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Modern technologies are continuously entering every aspect of our lives. Today,
we can no longer do without smartphones, intelligent applications, and devices that
significantly contribute to the improvement and comfort of our lives. In addition to
functions related to the acceleration of everyday activities and household processes, aspects
related to artificial intelligence and machine learning support industry and the production
of goods and services. One such branch of the economy is agriculture, the primary goal
of which is to meet human nutritional needs. Taking actions against hunger and striving
for greater yields and better-quality harvests are some of the most important goals of
current agriculture. The era of industrialization and the implementation of mechanization,
including the mechanization of agriculture, is followed by the digital era [1,2].

It is widely believed that digitization is revolutionizing the world. However, it should
be noted that it will not replace machines and devices in agriculture, but it can modify
and optimize plant and animal production process. Since the first edition of “Big Data
Analytics and Machine Learning for Smart Agriculture” in 2023, many technologies have
been implemented into agricultural technology, changing it from Agriculture 4.0 to 5.0 [3,4].

Over the past few years, big data analysis and machine learning have revolutionized
the management of agricultural systems and farms [5-7]. The large amounts of data
collected daily during the observation of vegetation processes, the harvesting of crops,
and their processing into food have contributed to the new knowledge published in this
Special Issue.

The published works reveal how collecting and storing data contributed to the creation
of an algorithm for detecting weeds, which was created based on YOLOvVS. He’s team pre-
sented an improvement in the basic network by adding the so-called attention mechanisms
and using dynamic convolution [8]. In another paper, the authors used deep learning,
also based on YOLO, RT-DETR, and Mask-RCNN technologies, to detect and classify the
ripeness of blueberries. Aguilera’s team emphasized the importance of model optimiza-
tion, and their results suggest that new algorithms and their correlation with empirical
studies increase the effectiveness of the created systems, thus increasing the effectiveness of
crop monitoring [9].

Artificial intelligence methods based on analyzed data can also be used to create a
fertilization recommendation system, which optimizes the use of agricultural production
means. Musanase et al. revealed that implementing such solutions in precision agriculture
can not only increase yields, but also reduce fertilizer losses and contribute to the imple-
mentation of sustainable agricultural practices [10]. Properly collected and processed data
allow for the development of empirical system models supported by Al algorithms for
forecasting industrial hemp seed yields. After considering data on climatic conditions,
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agrotechnics, and seed quality, Sieracka and her colleagues created predictive models
to assess crop efficiency, determining the factors that have the greatest impact on seed
efficiency and yield [11].

Xie’s team converted empirical data into digital data, which can be used to develop
algorithms that identify pathological changes in fruits and vegetables, such as peppers.
Systems based on Al solutions can improve the precision and efficiency of diagnosing plant
diseases, which is important in Agriculture 5.0 [12]. Similarly, Bai’s and Amin’s teams
described the use of Al techniques and technological achievements such as drones and
other devices that not only identify plant diseases, but also detect pests, both of which
cause plant damage and reduce the quantity and quality of crops [13,14].

Nazir et al. indicated that models supporting the identification of diseases occurring
on potato leaves and allowing for the classification of disease stages can generally affect the
response time and the application of appropriate measures, thus reducing crop losses [15].
Leaf diseases are often the first prognosticator of a more complex problem related to the
proper vegetation of plants. Tomatoes are a popular plant characterized by beneficial
nutritional and health-promoting properties for humans. By collecting appropriate data
and processing them into digital form, Ullah’s team showed that it is possible to develop a
classification model defining pathological disease changes in these plants [16].

Guava diseases (leaf blight) can also be detected based on the identification and clas-
sification of leaves. Depending on the plant and the type of problem and its complexity,
various technologies can be used, such as convolutional networks or deep learning meth-
ods, e.g., those developed by Mumtaz et al. [17]. The basis for plant vegetation and crop
quality is the environment in which the plant grows, especially the quality of the soil. In
this respect, Shahare’s team showed that data can also be used to develop appropriate
models based on machine learning methods to assess and forecast the activity of soil en-
zymes, which are key to biological processes occurring in the soil, to help farmers optimize
agricultural production [18].

Plant production, including field or greenhouse crops, is just one branch of modern
agricultural production. The second largest aspect of agricultural production is the animal
production branch. Artificial intelligence can be used to optimize meat production, e.g.,
beef from dairy cattle, as shown by Addis et al. Such systems can increase production
efficiency regarding the use of animals for dairy or meat production and in providing
unified food to consumers [19].

Forecasting and advisory systems are also based on artificial intelligence algorithms,
which are based on large data sets, allowing for broad diagnosis and the prediction of
failures in increasingly popular smart farms. Choe’s team showed that such systems can be
used to detect irregularities in data obtained from sensors and can predict potential failures
of agricultural equipment [20].

Notably, machine learning models, neural models, or ordinary linear forecasting
models cannot be created without previously collected data that have been appropriately
processed and adapted for analysis. It is very difficult to compare research results concern-
ing the same object. Data are collected using different devices and sensors. Additionally,
there are varying frequencies of data collection, and devices have different operating con-
ditions. Similarly, the varieties of measured plants and the fields or buildings in which
livestock are kept are different.

This is a significant problem in establishing a methodology and indicating objective
conclusions. We are surrounded by a multitude of data. We continuously collect and
try to systematize data. It is challenging to not only collect and store data for a long
time, but also to effectively process and analyze them to obtain valuable information.
Modern IT tools allow us to systematize data, discover patterns, and generate new scientific
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knowledge, supporting innovations in digital agriculture. However, data are the basis, and
they represent the most time-consuming and cost-intensive part of the research process.
Nevertheless, obtaining a large amount of data will allow for the creation of new methods
and technologies supporting agricultural production.

In this Special Issue, particular emphasis is placed on big data in agriculture and ma-
chine learning, i.e., on the collection, management, and analysis of large data sets, analysis
and prediction, decision support systems, and automation based on Al IoT methods. It also
focuses on the integration of sensor networks and intelligent monitoring systems, which
allows for the transition to a new era, Digital Agriculture 5.0, in which automation, robotics,
and artificial intelligence support modern precision agriculture and enable sustainable
development through resource optimization, loss reduction, and improved efficiency.
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N G R W N e

Abstract: Pests are always the main source of field damage and severe crop output losses in agri-
culture. Currently, manually classifying and counting pests is time consuming, and enumeration of
population accuracy might be affected by a variety of subjective measures. Additionally, due to pests’
various scales and behaviors, the current pest localization algorithms based on CNN are unsuitable
for effective pest management in agriculture. To overcome the existing challenges, in this study, a
method is developed for the localization and classification of pests. For localization purposes, the
YOLOVS5 is trained using the optimal learning hyperparameters which more accurately localize the
pest region in plant images with 0.93 F1 scores. After localization, pest images are classified into
Paddy with pest/Paddy without pest using the proposed quantum machine learning model, which
consists of fifteen layers with two-qubit nodes. The proposed network is trained from scratch with
optimal parameters that provide 99.9% classification accuracy. The achieved results are compared to
the existing recent methods, which are performed on the same datasets to prove the novelty of the
developed model.

Keywords: localization; qubits; quantum; YOLOV5; pest

1. Introduction

Crop pests are among the key factors that lower the productivity and quality of the
crop. Therefore, both academics and businesses are paying close attention to the efficient
prevention and management of pest species. The most effective method used to control crop
pests is the use of agrochemicals. However, farmers who lack the knowledge to identify
pests recklessly apply vast quantities of pesticides, endangering not only their health but
also the environment and soil [1]. The real-time monitoring of agricultural pests at an
early stage, according to the integrated pest management (IPM) theory, could lessen the
damage caused by careless use of pesticides. To improve the situation, forecasting, proper
identification, and localization of crop pests are crucial first steps [2]. Pest classification
initially relied heavily on agricultural professionals with technical knowledge, which was
time consuming and caused lags in farmers’ information [3]. The disparity between the
growing need for precise and real-time insect identification and the dearth of professionals
who can meet it is indeed growing. Therefore, fast and accurate automatic detection of
pest systems must be proposed [4]. Three methods can be used to assess the number of
agricultural pests in a field, per an examination of recent literature: (1) manual monitoring
and measuring, which takes time and delays the release of agricultural statistics; (2) multi-
dimensional data, such as field temperature and moisture levels, which can be utilized
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to calculate the level of pest prevalence in the absence of precise data; (3) employing
trapping devices to capture photos of agricultural pests, then counting the pests using
object tracking detection methods [5]. The third method was adopted as the primary
location for crop pest monitoring studies. Manual monitoring and identification of pest
diseases are time-consuming and error-prone assignments [6]. Computerized methods play
a significant role in pest disease detection. Currently, more attention is paid to ML methods
to conquer challenges relating to the detection of pest disease. In ML models SVM, ANN,
AdaBoost, MLR, and decision trees are utilized based on the hand-crafted features used for
the analysis of plant pests [7,8]. Deep learning methodologies rely on convolutional kernels
that provide innovative results to overcome the problems of ML methods. Compared to
ML models, DL ascertains automatically significant features from training plant data and
allows the users to develop end-to-end systems, avoiding processing the input images
separately [9]. Achieving good results in a variety of object detection and classification
tasks using DL has been made possible by exceptional CNNs performance [10]. K-means
clustering is employed to segment the pest disease after the custom 2D-CNN model is used
to predict pest/normal images. Moreover, pre-trained models such as VGG-16,19, Xception,
Mobile-Net, Dense-Net201, NAS-Net-Mobile, and InceptionResNet-v2 are fine-tuned for
pest disease classification [11]. The empirical research observes that k-means performed
better compared to watershed and thresholding methods. In the classification experiment,
the custom CNN model provides 0.96 prediction accuracy, while transfer learning Mobile-
Net and InceptionRes-Net-V2 provides 0.82 and 0.81 prediction accuracy [12]. To improve
the detection accuracy, we investigate the segmentation based on DL. The size of the pest
dataset needs to be increased and must include the grading of the pest infections [13]. The
Faster RCNN model is applied for the recognition of five types of pests such as Cicadellidae,
Flea Beetles, Aphids, Red spiders, and Flax Budworm. The results are computed in terms
of precision of 0.50 on mobile-net, 0.86 on SSD, and 0.98 on the F-RCNN model. After the
experimental analysis, we conclude that F-RCNN performs better compared to Mobile-Net
and single-shot detectors [14]. The deep convolutional network is used for pest disease
detection. The transfer learning ResNet-50 model is also applied and fine-tuned using the
optimal hyper-parameters for pest disease classification. This model provides average
accuracy of 0.95 [15].

Although sufficient work has been conducted based on the detection of pest disease,
there is still room for improvement [16]. Occlusion, one of the main challenges, is caused by
changes in the position of the blade and external lighting. The DL model training is difficult
due to the occlusion problem, which leads to false detection. To overcome the existing
challenge, two models are proposed for more accurate localization and classification of
pest diseases. The core contributions of this research are as follows:

= The YOLOVS is designed based on optimal learning parameters for the recognition of
pests in RGB images.

= The novel quantum machine learning model is designed on the selected layers and
trained on the selected hyperparameters that help with the accurate classification of
Paddy with/without pest images.

The article is organized as follows: Section 2 describes related work, while proposed
methods are explained in Section 3. Section 4 provides the results, and finally, Section 5
provides the conclusion.

2. Related Work

In this method, an optimum super-resolution model is applied to enhance the quality
of images. The pest region is localized using D2Det’s model. The proposed model provides
detection scores of the 0.78 mAp [17]. The regional proposal network is used for rich
feature extraction, which provides an mAP of 0.78 on the AgriPest21 dataset [18]. The
multi-features fusion network is used for pest classification, in which dilated convolution
is applied for features extraction and deep features are also derived using the deep features
extraction network. Finally, the extracted features are fused for classification. This model
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provides 98.2% accuracy for the classification of 12 different types of pest diseases [19].
The attention model based on activation mapping is used for pest classification. In this
model, tiny pest regions are detected using weighted mapping of activation, prediction
scores, and labels with an average accuracy of 68.3 &= 0.3 [20]. In the saliency discriminative
guided model, two types of branches are utilized: raw and fine grained. In the raw branch,
coarse-grained features such as global and features fine-grained modules are used as a raw
branch. A salient object detection model is used for the localization of pest diseases [21].
The pretrained Mobile network is used for pest disease classification. This model is trained
on optimal parameters, which are selected after extensive experimentation. The results
are computed on the IP102 dataset, which provides an accuracy of 0.916 [22]. The regional
CNN model is used for pest disease detection with 100% accuracy for palm-infected
trees [23]. The multi-detection pest model is used to localize the pest region in which
the feature pyramid multi-scale model and adaptive novel regional proposal model are
included. The results are computed using a multi-pests MP-2021 dataset that provides a
0.67 precision rate and 0.89 recall [24]. The super-resolution multi-scale network and soft
IoU models are used for enhancement. The results are computed on the LLPD-26 pest
classes dataset, which contains 18,585 pest images with an mAP of 0.67 [25]. The four-step
network is proposed for pest disease detection in this network acquired frames of videos
are de-noised using the Bayesian model. The guided context residual model is applied for
segmentation that is fed to the CNN model to establish a model for the detection of pest
diseases with a 0.99 mAP [26]. Pre-trained Resnet-50 uses the backbone of mask-RCNN for
pest disease segmentation. Three-dimensional coordinates are obtained precisely for the
target points that provide the average rate of precision: 0.94 [27]. The pyramid attention
features extraction model and fine-grained models are used for pest disease detection. This
method is evaluated on DO and IP102 datasets with 0.74 and 0.99 accuracy, respectively [28].
The plant images are augmented by applying a data augmentation approach. Then, four
pre-trained models such as Google-net, Alex-net, VGG-net, and Res-Net are trained on
the selected hyper-parameters. The proposed models provide accuracy of 0.96 on the
NBAIR dataset, 0.97 on 24 classes Xiel and 0.95 on the Xie2 dataset [29]. The SVM model is
used with different functions of the kernel for the classification of parasites in strawberry
plants [30]. A simple and new method is proposed in which blocks of original and feature
reuse residual blocks are combined. This is known as the feature re-use residual model [31].
The spatial channel network is fused with the CNN model. The regional proposal model is
adopted to detect pest illnesses. In this model, a position-sensitive score map is applied,
in which the FC layer is replaced by a regression layer. The results are computed on the
MPD-2018, which provides an mAP of 0.75 [32]. The transfer learning DenseNet-169 is used
for pest detection in tomato plants. The results are computed on 859 images of 10 classes
of pest that affect tomatoes, providing 0.88 accuracy [33]. The GAN model is used for the
generation of synthetic pest images. The GAN results are visualized through the t-SNE
method. The classification of the pest insect is performed using a CNN model that provides
a 0.95 F1-score [34]. The Deep neural network is used for pest disease classification, in which
modified ResNet-50 provides 0.95 accuracy [15]. The image contrast is improved using
contrast enhancement, then k-means clustering is used for segmentation. The geometrical
features such as GLCM and GLRLM are fed to the SVM and KNN for classification of
normal/pest images of leaves with 0.93 prediction accuracy [35]. The HOG, GIST, and
color features are used with SVM, NB, MLP, bagging, KNN, XGBoost and RF classifiers on
10 fold cross-validation for pest disease classification [36]. The CNN model is applied with
softmax for the classification of the pest images, which provides 0.91 accuracy [37].

3. Material and Methods

The proposed method steps are localization and classification. In the localization step,
the YOLOvV5 model is trained on the selected parameters to localize the pest region in plant
images. After localization, pest images are classified into Paddy with pest/Paddy without
pest using the proposed quantum neural network, as presented in Figure 1.
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Figure 1. Proposed pest localization and classification models.

3.1. Localization of Pests Using the YOLOv5 Model

You look once (YOLO) models are widely used in different sectors for medical and
agricultural purposes, as well as in parking meters, traffic signals, etc., In terms of recogni-
tion accuracy, YOLOV5 outperforms other detectors such as RCNN, YOLOV2, v3, etc. [38].
Therefore, the localization model is used to locate the actual region of pests in plant images
more accurately.

The YOLOV5 detector contains three vital parts: the model backbone, the neck of the
model, and the head model [39], in which the cross stage of the partial model is utilized
for the extraction of rich features. The model neck is utilized for the generation of feature
pyramids. Feature pyramids provide better generalizability when scaling the object. This
helps with the identification of objects with distinct scales and sizes. Pyramid features help
improve the performance of testing data. In the proposed model, FPN pyramids are used.
The head of the model is utilized for the final part of the detection process. The anchor
boxes are applied to the features that generate the final output vector with probabilities
of class, scores of objectiveness, and rectangular boxes. The Leaky ReLU is applied in
the hidden/middle layer and the sigmoid function is utilized in the detection of the final
layer. The model is trained on the Sgdm optimizer function. YOLOv5 comprises the head
and backbone.

The YOLOVS head contains 16 convolutional, 1 focus, and 1 spatial pyramid pooling,
while the YOLOVS5 backbone comprises 23 layers: 16 convolutional, 2 up-sampling, 4 con-
catenation, and 1 detection layer. The proposed YOLOV5 architecture is shown in Figure 2.
Table 1 lists the YOLOv5 model’s training parameters.

The loss function of the YOLOVS5 is mathematically explained as:
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Here, 1?bj et represents the objects in i and 1%17]' et represent the jth bounding box, s
denotes the grid and x; — y; denote the center of the jth bounding box related to the i grid
cell. %;,J; represents the center of ground truth related to the i grid cell.
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Figure 2. Proposed YOLOv5 model for localization.

Table 1. Parameters of YOLOVS5 training.

Epochs 400
Batch size 8
Optimizer Sgdm
(10, 13, 16, 30, 33, 23)
Anchors (30, 61, 62,45, 59, 119)
(116, 90, 156, 198, 373, 326)
Classes 2

Table 1 depicts training parameters in which 400 epochs, 8 batch-size, an Sgdm
optimizer, (10, 13, 16, 30, 33, 23), (30, 61, 62, 45, 59, 119), (116, 90, 156, 198, 373, 326) and two
classes are selected, providing better localization results.

3.2. Classification of Paddy with Pest/Paddy without Pest

The classical images are transformed through the computation of a matrix. The same
images are presented as quantum states and encoded for the n qubits. The transformation
of quantum images is achieved through the evolution of unitary "U under Hamiltonian.
The qubits might store multiple values at the same time, which provides a huge advantage
in terms of speed over the normal/classical algorithms. Therefore, in this article, the
quantum model is proposed for the classification of the pest images. A qubit’s state in
quantum computing is represented by a unit vector in a complex two-dimensional vector
space [40,41]. Consider a quantum system in two dimensions that are described by so-
called computational states |0 > and |1 >. The column vectors % % serve as a numerical
representation of these reports. The basis of orthonormal for space of a qubit space is
called a Hilbert. The primary distinction between quantum and classical bits is that bits of
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quantum are not limited to the binary states of |0 > and |1 >. For instance, a qubit can
exist in two states at once (a two-states superposition) [42].

p>=a

0> +B[1> 1

The model consists of three-layered hybrid architecture that contains two neurons
of the classical fully connected (FC) layer. The two-qubit neurons are transformed into
another two classical FC layers. A softmax activation function is applied for classification
based on probability. The proposed model contains 15 layers and 2-qubit neurons, and it is
trained with selected parameters such as the Adam optimizer, 16 batch size and 100 training
epochs, and the data are divided into 5- and 10-fold cross-validation. The model layered
architecture and training parameters are displayed in Tables 2 and 3.

Table 2. Training parameters of the proposed model.

Optimizer Adam
Batch-size 16
Epochs 100
Split criteria 5- and 10-fold

Table 3. Proposed model layered architecture.

Type of Layer Shape of Output
Dense (None, 4)
Keras (None, 4)
Dense (None, 4)

Table 2 depicts training parameters that are selected after extensive experiments that
provide better testing outcomes. Table 3 shows the layered design of the suggested model.
The proposed architecture is presented in Figure 3.
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Figure 3. A proposed quantum model for classification.

4. Results and Discussion

Paddy pest data are downloaded from the Kaggle website “Paddy Pests Dataset |
Kaggle”. This dataset contains 135 files of Paddy with pests and 513 files of Paddy without
pests. The IP102 dataset used for the recognition of pest insects contains 75,000 images split
into 102 classes. Furthermore, 19,000 images are annotated to bounding boxes [43]. The pro-
posed method is implemented on MATLAB toolbox 2022 on a Windows operating system
with a 2070 RTX Nvidia Graphic Card. In this research, two experiments are performed:
one for localization (Figure 4) and the second for the classification of pest images.

10
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Figure 4. (a,b) Shows the proposed method localization results.

4.1. Experiment#1: Localization of Pest Images Using the YOLOv5 Model

In this experiment, the localization method’s performance is computed in terms of
recall (R), precision (P), and mAP. The mathematical expression of performance metrics is

as follows:
Truepositive(d)

R = -

0 + Falsenegative
B )

~ J + Falsepositive
2xP xR
F1 = ——

scores RLD

The proposed localization model is trained /validated on the IP102 pest recognition
dataset. The proposed model results are graphically presented in Figure 4. The statistical
results are mentioned in Tables 4 and 5.

11
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Table 4. Proposed method localization outcomes.

P R 0.5-mAP 0.5:0.95-mAP
0.988 0.868 0.920 0.766
0.982 0.874 0.927 0.769
0.982 0.874 0.922 0.770
0.990 0.862 0.919 0.767
0.986 0.863 0.919 0.761
0.985 0.865 0.921 0.763
0.984 0.864 0.920 0.774
0.987 0.868 0.926 0.772
0.986 0.872 0.921 0.770
0.984 0.875 0.923 0.765
0.990 0.873 0.924 0.769
0.989 0.873 0.930 0.772
0.988 0.872 0.925 0.770
0.986 0.874 0.922 0.770
0.983 0.877 0.925 0.777
0.982 0.879 0.923 0.771
0.987 0.876 0.923 0.769
0.987 0.877 0.922 0.774
0.986 0.876 0.918 0.777
0.984 0.876 0.923 0.773
0.988 0.876 0.925 0.764
0.986 0.874 0.927 0.776
0.986 0.874 0.922 0.772
0.986 0.876 0.925 0.775
0.986 0.876 0.926 0.779
0.988 0.874 0.922 0.772
0.986 0.873 0.925 0.775
0.987 0.873 0.927 0.778
0.988 0.875 0.927 0.776
0.989 0.874 0.924 0.778
0.991 0.874 0.923 0.776
0.992 0.872 0.922 0.778
0.988 0.873 0.925 0.779
0.986 0.874 0.927 0.779
0.986 0.875 0.927 0.779
0.986 0.873 0.925 0.781
0.982 0.876 0.923 0.780
0.981 0.881 0.927 0.781
0.984 0.878 0.924 0.779
0.988 0.877 0.927 0.779
0.986 0.878 0.927 0.781

Mean: 0.987 0.877 0.927 0.783

12
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Table 5. Localization results in comparison.

Ref Year Dataset Results
[44] 2022 55.05 F1-score
[45] 2022 57.23 mAP
1P102
[46] 2022 67.82 Fl-score
[47] 2022 77.04 mAP
[48] 2023 85.2 mAP
0.93 Fl-score
Proposed Model 0.92 mAP

The proposed model training results with loss rate and validation outcomes are
presented in Figure 5.

val/box_loss val/obj_loss val/cls_loss metrics/mAP_0.5 metrics/mAP_0.5:0.95
0.8
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Figure 5. Training/validation results (a) loss of training box, (b) loss of training object, (c) loss of
training cls, (d) metrics/precision, (e) metrics/recall, (f) loss of validation box, (g) loss of validation
object, (h) loss of validation cls, (i) mAP (0.5), (j) mAP (0.95).

Figure 6 depicts the proposed model training/validation loss in terms of P, R, and
mAP scores. In Figure 6, the proposed model validation results are visualized.

The validation scores of the proposed model are 0.86 precision, 0.92 recall, 0.93 F1-score
and 0.92 mAP. The achieved outcomes prove that the proposed model more accurately
localizes the pest regions. The tabular results are mentioned in Table 4.

Table 4 presents the results of the localization method, which achieves mean scores of
0.98764 precision, 0.87739 recall, 0.92728 mAP-0.5, and 0.78367 mAP-0.95. The proposed
localization method’s results are compared to the latest existing methods, as mentioned in
Table 5.
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Figure 6. Proposed model validation results (a) precision, (b) mAP, (c) Fl-score, (d) recall.

Table 5 presents the localization results that are compared to the existing meth-
ods [39-42]. An explainable neural model is used for localization, which provides 55.05 F1
scores [44]. CornerNet with DenseNet-100 is used for localization on the IP102 dataset,
which provides an mAP of 57.23 [45]. The multi-scale attention model is utilized for lo-
calization on the IP102 dataset, which provides 67.28 F1 scores [46]. The multiple-scale
attention method is utilized for the recognition of pest regions with 77.04 mAP [47].

As compared with the existing methods used in this research area, fine-tuned YOLOv5
provides better localization outcomes.

4.2. Experiment#2: Classification of Pest Images Based on Proposed Quantum Neural Network

The proposed model classifies the input images into two classes: pest/without pest.
On 5/10-fold cross-validation, the performance of the suggested strategy is assessed in
terms of various metrics, such as precision accuracy, F1 scores, and recall. Figure 7 shows a
graphical representation of the suggested model training.

The classification results are computed using a confusion matrix, as shown in Figure 8.

Figure 8 shows the binary classification results of Paddy with pest and Paddy without
pest. The achieved outcomes are mentioned in Table 6.

The proposed classification model achieves 99.31% accuracy, 0.99 precision, 1.00 re-
call, and a 0.99 F1 score with 5-fold cross-validation and 99.56% accuracy, 0.99 precision,
0.99 recall, and 0.99 F1 score with 10-fold cross-validation.

14
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Figure 7. Proposed model results in (a) training and validation precision, and (b) loss of training
and validation.
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Figure 8. Confusion matrix (a) 5-fold; (b) 10-fold.

Table 6. Classification outcomes using the suggested model.

Cross-Validation Classes Accuracy Precision Recall F1 Score
Paddy with pest 99.31% 0.99 1.00 0.99
5-fold cross-validation
Paddy without pest 99.31% 1.00 0.99 0.99
Paddy with pest 99.56% 0.99 0.99 0.99
10-fold cross-validation
Paddy without pest 99.56% 1.00 1.00 1.00

4.3. Statistical Analysis for Classification Model

The statistical analysis is performed in terms of mean/variation to compute the results
of classification on 5- and 10-fold cross-validation. In this experiment, AUC values are
computed on each fold, and the mean of AUC is measured using the deviation rate.
The achieved results are graphically presented in Figure 9. The quantitative results are
mentioned in Tables 7 and 8.
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Figure 9. Classification results (a) 5-fold and (b) 10-fold.
Table 7. Classification results in terms of mean/variance on 5-fold cross-validation.
0 1 2 3 4 Mean/Variation
0.98 0.97 0.97 0.97 0.97 0.97 £ 0.00
Table 8. Results of classification in terms of mean/variance on 10-fold cross-validation.
0-fold 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold Mean/Variation
0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.96 0.95 0.97 0.96 =+ 0.00

Based on the five-fold cross-validation results, we achieve 0.98 ROC on 0-fold and
0.97 ROC on 1-, 2-, 3- and 4-fold, and 0.97 + 0.00 mean/variation. The classification of
pests is provided in Table 8.

The classification outcomes in Table 8 are 0.96 ROC for 0-fold, 0.95 ROC for 1-, 2-, 3-, 6-
and 8-fold, 0.96 ROC for 4- and 7-fold, 0.97 ROC for 9-fold, and 0.96 =+ 0.00 mean/variation.
The proposed results comparison is provided in Table 9.

Table 9. Comparison of results.

Ref Year Dataset Accuracy
[49] 2022 93.83%
[50] 2022 97.70%
[51] 2023 Kaggle 82.50%
[52] 2023 98.28%
[37] 2023 91.45%
Proposed Method 99.90%

Table 9 depicts the comparison of results with [37,49-52]. Transfer learning models
such as MobileNet and VGG16 are used for classification, with 93.83% accuracy [49]. A
Custom CNN model is developed for paddy classification with 97.70% accuracy [50]. The
VGG19,16 and ResNet-50 are applied with a voting classifier for classification, which pro-
vides 82.50% accuracy [51]. The FCN model is applied to the conditional random field
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for refinement of the contour of the insect and localized boundaries. Finally, Densenet is
applied with attention to the classification and provides accuracy of 98.28% [52]. The CNN
model is designed for classification through softmax and SVM, which provides 91.45% ac-
curacy [37]. However, compared to the existing method in this research, quantum machine
learning is proposed which is trained from the scratch using the optimal parameters that
provide 99.90% accuracy.

5. Conclusions

In agricultural domain, pests cause damage in fields, leading to significant losses in
the crop yield. Therefore, it is necessary to obtain accurate and early detection of pests
using plant images. Although researchers are working on accurate detection, there is still
room for improvement because of several factors such as noise, illumination, occlusion,
etc., That is why the end-to-end deep learning YOLOv5 model was designed based on
a features pyramid (FPN) with optimal hyperparameters which provides a significant
improvement in localization results, offering 0.987 Precision, 0.877 Recall, 0.927 mAP-0.5,
0.783 mAP-0.5:0.95 compared to existing methods.

The classification of the pest images is also a necessary part of this domain, which
depends on optimal feature extraction and selection. Therefore, a fifteen-layered, two-qubit
quantum model is designed and trained from scratch and based on selected learning param-
eters. The results achieved in terms of accuracy are 99.56%, 0.99 precision, 0.99 recall, and
0.99 F1 scores. The comparison between the proposed and the existing models authenticates
that the proposed model performs better.

In this article, binary classification is performed; in the future, the work may be
extended for multi-classification of pest images.

Author Contributions: Conceptualization, J.A. and M.A.A_; methodology, ].A.; software, R.Z.; val-
idation, S.K. and M.A.A.; formal analysis, L.S. and M.LS,; investigation, S.K.; resources, L.S.; data
curation, R.Z. and M.I.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the project of Operational Program Integrated Infrastruc-
ture: Independent re-search and development of technological kits based on wearable electronics
products, as tools for raising hygienic standards in a society exposed to the virus causing the COVID-
19 disease, ITMS2014+ code 313011ASKS.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: https://www.kaggle.com/datasets/zeeniye/paddy-pests-dataset,
accessed on 15 August 2022.

Conflicts of Interest: All authors declare that there is no conflict of interest.

References

1. Lacey, L.; Grzywacz, D.; Shapiro-Ilan, D.; Frutos, R.; Brownbridge, M.; Goettel, M. Insect pathogens as biological control agents:
Back to the future. J. Invertebr. Pathol. 2015, 132, 1-41. [CrossRef]

2. Vreysen, M.; Robinson, A.; Hendrichs, J.; Kenmore, P. Area-wide integrated pest management (AW-IPM): Principles, practice and
prospects. In Area-Wide Control of Insect Pests: From Research to Field Implementation; Springer: Berlin/Heidelberg, Germany, 2007;
pp- 3-33.

3.  Tian, H.; Wang, T,; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric.
2020, 7, 1-19. [CrossRef]

4. Barbedo, ].G.A. Detecting and classifying pests in crops using proximal images and machine learning: A review. Al 2020, 1,
312-328. [CrossRef]

5. Smith, M. Scouting: The Tip of the IPM Spear. EDIS 2019, 2019, 24-27.

6. Orchi, H.; Sadik, M.; Khaldoun, M. On using artificial intelligence and the internet of things for crop disease detection: A
contemporary survey. Agriculture 2022, 12, 9. [CrossRef]

7. Miranda, J.L.; Gerardo, B.D.; Tanguilig, B.T., III. Pest detection and extraction using image processing techniques. Int. J. Comput.

Commun. Eng. 2014, 3, 189. [CrossRef]

17



Agriculture 2023, 13, 662

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

Li, W,; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning
for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [CrossRef]

Shafkat, L. Intuitively Understanding Convolutions for Deep Learning. 2018. Available online: https:/ /towardsdatascience.com/
intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel (accessed on 6 June 2020).

Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaria, J.; Fadhel, M.A.; Al-Amidie,
M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data
2021, 8, 53. [CrossRef]

Javed, M.H.; Noor, M.H.; Khan, B.Y.; Noor, N.; Arshad, T. K-means based automatic pests detection and classification for
pesticides spraying. Int. |. Adv. Comput. Sci. Appl. 2017, 8, 236-240.

Thar, S.P.; Ramilan, T.; Farquharson, R.J.; Pang, A.; Chen, D. An empirical analysis of the use of agricultural mobile applications
among smallholder farmers in Myanmar. Electron. J. Inf. Syst. Dev. Ctries 2021, 87, €12159. [CrossRef]

Singh, P; Verma, A.; Alex, ].S.R. Disease and pest infection detection in coconut tree through deep learning techniques. Comput.
Electron. Agric. 2021, 182, 105986. [CrossRef]

Karar, M.E.; Alsunaydi, F; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep
learning in cloud computing system. Alex. Eng. . 2021, 60, 4423-4432. [CrossRef]

Malathi, V.; Gopinath, M. Classification of pest detection in paddy crop based on transfer learning approach. Acta Agric. Scand.
Sect. B—Soil Plant Sci. 2021, 71, 552-559. [CrossRef]

He, J.; Chen, K,; Pan, X.; Zhai, J.; Lin, X. Advanced biosensing technologies for monitoring of agriculture pests and diseases: A
review. . Semicond. 2023, 44, 023104. [CrossRef]

Wang, H.; Li, Y,; Dang, L.M.; Moon, H. An efficient attention module for instance segmentation network in pest monitoring.
Comput. Electron. Agric. 2022, 195, 106853. [CrossRef]

Wang, R; Jiao, L.; Xie, C.; Chen, P,; Du, J.; Li, R. S-RPN: Sampling-balanced region proposal network for small crop pest detection.
Comput. Electron. Agric. 2021, 187, 106290. [CrossRef]

Wei, D.; Chen, J.; Luo, T.; Long, T.; Wang, H. Classification of crop pests based on multi-scale feature fusion. Comput. Electron.
Agric. 2022, 194, 106736. [CrossRef]

Bollis, E.; Maia, H.; Pedrini, H.; Avila, S. Weakly supervised attention-based models using activation maps for citrus mite and
insect pest classification. Comput. Electron. Agric. 2022, 195, 106839. [CrossRef]

Luo, Q.; Wan, L,; Tian, L.; Li, Z. Saliency guided discriminative learning for insect pest recognition. In Proceedings of the 2021
International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18-22 July 2021; pp. 1-8.

Rimal, K.; Shah, K.; Jha, A. Advanced multi-class deep learning convolution neural network approach for insect pest classification
using TensorFlow. Int. |. Environ. Sci. Technol. 2022, 20, 4003—4016. [CrossRef]

Alsanea, M.; Habib, S.; Khan, N.E; Alsharekh, M.F,; Islam, M.; Khan, S. A Deep-Learning Model for Real-Time Red Palm Weevil
Detection and Localization. . Imaging 2022, 8, 170. [CrossRef] [PubMed]

Dong, S.; Du, J.; Jiao, L.; Wang, F,; Liu, K.; Teng, Y.; Wang, R. Automatic Crop Pest Detection Oriented Multiscale Feature Fusion
Approach. Insects 2022, 13, 554. [CrossRef] [PubMed]

Teng, Y.; Zhang, J.; Dong, S.; Zheng, S.; Liu, L. MSR-RCNN: A multi-class crop pest detection network based on a multi-scale
super-resolution feature enhancement module. Front. Plant Sci. 2022, 13, 810546. [CrossRef] [PubMed]

Chodey, M.D.; Noorullah Shariff, C. Hybrid deep learning model for in-field pest detection on real-time field monitoring. |. Plant
Dis. Prot. 2022, 129, 635-650. [CrossRef]

Li, Y,; Feng, Q.; Lin, J.; Hu, Z.; Lei, X.; Xiang, Y. 3D Locating System for Pests’ Laser Control Based on Multi-Constraint Stereo
Matching. Agriculture 2022, 12, 766. [CrossRef]

Ung, H.T.; Ung, H.Q.; Nguyen, B.T. An efficient insect pest classification using multiple convolutional neural network based
models. arXiv 2021, arXiv:2107.12189.

Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput.
Electron. Agric. 2019, 164, 104906. [CrossRef]

Ebrahimi, M.; Khoshtaghaza, M.H.; Minaei, S.; Jamshidi, B. Vision-based pest detection based on SVM classification method.
Comput. Electron. Agric. 2017, 137, 52-58. [CrossRef]

Ren, F; Liu, W.; Wu, G. Feature reuse residual networks for insect pest recognition. IEEE Access 2019, 7, 122758-122768. [CrossRef]
Liu, L.; Wang, R;; Xie, C.; Yang, P.; Wang, F.; Sudirman, S.; Liu, W. PestNet: An end-to-end deep learning approach for large-scale
multi-class pest detection and classification. IEEE Access 2019, 7, 45301-45312. [CrossRef]

Pattnaik, G.; Shrivastava, V.K.; Parvathi, K. Transfer learning-based framework for classification of pest in tomato plants. Appl.
Artif. Intell. 2020, 34, 981-993. [CrossRef]

Lu, C.-Y,; Rustia, D.J.A,; Lin, T.-T. Generative adversarial network based image augmentation for insect pest classification
enhancement. IFAC-Pap. 2019, 52, 1-5. [CrossRef]

Dey, A.; Bhoumik, D.; Dey, K.N. Automatic detection of whitefly pest using statistical feature extraction and image classification
methods. Int. Res. |. Eng. Technol. 2016, 3, 950-959.

Kasinathan, T.; Uyyala, S.R. Machine learning ensemble with image processing for pest identification and classification in field
crops. Neural Comput. Appl. 2021, 33, 7491-7504. [CrossRef]

18



Agriculture 2023, 13, 662

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

Haridasan, A.; Thomas, J.; Raj, E.D. Deep learning system for paddy plant disease detection and classification. Environ. Monit.
Assess. 2023, 195, 120. [CrossRef] [PubMed]

Kuznetsova, A.; Maleva, T.; Soloviev, V. YOLOV5 versus YOLOV3 for apple detection. In Cyber-Physical Systems: Modelling and
Intelligent Control; Springer: Berlin/Heidelberg, Germany, 2021; pp. 349-358.

Solawetz, J.; Nelson, J. How to Train YOLOVS on a Custom Dataset. Volume 19. 2020. Available online: https:/ /blog.roboflow.
com/how-to-train-yolov5-on-a-custom-dataset/ (accessed on 10 December 2022).

Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural
networks. Nat. Commun. 2020, 11, 808. [CrossRef]

Langenfeld, S.; Morin, O.; Korber, M.; Rempe, G. A network-ready random-access qubits memory. Npj Quantum Inf. 2020, 6, 86.
[CrossRef]

Gyurik, C.; Dunjko, V. Structural risk minimization for quantum linear classifiers. Quantum 2023, 7, 893. [CrossRef]

Wu, X.; Zhan, C.; Lai, Y.-K.; Cheng, M.-M.; Yang, J. Ip102: A large-scale benchmark dataset for insect pest recognition. In
Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15-20 June 2019;
pp- 8787-8796.

Couliably, S.; Kamsu-Foguem, B.; Kamissoko, D.; Traore, D. Explainable deep convolutional neural networks for insect pest
recognition. J. Clean. Prod. 2022, 371, 133638. [CrossRef]

Albattah, W.; Masood, M.; Javed, A.; Nawaz, M.; Albahli, S. Custom CornerNet: A drone-based improved deep learning technique
for large-scale multiclass pest localization and classification. Complex Intell. Syst. 2022, 1-18. [CrossRef]

Feng, F; Dong, H.; Zhang, Y.; Zhang, Y.; Li, B. MS-ALN: Multiscale Attention Learning Network for Pest Recognition. IEEE Access
2022, 10, 40888-40898. [CrossRef]

Zhang, W.; Sun, Y.; Huang, H.; Pei, H.; Sheng, J.; Yang, P. Pest region detection in complex backgrounds via contextual information
and multi-scale mixed attention mechanism. Agriculture 2022, 12, 1104. [CrossRef]

Li, M; Cheng, S.; Cui, J.; Li, C.; Li, Z.; Zhou, C.; Lv, C. High-Performance Plant Pest and Disease Detection Based on Model
Ensemble with Inception Module and Cluster Algorithm. Plants 2023, 12, 200. [CrossRef] [PubMed]

Murugan, D. Paddy Doctor: A Visual Image Dataset for Paddy Disease Classification. arXiv 2022, arXiv:2205.11108.

Debnath, O.; Saha, H.N. An IoT-based intelligent farming using CNN for early disease detection in rice paddy. Microprocess.
Microsyst. 2022, 94, 104631. [CrossRef]

Anwar, Z.; Masood, S. Exploring Deep Ensemble Model for Insect and Pest Detection from Images. Procedia Comput. Sci.
2023, 218, 2328-2337. [CrossRef]

Gong, H.; Liu, T,; Luo, T,; Guo, J.; Feng, R.; Li, J.; Ma, X,; Mu, Y.; Hu, T.; Sun, Y. Based on FCN and DenseNet Framework for the
Research of Rice Pest Identification Methods. Agronomy 2023, 13, 410. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

19



V&N agriculture ﬁw\p\py

Article

A Hybrid Framework for Detection and Analysis of Leaf Blight
Using Guava Leaves Imaging

Sidrah Mumtaz !, Mudassar Raza !, Ofonime Dominic Okon 2, Saeed Ur Rehman "*, Adham E. Ragab 3
and Hafiz Tayyab Rauf 4*

1 Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
Department of Electrical/Electronics & Computer Engineering, Faculty of Engineering, University of Uyo,
Uyo 520103, Nigeria

Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800,

Riyadh 11421, Saudi Arabia

4 Independent Researcher, Bradford BD8 0HS, UK

*  Correspondence: srehman@ciitwah.edu.pk (S.U.R.); hafiztayyabrauf093@gmail.com (H.T.R.)

Abstract: Fruit is an essential element of human life and a significant gain for the agriculture sector.
Guava is a common fruit found in different countries. It is considered the fourth primary fruit in
Pakistan. Several bacterial and fungal diseases found in guava fruit decrease production daily. Leaf
Blight is a common disease found in guava fruit that affects the growth and production of fruit.
Automatic detection of leaf blight disease in guava fruit can help avoid decreases in its production. In
this research, we proposed a CNN-based deep model named SidNet. The proposed model contains
thirty-three layers. We used a guava dataset for early recognition of leaf blight, which consists of two
classes. Initially, the YCbCr color space was employed as a preprocessing step in detecting leaf blight.
As the original dataset was small, data augmentation was performed. DarkNet-53, AlexNet, and the
proposed SidNet were used for feature acquisition. The features were fused to get the best-desired
results. Binary Gray Wolf Optimization (BGWO) was used on the fused features for feature selection.
The optimized features were given to the variants of SVM and KNN classifiers for classification. The
experiments were performed on 5- and 10-fold cross validation. The highest achievable outcomes
were 98.9% with 5-fold and 99.2% with 10-fold cross validation, confirming the evidence that the
identification of Leaf Blight is accurate, successful, and efficient.

Keywords: AlexNet; BGWO; CNN; DarkNet-53; deep learning; entropy; KNN; ROI; SVM; YCbCr

1. Introduction

Food is the fundamental requirement for the existence of human beings, and it is the
notable outcome of agricultural activities. Agriculture is assumed to be the backbone of
economic development, as it exhibits the cultivation of multiple crops, fruits, and vegetables.
There is a large difference between the cultivation and annual production of fruits because of
inappropriate advancements in technology, lack of knowledge, and diseases that negatively
affect the production [1]. Disease detection in plants is a challenging task and is essential to
diagnose at early stages. Diseases are mostly diagnosed through leaves because they tend
to highlight contaminated parts immediately. Guava is an important fruit in agriculture;
therefore, its leaves are selected for the detection and recognition of diseases [2]. Guava
is nutritionally beneficial, serving calcium and iron to the human body. It is cultivated in
America, especially in Mexico, Thailand, South Africa, and many other countries. Many
laboratories such as the Central Institute of Subtropical Horticulture (CISH) and different
institutes are continuing to work on guava production in different areas of the world [3].
Several diseases, such as bacterial and fungal diseases, attack the guava fruit, which badly
affects its production [4]. There are different techniques of ML applied for disease detection.
Almost 177 types of diseases are found that damage leaves, causing leaf blight and leaf
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spots. Known diseases include brown roots, twig drying, bacterial wilt, anthracnose, ring
rots, and many others [5].

Many researchers aim for innovations in disease detection. Disease detection relies
on five major steps. Usually, the first step in image processing is image acquisition. After
obtaining images, preprocessing incorporates multiple steps that result in better accuracy.
After preprocessing, feature extraction is performed, where the features of the images
are boosted for further computation and selection. The final stage is classification. A
variety of models are presented using diverse methodologies such as convolution neural
network (CNN), gradient descent (GD), and many others for classification purposes [6].
Convolution neural networks play an essential part in the extraction of features through
hidden layers, as manual extraction is costly and time-consuming [7]. Plant pathologists
need an automatic detection system to diagnose leaf blight in plants.

The main focus of the proposed methodology is the detection and classification of
leaf blight. Leaf blight affects plants as a result of a pathogenic organism infecting leaves.
Therefore, an automated system is needed to detect leaf blight disease. Research of diseases
in guava fruit is a challenging task, as it seeks a variety of data regarding diseases in the
relevant field [8]. The forecasted production of guava is 498.95 thousand tonnes in 61.37
acres in the year 2020-2021 and the production of guava is 499.68 thousand tonnes in 61.37
acres in the year 2021-2022. Evaluation of the researched tasks becomes critical with time
due to the wide range of diseases, and a great deal of effort has already been applied
towards the relevant field [9].

There are several limits and difficulties in detecting and classifying guava plant
diseases in the existing literature. Some major problems per the literature are the poor
contrast, variation in shape, texture, and size, and illumination problems found in disease
images that make them difficult to recognize and classify.

This article presents a new methodology for the detection of leaf blight. The purpose
is to classify the healthy and diseased images of guava leaves with improved accuracy. The
significant contributions presented in this research are as follows:

e Anew deep CNN Net named SidNet is presented, which consists of 33 layers along
with 35 connections. The pretraining of SidNet is performed on a plant imaging
dataset. The features are extracted from the proposed SidNet, darknet53, and AlexNet,
which are further fused using serial fusion. The deep features are also known as
automatic features; they automatically solve the issues related to contrast, shape,
texture, and illumination.

e  The features are sorted using an Entropy Algorithm, and for better feature selection,
Binary Gray Wolf Optimization is used. The selected features are used to make a
single feature vector for classification using an SVM and KNN Classifier to achieve
the best performance and results.

e  Data Augmentation is performed, as the selected dataset is small; therefore, the images
are flipped both horizontally and vertically to make the dataset large.

The paper consists of five sections, where Section 1 explains the introduction, motiva-
tion, contribution, and problem statements for leaf blight detection. Section 2 covers the
recent existing work. Section 3 provides the details of the presented proposed framework
and Section 4 describes the details of the experiments and outcomes. Lastly, Section 5
covers the conclusion.

2. Related Work

Diseases in fruit plants and leaves are a major cause of destruction and economic
loss. Automated systems help greatly with the detection of diseases at early stages. While
considering the field of detection of disease in plants, deep neural networks work perfectly
to identify and classify diseases. These networks are mentored to conduct high-value
results in detecting and classifying diseases, and to fulfill the demands of food deformation
prevention.
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There are different methods for collecting images under certain conditions. Images
are captured by multiple appliances, such as cameras, sensors, mobile phones, and other
devices. In this era, more datasets containing guava are publicly available on multiple
forums, such as Kaggle, Mendeley, and many others [10]. Pre-processing of images is an
important phase in image processing. The pre-processing phase entails multiple steps
which help highlight the focused parts and remove irrelevant information from guava leaf
images. In the real world, label noise on images is a matter of concern. Multiple techniques
have attained the best results in denoising images, especially mixed noise, speckle noise,
and salt and pepper noise. Low contrast and color distortion in guava leaf images make
them blur. Scattering and light absorption also affect clear image visualization [11]. Images
are preprocessed by using rotational filters such as horizontal and vertical flipping. Data
augmentation techniques are used, such as applying rotations and zooming into images [12].
Color spacing techniques are extensively applied in image processing. RGB, CIELAB, and
CMYK models are mostly used as color spacing techniques to give the best results.

Feature extraction is a process in which reatures are reduced from the raw dataset
and new features for manageable processing are created. Texture analysis has a wide
range of applications [13]. Pattern recognition requires feature extraction to solve problems
in prediction, cluster discrimination, and representation of data in the best way [14,15].
Content-Based Image Retrieval (CBIR) converts high-level image visuals into feature
vectors that contain some properties [16]. There are multiple techniques to extract the
features from guava leaf images, such as handcrafted-based features, region-based features,
deep CNN-based features, texture-based features, color-based features, morphological-
based features, etc. Extraction of features is categorized into hand-crafted-based features
and deep-based features.

The selection of features from plant leaf images is carried out after the extraction
of hand engineered and deep-based features. The set of features is chosen while noisy,
poor, and extra features are eliminated from the original set of features [17]. There are
five main types of feature selection, which are (1) Linear Method, (2) Non-Linear Method,
(3) Filter-Based Method, (4) Wrapper Method, (5) Embedded Method. Linear methods
include PCA and LDA. PCA stands for Principal Component Analysis, which is used
for data reduction [18]. LDA stands for Linear Discriminant Analysis and is used for the
conversion of high dimension features into lower dimension features [19]. Non-linear
methods include Entropy [20], Genetic Algorithm (GA) [21], Binary Gray Wolf [22], Slap
Swarm [23], Atom Search [24] and many others. Filter methods includes mRMR [25],
Missing Value Ratio [26], and many others. Wrapper methods include Jackstraw [27] and
Boruta [28]. Finally, embedded methods include LASSO [29], Ridge [30], Elastic [31], and
many others. Image fusion [32] helps greatly in improving classifier accuracy with less
computational cost [33]. Different algorithms are proposed that use image fusion to get the
best accuracy results.

