
the integration stage. This phase is characterized by a high level of integration, reflecting
cities” strong commitment to collaborative development. Finally, when the integration
degree surpasses 85-100%, urban agglomerations achieve a state akin to a single city; this
is referred to as the urbanization stage.
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Table 4. Urban agglomeration integration stage table.

Serial Number Stage Name Degree of Collaboration %

1 Assist stage 0-10

2 Cooperative stage 10-20
3 Coordination stage 20-30
4 Concordant stage 30-40
5 Collaborative stage 40-50
6 Co-vibration stage 50-70
7 Integration stage 70-85
8 Urbanization stage 85-100

3. Result

3.1. The Production-Living—Ecological Functions in the CYUA

Based on the evaluation index system of production-living—ecological function, the
quantitative and spatiotemporal features of production function (PF), living function (LF),
and ecological function (EF) in the CYUA were calculated. Figure 2 shows the average
number of these three functions in each county of the urban agglomeration in 2000, 2005,
2010, 2015, and 2020. From the perspective of the entire urban agglomeration, three
functions continuously increased from 2000 to 2020. Among them, the living function had
the fastest growth, from 0.08 to 0.38. The production function increased from 0.13 to 0.30,
and the ecological function index was in a growing state; however, the increase was not
significant, rising from 0.32 to 0.34.

0.40
] ®
0.35 Y
] — A e
0.30 o
&5 0.25 M
% ] e ~
= 0.20- o
1 = -
0.15 , ) )
| L —=— production function,
- iy .
010 - , e living fgnctlon, '
L —a— ecological function
0.05 T T T x T Y T ' T
2000 2005 2010 2015 2020
YEAR

Figure 2. Changes of the production-living—ecological functions in the CYUA.

From the perspective of each county in the urban agglomeration, we used the global
natural breakpoint method to divide the functional index into five levels: low, low, medium,
high, and high, and observe the quantitative changes and spatial distribution. Figure 3
visually displays how these changes occurred spatially.
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Figure 3. Spatiotemporal features of production-living—ecological functions.

Figure 3a illustrates the spatiotemporal fluctuation of the production function. High
production functions are primarily distributed in the central and eastern regions of the
CYUA, with low-value concentrations prevalent in its western reaches. As temporal and
spatial changes, the production functions of all counties demonstrated notable improve-
ments between 2000 and 2020. The distribution of high-value areas of the living function
index is relatively sporadic, mainly in the central part of the urban agglomeration. As
shown in Figure 3b, the change process presents a radial structure in which the central
part drives the surrounding areas. As shown in Figure 3¢, the distribution of ecological
functions is high in the west and low in the east. Between 2000 and 2020, the functional
spatial pattern of ecological function remained essentially constant, with only marginal
changes in quantity.

3.2. The Symbiotic Mode of Cities in the CYUA

Based on the identification of counties’ production, living, and ecological functions,
this study carried out urban interaction measurement based on an improved radiation
model and analyzed 2352 interactive relationships among 49 counties in the CYUA from
2000 to 2020. It was found that the total interaction strength, average interaction strength,
and maximum interaction strength of production functions in CYUA were 1.69, 0.000144,
and 0.026, respectively; life functions were 1.22, 0.000104, and 0.035; ecological functions
were 2.49, 0.000212, and 0.028. At the same time, this study calculated the functional
distance of towns based on the functional distance model. During the study period, the
maximum functional distance reached 3.38. Based on the evaluation results of interaction
strength and urban function distance, the symbiotic modes of towns can be identified under
the framework of symbiosis theory.
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3.2.1. The Organized Mode of Urban Symbiosis in the CYUA

The organized mode of urban symbiosis focuses on the intensity and direction of
interaction among counties. Based on the calculation of the improved radiation model,
we employed the global natural breakpoint method to classify urban interaction into four
classes, which separately represent point symbiosis, intermittent symbiosis, continuous
symbiosis, and integrated symbiosis. Figure 4 illustrates the distribution and evolution of
the organizational mode of urban symbiosis in the CYUA from 2000 to 2020.
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Figure 4. The organized mode of urban symbiosis.

The production function organization model, depicted in Figure 4a, is primarily
characterized by point symbiosis, which constitutes more than 96% of all organizational
models. Point symbiosis is commonly observed among secondary counties or those located
far apart. Intermittent symbiosis is prevalent between primary and secondary counties
within urban agglomerations, whereas continuous and integrated symbioses tend to occur
more consistently among primary counties.

The living function organization model is depicted in Figure 4b. The evolution and
distribution of the living function organizational model are somewhat dispersed, primarily
demonstrated by the central urban area of Kunming acting as a growth pole that extends
outward and stimulates reciprocal growth among adjacent sub-poles. This model predom-
inantly follows the pattern of pole-driven development in surrounding counties. Point
symbiosis is the dominant organizational model for living functions across the entire urban
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agglomeration, accounting for over 98% of all living symbiotic models. Integrated symbio-
sis is mainly observed in the middle and northwest regions of the CYUA, while continuous
and intermittent symbiotic patterns tend to occur in high-value areas of living functions
scattered throughout the southern, central, and eastern parts of the urban agglomeration.

The ecological function organization model is depicted in Figure 4b. High values of
ecological function symbiotic organization span across the western and southern portions
of the urban agglomeration. The organizational model is dominated by point symbiosis in
up to 95% of all models. The direction of high ecological function symbiotic organization is
opposite to that of production and living, which is mainly from west to east.

In general, urban agglomeration is still at a low level of symbiotic organization, and
the three functions are all in a low-level interaction range. A stable organizational model
with endogenous driving forces has not been formed.

3.2.2. The Behavior Mode of Urban Symbiosis in the CYUA

Combining the functional parity among counties, which is assessed by the functional
distance model, the behavior mode of urban symbiosis can be identified based on both
urban interaction and urban function. The quantitative characteristics of symbiotic be-
havior patterns in the CYUA are presented in Table 5. The dominant symbiotic patterns
in urban agglomeration include competitive symbiosis, favorable symbiosis, and irrele-
vant symbiosis. Competitive symbiosis represents the largest proportion, while parasitic
symbiosis accounts for the smallest proportion. Competitive symbiosis occurs between
symbiotic units.

Table 5. Quantitative characteristics of symbiotic behavior patterns in the CYUA.

Irrelevant Partial Benefit . o Partial Harm Competition
Year .. . Mutualism Parasitism L ..

Symbiosis Symbiosis Symbiosis Symbiosis
2000 211 (17.94%) 258 (21.94%) 210 (17.86%) 24 (02.04%) 167 (14.20%) 306 (26.02%)
2005 177 (15.05%) 285 (24.23%) 194 (16.50%) 37 (03.15%) 156 (13.27%) 327 (27.81%)
2010 182 (15.48%) 268 (22.79%) 212 (18.03%) 32 (02.72%) 171 (14.54%) 311 (26.45%)
2015 181 (15.39%) 270 (22.96%) 213 (18.11%) 35 (02.98%) 164 (13.95%) 313 (26.62%)
2020 240 (20.41%) 240 (20.41%) 203 (17.26%) 26 (02.21%) 166 (14.12%) 301 (25.60%)

Figure 5 shows the spatial distribution of the three main behavioral modes of the
CYUA, namely competition symbiosis, mutualism, and partial benefit symbiosis. In this
paper, the cost of travel time was used to represent the interaction distance between counties.
Among them, the average time cost between competition symbiosis was 247.42 min, the
average time cost between mutualism was 333.44 min, and the time cost between partial
benefit symbiosis was 302.87 min, which represents the distance of interaction between
counties. Competition symbiosis < partial benefit symbiosis < mutualism. This shows
that, in the CYUA, competition symbiosis tends to occur between counties that are close
together, while mutualistic symbiosis occurs between counties that are far apart.
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Figure 5. Distribution diagram of the three main behavioral patterns.

3.2.3. The Organized Mode and the Behavior Mode of Urban Symbiosis in the CYUA

We combined the organizational model and the behavioral model to demonstrate the
current state of symbiosis between counties in the CYUA. Figure 6 shows the symbiosis
model of the CYUA in 2020. Figure 6a shows the production function symbiosis model, in
which counties are mainly concentrated in the central and eastern regions. The counties
with strong interaction in the central part are mainly based on mutualism, while the
eastern part is mainly based on competition symbiosis and partial-harm symbiosis. It is
necessary to adjust the industrial structure to achieve a mutually beneficial development
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model. Figure 6b clearly shows the symbiosis model of living functions. It can be seen
that the interaction intensity of living functions is generally low, the radiation range is
small, and the distribution of behavioral patterns is relatively even. Figure 6¢c shows the
ecological functions. In the symbiosis model, counties are mainly concentrated in the
central and western regions. The western and central regions mainly adopt mutually
beneficial symbiosis or partial-benefit symbiosis, while the counties in the western region
mainly adopt competitive symbiosis and partial-harm symbiosis.
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b. Symbiotic model of living
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c. Symbiotic model of ecology
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Figure 6. (a) Spatial distribution of production symbiosis models in 2020. (b) Spatial distribution of
living symbiosis models in 2020. (c) Spatial distribution of ecological symbiosis models in 2020.

The CYUA is an urban agglomeration developed with central cities at its core. How-
ever, the dynamics within Kunming’s urban area are predominantly competitive. On the
contrary, positive interactions can be observed with counties in other areas, such as Yuxi.
Yuxi, located in the six-river ecological zone, prominently develops living and ecological
functions, fostering a positive symbiotic relationship with Kunming, which primarily fo-
cuses on the industrial sector. This phenomenon underscores that, in terms of functional
planning, the primary focus remains on city areas. There is a deficiency in functional
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division planning within the counties, resulting in positive interactions between counties
in neighboring cities but competitive dynamics and other symbiotic models within the
city itself.

3.3. The Integrated Degree of the CYUA from the Perspective of Production—Living—Ecological Symbiosis

The level of integration was evaluated by analyzing the positive interaction generated
by each county. As shown in Figure 7, we calculated changes in the quantitative char-
acteristics of the integrated degree of the CYUA. Figure 8 shows changes in the spatial
distribution of the integrated degree of the CYUA.
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Figure 7. Changes in the quantitative characteristics of the integrated degree of the CYUA from 2000
to 2020.

As shown in Figure 8, the integrated level of the production function shows a con-
tinuous upward trend from 2000 to 2020. The spatial distribution is shown in Figure 8.
Figure 8a shows the spatial distribution of the production integrated degree. It can be
seen that the degree of participation in the production integration of urban agglomerations
gradually increased. The cities entering the early stage of development increased from
12% to 26% regarding the distribution of urban production integration participation. The
situation also developed from discrete distribution to gradually contiguous development.
However, it was mainly concentrated below the coordination stage, and the development
of integrated production in urban agglomerations was in its early stages. Figure 8b shows
the spatial distribution of the living integrated degree. The degree of participation in
the living integration of urban agglomerations is low. From 2000 to 2020, the degree of
increase was not obvious, from the original 12% to 14%, and development was in the early
stage, mainly concentrated in the central region, with scattered urban distribution and no
stable development. Figure 8c shows the spatial distribution of the ecological integrated
degree. The overall ecological integration of urban agglomerations was also in its early
stages. From a distribution perspective, it has not formed a stable development model. The
ecological integration of the eastern and southern regions was involved to a lesser extent.
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Figure 8. Changes in the spatial distribution of the integrated degree of the CYUA from 2000 to 2020.

In general, from 2000 to 2020, urban agglomeration was still in its initial stage of
development, with few counties capable of participating in integrated development to a
significant extent.

4. Discussion
4.1. Symbiotic Modes of Towns Derived from Production—Living—Ecology Conditions in the CYUA

The symbiotic mode of counties from the perspective of production, living, and
ecology is continuously improved but still at a low level. Reasonable organizational and
behavioral modes among counties are conducive to coordinated development. In order
to promote urban agglomeration development, the following aspects must be considered:
(1) similar functions tend to cluster regionally, leading to competitive dynamics among
counties in areas with high functional organization. In the CYUA, central cities can form
a good interactive relationship with the surrounding areas, but the surrounding areas
are mainly in a competitive state. It is necessary to clarify the functional positioning of
small cities and strengthen the driving ability of sub-poles. (2) The city’s own resource
endowment and interaction intensity complement each other, and the stable interaction
between counties is rooted in a certain degree of endogenous forces. (3) The development
of transportation enhances the level of production organization while hindering the level of
ecological organization. The development of transportation within the CYUA is primarily
centered around Kunming and radiates outward. This can be observed through the
organization models of production and living functions. During the period from 2010 to
2015, Honghe Prefecture, located in the southern part of the urban agglomeration, was
officially incorporated into the urban agglomeration planning. The establishment of the
Yuxi-Mengzi Railway connected Honghe Prefecture with Yuxi. It is evident that the degree
of production organization in the southern and central regions experienced a significant
increase during 20102015, while the degree of ecological organization was subdued. In
the development of urban agglomeration, the improvement of transportation deepens
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communication among counties. Urban expansion may lead to the decline of the carbon
sequestration capacity of vegetation [33] and the loss of biodiversity [34], thus affecting the
decline of the overall ecological function interaction of urban agglomeration.

4.2. Integration Development of the CYUA from the Perspective of Production—Living—Ecology

Figure 9 shows the development plan of the CYUA. The CYUA plans to build the
Kunming metropolitan area as its center, the integrated development area of Qilin, Zhanyi,
and Malone districts as its sub-core, and the Yuxi, Chuxiong, and Honghe Prefectures
as three sub-polar areas, including Hongta, the Jiangchuan Group development area,
Chuxiong, Nanhua, the Muding Group development area, and the Mengzi Old opening
source group development area. This is mainly based on the ecological pattern and relies
on the transportation axis to form a two-way “T” shape pattern; that is, a point-axis linkage
development pattern with Chuxiong, Kunming, and Qujing as the horizontal axis and
Kunming, Yuxi, and Honghe as the vertical axis. Figure 10 shows the current distribution
of major functional areas in urban agglomerations.

Legend

o Megacity
& Big city
Medium-sized city
Small city
->- Urban development axis
Coordinated development area
"Three Rivers" Basin Ecological Reserve
"Six Lakes" ecological area

0 125 250 km
|

Figure 9. Development plan of the CYUA.

According to the integration degree of urban agglomerations calculated in this study,
from the perspective of production function integration, the overall integration degree of
the CYUA is on the rise, and the integration degree of counties on the Kunming-Qujing
development axis is gradually deepening, while the integration degree of cities and towns
on the Kunming—Chuxiong development axis has no obvious change. From the perspective
of living function integration, the overall participation of the living integration degree
is low, and the urban development pattern is mainly independent development. From
the perspective of ecological function integration, the counties participating in ecological
integration are mainly concentrated in ecological function areas, as shown in Figure 10.
The integration degree of the central region has been improved under the governance of
the six lakes area, while the ecological integration degree of the ecological protection area
in the eastern Pearl River Basin needs to be strengthened. On the whole, existing planning
mainly focuses on the central provincial capital cities and spreads to the surrounding areas.
In the process of urban development in China, the gap in social and economic development
in prefecture-level cities is more obvious than that in provincial capital cities [35]. How to
coordinate and organize among these cities is also the focus of the coordinated development
of the entire urban agglomeration.
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National urban development area

Provincial urban development area
National major producing areas for agricultural products

National key ecological functional area

Figure 10. Distribution of main functional areas in the CYUA.

