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Preface

This Reprint presents recent advances in the modeling, optimization, and control of fermentative
processes. Integrating mathematical models, data-driven techniques, and advanced control strategies,
it aims to enhance process efficiency, yield, and product quality. Designed for researchers and
practitioners, it offers both theoretical foundations and practical applications, bridging the gap between

bioprocess engineering and modern systems analysis.

Ricardo Aguilar-Lépez
Guest Editor
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Editorial
Fermentation Processes: Modeling, Optimization and Control:
2nd Edition

Ricardo Aguilar Lépez

Department of Biotechnology and Bioengineering, Centro de Investigacién y de Estudios Avanzados,
México City 07360, Mexico; raguilar@cinvestav.mx; Tel.: +52-55-5747-3800

Fermentation is an important cornerstone of bioengineering, which plays a critical
role in the production of a wide array of products including pharmaceuticals, biofuels,
food additives, industrial chemicals and enzymes. As a biological process that involves the
metabolic activity of microorganisms, fermentation is inherently complex, nonlinear, and
dynamic. This complexity poses significant challenges to researchers and engineers who
aim to optimize product yield and quality, and enhance process efficiency.

To address these challenges, significant attention has been devoted to the development
of robust strategies for modeling, monitoring, and controlling fermentation processes.
Accurate modeling provides a foundation for understanding the underlying biological
and physicochemical phenomena that enable simulation, prediction, and process design
in the fermentative production of target products. Meanwhile, real-time monitoring is
essential for tracking key process variables such as biomass concentration, substrate con-
sumption, and product formation, thereby offering insight into the state of the system.
Lastly, advanced control techniques ensure that the process operates within optimal con-
ditions, despite disturbances and uncertainties, to maximize productivity and ensure
regulatory compliance.

The integration of these elements is vital for the transition from empirical, trial-and-
error methods to data-driven and model-based approaches in modern bioprocessing. The
synergy between these technologies, such as modern measurement devices, new algo-
rithms for optimization and process control, and computational hardware, has profound
implications for sustainability issues. Traditional fermentation processes can be resource-
intensive, often requiring significant inputs of water, energy, and raw materials. Through
Al-enhanced optimization, waste can be minimized, energy efficiency can be achieved, and
the overall environmental impact can be significantly reduced. These initiatives not only
improve productivity but also help forge pathways to a more sustainable industrial future.

Under this framework, this Special Issue features several contributions that are focused
on novel tools applied to fermentative processes, such as machine learning for improved
protein production, heuristic and theoretical optimization procedures based on control
strategies, improved culture media or the use of nonconventional microorganisms and
bioreactor designs and configurations to maximize specific bioproducts like organic acids,
as well as online strategies for the estimation of key operational variables in fermentation
(Contributions 1-10).

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflicts of interest.
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Optimizing Xylanase Production: Bridging Statistical Design
and Machine Learning for Improved Protein Production

Merve Asli Ergiin !, Basak Esin Koktiirk-Giizel 2 and Tugba Keskin-Giindogdu 13*
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Abstract: Proteins are crucial for medicine, pharmaceuticals, food, and environmental ap-
plications since they are used in various fields such as synthesis of drugs, industrial enzyme
production, biodegradable plastics, bioremediation processes, etc. Xylanase is an important
and versatile enzyme with applications across various industries, including pulp and paper,
biofuel production, food processing, textiles, laundry detergents, and animal feed. Key
parameters in biotechnological protein production include temperature, pH, and working
volumes and especially medium compositions where optimization is crucial for large-scale
applications due to cost considerations. Machine learning methods have emerged as effec-
tive alternatives to traditional statistical approaches in optimization. This study focuses
on optimizing xylanase production via bioprocesses by employing regression analysis on
datasets from various studies. The extreme gradient boosting (XGBoost) regression model
was applied to predict xylanase activity under different experimental conditions, accurately
predicting xylanase activity and identifying the significance of each variable. This study
utilized experimentally derived datasets from peer-reviewed publications, in which the cor-
responding laboratory experiments had already been conducted and validated. The results
demonstrate that machine learning methods can effectively optimize protein production
processes, offering a strong alternative to traditional statistical approaches.

Keywords: xylanase production; XGBoost regression; optimization; protein production;
machine learning

1. Introduction

Protein production by bioprocesses has become essential in modern medicine, phar-
maceuticals, food production, and environmental activities. These proteins can be utilized
in several applications, including the synthesis of essential pharmaceuticals like insulin
and monoclonal antibodies, as well as the production of industrial enzymes, biodegrad-
able polymers, and bioremediation agents [1,2]. The effective and sustainable production
of these proteins is essential for addressing global issues such as food security, illness
prevention, and environmental sustainability [3,4].

Xylanase has emerged as a versatile and essential enzyme among biotechnologically
produced proteins, with applications in various industries, including pulp and paper,
biofuel production, food processing, textiles, and animal feed [5,6]. Due to its extensive

Fermentation 2025, 11, 319 3 https://doi.org/10.3390/fermentation11060319



Fermentation 2025, 11, 319

industrial utility, xylanase is regarded as a highly significant protein in both biotechnologi-
cal and industrial applications [7]. Its typical applications span the food industry, animal
feed, bioconversion, textiles, and the paper and pulp sectors [8]. Additionally, xylanase
is used to improve the clarity of fruit juices and wine; assist in the extraction of vegetable
oils, coffee, and starch; facilitate oligosaccharide synthesis; and enhance the nutritional
value of animal feed [9]. This enzyme is synthesized by various microorganisms, including
fungi and actinomycetes, and belongs to a crucial class of hydrolases with a global market
valuation of approximately 500 million USD [10].

Numerous factors influence xylanase synthesis in all fermentation methods. The initial
aspect refers to the origin of the microorganism. Efforts are being made to improve the
production yields of bacteria, fungi, protozoa, algae, etc., which are frequently utilized
in xylanase synthesis, by recombinant methodologies. Recombinant production of xy-
lanase can improve the yields of enzyme activity [11,12]. Enhancing the capabilities of
species through recombinant technologies is an efficient method; yet, it is labor-intensive
and expensive.

The selection of the appropriate bioreactor configuration is another aspect influencing
production efficiency in xylanase synthesis. The decision of the process type depends
on the microorganism’s origin [13]. Numerous studies in the literature address xylanase
production using batch or continuous reactors [14]; however, the predominant methods in
recent years are deep culture and solid state fermentations [15,16]. The growing interest
in solid-state fermentations is driven by the need to minimize process costs. Agricultural
waste materials serve as a substrate source in solid-state fermentations. Utilizing agricul-
tural waste for xylanase production with the proper microorganism is a highly effective
method for cost reduction [17]. Nonetheless, similar to other bioprocesses, scaling up
solid-state fermentation suffers significant costs, and reductions in yields obtained at the
laboratory size may occur during the scale-up stages. It is widely recognized that 30-40%
of the production expenses for commercial enzymes are attributed to the cost of the nutri-
tional medium [18]. The fermentation profile of an organism is affected by nutritional and
physiological factors, notably carbon and nitrogen sources, along with pH, temperature, ag-
itation, dissolved oxygen, and inoculum density. Consequently, in xylanase production, it is
imperative to establish appropriate media and culture conditions to attain optimal enzyme
yield. Optimizing these growth parameters is crucial for maximizing industrial enzyme
production, as improper optimization results in lower enzyme yields [19,20]. Therefore,
the optimization of xylanase production is a multifaceted endeavor that encompasses the
selection of microbial strains, fermentation methods, nutrient media composition, and the
application of statistical optimization techniques. The integration of these elements, cou-
pled with a focus on sustainability and commercial viability, positions xylanase production
as a promising area of research with significant industrial implications.

Statistical approaches, particularly design of experiments (DoE), have been widely
used to optimize enzyme production by systematically analyzing the effects of multiple
variables. DoE helps reduce the number of experimental trials while improving efficiency,
making it a powerful tool in biotechnological optimization [21,22]. However, many DoE
techniques, including advanced experimental design methodologies, often require spe-
cialized software or tools that come with significant costs, which can be a disadvantage
for researchers with limited budgets. Among various experimental design methodologies,
factorial design and response surface methodology (RSM) have been extensively applied
for optimizing medium composition in xylanase production, Table 1.
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Table 1. Statistical Optimization Methods for Different Microorganisms.

Data

Process Microorganism Method Factors Reference
Set No:

Glucose (10-20 g/L)
(NH4),HPO, (2-10 g/L)

1 Batch Escherichia coli DH5a  fractional factorial design ~ KoHPOy (5-18 g/L) [3]
KH,PO, (1-6 g/L)
MgSO, (0.5-3 g/L)

(NH4);HPOy (2.6-5.4 g/L)

Urea (0.9-2.1 g/L)

Malt sprout (6-18 g/L) 2]
Corn cobs (12-24 g/L)

Wheat bran (6-16 g/L)

. Xylan (5-10 g/L)

3 Yy g

3 Solid state  Bacillus circulans 3 ffcfl"“al pH (8-9) (4]
eslg Cultivation time (24-72 h)

Xylan (2.5-7.5 g/L)
Casein (1-2 g/L) [23]
NH,CI (03-13 g/L)

(NH,),HPO, (4-10 /L)
5 Batch Escherichia coli DH5a  RSM KoHPO, (7-18 g/L) [3]
MgSO, (1.5-3 g/L)

(NH4),HPOy4 (2.04.2 g/L)
6 Batch Aspergillus niger B3~ RSM Urea (0.3-0.9 g/L) 2]
Malt sprout (0.4-10 g/L)

Xylan (2.5-3.5 g/L)
Casein (1.8-2.0 g/L)

25-1 fractional factorial

2 Batch Aspergillus niger B03 design

23 full factorial

4 Batch Bacillus sp. design

7 Batch Bacillus sp. RSM [23]

While DoE provides valuable insights, machine-learning-based regression models
offer a more flexible and cost-effective alternative. Unlike DoE, which relies on controlled
experiments, regression models utilize existing data to predict xylanase production under
various conditions, minimizing the need for additional costly and time-consuming trials.
Moreover, ML-based approaches, such as boosting techniques, can capture complex inter-
actions between parameters more effectively than traditional statistical methods, ultimately
enhancing accuracy and reducing prediction errors. Using machine learning, enzyme pro-
duction processes can be optimized more efficiently, making these techniques a promising
alternative to traditional statistical methods [21].

A significant study by Pensupa et al. [24] shows the effectiveness of machine learn-
ing models in optimizing biomass production through fermentation processes, revealing
that the Matern 5/2 Gaussian process regression model achieved the lowest root mean
squared error of 0.75 g/L and an R-squared value of 0.90. This highlights the power of
complex statistical frameworks to examine complex datasets and augment predictive preci-
sion in fermentation processes, therefore enhancing the comprehension of ideal growing
circumstances for microbial cultures, including xylanase producers.

Moreover, Wu et al. [25] highlighted the significance of machine learning in moni-
toring yeast fermentation by Raman spectroscopy, delivering real-time data that improve
monitoring precision throughout fermentation activities. These strategies could similarly
improve the monitoring of essential parameters in xylanase production, allowing dynamic
modifications to optimize enzyme yield.

Jeong and Kim [26] integrated image processing into machine learning methodolo-
gies, concentrating on quantitative evaluations in fermentation processes. Their use of
convolutional neural networks (CNNs) creates new opportunities for visually studying
fermentation dynamics, which can be crucial in enhancing both the visual and operational
sides of xylanase production by enabling real-time modifications based on measurable
fermentation indicators.



Fermentation 2025, 11, 319

Additionally, Bowler et al. [27] introduce a novel use of ultrasonic measurements
integrated with machine learning to forecast alcohol content during beer fermentation.
Their findings demonstrate that simple monitoring techniques can significantly improve
fermentation control. The implementation of comparable simple measurement techniques
in xylanase production may facilitate accurate adjustment of fermentation parameters,
hence ensuring optimal conditions during the process.

A comparison between DoE and ML-based approaches highlights their respective
advantages. In DoE methodologies, data collection typically occurs through controlled ex-
periments, whereas ML approaches, particularly boosting techniques, can process datasets
to improve accuracy and minimize prediction errors. While DoE relies on hypothesis-
driven mathematical models, ML methods utilize iterative algorithms that continuously
refine predictions. Beyond serving as a complement to DoE techniques, machine learning
methods provide a significant advantage by optimizing processes without dependence on
proprietary software, employing predictive capabilities directly from the acquired data.

This work evaluates the use of machine-learning-based predictive modeling on pub-
licly available experimental datasets extracted from the literature. No new laboratory ex-
periments were conducted. The aim is to explore the capability of ML models, particularly
XGBoost, to replicate or improve upon the predictive patterns captured by DoE approaches.

This study focuses on predicting xylanase production using the XGBoost regressor.
The model was trained on a dataset comprising various experimental conditions, including
glucose, (NH4)HPO,, KoHPO,, KH,POy, MgSO,, (NHy)oHPOy, urea, malt sprout, corn
cobs, and wheat bran concentrations. The objective was to accurately predict xylanase
activity and identify key factors influencing enzyme production. The results demonstrate
that machine learning methods can effectively optimize protein production processes,
providing a robust and scalable alternative to traditional statistical approaches. This study
not only highlights the potential of machine learning in biotechnological optimization but
also provides a foundation for future research in this rapidly developing field.

2. Materials and Methods
2.1. Dataset

The data from studies that optimized xylanase production through experimental
design were analyzed in this study. Various factorial design levels and response surface
methodology approaches (central composite design, Box-Behnken design, etc.) were used
for media optimization in the assessed research. The independent variables and the levels
that were utilized in these studies can be seen in Table 1.

All datasets used in this study were compiled from previously published experimental
studies focused on xylanase production using various microorganisms and fermentation
designs. These datasets represent secondary sources obtained through manual data ex-
traction from the literature, and no original experiments or synthetic (simulated) data
were produced.

Farliahati et al. [3] conducted a two-stage study to optimize the medium composition
in xylanase production using Escherichia coli DH5«. In the first phase of this study, the
most effective factors were determined using a factorial design with five factors. Within
the scope of the study, the factors considered in 18 different experimental setups were
gIUCOSB (10—20 g/L), (NH4)2HPO4 (2—10 g/L), K2HPO4 (5—18 g/L), KH2PO4 (1—6 g/L), and
MgSOy (0.5-3 g/L) (see Table Al). In the second part of the study, the concentration ranges
of three effective factors, (NH4),HPO, (1-13 g/L), K;HPO, (1.5-23.5 g/L), and MgSQOy
(0.75-3.75 g /L), were altered, and optimization results were improved in 15 experimental
sets using the response surface methodology. All the experiments were conducted in
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250 mL baffled flasks with 50 mL working volume, and the pH was kept at 7.4. The
incubation temperature was 37 °C, and all the flasks were agitated at 200 rpm for 18 h in an
orbital shaker. The dataset is available in tabular form in Table A5.

In another study conducted by Dobrev et al. [2], an optimization study was carried
out considering the cost advantage provided by using cheaper and more accessible types
of waste instead of xylan. In the deep culture experiments conducted with Aspergillus
niger B03, 26 different setups were used with (NH4),HPO, (2.6-5.4 g/L), urea (0.9-2.1 g/L),
malt sprout (6-18 g/L), corn cobs (12-24 g/L), and wheat bran (6-16 g/L) (Table A2).
In the second part of the study, the concentrations required for the maximum xylanase
amount were optimized in 14 different experimental setups using the important factors
identified as (NH4),HPO; (2.6-20.4 g/L), urea (0.3-0.9 g/L), and malt sprout (0.4-10 g/L).
The biosynthesis reactors were 500 mL flasks with 50 mL working volume. All flasks were
kept at 28 °C in an orbital shaker, agitated at 200 rpm for 18 h (Table A6).

A solid culture fermentation study by Bacillus circulans was conducted by
Bocchini et al. [4] using a 3 x 3 factorial design to optimize xylan concentrations (5-10 g/L),
pH levels (8-9), and incubation times (24-72 h) for enhanced xylanase production. The
concentrations of these three significant components were optimized at 27 different levels
in the conducted studies. Xylanase production was performed in 125 mL Erlenmeyer
flasks with a working volume of 20 mL. All the flasks were incubated for 12 h at 45 °C and
agitated at 150 rpm. The detailed dataset of the experiments and the xylanase production
values are listed in Table A3.

Pham et al. [23] modified the amounts of xylan (2.5-7.5 g/L), casein (1-2 g/L), and
NH4ClI (0.3-1.3 g/L) in the culture medium for xylanase production from Bacillus sp.
L-1018 using response surface techniques and used a two-stage optimization process.
Initially, a full factorial design was applied to navigate toward the ideal region. The full
factorial design technique simultaneously assesses the primary impacts of variables and
their interactions (Table A4). Moreover, full factorial design effectively identifies the path
of steepest ascent to reach within range of the optimal answer. It is thus especially suited
for the preliminary phases. A 2 x 3 factorial design with three components at two levels
necessitates eight experimental runs. In the second phase, 13 tests were conducted adopting
response surface methodology to optimize concentrations of xylan (2.5-3.5 g/L) and casein
(1.8-2.0 g/L) for maximum xylanase production. Xylanase production experiments were
conducted in 250 mL Erlenmeyer flasks with 50 mL working volume. All the flasks
were kept in a water bath, and agitation was supplied by a magnetic agitator at 250 rpm
(Table A7).

For each dataset, the “DoE” values refer to reported predictions or interpolated outputs
from factorial or response surface methods in the original publications, while the “XGBoost”
values are generated by training a machine learning model on the same experimental
input—-output pairs. The XGBoost model was trained and tested independently from any
statistical modeling carried out in the original study.

2.2. Regression Analysis for Xylanase Production Prediction

In this study, we used supervised machine learning regression techniques to predict xy-
lanase production based on experimental input parameters such as nutrient concentrations,
pH, and temperature. Among various regression algorithms, we selected extreme gradi-
ent boosting (XGBoost) due to its high accuracy, scalability, and robustness in modeling
nonlinear interactions in structured datasets [28].

Figure 1 illustrates the workflow of building and applying a machine learning model
for predicting xylanase activity based on experimental input variables. Initially, data
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obtained from laboratory experiments—including features such as xylan, casein, and
glucose concentrations—are used to train a predictive model. During the training phase
(top row), these features are paired with experimentally determined xylanase activity
values to construct a supervised learning model.Once the model is trained, it can then be
applied to new data points (bottom row), where the same set of input features is fed into
the model to generate predicted xylanase activity values. This approach allows for the
estimation of enzymatic performance without conducting additional experiments, thereby
facilitating process optimization and decision making in a data-driven manner.

Xylan, casein, glucose etc. Pz N
— 5 | Features —_ -

Data

Xylan, casein, glucose etc.
_— Features —_—
Predlct

Data Use Model

Figure 1. Blok Diagram of the Xylanase Production Prediction using XGBoost

Regression analysis aims to model the relationship between a set of input features
X = (x1,x,...,Xp) and a continuous output variable y (xylanase activity in this case).
Formally, it estimates a function f : R — R such that

y=f(X)+e 1

where ¢ represents random error or noise.

XGBoost is an open-source implementation of gradient boosted decision trees. It
constructs an ensemble of regression trees where each new tree is trained to minimize the
residual errors of the previous model [29]. The training process is guided by a regularized
objective function:

n T
=Y i 9)+ Y Qfr) 2)

i=1 t=1

Here, ¢ is typically the mean squared error (MSE):
9) 1¢
= L~ )

and Q)(f;) is a regularization term that penalizes overly complex models, thereby improving
generalizability. At each iteration t, the model updates its prediction as

P =9+ A(x) (4)

Figure 2 shows the block diagram of the XGBoost algorithm. In each booster iteration
k,k=1,2,..., Tand T represent the total number of trees, the function fi(X, ;) represents
a regression tree trained to minimize the objective function 6, which consists of the loss
of prediction and a regularization term. Here, 6y denotes the set of parameters that define
the structure of the regression tree f;. These parameters include split decisions, feature
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thresholds, leaf weights, and tree depth. They are used both for fitting the model and for
computing the regularization term Q( f ), which penalizes overly complex trees to improve
generalization. This objective ensures that each tree improves the model by fitting the
residuals while controlling model complexity.

XGBoost has demonstrated superior performance in various domains, including
bioinformatics [30,31], chemical engineering [32,33], and biotechnology [34], particularly
when data are tabular and heterogeneous [35]. Furthermore, its built-in feature importance
mechanism helps identify the most predictive variables in a given dataset, although this
does not imply causality or biological significance.

[ |
Treei1{X,0:1} Trees{X, 05} Treep{X, 01}

I

fr—1 (X,9k—1)§ fr (X ,6k)

| |

Figure 2. Block diagram of the XGBoost learning process. Adapted from [36]. In each boosting
iteration (k), the function (f¢(X, 6;)) represents a regression tree trained to minimize the objective
function (6y).

In this study, XGBoost was trained using a diverse set of input variables collected from
prior factorial and response surface experiments, allowing the model to capture complex
interactions and generalize across different fermentation conditions.

2.3. Performance Evaluation

To assess the performance of the regression model, we used three common evaluation
metrics: root mean squared error (RMSE), mean absolute percentage error (MAPE), and
coefficient of determination (R?). These metrics were selected to provide a comprehensive
assessment of predictive accuracy from multiple perspectives. RMSE penalizes larger
errors more heavily and is sensitive to outliers, which is important when high deviation
points can influence process reliability. MAPE expresses the average prediction error as
a percentage, allowing for easier interpretation across different output scales. Finally, R?
measures how well the variation in the dependent variable is explained by the model,
offering an overall goodness-of-fit evaluation.

By combining these three metrics, we aim to ensure a balanced and interpretable
performance comparison between the XGBoost and DoE approaches.

RMSE measures the average error between the actual and predicted values. A lower
RMSE indicates better model performance.

RMSE =

|-

(yi — 9:)? (5)
=1

1

MAPE calculates the average percentage error between actual and predicted values,
making it useful for understanding relative error.
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R? explains how well the model fits the data. A value closer to 1 indicates a better fit.

2 _ (i — )
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In this study, we analyzed these three metrics in detail to evaluate the model’s per-

formance comprehensively. We calculated RMSE, MAPE, and R? for both training and

test datasets to compare how well the model generalizes. Additionally, we performed an

evaluation using the predictions obtained from the design of experiments (DoE) approach,
allowing us to assess the prediction accuracy of DoE-based models.

3. Results

In all regression experiments conducted within this study, the dataset was divided
into training and testing sets using an 80-20% split. Performance metrics were calculated
accordingly for both sets. It is important to note that while the XGBoost model was trained
and evaluated on both training and test data, the design of experiments (DoE) approach
does not involve a learning-based prediction process. Therefore, for DoE-based results,
predictions on the training data were not derived from a model but rather interpolated or
estimated through statistical fitting within the experimental design boundaries.

As a result, relatively higher error metrics for the training set in the DoE results—
compared to XGBoost—are expected and do not indicate model underperformance. In
contrast, performance on the test set provides a more objective and fair comparison between
the two approaches, as it reflects the ability to generalize to unseen data. Accordingly,
emphasis in the comparison of model effectiveness is placed primarily on the test set results
throughout the following sections.

3.1. Regression for the Experiments Performed by Full Factorial Experimental Design

The figures below present the results of regression analyses performed using the
XGBoost model on datasets generated through full factorial experimental designs. In each
plot, the X-axis represents the experimentally observed xylanase activity, while the Y-axis
shows the corresponding predicted values. Dots are the symbols for train values and stars
are the symbols of test values. Blue dots indicate the predictions made by the XGBoost
regression model, whereas red dots represent the estimations obtained via the design
of experiments (DoE) approach. The black dashed diagonal line serves as a reference,
illustrating the ideal case where predicted values perfectly match the experimental results.

Farliahati et al. [3] conducted a two-stage study using recombinant Escherichia
coli DH5« to optimize xylanase production. In the first stage, five variables—glucose
(10-20 g/L), (NH4)HPO4 (2-10 g/L), K;HPO4 (5-18 g/L), KHaPO4 (1-6 g/L), and MgSO4
(0.5-3 g/L)—were investigated under 18 experimental conditions across 115 levels to max-
imize xylanase yield. As shown in Figure 3a, most data points lie close to the diagonal
reference line, indicating strong agreement between the XGBoost model predictions and the
experimental outcomes. However, a few discrepancies are observed, notably around the
value of 2.2, which corresponds to a prediction from the DoE method. These deviations are
likely due to experimental uncertainties rather than model inaccuracy. Such uncertainties
may stem from factors common in bioprocess experiments, including variability in com-
plex medium components (e.g., yeast extract), measurement errors in enzymatic activity
assays (often due to sensitivity to time, temperature, or reagent stability), fluctuations in
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environmental conditions during fermentation (such as pH or aeration), and biological
variation among cultures (e.g., inoculum density or age). The variation observed along the
primary line results from the wide range of data intervals in the experimental design. The
chosen range of 5-18 g/L for K;HPO; indicates that the experimental values deviate from
the expected values. The detailed experimental data used in this analysis are provided
in Table A5. Such significant variations in the quantities utilized in fermentation media
can only be noticed for complex substrates. The research of Farliahati et al. [3] indicates
that glucose’s purity as a substrate permits a more limited operational range for K,HPO,.
Within the parameters of the study, this phenomenon was also noted, resulting in a refine-
ment of the outcome ranges and initiating the secondary optimization phase utilizing the
RSM methodology (Table A5).
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Figure 3. Prediction results for full-factorial datasets using XGBoost and DoE approaches. Blue dots
indicate predictions made by the XGBoost model, and red dots represent estimations from the DoE
approach. Dot symbols correspond to predictions on the training data, while star symbols indicate
predictions on the test data. The black dashed line shows the ideal prediction line (y = x).

Dobrev et al. [2] conducted a study to optimize the nutrient medium for xylanase
production using Aspergillus niger BO3 cultivated on agricultural wastes. The experimental
design included a range of components such as (NH4),HPOy, urea, malt sprout, corn cobs,
and wheat bran. Although the XGBoost regression model was trained on the same dataset
(detailed in Table 2), the prediction performance was comparatively lower than that of
other datasets. As shown in Figure 3b, the model predictions exhibit noticeable devia-
tions from the reference line at several points, particularly at higher activity values. The
factorial design employed in this study provides a broad range of variable combinations,
which is beneficial for model training, but the observed deviations suggest that refined
modeling with lower boundaries may be required to improve accuracy in such complex
media formulations.
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Table 2. XGBoost Results.

Data Set No Train RMSE Test RMSE Train MAPE Test MAPE Train RZ Test R?

1 0.017 0.081 0.004 0.038 0.997 0.904
2 0.001 87.054 0.000 0.118 1.000 0.514
3 0.002 2.955 0.001 0.139 1.000 0.464
4 1.050 80.222 0.001 0.291 1.000 0.981
5 0.023 0.080 0.008 0.031 0.993 0.919
6 0.001 32.854 0.000 0.037 1.000 0.976
7 0.607 8.048 0.004 0.104 0.999 0.772

In another study, Bocchini et al. [4] optimized xylanase production by Bacillus circulans
D1 using a combination of full factorial design and Box-Behnken design (BBD). The
optimization focused on three key variables: xylan concentration, pH, and cultivation time,
across 27 experimental conditions (see Table A3). As shown in Figure 3¢, the predictions
obtained from the DoE and XGBoost models demonstrate a more pronounced divergence
compared to other datasets. In particular, the DoE predictions show significant deviations
from the experimental values, while the XGBoost regression model offers relatively closer
estimates to the actual measurements. However, despite being more consistent than the
DoE approach, the XGBoost model also exhibits variability and does not fully capture
the experimental outcomes with high precision. These findings suggest that while the
regression model performs better overall, the complexity of the underlying biological
interactions in this dataset may require more advanced modeling strategies or a larger
sample size to improve prediction accuracy.

The fermentation study conducted by Pham et al. [23] investigated xylanase pro-
duction by Bacillus sp. 1-1018 by optimizing three critical parameters: xylan, casein, and
ammonium chloride concentrations. In Figure 3d, detailed in Table A7, the model predic-
tion data are situated near the black dashed line, whereas the DOE predictions exhibit a
wider dispersion. The increased frequency of the red points signifies a bigger variance in
the predictions; however, a lower variance in the model’s prediction data implies that the
model produces successful outcomes.

3.2. Regression for the Experiments Performed by RSM

Figure 4a illustrates the results obtained from an optimization study conducted by
Farliahati et al. [3] using response surface methodology (RSM) with three independent
variables (dataset is available in Table A5). In this case, the predictions of the XGBoost
model (represented by blue dots) exhibit greater stability from the reference line when
compared to the predictions made by the DoE approach (red dots). The clustering of DoE
predictions around the reference line indicates a high degree of accuracy and alignment
with the experimental data, particularly in the mid-range xylanase activity levels. At
higher activity values, both methods begin to diverge slightly, which may be attributed to
experimental uncertainties or limitations in model generalizability. These findings suggest
that although both models can track the general trend of the data, the XGBoost model
provides more precise and stable predictions across the experimental range.

A similar evaluation was conducted on the dataset reported by Dobrev et al. [2] (see
Table A6), who also utilized RSM for optimization purposes. As shown in the Figure 4b,
both the XGBoost and DoE models show substantial correlation with the experimental
values, especially at elevated xylanase activity levels. However, the XGBoost model
exhibits noticeable variability in the mid-range activity region, where deviations from
the reference line become more prominent. While predictions at lower activity values are
largely consistent across both models, minor overestimations and underestimations occur in

12
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the higher range. The XGBoosting model displays superior consistency, as evidenced by the
denser clustering of blue points near the reference line. Overall, both methods successfully
capture the general behavior of the process, but the XGBoosting model outperforms in
terms of accuracy and robustness across all activity intervals.
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Figure 4. Prediction results for RSM-based datasets using XGBoost and DoE approaches. Blue dots
represent predictions from the XGBoost model, while red dots correspond to the DoE estimations.
Dot symbols indicate training data predictions; star symbols indicate test data predictions. The black
dashed line represents the ideal prediction line (y = x).

Further evaluation was performed using the dataset derived from the work of Pham
etal. [23] (see Table A7), which also employed an RSM-based experimental design. The
scatter plot (Figure 4c) shows that the predicted values from both models closely align with
the experimental xylanase activity measurements, indicating strong agreement with the
reference line. Despite this overall alignment, more noticeable deviations are observed at
the upper end of the activity spectrum, particularly for the DOE model. In contrast, the
XGBoosting predictions maintain a more stable correspondence with the experimental data
across the full range of activity levels. These results can be improved by further refinement
of the ML-based model to enhance accuracy, particularly in boundary conditions or under
extreme parameter settings.

The comparative analysis of experimental and predicted xylanase activity values
across these three datasets offers valuable insights into the relative performance of machine
learning and classical statistical approaches. While both methods capture the main trends
in the data, the DoE approach demonstrates more stable performance, especially in the test
datasets and at activity extremes. The results indicated variability in the performance of the
XGBoost model across various datasets. Datasets with narrow experimental ranges, such
as Dataset 4, demonstrated higher predictive accuracy, indicating that machine learning
models are more effective within well-defined input spaces. In contrast, datasets character-
ized by broader or more heterogeneous parameter ranges (e.g., Dataset 2 and Dataset 3)
demonstrated elevated prediction errors, likely related to increased complexity and noise
that constrained the model’s generalizability. The observations emphasize the significance
of dataset characteristics, such as size, homogeneity, and noise levels, in influencing the
performance of machine learning models.Therefore The XGBoost model, though promising,
shows increased variability and may require further tuning, extended training datasets, or
hybrid modeling strategies to improve prediction reliability.

Taken together, the results suggest that integrating the strengths of both methodolo-
gies—leveraging the predictive power of machine learning and the structural rigor of
statistical design—may offer a more comprehensive and accurate framework for modeling
and optimizing xylanase production processes (Table 3).

13
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The feature importance values obtained from XGBoost for each dataset indicate the
relative contribution of each input variable to the model’s predictive performance. It is
important to clarify that these importance scores do not imply any underlying biological or
chemical significance. Instead, they reflect how frequently and effectively each feature is
used by the XGBoost algorithm to reduce prediction error during training.

Table 3. DoE Results.

Sheet Name Train RMSE Test RMSE Train MAPE Test MAPE Train R*? Test R?

1 0.271 0.042 0.070 0.021 0.134 0.975
2 96.690 71.850 0.127 0.101 0.216 0.669
3 1.405 1.179 0.105 0.077 0.947 0.915
4 26.672 26.554 0.771 0.478 0.999 0.998
5 0.047 0.043 0.018 0.018 0.972 0.976
6 32.215 41.323 0.043 0.073 0.953 0.961
7 1.239 0.940 0.038 0.024 0.995 0.997

For instance, in Dataset 1, the feature NH;HPO, dominated the model with an im-
portance score of 0.775, suggesting it played a major role in the decision paths constructed
by the algorithm. Similarly, in Dataset 3, cultivation time (h) had a remarkably high im-
portance of 0.964, indicating that XGBoost found this feature highly predictive within the
context of the dataset.

Conversely, some features with known biochemical relevance may appear with low
importance scores simply because they did not provide significant predictive value in the
context of the model structure and available data. For example, in Dataset 4 features like X
(casein) g/L and X3 (NH4Cl) g/L had minimal contribution to the model outcome (0.008
and 0.001, respectively), not due to their irrelevance in a biological sense but rather due to
their limited utility in reducing model error (Table 4).

Table 4. Feature contribution scores generated by XGBoost across six experimental datasets. The
values reflect model-based importance, not causal or biological relationships.

Dataset Feature Importance
(NHy4),HPO4 0.775
MgSOy4 0.084
Dataset 1 KoHPO,4 0.060
Glucose 0.055
KoHPO4 0.025
Corn cobs 0.718
Wheat bran 0.210
Dataset 2 Urea 0.030
(NHy4)2HPO4 0.025
Malt sprout 0.018
Cultivation time (h) 0.964
Dataset 3 pH 0.026
Xylan (g/L) 0.009
Xi (Xylan) g/L 0.992
Dataset 4 X (casein) g/L 0.008
X3 (NH4Cl) g/L 0.001
KoHPO4 0.498
Dataset 5 (NHy4),HPO, 0.407
MgSOy4 0.095
Urea 0.499
Dataset 6 Malt sprout 0.460
(NH4),HPO,4 0.040
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Overall, these results provide a data-driven insight into how XGBoost utilizes features
within each specific dataset. They are valuable for model interpretation and optimization
but should not be over-interpreted in terms of causal or mechanistic implications without
further experimental validation.

4. Discussion

Recent research underscores the essential impact of machine learning techniques in
optimizing xylanase production within the field of biotechnology. Xylanase is a multi-
functional enzyme used in several industries including pulp and paper, biofuels, food
processing, textiles, and animal feed. Due to the enzyme’s extensive applications, effective
production methods are essential, especially for industrial scale, where variables such as
temperature, pH, and working volumes critically affect yield.

This work illustrates the potential benefits of machine learning (ML), specifically
the XGBoost algorithm, in forecasting xylanase production utilizing datasets initially
created through conventional design of experiments (DoE). In this study, XGBoost was
selected as the machine learning model due to the characteristics of the available datasets.
Specifically, the datasets contained a limited number of observations and were structured in
a tabular format, making them less suitable for artificial neural networks (ANNSs) or other
conventional classifiers that typically require large volumes of data to perform effectively.

Prior to finalizing the modeling approach, we conducted preliminary experiments
using artificial neural networks (ANN) and other conventional machine learning algorithms.
However, these models showed suboptimal predictive performance, primarily attributed
to overfitting on the relatively small and heterogeneous datasets [37,38]. While overfitting
was a major concern, the decision to exclude these models was also informed by their
limited generalization ability, sensitivity to small sample sizes, and inadequate capacity
to capture complex nonlinear interactions effectively. In contrast, XGBoost was chosen
for its well-documented robustness on small-to-medium-sized tabular datasets, its built-
in regularization mechanisms, and its strong predictive performance observed in our
initial evaluations.

Therefore, ANN and other conventional classifiers were not pursued further in the
main analysis of this study. Our findings indicate that machine learning may match or even
exceed traditional statistical methods in specific cases, particularly when the relationship
between inputs and outputs is complex or nonlinear. Xylanase production processes often
exhibit complex and nonlinear interactions among operational parameters such as pH,
temperature, and substrate concentration. While DoE captures these interactions up to
second-order polynomial levels, tree-based methods like XGBoost can flexibly partition
the input space and approximate more intricate nonlinear patterns without predefining a
functional form.

In the analyzed datasets, XGBoost demonstrated comparable or superior test set
performance to DoE in several cases, particularly in datasets with complex or nonlinear
relationships. While design of experiments (DoE) methodologies remain effective for struc-
tured experimental planning and hypothesis testing, their limited capacity to generalize
beyond the training data can be restrictive in certain contexts. Conversely, machine learning
models such as XGBoost offer increased flexibility by identifying hidden patterns in the
data, which proved beneficial in our study. These findings are in line with the work of
Zhai et al. [39], who applied ML models to predict volatile fatty acid concentrations in
anaerobic sludge fermentation, achieving an R? of up to 0.949.

Our research aligns with the findings of Pensupa et al. [24], who employed Gaussian
process regression to forecast biomass output from Yarrowia lipolytica fermentation and
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identified 14 critical predictors. Our study demonstrates that the integration of data mining
and machine learning can provide significant insights into fermentation performance,
especially when utilizing secondary or heterogeneous datasets.

While XGBoost did not consistently outperform the DoE approach across all datasets, it
demonstrated comparable or better performance in several cases, highlighting its potential
as a robust, data-driven alternative for modeling bioprocess outcomes.

In summary, ML models like XGBoost provide a data-driven enhancement to tradi-
tional design of experiments, enabling improved generalization and predictive accuracy
in complex fermentation systems. Subsequent efforts should incorporate feature interpre-
tation methodologies such as SHAP, examine ensemble and hybrid models, and analyze
time-series dynamics to enhance prediction and process optimization in biotechnological
applications. Moreover, the incorporation of machine learning—especially via regres-
sion models and advanced data analysis methodologies—offers considerable potential
for enhancing xylanase production. Assessing critical variables influencing enzyme activ-
ity might improve efficiency and cost-effectiveness, thereby matching with overreaching
objectives in biotechnology including sustainability and food security.

5. Conclusions

This study highlights the effectiveness of XGBoost in predicting experimental out-
comes compared to traditional DoE methods. The results show that machine learning
models can significantly improve prediction accuracy and reduce error metrics, making
them suitable for complex, data-driven experimental processes. However, the limitations
of purely data-driven methods should not be overlooked, as they require extensive and
high-quality datasets for optimal performance.

Although XGBoost demonstrated strong predictive capacity in several datasets, it
did not consistently outperform DoE in all cases. The comparative advantage of each
method appeared to depend on the dataset size, experimental design type, and variability
in input parameters.

While DoE methods remain valuable for structured experimental design, incorpo-
rating machine learning techniques such as XGBoost can enhance predictive power and
efficiency. Future research could explore hybrid approaches that leverage the strengths
of both methods, ensuring a balance between statistical rigor and predictive accuracy.
Additionally, expanding the dataset and implementing feature selection techniques could
further improve model generalization and reliability in real-world applications.

By integrating advanced machine learning techniques with established statistical meth-
ods, researchers can achieve more precise and reliable experimental predictions, ultimately
enhancing decision-making processes in various scientific and industrial applications.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial intelligence

ANN Artificial neural network

BBD Box-Behnken design

CCD Central composite design

CNN Convolutional neural network

DoE Design of experiments

GPR Gaussian process regression

IU/mL International units per milliliter

MAPE Mean absolute percentage error

ML Machine learning

MLR Multiple linear regression

R? Coefficient of determination

RMSE Root mean squared error

RSM Response surface methodology

SHAP Shapley additive explanations

SVR Support vector regression

VFAs Volatile fatty acids

XGBoost  Extreme gradient boosting

Appendix A

Table A1l. Dataset No: 1.

Glucose (NH4)HPO; K;HPO; KH;PO4 MgSOq Experimental Predicted
(g/L) (g/L) (g/L) (g/L) (g/L) Xylanase Activity =~ Xylanase Activity

20 10 18 6 3 1.699 1.870
10 2 18 6 3 1.586 1.398
10 10 18 1 3 1.782 1.859
10 10 18 6 0.5 1.843 1.843
10 10 5 1 0.5 1.738 1.673
20 10 5 1 3 1.647 1.645
20 2 5 1 0.5 1.266 1.314
15 6 11.5 3.5 1.75 1.829 0.874
20 2 18 6 0.5 1.578 1.540
10 2 18 1 0.5 1.683 1.782
15 6 115 3.5 1.75 1.920 1.874
10 2 5 1 3 1.153 1.172
20 2 18 1 3 1.525 1.501
20 10 18 1 0.5 2.406 2.254
20 10 5 6 0.5 2.185 2.167
20 2 5 6 3 1.399 1.414
10 10 5 6 3 1.840 1.772
10 2 5 6 0.5 1.625 1.695
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Table A2. Dataset No: 2.

Experimental  Predicted

(NH4)2HPO4 Urea Malt Sprout  Corn Cobs ~ Wheat Bran Xvlanase
(g/L) (g/L) (g/L) (g/L) (g/L) A}::tivity )fsycltall:ts;
2.6 0.9 6 12 16 428.12 384.32
54 0.9 6 12 6 568.79 479.86
2.6 2.1 6 12 6 649.09 479.86
54 2.1 6 12 16 544.56 384.32
2.6 0.9 18 12 6 589.81 479.86
54 0.9 18 12 16 483.24 384.32
2.6 2.1 18 12 16 484 .91 384.32
5.4 2.1 18 12 6 536.66 479.86
2.6 0.9 6 24 6 569.31 495.54
54 0.9 6 24 16 750.47 718.72
2.6 2.1 6 24 16 869.88 718.72
54 2.1 6 24 6 513.49 495.54
2.6 0.9 18 24 16 825.29 718.72
54 0.9 18 24 6 695.87 495.54
2.6 2.1 18 24 6 611.15 495.54
54 2.1 18 24 16 815.58 718.72
54 1.5 12 18 11 723.41 654.25
2.6 1.5 12 18 11 678.61 654.25
4 2.1 12 18 11 674.75 654.25
4 0.9 12 18 11 614.37 654.25
4 1.5 18 18 11 710.87 654.25
4 1.5 6 18 11 705.62 654.25
4 1.5 12 24 11 694.44 677.02
4 1.5 12 12 11 48497 501.98
4 1.5 12 18 16 637.56 616.27
4 1.5 12 18 6 531.08 552.45
Table A3. Dataset No: 3.
Xylan H Cultivation Time Experimental Predicted
(g/L) P (h) Xylanase Activity Xylanase Activity
5 8 24 11.11 8.62
5 8 48 16.20 18.45
5 8 72 15.81 16.54
5 8.5 24 8.17 7.62
5 8.5 48 17.04 17.96
5 8.5 72 16.12 16.56
5 9 24 6.75 8.26
5 9 48 21.54 19.11
5 9 72 18.65 18.22
7.5 8 24 6.75 8.31
7.5 8 48 18.63 19.39
7.5 8 72 22.45 18.73
7.5 8.5 24 8.10 6.63
7.5 8.5 48 18.73 18.22
7.5 8.5 72 17.04 18.07
7.5 9 24 4.70 6.58
7.5 9 48 18.36 18.69
7.5 9 72 18.97 19.05
10 8 24 5.59 6.39
10 8 48 18.75 18.69
10 8 72 19.12 19.28
10 8.5 24 444 3.99
10 8.5 48 17.64 16.84
10 8.5 72 16.60 17.94
10 9 24 4.05 3.27
10 9 48 17.14 16.63
10 9 72 17.93 18.24
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Table A4. Dataset No: 4.