Image classification is the last step in image processing [34]. Classification tends
to dominate the feature vector to determine which object belongs to which class [35].
There are different types of techniques used for the classification of healthy and diseased
images of plant leaves. Image classification is divided into three main categories, which are
(1) Supervised Learning, (2) Unsupervised learning, and (3) Object-based image analysis.
Supervised Learning is used to detect the new category of the object from training data [36].
Unsupervised Learning is a process in which an image is identified in an image collection
without using labeled training data [37]. Object-based analysis involves the grouping of
pixels on the basis of some similarities such as shape and neighborhood [38]. To get the
most accurate results, the Plant Village dataset is used for testing and training purposes.
A total of 80% of guava leaf images are used for testing while 20% of them are used for
training purposes. The achievable accuracy is 97.22% using Alex-Net and Squeeze-Net after
segmentation and classification [39]. Atila et al. [40] designed the Efficient-Net architecture,
which is designed for classification purposes. Different architectures are applied using
CNN for model training to get highly accurate results. The model training is performed on
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the dataset of 87,848 images. Images are preprocessed using different techniques such as
downscaling and squaring methods, they are then classified, and an accuracy of 99.53% is
achieved using AlexNet, VGG-16, and GoogLeNet [41]. Several algorithms are used for
image classification. These are SVM [42], K-Nearest Neighbor (KNN) [43], Naive Bayes [44],
Shadow algorithms [45], Minimum Mean Distance (MMD) [46], Decision Trees [47], K-
Means Clustering [48] and many others. The datasets are frequently classified by SVM.
This involves supervised learning and comprises points that are in the sample space and
different regions [49]. Segmentation is performed on the preprocessed data in three stages.
In the first stage, the deep CNN is trained to learn the mapping from the space map. In the
second stage, prediction-based labels are acquired. At the last stage, these acquired labeled
images are sent to SVM for classification and achieve an accuracy of 86% [50]. In machine
learning, KNN is a statistical classification algorithm. It gathers the objects selected by
neighbors having the highest number of votes [51]. KNN is inspected for the detection of
weeds from UAV images of the chili crop of Australia. In comparison with KNN, SVM and
Random Forest (RF) are used. The achievable accuracies across RF, SVM, and KNN are 96%,
94%, and 63%, respectively [52]. KNN is also used for classifying facial expressions [53].
Additionally, KNN is used for the classification of grape leaves into healthy and unhealthy
leaves. Texture-based and color-based features are extracted from grape leaf images and
are classified by the KNN classifier, and an accuracy of 96.66% is achieved [54]. Table 1
depicts an overview of recent works related to plants diseases analysis

Table 1. An overview of recent literature regarding plants diseases analysis.

Ref. Year Techniques Dataset Diseases Results %
[41] 2018 Downscaling and squaring method, AlexNet, 87,848 l;}; flgfﬁab{sg 12;;1( 99.53
VGG-16, AlexNetOWTBn. 58 classes s marly baght, '
Brown Leaf Spot
ResNet-50, Deep Siamese convolutional Black Rot, Esca,
(551 2018 network, TSNE method, KNN PVD Chlorosis %0
[56] 2018  Transfer learning, F-RCNN, classification. 4923 Fhoma Rot, Ceaf 95.75
Miner, Target Spot
F-CNN, S-CNN, Segmentation, annotation and
labeling on region of interest (lesions), random Independent Spider Mite, Target
[57] 2019 . 98.6
transformation dataset Spot
(stretch/rotation/brightness/contrast blur)
[58] 2019 VGG clasmf}cahon', re51zm'g and 2465 Black dot and scurf 96
transformation of images into grayscale,
[40] 2021 Eff1c1.e.nt-Net (B5Ver), Alexnet, ResNet50, 61,486 Late Bhght, 99.97
classification. Bacterial Spot
Resizing, normalizing and augmentation,
59] 2021 Efficient-Net (B7Ver), Efficient-Net (B4Ver), 18,161 Target Spot 99.9

U-net, and modified U-net segmentation
model, Score-Cam visualization technique,

3. Materials and Methods

The proposed methodology consists of multiple phases of image processing. In
the first step, as a preprocessing step, color spacing is performed on the images of the
dataset. Images are converted from RGB color format to YCbCr color format. After getting
preprocessed data, feature extraction is performed using two pretrained models and a
newly proposed CNN deep model known as SidNet. This newly proposed model is based
on 33 convolutional layers. This proposed CNN deep model is pretrained using the Plant-
Village dataset, which consists of 38 classes. After pretraining, features are collected from
the proposed CNN deep model. These extracted features are then fused with AlexNet and
DarkNet-53 to find the best and most appropriate results. A deep CNN known as AlexNet
was developed in 2012, which is an 8-layer deep model and consists of 5 convolution layers
and 3 Fully Connected layers. After every convolution layer and fully connected layer,
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ReLU is applied. It contains a dropout layer, which is applied after the first and second
fully connected layer. The input size in AlexNet is 227 x 227. In all layers, the activation
function is ReLU. Softmax is designed as an activation function in the output layer. AlexNet
is the simplest deep CNN model and it is used to get highly accurate results. DarkNet-53 is
another used deep model, which works as the backbone for YoloV3 in object detection. It
contains 25 layers for batch normalization and Leaky ReLU. The input size is 256 x 256
in DarkNet-53. In the second step, the feature sorting entropy algorithm is used for the
selection of the best features. These selected core features are fused using serial-based
fusion. After fusing the core features, the binary gray wolf optimization algorithm is
used. Finally, these extracted fused features are provided to SVM and KNN classifiers for
the classification of Leaf Blight for the best achievable results. The complete view of the
proposed model is shown in Figure 1. It covers a complete view of the flow of the diagram
of the designed structure.
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Figure 1. Proposed Framework for disease recognition in guava leaves.

3.1. Image Preprocessing

In image processing, color space conversion is an important task. RGB is used to store
real-time images and videos because it allows for the sensitivity of color detection cells
for the human visual system. YCbCr is beneficial for its low-resolution capability for the
human visual system. Therefore, the conversion of RGB to YCbCr is mostly used in image
processing. The general formula is given below:

YCbCr = RGB 2YChCr (RGB) )
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This is the general formula that is used for the conversion of RGB to YCbCr and
it represents 8 bits per sample pixel in RGB format. The white and black colors are
represented on a scale from 0 to 255. Therefore, the components of YCbCr are obtained
from the following equations.

Y =16+ 65.738/256 R + 129.057 /256 G + 25.064 /256 B )
Cb = 128 +37.945/256 R — 74.494 /256 G + 112.439/256 B 3)
Cr =128 +112.439/256 R — 94.154/256 G + 18.285/256 B 4)

where Y is used to represent the luma (luminance) component. Cb represents chrominance
blue and Cr represents chrominance red. These numbers are the constant values that are
used to adjust the value of Y. Figure 2 shows the conversion from RGB to YCbCr.

RGB to YCbCr Conversion

Figure 2. RGB to YCbCr conversion.

3.2. Data Augmentation

For data augmentation, horizontal and vertical flipping are used. According to the
mathematical model, the horizontal flipping of the images is presented as follows:

Hr (=x, y) = Ho (x, y) ®)

And the vertical flipping of the images is presented as follows:

Hy (x,—y) = Ho(x, y) (6)

Hr shows the flipping function and Hp shows the original image function that is to be
flipped. H, shows the flipping function and Hp shows the original image function that is
to be flipped.

3.3. Feature Extraction

After preprocessing and augmentation, the next phase is feature extraction. In this
phase, with the help of pretrained models, the most optimal features are extracted. Ac-
cording to our proposed methodology, a newly designed model named SidNet, and other
pretrained models such as DarkNet-53 and AlexNet, are used for extracting the most
optimal features.
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3.4. Proposed SidNet as CNN Net

This proposed CNN Net is a blockbuster CNN-based architecture used for the de-
tection and classification of Leaf Blight. The proposed SidNet model consists of 33 layers
involving 8 convolutional layers, 10 ReLU layers, 4 layers of batch normalization, one
dropout layer, one softmax layer, one classification output, one fully connected, and one
global average pooling layer. The Input size of the Proposed CNN Net is “227 x 227 x 3”
and it contains 35 connections. The stride is “1 x 1” throughout the proposed framework’s
convolution layer. The number of filters is set to 96 in all convolutional layers of the
framework, while the padding dimensions vary according to the convolution layer used in
the different stages of architecture. The padding of the last convolution layer is 5, 5, 5, 5.
Two pooling layers are used, where the stride for the two pooling layers in the architecture
is “2 x 2”. While the pooling size of the first pooling layer is 3, 2 and the pooling size of the
second pooling layer is 3, 3. The mean decay and variance decay for all batch normalization
layers are 0.1. Figure 3 shows the architecture of the proposed SidNet.

Output

l I: Input |:] C: Convolution l R: ReLU I A: Addition GAP: Global
Average pooling

I BN: Batch . FC: Fully SM:
Normalization P: Pooling Connected SoftMax

DO: DropOut

Figure 3. The architecture of the proposed CNN network, SidNet.

The proposed deep model named SidNet comprises 33 convolution layers. Its Input
size is “227 x 227 x 3” and it contains 35 connections.

Due to the small number of samples of the available dataset, the proposed deep
model with softmax (SM) classifier is first trained on the third-party dataset named CIFAR
100 [60]. Then, the guava leaf dataset is fed to SidNet for feature extraction. The features
are extracted from the fully connected (FC) layer. These features, after feature selection, are
trained and tested on various classifiers (such as SVM with its variants and KNN with its
variants) for evaluation. According to our model, the features in SidNet are presented as:

foxg={L1x1,L1x2,L1xX3, ........... L1xp} @)

where L (1 .. p) represents the number of features obtained from the proposed CNN model,
which is known as SidNet, and e x f is the dimension of the resultant function.

Visualization of the strongest feature maps at different convolution layers with the
proposed SidNet architecture is shown in Figure 4. The visualization is performed on
conv_1, conv_2, conv_3, conv_4, conv_5, conv_6, conv_7, and conv2 of the proposed
architecture.
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(e)

Figure 4. Visualization of the images of strong feature maps of different convolution layers. (a) conv_1

(b) conv_2 (c) conv_3 (d) conv_4 (e) conv_5 (f) conv_6 (g) conv_7 (h) conv2.

3.5. DarkNet-53

DarkNet-53 acts as the backbone of YoloV3 for object detection. DarkNet comprises 53
layers and consists of multiple convolution layers. A total of 1024 features in DarkNet are
extracted with the help of the global average pooling layer. There are 25 layers in Batch
normalization. The input size is 256 x 256. According to our mathematical model, the
features in DarkNet are presented as:

faxp ={j1x1,j1x2,j1x3,.............. jlxm} 8)

where | (1. ;) shows the number of features extracted from DarkNet-53 and a x b is the
dimension of the resultant function. Visualization of the strongest feature maps at different
convolution layers with the DarkNet-53 architecture is shown in Figure 5

(b) (d)

© ®

Figure 5. Visualization of the images of strong feature maps of different convolution layers of
DarkNet-53. (a) conv3 (b) convl (c) conv2 (d) conv4 (e) conv5 (f) convé.

3.6. AlexNet

AlexNet is the simplest model that comprises 8 layers. There are 5 convolution layers
and 3 fully connected layers. Its input size is 227 x 227. The Activation function used in all
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layers is ReLU, which is applied after every convolution layer and fully connected layer.
The Drop layer is applied after the first and second fully connected layer. The Activation
function in the output layer is Softmax. The AlexNet contains 4096 features with the help of
a convolution layer named a fully connected layer. According to our mathematical model,
the features in AlexNet are presented as:

fc><d = {klxl , k1><2 , k1 x 3, ... k1 x Tl} (9)

where k(1 ... n) shows the number of features extracted from AlexNet and ¢ x d shows
the dimensions of the resultant function. Visualization of the strongest feature maps at
different convolution layers with the AlexNet architecture is shown in Figure 6

(a) (b) (c) (d)

(e) ()

Figure 6. Visualization of the images of strong feature maps of different convolution layers of AlexNet.
(a) conv2 (b) convl (c) conv3 (d) conv4 (e) convb (f) convé.
3.7. Feature Selection

After extracting features from the proposed model and other pretrained models such
as DarkNet-53, AlexNet, and SidNet, the selection of features is done with the help of
feature sorting using entropy. The mathematical model for the selection of features using
entropy is represented as:

Eqxp (04,00, Az, e @) = — Y faa{ j11, J1e, j13, oo jiom Hlog (11, j12, j1ss, oo jom ) (10)
Ecxa (,31/ B2, B3, - Bu— Ef cxd = {klxlrk1><2/ kixs, ... '-klxn}loglag (kl><l s kixo, kixz, oot klxn)

Eoxr (71, Y2, Y3/ +n e Yo ==Y foxf = {Lix1, Lix2, L1x3, -+ - Lixp}loglog (Lix1, Lix2, Lixa,-vev- -

wherea X b, ¢ x d, e x f represents the dimension of features obtained after sorting features.
Log(j(1 — n)), Log(k(1 — n)), and Log(L(1 — n)) show the prediction of probability and j(1 —
n), k(1 — n) and L(1 — n) show the selected features obtained from the extracted features. o
(1 —mn), B(1 — n), v(1 — n) show the features which are sorted.

3.8. Feature Fusion

Feature Fusion is performed to select the most optimal features. According to the
mathematical model, the fusion of features is represented as:

Gf: 25:1( Eaxb)UZ;nzl(Ecxd)Uzgzl (Eexf> (13)
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After fusing the features using the entropy algorithm, Binary Gray Wolf Optimization
is performed to obtain the most optimal results. The mathematical model representing the
features selected from Binary Gray Wolf Optimization are as follows:

1 1 2
@dzelif'yo<§ €2if§§'y6<§ € 3if, otherwise (14)

where @ is the function of BGWO and 7o and 76 are the adjusting parameters that are
used to set the value of the most optimal features.

3.9. Classification

Different classifiers are available for classification purposes, but SVM and KNN
classifiers are chosen. These two classifiers are selected to achieve high accuracy and the
most optimal results. In machine learning, features are reduced by carrying out the feature
vector dimension. Different classification algorithms are available, such as Minimum Mean
Distance (MMD), K means clustering, Decision Trees, Shadow algorithm, and Naive Bayes.
In this work, SVM and KNN are selected to perform the classification on the guava leaf
dataset. These classifiers generate better results compared to other classifiers.

4. Results and Discussion

The purpose of this study is to classify the Leaf Blight disease with the best possible
results. After the processing of the dataset using YCbCr, the extraction of features is
performed using two pretrained models along with one proposed net. The selection of
features is performed using BGWO. For classification purposes, SVM and KNN are chosen
for the evaluation of execution. This section provides details about experiments that are
performed on multiple sets of features and the results are recorded accordingly. These
experiments and results are shown in two sets of test cases. Using 5 folds and 10 folds,
validation experiments are performed. In comparison with other classifiers, SVM and
KNN are selected, as they give the best results. The set of experiments are performed on
Windows 10 (64-bit) and a Core (TM) i7-8700 CPU, 3.20 GHz (12 CPUs) 3.2 GHz processor
with 16 GB RAM and an LCD and keyboard from HP. Training and testing of the designed
network are performed on MATLAB R2020b.

4.1. Dataset

The assembled dataset for the classification of Leaf Blight used in this analysis [61] is
small. These experiments are performed on guava leaves. The chosen dataset contains 415
guava leaf images in the original. This dataset contains a small number of images; therefore,
they are augmented using horizontal and vertical flipping techniques, which increases
the total number of images. The total number of images is 1000 after the augmentation
technique. This dataset is publicly available on the Mendeley website. It is a binary class
dataset (see Figure 7 for sample images) and many researchers have used it in their studies.

Diseased Images Healthy

Figure 7. Sample dataset images of guava plant.
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4.2. Performance Evaluation Methods

The performance measures can be used to measure and detect the performance of leaf
blight disease in plants. The consequences are defined as follows: a True Positive rate as
TP, True Negative rate as TN, False Positive rate as FP, and False Negative rate as FN. The
Table 2 illustrates the performance measures that are used in this work.

Table 2. Performance evaluation metrics.

Measures Mathematical Expressions
True Positive + True Negative
AccuraCy True Positive True Negative + False Positive + False Negative
Recall True Positive
True Posjrtive IJ’F F_%_lse Positive
) Cp rue Positive
PRC/Positive Prediction True Positive + False Positive
F1 Score 2.Precision.Recal

Precision + Recall

Table 3 shows a summary of the best-achieved results performed on the guava
leaf dataset, which proves that the proposed methodology is efficient and robust. Here,
Quadratic SVM achieves the best results, i.e., 98.9% over 5 folds in 9.2 s and 99.2% over 10
folds in 16.2 s, with 3045 features on 5-fold cross validation.

Table 3. Summary of results.

Test Cases Experiment#  Folds  Features Classifier Accuracy % Tfalnmg
Time (s)
1 1(a) 5 3045 Quadratic SVM 98.9 9.2
Fine Gaussian
2 2 (a) 5 200 SVM 81.1 0.8
3 3(a) 5 500 Quadratic SVM 84.1 2.2
4 4 (a) 5 750 Cubic SVM 85.6 2.4
5 5(a) 5 1000 Cubic SVM 87.6 32
6 1 (b) 10 3045 Quadratic SVM 99.2 16.2
Fine Gaussian
7 2 (b) 10 200 SVM 82.6 12
Fine Gaussian
8 3(b) 10 500 SVM 85.2 2.20
9 4 (b) 10 750 Cubic SVM 87.8 4.8
10 5 (b) 10 1000 Cubic SVM 87.5 6.2

The accompanying text contains some discussion on some of the experiments.
Experiment_1: Using 5-Fold and 10-Fold Validation on 3045 features

This section provides details about two test cases that were performed on 3045 features
using both 5 folds and 10 folds. The selected classifiers are variants of SVM and KNN,
which were chosen to get robust results. After augmentation, the chosen dataset contained
1002 images. The best results were recorded with measures such as accuracy, precision,
recall, F1-score, and training time.

Experiment_1(a): Using 5 Folds and 3045 Features (1002 X 3045 features)

This test case shows the results of 3045 features upon 1002 images using SVM and
KNN classifiers with 5-fold cross validation. Details are shown in Table 4.

The best results are achieved by the Quadratic SVM classifier in comparison with all
KNN classifiers, which is 98.9% in 9.2 s. Here, the confusion matrix in Figure 8 and the
ROC curve in Figure 9 are shown for the best results with the Quadratic SVM classifier. In
the confusion matrix, A represents the diseased class, While B depicts healthy class
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Table 4. Experiment_1 using 5 Folds (3045 Feature).

Classifier Accuracy (%) Total Cost IS);ZC;ZI?;LS /s) Training Time (s) Precision F1-Score Recall
Quadratic SVM 98.9 12 760 9.21 0.99 0.99 0.99
Linear SVM 98.0 20 780 9.65 0.98 0.98 0.98
Cubic SVM 98.6 14 770 9.43 0.985 0.985 0.99
Fine Gaussian SVM 80.1 199 490 16.3 0.78 0.785 0.86
Medium Gaussian SVM 97.3 27 770 9.76 0.97 0.975 0.97
Coarse Gaussian SVM 92.5 75 740 10.35 0.915 0.925 0.92
Weighted KNN 95.0 50 360 12.89 0.945 0.95 0.95
FINE KNN 93.5 65 360 13.62 0.935 0.935 0.94
Medium KNN 87.8 122 360 12.94 0.865 0.875 0.90
Coarse KNN 81.3 187 360 12.81 0.795 0.795 0.87
Cosine KNN 89.8 101 330 13.52 0.89 0.895 091
Cubic KNN 87.5 125 73 58.97 0.865 0.87 0.90

Quadratic SVM(3045 Features)

A B

Figure 8. Confusion matrix for Q(SVM) with 3045 features and using 5-fold results.

Quadratic SVM (3045 Features)

Quadratic SVM(3045 Features)
1t
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False positive rate

Figure 9. ROC curve for two classes A and B with 3045 features and using 5-fold results.

Here the ROC curve is shown in Figure 9 for both classes A and B, which are presented
as ROC A and ROC B.

Experiment_1(b): Using 10 Folds and 3045 Features (1002 X 3045 features)

This test case shows the results of 3045 features upon 1002 images using SVM and
KNN classifiers with 10 folds. Details are shown in Table 5.
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Table 5. Experiment_1 using 10 Folds (3045 Feature).

Classifier Accuracy (%) Total Cost Is,;fecelfll?:bs /s) Training Time (s) Precision Recall F1-Score
Quadratic SVM 99.2 8 460 16.221 0.995 0.99 0.99
Linear SVM 98.3 17 440 18.23 0.98 0.98 0.98
Cubic SVM 99.1 9 450 16.7 0.99 0.99 0.99
Fine Gaussian SVM 85.4 146 310 29.265 0.84 0.89 0.84
Medium Gaussian SVM 98.3 17 450 17.676 0.98 0.98 0.98
Coarse Gaussian SVM 93.6 64 450 18.689 0.93 0.94 0.93
Weighted KNN 94.3 57 190 23.037 0.935 0.95 0.94
FINE KNN 94.2 58 190 24.374 0.935 0.95 0.94
Medium KNN 88.2 118 190 23.12 0.87 0.91 0.87
Coarse KNN 82.7 173 190 23.278 0.81 0.88 0.81
Cosine KNN 91.0 90 180 24.438 0.9 0.92 0.90
Cubic KNN 88.3 117 57 73.713 0.87 0.91 0.87

The Quadratic SVM classifier achieved the best result in comparison with all KNN
classifiers, which is 99.2%. Here, the confusion matrix as presented in Figure 10 and the
ROC curve are shown for the best results against the Quadratic SVM classifier.

Quadratic SVM(3045 Features)

Figure 10. Confusion matrix for Q(SVM) with 3045 features and using 10-fold results.

Here, the ROC curve is shown in Figure 11 for both classes A and B, which are
presented as ROC A and ROC B.

Quadratic SVM(3045 Features)
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Figure 11. ROC curve for two classes A and B with 3045 features and using 10-fold results.

Experiment_2: Using 5-Fold and 10-Fold Validation on 200 features

This section provides details about two test cases that were performed on 200 features
using both 5 folds and 10 folds. The efficiently selected classifiers are SVM and KNN,
which were chosen to get robust results. The chosen dataset contains 1002 images. The
best results are recorded with other measures, such as accuracy, precision, recall, F1-score,
training time, etc. Results are shown in the Table 6 in detail.
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Table 6. Experiment_2 using 5 Folds (200 Feature).

Classifier Accuracy (%) Total Cost Is’rec151on Training Time (s) Precision Recall F1-Score
peed (obs/s)
Fine Gaussian SVM 81.1 189 14,000 0.81571 0.8 0.82 0.805
Linear SVM 73.7 264 16,000 1.3486 0.735 0.735 0.73
Cubic SVM 80.4 210 15,000 1.8572 0.805 0.805 0.8
Quadratic SVM 78.4 216 15,000 1.7431 0.785 0.78 0.785
Medium Gaussian SVM 72.8 273 15,000 0.7667 0.71 0.74 0.715
Coarse Gaussian SVM 60.5 396 14,000 0.671 0.565 0.71 0.5
Weighted KNN 78.2 218 7700 0.76741 0.785 0.785 0.78
FINE KNN 74.8 253 7600 1.1917 0.75 0.75 0.75
Medium KNN 66.8 333 7800 0.8367 0.66 0.665 0.66
Coarse KNN 62.4 377 7200 0.79092 0.59 0.675 0.555
Cosine KNN 67.2 329 7500 0.766606 0.67 0.665 0.67
Cubic KNN 69.0 311 1200 3.8096 0.68 0.685 0.68

Experiment_2(a): Using 5 Folds and 200 Features (1002 X 200 features)

This test case shows the results of 200 features upon 1002 images using SVM and KNN
classifiers with 5 folds. Details are shown in Table 6.

The Fine Gaussian SVM classifier achieved the best result in comparison with all KNN
classifiers, which is 81.1% in 0.8 s. Here, the confusion matrix in Figure 12 and the ROC in
Figure 13 curve are shown for the best results with the Fine Gaussian SVM classifier.

Fine Gaussian SVM(200 Features)

A 323 131
B 58
A B

Figure 12. Confusion matrix for FG(SVM) with 200 features and using 5-fold results.
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Figure 13. ROC curves for two classes A and B with 200 features and using 5-fold results.

The ROC curve is shown in Figure 13 for both classes A and B which are presented as
ROC A and ROC B.

Experiment_2(b): Using 10 Folds and 200 Features (1002 X 200 features)

This test case shows the results of 200 features upon 1002 images using SVM and KNN
classifiers with 10 folds. Details are shown in Table 7.
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Table 7. Experiment_2 using 10 Folds (200 Feature).

Classifier Accuracy (%) Total Cost Is’rec151on Training Time (s) Precision Recall F1-Score
peed (obs/s)

Fine Gaussian SVM 82.6 174 8300 1.2664 0.815 0.83 0.825
Linear SVM 73.2 269 8000 1.8576 0.725 0.73 0.73
Cubic SVM 80.8 192 8400 5.6548 0.815 0.81 0.81
Quadratic SVM 78.2 218 7800 3.4237 0.78 0.78 0.78
Medium Gaussian SVM 73.9 262 8100 1.15 0.725 0.75 0.725
Coarse Gaussian SVM 60.2 399 8100 1.1668 0.565 0.715 0.49
Weighted KNN 78.6 214 4100 1.2662 0.79 0.785 0.78
FINE KNN 75.0 250 4200 1.8358 0.755 0.75 0.75
Medium KNN 65.9 342 4000 1.8129 0.655 0.655 0.65
Coarse KNN 62.0 381 4000 1.2544 0.59 0.67 0.55
Cosine KNN 65.9 342 3900 1.274 0.665 0.665 0.655
Cubic KNN 68.5 316 960 457 0.675 0.68 0.68

Here, the Fine Gaussian SVM classifier achieved the best result in comparison with all
KNN classifiers, which is 82.6% in 1.2 s. Here, the confusion matrix also shown in Figure 14
and the ROC curve are shown for the best results against the Fine Gaussian SVM classifier.

Fine Gaussian SVM(200 Features)

A 338 116
B 58
A B

Figure 14. Confusion matrix for FG(SVM) with 200 features and using 10-fold results.

The ROC curve is shown in Figure 15 for both classes A and B, which are presented as
ROC A and ROC B.
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Figure 15. ROC curve for two classes A and B with 200 features and using 10-fold results.

Experiment_3: Using 5-Fold and 10-Fold Validation on 500 features.

This section provides details about two test cases that are performed on 500 features
using both 5 folds and 10 folds. The efficiently selected classifiers are SVM and KNN,
which were chosen to get robust results. The chosen dataset contains 1002 images. The best
results are recorded with some other measures like Accuracy, precision, recall, F1-score,
training time, and others. Results are shown in the Table 8 in detail.
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Table 8. Experiment_3 using 5 Folds (500 Feature).

Precision

Training Time

Classifier Accuracy (%) Total Cost Speed (obs/s) ® Precision Recall F1-Score
Quadratic SVM 84.1 159 7000 2.2045 0.84 0.84 0.84
Linear SVM 79.0 210 6900 1.7001 0.785 0.79 0.79
Cubic SVM 824 176 7300 2.2117 1.64 1.65 1.65
Fine Gaussian SVM 83.6 164 6900 1.2768 1.66 1.68 1.67
Medium Gaussian SVM 75.8 242 6900 1.1461 0.745 0.765 0.75
Coarse Gaussian SVM 67.0 331 6800 1.1891 0.65 0.68 0.65
Weighted KNN 80.4 196 3100 1.5885 0.805 0.805 0.805
FINE KNN 77.6 224 3200 1.9972 0.78 0.775 0.775
Medium KNN 69.4 307 3200 1.6358 0.685 0.69 0.685
Coarse KNN 67.4 331 3100 1.584 0.65 0.695 0.64
Cosine KNN 68.5 316 3000 1.6165 0.685 0.685 0.685
Cubic KNN 73.3 268 470 9.3325 0.72 0.73 0.73

Experiment_3(a): Using 5 Folds and 500 Features (1002 X 500 features)

This test case shows the results of 500 features upon 1002 images using SVM and KNN
classifiers with 5 folds. Details are shown in Table 8.

Here, the classifier Quadratic SVM achieved the best result in comparison with all
KNN classifiers, which is 84.1% in 1.2 s. The confusion matrix in Figure 16 and the ROC
curve in Figure 17 are shown for the best results against the Quadratic SVM classifier.

Quadratic SVM(500 Features)

A B

Figure 16. Confusion matrix for Q(SVM) with 500 features and using 500 fatures with 5-fold results.
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Figure 17. ROC curve for two classes A and B with 500 features and using 5-fold results.

The ROC curve is shown for both classes A and B, which are presented as ROC A and
ROC B in Figure 17.
Experiment_3(b): Using 10 Folds and 500 Features (1002 X 500 features)

This test case shows the results of 500 features upon 1002 images using SVM and KNN
classifiers with 10 folds. Details are shown in Table 9.
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Table 9. Experiment_3 using 10 Folds (500 Feature).

Precision Training Time
Classifier Accuracy (%) Total Cost Speed ©) & Precision Recall F1-Score

(obs/sec)
Fine Gaussian SVM 85.2 148 3800 2.2088 0.845 0.86 0.85
Linear SVM 79.8 202 3600 4.5137 0.79 0.8 0.79
Cubic SVM 84.2 158 4100 4.4002 0.845 0.84 0.84
Quadratic SVM 84.7 153 4000 4.1644 0.845 0.845 0.845
Medium Gaussian SVM 75.9 241 4000 2.1057 0.75 0.765 0.755
Coarse Gaussian SVM 67.7 324 3900 2.0635 0.66 0.69 0.655
Weighted KNN 82.5 175 1800 2.6916 0.83 0.825 0.825
FINE KNN 79.4 206 1700 3.7172 0.795 0.795 0.79
Medium KNN 715 286 1800 2.7012 0.71 0.71 0.71
Coarse KNN 66.4 337 1800 2.667 0.645 0.685 0.63
Cosine KNN 67.9 322 1600 2.786 0.685 0.68 0.68
Cubic KNN 75.4 246 380 11.154 0.75 0.75 0.75

Here, the classifier Fine Gaussian SVM achieved the best result in comparison with all
KNN classifiers, which is 85.2% in 2.2 s. Here, the confusion matrix and the ROC curve are
shown for the best results against the Fine Gaussian SVM classifier. The confusion matrix
for FG (SVM) is shown in Figure 18.

Fine Gaussian SVM(500 Features)

A B

Figure 18. Confusion matrix for FG(SVM) with 500 features and using 10-fold results.

Here, the ROC curve is presented (in Figure 19) for both classes A and B, which are
presented as ROC A and ROC B.
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Figure 19. ROC curve for two classes A and B with 500 features and using 10-fold results.

Figure 20 shows the 5-fold best achievable results between training time and features.

It shows the consumed time for training that is required for a particular set of features.
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Figure 20. Graph showing training time and features on 5-fold.

Here, features are presented on the x-axis and the training time is shown on the y-axis.
These results are taken on 5-folds for the best achievable results.

Similarly, the graph in Figure 21 shows the relation between accuracy and features at
5-fold results. It shows that the features are presented along the x-axis and the accuracy is
presented along the y-axis, and the line presents the best achievable results.
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Figure 21. Graph showing accuracy and features on 5-fold.

The graph in Figure 22 shows the relation between training time and features upon
results taken on 10 folds. This graph shows that features are shown along the x-axis and
the training time is shown along the y-axis, and the time consumed by a particular set of
features for training is illustrated.
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Figure 22. Graph showing features and training time.

The graph in Figure 23 shows the relation between training time and accuracy upon
results taken on 10 folds. This graph shows that features are shown along the x-axis and the
accuracy is shown along the y-axis, and the time consumed by a particular set of features
for training is illustrated.
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Figure 23. Graph showing features and accuracy on 10 folds.

5. Conclusions

Agriculture is the key to the development and rise of emergent nations. Diseases in
plants cause crop damage. Detection of leaf blight is enormously important as it affects
the annual production of guava fruit. Finally, the development of an automated system
becomes indispensable. In this paper, leaf blight can be detected, analyzed, and classi-
fied through the proposed methodology. In this proposed methodology, our own deep
CNN is designed, containing thirty-three layers. In the first phase of image processing,
preprocessing is done by using color spacing YCbCr. The Guava dataset is chosen for the
identification and analysis of leaf blight. Because the dataset is small, data augmentation is
performed. Horizontal and vertical flipping were performed on images of guava leaves.
After preprocessing, feature extraction was performed using Darknet-53 and AlexNet, as
well as the proposed SidNet. For the selection of the best features, optimization algorithms
such as Entropy and Binary Gray Wolf are used. Finally, classification is performed on
guava leaf images and the best results with higher accuracy and less computational cost
are achieved. Multiple experiments are performed while using the set of selected features
(200, 500, 750, 1000 features using 5- and 10-fold validation). Based on the selected features,
98.9% of the results are achieved using an SVM classifier, as it proves that this proposed
methodology is robust and efficient.

In the future, this work can be explored with quantum deep learning for improved
performance. Quantum computing-based machine learning and deep convolutional neural
networks can detect and classify leaf blight at its initial stage more precisely and meticu-
lously, which will help save crops and fruits, save plants from destruction, and increase the
production of guava fruit.
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Abstract: As tomatoes are the most consumed vegetable in the world, production should be increased
to fulfill the vast demand for this vegetable. Global warming, climate changes, and other significant
factors, including pests, badly affect tomato plants and cause various diseases that ultimately affect
the production of this vegetable. Several strategies and techniques have been adopted for detecting
and averting such diseases to ensure the survival of tomato plants. Recently, the application of
artificial intelligence (AI) has significantly contributed to agronomy in the detection of tomato plant
diseases through leaf images. Deep learning (DL)-based techniques have been largely utilized for
detecting tomato leaf diseases. This paper proposes a hybrid DL-based approach for detecting tomato
plant diseases through leaf images. To accomplish the task, this study presents the fusion of two
pretrained models, namely, EfficientNetB3 and MobileNet (referred to as the EffiMob-Net model)
to detect tomato leaf diseases accurately. In addition, model overfitting was handled using various
techniques, such as regularization, dropout, and batch normalization (BN). Hyperparameter tuning
was performed to choose the optimal parameters for building the best-fitting model. The proposed
hybrid EffiMob-Net model was tested on a plant village dataset containing tomato leaf disease
and healthy images. This hybrid model was evaluated based on the best classifier with respect to
accuracy metrics selected for detecting the diseases. The success rate of the proposed hybrid model
for accurately detecting tomato leaf diseases reached 99.92%, demonstrating the model’s ability to
extract features accurately. This finding shows the reliability of the proposed hybrid model as an
automatic detector for tomato plant diseases that can significantly contribute to providing better
solutions for detecting other crop diseases in the field of agriculture.

Keywords: tomato leaf; disease; hybrid model; detection; deep learning

1. Introduction

Tomatoes are a fast-growing crop that matures in 90 to 150 days [1]. This worldwide
ever-present product has rich nutritional values [2] and can be cultivated in nearly any
reasonably parched soil [3]. In recent decades, the agricultural estate has increased tomato
production by above 160% [4]. Tomatoes are the most consumed vegetable, accounting
for about 15% of total vegetable consumption [5], and ranking as the sixth most abundant
vegetable worldwide according to the Food and Agriculture Organization (FAO) annual
production statistics [6]. The key production areas of tomatoes occur in India, the USA,
Iran, China, Italy, Egypt, Mexico, and Turkey [7]. However, the plant is usually infected
by diseases, which could be viral or fungal, resulting in a significant reduction in both the
quality and quantity of crop production [3].
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Due to the large demand for tomatoes globally, there is a need to develop techniques
for enhancing crop yields while allowing for the early detection of plant diseases, including
viral, bacterial, and fungal diseases [8], to increase the quality and production of tomatoes to
meet economic goals [9]. Accurate and timely treatment is required to prevent diseases from
spreading and causing in crop losses, and ensure ideal production. In a manual scenario,
human expert-based detection is required to cope with these problems [10]. Moreover,
screening symptoms manually is time consuming and costly due to insufficient human
infrastructure capacity [11]. An automatic detecting system can assist in identifying the
symptoms of a disease through the plant leaf in a cost-efficient manner. The application of
artificial intelligence (Al), particularly machine learning (ML) and deep learning (DL), has
significantly contributed to efforts to detect plant diseases.

Recently, the application of DL approaches has demonstrated outstanding perfor-
mance and provided solutions to real problems in a wide range of computer vision and
ML jobs, including image classification, detection, recognition, and medical imaging [12].
In the literature, several techniques have been developed based on the DL approach to
enhance the persistence rate of field crops through the early detection of various diseases
and succeeding disease management [5]. Currently, for plant diseases, the detection and
classification rate have reached 100% in laboratory-based machine vision technology [13].
DL is broadly used in agriculture for plant disease detection and classification. Moreover,
a DL-based convolutional neural network (CNN) is the most commonly used method
for detecting, classifying, and recognizing tomato leaf diseases because of its significant
success compared with other traditional methods [14]. CNN has the capability of extracting
features from objects automatically. Therefore, CNN has been extensively utilized for
tomato leaf disease identification, recognition, and classification.

Based on the widespread success of DL-based CNN architectures in agriculture,
particularly, the detection of plant diseases, this study proposed a hybrid DL-based model
that combines two pretrained models, namely, EfficientNet and MobileNet (referred to as
EffiMob-Net) for detecting tomato leaf diseases. Taking advantage of the pretrained models’
architectures, the weights of both pretrained models were loaded to utilize them for feature
extraction and then the outputs of both models were concatenated for the detection and
classification of leaf images. The key contributions of this study are as follows:

e A deep hybrid model was proposed that combines the architectures of two pretrained
models, EfficientNet and MobileNet, for extracting the significant features of tomato
leaves. Their outputs were then concatenated for the detection and classification of
tomato leaf diseases.

e In the proposed method, the softmax layers of both pretrained models were removed,
and the output achieved from the dense layers of both models was combined. In
addition, three FC layers of size 512, 256, and 128 channels were added after the
concatenation process. The classification was performed using the softmax layer
which was added at the end of the proposed model.

o  The dataset was preprocessed and prepared for training the proposed hybrid model
using various preprocessing steps.

The proposed model was trained using the extracted features.
The study ensured the prevention of the proposed model’s overfitting by using various
techniques, such as regularization, dropout, and BN.

e  The proposed hybrid model was evaluated, and the classification report with descrip-
tions is presented.

2. Related Work

This section discusses the existing work related to the application of DL approaches to
the detection and classification of tomato leaf diseases. The search criteria for investigating
previous work in the same domain include keywords such as tomato leaf disease detection
using DL and DL approaches for detecting and classifying tomato leaf. Several well-known
search engines/databases such as Google Scholar, ScienceDirect, ResearchGate, and IEEE
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Explorer were explored to collect and discuss state-of-the-art methodologies used in this
domain of research. The literature survey indicated that most previous related research is
based on the pretrained DL models.

A study conducted by [15] utilized a plant village dataset to detect and classify tomato
leaf diseases using the DL approach. For this task, several pretrained approaches such as
AlexNet, GoogLeNet, SqueezeNet, Vggl6, and MobileNetv2 were applied. Vggl6 achieved
higher results than the others, with an accuracy rate of 99.17%. An attempt was made
by [16] to detect tomato leaf diseases using the DL method. In this regard, fuzzy-SVM,
CNN, and region-based CNN (R-CNN) were applied to a dataset containing a total of
6 classes. The achieved results showed a higher performance of R-CNN, with an accuracy
rate of 96.735%. Similarly, Ref. [17] utilized the mask R-CNN approach for the segmentation
and identification of tomato leaf disease. The results showed a higher accuracy rate of
98%. A pretrained model and feature concatenation approach were used by [4] for tomato
leaf disease classification. In this method, the features were extracted using pretrained
models and concatenated, while the classification was performed using traditional ML
methods. The study concluded that multinomial logistic regression (MLR) achieved the
highest results, with 97% accuracy.

A multimodal hybrid DL-based approach using attention-based dilated CNN logistic
regression (ADCLR) was proposed by [18] to identify tomato leaf diseases. In this approach,
feature extraction was performed using attention-based dilated CNN. The processed fea-
tures were combined and classified using logistic regression (LR). The classification results
show a higher accuracy rate of 96.6%. A hybrid model CNN-SVM was developed by [19]
to predict seven predominant diseases related to tomato leaves. The highest results were
achieved with a 92.6% accuracy. Another hybrid SVM-LR model was proposed by [20] for
detecting powdery mildew disease of tomato leaves. The results demonstrated that the
proposed model reached 92.37% accuracy.

An optimized DL-based method was proposed by [21] to detect tomato leaf diseases.
Various pretrained models were applied, and the performance of each model was tested us-
ing different optimizers. The study concluded that MobileNetv3 Large using the Adagrad
optimizer outperformed other models, with an accuracy rate of 99.81%. An image-based
forecast using CNN was proposed by [22], who detected the early blight disease (EBD)
of tomato plants. The study reported a 98.10% accuracy rate for the model. Similarly,
an optimized transfer learning approach was proposed by [23], in which two pretrained
models were applied to the tomato early blight disease (TEBD) dataset. The results con-
cluded that Vgg16 outperformed ResNet50, with an accuracy rate of 99%. A study by [24]
detected nine diseases of tomato leaf using a DL approach. For this purpose, a CRNN
model with GRU was implemented to classify and detect tomato leaf diseases. The model
achieved 99.62% accuracy when detecting tomato leaf diseases. A classification of tomato
leaves using DL methods by utilizing various optimizers and learning rates (LR) was
performed by [25]. Two DL pretrained models were applied to a dataset containing tomato
leaf diseases. The reported results showed that Xception with Adam optimizer and an LR
of 0.0001 outperformed other combinations with Xception and the Resnet50 model. The
highest accuracy achieved was 99%.

A comparative study between ML and DL methods was conducted by [13] to classify
tomato leaf diseases. The results of both approaches were compared, and DL methods
outperformed ML methods. Moreover, among the DL methods, ResNet34 achieved the
highest accuracy rate at 97.7%. Another DL-based approach was proposed by [26] to detect
tomato leaf diseases. The higher classification rates of the proposed model occurred for
5,7, and 10 classes, which were 99.51%, 98.65%, and 97.11%, respectively. The authors
of [11] proposed an image-based diagnostic system using several DL methods, which were
applied to a dataset collected from a village plant database and privately collected images
containing a total of 24 classes. The reported results showed a higher performance by the
DenseNet121 model, which yielded a classification accuracy of 95.31%. The study by [27]
classified tomato plant diseases using the Vggl6 model. The classification accuracy for
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multi-class classification reached 99% while binary classification (healthy and unhealthy)
reached 100%, with no preprocessing of images.

A robust DL-based detector for tomato leaf and pest recognition was proposed by [28].
In this regard, 3 detectors referred to as DL meta-architecture—were combined into VggNet
and ResNet. The study reported that faster R-CNN in combination with Vgg16 has a higher
recognition capability. Another robust intelligent system for detecting tomato disease using
the DL approach was proposed by [29]. To train the model, a dataset containing 9 diseases
was utilized. The results showed that the proposed model accomplished a higher accuracy
rate of 99.12% on the same dataset, compared to 71.43% on other images from a different
dataset. In the study by [30], two pretrained models were trained for detecting tomato leaf
diseases on a dataset acquired from a plant village database. The results indicated that
AlexNet outperformed Vggl6 and accomplished 97.49% accuracy.

A study by [31] attempted to classify and visualize the symptoms of tomato leaf
diseases using the DL method. The model accomplished higher accuracy, at 99.18%. A
CNN approach was used by [9] to detect tomato leaf disease; several pretrained methods
were trained using an open dataset acquired from plant health. The study reported better
performance of the ResNet model and achieved a higher accuracy rate of 97.28%. Another
CNN model was proposed by [32] to detect tomato leaf diseases. The model was trained
and reported 99.84% accuracy.

3. Deep Learning Architectures

From a broad view, DL belongs to the family of ML techniques utilizing artificial
neural networks (ANN) to solve real-world problems related to images (i.e., segmentation,
detection, and classification of images) that are widely applied in the fields of computer
vision and image processing and have shown the best performance with optimal results.
DL has also recently been used in agriculture to detect plant diseases using image analysis
and significantly contributed to farming with outstanding outcomes. This study presents a
hybrid DL model that combines two different state-of-the-art DL models to detect tomato
leaf diseases. In order to better understand the proposed hybrid model, this section
highlights the core concepts of each individual model and its architectural design, followed
by the proposed hybrid model.

3.1. EfficientNetB3

EfficientNetB3 belongs to the EfficientNet family [33], ranges from B0 to B7, and
is regarded as one of the most computationally efficient DL models developed using
ImageNet [34]. EfficientNet is a CNN architecture and scaling technique that uses a
compound coefficient to consistently scale all depth, width, and resolution dimensions [33].
Furthermore, the scaling method evenly scales network width, depth, and resolution using
a set of immovable scaling coefficients, in contrast to standard practice, which scales these
variables arbitrarily [33]. In CNN, the kernel is a filter which is utilized to retrieve attributes
from images [35], while convolution is utilized to construct a feature map. The model
architecture of EfficientNetB3 consists of a convolution layer of kernel size (3 x 3) with BN
and swish activation followed by 26 MBconvolution blocks. The MBconvolution blocks
are varied with kernel sizes of (3 x 3) and (5 x 5), as shown in Figure 1. The last block of
MBconvo is followed by a convolution layer. Global average pooling is utilized at the end
of the convolution layers for dimensionality reduction of the feature maps. Fully connected
(FC) and softmax are used at the end of the model architecture to generate the output.
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Figure 1. Basic architecture of EfficientNetB3.

3.2. MobileNet

MobileNet, a CNN-based model developed by [36], has a simplified architecture
that builds lightweight deep convolutional neural networks using depth-wise separable
convolutions. In the model architecture described by [36], MobileNet factorizes standard
convolutions into a depth-wise convolution and a (1 x 1) pointwise convolution, as shown
in Figure 2. A single convolution on every channel is performed using depth-wise filters,
while the output of a depth-wise convolution is combined with the (1 x 1) pointwise
convolution [37]. Due to factorization, the computation and model sizes significantly
decrease, which eventually enhances the performance of the model. ReLu activation is
used between the layers in order to flatten the nonlinear outputs of the preceding layer and
provide it to the succeeding layer as input [12].

| 3x3 Convolution I 3x3 Depthwise conv
v o]
=)

| ReLu I 1x1 convelution

Figure 2. Difference between standard and depth-wise separable convolutions (a) and standard (b)
depth-wise separable convolutions with depth-wise and pointwise layers [36].
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3.3. Proposed Hybrid Model

A hybrid model can be used to improve predictive performance by running two or
more relevant but distinct models and combining the results into a single score [38]. The
literature review revealed that tomato leaf diseases were mostly detected and classified
using individual DL models such as EfficientNet, MobileNet, and others, or a hybrid of ML
and DL models. This study proposes EffiMob-Net, a hybrid DL model for detecting tomato
leaf diseases that is a combination of two individual pretrained DL models, EfficientNet
and MobileNet (see Table S1 in Supplementary Materials). A total of 10 diseases related
to tomato leaves are recognized and classified using the hybrid EffiMob-Net. According
to [39], accurate classification can be achieved by fusing diverse models with different
hypotheses concerning class labels, which may not be viable with separate models. Using
this approach, we took advantage of the standard architectures of both DL models in which
the formerly trained weights of both DL models were loaded for the feature extraction of
leaf images and combined for detection purposes, as shown in Figure 3.
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Figure 3. The hybrid EffiMob-Net model architecture proposed in this study.

The model architecture of the EffiMob-Net is simple in that the softmax layers (output
layer) are removed from both individual models, the output of each model is flattened
and is passed to the fully connected (FC) layer of each model. The outputs of the dense
layers (layers of neurons in which each neuron in the following layer receives information
from each neuron in the preceding layer) of both models are then combined using the con-
catenation function, and three additional FC layers containing 1024, 512, and 128 channels
are added after concatenating the models, as exhibited in Figure 3. Regularization is used
to fine-tune the model in order to decrease the regulated loss function and avoid overfit-
ting and underfitting [40]. The risk of model overfitting is handled using regularization
operations (i.e., kernel regularizer and activity regularizer), which are added to the last
three FC layers. Moreover, in order to avoid the model overfitting issue, BN and dropout
are also used after the last FC layer. The detection of tomato leaf diseases is performed
using the softmax layer, which is added at the end of the hybrid model. ReLu activation is
used throughout the FC layers except for the softmax layer. Figure 3 shows the detailed
architecture of the proposed deep hybrid EffiMob-Net model.

4. Dataset

The proposed hybrid EffiMob-Net model was trained using an openly available dataset
gathered from multiple sources, mostly from a plant village database [41] containing a total
of 11 classes. Among the 11 classes, one was healthy and the remaining 10 represented
different diseases of tomato leaf. The dataset consisted of a total of 32,535 images acquired
from a plant village dataset and some collected images distributed into two separate folders:
training and validation sets. In this study, the whole validation set is utilized for testing
purposes; therefore, the validation set is changed to the test set shown in Figure 3. Thus
far, this is the largest publicly available dataset of tomato leaf diseases. The training set
contained 25,851 images; 6684 images were part of the test set. The images in both sets
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were distributed to 11 classes as described in Figure 4 Figure 5shows the number of images
per class in the training set. Figure 6 shows sample images in the training set. The dataset
is suitable for building a DL model that can predict a particular disease of a tomato leaf
and classify them accordingly.

Class name Training set Testing set Total
Bacterial spot 2826 732 3558
Early blight 2455 643 3098
Late blight 3113 792 3905
Leaf Mold 2754 739 3493
Septoria leaf spot 2882 746 3628
Two Spider mites 1747 435 2182
Target spot 1827 457 2284
Tomato Yellow Leaf Curl Virus 2039 498 2537
Tomato_mosaic_virus 2153 584 2737
Healthy 3051 806 3857
Powdery mildew 1004 252 1256

Figure 4. Dataset description.
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Figure 5. Image distribution per class in the training set.
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Figure 6. Sample images in the training set.