Based on the current development situation, this article proposes the following recom-
mendations for strengthening urban agglomeration in the future: (1) regarding production,
there is an imbalance in development between the east and west. It is essential to enhance
connectivity between the central and western regions, bolstering the industrial functions of
the western part and reinforcing its radiation ability to the surrounding areas. (2) In terms
of living, currently, participation in the integration of life functions in urban agglomerations
is not substantial, with most focusing on isolated development. It is crucial to increase in-
vestment in the construction of life functions and expand the investment capacity in living
functions. (3) Regarding the ecological aspect, the involvement in ecological integration
primarily centers around western cities, with insufficient participation from eastern cities.
There is a need to enhance ecological zone governance in eastern cities and strengthen
ecological integration efforts in the eastern region.

4.3. The Advantage of Refined Analysis of Integration Development from
Production—Living—Ecology Angle

In the course of urban agglomeration development, the interaction among cities is
inevitable. The focal point in urban research is how to achieve mutually beneficial out-
comes in urban development through these interactions. Conventional research on urban
agglomeration development typically employs a comprehensive indicator to investigate
interconnection among cities. For instance, by utilizing socioeconomic statistics, traffic data,
and network big data, the Urban Connectivity Index (UCI) was developed to gauge the
strength of urban connections and assess the correlation between the closeness of urban
connections and urban development [36]. Although this method employs comprehensive
indicators to depict the intensity among cities, further exploration of the urban symbiosis
mechanism requires refinement due to variations in functional positioning among towns.
For example, employing spatial big data to examine city connections from a network
perspective [37] or investigating the impact of urban agglomeration integration on green
development from a market integration viewpoint provides more nuanced insights into
urban closeness [21]. These studies delve into specific aspects based on the foundation
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of urban integrated development. This article sought to go a step further by subdividing
the diverse functional positioning of cities beyond a general depiction of city connections.
When discussing the integration process of urban agglomerations, we assessed it from
three perspectives: production, living, and ecology. China has adopted the practices of
production, living, and ecological functions as key measures to attain sustainable urban
development. On the one hand, this provides a suitable overview of different functions
and illustrates the interaction among towns with different functions. On the other hand, it
avoids excessive detail, ensuring an overarching understanding.

Second, this article utilized the radiation model to gauge the interaction between towns.
According to spatial interaction theory, key conditions for town interaction encompass
complementarity, accessibility, and intermediary interference effects. In comparison with
other spatial interaction models, the radiation model is better equipped to consider the
impact of intermediary interference effects, leading to a more accurate measurement of
spatial interactions between towns.

Third, we also considered the impact of urban functions and interactions. We identified
the two-way interaction status between counties under the benign symbiosis model to
prevent the overestimation of urban, comprehensive development caused by ineffective
interactions. This approach ensured a more accurate measure of the degree of integration
within urban agglomeration.

5. Conclusions
5.1. Conclusions

This study focused on the integrative development of urban agglomeration, assessing
urban functions and urban interaction across three dimensions: production, living, and
ecology. Each county’s functional scale was quantified using an index system, while county
relationships were examined utilizing both the improved radiation model and functional
distance model. Building upon the calculations mentioned above, we drew from symbiosis
theory, delving into the study of organizational and behavioral models from 2000 to 2020.
Through these analyses, we evaluated the integration status of urban agglomeration. The
results show that (1) the overall integration of production functions of the CYUA is in the
primary stage. Examining the developmental trajectory over the past two decades, the
production integration value of cities within the agglomeration demonstrated an ascending
trend. The number of counties participating in the construction of production integration
increased, and spatial contiguous development gradually formed. In spatial distribution,
the counties actively involved in the integrated development of production within the urban
agglomeration shifted from fragmented states to cohesive and coordinated development
patterns emanating outward from the center. (2) The overall integration of living functions
of the CYUA is in the primary stage. The degree of integration of life functions was
the lowest among the three functions. Meanwhile, the overall integration trend showed
an upward trend. Fewer counties are participating in the integration of living, mainly
in the central and northern regions, and their distribution is sporadic, without forming
a stable development model. (3) The overall integration of ecological functions of the
CYUA is in the primary stage. Counties participating in ecological integration are mainly
concentrated in the west and north of the CYUA. During the development process of the
urban agglomeration, the distribution of ecological integration gradually changed from
the original contiguous form to fragmentation. This shows that urban development has a
certain inhibitory effect on the integration of ecological functions.

This study exclusively examined the developmental model of urban agglomeration
integration, focusing on three dimensions: production, living, and ecology. The objective
was to investigate the urban agglomeration development model within the framework of
these three functions. However, there is still a need to delve into how these three functions
interact during the integration process. Additionally, further research is required to explore
external influences on urban agglomerations and other pertinent aspects.
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5.2. Limitations and Prospects

This article employed symbiosis theory to examine the integration of urban agglomer-
ations, focusing on three dimensions: production, living, and ecology. This has contributed
to the advancement of urban agglomeration development. Nevertheless, certain limitations
are acknowledged. Firstly, the exploration of symbiosis within the urban agglomeration
employs the county as a unit but neglects the urban—rural relationship, necessitating further
exploration in subsequent research. Secondly, the article concentrated on the symbiosis
model within the urban agglomeration, recognizing that the region is not a closed system
but an open one. As the urban agglomeration interacts internally, it also engages with
surrounding cities, requiring additional investigation into the nature of this interaction.
Thirdly, the paper utilized the radiation model to simulate the internal interaction of
urban agglomeration. In subsequent research, the model can be refined, and its effective-
ness enhanced with the support of geographical big data and other relevant information.
Fourthly, the interaction between the production, living, and ecological functions of the
urban agglomeration was discussed separately; however, understanding how these func-
tions influence each other warrants further exploration. Finally, the CYUA discussed in
this article represents an urban agglomeration in its early developmental stages. Future
research will continue to explore urban agglomerations at various stages of development.
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Abstract: The significance of ecosystem services and land use for human well-being and sustainable
development cannot be understated. Scientifically assessing the ecosystem service value (ESV) and
studying the relationship between land use change and the ESV can provide a theoretical groundwork
for land use planning and ecological administration in Guiyang. In this study, gradient analysis was
utilized to explore the changes of ESV at district level of Guiyang. Then, the synergistic relationship
and the strength of the interaction between land use intensity (LUI) and ESV were explored by
using a coupled coordination model and spatial autocorrelation analysis. Furthermore, polynomial
fitting was carried out for the LUI index and its linked coordination index in relation to the ESV.
The results showed that (1) the areas of farmland, forest, grassland, and unused land in Guiyang
decreased from 2000 to 2020, while the areas of construction land and water body increased conversely.
(2) The expansion of the construction land and water body was the main cause of the ESV change
pattern in Guiyang, which first moved downward and then upward. (3) The ESV and LUI had
a low overall coupling coordination degree (CCD). Spatial autocorrelation studies showed that
low-to-low aggregation and high—to-high aggregation dominated the spatial patterns of essential
regions. (4) The LUI and CCD indexes exhibited an inverted U-shaped curve correlation.

Keywords: ecosystem service value; land use change; land use intensity; coupling coordination;
polynomial fit

1. Introduction

An ecosystem comprises living organisms and their surrounding conditions [1]. The
products and services ecosystems offer people are known as ecosystem services. These ser-
vices are categorized into four categories: providing, regulating, supporting, and cultural.
Humans may derive direct or indirect benefits from the functions of an ecosystem [2,3].
Ecosystems impact economic growth and human welfare, and ecosystem changes may
offer notable benefits to humans. Still, the accompanying costs involve the degradation of
ecosystem services and an increase in their potential risks [4,5]. The rapid industrialization
and urbanization, economic expansion, and extensive deterioration of ecosystems all strain
ecosystems increasingly [6]. The concept of ecosystem service value has gained significance
in addressing the challenges of ecosystem services more crucial [7]. As the LUI can alter
notable elements of ecosystem functioning, including the conflicts between ecosystem
functions and services, as well as their benefits, it is imperative to consider how the LUI
impacts ecosystem services and functions [8]. The relationship between land use and ESV
needs to be explored to improve human well-being and provide theoretical support for the
creation of regional development policies on land use and ecosystem services.
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ESV measurements are essential for social development [9,10] because they necessitate
balancing several factors that impact the welfare of people in various circumstances in
which decisions are made [11]. Since the 1990s, significant research has been conducted
on the quantification of ESVs [12-14]. The financial ESV can be determined by comparing
the relative values of various indicators and by measuring them in labor or time units [15].
Further research on expressing ESVs in monetary terms is warranted, as doing so would
support decision making. Monetary valuation methods for ESV usually include ecological
modeling, economic valuation methods based on unprocessed data, and value transfer
methods based on land use in terms of unit values [16]. There are two steps involved in the
primary estimation process: the first step is to quantify ecosystem services and processes
with the use of ecological models (such as water conservation models) or indicators (such
as land utilization) and then evaluate them using economic valuation methods [17-19].
Because these methods are computationally demanding and require many parameters,
harmonizing and standardizing the assessment parameters for every ecosystem function is
more challenging when methods that rely on unprocessed data are used. Consequently,
these methods are suited for assessing ESV for specific services within a particular ecosys-
tem or at small spatial scales [20]. The unit value technique calculates ESVs using the
economic worth of a unit area inside a given environment. It is appropriate for large spatial
scales and integrated ESV evaluations [21]. Costanza updated the worldwide ESV using
data from an ESV database that De Groot created [7,22], which included the ESV for ten
key biomes. In order to calculate the ESV in China based on prior research, Xie constructed
an equivalency factor approach based on the unit value method and consulted 500 Chi-
nese ecological specialists [23,24]. In China, the equivalency factor approach is frequently
applied, particularly for research that assesses the ESV of land use change (LUC) [19].

Since terrestrial ecosystem services are susceptible to LUC, land use planning must con-
sider these effects [25,26]. Scholars have demonstrated the relationship between LUC and
ESV by analyzing how land use patterns can alter how ecosystem services are given [27,28].
LUC significantly affects the form and functions of significant ecological systems and
ecosystem services and their values [29]. Ecological services and land use are influenced
and constrained by each other [30]. The speed at which human society has developed has
increased human influence on the natural environment, and this has caused environmental
harm and underscored the vulnerability of ecosystems [31]. Research has shown that
land degradation brought on by LUC may obstruct the delivery of ecosystem services in
a particular location and impede the ability of ecosystems to develop sustainably [32,33].
Different land use types can provide various ecosystem services. For instance, farmland
can provide more food than forest, but forest has higher carbon reserves and provides
more services for the production of lumber [34]. Land use changes include modifica-
tions to the kinds of land utilized and adjustments to the intensity and spatial patterns of
land usage [35]. In analyzing the connection between ecosystem services and LUC, more
researchers have recently looked at variations in land use types [36-38]. For instance, envi-
ronmental degradation and excessive human encroachment on ecological lands, such as
wetland, grassland, and forest, are the reasons behind the decline in associated ecosystem
services [27,39]. Proactive measures such as reforestation and tree planting improve some
ecosystem functions [40,41]. Although the connection between LUI changes and ecosystem
services has not received much attention [42], changes in LUI also affect the services and
functions of ecosystems [43]. Xu [44] conducted a variance and correlation analysis to
determine how LUI affected ecological services and human well-being. He discovered
that the increasing LUI improved food production, soil conservation, and climate control.
According to Chillo’s [45] research on the effects of LUI on ecosystem functions, it can
be observed that the indirect effects of LUI on ecosystems were of significant importance.
Lucia’s research indicated that while ecosystem services and ecosystem functions can be
enhanced at moderate LUI levels. However, the positive correlation between ecosystem
services and ecosystem functions decreased, at higher LUI levels [8].
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Guiyang is a typical karst city in Southwest China, characterized by high fragmen-
tation and heterogeneity in its landscape, as well as fragile ecosystems and ecological
environments [46]. Due to the weak and unstable ecological restoration capacity of karst
ecosystems, limited ecological carrying capacity, and the high ecological sensitivity, the
ecological system of Guiyang City is easily influenced by external pressures [47]. Although
there has been an overall improvement in ecological quality in Guiyang since the 1990s,
primarily as a result of the implementation of national ecosystem restoration and other
policy projects, the degradation of land still persists in the city center area, and the high
rate of urbanization is associated with low environmental quality [48]. Guiyang, with its
growing economic prosperity, is experiencing continuous urban expansion and damage
to its fragile ecological environment. As LUC can alter notable elements of ecosystem
functioning, including the conflicts and benefits between ecosystem functions and services,
it is necessary to unveil how LUC influences ecosystem functions and services. However,
few studies have concentrated on ESV changes in karst areas, and few have addressed the
relationship between LUI and ESV. Karst areas have more fragile ecosystems and need to
pay more attention to their land use—ecosystem relationship. Theoretical frameworks can
be proposed for land use planning and ecological regulation in Guiyang by evaluating
ESVs scientifically and examining the connection between LUC and ESV.

The coupled coordination model and polynomial fit were employed in this work to
explore the patterns and changes in land use and ecosystem services in Guiyang, both
spatially and temporally, from the standpoint of linking land use with ecosystem services.
This model attempted to explain how urbanization has evolved with the relationship
between land use and ecological services. The following are the goals of this study:
(1) quantitative assessments of these variables in Guiyang in 2000, 2005, 2010, 2015, and
2020, as well as an assessment of the spatiotemporal distribution aspects of LUC and ESV;
(2) assessment of the features of the temporal and spatial distributions of various forms
of coupled coordination using the coupled coordination model to explore the connection
between ecosystem services and land use; and (3) examination of the degree of coupled
coordination in the LUI-ESV pattern of change, as well as the trend in the change between
the two indicators and the possibility of a turning point in the change process.

2. Materials and Methods
2.1. Study Area

Guiyang (106°07' E-107°17' E; 26°11' N-26°55" N) is the provincial center of Guizhou
Province and has a karst landscape. The city of Guiyang is located on a watershed that
separates the tributaries of the Chishui River of the Pearl River system and the Wujiang
River of the Yangtze River system. The jurisdiction of Guiyang includes six main urban
areas and “one city and three counties”, and its main urban areas include Nanming, Yunyan,
Huaxi, Wudang, Guanshanhu, and Baiyun, and the “one city and three counties” refers
to Qingzhen, Kaiyang, Xifeng, and Xiuwen (Figure 1). Different degrees of impact of
increasing urbanization in Guiyang on the land use structure and ecological services have
been observed. The years 2000, 2005, 2010, 2015, and 2020 were selected as study periods
to expose changes in land use and the ESV of Guiyang. This study explained the changes
in land use dynamics, LUI, and ESV in terms of space and time, explored the coupling
and coordination of LUI and ESV, and provided references for ecological security and
sustainable development in Guiyang.
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Figure 1. Location of Guiyang in China.

2.2. Data Sources

Land use data with a resolution of 30 m raster data was sourced from the Resource
and Environment Science Data Center of the Chinese Academy of Sciences. Six primary
categories exist for land use statistics: farmland, forest, grassland, water body, construction
land, and unused land [49]. Digital elevation model data was acquired from the Geographic
Data Spatial Cloud. Administrative divisions originated from the National Catalogue
Service for Geographic Information. The area, production, and selling price of major
grains in Guiyang were obtained from the Guizhou Statistical Yearbook, the Guiyang City
Statistical Yearbook, and the National Compilation of Information on Costs and Benefits of
Agricultural Products for the years 2000-2020.