X1 X2 X3 .
(Xylan) (Casein) (NH,CD) O:)xfli:‘t,/:SA Pr(i‘t::fn‘iL’jA
(g/L) (g/L) (g/L)
2.5 1 0.3 1428.00 1397.80
7.5 1 0.3 5.30 36.10
2.5 2 0.3 1905.50 1936.34
7.5 2 0.3 253.70 222.86
2.5 1 1.3 1565.10 1595.94
7.5 1 1.3 22.10 —-8.73
2.5 2 1.3 2184.90 2154.10
7.5 2 1.3 166.10 196.60
5.0 1.5 0.8 925.40 941.30
5.0 1.5 0.8 942.60 941.30
5.0 1.5 0.8 938.40 941.30
Table A5. Dataset No: 5.
(NH4),HPO,4 K,HPO, MgSO, Experimental Predicted. '
(g/L) (g/L) (g/L) Xylanase Activity Xylanase Activity
10 7 3 1.871 1.880
10 7 3 1.898 1.880
10 18 1.5 2.423 2.489
10 18 3 2.292 2.322
1 12.5 2.25 1.443 1.523
7 12.5 0.75 2.456 2.431
7 12.5 2.25 2.219 2.230
7 12.5 2.25 2.219 2.230
10 18 3 2.290 2.322
10 7 1.5 2.296 2.263
7 12.5 3.75 1.992 2.029
4 7 3 1.705 1.636
7 12.5 2.25 2.257 2.230
4 7 3 1.645 1.636
13 12.5 2.25 2.141 2.157
10 7 1.5 2.169 2.263
7 1.5 2.25 1.625 1.686
7 15 2.25 1.683 1.686
7 23.5 2.25 2.345 2.354
7 12.5 3.75 2.042 2.029
4 18 3 2.130 2.079
4 7 1.5 1.937 1.873
7 23.5 2.25 2.395 2.354
4 18 3 2.081 2.079
4 18 1.5 2.031 2.099
1 12.5 2.25 1.496 1.523
7 12.5 0.75 2.390 2.431
10 18 1.5 2.555 2.489
4 7 1.5 1.948 1.873
4 18 1.5 2.150 2.099
7 12.5 2.25 2.207 2.230
7 12.5 2.25 2.232 2.230
13 12.5 2.25 2.249 2.157
7 12.5 2.25 2.224 2.230
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Table A6. Dataset No: 6.

(NH,;),HPO, Urea Malt Sprout Experimental Predicted
(g/L) (g/L) (g/L) Xylanase Activity Xylanase Activity
0.4 0.3 0.4 413.45 367.28
2.6 0.3 0.4 395.83 417.70
0.4 0.9 04 764.69 724.98
2.6 0.9 0.4 770.09 775.39
0.4 0.3 10 666.32 721.08
2.6 0.3 10 791.83 771.49
0.4 0.9 10 815.09 819.69
2.6 0.9 10 850.41 870.11
0.4 0.6 5.2 720.35 746.87
2.6 0.6 5.2 823.81 797.29
1.5 0.3 52 656.61 646.49
15 0.9 5.2 864.53 874.65
1.5 0.3 0.4 378.05 436.73
1.5 0.3 10 719.73 661.02

Table A7. Dataset No: 7.

A: Wheat Bran  B: Yeast Extract + C: Temperature Observed Xylanase Predicted Xylanase

(g/L) Peptone (g/L) O Activity (IU/mL) Activity (IU/mL)
10 10 25 64.44 63.38
2 10 20 10.83 11.11
2 10 30 27.04 25.41
18 2 25 41.61 41.81
2 18 25 21.05 22.85
18 18 25 29.64 30.09
10 2 30 30.14 32.24
10 18 20 14.60 12.54
10 18 30 41.93 41.76
10 10 25 64.08 63.38
10 2 20 33.01 33.17
18 10 20 23.04 24.67
2 2 25 22.68 22.23
10 10 25 64.03 63.38
10 10 25 61.60 63.38
18 10 30 38.95 38.67
10 10 25 62.73 63.38
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Abstract: This paper presents an improved methodology for optimizing the fed-batch
fermentation process of xylitol production, aiming to maximize the final concentration in a
bioreactor co-fed with xylose and glucose. Xylitol is a valuable sugar alcohol widely used
in the food and pharmaceutical industries, and its microbial production requires precise
control over substrate feeding strategies. The proposed technique employs Legendre
polynomials to parameterize two control actions (the feeding rates of glucose and xylose),
and it uses a hybrid optimization algorithm combining Monte Carlo sampling with genetic
algorithms for coefficient selection. Unlike traditional optimization approaches based on
piecewise parameterization, which produce discontinuous control profiles and require
post-processing, this method generates smooth profiles directly applicable to real systems.
Additionally, it significantly reduces mathematical complexity compared to strategies
that combine Fourier series with orthonormal polynomials while maintaining similar
optimization results. The methodology achieves good results in xylitol production using
only eight parameters, compared to at least twenty in other approaches. This dimensionality
reduction improves the robustness of the optimization by decreasing the likelihood of
convergence to local optima while also reducing the computational cost and enhancing
feasibility for implementation. The results highlight the potential of this strategy as a
practical and efficient tool for optimizing nonlinear multivariable bioprocesses.

Keywords: bioprocesses; Legendre polynomials; optimization; evolutionary algorithms;
nonlinear system; genetic algorithm; ant colony

1. Introduction

Xylitol is a five-carbon sugar alcohol derived from xylose. Discovered in 1891, it has
been widely used as a low-calorie sweetener due to its pleasant taste and beneficial proper-
ties. Since the 1960s, xylitol has been employed as a sweetening agent in various industries,
including in food, pharmaceuticals, cosmetics, and oral hygiene products. Commercially, it
is primarily obtained from plant sources, such as birch, other hardwood trees, and fibrous
vegetation, through chemical processes that are both costly and environmentally demand-
ing. Despite its natural occurrence in fruits and vegetables, large-scale production continues
to rely on energy-intensive chemical methods that require high-pressure hydrogenation
and expensive catalysts [1].
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In response to these drawbacks, biotechnological production methods have gained
significant attention due to their environmental sustainability and potential for cost re-
duction [2]. By harnessing microbial metabolism, xylitol can be obtained from renewable
biomass through fermentation processes, avoiding harsh reaction conditions and reducing
the dependency on fossil-derived chemicals. In particular, microbial fermentation using
yeasts or bacteria allows for the selective conversion of xylose to xylitol under mild con-
ditions, offering an attractive alternative to conventional synthesis. Additionally, these
biological systems provide a framework for valorizing agro-industrial waste streams rich
in hemicellulose, contributing to circular economy initiatives and the development of more
sustainable value chains. Among the various fermentation strategies, fed-batch processes
have proven especially effective for xylitol production [3]. In a fed-batch system, substrates
are incrementally added to the bioreactor, enabling better control over nutrient availability,
reducing inhibition effects, and maintaining favorable conditions for microbial activity.
A common approach involves using glucose as the primary carbon source during the
growth phase, followed by xylose feeding to enhance xylitol production. However, the de-
sign of optimal feeding profiles remains a complex task due to the nonlinear dynamics
of microbial growth, substrate uptake, and product formation. Moreover, the metabolic
behavior of microorganisms may vary significantly depending on factors such as oxygen
availability, pH, temperature, or the presence of inhibitors, all of which add further layers
of complexity to the optimization process.

Traditionally, the optimization of fed-batch fermentation relies on detailed first-
principle models that describe biomass growth, substrate consumption, and product
kinetics [4,5]. These models are essential for predicting system behavior and guiding
process design. Nevertheless, their complexity often hinders their direct use in real-time
control and optimization frameworks. Moreover, in practice, the accuracy of these models
may be affected by parameter uncertainty, measurement noise, and biological variability,
further complicating the implementation of optimal control strategies.

In industrial bioprocessing, mathematical optimization is a crucial tool to improve
yield and efficiency [6]. A common technique involves parameterizing the control ac-
tions (typically the substrate feed rates) using piecewise constant or piecewise linear
functions [7,8]. While conceptually simple, these strategies present several limitations.
First, they require a large number of parameters to capture the desired feeding dynamics
accurately, especially when finer time discretizations are used. Second, they often pro-
duce control profiles with discontinuities or abrupt changes between intervals. These
non-smooth profiles can result in rapid variations in substrate concentration, leading to
osmotic stress, metabolic imbalances, or even microbial inhibition.

Alternative approaches such as artificial neural networks [9], numerical search meth-
ods [10], and heuristic algorithms [11-14] have been proposed to address the challenges
of dynamic optimization. These methods can be implemented either in offline or online
frameworks, depending on the availability of real-time measurements and computational
resources. While online strategies like Model Predictive Control continuously adjust control
actions based on real-time process data [15], offline methods, such as the one employed in
this study, compute optimal control trajectories in advance, without requiring real-time
feedback. Furthermore, many existing approaches prioritize mathematical optimization
without considering the physical or biological feasibility of the resulting control trajecto-
ries. In real systems, actuators such as pumps or valves cannot implement rapid setpoint
changes, and microorganisms are sensitive to sudden environmental perturbations. There-
fore, generating smooth feeding profiles is not only mathematically desirable but also
essential for safe and effective bioprocess operation [16,17].
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This work proposes an offline dynamic optimization methodology that uses process
kinetics to pre-compute smooth feeding trajectories suitable for implementation in real sys-
tems. The focus is on offline optimization due to its lower computational burden and ease
of implementation. The core of the methodology is a mathematical model that captures the
key dynamics of biomass growth, substrate consumption, and xylitol production. Instead
of discretizing the time domain into intervals with constant or linear values, the feeding
rates are represented as continuous functions expanded in terms of orthogonal Legendre
polynomials. Beyond bioprocesses, Legendre polynomials have been extensively applied
in optimal control problems across various fields, including robotics, aerospace trajectory
planning, and nonlinear dynamic systems, particularly through pseudospectral methods
that exploit their orthogonality and numerical efficiency [18-21]. This orthonormal basis
offers several advantages: it ensures smoothness and continuity, reduces the number of
optimization parameters required, and allows for straightforward integration into gradient-
free optimization frameworks, preventing abrupt variations that could lead to cell stress,
inhibition, or even cell death [16].

As an enhancement over previous methods based on Fourier series and orthonor-
mal polynomials [13,22-24], the use of Legendre polynomials reduces the mathematical
complexity of the parameterization while preserving its flexibility. This leads to a more
efficient formulation of the optimization problem, which can be solved with fewer degrees
of freedom and improved numerical stability. In addition, a hybrid optimization algorithm
is employed, combining the global exploration capabilities of Monte Carlo sampling with
the convergence efficiency of genetic algorithms. This hybrid approach allows for a robust
search of the optimal polynomial coefficients that define the feeding profiles.

The implementation of the proposed methodology is carried out in MATLAB® and
Simulink®, and its effectiveness is demonstrated through numerical simulations of a fed-
batch xylitol production process. The results are compared with a previously published
optimal profile from [3], highlighting both the competitiveness of the xylitol yield and
the simplicity of the resulting control trajectories. Importantly, the profiles obtained are
immediately suitable for real application, as they require no post-processing or interpolation
to ensure continuity.

In summary, this work presents a novel strategy for the optimization of substrate
feeding in xylitol bioproduction processes. By integrating orthogonal polynomial parame-
terization with a hybrid optimization algorithm, the proposed approach addresses the key
limitations of existing methods, offering an efficient, biologically consistent, and industri-
ally viable solution. In addition, the reduction in the number of optimization parameters
improves the robustness of the solution process by decreasing the likelihood of convergence
to local optima, a frequent issue in high-dimensional heuristic optimization. Beyond its
application to xylitol, the methodology is adaptable to a broad range of biotechnological
systems where smooth control trajectories are required. The remainder of the manuscript is
organized as follows: Section 2 presents the mathematical model of the xylitol production
process. Section 3 introduces the proposed optimization strategy. Section 4 analyzes the
simulation results. Finally, Section 5 summarizes the conclusions and outlines potential
directions for future work.

2. Process of Mathematical Model

The mathematical model for xylitol production is formulated as a system of six dif-
ferential equations. Originally proposed by Tochampa et al. [3], the model describes a
bioreactor fed with two streams, namely, xylose and glucose, both at a concentration of
200 g/L. The state variables considered are the concentrations of biomass (Cy), xylose
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ex

(Cxy1), glucose (Cgyc), extracellular xylitol (C77,), and intracellular xylitol (C;’l?t), as well as

the operating volume (V)):

dCy Fglc + nyl

= chx + uCy )
d(;;yz _ _F‘xgl fyz _ Pglc;;lpxyl Cayt — JyiCx )
% B F‘g/ic ol - Rzl‘tlpyl Cote — 141cC 3)
R @
diglit = (T’f,xit — Tuxit — Vﬁ,xit)Px - ”C;?z!t ®)
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where t denotes the time variable [h], defined over the fermentation horizon; Fg. and
Fyy are the volumetric flow rates of the glucose and xylose feed, respectively; u is the

specific growth rate; Cgl . and Cﬁyl are the concentrations of glucose and xylose in the
feed; gy, and g are the uptake rates of xylose and glucose; r;,xit is the mass flow rate of
xylitol on a dry weight basis; ¢ y;; is the specific xylitol formation rate; r,, »;; is the specific
intracellular xylitol consumption rate; and p, is the cell density. Model parameters are
listed in Table 1. The specific growth rate (1) depends on the glucose input and the xylitol
produced, as shown in the following expression:

max Cglc max C;gt Ky (7)

u=u u..; -
1 t
s Ks,glc + Cglc Y Ks it + C, Ky + Cglc

The specific uptake rates of xylose (,,) and glucose (q¢;.) are influenced by competi-
tive inhibition between the substrates.

max Cglc
dgic = Yglc [ 8)
Ks,glc + Cglc(1 + 7)

i,xyl

nyl

Cete
Ks,xyl + nyl(1 + ngllc)

)

__ _max
xyl = qul

The diffusive transport of xylitol from inside the cell to the outside (r; .,,), the specific
intracellular formation rate of xylitol (rf ), and the specific intracellular consumption rate
of xylitol (r,, i) are described by

7t it = 3.6 X 10°Pyjacey (CH, — C23) (10)
M .
T'fxit = Wx:quyl (11)
o Uit
ru,xzt - Yx/xzt (12)
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To simplify the model, the equation assumes that xylitol is only consumed for cell
growth, as its consumption for cell maintenance is insignificant. The state variables’
initial conditions for this process are as follows: Vg =2.5L; Cy9 =6 g/L; Cgs0=0g/L;

Cayr0=0g/L; and Cy;t0 = 0 g/L. Additionally, the concentrations of glucose (Cgl ) and
xylose (Ciyl) in the feed are 200 g/L each.

Table 1. Description of model parameters.

Symbol Description Value Unitis
ultg Max. specific growth rate with respect to xylitol. =~ 0.189 h-!

u?,‘éx Max. specific growth rate with respect to glucose. 0.662 h~!

K glc Monod saturation constant for glucose. 9.998 gglucL*1
K, xit Monod saturation constant for xylitol. 16.068 gxyhtolL*1
Ks xyi Monod saturation constant for xylose. 11.761 gxylL*1

K, Repression constant for glucose. 0.100 gglucL*1
qg}ﬁx Max. specific uptake rate of glucose. 0.342 ggluc’lhfl
quy“lx Max. specific uptake rate of xylose. 3.276 gxyl’lh_1
Ki gic Inhibition uptake constant of xylose by glucose. ~ 0.100 gglucL*1
Ki xit Inhibition uptake constant of glucose by xylose. ~ 14.780 gxylL*1
Pyt Permeability coefficient of the cell membrane. 7.591 x 10° ms™!

Acell Specific surface area of the cell. 7.6 ng_l
Myt Molar mass of xylitol. 152 gmolf1
My Molar mass of xylose. 150 gmol’1
Yo/ xit Biomass yield on xylitol. 0.48 gcemgxyhtol’1

3. Optimization Strategy

The optimization strategy consists of three stages. First, the optimization problem
is formulated by defining the objective and system constraints. Then, the control actions
are parameterized to ensure a suitable and continuous representation. Finally, the pa-
rameters involved in parameterization are optimized to achieve a solution that enhances
process performance.

3.1. Optimal Control Problem Statement

The optimal control problem is formulated to determine two control action profiles,
the glucose and xylose feeding rates, that maximize xylitol production over a 20 h time
horizon (tf = 20 h). The objective function, constraints, and system dynamics are clearly
defined to ensure feasibility and optimality. Specifically, the objective is to find the profiles
of Fyic(t) and Fy,; () that maximize the concentration of xylitol at the final reaction time.

max [= = max ex (4 13)
Eglc(t),nyl(t) Fglc(t),nyl(f) Xlt( f)

This objective is subject to the equality constraints given by the mathematical model
of the process (see Equations (1)-(6)), initial conditions (defined in [3]; see Equation (14)),
and inequality constraints on the process variables (see Equation (15)).

[Cx0; Cgic,0; Cxyr,05 Caito] = 16;0;0;0] g/L (14)
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Vip=25L,
25L < Vi(t5) < 4L,
OL/h < Fye < 05L/h,
OL/h < Fyy < 05L/h,

(15)

3.2. Control Action Parameterization

The technique assumes the existence of an optimal control profile, represented as a
function in the Hilbert space L, [0, t f], where t 7 denotes the known final reaction time. This
choice ensures that the control function remains square-integrable, a desirable property
in many optimization frameworks [25]. Given that the optimal control profile F*(t) is
assumed to be continuous, it can be approximated using a truncated expansion in a set of
orthonormal polynomials adapted to the interval [0, ¢¢]. These polynomials are derived
from the classical Legendre basis defined on [—1,1], and they are mapped to the domain
of interest through a change of variable detailed later (Equations (20)—(22)). The resulting
approximate control profile is expressed as follows:

E(t) = agPy +a1Py +asP + ...+ a;P; +...a,P, (16)

Here, F(t) is the approximated function, a; represents the polynomial coefficients,
and P;(t) represents the orthonormal polynomials defined on [0, ¢]. Consequently, solving
the optimization problem involves determining the coefficients that yield smooth feeding
control actions. The control actions for xylitol production are represented by the feeding
rates of glucose, ﬁglc, and xylose, nyl, which are modeled using a second-(Equation (17)) or
third-degree (Equation (18)) polynomial:

Fglc =coPy+c1P 4+ coP; nyl = boPy+ b1 Py + by (17)

Fglc = coPp + c1P1 + 2Py +c3P3; ﬁxyl =boPy + b1 Py + baPr + b3 P (18)

By optimizing the coefficients ¢; and b; of the Legendre polynomials, the optimal
control vectors ﬁglc and nyl are obtained, maximizing the objective function (Equation (13)).
Consequently, the system achieves optimal control policies.

The control action parameterization strategy is based on Legendre polynomials, a fam-
ily of orthogonal polynomials that are well behaved within the interval [—1, 1], facilitating
the optimization process. These polynomials are redefined to fit the time interval [0, ¢f],
ensuring their applicability to the problem’s temporal domain. One of their key properties
is orthogonality [26], meaning that the inner product of two Legendre polynomials of
different degrees n and m in L, over this interval is zero when n # m. Since Legendre
polynomials form a complete and orthogonal set, any square-integrable function within
the interval can be approximated as a weighted sum of these polynomials. This property
ensures flexibility in representing control action profiles while maintaining mathematical
tractability [27].

Another fundamental property that supports the parameterization of the control action
is Rodrigues’ formula. This formula provides an explicit expression for generating Legendre
polynomials of any degree, offering a systematic way to compute them efficiently [28].

1
T 2npl dxn

Qn(x) (x® —1)" (19)

28



Fermentation 2025, 11, 308

where Q, are orthogonal polynomials in Ly[—1,1], and # is their degree [27].
To find an orthogonal basis in L5[0, ], the following transformation is required [27]:

=211 (20)
tr
Then,
Qn(x) = Qu(x(t)) = mu(t) (1)

where m, are the orthogonal polynomials. Thus, to obtain an orthonormal basis in L, [0, f¢],

the following is defined:

p, — Mult)_ 22)

~ lma (8]

In this way, the orthonormal polynomials involved in Equations (17) and (18) are
obtained. This transformation ensures that the polynomials remain well conditioned over
the desired interval, enhancing numerical stability and computational efficiency.

3.3. Control Action Optimization

This parameter optimization technique aims to maximize the xylitol concentration at
the process endpoint by determining the optimal control actions within a dual-substrate
feeding strategy. To achieve this, a hybrid approach combining Monte Carlo simulation
and a genetic algorithm is implemented to efficiently explore the optimization space.
Initially, the Monte Carlo method, a probabilistic technique that relies on extensive random
sampling, is employed to generate a diverse population of candidate solutions. Each
candidate consists of a specific set of coefficients associated with the Legendre polynomials,
which define the smooth substrate feeding profiles over the fermentation period. These
candidates, also referred to as individuals, are evaluated by simulating the bioprocess
dynamics, and their performance is assessed based on the resulting xylitol concentration
at the end of the batch. This initial sampling phase allows for a broad exploration of
the solution space, reducing the risk of premature convergence to suboptimal regions.
Following this, the genetic algorithm takes over to further refine the most promising
individuals. This evolutionary optimization technique imitates natural selection through
genetic operations such as selection, crossover, and mutation, enabling the progressive
improvement of the feeding profiles over successive generations. The combination of both
methods leverages the global search capabilities of Monte Carlo and the local refinement
strength of genetic algorithms, yielding high-quality solutions with reduced computational
costs and enhanced robustness against local minima. Using a population matrix derived
from the Monte Carlo-generated individuals, the genetic algorithm iteratively optimizes the
control actions. The hybrid algorithm follows a structured sequence to optimize the control
actions Fglc and nyl/ ensuring smooth profiles suitable for direct application. The steps are
as follows:

1. Definition of the Individual and Parameter Scaling: Each individual represents a set
of parameters to be optimized, defining the Legendre polynomial coefficients ¢; and
b;. These parameters allow for the construction of the control action profiles, which
are used to simulate the process and evaluate the objective function J. Each parameter
a; is determined using the following expression:

a; = i min + 5i(ai,max - ai,min) (23)
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where J is a weighting coefficient varying between 0 and 1, and a; n,¢ and a; nin
represent the upper and lower bounds of the parameter’s variation range, respectively.
A set of these coefficients uniquely defines each individual. The bounds for the
optimization coefficients a; are not fixed in advance. Instead, they are initially based
on the expected range of the control actions and then progressively refined during the
exploratory phase of the simulations. As improved solutions tend to cluster within
certain value ranges, the bounds are empirically narrowed to focus the search on
the most promising regions of the parameter space. This strategy is commonly used
in heuristic optimization to enhance convergence efficiency without compromising
solution diversity [29].

2. Initial Population Generation: A random initial population of N = 5000 individuals
is generated using the Monte Carlo method. The objective function of each individual
is evaluated based on the process simulation results (Equation (13)).

3. Selection: The best 20 individuals, based on their objective function value |, are
selected using an elitist strategy.

4. Crossover: A one-point crossover operator is applied to the selected individuals, combin-
ing parameter sets to explore the search space and generate 20 additional individuals.

5. Mutation: By applying small perturbations to selected individuals, 40 new individuals
are generated, where one randomly chosen parameter of each individual is modified
within its variability range.

6.  Exploration Mechanism: To prevent convergence to local extrema, an additional set of
20 randomly generated individuals is introduced in each generation, adapting their
distribution based on the algorithm’s evolution.

The process is repeated iteratively until convergence is reached or the predefined limit
of L = 50 generations is met. Convergence is determined when the variation in | becomes
minimal, typically before reaching 50 generations. The selection of the hyperparameters N
and L follows the methodological criteria established in a previous study [30], where the
influence of population size and the number of generations on convergence and solution
quality was systematically analyzed. While the specific values used here are adjusted to
suit the current case study, the selection process is based on the same reasoning and is
therefore not repeated in full. It should be noted that all process constraints defined in
Equation (15), including those on feeding rates and final volume, are strictly enforced
during the candidate generation stage. These constraints originate from the reference
model [3] and are based on the physical limitations of the bioreactor setup and the feeding
equipment. In the implementation, a while-loop structure is used to verify the feasibility of
each proposed control profile. If any of the constraints are violated, the profile is discarded,
and a new one is generated. This ensures that only feasible individuals are passed on to
the simulation and evaluation stages and that the optimization process remains confined to
the admissible region of the solution space. Figure 1 outlines the steps taken to optimize
the process control actions.
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Generate c, and b, coeficients
applying Monte Carlo

MATLAB

[~ envionment

Optinize individuals
applying Genetic Algorithm

Figure 1. Overview of the optimization techniques implemented.

4. Results and Discussion

This section analyzes an alternative strategy for optimizing xylitol production through
the parameterization of two control actions: the glucose and xylose feeding rates. The ob-
jective function is defined as the maximization of the xylitol concentration at the end of the
process. To ensure a consistent and meaningful comparison, all simulations are carried out
under the same operating conditions reported by Tochampa et al. [3]. While their method
discretizes the time horizon into multiple intervals and optimizes each segment indepen-
dently, the present approach employs continuous polynomial functions to represent the
control profiles over the entire process duration. Specifically, second- and third-degree
polynomials are considered to assess their ability to capture the system dynamics while
maintaining a simple mathematical structure. Before introducing the results obtained with
the proposed strategy, it is useful to examine in more detail the main limitations of the
reference method.

In Tochampa’s method, the feeding profiles are obtained through a piecewise con-
stant parameterization optimized using genetic algorithms. While this approach provides
flexibility within each time interval, it results in discontinuous control signals with abrupt
transitions. These discontinuities require additional signal filtering before implementation
in real systems, which introduces distortions and deviations from the original optimized
profiles. Consequently, the control actions applied in practice differ from those derived
during the optimization stage, leading to suboptimal performance in real applications.
Furthermore, this methodology demands the optimization of ten independent parame-
ters per control action, significantly increasing the dimensionality of the search space,
the computational cost, and the risk of convergence to local minima. Under these condi-
tions, Tochampa et al. [3] reported a maximum xylitol concentration of 20.06 g/L, which
will serve as the benchmark for evaluating the effectiveness of the proposed continuous-
parameter strategy.

As previously mentioned, this work explores the use of Legendre polynomials of
the second and third degrees to parameterize the glucose and xylose feeding profiles
in the xylitol production process. This strategy offers several advantages: it ensures
smooth control actions, avoids the need for filtering before implementation in real systems,
and reduces the mathematical complexity compared to other functional representations.
Moreover, the use of orthogonal polynomials like Legendre allows for a compact and
numerically stable formulation. To determine the optimal set of polynomial coefficients,
a hybrid algorithm is employed. It combines the global search capabilities of Monte
Carlo sampling with the local refinement offered by a genetic algorithm. This two-stage
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optimization effectively balances exploration and exploitation, increasing the likelihood
of efficiently reaching near-optimal solutions. The evolution of the optimization process
is illustrated in Figure 2. Figure 2a shows the distribution of solutions obtained during
the Monte Carlo phase, characterized by a broad and random search. Figure 2b reveals
how the genetic algorithm progressively improves the objective function, demonstrating
its capacity to fine-tune the results. These visualizations highlight the stochastic nature of
the initial phase and the convergence trend achieved during the refinement stage.

20 T T T T 204

a e
202 T e

0 1000 2000 3000 4000 5000 0 10 20 30 40 50
N [iteration] L [generation]

Figure 2. Evolution of the hybrid algorithm. (a) Monte Carlo, (b) genetic algorithm.

The resulting control profiles for each polynomial degree are represented in
Equations (24) and (25), where the final form of the approximating polynomials is shown.
The objective function values obtained in each case are 20.26 g/L and 20.35 g/L of xyli-
tol, respectively. Although slight improvements are observed as the polynomial degree
increases, the gains are not substantial enough to justify the added complexity and the
increased number of parameters (considering the minimal improvement observed with the
third-degree polynomials, higher-order expansions were not pursued to avoid overparam-
eterization and to preserve the simplicity and implementability of the feeding profiles in
real systems). The second-degree polynomial achieves a xylitol concentration comparable
to that of the higher-degree cases and exceeds the 20.06 g/L reported by Tochampa et al. [3].
This suggests that the second-degree approximation strikes an effective balance between
simplicity and performance, requiring fewer parameters while preserving smoothness and
feasibility for implementation.

Foe = 0.059 + 0.009t + 3.4 x 10~*#; F,,; = 0.307 + 0.049¢ + 0.002+> (24)

Fyie = 0.095 + 0.026f + 0.002¢> + 5.6 x 107°#%; Fyyy = 0.26 + 0.005¢ + 0.009 + 3.8 x 10~ *# (25)

These results are further illustrated in Figure 3, which includes the feeding profiles
obtained using the proposed methodology, alongside those reported by Tochampa et al. [3]
The figure highlights the smoother nature of the proposed profiles, which avoid the abrupt
changes and post-optimization filtering required by the piecewise constant strategy. This
improvement is reflected in the concentration values and the qualitative behavior of the
control profiles. The presence of slope discontinuities in the optimal feeding profiles may
appear counterintuitive given the smoothness of Legendre polynomial expansions. How-
ever, this behavior is consistent with strategies reported in the literature, where optimal
feeding policies often include non-feeding phases to avoid substrate or product inhibition.
Such profiles effectively switch between fed-batch and batch operation depending on the
system dynamics and constraints [31]. Compared to previous methodologies that use
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Fourier series and orthonormal polynomials [13,22-24], this technique achieves equivalent
optimization results with a considerably lower mathematical complexity. Figure 4 presents
the evolution of the state variables during the process. Although the trajectories vary com-
pared to the reference, the trend remains within the ranges reported in [3], with a smoother
system evolution. This behavior is particularly beneficial for preventing microorganism

stress, as abrupt changes in the feeding rate can negatively impact growth and metabolite
production [16].

Control action [L/h]

Time [h]

Figure 3. Optimal glucose and xylose feeding profiles.

A key advantage of the proposed methodology is that the resulting feeding profiles can
be directly applied in a real system without further modification. In contrast, the stepped
profiles used by Tochampa et al. [3] are not physically realizable, since instantaneous
changes in feeding rates are impractical due to actuator response limitations. The smooth-
ness of the proposed profiles avoids this issue and makes implementation feasible using
standard control hardware. Although the reported increase in the xylitol concentration
is modest, such improvements can yield substantial benefits in industrial settings, where
improved productivity reduces the consumption of raw materials per unit of product,
optimizes reactor utilization, and contributes to the overall profitability of the process.

Furthermore, although a formal robustness analysis is beyond the scope of this work,
preliminary simulations indicate that the system is not highly sensitive to small variations
in the polynomial coefficients or to minor perturbations in initial conditions. This inherent
stability suggests that the proposed approach may retain performance even under realistic
process uncertainties, which is particularly relevant in biological systems where exact
conditions are difficult to maintain. Together, these results support the use of low-degree
Legendre polynomials as a simple and implementation-ready strategy for the open-loop
optimization of biological production processes.
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Figure 4. Optimal operation profiles for all state variables.
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5. Conclusions

The proposed dynamic optimization strategy, based on low-degree Legendre poly-
nomials, successfully parameterized the glucose and xylose feeding rates in a fed-batch
xylitol production process. The resulting control profiles led to a 1.44% increase in the final
xylitol concentration, from 20.06 g/L (reference) to 20.35 g/L, using only four parameters
per control action. This improvement, though moderate in absolute terms, was achieved
with a significantly simplified mathematical structure, resulting in reduced computational
costs and enhanced implementation feasibility.

Beyond performance enhancement, the method ensures smooth control actions, avoid-
ing the abrupt variations associated with piecewise constant strategies. This feature is
particularly relevant for practical applications, where real systems cannot accommodate
discontinuous profiles due to actuator limitations and biological sensitivity. The results
confirm that a second-degree polynomial representation offers an effective balance between
simplicity and accuracy, fulfilling the initial objective of achieving implementable and
efficient optimal control strategies.

Given its compact formulation and favorable numerical properties, the proposed methodol-
ogy constitutes a promising alternative for the open-loop optimization of nonlinear multivariable
bioprocesses. Future work will focus on extending this approach to closed-loop control schemes
and evaluating its performance under process uncertainties and experimental conditions.
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Abstract: Xanthan is a highly relevant commercial microbial biopolymer. Its production
occurs in two steps: the bacterium is cultivated in a nitrogen-rich medium for cell multi-
plication, and the obtained biomass is used as an inoculum for the polymer production
phase. Different media compositions for cell growth were investigated, seeking to reduce or
replace the peptone used in the standard medium. Peptone (P), yeast extract (YE), and rice
parboiling water (RPW) concentration combinations were tested in cultivating Xanthomonas
arboricola pv. pruni 101. A CRD 23 design, performed in a shaker, was used to assess
the effects of independent variables on xanthan pruni microbial growth, N consumption,
yield, viscosity, pseudoplasticity, and xanthan mineral content. After 24 h an increase in
N was observed, without any significant impact on cell growth. Xanthan yield increased
as a result of the alternative treatments, with P and YE influencing positively. However,
T1, with the lowest levels of P, YE, and RPW increased viscosity and pseudoplasticity of
xanthan pruni. RPW increased phosphorus, silicon, calcium, and magnesium, and P and
YE increased potassium. These results indicate that partial replacement of P by RPW and
YE is an economically viable and sustainable approach for the xanthan pruni production.

Keywords: Xanthomonas; alternative medium; rice parboilization water; cell growth; xanthan
gum

1. Introduction

The properties of natural polymers such as biocompatibility, biodegradability, and
renewability are attracting growing attention to these products. Among these polymers,
xanthan, an extracellular biopolymer produced by bacteria of the Xanthomonas gender is
highlighted. Due to its rheological and structural properties, xanthan is widely employed
in the food, pharmaceutical, cosmetic, paintings, and petroleum industries [1]. The global
demand for this product is registering constant growth. According to Global Market
Insights, the xanthan gum market could reach USD 1.2b by 2030, at a composite annual
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growth rate (CAGR) of 5.71%. Brazil also exhibits impressive consumption, attaining
30 thousand tons a year, supplied exclusively by international industries [2,3].

For the Xanthomonas cultivation and production, carbon sources are used as substrates,
while sources of nitrogen and minerals are employed as nutrients [4]. The high costs
associated with substrates constitute a process limitation. To minimize such costs, agro-
industrial wastes are being studied as alternative substrate sources, such as water obtained
from oil production [5], pineapple wastes [6], rice hulls [7], rice hulls [8], beet molasses [9],
bread wastes [10], orange peels [11], and wine industry waste [12]. The development of
sustainable, low-cost solutions for obtaining xanthan can significantly increase market
opportunities [6].

Rice (Oryza sativa L.) is one of the most consumed staple foods, parboiled rice being one
of its most consumed forms in Brazil. The rice parboiling process involves a hydrothermal
treatment in which the hulled grain is immersed in drinking water to soak at temperatures
above 58 °C, followed by partial or total gelatinization and further drying [13]. In the rice
parboiling process, the grain’s outer mineral layers, especially in the bran and aleurone layer,
migrate towards the interior of the grain, and a portion of these RPW minerals are primarily
determined by process parameters temperature, time, and operating conditions [14]. At the
end of the process, the wastewater generated, containing high phosphorus and nitrogen,
causes high biochemical oxygen demand, requiring suitable treatment before disposal.
The composition of this nutrient-rich water represents a significant challenge for the rice
industries, especially in view of the complexity of phosphorus and nitrogen management,
which can cause environmental harm if not duly mitigated [15,16].

Until now, no strategies have been identified aiming at redirecting RPW waste to
other industries, adding value to another product. RPW study was pioneered by our
research group in the X. arboricola pv. pruni (ex X. campestris pv. pruni) production phase
for obtaining xanthan, directly influencing the characteristics of the obtained gum [17].
Besides minimizing the environmental impacts, the use of this waste as substrate could
contribute to xanthan cost reduction, making viable domestic production. Investment in
xanthan domestic production brings economic benefits, such as a reduction in dependence
on imports and job creation, in addition to promoting environmental sustainability by
reducing impact through the use of industrial effluents as substrate [4]. Therefore, the
scientific and technological advancement in xanthan production in Brazil is crucial for
the development of this industry in our country, rendering it competitive in the global
biopolymers market.

Xanthan pruni, a polymer analogous to xanthan and produced by X. arboricola pv.
pruni, differs from commercial xanthan in its chemical composition. Studies have demon-
strated that xanthan pruni contains rhamnose in its structure, likely incorporated in the
side chains, which distinguishes it from conventional xanthan [18]. Studies on X. arboricola
pV. pruni remain limited, and there is a lack of information regarding the impact of various
alternative media on the production of xanthan pruni. Perez et al. (2020) [19] evaluated the
supplementation of the medium with yeast extracts and observed a significant increase
in biopolymer production. In the study by Moreira (2023) [20], culture media containing
different minerals were used to produce xanthan pruni. Among the components, the use
of RPW stood out, as well as carbon sources such as sucrose and cellulose, and nitrogen
sources such as peptone and mineral salts. Given the scarcity of studies addressing differ-
ent medium formulations to produce xanthan pruni, this work aims to contribute to the
advancement of this topic by evaluating the feasibility of using alternative nutrient sources
and their impacts on the production and characteristics of the biopolymer.
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The aim of this study was to investigate the effects of rice parboiling water (RPW) use
combined with peptone and yeast extract as N sources in culture media for Xanthomonas
arboricola pv. pruni cell growth (the 101 strain being used as a model) and the produc-
tion of its biopolymer, referred to in this study as xanthan pruni. The viability of these
alternative media was examined by comparing cell growth, xanthan pruni yield, and its
rheological properties with those obtained from conventional culture media. Besides, the
main compounds present in parboiling water were identified to check if they influence
xanthan synthesis. This is meant to contribute to the development of more sustainable,
economically viable processes, by exploring alternative sources of substrates and assessing
the effectiveness of different culture media components.

2. Materials and Methods
2.1. Rice Parboiling Wastewater Characterization

RPW was collected from the Nelson Wendt company in Pelotas, RS, Brazil, from the outlet
tube during the discharge process into the effluent collection tank. The rice immersed in the
tanks was a varietal mixture (2022 harvest). After collection, RPW samples were stored in plastic
bottles and frozen at —18 °C for further characterization and utilization. The pH value [21],
reducing sugars [22], and nitrogen content (Urea kit CE ref. 27—Labtest®, Delta, BC, Canada)
were determined. Mineral characterization was performed with the aid of a MIP OES (Agilent
Technologies, model Agilent 4200, Melbourne, Australia) spectrometer [23] (Table 1).

Table 1. Rice parboiling process wastewater characterization.

Parameters
pH 46£0.2

Reducing Sugars 3.40 = 0.16
Nitrogen (mg/dL) 140.00 £ 1.12
Phosphorus (mg/L) 304.96 + 9.90

Zinc (mg/L) 1.53 £+ 0.05

Iron (mg/L) 9.36 £+ 0.33
Silicon (mg/L) 39.43 £+ 10.26
Calcium (mg/L) 32.80 + 0.41

Potassium (mg/L) 4411.96 £+ 196.21

Magnesium (mg/L) 169.23 £ 8.37
Manganese (mg/L) 4317 £1.37
Sodium (mg/L) 21.86 + 1.88

2.2. Inoculum Preparation

The X. arboricola pv. pruni 101 bacterium was kept in agar SPA [24] and cultivated
in a liquid medium with different peptone (Himedia®, Kennett Square, PA, USA) con-
centrations, yeast extract (Procelys by Lesaffre®, Marcq-en-Barceul, France), and RPW,
according to a central composite design 23 [24]. Factors were codified in three levels: low
(—1), medium (0), and high (+1), with the central point representing the repetitions [25]
(Table 2).

All the treatments were diluted in a solution of (g/L): 20 sucrose, 0.5 dibasic potassium
phosphate, and 0.25 heptahydrate magnesium sulfate (Synth®, Diadema, Brazil). SPA
standard medium [24] was utilized as a positive control, the composition of which is
in (g/L): 5 of peptone, added to the previous solution. Cultivation was conducted in a
250 mL Erlenmeyer flask containing 40 mL of cultivation medium and 10 mL of bacterium
suspension (9.14 UFC/mL), in SPA medium, incubated at 28 °C, 150 rpm for 24 h in an
orbital shaker (B. Braun Biotech, Certomat BS-1, Melsungen, Germany). Initial and final
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bacterial concentrations were assessed by means of serial dilutions and plating in agar SPA
medium, the colonies counting being expressed in UFC/mL.

Table 2. Matrix of the complete factorial design 23, with 3 central points for defining the peptone,
yeast extract, and RPW concentrations for X. arboricola pv. pruni 101 inocula production.

Codified Levels Real Levels
Treat.

x1 x2 x3 x1 x2 x3
1 -1 —1 —1 1 1 20
2 +1 -1 —1 5 1 20
3 —1 +1 -1 1 5 20
4 +1 +1 —1 5 5 20
5 -1 -1 +1 1 1 80
6 +1 -1 +1 5 1 80
7 -1 +1 +1 1 5 80
8 +1 +1 +1 5 5 80
9 0 0 0 3 3 50
10 0 0 0 3 3 50
11 0 0 0 3 3 50

x1 = peptone (g/L), x2 = yeast extract (g/L), and x3 = RPW (%); Treat. = treatment.

2.3. Xanthan Pruni Production

The bioprocess occurred in 250 mL Erlenmeyers flasks containing 45 mL of MPII pro-
duction medium [17] and 5 mL inoculum (Section 2.2) in an orbital shaker (B. Braun Biotech,
Certomat BS-1, Melsungen, Germany) at 28 °C and 200 rpm for 72 h. Biopolymer recovery was
performed with ethyl alcohol 96° GL (4:1 v/v), followed by oven-drying (CE-220-81, Cielenlab,
Campinas, Brazil) at 56 °C to constant weight. The yield was determined by gravimetry and
expressed in g/L.

2.4. Nitrogen

Residual nitrogen content (mg/L) was quantified in two steps with the aid of the Urea
Kit CE (Labtest®, Richmond, BC, Canada, ref. 27). Broth samples were collected at the 0 and
24 h times, centrifuged at 10,000 rpm x for 10 min at 4 °C in a refrigerated centrifuge (Electron
Corporation®, Sorvall-Thermo, EUA, Tokyo, Japan). The supernatant was analyzed in a
UV-Vis spectrophotometer (Shimadzu, UV-1900i, Kyoto, Japan) at 500 nm. Nitrogen content
calculation followed the standard method (urea 70 mg/L and sodium azide 7.7 mmol/L),
according to Equation (1):

_ Absorbance of Sample

Residual Nitrogen (mg/L) = Absorbance of Standard

x 70 x 10 1)

2.5. Viscosity

Rheological properties of xanthan aqueous solutions were assessed with the aid of a
rheometer (RheoStress 600, model RS150, Haake®, Vreden, Germany). 1% (m/v) Xanthan
aqueous solutions were prepared, agitated for 2 h, and stored at 4 °C for 24 h. Rheometric
analysis was performed at 25 °C, with a cone and plate geometry (C60/2° Ti sensor; 0.105 mm
interval).

2.6. Minerals

Mineral analysis was performed according to the method described by Rosa et al.
(2016) [26]. At first, xanthan gum samples were treated by acidic digestion with the aid of
an open system in a digesting block. Approximately 100 mg of the samples were weighed
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and transferred to glass digesting tubes, to which 5 mL of concentrated nitric acid (HNO3)
was added. The mixture was heated in a digester at 220 °C under reflux for 3 h. The
resulting solutions were diluted in ultrapure water and analyzed in triplicate with the
aid of a microwave-induced plasma optical emission spectrometer (MIP OES) (Agilent
Technologies, model Agilent 4200, Mulgrave, Australia).

2.7. Statistics

Experiments were performed in triplicate, and the results were expressed in averages
and standard deviations. A t-test was performed to observe significance at the p < 0.05 level
using RStudio software (2023.06.2+524). The effects of independent variables were determined
using ANOVA with Statistica 10.0® software, with p < 0.05 considered significant.

3. Results and Discussion
3.1. Cell Growth

X. arboricola pv. pruni cell concentration in the examined alternative cell growth media
and in standard SPA medium is listed in Table 3. In spite of the fact that the results show
significant variations statistically in cell growth among the treatments and the SPA medium as
seen by the t-test, the differences are relatively small. The SPA medium led to a 10.04 UFC/mL
cell concentration, while in the remaining treatments, the concentration varied between 9.69
and 9.98 UFC/mL.

Table 3. X. arboricola pv. pruni strain 101 cell growth in media containing different peptone, yeast
extract, and RPW concentrations.

Treat. x1 x2 x3 C(ellle(C}/rr(:leh
1 —1(1) —1(1) —1(20) 9.93 £0.01*%
2 +1 (5) —1(1) —1(20) 9.87 £ 0.04 *
3 —1(1) +1 (5) —1(20) 9.94 +0.04 *
4 +1(5) +1(5) —1(20) 9.98 + 0.04 *
5 —1(1) —-1() +1 (80) 9.92 +£0.04 *
6 +1 (5) —1(1) +1 (80) 9.69 £0.01 %
7 —1(1) +1 (5) +1 (80) 9.83 £0.01*%
8 +1 (5) +1 (5) +1 (80) 9.81 £0.01*
9 0(3) 0(3) 0 (50) 9.85 +£0.03*
10 0(3) 0(3) 0 (50) 9.78 £0.01 %
11 0(3) 0(3) 0 (50) 9.82 £0.01*%

SPA 5 - - 10.04 £ 0.01

x1 = peptone (g/L), x2 = yeast extract (g-L’l), and x3 = RPW (%). Samples’ asterisks (*) point to significant
differences as compared to the standard (p < 0.05), according to the t-test.