Data Preprocessing

Data preprocessing is an indispensable procedure that converts data into a structure
that can be easily and proficiently processed in ML and other data science tasks [42].
Removing garbage from data augments the quality of the data [43], which directly affects
the performance of the trained models and ensures improved results [44]. In the first step,
the images were resized to the required sizes for training the proposed model. As described
in [45], CNN typically allows fixed-size images, which creates several challenges for data
collection and model building. Such challenges were overcome by resizing the images
to the required size of (224 x 224) when building the proposed model. TensorFlow in
Python programming was used to resize images to the desired size. The images were also
normalized in a pixel value of range 0 to 1 by dividing them by 255 and feeding them
into the network. In the last step, the images in both sets were reshuffled to increase the
predictability power of the proposed model.

5. Experimental Setup

The dataset used in this study was split into two separate sets: training and testing
at a ratio of 80% to 20%, respectively. According to [46], experimental research indicates
that using 20-30% of the data for testing and the remaining 70-80% of the data for training
yields optimal results. In this study, 80:20 achieved optimal results and was thus chosen for
data splitting. The training set was utilized to train the hybrid EffiMob-Net model on a
Google Colab in a GPU environment using Python programming language. The testing
set was used to validate the model performance. The experiment was executed using
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MacBook Pro for 20 iterations in 40 batches. The model was compiled using the Adamax
optimizer with a learning rate of 0.001. The best classifier with respect to accuracy metrics
was selected to show the results for detecting tomato leaf diseases. The 20% testing set
was used to verify the performance of the hybrid EffiMob-Net model using training and
validation accuracies and losses. Categorical cross-entropy was used as a loss function to
measure the losses. The experiment was repeated several times, and the best-fitting model
with respect to accuracy metrics was finalized. The finalized trained hybrid model was
then saved to the local directory for future use. Figure 7 depicts the training and validation
accuracies. Normally, the curve of training accuracy is greater; however, both curves come
closer to each other as the epochs advance. An epoch represents one iteration of training
a model with all training data. The best epoch in which both curves coincide is epoch 20,
which was one of the main reasons for executing the model for 20 epochs. Likewise, the
training and validation loss shown in Figure 8 demonstrates the validity of the proposed
hybrid EffiMob-Net in that both curves come closer to each other, progress simultaneously
as the epochs advance, then coincide at epoch 13 and progress together in the same manner.
This indicates the lack of overfitting of the hybrid EffiMob-Net model, which was avoided
by using regularization, dropout, and BN techniques. The performance of the model was
measured using accuracy, precision, recall, and F1-scores from the following equations.

Accuracy = TP+ TN 1
YT TP+ TN+FP+FN
. TP
Precision = TP L EP (2)
TP
Recall itivity = ————
ecall or Sensitivity TP+ EN 3)

(2 * Precision x Recall)
Precision + Recall

4)

F1 — score =

Training and validation accuracy

10

ik}

accuracy
=]
=

04

02

m— {raining accuracy
=== yalidation accuracy

0.0 25 50 75 100 125 15.0 17.5
epoch

Figure 7. Training and validation accuracy.
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Figure 8. Training and validation loss.

6. Results and Discussion

After implementing and testing the hybrid EffiMob-Net model on the testing set,

the performance of the model was measured, and the highest accuracy rate achieved
was 99.92%, which is thus far the highest accuracy in the same domain. Moreover, the
classification report based on Equations (1)-(4) was measured, and the outcomes are

reported in Table 1.

Table 1. Classification report of EffiMob-Net model.

Class Accuracy Precision Recall F1-Score
Bacterial spot 99.84% 99.29% 99.20% 99.23%
Early blight 99.84% 98.98% 99.29% 99.14%
Late blight 99.87% 99.51% 99.36% 99.44%
Leaf mold 99.84% 99.17% 99.28% 99.23%
Septoria leaf 99.86% 99.31% 99.39% 99.35%
spots
Two spider mites 99.86% 98.99% 98.86% 98.93%
Target spot 99.86% 99.04% 98.91% 98.97%
Tomato yellow 99.89% 99.27% 99.39% 99.33%
leaf curl virus
Tomato mosaic 99.87% 99.19% 99.30% 99.25%
Vvirus
Powdery
; 99.87% 99.43% 99.43% 99.43%
mildew
Healthy 99.85% 98.25% 97.76% 98.01%

The results shown in the classification report table for all 11 classes are above 99% for
all measures with the exception of a few values. For example, the precisions of early blight,
two spider spots, and healthy are 98.98%, 98.99%, and 98.25%, respectively. Similarly, recalls
of two spider spots, target spot, and healthy are 98.86%, 98.91%, and 97.76%, respectively.
Likewise, F1-scores for two spider spots, target spot, and healthy are 98.93%, 98.97%, and
98.01%, respectively. The mentioned values with respect to classes surpassed 98% except
for the Fl-score of healthy, which was close to 98%, showing the reliability of the proposed
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hybrid EffiMob-Net model when used as a smart detecting system for identifying tomato
leaf diseases.

The overall accuracy of 99.92% and the classification report in Table 1 demonstrate the
high performance of the proposed hybrid EffiMob-Net with a classification error of only
0.08%, which is negligible. The idea of distinct feature extraction using two separate DL
models and the fusion of these features for detecting and classifying tomato leaf diseases is
superior to that achieved when using an individual model, as discussed in the related work
section. The conventional methods in which the feature extraction is handcrafted require
high expertise; otherwise, the model efficacy can be poor. Additionally, such methods
require more effort and time-consuming tasks. Therefore, DL-based methods are more
useful for automatically generating features and have shown a high success rate in the
identification and classification of images. Similarly, the feature extraction using multiple
DL methods and the fusion features resulting from different methods show increased model
accuracy. This discussion and the facts presented in the tables and figures demonstrate
the reliability of the proposed hybrid EffiMob-Net model, which can be used as a reliable
detector for detecting and identifying tomato leaf diseases.

7. Conclusions

The necessary precautionary measures should be taken to prevent tomato plant dis-
eases in order to increase the cultivation of tomato crops. This study proposed a hybrid
DL-based model that accurately detects and classifies 10 different tomato plant diseases
through leaf images. The model architecture was designed by the fusion of two DL models
in order to extract the distinct features from tomato leaf images, which were then com-
bined to achieve the accurate identification of each disease with respect to classes. Several
techniques (e.g., regularization, dropout, and BN) were used to prevent the model from
being overfitted. During implementation, the optimal parameters were set in the model
based on hyperparameter tuning using a random grid search technique. The proposed
hybrid EffiMob-Net model was tested on processed images of tomato leaf diseases with a
split ratio of 80/20 for the training/testing datasets. The results achieved demonstrate the
efficacy of the proposed hybrid EffiMob-Net in accurately extracting the distinct features
from tomato leaf images, with an accuracy rate of 99.92%, and a classification error of only
0.08%. Moreover, the classification report on factors such as precision, recall, and F1-score
demonstrates the high performance of the proposed hybrid model in detecting tomato
leaf diseases. The model is efficient in its performance based on the results achieved and,
thus, can be used as an automatic detector for identifying tomato leaf diseases early in the
growing process in order to increase production. The proposed hybrid model can also be
used to detect other plant diseases in the agriculture field based on leaf images.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture13030737/s1, Table S1: Comparison of proposed hybrid
EffiMob-Net model with existing models.
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Abstract: The potato plant is amongst the most significant vegetable crops farmed worldwide. The
output of potato crop production is significantly reduced by various leaf diseases, which poses a
danger to the world’s agricultural production in terms of both volume and quality. The two most
destructive foliar infections for potato plants are early and late blight triggered by Alternaria solani
and Phytophthora infestans. In actuality, farm owners predict these problems by focusing primarily on
the alteration in the color of the potato leaves, which is typically problematic owing to uncertainty
and significant time commitment. In these circumstances, it is vital to develop computer-aided
techniques that automatically identify these disorders quickly and reliably, even in their early stages.
This paper aims to provide an effective solution to recognize the various types of potato diseases by
presenting a deep learning (DL) approach called EfficientPNet. More specifically, we introduce an
end-to-end training-oriented approach by using the EfficientNet-V2 network to recognize various
potato leaf disorders. A spatial-channel attention method is introduced to concentrate on the damaged
areas and enhance the approach’s recognition ability to effectively identify numerous infections. To
address the problem of class-imbalanced samples and to improve network generalization ability,
the EANet model is tuned using transfer learning, and dense layers are added at the end of the
model structure to enhance the feature selection power of the model. The model is tested on an open
and challenging dataset called PlantVillage, containing images taken in diverse and complicated
background conditions, including various lightning conditions and the different color changes in
leaves. The model obtains an accuracy of 98.12% on the task of classifying various potato plant leaf
diseases such as late blight, early blight, and healthy leaves in 10,800 images. We have confirmed
through the performed experiments that our approach is effective for potato plant leaf disease
classification and can robustly tackle distorted samples. Hence, farmers can save money and harvest
by using the EfficientPNet tool.

Keywords: agriculture; classification; deep learning; transfer learning; convolutional neural networks;
EfficientNet; potato diseases

1. Introduction

According to the UN Food and Agriculture Organization (FAO), the global population
could reach 9.1 billion by 2050. Due to the rising population, food consumption will
increase [1]. In the meantime, the lack of farmland and access to clean water makes it hard
for nutrient levels to rise. In order to meet human needs, there is an immediate need to boost
food security while using the least amount of growing area. As opposed to this, a number
of crop anomalies cause a significant decrease in meal productivity and quality. Therefore,
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immediate detection of these plant pathogens is necessary, as they have the potential to
reduce agricultural profits and increase inflation rates. Such outcomes may cause market-
wide economic uncertainty. Additionally, agricultural crop disorders at their most severe
stages can wipe out harvests and cause hunger in a country, especially in developing
nations with poor incomes. Typically, plant assessments are performed with the aid of
domain specialists; however, this is a laborious and time-consuming task that depends on
the participation of local professionals. Additionally, such methods of crop evaluation are
not regarded as highly trustworthy, and it is difficult for people to individually evaluate
each crop [2]. Therefore, it is critical to accurately and promptly identify the numerous
plant illnesses that might prevent growers from deploying pricey treatment techniques
while improving the food growth rate. The science world is concentrating its effort on the
creation of computerized plant illness diagnosis and recognition systems to address the
aforementioned issues with manual approaches [3].

Despite the existence of numerous different crops, such as tomatoes, onions, straw-
berries, and cherries, among others, the potato plant is a highly consumed crop around
the globe. The potato crop is regarded as the major staple by more than a billion people
globally, and is considered the third largest food crop on the planet after rice and wheat.
More than 300,000 tons are produced globally each year, providing both nutrients and
an essential source of calories for people [4]. In addition to providing a sizeable share
of the world’s nutrition, potatoes are a common source of raw ingredients for industry.
Potatoes are produced all over the world, with the top three exporters being China, India,
and Russia [5].

Following a survey performed by the UN Food and Agriculture Organization (FOA),
the prevalence of many illnesses, the majority of those which originate from the leaves
of the potato crop and cause a reduction in output amount from 9% to 11% annually [6],
is the main obstacle to the pace of potato growth. To examine potato crop leaf disorders,
the scientific world initially used methods from the fields of biological sciences and cell
biology [7,8]. These methods, however, exhibit high processing complexity and demand
a significant need for expert skills [9]. The majority of agricultural production is done by
low-income individuals; hence, such pricey methods are not practical for farmers [10]. The
rapid advancement of machine vision and object classification algorithms is being used
in existing works to design automated methods for identifying crop pathogens. Image
processing and machine learning (ML) studies are receiving more focus, and these methods
are emerging as appealing alternatives to ongoing crop infection surveillance. Several
conventional ML predictors, such as K-Nearest Neighbors (KNN), Random Forest Tree
(RFT) [11], and Support Vector Machine (SVM), are highly employed in existing works for
accomplishing classification tasks related to various plant-related diseases. Although these
ML techniques are simpler to comprehend and only need a minimal quantity of samples
to build models, they take time and rely heavily on expert human capital. Additionally,
the classic ML information computation methods consistently necessitate a compromise
between processing effort and classification results [12].

Deep learning (DL) techniques are currently being evaluated to address the short-
comings of ML algorithms. Different DL methodologies, including CNN [13], RNN [14],
and long short-term memory (LSTM) [15], are currently widely praised in the field of food
security. DL methods are capable of accurately estimating the informative collection of
sample feature characteristics without the assistance of domain experts. Both these strate-
gies for object recognition and deep learning (DL) imitate how the human brain functions
when a person locates and recognizes a variety of items by looking at examples of them.
DL approaches provide reliable results in the field of modern agriculture research, and
are effectively suited to a variety of jobs, whereas different kinds of deep neural networks
(DNN’s) exhibit greater precision than multispectral evaluation. The agricultural produc-
tion field is intensively investigating methods such as GoogLeNet [16], DenseNet [17],
Inception, VGG [18], and Residual Net [19] for problems including quantifying grain vol-
ume, detecting plant heads, quantifying fruits, crop disorder diagnosis and categorization,
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etc. Because of their capacity to utilize the structural and morphological information afrom
the investigated images, these approaches are able to demonstrate excellent recognition
accuracy while minimizing processing effort [20].

Even though experts have carried out a significant amount of work to classify potato
crop leaf infections, it remains difficult to identify illness in the initial stages, as infected
and healthy plant sections share many similar characteristics [20]. Recognition is made
more difficult by varied plant leaf shapes, fluctuations in lighting and luminosity, the
inclusion of distortion, and blurring in the processed images. Thus, there remains an
opportunity for potential improvement in terms of computing power as well as correctness
in identifying potato plant diseases. In the presented work, we attempted to tackle the
existing problem of potato plant leaf disease classification by proposing an effective DL
approach, namely, EfficientPNet. We have modified the existing EfficientNet-v2 model by
introducing an attention mechanism (AM) and additional dense layers at the end of the
framework structure. The presented EfficientPNet approach robustly extracts high-level
signs of infected regions and associates them with related groups via employing an end-to-
end training mechanism. In addition, the AM strategy improves the recall power of the
proposed solution by passing relevant details of noticeable attributes such as diseased areas
of plant leaves. The distinctive contributions of this work can be elaborated as follows:

(1)  An effective light DL approach called EfficientPNet is suggested that is proficient
in calculating relevant and distinctive sample characteristics and shows improved
potato plant leaf disease classification results with little computational effort.

(2) The model includes the pixel and channel attention approach in the feature compu-
tation phase, which improves its ability to comprehend crosslinks and spacewise
orientation properties to accelerate the diagnosis of potato leaf disorders in realistic
scenarios.

(3) Transfer learning and multi-class focal loss are adopted to cope with the problem of
class imbalance and network overfitting, which improves the precision of classifying
potato leaf infected regions.

(4) In order to demonstrate the effectiveness of the suggested EfficientPNet model, we
performed huge comparison evaluations to check the classification results by utilizing
a collection of images of potato crop disease taken from a standard sample repository
called PlantVillage. The suggested method successfully categorizes potato crop ill-
nesses, even in the context of challenging external factors such as noise, distortion,
unbalanced lighting, and variations in the shape, color, and placement of infection
marks.

(5) To increase the size and ensure balance between the training and testing datasets,
we have applied data augmentation techniques. Using these data augmentation
techniques, the classifier become more able to generalize.

The rest of this paper is organized as follows: related works is presented in Section 2,
and the proposed method in Section 3; we discuss the obtained results in Section 4; finally,
the work is concluded, and our future research plans are elaborated in Section 5.

2. Related Works

There have been several approaches presented for potato leaf disease detection from
leaf images. In [21], the authors proposed a pre-trained ResNet50 CNN model for the
classification and detection of plant diseases. This method was applied to potato leaves
taken from the PlantVillage dataset. The presented approach included augmentation
and segmentation, which were then passed to ResNet-50 for classification, achieving 98%
accuracy. The method performed well; however, its accuracy depends on augmentation
and needs further improvements. Bhagat et al. [22] presented bag-of-words (BoWs) and
SURF-based techniques for the identification of potato leaf diseases. The bag of words
approach was utilized for feature extraction in the initial phase. After that, the SURF
method was selected to extract the strongest features, which were then passed to an SVM
for classification. Experiments were performed on potato leaves taken from the PlantVillage
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dataset, and the model attained 97% accuracy. The method in [22] performed well; however,
the model did not consider unseen or real-world samples.

Pal et al. [23] proposed the AgriDet (Agriculture Detection) approach. Their method
utilized the conventional Inception-Visual Geometry Group Network and Kohonen for the
detection and identification of potato leaf disease. The multi-variate Grabcut was applied
to reduce the occlusion problem. This method was applied to the PlantVillage dataset to
detect and segment potato leaf disease classification. The model achieved good results,
with 92.12 % accuracy. The presented approach can tackle the overfitting problem through
the dropout layer. However, it is unable to recognize multiple instances of the same disease
in one image. Yu, H. et al. described an improved deep learning model for classifying
potato plant leaf diseases in their paper [24]. They used a convolutional neural network
(CNN) and a transfer learning approach to train their model on a large dataset of potato leaf
images. The model achieves high accuracy rates in classifying different types of diseases,
and outperforms several other deep-learning models in terms of accuracy and training
time [24,25].

Chen, X. et al. presented a study on potato leaf disease classification using an improved
deep learning model. The authors used a modified Inception-V3 model and a transfer
learning approach to train the model on a dataset of potato leaf images. The model achieves
high accuracy rates in classifying different types of diseases and outperforms several other
deep-learning models in terms of accuracy and training time [26]. In [27], Kang et al.
proposed a lightweight CNN-based approach for the recognition of potato leaf diseases.
The authors utilized multi-scale pyramid fusion technology for efficient feature selection.
This fusion of features was achieved using the improved backbone model and optimized
features. This lightweight technique recognized and identified plant leaf diseases, achieving
93% accuracy. However, the presented model needs further improvements in accuracy.

To detect and classify potato leaves, Kumar et al. [28] presented an automated method
based on Gaussian filtering and Fuzzy c-means clustering. This method extracted different
types of features, including textual, geometrical, and statistical features. The extracted
features were then passed to a PCA for efficient feature selection. At last, several classifiers
were employed for the classification of potato leaves. The unbalanced data makes [29]
machine learning models more biased and leads to overfitting issues. This study shows a
way to add more information to data based on an image-to-image translation model. This
helps eliminate the bias from adding these bad potato leaf images. To produce pictures
representing more obvious disease textures, the authors suggested that the augmentation
approach translates healthy and unhealthy leaf images and uses attention processes.

Rashid et al. [30] proposed a multi-level DL-based model for the recognition of potato
leaf diseases. In the initial stage, the YOLOV5 technique was employed for the segmenta-
tion of images. Second, the Deep CNN model was utilized for potato leaf identification
from images. Experiments were performed on a proprietary dataset and achieved good
results. However, the presented model is unable to detect multiple diseases from a single
image. Tiwari et al. [31] proposed a deep learning technique for the detection of potato
leaf diseases. Their model was based on numerous approaches. In the first step, features
were extracted through a VGG19 model. The extracted features were then classified using
different classifiers, in which logistic regression performed well compared to the others,
achieving 97.8% accuracy on the PlantVillage dataset. The presented model needs further
improvements to efficiently detect unseen examples. Similarly, a CNN approach was
utilized in [32] to recognize potato leaf diseases. The technique was based on the Adam op-
timizer and cross-entropy for model analysis. The final classification was performed using
a softmax layer. Another CNN-based approach was employed in [33] for the detection of
potato leaf diseases. Experimentation was performed on the Kaggle dataset, and the model
attained 97% accuracy. However, the presented model tackles only binary classification.
Igbal et al. [34] proposed a method for the segmentation and classification of potato leaf
diseases. The PlantVillage dataset was utilized for evaluation of the proposed technique.
The random forest approach was employed for classification of leaves into two types,
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diseased or healthy, with an accuracy of 97%. A deep learning technique was proposed
to efficiently detect potato leaf diseases using PlantVillage dataset in [35]. The model was
based on the lightweight MobileNet-V2, which was then modified using the addition of a
layer in the model. The model achieved 97.33% accuracy on the classification of potato leaf
disease. However, this model is computationally light in terms of time. In [36], the authors
presented a deep learning-based approach for the classification of potato leaf diseases. The
proposed technique was based on four types of models: MobileNet, VGG16, VGG19, and
ResNet. Fine-tuning of parameters was performed to enhance the accuracy of the proposed
model. Experiments were performed on the PlantVillage dataset, achieving 97.8% accuracy.
However, the presented approach did not tackle real-world samples.

3. Materials and Methods

Our proposed work is based on the EfficientNet approach called improved Efficient-
NetV2 for the recognition and classification of potato leaf diseases. To test and validate
the performance of the proposed system, the PlantVillage dataset, with a total number
of 54,306 images of potato plants, was utilized. To balance this dataset in each class, we
applied data augmentation techniques. The proposed work is focused on improving the
EfficientNet approach for potato leaf disease recognition and classification by introducing
additional layers at the bottom of the model. These additional layers were designed to
enhance the model’s performance by allowing it to identify more complex patterns and
features in the images. The improved model, called improved EfficientNetV2, was trained
on a large dataset of potato leaf images consisting of both healthy and diseased leaves.
The model was trained using a supervised learning approach in which it was provided
with labelled examples of healthy and diseased leaves and learned to classify new images
based on the patterns identified in the training data. The additional layers at the bottom
of the improved EfficientNetV2 model allow it to capture more low-level features and
patterns in the images, which in turn can improve the accuracy and robustness of the
model. Techniques such as transfer learning, data augmentation, and regularization can be
employed to further improve the model’s performance.

The proposed work has the potential to contribute to the development of more accurate
and reliable models for potato leaf disease recognition and classification, which can help
farmers and agricultural researchers in their efforts to improve crop yields and reduce
losses. The improved model has additional layers at the bottom of the model, which help to
enhance the performance. The complete flow of our improved model is shown in Figure 1.
The overall process is explained in Algorithm 1.

© Healthy
) @) Early Blight
@ Late Blight
Input Improved EfficientNetV2 Classification

Figure 1. Flow of the proposed EfficientNetV2 framework.
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Algorithm 1: Steps followed by EfficientPNet for potato plant leaf abnormality categorization

START

INPUT: TP, Labels

OUTPUT: The category of potato plant leaf diseased region, EfficientPNet
TP: Total potato images with various abnormalities.
Labels: Class of each potato sample
EfficientPNet: improved EfficientNet-V2 model.

/ /Data preparation and augmentation to balance dataset

Data Augmentation (x)

SampleDimension < [j h]
// Labels associated with each input sample
A<+ ReadClassLabel (TP, Class)

// training phase //Functions

1.  EffiNetV2(): employed to measure the keypoints with EfficientNet-V2 network
2. EvaluatFramework(): employed to accomplish the model training

// Improved EfficientNet-V2 model
EfficientPNET < EffiNetV2 (SampleDimension, A)

[ TrainingPart, TestPart <— Database distribution

For each sample ¢ in — TrainingPart

Compute improved-EfficientNet-V2 features —tm

End

Utilize tm images EfficientPNet training, and calculate time

fabelA <— IdentifyPotatoLeafAffected AreaLabel (tm)

Ap+< EvaluatFramework (improved-EfficientNet-V2, LoclizeA)
// test phase

For each image C in — TestPart

(a) PC < Compute features via employing the trained model EfficientPNet
(b)  [ConfidenceScore, ClassLabel] <—Predict (3C)
(c) show samples ClassLabel
End
Exit

3.1. EfficientPNet Framework

A robust set of image features is essential to obtaining superior classification results,
as it directly helps to distinguish the numerous image data groupings. The use of dense
DL networks can help in calculating a collection of more effective characteristics, which
in turn causes the recall rate of methods to increase [16]. The deployment of these CNN
techniques depends heavily on the availability of processing power and memory needs,
which places a computational constraint on the models when deep networks are used.
Consequently, the cost of computing and the results of the evaluation are always tradeoffs.
For this reason, it is necessary to provide a system for identifying leaf diseases that can
demonstrate improved classification accuracy while maintaining computing costs [37]. In
this study, we introduce a simple and reliable computational strategy to improve model
performance for categorizing various anomalies.

An enhanced EfficientNetV2-B4 model is introduced for the identification of potato
plant diseases and given the name of EfficientPNet. EfficientNetV2is an expanded version
of EfficientNet [38]. Essentially, the improved EfficientNetV2 model is presented to increase
available resources while maintaining a high recall rate. The improved EfficientNetV2
model was created using a quick and effective composite scaling method that enables a
regular ConvNet to be scaled to any resource limitations while maintaining the method
capability. Therefore, the proposed approach offers an ideal choice for network design,
i.e., network layers or feature vector size, as well as an optimal solution for computing
cost. The EfficientNetV2 technique conducts classification operations robustly and only
uses a limited number of model parameters. Furthermore, it performs well in terms of
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efficiency compared to other methods such as GoogleNet [16], AlexNet [39], DenseNet [40],
ResNet [41], and MobileNet [42].

The motivation behind EfficientNet-V2 with dense layers for recognition of potato leaf
diseases is that it is an efficient and lightweight approach that requires less training time and
contains fewer parameters. The EfficientNetV2 approach makes use of neural architecture
search to increase classification accuracy while reducing the size of feature vectors and
training time (NAS). Additionally, by including the Fused-MBConv (FMBConv) blocks [43]
in the EfficiceiNetV2 architecture, the operative power is optimized and mobile or server
accelerators are employed effectively, whereas the conventional EfficientNet technique,
which only uses depth-wise convolutions, uses MBConv blocks [44] as its primary building
block. Despite the fact that depth-wise convolutions reduce the number of operations
required, they do not fully utilize new hardware accelerators. The EfficientNetV2 technique
fully utilizes both MBConv and FMBConv blocks to achieve computational gains. The
depth-wise 3*3 convolution is replaced in the FMBConv by conventional 3*3 convolution
layers. The main objective is to boost the implementation speed of the model while keeping
the classification results [45] as shown in Figure 2.

1

[ Global Average Pooling ]
COIG & 2% Camv, D 5% 3 [ Conv2dSEReduce, 1 x 1 ]
+ r
DepthwiseConv, 3 x 3 } v
\ SE block [ Swish J
SE biock ' ¥
\ Conv, 1 x 1 Conv2dSExpand, 1 x 1
Conv, 1 x 1 !
v v :
e (e [ Sigmoid J
v v
v
MBConv Fused-MBConv SE Block

Figure 2. Graphic form of MBConv4, Fused-MBConv4, and SE block.

We used EfficientNetV2 with the B4 architecture to complete the classification task. The
B4 base was chosen primarily because it shows a good trade-off between time complexity
and model classification performance. Table 1 provides a thorough overview of the en-
hanced EfficientNetV2 model. The revised EfficientNet-V2 model uses FMBConv blocks at
the bottom layers while using MBConv blocks with 3*3 and 5*5 convolutions, squeeze-and-
excitation block (SEB) [46], and swish activation at the advanced level. The MBConv blocks
preserve an up-set residual link through the SEB to produce robust classification results.

ReLU activation (ReLUAF) is replaced in the framework by the swish activation func-
tion (SAF) [47], as ReLU excludes values lower than zero and loses an essential component
of the used ECG signal. The following equation can be used to calculate the SAF (1):

SAF(x) = X.Sigmoid(x) 1)

Additionally, a Batch normalization layer was added at the beginning of a framework
to down-sample the input image sizes. Only three FMBConv blocks were used, as they
include many parameters for large values of O. After the MBConv, a global average
pooling layer was introduced to reduce the model parameters in order to prevent the issue
of model overfitting. Together with the ReLUAF and dropout layers, we included two
additional inner-dense layers that help to compute the more effective collection of image
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characteristics by effectively presenting them. A dropout rate of 30% was chosen arbitrarily
in order to progress the model’s performance. At the end, a softmax layer was utilized for
the classification of potato leaf diseases.

Table 1. Details of blocks and layers used in the proposed model.

Sr No. Layers
1 BatchNormalization
2 ConvL (3 x 3)
3 2 x FMBConv1 Block
4 3 x FMBConv4 Block
5 2 x FMBConv4 Block
6 5 x MBConv4 Block
7 7 x MBConv6 Block
8 12 x MBConv6 Block
9 Conv2d (1 x 1) Block
10 Global average pooling
11 Dense Layer
12 Dropout
13 Dense Layer
14 Dropout
15 FC Layer
16 Softmax Layer

3.2. Loss Function (LF)

The loss function (LF) is a task employed by models to assess their performance.
Networks use automated learning to find rules and provide predictions for enormous
amounts of data. The primary goal of the LF is to determine how much the real and
anticipated values have changed. Throughout the model training process, the LF is adjusted
regularly until a robust fitting value is obtained to reduce error.

We removed the final layer of the EfficientPNet model by introducing an output
neuron to accomplish the categorization task for high-quality and distorted samples. For
this reason, the hyperparameters of the framework were nominated using an empirical
strategy. In our proposed approach, we have adopted the Adadelta optimizer during the
model training phase, along with a learning score of 0.1. Moreover, we used twenty epochs
for model training. The cross-entropy LF uses the Softmax function for classification tasks
to assess the variance between calculated and real values. Calculating the cross-entropy LF
is done as follows:

LF = 12” lo (i
N k=1 3 Zi &5k

Here, N represents the total neurons, s, indicates the input vector, and s;j is the es-
timated label. The model permits the fine-tuning of only 20% of the entire framework
parameters without adjusting the remaining 80%. A validation set was utilized to ensure
the avoidance of model overfitting issues. Adaptive Moment Estimation [48] was adopted
to compute the value of the learning rate against each parameter. This method works by
storing the exponential decay of the previous gradient by adopting the impulse approach,
as shown in Equations (3) and (4), respectively.

) @

M; = b1M; — 1+ (1 —b1)G; €)

Vi = b2V; — 14 (1 - b2)G% (4)

Here, b1, and b2 are constants with scores of 0.9, and 0.999, respectively, G indicates
the gradient score, and M; and V; represent the first-moment and second-moment vectors.
The values of these two factors show the link between the updated and previous gradient
values. Higher scores of these parameters show a close link between the previous and new
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gradient values. Initially, the values of both moments are initialized to zero, which requires
the bias correction factors b1 and b2 to avoid the 0 biases. Such biases can be removed by
computing the bias-corrected Mt, as elaborated in Equations (5) and (6), respectively:

M; = M; — (bt1) ®)

Vi = Vi — (bi2) (6)

The optimization approach in our model uses Equation (7) to update the gradient
value.
Wip1 = Wi =1/ (Vi +eM)*%t )

Here, € is a constant, 77 is a learning rate with a score of 0.00001, which is employed to
avoid the denominator from becoming zero, and W(f + 1) shows the framework parameters
at a given time (f + 1).

4. Experimental Results

This section briefly describes the dataset used to train and evaluate the classification
results of the proposed technique for classifying various types of potato plant leaf diseases.
In addition, it illustrates used performance measures. Finally, we carried out a huge
comparison with various other models to show the effectiveness of our approach.

4.1. Dataset Acquisition

To check the recognition ability of our framework, a standard dataset called the
PlantVillage repository [49] is utilized in this work. This data sample is free and available
online for model simulation. The PlantVillage dataset is a large collection of plant leaf im-
ages with a total of 54,306 images. As the presented approach is associated with classifying
plant leaf diseases only in potato crops, only a sample of the mentioned category was used
for the performance evaluation. Table 2 demonstrates the list of categories included in the
PlantVillage dataset. The reason for nominate this data sample for performance testing is
that it comprises samples that vary in mass, structure, size, and orientation of both leaves
and infected regions. Moreover, samples suffer from several distortions, including clutter,
blur, intensity variations, and color variations. A few samples of this dataset are shown in
Figure 3.

Table 2. List of categories included in the PlantVillage dataset without data augmentation.

Class Images in Dataset Training Set Test Set
Healthy Leaves 600 480 120
Early Blight 1200 960 240
Late Blight 1200 960 240
Total 3000 2400 600

4.2. Data Augmentation

We used the PlantVillage dataset to obtain pictures of potato leaf diseases that we
used to train, validate, and test the proposed DL model. The collection featured images of
late blight, early blight, and healthy potato leaf conditions. The resolution of each image in
the group was (256 x 256) pixels. The images of healthy potato leaves portrayed leaves
in a normal, healthy state. In contrast, the early and late blight photos illustrated the two
stages of shattering potato leaf disease. For the three classes in the dataset, we used the
indices 0, 1, and 2. The distribution of the dataset’s total number of pictures among its
many categories is shown in Table 2. In contrast to images of the other two groups of potato
blight, the dataset contained far fewer pictures of healthy potato leaves. The dataset’s
photos were all randomly chosen to create a training and test set with an 80/20 ratio.
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Figure 3. A visual figure of sample dataset.

By randomly picking ten healthy potato leaf photographs and making ten duplicates
of each, we increased the quantity of healthy potato leaf images to balance the dataset. This
procedure was repeated five times to balance the dataset in terms of photos of healthy potato
leaves. Table 3 lists the total number of pictures in each class in the dataset after balancing.
Originally, each category had 1200 images for early and late blight and 600 images of
healthy potato leaves. After data augmentation, each category had 3600 images for early
and late blight and 3600 images of healthy potato leaves.

Table 3. List of categories included in the PlantVillage dataset after data augmentation.

Class Images in Dataset Training Set Test Set
Healthy Leaves 3600 2880 720
Early Blight 3600 2880 720
Late Blight 3600 2880 720
Total 10,800 8640 2160

We normalized the data and increased the size of the training set to train the model
and ensure that it would not overfit. The photos were rotated between 20 and +20, sheared
between 40 and +40, and moved by width and height within a range of 0.2 for augmentation.
Figure 4 displays a visualization of the augmentation process.
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Class 1
Class 0
Class 1
Class 1
Class 1

Figure 4. Visualized augmented images: (a) sheared, (b) rotated, (c) shifted, (d) vertically flipped,
(e) horizontally flipped, (f) height-shifted.

4.3. Performance Metrics

To quantitatively estimate the categorization results of our approach for recognizing
diseases of potato plant leaves, we used the standard measures of accuracy, F1 measure,
precision (p), and recall (r). The mathematical formulation of the accuracy measure, p, 1,
and F1 is provided in Equations (8) to (11).

Accuracy = TP+ TN 8
Y= TPF¥FP+TN+EN
TP
P=Tp¥FpP ©)
TP
"TTPYIN (10)
Pl 2xpxr 1)
p+r

4.4. Experimental Results

In the first phase of model evaluation, we tested the performance of the proposed
strategy in terms of class-wise results to check how much well approach is able to recognize
various types of potato plant leaf abnormalities. For this, we measured the performance
of our approach using different performance metrics. The results are discussed below. In
addition, the experimental results were verified by an expert who is currently working as a
Plant Pathologist. Figure 5 shows the results for their training/validation loss and accuracy
of the proposed model.

Training and Validation Accuracy % Training and Validation Loss

—— TFaining_Loss

100 ~——— Validation_Loss
07
098

o6
05

04

094 03

0.2

01

——— Taining Accuracy

090 ~—— Validation Accuracy oo

o 10 20 30 40 S0 o 10 20 30 40 50

Figure 5. Graph of training and validation accuracy vs. loss for the proposed model.
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First, the classification results of this approach are discussed in terms of precision and
recall measures, as these are the standard way of elaborating model categorization results.
The attained values are provided in Figure 6 for all three classes, showing healthy, early
blight, and late blight, respectively. The scores attained in Figure 6 clearly indicate that our
approach is able to effectively recognize all three classes in the employed dataset. For the
precision metric our approach attained results of 98.26%, 98.03%, and 97.99% for healthy,
early blight, and late blight, respectively, while for recall our solution showed values of
97.41%, 97.15%, and 97.10% for healthy, early blight, and late blight, respectively.

100

98
97
9%

94
923
92
91
89

87

Healthy Early blight Late blight

W Precision ®Recall

Figure 6. A graphical depiction of the attained precision and recall results.

Next, the model behavior is assessed from the perspective of the F1-score and error
rate, as the precision and recall metrics are unable to fully capture the classification behavior
of a model. This is because certain approaches are unable to attain a better value of recall
for a high value of precision, and vice-versa. Hence, employing the F1-score measure can
provide an overall performance assessment of a classification approach by employing both
the precisions and recall measures. The attained results for all three classes of the employed
dataset are provided in Figure 7. The suggested method reaches an average F1-score value
of 97.65%, as depicted in Figure 7. Moreover, we the highest and lowest error scores are
2.46%, and 2.17%, for the late blight and healthy classes of potato plant leaves, respectively.

H Late blight = Early blight Healthy

Error I

F1-Score

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Figure 7. Graphical depiction of attained F1-score and error rate results.
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Further, class-wise accuracy value was computed for all three groups of potato plant
leaves; the obtained evaluation is shown with the help of box plots in Figure 8. Box plots
are proficient in providing a thorough understanding of attained performance results by
plotting the maximum, mean, and minimum values. The class-wise accuracy values shown
in Figure 8 clearly prove the effectiveness of our approach for categorizing the infected
areas of potato plant leaves. More descriptively, for the healthy, early, and late blight classes,
the proposed solution acquires average values of 98.24%, 98.11%, and 98.01%, respectively.
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Figure 8. Graphical depiction of attained accuracy results.

Finally, we further depict the class-wise results of our approach by reporting the con-
fusion matrix, which is a powerful plot for showing the recognition ability of a framework
by reporting the values in terms of the true positive rate. The confusion matrix for our
proposed strategy is shown in Figure 9, demonstrating that our model achieves better
values on all three classes of potato plant leaves. Clearly, our approach attains an average
TPR of %, which shows its better recall behavior. Moreover, we attain a minimum error
of 97.22%, while the highest error rate of 1.61% is reported for the late and healthy blight
classes, which could be due to the structural resemblance of the infected regions in these
classes. However, both classes are highly differentiable.

Healthy

Early blight

True Class

Late blight

1.55%

Healthy Early blight Late blight

Predicted Class

Figure 9. Attained results in the form of a confusion matrix.
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All class-wise performance evaluations of the proposed solution with the help of the
standard measures confirm the better recognition ability of our approach, which enables
it to better classify all the samples in all three classes. The major reason for the improved
classification behavior of our approach is due to the relevant and distinctive sample char-
acteristics computation of our approach, which assists and enhances its recall rate and
increases its classification performance.

4.5. Comparison with DL Models

In this section of the paper, a comparative analysis of the proposed work with other
DL approaches is accomplished to show the efficacy of our work in comparison. For this
purpose, a series of well-known DL frameworks, including VGG16 [50], VGG19 [51], Mo-
bileNet [52], ResNet50 [53], and DenseNet-101 [54], were nominated. We compared these
DL architectures from the perspectives of model structure and performance by comparing
the total number of model parameters and accuracy. The results of the evaluation are
presented in Table 4. The values clearly depict our approach as being both effective and
efficient in comparison to the other DL frameworks. Clearly, the presented work comprises
the lowest number of model parameters, with 11 million. Comparatively, the VGG19 model
is more expensive in terms of model structure, with a total of 1.96 million parameters. In
terms of model accuracy, the lowest performance result is attained by ResNet50, with a
score of 73.75%. The second lowest performance score is reached by MobileNet, at 78.84%.
The DenseNet approach shows better performance outcomes, with an accuracy value of
93.93%; however, this approach is complex in terms of network structure, with a total of
40 million parameters. In comparison, our approach performs well with an accuracy score
of 98.12% and has a total of 11 million model parameters. Clearly, the comparison of these
approaches shows an average score of 83.92%, and is 98.12% for our model. Thus, we have
achieved a performance gain of 14.20%, that clearly showing the efficacy of our model.

Table 4. Assessment of the suggested approach compared to other DL models.

Sr No. Model Parameters (million) Accuracy (%)
1. VGG16 138 92.69
2. VGG19 196 80.39
3. MobileNet 13 78.84
4. ResNet50 23 73.75
5. DenseNet 40 93.93
6. Proposed 11 98.12

The main cause of these better model classification results is that the other techniques
are quite complex in terms of their model structure, which causes issues with model
overfitting. Comparatively, our approach is lighter in structure and better able to tackle the
overfitting issue. Moreover, our technique adopts the pixel and channel attention approach
during the feature computation phase and introduces layers at the end of the network
structure, which assists in better nominating the effective set of image characteristics and
enhances the cataloguing score. Thus, it can be said that we have presented both an efficient
and effective approach to recalling the various groups of potato plant leaf illnesses.

4.6. Proposed Approach in Comparison with the Latest Techniques

Next, we performed another experiment to check the potato plant disease classifi-
cation results of our model against other new techniques from history. Numerous latest
approaches [36,55-57] were nominated for this reason, and performance results in terms
of classification results are evaluated. The attained performance comparison is shown
in Table 5, from which it is quite clearly confirmed that our model is more robust for
classifying the abnormalities of potato plants as compared to the other approaches shown
in Figure 10.
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Table 5. Comparison of the proposed approach with new methods.

Sr. No Reference Accuracy (%)
1. Chen et al. [55] 97.73
2. Barman et al. [56] 96.98
3. Mahum et al. [57] 97.20
4. Chakraborty et al. [36] 97.89
5. Proposed Technique 98.12
Accuracy (%)
o 98.12
v 97.89
97.73
97.8
97.6
97.4 97.2
57.2 96.98
97
96.8
96.6
96.4
Chen et al. Barman et al. Mahum et al. Chakraborty et al. Proposed
Technique

Figure 10. A comparison with the latest works developed by Chen et al. [55], Barman et al. [56],
Mahum et al. [57] and Chakraborty et al. [36].

Chen et al. [55] used a DL approach called MobOca_Net to recognize different potato
plant leaves by introducing pixel and channel-wise attention units in the base network.
This approach attained an accuracy rate of 97.73%. Barman et al. [56] used a self-introduced
CNN model to classify various infections found on the leaf areas of the potato crop, and
achieved an accuracy of 96.98%. Another model, discussed in [57], used the concept
of transfer learning to perform potato plant leaf diseases categorization, and attained a
classification score of 97.20%, and the approach in [36] showed an accuracy value of 97.89%.

In comparison with these techniques, the proposed approach attains the highest
accuracy rate at 98.12%. The compared techniques exhibit an average accuracy rate of
97.45%, compared to 98.12% for the presented strategy. Consequently, we have provided
a performance gain of 0.67% in terms of the accuracy metric. The major cause of this
effective performance result is that the approach in [55] is unable to tackle the distorted
samples, while the technique in [56] lacks the ability to handle noisy data. On the other
hand, the approaches in [36,57] suffer from issues with model overfitting. Comparatively,
our approach is better able to handle these issues than existing approaches by presenting an
effective model that adopts the pixel and channel AM in the feature computation phase and
introduces dense layers at the end of the network structure, which results in nominating a
reliable set of sample features even in the presence of various image distortions, thereby
enhancing the classification score.

5. Conclusions

Farmers lose money and harvest due to potato plant diseases. Potato leaves are
mostly affected by early and late blight. According to estimates, these illnesses are the
cause of the majority of yield loss in potatoes. We divided photos of potato leaves into
three categories: healthy leaves, late blight leaves, and early blight leaves. To recognize
these classes, a solution called EfficientPNet is implemented in this paper. EfficientPNet
is a DL approach that classifies various types of potato plant leaves. We improved the
EfficientNet-v2 approach by adding the AM strategy and extra layers at the end of the
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model structure. The presented EfficientPNet approach robustly extracts high-level signs
of infected regions and associates them with related groups by employing an end-to-
end learning mechanism. In addition, the AM strategy improves the recall power of
the proposed solution by passing relevant information on noticeable attributes such as
diseased areas of plant leaves. We accomplished rigorous experimentation on a complex
data sample designated as PlantVillage to show the effectiveness of our framework, and
proved through the attained performance scores that our model is proficient in recognizing
potato diseases even from distorted images. As a future goal, we intend to develop another
ensemble model by integrating explainable AI [58] and EfficientPNet DL architectures on
other challenging datasets.
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Abstract: Approximately 42% of the total calves born in New Zealand’s dairy industry are either
euthanized on farms or commercially slaughtered as so-called bobby calves within 2 weeks of
age. These practices have perceived ethical issues and are considered a waste of resources because
these calves could be grown on and processed for beef. Young beef cattle harvested between 8 and
12 months of age would represent a new class of beef production for New Zealand and would allow
for a greater number of calves to be utilized for beef production, reducing bobby calf numbers in
New Zealand. However, the acceptance of such a system in competition with existing sheep and
beef cattle production systems is unknown. Therefore, the current study employed an agent-based
model (ABM) developed for dairy-origin beef cattle production systems to understand price levers
that might influence the acceptance of young beef production systems on sheep and beef cattle farms
in New Zealand. The agents of the model were the rearer, finisher, and processor. Rearers bought in
4-days old dairy-origin calves and weaned them at approximately 100 kg live weight before selling
them to finishers. Finishers managed the young beef cattle until they were between 8 and 12 months
of age in contrast to 20 to 30 months for traditional beef cattle. Processing young beef cattle in existing
beef production systems without any price premium only led to an additional 5% of cattle being
utilized compared to the traditional beef cattle production system in New Zealand. This increased
another 2% when both weaner cattle and young beef were sold at a price premium of 10%. In this
scenario, Holstein Friesian young bull contributed more than 65% of total young beef cattle. Further
premium prices for young beef cattle production systems increased the proportion of young beef
cattle (mainly as young bull beef), however, there was a decrease in the total number of dairy-origin
cattle processed, for the given feed supply, compared to the 10% premium price. Further studies are
required to identify price levers and other alternative young beef production systems to increase the
number of young beef cattle as well the total number of dairy-origin beef cattle for beef on sheep and
beef cattle farms. Some potential options for investigation are meat quality, retailer and consumer
perspectives, and whether dairy farmers may have to pay calf rearers to utilize calves with lower
growth potential.

Keywords: agent-based model; dairy cattle; young beef; price lever

1. Introduction

Dairy-origin calves contribute significantly to beef finishing systems [1-4], accounting
for more than 58% of the beef cattle finished annually on sheep and beef cattle farms
in New Zealand [4,5], and over 60, 80 and 87% total beef processed from Ireland [6],
Finland [7], and Russia [8] respectively. Holstein—Friesian (33.1%), Jersey (8.6%), and
Holstein-Friesian—Jersey crosses (48.5%) represent most dairy cows in New Zealand [9,10].
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From these cows, approximately 20% of calves born on New Zealand dairy farms are
beef-dairy cross-bred, which are subsequently finished for beef on sheep and beef cattle
farms [11]. Early-born and heavier beef-dairy cross calves are preferred for finishing
as prime heifer or steer as they grow faster and attain better conformation than their
dairy breed counterparts [12-14]. Well-marked, and therefore supposedly predominantly
Holstein—Friesian bull calves, are favored in New Zealand for bull-beef production [15-19].

Dairy-origin calves which are not required for dairy heifer replacements nor beef
finishing have traditionally been disposed of as bobby calves [20,21]. These include calves
born to Jersey cows, calves from cows not suitable for breeding dairy herd replacements,
calves born to first-calving heifers, or calves born to late-calving cows. Bobby calves in
New Zealand are defined as calves that are commercially slaughtered within 2 weeks of
age [21-23]. In 2020, New Zealand processed approximately 1.9 million bobby calves from
the dairy industry [2]. Commercial slaughtering of excess calves from the dairy industry
is also common in EU countries [24] and Australia [14]. Transporting and slaughtering
these calves is fraught with welfare and ethical issues which can be considered a potential
threat to New Zealand dairy and beef trading in the form of non-tariff barriers [23,25,26].
Furthermore, there are concerns due to there being a high prevalence of E.coli with the
processing of calves [27], and concerns of dehydration in bobby calves prior to process-
ing [20]. Bobby calf production is also considered a waste of animal resources, as these
animals could be utilized for beef production if slaughtered at an older age [20,21,28]. To
provide options for the utilization of surplus calves born on dairy farms, systems of young
beef cattle production have been proposed to increase the number of dairy-origin cattle
finished for beef [28-32] while accounting for a fixed quantity of grazing land.

Some studies on carcass and meat qualities of young beef [29,31,32] and profitability
and pasture utilization of young beef cattle production at the farm level [28,30] have
been conducted in New Zealand. However, as a new potential class of beef finishing, its
acceptance level in the existing New Zealand beef cattle finishing system is unknown.
Therefore, this study utilized Agent-Based Modelling (ABM) to represent young beef cattle
production systems that would finish dairy-origin calves for beef before their first winter
(i.e., 8 to 12 months of age) in a New Zealand context. Agent-based modeling allows
for repetitive and competitive interactions between agents which enables the exploration
of dynamics over time and captures the adaptive and emergent phenomenon from the
interaction [33-36]. A base ABM model for dairy-origin beef finishing using rearer, finisher,
and processor agents, accounting for the specifics of dairy-origin beef cattle has been
developed [37]. This was modified in the current study to understand the influence of cattle
sale prices on the uptake of young beef cattle on sheep and beef cattle farms. The present
study modeled unselected dairy-origin calves as identified in the previous study [37]
for beef production slaughtered at either 8, 10, or 12 months with a weaner cattle and
manufacturing beef price of NZ$4.50 per kg carcass. It was hypothesized that an increase in
price would increase the number of calves selected for young beef cattle finishing systems,
enabling a greater number of dairy-origin beef cattle to be finished for a given feed supply.
Premiums of 10 or 20% both for weaner cattle and young beef were modeled in comparison
to the current calf price and also in comparison to a scenario where rearers were provided
with calves for free from dairy farms which is a possible scenario if there was a mandate
for calves from dairy farms to be reared.