2.3. Methods

This study assessed the spatial and temporal changes in land use/land cover (LULC)
in the study area using land use raster data of 30 m accuracy in conjunction with a land
use type conversion matrix, land use dynamics, and LUI techniques. Next, this study
used ArcGIS 10.6 to create a 3.5 km x 3.5 km fishing net and calculated the ESV for each
land use type and the total ESV of the study area. The ESV was determined using Xie’s
method [19], in this research, in which the standard equivalence coefficient was adjusted
by calculating the economic value produced by food crops per unit area of the study area.
Subsequently, the adjusted standard equivalence coefficient was combined with the land
use data to obtain the monetarily quantified ESV. The temporal and spatial variations of
the ESV were characterized using the Theil index, gradient analysis, and hot spot analysis.
Coupled coordination analysis, gradient analysis, and spatial autocorrelation analysis were
used to explore the relationship between ESV and LUC. In order to delve further into the
relationship between ESV and LUC, a polynomial fit was chosen to reveal the correlation
between LUI and CCD (Figure 2).
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Figure 2. Research framework.
2.3.1. LUC Characteristics
(1) LULC

A land use-type transfer matrix was employed to clarify the land use characteristics
and the transfer path between different land use categories:

Yiiu Yo ... Y,
Yor Yo ... Y

L ®
Ynl Yo oo Y

where Y is the study area; i denotes the LULC in the initial stage of the study; j corresponds
to the LULC in the terminal stage of the study; and n represents the number of land
use types.

(2) Land use dynamic degree
Single and integrated dynamic land use models were proposed to better represent the
land use coverage and interconversion intensity of each land use type [50]:

L,—L; 1
= s 1 00 2
I ><T>< 00% 2)

D
where D denotes the degree of single land use dynamics; the area of a specific land use
type at the start and completion of the study are indicated by the variables L and L,
respectively; and T is the period of the study.

Integrated land use dynamics was utilized to characterize the degree of interconversion
of each land use type:

n
L AL
K= [ | x = x 100% ®)
2% L
i=1

where K represents the degree of integrated land use dynamics; L; represents land use type
i in the initial stage of the study; AL;; represents the absolute value of the area of type i
land converted into another land type; and T is the period of the study.

(3) LUI
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The LUI can be classified into four classes: unutilized land (class 1); water body, forest,
and grassland (class 2); agricultural land (class 3); and construction land (class 4) [51,52]:

n
Q. =100x Y A; x G (4)
i=1

where Q, denotes the combined LUI; A; represents the level of LUIL; and C; corresponds to

the proportion of land used for each land use type.

2.3.2. ESV Estimation
(1) Standard equivalent

The ESV equivalence factor can be calculated by taking 1/7 of the market value of the
average crop yield in the study area [53]:

% Z mipiqi )

where E,; corresponds to the economic worth of the production service that a unit of a
farming ecosystem may supply; i indicates the kind of crop; p; represents the national
average market price of the i crop; 4; denotes the output of i crop; m; denotes the acreage of
i crop; and M indicates the aggregate area of  crops.

5
ESVi = A x )V (6)
=1
m
ESV, =Y ESV; )

i=1
At every grid point, ESV; represents the ESV for land use type i; A; stands for the

land use area; m denotes the number of land use types; V;; represents the unit value of ESV
category j of land use i; and ESV, indicates the overall ESV of cell n.

(2) Theil index

The Theil index, known as a common economic index, can be used to illustrate
the extent of the disparity between regions and to estimate the size of the inter-regional
variations in the ESV [54]:

ESV;  ESV;/ESV
T — 1 1 1
»=L sy S./S ®

i

where T, stands for the inter-area Theil index; S; represents the area of the i-th region; ESV
indicates the overall ESV; and S denotes the entire area. The greater the variation in the
ESV between regions, the higher the Theil coefficient.

(3) Gradient analysis

The circle method of gradient analysis enables the effect of circles on the spatial
gradient of individual urban elements to be explored [55]. This research used ArcGIS 10.6
to construct buffers to form circles, and the element values were calculated separately for
each circle:

IS
|
L=
J

©)

—n
L=
W
S

where D; indicates the average elemental value of the i-th circle; S; denotes the area of cell j
contained in the i-th circle; D; represents the primary count of cell j; and 1 corresponds to
the number of cells in each circle.
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2.3.3. Coupled Coordination Relationship between LUI and ESV

The CCD between LUI and ESV was calculated by using the model for coupled
coordination [56,57]:

u= 2\/(”1 X u3)/ (11 + up)? (10)

{S:\/UXT 1)

T = auq + Buy

where U describes the degree of coupling; U; and U, are the normalized values of LUI and
ESV calculated by using the polar variance method of normalization, respectively; S stands
for CCD; and T denotes the index of system comprehensive coordination; & represents the
weight of LUI and p indicates the weight of ESV, and they are both set to 0.5 [58].

! Kyi — min(Kxi)

X maX(Kxi) - min(Kxi) (12

K,; equals the initial value of the i-th indicator; K’,; denotes the standardized indicator
data.

According to current researches, the CCD can be classified as having a severe imbal-
ance (0 < U <0.2), moderate imbalance (0.2 < U < 0.4), essential coordination (0.4 < U < 0.6),
reasonable coordination (0.6 < U < 0.8), and high coordination (0.8 < U < 1) [59].

2.3.4. The Polynomial Fit of the LUI to the CCD

This study explored how the degree of coupled coordination between LUI and ESV
fluctuates with LUI by simulating the variation curves between LUI and CCD with the poly-
nomial fit feature in Origin 2021 software. This study chose the second-order polynomial
in this software, and the normalized LUI and CCD were the independent and dependent
variables, respectively. The curve represented the coupling degree trends of the LUI and
ESV as the LUI changed.

3. Results
3.1. The LUC of Guiyang

In Guiyang, construction land accounted for the majority of LULC between 2000 and
2020. Construction land generally increased as farmland, forest, grassland, and unused
land diminished. The most significant changes occurred in the construction land and water
body, which increased by 146.752% and 49.752%, respectively. Forest exhibited the least
rate of change, dropping by 0.762% in 2020 compared to 2000. Throughout these 20 years,
farmland, forest, and grassland were the three main land categories, accounting for the
most significant percentage of the whole area (Figure 3). The regions where construction
land expanded between 2000 and 2020 focused on Wudang, Baiyun, Guanshanhu, Xifeng,
and Qingzhen; the most considerable percentage growth was in Guanshanhu, and the
smallest was in Yunyan. The highest growth rate of farmland was in Xifeng (0.978%).
Guanshanhu had the highest decline in farmland, at 44.529%. The forest areas in Baiyun
showed the most excellent rate of improvement at 10.427%, and Nanming had the worst at
—15.134%. The percentage increase in grassland areas was negative in all counties, with
the lowest in Yunyan at —70.880%. Kaiyang underwent the most rapid expansion in the
water area, at 1047.036%. Only Guanshanhu and Qingzhen had unused land by 2015; by
2020, only Qingzhen had unused land.

In 2000-2020, the most significant amount of land transferred in was construction
land (377.0101 km?), whereas the largest amount of land transferred out was farmland
(418.775 km?). The majority of forest had been turned into farmland, the majority of unused
land into construction land, and the majority of grassland, water body, and construction
land into forest. The conversion of the most incredible amount of grassland into farmland
occurred between 2000 and 2005; the most incredible amount of grassland to forest conver-
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sion happened between 2005 and 2010; the greatest amount of farmland was converted
into forest between 2010 and 2015; and the largest conversion of farmland into construction
land occurred between 2015 and 2020 (Figure 4).
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Figure 3. The characters of LULC in Guiyang.

Between 2000 and 2020, the integrated land use dynamic degree was 0.258%. As-
sessments of the alterations in land use have been conducted throughout time every five
years. The percentage of integrated dynamics degree was 0.205%, 0.359%, 0.110%, and
0.816% in the years 2000-2005, 20052010, 2010-2015, and 2015-2020, respectively. The
integrated dynamics of the various land use types exhibited a pattern that first increased,
then decreased, then increased once again, and peaked at the fourth stage, according to the
data. For each land use type, the single land use dynamic degree outcomes from high to low
were in the following order: construction land > water body > forest > farmland > grassland
> unused land (Figure 5). For both the construction land and the water body, the dynamic
degree was 2.621% and 10.527%, respectively, and overall, only these two land types had
positive dynamics from 2000 to 2020: —0.410% and —0.619% for the dynamics of farmland
and grassland, respectively. Following the increase in farmland dynamics in 2000-2005,
the 2005-2015 dynamics remained negative. The grassland dynamics were negative in
2000-2015; the 2015-2020 dynamics increased to 0.310%. Forest dynamics increased from
2000 to 2010 and continued to decline from 2010 to 2020. The unused land dynamics were
only positive in 2000-2005; they were negative in 2005-2020 and substantially decreased
in 2015-2020. In the period 2000-2020, LUI displayed a consistent increasing tendency.
The LUI of Guiyang maintained an upward trend, with the largest increase, at 13.852%, in
Yunyan. The LUI of Xiuwen, Xifeng, Kaiyang, and Wudang was at a lower level. The LUI
of Baiyun, Guanshanhu, Huaxi, and Qingzhen was at a moderate level (Figure 5).
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Figure 5. Single land use dynamic degree and comprehensive index of LUL

3.2. Features of ESV Change

From 2000 to 2020, the ESV trended lower before rising again. From 2000 to 2015,
it was declining, but the rate of decline slowed down over time (Figure 6a—e). The ESV
over five periods was 2130.018, 2119.914, 2114.006, 2108.909, and 2149.387 million dollars,
with a slight overall change of 0.909%. The northeast of Kaiyang, north of Xifeng, and
south of Qingzhen were the primary locations with high ESVs; the low-ESV areas were
mainly in Yunyan, Nanming, Baiyun, Guanshanhu, Huaxi, the west of Qingzhen, Xiuwen,
the northwest of Xifeng, and the central part of Kaiyang. The Theil index was observed
to increase, which indicates a gradual widening of the gap in ESV within the region.
The reason for the increased inequality in ESV within regions could be the irrational
development and utilization of land by humans, and the LULC study found that the
gradual increase in land for construction came at the expense of the decrease in ecological
lands, such as forest and grassland. The degree of economic development varied between
regions, as did the degree of land exploitation and use. Figure 6a—e demonstrates that the
ESV was usually lower in regions close to urban centers; the imbalance in inter-regional
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development affected the overall variability of the ESV in Guiyang city. The six main
urban areas of Guiyang showed a downward tendency in ESV from 2000 to 2020, with
the highest rate of decrease recorded in Yunyan, which reached —28.088%. Among the
“one city and three counties”, Kaiyang showed the most significant change, rising by
10.825% in the period 2015-2020; the value for Xifeng began to rise between 2015 and 2020,
with growth rates of 0.411% and 0.127%, respectively. Between 2015 and 2020, there were
increases of 2.095% in Qingzhen and 2.002% in Xiuwen. The water body experienced the
most enormous growth in ESV, whereas the unused land saw the most significant decline.
From 2000 to 2005, only grassland showed a decrease in ESV, which persisted until 2015.
Farmland and unused land had a declining ESV starting in 2005 and continued to do so
until 2020. The year 2010 was the starting point for the fall in forest land ESV. The ESV for
water body grew between 2000 and 2020 (Table 1).
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Figure 6. Gradient analysis of ESV changes in Guiyang.

Table 1. ESV and Theil index changes from 2000 to 2020 in Guiyang.

Year Farmland Forest Land Grassland Water Body Unused Land  Total
2000 166.964 1237.918 518.916 206.197 0.022 2130.018
ESV 2005 169.306 1248.513 491.014 211.058 0.022 2119.914
(millions of dollars) 2010 167.364 1279.280 451.367 215.975 0.020 2114.006
2015 165.337 1277.606 447.739 218.209 0.019 2108.909
2020 153.285 1227.120 454.681 314.287 0.014 2149.387
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Table 1. Cont.

Year Farmland Forest Land Grassland Water Body Unused Land  Total
2000-2005 1.403 0.856 —5.377 2.357 0.843 —0.474
h . 2005-2010 ~1.147 2.464 ~8.075 2.330 —8.596 ~0.279
ar(‘ge) rate 2010-2015 —1.211 —0.131 —0.804 1.034 —5.241 —0.241
° 2015-2020 —7.289 —3.952 1.550 44.030 —26.413 1.919
2000-2020 —8.193 —0.872 —12.379 52.420 —35.726 0.909
Year 2000 2005 2010 2015 2020
Theil index 0.0046 0.0052 0.0053 0.0056 0.0100

The main six urban areas of Guiyang were considered as a whole, while Qingzhen,
Xiuwen, Kaiyang, and Xifeng were viewed as a whole. Their commercial centers have been
selected to draw buffer zones with an interval of 2 km (Figure 6f—j). Overall, the value
trend in each area changing with the circle remained the same from 2000 to 2020. The main
urban areas of Guiyang within the 2-10-km circles were considerably less valuable in 2020
than in 2000-2015 (Figure 6f). Kaiyang showed much-improved values after the 16-km
circle compared to previous years, with the highest rise occurring inside the 40-km circle
(Figure 6j). The 2-km circle values of Xifeng were considerably lower from 2010 onwards
than in 2000-2010, and after the 28-km circle, they remained high in 2015-2020 before
starting to fall in value inside the 30-km circle in 2010 (Figure 6i). The trend for Xiuwen in
2000-2020 was unchanged, and the values inside the 40-km circle in 2015 and 2020 were
markedly higher than in the other years (Figure 6h). Qingzhen showed an upward trend
in the 46-48-km circles in 2000, but the value in the 48-km circle fell again in 2005 and
then rose sharply after 2010 until the beginning of the 46-km circle, growing each year
(Figure 6g).

The south of Qingzhen, Guanshanhu, the north of Xiuwen, the north of Xifeng, and
the east and west of Kaiyang were the primary locations of hot-spot changes in ESV in
Guiyang. The cold-spot changes were primarily located around Yunyan, Nanming, and
the south of Baiyun, as well as the Huaxi, Qingzhen, Xifeng, and Kaiyang border areas
(Figure 7).
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Figure 7. Hot spots for change in the ESV in Guiyang from 2000 to 2020.

3.3. Evaluation of LUC and ESV Coupling Coordination

The 2000-2020 LUI and ESV coupling coordination in Guiyang was mainly primary co-
ordination and endangered dysfunction (Figure 8a—e). Primary coordination accounted for
most of the coupling coordination in 2000 (Figure 8a), accounting for 21.989% of it, but was
overtaken by endangered dysfunction in 2015 (Figure 8d), with endangered dysfunction
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reaching 21.020%. Severe dislocation and primary coordination regions gradually shifted to
endangered dislocation. The areas of severe dislocation rose by 16.129% from 2005 to 2010
and progressively decreased from 2010 to 2020. The primary coordination areas shrank by
24.205% between 2000 and 2020. A growth of 29.206% in endangered dislocation regions
occurred between 2000 and 2020, and the most dramatic change occurred between 2015 and
2020. Both intermediate coordination and severe dislocation were centered in Qingzhen
city, but the proportion was tiny. The overall level of coupled coordination in Guiyang
did not change much between 2000 and 2020, and neither did the tendencies within the
districts. Qingzhen (Figure 8g), Xiuwen (Figure 8h), Kaiyang (Figure 8j), Xifeng (Figure 8i),
and the main six urban areas of Guiyang (Figure 8f) were considered individual areas.
Their economic hubs have been chosen to provide buffer zones spaced 2 km apart. The
level of coupled coordination between the main urban areas of Guiyang and Qingzhen was
characterized by a high level of coupled coordination in the areas surrounding the regional
centers. Owing to their high degrees of urbanization and building, Qingzhen and the main
metropolitan regions of Guiyang showed a high degree of interaction between LUI and
ESV. Every Xiuwen circle had a CCD marked low in the center and high on both sides.
Specifically, before the 8-km circle, the CCD of Xiuwen dropped with the distance from the
regional center. Then, it fluctuated at a low level until a noticeable upswing occurred at the
32- and 42-km circles. Up to the 30-km circle, the CCD in Xifeng was very flat; nevertheless,
the 30-32-km circle showed a definite downward trend. Kaiyang displayed a comparable
pattern, with little change until the 28-km circle and a continuous decline in CCD levels
after a brief rise in the 28-32-km circle.
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Figure 8. Gradient analysis of CCD changes in Guiyang.
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A global autocorrelation analysis of CCD indices for LUI and ESV in Guiyang was
conducted using ArcGIS10.6 software. For each of the five time periods from 2000 to 2020,
the global Moran’s I value of the Guiyang CCD was > 0.26 with p < 1. Significant regional
variances and a somewhat positive spatial correlation were observed in the degree of
coupling coordination, with a maximum value of 0.282 in 2015 and a minimum value of
0.261 in 2020. Low-low and high—high aggregation types were found to be the primary
characteristics of Guiyang, according to the results of the localized spatial autocorrelation.
Huaxi, Yunyan, Nanming, Guanshanhu, Baiyun, southern Wudang, southern and northern
Qingzhen, the northeastern edge of Xifeng, and the central part of Kaiyang were the
prominent locations of high-high aggregation; east Qingzhen, northeastern Wudang, and
the western and eastern borders of Kaiyang were all areas of low-low aggregation (Figure 9).