Treatment 6, with 80% (v/v) RPW, led to a slightly lower result (9.69 & 0.01 UFC/mL)
as compared to treatments containing 20% (v/v) RPW (9.87 to 9.98 &+ 0.04 UFC/mL). The
results illustrated in Figure 1 evidence this trend. The negative signal of the RPW coefficient
means that cell growth increased with a reduction in the mentioned parameter value, which
may be associated with inhibitory compounds or high mineral levels in the water, especially
silicon [14]. This phenomenon suggests that increased RPW concentration can have an
inhibitory effect on X. arboricola pv. pruni growth.
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Parboiling water | - 4.73165 4

Peptone*Yeast extract - 3.120876

Peptone | -2.71818

Peptone®Parboiling water [ -2.31549

Yeast extract + 1510101

‘Yeast extract*Parboiling water - - 0.906061

p=0.05
Standardized Effect Estimate (Absolute Value)

Figure 1. Effects of the independent variables (peptone, yeast extract, and RPW) on cell growth.
Asterisks (*) represents interactions between variables.

3.2. Yield

Xanthan yield varied among treatments, with values between 7.0 and 8.9 g/L, while
the standard SPA medium exhibited a yield of 6.8 g/L (Table 4). Exception made to
treatment 5, all the remaining treatments resulted in significantly higher yields than those
of the SPA standard medium. From a comparison among cell growth results, it can be
seen that in this case, the cell concentration in the examined range was not a determining
factor for yield. This suggests that although the SPA medium results in higher bacterial
growth (Table 3), other factors related to medium composition, such as Fe, Zn, and Mn
micromineral concentrations, could play an important role in yield increase.

Table 4. Yield of xanthan produced by X. arboricola pv. pruni strain 101 in media containing different
peptone, yeast extract, and RPW concentrations.

Treat. x1 x2 x3 Yield (g/L)
1 -1(1) -1(1) —1(20) 7233 £020*
2 +1 (5) -1(1) —1(20) 7393 £042*
3 -1(1) +1(5) —1(20) 7123 £0.51*%
4 +1(5) +1(5) —1(20) 7333 £0.22*
5 —-1(1) -1(1) +1 (80) 7.020 £ 0.32
6 +1(5) -1(1) +1 (80) 7533 £0.26*
7 —-1(1) +1(5) +1 (80) 7.343 £0.35*%
8 +1 (5) +1 (5) +1 (80) 8.943 £+ 0.63 *
9 0(@3) 0(3) 0 (50) 7.610 = 0.46 *
10 0(@3) 0(@3) 0 (50) 7.683 £ 0.40 *
11 0(@3) 0(@3) 0 (50) 7.393 £0.73 *

SPA 5 - - 6.770 & 0.65

x1 = peptone (g/L), x2 = yeast extract (g/L), and x3 = RPW (%). Asterisks (*) on the samples point to significant
differences as compared to the standard (p < 0.05), according to the ¢-test.
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The nitrogen source plays an essential role in the growth and production of xanthans
by bacteria of the Xanthomonas gender [27]. According to the Pareto plot for xanthan
yield (Figure 2), peptone was the most influential independent variable in the observed
response, followed by yeast extract and RPW, in addition to the isolated RPW effect and the
peptone-RPW combination. These results point out that peptone and yeast extract, when
used by themselves, are able to provide good yields. However, RPW supplementation can
render the cultivation medium still more efficient.

Peptone -9_879188-
Yeast extract"Parboiling water | 7605407
Parboiling water | 6.978157
Peptone*Parboiling water 6.742938
Yeast extract - 6.037282
Peptone™Yeast extract - 4 547563
,;J=O.IS'5

Standardized Effect Estimate (Absolute Value)

Figure 2. Effect of independent variables (peptone, yeast extract, and RPW) on yield. Asterisks (*) represents
interactions between variables.

Previous studies already demonstrated the importance of organic nitrogen sources in
xanthan production. Kurbanolgu and Kurbanolgu (2007) and Caegnatto et al. (2011) [28,29]
highlighted that peptone and yeast extract provide soluble amino acids and minerals
essential to the cultivation medium, creating favorable conditions for biopolymer synthesis.
Ozdal and Kurbanolgu (2019) [9] reported a significant increase in xanthan production
by using peptones extracted from hens’ feathers, reaching yields in excess of 24 g/L in a
shaker at 200 rpm.

In spite of the positive impact of yeast extract, yields observed (4.02 to 4.18 g/L) were
lower than those obtained in this study, suggesting that yeast extract per se may be not
as efficient as when combined with other components, such as peptone and RPW. Da
Silva et al. (2018) [30] also utilized agro-industrial wastes such as coconut and cocoa peel,
reaching values of 3.89 to 4.48 g/L. In the present study, the use of RPW as an alternative
source provided yields higher than those reported in these papers, indicating that this
agro-industrial waste can be a viable alternative for optimizing xanthan production.

Demirci et al. (2019) [10] obtained a superior yield (14.3 g/L) by utilizing disposed
bread waste; however, the hypothesis of an inflated yield cannot be discarded in view of
the presence of starch. Trivunovi¢ et al. (2024) [12] reached yields between 4 and 10 g/L
by utilizing rosé wine wastewater. Yield variations can be explained by differences in
substrate composition and adopted fermentation conditions. Similar yields obtained from
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treatments tested in this study reinforce the viability of partial replacement of conventional
medium components for RPW, peptone, and yeast extract, without compromising xanthan
productivity. This finding is relevant for process scalability since it enables using agro-
industrial wastes as sustainable, economically viable alternatives while maintaining a
competitive performance as compared with conventional substrates.

3.3. Residual Nitrogen

Nitrogen contents measured in initial time (0 h) varied between 4.52 and 12.21 mg/dL,
suggesting that culture medium composition was directly influenced by peptone, yield
extract, and RPW concentrations (Table 5).

Table 5. Residual nitrogen in media containing different peptone, yield extract, and RPW concentra-
tions at 0 and 24 h X. arboricola pv. pruni strain 101 cell growth.

Residual Residual

Treat. x1 x2 x3 Nitrogen Nitrogen
0h (mg/L) 24h (mg/L)
1 -1(1) =1(1) —1(20) 452 +13* 1028+8.6*
2 +1 (5) ~1(1) —1(20) 782 +19* 2804 +45*
3 -1(1) +1 (5) —1(20) 81.3+32 2369+61*
4 +1 (5) +1 (5) —1(20) 944 4+28* 4499+ 46*
5 -1(1) -1(1) +1 (80) 481 +25* 1082+85*
6 +1(5) -1(1) +1 (80) 85.7+19* 3740+6.1
7 —1(1) +1(5) +1 (80) 82.1 +25% 2864 +75%
8 +1 (5) +1 (5) +1 (80) 12214+£9.0* 4339+£86*
9 0(3) 0(3) 0 (50) 829+1.6 34944+32*
10 0(3) 0(@3) 0(50) 90.5+19* 3363+55*
11 0(3) 0(3) 0 (50) 89.7+£09 3599+4+93*
SPA 5 - - 918+ 0.6  376.4+1.8

x1 = peptone (g/L), x2 = yield extract (g/L), and x3 = RPW (%). Asterisks (*) on the samples point to significant
differences as compared to the standard (p < 0.05), according to the ¢-test.

After 24 h, a significant increase in nitrogen concentrations was observed, reaching
values between 102.8 and 449.9 mg/L. This behavior was consistent for all treatments, with
the highest increases being observed for those containing higher peptone and yeast extract
concentrations. For example, for treatment 4 (+1 peptone and +1 yeast extract), nitrogen
concentration increased from 9.44 to 44.99 mg/dL, while for treatment 8 (having the same
peptone and yeast extract, but higher RPW percentage), the increase was from 12.21 to
43.99 mg/dL. Such an increase after 24 h cultivation was also observed by Macagnan et al.
(2021) [31] when studying the influence of different yeast extracts on X. arboricola pv. pruni
strain 101 cell growth.

The cause of nitrogen increase was not completely revealed, but it is suggested that the
X. arboricola bacterium can be involved in a process of atmospheric nitrogen fixation [32].
Alternatively, gradual nitrogen release from the degradation of compounds present in
peptone and in yeast extract may have contributed to the observed increase. Further
studies are required to confirm possible nitrogen fixation and identify the mechanisms at
the origin of this phenomenon.

As regards the effects of independent variables, peptone exhibited a positive relationship with
initial nitrogen content (Figure 3). At higher concentration (+1, corresponding to 5 g/L), nitrogen
contents were significantly higher, as could be observed from treatments 4 (9.44 mg/dL) and
8 (12.21 mg/dL), nitrogen values at 0 h were consistently higher, as in treatments 3 (8.13 mg/dL)
and 7 (8.21 mg/dL).
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Yeast extract I15.19?T5
Parboiling water 3.961979
Peptone™Yeast extract - 247885
‘Yeast extractParboiling water - 1.95856
Peptone*Parboiling water 06767692
p=O.I05

Standardized Effect Estimate (Absolute Value)

Figure 3. Effect of the independent variables (peptone, yeast extract, and RPW) on residual nitrogen.
Asterisks (*) represents interactions between variables.

3.4. Viscosity

The rheological properties of xanthan were described by the Ostwald—de Waele model
using K and 1 parameters, with a determination coefficient (R?) of 0.99 (Table 6). The consistency
index (K), which translates the resistance to fluid flow, varied from 4.874 to 0.205 for treatments
1 and 4, respectively. The flow behavior index (1) varied from 0.605 and 0.181, indicating the
relationship between shear rate and viscosity. A value of (1) below 1 (1 < 1) confirms the
pseudoplastic behavior [1].

Table 6. X. arboricola pv. pruni strain 101 rheological parameters obtained from different RPW,
peptone, and yeast extract concentrations.

Treat. x1 x2 x3 Consistency (K)  Flow behavior (n)
1 -1(1) —1(1) —1(20) 4.874 +0.051 * 0.181 + 0.004 *
2 +1(5) -1(1) —1(20) 1.549 £0.018 * 0.308 + 0.006
3 -1(1) +1(5) —1(20) 1.702 4 0.011 * 0.361 =+ 0.000 *
4 +1(5) +1(5) —1(20) 0.205 £ 0.002 * 0.605 + 0.000 *
5 -1(1) —1(1) +1 (80) 2.102 + 0.099 * 0.291 =+ 0.013
6 +1(5) -1(1) +1 (80) 0.798 + 0.024 * 0.436 &+ 0.004 *
7 -1(1) +1(5) +1 (80) 0.737 +0.004 * 0.461 £ 0.005 *
8 +1(5) +1 (5) +1 (80) 0.290 + 0.002 * 0.590 + 0.019 *
9 03 0(3) 0 (50) 0.853 £0.018 * 0.417 4 0.000 *
10 0(3) 0(3) 0 (50) 1.816 & 0.027 * 0.337 + 0.009 *
11 0(3) 0(3) 0 (50) 0.989 £ 0.071 * 0.402 4+ 0.015*

SPA 5 - - 2.399 + 0.066 0.298 + 0.007

x1 = peptone (g/L), x2 = yeast extract (g/L), and x3 = RPW (%). Asterisks (*) on the samples point to significant
differences as compared to the standard (p < 0.05), according to the ¢-test.

Treatments obtained from different RPW, peptone, and yeast extract concentrations
enabled us to obtain xanthan products having different properties. For treatment 1, with
the lower peptone concentrations, yeast extract, and RPW, the consistency index (K) was the
highest, 4.874, pointing to high viscosity, while the flow behavior index (1) was the lowest,
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0.181, featuring a more accentuated pseudoplastic behavior. High viscosity provides better
water retention capacity, which contributes to higher stability and improvement in food
texture for the food industry. On the other hand, for treatment 4, with high peptone (5 g/L)
and yeast extract (5 g/L) concentrations, the consistency index (K) was the lowest, at only
0.205, and the flow behavior index (n) was the highest, 0.605.

Comparatively, Cancella et al. (2024) [1] investigated xanthan production from milk
substrates, such as milk permeate and deproteinized whey in a shaker. The consistency
index (K) of the obtained xanthan products was 1.829 and 0.874, respectively, which were
lower than those obtained from rice parboiling water. Crugeira et al. (2023) [33] also
assessed xanthan biosynthesis using wet olives bagasse, with 15% and 20% concentrations,
resulting in consistency indices (K) of 4.353 and 4.216. Besides, flow behavior (n) indices
were 0.2939 for 15% concentration and 0.2534 for 20%. Trivunovi¢ et al. (2024) [12] made
use of vineyard wastewater and obtained viscosity values between 40 and 60 mPa.

These values are lower than those found in the present study signaling that RPW
can be a highly efficient substrate for obtaining high-viscosity xanthan products. It is
important to consider that cultivation medium composition, Xanthomonas strain employed,
and production conditions, such as temperature, time, pH, agitation, and aeration, can
significantly influence polymer structure and consequently the rheological properties of the
produced gum [34]. Based on the results of Figure 4, it can be observed that the response
value is mainly influenced by peptone and yeast extract concentration, with negative effects
of 4.49 and 4.35, respectively, at a 5% significance level. This means that the higher the
contents of these components, the lower the gum viscosity at the tested concentration range.
This is desirable since it involves input savings.

Peptone | -4.489164
‘Yeast extract - 435395
Parboiling water | -299773
Peptone™Parboiling water | 2.100496
Peptone™Yeast extract | 1.83691
‘Yeast extract*Parboiling water 1.798669

p=0.05
Standardized Effect Estimate (Absolute Value)

Figure 4. Effect of the independent variables (peptone, yeast extract, and RPW) on xanthan pruni
solutions consistency index (K). Asterisks (*) represents interactions between variables.

In Figure 5, it is possible to observe the independent variables’ effect on the flow
behavior index (n). Yeast extract was the highest positive impact factor on this parameter,
with a standardized effect of 6.66, followed by peptone with an effect of 5.36. This means
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that both components, at higher concentrations, in the range examined, significantly
increase the value of (), which means lower pseudoplasticity.

‘Yeast extract | -5_659602 1

Peptone .5.3-626{]1 1

Parboiling water | 2685458 1

Yeast extract™Parboiling water -1.27206 1
Peptone*Yeast extract - 0.8397251 E
Peptone*Parboiling water - - 0806469 1

p=0.05
Standardized Effect Estimate (Absolute Value)

Figure 5. Effect of independent variables (peptone, yeast extract, and RPW) on flow behavior index
(n) of xanthan pruni solutions. Asterisks (*) represents interactions between variables.

3.5. Minerals

The xanthan gum mineral composition varied among the treatments, influenced by
the medium components. As expected, high RPW, peptone, and yeast extract concentration
treatments favored the incorporation of minerals into the biopolymer. P was the element
that most differed from the value ascertained for xanthan pruni synthesized in the standard
medium—SPA. P, Si, Ca, and Mn exhibited higher concentration in high-RPW treatments.
K was more influenced by peptone concentration and yeast extract. Na, Zn, Mg, and Mn
were kept relatively stable.

Other elements, besides those listed in the Table 7, were also analyzed. Ti, B, and
Al were found only as trace elements. Analyzes for Cd, Ba, Cu, Ni, Pb, Cr, and As were
performed, but these elements were not detected in the obtained xanthan. According to
the monography provided by the FAO/WHO Expert Committee on Food Additives [35],
xanthan should not contain more than 2 mg/Kg lead in its general form, with the limit
reduced to 0.5 mg-kg~! for infant formulae. Besides, the Food Chemicals Codex [36]
monography sets a limit of 3 mg/Kg for As in xanthan gum. However, the results of the
present research pointed out that xanthan pruni did not exhibit any detectable lead or
arsenic concentration, thus it meets the safety standards required for human consumption.

Xanthan gums exhibited variable concentrations of monovalent salts, between 2.44%
and 2.93%. Torres et al. (1993) [37] observed 4.97% monovalent salts in xanthan gums
produced by X. Campestris. Similarly, Borges (2007) [38] reported 5% monovalent salts for
X. arboricola pv. pruni 115 strain, while commercial xanthan gums showed monovalent salts
content variation from 0.67% to 3.2%. It should be mentioned that the total cation concen-
tration is directly related to the negative hydroxyl, pyruvyl, and acetyl groups/ions [39].
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The relationship among ions is crucial for understanding xanthan’s functional proper-
ties. Among monovalent salts, Na’s contribution to viscosity increase is higher than that
of K. Moreover, the replacement of K with Na through ionic exchange [40] constitutes a
strategy to increase xanthan viscosity. Treatment 1, with lower K content, had the highest
viscosity (K 4.874) as compared with both the remaining treatments and the standard. In
spite of the fact that monovalent salts contribute to viscosity increase, generally, these are
not responsible for forming strong gels due to their weaker interactions as compared with
divalent and trivalent salts [41].

Table 7. Mineral salts of xanthan gum obtained from Xanthomonas arboricola pv. pruni strain 101 from
different concentrations of rice parboiling water, peptone, and yeast extract.

Treat P Zn Fe Si Ca K Mg Mn Na
’ (mg/g) (mg/g) (mg/g) (mg/g) (mg/g) (mg/g) (mg/g) (mg/g) (mg/g)
1 13.72+0.53* 0.03 £0.01 0.03 £ 0.004 0.05 £ 0.003 1.84 £0.02 21.53 £0.39* 3.51+0.12 0.05 £ 0.001 * 2.8540.04
2 13.54 £0.29* 0.03 +£0.01 0.03 £ 0.004 0.05 £+ 0.01 1.98 £0.05* 25.33 +£0.96 3.524+0.28 0.05 £ 0.005 * 2.53 +£0.01*
3 1542 4+0.32* 0.02 £ 0.004 0.06 + 0.005 * 0.04 £ 0.005 1.67 +0.16 22.63+0.35* 3.75+0.09* 0.09+0.14* 2.67 £0.08 *
4 16.08 0.19* 0.05+£0.02 0.07 £ 0.006 * 0.10 £0.01* 1.87+0.01 26.36 +1.35 4.06 £0.10* 0.05+0.001* 292 £0.08
5 3149 +£1.73* 0.04 £ 0.005 0.05 £ 0.006 * 0.23 +£0.01* 2.414+0.08* 2228 +0.15* 4.124+0.07* 0.18 £0.01 2.95+0.09
6 25.66 +2.03* 0.06 £ 0.01 0.08 +0.01* 0.16 £ 0.001 * 276 +0.30* 26.06 +0.78 4.33+0.25* 0.19 £+ 0.02 241+0.13*
7 29.21 +£1.37* 0.02 £ 0.008 0.05 £ 0.003 * 0.14 +0.01* 2.33+0.11* 2495+ 0.10 4.344+0.28* 0.15 £ 0.004 * 240+0.11%
8 27.10£0.05* 0.02 £0.001 0.05 +0.008 * 0.15+0.02* 3.73 +£0.07* 26.11£0.03 4.61+040% 0.11+£0.005* 2.59 +£0.08 *
9 16.18 +0.33* 0.06 £ 0.001 0.05 £ 0.003 * 0.06 +0.01 2214+0.04* 25.66 +0.16 3.87+0.07* 0.11 £ 0.004 * 2.59+0.05*
10 1710 +£0.05* 0.06 £ 0.01 0.06 +0.01* 0.08 +£0.01* 1.86 +0.003 2228 +0.15* 4.244+0.10* 0.09 £ 0.005* 248 +0.11*
11 18.33 £ 0.50* 0.02 £ 0.001 0.07 +£0.004 * 0.12+0.01* 2.24 +£0.04 24.14+£0.85 3.57 £0.02* 0.13+£0.006* 3.12 +£0.08*
SPA 12.81 +0.03 0.03 £ 0.001 0.03 £ 0.004 0.05 £ 0.001 1.59 £0.13 25.80 £+ 1.09 3.43 +0.05 0.19 +£0.11 2.93 4+ 0.04

Asterisks (*) on the samples point to significant differences as compared to the standard (p < 0.05), according to
the t-test.

4. Conclusions

In the face of growing environmental challenges caused by increasing agro-industrial
wastes, the use of RPW for producing biopolymers like xanthan is a sustainable, economi-
cally viable alternative. The partial (80%) replacement of peptone for rice parboiling water
and yeast extract increased xanthan pruni yield and improved its rheological properties,
increasing viscosity and pseudoplasticity. Besides, RPW fostered higher incorporation
of minerals such as phosphorus, silicon, calcium, and magnesium. Potassium directly
depended on P and YE concentration. Toxic elements such as arsenic and lead were not
detected in the obtained xanthan. These findings evidence the potential of agro-industrial
wastes as efficient alternatives for sustainable biopolymer production. Besides, obtained
data provides important subsidies for bioprocess optimization, focusing on yield increment
and end product quality. Aiming at scalability, complementary studies are being carried
out in agitated flasks and bioreactors to assess the effect of RPW addition to the xanthan
pruni production medium, which will contribute to future industrial production in line
with sustainable development.
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Abstract: The screening of exopolysaccharides (EPS) produced by 52 isolates of endo-
phytic and basidiomycete fungi was studied on two different media, PDB and PYGM.
There were five isolates that could produce dried exopolysaccharide of more than 4 g/L
(S. commune LF01962, LF01001, LF01581, Pycnoporus sp. MMCRO00271.1, Pestalotiopsis sp.
PP0005). The molecular weights of these exopolymers were found to be in the range of
2.5-500 kDa. These five exopolysaccharides, produced by five different fungal isolates,
showed non-cytotoxic activity against NCTC clone 929 and HDFn cell lines. The selected
fungal isolate of S. commune LF01962 was used for further optimization of different medium
compositions affecting exopolysaccharide production using statistical methods. Among
four conditions tested in the first step (xylose + peptone, glucose + (NH4),HPOy, fructose
+ peptone, and mannose + yeast extract), mannose + yeast extract resulted in the highest
exopolysaccharide production of 5.10 & 2.00 g /L. In the second step using Plackett-Burman
design, the optimal medium for S. commune exopolysaccharide production was found to
consist of 40 g/L glucose, 5 g/L mannose, 20 g/L (NH4),HPOy, 5 g/L yeast extract, 3 g/L
monosodium glutamate, 0.5 g/L KH;POy, 0.5 g/L K;HPOy, 0.2 g/L MgSO,, 1 mL/L trace
elements, and 3 mL/L vitamin solution, which resulted in 8.16 g/L exopolysaccharide
production. Exopolysaccharide production in a 5 L bioreactor using small pellets as seed
inoculum was found to produce 18.28 g/L exopolysaccharide.

Keywords: exobiopolymer; schizophyllan; Schizophyllum commune; endophytic; basid-
iomycete

1. Introduction

Fungal exopolysaccharides (EPSs) are high-molecular-weight polysaccharides com-
posed of sugar monomer subunits that are secreted into the surrounding environments
and/or dispersed in their growth media [1]. Some of these possess novel bioactive compo-
nents, exhibit low toxicity, and have potential applications in various industries including
cosmetics, pharmaceuticals, medicine, and food [2,3]. Although EPSs have been produced,
isolated, and studied for many different fungi [1,4], novel EPSs have not yet been fully
explored due to the high diversity of fungal species in nature [3]. Endophytes, a group
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of fungi of interest, have the potential to produce EPSs with novel characteristics and
properties [5]. The exploration and utilization of microbial polysaccharides for potential
industrial applications have significantly increased in recent years [3,4]. Several studies
have indicated that endophytes are potent producers of bioactive EPSs with unique proper-
ties, structures, and biological activities, making them suitable for applications in cosmetic,
pharmaceutical, medical, and food industries [3,5]. Furthermore, many researchers have
documented procedures for the production, isolation, and identification of EPS-producing
endophytic fungi [1,6-8]. Optimization of EPS production by an endophytic fungus, Pestalo-
tiopsis sp. BC55, resulted in the production of 4.320 4= 0.022 g/L of EPS with a molecular
weight of approximately 2 x 10° Da. Structural elucidation of the EPS indicated the pres-
ence of only (1—3)-linked -D-glucopyranosyl moieties [1]. Furthermore, the production of
EPS by Agrocybe cylindracea reached a maximum of 3.0 g/L within 10 days [6]. A medicinal
mushroom, Fomes fomentarius, produced a maximum EPS concentration of 3.64 g/L under
optimal culture conditions [6,7]. Schizophyllan, produced by S. commune in an optimized
medium in a 5 L fermenter, reached a concentration of 12.80 g/L [8]. Schizophyllan pro-
duced by a similar strain of the fungus Schizophyllum commune using cheaply available
sago starch as a carbon source was observed to be thermally stable up to 125 °C with a high
molecular weight of 14.73 x 10% kDa [9]. Additionally, exopolysaccharides were isolated
from the submerged fermentation broth of Morchella conica, and the chemical structure of
the isolated polysaccharide was elucidated [10]. In another study, eight endophytes isolated
from Piper hispidum Sw., belonging to genera Diaporthe, Marasmius, Phlebia, Phoma, Phyl-
losticta, and Schizophyllum, were reported to produce EPSs in submerged cultures. These
EPSs were rich in glucose (51%) and had a molecular weight of 46.6 kDa [11]. The medicinal
mushroom Ganoderma lingzhi yielded EPSs at a concentration of 3.57 4+ 0.21 g/L. These
EPSs were heteropolysaccharides with high molecular weights (475,000 kDa and 21.6 kDa,
87.97%) and were composed of uronic acid, D-mannose, L-thamnose, and D-glucose [12].
In submerged culture, Ganoderma lucidum achieved an EPS production of 4.7 g/L when
the pH was adjusted from 3.0 to 6.0 after the fourth day [13]. The endophytic fungus
Bionectria ochroleuca M21 produced EPS in submerged culture, reaching a production of
2.65 + 0.16 g/L after 4 days of fermentation in a 5 L bioreactor [14]. Endophytes, therefore,
represent a group of fungi of interest that can produce EPSs with the novel characteristics
of EPS such as molecular weight distributions, being non-cytotoxic to human cell lines,
and having high product yield, etc. This research aimed to study non-cytotoxic EPSs
against human cell lines of the threshold of 20% cytotoxicity which serves as a critical
point in categorizing exopolysaccharides as toxic to tested cells with different molecular
weights and high yields by the fungal potential candidates. These EPSs can then be used
for commercial applications in the future.

2. Materials and Methods
2.1. Microorganism and Growth Conditions

Fifty two isolates of mushroom and endophytic fungi (Table 1) were obtained from
Biotec Culture Collection (BCC), Pathum Thani, Thailand, and from Plant Microbe Interac-
tion Research Team, Integrative Crop Biotechnology and Management Research Group,
National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand. All
strains were identified by morphological study, phylogeny, and 16 S rRNA gene sequence
analysis. Stock cultures were maintained on potato dextrose agar (PDA, Difco™ and
BBL™, Becton, Dickinson, MD, USA) that was cut into the cryotube containing 10% of
glycerol and stored at —80 °C.
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Table 1. List of 52 strains of endophytic and basidiomycete fungi for exopolysaccharide screening.

No Original Code BCC Code Microorganisms
1 LF00466 56724 Schizophyllum commune
2 LF00467 56725 Schizophyllum commune
3 LF00469 56727 Schizophyllum commune
4 LF00470 56728 Schizophyllum commune
5 LF00473 56731 Schizophyllum commune
6 LF00534 61999 Schizophyllum commune
7 LF00543 62007 Schizophyllum commune
8 LF01001 66090 Schizophyllum commune
9 LF01581 Schizophyllum commune
10 LF01962 82612 Schizophyllum commune
11 MMCR00071 Schizophyllum commune
12 MMCRO00176 Schizophyllum commune
13 MMCRO00333 Schizophyllum commune
14 MMCR00334 Schizophyllum commune
15 MMCR00336 Schizophyllum commune
16 LF01222 Auricularia cf. auricula
17 LF01580 Auricularia cf. delicata
18 LF01616 Auricularia cf. polytricha
19 MMCR00014 Auricularia sp.

20 MMCR00107 Auricularia sp.

21 MMCR00108 Auricularia sp.

22 MMCRO00157.1 Auricularia sp.

23 MMCR00171 Auricularia sp.

24 MMCRO00177 Auricularia sp.

25 PHDO00142 Auricularia sp.

26 MMCR00214.2 Calvatia sp.

27 MMCRO00215.1 Ganoderma sp.

28 MMCRO00216.1 Ganoderma sp.

29 MMCR00271.1 Pycnoporus sp.

30 MMCR00309.2 Coprinus cf. fimetarius
31 MMCR00347.1 Amauroderma sp.

32 PP0005 Pestalotiopsis sp.

33 PP0013 Nigrospora sp.

34 PP0049.1 Mucor-like sp.

35 ENFERO0001 Lasiodiplodia-like sp.
36 ENFERO0002 Phomopsis sp.

37 ENFER0003 Mucor-like sp.

38 ENFER0004 Unidentified sp.

39 ENFER0005 Unidentified sp.

40 ENFERO0006 Unidentified sp.

41 ENFERO0007 Unidentified sp.

42 ENFERO0008 Unidentified sp.

43 ENFERO0009 Unidentified sp.

44 MMCRO00035 Panus sp.

45 MMCR00041 Panus sp.

46 MMCR00120 Panus sp.

47 MMCR00199 Lentinus cf. polychrous
48 MG0001 Volvariella volvacea
49 MG0002 Flammulina velutipes
50 MCR366.3 Hericium erinaceus
51 MCR369.1 Pleurotus cf. djamor
52 MCR370 56724 Lentinus polychrous
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2.2. Seed Culture Preparation

Storage stock was activated on PDA medium in a Petri dish for 7 days. The activated
culture was transferred and grown in a 250 mL flask containing 50 mL of potato dextrose
broth (PDB) at 25 °C on a rotary shaker incubator (200 rpm/min) for 5 days.

2.3. Production of Exopolysaccharide by Selected Fungi
2.3.1. Growth Condition and Exopolysaccharide Extraction

Exopolysaccharide production in submerge cultures was performed in 250 mL flasks
containing 50 mL of PDB (standard medium) and Peptone Yeast extract Glucose Medium
(PYGM) (10 g/L glucose, 5 g/L bacteriological peptone, 20 g/L yeast extract, 1 g/L
KH,POy, 0.5 g/L MgSO4-7H,0) after inoculation with 10% (v/v) of the seed culture. The
experimental cultures were incubated at 25 °C on a rotary incubator (200 rpm/min) for 7
days.

After 7 days, the cultures were vacuum filtered through pre-weight Whatman® No.
1 filter paper. Cold-95% ethanol (4:1) was then added to mycelium-free filtrate for ex-
opolysaccharide precipitation and then the solutions were kept at 20 °C overnight. The
precipitants were lyophilized to obtain the exopolysaccharide dried weight. Mycelium on
pre-weight filter papers was oven dried at 80 °C for 3 days to obtain the mycelium dried
weight [15,16].

2.3.2. In Vitro Cytotoxicity Against Mouse Lung Fibroblasts (NTCT Clone 929) and Human
Dermal Fibroblasts, Neonatal (HDFn)

NCTC clone 929 (ATCC, Manassas, VA, USA) and HDFn (Invitrogen, Carlsbad, CA,
USA) were grown in Eagle’s Minimum Essential Medium (EMEM) containing 10% FBS
and 1 mM pyruvate and were incubated in 5% CO, chamber at 37 °C. For experiments,
NCTC clone 929 and HDFn cells were seeded into 96-well plates at 1 x 10° and 5 x 10°
cells/well, respectively. After 48 h of incubation for NCTC clone 929 and 72 h for HDFn,
each cell type was challenged with exopolysaccharides at 100, 50, 20, and 10 pg/mL for
48 h. After challenging, cell viability was measured as described by Riss T.L. et al. [17].
Then, the cell viability was measured by MTT assay to obtain the average cell viability
number in the tested solution compared with the control. The average of the cell viability
was obtained from 8 wells using ellipeticine as a positive control.

2.3.3. Molecular Weight of Exopolysaccharide Measurement

The lyophilized exopolysaccharides were dissolved in 5 mg/mL water and were
filtered through a 0.2 um syringe filter to avoid the insolubilizing agent. The average
molecular weight of the exopolysaccharides was determined with High Performance
Liquid Chromatography (HPLC), RI detector, using a gel permeation column (PL aquagel-
OH MIXED-H; Agilent, Santa Clara, CA, USA) eluted with deionized water at a flow rate
of 0.5 mL/min at 80 °C. The standard of 6450 kDa dextrans was used as references.

2.4. Medium Optimization for Maximized Exopolysaccharide from S. commune BCC 82612

After obtaining the high potential fungal strain for exopolysaccharide production,
medium optimization for maximum exopolysaccharide production was performed by
Design-Expert®13 (Stat-Ease).

53



Fermentation 2025, 11, 183

2.4.1. Seed Culture Preparation for S. commune BCC 82612

Storage stock was activated on PDA medium in a Petri dish for 7 days. The activated
culture was transferred and grown in a 1000 mL flask containing 200 mL of potato dextrose
broth (PDB) at 25 °C on a rotary shaker incubator (200 rpm/min) for 5 days.

After 5 days, a big pellet of seed culture was ready for use. For the mycelial seed
culture, the grown culture was homogenized with a sterile blender before use. The small
pellet seed culture was prepared by the inoculation of the mycelial seed culture into PDB
and incubated on the rotary shaker for 2 days before use.

2.4.2. Selection of Carbon and Nitrogen Sources

Six carbon sources (fructose, glucose, sucrose, maltose, mannose, xylose) and 8 ni-
trogen sources ((NH4),HPO,4, NH4H,PO4, (NH4)»504, bacteriological peptone, casein
hydrolysate, KNOj3, malt extract, yeast extract) were used in this experiment. A total
of 20 g of carbon source and 10 g of nitrogen source were added to the basal medium
(0.5 g/L KH,PO4, 0.5 g/L K;HPOy, 0.2 g/L MgSOy). The pH of the experimental medium
was adjusted to 5.5. Every combination of each source was performed in triplicate. At the
end of the experiment, the mycelium dried weight and exopolysaccharide dried weight
were analyzed for the selection of each source.

2.4.3. Screening of the Significant Medium Component by Plackett-Burman Design

A total of 11 variables (Table 2) were used in this experiment to generate a set of
26 experimental designs. All components were added to the basal medium as above with
the final pH at 5.5. All of the experiments were carried out in triplicate.

Table 2. The selected variables of 26 treatments with different medium composition using Plackett—
Burman Design.

Factors
No. A B C D E F G H J K L
g/L g/L g/L g/L g/L g/L g/L g/L g/L ml/L ml/L
1 40 5 0 20 5 5 0 0 0 3 1
2 20 5 5 10 5 5 5 0 0 1 3
3 40 0 5 20 0 5 5 0.5 0 1 1
4 20 5 0 20 5 0 5 0.5 3 1 1
5 20 0 5 10 5 5 0 0.5 3 3 1
6 20 0 0 20 0 5 5 0 3 3 3
7 40 0 0 10 5 0 5 0.5 0 3 3
8 40 5 0 10 0 5 0 0.5 3 1 3
9 40 5 5 10 0 0 5 0 3 3 1
10 20 5 5 20 0 0 0 0.5 0 3 3
11 40 0 5 20 5 0 0 0 3 1 3
12 20 0 0 10 0 0 0 0 0 1 1
13 30 2.5 2.5 15 2.5 2.5 2.5 0.25 1.5 2 2
14 20 0 5 10 0 0 5 0.5 3 1 3
15 40 0 0 20 0 0 0 0.5 3 3 1
16 20 5 0 10 5 0 0 0 3 3 3
17 40 0 5 10 0 5 0 0 0 3 3
18 40 5 0 20 0 0 5 0 0 1 3
19 40 5 5 10 5 0 0 0.5 0 1 1
20 20 5 5 20 0 5 0 0 3 1 1
21 20 0 5 20 5 0 5 0 0 3 1
22 20 0 0 20 5 5 0 0.5 0 1 3
23 40 0 0 10 5 5 5 0 3 1 1
24 20 5 0 10 0 5 5 0.5 0 3 1
25 40 5 5 20 5 5 5 0.5 3 3 3
26 30 2.5 2.5 15 2.5 2.5 2.5 0.25 15 2 2

Remarks: A = glucose, B = Xylose, C = Mannose, D = (NH4),HPOy, E = yeast extract, F = casein hydrolysate,
G = Peptone, H = MnSQOy, ] = Monosodium glutamate, K = Trace elements, L = Vitamin solution.

54



Fermentation 2025, 11, 183

The significant effects of the variables on the production were identified for the isolates
based on confidence levels above 95% (p < 0.05).

2.5. Exopolysaccharide Production by S. commune BCC 82612 in Laboratory Scale Bioreactor

Exopolysaccharide production by S. commune BCC 82612 was carried outina 5 L
bioreactor (Satorius) with 4 L of optimized production medium. The bioreactor was
equipped with two Rushton type turbines and baffles. The optimized medium (pH 5.5)
was sterilized in situ at 121 °C for 15 min. Glucose was sterilized separately and was
mixed aseptically with the other components of the medium in the bioreactor. The medium
was inoculated with 10% (v/v) inoculum, and fermentation was carried out at 25 °C with
uncontrolled pH. The impeller speed was initially adjusted to 100 rpm at the first 2 days
of culture and adjusted to 300 after that, and compressed sterile air was sparged into the
medium at the rate of 1 vvm. The samples were withdrawn every day and analyzed
for dried mycelial weight, dried exopolysaccharide weight, and residual glucose. Three
different types of seed cultures (mycelium, small pellet, big pellet) were studied for the
production of exopolysaccharides in the laboratory bioreactor.

3. Results
3.1. Screening of the High Potential Fungi for Exopolysaccharide Production

By employing a multi-criteria screening approach involving the ability to produce
exopolysaccharides (>4 g/L), assessing toxicity to human cells, and determining molecular
weight, this comprehensive selection process ensures that the chosen strains not only
exhibit high exopolysaccharide yields but also demonstrate favorable characteristics in
terms of safety and structural properties. Ultimately, this systematic screening methodology
enables the identification of fungal strains with the most promising attributes for further
exploration and potential industrial applications.

3.1.1. Production of Exopolysaccharides in PDB and PYGM Media

Exopolysaccharide and mycelium dried weights were obtained from the experiments
that were shown in Table 3. The fungi produced exopolysaccharides with dried weights
of 0.01 £ 0.004.01 + 2.32 g/L in PDB medium and 0.11 £ 0.03-6.59 £ 0.98 g/L in
PYGM medium. The mycelium dried weights of the fungi of 0.55 + 0.15-5.01 £ 0.31 and
1.77 £ 0.15-9.76 £ 0.09 g/L were obtained on PDB and PYGM media, respectively. The
identification of five strains capable of producing dried exopolysaccharides exceeding
4 g /L showed their remarkable potential for industrial applications and further research.
For instance, the high-yield exopolysaccharide-producing strains included S. commune
LF01962, LF01001, LF01581, MMCRO00333, and Pycnoporus sp. MMCRO00271.1. The ex-
opolysaccharides produced by the identified high-yield strains were utilized in subsequent
experiments of in vitro human cell toxicity tests and molecular weight determinations.

Table 3. Exopolysaccharide and mycelium dried weights produced by 52 fungal strains in
different media.

Mycelium Dried Weight (g/L) Exopolysaccharide Dried Weight

No Code Genus Epithet (g/L)
PDB PYGM PDB PYGM
1 LF00466 Schizophyllum commune 3.20 £ 0.38 8.57 £1.34 0.10 £ 0.02 2.41 £ 0.06
2 LF00467 Schizophyllum commune 3.75+£0.24 10.23 £ 1.64 0.37 £0.27 191+ 0.13
3 LF00469 Schizophyllum commune 3.05£0.13 7.29 £2.11 0.02 £ 0.01 2.26 &+ 0.12
4 LF00470 Schizophyllum commune 3.00 & 0.27 1142 +1.59 0.17 £ 0.05 1.25 £ 0.66
5 LF00473 Schizophyllum commune 293 £0.25 10.90 +1.33 0.25 £ 0.31 1.81 +0.23
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Table 3. Cont.

Mycelium Dried Weight (g/L) Exopolysaccharide Dried Weight

No Code Genus Epithet (g/L)
PDB PYGM PDB PYGM

6 LF00534 Schizophyllum commune 4.09 £0.11 13.92 £ 2.53 0.64 £0.24 0.72 £0.28
7 LF00543 Schizophyllum commune 2.87 +2.48 12.07 £3.78 0.01 £ 0.01 194 £0.21
8 LF01001 Schizophyllum commune 2.83 £0.22 13.30 £ 0.34 4.01 £2.32 5.07 £0.78
9 LF01581 Schizophyllum commune 3.04 £0.14 8.50 £ 1.00 0.32 £0.14 2.04 £ 0.27
10 LF01962 Schizophyllum commune 3.44 £ 0.46 11.03 £ 0.63 272 £0.26 6.39 £ 0.14
11 MMCRO00071 Schizophyllum commune 2.58 +0.23 7.46 £0.28 0.13 £0.04 2.07 £0.11
12 MMCRO00176 Schizophyllum commune 3.314+0.39 10.64 £ 1.15 0.30+0.15 1.67 £0.61
13 MMCRO00333 Schizophyllum commune 3.57 £0.28 12.35 £1.54 1.70 £ 0.96 429 £0.61
14 MMCRO00334 Schizophyllum commune 2.95 £ 0.24 6.05 £ 1.61 0.12 £ 0.04 1.56 +0.22
15 MMCRO00336 Schizophyllum commune 2.71 £0.09 7.66 £1.74 0.31 £0.23 1.54 £+ 0.88
16 LF01222 Auricularia cf. auricula 2.60 £0.24 5.06 = 1.51 0.31 £0.34 1.90 + 0.44
17 LF01580 Auricularia cf. delicata 2.61 £0.12 4.19 £ 0.62 0.17 £ 0.07 0.93 £ 0.04
18 LF01616 Auricularia cf. polytricha 2.39 £ 0.68 329 £0.28 0.75 £0.19 3.01 £0.22
19 MMCR00014 Auricularia sp. 1.82 +0.13 5.81 £ 0.94 0.05 £ 0.01 1.54 £+ 0.47
20 MMCR00107 Auricularia sp. 3.12+£0.42 7.69 £ 0.86 0.20 £0.10 1.40 £ 0.46
21 MMCRO00108 Auricularia sp. 2.99 +0.02 6.07 £ 0.30 1.15+0.10 2.62 £0.19
22 MMCR00157.1 Auricularia sp. 4.39 +0.39 7.27 £2.90 0.38 £0.19 0.11 £ 0.03
23 MMCR00171 Auricularia sp. 1.46 +0.12 348 £0.78 0.08 £ 0.02 2.29 £0.26
24 MMCRO00177 Auricularia sp. 117 £0.14 5.65 £ 0.95 0.33 £0.34 252 4+0.18
25 PHDO00142 Auricularia sp. 091 £0.26 1.84 +0.48 0.46 +£0.13 2.74 £0.29
26 MMCR00214.2 Calvatia sp. 0.55 £0.15 1.32 £ 0.28 0.85+0.31 3.03 +£0.23
27 MMCR00215.1 Ganoderma sp. 1.64 £0.17 2.64 £0.31 0.41 £0.18 2.89 £ 0.60
28 MMCRO00216.1 Ganoderma sp. 2.37 £0.07 7.01 +1.68 1.80 + 1.13 421 +0.64
29 MMCR00271.1 Pycnoporus sp. 2.63 £0.09 3.35+0.19 0.41 £0.13 2.82 +£0.15
30 MMCR00309.2 Coprinus cf. fimetarius 2.47 £0.40 1143 +1.13 1.15+0.20 1.29 +0.16
31 MMCR00347.1 Amauroderma sp. 1.29 £0.10 6.44 £+ 2.06 0.51 £ 0.06 0.38 £0.11
32 PP0005 Pestalotiopsis sp. 473 £0.34 7.19 £0.10 0.72 £0.27 6.59 £ 0.98
33 PP0013 Nigrospora sp. 3.50 £ 0.30 8.62 £0.28 0.07 £ 0.04 2.05 £ 0.05
34 PP0049.1 Mucor-like sp. 5.01 £0.31 5.79 £ 0.69 1.08 £ 0.07 2.77 £0.25
35 ENFER0001 L”S“’ZZZI"W' sp. 3.70 +0.32 9.76 + 0.09 0.11 + 0.04 1.55 + 0.21
36 ENFER0002 Phomopsis sp. 3.61 £1.05 452 +£249 0.70 £ 0.14 1.59 + 0.59
37 ENFER0003 Mucor-like sp. 4.07 £ 0.30 519 +£0.23 0.42 £0.10 237 £0.25
38 ENFER0004 Unidentified Unidentified 4.28 +£0.25 8.11+0.25 0.01 £ 0.00 245 +0.12
39 ENFERO0005 Unidentified Unidentified 291 £0.29 7.07 £0.11 1.74 £0.11 2.52 +0.06
40 ENFERO0006 Unidentified Unidentified 4.20 = 0.60 6.79 £ 0.06 0.50 £ 0.23 223 +£0.10
41 ENFERO0007 Unidentified Unidentified 4.27 +0.33 6.40 £ 0.17 0.18 + 0.08 253 +£0.19
42 ENFERO0008 Unidentified Unidentified 2.57 £0.32 5.84 +£0.08 0.90 +0.29 2.77 £0.05
43 ENFER0009 Unidentified Unidentified 3.37 £0.58 6.70 £ 0.46 1.21 +0.07 1.51 4+ 0.04
44 MMCRO00035 Panus sp. 4.55 +2.64 6.54 £2.94 0.62 £0.32 1.72 £ 0.42
45 MMCR00041 Panus sp. 1.33 +0.24 3.20 £0.71 1.03 +0.13 2.34 £0.20
46 MMCR00120 Panus sp. 229 +£0.22 6.75 £ 0.69 0.73 £ 0.06 2.14 £ 0.06
47 MMCRO00199 Lentinus cf. polychrous 2.10 £0.73 6.63 £ 0.36 0.27 £ 0.05 221 +0.19
48 MGO0001 Volvariella volvacea 1.60 £ 0.29 1.17 £0.15 0.66 =0.20 2.67 = 0.68
49 MG0002 Flammulina velutipes 2.52 +0.41 7.38 £1.34 0.13 £ 0.06 1.95+0.13
50 MCR366.3 Hericium erinaceus 1.81 £0.13 3.22 £0.16 0.78 £0.11 1.73 £0.21
51 MCR369.1 Pleurotus cf. djamor 3.41 £0.35 12.69 £ 0.96 0.11 £0.02 1.68 £ 0.04
52 MCR370 Lentinus polychrous 1.92 +£043 7.07 £ 3.98 0.20 £0.13 1.71 £0.24

3.1.2. Cytotoxicity Test of Exopolysaccharides Produced by Fungi Against NTCT Clone 929
and HDFn Cells

Exopolysaccharides produced by the 52 selected fungal strains were challenged with
NCTC clone 929 and HDFn cells for 48 h. Cytotoxicity was calculated by normalizing with
the non-exopolysaccharides in percentage. At the highest concentration of the challenging
reaction, the cytotoxicity of the exopolysaccharides is shown in Table 4. The threshold of
20% cytotoxicity serves as a critical point in categorizing exopolysaccharides as toxic to
the tested cells. Exceeding this threshold indicates a significant detrimental effect on cell
viability, warranting classification into the toxic category. The identification of non-cytotoxic
exopolysaccharides in the experiments signifies their safety for cell viability. On the other
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hand, the discovery of exopolysaccharides yielding negative results would potentially

stimulate cell growth.