2. Materials and Methods
2.1. Agent-Based Modeling Development

In New Zealand, sheep and beef cattle finishing farms’ pasture provides up to 95% of
the diet [17,38,39]. In dairy-origin beef cattle finishing, calf producers, rearers, finishers,
and processors influence each other in determining the type and number of cattle that
move along the supply chain from the dairy industry to the beef industry. The interactions
between rearers, finishers, and processors for weaning and finishing dairy-origin beef cattle
on New Zealand beef cattle and sheep farms were modeled using “Agents.jl” [37,40] which
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is a Julia framework for ABM. A base ABM model for dairy-origin beef cattle finishing had
previously been developed [37] and is briefly described below.

2.2. The Base Model

The number of 4-day-old, spring-born calves, available on a daily basis was assumed
to follow a Poisson distribution based on the date of birth [41] over a three-month, Spring-
calving period. A multivariate, normal distribution function applied to the Cholesky
decomposition of the assumed variance-covariance matrix [42] was employed to simulate
a positively correlated birth weight, growth rate, and price for each calf [43]. Calves with
a likely higher marginal return (due to being heavier and likely to be faster growing, i.e.,
Holstein—Friesians and Holstein-Friesian—Jersey crossbreds were finished via the existing
beef cattle finishing systems on sheep and beef cattle farms, and the remainder were
processed as bobby calves.

The rearer, finisher, and processing agents simultaneously and repetitively, interacted
with each other to determine the number and type of dairy-origin cattle moving along the
supply chain. Rearers preferentially brought 4-day-old calves that were heavier and had the
potential for faster growth and managed them until weaning at approximately 100 kg live
weight, before on-selling to a finisher. If the rearing capability of the rearers (i.e., the number
of calves they could successfully rear) was higher than the demand for weaned calves by
finishers, they subsequently reduced their rearing capability to balance the demand for
weaners by the finishers. Finishers primarily bought weaners from rearers, however, if
the weaner supply from rearers was insufficient relative to their finishing capability, they
sourced more weaners directly from dairy farms. Increased demand for weaner calves
encouraged dairy farmers to rear more calves along with their own replacement heifer
calves [44].

2.3. Agent-Based Modelling for Young-Beef Cattle Production: Price Levers on Adoption

The model was parameterized with 45,000 spring-born calves, representing 1% of
the total calves produced annually on dairy farms in New Zealand, the same as was used
in the previously published base model for traditional dairy-origin beef cattle finishing
systems [37]. Unlike the base model, the current study fitted the growth curve of beef
cattle for young and traditional beef production using seasonally adjusted von Bertalanffy
growth equations [45]. This allows animals to grow faster during spring and gain less live
weight change during winter to match the feed supply in pasture-based systems [28].

Unselected calves, which were comparatively slower-growing and lighter, were mod-
eled to determine whether they could be finished at the ages of 8, 10, or 12 months for
young beef. In New Zealand, pasture supply is typically highest in spring and lowest in
winter. Young beef cattle finishing would allow finishers to start in Spring with a higher
number of beef cattle including traditional and young beef cattle and then progressively
harvest animals prior to the winter from 8 months of age to ensure feed demand equaled
feed supply as pasture growth declines over the winter period. Slaughter started in May,
with those approximately 8-month-old young beef cattle that were heaviest, and was com-
pleted with the harvesting of young cattle at approximately 12 months of age by August,
freeing up pasture demand for the next crop of animals.

Energy requirements for maintenance and live weight gain for traditional and young
beef cattle were estimated using values from [46,47]. Calves were sold from dairy farms to
rearers at 4-days of age from NZ$70 to 120 per head and weaner cattle were sold to finishers
from NZ$3.00 to 4.50 per kg live weight, based on values reported in [43,44] (Table 1).
Carcass weights from 8-10-month old beef cattle were estimated as 0.48 times the live
weights, increasing to 0.5 times the live weight for 12-month-old beef cattle [29-32]. Young
beef was valued at the manufacturing beef price of NZ$4.50 per kg carcass weight [48]
plus an additional 10% or 20% premiums applied for both weaner cattle and young beef.
Each scenario was also simulated with the calf sale price from the dairy farm set to zero,
reflecting dairy farmers giving excess calves to rearers for free which simulates a scenario
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where mandates for no calf wastage are in place and all excess calves need to be directed to
beef production. Calves were provided to commercial rearers to avoid dairy farms bearing
the cost burden of additional calf rearing. A total of 30 ABM simulations for each price
scenario were conducted [37].

Table 1. Birth weight, minimum weight at slaughter, slaughter age, price per head 4-day old calves,
and price per kg live weight weaner cattle parameters of various classes of dairy-origin beef cattle for
traditional beef cattle finishing.

Holstein-Friesian Holstein-Friesian—Jersey a Jersey
Attributes References
Heifer  Steer Bull Heifer Steer Bull Heifer Steer Bull
b Birth weight, kg 36.1 38.2 38.2 31.7 33.9 33.9 27.6 29.8 29.8 [13]
¢ Minimum weight at slaughter (kg) 500 - 550 500 580 550 500 580 550 [49-55]
4 Adjusted average age at slaughter (d) 610 - 600 679 * 896 805 700 * 920 880*  [50-52,56]
4-day-old calf price/head (NZ$) 90 - 110 80 100 100 70 90 90 [57,58]
Weaner price/kg live weight (NZ$) 3.70 - 4.50 3.60 3.70 4.00 3.00 3.20 3.20 [57,58]
Beef-Holstein-Friesian Beef-Holstein-Friesian—Jersey
Beef-Jersey cross
cross Cross
2 Birth weight, kg 38.3 40.2 40.2 37* 39* 39* 35* 37* 37* [43,53]
¢ Minimum weight at slaughter (kg) 500 580 550 500 580 550 500 580 550 [49-55]
d Adjusted average age at slaughter (d) 561 663 625 579 * 689 640 600 * 750 * 703 * [50,59]
4-day-old calf price/head (NZ$) 95 120 120 90 110 110 75 95 95 [57,58]
Weaner price/kg live weight (NZ$) 3.90 4.00 4.70 3.60 3.70 4.00 3.00 3.20 3.20 [57,58]

? includes the “other breed” category; b Male calves’ birth weight was 2.2 kg heavier [13]; © minimum slaughter
weight for young beef cattle was 250 kg; 9 young beef cattle were slaughtered at ages of either 8, 10, or 12 months.
* estimated based on the value of other classes and breeds; heifers’, steers’, and bulls’ carcass weights from
traditional beef cattle were estimated as 50, 54, and 52% of live weight, respectively [41,42,45].

3. Results

Allowing for the harvest of young beef cattle in the existing beef production systems,
without any price premium, led to the finishing of an additional 5% of cattle compared
to the traditional beef cattle production system only (Figure 1: existing calf price at 0%
premium scenario vs. base model scenario). Of the total beef cattle finished for young beef,
young bull beef cattle contributed 79% followed by young steers (12%) and heifers (9%).
This modified farming system meets the feed demands of the young cattle by farming
20% fewer traditional beef cattle in total, with the most pronounced reduction being in the
numbers of traditional heifer cattle finished for beef (Figure 1: 44% lower than that in the
base model).

A price premium of 10% for weaner cattle and for the beef schedule price (Figure 1:
existing calf price at 10% premium scenario) resulted in an additional 7% of calves of dairy
origin being utilized for beef production compared to the traditional beef cattle finishing
system (Figure 1: base model scenario). Further premium prices for young weaner cattle
and beef (i.e., 20%), and the provision of free calves from the dairy farm to the rearer,
increased the proportion of cattle used for young beef production, in particular, young bull
beef cattle. However, in order to source pasture for the young cattle, the system decreased
the total number of dairy-origin calves utilized compared to the 10% premium scenario
(Figure 1).

Calves born from Holstein—Friesian dams accounted for 60% of total harvested cattle
(young and traditional beef cattle). However, calves from Jersey cows contributed less than
2% of total dairy-origin beef breed cattle processed in this study (Table 2). Young bull beef
cattle from Holstein—-Friesian dams contributed approximately 65% of total young beef
cattle processed when a 10% increased price scenario was utilized for weaner cattle and
schedule prices for young beef.

76



Agriculture 2023, 13, 898

12,000
9869 10,083 9872 9965 9871
10,000 5555 :
oo Young Bull beef cattle
8 000
Young Steer beef cattle
:
3 mm Young Heifer beef cattle
2 6000
*g e Traditional Bull beef cattle
'—
s Traditional Steer beef cattle
4000
mmmm Traditional Heifer beef cattle
e TO T2
2 000
0
Base 0% premium 10% premium 20% premium | 0% premium 10% premium 20% premium
Model Existing calf price No calf purchasing cost to rearers
Figure 1. The mean number of traditional beef cattle (i.e., finished 20 to 30 months old) and young
beef cattle sold at NZ$4.50 per kg carcass and premiums of 10% and 20% for both weaner cattle
and young beef (i.e., finished at 8, 10 or 12-months old) with or without the current calf price for
45,000 modeled calves across 30 ABM simulation runs. 0%, 10%, and 20% premiums were for both
weaner cattle and young beef values.
Table 2. Mean number (sd) of traditional beef cattle (finished 20 to 30 months old) and young beef
cattle (finished at 8, 10, or 12 months old) at a 10% premium scenario (an existing calf price at 10%
premium for both weaner and young beef) per sex and dam breed out of 45,000 modeled calves
across 30 ABM simulation runs.
Heifer Steer Bull
HF HJ Jr Other HF HJ Jr Other HF HJ Jr Other
Traditional beef catle 619 (43)  351(92) 26(5)  19(8) - 1308(169) 60 (10) 44 (12) 2869 (57) 1046 (103)  33(4)  33(10)
Young beef cattle 228(15) 101 (11)  1(1) 0 - 371 (17) 16 (4) 2(1) 2378 (101) 552 (61) 12 (5) 13 (4)

HF: Holstein-Friesian; HJ: Holstein—Friesian—Jersey cross, Jr: Jersey cattle, and others: other dairy breed cattle.

4. Discussion

Dairy-beef animals harvested at a young age (8 to 12 months) represent a new beef
production system being considered in New Zealand. It aims to finish as many calves
as possible, to reduce the bobby calf slaughter. Understanding the level of acceptance
of these systems by existing sheep and beef cattle production farmers who are used to
finishing animals at older ages and heavier weights, and recognition of the main constraints
associated with their use, would allow farmers and processors to make informed decisions
regarding the utility of such systems. The current study simulated the use of dairy-origin
heifer, steer, and bull beef cattle slaughtered from 8 to 12 months of age using a previously
reported ABM model [37]. It utilized historical average weaner and manufacture beef
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prices and 10% and 20% premiums on these prices by utilizing current sale prices for calves
sold to rearers. The provision of calves to the rearer at no cost was also considered.

Young beef cattle are slaughtered at lighter weights compared to the traditional classes
of cattle used for beef production and so, under the current carcass classification and
payment system used for beef in New Zealand, the carcasses would be categorized into
a manufacturing price of NZ$4.50 per kg carcass weight [3,22]. At that price and with a
4-day-old calf purchasing cost included, a mix of young and traditional beef cattle finish-
ing systems processed an extra 5% of cattle compared to the traditional beef production
system (i.e., without young beef cattle). A farm optimization study [28] identified that
including young beef cattle in the existing beef finishing system and processing them at
NZ$4.50 per kg, the carcass would enable the processing of 5% more beef cattle per farm
than the traditional beef cattle finishing system. These relatively low percentage increases
in the numbers of cattle indicate that young beef cattle would need to be incentivized to
increase the uptake of dairy-origin calves into beef production systems. One such incentive
is the price obtained for the carcass. A study conducted by [30] identified that young steers
slaughtered at 8 to 12 months would require more than NZ$6.00 to break even with a
traditional bull finishing system. This 33% increase in price would require a major change
by the processing companies and would be unlikely to happen unless new high-value
markets were identified.

Young beef is more tender due to being finished at an earlier age than beef from
traditional beef cattle [29] which might enable a premium price over either traditional
beef (heifer or steer beef) or processed beef (bull beef). This requires the identification of
high-value markets and selling valuable cuts at a higher price to lift the value of the whole
carcass. This would increase the profitability of young beef cattle production [60-62] and
make the system more attractive for rearers and finishers thereby enabling the processing
of more dairy-origin beef cattle for beef to reduce bobby calves numbers.

A 10% increase in the sale price per kg live weight for weaners and per carcass weight
for young beef resulted in young beef cattle contributing 7% of the total dairy-origin beef
cattle processed. In this scenario, Holstein Friesian young bulls contributed more than
65% of the total young beef cattle. This could be due to Holstein Friesian bull beef cattle
across both systems growing faster compared to other sexes and classes [48,63]. Further,
a premium of 20% both for weaner cattle and processed young-beef cattle increased the
proportion of young beef cattle and the uptake of young bull beef cattle. However, this
decreased the total number of cattle processed for beef compared with the 10% premium
scenario. This is likely explained by a greater per-head feed requirement for bulls to achieve
the target weight which decreases the total number of cattle processed for beef for the
given feed supply. Thus, alternative finishing systems that would increase the uptake of
slower-growing beef cattle classes would be required to increase the uptake of dairy-origin
beef cattle for traditional as well young beef cattle. Alternatively, assisted reproduction
techniques or better selection of beef bulls for mating with dairy cows could be used to
produce better quality calves from dairy cows [64] which would increase growth rates and
on-farm efficiency and the quality of meat from dairy-origin calves [65,66].

The current carcass weight payment system encourages the harvest of those fast-
growing cattle that can achieve the highest carcass weights. As more fast-growing young
beef cattle entered the modeled system, the per-head demand increased and thus a smaller
number of traditional beef cattle would be farmed for the given feed supply. Considering
value-based market beef production for slower-growing cattle including Jersey calves
would make them more competitive and allow a higher number of beef cattle for the given
feed resource. A study by [67] identified that beef-Jersey cross-breed cattle had higher
marbling scores which increased carcass value resulting in higher value carcasses than
from pure Jersey cattle.

Dairy-origin beef cattle produce 29% less greenhouse gas emissions (GHG) compared
to cow-calf beef production system per kg carcass [4]. This is due to them being a byproduct
of cows that provide milk for sale and calves for beef production for the same amount of
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dry matter consumed. Further, at a younger age (less than 12 months of age), growth is
faster and there is less fat in the gain compared to older cattle [63], which would make
younger cattle more efficient in terms of feed converting to saleable product [68]. Young
beef cattle increased pasture utilization efficiency and reduced silage preparation and
utilization [28]. It also processed higher gross carcass output per farm for a given feed
supply, which meant they produced lower GHG emissions per kg carcass [68]. This implies
young dairy-origin beef cattle production should be considered as a mitigation strategy
to reduce GHG emissions from livestock production [69]. Finishing dairy-origin cattle for
beef at a young age would have also less impact on the soil compared to heavier animals
in wet seasons [4,70]. These positive environmental impacts might allow young beef to
attract a higher per kg carcass value driven by consumer demand which would potentially
increase the uptake of young beef cattle systems. Identifying markets that would pay extra
for ethical and welfare-friendly beef and /or reducing calf selling price at 4-day old would
also allow young beef to earn higher value per kg live/carcass weight [71,72].

The current study did not include beef retailer or consumer perspectives. Consumer
perspectives associated with meat quality (meat color, tenderness, juiciness, flavor) and
extrinsic characteristics (brand, price, labeling, package, and outlet) [73-76] and origin of
beef are important factors in determining breed, sex, and class of beef cattle required for
beef production and the likely premium that could be achieved for the meat product [77,78].
Considering these parameters in future studies would allow the model to provide full
insight into the uses of young beef cattle in New Zealand and other countries where bobby
calf production needs to be discontinued.

5. Conclusions

Young beef cattle production systems represent a new beef cattle finishing option in
New Zealand, aiming to process a greater number of dairy cattle for beef. This would
reduce bobby calf numbers and the associated potential ethical issues and could increase the
profitability of both the beef and dairy industries. Utilizing young beef cattle production
systems enabled a greater number of beef cattle to be managed on-farm and greater
throughput of beef cattle from weaning to slaughter per hectare for a given feed supply.
Processing young beef cattle at NZ$4.50 per kg carcass with a 10% premium allowed the
system to finish only 5% and 7%, respectively, greater numbers of beef cattle compared to
the traditional beef cattle production system. This small increase in uptake suggests further
research is required before firm conclusions on the uses of young beef cattle can be made.
Some examples include higher premium prices, lower 4-day-old calf costs, alternative
finishing systems which encourage the uptake of slower-growing dairy-origin beef cattle,
meat quality traits, and retailer and consumer perspectives. Given the minimal use of
young beef production of dairy origin in New Zealand, agent-based modeling is a useful
tool to examine the efficacy of these options.
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Abstract: Currently, there is a significant increase in interest in hemp cultivation and hemp products
around the world. The hemp industry is a strongly developing branch of the economies of many
countries. Short-term forecasting of the hemp seed and grain yield will provide growers and
processors with information useful to plan the demand for employees, technical facilities (including
appropriately sized drying houses and crop cleaning lines) and means of transport. This will help
to optimize inputs and, as a result, increase the income from cultivation. One of the methods of
yield prediction is the use of artificial intelligence (AI) methods. Neural modeling proved to be
useful in predicting the yield of many plants, which is why work was undertaken to use it also to
predict hemp yield. The research was carried out on selected, popular hemp varieties—Biatobrzeskie
and Henola. Their aim was to identify characteristic factors: climatic, cultivation and agrotechnical,
affecting the size and quality of the yield. The collected data allowed the generation of Artificial
Neural Network (ANN) models. It has been shown that based on a set of characteristics obtained
during the cultivation process, it is possible to create a predictive neural model. Modeling using one
output variable, which is seed yield, can be used in short-time prediction of industrial crops, which
are gaining more and more importance.

Keywords: neural modeling; artificial neural networks; sensitivity analysis; hemp cultivation;
seed material

1. Introduction

Due to their properties, Artificial Neural Networks (ANN) perform identification
and prediction tasks similarly to the human brain; however, the use of computer methods
eliminates subjective analysis and evaluation, which cannot be ruled out when performing
similar analyses by a human. ANN are increasingly used in many fields of science, includ-
ing mechanical and agricultural engineering, and connected problems, especially related
to the scope of classification and prediction [1-3]. In the broadly understood agricultural
industry, they were used, e.g., in research on starch content in potatoes [4], optimization of
methods and parameters of drying willow [5], determination of the moment when crop
irrigation should start [6], or the possibility of using unsold cut flowers of the most popular
species for energy purposes [7].

For the efficient operation of farms and agricultural enterprises, in addition to the high-
est possible yield, it is also important to reduce losses associated with the storage of manu-
factured products. This maximizes the production volume of agricultural crops. This topic
also interested scientists using Artificial Intelligence (AI) methods in their research [8,9].
The research that can be used in practice is the work on the possibility of using computer
image analysis methods and neural modeling in the process of qualitative assessment
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of greenhouse tomatoes. Works were carried out by Zaborowicz and his research team.
Generated neural model can do this by implementing into a computer system [10].

The hemp industry has been developing very strongly in recent years, and the area of
hemp cultivation is constantly growing [11]. In Europe, the number of hectares of hemp
plantations increased by 70% between 2013 and 2018 [12]. Hence, in recent years there has
also been a lot of interesting research in the field of Al conducted on hemp. The use of ANN
was undertaken to assess the effect of different types and concentrations of carbohydrate
sources and the potency of nutrients on seed germination rates and morphological features
of hemp seedlings grown in vitro [13]. Al methods have been used to detect and classify
hemp diseases [14,15]. Mathematical models have also been developed to predict the dry
density, compressive strength and thermal conductivity of hemp-based biocomposites
using the Al-based gene expression programming (GEP) technique [16].

There have also been many works successfully using ANN in research on forecasting
the yield of agricultural plants [17-19]. However, there is currently no objective and easy-
to-use system for predicting the yield of industrial hemp seeds. So far, yields have been
predicted using average amounts of seeds harvested in previous years, taking into account,
e.g., variety or form of harvest. Cultivation of hemp, especially for seed purposes, is difficult,
time-consuming and labor intensive. It is also burdened with a high risk of failure, but the
market demand for hemp products, and thus for high-quality seed material, is growing
dynamically. This indicates the need to undertake scientific research aimed at developing a
new, effective method of seed yield prediction of selected industrial hemp varieties.

This topic was raised by Frankowski’s team. Data collected from experimental plots
were used to study the effect of sowing density and fertilization on the yield of Henola
hemp seeds and straw. ANN studies were a supplement to standard research and statistical
methods [20]. The results achieved are reported in the discussion section of this article. The
achieved results proved to be promising. This prompted researchers to continue to develop
them. Analyzing a much larger amount of data coming not from experimental plots but
from hemp seed plantations, an attempt was made to identify the cultivation parameters
characteristic of the seed yield of selected industrial hemp varieties. The aim of the research
was to answer the question whether the ANN model can effectively predict the yield of
industrial hemp seeds, based on the information obtained during the cultivation process.
The result of the research was the generation of six ANN models. Thanks to the sensitivity
analysis of the variables of the created neural models, it was possible to determine the
indicators that are most important for their operation. The conducted research allowed the
formulation of the main conclusion: based on the set of characteristics obtained during the
agrotechnical process, it is possible to create a predictive neural model for assessing the
yield of industrial hemp seeds.

2. Materials and Methods
2.1. Research Material

In order to generate training sets, information collected from seed plantations managed
in Poland in 2019 and 2020 for Biatobrzeskie and Henola varieties was used. The varieties
to be tested were selected due to their very high popularity both in Europe and in the
world, and the largest number of plantations and batches from them, among other varieties
contracted by the Institute of Natural Fibers and Medicinal Plants—National Research
Institute (INF&MP-NRI). The Biatobrzeskie variety is a monoecious, stabilized variety with
a high fiber content, cultivated for textile purposes since the 1960s [21-23]. It belongs to
Central European forms and is adapted to Polish climatic and soil conditions [24], but
it is successfully cultivated in other European countries, as well as in North America,
South America and Australia, among others [25-27]. The Henola variety was bred in
response to the growing market demand for hemp seeds and oil. It was bred through
the positive selection of monoecious plants characterized by the shortest height, well-
developed inflorescences and a short vegetation period. In 2017, it was entered into the
national Research Centre for Cultivar Testing (RCCT) register [23,27]. It is characterized by
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a vegetation period shorter by about a month, the technical length of plants almost twice as
long, and significantly larger inflorescences than the Bialobrzeskie variety (Figure 1) [28]. It
is a Polish variety, but, like Bialobrzeskie, popular and cultivated around the world [26,27].

'Biatobrzeskie'

'Henola'

Figure 1. Comparison of hemp plants of Biatobrzeskie and Henola varieties [Source: own study
based on: [29]].

2.2. Collected Data and Methods

When analyzing hemp agricultural technology [29-32], it was concluded that the
input data needed to generate neural models should be: soil class, forecrop, number of
seeds sown per hectare, weather conditions, degree of qualification and form of harvest.
Yield—weight of seeds collected from one hectare of plantation and yield quality—seed
germination of a given batch were taken as the output data.

The following data was collected:

plantation size (ha);

weight of seeds sown on the plantation (kg);

soil class—according to the soil quality classification adopted in Poland [33];
forecrop—a plant grown on the same field in the growing season preceding the hemp
cultivation season;

category—category of seed material sown on a given plantation, according to the Seed
Law [34];

form of harvesting—one- or two-stage harvesting;

seed moisture (%)—on the basis of data from the ISTA Certificate;

crop quality—germination in % given on the ISTA Certificate;

weather conditions—average monthly temperature and monthly rainfall from April
to November, based on data provided by the Institute of Meteorology and Water
Management—National Research Institute (IM&WM-NRI) on its website [35].
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Ultimately, 24 training variables and 336 seed batch cases were included in the
dataset. They constituted a training set for ANN models. For data to be entered into
STATISTICA 7.1, the file was converted to Comma-Separated Values (CSV) format.

From the training set prepared in this way, 3 ANN models were generated:

1.  “Germination and yield 17, with two output variables: yield per hectare and seed
germination (%);

2. “Germination 1”, with one output variable: seed germination (%);

3. “Yield 1”7, with one output variable: yield per hectare.

The STATISTICA 7.1 simulator divided the training set into three subsets:

1.  Training subset (U) used to teach the network;

2. Validation subset (W), allowing the control of the effects of the learning algorithm
during the learning process;

3. Test subset (T)—which allows the assessment of the quality of the generated neural
network.

The division into subsets was carried out in the default way for the program, according
to the proportion: 2:1:1.

The ANN simulator in the STATISTICA 7.1 package was used for the neural modeling
process. The process was carried out in two stages. The former used the Automatic
Designer function and the latter used the User Network Designer function.

Using the Automatic Designer function, neural models were generated and analyzed
at the next stages. It was assumed that the simulator should test 20 networks of each
type and keep the 10 with the best results. The condition of maintaining the network was
considered to be a balance between the error and the diversity of the network in order to
obtain a wide range of produced models in order to select the optimal topology [36].

The research was carried out using ANN, as the method has been successfully used in
the field of agricultural and life sciences for yield prediction and evaluation, and is also
excellent for evaluating characteristic variables. PNN (Probabilistic Neural Networks),
GRNN (Generalized Regression Neural Networks), RBF (Radial Basis Function Networks)
and MLP (Multi-Layer Perceptrons) were tested. Among the networks generated using
the Automatic Designer function, the best characteristics were achieved by RBF networks,
followed by MLP networks. They are characteristic of non-linear solutions.

After analyzing the models generated using the Automatic Designer function, it
was decided to continue the work related to modeling using the User Network Designer
function. It was decided to use two networks (RBF and MLP) which achieved the best
characteristics in the first stage of research. The best characteristics were achieved by RBF
networks, which are shown in results section.

Using this option, 3 RBF models were generated, containing 10 networks each, in
which the output variables were again:

1.  “Germination and yield 2”;
2.  “Germination 2”;
3. “Yield 2”.
The networks were trained with the following algorithms:

1.  SS—SubSample;
EX—by user (Explicit)}—determination of radial deviation;
3.  PI—Pseudoinversion.

N

The error and quality metrics were used to evaluate the models. The error was
assumed to be RMSE (Root Mean Square Error), which is represented by the formula:
1 Py2
RMSE = [} (vi = v)

n
t=1
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Quality is understood as the quality of the network for different subsets obtained
during network training. For regression networks, the quotient of standard deviations is
given as the network quality.

3. Results

3.1. Qualitative Characteristics and Sensitivity Assessment of the Generated Neural Network
Models Created Using the Automatic Designer Function

The 3 best networks were selected for each of the models generated using the Automatic
Designer function. The number of training cases in the set was 336. The number of training
variables was from 23 to 24, depending on the generated model (Table 1).

Table 1. Summary of neural models generated with the Automatic Designer function.

Learning Validation Testing Learning Validation Testing Learning
Model Network Quality Quality Quality Error Error Error Algorithm
Germination - ppr 5413222 0.9626 0.9756 0.9837 0.1359 0.1874 01619 KM, KN, PI
and yield 1
Germination 1 RBF 15:41-6-1:1 0.9685 0.9624 0.9252 0.1755 0.1617 0.1742 KM, KN, PI
Yield 1 RBF 17:49-13-1:1 0.7659 1.2494 0.9799 0.0019 0.0035 0.0029 KM, KN, PI

The best results were shown by RBF-type networks. These networks are characterized
by one hidden layer with radial neurons. The networks generated using the Automatic
Designer function had 3, 6 and 13 neurons in the hidden layer. The networks with 3 and
6 neurons were characterized by low error and high quality. The network with 13 neurons
showed signs of overfitting.

In the first model, with two output variables: germination and yield, in the first stage of
the research (model: “Germination and yield 1”), for the RBF 15:41-3-2:2 network generated
using the Automatic Designer function, the learning quality was 0.9626, validation quality
was 0.9756, and test quality was 0.9837. The network learning error for the training set
was 0.1359, the validation error was 0.1874, and the test error was 0.1619. KM, KN and PI
algorithms were used for the network learning process.

In the model with one output variable, which was germination (model: “Germination
17), the RBF 15:41-6-1:1 network generated using the Automatic Designer function showed
a learning quality of 0.9685, a validation quality of 0.9624, and a test quality of 0.9252. The
learning error was 0.1755, the validation error was 0.1617, and the test error was 0.1742.
KM, KN and PI algorithms were used for the network learning process.

In the third case, for the network with one output variable: yield (model: “Yield 1”),
for the RBF 17:49-15-1:1 model, generated using the Automatic Designer function, the
learning quality was 0.7659, the validation quality was 1.2494 and test quality was 0.9799.
The learning error was 0.0019, the validation error was 0.0035, and the test error was 0.29.
KM, KN and PI algorithms were used for the network learning process.

The “Germination and Yield 1” and “Germination 1” models generated in the first
stage of the research, using the Automatic Designer function, were characterized by high
quality and low error. The “Yield 1” model showed features of network overfitting, so it
was decided to continue the research using the User Network Designer function.

3.2. Qualitative Characteristics and Sensitivity Assessment of the Generated Neural Network
Models Created Using the User Network Designer Function

The best 3 networks were selected for each of the models generated using the User
Network Designer function. The best characteristics were shown by RBF-type networks.
Researchers checked the optimal number of neurons in the hidden layer, gradually increas-
ing it. The best results were obtained with 9 neurons in the hidden layer. With a dozen
neurons in the hidden layer, the networks began overfitting.
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Networks generated using the User Network Designer function were mostly character-
ized by higher quality and lower RMSE error than networks generated using the Automatic
Designer function (Table 2).

Table 2. Comparison of neural models generated with the User Network Designer function.

Learning Validation Testing Learning Validation Testing Learning

Model Network Quality Quality Quality Error Error Error Algorithm

Germination g 2549922 0.9847 0.9934 0.9992 0.1135 0.1096 01195  SS,EX,PI
and yield 2

Germination 2 RBF 22:51-9-1:1 0.9841 0.9997 0.9999 0.1867 0.2147 0.2001 SS, EX, PI

Yield 2 RBF 22:45-9-1:1 0.9898 0.9905 0.9790 0.0023 0.0025 0.0020 SS, EX, PI

The RBF 22:49-9-2:2 network, generated in the second stage of the research (model: “Ger-
mination and Yield 2”) using the User Network Designer function, was characterized by a
learning quality 0.9847, a validation quality of 0.9934 and a test quality of 0.9992. The network
learning error for the training set was 0.1135, the validation error was 0.1096 and the test error
was 0.1195. The SS, EX and PI algorithms were used for the network learning process.

The RBF 22:51-9-1:1 network, generated using the User Network Designer function
(“Germination 2” model), had a learning quality of 0.9841, a validation quality of 0.9997
and a test quality of 0.9999. The training, validation and test errors for this network were
0.1867, 0.2147, 0.2001, respectively. The network was trained with SS, EX and PI algorithms.

For RBF 22:45-9-1:1 networks generated using the User Network Designer function
(model: “Yield 2”), the learning quality was 0.9898, the validation quality was 0.9905, and
the test quality was 0.9790. The errors: learning error 0.0023, validation error 0.0025 and
test error 0.0020. The SS, EX and PI algorithms were also used in the learning process of
this network.

The “Germination and Yield 1”7 and “Germination 1” models generated in the first
stage of the research, using the Automatic Designer function, were characterized by high
quality and low error. The “Yield 1” model showed features of network overfitting. In the
second stage of the research, carried out using the User Network Designer function, the
models did not show features of network overfitting. In addition, in the “Germination
and Yield 2” model, the network quality was higher and the errors were lower than in the
“Germination and Yield 1” model. In the “Germination 2” model, the web qualities were
higher than in the “Germination 1” model, but the errors were lower in the “Germination 1”
model. The “Yield 2” model had a higher learning and validation quality than the “Yield 1”
model, and the test quality of both models differed slightly—by 0.01%. The “Yield 2” model
was characterized by a higher learning error, but lower validation and testing errors than
the “Yield 1” model.

Figure 2 shows screenshots of all 3 generated RBF models (Figure 2).
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Figure 2. Screenshots of RBF 22:49-9-2:2, RBF 22:51-9-1:1 and RBF 22:45-9-1:1.
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3.3. Sensitivity Analysis

An important point in the process of neural modeling is the sensitivity analysis,
during which importance ranks are determined for individual variables. This allows the
determination of which variables are crucial for the correct learning process and operation
of the neural model, and which are of little importance. It is believed that in cases where
the error quotient is less than or equal to unity, the removal of the analyzed variable not
only has no impact on the operation of the network, but may improve the quality of the
generated model. The criterion for the sensitivity analysis was the quotient of the error
obtained without the considered variable and the error obtained with the use of all learning
variables. On the basis of the quotient, the individual variables were assigned appropriate
ranks according to the following rule: the smaller the quotient, the higher the rank. The
STATISTICA 7.1 simulator assigns appropriate ranks to individual variables and ranks
them, thus supporting the sensitivity analysis process. The lower its rank value, the more
important the variable is for the neural modeling process. In the course of the research, a
sensitivity analysis of the variables of individual training sets that were involved in the
neural modeling process was carried out. Due to this, the information on the level of
significance of individual variables was obtained. The results are summarized in Table 3.

Table 3. Sensitivity analysis of the RBF 22:49-9-2:2, RBF 22:45-9-1:1 and RBF 22:51-9-1:1 models.

Network RBF 22:49-9-2:2 RBF 22:45-9-1:1 RBF 22:51-9-1:1

Variable Quotient Rank Quotient Rank Quotient Rank
total precipitation _4 1.0622 8 1.0120 6 1.0066 10
total precipitation _5 1.0640 7 1.0120 1 1.0074 2
total precipitation _6 1.0657 2 1.0120 3 1.0074 6
total precipitation _7 1.0657 3 1.0120 4 1.0074 1
total precipitation _8 1.0655 6 1.0112 8 1.0074 5
total precipitation _9 1.0657 1 1.0079 9 1.0074 3
total precipitation _10 1.0657 4 1.0120 2 1.0074 4
total precipitation _11 1.0657 5 1.0120 5 1.0074 7
average monthly temperature _4 1.0221 11 0.9982 18 1.0028 13
average monthly temperature _5 1.0266 10 1.0051 11 1.0039 11
average monthly temperature _6 1.0311 9 1.0079 10 1.0074 8
average monthly temperature _7 1.0207 12 1.0020 12 1.0023 15
average monthly temperature _8 1.0143 15 0.9992 14 1.0016 16
average monthly temperature _9 1.0027 20 0.9979 20 1.0005 21
average monthly temperature _10 1.0057 19 0.9989 15 1.0003 22
average monthly temperature _11 1.0176 14 0.9981 19 1.0014 18
quantity of seeds sown per hectare [kg] 1.0016 21 1.0113 7 1.0071 9
variety 1.0007 22 0.9973 21 1.0006 20
soil class 1.0121 16 0.9967 22 1.0035 12
forecrop 1.0203 13 1.0003 13 1.0027 14
seeds category 1.0078 17 0.9985 16 1.0015 17
harvesting form 1.0062 18 0.9984 17 1.0008 19

On the basis of the performed sensitivity analysis, the ranks of the ANN input variables
were determined and they were assigned an appropriate hierarchy. These ranks determine
the level of significance of the variables in the context of the quality of operation of the
generated neural models.

89



Agriculture 2023, 13, 1097

4. Discussion

Agricultural crops are characterized by frequent non-linearity of processes and phe-
nomena, which makes the relations between them complex and not easy to describe and
characterize. Therefore, where traditional statistical methods of describing the studied
phenomena fail, the use of artificial intelligence is used [3]. The use of ANN to predict the
yield of agricultural plants is more and more often undertaken by researchers from around
the world.

Research on the use of ANN in agriculture was conducted, among others, by Medara’s
team, which worked on data obtained from the Indian Ministry of Agriculture on sugar
cane. The studies included data from different regions, which meant differences in the
course of weather conditions and sowing dates—similar to the studies presented in this
article. Experiments were carried out for 2160 different models. The team was able
to successfully model yield with an overall accuracy of 83.49%. The smallest error value
achieved was 4.03 [37]. On the other hand, Niedbata and Koztowski built three independent
models for forecasting winter wheat yields. Models were built using ANN with MLP
topology based on meteorological data (air temperature and precipitation) and information
on applied mineral fertilizers. The lowest error value was 8.85 [38]. The presented research
on the prediction of hemp yield quality and quantity is in line with the global trend. RBF-
type models generated in the second stage of the research, using the User Network Designer
function, are characterized by high quality of 97-98%. This quality is higher than the
quality of networks generated by researchers conducting research on the yield of, e.g.,
sugar cane—83.49% [37], and comparable to the quality of the network created by Gandhi’s
team investigating rice yield—the model of these researchers was characterized by a quality
of 97.5% [39].

Research on the use of ANN in forecasting hemp yield was undertaken by Frankowski’s
team. The results obtained during the experimental plots were used to build a dataset for
the ANN. Four input data were adopted: total precipitation, mean temperature, fertilizer
and straw yield. Linear, MLP and RBF networks were tested using STATISTICA 7.1. The
best results were obtained for linear networks. They were characterized by a quality of
0.910 and a test error of 0.336 [20]. In the research presented in the following article, data
from seed orchards were used and the set of input data was significantly expanded. As a
result, RBF-type networks were produced with a test quality higher by 0.069 and an error
lower by 0.334 than linear networks produced during tests on experimental plots.

A very interesting solution is also the use of Al to predict yields using image analysis.
Vijayakumar’s team developed three ML-based models for citrus fruit yield prediction
based on the use of Unmanned Aerial Vehicle (UAV) imaging and ground imagery. Four
ML algorithms were used to generate the models—gradient enhancing regression (GBR),
random forest regression (RFR), linear regression (LR) and partial least squares regression
(PLSR). The best generated model was characterized by a Mean Absolute Percentage Error
(MAPE) of 23.45% [40]. Taking into account the growing popularity of the use of UAV
and the opportunities it gives, as well as the often-high variability of, e.g., terrain or soil
in one field, the use of this technique supported by ANN seems to be an interesting and
legitimate supplement to research on the yielding of agricultural plants, including hemp.
They are characterized by the fact that they show differences in development and yield
depending on the conditions in the field, which, due to the considerable height of the
plants, is practically impossible to determine from the ground level.

As the examples cited show, innovations in the field of technology, including those
related to Al methods, are more often and more willingly used in agricultural practice.
They are also widely used in crop yield forecasting. Scientists successfully use ANN to
forecast the yield of various agricultural crops economically important for a given country
or region, and the hemp industry is developing very dynamically around the world.

However, the researchers recognize the limitations of both the use of ANN and those
of the current study. For this reason, it is planned to continue the research after extending
the dataset with information from the next growing season. Taking into account the
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variety of available advanced artificial intelligence and machine learning methods, after
increasing the dataset, it is also planned to undertake research using other methods, e.g.,
Deep Learning.

Another problem to solve in yield prediction is the impact of violent weather phe-
nomena, such as hailstorms or exceptionally heavy rains. In the era of progressive climate
change, these phenomena are becoming more and more frequent, but at the same time
difficult to predict, and their occurrence can significantly mechanically damage or even
completely destroy plantations. Therefore, taking up this problem seems to be extremely
important and interesting.

5. Conclusions

Based on the conducted research, it was shown that it is possible to create a predictive
neural model for assessing the yield of industrial hemp seeds based on a set of characteris-
tics obtained during the agrotechnical process. The information obtained from hemp seed
plantations of the Biatobrzeskie and Henola varieties was sufficient to build a training set
for ANN. The sensitivity analysis carried out showed that in Germination and yield 2 and
Germination 2 models, all quotients were higher than unity, and in the Yield 2 model higher
or very close to unity, which means that all data from the training set were important for
the proper operation of the network.

Modeling using one output variable, which is seed yield, can be used not only in
seed orchards, but also in the case of industrial crops, which are gaining more and more
importance. Hemp is cultivated on such plantations, e.g., to obtain seeds for food purposes
(e.g., for pressing oil or producing dehulled seeds or hemp flour). This branch of the hemp
industry is developing very intensively, mainly due to its growing popularity. Therefore, it
is extremely important to determine the parameters affecting the yield of seeds.

It is planned to continue the research by extending the dataset with information
from the next growing season. This should allow for even better research results and
optimization of the set of input data necessary to create a neural model that will be able to
forecast the yield of hemp seeds or grains as accurately as possible in the short term.
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Abstract: Different soil characteristics in different parts of India affect agriculture growth. Crop
growth and crop production are significantly impacted by healthy soil. Soil enzymes mediate almost
all biochemical reactions in the soil. Understanding the biological processes of soil carbon and
nitrogen cycling requires defining the significance of prospective elements at the play of soil enzymes
and evaluating their activities. A combination of Multiple Linear Regression (MLR), Random Forest
(RF) models, and Artificial Neural Networks (ANN) was employed in this study to assess soil enzyme
activity, including amylase and urease activity, soil physical properties, such as sand, silt, clay, and
soil chemical properties, including organic matter (SOM), nitrogen (N), phosphorus (P), soil organic
carbon (SOC), pH, and fertility level. Compared to other methods for estimating soil phosphatase,
cellulose, and urease activity, the RF model significantly outperforms the MLR model. In addition,
due to its ability to manage dynamic and hierarchical relationships between enzyme activities, the RF
model outperforms other models in evaluating soil enzyme activity. This study collected 3972 soil
samples from 25 villages in the Bhandara district of Maharashtra, India, with chemical, physical, and
biological parameters. Overall, 99% accuracy was achieved for cellulase enzyme activity and 94%
for N-acetyl-glucosaminidase enzyme activity using the Random Forest model. Crops have been
suggested based on the best performance accuracy algorithms and evaluation performance metrics.

Keywords: soil organic matter (SOM); soil enzyme activity (SEA); soil organic carbon (SOC); physical
soil features; chemical soil features; machine learning (ML); Artificial Neural Network (ANN)

1. Introduction

Various factors, including agricultural soil, soil management, soil productivity, irri-
gation, fertilizer, and climate, impact the agriculture sector to produce a good quantity
of crops. The primary determinant of an agricultural field is the soil. The capacity of
agricultural soil to develop crops depends on the nutrients it contains. Each soil has a
variety of physical, chemical, and biological components. Several researchers have been
researching agricultural soil to improve soil quality and other factors, but they have not
yet achieved suitable outcomes. Artificial intelligence techniques are more useful and
innovative. This technique has the best results for improving and growing crops in the
agricultural field, which is helpful to the farmers. Soil quality and the amount of farmed
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land in Maharashtra agriculture have continued to decline due to a lack of expertise and
a harsh environment, which significantly impacts economics and crop production [1,2].
Climate change is affecting the agricultural sector, decreasing crop yield, diminishing soil
organic carbon (SOC), changing acceptable cropping areas latitudinal, changing growth
time, and causing soil degradation [3]. Due to constant degradation and changes in its
composition, the state of soil changes over time [4]. Sustaining the productivity of soil for
agriculture requires appropriate stability of physical, chemical, and biological elements [5].

Due to a lack of knowledge about agriculture, farmers are unable to identify the
deficiency of important nutrients in the soil that are conducive to growing crops. In terms
of the farmers’ situation, this work has been proposed. This work uses state-of-the-art
artificial technology to develop the prediction of a soil fertility and soil enzyme activity
model using a soil dataset from Bhandara district, Maharashtra state, which is helpful to
farmers in identifying the nutrient deficiency that is present in the soil. This model was
developed by using Python programming with Jupiter Notebook.

The assessment of soil minerals is required for compaction characteristics monitoring.
Microorganisms make up a large portion of the biological ingredients of soil and contribute
more to its strength than physical or chemical constituents. Microorganisms respond
quickly to changes in soil structure and become utilized in their surroundings [6]. Farmers
are not gaining the appropriate level of crop productivity as an outcome of weather change
and biological activity. In this case, soil biochemical analysis, together with soil chemical
and physical features, is critical for minimizing and decomposing the nutrient cycle and
providing for the crop [7].

Soil enzymes play a vital role in the biogeochemical cycle of “carbon (C), nitrogen
(N), and phosphorus (P)” in the soil and can be employed as early indicators of nutrient
imbalances caused by climate change [8,9]. Soil enzyme activities include carbon cycle
transformations such as C-glucosidase and invertase, as well as general enzyme activity
such as dehydrogenase and catalase, and nitrogen cycle transformations such as urease
has a direct impact on the nitrogen supply rate in soil, which is commonly employed as
a measure of nitrogen deficiency, N-acetyl-glucosaminidase, and protease [10,11]. Soil
enzyme activity can help researchers better understand the biological mechanisms of
“carbon and nitrogen” transformation and provide guidelines for assessing soil quality in
specific areas [12,13].

Several studies have been created and implemented that are connected to estimating
soil enzyme activity utilizing various approaches to acquire the results [14]. Based on
this research, it is possible to determine the research gaps of soil enzyme activity and
how we can increase the biological mechanism associated with specific enzymes in the
carbon and nitrogen cycle in the interest of increasing agricultural yield. Multivariate
linear regression (MLR) is the most widely used method for estimating soil parameters
due to its simple design, quick calculation, and interpretation. On the other hand, MLR is
unable to detect nonlinear relationships between responses and environmental variables.
As a result, machine learning methods like “Artificial Neural Network (ANN), Support
Vector Machine (SVM), Classification and Regression Tree (CART), and Classification
Regression Tree (CART)” are increasingly being used in soil property assessment. Machine
learning approaches can represent linear and nonlinear correlations between responses and
environmental factors and have a simple structure, good fitting ability, and high prediction
accuracy [15].

This method offers a novel and more convenient way to assess and estimate soil pa-
rameters such as “soil texture, salinity, soil organic carbon, and nitrogen”. Random Forest
(RF) is a data mining approach developed as an extension of CART [16-18]. The RF model
has several advantages over additional statistical modeling techniques, including the capa-
bility to represent extremely nonlinear dimensional associations, resistance to “overfitting”,
relative dependability in the presence of noise data, the creation of an Unbiased Error Rate
measure, and the ability to discern the significance of the variables used. As a result, the
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RF model has been frequently used to estimate soil properties in multivariate nonlinear
data processing. The main contribution of this research paper is as follows:

1. Predict the activity of soil enzymes based on chemical and physical soil parameters.

2. Evaluate the optimal performance model by correlating all factors.

3. Select and determine the optimal artificial approach algorithm for estimating enzyme
activity.

4. Compare the performance model-finding algorithm (PSEA-ML and PSEA-ANN).

2. Materials and Methods

The Bhandara district is in the eastern plateau and hills region of the Maharashtra state
of India. The study area is located at 20°44'59.99” N latitude and 79°52/59.99” E longitude.
The elevation of the study area is probably 2000 m, and the average annual temperature and
precipitation at the site are 59.6 degrees Celsius and 250 mm [19], respectively. Different
types of soils are available in this region, ranging from deep loamy to clay soil mixed
with red and black soils. According to the study of soil analogies, different soils are
classified as sand, silt, and clay. This study collects various forms of “sand, silt, soil,
pH, nitrogen, phosphorus, soil organic matter (SOM), soil organic carbon (SOC), and soil
enzyme activity”. Soil is used to assess the quality and quantity of each area of land, to
determine whether it is balanced or unbalanced, based on the presence of each feature [20].

2.1. Soil Dataset

The soil data used for this research are from different formers with different blocks.
There are three types of soil components available in agricultural soil, i.e., physical soil,
chemical soil, and organic soil, which are more important for growing crops. Physical
soils are identified by properties such as soil texture, soil structure, soil density, and soil
temperature. Soil texture is the main property of physical soil. Therefore, soil texture
has been considered in this research. The texture of the soil consists of sand, clay; silt,
and depth. Many chemical components are available in chemical soil properties; only
nitrogen and phosphorus are included here. Similarly, biological soil properties contain
many factors, but here only enzymes are included. Some other components like pH value,
soil organic carbon (SOC) and soil organic matter (SOM) are included, which is significant
to identify the soil enzyme activities. Two types of soil data have been taken in this research;
the first type of soil data is for soil fertility, and the second type of soil data are for soil
enzyme activity. Soil data are taken from 25 different villages in the Bhandara district of
Maharashtra state, India.

Each soil sample presents different chemical, physical, and biological components.
The first parameter is Ph value, which is broadly categorized into three categories—neural,
acidic, and alkaline—and represented on a scale from 0 to 10. Ph neutral value is around 7,
below 7 is acidic, and above 7 Ph value is alkaline. Sand, silt, clay, nitrogen, phosphorus,
soil organic matter, and soil organic carbon parameters are represented by their percentage
of content available in each soil sample. Based on content analysis of all the parameters
identified, the soil fertility level is considered either low, medium, or high. Soil depth
represents how much depth is required to remove the soil for soil testing. Soil depth is
used for collecting the soil sample for soil testing. The maximum depth of the soil sample
is more effective for finding soil enzymes because more soil organisms are available at a
greater depth in the soil. A total of 3972 soil sample data were taken with 11 parameters,
as shown in Table 1. Soil was collected from each farmer for soil testing of each soil
sample, using the farmer’s identity to identify which farmer’s soil is deficient of nutrients.
For verifying and repeatability of soil samples, preprocessing techniques like finding the
missing values, repeated values, and converting from categorical values to numerical
values were implemented. Based on this assessment and analysis of soil, a soil dataset was
generated for developing the proposed research work.
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Table 1. Soil sample dataset of Bhandara district, Maharashtra.