Not Significant

- High-High Cluster
- High-Low Outlier
Low-High Outlier

- Low-Low Cluster

——— KM
Figure 9. Local indicators of the spatial association of CCD in Guiyang from 2000 to 2020.

3.4. Polynomial Fitting Analyses of the LUI and CCD

The polynomial-fitted R? values were all >0.6, and the p-value was <0.000, suggesting
that the equation has some explanatory effect on the change process in LUI and its coupling
coordination with ESV (Table 2). Specifically, an inflection point appeared in all five periods
of the fitting curve from 2000 to 2020, and the peak values of the CCD index appeared
when the LUI index was 0.5, 0.497, 0.526, 0.496, and 0.499, respectively, beginning to change
from an upward trend to a downward trend. The fitted curve (Figure 10) had an inverted
U-shape, where the level of coupling between LUI and ESV peaked and then declined as
LUI grew. This reveals that from the onset of LUI growth, the relationship between LUI and
ESV progressively became stronger. However, as LUI continued to increase, the coupling
index progressively declined following its highest value, which suggests that at this point,
the interaction between LUI and ESV was less intense.
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Table 2. Expression and inflection points between LUI and CCD.

2000 2005 2010 2015 2020

Expression: y = Intercept + B1 x x + B2 x x?

R? 0.619 0.643 0.706 0.675 0.825
P 0.000 0.000 0.000 0.000 0.000
Intercept 0.25953 = 0.00449 0.26097 = 0.00437 0.26385 == 0.00364 0.25066 + 0.00397 0.26452 + 0.00233
Bl 0.90071 + 0.03268 0.90544 + 0.03124 0.87213 + 0.02591 0.95957 + 0.0292 0.87428 + 0.01744
B2 —0.90321 £ 0.05142  —0.90964 &+ 0.04779  —0.82857 £ 0.03721  —0.96629 £ 0.04218  —0.87525 + 0.02233
Inflect LUI 0.500 0.497 0.526 0.496 0.499
nilection CCD 0.483 0.486 0.493 0.489 0.484
0.4 0.4 0.4
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Figure 10. Fitting relationships between LUI and CCD from 2000 to 2020.

4. Discussion
4.1. Dynamics of Land Use, ESV, and Their Coupling Relationship in Guiyang

The patterns of urban ecosystems have been dramatically impacted by modifications
to the urban land use structure brought about by the current imperative for fast urban ex-
pansion [60]. This analysis shows that between 2000 and 2020, the amount of land used for
construction and the growth of water body in Guiyang dominated the variation in land use,
while the amount of farmland, forest land, grassland, and unused land generally reduced.
Farmland, forest, and grassland were the primary input categories used for expanding con-
struction land. Farmland and forest land were the main drivers of the growth of the water
body category. The growth of construction land in Guiyang resulted in the loss of farmland,
forest land, and grassland, which reduced the ESV from 2130.018 to 2108.909 million dol-
lars, or 0.991%, between 2000 and 2015. However, because of the growth of the watershed
from 2015 to 2020, the ESV increased by 1.919% to 2149.387 million dollars. The loss of
agriculture, forest, and grassland along with urbanization were all contributing factors to
the overall drop in ESV; nevertheless, the preservation and restoration of water body drove
an increase in the ESV. This finding was consistent with previous studies conducted in
Southwest China and indicated that the extension of the water body area was the primary
cause of the increase in ESV [61]. The water body area in the Yunnan—-Guizhou Plateau
expanded between 2001 and 2020 [62]. Between 2000 and 2020, Guizhou Province did
not experience a notable uptick in precipitation; the development of water conservation
projects was the primary cause of the increase in water area [63]. The Qianzhong Water
Conservancy Hub project has effectively increased the amount of surface water storage
in Guiyang. Compared with other land use types, the water body category had a more
significant coefficient of value per unit area; therefore, even though water body was not
very large overall, it substantially influenced changes in the ESV.
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The LUI can have a direct or indirect impact on biodiversity. Increases in LUI may
result in biodiversity loss, land degradation, higher carbon emissions, and other environ-
mental effects [64—66]. The urban center areas of Guiyang, Yunyan, and Nanming had a
much higher LUI than other places because of the density of their construction land and
a small area of ecological land. Xifeng, Xiuwen, Kaiyang, and Wudang had less LUI and
ecological space as they were less urbanized overall. As a mountainous city, geographic
factors and government policies influenced and restricted urban expansion and LUC in
Guiyang [67]. In Guiyang, since 2000, economic development has been increasing, and its
ESV was low in the central city. The regions of Kaiyang, Qingzhen, Xifeng, Xiuwen, Huaxi,
and Wudang have been included in most high ESV areas. These regions produced more
ESV because they had a lower proportion of construction land and were more prosperous
in ecological resources than Guanshanhu, Baiyun, Yunyan, and Nanming. The ESV of
the Guiyang districts showed different fluctuations with distance from the regional center,
and the fluctuation trends did not change much over time, which indicated stability in the
inter-regional LUC. The ESV was often lower near the regional center, showing a negative
impact of urbanization on the ecosystem. The ESV was greater and even exhibited a con-
siderable increase in the regions far from the regional center, which suggested that these
locations had superior ecological environments. Overall, LUI and ESV climbed by 2.93%
and 0.909%, respectively, between 2000 and 2020, with primary harmonization and endan-
gered dislocation accounting for most of their CCD-level types. Unreasonable land usage
was one major factor that contributed to the low level of coupled coordination between
LUI and ESV. One can determine how benign their interaction was by examining the CCD
between LUI and ESV. It is essential to actively develop the economy while concentrating
on preserving and rehabilitating the natural environment.

4.2. Polynomial-Fitted Relationship between LUI and CCD

It was evident from the inverted U-shaped curve of the Guiyang LUI and LUI-ESV
CCD that the two phases of their relationship could be separated. During the initial
phase, the degree of coupling coordination rose in tandem with the LUI Land use still
negatively affected the permitted range of ecosystems, and the LUI was not surprising.
The close interaction between land use and ecosystem services persisted, and there was
still potential to enhance the degree of coordination between the two. The second stage
could be conceptualized as a large-scale extension of urbanization, and it was characterized
by a rise in construction land, a corresponding increase in the pace of urbanization, an
invasion of ecological space, and the degradation of the natural environment. The CCD
between ecosystems and land use declined as a result of all these issues. At this point, the
amount of LUI-ESV coupling coordination peaked and then began to display a declining
trend as the LUI reached a particular level and continued to grow. When the LUI reached a
high level, the LUI-ESV coupling coordination reduced in degree. This could be explained
by the fact that the LUI gradually grew with the development of urbanization and that
the harm produced by humans to the ecological environment affected the services and
functions of the ecosystem, which resulted in a continual drop in the degree of LUI-ESV
coupling coordination.

In summary, the polynomial-fitted relationship established the mutual influence,
dependency, and limitations between land use and LUI-ESV CCD. Accordingly, the gov-
ernment should implement ecological protection measures at various stages of urbanization
to prevent the negative effects of irrational land use on ecosystems. Future planning of
Guiyang for ecological environments and urban development needs to consider the evo-
lutionary trend in this relation. Plans for the development of urban areas should create
ecological networks and delineate the limits of ecological control zones. Encouraging com-
munities to conserve and restore natural resources through appropriate financial incentives
is one way to support the preservation of existing ecosystems.
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4.3. Limitations and Future Research

The way that humans interact with the environment produces a pattern of land
use, which is essential for ecosystem services [68]. Ecosystem sustainability and the
advancement of human society are closely linked. This study estimated the ESV of Guiyang
from 2000 to 2020 using the equivalence coefficient approach as a means for quantifying the
benefits produced by the ecosystem. However, data accuracy, such as land use and food
production, affected the value of the monetized ESV. In future studies, the characteristics
of karst regions should be considered, and the relevant literature should be referred to
construct a revised model in order to provide a more accurate estimate of the ESV [69,70].
In addition, this study explored the relationship between land use and ESV, but it has
not yet analyzed the driving factors that affect the relationship between land use and
ESV. Techniques such as Bayesian spatiotemporal hierarchy models [71], econometric
models [72], and geographic probes [73] can be utilized to gain additional insights into the
variables that affect ecosystem services and land use. Meanwhile, the characterization of
karst ecosystem services will be further considered in future studies.

5. Conclusions

This study analyzed the LUC and ESV in Guiyang from 2000 to 2020 from both
temporal and spatial viewpoints with the 30 m x 30 m land use raster data and the fishing
net of 3.5 km x 3.5 km. The CCD model was used to quantify the benign CCD and the
synergistic connection between LUI and ESV. The findings in this study demonstrated
that the main cause of changes in the land use categories in Guiyang was the growth of
the water body and construction land categories, with farmland, grassland, and forest
making up the bulk of the categories of land output. The larger watershed was the main
factor that drove the increase in the Guiyang ESV, which first trended downward before
reversing and trending upward. The coupling coordination level of LUI and ESV was
mainly dominated by primary coordination and near-dissonance, which indicated that the
two were primarily constrained by each other at a low level. The fitting examination of the
coupling coordination levels of LUI and LUI-ESV revealed an inverted, U-shaped curve
relationship with a polynomial fit. Throughout the early growth stage of LUI, there was a
rising trend in both the degree of benign coupling and the interaction between land use
and ecosystems. The land use-disturbed ecosystem functioned, to some extent, as a result
of the ongoing increase in LUI, which lowered the degree of benign coupling between the
two. The importance of water body for ESV growth cannot be ignored during urbanization,
and there is a need to focus on the protection of water body during future urbanization.
According to the level of urbanization and development and considering the needs of social
development and ecological sustainability, the relevant departments should formulate
appropriate development plans. Governments must promptly control human interference
with ecosystem services until land use intensity has caused severe damage to ecosystem
services. The results of this study were crucial to understanding how ecosystem services
and land use are related, as well as how these services change as a result of urbanization.
This study offers a theoretical foundation for the administration and design of ecosystems
during a subsequent urbanization phase.
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Abstract: Ecological networks serve as vital tools for safeguarding biodiversity and ensuring regional
ecological stability. This study, conducted in Wanning City, employs minimum-area threshold
analysis to pinpoint crucial ecological sources while extracting potential ecological corridors using
the minimum cumulative resistance model. Our investigation delves into the ecological network’s
elements and structural transformations within Wanning City, spanning the period from 2000 to
2020, and assesses the priorities for ecological network preservation. The findings of our research
reveal noteworthy spatial disparities in the distribution of ecological sources across Wanning City.
Furthermore, the ecological corridors display sparse patterns in the north and denser patterns in
the south. Over the two decades from 2000 to 2020, Wanning’s ecological resources exhibited a
discernible trend of contraction and fragmentation, accompanied by an uneven spatial distribution.
The average path length of the ecological corridors has increased, indicative of reduced biological
flow efficiency. Correspondingly, the structural accessibility of the ecological network has decreased,
signifying a decline in landscape connectivity. Based on our analysis, we propose an ecological
protection and restoration framework denoted as “One Belt, Four Sources, Eight districts, multiple
corridors, and multiple points”. Therefore, with the Shangxi-Jianling, Liulianling, Nanlin, and Jiexin
nature reserves as the core area, and Houan Town, Damao Town, Changfeng Town, and Liji Town as
the key restoration areas, we have proposed an ecological protection and restoration pattern.

Keywords: ecological network; ecological source; ecological corridor; network structure; spatial
restoration; Wanning City

1. Introduction

Urbanization and industrialization constitute primary drivers of land use and land
cover changes, particularly as rural-to-urban migration escalates. The global urbanization
rate has risen from 46.69% to 56.2%, while China’s urbanization rate has surged from
36.22% to 63.89% between 2000 and 2020. Projections indicate that China’s urbanization
rate may reach 75% by 2050 [1]. This rapid urbanization has spurred unprecedented
expansion of cities, accompanied by intensified human activities that exert substantial
pressure on natural ecosystems. Consequently, global landscape patterns have undergone
substantial alterations, leading to a surge in ecological and environmental issues, such as
the urban heat island effect, environmental pollution, habitat loss, diminished biodiversity,
and declining ecological functionality [2—4]. As a result, mitigating the adverse impact of
urbanization on the environment and ecology, while also addressing the requirements of
urban development, enhancing the quality of human habitats, and promoting sustainable
development of regional ecological environments, has gained widespread attention [5-7].

As a pivotal national strategy, the exploration of ecological security patterns plays a
critical role in resolving conflicts between land development and ecological conservation [8].
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Ecological networks present a natural approach to address the challenges of habitat loss and
declining biodiversity by offering a spatial framework for the conservation and sustainable
management of natural ecosystems. They are emerging as a vital means to quantify
regional ecological security [9,10]. These networks represent integral regional habitats
where landscape units are organically linked to create a comprehensive network comprising
regional environmental and landscape elements. An ecological network serves as the
fundamental spatial framework required for sustaining ecosystem functions and essential
ecological components, effectively coupling landscape structure, ecological processes, and
functions [11-13].

The use of landscape ecology and graph theory in studying ecological networks has
gained popularity. Leveraging landscape ecology, this research approach allows for the
spatial measurement of landscapes based on existing data, such as land use changes, thereby
overcoming limitations arising from incomplete information on aspects like predation,
reproduction, and species migration. Currently, there is growing interest in the application
of landscape ecology and graph theory to investigate ecological networks. The research
approach, which integrates landscape ecology and ecological network analysis, enables
the spatial assessment of landscapes using available data, such as land use change data.
This method addresses challenges associated with the limited availability of information
on species predation, reproduction, and migration and facilitates the long-term monitoring
of habitat changes in terms of both quantity and quality. This technique enables the multi-
temporal observation of habitat quantities and qualities [14-17]. Graph theory simplifies
complex landscape systems into network diagrams, with ecological sources as nodes
and ecological corridors as edges. This method directly reflects the structural topology
and complexity of the ecological network. Most previous ecological network studies
have primarily concentrated on constructing and optimizing regional ecological networks,
evaluating ecological network structures, and assessing landscape connectivity based on
ecological networks [15,18-20]. Nevertheless, certain aspects, such as identifying ecological
sources and evaluating ecological network structures, have room for improvement. For the
identification of ecological source areas, most methods either directly select nature reserves
or ecological protection areas as ecological sources or base their choices on morphological
spatial pattern analysis, leading to no scientific threshold for selecting ecological sources.
As for ecological network structure evaluation, researchers often use landscape pattern
indicators to assess the spatial distribution of ecological patches and corridors or to optimize
ecological network structures and robustness. However, comprehensive analyses of the
overall structure and characteristics remain limited [2]. Existing evaluations of ecological
network structure predominantly focus on the current state of ecological networks, with
relatively few studies considering structural changes over extended timeframes.