Table 4. Cytotoxicity of 100 mg/mL exopolysaccharides produced by 52 fungal strains against HDFn

and NCTC clone 929 cells.
Cytotoxicity (%)
No Code Genus Epithet HDFn NCTC Clone 929
PDB PYGM PDB PYGM
1 LF00466 Schizophyllum commune —134 —3.13 2.11 8.72
2 LF00467 Schizophyllum commune 14.32 15.33 4.05 3.98
3 LF00469 Schizophyllum commune 0 547 0 1.6
4 LF00470 Schizophyllum commune 10.95 6.66 5.29 4.71
5 LF00473 Schizophyllum commune 14.65 15.84 4.51 6.89
6 LF00534 Schizophyllum commune 0.07 —3.73 8.03 17
7 LF00543 Schizophyllum commune 0 —0.64 0 4.69
8 LF01001 Schizophyllum commune 7.98 8.19 5.18 9.52
9 LF01581 Schizophyllum commune 6.85 —0.63 4.07 -1.73
10 LF01962 Schizophyllum commune 9.6 11.32 4.38 6.72
11 MMCR00071 Schizophyllum commune 12.67 1.61 11.63 15.45
12 MMCRO00176 Schizophyllum commune 0.38 4.65 5.78 16.06
13 MMCRO00333 Schizophyllum commune 1.55 0.97 10.51 11.65
14 MMCR00334 Schizophyllum commune —6.18 7.8 7.45 12.86
15 MMCRO00336 Schizophyllum commune 12.34 4.9 4.54 8.52
16 LF01222 Auricularia cf. auricula —0.21 7.69 2.14 8.34
17 LF01580 Auricularia cf. delicata 9.79 6.74 9.26 4.2
18 LF01616 Auricularia cf. polytricha 3.57 10.56 1.42 2.39
19 MMCR00014 Auricularia sp. 0 8.61 0 —4.78
20 MMCRO00107 Auricularia sp. 9.45 6.51 —4.76 —4.73
21 MMCR00108 Auricularia sp. 7.79 4.53 —0.02 —4.7
22 MMCRO00157.1 Auricularia sp. 13.21 412 —3.61 4.5
23 MMCRO00171 Auricularia sp. 0 3.53 0 1.59
24 MMCRO00177 Auricularia sp. —10.59 —10.38 1.45 1.15
25 PHD00142 Auricularia sp. —214 —21.88 5.93 7.62
26 MMCR00214.2 Calvatia sp. —11.75 —14.68 —2.36 -2
27 MMCRO00215.1 Ganoderma sp. —10.31 —15.9 3.8 —0.26
28 MMCR00216.1 Ganoderma sp. —51 —15.56 4.45 0.06
29 MMCR00271.1 Pycnoporus sp. -9.97 —1.49 12.42 0.47
30 MMCR00309.2 Coprinus cf. fimetarius —15.73 -9.37 4.44 6.52
31 MMCR00347.1 Amauroderma sp. 5.79 —4.78 2.51 9.48
32 PP0005 Pestalotiopsis sp. —13.99 —1.82 —0.78 0.01
33 PP0013 Nigrospora sp. —12.39 —7.84 6.02 371
34 PP0049.1 Mucor-like sp. —9.86 -2.17 -0.12 3.98
35 ENFER0001 L”S“’ZZZI‘W' sp. ~1.35 ~1039 6.02 421
36 ENFER0002 Phomopsis sp. 3.38 -1.14 7.27 4.05
37 ENFER0003 Mucor-like sp. 10.11 8.43 5.01 10.01
38 ENFER0004 Unidentified Unidentified 0 12.06 0 8.76
39 ENFER0005 Unidentified Unidentified 8.14 11.7 5.63 1.95
40 ENFER0006 Unidentified Unidentified 1.18 4.67 2.35 4.07
41 ENFER0007 Unidentified Unidentified —0.13 10.35 —0.12 3.41
42 ENFER0008 Unidentified Unidentified 8 12.12 3.78 2.02
43 ENFER0009 Unidentified Unidentified 5.81 8.97 4.35 —2.37
44 MMCR00035 Panus sp. 7.58 4.22 -3.39 —7.34
45 MMCR00041 Panus sp. 1.04 10.03 4.32 1.82
46 MMCRO00120 Panus sp. 14.99 11.76 —3.67 —8.52
47 MMCR00199 Lentinus cf. polychrous 6.52 6.24 —8.33 5.48
48 MG0001 Volvariella volvacea 4.97 5.69 —3.22 5.29
49 MG0002 Flammulina velutipes 5.07 11.45 —1.01 2.89
50 MCR366.3 Hericium erinaceus 8.2 13.94 2.77 7.92
51 MCR369.1 Pleurotus cf. djamor 2.66 8.17 5.1 0.07
52 MCR370 Lentinus polychrous 1.65 1.51 211 3.41

3.1.3. Molecular Weight Measurement of Exopolysaccharides

The molecular weight analysis of the exopolysaccharides from S. commune LF01581
and Pycnoporus sp. MMCRO00271.1 revealed that their peaks were outside the expected
range when compared to the standard dextran with a molecular weight of 6-450 kDa. This
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observation indicates that these exopolysaccharides may have molecular weights that are
significantly higher or lower than the standard range, highlighting potential variations in
their structural characteristics. In Table 5, S. commune LF01962, LF01001, and Pestalotiopsis
sp. PP0005 exhibit varying molecular weights of the exopolysaccharides. It is interesting to
note that Pestalotiopsis sp. PP0005 produced exopolysaccharides with a molecular weight
of 494.5 kDa in PYGM medium. However, when cultivated in PBD medium, the molecular
weight of the exopolysaccharides exceeded 500 kDa. This shift in molecular weight based
on the growth medium suggests the influence of different cultivation conditions on the
properties of the exopolysaccharides produced by Pestalotiopsis sp. PP0005. The data on S.
commune LF01001 reveal that it produced exopolysaccharides of various sizes in PYGM
medium. However, when cultivated in PDB medium, higher molecular weight sizes of
the exopolysaccharides were observed, resembling the exopolysaccharides produced by
S. commune LF01962, which maintained a consistent molecular weight across both media
types. The data in Table 5 indicate that the fungus produced a uniform size of exopolysac-
charide on both types of media components. From the results, S. commune LF01962 was
chosen as the high potential strain for further study based on the exopolysaccharide pro-
duction, molecular weight, and cytotoxicity.

Table 5. Molecular weights of exopolysaccharides produced by 52 fungal strains in different media.

No Code Genus Epithet DB Molecular Weight (kDa) YGM
1 LF00466 Schizophyllum commune - - 20.87 -
2 LF00467 Schizophyllum commune - - - -
3 LF00469 Schizophyllum commune - - 1383.87 (9) 37.64 (91)
4 LF00470 Schizophyllum commune - - - -
5 LF00473 Schizophyllum commune - - - -
6 LF00534 Schizophyllum commune - - - -
7 LF00543 Schizophyllum commune - - - -
8 LF01001 Schizophyllum commune 59.39 (35) 2.45 (65) 260.82 (25) 15.83 (75)
9 LF01581 Schizophyllum commune - - - -
10 LF01962 Schizophyllum commune 2.56 - 18.14 -
11 MMCR00071 Schizophyllum commune - — N —
12 MMCRO00176 Schizophyllum commune - - - -
13 MMCRO00333 Schizophyllum commune 0.15 2.81
14 MMCRO00334 Schizophyllum commune - - - -
15 MMCR00336 Schizophyllum commune - - - -
16 LF01222 Auricularia cf. auricula - - - .
17 LF01580 Auricularia cf. delicata - - - -
18 LF01616 Auricularia cf. polytricha - - 0.88 -
19 MMCR00014 Auricularia sp. - - - -
20 MMCRO00107 Auricularia sp. - - - -
21 MMCRO00108 Auricularia sp. 5.08 603.50 (45) 15.43 (55)
22 MMCRO00157.1 Auricularia sp. - - - -
23 MMCRO00171 Auricularia sp. - - 229.5 -
24 MMCR00177 Auricularia sp. - - 220.73 (23) 30.55 (87)
25 PHD00142 Auricularia sp. - - 298.07 -
26 MMCRO00214.2 Calvatia sp. - - 307.76 4.73
27 MMCR00215.1 Ganoderma sp. - - 1234.73 (41) 19.17 (59)
28 MMCR00216.1 Ganoderma sp. 2.15 - 4.23 (24) 0.82 (76)
29 MMCR00271.1 Pycnoporus sp. - - 3.39 (64) 0.72 (46)
30 MMCRO00309.2 Coprinus cf. fimetarius 2.61 - - -
31 MMCR00347.1 Amauroderma sp. - - - -
32 PP0005 Pestalotiopsis sp. - - 494.5 -
33 PP0013 Nigrospora Sp. 494.5 - 317.76 -
34 PP0049.1 Mucor-like sp. - - - -
35 ENFER0001 Lasiodiplodia-like sp. - - - -
36 ENFER0002 Phomopsis sp. - - - -
37 ENFER0003 Mucor-like sp. - - 75.44 -
38 ENFER0004 Unidentified Unidentified - - 216.18 -
39 ENFER0005 Unidentified Unidentified 3.98 - 458.08 (28) 273.45(72)
40 ENFER0006 Unidentified Unidentified - - 175.96 -
41 ENFER0007 Unidentified Unidentified - - 144.23 -
42 ENFER0008 Unidentified Unidentified - - 281.55 -
43 ENFER0009 Unidentified Unidentified 2.87 - - -
44 MMCRO00035 Panus sp. - - - -
45 MMCR00041 Panus sp. 4.21 503.52 (61) 335.94 (49)
46 MMCR00120 Panus sp. - - - -
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Table 5. Cont.

No Code Genus Epithet PDB Molecular Weight (kDa) PYGM

47 MMCR00199 Lentinus cf. polychrous - - 1214.29 -

48 MG0001 Volvariella volvacea - - 234.66 (24) 2.09 (76)
49 MG0002 Flammulina velutipes - - - -

50 MCR366.3 Hericium erinaceus - - - -

51 MCR369.1 Pleurotus cf. djamor - — - -

52 MCR370 Lentinus polychrous - - - -

Remarks: Numbers in brackets are the percentage of molecular weight distribution.

3.2. Media Components Optimization for Exopolysaccharides Production by S. commune LF01962

3.2.1. Production of Exopolysaccharides by S. commune LF01962 on Different Carbon and

Nitrogen Sources

In the initial step of optimizing the production medium components, S. commune

LF01962 underwent screening for suitable carbon and nitrogen sources. The production

of exopolysaccharide and mycelium dried weights by S. commune LF01962 is detailed

in Table 6. The fungus produced exopolysaccharides ranging from 0.7 g/L to 5.1 g/L

using various carbon and nitrogen sources. Notably, there were four conditions that re-

sulted in higher exopolysaccharide production: xylose + peptone, glucose + (NH4),HPOy,

fructose + peptone, and mannose + yeast extract. These successful carbon and nitrogen

sources were then utilized as variables along with other factors in the Plackett-Burman de-

sign to optimize the significant components of the exopolysaccharide production medium.

Table 6. Exopolysaccharide and mycelium dried weight production by S. commune LF01962 on

different carbon and nitrogen sources.

Treatments Exopolysaccharide Weight . .
Carbon Source Nitrogen Source (g/L) Mycelium Weight (/L)
malt extract 0.70 = 0.00 5.10+£0.10
yeast extract 3.50+0.70 14.20 £0.40
KNO3 1.00 £0.20 4.00 4 0.50
xylose casein hydrolysate 3.00 £ 1.00 13.40 +1.10
peptone 4.80 £0.80 12.00 £ 0.80
(NH4),HPO,4 1.40 4 0.60 4.8 £0.50
(NHy)>S04 1.204+0.10 4.00 £ 0.40
NHyH,PO4 0.60 £0.40 3.540.40
malt extract 0.90 & 0.00 4.40 £0.20
yeast extract 3.50 +0.00 1210 £1.20
KNO3 1.340.10 4.90 +0.90
glucose casein hydrolysate 3.00 4 0.50 11.80 +1.30
peptone 2.30 £0.20 9.60 £ 0.50
(NH4),HPO4 4.00 £0.70 9.00 £ 1.00
(NH4)2S04 1.00 £0.20 6.30 £ 1.00
NH4H,PO4 0.50 £ 0.00 4.3040.30
malt extract 0.80 £ 0.00 4.60 £ 0.50
yeast extract 3.90+038 14.50 £ 0.40
KNO3 1.30 4+ 1.00 4.50 £ 0.50
casein hydrolysate 3.20 +£0.50 15.20 4-2.00
fructose peptone 4.10 + 0.60 14.20 +0.80
(NHy),HPO4 1.80+0.20 8.60 £0.20
(NH4)2S04 1.204+0.10 4.20£0.10
NH4H,PO4 0.40 £0.10 4.00 £ 0.30
malt extract 1.40 £0.20 4.10+£0.30
yeast extract 3.10£0.30 14.50 4 1.00
KNO3 240+£1.2 4.70 £0.30
casein hydrolysate 2.70 £0.20 15.20 £ 0.50
sucrose
peptone 3.90+0.70 14.30 £0.40
(NH4),HPO,4 2.60 £ 0.20 10.30 +0.30
(NHy)2S04 1.00 £ 0.00 5.8040.10
NHyH;PO4 0.50 £0.10 3.70 £0.30
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Table 6. Cont.

Treatments Exopolysaccharide Weight

Carbon Source Nitrogen Source (g/L) Mycelium Weight (/L)
malt extract 1.00 £0.10 4.00 +0.40
yeast extract 3.80 £0.20 14.20 £ 0.60
KNO; 1.204+0.10 3.60 £0.40
casein hydrolysate 3.60 £0.30 13.40 4 0.90
maltose peptone 3.30 +0.50 13.30 + 0.50
(NHy),HPO, 3.00 +£0.30 9.80 £ 0.50
(NH4)2504 1.10 £+ 0.00 5.10£0.30
NH,H,PO, 0.50 +0.50 3.90 £0.20
malt extract 0.70 £0.10 4.60 £ 0.50
yeast extract 5.10 £2.00 14.30 4 0.60
KNO; 2.50 £ 0.50 4.70 +0.40
mannose casein hydrolysate 3.10 £ 0.60 13.80 4 0.30
peptone 270 £0.70 13.00 £ 0.50
(NHy),HPOy 2.50 +0.20 9.70 +£1.10
(NH4)2504 1.30+0.30 4.40 4 0.60
NH;H,PO, 0.60 +£0.10 4.40£0.20
PDB 1.40+1.20 11.40+£1.10
PYGM 3.80+0.30 8.80 +0.00

3.2.2. Production of Exopolysaccharides by S. commune LF01962 Using
Plackettt-Burman Design

In the Plackett-Burman design for the exopolysaccharide and mycelium dried weights
of S. commune LF01962 with 26 treatments (Table 7), the fungus produced exopolysaccha-
rides ranging from 0.68 g/L to 8.16 g/L, which was 2.5 times higher than in the enriched
medium (PYGM). The ANOVA results (Table 8) from this experiment identified signifi-
cant factors affecting exopolysaccharide production: glucose, (NH4),HPOy, yeast extract,
monosodium glutamate, and trace elements (p < 0.01). High levels of glucose, diammo-
nium hydrogen phosphate, yeast extract, and monosodium glutamate had a positive impact
on exopolysaccharide production, while low levels of trace elements restricted maximum
exopolysaccharide production. The optimal medium for S. commune exopolysaccharide
production consisted of 40 g/L glucose, 5 g/L mannose, 20 g/L (NH4),HPOy, 5 g/L yeast
extract, 3 g/L monosodium glutamate, 0.5 g/L KH,POy, 0.5 g/L KoHPOy, 0.2 g/L MgSQOy,
1 mL/L trace elements, and 3 mL/L vitamin solution.

Table 7.  Exopolysaccharide and mycelium production by S. commune LF01962 using
Plackett-Burman design.

Treatment Exopolysaccharide Weight (g/L) Mycelium Dried Weight (g/L)
1 7.224+0.18 22.00 £2.24
2 3.43+0.99 22.51 +4.33
3 0.96 & 0.55 4.80 £2.01
4 1.92+0.8 597 +1.73
5 4.87+0.73 18.22 +1.69
6 1.93 £0.98 11.81 +2.34
7 517404 24.58 £1.12
8 5.07 £0.92 21.58 +1.54
9 5.26 +£1.62 25.13 £0.33
10 0.68 +0.29 5.114+1.01
11 8.16 +1.02 22.86 £1.01
12 1.524+0.71 10.724+2.01
13 573+0.43 20.48 +£1.55
14 0.8 +0.34 10.96 +0.80
15 1.26 £0.25 7.02 £3.35
16 5.65+0.27 16.24 +0.99
17 4.02+0.18 19.09 +0.71
18 2.51+0.72 14.07 4 0.66
19 4.72+0.59 26.39 £ 0.69
20 378 +1.94 12.63 +2.5
21 2.81+1.86 10.34 + 3.50
22 0.95 +0.37 5.87 £0.81
23 3.23+1.48 2298 +£1.50
24 2.84+1.06 16.80 +1.92
25 1.16 £0.55 3.77+0.31
26 4.53 +2.51 18.40 +2.51
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Table 8. ANOVA of factorial model for exopolysaccharide production by S. commune LF01962.

Source Sum of df Mean F-Value p-Value
Squares Square
Model 303.15 23 13.18 12.27 <0.0001 significant
A—Glucose 38.54 1 38.54 35.87 <0.0001
B—Xylose 9.14 1 9.14 8.51 0.0052
C—Mannose 0.2367 1 0.2367 0.2203 0.6407
D—Diammonium hydrogen ; 5 1 4134 38.49 <0.0001
phosphate
E—Yeast extract 60.59 1 60.59 56.40 <0.0001
F—Casein hydrolysate 11.31 1 11.31 10.53 0.0020
G—Peptone 0.7248 1 0.7248 0.6747 0.4151
H—Manganese sulfate 2.76 1 2.76 2.57 0.1152
J—Monosodium glutamate 21.94 1 21.94 20.42 <0.0001
K—Trace elements 20.93 1 20.93 19.49 <0.0001
L—Vitamin solution 11.15 1 11.15 10.38 0.0022
Curvature 17.95 1 17.95 16.71 0.0001
Pure Error 56.94 53 1.07
Cor Total 378.03 77

3.3. Exopolysaccharide Production by S. commune LF01962 in Laboratory Bioreactor

The validation of the optimal medium for S. commune LF01962 exopolysaccharide
production was conducted in a 5 L bioreactor. Three types of inocula were tested: freely
dispersed mycelium, small pellets, and big pellets. The freely dispersed mycelium inocu-
lum yielded only 3.7 g/L of exopolysaccharides (Figure 1A), which was lower than the
production at the flask scale. Interestingly, the mycelium dried weight decreased during
the culture due to the high shear rate of the propeller, which cut the mycelium and reduced
the production efficiency.
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Figure 1. Mycelium and exopolysaccharide dried weights and residue glucose during S. com-
mune LF01962 exopolysaccharide production with mycelium (A), small pellets (B), and big pellets
(C) inoculum.
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The study observed that the different pellet forms of the inoculum resulted in higher
exopolysaccharide production, with the bigger pellets (pellet size > 5 mm diameter) produc-
ing 11.38 g/L (Figure 1C) and the smaller pellets (pellet size > 1 mm diameter) producing
18.28 g/L (Figure 1B). Interestingly, the mycelium dried weight of the pellet form continued
to increase during exopolysaccharide production. These findings suggest that the use of
small pellet inoculum led to higher exopolysaccharide production compared to other seed
inoculum types.

4. Discussions

Endophytic and basidiomycete fungi represent promising groups capable of produc-
ing substantial amounts of exobiopolymers with varying chemical structures, cytotoxicities,
and molecular weight profiles. In this study involving fifty-two fungal isolates from these
groups, screened on PDB and PYGM media (Table 3), five isolates were identified as pro-
ducing over 4 g/L of non-cytotoxic exopolysaccharides (Table 4) with molecular weights
ranging from 2.5 to 5000 kDa (Table 5). The test of non-cytotoxic EPSs against human
cell lines of the threshold of 20% cytotoxicity serves as a critical point in categorizing
exopolysaccharides as toxic to tested cells with different molecular weights; and most of
the selected strains possess non-cytotoxicity after being tested with these human cell lines,
proving their potential in human use. The exobiopolymers produced by strains yielding
less than 4 g/L were noteworthy for their diverse molecular weight sizes. Different molec-
ular wieghts and structures can lead these exopolysaccharides to be used for different
applications [15], and the molucular weight can be reduced by different techniques such
as gamma radiation to signify their industrial appication [16]. However, their exclusion
from further studies was based on considerations of the growth rates and mycelial yield.
The identification of non-cytotoxic exopolysaccharides in the experiments signifies their
safety for cell viability; their origins are from natural habitats which are edible mushrooms
and which enable them to be used for human food applications, as most of them were non-
cytotoxic. The strain S. commune LF01962 was selected for further optimization, focusing on
various nutritional factors. It was discovered that the initial step involving mannose/yeast
extract had the most significant impact on schizophyllan production, resulting in the high-
est exobiopolymer yield of 5.10 & 2.00 g/L (Table 6). Subsequent optimization revealed
that an optimal medium comprising 40 g/L glucose, 5 g/L mannose, 20 g/L (NH4),HPOy,
5 g/L yeast extract, 3 g/L monosodium glutamate, 0.5 g/L KHyPOy4, 0.5 g/L KoHPOy,
0.2 g/L MgSOy, 1 mL/L trace element, and 3 mL/L vitamin solution led to a further
increase to 8.16 g/L of the exobiopolymer (Table 7). ANOVA analyses of the factorial model
for exopolysaccharide production by S. commune LF01962, shown in Table 8, represent
a significant model (>99%) with the expression of exopolysaccharides = 38.54A + 9.14B
+0.24C — 41.34D + 60.59E + 11.31F + 0.73G + 2.76H + 21.94] + 20.93K + 11.15L (where
A = glucose, B = xylose, C = mannose, D = diammonium hydrogen phosphate, E = yeast
extract, F = casein hydrolysate, G = peptone, H = manganese sulfate, ] = glutamic acid,
K = trace elements, and L = vitamin solutions). Glucose and yeast extract had the highest
positive effects but diammonium hydrogen phosphate had the highest negative effects on
the exopolysaccharide production of S. commune LF01962. In the evaluation of schizophyl-
lan production in a 5 L bioreactor by S. commune LF01962, three types of seed inoculum,
free mycelium (Figure 1A), small pellets (Figure 1B), and big pellets (Figure 1C), were
used. Interestingly, the small pellets resulted in the highest schizophyllan production
of 18.28 g/L. This highlights that morphological characteristics, such as the size of pel-
lets, can have a significant impact on schizophyllan production in a bioreactor. The study
demonstrated that schizophyllan production reached 12.80 g/L in an optimized medium by

62



Fermentation 2025, 11, 183

S. commune in a 5 L fermenter according to Li et al. [18], and schizophyllan was produced
by S. commune in a similar study [8,9]. Additionally, another observation by Li et al. [18]
reported a slightly higher schizophyllan production of 13.68 g/L. These results show the
variations in schizophyllan production levels achieved through different experimental
setups and optimization strategies. Schizophyllan’s intriguing biological properties, such
as antitumor and immune-stimulating activities, make this exopolysaccharide fascinating
due to its unique structure of 3-(1-6)-Branched -(1-3)-glucans, gelation behavior, and
natural origin [3]. The study highlighted the highest production levels compared to other
reports, indicating its potential for scale-up and future applications in various fields.

5. Conclusions

The study highlighted the potential of endophytic and basidiomycete fungi to produce
a variety of exopolysaccharides with non-cytotoxic properties, as they have been part of
human food sources for many years. These exopolysaccharides exhibit diverse molecular
weight sizes, structures, gelation properties, and compositions, making them versatile for
numerous applications. The research, with 52 candidate strains, suggests that these fungi
hold promise for further exploration in exopolysaccharide production, ranging from food
and feed to cosmetics, pharmaceuticals, medical, and cosmeceutical industries. Notably, the
high schizophyllan production of S. commune LF01962 indicates the potential for scalability
and future commercial applications.
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Abstract: The objective of this experiment was to determine whether compound microbial
inoculants could enhance the fermentation of oat and common vetch silage that were stored
in the Northwest Sichuan Plateau for 60 days under extremely low temperatures. Oat
and common vetch harvested from single and mixed artificially planted grassland of oat
and common vetch were chopped into 2-3 ¢cm (oat, S1; common vetch, S2; oat-common
vetch = 2:1, S3), then sterile water (T1), Zhuang Lemei IV silage additive (T2), and Fu
Zhengxing silage additive (T3) were added to the feed and ensiled at the local outdoor
environment for 60 days. Data were analyzed as a 3 x 3 factorial arrangement of treatments
with the main effects of the materials, additives, and their interaction. Interactions between
the materials and additives significantly affected the fermentation quality and the content
of DM, WSC, and NDF and the number of yeasts in forages. Treatments with S3 have
significantly higher contents of lactic acid, acetic acid, and lactic acid bacteria in the feed
than those in the S1 and S2 treatments, while the contents of AN /TN and propionic acid
were significantly lower compared with the S1 and S2 treatments (p < 0.05). Concentrations
of lactic acid, acetic acid, and propionic acid were significantly increased and the content of
neutral detergent fiber in the T2-treated silage decreased compared with the T1 treatment
(p < 0.05). The T3 treatment significantly reduced the number of yeasts in the silage but
the compound lactic acid bacteria additive treatment (T1, T2) significantly decreased the
butyric acid content and pH of the feed and increased the acid detergent fiber content and
the number of lactic acid bacteria in the feed compared with the T1 treatment. Among
them, the butyric acid content of the T3 treatment decreased by 63.64-86.05%, while that of
the T2 treatment decreased by 36.36-83.33% (p < 0.05). The comprehensive analysis of the
membership function revealed that the silage quality was the best after the S3T2 treatment,
so the implementation of the S3T2 combination in the Northwest Sichuan Plateau can
provide guarantees for the production of local high-quality forage grass and alleviate the
shortage of forage grass.

Keywords: Zhuang Lemei IV silage additive; Fu Zhengxing silage additive; legume and
grass silage; silage quality
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1. Introduction

The Northwest Sichuan Plateau is one of the five major pastoral areas in China, which
is rich in grassland and livestock resources, and animal husbandry is the local leading
industry [1]. However, long-term overgrazing has led to the serious deterioration of
the grassland ecological environment in this area, the productivity of natural forage has
decreased and the quality has deteriorated, and the contradiction between forage supply
and demand has intensified, which has greatly restricted the development of the local
animal husbandry economy [2]. Oat (Avena sativa L.) and common vetch (Vicia sativa L.) are
the main forage grasses in the Northwest Sichuan Plateau, which have the characteristics of
strong acceptability, high nutritional value, and good palatability [3,4]. Studies have shown
that planting oat and common vetch mixed grassland at a ratio of 2:1 in plateau areas
above 3000 m above sea level not only makes full use of natural resources such as land and
climate, but also improves soil fertility, increases forage production, and enhances forage
quality [5,6]. In recent years, the area of oat and common vetch artificial grassland planting
in the Northwest Sichuan Plateau area has been expanding year by year, but the harvest
time of oat and common vetch is in the rainy season, the local temperature is low, and it is
very easy for the traditional hay preparation to cause forage mildew rot and nutrient loss [1].
Therefore, the selection of a forage processing method suitable for the Northwest Sichuan
Plateau is the key link to producing high-quality forage and alleviating the contradiction
between forage supply and demand. Silage, as a forage preparation technology with lactic
acid bacteria fermentation as the core, can effectively prevent the decay and mildew of
forage grass, improve its nutritional value, and prolong the silage period [7]. However,
forage silage is a complex biochemical process, and microbial community succession
and external factors can affect the fermentation effect of silage [8,9]. The high altitude,
strong radiation, and extremely arid and cold climate of the Northwest Sichuan Plateau
significantly affected the microbial community attached to the surface of forage, resulting
in a decrease in microbial metabolic activity, slow growth of lactic acid bacteria, and growth
dominance of undesirable microorganisms, which increased the risk of silage failure [10,11].
Therefore, it is imperative to seek a good solution to solve the difficult problem of the
unstable quality of the forage of oat and common vetch.

Exogenous addition of lactic acid bacteria preparation is one of the important means
to promote the rapid dominance of forage bacteria [12]. The increase in the number of lactic
acid bacteria can significantly improve the quality of silage, but different lactic acid bacteria
have different functions, and the effect of lactic acid bacteria additives may vary depending
on the fermentation substrate; in addition, when different types of lactic acid bacteria are
compounded together in a certain ratio, their synergistic effects also vary [13,14]. Previous
studies have found that the addition of Lactobacillus buchneri alone or in combination with
Lactobacillus plantarum to maize and sorghum silage can improve the aerobic stability of
silage under low dry matter content conditions, but the addition of Lactobacillus buchneri in
combination with Lactobacillus plantarum also reduces the content of ammoniacal nitrogen
and fermentation losses compared with the addition of a single Lactobacillus buchneri. When
Lactobacillus plantarum, Pediococcus pentosaceu, and Weissella cibaria were used to ferment
Hemarthria compressa, the single or compound addition of Lactobacillus plantarum, Pediococcus
pentosaceu, and Weissella cibaria could improve the quality of Hemarthria compressa silage,
but when lactic acid bacteria were added in pairwise, the effect on silage quality was
different. Among all the additives, the compound addition of three kinds of bacteria had
the best effect [15]. When Fu et al. [16] fermented Sorghum bicolor x Sorghum sudanense with
Lactobacillus plantarum, Pediococcus pentosaceu, and Lactobacillus brevis, it was found that the
combination effect of Lactobacillus plantarum and Lactobacillus brevis was the best, and the
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effect of the combination of the three bacteria was worse than that of Lactobacillus plantarum
alone or its compound with Lactobacillus brevis and Pediococcus pentosaceu. It can be seen
that the effects of lactic acid bacteria additives can vary depending on the interactions
between the bacteria and the fermentation substrate.

At present, there are few reports on compound lactic acid bacteria additives in the
Plateau of Northwest Sichuan, and we do not know whether compound lactic acid bacteria
additives can also improve forage quality in the special climate of the Northwest Sichuan
Plateau. Based on this, by adding different compound lactic acid bacteria additives, the
purpose of this study was to explore the effects of additives on the quality of oat and
common vetch silage in the Northwest Sichuan Plateau, in order to select the most suitable
compound lactic acid bacteria additives for oat and common vetch, and to provide a
theoretical basis and practical guidance for the production of high-quality silage in the
Northwest Sichuan Plateau.

2. Materials and Methods
2.1. Materials and Silage Additives

The seeds of oat and common vetch were supplied by Sichuan Nongken Muyuan
Paradise Agriculture and Animal Husbandry Science and Technology Co (Ruoerge County,
Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province, China). The oat (Avena
sativa ‘Qinyin No. 3’) and the common vetch (Vicia sativa ‘Ximu 324") were harvested from
the Tangke town, Ruoergai country, Sichuan province (102°48’ E, 33°49" N, altitude 3450 m)
on 28 August 2021. When the oat was in the filling stage and the common vetch was at
the podding period. Tangke Town has a plateau frigid—temperate climate, with sufficient
sunshine, concentrated rainfall, large daily temperature difference, and no absolute frost-
free period. The characteristics of silage raw materials are shown in Table S1.

The compound lactic acid bacteria additive Zhuang Lemei IV (Lactobacillus plantarum
550, Lactobacillus plantarum 360, Lactobacillus buchneri) was from Sichuan Gaofuji Biotechnol-
ogy Co., Ltd. (Chengdu City, Sichuan Province, China), and Fu Zhengxing (two types of
Lactobacillus corn, Lactobacillus casei) was from Sichuan Fu Zhengxing Biotechnology Co.,
Ltd. (Meishan City, Sichuan Province, China).

2.2. Silage Preparation and Treatments

The experiment was a two-factor completely randomized design. Three raw materials:
S1, whole-plant oat silage; S2, whole-plant common vetch single; S3, oat-common vetch
mixed silage (weight ratio of mixed sowing of oat and common vetch was 2:1). Two
silage additives: the compound lactic acid bacteria additive Zhuang Lemei IV (12), the
compound lactic acid bacteria additive Fu Zhengxing (T3), and an equal volume of sterile
water control (T1). The harvested oat and common vetch were cut into 2-3 ¢m, and the
compound lactic acid bacteria preparations were inoculated at a rate of 5 x 105 cfu/g
FW, and then evenly sprayed into each silage material. The mixed samples of 300 g were
immediately vacuum-sealed in 30 cm x 40 cm single threaded polythene bags and a total of
27 silage samples (3 materials x 3 additives x 3 replicates) were stored in the local outdoor
environment. After 60 days of fermentation, the silage quality, nutritional quality, and the
number of microorganisms were determined.

2.3. Measurement Items and Analysis Methods
2.3.1. Chemical Compositions Analysis

Fresh samples and silage materials were de-enzymed at 105 °C for 30 min, then placed
in a blast dryer at 65 °C and dried for 3 days to determine the dry matter (DM) content. The
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dried materials were stored after grinding and filtering with a 1.0 mm sieve for subsequent
analysis. The water-soluble carbohydrate (WSC) content was analyzed by the anthrone-
sulfuric acid colorimetric method [17]. The crude protein (CP) and total nitrogen (TN)
contents were detected using the Dumas combustion method [18]. The neutral detergent
fiber (NDF) and acid detergent fiber (ADF) were determined according to the method of
Van Soest et al. [19].

2.3.2. Fermentation Compositions Analysis

An amount of 20 g of fresh samples was evenly mixed in 180 mL of 0.85% NaCl sterile
saline, extracted in a refrigerator at 4 °C for 24 h, and then the remaining liquid was filtered
through 4 layers of gauze, and the extracts were stored in a —20 °C freezer for subsequent
fermentation quality determination. The filtrate pH was determined with a glass electrode
pH meter. The ammonia nitrogen (AN) content was analyzed by the phenol-hypochlorite
method [20]. The contents of lactic acid (LA), acetic acid (AA), propionic acid (PA), and
butyric acid (BA) were analyzed by high-phase liquid chromatography (HPLC, KC-811,
Shimadzu Co., Ltd., Kyoto, Japan). The column used was a Shodex Rspak KC-811 S-DVB
gel column (Lisennoke Scientific Instruments Co., Ltd., Shanghai, China) with an SPD-
M10AVP detector (Shimadzu Co., Ltd., Kyoto, Japan). The setting parameters were as
follows: the wavelength was set to 210 nm. The mobile phase was 3 mmol/L perchloric
acid, the column temperature was 50 °C, and the flow rate was 1 mL/min [21].

2.3.3. Microbial Community Counting

The microbial community count was based on the method of Zeng Tairu et al. [21]. The
specific method was as follows: the 20 g sample was mixed into 180 mL sterile saline (0.85%
NaCl), placed on a 4 °C shaker for 1 h, then filtered, and then serial dilution was performed
from 10~ ! to 10~ 7. Enterobacter were cultivated on Violet Red Bile Agar (Difco, Hopebil,
Qingdao, China) and counted after 24 h of aerobic growth at 37 °C. Lactic acid bacteria
were cultured on De Man, Rogosa, and Sharpe agar (Difco, Hopebil, Qingdao, China) and
counted after 48 h of anaerobic growth at 37 °C. Molds and yeasts were determined by
Potato Glucose agar (Difco, Hopebil, Qingdao, China) and counted after 72 h of aerobic
growth at 28 °C. Yeasts and molds were distinguished by colony appearance and cell
morphology observation.

2.4. Statistical Analyses

The data were collated and calculated using Excel 2019; the results of the microbial
plate smear counts needed to be converted into log10 cfu/g of FM before statistical analysis.
The one-way ANOVA and multi-way ANOVA were performed using SPSS 27.0 for the
additives and materials. Duncan’s multiple tests were used to compare the mean values of
the different chemical compositions and the fermentation qualities of the silage. Results
were expressed as mean + standard deviations. Significant differences existed if the
probability level was below 0.05.

In order to comprehensively evaluate the effects of different lactic acid bacteria ad-
ditives on the silage quality of oats and common vetch silage, the membership function
value method was used to analyze the measured indexes [20], in which dry matter, crude
protein, water-soluble carbohydrate, lactic acid, acetic acid, and lactic acid bacteria were
considered as positive indicators, and neutral detergent fibers, acid detergent fibers, pH,
ammonia nitrogen/total nitrogen, butyric acid, and yeasts were considered as negative
indicators. The values of the membership function of the individual indicators of the
different treatments were calculated separately, and then the average membership function
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value of each treatment was calculated; the larger the value, the better the quality of the
silage. The membership function value formula is as follows:

X(w) = X;(a:iz(f;‘(ﬁm (positive correlation);

X(n2) =1 — X(py) (negative correlation);

Xu: the membership function value of a silage treatment under an additive;

X: the measured value of an index for a silage treatment;

Xmin and Xmax: the minimum and maximum values of an indicator in all processes,

respectively.

3. Results
3.1. Fermentation Quality of Oat and Common Vetch Silage

The fermentation quality of silage treated with different compound lactic acid bacteria
additives is shown in Table S2. The material, additives, and their interactions significantly
affected the pH, LA, AA, and BA content of the silage (p < 0.05). In comparison with
the T1 treatment, the pH of S1, S2, and S3 was significantly decreased in the T2 and T3
treatments (p < 0.05), and the pH was less than 4.2. The AN/TN of all treatments was
lower than 28 g-kg ! DM, and the AN/TN of the S3 treatment was lower than that of the
S1 and S2 treatments. Among the S1, S2, and S3 treatments, the contents of LA and AA
in the S3 treatment were the highest. Compared with the T1 treatment, the T2 treatment
significantly increased the LA content of the silage (p < 0.05), and the S3T2 treatment had
the highest LA content of 40.86 g-kg~! DM (p < 0.05). In addition to the S1T3 treatment, the
T2 and T3 treatments significantly increased the AA content of the silage compared to the
T1 treatment (p < 0.05), and the S3T3 treatment had the highest AA content of 14.94 g-kg~!
DM. The LA/AA ratio was higher than 2:1 for all treatments throughout the fermentation
process. The T2 treatment significantly increased the PA content of the silage (p < 0.05), and
the highest PA content was 2.87 g-kg~! DM in the S2T2 treatment. In this study, the BA
content of all treatments was less than 0.9 g-kg~! DM.

3.2. Chemical Characteristics of Oat and Common Vetch Silage

The chemical characteristics of silages treated with different compound lactic acid
bacteria additives are shown in Table S3. The materials, additives, and their interactions
significantly affected the DM, WSC, and NDF content of the silage (p < 0.05). The DM
content of all treatments ranged from 160.62 to 262.03 g-kg~! FM, and the S3 treatment had
a higher DM content (p < 0.05). In comparison with the T1 treatment, the T2 treatment sig-
nificantly decreased the CP content of the S1 and S3 treatments (p < 0.05). The T2 treatment
significantly increased the WSC content of the silage compared to the T1 treatment, while
the T3 treatment significantly decreased the WSC content of the S1 and S3 treatments, and
the S1T2 treatment had the highest WSC content among all treatments at 61.27 g-kg~! DM
(p < 0.05). Except that the ADF content of the S3T2 treatment decreased compared with the
S1 treatment, the NDF and ADF content of the S3 treatment increased in other treatments.
In contrast to the T1 treatment, the T2 treatment decreased the NDF content of the silage,
while the T3 treatment only led to a reduction in the NDF content of the S3 treatment. Both
the T2 and T3 treatments demonstrated a significant increase in the ADF content of the
silage (p < 0.05), with the T3 treatment exhibiting a more pronounced increase (7.25~18.09%
vs. 23.77~34.72%).

3.3. Microorganisms of Oat and Common Vetch Silage

The number of microbial populations in the silage treated with different compound
lactic acid bacteria additives is shown in Table S4. The materials, additives, and their
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interactions significantly affected the number of yeasts in the silage (p < 0.01). Compared
with the T1 treatment, the T2 and T3 treatment increased the number of lactic acid bacteria in
the silage, in which the number of lactic acid bacteria treated with S3 increased significantly,
and the number of lactic acid bacteria treated with S3T3 was the highest (7.52 logjo cfu-g~!
FM). The T2 treatment demonstrated a reduction in yeast populations in 52 and S3, while
the T3 treatment significantly decreased the number of yeasts in the silage compared to the
T1 treatment (p < 0.05). Notably, no yeast was detected in the S1T3 and S2T3 treatments.

3.4. Comprehensive Evaluation of Silage Quality of Oat and Common Vetch with Different LAB
Additives

Using the membership function analysis method, Table S5 shows the comprehensive
evaluation of oat and common vetch silages” quality with different compound lactic acid
bacteria additives. The membership function analysis of each index of the tested treatment
showed that the dry matter, crude protein, water-soluble carbohydrate, lactic acid, acetic
acid, and lactic acid bacteria were positive indexes. The neutral detergent fiber, acid
detergent fiber, pH, AN/TN, BA, and yeasts were negative indexes. According to the
ranking of the membership function values of the above indexes, it can be seen that the
average value of the membership function of the experimental group is higher than that
of the control group, indicating that lactic acid bacteria additives can improve the quality
of silage, and the ranking result of the membership function is S3T2 > S3T3 > S1T2 >
S2T2 > S2T3 > S1T3 > S3T1 > S1T1 > S2T1. In general, the improvement effect of the T1
and T2 treatments on the S3 treatment tended to be the same, but the T2 treatment had a
better-quality improvement effect on the S1 and S2 treatments.