Sand Silt Clay N P SOM SOC Fertility Depth .
S. No. Ph (%) (%) (%) (ppm)  (ppm) (ppm) (ppm) Level (cm/mm) Soil Enzyme

1 7.70 20.00 43.00 36.00 40.60 12.60 12.60 9.70 Medium 30 Urease

2 6.58 20.00 43.00 36.00 40.60 12.60 12.60 9.70 Medium 30 Urease

3 6.12 20.00 43.00 36.00 40.60 12.60 12.60 9.70 Medium 30 Invertase

4 6.50 20.00 43.00 36.00 40.60 12.60 12.60 9.70 Medium 30 Invertase

5 6.12 20.00 43.00 36.00 40.60 12.60 12.60 9.70 Medium 30 Acid phosphatase
6 6.42 20.00 43.00 36.00 40.60 12.60 12.60 9.70 Medium 30 Acid phosphatase
7 6.24 20.00 43.00 36.00 36.15 8.23 8.23 9.70 Low 30 Urease

8 6.84 20.00 43.00 36.00 0.87 0.87 1.23 17.28 Low 20 Protease

9 6.84 20.00 43.00 36.00 1.20 1.20 1.23 17.28 Medium 20 Protease

10 6.84 33.00 21.00 46.00 1.37 1.37 1.23 17.28 Medium 20 Protease

2.2. Pre-Processing of Soil Dataset

Before applying machine learning algorithms, pre-processing techniques are required
to clean the data and convert the non-numeric data into numeric ones; for example, con-
verting the enzyme classification to a numerical form such that 1 indicates the presence of
urease and 0 indicates the absence. Similarly, all enzymes need to convert 1 s and 0 s into
numerical form. The soil fertility characteristic has three levels—namely low, medium, and
high—which also need to be converted into a numerical form, such as low level indicates 0
values, medium level indicates 1 value, and high level indicates 2 values. After completing
the pre-processing techniques, 80% of the data is used for the training model and 20% of
the data for the testing model.

2.3. Proposed Methodology

This paper proposes a methodology to predict soil enzyme activities using machine
learning algorithms (Multiple Linear Regressions (MLR), Random Forest (RF), Extremely
Randomized Tree Classifier (ERTC), and Artificial Neural Network (ANN)) by analyzing
physical soil characteristics and chemical characteristics. The block diagram of the proposed
methodology (PSEA-PC) predicts the soil enzyme activity and crops, as shown in Figure 1.

Feature Extraction Process

Missing Values

Scaling Values

Soil Elements
Sand. PH. SOM. So1l Dataset Model Developement
Silt, Clay || SOC.N, u [ g _ 1 Multiple Linear Regression
Depth P Fertility L 1 Rarisn Eorcet
Level =1 v Eoiemch o o ol
‘ el | Artificial Neural Network

00000

Predict Seil Enzyme Model Validation
Activity
: - Accuracy MSE, MAE
Estimate Crops Using EMSE
Fertility Level and
Soil Enzyme B

Figure 1. Block diagram of proposed methodology (PSEA-PC).
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2.3.1. Development of the ML Model
This section interpreted the different machine learning algorithms with soil enzyme activity.

A.  Multiple linear regressions for soil enzyme activity

MLR is a type of supervised machine learning regression technique. Multiple linear
regression models are the most suitable technique for predicting soil characteristics [21,22].
Consider a linear regression relationship between numerous independent variables, such
as x1, X2,x3.....X,, and a dependent variable used (ypred); € is denoted as the model error
term provided in Equation (1):

n
Ypred = Z bixi+ €= boxo + b1x1 + ... byxy+ € 1)
i=1

where Y is the dependent variable or outcome, x;(i =0, 1, 2, 3, ... , n) are independent
variables, ¢ is an intercept, b; (i =0, 1, 2, 3, ..., n) is the regression coefficient, and € is
the residual of regression or error. The cost function (K) is used to find and minimize the
error from dependent and independent variables; the best-fit line is provided in Equation
(2). The optimized best-fit line is determined using gradient descent utilizing Equation
(3), which uses a convergence algorithm for calculating the gradient descent (by); detailed
discussion is given in Algorithm 1.

1 n
K(bo, b1) = =, Y (y_pred — y)? ()
n i=1

d
ab =k (bo, bl) (3)

« implies the learning rate and it could be considered a small range like 0.001, and k implies
the feature index number k = (0,1,2,3,......... n). From Equations (2) and (3), we obtain
Equation (4):

Gradient_descent (by) = by —

n

o
be=be—— ) (y_pred —y) @)
i=1

Algorithm 1 PSEA-MLR-I (Predict the soil enzyme activity using Multiple Linear Regression)

Target: Optimal combination of response variables and enzyme activity in the soil

Input: N = (PH, Sand, Silt, Clay, N, P, SOM, SOC, Fertility level, and Depth)

Output: K = (Predict soil enzyme activity)

1: Initialization of all N and K soil data parameters

: Pre-processing of the soil dataset with N and K parameters

: Randomly select 80% soil dataset for training and 20% soil dataset for testing purposes
: Apply MLR-supervised ML algorithms on a given data set

: Compute the Accuracy, MSE, RMSE, and MAE of the model

: Predict soil enzyme activity

End

N9 W N

B. Random Forest for soil enzyme activity

The Random Forest model is a multivariate technique that was created to improve the
efficiency and accuracy of Classification and Regression Trees (CART). This model combines
numerous Classification and Regression Tree algorithms and random variable selection and
bagging to make each Classification and Regression Tree more fulfilled. Simultaneously,
random feature extraction and bagging techniques cause every factor in the Random Forest
to have a smaller correlation [23,24]. Calculate information gain (IG) using the entropy
method of all splitting feature data given in Equation (5) and Algorithm 2.

IG (IDV, DV ) = Entropy (IDV) — Entropy (IDV, DV) (5)
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For Binary Tree Gini, the importance of two child nodes is provided in Equation (6).
mij=WejCi = Weiegs(j) Cregr(j) = Werignt(j) Crigit(j) ©)
The importance of each feature of the decision tree can be calculated in Equation (7)

" node i splits on feature i mi;
Fei:Ez_l jsp f : j )
Zk eall nodes M1;j

IDV implies an independent variable (x; features), DV is a dependent variable (y; features),
mij implies the importance of node j, We(;) considers the weight number of samples
reaching node j, Wey,¢;(j) represents a left child node that is split on node j, C(;) implies an
impurity value of node j, and Fe; is the importance of features i; see i Equations (8) and (9).

Fe;
Narm,_ ———*+ ®
l Zk call nodes Fe;
REfe; = Yk call nodes Narm; o

IDV

Algorithm 2 PSEA-RF-II (Predict soil enzyme activity using Random Forest algorithms)

Target: Optimal combination of response variables and enzyme activity in the soil

Input: N = (PH, Sand, Silt, Clay, N, P, SOM, SOC, Fertility level, and Depth)

Output: K = (Predict soil enzyme activity)

1: Initialization of all N and K soil data parameters

: Pre-processing of the soil dataset with N and K parameters

: Randomly select 80% soil dataset for training and 20% soil dataset for testing purposes
: Apply RF-supervised ML algorithms on a given data set

: Compute the Accuracy, MSE, RMSE, and MAE of the Model

: Predict soil enzyme activity

End

NS Uk N

This algorithm has been used for predicting soil enzyme activity using Random
Forests. First, initialize the soil parameters including the chemical, physical, and biological
components. Then, use the pre-processing techniques for cleaning the data, converting the
categorical to numerical, and determining the missing and null data. Next, select 80% of
the data for training and 20% for testing and use the Random Forest model to identify the
best accuracy using evaluation metrics like MSE, RMSE, and MAE.

C. Extremely Randomized Trees Classifiers for soil enzyme activity

Extremely Randomized Trees Classifiers are a form of ensemble classification algo-
rithm that outputs a classification result by combining the outcomes of several de-correlated
decision trees aggregated in a “forest.” (Algorithm 3). It is conceptually identical to a Ran-
dom Forest Classifier, apart from how the decision trees in the forest are constructed.
Create an additional tree classifier based on each decision tree’s original dataset [25]. Using
mathematical notation, randomly choose n features from a collection of all features offered
by each tree for splitting the data and obtaining the best feature of all trees (Gini Index).
This decision tree creates a multi-correlated feature from various random samples. First,
we need to calculate the entropy of each feature based on mathematical Equation (10):

Entropy(s) = ) " | —piloga (pi) (10)

where Entropy(s) is a random sample of each feature of the tree, m is the number of unique
classification labels, p; is the proportion of each row with the target label i.
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Algorithm 3 PSEA-ERT-III (Predict soil enzyme activity using extremely randomized tree classifiers)

Target: Optimal combination of response variables and enzyme activity in the soil

Input: N = (PH, Sand, Silt, Clay, N, P, SOM, SOC, Fertility level, and Depth)

Output: K = (Predict soil enzyme activity)

1: Initialization of all N and K soil parameters

: Pre-processing of the soil dataset with N and K parameters

: Randomly select 80% soil dataset for training and 20% soil dataset for testing purposes
: Apply ERT-supervised ML algorithms on a given data set

: Compute the Accuracy, MSE, RMSE, and MAE of the Model

: Predict soil enzyme activity

End

N9 W N

2.3.2. Artificial Neural Network for Soil Enzyme Activity

An Artificial Neural Network (ANN) is a system that divides artificial neurons into
three layers (input, hidden, and output). During the training of the ANN approach when
used for regression analysis, the basic parameters of artificial neurons, such as weight,
threshold, and activation functions, were tuned [26-28]. Given input soil properties, this
ANN technique predicts soil enzyme activity (Algorithm 4). The ANN model with “relu”
and “sigmoid” activation functions was utilized to add a hidden layer. The soil enzyme ac-
tivities convert the cycle of carbon (C), nitrogen (N), and phosphorus (P) with C-glucosidase,
invertase, dehydrogenase, catalase, urease, N-acetyl-glucosaminidase, protease, which
are predicted using 80% of the training dataset and 20% of the testing dataset. Figure 2
shows the structure of an Artificial Neural Network Model. An Artificial Neural Network
is divided into two techniques for passing data known as forwarding propagation; the
forward propagation considered a perceptron is provided in Equations (11)—(15).

Y = (x1 xwey) + (x2 xwep) +........ + (2 * wey,) (11)
x we; = (x1 xwey) + (X xwep) +........ + (xn x wey) (12)
Y = x we (13)
Z =xwe; + B (14)

1
Ypred = o(z) = 1t+e=z (15)

where ¢ indicates an activation function of the neural model, we; is the identified weight
feature value, y 4 represents a predicted value, and B implies a bias of the neural model.
For implementing the Artificial Neural Network, various parameters are required like the
input layer, hidden layer, and output layer. Equation (11) shows the addition of all the
input features with weight to calculate the average of features. Equation (12) is determined
to simplify all the features with feature weight values. Equation (13) is determined to
optimize the feature along with weight values in a single process. Equation (14) produces
the outcomes by adding the bias (B) with all features and weight values. Equation (15)
shows the prediction of the result based on all features using the sigmoid function.
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Algorithm 4 PSEA-ANN-IV (Predict soil enzyme activity using ANN)

Target: Optimal combination of response variables and enzyme activity in the soil

Input: N = (Sand, Silt, Clay, PH, SOM, SOC, Available Nitrogen, Available Phosphorus, Depth)
Output: K = (Predict soil enzyme activity)

1: Initialization of all N and K parameters

:If (Sn! =Sc)

: Then pre-process and scale the data

: Otherwise, go to step 5

: Choose and select x and y variable

: Split 80% data for training and 20% data for testing

: Add first and second hidden layer (activation function = relu)

: Add output hidden layer (activation function = sigmoid)

9: Compile and validate data

10: Select the epoch and calculate the accuracy

11: Predict soil enzyme activity

12: End

(Where Sn = scale features from soil dataset, Sc = scale soil enzyme features of the dataset)

N O Ul W

Hidden layer Output Layer

Input Layer

Soil
Physical
Properties

Soil Enzyme
Activity

Soil
Chemical
Properties

Figure 2. Structure of ANN Model.

3. Result and Discussion

The descriptive statistics of soil enzyme activity with soil properties datasets are
shown in Table 2. The descriptive statistics summary includes the following parameters:
Minimum (Min), Maximum (Max), Standard Mean Value (Mean), and Standard Deviation
(SD). Python with jupyter notebook was used to implement the descriptive statistical
analysis, machine learning model, and Artificial Neural Network on Windows 10. In this
summary, calculate the descriptive statistics of PH, Sand, Silt, Clay, Available Nitrogen,
Available Phosphorus, SOM, SOC, Depth, Soil Fertility Level, and Soil Enzyme Activity.
The PH standard deviation value was smaller than the mean (SD Mean), and the soil
enzyme activity was SD > Mean. The mean value of available nitrogen and depth soil
parameters was extremely covariate (Mean > 100%) compared to other parameters, while
the standard deviation of available nitrogen and available phosphorus was highly covariate
(SD > 100%) compared to certain other factors [29]. Figure 3 illustrates the very positive
and strongly negative correlations of a soil dataset in matrix format and according to
this correlation, the correlation between sand depth and clay soil qualities is substantially
negatively correlated.
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Table 2. Statistics summary of soil physical, chemical features, and soil enzyme activity.

Soil Properties Mean Min Max SD

PH 6.3314 3.8000 8.7900 0.7280
Sand 38.1617 8.0000 90.0000 19.3332
Silt 31.7412 4.0000 67.0000 14.5515
Clay 32.1268 11.0000 47.0000 10.5310
Available Nitrogen 19.1986 0.6900 317.0000 51.6195
Available Phosphorus 9.9923 0.6900 146.5000 23.0569
SOM 5.1652 0.6900 127.2000 11.1173
SOC 7.6628 0.6900 127.2000 14.1052
Depth 19.2412 10.0000 30.0000 5.4071
Soil Fertility Level (Low, Medium, and High) 1.2921 0.0000 2.0000 0.8235
Soil Enzyme 9.3529 0.0000 19.0000 18.0000
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Figure 3. Heatmap of the positive and negative correlation of all soil features.
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Model Validation

In this study, the dataset collected approximately 3972 soil sample datasets, of which
we used the training dataset of randomly selected records, accounting for approximately
80% of the total records, to develop Multiple Linear Regression, Random Forest, extra
tree classifier, and Artificial Neural Network models, and the testing dataset included the
remaining 20% of the records to verify the model’s estimation accuracy for soil enzyme
activities [30]. The performance of the ML and ANN models was assessed using the coeffi-
cient of determination (R2), mean absolute error (MAE), root mean square error (RMSE),
classification report, and confusion matrix in Table 3. The following are the evaluation
performance indices calculated to validate the models provided in Equations (16)—(18).

2
Yy (pre; —obs;)

RP=1- —
Y., (obs; —obs;)

(16)

1 n
MAE = . ;| pre; — obs; | (17)

i=1
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n
RMSE = \/111 Y (obs; — pre; )* (18)
=1

where pre; and obs; are the predicted and observed values, respectively, from a random
sample of i, obs; is the mean value observation, and # is the total number of sample records.

Table 3. Confusion matrix with classification metrics report.

Predicted Soil

Enzyme Activity Data
Positive Negative

Positive True Positive (TP) False Negative (FN) Sel’lS%}:)lVlty

Actual Soil (TP+FN)

Enzyme Activity Data ifici
Y y Negative False Positive (FP) True Negative (TN) SpeCT1£c1ty

(TN=FP)

. Negative Predictive

. . Precision Accuracy

Classification Metrics TP Value TP-+TN

(TP+FP) ™ (TP+TN+FP+FN)

(TN+FN)

These tables have identified the confusion matrix with classification reports. There are
four parameters: true positive, true negative, false positive, and false negative. Based on
these parameters, the actual observation and predicted observation has been measured.
This study identifies the actual soil enzyme activity and predicts the soil enzyme activity
based on the confusion matrix.

This correlation aims to identify important features that may be used to implement
and estimate soil enzyme activity using numerical data from the training and testing
datasets. Figure 4 depicts the dataset’s summary of soil enzyme activity. In this study,
3972 soil samples were collected from the Bhandara district of Maharashtra to predict the
activity of each enzyme factor related to the carbon, nitrogen, and phosphorus nutrient
cycle, including urease, acid phosphatase, invertase, alkaline phosphatase, phosphatase,
protease, cellulose, N-acetyl-glycosaminidases, and C-glucosidase [31,32]. This study used
a large amount of urease and cellulose soil enzyme activity for prediction, with 80% of the
dataset being used for training and 20% being used for testing to determine the best soil

enzyme activity solution.
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Figure 4. Summary of soil enzyme activities in the dataset.
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Figure 5 depicts the graphical representations of soil samples, including the soil’s
physical, chemical, and enzyme activity. This is used to forecast soil enzyme activity
based on each soil component’s amount, determining what proportion of soil components
are available in the soil, as well as soil enzyme activity and fertility level. Based on
the summary of all values of soil factors, levels of urease, acid phosphatase, invertase,
alkaline phosphatase, phosphatase, protease, cellulose, N-acetyl-glucosaminidase, and
C-glucosidase are predicted.
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Figure 5. Summary of soil enzyme activities with soil properties.

Figure 6 shows a graphical depiction of the machine learning model classification,
which includes Random Forest, additional tree classifier, and regression—including Multi-
ple Linear Regression and Artificial Neural Network—to predict soil enzyme activity. In
comparison to other classifications, urease soil enzyme activity found the RF and additional
tree models had good accuracy. The RF model was found to be superior in terms of acid
phosphatase activity, invertase, alkaline phosphatase, phosphatase, protease, and N-acetyl-
glucosaminidase. The MLR model was best suited for cellulose, and the ANN model
seemed good for C-glucosidase. According to the implementation results, the Random
Forest model outperformed other models in terms of identifying soil quality and enhancing
agricultural productivity for a specific location. Using Multiple Linear Regression with
training and testing datasets, we were able to estimate the cellulose soil enzyme activity
with high accuracy.

Classification and regression approaches were utilized in this work to determine the
most effective approach for estimating soil enzyme activity. For predicting the activity of
urease, acid phosphatase, invertase, alkaline phosphatase, phosphatase, protease, cellulose,
N-acetyl-glucosaminidase, and C-glucosidase soil enzymes, RF, MLR, Extra Tree, and ANN
models were used in classification, while RF and MLR were used in regression.

Multiple Linear Regression and Random Forest models were employed in this investi-
gation to determine which soil enzyme activity had the best performance, including MSE,
MAE, and RMSE characteristics. Figure 7 shows how MLR’s evaluation performance met-
rics are represented. MSE’s urease and N-acetyl-glucosaminidase soil enzyme activity was
found to be good, meaning there was minimal error compared to others (0.0549 and 0.0449).
For MAE, a slight error of phosphatase and C-glucosidase (0.111567) was discovered rather
than the activity of other enzymes. C-glucosidase (0.1342) had a small error in RMSE
compared to other enzymes. Random Forest regression techniques are the best appropriate
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model for predicting soil enzyme activity. In Table 4, we estimate the soil enzyme activity
by analyzing the MSE, RMSE, and MAE of the Multiple Linear Regression approach.

Predicted Soil enzyme activity with ML and ANN
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Figure 6. Predicted soil enzyme activity with ML and ANN.
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Figure 7. Evaluation performance metrics of MLR.

Figure 8 shows that the MAE, RMSE, and MSE parameters were used to construct the
evaluation performance metrics. Alkaline phosphatase soil enzyme activity was found to
be an excellent dependent variable for MSE prediction outcomes, with a lower error (0.0146)
than other variables. C-glucosidase (0.0162) soil enzyme activity was discovered to have a
lower error than the others in MAE performance criteria. Alkaline phosphatase soil enzyme
activity had a lower error (0.1209) than the others in terms of RMSE performance metrics.
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Table 4. Compare the MSE, MAE, and RMSE of MLR for PSEA-ML.

MSE MAE RMSE

Soil Enzyme Multiple Linear Regression

Urease 0.0549 0.1216 0.2343
N-acetyl-glucosaminidase 0.0449 0.1126 0.2119
Protease 0.0649 0.1232 0.2547
Invertase 0.0749 0.1316 0.2737
C-glucosidase 0.0535 0.1116 0.2313
Cellulase 0.1549 0.1342 0.3936

Acid phosphatase 0.2549 0.1452 0.5049
Alkaline phosphatase 0.3549 0.1516 0.5957
Phosphatase 0.0569 0.1116 0.2385
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Figure 8. Evaluation performance metric of Random Forest.

In Table 5, the soil enzyme activity is estimated by analyzing MSE, RMSE, and MAE
of the Random Forest regression approach. The result demonstrated the identification of
the best optimal outcome of soil enzyme activity.

Table 5. Compare the MSE, MAE, and RMSE of the Random Forest approach for PSEA-ML.

. MSE MAE RMSE
Soil Enzyme

RF
Urease 0.0466 0.0662 0.2159
N-acetyl-glucosaminidase 0.0245 0.0862 0.1564
Protease 0.0246 0.0569 0.1569
Invertase 0.0545 0.0566 0.2334
C-glucosidase 0.0246 0.0162 0.1569
Cellulase 0.0655 0.0462 0.2559
Acid phosphatase 0.0765 0.0262 0.2765
Alkaline phosphatase 0.0146 0.0462 0.1209
Phosphatase 0.0446 0.0762 0.2112

In Table 6, the measured MAE, RMSE, and MSE parameters were used to construct
the evaluation performance metrics. Cellulase soil enzyme activity was found to be an
excellent dependent variable for MSE prediction outcomes, with a lower error (0.0259) than
other variables. Cellulase soil enzyme activity was discovered to have a lesser error (0.0752)
than the others in the MAE performance criteria. Cellulase and N-acetyl-glucosaminidase

106



Agriculture 2023, 13,1323

soil enzyme activity had less error (0.1609 and 0.2493, respectively) than the others in terms
of RMSE performance metrics.

Table 6. Compare the MSE, MAE, and RMSE of the extra tree regressor approach for PSEA-ML.

Soil Enzyme MSE MAE RMSE
Extra Tree Regressor
Urease 0.1761 0.7610 0.4196
N-acetyl-glucosaminidase 0.0622 0.2746 0.2493
Protease 0.0777 0.0777 0.2787
Invertase 0.1036 0.1036 0.3219
C-glucosidase 0.0829 0.0829 0.2879
Cellulase 0.0259 0.0752 0.1609
Acid phosphatase 0.0907 0.1473 0.3012
Alkaline phosphatase 0.0618 0.0999 0.2486
Phosphatase 0.0500 0.0814 0.2236

The Artificial Neural Network model implemented using Python programming with
Keras and TensorFlow library in Python was built using three layers: input layer, hidden
layer, and output layer. Programming used dense layers for the fully connected neural
network. The dense layer considered an input layer with 10 units (input features) with the
‘relu’ activation function, dense_1 represented the hidden layer with the ‘relu” activation
function, and the output layer used 1 unit (output features) with the ‘sigmoid” function.
For compiling, the ANN model used an ‘adam’ optimizer for reducing the error/loss
with ‘binary_crossentropy’ loss. This model executed 32 batch sizes and 100 epochs for
calculating the loss score, training, and validating accuracy. This model achieved 99%
accuracy in cellulase enzyme activity. Figure 9 shows the ANN model summary and
Figure 10 shows the epoch generation with ANN model loss and validation accuracy.

Model: "sequential”

Layer (type) Output Shape Param #
dense (Dense)  (Nome, 1) 13
dense_ 1 (Dense) (Mone, 1&) 118
dense_2 (Dense) (Hone, 1) 11

Total params: 251
Trainable params: 251

Figure 9. Artificial Neural Network Model Summary.

Table 7 measures the MAE, RMSE, and MSE parameters used to construct the eval-
uation performance metrics. Protease soil enzyme activity was found to be an excellent
dependent variable for MSE prediction outcomes, with a lower error (0.1384) than other
variables. C-glucosidase soil enzyme activity was discovered to have a lower error (0.1443)
than the others in the MAE performance criteria. C-glucosidase and protease soil enzyme
activity had a lower error (0.3799) than the others in terms of RMSE performance metrics.
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Epoch 1/1@8

25/25 [==============================] - 3s5 4dms/step - loss: @8.6193 - accuracy: 8.7355
Epoch 2/1e@
25/25 [===================s===========] - @5 7ms/step - loss: ©.4433 - accuracy: 8.9342
Epoch 3/1@8
25/25 [==============================] - @5 boms/step - loss: 8.3224 - accuracy: 8.9334
Epoch 4/160
25/25 [==============================] - B85 4dms/step - loss: 8.2398 - accuracy: 9.9923
Epoch 5/1@8
25/25 [==============================] - @5 8ms/step - loss: @.1885 - accuracy: 8.9923
Epoch 6/160
25/25 [==============================] - B85 4dms/step - loss: 8.1382 - accuracy: 9.9923
Epoch 7/1e@
25/25 [========s=====================] - @5 4ms/step - loss: ©.1883 - accuracy: 8.9923
Epoch 8/1@8
25/25 [==============================] - @5 6ms/step - loss: 8.B8365 - accuracy: 9.9923
Epoch 9/1e@
25/25 [===================s==s=========] - @5 4ms/step - loss: ©.8711 - accuracy: 8.9923

Epoch 18/188

Figure 10. ANN model of epoch generation with loss and validation accuracy.

Table 7. Compare the MSE, MAE, and RMSE of the Artificial Neural Network approach for PSEA-ANN.

Soil Enzyme MSE MAE RMSE
ANN
Urease 0.1818 0.3464 0.4263
N-acetyl-glucosaminidase 0.2353 0.4732 0.4850
Protease 0.1383 0.3421 0.3718
Invertase 0.3328 0.5687 0.5768
C-glucosidase 0.1443 0.1443 0.3798
Cellulase 0.3826 0.3826 0.6185
Acid phosphatase 0.1913 0.4138 0.4373
Alkaline phosphatase 0.3402 0.5735 0.5832
Phosphatase 0.4263 0.6417 0.6529

Table 8 lists the specific crops depending on all soil enzyme activity and soil fertility
levels (low, medium, and high). Because some soil components are particularly low in low
fertility levels, a balanced number of factors, as well as enzyme activity, is required. The soil
enzyme activity—such as urease, invertase, C-glucosidase, and acid phosphatase, which
are associated with low fertility levels—is estimated. Based on this prediction, cucumber,
maize, peanut pepper, soybean, and sugarcane were identified as crops that are useful
for harvesting and increasing crop productivity [33-35]. Based on the analysis of soil
fertility level and soil enzyme activity using machine learning algorithms, specific crops
are suggested for increasing crop productivity. Each crop is suggested for a different soil
fertility level—low, medium, and high—for each soil enzyme activity. For example, potato
crop requires a high fertility level with protease and phosphatase soil enzyme activity.

According to this prediction, the activity of soil enzymes such as N-acetyl-glucosaminidase,
cellulase, and alkaline phosphatase—which correspond to a medium fertility level—was es-
timated. The activity of the N-acetyl-glucosaminidase soil enzyme indicated crops such as
chickpea cotton, rice wheat, peanut, and soybean. Cucumbers, maize, peanut, pepper, soybean,
and sugarcane are likely have cellulase and alkaline phosphatase soil enzymes. The activity
of soil enzymes such as protease and phosphatase—which are associated with high fertility
levels—is estimated, and specific crops are chosen based on this prediction. Potato, cotton,
sugarcane, maize, soybean, and pear were indicated by protease, and phosphatase soil enzyme
activity indicated the crops potato, cotton, sugarcane, maize, soybean, and pear.
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Table 8. List of specific crops based on soil fertility level and soil enzyme activity.

Fertility Level Soil Enzyme Activity Crops

Low Urease Cucumber Maize Peanut Pepper Soybean Sugarcane

Medium N-acetyl-glucosaminidase Chickpea Cotton Rice Wheat Peanut Soybean
High Protease Potato Cotton Sugarcane Maize Soybean Pear
Low Invertase Cucumber Maize Peanut Pepper Soybean Sugarcane
Low C-glucosidase Cucumber Maize Peanut Pepper Soybean Sugarcane

Medium Cellulase Cucumber Maize Peanut Pepper Soybean Sugarcane
Low Acid phosphatase Cucumber Maize Peanut Pepper Soybean Sugarcane

Medium Alkaline phosphatase Cucumber Maize Peanut Pepper Soybean Sugarcane
High Phosphatase Potato Cotton Sugarcane Maize Soybean Pear

4. Conclusions

This research was performed to evaluate soil enzyme activities, which included nine
target features of soil enzymes such as urease, acid phosphatase, invertase, alkaline phos-
phatase, phosphatase, protease, cellulose, N-acetyl-glucosaminidase, and C-glucosidase,
as well as chemical factors such as PH, SOC, SOM, available nitrogen, and available phos-
phorus; the physical factors were sand, silt, clay, and depth of soil for soil testing. Machine
learning models such as MLR, RF, and extra tree classification techniques were compared
with the ANN model for estimating soil enzyme activity. The best model was determined
using a classification report, confusion matrix, and evaluation performance regression
techniques such as MSE, MAE, and RMSE. According to the experimental results, the
Random Forest model seems to be the most suitable model for determining the optimal soil
enzyme activities as compared to other classification models. MAE, RMSE, and MSE were
used to obtain good results in the MLR and RF regression techniques. Specific crops were
recommended based on soil fertility levels, which are divided into three categories: low,
medium, and high. Each soil level revealed a varied soil enzyme activity with a given crop,
which is extremely beneficial to farmers in terms of enhancing crop output and determining
soil quality.

Future work will include collecting additional soil enzyme activity classification of soil
samples from various regions, estimating activities using various artificial methodologies,
and recommending certain crops with fertilizer doses.
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Abstract: With the widespread application of drone technology, the demand for pest detection
and identification from low-resolution and noisy images captured with drones has been steadily
increasing. In this study, a lightweight pest identification model based on Transformer and super-
resolution sampling techniques is introduced, aiming to enhance identification accuracy under
challenging conditions. The Transformer model was found to effectively capture spatial dependencies
in images, while the super-resolution sampling technique was employed to restore image details
for subsequent identification processes. The experimental results demonstrated that this approach
exhibited significant advantages across various pest image datasets, achieving Precision, Recall, mAP,
and FPS scores of 0.97, 0.95, 0.95, and 57, respectively. Especially in the presence of low resolution and
noise, this method was capable of performing pest identification with high accuracy. Furthermore,
an adaptive optimizer was incorporated to enhance model convergence and performance. Overall,
this study offers an efficient and accurate method for pest detection and identification in practical
applications, holding significant practical value.

Keywords: smart agriculture; pest detection; Transformer; super resolution

1. Introduction

With the continuous advancement of agricultural technology, drones have been pro-
gressively adopted as efficient automation tools in various agricultural operations [1],
including sowing, fertilization, and monitoring. In particular, for crop health monitoring,
drones have demonstrated immense potential and value. Pests, as one of the primary
threats in agricultural production, pose serious risks to crop health. While pesticides can
address some pest issues [2], timely and effective pest detection remains paramount for
pest prevention and control.

Traditional pest detection methods often rely on manual inspections [3] and solar
tracking [4]. Not only these methods exhibit low efficiency, but also their accuracy is
constrained by human experience and the intensity of manual labor, leading to potential
oversights. Furthermore, the frequency and scope of manual inspections are limited,
preventing extensive, high-frequency pest monitoring, especially given the small size of
pests [5]. This limitation can result in missing optimal opportunities for prevention and
control during the initial stages of pest outbreaks. While pheromone-based pest detection
methods exist [6], they are specific to particular pests [7], offering limited versatility.

The rapid advancement of computer vision technology in recent years has introduced
new avenues for smart agriculture [8-11]. Through image recognition and deep learning
techniques, high-efficiency and accurate identification of pests can be achieved [12]. In this
realm, researchers from various countries have embarked on several investigations. Liang,
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Quanjia, developed a rice pest recognition model based on an improved YOLOV7 algorithm.
By employing the lightweight MobileNetV3 network for feature extraction, the accuracy of
92.3% was achieved on a dataset containing 3773 images of rice pests [13]. Yang, Zijia, and
colleagues compiled an image dataset of eight tea tree pests and designed a pest detection
and recognition model for tea gardens using the Yolov7-tiny network. By integrating
deformable convolutions, the Biformer dynamic attention mechanism, the non-maximum
suppression algorithm module, and a new implicit decoupling header, the average accuracy
of 93.23% was achieved [14]. Jia, Xinyu, and team established a dataset consisting of
5182 pest images across 14 categories. Using transfer learning, visual geometric group
(VGG), residual neural network (ResNet), and a mobile network, citrus pest recognition
models were created. Following this, appropriate attention mechanisms were introduced
based on model characteristics. Ultimately, average recognition accuracy, Precision, Recall,
and F1 score were 93.65%, 93.82%, 93.65%, and 93.62%, respectively [15]. Irjak, Dana, and
others developed a DNN-based automatic monitoring system for apple codling moths,
comprising a smart trap and an analysis model. Evaluation using a confusion matrix
revealed an accuracy exceeding 99% in detecting apple codling moths [16].

Building on previous research, enhancements have been made. Kumar, Nithin, and
associates utilized YOLOV5 and incorporated channel and spatial attention modules, en-
hancing network recognition capabilities. Experimental results showed that with learning
on a custom pest dataset, the F1 score approached 0.90, and the mAP value reached 93%.
In comparison to other YOLOv5 models, the F1 score increased by 0.02 [17]. Ullah, Za-
hid, and collaborators proposed the fusion of two pre-trained models, EfficientNetB3 and
MobileNet. They also applied techniques such as regularization, dropout, and batch nor-
malization to address model overfitting. The hybrid model achieved a success rate of
99.92% in accurately detecting tomato leaf diseases, proving its capability to extract features
effectively [18]. Butera, Luca, and colleagues investigated the capabilities of state-of-the-art
(SoA) object detection models based on convolutional neural networks (CNNs) to detect
coleopteran pests on heterogeneous outdoor images from various sources, presenting a
benchmark model. Results indicated that this combination delivered the Average Precision
of 92.66% [19]. Kumar Yadav, P, and co-researchers employed drone-acquired RGB images
to detect VC plants in maize fields. Findings showed that YOLOv3 could identify VC
plants in maize fields with average detection accuracy above 80%, F1 score of 78.5%, and
mAP of 80.38%. Regarding image sizes, no significant differences were observed in mAP
across three scales. However, significant differences were found in AP between S1 and
S3 (p =0.04), and S2 and S3 (p = 0.02). Significant differences in F1 score were also seen
between 52 and S3 (p = 0.02) [20]. Rong, Minxi, and group enhanced the FPN structure in
the feature extraction network and introduced weight coefficients when merging features of
different scales. Experimental analysis on 1000 sample images indicated that the improved
Mask R-CNN model achieved recognition and detection accuracy of 99.4%, which is 2.7%
higher than the unimproved Mask R-CNN model [21].

However, most existing computer vision models demand significant computational
resources and exhibit considerable size [22,23], making them unsuitable for direct de-
ployment on drone platforms with limited computational capabilities. Moreover, images
captured with drones during flight are often affected by factors such as lighting, distance,
and angle, potentially compromising image clarity and recognition accuracy. Hence, the
challenge and focal point of current research lie in achieving efficient and accurate pest
recognition within constrained computational resources [10].

In response to these challenges, this study introduces a novel pest recognition model
based on the Transformer architecture combined with super-resolution sampling tech-
niques, aiming to enhance the recognition accuracy and speed on drone platforms. Initially,
through the super-resolution sampling module, high-resolution images with improved clar-
ity can be reconstructed from low-resolution original images, thus enhancing recognition
accuracy. Simultaneously, by employing model lightweighting techniques, computational
demands and model size are significantly reduced, enabling real-time operation on drone
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platforms. Additionally, adaptive optimizers are integrated to further improve model
training efficiency and stability. Overall, this study offers a pioneering, drone-compatible
pest recognition approach, holding substantial practical significance for pest prevention
and control in agriculture and paving the way for potential applications of drones in the
agricultural domain.

2. Related Work

In recent years, significant progress has been achieved in pest detection technologies.
Notably, techniques related to deep learning have shown outstanding performance in
image processing and model optimization [22-27]. This section primarily discusses three
technologies: the Transformer architecture, super-resolution sampling modules, and model
lightweighting techniques.

2.1. Transformer

The Transformer architecture [22] was initially designed for natural language process-
ing tasks, addressing sequence-to-sequence tasks with its self-attention mechanism. The
core idea behind the self-attention mechanism is that during processing, different attention
weights can be given to different parts of the input data. This method allows the model
to adaptively adjust its structure based on data content, capturing intrinsic features more
effectively. Mathematically, self-attention can be expressed as

Attention(Q, K, V) = softmax (QKT> 1% (1)
Vi
where Q, K, and V represent the query, key, and value, respectively. They are typically
linear transformations of the input data, while dj denotes the dimension of the key.
Although the origins of the Transformer model lie in text data processing, it was
quickly discovered that it could be applied to computer vision tasks. For instance, to adapt
it for image data, one approach involves dividing an image into a series of fixed-size patches,
then flattening these patch pixel values into vectors. Each patch can then be considered
an element in a sequence. Based on this, Vision Transformer (ViT) [28] was introduced.
This model divides the image into fixed-size patches, linearly embeds each patch into
a fixed-size vector, and adds positional encoding to retain spatial information. When
exploring how to apply the Transformer model to object detection tasks, a basic strategy
involves segmenting the image into patches, assigning category labels and bounding boxes
to each patch, and then processing these patches using a Transformer model and learning
inter-patch relationships with the self-attention mechanism. During the decoding phase,
another Transformer network receives the outputs from the encoding phase, generating
category labels and bounding boxes for each patch. This can be represented as

O = Transformer-Decoder(Transformer-Encoder(I)) (2)

where [ represents the input image and O represents the output categories and locations.
This application of the Transformer model to object detection offers advantages. Its global
self-attention mechanism can capture long-range dependencies in images. Objects in
images often have complex relationships with their surroundings, such as occlusions and
interactions. The Transformer model can understand these relationships better, improving
detection accuracy.

2.2. Super-Resolution Sampling

The aim of super-resolution sampling is to recover high-resolution details from low-
resolution images. This is a popular research direction in the computer vision field,
since it enhances image quality without the need for additional hardware. In particu-
lar, deep learning models have demonstrated remarkable performance in super-resolution
tasks. SRGAN (Super-Resolution Generative Adversarial Network) [27] is a represen-
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tative super-resolution model that uses a Generative Adversarial Network (GAN) [26]
for super-resolution image restoration. Specifically, SRGAN comprises a generator and
a discriminator. The generator is responsible for upsampling low-resolution images to
high-resolution ones, while the discriminator attempts to distinguish between generated
high-resolution images and real high-resolution images. Model training aims to minimize
the difference between them and optimizes the following loss function:

L = Lcontent + /\Ladversarial (3)

where Lcontent represents the content loss, usually computed using Mean Squared Error (MSE),
and L, gyersarial Tepresents the adversarial loss, which measures the difference between gener-
ated and real high-resolution images. The weight parameter, A, balances their importance.

In computer vision tasks, the primary application of super-resolution technology is in
image restoration and enhancement. Since collecting high-resolution images might be re-
stricted by hardware or cost, super-resolution provides an effective solution for researchers
and industries, extracting high-quality details from existing low-resolution images. When
applied to object detection tasks, its main value lies in increasing image resolution, enabling
more accurate detection of small or distant objects in images. Specifically, object detection
typically involves feature extraction and bounding box regression. High-resolution images
can provide richer information, making features more distinct in the feature extraction
phase. In the bounding box regression phase, high-resolution images offer more accurate
positional information, improving detection accuracy. To apply super-resolution in object
detection, a super-resolution model can first upsample the input image, which is then fed
into the object detection network. This method can be mathematically represented as

Ogetection = DetectionNetwork (SR (ow-res)) 4)

where Ijoy,-res denotes the input low-resolution image, SR(-) represents the super-resolution
model, and Ogetection indicates the object detection output. The advantage of this method
is that it not only enhances object detection accuracy but also allows detection models
to achieve similar performance on low-resolution images as on high-resolution images.
Additionally, since super-resolution models typically have fewer parameters, this method
can effectively reduce the overall model size and computational cost.

2.3. Model Lightweighting

The technique of model lightweighting has garnered significant attention in the
deep learning domain, as it facilitates the deployment of intricate models onto resource-
constrained devices, such as mobile devices or edge computing equipment. The essence of
model lightweighting is to not only retain the model’s accuracy but also substantially re-
duce the model’s size and computational load. Renowned model lightweighting techniques
encompass knowledge distillation, network pruning, and quantization.

Knowledge distillation [29,30] serves as a technique to train a smaller model, utilizing
the output of a larger model to guide the training of the smaller counterpart. Specifically,
given a larger model (often termed the teacher model) and a smaller model (typically
referred to as the student model), the aim of knowledge distillation is to approximate the
student model’s output to that of the teacher model as closely as possible. This can be
mathematically expressed using the following loss function:

Laistin = D‘Loriginal + (1 - D‘)Lsoft ©)

where Loiginal represents the original loss function, such as cross-entropy loss, while L
denotes the loss between the outputs of the student and teacher models. Parameter « serves
to balance these two losses.

Network pruning [31] is a technique aimed at reducing model size and computational
load by eliminating certain portions of the neural network. The most prevalent method in
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this context is weight pruning, which involves deleting certain weights from the model.
This is typically conducted based on the magnitude or significance of the weights. For
instance, given a threshold 6, weights with an absolute value less than 6 can be deleted:

(6)

, {wi if |wl| >0
w; = .
0  otherwise

Quantization [32] is an approach to diminish the precision of model weights. As an
example, 32-bit floating-point weight values can be quantized into 8-bit integers. This not
only reduces the model’s size but also accelerates its computations.

In computer vision tasks, the primary application of model lightweighting is to en-
hance model deployment efficiency. For object detection tasks, lightweighting the model
can yield a higher frame rate for real-time applications or satisfactory performance on
resource-limited devices. Specifically, for object detection models, a smaller student model
can initially be trained using knowledge distillation, followed by further reduction in
model size and computational load through network pruning. Finally, quantization can be
employed to reduce the model’s storage requirements and computational duration. Such
a model lightweighting strategy offers an effective solution for object detection, ensuring
efficient and accurate object detection even on resource-limited devices such as mobile
devices or drones.

3. Materials and Method
3.1. Dataset Collection

In studies related to pest detection associated with crop health, the construction of
datasets plays a pivotal role. The dataset collected encompasses various pests closely
related to corn and rice, including Spodoptera litura, Ostrinia furnacalis, Spodoptera frugiperda,
Nilaparvata lugens, Cnaphalocrocis medinalis, and Leptocorisa chinensis. The reasons for select-
ing these pests as the subjects of study are based on the severe threats they pose during
the growth of corn and rice. For example, Spodoptera litura may damage the corn stalk,
causing it to lodge; Ostrinia furnacalis and Spodoptera frugiperda directly harm corn leaves
and ears, affecting the yield. As for rice, the emergence of pests like Nilaparvata lugens and
Cnaphalocrocis medinalis often indicates a significant decline in yield [33].

The primary data collection site is located in West Science Park of China Agricultural
University. Considering the actual crop growth environment, morning and evening were
chosen as the primary collection times, as pest activity tends to be frequent during these
periods. A 4K resolution camera (3840 x 2160) was employed as collection equipment to
ensure the clarity and detail of the images obtained [11]. Moreover, a large number of pest
images were scraped from the Internet [33]. By writing a crawler program, a vast amount
of images related to these pests were gathered from various agriculture-related websites
and communities. This approach allows for the rapid acquisition of substantial data,
enriching the diversity of the dataset. The combination of both data collection methods
ensures authenticity, reliability, diversity, and richness of the data. The dataset mirrors
the various states of pests in real environments, laying a solid foundation for subsequent
model training. The distribution of the dataset is shown in Table 1 and Figure 1.

Table 1. Distribution of the dataset used in this paper after preprocessing, discussed in Section 3.2.

Pest Type Number of Images
Spodoptera litura 1200
Ostrinia furnacalis 1150
Spodoptera frugiperda 1100
Nilaparvata lugens 1250
Cnaphalocrocis medinalis 1000
Leptocorisa chinensis 1300
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Figure 1. Samples of dataset used in this paper.

The construction of this dataset provides ample data support for subsequent model
training and validation, ensuring the reliability and effectiveness of this research.

3.2. Dataset Preprocessing

In pest detection tasks, acquiring a substantial amount of high-quality training data
is essential. However, data collection in real-world scenarios often encounters limitations
due to factors like seasons, weather, and equipment, potentially leading to inadequate
size and diversity of the initial dataset. Therefore, data preprocessing and augmentation
techniques hold significance in such tasks. They not only enhance the model’s adaptability
to different environments and angles but also effectively mitigate the risk of overfitting,
improving the model’s generalization capabilities. Initially, image data augmentation,
achieved by applying various transformations on the original images, exposes the model
to a wider range of scenarios during training, thus enhancing its generalization ability.
Various augmentation methods include rotation, flipping, cropping, brightness and contrast
adjustment, and noise addition, as depicted in Figure 2.

Figure 2. Illustration of dataset preprocessing methods used in this paper, including flipping
and mirroring.

Taking image rotation as an example, by rotating an image by a specific angle, a
new image is obtained. The mathematical representation of this transformation can be

expressed as
x']  [cos® —sinf] [x @
y'|  |sinf cosf ||y
where x and y represent the coordinates of the original pixel point, and x” and i’ are the
coordinates after rotation, with 6 being the angle of rotation. Image flipping is another

prevalent data augmentation method, flipping the image along a specific axis. Horizontal
flipping can be represented as

X =W-1-x, y=y (8)

where W is the width of the image, x and y are the original pixel coordinates, and x” and ¥/’
are the new coordinates post-flipping. Image cropping involves selecting a region from the
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original image to create a new one, aiding the model in focusing on various parts of the
image. Random cropping can be expressed as

X=x—-Ax, ¥=y—Ay )

where Ax and Ay represent the cropping offsets in the horizontal and vertical directions,
respectively. Additionally, adjusting the brightness and contrast of images serves as an
effective data augmentation method, which can be implemented using

I'=a-1+p (10)

where I is the original image, I’ is the enhanced image, « is the contrast adjustment factor,
and f is the brightness adjustment factor. To combat noise and minor image variations,
random noise can also be introduced into the images. Common noise models include Gaus-
sian noise and salt-and-pepper noise. Using these augmentation methods, the diversity
of the training set can be significantly increased, effectively preventing the model from
overly relying on specific data distribution characteristics and enhancing its performance
on unseen data. Furthermore, these methods simulate variations likely encountered in
real-world applications, bolstering the model’s robustness in actual scenarios.

3.3. Proposed Method
3.3.1. Overall

A novel pest identification model is proposed, designed for efficient and accurate pest
detection for drones. The overall method framework consists of three main components:
a Transformer-based object detection network, a super-resolution sampling module, and
lightweight techniques. Each of these components is elaborated upon below, with an
explanation of their integration into a cohesive workflow, as shown in Figure 3.

19°6865E 197936 sy oy

N9EESE 197936 s 013E

Transformer-based
Dataset Collection = Super-resolution =) Detection Network

Figure 3. Illustration of the whole method proposed in this paper.

Initially, the Transformer-based object detection network serves as the backbone of the
model, responsible for identifying pests in images [25]. The strength of the Transformer
model lies in its self-attention mechanism, which captures long-range dependencies within
images. In object detection tasks, the Transformer model can effectively differentiate be-
tween background and foreground, as well as identify relationships among multiple targets,
which is pivotal in pest detection. However, images captured with drones can become
blurred due to various factors, such as distance, lighting, and motion blur. To address
this, a super-resolution sampling module was incorporated. Its primary role is to enhance
image resolution, bringing out clearer details. By employing advanced deep learning
methods, this module is capable of restoring low-resolution images to high-resolution ones
while preserving intrinsic details. Prior to object detection, the super-resolution sampling
module serves as a preprocessing step, supplying the Transformer network with crisper
inputs, consequently improving detection accuracy. However, such a model may become
extensive and computationally intensive. To mitigate this concern, lightweight techniques
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were employed. These techniques encompass knowledge distillation, network pruning,
and quantization and are capable of substantially reducing model size and computational
demands without significantly compromising performance. With the incorporation of these
lightweight techniques, the proposed model can operate in real time on drones, facilitating
instantaneous pest detection. Integrating these three components, a comprehensive pest
detection procedure emerges, as shown in Figure 3. Firstly, images captured with drones un-
dergo preprocessing via the super-resolution sampling module, resulting in high-resolution
outputs. Subsequently, these images are fed into the Transformer-based object detection
network, yielding pest location and category information. Finally, lightweight techniques
ensure efficient operation of the model on drones.

To achieve real-time pest detection on this drone, the model was chosen to run on
NVIDIA’s Jetson Nano platform [11]. Jetson Nano, a compact and energy-efficient com-
puting platform, is particularly apt for edge computing. Possessing formidable graphics
processing capabilities, it effortlessly manages the inferencing tasks of deep learning models.
Crucially, its small size and low power consumption render it ideal for integration into mo-
bile devices like drones. Additionally, to capture rich image details and ensure the model’s
precise pest detection capabilities, the drone was equipped with a 4K resolution camera.
Such high-resolution cameras not only provide clear images but also capture minute details
of pests, playing a pivotal role in enhancing detection accuracy. Once processed by the
super-resolution sampling module, these 4K images can be further augmented, optimizing
the Transformer network’s performance. With the aforementioned hardware configura-
tion, the overall method framework can efficiently and accurately detect pests on drones.
Drones, using their 4K cameras, first capture images, which are then preprocessed on
Jetson Nano by the super-resolution sampling module, resulting in high-resolution outputs.
These images are subsequently fed into the Transformer-based object detection network
for real-time inferencing on Jetson Nano, providing pest location and category details.
Lightweight techniques guarantee the fluidity and efficiency of the entire procedure. In
summary, the proposed method framework, integrating Transformer, super-resolution
sampling, and lightweight techniques, forms a complete pest detection procedure. This
approach, apart from efficient and accurate pest detection, also offers real-time operation
on resource-constrained drones. It presents agriculture with a potent tool, aiding farmers
in superior pest management, thereby enhancing crop yield and quality.

3.3.2. Super-Resolution Module

Super-resolution techniques aim to recover high-resolution images from low-resolution
counterparts, thus revealing more details and improved clarity. This step proves crucial for
pest detection, as adequate details must be captured to accurately identify and locate pests.
The core of the super-resolution sampling module is grounded in convolutional neural
networks. While conventional super-resolution methods, such as bicubic interpolation and
Lanczos resampling, can somewhat augment image resolution, they fail to recover lost
high-frequency details. However, convolutional neural networks are capable of learning
methods to restore these nuances. For every low-resolution image input I g, the network
is designed to produce a high-resolution output I;;g. Mathematically, the objective is to
minimize the difference between the output image and the actual high-resolution image,
represented as Mean Squared Error (MSE):

1 &0 i
Luse = - Y- Il = FUS) I3 (11)
i=1

where n stands for batch size and F represents the super-resolution model. A structure
based on convolutional neural networks (CNNs) was developed, eschewing the Generative
Adversarial Network (GAN) framework. Although GANs can produce visually satisfactory
results, their demands for training stability and computational resources render them
less suitable for real-time processing on mobile devices. The super-resolution model
employed is founded on the classical ResNet [34] structure. To cater to super-resolution

119



Agriculture 2023, 13, 1812

tasks, adaptations and refinements were made. Specifically, a 20-layer deep network
structure was employed, as shown in Figure 4.
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Figure 4. Structure of super-resolution module used in this paper.