Regarding the evaluation of ecological network structure, researchers often use land-
scape pattern indicators to evaluate the spatial allocation of ecological patches and corridors
or evaluate the robustness and optimize the structure of ecological networks. However,
detailed analyses of the overall structure and characteristics remain scarce [2]. Currently,
the evaluation of the ecological network structure usually focuses on the current ecological
network structure, and, to date, relatively few studies have considered the structural suc-
cession of a series of ecological networks over longer timescales. Hence, it is imperative to
conduct a thorough examination of the holistic framework and attributes of the ecological
network at the municipal and county levels.

Located in the southeast of Hainan Island, Wanning City plays a pivotal role in
the “Dongyi Group”, with “Qionghai-Wanning” forming the core of Hainan Province’s
territorial spatial planning. It represents a critical nexus for Hainan Province’s future
urban development. In recent years, the city’s land use and landscape patterns have
undergone significant transformations due to development, construction, and human
activities, impacting regional ecosystem functions and stability [21]. In light of future
regional coordinated and integrated development, numerous policies and plans are poised
to have a profound influence on Wanning City’s land use layout. This study aims to
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(1) analyze the spatiotemporal evolution of landscape patterns and assess changes in the
ecological network structure in Wanning City and (2) present recommendations, thereby
providing a scientific foundation for ecological preservation and restoration in the territorial
spatial planning of Wanning City.

2. Materials and Methods
2.1. Study Area

Wanning City is situated in the southeastern part of Hainan Island, bordering the South
China Sea to the east, Qiongzhong Li and Miao Autonomous County to the west, Lingshui
Li Autonomous County to the south, and Qionghai City to the north (18°35-19°06’ N,
110°00'-110°37" E). The terrain varies from high in the west to low in the east. Wanning City
enjoys a tropical oceanic monsoon climate with ample rainfall, mild temperatures, and min-
imal temperature fluctuations. Covering a total land area of 1904.17 km?, the city comprises
12 townships, including Wancheng, Changfeng, Houan, Damao, and one Xinglong overseas
Chinese farm [21]. As of 2020, the city’s population was approximately 632,700. Blessed
with favorable natural geographic conditions, Wanning City boasts rich natural resources
and remarkable ecological advantages. It hosts eight nature reserves, a national forest park,
and a natural green oxygen zone, which feature numerous mountainous areas, including
Dongshanling, Liulianling, and Jianling. However, in recent years, the combined impact
of development, construction, and human activities has resulted in significant changes to
cultivated, constructed, and forested lands. The landscape has exhibited a fragmentation
trend, leading to issues such as habitat degradation and habitat reduction.

2.2. Data

The ecological resistance surface model of Wanning City was developed by utilizing
four types of spatial data: land use/land cover (LULC), road network, elevation (DEM),
and habitat suitability assessment. Additionally, a regional ecological network was created.
(1) LULC data from 2000 and 2020 were sourced from the GlobeLand30 dataset (http:
/ /www.globallandcover.com, accessed on 11 November 2023). This dataset, available free
of charge, provides data at a 30 m resolution, encompassing ten land types, including culti-
vated land, forests, grasslands, and artificial surfaces. (2) Route network data were acquired
from Beijing University’s 2000 geographic data platform (https://geodata.pku.edu.cn,
accessed on 11 November 2023) and the 2020 road network data from OpenStreetMap
(https:/ /www.openstreetmap.org, accessed on 11 November 2023). Road networks were
categorized into railways and national roads based on traffic conditions. (3) DEM data were
derived from the geospatial data cloud (http://www.giscloud.cn, accessed on 11 Novem-
ber 2023). The elevation data were utilized to calculate the slope, and, in combination with
the slope, the elevation mobile search window was used to calculate the morphology index
(TPI). TPI classified the landscape into valley, low slopes, gentle slopes, steep slopes, and
ridges, creating six classes (http://www.jennessent.com/arcview /tpi.htm, accessed on
20 July 2023). All spatial data were converted into a raster format (WGS-84 projection) with
a spatial resolution of 30 m.

2.3. Methods

This study focuses on Wanning City, situated in Hainan Province, to identify significant
ecological source areas through threshold analysis and analyze the structural changes in
the ecological network from the perspective of “ecological source area—ecological corridor—
network structure”. Ecological networks were constructed for the years 2000 and 2020,
identifying ecological pinch points and obstacles affecting landscape connectivity using
landscape graph theory and circuit theory. Circuit theory is the study of the relation-
ship between the current and various resistors within a circuit board. This method or
model of circuit theory yields three significant outcomes, ecological corridor (or ecological
circulation channel), ecological pinch point, and ecological barrier point, which are col-
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lectively referred to as ecological nodes. The study proposes an ecological network space
optimization scheme.

2.3.1. Assessment of Habitat Suitability and Identification of Ecological Source Areas

Previous methods typically identified ecological source areas through two approaches.
First, nature reserves or areas designated as ecological protection zones were directly chosen
as ecological source areas. Second, ecological patches were identified based on references
and selected if they exceeded a certain minimum area threshold [14,18]. However, these
methods often relied on subjective factors and neglected the scale effect of the landscape.
In this study, a comprehensive index system was created to evaluate habitat suitability
(ranging from 0 to 1), incorporating factors such as the LULC type, road networks, landform,
proximity to water sources, and distance from main traffic arteries (Table 1). Based on this
index, a threshold area was set at intervals of 2 ha, ranging from 2 to 40 ha, to analyze
changes in the number of ecological patches, total area, and habitat suitability within
the threshold. The analysis revealed a rapid decline in both the number and total area
of ecological patches as the threshold increased (Figure 1). At a threshold of 32 ha, the
decline in the number and total area of ecological patches began to stabilize, while the
mean habitat suitability value increased slightly with the rising threshold, consistently
reaching approximately 0.9. Therefore, 32 ha was selected as the minimum threshold area
for ecological source areas in Wanning City.

Table 1. Habitat suitability and ecological resistance factors and their scores in Wanning City.

Factor Resistance Factor Coefficient I-?abl‘.ca.t
Suitability
Farmland 50 0.5
Woodland 1 1
Grassland 20 0.9
Land use Wetland 20 0.8
Waters 100 0
Construction land 100 0
Bare land 70 0.2
Railwa 90 0
Road Expressvglay 60 0
<100 m 1 0.9
. 100-200 m 10 0.8
Distance from a water source 200-500 m 20 0.7
>500 m 40 0.6
<100 m 90 0.1
100-200 m 70 0.3
Distance from major traffic arteries 200-500 m 50 0.5
500-1000 m 40 0.7
>1000 m 10 0.9
Valley 1 0.9
Low slope 10 0.8
Geomorphic morphological index Gentle slope 20 0.6
Steep slope 30 0.5
Extremely steep slope 50 0.3

2.3.2. Resistance Surface Construction

Ecological resistance signifies the level at which specific landscape features hinder
or facilitate species movement between habitat patches. This factor primarily relies on
the land cover type and the extent of human disturbance. The construction of the eco-
logical resistance surface model incorporated various factors such as LULC type, roads,
topography, distance from water sources, and proximity to major traffic arteries (refer to
Table 1) [16,22,23]. The ecological resistance value reflects the presumed relationship be-
tween ecological variables and the difficulty of animal movement across pixels and serves
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as the basis for extracting ecological corridors. The ecological resistance coefficient ranged
between 1 and 100, where a coefficient of 1 denotes an ideal environment with minimal
movement costs. The coefficient increases as the cost of movement rises, as observed in
railways, which act as significant constraints to the migratory movement of terrestrial
animals. Consequently, a drag coefficient of 90 was adopted.
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Figure 1. Threshold analysis for minimum ecological source areas.

2.3.3. Ecological Corridor Identification

Utilizing the minimum cumulative resistance model, this study simulated the biologi-
cal migration path by computing the minimum cumulative resistance between the source
and the other patches (minimum cost) to identify potential ecological corridors [24]. The
formula for the minimum cumulative resistance model is as follows:

MCR = fminlzzm (Dyj x R;), M

j=n

where MCR is the minimum cumulative resistance value and f,,;, represents the rela-
tionship between landscape elements and landscape units. D;; represents the Euclidean
distance between the species from source j and unit i in the landscape unit. R; represents
the cost of landscape unit i for the species diffusion process [25], which is related to the
setting of resistance factors and their coefficients.

2.3.4. Ecological Network Structure

Five landscape indicators, namely, the number of ecological source areas (PN), total
area (TA), largest patch index (LPI), area-weighted mean proximity index (AWMPI), and
degree of landscape division (DIVISION), were selected to assess the changes in landscape
patterns within the habitat patches (refer to Table 2). Sustaining adequate habitat quantity
and quality forms the foundation for supporting population reproduction and ecological
flow, thereby playing a key role in maintaining biodiversity. The PN and TA indices, which
are directly related to habitat loss and fragmentation, were chosen to depict the abundance
of ecological source areas. The LPI serves as a measure of the dominance of a particular
landscape type, indirectly reflecting the direction and intensity of human activity. The
AWMPI gauges the concentration of regional landscape patterns concerning landscape
fragmentation. As the AWMPI decreases with increased patch dispersion, the DIVISION
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focuses on measuring the degree of dispersion of individual distributions of different
patches in a specific landscape type. A smaller mean proximity index (MPI) value indicates
a higher degree of dispersion among patches of the same type, reflecting an increased level
of landscape fragmentation.

The presence of potential ecological corridors connecting distinct habitats may serve
as channels for animal migration and diffusion, playing a significant role in enhancing
regional landscape connectivity and constituting the fundamental framework for ecological
networks. The number of ecological corridors (L) and average path length (MAL) were
employed to evaluate changes in the characteristics of the ecological corridors (refer to
Table 2). A longer MAL signifies a lower flow efficiency of organisms.

Three indices, namely network closure (x index), line point rate (3 index), and network
connectivity (v index), were selected to describe the structure of the ecological networks [26].
The « index serves as a measure of closed loops in a network, occurring when there are
more than one connection paths between two nodes. It provides an alternative migration
path for organisms needing to evade disturbances or predators. The 3 and vy indices
were used to assess the average number of links and the degree of connectivity of the
nodes. Higher values of these three indices signify a greater connectivity of the ecological
network, indicating a more comprehensive network structure. The overall connectivity
index (OCI) and probability of connectivity (PC) [27] were selected to measure the landscape
connectivity of ecological networks.

Table 2. Ecological network elements and structural indices.

Formula (References

Factor Index [23,27,28])
P —
Ta Z a; i
Ecological source y
& LPI m”%(j”) % 100
AWMPI i T 1 (74)
PN )
a
DIVISION 1— Z( T )
. . L —
Ecological corridor MAL B
L-—N+1
& IN-5
Network Network structure B %
performance analysis L
3(N-2)
DD N a,ﬂ'/(l-‘rnl,")
Network connectivity i = A%] :
PC it Yo aia;p;
AL

2.3.5. Ecological Network Space Optimization and Ecological Protection Priority Evaluation

An essential approach in ecological network research involves identifying ecological
pinch points and obstacle points, followed by identifying areas for ecological network
protection and restoration. The ecological pinch point is a significant regional landscape
area that requires protection due to its high population density and environmental suscepti-
bility. Habitat fragmentation and degradation in this area may lead to the discontinuity and
disappearance of ecological corridors, thereby reducing connectivity between ecological
sources and affecting the movement, predation, and migration of species. The ecological
barrier refers to the area where species movement is impeded by ecological sources. During
simulation, the potential restoration value of the regional landscape after the barrier point
is removed and evaluated. Effective ecological restoration in this area can significantly
improve the connectivity of the regional landscape. The identified ecological pinch points
serve as the key nodes connecting the regional ecological source areas, playing the role
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of an ecological network hub for critical protection. Ecological restoration is performed
with the restoration of ecological obstacles as the central task to optimize the connectivity
of ecological networks, promote the flow of factors, and enhance the stability of regional
ecosystem services and functions.

The significance of spatial elements in ecological networks was assessed using land-
scape diagram theory, leading to the proposal of a multilevel protection scheme for ecologi-
cal networks. Landscape connectivity serves as a vital indicator of the degree of connection
between regional landscape patches. The PC index is commonly employed to evaluate
the overall connectivity of regional landscapes, considering habitat attributes and the
diffusion ability and probability of species. The dPC indices, based on PC development,
are frequently used to assess the relative importance of individual landscape patches:

Pcull - Pcl;emove
x 100, ()
PCun

dPC(%) =

where the more significant the dPC value, the higher the importance of patch k (ecological
source k). PC,j; is the PC values of all the patches in the original landscape of the study area,
that is, the PC values between all ecological sources. PC,,, .. represents the value of PC,
in the study area after removing patch k. In this study, the importance of landscape patches
was calculated using Conefor software 2.6. Linkage Mapper evaluated the importance of
ecological corridors based on current centrality, categorizing the importance of ecological
sources and corridors into four levels: very important, relatively important, important, and
generally important.

3. Results
3.1. Spatial Distribution of the Ecological Network
3.1.1. Spatial Distribution of Habitat Suitability and the Ecological Resistance Surface

Figure 2a,c illustrate the spatial distribution of habitat suitability values in Wanning
City, showcasing higher values in the western region and lower values in the eastern region.
In 2000, Sangengluo, Nangiao, Beidai, and Longjiu in Wanning City exhibited the highest
habitat suitability, while Damao, Houan, Hele, and the western area of Wancheng displayed
the lowest habitat suitability. By 2020, the western townships, specifically Sangengluo,
Nangiao, and Longwu, continued to exhibit relatively high habitat suitability, while the
eastern townships, such as Canning, Changfeng, Damao, Houan, and Hele, experienced a
significant decline in habitat suitability, becoming concentrated around the central urban
area. When analyzing the spatial distribution of the ecological resistance surface model
in Wanning City (Figure 1), we can note that the ecological resistance value exhibited a
lower magnitude in the western region and a higher magnitude in the eastern region. This
trend displayed a gradual decrease emanating from the central urban area and the main
transportation route. From 2000 to 2020, the ecological resistance values of Wancheng,
Changfeng, Damao, and Liji towns in the eastern region significantly increased, while the
western region experienced varying degrees of increase in the ecological resistance values
of Nangiao, Sangenluo, and Beifang.
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Figure 2. Distribution map of habitat suitability and the ecological resistance surface in Wanning
City from 2000 to 2020. ((a,c): habitat suitability for 2000 and 2020; (b,d): ecological resistance surface
for 2000 and 2020).

3.1.2. Analysis of Spatial Distribution of the Ecological Network

The ecological source areas of Wanning City were predominantly concentrated in
the west and south, with relatively fewer ecological source areas in the middle and east
(Figure 3). The eastern portion of the city is characterized by a mountainous terrain featur-
ing expansive forests and grassy areas, whereas the central and western areas comprise hilly
or flat landscapes with developed and cultivated land. Consequently, the number, size, and
distribution of ecological source areas exhibit significant variations. Regarding the spatial
distribution of ecological corridors, Wanning'’s ecological corridors are primarily situated
in the central and eastern parts of the city, with sparse distribution in the north and dense
distribution in the south. In 2000, Wanning’s ecological corridor spanned Longgu, Shangen,
Houan, Hele, Damao, Wancheng, and Liji. By 2020, ecological corridors in Wanning City
were concentrated in Damao, Changfeng, and Wancheng, with reductions in other regions.
Over the period from 2000 to 2020, several small ecological sources in Wancheng, Liji, and
Dongao disappeared, leading to a reduction in the corridors.
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Figure 3. Spatial distribution of ecological networks in Wanning from 2000 to 2020.