4. Discussion
4.1. Effects of Different LAB Additives on Fermentation Quality of Oat and Common Vetch Silage

The pH is an important index to evaluate the fermentation quality of silage, and it
is generally believed that the pH of high-quality silage should be less than 4.2 [22]. The
soluble carbohydrate content of grass forage is rich, which provides sulfficient substrate for
the growth and reproduction of lactic acid bacteria, so after exogenous addition of lactic
acid bacteria, the number of lactic acid bacteria in silage increases, accelerating the lactic
acid production, and the pH value decreases. However, legume forage has a low content of
water-soluble carbohydrate, a high buffering energy, and a high content of soluble proteins,
which can be rapidly degraded to form NH**, and inhibit the decrease in the pH value [23].
After mixed silage, it balanced the nutrient composition of both, such as the increase in
water-soluble carbohydrate in silage compared with legume forage silage alone, which
provided the conditions for lactic acid bacteria to convert soluble carbohydrate into organic
acids, and the increase in the lactic acid content in the silage, which in turn led to the
decrease in its pH value [24]. The ability of lactic acid bacteria to utilize fermentation
substrates such as water-soluble carbohydrate varies according to the species of lactic acid
bacteria, which may be the reason why in the present study, the Zhuang Lemei IV additive
significantly reduced the pH value of the single-silage group of oat and common vetch,
while the Fu Zhengxing additive significantly reduced the pH value of the mixed-silage
group [13], but the specific reasons need to be explored in the near future. AN/TN reflects
the proteolysis, and generally high-quality silage requires the AN/TN to be less than
100 g-kg~! DM [25]. In this study, the AN/TN of the treatments was all less than 28 g-kg !
DM, and the AN/TN content of the silage was decreased after the mixed silage of oat and
common vetch, which may be due to the mixed silage balancing the characteristics and
microbial communities of the two kinds of forage grass, inhibiting the reproduction of
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undesirable bacteria, and then decreasing the degradation of crude protein in the silage [26].
The content of organic acids can reflect the fermentation process of silage and is considered
to be a homofermentation-dominated process when the ratio of lactic acid to acetic acid
is at least higher than 2:1, which is a desired result in silage. Legume forages have acetic
acid bacteria attached to themselves and this can produce acetic acid before anaerobic
conditions are reached, thus allowing the accumulation of lactic and acetic acid in the
silage [26]. The effect of two compound lactic acid bacteria additives on the accumulation
of the acetic acid content of the silage was similar to its effect on the silage pH; when
the Zhuang Lemei IV silage additive was added, it promoted the accumulation of lactic
acid and acetic acid in the silage, but the addition of the Fu Zhengxing silage additive
will cause most of the lactic acid in the oat and common vetch single-silage group and
mixed-silage group to be isomerized to acetic acid, which will result in a relative decrease
in the lactic acid content and an increase in the acetic acid content of the two groups [27], so
it is presumed that there is also a competitive relationship between exogenous bacteria and
microorganisms naturally attached to the surface of the forage, and that the addition of the
Zhuang Lemei IV silage additive might introduce bacteria that have benign interactions
with the forage microorganisms themselves, and that the addition of the Fu Zhengxing
silage additive may have resulted in the dominance of heterogeneous fermenting lactic
acid bacteria [13]. Propionic acid is a secondary metabolite produced by the fermentation
of lactic acid by Propionibacterium. A small amount of propionic acid acts similarly to
acetic acid and is effective in preserving silage nutrients. Butyric acid is produced by the
decomposition of proteins and lactic acid by spoilage bacteria, the lower the content of
which the better [28,29]. In this study, the contents of propionic acid and butyric acid
in all treatments were less than 2.9 g-kg~! DM and 0.9 g-kg~! DM, respectively, which
met the requirements of high-quality silage. However, the propionic acid content in the
silage increased significantly after the addition of the Zhuang Lemei IV additive, which
may be caused by the increased activity of Propionibacterium after the addition of the
Zhuang Lemei IV silage additive [13], but the specific reason is still unclear and needs to
be further explored. In general, the results of this study showed that the mixed silage of
oat and common vetch and the addition of lactic acid bacteria could effectively improve
the fermentation quality of the silage.

4.2. Effects of Different LAB Additives on Chemical Characteristics of Oat and Common
Vetch Silage

The content of each nutrient composition is an important index to evaluate the nutri-
tional quality of silage. In the silage fermentation process, lactic acid bacteria need to use
forage water to promote their own life activities, so the dry matter content of silage has
an important impact on fermentation [30]. This study found that the dry matter content
of the oat and common vetch mixed silage was higher than when the two forages were
silaged separately, but the dry matter content was consistently 259.73-262.03 g-kg~! FM,
which may be related to the high dry matter content of the oats themselves. It meets the
requirements of high-quality silage [31], indicating that the mixed silage of oat and common
vetch can improve the feeding value of the silage. Crude protein is an important index to
reflect the quality of silage, and its content is negatively correlated with AN/TN. In this
study, it was found that the crude protein content of oat and common vetch increased after
mixed silage without lactic acid bacteria preparation, but if exogenous lactic acid bacteria
preparation was added, the change in the silage crude protein content varied with different
additives. For example, the addition of the Fu Zhengxing silage additive had no significant
effect on the crude protein content of the silage, but the addition of the Zhuang Lemei IV
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lactic acid bacteria additive decreased the crude protein content of the oat single-silage
and mixed-silage group, which was similar to the change in AN/TN. This shows that
the mixed silage of oat and common vetch can give full play to the characteristics of the
two kinds of forage grass and balance their nutrients, and the difference in the effect after
adding lactic acid bacteria may be related to the interaction between exogenous lactic acid
bacteria and the lactic acid bacteria attached to the forage grasses themselves, as well as
the different adaptability of different lactic acid bacteria to fermentation substrates [14].
Water-soluble carbohydrates are the material basis for lactic acid bacteria fermentation,
and their content is an important factor in determining the fermentation process of silage.
After utilizing the water-soluble carbohydrates in silage, lactic acid bacteria convert them
into organic acids, which in turn inhibit the activity of undesirable microorganisms and
reduce the consumption of water-soluble carbohydrate by undesirable microorganisms [32].
However, since the consumption of water-soluble carbohydrate in silage by lactic acid
bacteria themselves is also larger, exogenously added lactic acid bacteria with relatively
strong metabolic activity will accelerate the consumption of water-soluble carbohydrates in
silage when they multiply in large quantities in silage, and the number of lactic acid bacteria
under the treatment of the Fu Zhengxing silage additive is significantly higher than that
under the other treatments, which explains the significant reduction in the number of lactic
acid bacteria after the addition of the Fu Zhengxing silage additive in the water-soluble
carbohydrate content in the oat and mixed-silage groups [16]. Fiber and its compositions
are the key indexes for the routine evaluation of silage quality. The appropriate content of
neutral detergent fiber can increase the saliva secretion of livestock, but too high a content
will affect the digestibility of livestock and the lower the content of acid detergent fiber, the
higher the feeding value [33]. The cellular respiration and rapid growth and reproduction
of lactic acid bacteria in the early stage of silage will consume part of the nutrients in silage,
which in turn leads to an increase in the proportion of acidic and neutral detergent fiber
in silage [34], and the number of lactic acid bacteria in the mixed-silage group was higher
than that in the single-silage group, which explains well the increase in the content of
neutral detergent fiber and acid detergent fiber in the silage after the mixing of leguminous
and grassy forage for silage. However, the effects of different additives on the forage fiber
fractions were inconsistent and may also be related to the interaction between the bacteria
and fermentation substrate as well as the characteristics of the two types of fibers [35], but
the exact reason for this is not clear. Further exploration is needed.

4.3. Effect of Different LAB Additives on Microorganisms of Oat and Common Vetch Silage

Silage is a technology based on the vital metabolic activities of microorganisms that
enable the long-term preservation of forage, and the type and number of microorganisms
directly affect the fermentation quality of silage, and lactic acid bacteria are the core
microorganisms of silage fermentation [36]. In this study, the mixed storage of oat and
common vetch increased the number of lactic acid bacteria in the silage, indicating that the
mixed silage played the complementary effect of the two kinds of forage grass, making
the silage nutrition more comprehensive and providing more abundant and diversified
sources of nutrition for the reproduction of lactic acid bacteria [26]. In addition, the number
of lactic acid bacteria in the silage was increased by the addition of exogenous lactic acid
bacteria preparations, among which the number of lactic acid bacteria treated with Fu
Zhengxing additive was the highest, which indicated that the added lactic acid bacteria
would multiply in large quantities in silage, but the degree of reproduction varied with
different types of lactic acid bacteria [15]. Yeasts are the main microbial responsible for the
aerobic deterioration of silage, which affects silage quality mainly by decomposing sugar
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and lactic acid [37,38]. Yeast can utilize lactic acid for raw reproduction, and the mixed
silage of oats and arrow end peas increased the yeast population of the forage, which was
attributed to the higher lactic acid content of the mixed-silage group, which increased the
supply of substrate needed for yeast growth and promoted yeast reproduction [39]. The
addition of the Fu Zhengxing treatment significantly decreased the number of yeasts in
the silage, and the treatment with the Zhuang Lemei IV additive decreased the number of
yeasts in the single silage of the common vetch and mixed-silage group. This is because
the addition of lactic acid bacteria decreased the pH of the silage and inhibited the growth
and reproduction of yeasts [40], but it is doubtful that the addition of the Zhuang Lemei
IV silage additive significantly increased the number of yeasts in the oat single-silage
treatment, which may be the result of bacterial interactions [13], but the specific reasons
need to be further explored. Molds and Enterobacter are undesirable bacteria that affect
silage fermentation, and their excessive growth and reproduction will lead to silage failure.

5. Conclusions

In this study, we compared the effects of different compound lactic acid bacteria
additives on the quality of oat and common vetch silage quality. It was found that oat
and common vetch mixed silage balanced the nutritional characteristics of the two kinds
of forage grass and made the nutrients of silage more comprehensive compared with
the silage of the two forages alone. Both the Zhuang Lemei IV silage additive and Fu
Zhengxing silage additive were beneficial in improving the quality of the silage. Combined
with the comprehensive analysis of the affiliation function, the use of Zhuang Lemei IV
compound lactic acid bacterial additive is recommended for oat and common vetch silage
under the special climatic conditions of the Northwest Sichuan Plateau, which has a better
effect on quality enhancement and efficiency.
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Abstract: The biotechnological production of carotenoids offers a promising alternative to
their chemical synthesis or extraction from plants. Mycolicibacterium species have shown
potential as pigment-producing microorganisms. However, bacterial strains typically
exhibit lower productivity compared to fungal and yeast strains. Earlier, we enhanced the
(3-carotene biosynthesis in M. neoaurum strain VKM Ac-3067D by modifying the cultivation
medium. Key changes included replacing glucose with glycerol and soybean meal with
skimmed milk powder (SMP) and increasing the urea content from 0.5 to 1.0 g/L. To further
optimize (3-carotene yield, a steepest ascent method was applied combining factorial design
with a gradient-based optimization (Wilson-Box method). The resulting regression model
showed that the most influential factors were the glycerol concentration and SPM use. The
in-flask fermentation of the Ac-3067D strain in a medium containing 25.5 g/L of glycerol
(carbon source) and 12.80 g/L of SMP (nitrogen source) increased (3-carotene yield to
318.4 &+ 8.3 mg/kg. In a 15 L bioreactor, 3-carotene yield increased to 432.3 £ 10.4 mg/kg,
while the biomass concentration reached 23.2 + 1.2 g/L. The further scaling up to a 100 L
bioreactor increased both 3-carotene yield (450.4 + 8.2 mg/kg) and biomass concentration
(25.2 £ 1.1 g/L). Thus, B-carotene production technology using the M. neoaurum strain
AC-3067D was successfully scaled up from 750 mL flasks to a 100 L bioreactor, confirming
its potential for industrial-scale application.

Keywords: mathematical planning; (3-carotene; Mycolicibacterium neoaurum; nutrient
medium; fermentation; bioreactor; scaling up

1. Introduction

A high biological activity of carotenoids and their wide range of applications determine
the ongoing interest of researchers in finding effective methods for their production [1-5].
According to the available data, there are three main methods of the production of these
compounds, chemical synthesis [6,7], extraction [3,6,8-10], and biosynthesis, which is based
on the use of various microorganisms including fungi, yeast, bacteria, and microalgae [2-5].

To date, the majority of commercial carotenoids on the global market are of a chemical
origin [11,12] that is explained by low production costs, relatively high yield of target
products, and the lack of the productivity dependence on a season [12]. However, chemical
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synthesis has several drawbacks. First, not all carotenoids can be produced via chemical
synthesis. Second, toxic by-products are generated during their production, thus con-
tributing to environmental pollution. Third, chemically synthesized compounds can differ
from their natural analogues in their isomeric composition and effectiveness, and may also
cause allergic and other undesirable reactions. For example, natural astaxanthin consists
mainly of esterified forms (95%), while synthetic astaxanthin is non-esterified; as a result,
natural astaxanthin is 50-fold more effective in relation to the singlet oxygen neutralization
and 20-fold more effective in scavenging of free radicals [13]. In addition, a global trend
to prefer natural carotenoids has been observed in recent years among consumers. All
these facts suggest that in the nearest future, the focus of carotenoid production may shift
towards the use of natural sources.

Technologies related to the carotenoid extraction from natural plant sources are cer-
tainly positively assessed by consumers. However, the stability of the manufacturing
processes is complicated by a seasonality of carotenoid sources, relatively low yield, and
the need for the purification of the target product from other metabolites that does not
completely meet the requirements of industrial production, and it is often labor-consuming,
and requires significant land areas for the cultivation of target plants [14].

Bacteria represent another potential type of producers suitable for the microbiological
production of carotenoids, because they are widely used in the large-scale production of
various biological compounds and have a short life cycle [3,15-17]. The suitable producers
may include either naturally pigmented bacteria, or genetically modified bacteria, which
initially were not able to synthesize pigments.

The ability of a producer strain to synthesize compounds with specific properties
depends not only on individual characteristics of the strain, but also on the conditions,
under which the target product is obtained. Determining the composition of a cultivation
medium is an effective method for increasing biosynthetic activity of microorganisms
producing biologically active compounds [18,19]. The medium composition can be deter-
mined by two ways: empirical selection, or the use of mathematical design of experiments.
The traditional empirical selection method is widely used for determining the optimal
cultivation conditions for microorganisms [19]. However, experimental design makes it
possible to simultaneously vary all factors and to provide a quantitative evaluation of the
influence of key factors and interactions on the yield of the target parameter with smaller
errors compared to the traditional one-factor methods [20-24]. The ultimate goal of the
mathematical modeling is the controlled cultivation of producer strains to achieve the
maximum yield of the biomass or target metabolites.

For example, modeling of the nutrient medium composition for Candida melibiosica
strain 2491 enabled its optimization, so its use for the yeast cultivation increased the phytase
biosynthesis by 22.5% [23]. This approach was also used in the planning of (3-carotene
production by Rhodotorula glutinis ATCC 4054. Rice bran, molasses, and sugarcane bagasse
were tested as substrates. As a result, rice bran was found to be the best inexpensive
substrate for the biomass growth and (3-carotene production. Using mathematical plan-
ning, the optimal contents of medium components were determined, including sucrose
(18.6 g/L), NaCl (0.66 g/L), and KH,POy (1.01 g/L). In addition, the optimal amount of
the inoculum, pH (5.4), and stirring rate were established, which provided a several-fold
increase in the biosynthesis of the target product [24].

Fast-growing, non-pathogenic bacteria from the genus Mycolicibacterium, which have been
shown to synthesize (3-carotene and lycopene as well as several other pigments [17,24-26],
can be considered as promising producers of carotenoids. In our earlier studies, we
developed the M. neoaurum strain AC-501/22 via chemical mutagenesis and optimized its
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cultivation conditions in a 3 L bioreactor to achieve a (3-carotene yield of 262.4 mg/kg of dry
biomass [27]. The strain was deposited in the All-Russian Collection of Microorganisms
(accession number M. neoaurum VKM AC-3067D). The purpose of this study was the
optimization of the nutrient medium composition using mathematical planning and its
approbation under conditions of a submerged cultivation of the AC-3067D strain during
the scaling up of the process from flasks to a 100 L bioreactor.

2. Materials and Methods
2.1. Reagents and Media Components

Skimmed milk powder was manufactured by HiMedia Laboratories (Mumbai, India).
Urea was manufactured by NeoFroxx GmbH (Einhausen, Germany). Skimmed deodorated
soybean flour was purchased from Soyanta 200 (Irkutsk, Russia). Citric acid was manu-
factured by Component-reactiv Ltd. (Moscow, Russia). Agar was manufactured by Difco
(Detroit, MI, USA). Inorganic salts, glycerol, glucose, and organic solvents (acetone, hexane,
benzene) were purchased from Acros Organics (Geel, Belgium).

2.2. Producer Strain

M. neoaurum strain AC-3067D was stored in the working collection of the Laboratory
of Biotechnology of Industrial Microorganisms of the Russian Biotechnological University
(Moscow, Russia).

2.3. Nutrient Media for M. neoaurum Cultivation and Maintenance

M. neoaurum VKM Ac-3067D was cultivated on the A1 medium of the following
composition (g/L): agar, 17.0; glucose, 10.0; soybean meal, 10.0; citric acid, 2.2; urea,
0.5; NH4Cl, 1.0; KHpPOy, 0.5; MgSO4-7H0, 0.5; FeSO4-7H,0, 0.05; and CaCOs3, 1.5
(pH 6.8-7.2). After being stored on an agarized medium at 4 °C for one month, the cultures
were transferred to a fresh medium. For long-term preservation, the cultures were freeze-
dried with a powdered milk as a carrier and stored at 4 °C.

2.4. Cultivation of M. neoaurum VKM Ac-3067D on a Liquid Nutrient Medium

The control liquid medium (AM medium) used for the further modification had the
following composition (g/L): glycerol, 20.0; skimmed milk powder (SMP), 10.0; citric acid,
2.2; urea, 1.0; NH4Cl, 1.0; KHPOy, 0.5; MgSO4-7H0, 0.5; FeSO4-7H,0, 0.05; and CaCO3,
1.5 (pH 6.8-7.2).

The inoculum was prepared as follows. A tube containing the bacterial culture was
supplemented with 10 mL of a sterile physiological solution. The agar surface was gently
scraped using an inoculation loop, and the obtained cell suspension was transferred into
750 mL flasks containing 100 mL of the AM medium followed by the 48-h incubation of
flasks at 220 rpm and 35 °C in an Innova 44 shaker (New Brunswick, Germany). The
obtained inoculate (10 vol. %) was then transferred to fresh flasks containing 100 mL
of the same medium and cultivated for 72 h under identical conditions. The resulting
culture broth was either used to inoculate the bioreactor, or dried and then analyzed for
the carotenoid content.

2.5. Carotenoid Content Determination

The carotenoid content in the cell biomass of M. neoaurum VKM Ac-3067D was mea-
sured spectrophotometrically [27]. The procedure was conducted under low illumination
with the room temperature maintained below 20 °C. A 30-mL aliquot of culture broth was
centrifuged for 5 min at 7500 rpm. The supernatant was discarded, and the remaining
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biomass underwent a 3-fold extraction using 10 mL of acetone. The resulting acetone
extracts were pooled, transferred into a separating funnel, and mixed with petroleum ether
(10 mL). After vigorous shaking, the resulted emulsion was broken by a adding a saturated
NaCl solution dropwise. Once the acetone layer separated, the solution was re-extracted
with petroleum ether. The petroleum ether extracts were pooled and filtered through a
glass filter. The absorption spectrum of the carotenoid extract was recorded at 450 nm using
a Thermo Spectronic spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
with petroleum ether used as a reference. The total carotenoid content was determined
using the following formula:

V(mL) x Agso x 10°
2592 x 100 x m(g) ’

Carotenoid content (ug/gd.w.) = (1)
where Aysp is the experimentally determined adsorption of the measured solution; 2592 is
the value of a 1% extinction; and m is the weight of dried cells (g).

2.6. Nutrient Medium Optimization Using the Mathematical Planning Method (Complete
Factorial Experiment, CFE 23)

2.6.1. Nutrient Medium Optimization by a Complete Factorial Experiment (CFE)

To perform the nutrient medium optimization by CFE [28], three factors were chosen:
glycerol concentration (X1), SPM concentration (X2), and urea concentration (X3). Variations
of these factors were arranged on two levels, bottom (-1) and upper (+1). The plan center
(Z) was chosen based on the research executed on the influence of these components on
the 3-carotene biosynthesis and the biomass yield [28]. The sizes of variation steps () for
these factors are shown in Table 1.

Table 1. The plan center and the variation step of the studied factors.

Factors X1 X2 X3
Variables Glycerol SMP Urea
Concentration, g/L 20.0 10.0 1.0
5,g/L 2.5 1.5 0.15
Low level (-1), g/L 17.5 7.5 0.85
High level (+1), g/L 22.5 11.5 1.15

The number of experiments N was determined by the following formula:
N=n xk, 2)

where 7 is the number of the levels of variation and k is the number of factors.
The regression coefficients were determined using Formulas (3) and (4):

Xy
bo = =5 ®3)
_ Z[(x)]iuyu
bi - N 7 (4)

where N is the number of experiments calculated by Formula (2), 7 is the experimentally
obtained value of the parameter, x;, is the value of the variable in the corresponding column
of the experiment plan, u is the number of the experimental variant, and i is the number of
a factor.
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The coefficients of interaction (b2, b13, bps, b123) were determined using Formulas (5)
and (6):

. — Zuct XXl )
v N

S XiuXjiXu Y
bijp = ——5—— (6)
N
where x;, xj,, and xy, are variable values in the corresponding column of the planning
matrix and ¥, is the average value of the optimization parameter.
The line-by-line dispersion was determined by Formula (7):

2
) Y (ur)® — L;zfl)
Syul = m— 1 ’ (7)

where u is the row number in the planning matrix, [ is the number in each row, and m is the
number of parallel experiments.
A single-value dispersion is calculated using Formulas (8) and (9):

2
S2 _ Z:S]/ul
b mNZ’

S, = /3. ©)

The error determination is calculated by Formula (10):

®)

lbi =t x Sbir (10)

where ¢ is Student’s coefficient at t g5 determined as a tabulated value for the given number
of the degrees of freedom (f).
Degrees of freedom were calculated using Formulas (11) and (12):

f=(m—1)-N, (11)
where m is the number of parallel experiments and N is the total number of experiments.
fua=N-N, (12)

where N is the number of experiments and N’ is the number of significant regression coefficients.
The dispersion of adequacy was calculated using Formula (13):

S2 _ E(yu - yu)z

W= NN (13)

where N is the total number of experiments, N’ is the number of significant regression
coefficients including by, 7 is the experimentally obtained factor value, and y is the factor
value calculated by the obtained regression formula.
Then, using Formula (14), the dispersion of reproduction was calculated:
Z S; ul

Sz = it (14)
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The Fisher criterion was calculated using Formula (15):

S2,
F, = S—“z (15)
y
The uniformity and reproducibility of the experiment were evaluated by the Cochran
test (Gp) using table data.

2.6.2. Nutrient Medium Optimization Using the Steepest Ascent Method

The nutrient medium optimization by the steepest ascent method was performed
according to [29]. After the assessment of the adequacy of the regression equation and the
fulfillment of the Fy, > F, condition, the next optimization stage is carried out using the
above-mentioned method. First, the L; coefficient is found according to Formula (16) to
calculate the steepest ascent program:

Li =0 X bi/ (16)

where ¢ is the variation step and b; is the regression coefficient.

The L; value can be either positive or negative. Therefore, the factor can either increase
or decrease. The factor with the maximum |L; | value is considered as the basic one. Then,
the new v; coefficients are calculated using Formula (17):

L;

|Lmax |

Vi 17)

In the case of the base factor (hbase, Formula (18)), the step for the movement along
the gradient is calculated according to Formula (19). First, the “reserve” for the movement
along each factor from the basic level up to a practical worthwhile value in the decreasing
or increasing direction is calculated by Formula (19).

Ai
hbﬂse = ?/ (18)

Ai = Ximax — Xip (A1 = Xig — Ximin), (19)

were 11 is the number of steps towards the maximum or minimum value of the X,y factor.
The n number is chosen arbitrarily; as a rule, it varies within 5-8 steps.
The movement step for other factors is calculated using Formula (20):

h = hbase X i (20)

If the regression coefficient of a planning factor is insignificant, then during a cal-
culation of the steepest ascent program, it can be used at the basic level. A new matrix
is constructed on the basis of the performed calculations, and then new experiments
are performed.

All experiments on the mathematical planning were performed three times, each in
three replications. The data shown in the Section 3 represent the means of these experiments.

2.7. M. neoaurum Fermentation in a 3 L Bioreactor
2.7.1. Inoculum Preparation

The procedure of inoculum obtaining was similar to that described in Section 2.4; the
following medium composition was used (g/L): glycerol, 25.5; powdered milk, 12.8; citric
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acid, 2.2; urea, 1.0; NH4Cl, 1.0; KHPOy, 0.5; MgSO4-7H,0O, 0.5; FeSO4-7H,0, 0.05; and
CaCO;3, 1.5 (pre-sterilization pH 6.8-7.2). Prior to the inoculation of the bioreactor, the
inoculum was microscoped using a Carl Zeiss Primo Star microscope (Carl Zeiss, Jena,
Germany) for the quality control. The inoculum volume further used for the bioreactor
seeding was 10% of the fermentation medium volume (150 mL). The inoculum was added
in the bioreactor via a sterile inoculum feeding line.

2.7.2. Bioreactor Preparation and Fermentation

M. neoaurum fermentation in a 3 L bioreactor was performed as described earlier [27].
After the completion of the process, the biomass was inactivated by a 30-min heating
at 80-85 °C with continuous stirring, then transferred out into a collection vessel, cen-
trifuged, and dried in a Martin Christ ALPHA 2-4LD plus freeze dryer (Martin Christ
Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany).

2.8. M. neoaurum Fermentation in a 15 L Bioreactor
2.8.1. Inoculum Preparation

An inoculum was produced in accordance with the procedure described in Section 2.4;
the medium composition was the same as described in Section 2.7.1. The inoculum obtained
in flasks was combined under sterile conditions into one 2 L flask with the bottom outlet.
The total volume of the inoculum was 1.0 L. Prior to the inoculation of the bioreactor, the
quality of inoculum was examined using a Carl Zeiss Primo Star microscope (Carl Zeiss,
Jena, Germany). The inoculum was transferred into the bioreactor via a sterile inoculum
feeding line.

2.8.2. Bioreactor Preparation

The fermentation system used in the study consisted of a computer-based automatic
control unit and three 15 L bioreactors (Prointech-Bio, Pushchino, Russia) connected via the
coupling elements with the feed lines for the direct steam, compressed air, and water. The
effective volume of bioreactors was 10 L. The units for monitoring culture broth parame-
ters included a Buk-3 thermal sensor connected to a controller (Keklab Group, Moscow,
Russia); an InPro 6800/12/220 oxygen sensor (Mettler Toledo, Greifensee, Switzerland)
connected to a controller regulating the work of the mechanical stirring device; and an
InPro3300/225/PT1000 pH sensor (Mettler Toledo, Greifensee, Switzerland) connected via
a controller to a peristaltic pump delivering a titrating solution.

Bioreactors were equipped with 0.2 um fine filters for compressed air. The preparation
and sterilization of the fermentation medium (see Section 2.8.1 for the medium composition)
were carried out directly within the bioreactor. Preliminarily, bioreactors with the air filters
were sterilized for 1 h at 121 & 2 °C. Then, all components of the fermentation medium
were sequentially loaded into each bioreactor through a receiver, and the volume of the
medium was adjusted to 10.0 L with purified water. If necessary, the pH level was adjusted
to 6.8-7.2. The medium was sterilized for 1 h at 125 &= 1 °C by introducing direct steam
into the bioreactor through a bubbler, sample collector, and bottom outlet.

2.8.3. M. neoaurum Fermentation

The pre-inoculation fermentation regime is shown in Table 2. The level of pO, was
controlled by changing the air supply volume to culture broth volume ratio (manual
mode) via changes in the stirrer’s rpm number (automatic mode). For both regimes, the

fermentation process duration was 82 h. The basic fermentation parameters are shown in
Table 3.
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Table 2. Pre-inoculation fermentation regime (15 L bioreactor).

Parameter Value
Medium volume 10.0L
Temperature 35+1°C
Aeration 0.1 L/min

Table 2. Cont.

Parameter Value

Stirring rate 250 rpm

POz level 100% of saturation
Pressure within the bioreactor 0.03-0.05 MPa
Medium pH 6.8-7.2

Table 3. Basic parameters for the M. neoaurum strain AC-3067D fermentation in a 15 L bioreactor.

Parameter Value
Temperature 35+1°C
Aeration 5-10 L/min
pH 6.8-7.2

400-450 rpm to maintain the required level of

dissolved oxygen

Feeding addition Glycerol (2.5 g/L) after 30 h of fermentation

Fermentation time 72-76 h

The first sampling to control the culture purity and crude
biomass weight is performed after 1824 h of fermentation.
The further sampling is performed as required, but at least
one time a day.

Stirring rate

Process control

Upon the completion of fermentation, the biomass of M. neoaurum was either inacti-
vated (see Section 2.7.2) or transferred via a seed train to seed a 100 L bioreactor.

2.9. M. neoaurum Fermentation in a 100 L Bioreactor
2.9.1. Inoculum Preparation

The inoculum for the bioreactor was obtained as described in Section 2.8.

2.9.2. Bioreactor Preparation

A 100 L bioreactor was connected via the control unit with the feed lines for the steam,
compressed air, and water as well as with an automatic control unit. The effective volume
of the bioreactor ranged from 60 to 70 L. The measurement devices required to control
fermentation medium parameters included a Buk-3 thermal sensor connected to a controller
(Keklab Group, Moscow, Russia), an InPro 6800/12/220 sensor for dissolved oxygen
(Mettler Toledo, Greifensee, Switzerland), connected via a controller to the mechanical
stirring device, and an InPro3300/225/PT1000 pH sensor (Mettler Toledo, Greifensee,
Switzerland) intended to manage the supply of a titrant solution by a peristaltic pump via
the controller.

The fermentation medium was mixed by a mechanical stirring device characterized by
the motor located on the top and the end seal; the stirring rate ranged from 50 to 600 rpm.
The pO; level was regulated by manual adjusting the air flow volume compared to the
fermentation medium volume and by automatic change in the stirring rate. The medium
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was sterilized directly in the bioreactor. After sterilization, the air flow rate and the pressure
within the bioreactor were set to be 35 L/min and 0.03 MPa, respectively; the dissolved
oxygen concentration in the medium was set to 100%. After the cooling of the bioreactor to
29-30 °C, a sterile medium sample was taken for a microbiological analysis.

2.9.3. M. neoaurum Fermentation

The pre-inoculation fermentation regime is shown in Table 4. The pO; level was
regulated by manual adjusting the air flow rate relative to the volume of the culture
medium with the automatic changes in the rpm number of the stirrer. For both regimes,
the process was conducted for 72-74 h. The basic fermentation parameters are shown in
Table 5.

Table 4. Pre-inoculation fermentation regime (100 L bioreactor).

Parameter Value
Medium volume 70.0L
Temperature 35£1°C
Aeration 3.5L/min
Stirring rate 250 rpm
POy level 100% of saturation
Pressure within the bioreactor 0.03-0.05 MPa
Medium pH 6.8-7.2

Table 5. Basic parameters for a M. neoaurum strain AC-3067D fermentation in a 100 L bioreactor.

Parameter Value
Temperature 35°C
Aeration 35-70 L/min
H Maintained at 6.8-7.2 using a sterile 10%
P HClI solution

400-450 rpm to maintain the required level of
dissolved oxygen
50% glycerol solution (2.5 g/L of medium) after
30 h of fermentation
Fermentation time 72-80 h

Stirring rate

Feeding addition

Upon the completion of fermentation, the biomass of M. neoaurum was inactivated (see
Section 2.7.2) and collected into a collector. After centrifugation, it was dried in a Martin
Christ ALPHA 2-4LD plus freeze dryer (Martin Christ Gefriertrocknungsanlagen GmbH,
Osterode am Harz, Germany).

3. Results
3.1. Optimization of Nutrient Medium Composition by CFE 23

In this study, the composition of the nutrient medium was optimized by the steepest
ascent method, which combines CFE with the Wilson-Box method. The planning factors
included the concentrations of glycerol, a surfactant (SMP), and urea (see Table 1). The
output parameter of optimization (y) was determined as the content of 3-carotene (mg/g)
in the culture broth (CB). The number of experiments was determined using Formula (2)
(N = 8 for this study); based on this, the experimental planning matrix for CFE 23 was
constructed (Table 6). Using this matrix, a series of experiments was conducted, each in
three replications. The results are shown in Table 3.
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The mathematical model equation should be the following:
Y = by + byx1 + byxy + b3xs,

where 7 is the process optimization parameter, b; is a regression coefficient indicating the
influence of factors on the optimization parameters, and x is the value of a factor level in
encoded units. The homogeneity and reproducibility of the experiment were evaluated
using Cochran’s criterion (Gp). For the obtained data, Gp = 0.2594, which is less than the
tabulated value for the used degrees of freedom (0.2594 < 0.5157). Thus, we concluded that
the obtained data are homogenous and reproducible.

Table 6. The experimental matrix in natural and encoded units of factor values and the results of the
experiment (output parameter values).

Experiment Encoded Factors Natural-Scale Factors, g/L [3-Carotene Yield, mg/kg
No. x1 X2 X3 X1 X2 X3 y1* y2* ys * Ju **
1 -1 -1 -1 17.5 8.5 0.85 182.5 170.4 186.2 179.70
2 +1 -1 -1 22.5 8.5 0.85 206.2 196.5 188.4 197.03
3 -1 +1 -1 17.5 11.5 0.85 190.6 198.5 188.6 192.57
4 +1 +1 -1 22.5 11.5 0.85 248.3 220.4 229.5 232.73
5 -1 -1 +1 17.5 8.5 1.15 180.8 188.5 183.8 184.37
6 +1 -1 +1 22.5 8.5 1.15 204.3 227.4 214.5 215.40
7 -1 +1 +1 17.5 11.5 1.15 196.6 202.6 220.7 206.63
8 +1 +1 +1 22.5 11.5 1.15 216.7 200.8 218.7 212.07
* Y1, Y2, and y3 represent the numerical values of the response function for each of the replications obtained after
the completion of the experiment, mg/kg; ** 7, is the mean arithmetical value of the response function, mg/kg.
To determine the direction of action for each factor, regression coefficients were cal-
culated using Formulas (3) and (4): by = 202.56, by = 11.75, b, = 8.44, and b3 = 2.05. Then,
using the data presented in Table 6, the significance of the calculated regression coefficients
was determined for m = 3, where m is the number of parallel experiments. The line-by-line
dispersion was calculated using Formula (7), where m = 3 represents the number of parallel
experiments and N = 8 represents the total number of experiments. The results are shown
in Table 7.
Table 7. Determination of line-by-line dispersions.
u Yul Z(yul)z (Z}/ul)z % Siul
1 182.5 170.4 186.2 97,012.85 290,628.81 96,876.27 68.29
2 206.2 196.5 188.4 116,625.25 349,399.21 116,466.40 79.42
3 190.6 198.5 188.6 111,300.57 333,737.29 111,245.76 27.40
4 248.3 220.4 229.5 162,899.3 487,483.24 162,494.41 202.44
5 180.8 188.5 183.8 102,003.33 305,919.61 101,973.20 15.06
6 204.3 227.4 214.5 139,459.5 417,574.44 139,191.48 134.01
7 196.6 202.6 220.7 128,406.81 384,276.01 128,092.00 157.40
8 216.7 200.8 218.7 135,109.22 404,750.44 134,916.81 96.20
Y. =780.24

Using Formulas (8) and (9), a single-value dispersion (S;;) was calculated to be equal
to 2.02. Then, using Formula (10) with ¢ = 2.09, the error determination was calculated
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(tSp;= 4.21). Therefore, regression coefficients are significant in the case when |bi| >4.21,
and the regression equation takes the following form:

y = 202.56 + 11.75x1 + 8.44x, (21)

To evaluate the adequacy of the obtained linear approximation equation, Equation (21),
the B-carotene yield (y) was calculated for each variant. The x; and x, values were taken
from Table 6. The results of the performed calculations are shown in Table 8.

Using Formula (12), the dispersion of adequacy Sid was determined at N — N’ = 5.
According to the performed calculations, Sg ; = 164.33. Using Formula (13), the dispersion
of reproducibility 55 = 32.51 was calculated. The Fisher criterion Fp = 5.05 was calculated
by Formula (14).

Table 8. The determination of the deviation square for the average values obtained experimentally
and those calculated by the linear approximation equation.

u Yul Gu Yu = Yu Fu — Yu)?

1 182.38 179.70 —2.68 7.18

2 205.87 197.03 —8.84 78.10

3 199.25 192.57 —6.69 44.72

4 222.75 232.73 9.99 99.75

5 182.38 184.37 1.99 3.95

6 205.87 215.40 9.53 90.81

7 199.25 206.63 7.38 54.45

8 222.75 212.07 —10.68 114.04
Yy =493.00

The tabulated value of the Fisher criterion (F;) is located at the intersection of the
values of the degree of freedom of the dispersion of adequacy (f,; = 5) and the number of
degrees of freedom of the dispersion of reproducibility (f = 16).

Since Fj > F; (5.05 > 2.85), then, first, the equation is inadequate (i.e., the process cannot
be described by the linear approximation equation). Second, the obtained results evidence
that the process is close to the near-optimum area, when the influence of the interaction
between factors is enhanced.

If the process cannot be described by the linear approximation equation, it is possible

to use a complete factorial experiment with allowance for all interactions between factors.

A new planning matrix and the results obtained during the experiment implementation
are shown in Table 9.

Table 9. Experimental plan and obtained results.

Auxiliary Graphs in a CFE 23

Experiment Factors at a Natural Scale, g/L Encoded Factors Matrix B-Carotene Yield, mg/kg
No. X1 x2 X3 X1 X2 X3 X1%2 X2X3 xX1%3 X1X2X3 y1* y2 * Y3 * Gu **
1 17.5 8.5 0.85 -1 —1 —1 +1 +1 +1 —1 182.5 170.4 186.2 179.70
2 22.5 8.5 0.85 +1 —1 -1 —1 +1 -1 + 206.2 196.5 188.4 197.03
3 17.5 11.5 0.85 -1 +1 —1 -1 -1 +1 +1 190.6 198.5 188.6 192.57
4 225 11.5 0.85 +1 +1 —1 +1 -1 -1 -1 248.3 220.4 229.5 232.73
5 17.5 8.5 1.15 -1 -1 +1 +1 -1 -1 + 180.8 188.5 183.8 184.37
6 225 8.5 1.15 +1 -1 +1 —1 -1 +1 —1 204.3 227.4 214.5 215.40
7 17.5 11.5 1.15 -1 +1 +1 —1 +1 —1 —1 196.6 202.6 220.7 206.63
8 225 11.5 1.15 +1 +1 +1 +1 +1 +1 +1 216.7 200.8 218.7 212.07

*y1, ¥2, and y3 represent the numerical values of the response function for each of the replications obtained after
the completion of the experiment, mg/kg; ** 7, is the mean arithmetical value of the response function, mg/kg.
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The regression equation obtained by the use of CFE 22 is the following:
y= bo + b]X] + b2X2 + b3JC3 + b]zX]Xz + + b13X1X3 + + b23X2X3 + b]z3X1X2X3.

Using Formulas (3)—(6), coefficients of regression were calculated. The regression
equation has the following form:

y =202.56 + 11.75x7 + 8.44x) — 6.05x2x3 — 6.5x1X2x3 (22)

Then, the adequacy of the obtained linear approximation equation, Equation (22), was
determined. To achieve this, a dry biomass yield (y) was calculated for each variant using
the regression equation. The results of this calculation are shown in Table 10.

Table 10. The deviation square for the means determined experimentally and by the linear approxi-
mation equation.

u Yul Gu Yu — Yu Gu — yu)2
1 194.49 179.70 —14.79 218.67
2 193.76 197.03 3.27 10.70
3 187.15 192.57 5.42 29.39
4 234.85 232.73 -2.12 4.50
5 170.27 184.37 14.10 198.69
6 217.98 215.40 —2.58 6.65
7 211.36 206.63 —-4.73 22.37
8 210.64 212.07 1.43 2.04
Y =493.00

The dispersion of adequacy was calculated using Formula (13). According to the
performed calculations, the dispersion of adequacy was equal to 98.60. The dispersion of
reproduction calculated earlier by Formula (14) was 32.51. The Fisher criterion F), calculated
by Formula (15) was equal to 3.03. The tabulated value of the Fisher criterion (F;) was
determined at f,; = 3 and f = 16. Since F, < F; (3.03 < 3.24), then, the obtained regression
equation (Formula (21)) is adequate to the studied process. Therefore, the biomass yield
within the studied concentration range is positively influenced by an increase in the glycerol
and SMP concentrations. At the same time, the effect of these factors is enhanced in the
case of a combined action of x; and x, or x7, x», and x3 factors (if these factors are at the
highest coordination level).

3.2. The Optimization of the Nutrient Medium Composition by the Steepest Ascent Method

Based on the results of the performed CFE, one can suppose the efficiency of the
steepest ascent method for the further medium optimization. Since the coefficient of
regression bz was determined as insignificant, then the urea concentration was further
considered as a constant variable equal to 1.0 g/L.

The initial data required for the construction of a new planning matrix are shown in
Table 11.
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Table 11. The calculation of the steepest ascent for the determination of the quantitative ratio of
medium components.

Factor and Experiment X1 Xz
Characteristics Glycerol Concentration SPM Concentration

Base level, g/L 22.5 11.5
Maximum level, g/L 30.0 15.0

Stock, A; 7.5 45

Variation interval (¢;) 2.5 1.5
Coefficient of regression (b;) 11.75 8.44
Production L; = b;6; 29.34 12.66
Coefficient (7;) 0.26 0.59
Steepest ascent step (/;), g/L 1.5 0.65

Since the value of the -; coefficient for glycerol is less than that for SMD, this factor was
considered as the base one. The steepest ascent steps for glycerol and SMP are presented in
Table 11. In all variants, the urea concentration was 1.0 g/L. A new experimental design
matrix was created, and the (3-carotene yield was determined. The results are shown in
Table 12.

Table 12. The planning matrix for the experiment based on the steepest ascent method.

Experiment No X7 (Glycerol X, (SMP B-Carotene Yield,
) Concentration, g/L) Concentration, g/L) mg/kg
1 (initial medium) 22.5 11.5 2483 £ 5.7
2 24.0 12.15 284.5+ 8.2
3 25.5 12.80 3184 £83
4 27.0 13.45 2924 + 6.4
5 28.5 14.10 2521 £5.5
6 30.0 14.75 224.6 £8.2

The maximum (-carotene yield (318.4 & 8.3 mg/kg) was obtained for variant 3,
where the nutrient medium contained 25.5 g/L of glycerol and 12.8 g/L SMP. The further
increase in the glycerol and SMP concentrations up to 30.0 and 14.75 g/L, respectively, was
accompanied with the inhibition of a pigment accumulation process.

Thus, a new composition of the fermentation medium was proposed. The next stage
of work included the examination of this medium composition for the cultivation of M.
neoaurum in a 3 L bioreactor.

3.3. M. neoaurum Fermentation in a 3 L Bioreactor

Earlier, we studied the effect of the temperature, dissolved oxygen level, and acid-
ity of a culture medium on the biomass accumulation and (3-carotene production by M.
neoaurum [27]. The optimal pH values were found to fall within the range of 6.8-7.0, and
the optimal O, concentration was 50%. Therefore, these parameters were maintained at
a constant level during M. neoaurum fermentation in the bioreactor as described in the
Section 2.

After 30 h of fermentation, a sterile 50% glycerol solution (2.5 g/L of fermentation
medium) was added under controlled optimal pH and O, concentration (6.8-7.2 and
50%, respectively). Glycerol addition started automatically, when pH exceeded 7.0, and
the dissolved oxygen concentration decreased. The results are shown in Figure 1. The
productivity of M. neoaurum in terms of the (3-carotene production and the maximum
biomass increase was recorded after 72 h of fermentation and reached 370.5 mg/kg and
25.4 g/L, respectively.

88



Fermentation 2025, 11, 82

30 450
255 254
[ B-carotene, mg/kg 2438 24.8| 400
I
25 +— . 223 T ke
—+— Dry biomass, g/L . i—
19.2
_| o
X I H H L300 X
2 & ?E,,
1] T

@ 1438 T 250 o
£ 15 T I I I 1 2
o o
) 112 3 F200
) 3705 2
o 85 3500 346.8 =
a 10 : = I i H296.6 [{ I i L150 9
e 2587 @

] 196.8||220-2 L 100

5 a;/ 3 11422 ] H H H H H H
924 L 50
66.5
0 : . . . . . . . . 0

0 8 16 24 32 40 48 54 62 72 82
Fermentation time, h

Figure 1. Biomass yield and p-carotene accumulation during fermentation of M. neoaurum in 3 L
fermenter with culture feeding by 2.5 g/L glycerol after 30 h of cultivation.

3.4. M. neoaurum Fermentation in a 15 L Bioreactor

The fermentation of M. neoaurum in a 15 L bioreactor was performed under the same
conditions as described in Section 3.3. The results are shown in Figure 2. The (3-carotene
productivity of M. neoaurum and the maximum biomass yield observed after 72 h of
fermentation reached 432.3 4= 10.4 mg/kg and 23.2 4= 1.2 g/L, respectively.
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Figure 2. Biomass yield and 3-carotene accumulation during fermentation of M. neoaurum in 15 L
fermenter with culture feeding (50% glycerol, 2.5 g/L) after 30 h of cultivation.