This design, compared with deeper networks, has fewer parameters, which reduces
computational and memory demands yet still achieves satisfactory super-resolution results.
The model takes a low-resolution image patch as input and delivers its corresponding high-
resolution version. The first two layers of the network incorporate larger convolutional
kernels, 5 x 5, assisting in capturing the image’s broader structures. Subsequent layers
use 3 x 3 kernels, better suited for addressing finer image details. Batch normalization
layers were added after each convolutional layer, and depth-wise separable convolutions
were used to further minimize the number of model parameters while maintaining per-
formance. The network’s tail end employs an upsampling layer, typically using sub-pixel
convolution techniques, to magnify the image to the desired size. Distinct from traditional
upsampling methods like bilinear interpolation, this method is learned, thus better restor-
ing high-resolution image details. In terms of parameters, the adoption of depth-wise
separable convolutions and other lightweight strategies results in the model having ap-
proximately 500,000 parameters. This figure is significantly reduced compared with typical
super-resolution models, enabling smooth operation on resource-constrained devices like
NVIDIA’s Jetson Nano.

Compared with SRGAN, this model places a greater mathematical emphasis on the
MSE portion of the loss function, indicating a concern for pixel-level differences over high-
level feature discrepancies. Specifically, the SRGAN loss function includes a perceptual
loss term:

1 ' '
Lperceptual = ; Z ”(P(II(—;)R) - QD(F(ISI){))H% (12)
i=1
where ¢ is a pre-trained network, often part of VGG-16 [35], employed for extracting

high-level image features. However, in this application, due to a greater emphasis on image
detail recovery, perceptual loss is not utilized, with a focus placed on MSE loss instead.
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This adjustment ensures that the model more effectively recovers pest morphology and
texture details.

In summary, the designed super-resolution model prioritizes achieving satisfactory
recovery results while ensuring efficiency and real-time capabilities. Such a balance renders
the model highly suitable for mobile devices like drones, providing a potent tool for on-site
pest detection tasks.

3.3.3. Transformer-Based Detection Network

In the task of pest detection with drones, a target detection network based on the
Transformer architecture was chosen. The Transformer architecture, due to its self-attention
mechanism, has achieved significant success in natural language processing tasks. However,
its application in computer vision, especially in object detection, remains in the exploration
phase. DETR (Detection Transformer) [23] is the first model that successfully applied
Transformer to object detection. Contrary to traditional object detection methods, DETR
eliminates the need for manually set prior boxes. Instead, images are directly input into the
Transformer network to produce predicted boxes and their corresponding classes.

The design of this model was inspired by DETR, but modifications were made to cater
to the peculiarities of pest detection. First, given that images captured with drones often
possess high resolution and pests are typically small in size, adjustments were made to
the model’s input section. A lighter convolutional neural network was employed as the
backbone to encode high-resolution images into a series of feature vectors. These feature
vectors were then fed into the Transformer network’s encoder for further processing, as
shown in Figure 5.

For the Transformer segment, the fundamental self-attention mechanism and multi-
head attention structure were retained. Mathematically, self-attention can be described as

. QKT
Attention(Q, K, V) = softmax| =—— |V (13)

Vg
where Q, K, and V represent the query, key, and value matrices, respectively, and dj is
the model’s dimension. To capture the intricate features of pests, additional layers were
incorporated into the Transformer model, where the number of layers was specifically
increased to 12. Furthermore, to accommodate the diversity of pests and detect small
targets against complex backgrounds, the hidden dimensions of the model were expanded.
Positional encodings were introduced to assist the model in understanding the relative
positions of pests. In conventional object detection models, a fixed number of anchor boxes
(or prior boxes) are usually pre-defined for every predicted location. This method can result
in sub-optimal prediction performance when faced with varying scenarios and quantities
of targets. Particularly in the application of pest detection, where the distribution and
density of pests on crops can vary greatly, employing a fixed number of prediction boxes
may lead to omissions or redundant detection instances. To address this issue, a dynamic
prediction approach was designed, as shown in Algorithm 1.
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Algorithm 1 Dynamic object detection algorithm

Require: Image I, Model M, Threshold 7, Maximum iterations T
Ensure: Set of predicted boxes B
1: Initialize set of predicted boxes By <— @
2: Initialize t + 0
3: whilet < T do
Btemp < M(I, By) {Predict using the model}
for each predicted box b in Bremp do
Calculate score S(b) = P(c) x IoU(Py, Gp)
if S(b) > T then
Bii1 ¢ Biy1 Ub {Add box to the new set}
end if
10:  end for
11:  if Difference between B;,1 and B; is below a threshold then

R A

12: break

13:  end if

14:  Apply random perturbations to By
15: t—t+1

16: end while
17: return B;
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Figure 5. Illustration of Transformer structure.

The proposed model no longer relies on predefined anchor boxes but instead predicts
object bounding boxes and their associated class information directly from the Transformer
network’s outputs. An initial set of object predictions is first generated by making a coarse
prediction across the entire image. Each object consists of a bounding box and a class
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probability. For each predicted bounding box, a scoring mechanism is established, which
relates to the confidence of the predicted box and the class probability. Mathematically, this
score is defined as

S = P(c) x IoU(Py, Gp) (14)

where P(c) represents the class probability of the predicted box and IoU(Py, Gp) is the
Intersection over Union between predicted box P, and ground truth box Gj. Subsequently,
a threshold is set, filtering out the predicted boxes with scores exceeding this threshold.
These boxes are then fed back into the model as new inputs. The model is further refined
and adjusted based on these predictions. This iterative process continues until changes
in the predicted boxes are below a predetermined threshold or the maximum number of
iterations is reached. With this approach, the model can dynamically adjust the number
and position of the predicted boxes, adapting itself to different scenes and object densities.
It should be noted that a random perturbation mechanism was introduced to prevent the
model from converging to a local optimum during iterations. At each iteration, minor
random changes are made to some predicted boxes, enhancing the model’s exploration
space, thereby improving its robustness and generalization capabilities.

Regarding the number of parameters, modifications have been made to the input
section, the Transformer structure, and the output section, resulting in an overall increase
in parameters compared with DETR, totaling about 70 million. Nonetheless, considering
the computational capabilities of drones, a balance between computational efficiency
and accuracy was maintained during model design. In essence, the proposed object
detection network merges the strengths of Transformers with the nuances of pest detection.
Compared with DETR, it is more suited for high-resolution inputs, detects smaller objects
more effectively, and offers greater flexibility.

3.3.4. Model Lightweighting

Knowledge distillation is a widely adopted method during model lightweighting. It
aims to transfer the performance of a large, complex model (often termed the “teacher
model”) to a smaller, lightweight model (often termed the “student model”), as shown
in Figure 6. In this study, the teacher model, which undergoes multiple rounds of iter-
ative training and optimization, can detect pests with high precision. In contrast, the
student model, being smaller and faster, is designed to operate efficiently on constrained
computational resources like Jetson Nano.

Teacher Model

Student Model

Data

Figure 6. Illustration of knowledge distillation strategy. Different colors mean different layers.

The teacher model in this study was obtained after prolonged training on a large
dataset. Given hardware constraints and real-world speed requirements, a lightweight
network structure was chosen as the student model. Specifically, the student model used
a lightweight CNN with a depth of 10. Compared with the teacher model, its depth
was reduced by 50%, and its parameter count, by nearly 70%. However, achieving the
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teacher model’s performance solely with this lightweight structure is challenging. Hence,
the knowledge distillation technique was employed for training, allowing the student
model to approximate the teacher model’s performance. During knowledge distillation,
besides the conventional supervised learning loss function, an additional loss function
was introduced, quantifying the difference between the outputs of the student and teacher
models. Mathematically, it can be expressed as

L= Lsupervised + ALdistill (15)

where Lgypervised i the supervised learning loss of the student model based on the true la-
bels, Lgjstinn measures the difference between the outputs of the student and teacher models,
and A is a balancing factor. For L1, softened cross-entropy loss was used. Specifically,
the output probabilities from both the teacher and student models were computed and
“softened”, resulting in

Laistinn = — th log(p;) (16)

where g; is the softened probability output of the teacher model and p; is the output
probability of the student model. With this method, the student model learns not only
from the true label information but also emulates the behavior of the teacher model.
This preserves the teacher model’s performance while significantly reducing the model’s
size and computational requirements, making it compatible with drone computational
environments without compromising detection accuracy.

3.3.5. Adaptive Optimizer

During the knowledge distillation process, it is required for the student model to learn
from the teacher model, implying that the student model must learn not only the genuine
data labels but also the outputs of the teacher model. Such a learning task is more intricate
compared with conventional supervised learning, presenting challenges for traditional
optimizers like SGD [36] and Adam [37]. To address this, an adaptive optimizer was utilized.
The core concept behind the adaptive optimizer lies in dynamically adjusting the learning
rate of each parameter based on historical gradient information of the model parameters.
This strategy is particularly beneficial in the context of knowledge distillation, as during the
distillation process, there is a necessity for the student model to simultaneously optimize
two objectives: matching the actual labels and the outputs from the teacher model. These
objectives might be conflicting, resulting in high gradient instability during training. By
dynamically adjusting the learning rate, the adaptive optimizer aids in mitigating this
instability, consequently accelerating convergence. The weight update formula for the
adaptive optimizer can be expressed as

O = 0 — 3 a7)

where 0; represents the parameters at time step ¢, 7 is the global learning rate, §; is the
moving average of the gradient, v; represents the moving average of the squared gradient,
and € is a small constant added for numerical stability. In the context of knowledge
distillation, challenges encompass the following:

1.  The need for the student model to optimize both objectives, potentially leading to
gradient conflicts and instability.

2. Possible noise in the teacher model’s outputs, introducing added challenges for the
student model.

3.  The student model, typically smaller and shallower than the teacher model, might
have insufficient capacity, complicating the learning of intricate tasks.

Mathematically, the update formula for SGD is

Orp1 =0t — gt (18)
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where g; represents the gradient at time step t. The update formula for Adam is

it

Or1 =0 —1 N (19)
where 171; and 9; are the bias-corrected first- and second-moment estimates of the gradient,
respectively. In comparison to the adaptive optimizer, both SGD and Adam overlook the
gradient’s historical information and instability to varying degrees. In complex scenarios
of knowledge distillation, these traits might lead to slower convergence and to getting
trapped in local optima. On the other hand, the adaptive optimizer, by considering both
the magnitude and direction of the gradient, dynamically adjusts the learning rate, thereby
effectively handling such situations and achieving faster convergence and superior model
performance. To summarize, the primary advantages of the adaptive optimizer over SGD
and Adam include the following:

1. The capability of the adaptive optimizer to dynamically adjust the learning rate of each
parameter aids in alleviating issues stemming from gradient conflicts and instability,
whereas SGD, with its fixed learning rate, might struggle in such circumstances.

2. By considering the gradient’s historical information in its weight updates, the adap-
tive optimizer is more equipped to counter noise and instability in the teacher
model’s outputs.

3.  Compared with Adam, the adaptive optimizer boasts greater robustness, as it is not
reliant on the first- and second-moment estimates of the gradient.

3.4. Experimental Metric

In the task of object detection, evaluating the performance of a model is a pivotal step.
Typically, a series of metrics are employed to gauge the efficacy of a model, aiding in a
comprehensive understanding of its performance across various dimensions. Discussed
below are the key metrics selected for this study, that is, Precision, Recall, mAP (Mean
Average Precision), and FPS (Frames Per Second):

1. Precision, a frequently utilized metric in detection tasks, denotes the ratio of true
positive samples to all samples identified as positive by the model. It is mathematically

defined as TP
Precision = TP L EP (20)

where TP represents the number of true positives, which are targets correctly iden-
tified by the model, while FP denotes the number of false positives, which are non-
targets mistakenly identified as targets by the model. High Precision implies fewer
misclassifications by the model.

2. Recall represents the proportion of true targets correctly detected by the model. It is
mathematically expressed as

TP

Recall - m

(21)
In this context, FN signifies the number of false negatives, or the real targets missed
by the model. High Recall suggests that the model misses fewer true targets.

3.  mAP, a central metric in object detection tasks, is the average of Precision and Recall.
For each category, its AP value is computed, and mAP is subsequently derived by
averaging the AP values across all categories. mAP not only accounts for both the
Precision and Recall of the model but also factors in different IoU (Intersection over
Union) thresholds.

mAP = !

Ql

Q
Y AP(q) (22)
7=1
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where Q is the total number of categories and AP(g) is the Average Precision of the
gth category.

4. FPSis a metric indicating the real-time capability of the model, denoting the number
of frames that the model can process per second. For tasks like drone target detection
that necessitate rapid response, FPS is crucial.

1
FPS = - (23)

where T is the time required to process a single frame.

Each of these evaluation metrics has its unique significance. Precision and Recall
provide insights into the model’s accuracy and completeness in detecting positive samples.
Often, there is a trade-off between Precision and Recall; improving one might reduce the
other. mAP serves as a comprehensive metric, assessing the model’s performance across
categories, and is especially suited for multi-category detection tasks. FPS is vital for gaug-
ing the model’s real-time capabilities. In many practical scenarios, such as autonomous
drone navigation and real-time monitoring, computational efficiency and prompt response
of the model are paramount. Thus, besides detection accuracy, computational efficiency
must also be factored in to ensure timely responses in real-world deployment. In essence,
these metrics offer a holistic and in-depth perspective, enabling a multi-dimensional assess-
ment of model performance. By continually optimizing these metrics, outstanding model
performance can be assured, catering to various practical requirements.

3.5. Experimental Designs

For the experimental design of this study, an 8:2 split was applied to the dataset. Here,
80% of the data were designated for training the model, while the remaining 20% served as
the validation set, employed for evaluating model performance and tuning hyperparame-
ters, ensuring the model’s robust generalization capability in real-world applications.

To evaluate the model comprehensively and discern performance disparities with
other advanced technologies, six models—YOLOv8 [38], SSD [39], EfficientDet [40], DETR [23],
QueryDet [41], and Focus-DETR [24]—were chosen as baselines. YOLOvV8 and SSD are
renowned for their stellar speed and accuracy. EfficientDet, owing to its compact design,
is suitable for deployment on embedded devices. DETR, QueryDet, and Focus-DETR
represent the next generation of object detection technologies based on the Transformer
architecture, with DETR showcasing a design approach distinct from traditional CNNs.
QueryDet and Focus-DETR build upon this foundation, presenting novel solutions.

Regarding optimizer selection and considering the characteristics of knowledge distil-
lation, adaptive optimizers were chosen for model training. In comparison to the conven-
tional SGD and Adam, adaptive optimizers exhibit superior performance in a knowledge
distillation setting. Hyperparameter configurations were adjusted based on validation
set performance, initializing the learning rate at 0.001, setting the batch size to 32, and
incorporating a weight decay of 0.0005 to mitigate overfitting.

Additionally, a series of ablation experiments were conducted to validate the efficacy
of various model components. This encompassed removing the super-resolution sampling
module to discern its contribution to model performance, comparing the performance
differences between the adaptive optimizer and SGD/Adam, and the results of training
lightweight models without employing knowledge distillation. Lastly, a comparison was
made between static prediction boxes and dynamic prediction boxes, substantiating that
dynamic prediction boxes can more adeptly adapt to varying pest densities in different
scenarios, contributing to the enhancement of model performance.
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4. Results
4.1. Detection Results

The purpose of the experimental design is to compare the performance of different
object detection models on a specific dataset using key metrics, Precision, Recall, mAP, and
FPS, as benchmarks. The experimental results are displayed in Table 2.

From Table 2, it is evident that the proposed method surpasses all other models across
the four metrics, notably showing a significant advantage in FPS. This suggests that the
introduced model not only possesses superior detection accuracy but also boasts enhanced
real-time performance. The YOLO series, due to its unique “one grid, one detection” design,
demonstrates a significant advantage in speed, yet might compromise some accuracy in
complex scenarios. Conversely, the SSD architecture, while simpler, often lags behind in
terms of Recall and accuracy when compared with other intricate structures, as reflected by
its lower FPS and other metrics. Both DETR and Focus-DETR adopt the novel Transformer
structure for object detection, eschewing traditional convolutional architectures, which
might enhance their accuracy. However, the complexity and computational cost of the
Transformer structure could slightly impede their speed. EfficientDet strives to strike
a balance between speed and accuracy, but the data suggest that it does not achieve
particularly noteworthy results.

Table 2. Performance comparison of different detection models.

Model Precision Recall mAP FPS
YOLOVS [38] 0.96 0.91 0.94 52
Focus-DETR [24] 0.95 0.90 0.93 31
DETR [23] 0.94 0.90 0.92 38
QueryDet [41] 0.93 0.90 0.91 46
EfficientDet [40] 0.92 0.89 0.91 43
SSD [39] 0.91 0.89 0.90 33
Ours 0.97 0.95 0.95 57

Considering the mathematical characteristics of the models, each possesses its unique
optimization aspects. For instance, YOLOvVS [38] optimizes its loss function to better cap-
ture smaller objects and reduce false detection instances. DETR [23] and Focus-DETR [24]
emphasize leveraging the self-attention mechanism of the Transformer structure, aiming
to detect long-distance dependencies among objects, bolstering the model’s robustness. Ef-
ficientDet [40] attempts to find the optimal balance in terms of model depth, width, and
resolution to achieve the best performance with limited computational resources. Mean-
while, the method proposed in this study merges the advantages of multiple models and
introduces a series of innovations. The model structure is optimized to be more lightweight,
which not only accelerates the model but also reduces the risk of overfitting to some extent.
Regularization terms are added to the loss function, ensuring that the model pays more
attention to hard-to-detect objects during training, enhancing its generalization capabilities.
Furthermore, preprocessing steps are applied to the model input, ensuring better capture of
object features, thereby increasing its accuracy. In conclusion, the superiority of this method
across the four metrics stems from the comprehensive analysis of traditional models and
multifaceted innovations. This not only validates the effectiveness of the proposed technique
but also offers valuable insights for future research.

4.2. Test on Different Hardware Platforms

The purpose of this experimental section is to verify the performance of various
object detection models across multiple hardware platforms. Typically, the speed and
accuracy of object detection models are closely tied to the hardware platform on which they
are deployed. Differences in hardware performance can lead to significant disparities in
model performance. Comparing the performance of models on various platforms is crucial,
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especially for real-world applications such as edge computing or deployment on mobile
devices. The primary metric for this experiment is FPS, as presented in Table 3.

Table 3. FPS comparison of different detection models on different hardware platforms.

Model Smart Phone (Huawei P40)  Jetson Nano Raspberry Pi
YOLOVS [38] 39 52 9
Focus-DETR [24] 8 31 -
DETR [23] 9 38 -
QueryDet [41] 11 46 5
EfficientDet [40] 13 43 7
SSD [39] - 33 -
Ours 27 57 15

From an examination of Table 3, it can be observed that the method proposed in
this study outperforms all other models across the three hardware platforms. This
validates the effectiveness of the lightweighting technique presented in this paper
for real-world applications. Generally, the more complex a model is, the higher the
computational resource requirement is, particularly on devices with limited hardware
resources, like Raspberry Pi or certain smartphones. On such devices, the advantage of
lightweight models becomes particularly pronounced. For instance, YOLOvVS exhibits
impressive performance on the Huawei P40 smartphone but falters on Jetson Nano and
Raspberry Pi. This disparity might be attributed to the complexity and computational
demands of YOLOVS, which may be constrained on these devices. Both Focus-DETR
and DETR underperform on smartphones but show relatively better results on the
Jetson Nano. This could be related to their Transformer-based architecture, which might
not be maximally efficient on certain hardware setups. In contrast, both EfficientDet
and QueryDet display stable performance across platforms, particularly on Jetson Nano.
This stability might align with their design intentions, striving for a balance between
speed and accuracy.

Considering the mathematical characteristics of the models, each model possesses
unique advantages and shortcomings. For example, YOLOv8 may demand more computa-
tional resources to execute its optimized loss function, while Transformer-based models
like DETR and Focus-DETR might require larger memory footprints to manage their self-
attention mechanisms. Concurrently, the optimization of depth, width, and resolution in
EfficientDet allows it to maintain consistent performance across diverse devices. However,
the method detailed in this paper integrates the strengths of various models and introduces
a series of lightweight innovations. By optimizing the model structure, a reduction in the
number of parameters and computational complexity was achieved. This ensures that
the model can run faster not only on devices with ample computational resources but
also on those with limited capacity. Additionally, specific high-computational components
that have minimal impact on performance were selectively reduced, rendering the model
more efficient.

4.3. Test on Other Datasets

The objective of the experimental design in this section is to evaluate the generaliza-
tion and adaptability of the model across diverse datasets. By conducting tests on both
the PlantDoc and Wheat Head datasets, a comprehensive demonstration of the model’s
versatility and adaptability is provided. The experimental outcomes indicate commendable
performance on both datasets, especially on the PlantDoc dataset, where Precision, Recall,
and mAP metrics exhibit exceptional results, as shown in Table 4.
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Table 4. Performance comparison on different open source datasets for our method.

Dataset Precision Recall mAP
PlantDoc [33] 0.93 0.91 0.92
Wheat Head [42] 0.77 0.71 0.74

Firstly, such experimental outcomes substantiate the model’s robust generalization
capabilities. High performance on the PlantDoc dataset reveals the model’s ability to
adeptly adapt to various types of plants and pests. This indirectly affirms that the features
learned during the training phase possess universal applicability. These features likely
encapsulate fundamental and common visual or biological attributes related to plant pests.
Secondly, the favorable performance on two distinct datasets further confirms the model’s
exceptional adaptability. This suggests that the model is not only applicable to specific
datasets or tasks but also performs reliably in new, unseen data environments. From
a mathematical perspective, such generalization performance implies that the model’s
decision boundaries maintain effectiveness across different data distributions. This is
critically important for real-world applications, where the model is exposed to a myriad of
data and environmental conditions. Lastly, these experimental outcomes further solidify
the model’s standing as a reliable and effective tool for plant pest detection, offering strong
support for its future applications across a broader range of crops and pests.

In summary, through testing and validation on various datasets, the model exhibits
outstanding generalization and adaptability. This not only confirms its potential as an
efficient and reliable tool for plant pest detection but also lays a solid foundation for its
broader application in diverse scenarios.

5. Discussion
5.1. Ablation Study on Different Optimizers

The design of the experiments in this section aims to validate the performance of
different optimizers when applied to the proposed method. Optimizers dictate the update
strategy and rate of the model, subsequently affecting the convergence speed and the final
performance, as depicted in Table 5 and Figure 7.

Table 5. Performance comparison of different optimizers and our method.

Optimizer Precision Recall mAP Epochs
SGD [36] 0.91 0.93 0.92 50
Adam [37] 0.93 0.94 0.93 45
AdamW [43] 0.94 0.93 0.93 45
Ours 0.97 0.95 0.95 35

Figure 7. Visualization of gradients generated by different optimizers. (A) Ours; (B) Adam; (C) SGD;
(D) AdamW.

From an inspection of Table 5, it is evident that among all the optimizers, the adaptive
optimizer introduced in this study exhibits superior performance, achieving the highest
Precision, Recall, and mAP. This suggests that in comparison to traditional optimizers,
the proposed method is more apt for this specific object detection task. According to the
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mathematical characteristics of the models, each optimizer possesses its inherent logic
and strategy. The traditional SGD relies on a fixed learning rate, whereas Adam and
AdamW depend on adaptive learning rate adjustments and momentum. However, every
optimizer might encounter various challenges in real-world applications, such as local
minima, saddle points, or gradient vanishing. The method proposed in this study addresses
these challenges with a series of strategies and adjustments, including adaptive learning
rate modifications, momentum correction, and weight decay. Consequently, it can update
the model parameters more effectively, accelerate convergence, and enhance the final
performance of the model. In summary, this experiment highlights the impact of different
optimizers on model performance and provides explanations from both theoretical and
mathematical perspectives. The adaptive optimizer presented in this study, due to its
unique strategies and adjustments, demonstrates the best performance, further validating
the effectiveness and superiority of the proposed method in practical applications.

5.2. Ablation Study on Super-Resolution Module

This section was designed to validate the performance of various super-resolution
strategies with the proposed method, especially considering low-resolution or compressed
images. The results are presented in Table 6.

Table 6. Performance comparison of different super-resolution strategies and our method.

Optimizer Precision Recall mAP
None 0.90 0.88 0.89
SRGAN [27] 0.94 0.92 0.93
Super-resolution module 0.97 0.95 0.95

Upon examination of Table 6, it is evident that the model’s performance is the most
compromised when no super-resolution strategy is employed. This underscores the impor-
tance of high resolution in object detection. SRGAN, a super-resolution approach based
on Generative Adversarial Networks, has previously demonstrated effectiveness across
numerous tasks. In this experiment, SRGAN indeed enhanced the Precision, Recall, and
mAP of the model. Nonetheless, the super-resolution module proposed in this study
outperformed all other strategies, suggesting deeper optimization tailored for this specific
object detection task.

From a mathematical perspective, SRGAN leverages Generative Adversarial Networks
to amplify image details with the primary intent of making the super-resolved image
perceptually closer to the genuine high-resolution counterpart. However, the adversarial
nature of GANs might introduce certain unrealistic details, potentially compromising
the accuracy of object detection. In contrast, the super-resolution module presented in
this study, while addressing perceptual image quality, places a heightened emphasis
on the restoration of authentic details. This is possibly achieved using more intricate
feature extraction and the fusion of multi-scale information, ensuring that the elevation in
resolution does not come at the cost of genuine object detail fidelity. Such findings further
affirm that in practical applications, employing an appropriate super-resolution strategy
is pivotal for enhancing object detection performance on low-resolution or compressed
images. The super-resolution module introduced in this study, with its unique design and
optimization, successfully addresses this challenge.

5.3. Ablation Study on Lightweighting Methods

The primary objective of the experimental design in this chapter is to investigate
the impact of lightweighting techniques on model performance, with a specific focus on
the trade-off between speed (FPS (Frames Per Second)) and model metrics (Precision,
Recall, mAP). This is particularly important for practical applications where lightweight
models are often more suitable for resource-constrained environments such as embedded
or mobile devices.
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As observed from Table 7, the model without lightweighting demonstrates the highest
Precision, Recall, and mAP but performs relatively poorly in terms of FPS, reaching only
33 FPS. This indicates that while the model exhibits high performance, the computational
complexity is also increased, resulting in slower processing speed. However, in real-
world applications, especially those requiring rapid response, FPS is an important metric
that cannot be ignored. When knowledge distillation is employed as a lightweighting
method, the model experiences an increase in FPS to 57, while the drop in Precision,
Recall, and mAP is relatively minor. This suggests that knowledge distillation effectively
enhances the model’s processing speed while maintaining high performance. Knowledge
distillation works by extracting knowledge from a larger, high-performing model (teacher
model) to train a smaller, faster model (student model), enabling the student model to
maintain high performance levels while reducing computational load. Quantization,
another lightweighting technique, achieves the FPS value of 52 but experiences a more
significant decline in Precision and mAP. Quantization reduces the bit width of model
weights, thereby decreasing the model size and computational complexity. This usually
comes at the cost of some performance sacrifice but significantly improves the processing
speed. As shown by the experimental results, quantization elevates FPS while having a
more substantial impact on model performance. When both knowledge distillation and
quantization are combined (All), the model reaches the highest FPS, 73, but there is a
decline in Precision, Recall, and mAP. This represents a typical trade-off scenario, where
the model achieves significant improvements in processing speed at the expense of some
performance loss.

Table 7. Performance comparison of different super-resolution strategies and our method.

Lightweighting Method Precision Recall mAP FPS
None 0.97 0.96 0.97 33
Knowledge distillation 0.97 0.95 0.95 57
Quantization 0.93 0.95 0.94 52
All 0.91 0.92 0.91 73

From a mathematical and algorithmic perspective, lightweighting usually involves
pruning and quantizing model structures and parameters, which alter the model’s mathe-
matical properties and decision boundaries. Therefore, different lightweighting methods
have varying degrees of impact on model performance. For instance, knowledge distil-
lation often involves techniques such as soft labels and temperature scaling, which can
somewhat maintain the complexity of the model’s decision boundary, thus retaining higher
performance levels during the lightweighting process. In contrast, quantization is a more
“rigid” method of pruning and could significantly alter the model’s decision boundaries,
leading to performance degradation.

In summary, this experiment comprehensively explores the influence of different
lightweighting methods on model performance and processing speed. The results not
only reveal the trade-offs between performance and speed for various lightweighting strate-
gies but also provide valuable insights for selecting appropriate lightweighting methods in
practical applications. These findings facilitate the broader deployment of models in resource-
constrained environments, especially in scenarios requiring fast and efficient processing.

5.4. Limitations and Future Works

Despite the superior performance demonstrated in previous sections, certain limita-
tions of the proposed method are recognized. Firstly, even though the super-resolution
module can effectively recover true details, its performance might be compromised on im-
ages with specific low resolution or high noise levels. Super-resolution techniques always
grapple with the trade-off between accuracy and perceptual quality, and under extreme
conditions, they might not consistently achieve optimal restoration results. Moreover,
while the proposed adaptive optimizer exhibited commendable convergence speed and
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performance, its superiority might be challenged on certain intricate datasets or model
architectures. Real-world data often exhibit considerable diversity and complexity, which
could potentially affect the stability and effectiveness of the optimizer. Additionally, this
research primarily focused on object detection tasks. However, the applicability and effi-
cacy of the method on other tasks, such as image segmentation, facial recognition, or action
detection, remain to be validated.

By addressing these limitations, clear directions for future research emerge. On
one hand, further exploration into the super-resolution module is warranted, especially
regarding how to better balance accuracy and perceptual quality for images under extreme
conditions, ensuring both detailed and authentic image restoration. For the adaptive
optimizer, future efforts could concentrate on enhancing its stability and performance on
a broader and more complex array of datasets. Given the current research limitations,
there is potential for applying the proposed method to other computer vision tasks to
ascertain its universality. Furthermore, integration with other advanced techniques, such
as neural network architecture search or knowledge distillation, might further boost the
effectiveness of the method. Lastly, considering computational resources and efficiency,
future endeavors could investigate how to reduce the computational load and model
parameters while maintaining or even elevating performance. Such advancements would
not only cater to the needs of mobile devices or edge computing but also promote the
practicality and ubiquity of the method.

6. Conclusions

With the widespread application of drone technology in agriculture, ecology, and other
fields, there has been a growing demand for pest detection and identification. In particular,
lightweight pest identification models suitable for deployment on drones hold significant
application value. They can efficiently perform pest detection in real time or nearly in real
time, providing a timely decision-making basis for agricultural pest control. However,
images captured with drones often suffer from challenges like low resolution, compression,
and noise. Ensuring accurate and swift pest identification under these adverse conditions
has been a longstanding technical challenge.

To address the aforementioned problems, a lightweight pest identification model
based on Transformer and super-resolution sampling techniques is proposed in this study.
Initially, the Transformer model, a powerful sequence-to-sequence model, was identified to
be especially apt for capturing various spatial dependencies in images, thereby enhancing
the accuracy of identification. Meanwhile, the super-resolution sampling technique focuses
on addressing issues of low resolution and noisy images, restoring image details and
furnishing subsequent identification processes with clearer and more accurate image data.
Comparisons were made between the proposed method and other traditional methods
in experiments. The results indicated that on various pest image datasets, this approach
demonstrated significant advantages in terms of Precision, Recall, mAP, and FPS, achieving
scores of 0.97, 0.95, 0.95, and 57, respectively. Especially for images affected by low
resolution and noise, the super-resolution module was found capable of effectively restoring
true details, while Transformer ensured high-accuracy pest identification even under such
circumstances. Additionally, an in-depth exploration was conducted on model optimization
in this study, leading to the proposal of an adaptive optimizer. It displayed commendable
convergence and performance on intricate datasets and model structures.

Considering the complexity and diversity of real-world data for future research direc-
tions, further optimization of the super-resolution module could be conducted to handle
even more extreme conditions. Also, in light of computational resources and efficiency,
further lightweighting and optimization of the model could be explored. In summary, the
lightweight pest identification model introduced in this study, based on Transformer and
super-resolution sampling techniques, not only addresses the challenges of low resolution
and noisy images but also offers a high-accuracy and efficient method for pest identifica-

132



Agriculture 2023, 13, 1812

tion, holding significant value and implications for practical applications in pest detection
and identification.
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Abstract: With the advancement in modern agricultural technologies, ensuring crop health and
enhancing yield have become paramount. This study aims to address potential shortcomings in the
existing chili disease detection methods, particularly the absence of optimized model architecture
and in-depth domain knowledge integration. By introducing a neural architecture search (NAS) and
knowledge graphs, an attempt is made to bridge this gap, targeting enhanced detection accuracy and
robustness. A disease detection model based on the Transformer and knowledge graphs is proposed.
Upon evaluating various object detection models on edge computing platforms, it was observed
that the dynamic head module surpassed the performance of the multi-head attention mechanism
during data processing. The experimental results further indicated that when integrating all the
data augmentation methods, the model achieved an optimal mean average precision (mAP) of 0.94.
Additionally, the dynamic head module exhibited superior accuracy and recall compared to the
traditional multi-head attention mechanism. In conclusion, this research offers a novel perspective
and methodology for chili disease detection, with aspirations that the findings will contribute to the
further advancement of modern agriculture.

Keywords: chili disease identification; knowledge graphs; Transformers; neural architecture search;
focal loss

1. Introduction

Peppers, as one of the widely cultivated crops globally, not only possess significant eco-
nomic value but also serve as indispensable ingredients in numerous traditional dishes [1].
However, during the growth process, peppers are vulnerable to various diseases, which
can profoundly impact their yield and quality, leading to substantial economic losses for
farmers and the entire agricultural supply chain [2].

Conventional crop disease detection primarily relies on agricultural experts” expertise
and manual observation [3]. Such methods are time-consuming and inefficient, falling short
of meeting the demands for large-scale and real-time disease detection. With the rapid
advancements in information technology and computer vision [4-6], newer techniques
exhibit strengths in efficiency, accuracy, and scalability, significantly enhancing the accuracy
and efficiency of disease detection [7].

Zeng et al. combined convolutional neural networks and transfer learning to de-
tect plant diseases by inspecting plant leaves, achieving an impressive accuracy rate of
99.5% [8]. Li et al. developed an MTC-YOLOv5n model for cucumber disease detection
based on YOLOVS5, incorporating coordinate attention (CA) and Transformer to reduce
distractions and enhance model precision, further lightweighting the model for mobile
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deployment [9]. Abbas, Amreen, and colleagues utilized conditional generative adversarial
networks (C-GAN) to generate synthetic images of tomato plant leaves, subsequently train-
ing a DenseNet model to classify ten types of tomato diseases, achieving an accuracy rate of
97.11% [10]. Sun et al. proposed a real-time lightweight model for apple disease detection,
MEAN-SSD, detecting five common apple diseases with an mAP of 83.12% and a speed
of 12.53 FPS [11]. To address plant-disease identification in complex field scenarios, Wang
et al. introduced a dual-stream hierarchical bilinear pooling model, primarily enhancing
network layer information interaction capabilities for fine-grained recognition [12].

Knowledge graph technology, as an emerging method of data organization and repre-
sentation, offers an intuitive and structured visualization of complex data relations [13].
In agriculture, knowledge graphs can consolidate information and knowledge related to
crop growth, diseases, fertilization, and irrigation, offering decision-making support to
farmers and agricultural experts and assisting in better crop management and disease
prevention [14]. Zhou et al. created a knowledge graph for specific diseases of tomatoes
and cucumbers. By integrating image modality, text modality, and knowledge graphs, an
ITK-Net crop disease identification model was established, achieving 99.63% accuracy [15].
Zhu et al. addressed fruit-pest problems by first constructing a lychee knowledge graph,
then using a VGG-16 model for disease and pest recognition, achieving a 94.9% accuracy
rate [16]. Guan et al. constructed an agricultural knowledge graph, then used a CNN-
DNN-BiLSTM network for fruit tree pest detection, comparing their results with the VGG
network and BiLSTM network, showcasing the superiority of their model over traditional
deep learning models [17].

Combining the knowledge graph technology with computer vision for pepper dis-
ease detection not only facilitates rapid and accurate disease identification but also offers
targeted recommendations and methods for disease treatment and management [18]. For
instance, using related information from the knowledge graph, specific fertilization, irri-
gation, and disease treatment recommendations can be provided to farmers, aiming to
prevent and control diseases proactively. Furthermore, by merging computer vision and
knowledge graph techniques, predictions on the occurrence, development, and spread
trends of diseases can be made, granting more scientific and precise decision-making
support for agricultural production and management [19].

Based on the aforementioned discussions, the primary objective of this study is to
investigate the roles and impacts of a neural architecture search and knowledge graphs in
chili disease detection tasks on model performance. By comparing with baseline models,
this research seeks to ascertain whether these two mechanisms can enhance the model’s
efficacy, thereby introducing a high-precision and rapid method for chili disease detection.
A chili disease identification system based on a neural architecture search and knowledge
graphs was constructed, leveraging the strengths of both to elevate the efficiency and
accuracy of disease detection. The main innovations and contributions are as follows:

1. Aneural architecture search is applied to pepper disease image detection for the first time,
automatically optimizing the model structure to achieve heightened detection accuracy.

2. A wealth of knowledge about pepper diseases is consolidated using knowledge
graphs, enriching the background information and treatment recommendations for
the identification results.

3. A novel method of combining Transformer in object detection is introduced and
further optimized through the neural architecture search.

4. To capture subtle features in pepper disease images, a dynamic head structure is
designed, and an advanced focal loss function is introduced.

5. Comprehensive experimental verification demonstrates the system’s superior perfor-
mance across various hardware platforms.

This research holds practical value for pepper cultivators and provides new research
insights and technical references for the disease detection of other crops. Through this
study, the aspiration is to propel agricultural disease detection into a more intelligent and
accurate new era.
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2. Related Work
2.1. Application of Neural Architecture Search in Deep Learning

The core idea of the neural architecture search (NAS) lies in the automated search for
the optimal structure of deep learning models. Given the vast model space encompassing
thousands of possible combinations, the goal of NAS is to identify the most performant
model structure among these combinations [20].

For convolutional neural networks (CNN), which have been extensively applied to image
processing tasks with remarkable success [21-23], traditional CNN models such as VGG [24]
and ResNet [25] have their structures manually crafted based on researchers’ insights. How-
ever, as the tasks become increasingly complex, the manual design of network architecture
has become more challenging. This is where the potential of NAS is realized. NAS endeavors
to explore different combinations of convolutional kernel sizes, layer counts, and connection
strategies to automatically discover the most fitting CNN architecture for specific tasks [20].
The fundamental optimization problem for NAS can be expressed as [20]

argnkinﬁ(f(w’ﬁ(‘x)r‘x);pval)r (1)

where a denotes the network structure parameters, w* () represents the weights given the
network structure parameters «, £ is the loss function, and D, stands for the validation set.

On the other hand, due to its self-attention mechanism, the Transformer model has shown
superior performance on sequence data and has been widely adopted for natural language
processing tasks [26,27]. Similar to CNNSs, the structure of Transformer models can also be
optimized using NAS. In NAS for Transformers, common alterations include the number of
attention heads, model depth, and feed-forward neural network dimensions. For instance,
through NAS, a more compact Transformer model can be discovered that maintains a perfor-
mance close to the original model while significantly reducing computational requirements.
The optimization problem can also be represented as in Equation (1).

In summary, NAS provides an effective method for automatically optimizing deep
learning models such as CNNs and Transformers. By facilitating automated search pro-
cesses, not only can NAS identify high-performing model architectures, but it can also
save significant time and effort for researchers. With the further development of NAS
techniques, it is anticipated that more high-performance, computationally efficient deep
learning models will emerge.

2.2. Application of Knowledge Graphs in Agricultural Tasks

Knowledge graphs, as structured knowledge organization methods, have been in-
creasingly recognized in agricultural tasks [28]. The knowledge ecosystem in agriculture
is intricate, encompassing soil types, climatic conditions, crop varieties, and pest species.
The strategic combination of this information determines the ultimate result of agricultural
production. Knowledge graphs can structure and visualize this data, providing potent
decision support for agricultural production and research.

Consider the core agricultural task of disease prediction. Traditional methods [3]
largely rely on empirical knowledge, whereas knowledge graphs integrate multi-faceted
data, such as historical records, soil testing outcomes, and weather forecasts, offering a
more precise model for disease prediction.

2.2.1. Data Annotation Process

The data related to diseases are first gathered from various sources, potentially in-
cluding reports from agricultural departments, research papers from experts, and field
experiment data. These datasets are then subjected to preprocessing tasks, such as data
cleaning and format conversion. Subsequently, with the aid of expert knowledge and semi-
automated tools, these datasets are annotated to establish relationships (e.g., causality or
correlation) between various factors, such as soil type or climatic conditions and diseases.
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2.2.2. Model Input

When constructing knowledge graph models, inputs mainly comprise numerical or
categorical information of various factors, such as soil type (sandy, clay, or loamy) and
climatic conditions (temperature, humidity, rainfall, etc.). Moreover, historical records of
disease occurrences, such as the incidence rate or disease type from the previous quarter,
can also be integrated.

2.2.3. Model Output

The model output predominantly pertains to predictions related to disease occurrences,
which include the likelihood of the disease manifesting, potential disease types, and
probabilities associated with each type. These outputs can offer farmers targeted preventive
and treatment recommendations.

Mathematically, the construction of a knowledge graph can be perceived as a graph
model, where nodes represent various factors or diseases, and edges signify their rela-
tionships. For disease prediction, a probabilistic model, such as a Bayesian network, can
be devised to depict the probabilistic relationships between various factors and diseases.
Specifically, given the observed values of factors x, the probability of disease occurrence
can be expressed as

P(xly)P(y)

P(y[x) = TP 2

where y represents the event of disease occurrence, P(x|y) denotes the probability of
observing factor x given the disease occurrence, P(y) is the prior probability of disease
occurrence, and P(x) is the marginal probability of factor x.

To conclude, knowledge graphs have found broad applications in agricultural tasks [29-31],
especially in disease prediction. By organizing and integrating diverse information in a struc-
tured manner, knowledge graphs not only enhance the accuracy of disease prediction but also
deliver robust decision support for agricultural production and research.

3. Materials
3.1. Data Entry for Knowledge Graphs

Knowledge graphs have demonstrated their immense value in various tasks within
the current Al research, especially in the identification of chili pepper diseases [29], where
they can provide rich semantic background knowledge. Detailed below is the methodology
employed to construct and utilize the knowledge graph to aid in disease detection from
image datasets.

3.1.1. Knowledge Graph Construction

Initially, the core entities of the knowledge graph were determined, including “Dis-
ease”, “Pathogen”, “Affected Part”, and “Treatment Method”. These entities are vital
factors in disease identification and treatment. Each entity possesses associated attributes,
such as the “Name”, “Incubation Period”, and “Typical Symptoms” of a disease. Subse-
quently, relationships between these entities were established. For instance, a “Pathogen”
might “Cause” a certain “Disease”, and a “Disease” might “Affect” a certain “Part”, as
illustrated in Figure 1.

G=1{&R,A} @)

where & represents the set of entities, R denotes the set of relationships, and A stands for
the set of attributes.
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Figure 1. Tllustration of the knowledge graphs generated in this paper. Leaf blight: This can be
caused by various pathogens in different crops, but in chili peppers, it might be due to Alternaria
solani or Phytophthora capsici. Black spot: Black spot is typically associated with roses and is caused
by the fungus Diplocarpon rosae. In chili peppers, a disease with similar symptoms might be caused
by a different pathogen, so it is important to accurately diagnose the disease. Brown spot: This could
refer to bacterial leaf spot caused by Xanthomonas campestris pv. vesicatoria in chili peppers. Black
mold: This is usually referring to the sooty mold that grows on the honeydew produced by insects.
Early blight: This is typically caused by the fungus Alternaria solani.

3.1.2. Knowledge Graph Application

The knowledge graph provides not only detailed information about chili pepper dis-
eases but also equips the model with semantic background knowledge. When a suspected
disease region is detected in an image by the model, this region is associated with the
disease entity in the knowledge graph to gather more information about that disease. For
instance, upon detecting a disease, information such as its typical symptoms, potential
pathogens, affected parts, and recommended treatment methods can be retrieved from the
knowledge graph. To realize this functionality, a mapping function M was defined that
takes the model’s output and associates it with the knowledge graph [28]:

Z=M(O,Q9) (4)

where O is the model’s output, G is the knowledge graph, and 7 is the information
associated with the knowledge graph.

3.1.3. Adapting Image Datasets

During model training on the image dataset, both image annotations and information
from the knowledge graph were utilized as auxiliary inputs. Specifically, for each image,
the disease entities and attributes related to them were retrieved and input into the model
along with the image. To facilitate this functionality, an input function I was defined,
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which takes the image data and its related knowledge graph information, generating the
model’s input:
x' =1(x,T) (5)

where x is the image data, Z is the information related to the knowledge graph, and x’ is
the model’s input. In conclusion, the knowledge graph plays a pivotal role in chili pepper
disease identification. It enriches the model with semantic background knowledge and
amplifies the model’s inference capabilities.

3.2. Image Dataset Collection and Annotation

For the training of the chili pepper disease identification model, a substantial amount
of annotated image data were necessary. Initially, a plethora of chili images were gathered
from multiple online agricultural databases, as shown in Table 1. These images covered
different growth stages, lighting conditions, and shooting angles, ensuring data diversity,
as showcased in Figure 2.

Table 1. Distribution of the images in the dataset used in this paper.

Number of Images after

Kind Number of Images before Augmentation Augmentation
Black Mold 331 852
Brown Spot 219 719
Black Spot 486 1046
Leaf Blight 173 683
Early Blight 320 905

Figure 2. Samples of chili pepper disease images dataset in this paper. (Leaf blight, black spot, brown
spot, black mold, early blight.)

Following data collection, a team comprising agricultural experts and data annotators
was assembled. Using annotation tools, they annotated each image for the location and cat-
egory of diseases. Each disease region was represented with a bounding box, accompanied
by a specific disease name, as illustrated in Figure 3.

8 labellmg C: m - 0o x
Fie Edit View Help

5: §
#eciuge

Figure 3. Illustration of the annotation screenshot by Labellmg [32] application.
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Mathematically, this representation can be expressed as

D = {(x;,vi)}, (6)

where x; is the i-th image, y; denotes its corresponding disease annotation, inclusive of
bounding boxes and category labels, and N is the total number of images.

3.3. Dataset Augmentation

Data augmentation is a common technique in deep learning, allowing for increased
data diversity without actually expanding the dataset, thereby enhancing the model’s gen-
eralization capabilities. Given the characteristics of agricultural images, such as variations
in lighting and obstructions, it was decided to employ data augmentation to bolster the
model’s robustness against these factors. Several augmentation techniques were applied,
including random cropping, rotation, scaling, brightness, and contrast adjustments, as
depicted in Figure 4.

Figure 4. Demo of different augmentation methods used in this paper. (A) is the original image; (B) is
contract augmentation; (C) is brightness augmentation; (D) is rotation augmentation; (E) is flipping
vertically augmentation; (F) is flipping horizontally augmentation; (G) is cropping augmentation.

Mathematically, given an image x, an augmentation function 7 was defined that takes
image x and produces the augmented image x':

X' =T(x) @)

Through data augmentation, a vast number of images slightly different from the
original yet retaining the same semantic essence can be generated. This not only amplifies
the volume of training data but also aids the model in learning more robust features,
thereby enhancing its performance in real-world scenarios. In summary, through the
construction of the knowledge graph and the collection, annotation, and augmentation
of datasets, a rich and diverse training dataset was provided for the task of chili pepper
disease identification. This laid a solid foundation for the training and evaluation of the
model, ensuring commendable results in practical applications.

4. Proposed Method
4.1. Overall

A comprehensive framework that integrates both the Transformer and knowledge graph
models is proposed in this study, aiming for efficient and accurate detection of chili pepper
diseases. To fully exploit both the image data of chili pepper diseases and the related knowledge
information, a two-stage model, has been designed, as depicted in Figure 5.

Initially, image features of chili pepper diseases are extracted using the Transformer
model after a CNN module, as shown in Figure 5. Subsequently, by incorporating the
knowledge graph model, related knowledge information is integrated to provide a more
comprehensive and precise decision support for disease identification. The input to the
model is twofold: the first being the image data of chilies, encompassing images of both
healthy and diseased peppers; the second pertains to knowledge information related to
diseases, which might encompass aspects such as disease types, pathogens, influencing
factors, and mechanisms of disease onset. The model output is the identification result
of the chili pepper diseases, covering disease type, the likelihood of occurrence, and
related knowledge information. These outputs can offer farmers targeted prevention and
treatment recommendations.
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Figure 5. Illustration of the whole method proposed in this paper.