3.2. Analysis of the Change in Ecological Network Structure
3.2.1. Ecological Source Area

Between 2000 and 2020, the number of patches in Wanning City’s ecological source
area increased from 49 to 61, while the total area decreased by 61.62 km? (Table 3). This
indicates that the ecological source area in the study area became more fragmented, a trend
further substantiated by the change in the AWMPIL. The AWMPI for the ecological source
area of Wanning City was highest in 2000, suggesting that the patches in the ecological
source area were closer and more spatially continuous. However, the decrease in the
AWMPI in 2020 indicates a reduction in connectivity between patches, contributing to
increased landscape fragmentation. Over the same period, the LPI decreased from 46.92%
to 40.03%, indicating a reduction in the dominance of habitat patches in Wanning City,
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indirectly reflecting increased human activity disturbance within the habitat. An analysis
of the DIVISION index reveals that the degree of landscape segmentation in the ecological
source area of Wanning City was severe between 2000 and 2020, resulting in increased
dispersion of landscape patches.

Table 3. Structural changes in the ecological network in Wanning City from 2000 to 2020.

Factor Index 2000 2020
Ecological source 49 61
T.A./km? 1219.97 1158.35
Ecological source LPI 46.92 40.03
AWMPI 4254 2793
DIVISION 0.76 0.82
Ecological corridor Ecological corridor 94 114
MAL/km 191 2.30
o 0.495 0.462
Network performance analysis § 1.918 1.869
Network performance analysis Y 0.667 0.644
I Ic 0.289 0.244
Network connectivity PC 0.372 0.335

3.2.2. Ecological Corridor

The number of ecological corridors in Wanning City increased from 94 in 2000 to 114
in 2020 (Table 3). Simultaneously, the MAL in 2020 was higher compared to that in 2000,
growing from 1.91 km in 2000 to 2.30 km in 2020. This suggests reduced organism flow
efficiency in the study area due to several factors. Firstly, the shrinking and fragmentation
of ecological sources, especially the decreasing trend in the number and area of ecological
sources in Wancheng, Liji, and Dongao, have led to the severe fragmentation of ecological
sources in some areas. Consequently, habitats that could have been directly connected now
rely on further habitats for connectivity. As a result, the number and length of corridors
have increased. Secondly, the growing urbanization in Wanning City has heightened
ecological resilience in the central urban area, resulting in a reduction in the distance
between ecological sources.

3.2.3. Network Topology

The «, 3, and y indices in 2000 were significantly higher than those in 2020 (Table 3),
indicating that the ecological network structure of Wanning City in 2000 was superior to
that in 2020. In 2000, the « index of the ecological network in Wanning City was 0.495,
while in 2020, it decreased to 0.462, signifying a reduction in closed loops and a shift toward
a more linear network structure in 2020. Changes in the (3 index reveal that the average
number of connections at each network node in 2020 was lower than in 2000, reflecting
reduced network accessibility. The y index of the ecological network in Wanning City
decreased from 0.667 in 2000 to 0.664 in 2020, indicating reduced connectivity and network
effectiveness. Changes in landscape connectivity indices (PC and IIC) of the ecological
network suggest diminished landscape connectivity and habitat accessibility for species
in the study area. The loss of ecological source areas in the eastern part of Wanning City
directly contributed to a reduction in closed loops and the structural accessibility of the
ecological network. The reduction and fragmentation of the habitat patch area led to
decreased landscape connectivity. Longer corridor distances between ecological sources,
increased ecological resistance due to urbanization and human activities, and a subsequent
rise in resistance cost for potential ecological corridors all impacted network connectivity.

3.3. Ecological Network Space Optimization and Restoration Countermeasures

Consistent with established ecological principles, we identified ecological barriers
to locate areas of degradation and damage within the broader landscape. The current
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intensity, symbolized by color, gradually increased from blue to red (Figure 4a). The red
areas represent regions with the most significant current intensity and the highest ecological
restoration potential. These areas are primarily situated in Damao, Houan, Changfeng,
Liji, and Wancheng. Ecological pinch points were determined using the current theory,
and we established a 5 km buffer as the foundational component of the ecological corridor.
The distribution of current density within the ecological corridor in Wanning City ranged
from yellow to red (Figure 4b), indicating a progressive increase in intensity. The red
areas signify locations with the most substantial current density, signifying ecological
pinch points within Wanning City. Ecological pinch points, with ecological importance,
were predominantly concentrated in the southwest and central areas of Wanning City,
particularly in Liji, Dongao, Wancheng, and Damao.

Ecological barrier point evaluation

Ecological pinch evaluation

Figure 4. Optimization pattern of ecological networks in Wanning City. ((a). ecological barrier point
evaluation; (b). ecological pinch evaluation).

Based on the identification of ecological pinch points and obstacles, coupled with
the prioritization of ecological network elements, we introduce an ecological network
protection and restoration plan known as “One Belt, Four Sources, Eight Districts, Multiple
Corridors, and Multiple Points” (Figure 5a). “One Belt” alludes to the coastal ecologi-
cal landscape belt, safeguarding coastal resources, defense forests, and sandy beaches.
“Four sources” pertains to the four primary ecological source areas encompassing Shangxi—
Jianling, Liulianling, Nanlin, and Jiaxin nature reserves, national forest parks, mountains,
and inland seas. These areas hold great significance for soil and water conservation, bio-
diversity preservation, and soil and water conservation within Wanning City. The “eight
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districts” encompass ecological restoration zones concentrated in the towns of Houan,
Damao, Changfeng, and Liji. “Multi-corridor and multi-point” refer to the establishment of
numerous ecological corridors and crucial ecological nodes, relying on reservoirs, wetlands,
islands, and mountains to preserve regional landscape connectivity.

a
@ Ecological protection area
=== Ecological corridor

S Ecological source

Ecological restoration area
B Ecological obstacle point

B Ecological pinch

N
0 5 10
 km

Ecological source
General importance
Importance

I More important

I Utmost importance

Ecological corridor

General importance

Importance

More important

Figure 5. Distribution of ecological spaces for protection and restoration in Wanning City. ((a). eco-
logical protection and restoration area (b) ecological source and corridor).

Considering the importance value of ecological source patch dPC and the current
centrality value of the ecological corridor, we categorized the significance of ecological net-
work elements into four levels: significant, relatively important, meaningful, and generally
important. The most vital ecological sources were situated in Sangengluo and Nangiao
(Figure 5b). The crucial ecological sources were located in the Longgu and Xinglong Over-
seas Chinese Farm. The highly important ecological sources were primarily found in Liji,
while the critical ecological sources were widely distributed in Longgu, Damao, Houan,
Wancheng, and other central and eastern regions. The most crucial ecological corridors
were found in Liji and Dongao, the highly important ecological corridors were mainly
distributed in Wancheng and Changfeng, the highly important ecological corridors were
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concentrated in Damao and other central and eastern areas, and the highly important
ecological corridors were mainly situated in the north of Wanning City.

4. Discussion and Conclusions

Ecological networks play a crucial role in maintaining regional ecological security
patterns and are essential for the sustainable development of regional ecological environ-
ments. The quality of their structure is of utmost importance in this regard. Understanding
the structure of these networks is essential for safeguarding biodiversity and sustaining
an ecological equilibrium. This study constructed and analyzed the ecological network
of Wanning City for the years 2000 and 2020, with a focus on examining changes in the
region’s ecological network in terms of the spatial arrangement of landscape elements,
the structure of the landscape, and connectivity. We have devised an ecological network
optimization strategy for Wanning City, presenting a regional ecological preservation and
restoration blueprint. The main conclusions drawn from this study are as follows.

(1) The study reveals a distinct pattern of habitat suitability across Wanning City, with
higher suitability in the west and lower suitability in the east. Notably, between
2000 and 2020, the habitat suitability of regions such as Wancheng, Changfeng,
Damao, Houan, and Le, to the east of Wanning City, experienced significant de-
creases. The areas exhibiting lower habitat suitability expanded outward from the
center at Wancheng. Concurrently, the ecological resistance in Wanning City displayed
a similar spatial trend, with lower values in the west and higher values in the east.
Notably, Wancheng, Changfeng, Damao, and Liji emerged as high-resistance areas.
Over the same period, an increase in ecological resistance was observed in the eastern
region, accompanied by varying degrees of increases in Nangiao, Sangengluo, and
Beiduo in the western region, signifying heightened resistance to species movement.

(2) The ecological source areas in Wanning City displayed notable regional variations,
with higher concentrations found in the western and southern sectors, while the
central and eastern regions exhibited fewer ecological source areas. The ecological
corridors were predominantly located in the central and eastern parts of the city,
with a less dense presence in the northern area. This divergence can be attributed
to the prevalence of mountains and extensive forest and grassland in the eastern
region, in contrast to the dominance of hills and plains, characterized by urbanization
and human activities, in the central and western areas. This disparity highlights the
substantial spatial heterogeneity within the ecological network.

(3) The in-depth scrutiny of the ecological network structure reveals several critical find-
ings. Between 2000 and 2020, ecological source areas within Wanning City decreased,
indicating a trend toward fragmentation, reduced structural accessibility, and dimin-
ished landscape connectivity within the ecological network. The number of patches
in the ecological source area increased while the total area diminished, signifying the
dwindling dominance of habitat patches. This trend corresponds with changes in the
AWMP], LP], and DIVISION landscape pattern indices. Furthermore, during the same
period, the number of ecological corridors increased, but the average path length also
increased. This signifies a decrease in the efficiency of biological flow within ecological
corridors, primarily due to two factors. Firstly, habitat fragmentation caused by the
shrinking of the ecological source area necessitates connecting more distant habitats,
and secondly, increased urbanization and human activities have elevated ecological
resistance, lengthening the shortest path between ecological sources. Furthermore,
the analysis of ecological network performance reveals that the ecological network
structure was better suited in 2000 than in 2020, with significantly higher values for the
o, 3, and y indices, as well as for the PC and IIC indices, representing the network’s
structure. The results indicate a reduction in the number of loops and structural
accessibility of the ecological network in Wanning City, leading to a transition from
a ring-like structure in 2000 to a more radial one in 2020, ultimately reducing the
landscape connectivity and habitat accessibility of the network.
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(4) To protect crucial ecological spaces and restore degraded and damaged areas, we
propose an ecological network space protection and restoration plan, termed “one
belt, four sources, eight districts, multiple corridors, and multiple points”. The
restoration of territorial space will be focused on areas in Houan, Damao, Changfeng,
and Liji. Emphasis will be placed on protecting and restoring ecological lands, such
as forestland and grassland, in the north-central and eastern regions of the city to
mitigate fragmentation. The goal is to enhance the connectivity of the landscape
ecological network by increasing the number and size of ecological patches in regions
like Wancheng, Damao, Dongao, and other central and eastern areas, while also
restoring connectivity between ecological sources. Additionally, we aim to establish
multiple ecological corridors and important ecological nodes based on reservoirs,
wetlands, islands, and mountains, connected by the landscape of the Weiyu region.
To ensure the protection and control of ecological resources, ecological protection
spaces are classified into four levels: significant, relatively important, necessary, and
generally essential, based on the importance of ecological source patches and the
current centrality value of ecological corridors.

In conclusion, this research provides valuable insights for scientifically assessing
critical areas for territorial ecological restoration, identifying essential regions for ecological
preservation, and optimizing the allocation of natural resources.
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Abstract: This study examines the evolution of eco-environmental quality and its driving forces in
the Qinghai-Tibet Plateau, with a particular focus on the Qinghai Lake region (QLR). By employing
principal component analysis (PCA) on nearly 20 years of remote sensing data, we reveal the dynamic
characteristics of ecological quality in this sensitive area. The results indicate that the ecological
quality of the QLR has exhibited significant fluctuations over the past two decades, influenced by
multiple factors such as climate change, human activities, and policy adjustments. Specifically, the
fluctuations in ecological quality are closely associated with key ecological indicators, including
the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), Wetness
Index (WET), and Normalized Differential Bare Soil Index (NDBSI). Vegetation cover and moderate
humidity have substantial positive effects on ecological quality, while high temperatures and dry soil
conditions exert negative impacts.

Keywords: ecological quality; spatiotemporal evolution; influencing factor; random forest; Qinghai-
Tibet Plateau

1. Introduction

The ecological environment serves as a crucial foundation for human survival and
development [1,2]. However, due to economic growth and social progress, human activities
have increasingly placed pressure on the environment. Unsustainable human practices have
threatened regional ecological balance, and the conflict between ecological protection and
economic development has become more pronounced. Therefore, conducting long-term
assessments of ecological quality and identifying influencing factors are of great practical
significance for promoting harmonious development between the natural environment,
economy, and society [3]. The assessment of ecological environmental quality and its
changes is a critical foundation for ecosystem management and serves as a significant
indicator for measuring the effectiveness of regional ecological civilizational development.
Although relevant evaluation criteria have been established and extensive evaluation efforts
have been undertaken, the adequacy of accounting for natural ecosystem differences in
these evaluations remains questionable [4,5]. Whether the evaluation results accurately
reflect the true ecological quality of a region’s environment remains a topic of discussion.
Xu Hangiu [6-8] proposed the Remote Sensing-based Ecological Index (RSEI), which is
derived from the analysis of remote sensing image data. The RSEI evaluates the quality
of regional ecological environments, and its research outcomes, based on image data,
can accurately capture spatial pattern characteristics. Over the past decade, it has been
widely utilized and refined. The ecosystem types included in the study are relatively
straightforward, allowing for model reconstruction that aligns more closely with local
conditions when enhancing and applying the index. However, among the four component
indicators of the RSE], the degree of correlation and the trend of change between vegetation
coverage and the RSEI demonstrate a high level of consistency, indicating that the index is
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fundamentally rooted in the quality of vegetation cover [9-11]. Thus, when characterizing
a single ecosystem type, it can be regarded as homogeneous, fulfilling the requirements for
assessing ecological environmental quality. However, in regions with multiple ecosystem
types, addressing the limitations of the Remote Sensing Ecological Index (RSEI) remains a
central focus of ongoing research [11,12].

As a vital component of the Qinghai-Tibet Plateau, the evolution of ecological envi-
ronmental quality in the QLR significantly influences the ecological security of the entire
plateau. This region is abundant in natural resources, serves as a habitat for numerous rare
plant and animal species, and is a critical area for water conservation [13,14]. However,
in recent years, the ecological quality of the QLR has significantly changed due to the
combined effects of climate change, overgrazing, land development, and other factors.
Some areas have even experienced severe ecological degradation. Therefore, evaluating the
long-term evolution of ecological quality in this region and exploring its underlying driving
forces is crucial for developing effective and scientifically sound ecological protection and
restoration strategies.

The objective of this research is to comprehensively and systematically evaluate the
ecological quality of the QLR over the past 20 years by utilizing remote sensing technology,
geographic information systems (GIS), and statistical analysis methods. The aim is to reveal
dynamic evolution patterns and conduct an in-depth analysis of the key factors influencing
changes in ecological quality. Firstly, the Remote Sensing Ecological Index (RSEI) will
serve as the primary metric for assessing ecological quality. The RSEI is a comprehensive
assessment index based on remote sensing technology that integrates multiple ecological
indicators, including the Normalized Difference Vegetation Index (NDVI), Land Surface
Temperature (LST), Wetness Index (WET), and Normalized Difference Bare Soil Index
(NDBSI), to provide a holistic reflection of the overall status of regional ecological quality.
By calculating the RSEI values for different years, we can intuitively observe the trends
and spatial distribution characteristics of ecological environmental quality in the QLR.
Specifically, we will (1) identify the characteristics of changes in ecological environmental
quality across various temporal and spatial scales; (2) determine the main driving factors
influencing these changes and their interactions; (3) evaluate the effectiveness of ecological
protection measures; and (4) propose scientifically sound and reasonable recommendations
for ecological protection and restoration strategies. These research outcomes are not
only significant for the ecological environment protection of the QLR but also provide a
valuable reference for assessing and safeguarding the ecological environmental quality of
the Qinghai-Tibet Plateau and other similar regions worldwide.