3.5. M. neoaurum Fermentation in a 100 L Bioreactor

The fermentation of M. neoaurum in a 100 L bioreactor was performed under the
constant pH (6.8-7.2), and the pO, value of 50% or more. After 30 h of fermentation, a sterile
50% glycerol solution (2.5 g/L of fermentation medium) was added in an automatic mode.
The results are shown in Figure 3. The 3-carotene productivity and the maximum biomass
yield of the Ac-3067D strain observed after 72 h of fermentation reached 450.4 £ 8.2 mg/kg
and 25.2 £ 1.1 g/L, respectively.
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Figure 3. Biomass yield and [3-carotene accumulation during fermentation of M. neoaurum in 100 L
fermenter with culture feeding (50% glycerol, 2.5 g/L) after 30 h of cultivation.

4. Discussion

One of the most challenging tasks for biotechnological processes based on the use
of overproducing strains is the selection and optimization of fermentation conditions.
The analysis of numerous data shows that the growth of a culture and the biosynthesis
of secondary metabolites are influenced by such factors as the viability of the planting
material, the composition of the cultivation medium, and physicochemical conditions of
fermentation. However, one should note that optimal conditions for the cell growth and
the target product biosynthesis may not coincide [29-31].

Traditional approaches for the optimization of the (3-carotene production are based
on the change in one parameter at a time. However, this approach often does not allow a
researcher to determine variables responsible for the optimal result, since such approaches
do not take into account possible interaction between different factors [24]. One of the
effective methods for optimizing cultivation conditions is a combination of the experi-
mental and mathematical modeling with the conduction of a computational experiment,
which includes an important step, namely, the determination of a mathematical model,
i.e., a regression equation, which characterizes the relationship between the optimization
parameter and the main factors. An approach based on the design of experiments (DOE)
makes it possible to not only efficiently evaluate the main effects and interactions using a
minimal number of experiments, but also relatively rapidly conclude on the significance
of various components of the nutrient medium as well as to determine its qualitative and
quantitative composition [20-24]. Mathematical modeling is widely used to determine
optimal cultivation conditions for highly active strains. Numerous publications describe
different examples of the DOE use for the development of processes occurring in biotech-
nological plants. However, one should note that this study represents the first attempt to
use mathematical modeling for the optimization of the M. neoaurum cultivation conditions.

This study investigated the influence of three key factors (glycerol, SMP, and urea) on
the (-carotene productivity of M. neoaurum. We found that glycerol and SMP provided
the greatest impact on the pigment yield. The stimulation of the carotenoid biosynthesis
can be explained by the fact that glycerol is involved in the biosynthesis of isoprenoids
representing precursors of carotenoids (Figure 4). Use of glycerol as a carbon source for
the -carotene biosynthesis was also demonstrated in some other studies. For example,
Bindea et al. [32] studied the effect of pH and glycerol concentration on a pigment accu-
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mulation. In addition, a positive effect of a glycerol addition into the nutrient medium on
the carotenoid biosynthesis was reported by Suwaleerat et al. [33] for Rhodococcus opacus
PD630. According to the obtained regression equation, the factors that have the greatest
influence on the biosynthesis of (3-carotene by M. neoaurum cells include glycerol and SMP
concentrations. Using the mathematical planning method, the optimal values of these
concentrations were determined as 25.5 and 12.80 g/L, respectively.
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Figure 4. Proposed pathway for carotenoid biosynthesis in M. neoaurum based on published data:
(a) pyruvate production from glycerol [34]; (b) biosynthetic pathways of isoprenoids [35]; (c) general
scheme of carotenoid biosynthesis [36]. 1-DX-5P, deoxyxylulose 5-phosphate; 2C-MEP-4P, 2-C-methyl-
D-erythritol 4-phosphate; CD, carotene desaturase; DXR, 1-deoxy-D-xylose 5-phosphate reducto-
isomerase; DXS, 1-deoxy-D-xylose 5-phosphate synthase; G3P, glycerolaldehyde-3-phosphate; Glpk,
glycerol kinase; Gpm1, phosphoglycerate mutase 1; IDI, diphosphate isomerase; LC, lycopene (3-
cyclase; L1dD2, lactate dehydrogenase; PD, phytoene desaturase; Pgk, phosphoglycerate kinase; PS,
phytoene synthase; PykA, pyruvate kinase; Rv0911, putative glyoxalase.

The influence of the nitrogen sources on the development and morphology of mi-
croorganisms and also on the synthesis of secondary metabolites is determined by the
importance of this element as a constituent of nucleotides and amino acids representing
building blocks of enzymes providing the biosynthetic processes. However, according to
some data, the greatest effect on the carotenoid biosynthesis is provided by carbon rather
than nitrogen [37], which was confirmed in the current study.

91



Fermentation 2025, 11, 82

As a rule, microbial biosynthesis technologies are initially developed under laboratory
conditions and then scaled up to the pilot and then industrial scales. The main task of
the scale-up process is to increase the volume of production while maintaining or even
increasing the productivity of the used strain [38,39]. High cell density in fermenters
significantly differs from their natural growth conditions and results in some stresses
related to various environmental factors such as changes in temperature, pH, osmotic
concentrations, etc. [40].

Published data related to the industrial technologies of 3-carotene production by
M. neoaurum are rather poor. The majority of publications are focused on optimizing
fermentation conditions for such producers as Blakeslea trispora and Rhodotorula spp. There
is also a study describing the optimization of fermentation conditions of Yarrowia lipolytica.
A successful modification of the original strain and optimization of batch fermentation
conditions for a 5 L bioreactor provided a 3-carotene yield of 2.7 g/L [41]. Another study
reports about the fermentation of a genetically modified Yarrowia lipolytica strain, YL-CO, in
a 5 L bioreactor with the constant glucose concentration of 10.0 g/L, pO, level maintained at
20-30% by adjusting the stirring rate, and pH level maintained at 5.5 using a 15% ammonia
solution; under such conditions, the maximum {3-carotene yield reached 1.7 g/L [42].

It is known that the reduction in the concentration of carbon and/or nitrogen sources
causes some disorders in the biosynthesis of secondary metabolites including (3-carotene. In
the case of periodic processes, this problem can be solved by additional feeding of the lim-
iting substrate, thus avoiding a suppressive effect of initially high substrate concentrations
and increasing the yield of a target metabolite. Therefore, after 30 h of fermentation, a sterile
50% glycerol solution (2.5 g/L of a fermentation medium) was added under controlled
optimal pH and pO, conditions (6.8-7.2 and 50%, respectively). A continuous supply of a
50% glycerol solution during fermentation also helps to stabilize the pH level due to the
formation of organic acids during its metabolization [43]. Such pH stabilization promotes
more active biosynthesis of 3-carotene.

In this study, M. neoaurum cultivation in flasks under selected conditions resulted in a
(-carotene yield of 318.4 4= 8.3 mg/kg. When the optimized medium was tested ina 3 L
bioreactor, 3-carotene and dry biomass yields were 370.5 + 8.0 mg/kg and 25.4 £ 1.0 g/L,
respectively. These results allowed us to perform a step-by-step scaling up of the process
in 15 L and 100 L bioreactors. For the 15 L bioreactor, 3-carotene and dry biomass yields
reached 432.3 £+ 10.4 mg/kg and 22.2 &= 1.2 g/L, respectively. In the case of the 100 L
bioreactor, the strain productivity for 3-carotene was 450.4 &= 11.0 mg/kg, while the dry
biomass yield was 25.2 4+ 1.1 g/L. Note that the scaling up from the 3 L to 100 L bioreactor
provided an increase in the (3-carotene yield by 21.7% that can be associated with the
improved aeration conditions.

Aeration is a key parameter, which should be considered for the production of this
class of pigments, since the biosynthesis of carotenoids is an aerobic process. The air flow
rate during microbial fermentation is an important factor providing the nutrient absorption,
growth rate, cell mass accumulation, and carotenoid biosynthesis. In addition, according to
some published data, a decrease in the oxygen content in the culture medium affects the
production of carotenoids and xanthophylls [31]. The effect of aeration can depend on the
microorganism species.

Moreover, the development of a biotechnological process should take into account
such factors as the design of the bioreactor, used raw materials, and fermentation type
(batch, fed-batch, or continuous). These factors play a very important role in achieving the
desired yield of target metabolites, including 3-carotene [31].
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5. Conclusions

The performed study showed that the biosynthesis of 3-carotene by M. neoaurum
cells is influenced mainly by the glycerol and SMP concentration. Using mathematical
planning, we optimized a nutrient medium composition for M. neoaurum fermentation and
[3-carotene biosynthesis and determined the optimal glycerol and SMP concentrations (25.5
and 12.8 g/L, respectively). Under such cultivation conditions, the (3-carotene production
by the M. neoaurum strain AC-3067D in 750 mL flasks was 318.4 + 8.3 mg/kg. In the
case of a 15 L bioreactor, the 3-carotene and biomass yields were 432.3 + 10.4 mg/kg and
23.2 + 1.2 g/L, respectively. The further scaling up to a 100 L bioreactor increased the yield
of B-carotene and the biomass up to 450.4 £ 8.2 mg/kg and 25.2 £ 1.1 g/L, respectively.

The obtained results demonstrate the potential of the application of the M. neoaurum
strain AC-3067D for industrial 3-carotene production. The further work planned with this
strain includes determining cultivation conditions and optimal fermentation parameters
for pilot-scale and industrial conditions with the process scaling up to a 1000 L bioreactor.
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Abstract: In this research work, a new software tool concept and its application for the rapid and
flexible development of mechanistic digital twin core models for bioprocesses in various reactor
designs are presented. The newly developed software tool concept automatically combines user-
selected submodels into an overall digital twin core model. The main part is a biokinetic submodel, of
which three were designed for enzymatic, microbial and biocatalytic processes, which can be adapted
to specific processes. Furthermore, the digital twin core model contains a physico-chemical submodel
(e.g., calculating pH or oxygen transfer) and a reactor submodel. The basis of the reactor submodel
is an ideally mixed stirred tank reactor. The biokinetic submodel is decoupled from the reactor
submodels and enables an independent parameterisation of submodels. Connecting ideally mixed
stirred tank reactor models allows for the simulation of different reactor designs. The implementation
of an executable digital twin core model was accelerated, creating a new software tool concept.
When the concept was applied, the development time and the computing time of digital twin core
models for the cultivation of Saccharomyces cerevisiae in two coupled stirred tank reactors as well as
for enzymatic hydrolysis processes in a packed-bed reactor were reduced by 90%.

Keywords: digital twin; mathematical model; model development; submodel framework; reactor
model; bioprocesses

1. Introduction

Digital twins (DTs) are becoming increasingly important in the biotechnology sector.
They can be utilised for fast and resource-saving development and improvement of biopro-
cesses [1]. Due to the increasing demand for bioprocess DTs, there is a growing need for
new strategies for the rapid and flexible development of dynamic process models and DTs.

In the early 2000s, the DT concept was first applied in mechanical engineering [2—4].
DTs are often seen as virtual representations of physical systems. They may be able to map
the entire life cycle of the physical system [3]. Various authors have already published
definitions of the term “digital twin” [2-6]. This work is mainly based on the definition
given by El Saddik [4]:

“Digital twins are (.. .) digital replications of living as well as non-living entities that
enable data to be seamlessly transmitted between the physical and virtual worlds”.

Therefore, DTs for biotechnological processes must be able to mimic and predict the
dynamic behaviour of the biokinetic processes, the biological system (e.g., microorganisms,
enzymes), the environment in which the process takes place (e.g., nutrient media, carrier
material (immobilisation)), the physical-chemical system, the bioreactor and the periphery
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connected to the bioreactor (e.g., pumps, valves, pipes). Besides this, the DT should also
include control and automation functions, a graphical user interface and a connection to
the real system for information exchange.

To realise the elements of a bioprocess DT, a shell structure was established by our
group in previous works (Figure 1) to assist DT development [7,8].

Real-time connection

Control and automation

Plant and periphery

Detached
Digita] Digital
Reactor submodel Digital Twin Twin
Digital | Control g;lr:;;r
Physico-chemical | Twin .TCSt Simulator)
submodel core Simulator
””””””””””””””” model
L Basic
Biokinetic process
submodel model

Figure 1. Shell structure for bioprocess DTs based on [7,8]. Extended by definitions for DT core
model, digital control test simulator and detached DT.

A DT core model consists of biokinetic, physico-chemical and reactor submodels,
which are continuously exchanging information. The biokinetic submodel calculates all
rates concerning the growth and product formation of microorganisms, mammalian cells or
enzymatic and biocatalytic reactions. The physico-chemical submodel may include models
for calculating broth temperature, pH, foam level and dissolved gas concentrations. The
physico-chemical submodel may be influenced by the results of reactions calculated by
biokinetic equations in the biokinetic submodel, e.g., through heat generation caused by
reactions. In turn, the resulting physico-chemical properties may influence the biokinetics
reflected by the biokinetic submodel. The reactor submodel describes the properties of the
reactor in which the process is performed and may include information about flow patterns.

For the creation of a full DT, the DT core model may be implemented in a simulation,
process control and automation software like WinErs 7.7.A [9] to realise the real-time
connection between the physical and virtual instances [1,8]. Submodels representing the
plant and periphery, as well as the control and automation, may also be implemented in
the process control and automation system.

The development of the DT core model requires a considerable amount of time and is
a major bottleneck in DT development.

There are various modelling approaches for the creation of the submodels used for
DT core models. Usually, a distinction is made between mechanistic and non-mechanistic
modelling approaches. Most types of non-mechanistic modelling approaches like big data,
artificial intelligence (AI) or machine learning utilise provided data resources to predict
trends and behaviour of a system [10-13]. Non-mechanistic models calculate probabilities
and correlations. Large amounts of high-quality data are needed for model training. Strictly
speaking, non-mechanistic models are only capable of prediction within the scope of the
data used for learning and allow for a very limited change of process conditions. Non-
mechanistic models are based on correlation, not causation, and therefore provide limited
insight into biotechnological processes [3]. For this reason, non-mechanistic models can
only support biotechnological DT core models as hybrid models [11,14-16] but can’t be
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applied as the sole process model. Fuzzy sets may be seen as an intermediate between non-
mechanistic and mechanistic models, as they utilise expert knowledge to a considerable
extent [13,17-20].

In this work, mechanistic modelling approaches are used for the development of
bioprocess DT core models [8], which are based on biological, physical and chemical
relationships and equations. In biotechnology, equations are usually based on kinetic
reactions, e.g., Monod kinetics [21] for fermentations or Michaelis—-Menten kinetics [22,23]
for enzymatic processes. The development of mechanistic models is often far more time-
consuming than the development of non-mechanistic models, but less experimental data
are needed for parameter identification and model calibration. An essential benefit of
mechanistic models is that the model parameters have an actual physical meaning, which
facilitates the scientific interpretation of the results [8].

Mechanistic models can be divided into structured (compartmentalised) and unstruc-
tured models [24-27]. In unstructured models, all cells are viewed as one black box, whereas
in structured models, the biomass is split into multiple compartments with different tasks,
which allows for a more realistic representation of the biocatalysts [28,29].

To avoid the DT core model becoming too complex, it is practical to divide it into
several submodels that exchange relevant information. This combination could be per-
formed with simple functional state models where different models describe specific states
of the process [7,8,30], hybrid models, which combine mechanistic and non-mechanistic
approaches [11,14,15] or submodel frameworks [7,8].

Using structured, mechanistic submodels integrated into a submodel framework for
the development of DT core models has proven to be very advantageous [1,7,8,30]. By
using a submodel framework, different DT core model configurations can be created in a
flexible way [31]. However, developing DT core models using this modelling approach is
labour-intensive and complex, and modelling experts are needed.

To facilitate the development process, a new software tool concept was established
and tested for the realisation of DT core models for the cultivation of S. cerevisiae in two
coupled parallel stirred tank reactors (STRs) and the enzymatic hydrolysis with immobilised
enzymes in a packed-bed flow tube reactor (PBR).

2. Materials and Methods

The C++-based programming and simulation package C-eStIM 2021-11 [32] was used
to create the dynamic mathematical biokinetic, physico-chemical and reactor submodels.

The software tool concept was realised using R programming language [33], which
offers the possibility to combine the desired submodels in an overall DT core model.

WinkErs [9] was used to create the plant and periphery and control and automation
submodels of the DT, as well as the PCS of the reactors. Specific interfaces were created in
WinErs for data exchange between DT and PCS.

The recommended S. cerevisiae cultivation experiments were performed in two con-
nected 1 L stirred tank reactors (STRs) (MDX, Norten-Hardenberg, Germany). Genetically
unmodified S. cerevisine (Agrano, Riegel am Kaiserstuhl, Germany) was cultivated in media
consisting of water, glucose (Glc), yeast extract (YE) and soy peptone (Pep, all Carl Roth,
Karlsruhe, Germany). No preculture was carried out, and dried active yeast was directly
inoculated. The initial concentration of yeast was setat 10 g L.=!, Glcat 20 g L~ and YE
as well as Pep at 25 g L~ 1. The temperature was set to 28 °C. The pH and DO were not
controlled during the process. The airflow rate was adjusted at ~1 vvm and the stirring rate
at 800 rpm to maintain aerobic conditions (DO > 10%) in the aerobic compartment. The
anaerobic compartment was stirred at 600 rpm, and the reactor was not aerated. Antifoam
was fed when required. Glucose and ethanol concentrations were measured with enzymatic
test kits (Art. No.: 10716251035 and 10176290035, R-Biopharm AG, Pfungstadt, Germany).
Dry biomass density was determined by filtrating the medium through cellulose acetate filters
(0.45 m, VWR, Radnor, PA, USA) and measuring the weight of the retentate after drying in a
moisture analyser (MA45, Sartorius, Gottingen, Germany). The percentages of O, and CO, in
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the exhaust gas were measured via an extractive gas analyser (Sick, Waldkirch, Germany). The
pH value of the medium was measured in situ with an amperometric pH probe (EasyFerm
Plus PHI S8 225, Hamilton, Bonaduz, Switzerland). The DO was measured with an optical
dissolved oxygen (DO) probe (VisiFerm DO ECS 225 HO, Hamilton).

3. Results

Three main challenging tasks within the process of DT core model development were
identified and shall be addressed in this chapter:

1.  Adding, exchanging or removing submodels requires changes throughout the entire
source code of the DTs core model. A manual adaptation of the model structure takes
at least a few hours, or even multiple days, of work for more elaborate changes;

2. Non-ideal flow patterns in bioreactors may have an impact on the kinetics, per-
formance and dynamics of the process under consideration. Thus, for a realistic
representation of these effects in DTs, possibilities should be created to represent
non-ideal reactor behaviour and/or different reactor types with the reactor submodel;

3. The numerical solution of large mechanistic models, consisting of systems of a high
number of nonlinear coupled differential equations, requires high computational
effort. It is particularly important to keep the computation times of DTs, especially for
their parameterisation and application in process optimisation, as short as possible.

3.1. Characteristics of the New Software Tool Concept for Automated Bioprocess DT Core
Model Development

The software tool concept realised in the programming language R 4.2.2 [33] automati-
cally creates DT core models in the simulation and programming environment C-eStIM [32]
by implementing user-selected submodels from a model library, thus eliminating laborious
manual changes throughout the model code (Figure 2).

User-Inputs Pre-Compiler Source-Code Compiler Executa{)le
- - model file
> egﬁ;an?n 015 del Model Digital Full Digital
*  Biokinetic subm . :
ofnetic submoce —* R-Code [ . —>| C-eStIM || Twincore [*>  WinErs -» =
*  Physico-chemical submodel equations Twin
¢ Reactor submodel mo_del

v
* genBioNMPC
* mDoE-Toolbox

Figure 2. Software tool concept for the rapid development of mechanistic DT core models for
bioprocesses in various reactor designs.

It also introduces the option to model different reactor configurations using a system
of networked STR models, including a cascade of STR models to replicate the behaviour of
a flow tube reactor. To minimise the computing time, only the equations necessary for the
selected submodels are implemented in the DT core model.

All submodels available for the formulation of the biokinetic and physico-chemical
submodels are listed in Table 1.

Table 1. Available submodels for the implementation in the biokinetic and physico-chemical submodels.

Submodel Model Options/Specification

Saccharomyces cerevisiae
Cyathus striatus

Microbiological Lactobacillus delbrueckii
Escherichia coli
Biokinetic . Hybridoma cells
Mammalian cells Chinese hamster ovary (CHO) cells
Biocatalysis Whole-cell biocatalysis
Enzymatic reactions Starch hydrO.I ysis
Proteolysis

99



Fermentation 2024, 10, 463

Table 1. Cont.

Submodel Model Options/Specification
Gas-phase Calculation
Calculation
pH value Fixed profile

Fixed value
Algebraic equations
Differential equations

Physico-chemical Dissolved oxygen Fixed profile
Fixed value

Calculation

Temperature Fixed profile

Fixed value

Foam level Calculation

3.1.1. Biokinetic Submodel

The selectable options for the biokinetic submodel include a cultivation model for
different microorganisms [8] and mammalian cell lines [8,31], as well as biokinetic models
for whole-cell biocatalysis [34], enzymatic starch hydrolysis and proteolysis [30].

By summarising individual metabolic reactions to generalised stoichiometric functions
according to stoichiometric Equation (1), it is possible to create one biokinetic submodel for
different organisms and their respective reactions [31].

CxHyO; + «O7 + BHgOhNi — yC,HpOcNy + 6CO; + eHyOr + CCijO[Nm 1

Several metabolic pathways are integrated into the model, e.g., biomass production,
total oxidation or partial oxidation of substrates (e.g., overflow metabolism). Further-
more, product formation mechanisms for growth-associated products or non-growth-
associated products are included. The resulting rates (rs) are modelled using Monod
kinetics (Equation (2)). The maximum possible substrate uptake rate rg max is multiplied
by a quotient that encompasses the substrate concentration cg divided by the sum of cg and
the half-saturation constant Ks. The result is multiplied by the product of multiple (double)
sigmoidal functions (Equation (3)) [31].

c n
rs =18 max | =—— ) [ [ fosig(x:) 2)
Ks +cg
i1

fous(x) = (1 + ©)

Y] is the value at low x, Y}, is the value at high x and Y4 is the value between X5,
and X5 1. X501 and X501, are location parameters of the low /high side of the function, K ;
determines the slope on the low side of the function and K ;, determines the slope on the
high side of the function [31,35]. Gerlach et al. discussed the properties of double-sigmoidal
functions [35]. (Double) sigmoidal functions are also utilised to describe the influence of
state and physico-chemical variables on yield coefficients as well as activation, inactivation
and mortality rates [31,36].

Ymid — 1 >(1 Yh/Yimig — 1 )

1 + e~ Kai(x—Xs01) 1 4+ e~ Kan(x—Xs01)

3.1.2. Physico-Chemical Submodel

Multiple options are available for the formulation of the physico-chemical submodel,
including the calculation of pH, the dissolved oxygen concentration, the foam level and the
temperatures of the broth in the reactor as well as in the heating jacket (Table 1, physico-
chemical submodel).

For the physico-chemical submodel, the user can specify if the variables pH and
temperature should be calculated with the respective model or if they should be predefined.
The variables can be predefined with a fixed value or profile. Two models exist for the
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Fermentation

Proteolysis

Whole-cell biocatalysis

dissolved oxygen concentration. One model utilises differential equations, and the other
model uses algebraic equations. The approach using differential equations is more accurate
but slower because of relatively small time constants requiring smaller step sizes. The DO
can also be set at a fixed value or profile.

The computation time can be reduced by increasing the step size or reducing the
number of ODEs to be solved. Therefore, for parameterisation of the biokinetic submodel,
it might be an advantage to set the values of measured physico-chemical variables as input
profiles and not include physico-chemical submodels in the mathematical model. This
decoupling of submodels, which is easily achieved with the presented software tool concept,
makes it possible to carry out simulations with the biokinetic model with longer step sizes.
This reduces the computing time of a single simulation by more than 90% (compared
to a model with all physico-chemical submodels) and, thus, the time required for the
entire parameterisation process. After parameterisation of the biokinetic submodel, the
physico-chemical submodels can be included again in the DT core model.

3.1.3. Reactor Submodel

The biokinetic submodel and the physico-chemical submodel are connected with
(values of state variables) the reactor submodel, which consists of a user-defined network
of interlinked ideal STR models and exchange values of state variables (Figure 3).

Production and Volumetric flows and values of
consumption rates Reactor  physico-chemical variables

7 submodel T

Biokinetic |  Physico-chemical
submodel | submodel
I
| pH model Temperature
Cell culture | model
| Foam model
Starch | Dissolved
Hydrolysis | Gas-phase oxygen
| model model

Concentration and values Rates of change
of physico-chemical variables of physico-chemical variables

Figure 3. Combination of the DT submodels to enable the simulation of various reactor designs,
(a) mass transfer flows between STR models, and (b) individually adjustable inputs and outputs.

All STR models in the reactor submodel can be linked to each other in any way, and
each STR model is linked to the biokinetic and physico-chemical submodels. The reactor
submodel processes all the inputs and outputs, e.g., feed streams, aeration rate or sample
volumes. The biokinetic submodel transfers the production and consumption rates of
biomass and metabolites to the reactor submodel. The reactor submodel calculates the
concentration of the biomass and metabolites as well as the values of physico-chemical
variables and transfers them back to the biokinetic submodel. Furthermore, the reactor
submodel calculates the values of physico-chemical variables, which are transferred to the
physico-chemical submodel. The physico-chemical submodel calculates the rate of change
of each physico-chemical value. Only one set of parameters is required for the biokinetic
and physico-chemical submodels in a specific DT.

The differential equation calculating the change of volume is derived from the mass
balance using the assumption that changes in density might be neglected and processes all
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inputs and outputs of the reactor submodel. Equation (4) describes the differential equation
for calculating the volume of each STR model (V;) implemented in the reactor submodel.

dVi

dt

Fjy, i is the sum of all input flows to the STR model, and F,,; ; is the sum of all output

flows from the STR model. Fj;, comp,i is the sum of all input flows from other STR models,
and Foys,comp,i is the sum of all output flows to other STR models.

The differential equations of all concentrations have the following standardised structure.

= Fin,i - Fout,i + Fin, Comp,i — Fout,Comp,i (4)

F NComp

i F;
—+ =1 Xvj—r] - Xvj+cip—

= )

l]v

% = production — uptake + input — dilution + inputs from other STR models (6)

The production rate r;” and the uptake rate r;” are multiplied by the viable biomass
Xv;. The input is calculated with the concentration of the feed c; r multiplied by the flow
rate of the feed F; divided by the volume of the STR model V;. The dilution is calculated
with the concentration c;, the sum of all input flows F;;, ; into the STR model and the volume
V; of the STR model. The inputs from other STR models are accounted for via the sum of the
concentration of all (nComp) STR models ¢; ;, multiplied by their flow F; ; to the considered
STR model divided by the volume V;.

By networking STR models, DTs with a wide variety of reactor configurations can be
created (Figure 4).

ideal STR Reactor zones Connected reactors

Utilisation example
: § DO @ substrate

» DO & substrate
: 4@ Shear forces
: f DO ¥ substrate

Qne simulated One STR with different reactor Scale down system -
ideally STR zones Connected STRs

Seed trains
Packed bed flow tube reactor

Connected STRs,
Non ideal flow conditions (backmixing),

Different reactor geometries / volumes, aeration
techniques, stirrer types / level / number etc.

Figure 4. DT reactor configurations that can be created with the new software tool concept. Each
green-dotted box indicates one individual STR model.

This strategy offers the possibility of an innovative flexible modelling approach. It is
possible to calculate non-ideally mixed reactor systems by interconnecting multiple ideally
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mixed STR models with specific properties (volume, geometry, etc.) that are continuously
exchanging material flows. The reactor systems that may be modelled include tubular flow
reactors (e.g., packed-bed flow tube reactors) with a flowing phase and a stationary phase,
large-scale reactors or systems of connected reactors (e.g., scale-down systems) or building
sequences of reactors with different geometries (e.g., seed trains). Since the biokinetic
submodel is decoupled from the reactor and physico-chemical submodel, it can be used in
different reactor configurations. This enables and accelerates a process transfer between
different bioreactors.

The user inputs are transferred to the pre-compiler written in the programming
language R [33]. The R-Code writes the selected and necessary mathematical model
equations into the source code of the DT core model based on the user selection. These
mathematical equations of the DT are written in the programming language C++. The
source code is then compiled using the C-eStIM compiler [32] into an executable model
file (.exe), a DLL (dynamic link library) for Windows or a shared object file (.so) for UNIX
systems, respectively. This accelerates, simplifies and reduces the risk of errors during
model implementation to an executable model; the manual modelling work is reduced to a
few seconds.

Since computation time should be as short as possible, multiple methods for model
reduction and acceleration of calculation are implemented into the software tool concept:

e  Only the required models are implemented into the final DT core model. The user can
decide which models to include. Temperature, DO and pH can be defined as fixed
values or fixed profiles if a calculation is not necessary;

e  Only necessary double-sigmoidal functions are implemented into the DT. These func-
tions demand a high computational effort since two exponential functions must be
solved (Equation (3)). For this purpose, a user-predefined configuration file compris-
ing the parameters of the double-sigmoidal functions is scanned using the software
tool concept. If the parameters are defined in such a way that the function yields the
neutral element for multiplications (v, = ¥,,;s = y; = 1), the function is not transferred
into the DT core model because the result of the function equals one in any case;

e A fast calculation mode is selectable by the user. The temperature submodel (based on
dynamic energy and mass balances) and the DO submodel (based on dynamic mass
balances and mass transfer theory, see reference [31]) have faster time constants (in
their differential equations) compared to the biokinetic submodel and are thus decisive
for the number of necessary calculation steps. The fast calculation mode enables a more
than 80% shorter calculation time at the expense of simulation accuracy by reducing
necessary calculation steps. In the temperature model, the fast calculation mode
lowers heat transfer coefficients and thus slows down the heat transfer rates. In the
DO model, for the fast calculation mode, the differential equations for the calculation
of the DO and the gas phase composition are replaced by algebraic equations.

In addition, the DT core model can be combined with process development tools,
such as the “genBioNMPC” [8], which is a parameterisation algorithm and a nonlinear
model predictive controller (NMPC) [37,38] of the open-loop-feedback-optimal (OLFO)
type [1,8], or the model-assisted design of experiment (mDoE-toolbox) [39], which combines
mathematical models, statistical design of experiments [40] and uncertainty analysis [41] to
accelerate and optimise process development [42].

3.2. Application of the New Software Tool Concept for the Development of Bioprocess DTs

Using the new software tool concept, a DT core model for the cultivation of S. cerevisiae
in two coupled parallel STRs and a DT core model for enzymatic hydrolysis processes in a
PBR were created.

3.2.1. DT Core Model for the Cultivation of S. cerevisiae in Two Coupled Parallel 1 L STRs

The reactor system is utilised to simulate inhomogeneities (such as concentration
differences) occurring in large-scale reactors on a laboratory scale [43,44]. These inhomo-
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geneities could potentially have a severe impact on process performance at the production
scale [45-48]. For this reason, it is important to understand the influence of inhomogeneities
on the bioprocess [49]. The approach chosen is the utilisation of a physical scale-down
model that can emulate specific inhomogeneities of large-scale reactors [44,50-52] in com-
bination with a corresponding DT of the system [8,31]. The detailed model equations and
parameters used can also be found in [8,31].

The experimental scale-down system consists of two 1 L STRs connected via pipes.
The broth is pumped between the two STRs with a peristaltic pump (Figure 5).

=

Reactor 1 Reactor 2

-||q
|||q

(I ey B (I e B
\—// \g

Figure 5. DT for the cultivation of S. cerevisiae in two connected parallel ideal STRs. Blue arrows

symbolise the flow between the ideal STR models (green dotted boxes).

The chosen microbial system was the cultivation of baker’s yeast (S. cerevisiae). Yeast
has the advantage of having a well-known aerobic and anaerobic metabolism. S. cerevisiae
produces ethanol, even under aerobic conditions, if glucose concentration is above a certain
limit. This phenomenon is known as the Crabtree effect [53,54]. Ethanol formation is
crucial due to its inhibitory effect on cell growth and activity [55]. Furthermore, yeast can
metabolise ethanol for cell growth and energy under aerobic conditions if no glucose is
available [56].

The design of the DT core model was achieved using the developed software tool
concept. First, a biokinetic submodel with a predefined parameter set for yeast cultivations
was chosen (see Briining [31]). The biokinetic submodel was parameterised with data
from 16 previously performed experiments under different conditions and reactor config-
urations (aerobic, anaerobic, aerobic and anaerobic scale-down systems). The validation
experiment was not part of the data set used for parameterisation. Parameterisation was
performed conventionally by minimising the total absolute deviation between experimental
and simulated values of the offline data (biomass density, glucose concentration, ethanol
concentration) with an optimisation algorithm based on the Nelder-Mead algorithm [57].
After parameterisation, the models for the physico-chemical submodel, consisting of a
gas-phase model to simulate the gas-phase concentrations in the exhaust gas and a pH
model to calculate the pH of the medium, were included in the model. Temperature and
DO models are not needed because both temperature and oxygen levels are kept constant
in the calculations to simulate the conditions of the physical system. Assuming ideally
mixed conditions in the physical STRs, one STR model was chosen for each physical reactor
(Figure 5). Since a flow through the pipes should be simulated by two or more STR models,
two connected STR models were combined to simulate each pipe of the experimental
system. In total, six connected ideal STR models were used. Without the possibility of
selecting models and methods for model reduction, 378 differential equations would be
necessary for the model to perform the desired calculations. Through model reduction
(excluding submodels from the DT core model used for parameter identification), this
number was reduced to 174. At the same time, larger calculation step sizes were applied.
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Both measures lead to over 90% faster simulation times (reduction from, initially, 30 s to
1.5 s for the simulation of a process with a duration of 48 h). The step size was selected
to be as large as possible, where only a minor deviation (less than 1%) from a baseline
simulation (one computation step per second) was determined.

In the next step, the planned process conditions are implemented into the model. Both
reactors are initially filled with 0.5 L of a nutrient medium. The total volume of the pipe
between the reactors is 0.05 L per pipe. The flow between the compartments is adjusted
to 0.125 L min~!, which results in a long mixing time of the system of about 5 min to
mimic inhomogeneities [58]. Mixing time is defined as the time elapsed until 90% of the
equilibrium state is reached, determined via pH measurements [59]. Reactor 1 (R1) is
aerated (0.5 L min~—') and operated under aerobic conditions; the second reactor 2 (R2) is
operated under anaerobic conditions. R1 is stirred at 800 rpm and R2 at 600 rpm.

Figure 6 shows a comparison between predicted simulation results from the DT
core model and data from a subsequently performed experiment under the simulated
conditions. Initially, the pH value could not be quantitatively predicted with sufficient
accuracy. Adjusting the initial buffer capacity led to an improved adaption. This altered
buffer capacity can be explained by a change in the experimental medium composition.
Further reparameterisation of the model after the experiment was not necessary.
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Figure 6. Experimental data in comparison to simulation results using the DT for the system of
two interconnected 1 L STRs. (a) shows the concentrations of glucose (red, circle), ethanol (blue,
square) and the dry cell weight (DCW, green, triangle) in R1. (b) shows the online data of the exhaust
gas concentration of O, (simulated = dark red, experimental = light red) and CO, (simulated = black,
experimental = grey) of R1 and R2. (c) shows the pH (simulated = dark red, experimental = light red),
the feed rate of the glucose medium (500 g L1 glucose) and the simulated volume of the reactor
medium of both reactors (R1 = black, R2 = grey).

105



Fermentation 2024, 10, 463

The process was planned to start with a batch phase for 4 h in which 20 g L~! glucose
is metabolised by 10 g L1 S. cerevisiae. This is followed by a fed-batch phase in which
a glucose feed (500 g L~! glucose) was fed with 0.289 mL min~! into R1 for 4 h. In
the remaining 16 h of the process, no glucose is measurable, and the yeast consumes
ethanol. The ethanol concentration reaches its highest concentration of around 20 g L~!
at about 8 h and is reduced to 10-15 g L~ ! at the end of the process. Dry biomass density
reaches about 25 g L~ after 24 h. The simulated offline data from the biokinetic submodel
show close agreement with the experimental data. The combined R? for all offline data is
0.92 (R%Glcose = 0.97, R%Epano = 0.87, RZpew = 0.90).

The physico-chemical variables also show qualitatively and quantitatively good agree-
ment between simulated and experimental data. The CO, concentration in the exhaust
gas reaches 6% during the batch phase of the process. After the complete consumption
of glucose, it sharply drops to 0.8%. When the feed is turned on, the CO, concentration
reaches 4% and drops again after turning off the feed. Since the pH value is nearly identical
in both compartments, only the pH value in R1 is shown. The experimental and simulated
pH drops from about 7 to 5 throughout the first 8 h; afterwards, the experimental pH
value rises back to over 6. This might be caused by a combination of several factors, such
as changes in the buffer capacity of the system, production and consumption of organic
acids and bases or changes in the dissolved CO, concentration. The simulated pH only
rose slightly to 5.2 since not all factors potentially influencing the pH were included in the
pH submodel.

The software tool concept enabled the rapid creation of the DT core model for the
cultivation of S. cerevisiae in two coupled parallel 1 L STRs. The definition of the reactor
submodel structure using six networked STR models and the specification of the biokinetic
and physico-chemical submodels was accomplished by the authors within one hour. These
DT specifications were entered into the user interface of the new software tool concept.
When the authors were utilising the new software tool concept, the source code creation
of the DT core model took less than one minute, instead of several days, if this had to be
performed manually. The faster code implementation could also be performed by less
experienced users (students). The accelerated model code generation enables the testing of
model compositions and sequential parameterisation of submodels.

3.2.2. DT Core Model for Enzymatic Hydrolysis Processes in a PBR

Using the new software tool concept, a DT core model for enzymatic hydrolysis
processes in a PBR was created to demonstrate that the conditions in a PBR can be modelled
by combining a series of STRs. In the STR models, a model representing immobilised
biocatalysts was included. The biokinetic and physico-chemical submodels implemented
in the STRs correspond to those of the DT for enzymatic hydrolysis processes in a STR [30].
Models for enzymatic starch hydrolysis and proteolysis are forming the biokinetic submodel
of the DT. In starch hydrolysis, the substrate starch is converted into glucose by a- and
glucoamylases [30]. In proteolysis, proteins are the substrates that are cleaved into free
amino acids (products) by endo- and exopeptidases [30]. The physico-chemical submodel
is formed by models calculating the temperature and pH of the broth in the reactor.

The DT core model can map the enzymatic hydrolysis processes in a PBR with a
length (Ippr) of 0.3 m, a diameter (dppr) of 0.03 m and a volume (Vppr) of 0.212 L. To reflect
the conditions in the PBR, a cascade of ten modified STRs (Igrg = 0.03 m, dggr = 0.03 m,
Vstr = 0.0212 L) was created in the reactor submodel (Figure 7).

The enzymes are immobilised on a carrier substance that is retained in the individual
STRs. The ideally mixed substrate solution passes through the STRs from one end of the
reactor to the other. In addition, back mixing between the individual STRs can be simulated
to represent different flow types.

Figure 8a shows how the product concentration in a simulated proteolysis process in
the PBR changes over the length of the reactor from STR; to STRyj.
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Figure 7. DT for enzymatic hydrolysis processes in a PBR (ten connected STRs) with immobilised
enzymes. Blue arrows symbolise the flow direction of nutrient media through the PBR.
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Figure 8. DT simulation of the combined enzymatic starch hydrolysis (SH) and proteolysis (PR)
in ten STRs representing a PBR (I = 0.3 m, d = 0.03 m) with T = 60 °C, pH = 6, inflow of sub-
strate solution = 10 mL min~! (100 g L~! substrate SH (80% hydrolysable), 100 g L~! substrate PR
(50% hydrolysable)), back mixing = 1 mL min~"; (a) proteolysis start-up phase in the STRs 1-10 with
P: product (free amino acids) concentration; (b) continuous process over 20 h with S: substrate con-
centration, P: product concentration, E1: active x-amylase (SH) or endopeptidase (PR) concentration,
E2: active glucoamylase concentration (SH) exopeptidase (PR).

It can be seen how the product concentration increases over the length of the PBR
from STR; (5 g L™1) to STRyo (44 g L™1). After about 45 min, almost stationary conditions
are reached in the PBR.

Using the developed DT, a scenario for the combined starch hydrolysis and proteolysis
was simulated. The substrate solution containing 100 g L~! soluble maise starch (80% hy-
drolysable components) and 100 g L~! sunflower protein powder (50% hydrolysable
components) continuously passed through the PBR (Figure 8b).

For the simulation of the starch hydrolysis process, it can be seen that after the start-up
phase of approx. 45 min, the concentration of the substrate rises to approx. 39 g L~ and
the product concentration rises to approx. 68 g L~!. During the processing time of 20 h, the
concentration of active enzyme 1 decreases from 0.08 to 0.079 g L}, and the concentration
of active enzyme 2 decreases from 0.3 to 0.29 g L~! due to enzyme denaturation. This
effect can also be recognised in the concentrations of substrate and product. The substrate
concentration increases to approx. 40 g L™}, and the product concentration decreases to
67 g L~! towards the end of the process.

For the simulation of the proteolysis process, it can be seen that after the start-up
phase of approx. 45 min, the concentration of the substrate rises to approx. 56 g L1, and
the product concentration rises to approx. 44 g L~!. During a processing time of 20 h, the
concentration of active enzyme 1 decreases from 0.6 to 0.55 ¢ L1, and the concentration
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of active enzyme 2 decreases from 0.5 to 0.46 g L~! due to enzyme denaturation. This
effect can also be recognised in the concentrations of substrate and product. The substrate
concentration increases up to approx. 59 ¢ L1, and the product concentration decreases to
41 g L~ ! towards the end of the process.

A decrease in enzyme activity affects the conversion of the substrate to the product in
starch hydrolysis, as well as in proteolysis. By determining the content of the substrate and
product, the enzyme denaturation constant can be identified. With the help of the DT core
model, future experiments can be planned in which the enzyme stability can be determined
under different process conditions (temperature, pH value).

The new software tool concept enabled the rapid creation of the DT core model
for enzymatic hydrolysis processes in a PBR. The desired specifications of the DT core
model were entered into the user interface of the new software tool concept. After that,
the source code creation of the DT core model took less than one minute, instead of
several days if this had to be performed manually. One STR model of this DT core model
contains 25 differential equations. The network of ten connected STR models increases the
number of differential equations to 250. As the volume in the individual STRs of the PBR
does not change, the dilution term in the differential equations for the calculation of the
concentrations (see Equations (5) and (6)) could be removed. Since each STR model of the
DT core model contains the same biokinetic and physico-chemical submodels, the number
of model parameters increases only slightly using ten connected STR models. There are
10 additional parameters describing the exchange area between the STRs. In addition,
20 new control files are added, which specify the flow between the STRs.

Since the newly developed DT core model can map the dynamic behaviour of a PBR
approximately, it can serve as a basis for the development of control and automation
strategies and thus accelerate the design of a future real process.

4. Conclusions

The new software tool concept enables the rapid and flexible development of biopro-
cess DT core models. It is possible to create DT core models for various reactor configura-
tions by linking multiple STR models into a network in the reactor submodel. The software
tool concept is based on a model library comprising nine different biokinetics with initial
parameterisations for a variety of microorganisms and cell lines as well enzymatic systems
that can be used as a basis for new biokinetic models. Furthermore, the model library
contains five different physico-chemical models that can calculate the most important
physico-chemical variables occurring in bioprocesses. In addition, the physico-chemical
variables can be predefined with a fixed value or profile. The user can choose the organism,
additional enzymatic and biocatalytic reactions and physico-chemical models and create a
custom bioprocess DT core model within an hour, compared to several days. This rapid de-
velopment based on a modular submodel framework also enables faster parameterisations
of the developed custom bioprocess DT core models. Submodels can be parameterised
independently and sequentially from each other. In the first step, the biokinetic submodel
is parameterised with the values of physico-chemical variables as fixed profiles. In the next
step, physico-chemical models are added to the DT core model and parameterised. This
accelerates parameterisation by at least 90% since time constants in the biokinetic model
for microorganisms are generally greater than in the physico-chemical submodel (e.g.,
temperature model). Despite a user-defined number of STR models, only one biokinetic
and one physico-chemical submodel with only one set of parameters are required since the
same microorganisms are used in the whole system. The number of connected STR models
is only limited by the performance of the PC used for computing.