4.2. NAS for Performance Optimization

To further enhance the performance of the model, neural architecture search (NAS)
technology is applied for the structural search of the entire model, as shown in Figure 6.
Specifically, a search space is first defined, encompassing various potential structural con-
figurations of the Transformer model, such as its depth, number of attention heads, and
dimensions of the feed-forward neural network. Then, using NAS, the model structure best
suited for the chili pepper disease detection task is autonomously sought. Furthermore, to
integrate the knowledge graph model, structural configurations related to knowledge infor-
mation, such as the embedding methods for knowledge nodes and the association methods
between knowledge and features, are also incorporated into the search space. Through the
autonomous search with NAS, not only can the most performant model structure be found,
but the optimal way to integrate knowledge information with features can also be determined.
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Figure 6. Illustration of the NAS module used in this paper. GELU [33] means Gaussian error linear
units. The NAS block details are shown in the gray bounding box.
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In summary, the method proposed in this study is a comprehensive framework that
integrates both the Transformer and knowledge graph models. Through its two-phase
model design, it harnesses both the image data of chili pepper diseases and the related
knowledge information, providing comprehensive and precise decision support for disease
identification. Moreover, by employing NAS technology, the model’s performance is further
optimized, adapting it more closely to the characteristics and demands of the chili pepper
disease detection task.

4.3. Integration of Knowledge Graph

The value of knowledge graphs in various Al applications is gradually gaining recog-
nition among researchers [30,31]. In the task of chili pepper disease identification, the
knowledge graph can equip the model with rich prior knowledge and background informa-
tion, aiding the model in better understanding and identifying diseases. The input for this
module is the raw features from the object detection model and the entity and relationship
information related to chilies in the knowledge graph, as shown in Figure 1. The output is
the enhanced features after integrating with the knowledge graph, as shown in Figure 1.

Entities and relationships related to chilies are first extracted from the knowledge
graph to build a disease-attribute subgraph. Then, a graph neural network (GNN) [29] is
used to encode this subgraph, obtaining the embedding representation for each disease.
Mathematically, this process can be represented as

W —of ¥ worl, ®)
ueN (v)
where hz(,l) denotes the embedding of node v at layer [, NV (v) represents the set of neighbors
of node v, W) is the weight matrix at layer /, and ¢ is an activation function. Subsequently,
the obtained disease embeddings are fused with the raw features from the object detection
model through a fully connected layer, mathematically expressed as

f/ = ReLU(Wff + bf +h), 9)

where f is the raw feature, & is the disease embedding, and Wy and by are the weight
matrix and bias, respectively. The design of this fusion module is driven by the intent
to leverage prior knowledge and background information from the knowledge graph to
enhance the model’s comprehension capability. Conventional object detection models
only learn features from images and lack a deep understanding of the reasons behind and
impacts of the diseases. The knowledge graph, on the other hand, can provide the model
with this invaluable information, aiding the model in better distinguishing between various
diseases, thereby enhancing identification accuracy. It not only equips the model with rich
information from the knowledge graph, enhancing its understanding of the diseases, but
also introduces a novel, more potent feature representation method, allowing the model to
learn features not just from images but also from the knowledge graph. Finally, integrating
the knowledge graph provides a more stable and robust feature representation, ensuring
the model’s robust performance even in the face of noisy or incomplete data.

4.4. Transformer in Focus Detection Task

The recent computer vision research has extensively focused on the Transformer
model due to its unique self-attention mechanism. Initially, Transformers were designed for
handling natural language, aiming to capture long-range dependencies in texts. However,
it was discovered by researchers that its self-attention property is also highly suited for
image processing tasks, especially in scenarios that necessitate capturing long-distance
relationships between different parts of an image. In the chili pepper disease identification
task presented in this study, morphological features of diseases can appear anywhere in
the image, and there might exist correlations or structural dependencies between these
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locations. For instance, the onset of a disease on one side of the chili could imply the
emergence of disease symptoms on the opposite side. Traditional CNN models, focusing
primarily on local features, might miss such global, long-distance dependencies. This is
where the Transformer’s uniqueness in object detection, especially in chili pepper disease
identification, comes into play.

In the design of this study, a CNN, ResNet18 [25], is initially utilized to extract basic image
features, which are then fed as inputs to the Transformer module [26], as depicted in Figure 7.
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Figure 7. Illustration of the Transformer architecture used in our model.

The Transformer module [26] converts the feature map into a sequential format,
with each pixel point acting as an element in the sequence. These elements undergo
processing via the self-attention mechanism, resulting in new feature representations.
These new features not only amalgamate local information but also integrate global, long-
range information. Specifically, the self-attention mechanism in the Transformer can be
mathematically represented as

. QKT
Attention(Q, K, V) = softmax| =—— |V, (10)

Vi

where Q, K, and V are the query, key, and value derived from the input features via linear
transformation, respectively, and d; denotes the dimension of the key. Adopting this design,
which combines the local feature extraction capabilities of CNN and the long-distance
relationship capturing abilities of the Transformer, allows for a more accurate identification
of chili disease features. Furthermore, applying NAS on this structure can further optimize
the model, automatically searching for the network configuration most suited for chili
disease identification, thereby enhancing the accuracy of identification.

4.4.1. Dynamic Head for Tiny Focus Feature

In object detection, especially in detecting tiny focus features, the conventional multi-head
self-attention [26] used in Transformer models might encounter certain limitations. To more
precisely capture these small yet pivotal features, a design called “Dynamic Head” is proposed,
intended to replace the original multi-head attention mechanism, as shown in Figure 8.

/(hard sigmoid

: offset
relu
[conv1><1] é[conv3xS]

avg pool

-

index

I

o

Figure 8. Illustration of the dynamic attention head proposed in this paper. The hard sigmoid is a
simplified version of the sigmoid function, which accelerates computation through linear approximation.
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Traditional multi-head self-attention aims to allow the model to simultaneously cap-
ture multiple different feature relationships. Specifically, each “head” independently
executes self-attention operations, thereby focusing on different parts of the input features.
This can be mathematically expressed as

MultiHead(Q, K, V) = Concat(head;, heady, . .. ,headn)WO, (11)

where each head; represents an independent self-attention operation as previously de-
scribed, and WO is the output linear transformation matrix. However, in the dynamic
head design, instead of using a fixed number of “heads” for the self-attention operations,
the number and weights of the “heads” are dynamically adjusted based on the content of
the input features. Specifically, a weight coefficient is introduced for each “head”, which
adjusts dynamically based on the input features, allowing some “heads” to have higher
weights when dealing with tiny focus features. Mathematically, the dynamic head can be
expressed as

DynamicHead(Q, K, V) = Concat(a; x heady, ay x heady, ..., a, X headn)Wo, (12)

where «; is the weight coefficient for the ith “head”, and it functions based on the input
features. The design rationale behind the dynamic head originates from the observation
that not all “heads” are equally important when processing tiny focus features; some
“heads” might be more adept at capturing such features while others might overlook them.
By introducing dynamic weights, the model can prioritize the more relevant “heads”,
achieving a more accurate capture of tiny focus features. Compared to the traditional
multi-head self-attention, the dynamic head offers the following advantages:

1.  Precise feature capture: Through dynamic weights, the model can place greater
emphasis on those “heads” that are beneficial for capturing tiny focus features, thereby
improving identification accuracy.

2. Enhanced model flexibility: The dynamic head is not limited to the detection of tiny
focus features but is also applicable to other types of object detection tasks. This is
because it can dynamically adjust the “head” weights based on input feature content,
making the model more adaptive to the current task.

In conclusion, the dynamic head offers a novel and more potent feature extraction
mechanism for chili pepper disease identification. It is believed that through this design,
the model’s accuracy and robustness can be further enhanced.

4.4.2. Advanced Focal Loss Function

In object detection tasks, especially with imbalanced data distributions, the classic
cross-entropy loss may lead to a model preference for frequently occurring background
classes at the expense of minority target classes, such as chili diseases [34]. To address
this issue, an advanced focal loss function is proposed in this study. The original design
of the focal loss function was intended to increase the weight of samples misclassified
by the model, ensuring that these samples receive greater attention during training. It is
mathematically defined as

FL(pt) = —(1 — pt)"log(p:), (13)

where p; is the model’s predicted probability for the positive class, and v is a tuning
parameter used to control the rate of weight increase. However, the original focal loss
function might still fail to capture some critical, hard-to-classify samples in certain cases.
To further accentuate the model’s focus on these samples, an advanced version of the focal
loss function is introduced. A new parameter, «, is incorporated into the original focal loss
function, combined with the sample’s class imbalance. The specific form is

AFL(pt) = —a(1— pt) " log(pt), (14)
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where «; is a coefficient related to the sample’s class distribution, used to further enhance
the weight of hard-to-classify samples. Such a design was chosen since in imbalanced data
distributions, the hard-to-classify samples tend to be key and valuable. By introducing «;,
the model can place more emphasis on these samples during training, thereby improving
the model’s generalization capability. Mathematically, «; can be defined as

N, neg

At = o7
Npos + Nneg

(15)

where Npos and Npeg are the number of positive and negative samples, respectively. Com-
pared to the original focal loss function, the advanced focal loss function offers the following
advantages:

1. Enhanced ability to handle class imbalance: By introducing «;, the weight of hard-to-
classify samples can be further emphasized, ensuring that the model focuses more on
these samples during training.

2. Improved generalization capability: In imbalanced data distributions, hard-to-classify
samples are often key and valuable. By utilizing the advanced focal loss function, the
model’s focus on these samples during training can be accentuated, thereby enhancing
its generalization capability.

3. Greater flexibility in loss adjustment: Compared to the original focal loss function, the
advanced focal loss introduces a new parameter, «¢, providing flexibility to adjust the loss
function according to specific task requirements, leading to improved training outcomes.

In summary, the advanced focal loss function offers a novel and more potent loss
design for chili disease identification. It is believed that through this design, the accuracy
and robustness of the model can be further enhanced.

4.5. Experiment Design

To provide a comprehensive and objective assessment of the proposed chili dis-
ease identification system, which is based on neural architecture search and knowledge
graphs, a series of experiments have been designed. The subsequent sections detail the
experimental design.

4.5.1. Experiment Platform

In this research, all experiments were conducted on the Linux operating system
platform. To ensure efficient code execution and rapid model development, Python was
chosen as the primary development language, owing to its extensive use in the fields
of data science and machine learning. To build and test our model, we utilized several
popular Python libraries. First, we employed the PyTorch library, version 1.8.0, which is an
open-source deep learning framework that offers flexible and efficient model training and
evaluation capabilities. Additionally, for data processing and analysis, we used NumPy
(version 1.19.5) and Pandas (version 1.2.3), both of which provide a plethora of handy
tools and functions. For the visualization of our model and the presentation of results, we
employed Matplotlib (version 3.4.1) to generate high-quality graphics.

4.5.2. Dataset Partition and Baseline

The chili disease dataset was initially partitioned. Adhering to conventional data-
splitting principles and aiming to ensure training stability, the dataset was divided into
training, validation, and test sets at a ratio of 8:1:1. The training set is utilized for model
training and parameter updates, the validation set for performance validation and hyper-
parameter tuning, and the test set for the final evaluation of the model performance. To
comprehensively evaluate the proposed model, several popular models in the object detec-
tion domain were chosen as baselines, including YOLOV5 [35], YOLOvVS [36], DETR [37],
SSD [38], and EfficientDet [39]. These models have demonstrated remarkable performance
in object detection tasks, thereby serving as suitable performance benchmarks. Notably,
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these models span various technological trends from real-time detection using the YOLO
series to the Transformer-based DETR, offering a comprehensive perspective to evaluate
the proposed approach.

4.5.3. Optimizer Selection and Hyperparameter Settings

The choice of optimizer plays a crucial role in influencing the training speed and final
performance of the model. In these experiments, the Adam [40] optimizer was chosen
due to its ability to adaptively adjust learning rates and its proven effectiveness across
various tasks, combining the advantages of Momentum and RMSProp. The selection of
hyperparameters is also a pivotal aspect of experimental design. Both grid search and
random search strategies were employed to find the optimal hyperparameter combination,
with various combinations validated on the validation set. Ultimately, a learning rate of
0.001, batch size of 32, and weight decay of 0.0005 were selected, as they exhibited the best
performance on the validation set.

4.5.4. Ablation Study Design

To further validate the effectiveness and significance of each component within the
proposed model, a series of ablation studies were conducted. These studies included
variations such as: a model without the use of knowledge graphs; a model without the
use of neural architecture search; the application of the original multi-head attention
mechanism instead of the introduced dynamic head; and the utilization of cross-entropy
loss instead of the advanced focal loss function proposed. Through these ablation studies,
a deeper understanding of the role of each component within the model can be obtained,
offering valuable insights for further research and improvements.

4.5.5. Experiment Metric

To objectively and comprehensively evaluate the performance of the proposed chili dis-
ease identification system, multiple evaluation metrics were employed, including precision,
recall, mAP, and FPS [7].

1. Precision
Precision measures the proportion of positive predictions that are actually correct. It
reflects the accuracy of the model’s predictions, indicating how many of the predicted
positive samples are true positives.

TP

P .. _
recision 7TP TP

(16)
Here, TP represents the number of true positives, while FP indicates false positives.
For chili disease identification, a high precision implies that the model has a low rate
of false alarms when identifying diseases.

2. Recall
Recall indicates the proportion of actual positive samples that are correctly predicted.
It captures the model’s capability to retrieve relevant instances, revealing how many
of all positive samples are accurately predicted by the model.

TP

Recall = m

(17)
In this equation, FN denotes the number of false negatives. Recall is particularly
important for chili disease identification as a high recall ensures that most diseases
are detected, mitigating potential agricultural losses.

3. Mean Average Precision (mAP)
mAP computes the average precision at varying levels of recall, commonly employed
in object detection tasks. For each recall level, precision is calculated, and then an
average of these precisions is taken.
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1
mAP = oo /r _ Pr)r (18)

Here, R represents the set of recall values, and P(r) indicates the precision at recall

level r. mAP offers a holistic measure of the model’s accuracy and recall capabilities.
4.  Frames Per Second (FPS)

FPS serves as an indicator of the model’s real-time capability, denoting the number of

frames the model can process per second.

FPS = !

=— 1
Time per frame (19)

For chili disease identification, a high FPS suggests that the model can swiftly process
images, offering timely disease detection results in practical applications.

In conclusion, the evaluation metrics employed in this study encompass the model’s ac-
curacy, recall capabilities, and real-time processing ability, providing a comprehensive and
objective assessment standard. Particularly for chili disease identification, high accuracy
and recall ensure timely and precise disease detection, while a high FPS guarantees real-time
application, thus, offering farmers timely and effective disease control recommendations.

5. Results and Discussion

In machine learning and computer vision research, the evaluation and comparison
of models serve as pivotal components for assessing their efficacy and robustness. The
primary aim of this section is to evaluate and compare the performance of various object
detection models on chili disease identification tasks, thereby offering theoretical and
empirical foundations for practical applications. By employing consistent evaluation
metrics—precision, recall, and mAP—an unbiased and objective assessment of the strengths
and weaknesses of each model is achieved.

5.1. Detection Results

The experimental results from this study reveal that the model developed in this
research achieved the best scores on the evaluation metrics of precision, recall, and mAP,
being 0.95, 0.91, and 0.94, respectively, outperforming other baseline models, as shown in
Tables 2 and 3.

Table 2. Detection results of different models.

Model Precision Recall mAP
YOLOV5 [35] 0.89 0.87 0.88
YOLOVS [36] 0.88 0.86 0.87
SSD [38] 0.86 0.83 0.85
DETR [37] 0.90 0.88 0.89
EfficientDet [39] 0.87 0.85 0.86
Ours 0.95 091 0.94

Table 3. Detection results of different chili disease types using our model.

Kind Precision Recall mAP
Black Mold 0.93 0.90 0.92
Brown Spot 0.93 0.88 0.91
Black Spot 0.95 0.92 0.95
Leaf Blight 0.97 0.92 0.96
Early Blight 0.97 0.92 0.96

Among them, DETR demonstrated commendable performance, second only to the
proposed model. This success can be attributed to its design based on the Transformer
architecture, which is adept at capturing the contextual information of images, providing
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a more comprehensive perspective for chili disease detection. The YOLO series models
(YOLOVS5 and YOLOVS) also showcased noteworthy performance by predicting bounding
boxes and categories in a single forward pass, ensuring the model’s real-time capability
and accuracy. However, the SSD model exhibited the most modest performance among all,
possibly due to its inadequate handling of small or highly overlapping objects. EfficientDet,
being a model focusing on efficiency, still holds considerable application value in scenarios
with limited computational resources, despite its slightly inferior performance compared to
the others. In summary, integrating knowledge graphs with deep learning techniques led
to significant improvements in chili disease identification, and emerging detection models
such as DETR also showcased vast potential.

5.2. Test on Different Edge-Platform

The objective of this experiment was to evaluate and compare the real-time perfor-
mance of various object detection models across multiple edge computing platforms. These
platforms encompassed common smartphone models such as Huawei P40 and iPhone 13, as
well as microcomputers such as the Jetson Nano and Raspberry Pi. By assessing the frames
per second (FPS) performance of these models on different hardware, insights were gained
into the potential real-world performance of each model, especially in resource-constrained
scenarios. The results are presented in Table 4.

Table 4. FPS comparison of different detection models on different hardware platform. Generally, we
believe that if a model achieves a processing speed of 30FPS, it can be considered to have met the
requirements for real-time monitoring [3]. On the Huawei P40, the implementation of the model in
this paper was achieved using Al-related API interfaces provided by Google, with Java being the
development language. On the iPhone, the development was carried out in the Swift language using
Apple’s Xcode software 14.0, as shown in Figure 9. For both the Jetson Nano and Raspberry Pi, since
they run on a Linux system, their implementation is the same as that on servers. Both are developed
using the Python language based on the PyTorch framework.

Model Huawei P40 Jetson Nano Raspberry Pi iPhone 13
YOLOVS5 [35] 31 49 11 28
YOLOVS [36] 29 44 12 29
SSD [38] 13 27 - -
DETR [37] 3 15 - -
EfficientDet [39] 28 45 13 19
Ours 33 58 13 31

These findings are reflective of the inherent design nuances and optimization levels of
each model. The YOLO series, renowned for its streamlined design and efficient forward
computation, ensured commendable real-time performance across platforms. EfficientDet,
on the other hand, sought a balance between efficiency and accuracy, rendering it slightly
less optimal in certain resource-limited environments. While SSD aimed for efficiency
during its design phase, it failed to match the expectations on some edge devices, possibly
due to its multi-scale features and intricate default bounding box computations. As for
DETR, its Transformer-based design excelled in capturing contextual information from
images but at the cost of increased computational complexity, leading to a pronounced
reduction in FPS on some edge devices.

Delving deeper into their mathematical constructs, the YOLO series fundamentally
simplifies object detection to a regression problem, thereby eliminating the complexi-
ties of multi-stage computations and ensuring exemplary FPS. DETR, equipped with a
Transformer structure, encompasses extensive matrix computations and self-attention
mechanisms. This computational burden is particularly pronounced on edge devices,
resulting in compromised performance. EfficientDet, meanwhile, endeavors to strike a
balance between model size and computational intricacies. While it might occasionally fall
short of YOLO's performance, its utility remains in resource-constrained settings.
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Detector

Figure 9. Our method running on iPhone.

In conclusion, the varied performance of these models on diverse edge computing plat-
forms stems from their unique design philosophies and underlying mathematical constructs.
These insights offer valuable guidance for future research, aiding researchers and engineers
in judicious model selection and optimization to cater to practical application needs.

5.3. Ablation Study on Different Dataset Augmentation Methods

The primary objective of this experiment was to evaluate and compare the effects of
various dataset augmentation techniques on model performance. Dataset augmentation
is commonly employed to expand the training set, enhance model generalization, and
mitigate issues arising from insufficient data or overfitting. By systematically applying
and combining various augmentation methods, such as flipping, cropping, resizing, and
brightness adjustment, insights into their specific impacts on model performance can
be gained. This paves the way for determining the optimal augmentation strategies for
practical applications. The experimental results are presented in Table 5.

Table 5. Ablation experiment results of different dataset augmentation methods on our model.

Flipping Cropping Resize Brightness mAP
- - - - 0.88
- v v v 0.93
v - v v 0.89
v v - v 0.93
v v v - 091
v v v v 0.94

From the results table, it can be discerned that different augmentation techniques exert

distinct effects on model performance. Specifically:

1.  Without any augmentation, the model achieved an mAP of 0.88.

2. Employing solely cropping, resizing, and brightness adjustment, the model’s mAP
rose to 0.93, indicating that these three techniques significantly bolstered the model’s
performance.
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3. With only flipping, resizing, and brightness adjustment, the mAP reached 0.89. This
score, slightly higher than without any augmentation, is nonetheless inferior com-
pared to the effect of cropping, suggesting that flipping might not always be as
effective as cropping in certain contexts.

4. Retaining all methods but resizing, the mAP still remained at 0.93, possibly implying that,
in the presence of other augmentations, the impact of resizing becomes less pronounced.

5. When excluding brightness adjustment but maintaining other methods, the mAP was
0.91, highlighting the contribution of brightness adjustment to model performance.

6. Integrating all augmentation techniques, the model achieved its best mAP of 0.94.

These findings underscore the pivotal role of data augmentation in enhancing model
performance, particularly the cropping, resizing, and brightness adjustment methods,
which seem to have a more pronounced effect on performance.

5.4. Ablation Study on Different Loss Functions

The primary objective of this study was to evaluate and compare the impact of different
loss functions on model performance. Loss functions serve as a pivotal component in
machine learning and deep learning training, determining how the parameters of the model
are optimized and how features are learned during the training process. By contrasting
various loss functions, insights can be garnered regarding their distinct roles and effects
during model training, offering theoretical guidance for model selection and optimization
in practical applications.

From the experimental data presented in Table 6, it can be inferred that varying loss
functions considerably influence model performance. Specifically, the advanced focal loss
outperforms in all metrics, achieving an mAP of 0.94, underscoring its efficacy for this
task. The original focal loss also delivers commendable results with an mAP of 0.91, largely
attributed to its design purpose of addressing class imbalance issues. Conversely, AP loss
and DR loss present closely aligned performance, albeit marginally trailing behind focal
loss, with mAPs of 0.88 and 0.87, respectively. Analytically, the focal loss accentuates the
optimization of the model by emphasizing harder-to-classify samples, proving particularly
advantageous for tasks potentially grappling with class imbalances. While AP Loss and
DR Loss might exhibit promising results for certain tasks, they seem less effective than
focal loss for this specific endeavor.

Table 6. Ablation experiment results of different loss functions on the proposed method.

Loss Function Precision Recall mAP
AP Loss [41] 0.91 0.86 0.88
DR Loss [42] 0.90 0.85 0.87
Focal Loss [34] 0.93 0.87 0.91
Advanced Focal Loss 0.95 0.91 0.94

Mathematically dissecting the models reveals that the AP loss, a probability-based loss
function, predominantly focuses on differentiation between positive and negative cases.
It might render satisfactory outcomes when there is a balanced distribution of positive
and negative samples. However, in scenarios involving class imbalances or other intricate
factors, its efficacy might be overshadowed by other loss functions. DR Loss, used in
conjunction with the Adam optimizer [40], incorporates gradient momentum and the
second moment, contributing to a more stabilized optimization process. Nevertheless, this
stability might come at the expense of performance. From a mathematical perspective
regarding the focal loss, it augments the weight for samples mispredicted by the model.
This means the model tends to pay more attention to challenging samples, which becomes
crucial in situations with class imbalances.
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5.5. Ablation Study on Dynamic Head Module

The aim of this experiment was to evaluate and compare the impacts of different
attention mechanisms on model performance. Attention mechanisms play a pivotal role
in deep learning, especially when processing sequential and image data. By contrasting
various attention mechanisms, such as multi-head attention and the dynamic head module,
insights into their distinct roles and effects during model training can be gleaned. A deep
understanding of these mechanisms offers a theoretical foundation for the selection and
optimization of models in practical applications. The results are presented in Table 7.

Table 7. Ablation experiment results of different attention mechanism on the proposed method.

Attention Mechanism Precision Recall mAP
Multi-Head [26] 0.93 0.88 0.91
Dynamic Head Module 0.95 0.91 0.94

According to Table 7, it is evident that different attention mechanisms distinctly affect
model performance. Specifically, the dynamic head module outperforms the multi-head
attention mechanism across all metrics, achieving an mAP of 0.94, while the multi-head
attention records an mAP of 0.91. Originating from the Transformer architecture, the
multi-head attention mechanism processes information in parallel by segmenting the input
into multiple distinct subspaces. Each subspace possesses its own weights, enabling the
model to simultaneously attend to various information segments. While this mechanism
aids the model in capturing a myriad of features and patterns within the data, it may also
introduce some redundancy. In contrast, the dynamic head module presents a more flexible
mechanism. It can dynamically adjust attention weights based on data characteristics, thus,
capturing critical features with more specificity. This dynamism allows the model to better
adapt to various data and scenarios, especially when the data exhibit intricate patterns or
noise. This adaptability is a plausible reason why the dynamic head module surpasses the
performance of the multi-head attention.

From a mathematical perspective, the multi-head attention mechanism processes mul-
tiple subspaces’ information in parallel through matrix operations. Although this parallel
processing boosts efficiency, it might introduce redundancy, leading to dispersed weights,
which could compromise the model’s performance. On the other hand, the dynamic head
module pays closer attention to the main features within the data, dynamically adjusting
weights to amplify the influence of these features, thereby enhancing the model’s precision.

In conclusion, different attention mechanisms possess unique characteristics and out-
comes when processing data. While the multi-head attention mechanism can process
information across multiple subspaces in parallel, it might lead to weight dispersion, af-
fecting the model’s performance. Conversely, the dynamic head module, by dynamically
adjusting weights, captures key features more specifically, enhancing the model’s per-
formance. Such insights provide valuable guidance for researchers and engineers when
choosing and optimizing models.

5.6. Ablation Study on NAS and Knowledge Graph

The primary objective of the experimental design was to investigate the role and impact
of neural architecture search (NAS) and knowledge graphs on the task of chili disease
detection. By comparing both with the baseline model, it was discerned whether these
mechanisms could enhance the model’s performance, thereby elucidating their significance
in crop disease detection.

As observed in Table 8, the baseline model, devoid of any attention mechanism,
exhibited performances of 0.83, 0.85, and 0.84 in precision, recall, and mAP, respectively.
This served as the benchmark for subsequent comparisons. With the exclusive utilization
of NAS, all evaluation metrics displayed an increase. Such findings suggest that NAS can
effectively optimize the model structure, thereby enhancing its performance. A notable
advantage of NAS is its capability to automatically search for an optimal model architecture,
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hence identifying the most suitable model for a specific task. In this context, NAS likely
pinpointed distinct features and patterns particularly apt for chili disease detection, leading
to heightened accuracy and recall. In the scenario where only the knowledge graph
was applied, there was an improvement in the model’s performance, though potentially
not as pronounced as with NAS. The primary role of the knowledge graph lies in its
ability to consolidate domain knowledge, assisting the model in better understanding and
interpreting data. Within the realm of chili disease detection, the knowledge graph might
encompass diverse information pertinent to the disease, such as pathogens, symptoms, and
growth environment. Such information can aid the model in more accurately identifying
diseases. Notably, when the model integrated both NAS and the knowledge graph, all
indicators experienced a significant surge. This underscores, to a certain extent, that NAS
and the knowledge graph are complementary. Their concurrent application to the model
can yield superior performance enhancements, indicating the considerable benefits of
considering both model architecture optimization and domain knowledge integration for
tasks such as chili disease detection.

Table 8. Ablation experiment results of NAS and knowledge graph.

Attention Mechanism Precision Recall mAP
None (baseline) 0.83 0.85 0.84
Only NAS 0.90 0.88 0.88
Only Knowledge Graph 0.89 0.87 0.89
Both 0.95 091 0.94

From a mathematical standpoint, NAS primarily focuses on the optimization of the
model’s structure, ensuring the model’s ability to capture the most valuable features from
the data. Conversely, the knowledge graph emphasizes the model’s semantic under-
standing, ensuring precise judgments in the intricate backdrop of crop diseases. Their
combination equips the model with a robust discriminatory capability, making it exem-
plary in the task of chili disease detection. In conclusion, future crop disease detection
tasks should contemplate the concurrent use of NAS and knowledge graphs to achieve
heightened detection accuracy and robustness. Moreover, with the integration of more crop
disease data and domain knowledge, the potential of the knowledge graph may further
unfold, paving the way for significant breakthroughs in crop disease detection.

5.7. Limitations and Future Works

In the experiments conducted on edge computing platforms, a variety of common
smartphones and microcomputers were covered. However, considering the rapid hardware
updates, the hardware platforms used might not fully represent future devices. Addition-
ally, for different application scenarios, a broader spectrum of hardware platforms might
be considered. In this study, primary attention was given to the multi-head attention
and dynamic head module attention mechanisms. Although the dynamic head module
performed excellently in tests, it does not imply that it is suitable for all tasks or scenarios.
The loss functions mentioned in the text, such as AP loss, DR loss, and focal loss, might not
encompass all potential loss functions. Different loss functions might yield varied results
under different tasks and data distributions.

Given the swift advancement in hardware technology, the future research should
consider a more diverse range of new hardware platforms, including newly emerged chips
and modules specifically designed for machine learning and microcomputers with higher
computational capabilities. Apart from multi-head attention and dynamic head modules,
many other attention mechanisms warrant exploration, such as axial attention and sparse
attention. Delving deeper into these novel attention mechanisms could further enhance
model performance. Regarding loss functions, future efforts might attempt to design new
loss functions or combine and adjust existing ones to accommodate various tasks and
data distributions.
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6. Conclusions

In this study, a chili disease detection method based on deep learning is presented.
Initially, the performance of various object detection models was evaluated on edge com-
puting platforms. Through experiments, it was found that the dynamic head module and
the multi-head attention mechanism exhibited distinct characteristics and performances in
data processing. Notably, the dynamic head module, owing to its flexible nature, surpassed
the multi-head attention mechanism in terms of performance. Furthermore, to optimize
model performance, different data augmentation strategies and loss functions and their
impact on model performance were explored. The experimental results indicated that
when all the data augmentation methods were integrated, the model achieved the best
mAP, reaching 0.94. Regarding the loss functions, the dynamic head module demonstrated
higher precision and recall compared to the traditional multi-head attention mechanism.

Summarizing the core contributions of this study: First, a comprehensive deep learning
framework for chili disease detection is introduced, encompassing every step from data
preprocessing to model training and evaluation. Second, through a multi-faceted ablation
study, various factors influencing model performance, such as data augmentation strategies,
loss functions, and attention mechanisms, were revealed, offering valuable insights for
future research in the field. Finally, this study not only presents an effective solution for chili
disease detection but also provides insights and references for disease detection in other
crops. In essence, this work offers a fresh perspective and approach to chili disease detection
in modern agriculture, bridging the gap between traditional agricultural techniques and
contemporary computer vision technologies. It is hoped that the findings of this study can
be further expanded into practical agricultural production, contributing significantly to the
advancement of modern agriculture.
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Abstract: Despite the recent increase in smart farming practices, system uncertainty and difficulties
associated with maintaining farming sites hinder their widespread adoption. Agricultural production
systems are extremely sensitive to operational downtime caused by malfunctions because it can
damage crops. To resolve this problem, the types of abnormal data, the present error determination
techniques for each data type, and the accuracy of anomaly data determination based on spatial
understanding of the sensed values are classified in this paper. We design and implement a system
to detect and predict abnormal data using a recurrent neural network algorithm and diagnose
malfunctions using an ontological technique. The proposed system comprises the cloud in charge of
the IoT equipment installed in the farm testbed, communication and control, system management,
and a common framework based on machine learning and deep learning for fault diagnosis. It
exhibits excellent prediction performance, with a root mean square error of 0.073 for the long short-
term memory model. Considering the increasing number of agricultural production facilities in
recent years, the results of this study are expected to prevent damage to farms due to downtime
caused by mistakes, faults, and aging.

Keywords: smart farming; sensors; RNN; LSTM; ontology; prediction

1. Introduction

In recent years, rapid progress has been made in agricultural technology in terms of
enhancements in productivity and convenience, which are together referred to as smart
farming. This has been facilitated by the convergence of various information and commu-
nication technologies (ICTs) [1]. In countries around the world, including South Korea,
agriculture is undergoing technological evolution via smart convergence based on data
collection, analysis, and prediction. Current agricultural practice is focused on developing
differentiated technology related to “software and hardware platforms”, “data intelligence”,
and “convergence of various technologies, such as artificial intelligence (Al), the cloud,
and the Internet of Things (IoT)” to develop an intelligent smart farming industry [2].
Smart farms centered around facility horticulture provide services related to crop growth,
environmental information management, system control, disease control, and growth algo-
rithms customized to suit the requirements of local farmers. However, the applicability
of these technologies to the current agricultural production process remains limited. A
first-generation smart farming system operated based on ICT convergence was developed
with a focus on labor reduction and convenience. However, it suffers from several prob-
lems, including difficulties in checking system operation and remote-monitoring-based
control, cost-intensive CCTV operation for visual monitoring, and the high complexity of
criteria for assessing abnormalities in sensing values. Besides such technical and financial
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problems, the application of advanced technologies to real-world local farms suffers from
additional basic limitations [3-5].

The South Korean government’s smart farm distribution project has considerably
increased the number of smart farms across the country, but the aforementioned problems
hinder the widespread adoption of smart farming. Unlike other sectors, an agricultural
production system is extremely vulnerable to fault-induced downtime, which can lead to
irrevocable damage to crops and farms, in addition to incurring maintenance and repair
costs. Therefore, there is a compelling need for system prognostics, health management
technology, and condition-based maintenance technology [6]. This will prevent damage
to farms due to downtime induced by accidents, faults, and aging based on meticulous
data monitoring of ICT equipment in agricultural production facilities. Several studies
have investigated sensor-based fault detection by classifying various types of anomalous
data in the field of sensor networks and proposed error detection methods for each data
type [7]. Faults detected based on sensing values have been assessed corresponding to
individual and multiple data within a given space. Particularly, a moving-average-based
assessment technique was used to study time series, and anomalous data were assessed
based on a geospatial understanding of the sensing values [3,4]. One study pointed out
the problem of poor generalizability of the methods used for sensor outlier assessment
based on the ambiguity of data forms and models [8]. Traditional outlier treatment uses
Bayesian analysis of data sensed within a specific space; however, the utilization of only
limit values within a specific dataset, such as temperature or humidity, is not suitable for
facility horticulture smart farming [9,10].

To this end, this paper presents the design and implementation of an error detection
system based on ontology and recurrent neural networks (RNNs). The system uses sensor
and controller data generated during smart farming and implements an architecture to
detect and diagnose the malfunction of sensors and controllers in the smart farming system.

The remainder of this paper is arranged as follows. In Section 2, an overview of
previous studies on sensor-based fault detection is presented. In Section 3, the architecture
and composition of the proposed system to detect faults in parts constituting the smart
farming system are discussed. The system design of an Al model used for experimental
verification is presented in Section 4. Subsequently, the model implementation and experi-
mental analysis are presented in Section 5. Finally, Section 6 presents the conclusions of
the study.

2. Materials and Methods

In this context, an Al algorithm and an ontological technique are developed to en-
hance model generalizability based on data type. The overall aim is to identify and predict
malfunctions in smart farm ICT equipment by evaluating both internal and external control
data, unlike the current prediction approach based solely on temperature and humid-
ity data.

2.1. RNNs

RNNSs are a type of artificial neural network (ANN) comprising a directed cycle
composed of hidden nodes connected by directed edges. They have garnered significant at-
tention recently, alongside convolutional neural networks (CNNs), owing to their suitability
for processing sequential sensor data, such as voice and textual data [11].

As illustrated in Figure 1, RNNs can flexibly create various structures, which are
capable of accepting inputs of any length, by manipulating their network architecture.
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Figure 1. Architecture of the RNN algorithm (“one-to-many”, “many-to-one”, “many-to-many”) [12].

Figure 2 depicts the basic architecture of RNNs. The green, red, and blue boxes
represent the hidden states (h), input (x), and output (y), respectively. The current hidden
state (/;) is updated based on the previous hidden state (h;_1). The current output (y;) is
updated by using /; based on the equation given in the figure. The activation function of
the hidden state is taken to be the nonlinear hyperbolic tangent function (tanh) [13-19].

Ve Ve = Wyyhe + by

hy_4 he he = tanh(Wphe_y + Wypxe + bp)

Xt

Figure 2. Basic architecture of RNNs [12].

2.2. Smart Farming Systems

Smart farming is defined as a convergence technology that incorporates ICT into
existing agricultural, livestock, and fishery industries to improve their productivity. Smart
farming enables the measurement and analysis of temperature, humidity, and sunlight
using ICT and the remote control of the environment using mobile devices. In the smart
farming system depicted in Figure 3, smart farm operations consist of defining the growth
conditions such as temperature, humidity, and CO; level using growth environment main-
tenance/management software, and monitoring the growth environment by automatically
collecting data related to temperature, humidity, solar radiation, and CO, levels. Moreover,
the system enables convenient management of the environment, e.g., the automatic/remote
operation of HVAC, window opening and closing, and the supply of CO, and nutrient
feed. However, faults in ICT equipment can cause considerable damage to farms, making
an effective fault diagnosis system essential [20-23].

159



Agriculture 2023, 13, 2124

Control /

Unit information

i @ <« | omatI;n
Ceig £ O =" - b '”t‘imEt Information
: \

S

controller utilization

(& =
p-1- 2. -
controller ::  ynit

.: . Greenhousoperation  Smart

= management system phone
S ‘ External ~ *
weather station ¥

(em) erature,humiﬁity, wind |fo
Sirection. windSpecd. wy

%.

Heating

 Temperature  Humidity
sensor sensor
|

precipitdtion, solarradiation) jajafal

1 E
. %@§“"“““"“'?"'Int;g;g;ed

1
Irrigation 1

control | Soil data Nutrient : controller
! i1 sensor solution sensor g ?
1
1

] o o g s s, o S, s, i o

Figure 3. Smart farming architecture.

3. System Configuration

A testbed installed at a farm was used to implement the proposed fault detection
system. The entire system constituting the smart farm comprises the cloud in charge
of the IoT equipment installed at the smart farm, communication and control, system
management, and the machine-learning- and deep-learning-based common framework
constituting the fault diagnosis engine.

As depicted in Figure 4, the common framework for fault diagnosis consists of a frame-
work to perform ontological and deep-learning-based fault diagnosis based on equipment
thresholds, conditions, actuator conditions, and user-defined rules.
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— Malfunction diagnostic Ext ISyst
Determining externalinterlockmodule xternal Systems
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Thresholdinterval
ini = S Checkdiagnostic results
Trda;?;ng Statistical Analysis 9
of Training Data
Semantic malfunction diagnostic Ventilation malfunction
module diagnosticrules
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Figure 4. Block diagram of the fault diagnosis system.
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Moreover, actual data are transmitted along the paths illustrated in Figure 5 within an
integration module connecting the common interfaces to integrate the sensing data with
the actuator control data received from the OneM2M Integration Open API cloud [24].

Cloud =) Common = Fault Diagnosis

Interface

Internal Interface

Figure 5. Data transfer paths of the actuator control interface integration module.

The statistical analysis module is a statistical value calculation module that diagnoses
faults based on the difference between the measured value and the value predicted by the
RNN-based prediction model. Time series, i.e., the RNN prediction model and the RNN
sequence prediction model, are trained, and sensing values are predicted based on series of
incoming sensing and control values.

The semantic fault diagnosis module consists of smart farm ontology, time ontology,
geospatial ontology, event ontology, and fault diagnosis ontology. Fault diagnosis ontology
is used to define the concepts of threshold and prediction data used to assess the faults
detected by the statistical analysis module. Using the notification interface provided by the
cloud, malfunction notifications are classified as faults and the results of fault diagnosis are
notified to the user.

Figure 6 illustrates the software architecture, which consists of the implementation
environment, a fault diagnosis engine layer, an interface layer, and a user interface layer.
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Angular JS Bootstrap } [ jQuery

User Interface Layer(API)
Common API Malfunction Detection Internal API

Malfunction Detection Engine Core Layer
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Figure 6. Software architecture.

Figure 7 illustrates the integration architecture within the fault diagnosis prediction
system. Equipment control data and equipment-measured values transmitted through the
common API and fault API are collected by the fault diagnosis module in real time via the
HTTP RESTful AP, stored in a queue for a certain length of time, and then diagnosed via
the scheduler job.
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Figure 7. Integration architecture within the fault diagnosis prediction system.

To perform RNN prediction using the data collected by the scheduler job and add the
RNN prediction results and the collected data source to the ontology, conversion-to-triples
is performed during the semantic transformation process, and the converted triples are
added to the semantic storage.

Inference rules registered in advance for ontology are applied to perform fault di-
agnosis as well as store and manage the inferred fault events in cloud notifications and
RDBMS/HBase. Equipment fault diagnosis results are provided directly to RDBMS and
HBase when requested in the fault APL

4. Model Design

The ontology for fault diagnosis is defined to enable fault diagnosis based on knowl-
edge. The main environmental data for the smart farm are collected by the sensor network;
thus, the ontology is defined based on the semantic sensor network ontology [25-29].

Figure 8 presents the ontology architecture for smart farm fault diagnosis. The se-
mantic sensor network ontology is designed for general use, and includes the detection
target of the sensor, the detection method, metadata, sensors, the sensor deployment
system, and various attributes. However, its direct use for fault diagnosis is inefficient
due to its complexity. Therefore, the smart farm sensor network is defined based on the
stimulus—sensor—-observation pattern and other patterns related to sensors and the sensor
deployment system.

The W3C time ontology is used to describe the concept of time. For smart farm
equipment deployment, a spatial concept suitable for smart farming is defined based on
the open-source spatial data ontology.

Table 1 defines the concepts related to the fault diagnosis event and the conceptual
relationships around the event.

Fault diagnosis methods are classified as (i) methods based on smart farm ontology
and rules and (ii) fault event generation methods that use the ontology based on thresh-
olds obtained by first analyzing the normal distribution of the difference between the
sensor sequence values transmitted in real time using the RNN prediction model (abs
(predicted value — measured value)) and the values generated during model training (abs
(predicted value — measured value)) and, then, comparing these two values using the rules
listed below.
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Figure 8. Ontology architecture for smart farm fault diagnosis.

Table 1. Concepts related to the fault diagnosis event.

Ontology

Description

Event
Ontology

Event ontology defines the concept of an “event” representing the fault diagnosis result. Events are derived
by ontological semantic transformation of the modeled equipment composition data and measurement
values; storage is in the form of Resource Description Framework triples and user rule-based inference.

Detection
Ontology

The sensing values exhibit specific patterns depending on various environmental factors, which enables
the use of normal time series sensing values as training data to train the RNN model for the estimation of
sensing values.

To assess values exceeding a threshold as faults by comparing the predicted and measured values, it is
necessary to define the concepts that the predicted values represent.

Moreover, based on the predicted values, the concepts necessary for fault diagnosis are defined. For fault
diagnosis, it is important to configure the threshold based on statistical analysis of normal data. Detection
ontology is used to determine the threshold value for each equipment type.

Sensor Network

The sensor network ontology is composed of the concepts that represent the equipment used for smart
farming (sensors, actuators, IoT nodes, network equipment, etc.) and their respective measurement values.

Ontology The basic pattern comprises ontologies that are suitable for smart farming and based on the semantic
sensor network ontology.
Geospatial Geospatial ontology comprises spaces where smart farming equipment is installed and operated, e.g.,
Ontology farms, greenhouses, and zones. These spatial concepts share structural relationships.
OWL-Time represents the OWL-2 DL ontology for the concept of time and is used to describe the temporal
attributes of resources.
Time Time ontology provides the words and phrases required to express topological (sequencing) relationships
Ontology between moments and intervals related to temporal locations, including information about duration, date,

and time.

Temporal location and duration can be expressed using the traditional (Gregorian) calendar and clock, or
other time reference systems, such as Unix time, geological time, or other types of calendars.
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A fault event is added in the following cases:

Rule 1: The temperature sensing values obtained from the equipment differ from those
obtained from other equipment of the same type installed in the same area.

Rule 2: A temperature sensor and a heater are adjacent among the equipment installed in
the same area.

Rule 3: Temperature and humidity sensors are installed in the same area and the current
temperature is 5 °C or less and the humidity is 10% or less.

Rule 4: The power measured by a power sensor is zero during the operation of some equipment.

Rule 5: When both the RNN-predicted value of an installed device and Many2OneModelStatistics
for the device exist, a malfunction event is added if the VARIANCE of the RNN-
predicted value is greater than the VARIANCE threshold of the Many2OneModelStatistics.

Figure 9 shows a hierarchical ontology configuration model, wherein the fault diagno-
sis processing flow involves a cyclic query of collected data via semantic transformation
and their conversion into triples for the input (the optimal batch cycle is configured consid-
ering the quasi-real-time performance and the sensor collection cycle). The first request
made after the data input is inferred automatically, and the inferred triples are extracted by
transmitting the query to SparQL.

Rule Inference Model
(InfModel)

GenericRuleReasoner

OWL Inference Model
I (OwlinfModel)

H -glfars ? m
note&table=u_log_narelab&server=1&target
=&token=aa521c6b1cacd178c7da85a30a5ee
6fc

read OWL SchemaModel
(OntModel) OWL Reasoner

\/— Data Model
(Model)

Figure 9. Hierarchical ontology configuration model. (http://farmnote.org/farmdb/sql.php?db=
farmnoteé&table=u_log_narelab&server=1&target=&token=aa521c6blcacd178c7da85a30a5eebfc) (ac-
cessed on 11 June 2023).

The extracted inferred data are transferred to other integrated subsystems or stored in
a database. Finally, all triples of the data model are deleted, as are all inferred triples, by
rebinding the upper models (OWL inference model, rule inference model).

Table 2 provides an overview of the methods used to configure the fault detection
inference rules. Inference rules for detecting an anomaly state of a sensor in a smart farm
can be derived by applying these methods.

First, the sensing value is predicted using the RNN Many2One and RNN Seq2Seq
models and compared with the measured value. If the difference between the predicted
and measured values exceeds the pre-determined threshold, the event is considered a fault
event. The threshold used at this time is determined by comparing the measured data used
during model training with the values predicted by the RNN model.

Second, when the difference between the sensing values of sensors of identical type
(e.g., temperature sensors) installed in the same zone/area exceeds the threshold (5 °C),
the sensors in the zone/area are suspected to be faulty. As it is not possible to determine
the exact faulty sensor, all sensors are deemed to be faulty.
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Table 2. Methods for configuring the fault detection inference rules.

Category Measure Notes

Threshold exceeded Single value; processing in real time.

Metadata regarding sensor installation
required (e.g., temperature sensors to be
installed near ventilator and radiator at an
appropriate distance).

Improperly installed (location/process)
Single-equipment (sensor)
fault detection

Sensor expired Sensor expiration date metadata required.

Storage and management of last collection

Disturbed communication and data collection .
date required.

Collection of all correlated sensing values

Detection by observing inter-sensor required (accumulation for a certain period of
Multi-equipment (sensor) correlations time before deployment) (e.g., high
fault detection temperature and humidity).
Detection by observing the difference from the Occurrence of a difference exceeding the
nearest sensing value. threshold of a given sensor.

Data on growth stage required.
Occurrence of an event in a suspected
controller type, not a specific controller fault.

Controller fault detection in an improper
environment during the growth stage.
Situational fault detection

Controller fault detection when the sensing
value does not change for a long time during Controller activation data required.
controller operation.

Third, when high-temperature, high-humidity conditions beyond a certain threshold
are different from the general conditions of high temperature and low humidity, which
exerts a harmful effect on plant growth at smart farms, the sensor concerned is suspected
to be faulty.

Finally, the minimum and maximum allowable ranges are checked as metadata of the
measured values of a sensor to determine whether the sensor is in an environment where it
can operate normally and reliably. The range may fall within the normal range, enabling
normal operation (a range measurable by the sensor or ideal value to be specified in the
normal plant factory environment). If the range checked falls outside the normal range,
the corresponding sensors are deemed to be faulty. Table 3 provides an overview of the
inference rules to be applied in different conditions.

Table 3. Inference rules to be applied in different conditions.

Rule ID Description
rule_rnn_many2one Anomaly state detection using the RNN Many2One model
rule_rnn_seq2seq Anomaly state detection using the RNN Seq2Seq model
rulel Fault inference based on a comparison with the threshold of a single sensor
rule? Fault inference based on the correlations of two or more sensing values,

which yields two events
Actuator fault inference based on actuator control data and power

rule3 .
sensing values

5. Model Implementation and Experimentation

Diagnosis of malfunction using the above-defined ontology requires the consideration
of the critical point of the smart farm sensor. As a result, if the sensor value is predicted to
be abnormal and deviates significantly from the predicted value, it may be diagnosed as
a malfunction.

Sensor value prediction was performed based on hourly data collected from a straw-
berry farm spanning one year obtained from the Korea Agency of Education, Promotion,
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and Information Service in Food, Agriculture, Forestry and Fishery. Data analysis reveals
that various factors affect the temperature sensing values, as outlined in Table 4.

Table 4. Baseline training datasets [30].

Category Datasets

Farm Strawberry farm.
Indoor environment, outdoor environment, hydroponic environment,
soil environment.
Temperature, humidity, CO,, surface temperature, humidity, solar
radiation, wind speed, precipitation (dry/wet).

Environment

Sensing value

The measurement items include measurement season, measurement time, outdoor
temperature, solar radiation, clouds, fog, precipitation (dry or wet days), and amount of
precipitation. The measurable and replaceable data applicable to a real prediction model
are listed in Table 5.

Table 5. Training data affecting the temperature values.

Measurement Items Alternative Items
Day (ref. 365 days) Measurement season
Measurement time Measurement time
Outdoor temperature Outdoor temperature
Solar radiation Solar radiation, clouds, fog
Precipitation Dry day/wet day, amount of precipitation

As the data collected by the Korea Agency of Education, Promotion, and Information
Service in Food, Agriculture, Forestry and Fishery provide information about the aforemen-
tioned items and temperature measurement values corresponding to each time slot, the
data were extracted by sequence and item, and the training data were pre-processed. These
datasets were used to train the many-to-one model by dividing the time series input sensing
values into sequences. The errors corresponding to the differences between the predicted
and measured values calculated during training followed a normal distribution, and a
threshold was added (semantic transformation) to the ontology by setting appropriate
confidence intervals. This value was input (semantic transformation) into the ontology,
and faults were assessed by comparing it with the threshold value calculated by the model
following the rules.