2. Materials and Methods
2.1. Research Area

Located on the northeastern edge of the Qinghai-Tibet Plateau, the QLR is a closed
inland basin surrounded by mountains. It was formed by the fault collapse between
Datong Mountain, Riyue Mountain, and Nanshan Mountain, which are part of the Qilian
Mountains. This region is situated in the central and northern parts of Qinghai Province,
bordering Gansu Province to the north, Haidong City to the east, and the Haixi Mongolian
and Tibetan Autonomous Prefecture to the west. It spans latitudes between 36°00" and
38°15’ north and longitudes between 99°50" and 102°40’ east. The specific geographical
location is illustrated in Figure 1. The region primarily falls under the administrative
jurisdiction of “three prefectures and four counties” in Qinghai Province, which includes
Haiyan and Gangcha County of the Haibei Tibetan Autonomous Prefecture, Tianjun County
of the Haixi Mongolian Tibetan Autonomous Prefecture, and Gonghe County of the Hainan
Tibetan Autonomous Prefecture. Covering a total area of 55,700 square kilometers, it
accounts for 7.99% of the province’s total land area. Qinghai Lake, located between 36°15
and 38°20' north latitude and 97°50’ and 101°20’ east longitude, is the largest saline lake
in China. Over the past decade, it has maintained an average elevation of 3193.15 m. The
expansive grasslands and numerous snow-capped peaks surrounding the lake contribute
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to its status as an internationally significant wetland. The Qinghai Lake Basin acts as a
natural barrier, helping to control the spread of desertification to the west and ensuring
ecological security in the northeastern region of the Qinghai-Tibet Plateau. Qinghai Lake
stretches 106 km in length from east to west, 63 km in width from north to south, and has a
circumference of 360 km. The lake is elongated in shape, narrow from north to south, and
slightly elliptical. The water in the lake is cold, brackish, and bitter, with a specific gravity
lower than that of seawater but slightly higher than that of freshwater. Its salt content is
1.25%, and the pH level is 9.2.

98 E

DEM

Figure 1. Study area location map.

The QLR experiences a typical plateau continental climate characterized by drought,
limited rainfall, dryness, strong winds, prolonged cold periods, and intense solar radiation.
The climate varies significantly across the seasons, featuring high winds and sandstorms
in spring, cool but brief summers, and long, cold winters. The area receives ample solar
radiation and abundant light resources. Rainfall is scarce, with precipitation and heat
occurring simultaneously during certain periods, resulting in distinct dry and wet seasons.
Situated between the Loess Plateau in the northeast of Qinghai Province, the region sur-
rounding Qinghai Lake borders the Hehuang Valley to the east, the Qilian Mountains to
the north, and the Gonghe Basin to the south. The elevation of the entire region ranges
from 3294 m to 5174 m, with an average elevation of 3900 m. The terrain is relatively flat
with gentle slopes, and the area is higher in the northwest and lower in the southeast.
Mountains occupy about 68.6% of the total area, while valleys and lake plains make up
a smaller proportion, accounting for 31.4% of the region’s total area. The mountains are
steep, the valleys are densely covered, and ice erosion terrain is widespread. The landforms
are complex and diverse, consisting mainly of alluvial plains, lacustrine plains, undulating
mountain ranges, ice platforms, and modern glaciers. The vertical distribution of soil in the
QLR is pronounced. In Jinshawan, the Gahai area, and near Bird Island, floating aeolian
sand and fixed aeolian sand are prevalent. The lake plain is predominantly chestnut soil,
while low mountains and hills are mainly covered with mountain chestnut soil, mountain
steppe meadow soil, and mountain meadow soil. The region exhibits a diverse range of
vegetation types, showcasing the coexistence of warm and alpine vegetation. The primary
vegetation types include alpine meadow, alpine steppe, sandy vegetation, salt meadow,
cold desert steppe, and swamp steppe.
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2.2. Data Source

This study mainly uses MODIS remote sensing image, administrative boundary data,
DEM data, etc. The data sources are shown in Table 1.

Table 1. Data sources.

DATA Resolution Year Source

DEM 30 m 2000 SRTM (Shuttle Radar Topography Mission, SRTM)
China National Center for Basic Geographic Information

Administrative Boundary Data vector 2020 (http:/ /www.ngcc.cn/ (accessed on 9 December 2024))
Slope 30 m 2020 SRTM (Shuttle Radar Topography Mission, SRTM)
MODO09A1 8-Day 500 m 2000-2020 GEE remote sensing cloud platform
MOD11A2 LST 8-Day 1km 2000-2020 GEE remote sensing cloud platform
MOD13A1 16-Day 500 m 2000-2020 GEE remote sensing cloud platform

2.3. Research Methods
2.3.1. Research Framework

RSEl is a remote sensing-based ecological environmental quality evaluation system,
emphasizing four key indices, the WET, NDVI, LST, and NDBSI, which are utilized to
assess regional ecological quality. By leveraging the robust cloud data storage and high-
performance online analysis capabilities of the GEE spatiotemporal remote sensing cloud
service platform, the overall framework consists of three primary steps. First, remote
sensing image data, population data, and economic data are collected and pre-processed.
Next, the water area is identified using the WET, NDVI, LST, and NDBSI indices for the
study area in the QLR. The ecological quality is then derived using the PCA method. Finally,
the ecological indicators in the QLR are analyzed to examine the temporal and spatial
differences and dynamic changes in the RSEI, as well as to investigate the driving forces
behind the RSEL

2.3.2. RSEI Model

The NDVI is widely used to monitor vegetation growth, as it directly reflects the
quality of the regional ecological environment. LST is closely associated with vegetation
growth, crop yield, the surface water cycle, urbanization, and various natural phenomena
and processes, as well as human activities. LST serves as a heat index that indicates
the condition of the surface ecological environment. The Kauth-Thomas transformation
method, a linear transformation based on multispectral imaging, is employed to derive
moisture components that provide information on soil and the WET. The dryness index,
which indicates soil dryness, can have detrimental effects on the ecological environment.
Given that urban construction land predominates in our study area, the dryness index was
represented by combining the Bare Soil Index (SI) and the Construction Index (IBI) into
the NDBSI.

The NDVI is a measure used to assess vegetation health. The WET quantifies moisture
levels in the soil. LST indicates the temperature of the Earth’s surface, while the NDBSI
helps differentiate between built-up areas and soil.

2.3.3. Random Forest Algorithm

In the study of ecological quality driving factors, the random forest algorithm has
proven to be an effective tool for identifying key influencing factors, owing to its robust
classification and regression capabilities [6,13-16]. Six driving factors were employed
to analyze the ecological quality of the QLR: the WET, NDVI, LST, NDBSI, slope, and
elevation. The random forest algorithm trains the data by constructing multiple decision
trees, enhancing the prediction accuracy and robustness of the model through majority
voting or averaging outputs. During the construction of each decision tree, the algorithm
randomly selects specific features from the six driving factors for segmentation. This
method helps prevent overfitting and improves the model’s generalization ability. The

254



Land 2024, 13, 2203

core strength of the algorithm lies in its capacity to automatically assess the importance
of each feature for classification or regression objectives, thereby identifying the critical
factors that influence ecological quality. When analyzing the drivers of ecological quality,
the random forest algorithm initially performs multiple samplings of the training dataset
and constructs several decision tree models. Subsequently, the importance of each feature
is evaluated by counting the frequency of its occurrence as a split node across all trees and
measuring the corresponding reduction in Gini impurity. Features with high importance
are typically closely linked to changes in ecological quality. For instance, the NDVI reflects
the status of vegetation cover, and its significant importance indicates that vegetation
growth has a substantial positive effect on ecological quality. By employing this method,
the random forest algorithm uncovers the underlying mechanisms driving changes in
ecological quality in the QLR, providing a scientific foundation for the formulation of
ecological protection measures.

3. Results
3.1. PCA: Principal Component Analysis

Figure 2 illustrates the trend in the contribution of PC1 to ecological quality in the QLR
over the past 20 years. This principal component encompasses four ecological indicators,
dryness, greenness, heat, and humidity, and is derived through PCA to reflect the overall
ecological quality of the region. As shown in Figure 2, the ecological quality of the QLR
has experienced significant fluctuations over the past two decades. Notably, around 2003,
2007, and 2012, the contribution of PC1 reached distinct peaks, indicating relatively high
ecological quality during these years. These peaks may be attributed to the combined
effects of climate conditions, environmental protection policies, and human activities
during these periods. Conversely, in years such as 2006, 2011, and 2016, the contribution
of the PC1 was relatively low, reflecting a decline in ecological quality. This decline can
mainly be attributed to climate change resulting from drought or excessive rainfall, as
well as human activities such as overgrazing and land development, which have negative
impacts on the ecological environment. It is noteworthy that the overall trend of the line
chart suggests that the ecological quality of QLR appears to exhibit cyclical fluctuations.
These fluctuations are closely associated with the natural climate change cycle in the region,
the implementation and adjustment of ecological protection policies, and the impact of
human economic activities.

PC1
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Figure 2. PC1 principal component contribution degree.

In summary, the ecological quality of QLR has demonstrated significant fluctuation
characteristics over the past 20 years. To maintain and enhance the ecological quality of the
region, it is imperative to develop targeted ecological protection and restoration measures
that consider multiple factors such as climate change, policy adjustments, and human
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Contribution

activities. Additionally, ecological monitoring and assessment efforts should be intensified
to promptly detect issues and implement effective intervention measures.

Figure 3 illustrates that the ecological quality of the QLR is influenced by four key
ecological factors: the NDVI, LST, WET, and NDBSI. The degree of contribution of the PCA
eigenvalues visually demonstrates this relationship. Our analysis of Figure 3 reveals that the
NDVI and WET, as positive factors, exhibit a significant positive correlation with ecological
quality (RSEI). The NDVI, or the Normalized Vegetation Index, is a crucial indicator for
measuring vegetation growth and coverage. In the QLR, the high contribution of the NDVI
indicates that vegetation cover plays a vital role in enhancing ecological quality. Lush
vegetation not only improves ecosystem stability but also promotes biodiversity, thereby
establishing a solid foundation for regional ecological balance. Therefore, protecting and
increasing vegetation cover is an effective strategy to improve the ecological quality of the
area. Additionally, the WET positively impacts ecological quality. Moderate humidity helps
maintain soil water balance, promotes plant root development and nutrient absorption, and
thereby enhances the self-recovery ability of the ecosystem. The high contribution degree
of humidity in the QLR underscores the importance of water management in ecological
protection. On the other hand, heat (LST) and dryness (NDBSI), as negative factors, are
negatively correlated with ecological quality (RSEI). LST reflects surface temperatures, and
high temperatures not only limit plant growth but can also exacerbate soil erosion and water
scarcity problems, posing challenges to ecosystems. As a measure of dryness, a high value
of the NDBSI indicates dry soil, which is detrimental to vegetation growth and ecosystem
health. Therefore, controlling surface temperature and maintaining soil moisture are crucial
measures to mitigate these negative effects. In summary, the ecological quality of the QLR
is the result of the combined influence of multiple factors. Through scientific management
and rational intervention, such as strengthening vegetation protection, optimizing water
resources allocation, and controlling surface temperature, the ecological quality of the
region can be effectively improved, and sustainable development can be achieved.
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Figure 3. Characteristic value contribution degree of four ecological elements.

3.2. Temporal and Spatial Distribution of Ecological Quality in the Qinghai Lake Region

Figures S1 and S2 illustrate the spatial distribution of the RSEI ecological quality in
the QLR over the past 20 years, highlighting the temporal and spatial characteristics of
ecological quality in the region. As an ecological quality assessment tool based on remote
sensing technology, the RSEI effectively demonstrates dynamic changes in ecological quality
by integrating various ecological indicators. The transition from red to blue signifies a
progressive improvement in ecological quality, ranging from Poor (0-0.2) to Excellent
(0.8-1). Red areas are predominantly found in regions with high human activity, such
as urban centers and agricultural lands, where ecological quality is at its lowest due to
vegetation destruction and exposed soil. Fair (0.2-0.4) areas are more common in semi-
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urbanized regions, such as villages and pastures, which display slightly better ecological
quality but continue to be affected by overgrazing and agricultural practices. As the colors
transition to green and blue, ecological quality gradually improves. Moderate (0.4-0.6)
areas primarily consist of natural grasslands and woodlands, where vegetation cover is
high and ecosystems are relatively stable, although degradation risks persist. Good (0.6-0.8)
areas are found in nature reserves and around lakes, characterized by healthy ecosystems
and high ecological quality. The Excellent (0.8-1) areas, represented in blue, are natural
treasures such as alpine meadows and deserts, boasting extremely high vegetation cover
and extremely healthy ecosystems.

From a time series perspective, the ecological quality of the QLR has exhibited a fluc-
tuating trend over the years, rather than remaining unchanged. During some years, such
as 2000, 2005, and 2010, areas with poor ecological quality were concentrated, which was
attributed to climate change and intensified human activities. However, in years like 2015
and 2020, areas with better ecological quality increased significantly, thanks to the effective
implementation of ecological protection measures and improved climatic conditions.

In summary, the ecological quality of the QLR has faced both challenges and oppor-
tunities over the past 20 years. In regions with low ecological quality, it is essential to
strengthen ecological protection and reduce human activities” interference with the natural
environment. At the same time, areas with good ecological quality should also be continu-
ously monitored and managed to ensure the healthy and sustainable development of their
ecosystems. Through scientific planning and effective management, we are confident that
the ecological quality of the QLR will further improve in the future.

As evident from Table 2, the area with “Poor” ecological quality (indicating low
ecological quality) constituted a relatively large proportion in 2000, amounting to 628.5
km?. However, this proportion exhibited a significant downward trend in subsequent years.
By 2020, the proportion of the “Poor” grade had decreased to 6.80%, indicating an overall
substantial improvement in the ecological quality of the QLR. Simultaneously, the area
shares of “Fair” (general ecological quality) and “Moderate” (medium ecological quality)
also underwent varying degrees of change. Specifically, the share of the “Fair” rating
increased initially but began to decline in recent years, while the share of the “Moderate”
rating started to decrease in 2015 after a period of increase. The changing trends of
these two levels suggest that the ecological quality of the QLR gradually stabilized and
improved after a period of fluctuation. It is noteworthy that the area proportions of “Good”
(indicating good ecological quality) and “Excellent” (indicating excellent ecological quality)
have shown a significant upward trend in recent years. In particular, the “Good” rating
increased from 0.43% in 2000 to 2.93% in 2020, while the “Excellent” rating increased from
0.33% to 3.78%. The improvement in these two levels fully demonstrates the remarkable
achievements in the ecological protection and restoration of the QLR.

Table 2. Area and proportion of ecological quality level in Qinghai Lake region (unit: km?/%).