In the future, the software tool concept for the development of bioprocess DT core
models will be continuously upgraded. This includes a systematic expansion of the model
library, further options for accelerating the computing time and a further increase in user-
friendliness. Using the new software tool concept, the creation and parameterisation
of various bioprocess DT core models can be accelerated, and the application possibili-
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ties of the DT core models, e.g., for process, control and automation development, can
be increased.
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Abstract: There is significant demand for high-purity DHA in the pharmaceutical industry. Tradition-
ally, this high-purity DHA is extracted from raw materials with relatively low DHA content (10-20%),
such as fish oil. Recently, through electroporation-induced mutation, a high-DHA-content strain of
Schizochytrium sp. GCD2032 was isolated. To further enhance its DHA production, optimizations
were conducted on the culture medium and fermentation conditions (in shaking flasks), as well as
different nitrogen source concentrations (in a 5 L fermenter) for biomass, fatty acid content, and DHA
content (as a percentage of total fatty acids). In a 5 L fermenter, Schizochytrium sp. GCD2032 achieved
a biomass of 50 g/L, with fatty acid content of 55.71% and DHA content of 61.29%. Notably, the DHA
content reached an impressive 341.45 mg/g of dry weight. This strain consistently produces high
levels of fatty acids and DHA, demonstrating significant potential for pharmaceutical applications.

Keywords: Schizochytrium sp. GCD2032; fermentation optimization; nitrogen source; fatty acids; DHA

1. Introduction

Docosahexaenoic acid (DHA) is a member of the omega-3 series of polyunsaturated
fatty acids (PUFAs) and is abundantly found in the human nervous system, retina, and breast
milk [1]. It plays critical roles in human physiology, including promoting brain development,
protecting vision, and exerting anti-cancer and anti-inflammatory effects [2—4]. Furthermore,
DHA is beneficial in the prevention and treatment of cardiovascular diseases, Alzheimer’s
disease, and immune disorders [5]. Recent research indicates that PUFAs like Arachidonic
acid (ARA) and DHA can inactivate the severe acute respiratory syndrome coronavirus,
enhancing human resilience and recovery from viral infections. They may also improve
the structure of gut microbiota [6,7]. Consequently, DHA is increasingly recognized and
applied in pharmaceuticals. High-purity polyunsaturated fatty acids (>95%) are essential for
synthesizing specialized pro-resolving mediators (SPMs) such as protectins, resolvins, and
maresins used in clinical settings [8]. However, the current primary source of high-purity DHA
is primarily extracted from raw materials with low content, such as fish oil. The preparation of
raw materials with high DHA content remains a significant factor limiting production costs.

In recent years, Schizochytrium has gained significant value as an ideal industrial strain
for DHA production due to its high DHA content, rapid growth rate, safety certification,
and ease of cultivation [9-13]. Currently, industrial strains can achieve DHA content as high
as 50-55%. Some studies have attempted to further increase DHA content. For instance,
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Wang et al. successfully engineered a strain of Schizochytrium with DHA content comprising
61% of total fatty acids, reaching 331 mg/g [14]. Chen et al. developed a high-voltage
electroporation-induced mutagenesis method and identified a strain named Schizochytrium
sp. GCD2032 with 3.51%, 95.51%, and 71.67% higher fatty acid content, DHA content, and
DHA yield than those of the wild strain, although its fermentation process has not yet been
optimized [10].

The yield and quality of DHA are influenced not only by the strain itself but also by
the fermentation process. For example, variations in carbon/nitrogen (C/N) source supply
and cultivation temperature can lead to coordinated changes in DHA content, lipid content,
and microbial biomass [15]. A high C/N ratio favours lipid accumulation, but excessively
high ratios can decrease DHA content within the lipids. During nitrogen starvation,
decreased AMP levels in the mitochondrial matrix inhibit the conversion of isocitrate to o-
ketoglutarate, leading to citrate accumulation. Once citrate reaches a critical concentration,
it is converted by ATP-citrate lyase into acetyl-CoA and oxaloacetate, facilitating lipid
accumulation through reverse (3-oxidation [16]. Researchers have conducted extensive
studies on fermentation optimization [17-19], but only a few reports have achieved DHA
content exceeding 60%. However, these instances often come at the cost of lower lipid
content, resulting in reduced conversion efficiency [20].

In this study, the strain Schizochytrium sp. GCD2032 with a high DHA production
capacity, which was screened out in the previous study, was used [10]. Initially, the
stability of Schizochytrium sp. GCD2032 was assessed, and following the establishment of a
stable culture, optimization of the fermentation medium and conditions was performed
in shaking flasks. Subsequently, scale-up fermentation was conducted in a 5 L fermenter,
with particular attention given to the impact of different nitrogen source compositions
and concentrations on DHA production (Figure 1). The study aimed to investigate the
synergistic changes among various components of Schizochytrium sp. GCD2032 during
fermentation, providing technical support for future industrial-scale production of high
DHA content.

/-‘ Transfer of 40 times

7=y

—)
/\ktﬂjj ))\\ )

Schizochytrium sp.GCD2032 Stability evaluation of Schizochytrium sp. GCD2032

Scaleup to 5 L fermentor Flask fermentation optimization

Figure 1. The main research process.
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2. Materials and Methods
2.1. Strain and Medium

Schizochytrium sp. GCD2032, a mutant strain screened by our laboratory, is stored in
a —80 °C ultra-low temperature freezer [10]. The seed liquid medium and basic fermen-
tation medium were prepared according to references in the literature [10,21]. The seed
medium contained glucose (30 g/L; AR, Fufeng Biotechnology Co., Qingdao, China), yeast
extract (2 g/L; AR, OXOID, Cheshire, UK), soya peptone (2 g/L; AR, OXOID), and artificial
seawater salt (15 g/L; AR, Tianjin Damao Chemical Reagent Factory, Tianjin, China). The
original fermentation medium was comprised of glucose (80 g/L), yeast extract (4 g/L),
soya peptone (4 g/L), artificial seawater salt (15 g/L), MgCl,-6H,O (6.4 g/L; AR, Shanghai
McLean Biochemical Technology Co., Shanghai, China), CaCl,-2H,0 (1 g/L; AR, Tianjin
Damao Chemical Reagent Factory), MgSO,4-7H,O (5 g/L; AR, Shanghai McLean Biochemi-
cal Technology Co.), and KCI (2 g/L; AR, Shanghai McLean Biochemical Technology Co.).
Both media were sterilized for 20 min at 115 °C before inoculation [21].

2.2. Experimental Methods
2.2.1. Preparation of Seeds

Schizochytrium sp. GCD2032, retrieved from the —80 °C ultra-low temperature freezer
(Thermo 900), was streaked onto glycerol tubes after thawing. A 100 pL aliquot was spread
onto seed medium plates (including 18 g/L agar) and incubated at 28 °C for 48 h. Single
colonies were picked and transferred to 50 mL seed liquid medium in 250 mL Erlenmeyer
flasks. The cultures were shaken at 180 rpm for 19-25 h until an OD 600 of 0.6 was reached.
This was the seed ready for inoculation.

2.2.2. Strain Stability Evaluation

The seed culture (10% v/v) was transferred to 50 mL of fermentation medium in
250 mL Erlenmeyer flasks and incubated at 180 rpm and 28 °C. After fermentation in the
250 mL flask for 96 h, 5 mL of the fermentation broth was transferred to a new flask with
the same medium for the same amount of time. This process was repeated 40 times and
the biomass, fatty acid content, and DHA content were determined every 10 cycles during
fermentation.

2.2.3. Single-Factor Fermentation Optimization of Schizochytrium sp. GCD2032

Various parameters were investigated in shake flasks to optimize DHA production by
Schizochytrium sp. GCD2032. Factors examined included glucose concentration, nitrogen
source and concentration, and inoculum volume in flasks (250 mL) with 50 mL liquid
medium (natural pH, 2% inoculum, 28 °C, 180 rpm) after 96 h of incubation.

Carbon Source

Glucose, xylose, fructose, sucrose, glycerol, and lactose were tested for the effects
of different carbon sources. The fermentation medium was modified from the original
fermentation medium with a different carbon source at 80 g/L. After fermentation, residual
glucose, biomass, fatty acid content, and DHA content were determined.

Glucose Concentration

Different glucose concentrations (60 g/L, 70 g/L, 80 g/L, 90 g/L, 100 g/L) were tested
for the effects of glucose concentration. The fermentation medium was modified from the
original fermentation medium with different concentrations of glucose. After fermentation,
residual glucose, biomass, fatty acid content, and DHA content were determined.

Nitrogen Source

Yeast extract, corn steep powder, peptone, tryptone, ammonium sulfate, ammonium
chloride, and ammonium nitrate at 5 g/L were tested for the effects of different nitrogen
sources. The fermentation medium was modified from the original fermentation medium
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with different nitrogen sources. After fermentation, residual glucose, biomass, fatty acid
content, and DHA content were determined.

Yeast Extract Concentration

Different concentrations of yeast extract (3 g/L,5g/L,7 g/L, 9 g/L, 11 g/L) were
tested for the effects of yeast extract concentration. The fermentation medium was modified
from the original fermentation medium with different concentrations of yeast extract.
After fermentation, residual glucose, biomass, fatty acid content, and DHA content were
determined.

Inoculation Volume

Single-factor experiments were conducted using inoculation volumes of 2%, 4%, 6%,
8%, and 10% for fermentation. The fermentation medium was the original fermentation
medium with 80 g/L of glucose and 5 g/L of yeast extract. When preparing the fermen-
tation medium, a certain volume of seed liquid was reserved according to its volume to
maintain the total volume at 50 mL. After fermentation, residual glucose, biomass, fatty
acid content, and DHA content were determined.

Effects of Different Concentrations of Yeast Extract in a 5 L Stirred Tank Fermenter

Fermentation was scaled up to 5 L in a glass fermenter (Shanghai Baoxing Biological
Equipment Engineering Co., Shanghai, China) with single-blade agitation technology and
jacketed for temperature control. The optimized medium in 2.2.3 named 5-N, the medium
modified from 5-N by fed-batch of glucose named 5-F, the media modified from 5-F using
10g/L,15¢g/L,20 g/L, and 25 g/L of yeast extract named 10-F, 15-F, 20-F, and 25-F were
used to study the effects on biomass, fatty acid content, and DHA content.

The seed was prepared in a 250 mL flask with 50 mL working volume in the seed
medium and was inoculated into the 5 L fermenter when the OD reached 0.6. Fed-batch
fermentation was carried out in the 5 L fermenter at 300 rpm rotation speed, 1 vvm aeration
rate, 28 °C, and pH 6.0. The initial volume in the 5 L fermenter was set at 3.15 L. Before
inoculation, 0.35 L of 400 g/L glucose solution was added to the fermenter to a final
concentration of 33 g/L. Subsequently, when the residual glucose was less than 20 g/L after
36 h, 400 g/L of glucose solution was continuously added to the fermenter to maintain
its glucose concentration at between 20 and 30 g/L. During the fermentation process, 2 M
sodium hydroxide solution and 1 M sulfuric acid solution were used to adjust the pH
value, and samples were collected every 12 h to determine the biomass, fatty acid content,
and DHA content. The fermentation was carried out for 142 h and the down-tanking was
carried out when the biomass did not increase any more or when the growth of the biomass
slowed down.

2.3. Analytical Methods
2.3.1. Glucose Concentration and Glucose Consumption Rate Determination

The glucose concentration was determined by a biosensor (SBA-40D, Shandong
Academy of Sciences, Jinan, China) according to Guo et al. as follows: Absorb 2 mL
fermentation liquid into a 2 mL centrifuge tube, centrifuge at 8000 r/min for 5 min [22],
and run the supernatant through the water filter membrane to filter impurities. The filtered
liquid was diluted 100 times with deionized water (the glucose concentration was stable
in the range of 0.05-1 g/L) and loaded into 2 mL centrifuge tubes for determination (MO,
g/L). The glucose curve was calibrated by its program.

Glucose Concentration (g/L) = M0 x 100 1)

The glucose consumption rate was defined as the glucose consumed (g/L) per hour,
calculated as shown in Equation (2).

Glucose consumption rate (g/L/h) = glucose consumed (g/L)/time used (h)  (2)
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2.3.2. Determination of the Biomass

Biomass represents the total dry weight of Schizochytrium sp. GCD2032 in a given
volume (g/L). The method from Keskin et al. was used to determine the biomass [23]. At
the end of cultivation, centrifuged cell pellets from a given volume (V, L) were washed three
times with deionized water. Subsequently, the centrifuged samples were frozen and dried
in a freeze dryer (F-D1A-50+, Beijing Boyikang Co., Ltd., Tianjin, China) until a constant
weight was achieved (M1, g). The calculation was performed using Equation (3).

Biomass (g/L) = M1/V 3)

2.3.3. Fatty Acid Extraction and Quantification

According to Zhao et al., the following improved methods were used for fatty acid
extraction [24]. 0.2 g mass of biomass powder was weighed to perform lipid extraction. An
aqua distillate/hydrochloric acid mixture of 10 mL (1:1 v/v) was added to the powder and
placed into 75 °C water baths for 2 h after mixing. After the sample was cooled, 10 mL
n-hexane was added and mixed; this was repeated three times. Supernatants were collected
and evaporated in a nitrogen purging instrument (Hangzhou Aosheng Instrument Co.,
Hangzhou, China) to get a constant weight (M2, g). The fatty acid content was defined as
the ratio of the total amount of fatty acids to the dry weight of the cells required to extract
the fatty acid, which was quantified using Equation (4).

Fatty acid content (%) = (M2/0.2) x 100 4

2.3.4. Fatty Acid Composition and DHA Content Analysis

The total fatty acid composition was determined using an improved method from
our previous study [12]. Fatty acid methyl esters (FAMEs) were prepared by a modified
standard method as follows: 1 mL potassium hydroxide/methanol (0.5 M) was added to
extracted fatty acids samples. Samples were heated at 60 °C in water baths for 15 min
to saponify. After the samples were cooled, 2 mL of 14% boron trifluoride-methanol
complex was added as a catalyst for a 2 min reaction at 60 °C for transesterification. After
transesterification, 2 mL of saturated sodium chloride solution was added to prevent
emulsification. Then, 2 mL of chromatographically pure n-hexane was added and the
transesterified FAMEs were extracted into the n-hexane layer. Finally, 0.5 g anhydrous
sodium sulfate was added and gas chromatography (GC) analysis was performed [25].

A gas chromatograph (Agilent 7200 Q-TOF GC/MS) was used for qualitative analysis
of all fatty acid fractions in the lipids in Schizochytrium sp. GCD2032. The fatty acid fractions
of Schizochytrium sp. GCD2032 were identified by referring to the peak times of Supelco’s
37 fatty acid methyl ester fractions (crm47885) or fatty acid methyl ester standards such as
DHA methyl ester [26].

A Shimadzu GC2010 (GC-2010, Shimadzu, Japan) equipped with a hydrogen flame
ionization detector (FID) and a Supelco SP-2560 gas-phase capillary column (100 m x 0.25 mm
x 0.20 um, Supelco, Bellefonte, PA, USA) was selected for the gas chromatographic analysis.
The parameters were as follows: injection volume: 1 uL; shunt ratio: 30:1; carrier gas: nitrogen;
heating procedure: inlet temperature of 250 °C, detector temperature of 260 °C; column chamber
procedure: firstly, keep the column at 150 °C for 5 min, then increase it to 180 °C at 8 °C/min,
keep it at 180 °C for 5 min, and then increase it to 240 °C at the same temperature increase rate,
and finally keep it at 240 °C for 16 min. Samples were injected in split mode during sample
collection. DHA content (%) is calculated as the percentage of the DHA peak area to the total
peak area of all eluted fatty acids in the determined samples.

2.3.5. DHA Conversion Rate Analysis

The DHA conversion rate is the ratio of DHA production to the glucose used, which
is indicated in Equation (5).

DHA conversion rate (g/g) = [Biomass (g/L) x Fatty acid content (%) x DHA content (%)]/Glucose consumed (g/L) (5)
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2.4. Data Statistics and Analysis

The above experiments were repeated three times and are presented as mean =+ stan-
dard deviation. All data were analyzed using SPSS 20.0 for t-tests to determine significant
differences in experimental data, with * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results
3.1. Stability Assessment of Schizochytrium sp. GCD2032 Fermentation

Schizochytrium sp. GCD2032 is a mutant isolated from an accidental electroporation
treatment [10], which needs further evaluation for stable fatty acid production capacity.
To evaluate the stability of Schizochytrium sp. GCD2032, continuous fermentation over
40 generations was conducted, and biomass, fatty acid content, and DHA content were
determined at the 10th, 20th, 30th, and 40th cycles of fermentation (Figure 2A). The results
showed that the biomass, fatty acid content, and DHA content of the 10th fermentation
cycle strain were 22.9 g/L, 70.24%, and 61.22%, respectively, which were comparable to
the original strain [10]. (This also means that there were no differences from the 1st to
the 10th generations). However, from the 20th generation of fermentation to the 40th
generation of fermentation, the biomass, fatty acid content, and DHA content decreased
compared to the 10th generation of fermentation. The biomasses of the 20th, 30th, and
40th generation fermentation strains were 16.35%, 15.66%, and 16.88% lower than that
of the 10th generation, while at the same time, the fatty acid content and DHA content
were 14.41% and 15.67%, 15.30% and 13.07%, and 13.31% and 13.66% lower, respectively.
Notably, there was no significant difference in biomass, fatty acid content, and DHA content
of the strain in the 20th, 30th, and 40th fermentation cycles, indicating that it was stable
after the 20th consecutive fermentation.

Fermentation stability refers to the ability of a given microbial population to maintain
desired morphological and biosynthetic characteristics in qualitative and quantitative terms.
The reduced stability of fungi during continuous cultivation is a well-known phenomenon;
however, reports in the literature are rather rare [27]. The loss of production capacity
of a microorganism may be caused by genetic or epigenetic factors, and factors such as
genetic mutations, culture conditions, stress, or ageing may play important roles [28]. For
example, scholars have developed a protocol for inducing denaturation in Trichoderma
reesei, a technique that can be used to calculate the extent of strain denaturation and to
compare the denaturing behaviours of different evolved strains. Research has found that T.
reesei QM6a shows no degeneration and T. reesei Rut-C30 exhibits minimal degeneration.
This is followed by T. reesei logen-M4 with approximately 10% degeneration and T. reesei
Iogen-M10 with nearly 100% degeneration [27]. This variability may enable fungi to better
adapt to changing environments; however, it leads to a loss of production capacity in an
industrial strain. Thus, it may take some time for Schizochytrium sp. GCD2032 to recover
after mutations in the genome that lead to loss of biomass and reduced fatty acid content
and DHA content.
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Figure 2. Fermentation characteristics of Schizochytrium sp. GCD2032. (A) Comparison of the
biomass, fatty acid content, and DHA content at the 10th, 20th, 30th, and 40th cycles of fermentation
of Schizochytrium sp. GCD2032. (B) Effects of different carbon sources on fermentation biomass and
fatty acid and DHA contents. (C) Effects of glucose concentrations on fermentation biomass and
fatty acid and DHA contents. (D) Effects of different nitrogen sources on fermentation biomass and
fatty acid and DHA contents. (E) Effects of yeast extract concentrations on fermentation biomass and
fatty acid and DHA contents. (F) Effects of inoculum volume on fermentation biomass and fatty acid
and DHA contents. The statistical significances of the final results were analyzed by t-test, * p < 0.05,
**p <0.01, ** p <0.001.

3.2. Shake Flask Fermentation Optimization of Schizochytrium sp. GCD2032

To optimize the fermentation conditions of Schizochytrium sp. GCD2032, the effects of
different carbon sources, carbon concentrations, nitrogen sources, nitrogen concentrations,
and inoculum volumes on biomass, fatty acid content, and DHA content were investigated
in flasks. The results are shown in Figure 2B-F. Schizochytrium sp. GCD2032 demonstrated
efficient utilization of glucose, fructose, and glycerol; the highest biomass of 19.71 g/L was
observed when glucose was used as a carbon source and the highest DHA content of 55.57%
was observed when glycerol was used as a carbon source. In contrast, cultivation with xylose,
sucrose, and lactose limited its growth, resulting in generally lower biomass, fatty acids,
and DHA production, with minimal utilization (Figure 2B). Biomass and fatty acid content
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increased with glucose concentrations ranging from 60 to 80 g/L; however, when the glucose
concentration was over 80 g/L, both biomass and fatty acid content decreased. Meanwhile, as
glucose concentration increased, DHA content gradually decreased (Figure 2C).

Organic nitrogen sources are more suitable for the growth of Schizochytrium sp. GCD2032
compared to inorganic nitrogen sources. Schizochytrium sp. GCD2032 grew poorly (biomass
less than 1 g/L) when an inorganic nitrogen source (such as NH4SO,, NaNOs3, etc.,) was
used. In a medium where yeast extract was used as the nitrogen source, 69.21%, 80.11%,
and 94.21% higher dry weight, 19.86%, 55.11%, and 83.97% higher fatty acids, and 14.09%,
39.34%, and 20.67% higher DHA content were obtained compared to fermentation performed
in media with corn steep, tryptone, or peptone as nitrogen sources (Figure 2D). The con-
centration of yeast extract is one of the important factors affecting DHA content; as yeast
extract concentration increases, biomass increases. However, excessive yeast extract hinders
the rapid accumulation of fatty acids; therefore, when the yeast extract concentration is 5 g/L,
the biomass, fatty acid content, and DHA content are optimal (Figure 2E).

Inoculum volume is also an important parameter. A too-low inoculum volume can
lead to a low initial density of microorganisms in the culture medium, thereby affecting their
growth rate and metabolic efficiency. Conversely, an excessively high inoculum volume
results in a high initial cell density, leading to rapid Schizochytrium sp. GCD2032 growth
that can cause insufficient oxygen levels in the fermentation broth, which is unfavourable
for cellular division metabolism. Optimal inoculum volume ensures proportional substrate
consumption and fermentation time, thereby improving nutrient substrate utilization
efficiency. In the range from 2% to 8%, the biomass of Schizochytrium sp. GCD2032
increased as the inoculum volume increased. When the inoculum reached the maximum
value of 8%, the biomass was 21.61 g/L and did not increase further. Subsequently, as the
inoculum continued to increase, the biomass of the strain decreased. However, there was
no significant effect on the fatty acid content, whereas the DHA content gradually increased
to 56.49% with increasing inoculum volume. Taking everything into consideration, an
inoculum volume of 8% was chosen as appropriate (Figure 2F).

Research has shown that the addition of citric acid and malic acid can enhance DHA
content [13,19]. However, during single-factor fermentation optimization, the influence of
citric acid and malic acid on DHA content was examined, and the results indicated that
their addition did not affect the biomass, fatty acid content, and DHA content (data not
published).

3.3. Scale up in 5 L Fermenters

The effects of different yeast extract concentrations under batch and fed-batch fer-
mentation conditions on fermentation biomass, fatty acid content, and DHA content were
investigated (Figure 3). Results of fermentation in 5 L fermenters using optimized shake
flask media showed biomass, fatty acid content, and DHA content comparable to shake
flask results, maybe indicating glucose limitations for Schizochytrium sp. GCD2032 in the 5 L
fermenter despite its better oxygen availability (Figure 3A). During fed-batch fermentation
with increasing yeast extract concentrations, the highest biomass and DHA content were
achieved after 132 h, reaching peak values with 20 g/L of yeast extract before declining.
Total fatty acid content varied minimally between 5 and 15 g/L of yeast extract as the
nitrogen source, decreasing gradually as yeast extract concentration increased from 20 to
25 g/L, where 25 g/L of yeast extract resulted in only 25% fatty acid content. Glucose
uptake and the rate of DHA conversion by Schizochytrium sp. GCD2032 also increased
gradually with increasing yeast extract concentration, reaching maximum levels at 20 g/L
of yeast extract, indicating that 20 g/L of yeast extract was optimal for biomass and fatty
acid production in the 5 L fermenters, with a DHA conversion rate of 0.17 g/g (Figure 3B).

119



Fermentation 2024, 10, 460

A V777) Biomass B
Fatty acid Content Cois
R DHA Content o .
50 Hokok L70 100 4 m Glucose utilization . 7N N
B E RN/ DHA Conversion rate N 7 [o.16
= e
S 4 %‘ N 7 Fo14  ~
4 = ~g04 ox 7 )
45 o 2 380 s 3
~ E K] o Foz g
) 3 g 7 s
g =
2] bso = = 60 Lot g
2 a 3 7
8 = 5
g k] 5 Foos 2
.8 < o g
/@ 354 40 3 40 -
2 S F 0.6 :
g =2
s > ok E
o] F0.04
304 F30 = 20 4
F0.02
25 - . - L2o 0 0.00
5N 5-F 10-F 15-F - 25-F 5N 5-F 10-F 15-F 20-F 25-F
Concentration of Yeast extract (/L) Concentration of Yeast extract (g/L)
C =—Biomass (/L) D —@— Glucose utilization
—e— Fatty acids production (g/L) ~—&— Glucose concentration
—A— DHA production (g/L) 120 7

60| —¥— Fatty acid contents (%)
—<— DHA Contents (%)
55 i
100

50
45
80 §
40

354

= 30 4 = 604
=
254
20 40
15
10 20

5

jue
Glucose utilization (g/L)
lucose concentration (g/L)

0

20 4‘0 6‘0 8I0Time (hl)(l)O 150 11;0 léO 0 20 40 60 Tlnfg (h) 100 120 140 160
Figure 3. Fermentation of Schizochytrium sp. GCD2032 in a stirred tank fermenter. (A) Effects
of yeast extract concentrations on biomass and fatty acid and DHA contents; (B) effects of yeast
extract concentrations on glucose utilization and DHA conversion rate; (C) fermentation curve of
Schizochytrium GCD2032 with 20 g/L of yeast extract as nitrogen source (the data and the units are all
shown in the legend); and (D) glucose utilization and glucose-fed curve of GCD2032 with 20 g/L
of yeast extract as nitrogen source. The statistical significances of the final results were analyzed by
t-test, * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 3C displays the variations in biomass, fatty acid production and content, and
DHA production and content, with feeding glucose as the carbon source (Figure 3D) and
20 g/L of yeast extract as the nitrogen source. The results show that as fermentation
progresses, biomass, fatty acid production, fatty acid content, and DHA content reach their
peaks at 132 h, with the maximum DHA content reaching 61.29%, followed by a decline;
meanwhile, fatty acid content continues to increase. Glucose consumption increases linearly
throughout the fermentation process, reaching its highest point at 132 h, after which its rate
gradually slows down (Figure 3D).

Nitrogen deficiency is a major trigger for initiating fatty acid synthesis [29]. Compared
with flask fermentation, a 5 L fermenter requires better oxygenation and space, thereby
improving the efficiency of microorganism growth and fatty acid accumulation. Therefore,
in fed-batch fermentation, if the optimal nitrogen source concentration from shake flasks
is used in the 5 L fermenter, the nitrogen source concentration will limit the fermentation
yield, and increasing the nitrogen source concentration is necessary to improve the fatty
acid yield. Therefore, in theory, excessively high nitrogen source concentrations may delay
the initiation of fatty acid accumulation, resulting in high biomass but insufficient fatty acid
accumulation. Conversely, too low nitrogen source concentrations may halt cell division
and initiate fatty acid accumulation without accumulating enough cells, resulting in high
fatty acid content per cell but overall low fatty acid production.

Table 1 indicates different DHA contents from various studies. Not all studies provide
exact DHA content data; some derive it from the ratio of DHA production to fatty acid
production. According to Table 1, the DHA content reported in this study for Schizochytrium
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sp. GCD2032 is relatively high compared to others in the literature. Only one study reported
a DHA content of 62.4% [19], achieved at a scale of 50 L with a fatty acid content of 38.00%.
In contrast, this study achieved a fatty acid content of 55.71% while maintaining a high
DHA content of 61.29%. This difference may be attributed to variations in strains and
fermenter conditions.

Table 1. Comparison of DHA contents in different studies.

Working Volume/Reactor

Strains Volume

Biomass Fatty Acid Content DHA Content

A recombinant strain of
OPKSABC-PPT originated from - - - 40.60%
Schizochytrium sp. ATCC20888 [30]

Schizochytrium sp. HX-308 (CCTCC
M209059) overexpressing the

. 100 mL/250 mL - - 50.10%
diacylglycerol acyltransferase
(ScDGAT2C) gene [19]
Schizochytrium sp. ATCC 20888 with o o
5 mg/L proanthocyanidins [31] 50 mL/250 mL 36.7 g/L 55.31% 48.30%
Aurantiochytrium sp. 6-2 [32] 1L/2L - - 28.80%
Thraustochytrium sp. [33] 100 mL/250 mL 9.88 g/L 66.50% 24.80%
Schizochytrium sp. co-overexpressed /5L B B 55.70%

PPTase and w-3 FAD. [34]

Schizochytrium sp. with seawater and
fermentation wastewater as 30L/50L 1958 g/L 38% 62.40%
fermentation broth [20]

The synergistic effect of chemical

regulators is applied to 15L/2L 2.04+112g/L/d 49.02% 38.60%
Schizochytrium sp. [35]
Schizochytrium sp. GCD2032 35L/5L 50g/L 55.71% 61.29% (this study)
Note: “-” indicates no data in the reference.

Currently, the extraction and purification of DHA from microalgae still face challenges,
including high energy consumption during cell drying and fatty acid extraction, making
large-scale production difficult. This issue mainly arises from the low DHA content.
Therefore, if a Schizochytrium species with high DHA content can be constructed, for
example, Schizochytrium sp. GCD2032, it would significantly reduce the cost of fatty acid
extraction and achieve energy and resource savings. In the future, further exploration
of gene mutation sites in Schizochytrium sp. GCD2032 through technologies like genome
sequencing should be conducted to elucidate the mechanisms and regulatory pathways
behind its high DHA content. Additionally, genome editing techniques can be used to
create new cell factories that are both high in DHA content and production. Concurrently,
efficient extraction and purification technologies for DHA should be developed, laying a
solid foundation for the development of DHA-based pharmaceuticals.

4. Conclusions

The pharmaceutical and food industries have a huge demand for high-purity DHA
products, while traditional methods only extract it from fish oil, whose low concentration
leads to higher product costs. This study observed that the mutant strain Schizochytrium
sp. GCD2032 initially showed a decrease in DHA content after 10 cycles of fermentation
but stabilized in its ability to produce fatty acids and DHA after 40 transfer cycles. Using
this stable strain, optimal fermentation conditions were established through the optimiza-
tion of shake flask media and fed-batch fermentation with glucose addition and varied
nitrogen source concentrations in a 5 L fermenter. After optimization, the DHA content
increased by 16.06%, DHA production increased by 179.24%, and the final DHA content
reached 341.45 mg/g cell dry weight. These optimizations resulted in the highest fatty

121



Fermentation 2024, 10, 460

acid fermentation outcomes, providing a robust foundation for future high-purity DHA
production.
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Abstract: In this study, waste sunflower oils were evaluated as substrates for citric acid (CA) pro-
duction by Yarrowia lipolytica IFP29 (ATCC 20460). This strain was selected based on its capacity to
produce organic acids in a selective medium. Attempts were made to optimize the process using
the Taguchi statistical method in terms of the oil polarity, oil concentration, fermentation time, and
Triton X-100 concentration. The results indicated that Y. lipolytica IFP29 utilized waste sunflower
oil as a substrate and produced a maximum CA of 32.17 &+ 1.44 g/L. Additionally, Triton X-100
inhibited the production of CA. For this reason, this process could not be optimized. These results
were obtained by periodically adjusting the pH with NaOH during the fermentation period. On
the other hand, a new experimental design was created without Triton X-100. As a buffering agent,
2-morpholinoethanesulfonic acid monohydrate (MES) was used to prevent a drop in pH; the maxi-
mum concentration of CA was found to be 20.31 £ 2.76. The optimum conditions were as follows:
90 g/L of waste sunflower oil with a polarity of 16 and 12 days of fermentation. According to the
analysis of variance results, the effects of factors other than polarity on CA production were found to
be significant (p < 0.05).

Keywords: citric acid; Yarrowia lipolytica; isocitric acid; Taguchi; waste oil; FTIR; fatty acids

1. Introduction

Approximately 80% of vegetable oils produced are partitioned for human consump-
tion [1]. Therefore, large quantities of waste cooking oil (WCOs) are generated daily
from various sources, including the food processing industry, fast-food establishments,
restaurants, and households. Bio-refineries offer the potential for achieving “zero waste”
and promoting “green chemistry” by encouraging the recycling and utilization of waste
and by-products through eco-friendly processes. The removal of WCOs poses an envi-
ronmental challenge that can be addressed by using them for biodiesel production or as
bio-lubricants [2]. Utilizing WCOs directly as feedstock for microbial processes presents
an opportunity to reduce the production costs of valuable compounds and enhance the
economic value of these wastes, which are hazardous to the environment. Certain species
of yeast, fungi, and bacteria can utilize WCOs as carbon and energy sources and convert
them into metabolites of added value [3].

Citric acid (CA) is the second-largest fermentation product produced by tonnage after
ethanol production [4]. Citric acid is used in the food, pharmaceutical, chemical, and
metallurgical industries because of its nontoxic nature and ability to chelate and sequester
metal ions [5]. According to the Global Citric Acid Market Outlook (2023), the global
CA market reached approximately 2.59 million tons in 2022; approximately 70% of the
production is used in the food industry, 12% in pharmacological preparations, and 18% in
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technical applications. Furthermore, production is expected to reach 3.29 million tons by
2028 [6]. CA is an intermediate product of the tricarboxylic acid cycle [7]. Y. lipolytica is one
of the most commonly used yeast species in CA production via fermentation [8]. However,
the biggest disadvantage of Yarrowia lipolytica production is the production of isocitric acid
(ICA) as a by-product. As a strategy, reducing ICA and fatty acid biosynthesis of Y. lipolytica
increases CA production. One of the most important parameters in production is the excess
carbon source and nitrogen limitation in the fermentation medium [9].

Y. lipolytica can use hydrophobic substrates to produce organic acids, single-cell oils,
and lipases [10]. The initial step involves the hydrolysis of triacylglycerols by extracellular
lipases and the release of glycerol and fatty acids into the culture medium depending
on the source of WCO. This hydrolysate can then be used to synthesize CA in the mito-
chondria of Y. lipolytica [11]. Although waste oils are generally preferred for biodiesel
production [12-15], various bioproducts, such as biosurfactant [16-23], lipase [24-30],
microbial lipids [25,31-38], single-cell protein [39], limonene [40], itaconic acid [41], and
succinic acid [42], can also be produced using WCOs in yeast-based processes. Moreover,
non-waste sunflower and canola oils have been used as substrates for CA production by
Y. lipolytica strains, and high concentrations were obtained [7,43-47]. However, only a
few studies have been conducted on CA production by Y. lipolytica using WCO in the
production medium [11,48].

Optimizing and scaling up fermentation processes can significantly improve the per-
formance of high-yield strains, resulting in increased productivity and reduced cost [49].
Among these optimization methods, the Taguchi method utilizes fractional factorial de-
signs known as orthogonal arrays (OAs). This approach helps optimize multiple process
variables while minimizing the total number of experiments required. The selection of an
appropriate OA depends on the number of control factors and their respective levels [50].

CA is an important organic acid that is frequently used in various industries and is
typically produced via fermentation. The fact that demand for CA has increased every
year has caused studies on its production to continue. In this study, CA production by
Y. lipolytica using the waste sunflower oil obtained from potato frying was investigated.
The Taguchi experimental design was used to optimize production in terms of oil polarity,
oil concentration, fermentation time, and Triton X-100 concentration. This study also
characterized waste oil in more detail compared to similar studies in the literature and
made a difference through process optimization. In addition, the effects of different
buffering agents and Triton X-100 on CA production were revealed for the first time.

2. Materials and Methods
2.1. Microorganisms

Strains of Y. lipolytica NRRL Y-1094 (ATCC 8662), Y. lipolytica NRRL YB-423 (ATCC
18942), Y. lipolytica IFP29 (ATCC 20460), and Y. lipolytica NRRL YB 423-12 (ATCC 18944)
were sourced from the American Type Culture Collection (ATCC, Manassas, VA, USA).
The cells were preserved at —80 °C in MEB with 50% (v/v) glycerol and activated in Malt
Extract Broth (MEB).

2.2. Collection of Sunflower Oils

Waste oil samples were obtained by frying potatoes with sunflower oil (a well-known
brand in Tiirkiye) in a kitchen-type deep fryer. The polarities of the samples were adjusted
using a Testo 270 frying oil tester (Testo, Lenzkirch, Germany). The samples could not
be obtained from small- and medium-sized enterprises because they generally do not
use pure sunflower oil and sometimes fry products other than potatoes. In this context,
controlled conditions were created to elucidate the mechanism of CA production using
waste sunflower oils.
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2.3. Characterization of Sunflower QOils
2.3.1. Determination of Fatty Acid Compositions of Oils

The fatty acid compositions of the samples were determined using an Agilent 7890
B gas chromatograph equipped with a Flame Ionization Detector (Agilent Technologies,
Palo Alto, CA, USA) and Agilent J&W DB-FastFAME column (30 m x 0.25 mm, 0.25 um,
p/n G3903-63011). The inlet temperature was set to 250 °C and a 1 pL sample injection was
performed. Hydrogen gas was used at a flow rate of 40 mL/min. The oven program was
set as follows: 0.5 min at 50 °C, 194 °C at a rate of 30 °C/min for 3.5 min, and 240 °C at a
rate of 5 °C/min for 1 min. A mixture of fatty acid methyl esters (37 components, C4-C24,
ANPEL, Shanghai, China) was used as the external standard.

2.3.2. FTIR Analysis

The Fourier Transform Infrared (FTIR) spectra of oils were obtained utilizing an
FTIR spectrometer (Thermo Scientific, Nicolet iS50 Spectrometer, Waltham, MA, USA)
equipped with an ATR (Attenuated Total Reflectance) sampling accessory featuring a single
bounce diamond crystal. The spectra were measured in absorbance mode over the range of
4000 cm ™! to 600 cm ™!, with 7 scans accumulated at a spectral resolution of 4 cm ™.

2.4. Screening of Y. lipolytica Strains for Acid Production Capacities

The medium proposed by Hesham et al. [51] was modified and used to select producer
microorganisms. The medium components and concentrations (g/L) were as follows: waste
oil, 60; NH4Cl, 0.6; KHyPOy4, 1; MgSO47H;0, 1; yeast extract, 1; bromocresol green, 0.2;
Triton X-100, 1.5; and agar, 20. Waste sunflower oil (60 g/L) with a polarity of 16 was added
to the culture medium instead of glucose but the pH was not adjusted. Wells were created
on each agar plate and 150 uL of the active yeast culture was separately added to each well.
The yellow-colored zones formed by acid formation of the strains incubated at 28 °C for 48
h were measured.

2.5. Fermentation Conditions

The fermentation medium components and concentrations (g/L) are as follows: yeast
extract, 0.8; KHPOy, 1, MgSO47H,0, 1.5; FeCl36H,0, 0.2; ZnSO47H,0, 0.02; and CuSOy,
0.02. Active cultures were transferred to a fermentation medium (at a 2% inoculation
rate) and prepared according to the experimental design conditions. Fermentations were
performed on a rotary shaker (50 mL medium /250 mL flask/28 °C, 180 rpm).

During fermentation, the pH was adjusted to 5.5-6.5 with 5 N NaOH on days 4 and 8,
to prevent a decrease in pH. For the second experimental design, pH was adjusted using
100 mM 2-Morpholinoethanesulfonic acid monohydrate (MES) buffer at pH 6.5.

2.6. Determination of CA, ICA, and Biomass Concentrations

After fermentation, the medium was centrifuged at 9000 rpm for 15 min to separate
the cells and the obtained supernatant was passed through a syringe filter (0.45 um) and
mixed with 8% HCIO, in equal volume. Measurements were performed on an HPLC
system (Agilent Technologies 1100 Series, Palo Alto, CA, USA) and a reverse-phase column
(Inertsil ODS-3, 4.6 x 250 mm) was used. The wavelength was set to 210 nm. The
column temperature was 40 °C and the flow rate of the mobile phase was 1 mL/min.
The mobile phase was selected as 0.01 M H,SO4 [52]. The concentrations of CA and ICA
were determined using a calibration curve obtained with standards (Sigma-Aldrich, St.
Louis, MO, USA).

Biomass concentration was determined by centrifuging the fermentation liquids to
separate the cells, followed by drying at 80 °C for 18-24 h.

The CA production process is presented in Figure S1 (Supplementary Materials).
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2.7. Process Optimization

An experimental design was created using Minitab statistical software (version 17) by
the Taguchi method to optimize CA and ICA production. The experiments were conducted
with four replicates (considering possible adverse effects of pH adjustment) and the results
were based on two samples. Table 1 lists the factors and levels used in the experiments and
Table 2 lists the experimental design.

Table 1. Factors and levels used in the experiments.

Factors Level 1 Level 2 Level 3
Sunflower oil polarity 8 16 24

Oil concentration (g/L) 60 90 120
Fermentation time (days) 4 8 12

* Triton X-100 concentration (g/L) 0 1 2

* This factor was used only in the first experimental design.

Table 2. Experimental design used for the optimization of CA production.

Run Polarity Oil (g/L) Time (Days) Triton X-100 (g/L) *
1 8 60 4 0
2 8 90 8 1
3 8 120 12 2
4 16 60 8 2
5 16 90 12 0
6 16 120 4 1
7 24 60 12 1
8 24 90 4 2
9 24 120 8 0

* This factor was used only in the first experimental design. Other factors and levels remained the same in the
second experimental design.

Optimal parametric conditions can be determined using a signal-to-noise (S/N) ratio.
This ratio reflects the deviation of the experimental results from the desired performance
values, indicating closeness to the ideal performance. The S/N ratio values can be analyzed
based on three performance characteristics: “larger is better”, “nominal is best”, and
“smaller is better”. As we aimed to maximize CA production in our study, the “larger
is better” criterion was preferred [53]. The Mean Square Deviation (MSD) represents all
variations around the designated target and can be calculated from S/N [54]. The study

employing a larger is a better criterion for calculating the S/N ratio, which is defined as

S/N = —10 log MSD

MSD = [(1/y1)* + (1/y2)* + - -+ + (1/yn)*1/n,

where 7 is the representative number of measurements (9 in our case) and y is the experi-
mental value. Combinations of experimental factors were selected from the L9 orthogonal
test table to determine the optimum process conditions.

After determining the inhibitory effect of Triton X-100 on CA production, this fac-
tor was excluded, and a new experimental design was created (Table 2). Analysis of
variance (ANOVA) was used to determine the statistical significance of the factors. Both
the S/N ratio and ANOVA were instrumental in predicting the optimal combinations of
process parameters.
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3. Results and Discussion
3.1. Characterization of Sunflower Oil Samples

The spectra of sunflower oils were obtained using Fourier Transform Infrared (FTIR)
spectrometry before and after use as sunflower oils. The wavenumbers corresponding to
the oleic (C18:1), linoleic (C18:2), palmitic (C16:0), and stearic acid (C18:0) fatty acids present
in sunflower oil were characterized. This method enables the detection of polymerization,
oxidation, and esterification reaction products in oils based on the wave numbers and
regions where bands occur because of the vibrational energies of the molecules constituting
these acids in the oil. Each band observed in the spectrum facilitated the identification
of functional groups in the measured sample. The FTIR spectra of the oils are shown in
Figure 1. The polarity of the non-waste oil was determined to be eight and the sample was
coded as SF-8. This sample was used as the control. Waste oils with polarities of 16 and 24
were coded as SF-16 and SF-24, respectively.
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Figure 1. FTIR spectra of sunflower oils and vibration modes of corresponding observed bands.

As the polarization degree increased (from SF-8 to SF-24), there was a noticeable
change in the absorbance of the bands. Especially, the C=O stretching band around 1740
cm~! showed a significant increase, indicating higher levels of saturated aldehyde func-
tional groups or other secondary oxidation and polymerization products. The C-H stretch-
ing bands around 2850-2925 cm~! also showed changes in absorbance, reflecting the
alteration in the alkyl chain structure due to frying. An increase in the absorbance of the
C=0 stretching band and changes in the C-H stretching band were direct indicators of
polymerization and oxidation. These changes were consistent with the chemical trans-
formations that occurred during prolonged frying, which led to the formation of larger
and more complex molecules. Figure 1 shows the spectra of sunflower oils and the band
vibration assignments are listed in Table 3.

128



Fermentation 2024, 10, 374

Table 3. FTIR band vibration assignments with fatty acid correlation.