Ecological Quality 2003 2008 2013 2018 2023
Poor 628.5 1.00% 6273.75 9.95% 18,677 29.63% 33,176 52.63% 4286.25 6.80%
Fair 269.75 0.43% 5975.5 9.48% 19,261.75 30.56% 31,681 50.26% 5844.5 9.27%
Moderate 382.75 0.61% 4374.5 6.94% 33,511.25 53.16% 22,921.75 36.36% 1851.25 2.94%
Good 270 0.43% 9299 14.75% 33,963.25 53.88% 17,659.25 28.01% 1847.75 2.93%
Excellent 210.25 0.33% 7490.75 11.88% 27,265.5 43.25% 25,692.5 40.76% 2380.25 3.78%

Overall, the changes in the area and proportion of ecological quality grades in the QLR,
as presented in the table, fully reflect the efforts and accomplishments made in ecological
protection and restoration in this region. Although the area with low ecological quality
was relatively large in the early stage, the ecological quality of the QLR has significantly
improved through years of management and protection, with the proportion of good and
excellent ecological quality areas increasing annually. This change is not only conducive
to ecological environment protection and sustainable development in the QLR but also
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plays a positive role in promoting ecological balance and environmental protection in the
surrounding region and even the entire country.

Figure 4 is a bar chart that directly illustrates the change in the proportion of ecological
quality grades, ranging from Poor (0-0.2) to Excellent (0.8-1), in the QLR from 2000 to
2020. In the early stage, the ecological quality of the QLR was generally low, with Poor
and Fair levels (0.2-0.4) accounting for a relatively high proportion. This reflected the
fragility of the ecosystem and the severe environmental pressure it faced. However, over
time, this situation has undergone a radical transformation. The proportion of Moderate
(0.4-0.6), Good (0.6-0.8), and Excellent grades has increased annually, particularly the
Good grades, which surpassed 30% around 2015, and the Excellent grades, which also
reached about 10%. This indicates that the ecological quality of the QLR has achieved
a qualitative leap. Behind this positive change lies the great importance attached to
environmental protection by the government and all sectors of society, who have made
unremitting efforts. The implementation of a series of ecological protection projects, such as
the protection of lakes and surrounding wetlands, the promotion of ecological restoration
projects, and a reduction in human activities in the ecological environment, have jointly
facilitated the restoration and improvement of the ecosystem. Additionally, climate change
has also brought positive effects to the QLR, including increased precipitation, rising
lake water levels, and improved vegetation coverage, which have provided favorable
conditions for ecosystem restoration. Nevertheless, despite the overall improvement in
the ecological quality of the QLR, potential problems and challenges still require vigilance.
While the proportion of Poor and Fair grades has fallen sharply, it still fluctuated in
some years, indicating that the ecosystem remains unstable and vulnerable to external
factors. Furthermore, the relatively high Moderate level suggests that continuous efforts
are still needed for ecosystem restoration. Although the ratings for Good and Excellent
have improved, there is still potential for further enhancement of the ecosystem. The
broken line chart in Figure 5 illustrates the trend of ecological quality changes in four
major counties surrounding the QLR: Gangcha County, Tianjun County, Haiyan County,
and Gonghe County. The ecological quality in these four counties has shown a year-by-
year improvement, aligning with the overall trend observed in the QLR. Notably, the
advancements in ecological quality in Gangcha County and Haiyan County are particularly
significant, while progress in Tianjun County and Gonghe County has been relatively
slower. This disparity indicates that, when promoting regional ecological protection, it is
essential to implement differentiated protection measures tailored to local conditions.

<o A

Figure 4. Trend map of ecological quality ratio in Qinghai Lake region.
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Figure 5. Spatial distribution map of ecological quality change in Qinghai Lake region.

3.3. Dynamic Monitoring of Ecological Quality in Qinghai Lake Region

To further analyze the spatial differences in RSEI changes, we categorized the RSEI
changes into five groups based on the changes in the RSEI index at 5-year intervals.

Through Figure 5, we observed the spatial variation characteristics of the ecological
quality (RSEI) in the QLR from 2000 to 2020 at six-year intervals. This analysis not only
reveals the dynamic evolution of ecological quality but also provides insights into the
interactions between human activities and the natural environment.

From a temporal perspective, the ecological quality of the area around the QLR has
undergone a transformation from a slight decline to gradual improvement over the past
20 years. During the period from 20002005 to 2005-2010, the region experienced a slight
decline in ecological quality, evident by the widespread distribution of orange (slight
decline) and yellow (no change) areas in the figure. Notably, the northwest and south-
east QLR exhibited significant ecological deterioration (red area), potentially linked to
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increased human activity intensity and natural environment vulnerability during this
period. However, over time, the ecological quality of the QLR began to show positive
signs of change. Between 2005-2010 and 2010-2015, while areas of slight decline and no
change still dominated, areas of significant deterioration decreased, and areas of significant
improvement (dark green) gradually increased in the northeast and southwest parts of the
lake, indicating gradual ecological recovery in these areas. This change may be attributed to
the heightened awareness of ecological environmental protection by the local government
and all sectors of society, as well as the effective implementation of various ecological
protection measures. In the period from 2010-2015 to 2015-2020, the improvement trend
in the ecological quality of the QLR became more pronounced. The area of significant
improvement increased significantly, particularly in the northeast and southwest of the
lake, becoming bright spots for ecological quality enhancement. Although areas with
slight decline and no change still accounted for a certain proportion, areas with significant
decline had decreased significantly, indicating that the overall trend of ecological quality
deterioration had been effectively contained. From a spatial distribution perspective, the
change in ecological quality around the QLR exhibits notable regional characteristics. The
northwest and southeast of the lake, as ecologically sensitive areas, have experienced signif-
icant deterioration and subsequent efforts to improve their ecological quality. Conversely,
the northeast and southwest are relatively stable, with a remarkable trend of improvement
in recent years, which may be closely related to the topography, climate conditions, and the
effectiveness of ecological protection measures in these regions.

In summary, the ecological quality of the QLR has undergone a transition from a
slight decline to gradual improvement over the past 20 years. This change not only
reflects the resilience of the region’s ecological environment but also demonstrates the
potential for humans to enhance the natural environment through scientific management
and effective intervention. To further promote the improvement of ecological quality
around the QLR, we should continue to strengthen the implementation of ecological
protection measures, optimize resource allocation, promote the coordinated development
of ecology and economy, and collectively preserve this precious green home.

3.4. Driving Analysis of Ecological Quality Change in Qinghai Lake Region

Table 3 illustrates the extent of influence exerted by the variables WET, LST, NDVI,
NDBSI, SLOPE, and DEM on the variation in the RSEIL. By employing the random forest al-
gorithm to analyze the changes in ecological quality (RSEI) in the QLR, we have uncovered
the driving mechanism of several key variables on its evolution. Firstly, the NDVI serves
as the primary indicator of vegetation cover, exerting a direct and significant influence
on the ecological quality of the QLR. The abundance of vegetation not only enhances soil
retention and reduces soil erosion but also enriches biodiversity and improves the overall
stability of the ecosystem. Secondly, the WET, another crucial factor, follows closely in
its contribution. Moderate humidity is an essential element for maintaining ecosystem
health, directly related to plant growth and biodiversity preservation. The significant
influence of humidity change on ecological quality suggests that the rational management
and utilization of water resources should be prioritized in ecological protection. The NDBSI
reflects the degree of surface exposure. Although its contribution is less than the previous
two factors, an increase in bare soil area often indicates a decrease in vegetation cover,
which negatively impacts ecological quality. This suggests that attention should be paid
to the potential destruction of vegetation by human activities and climate change, and
effective measures should be taken to reduce the area of bare soil. The SLOPE (slope)
and DEM (digital elevation model) reveal the drivers of ecological quality change from a
topographical perspective. Soil and water loss are prone to occurring in areas with large
slopes, which affects vegetation growth. However, due to the cold climate, vegetation
growth is limited in high-altitude areas, resulting in relatively low ecological quality. These
findings highlight the important role of topographic factors in ecological conservation and
the need to develop conservation measures tailored to local conditions. Finally, LST has the
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smallest contribution to the change in ecological quality, but high temperatures can still
stress vegetation and affect ecological quality. Therefore, in the context of climate warming,
monitoring and regulating surface temperature to reduce its negative impact on vegetation
is also a crucial aspect of ecological protection.

Table 3. Analysis of driving factors of ecological quality change in Qinghai Lake region.

Factors LST WET NDVI NDBSI SLOPE DEM
RMSE_noise 0.09 0.12 0.09 0.18 0.17 0.15
Contribution 0.41 0.25 0.12 0.06 0.24 0.23

In summary, the driving mechanism of ecological quality evolution in the QLR is
complex and diverse, with vegetation cover, humidity, bare soil degree, slope, elevation,
and surface temperature jointly influencing the ecosystem. To improve and enhance
ecological quality, it is necessary to comprehensively consider all factors and implement
scientific and effective protection measures to promote the sustainable development of the
ecological environment in the QLR.

4. Discussion

(1) Rigorous Implementation of Land Use Planning and Continuous Optimization of
Land Use Structure.

In alignment with the socio-economic development trends surrounding the QLR, as
well as the regional disparities in land resources and environmental conditions, a scientific
general plan for land use should be developed to strictly regulate land use practices. Taking
into account land use control regulations and the fragile ecological environment, the QLR
is categorized into ecological protection zones, basic farmland protection zones, basic grass-
land protection zones, and urban development zones. Ecological protection zones prioritize
the conservation of woodland, water, and wetland ecosystems, which are essential for
climate regulation, gas regulation, water conservation, and biodiversity protection in the
QLR [1,2,17]. By implementing differentiated land use policies, the shoals of Qinghai Lake
and significant river basins can be designated as ecological environmental protection zones,
effectively enhancing the ecosystem service value of the lake’s surrounding area. Basic
farmland and grassland protection zones aim to promote local agriculture and animal
husbandry development, improve the living conditions of farmers and herdsmen, and
ensure soil formation and protection, food production, and raw material supply. Urban
development zones should reasonably determine the scale of urban development and allo-
cate urban development space within permitted and conditionally permitted construction
areas, without encroaching on basic farmland and grassland. The scale, structure, and
layout of land use significantly impact ecological and environmental issues such as the land
ecological landscape, ecosystem types, vegetation, and biodiversity. Therefore, it is essen-
tial to rationally adjust the land use structure [2,18-20], balance the relationship between
agricultural land and construction land, ensure the preservation of cultivated and forest
land areas, maintain grassland and water area sizes, protect wetland areas, scientifically
control construction land area, and continuously enhance ecosystem service value.

(2) Restricted Development of Inland Beaches and Effective Protection of Critical
Wetland Resources.

The QLR, located at the intersection of China’s eastern monsoon region, western arid
region, and the Qinghai-Tibet Plateau, is recognized as a national nature reserve and is
included in international wetland inventories due to its unique geographical position and
fragile ecological environment. Wetland ecosystems perform vital functions such as gas
regulation, climate control, water conservation, waste treatment, biodiversity protection,
and cultural recreation, while also serving as habitats for numerous plant and animal
species. However, over the past two decades, the wetland area surrounding the QLR has
decreased by 3570 square kilometers, resulting in a declining trend in ecosystem service
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value in this region. Therefore, it is imperative to develop appropriate wetland protection
measures, strictly limit the development of beaches along the QLR, prioritize the protection
of wetlands in significant river basins surrounding the lake, and continuously enhance
their recreational and cultural value [21].

(3) Implementation of Engineering and Biological Measures to Mitigate Soil Erosion
and Desertification.

In areas prone to severe soil erosion, engineering measures should be employed to
straighten and dredge large gullies, sandbanks, rocks, and mounds blocking water flow,
while regulating gullies and streams to flow into the main river. In regions with severe
grassland desertification, the restoration and expansion of forest and grass vegetation
should be prioritized, establishing windbreak and sand-fixing forest belts, implementing
fencing and grazing prohibitions, etc. Through managing existing vegetation and reducing
human disturbance, the natural renewal and restoration of degraded vegetation can be
achieved, promoting the development of desert grass and natural plants, and minimiz-
ing shifting sand activities in the region. For areas with severe grassland degradation,
improving natural grasslands and constructing artificial grasslands should be primary
strategies. While protecting existing forest and grass vegetation, comprehensive manage-
ment measures should be adopted for damaged ground, and forest land after logging
should be promptly renewed through rotational sealing and grazing [22-24]. The “double
package of grass and livestock” responsibility system should be implemented in grassland
areas to balance livestock and grassland resources, maintaining “buffer grassland” or “mo-
bile grassland” to slow grassland degradation. Addressing the primary ecological issues
around the lake area requires adapting to local conditions, strengthening the construction
of agricultural land ecological environments, developing ecological agriculture and animal
husbandry, and achieving the sustainable utilization of agricultural land resources.

(4) Establishment of a Reasonable Ecological Compensation Mechanism to Encourage
Farmer and Herdsman Participation in Ecological Protection.

Currently, Qinghai Province only provides ecological compensation for ecological
migrants in Sanjiangyuan, excluding other areas and ecological protection behaviors, which
hinders the achievement of an effective protection mechanism. Ecological compensation, as
an institutional arrangement to adjust interest relationships between subjects and protect
the ecological environment, serves as an incentive measure for environmental protection,
with the participation and support of herdsmen being crucial for realizing this mechanism.
Therefore, based on the value of ecosystem services in townships surrounding the QLR,
combined with the significance of ecological protection and the willingness of farmers
and herdsmen to contribute, a reasonable ecological compensation mechanism should be
established. This mechanism should provide fair and reasonable ecological compensation
and incentives for the decline in well-being caused by abandoning economic development
and changing lifestyles, encouraging farmers and herdsmen to actively engage in ecological
protection efforts [23].

5. Conclusions

After assessing and analyzing the evolution of the ecological environmental quality of
the QLR over the past 20 years, the following conclusions have been drawn:

(1) The ecological quality of the region surrounding the QLR has exhibited notable fluctu-
ations in the past two decades. These fluctuations are closely tied to multiple factors,
including climate change, human activities, and policy adjustments. Specifically,
key ecological factors such as vegetation cover, surface temperature, humidity, and
dryness have significant impacts on ecological quality.

(2) Despite fluctuations, the overall ecological quality of the region around the QLR
has shown an improving trend over the past 20 years. The RSEI ecological quality
spatial distribution map indicates that the proportion of high-quality ecological areas
is increasing annually, reflecting the effective implementation of ecological protection
measures and the improvement of climate conditions.
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(3) Analysis using the random forest algorithm reveals that vegetation cover and humidity
are the primary factors contributing to the improvement of ecological quality, while
bare soil area, slope, and elevation are the key factors leading to a reduction in
ecological quality. These findings provide a scientific foundation for formulating
targeted ecological protection and restoration measures.

(4) The changes in ecological quality around the QLR exhibit notable regional charac-
teristics. The trends in ecological quality variation differ across regions, which may
be related to factors such as terrain, climate, and the intensity of human activities.
Therefore, it is essential to consider regional differences and adopt protection measures
tailored to local conditions when formulating ecological protection strategies.

Despite the overall improvement in the ecological quality of the area around QLR,
it still faces numerous challenges, including the uncertainty of climate change and the
ongoing impact of human activities. Consequently, it is crucial to strengthen ecological
monitoring and assessment efforts in the future, promptly identify issues, and implement
effective intervention measures. Simultaneously, it is necessary to continue promoting
the implementation and adjustment of ecological protection policies to ensure the sustain-
able development of the ecological environment. In summary, this study has revealed
the evolution patterns and driving mechanisms of ecological environmental quality in
the region around the QLR, providing an important reference for formulating scientific
and reasonable ecological protection and restoration measures. In the future, we should
continue to strengthen research and exploration in related fields, contributing our wisdom
and efforts to the protection of the ecological environment of the Qinghai-Tibet Plateau.
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Lake region.
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