Wavenumber (tm~1)  Assignment Functional Group Fatty Acid Containing

methylene (CH,) groups long-chain fatty acids

720 C-H bending [55] and alkanes (e.g., palmitic acid and stearic acid)
triglycerides formed from fatty acids
1100-1200 C-O stretching [56] esters (e.g., oleic acid, linoleic acid, palmitic acid,
and stearic acid)
1375-1385 CHj3 bending methyl (CH3) groups fatty acids with methyl groups
(symmetric) [57] in alkanes (e.g., palmitic acid and stearic acid)
. long-chain fatty acids
1465 CHj bending [58] alkanes (e.g., palmitic acid and stearic acid)
triglycerides and fatty acids
1740 C=0 stretching [59] esters (e.g., oleic acid, linoleic acid, palmitic acid,
and stearic acid)
3 . methylene (CHj) groups long-chain fatty acids
2850 C-H stretching (CHy) [60] and alkanes (e.g., palmitic acid and stearic acid)
2925 C-H stretching methyl (CHj3) groups fatty acids with methyl groups
(CH3) [58,61] in alkanes (e.g., palmitic acid and stearic acid)
3008 C-H stretching aromatic rings and alkanes  unsaturated fatty acids
(cis=CH) [62] (unsaturated) (e.g., oleic acid and linoleic acid)

Ester groups were observed in the carbonyl stretching band (C=O ~ 1740 cm~!). The
increase in the absorbance of this band might be related to polymerization-induced creation
of new ester molecules and oxidation products. We observed an increase in the absorbance
of this band because the oil was fried for longer periods (greater degrees of polarization).
The stretching vibrations of the methylene (CHj;) and methyl (CH3) groups were corre-
lated with the C-H stretching (2850-2925 cm~!) bands. Larger polymeric structures and
cross-linking of fatty acids were indicated by changes in these bands, particularly their
broadening or increase in absorbance.

The fatty acid compositions of the samples are recorded in Table S1 (Supplementary
Materials). Linoleic, oleic, palmitic, and stearic acids were the most abundant fatty acids
in sunflower oils. It is thought that the lack of a regular increase or decrease in the
amount of fatty acids as the polarity increased was due to the samples being obtained at
different times.

3.2. Screening of Y. lipolytica Strains for CA Production

At the end of the incubation period, Y. lipolytica IFP29, which had the largest zone
diameter (2.00 & 0.00 cm), was selected as the potential producer strain (Table 4). Figure 2
shows the zone formation of Y. lipolytica IFP29 in a selective growth medium.

Table 4. The zone diameters in the selective medium for Y. lipolytica strains.

Diameter (cm)

Microorganisms

24h 48 h
Y. lipolytica NRRLY-1094 0.60 £+ 0.07 1.00 +0.14
Y. lipolytica NRRL YB-423 0.05 £ 0.07 0.50 £ 0.00
Y. lipolytica IFP29 0.75 4+ 0.07 2.00 4 0.00
Y. lipolytica NRRL YB 423-12 0.40 £0.14 1.25 + 0.07
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Figure 2. (a) Selective medium, (b) Zone image of Y. lipolytica IFP29 after 48 h, (c) The oil layer on the
selective medium.

3.3. Results of Experimental Design 1

The data obtained from the applied experimental design are presented in Table 5.

Overall, it can be concluded that Triton X-100 reduced the biomass concentration and
inhibited CA production. As is evident from the table, the highest biomass concentration
(3.30 £ 0.42) was achieved when the condition of the 1st run was applied. This outcome
was expected because of the non-waste oil used and the absence of Triton X-100. The
lowest biomass concentration was observed as 1.51 = 0.10, using the highest polarity and
Triton X-100 concentration. The highest CA and ICA production were 32.17 &£ 2.04 and
29.44 + 1.80, respectively. One noteworthy parameter was the considerable concentration
of ICA formed as a byproduct (CA/ICA ratio of 1.09). Although the CA concentration
remained relatively consistent, the ICA concentration decreased when non-waste oil and
1 g/L Triton X-100 were used. Additionally, it was evident that Triton X-100 adversely
affected production compared with condition 2, even though the highest polarity level and
oil concentration were used under condition 9 (with the same fermentation time).

Table 5. Results of biomass, CA, and ICA concentrations and the final pH.

Triton

Run Polarity ~ Oil (g/L) (T]i)':;s) i;-/lLO)O ::/‘i‘)“ass ((;/AL) fgc/f) Ilji}‘l‘al

1 8 60 4 0 330 £ 042 436+ 0.24 3.76 + 0.38 274 +0.14
2 8 90 8 1 2.83+£0.18 453+ 1.44 1.64 + 0.26 3.60 + 0.23
3 8 120 12 2 2344025 - - 5.15 + 0.28
4 16 60 8 2 2114031 - - 478 +0.27
5 16 90 12 0 310+£0.17 32174204  2944+180  4.65+ 041
6 16 120 4 1 2524020 - - 3.42 +0.50
7 24 60 12 1 2224061 - - 5.50 + 0.21
8 24 90 4 2 1514010 - - 4.48 £ 0.06
9 24 120 8 0 3004041 1140+127 727 +1.10 3.68 + 0.64
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Liu et al. [11] showed that 30.3 g/L of CA by Y. lipolytica SW]-1b was obtained after
336 h in a medium containing 80 g/L waste oil. Under these conditions, the concentrations
of ICA and biomass were calculated as 6.9 and 6.1 g/L, respectively. Upon increasing the
waste oil concentration to 120 and 140 g/L, a decrease in the CA concentration and an
increase in the ICA concentration were observed. In our study, achieving a higher CA
yield after 288 h was significant; however, a high ICA concentration was disadvantageous.
Another important point is that the CA concentration reached was obtained in shake flasks
but not in the bioreactor. Therefore, using less than 90 g/L waste oil in the fermentation
medium without a surfactant may reduce the concentration of ICA. In another study,
12.2 g/L of CA was achieved in a fermentation medium containing 30 g/L of waste oil
when 20 g/L of NaCl (for an initial osmotic pressure of 0.75 osmol/L) was used. Moreover,
the synergistic effect of osmotic pressure with pH was investigated and 12.6 g/L of CA was
obtained, with a combination of 0.75 osmol/L and pH 6.0 [48].

3.4. Results of Experimental Design 2

The data obtained from the new experimental design are given in Table 6. Except for
the conditions in the seventh trial, the pH value did not drop below four. Biomass values
ranged between 1.64 £ 0.35 and 3.89 + 0.47. The highest CA concentration, calculated
as 20.31 £ 2.76, was obtained under the fifth condition, similar to the first experimental
design. The concentration of ICA produced under these conditions was calculated to be
13.63 + 1.46. Compared with the experimental designs, the difference in CA concentrations
obtained under the fifth condition was attributed solely to pH adjustment. This difference
could be due to the substances used for buffering and/or the stabilization of the pH around
four with MES buffer, which may decrease or block the rate of CA production. While
the use of MES butffer aimed to provide more standard production, it is anticipated that
continuous pH control with NaOH would yield better results if a bioreactor were used.

Table 6. The results were obtained by applying the new experimental design.

Run 0il Polarity Time Biomass Final CA S/l\'I ICA S/l\'I
(g/L) (Days) (g/L) pH (g/L) Ratio (g/L) Ratio

1 60 8 4 3.14 +0.27 4.48 £+ 0.07 8.18 £1.22 18.26 6.32 £ 1.15 16.01
2 60 16 8 219 +0.21 4.03 4+ 0.08 10.97 £ 0.49 20.80 7.66 £ 1.10 17.68
3 60 24 12 1.64 £0.35 4.01 +0.01 13.98 £ 0.18 2291 10.03 £ 1.54 20.03
4 90 8 8 3.76 £ 0.61 4.01 £0.16 13.92 + 047 22.87 10.59 4+ 0.93 20.50
5 90 16 12 297 +0.27 4.36 4+ 0.06 20.31 £ 2.76 26.15 13.63 = 1.46 22.69
6 90 24 4 1.79 £0.10 4.95 4+ 0.03 6.77 £ 0.66 16.61 5.76 £ 0.71 15.21
7 120 8 12 3.89 + 0.47 3.88 £ 0.11 14.25 +1.09 23.08 10.65 4+ 0.89 20.55
8 120 16 4 3.86 +0.28 5.00 4+ 0.02 5.02 +0.20 14.01 499 4+ 0.34 13.96
9 120 24 8 3.64 +0.51 451 +0.01 7.68 £+ 0.69 17.70 6.44 +£1.20 16.18

The objective of optimizing the process parameters was to enhance the S/N ratio,
thereby achieving superior outcomes. The optimal levels for each factor were identified to
minimize the variability and maximize the concentrations of CA and ICA. The highest S/N
ratios for each factor were observed using 90 g/L of non-waste sunflower oil after 12 days
of fermentation. The main effects plots for the S/N ratios are shown in Figures 3 and 4.
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Figure 3. Main effects plot for the S/N ratio (CA concentration).
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Figure 4. Main effects plot for the S/N ratio (ICA concentration).

The ANOVA results (Tables 7 and 8) revealed that among the selected factors, fermen-
tation time had a stronger influence on CA and ICA concentrations (75.49% and 77.58%,
respectively), while polarity had the least influence. The effects of oil concentration and
fermentation time were statistically significant for both CA and ICA (p < 0.05).
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Table 7. Analysis of variance for CA production.

Source DF Seq SS Contribution Adj SS Adj MS F P
Oil concentration (g/L) 2 20.27 16.94% 20.27 10.14 21.46 0.05
Polarity 2 8.12 6.79% 8.12 4.06 8.60 0.10
Fermentation time (days) 2 90.34 75.49% 90.34 45.17 95.63 0.01
Error 2 0.95 0.79% 0.94 0.47
Total 8 119.68 100%

DF: Degrees of freedom, Seq SS: Sequential sums of squares, Adj SS: Adjusted sum of square, Adj MS: Adjusted
mean square (R%: 99.21%, R? (adj): 96.84%).

Table 8. Analysis of variance for ICA production.

Source DF Seq SS Contribution Adj SS Adj MS F P
Oil concentration (g/L) 2 10.05 14.32% 10.05 5.03 27.17 0.04
Polarity 2 532 7.57% 5.32 2.66 14.37 0.07
Fermentation time (days) 2 54.47 77.58% 54.47 27.24 147.22 0.01
Error 2 0.37 0.53% 0.37 0.19
Total 8 70.22 100%

DF: Degrees of freedom, Seq SS: Sequential sums of squares, Adj SS: Adjusted sum of square, Adj MS: Adjusted
mean square. (R%: 99.47%, R? (adj): 97.89%).

Kamzolova et al. [44] indicated that plant oils are promising substrates for CA produc-
tion by Y. lipolytica strains. They also emphasized the effectiveness of strain selection for
ICA formation. The application of genetic manipulation tools is easier in yeasts because of
their less complex genetic background than filamentous fungi. Studies have reported that
genetically modified yeast strains can produce more CA, generate less ICA, and reduce
residual sugar content [63]. Holz et al. [64] constructed a recombinant Y. lipolytica strain con-
taining multiple copies of the aconitase-encoding gene ACO1. This high-level expression of
aconitase in the ACO1 multicopy integrative transformant led to a significant decrease in
the CA/ICA ratio toward the ICA. ICA formation increased markedly compared to that
in the wild-type strain using sunflower oil in the fermentation medium. In another study,
two transformants of Y. lipolytica A101.1.31, overexpressing either CIT1 or CIT2 (encoding
proteins with citrate synthase activity), were generated and overexpression of either of
these genes was found to increase citrate synthase activity. Moreover, a significant increase
in ICA biosynthesis was observed in the overexpressed mutants. Finally, CIT1 and CIT2
overexpressing strains produced CA and ICA from vegetable oil at a ratio close to 1. This
study is similar to the findings of the present study in terms of the utilization of vegetable
oil in production and the CA/ICA ratio [65]. It is noteworthy that the strain used in our
study was not a mutant strain but yielded similar results. A major challenge in CA produc-
tion using yeast is the simultaneous secretion of ICA, which is undesirable and disrupts
crystallization. Forster et al. [66] detected that high-level expression of ICL (isocitrate lyase)
in ICL1 (isocitrate lyase-encoding gene) multicopy integrative transformants resulted in an
important shift of the CA/ICA ratio in the direction of CA. ICA concentration decreased
from 37 to 6% when sunflower oil was used in the fermentation medium. Lastly, in the
respective mutant strains, a decrease in aconitase activity and an increase in isocitrate lyase
activity resulted in the predominant accumulation of CA. Yuzbasheva et al. [67] stated that
the mitochondrial succinate-fumarate carrier Y1Sfcl of Y. lipolytica controls the ICA efflux
from the mitochondria. Overexpression of YISFC1 shifted the ICA/CA ratio in favor of ICA.
YISFC1 expression was repressed in the wild-type strain grown in a glucose-based medium
compared to that in an olive oil medium, explaining the preference for CA production
when Y. lipolytica was grown on carbohydrates.
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Finogenova et al. [68] reported that the predominant production of CA or ICA was
affected by intracellular iron concentration. Kamzolova et al. [69] stated that the limitation
of nitrogen, phosphorus, sulfur, or magnesium is required in the fermentation medium for
ICA formation by Y. lipolytica. Because CA and ICA are chiral compounds [70], separating
them is challenging. Therefore, it is essential to reduce the concentration of ICA to improve
process efficiency and ease the purification stage.

Venter et al. [46] discovered that adding 10 g/L of acetate in a medium containing
30 g/L of sunflower oil significantly increased CA production by Y. lipolytica UOFS Y-
1701 while also significantly increasing the CA/ICA ratio. Mitrea et al. [42] used the
pure glycerol as a hydrophilic source, stimulating de novo metabolic pathways and waste
cooking oil as a hydrophobic source, promoting ex novo metabolic pathways in the yeast
cells. Crude glycerol was a mixture of hydrophilic and hydrophobic carbon sources.
Importantly, Y. lipolytica ATCC 20177 exhibited superior performance when cultivated on
waste oil compared with glycerol. After 192 h of fermentation, 3.50 £ 0.04 g/L CA and
21 + 0.16 g/L of succinic acid were obtained.

A significant challenge in using oily substrates is their water insolubility, which leads
to insufficient substrate utilization and low mass transfer of air and nutrients into the
medium [71]. To address these issues, the nonionic detergent Triton X-100 was added in
the present study. Surfactants and their concentrations must be carefully selected; they
can be toxic to microorganisms and either promote or inhibit metabolite production [72].
Contrary to our results, Mirbagheri et al. [73] found that the addition of Triton X-100 in the
production medium increased the CA concentration of Y. lipolytica DSM 3286 and M7. In
another study, adding Triton X-100 at 0-1% increased the CA concentration but inhibited
mannitol and xylitol production [74]. Ping et al. [75] reported that Tween 80, Tween 20, and
Triton X-100 inhibited the lipase activity.

Considering the results of the present study, it was concluded that changes in medium
composition and pH values, as well as advanced optimizations and genetic modifications,
could effectively reduce ICA concentration and increase CA concentration.

The cost of the culture medium generally accounts for 50-80% of the total cost of
the end products. Biological processes can be more economical and sustainable, using
low-cost substrates, such as various wastes and by-products from agriculture and other
industries [76]. The composition of the culture medium is crucial for CA production
by Y. lipolytica. Therefore, selecting waste cooking oils produced in large quantities as
substrates for fermentation can reduce production costs. Additionally, these oils can be
used directly without sterilization or filtering [77]. This approach can also lower the
processing costs associated with pretreatment and raw material sterilization. Similarly, in
the present study, oil was added to the medium by filtration. It was concluded that the
industrial production potential is high because the raw material is cheap, easily accessible,
requires no pretreatment, and competes with non-waste oils. However, the concentration
of by-products must be reduced.

4. Conclusions

Frying oils used in the food industry have become waste oils because of their pro-
longed use and loss of physical and chemical properties. The resulting waste oils are
harmful to the environment and to human health. One of the greatest advantages of
biotechnological production is the ability to use waste as a raw material to produce value-
added products. This enables the reduction in waste volume and environmental pollution
and saves energy that would otherwise be spent on waste disposal, thus contributing to
the country’s economy.

In microbial production, different concentrations of detergents can have different
effects on yeast cells, such as increasing cell permeability and causing cell membrane lysis
and cell death. In the present study, the selection of Triton X-100 in the fermentation
medium was aimed at reducing the increased surface tension associated with sunflower oil
use and increasing the availability of oil as a substrate for CA production by Y. lipolytica
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IFP29 (ATCC 20460). However, these results were unexpected. This study is important
in terms of characterizing oils in more detail than other studies, revealing the inhibitory
effect of Triton X-100 on CA production and determining the effects of different buffers
on CA production. In addition, it was found that using waste and non-waste oils for
CA production had a statistically insignificant effect (p > 0.05), which would increase the
interest in preferring waste oils instead of non-waste oils.

Finally, we determined that waste sunflower oil could be a promising substrate for CA
production using Y. lipolytica. However, to reduce the formation of by-products and further
increase the production yield, further optimization studies, changes in some components
of the fermentation medium, and genetic engineering approaches can be employed in
future studies.

Supplementary Materials: The following supporting information can be downloaded at
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Abstract: In large-scale dairy farming, the use of high-temperature-fermented dairy manure bedding
instead of rice husk-based bedding and other commercial types of bedding is widely favored. Strip-
stacking aerobic fermentation is the main production method of dairy manure bedding, but it has
problems including unstable fermentation and the secondary breeding of pathogens. In this work,
a multi-probe, integrated, online monitoring system for temperature and relative humidity was
used for fermentation process optimization. The effects of the temporal and spatial distribution of
fermentation temperature and relative humidity on the nutrient content curve and the moisture and
ash content of manure bedding materials were systematically studied. The effect of the fermentation
process on the retention rate of effective bedding materials (cellulose, hemicellulose, and lignin)
was analyzed. The experiments proved that high-quality bedding material can be obtained through
reasonable stacking fermentation. The fabricated bedding material has a total dry base content
consisting of cellulose, hemicellulose, and lignin of 78%, an ash content of 6%, and a nutrient
content of 17%. The obtained bedding material was produced to increase the bed rest rate and
continuously inhibit the bedding bacteria content, keeping it at a low level for 5 days. This study
proves that temperature and humidity monitoring can guide the optimization of the strip-stacking
fermentation process of dairy manure and that it can be applied to large-scale farms to improve
fermentation parameters.

Keywords: stacking fermentation; recycled bedding; temperature and relative humidity; online monitoring

1. Introduction

In recent years, with the rapid development of the economy, dairy farms have been
scaled up, and the amount of dairy manure has become a great challenge for the farming
sector [1,2]. Dairy manure places a great burden on the environment and resources [3].
One of the most commonly used methods of manure treatment is using it to fertilize the
land. In dairy manure, there are abundant N, P, and S elements, which can also play a role
in increasing soil fertility. However, cow manure is produced in large quantities, and the
ability of the land to decompose it is limited. Excessive or inappropriate return of manure
to the field can cause a number of problems, such as environmental degradation, climate
change, resource depletion [4], acidification, and potential eutrophication [5]. Therefore,
there is an urgent need for a green treatment method to relieve the pressure placed on
the land by manure and improve its degradation process. The use of high-temperature-
fermented dairy manure to produce recycled manure bedding materials instead of non-
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renewable sand and biomass has been widely adopted in large-scale dairy cow farming.
Recycled manure bedding could be used as a good alternative to bulk sawdust, wood chips,
shavings, square harvesting straw, chopped straw, rice husks, peanut shells, corn cobs, and
other commercial biomass bedding materials [6-12]. Not only can it save costs, but it can
also reduce the risk of the introduction of pathogens carried by biomass [13].

Dairy cow mastitis is one of the most common diseases in dairy farming [14]. Pathogen
infection is the main cause of mastitis in dairy cows and is closely related to the quality and
use of the bedding materials. The pathogenic microorganisms most commonly detected in
mastitis milk samples are Escherichia coli (E. coli) [15], Streptococcus agalactiae (S. agalactiae),
and Staphylococcus aureus (S. aureus) [12,16,17]. The latter species is the most representa-
tive pathogen in milk [18]. The number of bacteria in the bedding material is positively
correlated with the type of bacteria on the tip of the cow teat [7]. Cow teats are in direct
contact with the bacteria in the bedding material [8,9,17]; therefore, the bedding material is
the main source of the teats” exposure to environmental pathogens that cause mastitis. The
improper use of bedding can lead to mastitis outbreaks, which can lead to huge financial
losses [11,19].

With the expansion of the scale of automated farming, the demand for bedding mate-
rial is increasing [10,20]. The methods of high-temperature aerobic fermentation mainly
include strip-stacking fermentation, drum-type tank fermentation [20], and membrane
fermentation [21]. Among them, strip-stacking composting has been widely used to treat
dairy manure because of its high capacity for treatment and low cost [22]. However, the
implementation process of the strip-stacking fermentation method makes it difficult to
control the quality of the fermented products. Random factors such as the weather, the
differences in ambient temperature between the farm and the pasture, and the amount of
manual work involved in the process can all affect the final nature of the manure and the
sterilization effect. Therefore, there are problems including bacterial regeneration and high-
frequency replacement in recycled bedding prepared by strip-stacking fermentation. The
climate and environment of every pasture are different in different seasons. Pastures need
a long production practice cycle to form a stable aerobic fermentation process, and targeted
adjustments need to be made in different seasons throughout the year. However, in actual
pastures, it is difficult to flexibly adjust the fermentation process because there is a lack of
indication signals. Therefore, it is of great significance to establish a rapid strip-stacking
fermentation condition monitoring method to assess the influence of fermentation process
parameters on the establishment and optimization of aerobic fermentation processes in
large-scale pastures.

At present, the main factors influencing the fermentation process in strip-stacked
aerobic compost include stack size, initial moisture content, fermentation time, air perme-
ability, sunshine time, and ambient temperature. The influence of these factors has been
widely studied. The evaluation of the quality of dairy manure bedding material mainly
includes softness [23], dryness, cleanness, elasticity, and deformation resistance [24,25].
This is related to the dry matter content [15], moisture content [26], cellulose, hemicellulose,
and lignin content, particle size [23], and other factors. Shane et al. found that bedding
material with good physical structure and good water absorption (moisture content of less
than 25% and particle size of less than 2.5 cm) is the best choice for breeding systems [27].
Robles et al. found that the type of bedding material is related to the rate of bacterial
growth [28]. Moreover, bacterial growth is closely related to the usage process [15,23].
However, most existing studies only focus on the fermentation process, studying the use of
bedding material separately. There are relatively few studies on the interaction between
the two processes. Therefore, it is important to establish the relationship between the
fermentation process and bedding quality and usage. To the best of our knowledge, there
has been no systematic investigation on the use of automatic online equipment to monitor
the actual use of strip-stacked bedding fermentation on large-scale dairy farms.

Therefore, in this study, an online detection system for the temporal and spatial dis-
tribution of stacking temperature and humidity was established. Long-term continuous
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detection data of stacking temperature and humidity at different depths was obtained.
Variations in the temperature and relative humidity of the stacking section with fermen-
tation time, day and night alternation, and sunny and rainy seasons were analyzed. The
pathogenic bacteria killing rate, the content of water and cellulose, and the nutrient particle
size were evaluated. Meanwhile, the determination of the fermentation endpoint was
realized by combining bacterial detection and online monitoring. It was found that the
stacking fermentation process had a significant effect on comfort, bed rest rate, and bacterial
reproduction rate.

2. Materials and Methods
2.1. Materials

The materials used in this study included LB nutrient agar (Shanghai Titan Scien-
tific Co., Ltd., Shanghai, China), Staphylococcus aureus chromogenic medium (Shanghai
Titan Scientific Co., Ltd.), KF streptococcus agar (Shanghai Titan Scientific Co., Ltd.), Mac-
Conkey agar medium (Shanghai Titan Scientific Co., Ltd.), agar powder (Solarbio Science
& Technology, Beijing, China), and ethanol (CoHgO, >99.7%, Sigma-Aldrich, St Louis,
MO, USA).

2.2. Strip Stacking Fermentation of Dairy Manure

The experiment was carried out on a large-scale ranch with 5000 cows in western
China. The time chosen for this study was July to August during the high-temperature
periods. The outdoor daytime temperature was maintained at an average of 30 °C. Dairy
manure was scraped to the manure storage tank through the hanging manure board,
transported to the dry and wet separation room by the manure pump, and then transported
to the fermentation site by machinery after separation (Figure Sla). The fermentation
process adopted the strip stack aerobic fermentation method, with a length of 16 m, a
trapezoidal cross-section, a bottom width of 2 m, and a height of 1 m, so as to ensure
the sufficient mass transfer of water and oxygen (Figure S1b). The whole fermentation
process lasted for 15 days. The samples were collected at three different depths as follows:
the surface layer (0.05 m depth), the middle layer (0.5 m depth), and the deep layer (1 m
depth) for bacterial content and other characterization. Each sample was collected at three
locations, and the test results were averaged. The stack was divided into two piles with
different fermentation processes, as shown in Figure S2. The A group was spread out and
mixed evenly on the 5th and 12th days and then stacked up to return to its original shape.
The B group was kept unchanged for 15 days to make a comparison.

After the fermentation was over, the dairy manure of the A and B groups was spread
out, dried under the sun, and turned three times a day. The final moisture content decreased
to below 10%. The dairy manure bedding material was obtained, sprinkled with slaked
lime, and stirred evenly before being used in the barn.

2.3. Temperature and Relative Humidity Online Monitoring

An online monitoring system was used for the detection of temperature and relative
humidity, as shown in Figure Slc. The temperature and relative humidity probe contain
a detection area with a total length of 0.9 m, and 10 sensors are evenly distributed in
the detection area. The data is transmitted to the computer through the network. The
detection interval is 30 s. The first sensor is exposed to the outside of the stack and is used
to monitor the ambient temperature. Two probes were used for the A group and the B
group, respectively. Data from the spreading, drying, and flip processes were discarded.

2.4. Composition Measurement

Moisture content was measured using a halogen moisture analyzer using the differ-
ential gravity method. The determination of lignocellulosic fibers (including cellulose,
hemicellulose, and lignin) and ash content was measured using the Van Soest method
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of the reported article [29]. The nutrient content was obtained by subtracting the above
substances from the total weight.

2.5. Bacterial Content Measurement

The content of E. coli, S. aureus, S. agalactiae, and Total Bacteria Counts (T. B. Cs) was
obtained by combining the solid medium coating plate counting method with the poly-
merase chain reaction (PCR). Typically, 40 g of LB nutrient agar, 35.04 g of Staphylococcus
aureus chromogenic medium, 69.5 g of KF streptococcus agar, and 50 g of MacConkey agar
medium were dissolved in 1000 mL of ultrapure water. Meanwhile, 2.4 g of agar powder
was added to the above solution and heated at 121 °C for 15 min in an autoclave. After
cooling, the medium was solidified, sealed with parafilm, and stored at 4 °C. LB nutrient
agar was used to grow T. B. Cs; Staphylococcus aureus chromogenic medium (second
generation) was used to grow S. aureus; KF Streptococcus agar (with TTC) was used to
grow S. agalactiae; and MacConkey agar medium (containing crystal violet) was used to
grow E. coli [30].

The bedding samples were thawed at room temperature, and 0.07 g of a sample was
added into 7 g of sterile water. Then, the stock solution was fully shaken and filtered with
a vortex mixer to create a 1:100 dilution. After the mixture stood at room temperature for
10 min, 100 pL of the supernatant was taken for further dilution (1:102, 1:103, 1:10%, 1:10°,
1:10°, or 1:107). The LB nutrient agar medium was inoculated onto a 1:107 dilution; the S.
aureus medium and S. agalactiae medium were inoculated onto a 1:103 dilution; and the E.
coli medium was inoculated onto a 1:10* dilution. The dilution was evenly smeared on the
disposable medium with a coating rod. After being fully absorbed by the medium, it was
placed under aerobic conditions at 37 °C and cultured for 24 h. The number of bacteria was
obtained by counting the plate, as shown in Figure S3, Supporting Information.

The polymerase chain reaction (PCR) was detected on a PCR machine (Zimmer Bon-
mei, Dover, OH, USA), which is used to determine the type of bacteria. Its model is the
jy300C electrophoresis apparatus. All specific primers for PCR were designed using Beacon
Designer 17.0 software based on the gene sequences available in GenBank [31]. The primer
designs for different bacteria are shown in Table S1.

2.6. Bed Rest Rate Measurement

The bed rest rate of dairy cows was measured in a large lactating cow barn in the
pasture, covering 500 adult lactating cows. Ten beds among the 200 beds in the barn were
selected for collecting bedding samples. About 10 kg of fresh bedding material for each
bed is supplemented every 3 days. Previous studies have shown that frequent addition
or replacement of bedding material can reduce exposure to mastitis pathogens in the
environment [32]. Supplementation of the bedding material was carried out during the
milking time to avoid the process of manure throwing affecting the feeding and rest of
the cows. The 10 beds were divided into two parts, with bedding materials for the A and
B groups. The bedding was laid as shown in Figure S4. On the bed, the thickness of the
dairy manure material under the head and the udder of the dairy cows was about 45 cm
and 20 cm, respectively. The samples that were stepped on 2-5 cm below the breast were
collected every 12 h and stored at —20 °C. The number of cows lying in 5 beds in the A or
B group was recorded every 10 min for 120 h during 5 days. The rate of bed rest was based
on the ratio of beds with lying cows. In the milking process, the cows were not in the barn,
and the data were discarded.

3. Results and Discussion
3.1. Temporal and Spatial Distribution of Temperature

The time-temperature characteristic curve that was collected by the online monitor
is shown in Figure 1a,b. For both the A and B groups, there was a periodic change in
temperature between 16.4 °C and 45.8 °C at 0.05 m, which is assigned to the ambient
temperature. The periodic changes reflected the alternating fluctuations in temperature
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during the day and night. Therefore, the detection method in this work can also monitor
the ambient temperature of a pasture in real time. The results showed that the average
ambient temperature during the experiment was about 30 °C. The temperature curves
from —0.05 m to —0.85 m showed the temperature at the corresponding depths in the stack.
The temperature curves of the —0.05 m and —0.25 m depths synchronously fluctuated
with the ambient temperature, indicating the superficial temperature of manure stacks
was significantly affected by the ambient temperature. For the A group, the maximum
temperature of superficial manure (—0.05 m) was 50.3 °C, which is too low to reach
the temperature of complete sterilization. However, the lowest temperature at —0.25 m
depth could reach 60 °C during the second to seventh day. The temperature change
during the fermentation experiment is a fluctuation in the high-temperature range from
50 °C to 75 °C. Therefore, the temperature fluctuations in this range do not easily alter
microbial populations, and the surviving microbial population is bacteria that are resistant
to high temperatures. It has been reported in the literature that the minimum sterilization
temperature for E. coli and S. aureus is 50 °C and 40 °C [30,33], respectively. Therefore, cow
manure must undergo high-temperature sterilization at different depths by flipping over
the stack.
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Figure 1. Temporal and spatial distribution of temperature during dairy manure fermentation.
Time-temperature diagram showing the fermentation of dairy manure in the (a) A and (b) B groups;
space-temperature diagram of fermentation during (c) 1-4 days and 5-15 days for the (d) A and
(e) B groups.
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The temperature curves were fitted with the stacking section to obtain the temperature
distribution map of the stacking section, as shown in Figure 1c—e. A higher temperature
(about 75 °C) was achieved at a depth of 0.3 m, about 3 days from the start of fermentation
(Figure 1c). The high temperature gradually expanded to a depth range of 0.25~0.65 m on
the fifth day. This result proves that temperature accumulation is raised from the outside
to the inside, and only a shallow layer (<20 cm) of manure insulation is required. The
temperature curves at the 0.45 m and 0.65 m depths exhibited the highest temperature
(73.4 °C to 69.4 °C) without noticeable fluctuations, indicating the best fermentation and
sterilization intervals. The temperature in this zone can be recovered within 35 h after the
5th and 12th days of flipping the stack. The temperature recovery on the 12th day was
quicker than the 5th day because of more aerobic bacteria. Therefore, it is necessary to
maintain the fermentation time for at least 5 days after each flipping of the stack to ensure
a high-temperature environment.

Next, the difference in temperature distribution between the A and B groups was
compared and shown in Figure 1d,e. The A group could quickly rise to a high temperature
(~73.4 °C) after turning the stack, and the high temperature could be maintained until the
end of the stacking. However, the B group showed an obvious decrease in temperature
from the 10th day to the 15th day. After the nutrient depletion in the middle depth of the B
group, the number of beneficial bacteria decreased, resulting in a decrease in temperature.
Nutrients in other low-temperature areas of the B group may breed pathogens that are
not killed.

3.2. Temporal and Spatial Distribution of Relative Humidity

Since bacterial growth is related to relative humidity (RH) [20], a time-relative humid-
ity characteristic curve according to the monitoring data was investigated, as shown in
Figure 2 and Figure S5. In the first 5 days (Figure 2c), the distribution of RH was closely
correlated with temperature. The more active the bacteria, the higher the temperature and
RH. The deepest relative humidity was more than 100%, which exceeded the upper limit
of detection. Because of the compaction of the manure on the surface, it is difficult for
moisture to diffuse outside, and excessive RH affects the diffusion of oxygen.

After flipping the stack, there was a significant difference in the RH distribution
between the A (Figure 2c) and B (Figure S5b) groups. In the A group, areas with high
RH were only found in the bottom area of the stack. Flipping the stack could effectively
maintain the permeability of the stack with RH < 25% so that the moisture generated
by bacterial activities could be emitted over time. In addition, the —0.85 m depth of
the B group showed an increasing RH from 20% to 100% (Figure S5a), indicating the
anaerobic fermentation in the deep area is the gradual accumulation of water. In the
high-RH region at the bottom, the A group also had a smaller range than the B group,
indicating a smaller anaerobic area. Therefore, the flipping of the stack is conducive to
the diffusion and mass transfer of water and helps to reduce the distribution of anaerobic
fermentation areas and the generation of stench, such as H,S and NH; [34,35], while
promoting aerobic fermentation.

3.3. Moisture Content Analysis

Next, changes in the water content of the stacks during the fermentation process were
investigated. As shown in Figure 3, the moisture content was 65-75% in the first 2 days,
which was similar to that reported by Black R.A et al. [28]. Bacterial growth is affected
by moisture and will also affect water cumulation [20]. The moisture content reached its
maximum on the third day because of bacterial metabolism, and the moisture content in
the deep layers was as high as 75%. From the curves of the A and B groups, it can be
seen that the moisture content of manure did not change during the fermentation process,
regardless of whether the pile was turned over or not. The removal of water from bedding
materials mainly depended on the drying process (after the 15th day). Therefore, the initial
moisture of the manure before fermentation needs to be strictly controlled. Too much
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moisture (>70%) will limit air permeability [36], and too low moisture (<30%) will affect
the reproduction of beneficial bacteria [37].
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The moisture content of the surface manure in the B group decreased on the third
to ninth days. This process of water loss is the result of surface manure compaction. On
the ninth day, because of rain, the moisture content of both groups increased in both the
surface and middle layers, but the rain did not penetrate into the deep layer. Therefore,
open-air fermentation is tolerant to general rain and snow weather, and the fermentation
inside the stack is not easily affected by general rainfall. After the 15th day, the two groups
of dairy manure were spread out and mixed evenly, and the moisture content decreased
rapidly with an average rate of 4% per day.

3.4. Bactericidal Performance Evaluation

The number of bacteria in the recycled bedding produced by the A group was obtained
by plate counting, as shown in Figure 4. As shown in Figure 4a, the number of E. coli at
the beginning of fermentation was about 10° CFU/g, which is similar to the results of the
work reported in [9]. E. coli was eradicated after 3 days at 0.5 m, quicker than that of 5 days
at 0.05 m, and 7 days at 1 m, indicating that the middle layer had a better bactericidal
effect. Llonch et al. reported the same result [32]. As shown in Figure 4b, the same change
occurred in the superficial layer and middle layer of S. agalactiae, but the difference was that
this species was eradicated on the fifth day in the deeper layer. S. aureus was not detected
in the entire experiment (Figure 4c). The number of T. B. C was measured, as shown in
Figure 4d. The number of T. B. C was about 10? CFU/g at the beginning, which is more than
previously reported [9]. On the 12th day, the number of T. B. C sharply increased because
of the breakdown and decay of cellulose to provide more nutrients. Therefore, 15 days of
fermentation time is sufficient to achieve good sterilization. A fermentation time that is too
long will make the manure rot, which is not conducive to improving bedding quality.

3.5. Composition Analysis

The composition analysis of lignocellulosic fibers, nutrients, and ash was carried out
to compare the effect of the flip stack on bedding between the A and B groups. These
lignocellulosic fibers are mainly composed of cellulose, hemicellulose, and lignin [38].
Lignocellulosic fibers are a measure of the indigestible plant material in livestock. Crude
fiber is determined by acid and alkaline treatment of the sample to remove soluble carbohy-
drates, proteins, and ash, leaving the insoluble fiber fraction. It includes neutral detergent
fiber (NDF) and acid detergent fiber (ADF) [39]. The composition analysis of the dry matter
results of the A and B groups is shown in Figure 5. During fermentation, the nutrients
decreased for both the A and B groups because of the gradual increase in the number of
beneficial strains during the fermentation process, which coincides with the number of T.
B. C. in Figure 4. Several beneficial bacteria in cow manure have been reported, such as
Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria [40]. These bacteria could degrade
the nutrients in cow manure and produce a high temperature to kill the eggs of pathogenic
bacteria. In the former 5 days, the nutrient content decreased from 21-27% to 10-17%,
and the superficial layer and middle layer decreased significantly, by about 13%, showing
a similar trend in the two groups. The deep decline is slow, by about 16-17%. Because
oxygen and moisture can be diffused by mass transfer, aerobic fermentation dominated
in the middle and upper layers. But the oxygen could not transfer into the deep layer, so
anaerobic fermentation dominated. During anaerobic fermentation, short-chain fatty acids
and dicarboxylic acids (such as fumaric acid) could be produced [41]. These short-chain
fatty acids and dicarboxylic acids can provide nutrients to the bacteria but are not con-
ducive to the long-term use of the litter. Therefore, anaerobic fermentation needs to be
avoided as much as possible.
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Figure 4. Bacterial changes during fermentation. Changes in the number of (a) Escherichia coli (E. coli),
(b) Streptococcus agalactiae (S. agalactiae), (c) Staphylococcus aureus (S. aureus), and (d) Total Bacteria
Counts (T. B. Cs).

Comparing the difference between the A and B groups, the rate of nutrient consump-
tion in the A group was faster than that in the B group, indicating that flipping the stack
increased the mass transfer of water and oxygen, promoting aerobic fermentation [42].
Flipping the stack is the switch between the A and B groups that regulates aerobic and
anaerobic fermentation. In this work, the stack of the A group was flipped twice, while the
B group was not flipped. The total contents of the lignocellulosic fiber, including cellulose,
hemicellulose, and lignin, increased from 75% to 83% (0.05 m depth), 82% (0.5 m depth),
and 78% (1.0 m depth). Mono-anaerobic digestion (AD) of dairy cow manure is constrained
by ash [43]. Improving and retaining fibrous matter in dairy manure is an important reason
why fermentation can make recycled bedding. The A group presented a higher lignocellu-
losic fiber content than the B group, indicating a better fermentation performance. It was
also found that in the samples at the 1.0 m depth, the B group had a higher hemicellulose
content of 26% than the A group (21%), while the cellulose content decreased from 33% (A)
to 29% (B). This result indicates that there is excessive decomposition in the B group, which
dissociates cellulose to form hemicellulose. The additional flipping of the stack in the A
group can effectively reduce over-fermentation and decay.
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Figure 5. Changes in lignocellulosic fiber, nutrient, and ash content in the dry matter. A depth of
0.05 m for the A group (a) and the B group (d). A depth of 0.5 m for the A group (b) and the B group
(e). A depth of 1.0 m for the A group (c) and the B group (f).

3.6. Bedding Bacteriostatic Performance

Before the actual application in the barn, the bacterial reproduction of the bedding
materials with and without the influence of dairy cows was investigated. The A and B
groups of recycled dairy manure bedding materials were mixed evenly with hydrated lime.
The recycled manure bedding materials were placed in the barn environment (26.4 °C for
daytime, 20.6 °C for night, and 56.2% of RH), and samples were taken regularly to observe
changes in bacterial levels (Figure 6). E. coli, S. agalactiae, and S. aureus were not detected
in the A group. But E. coli increased to about 2 x 10° CFU/g in the B group after 12 h. At
36 h and 96 h, adding new bedding material and hydrated lime according to the actual
use process could slightly reduce the number of E. coli, but the effect was minimal. In the
absence of dairy cows, the secondary growth of E. coli in the B group was delayed until
36 h, with an E. coli content of 5.5 x 10° CFU/ g. Therefore, cleaning up manure timely
will increase the cleanliness of bedding, thereby increasing milk production [20]. This
comparison result proves that the recycled bedding material of the A group can effectively
extend the service life and inhibit the secondary reproduction of pathogens because of its
low nutrient content and complete sterilization of pathogens. In general, the dairy manure
bedding material obtained by the group A method is used for no less than 5 days with
dairy cows, so it is recommended to replenish with fresh litter every 3-5 days.
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Figure 6. Changes in the number of Escherichia coli (E. coli), Streptococcus agalactiae (S. agalactiae),
Staphylococcus aureus (S. aureus), and Total Bacteria Count (T. B. C.) with cow beds and without cow
beds. (a) The A group dairy manure material in cow beds. (b) The B group dairy manure material in
cow beds. (c) The A group dairy manure material without cow beds. (d) The B group dairy manure
material without cow beds.

3.7. Bed Rest Rate Measurement

Adequate bed rest for dairy cows helps to increase milk production [44,45]. The
average bed rest time of dairy cows is 8-16 h per day [46]. The bedding time of dairy
cows depends on the type of dairy manure, and the bedding time of the cow will increase
significantly when the bedding material is comfortable and relatively dry [46]. In this study,
the A and B groups of recycled manure bedding materials were thrown onto the cow bed to
count the number of cows lying in the bed (Figure 7a). During the experiment, the bedding
needed to be 45 cm thick below the head and 20 cm below the udder, as shown in Figure 7b
and Figure S4. Sufficient bedding materials can reduce lameness and some lesions [47].
The number of curves of cows lying in a bed according to the monitoring are shown in
Figure 7c. It can be clearly seen that the bed rest rate of the A group is significantly higher
than that of the B group, which proves that the fermentation mode of dairy manure in the
A group brought better comfort than that of the B group.

To determine the reasons for the increase in comfort, particle size analysis was carried
out (Figure 7d—f). A series of samples of different depths (0.05 m, 0.5 m, and 1.0 m) were
collected on the first day (marked A-1 and B-1 for the A and B groups, respectively) and
the 15th day (A-15 and B-15). The results prove the recycled bedding materials of the A
group better retained their original granularity. The B group decreased the particle size
because of decay, which was consistent with the composition test results of partial cellulose
conversion to hemicellulose. Therefore, the statistical results of the bed rest rate and the
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particle size test prove that the flipping of the stack could improve the comfort of recycled
manure bedding materials.
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Figure 7. Bed rest rate and granularity statistics of the A and B groups of recycled dairy manure
bedding materials. (a) Schematic diagram of the distribution of beds; (b) digital photos of dairy cows
lying in beds; (c) bed rest rate of the A and B groups; (d) particle size changes at the different depths
collected on (e) the 1st day and (f) the 15th day.

4. Conclusions

In this work, the spatial and temporal distribution characteristics of temperature and
RH were drawn according to the online monitoring system. The changes in moisture
content, number of bacteria, lignocellulosic fibers, and nutrient and ash content of recy-
cled dairy manure bedding materials were detected during 15-day strip-stacked aerobic
fermentation. The effects of flipping manure stacks on the bedding material composition,
antibacterial properties, and bed rest rate were compared. The work proves flipping over
manure stacks facilitates the diffusion of water and oxygen in the stack, retention of more
cellulose, and improvement in bed rest. Within 48 h after flipping, the high stacking
temperature will be recovered. The dairy manure shell formed by not flipping for a long
time affected heat and mass transfer, which was not conducive to fermentation, leading to
enhanced anaerobic fermentation and over-ripening. This work proves that in situ online
temperature and RH monitoring combined with ex situ detection can effectively explore
the rationality of large-scale pasture fermentation processes. This online monitoring system
can better realize the automation of farm production and control. This monitoring method
can be potentially applied in large dairy farms to optimize the process by designing the
fermentation process and monitoring the daily bedding production process.
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/ /www.mdpi.com/article/10.3390/fermentation10070346/s1, Figure S1. Cow manure strip-stacking
fermentation and the online monitoring system for temperature and relative humidity; Figure S2.
The fermentation process of the A and B groups of dairy manure; Figure S3. Colony picture of E. coli,
S. agalactiae, S. agalactiae, and T. B. C; Figure S4. Experimental bedding material distribution and
sampling method; Figure S5. Temporal and spatial distribution of relative humidity during dairy
manure fermentation of the B group; Table S1. Primer designs for different bacteria.
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