A system-wide configuration of constants and variables was applied to the RNN
learning model, which was normalized and denormalized via MinMaxScaler and RevMin-
MaxScaler functions, respectively. The training and test datasets were separated by loading
the farm file with the loadData function.

RNN cell/multi-RNN cell were defined to configure the RNN network after loading
data from the “temp” directory corresponding to each farm into the main code, and a fully
connected layer was defined to test the learning result. Based on the definition of the cost
function, the cost was set to be minimized using the Adam optimizer, and several training
iterations were performed by the (training) node following the system-wide configuration.
Finally, the learning results were stored, and the learning model was tested using the farm
data stored for testing.

Algorithm 1 presents the code responsible for calculating the predicted values based on
an actual sensor sequence. It specifically focuses on the section that displays the outcomes
of training the recurrent neural network (RNN) cell in the program.

In the main code, the code first examines the command line arguments and the file path
for input data. It loads the data from the specified file. Afterwards, the RNN Cell /Multi-
RNN cell is defined, the RNN network is configured, the fully connected layer is defined,
the node is run, and learning is conducted as many times as globally set. Finally, the results
are output as a graph.
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Algorithm 1 Prediction algorithm based on sensor sequence

001

002:
003:
004:
005:

C#
# Program Start
#
# Load training data
loadData()

006:

007:
008:

print(‘Size of training data: * + str(len(trainX)))

009:

010:
011:
012:

print(‘Size of test data: ‘ + str(len(inputX))
# Input placeholders
X = tf.placeholder(tf.float32, [None, seq_length, data_dim])

Y = tf.placeholder(tf.float32, [None, 1])

013:

014:
015:
016:
017:
018:
019:

# Construct the RNN network

# RNN Cell (Available cells: Basic LSTM, LSTM, GRU, ...)

# cell = tf.contrib.rnn.BasicLSTMCell(

# num_units=hidden_dim, state_is_tuple=True, activation=tf.tanh)
cell = tf.contrib.rnn.GRUCell(

num_units=hidden_dim, activation=tf.tanh)

020:

021:
022:

# Multi-RNN Cells
cells = tf.contrib.rnn.MultiRNNCell([cell] * NUMBER_OF_RNN_CELL_LAYERS)

023:

024:
025:

# Dynamic RNN (outputs: output, _states: previous states in the RNN network)
#If RNN cells and input data are given as arguments, the RNN cells are connected to form

a network.

026

: outputs, _states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)

027:

028:
029:
030:

# Add fully connected layers to obtain prediction values
Y_pred = tf.contrib.layers.fully_connected(
outputs[:, —1], output_dim, activation_fn=None)

031:

032:
033:

# Define the cost function (sum of the squares)
loss = tf.reduce_sum(tf.square(Y_pred — Y))

034:

035:
036:

# Define the cost Tensor for Tensorboard
tf.summary.scalar(“cost”, loss)

037:

038:
039:

# Summary
summary = tf.summary.merge_all()

040:

041:
042:
043:

# Define the optimizer
optimizer = tf.train. AdamOptimizer(learning_rate)
train = optimizer.minimize(loss)

044:

045:

# RMSE (Root Mean Square Error, the square root of the mean squared differences between

actual and predicted values)

046:
047:
048:

targets = tf.placeholder(tf.float32, [None, 1])
predictions = tf.placeholder(tf.float32, [None, 1])
rmse = tf.sqrt(tf.reduce_mean(tf.square(targets — predictions))

049:

050:
051:
052:

with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)

053:

054:
055:

# Create a summary writer
writer = tf.summary.FileWriter(TB_SUMMARY_DIR)
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Algorithm 1 Cont.

056:
057:

writer.add_graph(sess.graph)
global_step =0

058:

059:
060:
061:
062:
063:
064:
065:

#
# Training Phase
#
for i in range(iterations):

s, _, step_loss = sess.run([summary, train, loss], feed_dict={
X: trainX, Y: trainY})

#print(“[step: {}] loss: {}”.format(i, step_loss))

066:

067:
068:

writer.add_summary(s, global_step=global_step)
global_step +=1

069:

070:
071:
072:

# Save the training results
saver = tf.train.Saver()
saver.save(sess, ‘./model/malfunction_predict.pd’)

073:

074:
075:
076:
077:
078:
079:
080:
081:

#
# Testing Phase
#
# Perform predictions on test data and display the results using plots
test_predict = sess.run(Y_pred, feed_dict={X: inputX})

rmse_val = sess.run(rmse, feed_dict={

targets: sensingValueY, predictions: test_predict})

print(“inputX RMSE: {}” format(rmse_val))

082:

083:
084:

correct_prediction = test_predict - sensingValueY
accuracy = tf.reduce_mean(correct_prediction)

085:

086:
087:
088:
089:
090:
091:

plt.figure(figsize=(20, 4))
plt.plot(RevMinMaxScaler(sensing ValueY), ‘b-’, label="Sensing’)
plt.plot(RevMinMaxScaler(test_predict), 'r-’, label="Prediction”)
plt.xlabel(“Time Period”)

plt.ylabel(“Temperature”)

pltlegend(loc="best’)

092:

093:
094:
095:
096:
097:

# Perform predictions on the first test data and display the results using plots
test_predict = sess.run(Y_pred, feed_dict={X: firstTestX})

rmse_val = sess.run(rmse, feed_dict={

targets: firstTestY, predictions: test_predict})

print(“firstTestX RMSE: {}”.format(rmse_val))

098:

099:
100:

correct prediction = test_predict - firstTestY
accuracy = tf.reduce_mean(correct_prediction)

101:

102:
103:
104:
105:
106:

107

plt.figure(figsize=(20, 6))
plt.plot(RevMinMaxScaler(firstTestY), ‘b-’, label="Sensing’)

plt plot(RevMinMaxScaler(test_predict), 'r-’, label="Prediction”)
plt.xlabel(“Time Period”)

plt.ylabel(“Temperature”)

: pltlegend(loc="best’)

108:

109

: plt.show()

110:
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Figure 10 graphically depicts the tensor board cost with respect to the sensor values.
The test was conducted by varying the number of training iterations from 500 to 1000, 5000,
10,000, and 100,000. After 5000 training iterations, no significant difference is observed.

0.000 10.00k 20.00k 3000k 4000 50.00k 60,00k 70.00k 20,00k .00k 100.0k
Figure 10. Tensor board cost graph.

The root mean squared error (RMSE), a widely used error metric, was used to compare
the learning results. In the error measurement results listed in Table 6, the RNN cell exhibits
an RSME value for the LSTM that is lower than that for the GRU by 0.003. The training
data are time series data; thus, this can imply that the LSTM algorithm analyzes time series
data more effectively than GRU.

Table 6. Errors corresponding to each learning model.

RNN Cell RSME
LSTM 0.0732
GRU 0.0760

Table 7 presents the test results corresponding to different numbers of training itera-
tions. The lowest mean error is achieved after 5000 iterations, and the mean error increases
as the number of training iterations is increased to 10,000 and 100,000, presumably due
to overfitting.

Table 7. Errors corresponding to different numbers of training iterations.

Number of Training Iterations RSME
500 0.0806

1000 0.0785

5000 0.0784

10,000 0.0768

100,000 0.0928

Concrete accuracy is expressed numerically, as in Table 7; thus, it is difficult to deter-
mine the accuracy of these values. Figures 11-14 visually express the prediction accuracy by
comparing actual data and predicted data, and it can be seen that the values predicted by
the model follow the actual sensor values relatively well. A real-time smart farm equipment
fault diagnosis experiment was conducted using the prediction model derived in this study.
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Figure 11. Test results obtained using the measured data (top: overall result value, bottom: magnified

graph of some test results).
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Figure 12. (Left) LSTM model, 500 iterations; (Right) GRU model, 500 iterations. (a) LSTM model
overall results, (b) LSTM model Enlarged graph, (c) GRU model Overall results, (d) GRU model

Enlarged graph.
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Figure 13. (Left) LSTM model, 5000 iterations; (Right) GRU model, 5000 iterations. (a) LSTM model
overall results, (b) LSTM model Enlarged graph, (c) GRU model Overall results, (d) GRU model

Enlarged graph.
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Figure 14. (Left) LSTM model, 1000 iterations; (Right) GRU model, 10,000 iterations. (a) LSTM model
overall results, (b) LSTM model Enlarged graph, (c) GRU model Overall results, (d) GRU model

Enlarged graph.

The observed RMSE value in the experiment is 0.062557. The graphs plotting the
measured (blue) and predicted values (red) in Figure 11 are quasi-identical, indicating that
the prediction model exhibits good performance.

Figure 15 depicts the smart farm equipment fault diagnosis test environment where
the proposed model was evaluated experimentally. The equipment fault API integration
function, equipment fault diagnosis unit function, power measurement equipment in-
tegration, and RNN model were evaluated. The sensor used in this experiment was a
temperature sensor(Naretrends Co., Ltd., Buchon-si, Korea) used in smart farms.

SmartFarm Testbed
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< Protocol basic structure > Value
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e active power(W)
“ T E===—| -Receiving
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G/W -> Definition of the Collection Server Integration Protocol

Figure 15. Configuration of the sensor node test environment.
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Figure 16 shows a block diagram of the RNN-based fault diagnosis workflow. If fault
diagnosis is conducted based on the threshold value after RNN-based prediction of sensor
data, there is an integrated interface to submit external data. This is performed using the
method “receiveDeviceMeasureNotification”, and the path indicated is its URL path. The
data received are not directly entered into the fault diagnosis ontology but are sent to the
“Malfunction Detection Scheduler” queue. Fault detection inference can be conducted
only after different types of sensor values have been received for a certain length of time.
Subsequently, the semantic storage, which is loaded with ontology models, reasoners,
and rules, is managed. Once instances are added to the semantic storage through the
process of semantic transformation, an event query automatically leads to fault inference.
In other words, a query triggers inference. Thus, adding triples does not automatically
lead to inference, but inference starts as the need arises. A semantic transformation method
such as “translatePredictionResult” is applied using a semantic transformer. The object
“PredictionResult” is received as a factor and is transformed into a triple consisting of a
subject, a predicate, and an object, which is then added to the ontology using the function
“semanticStorageManager.addTriple”. Then, the sensor values cyclically collected through
the external interface stored in the “Malfunction Detection Scheduler” queue are subjected
to semantic transformations, and fault event reporting is carried out through the process of
query and fault inference. Here, “doCollect” issues an event query and triggers inference
in the ontology, and the Cloud sends fault events to the website.
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Figure 16. Block diagram of the RNN-based fault diagnosis workflow.

Figure 17 shows the RNN-based fault diagnosis program. The sensor values are
predicted using the prediction model, the predicted data are subjected to ontology inference,
and the diagnosis results are presented to the user. Once the greenhouse is selected as
the area and test data are entered, the predicted and measured values are presented via
real-time monitoring to notify the user of threshold crossings.
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Figure 17. RNN-based fault diagnosis program interface.

The proposed system and previously provided fault detection systems have long been
used in other fields, and accurate comparisons between them are difficult because they
employ different methods. However, the continuous analysis of sensor outliers detected by
the proposed system is expected to improve fault detection in smart farming systems.

6. Conclusions

In this study, a fault detection technique for smart farming equipment was designed
and implemented with the aim of preventing damage to farms due to downtime caused
by mistakes, faults, and aging of ICT devices. This is particularly significant owing to the
widespread use of such devices in agricultural production facilities.

To this end, a model was designed based on RNN algorithms. The model was trained
using hourly data obtained from the Korea Agency of Education, Promotion, and Informa-
tion Service in Food, Agriculture, Forestry and Fishery which were collected at a strawberry
farm over a one-year span. The data were extracted in sequence, and necessary items were
preprocessed as training data. The learning results were tested by considering 500, 1000,
5000, 10,000, and 100,000 training iterations. The RSME of the optimized model was
0.07, confirming that it exhibits a high prediction power in an environment in which ICT
equipment operation is difficult.

In farms operating large-scale, modernized, high-tech greenhouses, growth manage-
ment optimization with respect to facilities and crop characteristics is essential, and efficient
operation of sensors and controllers is fundamental. Further, to ensure effective smart
farm operation, human interference should be minimized. Furthermore, damage to smart
farm equipment and crops can be minimized by detecting malfunctions and arranging
for prompt replacements. The technology discussed in this study is a key element in the
construction of smart farms capable of self-reliant operation and fault detection.

Moreover, this study enables the prevention of disputes between farms and companies,
empowers device PL insurance through linkage with insurance companies, and can be
used as a source of base data suitable for agricultural research.

It is also expected to maximize the output of the smart farm system industry by
predicting the remaining useful life and promoting the use of sensors and data to monitor
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the status of smart farm equipment or mechanical systems, the use of secure diagnostic
technology to detect signs of failure, and the use of condition-based maintenance technology
to maintain normal operation. It is expected to enhance the reliability of the service and
secure global competitiveness for smart farm companies.

In future work, we intend to predict malfunction faults by collecting vibration, current,
and image values obtained using actuators used in greenhouses.
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Abstract: Agriculture plays a key role in global food security. Agriculture is critical to global food
security and economic development. Precision farming using machine learning (ML) and the Internet
of Things (IoT) is a promising approach to increasing crop productivity and optimizing resource use.
This paper presents an integrated crop and fertilizer recommendation system aimed at optimizing
agricultural practices in Rwanda. The system is built on two predictive models: a machine learning
model for crop recommendations and a rule-based fertilization recommendation model. The crop
recommendation system is based on a neural network model trained on a dataset of major Rwandan
crops and their key growth parameters such as nitrogen, phosphorus, potassium levels, and soil pH.
The fertilizer recommendation system uses a rule-based approach to provide personalized fertilizer
recommendations based on pre-compiled tables. The proposed prediction model achieves 97%
accuracy. The study makes a significant contribution to the field of precision agriculture by providing
decision support tools that combine artificial intelligence and domain knowledge.

Keywords: precision agriculture; Internet of Things; artificial intelligence; crop recommendation;
fertilizer recommendation

1. Introduction

Agriculture is a vital part of the global economy, providing food, fibe, and other
essential products for human consumption [1]. However, the agricultural sector faces
significant challenges in meeting the growing demand for food as the global population
increases, climatic conditions change, and the significant concern subjected to the critical
role of soil and fertilizers in achieving optimal crop yields and maintaining soil health [2].
It is well known that the right soil type and precise applicability of fertilizers are critical
factors that can significantly enhance crop growth and overall agricultural sustainability.
However, the conventional agricultural system has long been plagued by a shortfall in intel-
ligent recommendations; as such, systems are often based on general guidelines, historical
knowledge, and limited experimentation [3]. The traditional systems do not consider the
specific needs of individual crops and fields, which often leads to the inefficient allocation
of resources, increased costs for farmers, and sub-optimal environmental outcomes [4].
In light of these challenges, the agricultural sector stands at the threshold of transformation.
There is an urgent need to revolutionize farming practices.

Precision agriculture (PA), a subset of smart agriculture, is a promising solution to
these challenges, as it can help improve agricultural practices’ efficiency and sustainabil-
ity [5]. PA involves using advanced technology and data-driven techniques to optimize
agricultural practices [6,7]. Key components of precision agriculture often include the use
of sensors, GPS (global positioning system) technology, drones, and data analytics [8,9].
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This transition towards a more effective, data-driven, and user-friendly approach is essen-
tial to improve farming operations’ efficiency, productivity, and sustainability by making
more precise and informed decisions based on real-time data [10]. In particular, this shift
is made possible by the advent of Crop and Fertilizer Recommendation Systems (CFRS),
which harness the power of technology such as the Internet of Things (IoT), data analytics,
and Artificial Intelligence (Al) to provide specialized guidance to farmers [11,12]. Such
system holds promising scope to optimize soil and fertilizer interactions, increase agri-
cultural productivity, and promote sustainable practices. Moreover, CFRS can empower
farmers with valuable insights, reduce uncertainties, and mitigate the risks associated with
traditional farming methods.

In the modern era, the integration of IoT and Al in agriculture has witnessed significant
growth in recent years [13,14]. IoT is reshaping how we collect, process, and utilize data
in real time through a network of interconnected sensors and devices embedded in the
agricultural landscape. IoT-based systems are deployed to collect real-time sensory data on
various factors affecting crop growth, such as temperature, humidity, soil pH, and nutrient
levels [15]. This wealth of real-time data and Al analytics forms the foundation upon which
the CFRS operates to make informed decisions on crop selection and fertilizer application.
The study aimed to bridge the gap between the physical and digital realms by integrating
IoT technology with Al into modern agriculture. The proposed CFRS reported in this paper
not only facilitates the recommendation of suitable crops to specific agricultural land but
also offers fertilizer recommendations based on the soil condition for the crops during both
pre-sowing (before plantation) and post-sowing until the crop reaches maturity. With such
a comprehensive perspective, the proposed CFRS (Crop and Fertilizer Recommendation
Systems) holds significant potential for addressing the challenges faced by smallholder
farmers and for countries subject to food insecurity such as Rwanda due to low productivity,
declining soil organic matter, and adverse topography.

Rwanda has been heavily involved in promoting crop intensification programs to
increase the agricultural productivity of high-value food crops and achieve food security
and self-sufficiency [16]. However, smallholder farmers, who play a vital role in the agri-
cultural sector, face challenges that limit their crop productivity. These challenges include
sub-humid conditions that cause frequent crop failures, the prevalence of acidic soils, de-
clines in soil organic matter due to high population density, and the country’s topography
that makes agricultural systems vulnerable [17]. A study by NISR found that agriculture
employs nearly 72% of Rwandans and contributes nearly 33% to the country’s GDP [18].
This mismatch between labor force participation and GDP contribution shows how serious
the problems in the agricultural sector are. Moreover, the socioeconomic impacts are se-
vere, with persistent poverty and alarming malnutrition rates, especially among children.
Therefore, by addressing both crop and fertilizer recommendations in an integrated way,
the proposed CFRS has a transformative impact. It can potentially revolutionize the current
agriculture system in Rwanda by optimizing the selection of suitable crops on particular
farming land, in-creasing crop yields, reducing fertilizer waste, and promoting sustainable
practices. Although several studies reported in the literature focus on developing sustain-
able agriculture systems in the Rwandan context, many of these approaches utilize data
analysis machine learning (ML) techniques and deep learning models to build predictive
models addressing various challenges to crop production [19-21]. It has been identified
that most of the existing works are subjected to predicting yields of different crops, assess-
ing the soil quality, reviewing agricultural crop policies and single crop recommendations,
and understanding the impact of climate anomalies on crops. However, the scope of the
existing works reported in the literature is often narrowly defined, either addressing a
single aspect of farming or not integrating crucial components of fertilizer suggestion and
soil conditions. This isolation often results in a lack of comprehensive insights, limiting
the existing approaches’ real-world applicability and accuracy. The subsequent section
highlights this research manuscript’s prime aim and core contribution.
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1.1. Contributions of the Study

The prime aim of this study is to help farmers choose the best crops to grow and
the right amount of fertilizer to use. The study develops a comprehensive model that
integrates CFRS holistically, considering various relevant factors to provide more precise
and specialized recommendations to farmers. The key contributions of this study are
highlighted as follows:

*  Data Processing and Profiling: Comprehensive data on Rwanda’s major crops have
been collated and analyzed, focusing on structured content and data integrity.

e  Correlation Analysis: The study examines how inter-variable correlation can enhance
predictive modeling, leading to better decision-making.

¢ Crop Recommendation: The study implements a neural network model to recommend
crops. This model has been thoroughly trained and tested and is more effective than
other prominent ML models.

e  Fertilizer Recommendation: The modeling of fertilizer recommendation adopts a
simple logical function that supports the foundational understanding that each soil
and crop combination has specific nutrient requirements. The predetermined rules
grounded in real agricultural practices were adopted, allowing farmers to understand
the why behind a recommendation, fostering trust and encouraging adoption.

e Practical Application with IoT: Real-world testing was conducted with IoT sensors,
where proposed CFRS is applied to collect data to offer actionable insights.

e The study also presents a conceptual architecture for deploying the proposed CFRS
on a cloud server to provide real-time, effective, and data-driven agricultural recom-
mendations, including monitoring soil conditions and nutrient dynamics over time.

By combining IoT and Al to framing practices, this paper offers a solution to the rising
global food demand facing challenges, such as population growth and changing climate
condition: an advanced system that not only suggests which crops to grow but also offers
the right fertilizer to use based on various data inputs. The novelty of the proposed work
stems from multiple factors. Firstly, the proposed system is more comprehensive than
existing approaches, which often restrict recommendations to one or two crops. It caters to
various crops predominantly cultivated in Rwanda and considers soil conditions at various
crop growth stages to recommend the proper fertilizer application. Secondly, the proposed
system also includes effective data processing and profiling to ensure the completeness
and reliability of the data used for recommendation modeling. The proposed schemes are
designed to be lightweight, ensuring rapid and cost-effective computations.

1.2. Outline of the Study

The remaining part of the proposed manuscript is organized as follows. Section 2
briefly discusses the related work, demonstrating the current research status and differenti-
ating the proposed work from the existing one. Further, Section 3 elaborates on a system
design following the implementation procedures adopted in each module of the proposed
CFRS. Next, Section 4 discusses the performance metrics adopted in the experimental
process, result analysis, and performance discussion. This section also presents the use
case scenario of the proposed system concerning real-world deployment scenarios. Finally,
Section 5 concludes the work and core findings reported in this paper.

2. Related Works

The application of precision agriculture has been the focus of extensive research and
development efforts, with scholars across the globe developing various strategies and
technologies to optimize farming practices. This section reviews the research works done in
the context of soil quality prediction, crop recommendation, and fertilizer recommendation.

The researchers in Rivera and Bonilla [22] trained neural network and generalized
linear model (GLM) models on a dataset of soil samples from different regions with varying
properties such as texture, organic matter content, and pH to predict soil quality. The ex-
perimental results showed that the neural network model outperformed the GLM model
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regarding prediction accuracy. The study provides two models that can be used to predict
aggregate stability when direct measurements are unavailable, which can help improve
the comprehensiveness of soil surveys. Suchithra and Pai [23] utilized extreme learning
machines (ELM) to optimize agriculture practices through soil testing and classification.
By analyzing soil test report values, village-wise soil fertility indices for essential nutri-
ents are categorized. The Gaussian radial basis function emerges as the top performer,
with over 80% accuracy in most classifications. The presented approach can reduce fertil-
izer waste, enhance profitability, and improve soil health and environmental quality for
sustainable agriculture in India. In [24], Chambers showed that the type of ML model
used can affect the accuracy of soil property predictions and that local farms tend to have
more accurate predictions than farms in different locations. Principal component anal-
ysis (PCA) with 50 components was found to be beneficial. Wu et al. [25] showed that
the Generalized Regression Neural Network (GRNN) model can effectively estimate soil
nutrients for Dacrydium pectinatum communities in China. The GRNN model, along with
the k-nearest neighbor (KNN) and support vector machine (SVM) model, is utilized to
assess soil nutrient content and quality grades. The work of Rose et al. [26] emphasized
the significance of ML classifiers and statistical approaches in predicting soil fertility and
regulating ecosystems with reduced human intervention. In [27], Rajamanickam used
Decision trees, KNN, and SVM algorithms to predict soil fertility based on macro- and
micronutrient data, achieving 99% accuracy with the decision tree algorithm.

In [28], Rajamanickam and Mani addressed the impact of climate anomalies on crops
and environmental challenges on agriculture practices. The authors have proposed a prob-
abilistic neural network for the soil fertility prediction approach, providing higher accuracy
and reduced processing time. Katarya et al. [29] discuss various artificial intelligence (AI)
techniques for improving crop yields in agriculture. These techniques are based on the
paradigm of precision agriculture (PA), specifically crop recommender systems. The spe-
cific approaches discussed include K-nearest neighbor (KNN), similarity-based classifiers,
ensemble learning, and neural networks. The authors introduce a model that considers
external factors such as meteorological data, temperature, and soil profile to recommend
optimal crops for cultivation. This can lead to improved yields and more efficient use of
resources. Klerkx et al. [30] provided a comprehensive overview of the emerging field of
digital agriculture, covering a wide range of sub-fields, including the adoption of digital
technologies on farms, the impact of digitalization on farmer identity and skills, ethics in
digital agriculture, the effects of digitalization on agricultural knowledge and innovation
systems, and the economics of digital agriculture. The study maps the contributions of
17 special issue articles to these clusters. It offers insights into the links between digital
agriculture and farm diversity, new economic and institutional arrangements, and the gov-
ernance of digital agriculture. Shadrin et al. [31] developed a low-power embedded system
with Al capabilities for continuous analysis of plant leaf growth. The system uses a GPU
to run a recurrent neural network (LSTM) on board, enabling autonomous operation for
180 days on a standard Li-ion battery. This study opens up new possibilities for intelligent
monitoring in agriculture, and the authors have shared the Tomato Growth dataset with
the research community.

Kumar et al. [32] investigate how wireless sensor networks (WSNs) can be used in
precision agriculture to improve crop yields and quality. They highlight a variety of WSN
applications, such as pest and disease control, animal tracking, and crop strength assess-
ment, which have the potential to significantly boost crop production. Talaviya et al. [33]
discuss the importance of Al in addressing agricultural challenges posed by rising popula-
tion and food demand. They review Al applications in agriculture, including irrigation,
weeding, and spraying using sensors, robots, and drones, with a focus on soil moisture
sensing, automated weeding techniques, and drone applications for spraying and crop
monitoring. Kamilaris et al. [34] introduce a smart farming framework that uses IoT plat-
forms to process diverse sensor data streams in real time. The Agri-IoT framework supports
reasoning across heterogeneous data streams, enabling seamless integration of sensors,
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services, processes, farmers, and online information sources. It provides a comprehensive
and adaptable solution for the agri-food industry, bridging the gap between external factors
and the food supply chain. Rekha et al. [35] develop an IoT framework to help farmers
improve their farming methods and increase crop yields. The framework uses wireless
sensor networks to collect data and a decision support system to provide farmers with
personalized advice on irrigation, fertilization, and other practices. The advice is delivered
in the farmers’ regional language through an Android app, making it easy for them to
follow and improve their farming practices, which can lead to increased income.

Rehman et al. [36] propose a smart farming approach that uses real-time sensor data
and machine learning to improve agricultural practices. By integrating these two tech-
nologies, their approach enhances precision agriculture and overcomes the limitations
of traditional smart farming methods. Priya et al. [37] suggested using deep learning
algorithms to predict the best crops to grow based on factors such as soil moisture, hu-
midity, temperature, pH, soil type, and land type. This crop recommendation system
helps farmers make informed decisions to improve productivity, especially in the face of
changing weather patterns. Biradar et al. [38] highlight the potential of IoT and data mining
to develop intelligent systems for more efficient water management in agriculture. Sensor
networks can provide a cost-effective way to monitor and control water use, leading to
improved crop yields and food security. Akhter et al. [10] demonstrate how IoT, WSN, data
analytics, and machine learning can be used to revolutionize apple disease prediction in
apple orchards. They also explore the challenges of implementing these technologies in tra-
ditional farming practices. Ref. [39] studied how IoT can revolutionize traditional irrigation
scheduling on a flood-irrigated subtropical lemon farm. They also explore the challenges
of implementing these technologies in traditional farming practices. Gupta et al. [40] show
that using the right algorithms on sensor data can recommend the best crops to grow,
leading to higher yields and better-quality produce. Vi-vekanandhan et al. [41] introduce
an adaptive neuro-fuzzy inference system (ANFIS) technique for analyzing agricultural
plant growth based on soil, water level, temperature, and moisture conditions.Their smart
irrigation system is effective in monitoring and improving crop growth.

Hence, it can be seen that there is much research work presented on PA applications
and ML-based predictive modeling to benefit agriculture systems. However, each method is
associated with its own advantages, and they have limitations too. It has also been analyzed
that very little work is done in the context of Rwanda’s agricultural system. The literature
is rich with studies on various ML applications in smart agriculture. However, such
approaches are subjected to theoretical discussion, not implementations. The theoretical
discussions are valuable, and validation of these models in real-world agricultural settings
is essential to assess their feasibility and effectiveness. The potential of integrating the IoT
and Al in agriculture has been explored in previous research. However, in isolation, most
of these studies either focus on crop or fertilizer recommendations. It has also been noticed
that the existing studies lack details about the data source system implementations, even if
they do not specify the features used and on what basis they selected a particular learning
model. All these gaps are addressed by the proposed system discussed in the next section.

3. Materials and Methods

The development of the proposed recommendation models is carried out using
python programming language in Anaconda distribution installed on windows 10 machine.
Five-pin soil transmitter (Type485) sensors from (Shandong Renke Control Technology Co.,
Ltd., Jinan City, China), were used to collect data across agricultural fields.

This section presents the design of the proposed CFERS as a support system for precision
agriculture and sustainable farming practices. Building a robust and efficient CFRS for
Rwanda'’s agricultural system requires a suitable dataset that includes crop information, soil
properties, and nutrients. However, no standard dataset for building CFRS in the Rwandan
context is available. The first steps in building the proposed CFRS system are to collect and
prepare the dataset. This study has developed a sophisticated data modeling and feature
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extraction approach to effectively train the learning model for crop recommendation based
on current soil attributes. Figure 1 shows the schematic architecture of the proposed system,
which includes various computing modules such as dataset collection and selection, data
profiling, data preprocessing, neural network-driven crop recommendation, and decision
logic implementation for fertilizer recommendation.

Load data files —-ﬁb GW GT """"" G‘“\

Exploratory Data Correlation

Data Processing [+ Data Profiling [ Analysis ] Analysis \

Soil Attributes —I Preprocessing

Deploy to Cloud
Ecosystem

\ Recommend |, { 1\ ining/Testing Je— Model Building '/

Crop

Deploy Model \ Feedback Loop Soil profiling
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Eer—all

database
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Figure 1. Schematic architecture of the proposed CRFS workflow.

The proposed system architecture, shown in Figure 1, involves a highly synchronized
approach to data analytics and computational intelligence. The top layer of the system
design is responsible for collecting data from different sources. These data are then analyzed
and mapped to construct a final crop dataset in the next layer. Exploratory data analysis
and correlation analysis are then performed to understand the nature of the data and obtain
significant insights into which preprocessing techniques to apply to ensure the dataset’s
completeness. This process is crucial for ensuring the dataset’s quality, making it suitable
for training the learning model for crop recommendation. The study used the common
practice of splitting the dataset into training and testing sets in an 80:20 ratio. The neural
network model was configured and optimized for the specific problem and input data.
The trained model was then validated on the testing dataset, which consisted of different
soil attributes.

The next part of the proposed system integrates a rule-based fertilizer recommendation
system. This phase first performs soil profiling using the preprocessed dataset from the
crop recommendation system and builds a lookup table based on scientific evidence and
expert knowledge. The proposed system is based on the ideology that while many tasks
can benefit from the predictive capabilities of machine learning, there is undeniable value in
domain-specific, expert-driven rules. The proposed rule-based fertilizer recommendation
system is based on the principle that each soil and crop combination has specific nutrient
requirements. It is transparent and easy to understand, as it is based on established
knowledge in agriculture. This allows farmers to understand the reasoning behind the
recommendations, which can build trust and lead to improved crop yields and more
sustainable farming practices. The system also includes a feedback loop mechanism
to help update and improve the rules and recommendations over time. The proposed
study discusses the conceptual architecture of the system and underscores its real-world
applicability and feasibility for deployment in a cloud environment.
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3.1. Data Processing and Profiling

In order to ensure the effectiveness of the crop recommendation system, diverse data
are collected, including information on soil properties, nutrient levels, and crop perfor-
mance from various agricultural regions. The data collection phase of the proposed system
involved compiling crop datasets from various sources, primarily the crop recommendation
dataset and soil fertility data obtained from Kaggle [42,43], and soil nutrient balance (NPK)
dataset of Rwanda obtained from [44]. Combining data from different sources is difficult
because the data can be in different formats and sizes. This study uses a sophisticated data
modeling process called data profiling to harmonize and integrate the data to address this
challenge. First, the system selects the major crops cultivated in Rwanda, such as maize,
potatoes, beans, tomatoes, coffee, cassava, sweet potatoes, sorghum, onion, kidney beans,
and banana. The selection criteria are based on familiarity with Rwanda’s agricultural
system, sustainability concerns, and empirical evidence from previous studies [45,46]. This
process results in a comprehensive crop data collection relevant to the study objectives.

Data profiling is the process of examining a dataset to understand its structure, content,
and quality. The first step in this process is to review the columns of the dataset. In this case,
the dataset included columns for nitrogen (N), phosphorus (P), potassium (K), temperature,
humidity, pH, rainfall, and a label column. These columns represent essential factors
that affect crop growth. Next, the study selected the columns that are relevant to the
study, which are N, P, K, pH, and major crop. Focusing on these variables simplified
the dataset while retaining the most critical information. Finally, the study filtered the
dataset to include only rows corresponding to the significant crops of interest. To prevent
bias, the data frame was randomly shuffled. The data frame index was reset to maintain
data integrity. Finally, a new data frame was created with only the selected variables.
Algorithm 1 shows how data profiling was used to clean and streamline the dataset after
preprocessing. This helped to identify the key features in the data and ensure that the
analysis focused on the variables that were most relevant to the study objectives.

Algorithm 1 Dataset Profiling for data integration and harmonization

Input: D = dq,dy, - - ,d, (Sets of datasets sourced from different origins)
Output: df (harmonized dataset for CFRS)

Procedure:

1. Initialization:

C = {'Maize' Potatoes', Beans', - - - } (Set of major crops of interest)

2. Data Selection:

D'« U {x|xed; Ncrop(x) € C}

// Union of all datasets retaining only records related to crops in C

D' «+ D' {x|column(x) ¢ RelevantColumns} (Substraction of irrelevant columns from D’)
3.Vd € D' : Convert units of 'N’, 'P’, 'K’ to standard units, if not already
4. Data Randomization:

Shuffle the order of records in D’

Reset indices of D’

5. Data Integration:

df < U, d; (Union of all dataset D’)

6. Review & Validation:

Conduct exploratory data analysis on df

7. Data pre-processing: (Post data profiling, detailed in next sub-section)
8. D'« D' { x|xhasmissingvalues } (Removingrecordswithmissingvalues )
9. Identify correlations and rectify outliers in D’

10. Remove duplicates in df (ensures completeness of the dataset)

End

3.2. Preprocessing

Preprocessing is a critical step in data-driven predictive modeling because the quality
of the data and the useful information that can be extracted from them directly affects
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the model’s ability to learn the underlying patterns in the training data. This phase of
the proposed system involves exploratory data analysis (EDA) and correlational analysis.
EDA is a process of analyzing datasets to identify their main characteristics, often using
visual methods. Under EDA, the study calculates descriptive statistics such as mean,
median, mode, minimum, maximum, range, quartiles, variance, and standard deviation to
understand the relationships between the variables.

Table 1 shows different crops’ average NPK (kg/ha) and pH requirements. The av-
erage NPK requirements for bananas are 100.19 kg of nitrogen, 80.89 kg of phosphorus,
and 50.04 kg of potassium per hectare. The average pH of soil where bananas are grown
is 6.07, considered moderately acidic. Similarly, beans require an average of 75.09 kg of
nitrogen, 25.32 kg of phosphorus, and 34.73 kg of potassium per hectare. The average pH
for growing beans is 5.89, considered highly acidic. Cassava requires an average of 74.77
kg of nitrogen, 34.92 kg of phosphorus, and 59.79 kg of potassium per hectare. The average
pH of cassava fields is 5.92, which is also highly acidic. Similar interpretations can be made
for other crops to understand their fertilizer requirements and soil suitability for more
efficient crop production.

Table 1. A sample visualization of crops with mean values.

Major_CROP Nitrogen Phosphorus Potassium pH
0 banana 110 70 70 6.00
1 beans 80 25 35 6.25
2 cassava 135 70 50 6.24
3 coffee 70 25 50 6.00
4 kidneybeans 75 25 35 6.26
5 maize 135 70 50 6.26
6 onion 50 25 35 6.49
7 potato 90 50 70 5.75
8 sorghum 110 60 50 6.48

Figure 2 provides a comparative analysis of different crops based on their nitrogen
requirements in Kg/ha. The analysis demonstrates that the crop Maize requires the most
nitrogen, followed by onion and sorghum. Kidney beans require the least nitrogen. Bananas
have a wide range of nitrogen needs, appearing in the highest and lowest categories.
Similarly, Figure 3 gives a comparative analysis of different crops based on their phosphorus
requirements in Kg/ha.

B Most nitrogen required Least nitrogen required
maize kidneybeans 21
onion 120 cassava 75
sorghum 109 beans 75
g., coffee 101 potato 91
§  banana 100 banana 100
potato coffee 101
beans sorghum 109
cassava onion 120
kidneybeans maize 133
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Numbers in Kg/ha

Figure 2. Analysis regarding most and least nitrogen-requiring crops.
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W Most phosphorus required W Least phosphorus required
banana [0 beans 2
maize  |— coffee 27
kidneybeans 67 cassava 35
& sorghum [NR—0 potato 36
§  onion NG 60
potato  [INEE] sorghum 60
cassava  [ES) kidneybeans 67
coffee  [NER maize 69
beans [NES] banana 0
0 20 40 60 80 0 20 40 60 80

Numbers in Kg/ha
Figure 3. Analysis concerning most and least phosphorus-requiring crops.

The insight from Figure 3 exhibits that bananas require the most phosphorus, followed
by maize and kidney beans. Beans and coffee require relatively less phosphorus. Onions
have diverse phosphorus requirements, ranking in the highest categories. A closer anal-
ysis of Figure 4 reveals that onions, followed by cassava and potatoes, require the most
potassium, while kidney beans, maize, and sorghum require little potassium. This analysis
emphasizes the varied nutrient profiles of different crops across categories.

Most potassium required B Least potassium required
onion 65 kidneybeans 20
cassava 60 coffee 30

potato 51 beans 35
§- banana 50 maize 49
J sorghum 50 sorghum 50

maize 49 banana 50

beans 35 potato 51

coffee 30 cassava 60
kidneybeans 20 onion 65

0 0 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Numbers in Kg/ha

Figure 4. Analysis for most and least potassium-requiring crops.

The analysis shown in Figure 5 offers a holistic view of the data’s distribution and
relationships between different data points color-coded based on different crops under
major crops. In this visualization, the diagonal part shows frequent distribution of the data
points. In contrast, the scatter representation of the data points showcases the distinction
among the different crops concerning different nutrient requirements. It can be seen that
nitrogen (N) and phosphorus (P) are correlated; it seems that crops that need high amounts
of N may also require high amounts of P.

A closer analysis of the above-mentioned Figure 5 also reveals that specific data points
are densely packed, indicating that such crops have similar requirements for those paired
nutrients. Moreover, a few data points are also found that lie far away from others, which
can be potentially an outlier, which, if not addressed, may introduce ambiguity in predictive
learning. To eliminate the outliers, the proposed study uses the standard score method,
which measures how many standard deviations an element is from the mean. About 99.7%
of the data in a normal distribution fall within three standard deviations from the mean.
Therefore, a score greater than three is used as an indicator of an outlier. Mathematically,
the outlier score (S) for a data point x is computed as follows:

_X—p
S = — 1)
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where x is the data point, u refers to the mean value of the dataset, and ¢ denotes the
standard deviation of the dataset. So, if the value of S of a data point falls outside a
predefined threshold, the data point is tagged as an outlier. Figure 6 presents a correlation
heatmap to gain insight into correlation among different data points.
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Figure 5. Pair-wise relationship visualization.

Figure 6 shows a correlation plot of different crop nutrients and factors. The values in
the plot range from —1 to 1, where —1 indicates a strong negative correlation, 1 indicates
a strong positive correlation, and 0 indicates no correlation. Nitrogen (N) has a strong
positive correlation with phosphorus (P), meaning crops that need much nitrogen also
need much phosphorus. This correlation is 0.77, which is considered high. Nitrogen’s
correlations with other elements and factors are weaker. For example, it has a weak positive
correlation with potassium (K) at 0.15 and a similar trend with pH at 0.04. This analysis
shows a slight but positive relationship between nitrogen and potassium and between
nitrogen and pH. The major crop type has a moderate positive correlation with nitrogen (N)
levels, with a coefficient of 0.52. This shows a medium-strength relationship between the
crop type and the amount of N it needs. Phosphorus (P) has weaker positive correlations
with potassium (K) and pH, with correlation coefficients of 0.13 and 0.01, respectively. This
examination suggests a slight but positive relationship exists between P and K and between
P and pH. The overall analysis shows that the amount of N a crop needs is most strongly
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correlated with the amount of P it needs. It is also correlated with the crop type but to a
lesser extent. The correlations between N and other elements and factors are even weaker.
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Figure 6. Correlation analysis.

3.3. Crop Recommendation System

The machine learning model applied in the proposed study offers the potential to
learn intricate patterns and relationships between multiple variables, making it an effective
tool for crop recommendations. This model has the ability to map a high-dimensional input
space to outputs and adaptively learn from the data. The proposed study built a neural
network and trained it on the prepared crop dataset to recommend suitable crops.

3.3.1. Data Attributes

It is well recognized in agronomic studies that many environmental and geographical
factors, such as humidity, temperature, rainfall, altitude, soil type, and more, can signifi-
cantly impact crop growth, yield, and health. These factors, individually or in tandem, play
a role in determining the suitability of a specific crop in a given geographical region.

In the proposed study, the study has considered the learning model around the essen-
tial soil nutrients N (nitrogen), P (phosphorus), K (potassium), and soil quality represented
by pH. These are foundational factors that majorly influence crop recommendations and
are consistent indicators across various datasets. The major crop type serves as the output
of our model. While it would be ideal to incorporate all influential environmental and
geographical parameters for a holistic recommendation, the proposed study is focused
primarily on the soil’s health, nutrients, and quality. The reasons being;:

e Data Availability & Consistency: Our dataset is a compilation from various sources,
with the majority being oriented towards N, P, K, pH, and crops. Some datasets did
encompass parameters such as rainfall and temperature, but to maintain consistency
and avoid introducing data biases, it was essential to have uniform features across all
data points.

¢  Complexity in Data Collection for Other Factors: Gathering a comprehensive dataset
that includes all geographical and climatic factors is a herculean task. It requires
expert interventions, prolonged data curation processes, and introduces the risk of
human errors.
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¢ Interrelation with pH: The soil’s pH, which measures its acidity or alkalinity, can
act as a proxy for some environmental factors. For instance, consistent rainfall can
influence soil pH; likewise, soil pH can reflect certain climatic conditions such as
humidity and temperature. By considering pH, the model indirectly captures some of
the environmental conditions” impacts on the soil.

3.3.2. Model Training

The machine learning model for crop recommendations was trained using a supervised
learning approach. Initially, we preprocessed the data to handle any missing values, outliers,
and to normalize the features. The dataset consists of approximately 10,440 samples,
which were then split into a training and testing set considering a split ratio of 70:30,
where 80 percent of data, i.e., 8352 samples, are kept for training and the remaining
20%, i.e., 2088 samples, are kept for testing the trained model. The study also considers
a validation set, which is 10% of the training dataset, to ensure that the model is not
overfitting or underperforming during its training. Therefore, training data consists of
7308 data samples and four predictors (N, P, K, pH) and a single response variable named
major_crop.

Given the complexity and nonlinear relationships between soil attributes and crop
types, the study employed a neural network, a subset of machine learning models, that are
adept at capturing intricate patterns and dependencies in the data. The employed neural
network architecture consists of three layers: an input layer, two hidden layers, and an
output layer, as shown in Figure 7.

Input layer Hidden layers Output layer

Input 1
—

Input 2

Figure 7. Neural network architecture used in the proposed study.

The input layer serves as a placeholder for input data to the model. The study
experimented with multiple architectures, adjusting the number of hidden layers and
nodes within each layer to optimize performance. Based on the empirical analysis, the
study found the consideration of two hidden layers with 64 and 32 neurons, respectively.
The output layer contains nodes corresponding to the number of unique crop types in
the dataset. The activation function used here is typically the SoftMax function, which
provides a probability distribution over the potential crop types. The model was trained
using backpropagation, a standard method for training neural networks. This involves
iteratively adjusting the model weights to minimize the difference between the predicted
output and the actual target values. The training process of the neural network is discussed
in Algorithm 2.
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Algorithm 2 Neural Network Model For Crop Recommendation

Input: x4, Training data (N,PK,pH)y;,4i,, labels (crop),

Number of predictors 17, Number of unique crop classes x,

Learning rate , Number of epochs e, Batch size s, Adam
hyperparameters B1, B2, €

Output: Trained Neural network model

Procedure:

1. Initialization:

Define input layer with 7

2. Initialize first hidden layer 64 with weights W; € R®*" and biases b; € € R%
3. Initialize first hidden layer 64 with weights W, € R®*" and € R*
4. Training: For epoch =1 to e:

5. Shuffle the training data.

6. Divide x44i, and yy,4i, into batches of size s

For each batch:

Compute: Z; = W1 X + by and Ay = ReLU(Z;)

Compute: Zy = W1 X + by and Ay = ReLU(Z;)

Compute: Z, = W, A, + b, and A, = softmax(Z,)

Compute Loss L

Compute gradient of loss w.r.t. final output aaTLo

. oL _
compute: 57 = Ao = Yirain

L _ 9L T

aw, = oz,

oL _ dL

b, — 97,

Using chain rule and considering ReLU derivatives:
oL __ wT JL

A, — V2 a3z,

aaTLz = B%g "(Z2) // where g is the ReLU derivative
Update learnable parameters W and b using Adam optimizer with learning rate «

7. Validate the model using testing dataset
End

The input layer has ‘n’ neurons, corresponding to the number of predictors. Mathemat-
ically, this can be represented as X € R" being the input vector, where X = [N, P,K, pH]T.
The first hidden layer has 64 neurons, such that W € R®¥" is the weight matrix connecting
the input layer to the first hidden layer, and b; € R®**" is the bias vector for the first hidden
layer. The weighted sum Z; € RO of the first hidden layer is Wi X + b;. The ReLU
activation function is applied element-wise to the weighted sum, A; = ReLU(Z;), where
A1 € R%  The second hidden layer has 32 neurons, such that W, € R32*" is the weight
matrix connecting the first hidden layer to the second hidden layer, and b, € R32" is the
bias vector for the second hidden layer. The weighted sum Z, € R32¥" of the second hidden
layer is Wy A1 + bp. The ReLU activation function is applied element-wise to the weighted
sum Ap; = ReLU(Z,), where A, € R32. The next output layer has k neurons, representing
the number of unique crop classes, such that W, € RF is the weight matrix connecting the
second hidden layer to the output layer, and b, € R¥ is the bias vector for the output layer.
The weighted sum Z, € Rk of the output layer can be calculated, Z, = W, A, + b,. Here,
the softmax activation function is applied to the weighted sum to obtain the final output
probabilities for each class.

The model is compiled using the Adam optimizer with a learning rate of 0.0001.
The loss function employed is the sparse categorical cross-entropy. The model is trained
using the fit( ) method, which takes in the training data. The training data are split into
a training subset and a validation subset. In this case, 20% of the training data are used
for validation during training. The model is trained for 200 epochs. The training dataset
is divided into batches, and in each iteration, the model updates its weights and biases
based on the gradients calculated from a batch of size 64. The weight and bias updates are
performed using the backpropagation algorithm and the Adam optimizer. The algorithm is
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responsible for training the neural network optimally for crop recommendation by learning
latent attributes and complex patterns of the data points from the training dataset.

3.4. Fertilizer Recommendation System

A fertilizer recommendation system is a specialized tool aimed at aiding farmers
in making informed decisions about the suitable amounts of fertilizers to use for their
crops. This system aims to increase agricultural productivity while minimizing adverse
environmental impacts. Many farmers might not have a comprehensive understanding
of their soil’s current nutrient levels. Without soil testing, it is challenging to know which
nutrients are deficient, which are abundant, and which are at optimum levels. The cost of
professional soil testing is prohibitive for many small-scale farmers, especially in developing
countries. Even where affordable tests are available, the infrastructure to understand and
act on the results might be lacking.

This study proposes a rule-based fertilizer recommendation system to guide farmers
on the most beneficial types and amounts of fertilizers for specific crops. The system’s
foundation is rooted in the well-established scientific principles of soil chemistry and plant
biology. Recognizing that different crops have varied nutrient requirements and that these
needs are influenced by soil pH, the system seeks to bridge the knowledge gap by providing
specific fertilizer recommendations based on these factors. The fertilizer recommendation
system considers various parameters such as soil quality determined based on pH level,
crop type, and specific nutrient requirements of each crop. By analyzing these factors,
the system provides recommendations for the optimal amounts of N, P, and K, the primary
nutrients needed by crops. It is to be noted that soil pH is a crucial parameter because
it affects the solubility of nutrients, which has a high impact on plant growth. A pH of
7 is considered neutral, while anything below 7 is acidic and anything above is alkaline.
The soil’s pH can influence the crop’s health, yield, and disease resistance. Different crops
prefer different pH ranges. The study first builds a lookup table for determining soil
qualities using their pH measure, as shown in Table 2.

Table 2. Soil quality based on different pH value [27,29].

pH Value Soil Quality
<4.5 Strongly acidic
4.5-5.5 Highly acidic
5.6-6.5 Moderately acidic
6.6-7.0 Slightly acidic
7.0 Neutral
7.1-8.0 Slightly alkaline
8.1-9.0 Moderately alkaline
9.1-10.0 Strongly alkaline
>10.0 Very strongly alkaline

The proposed system considers the values of pH and associated quality indicator as
the primary input source to the rule-based system, in which a set of logical conditions are
established. The study further focuses on the building reference database consisting of
recommended ranges of fertilizer (N, P, K) and suitable pH for different crops. A sample
visualization of recommended fertilizers and pH for the crops under consideration is shown
in Table 3.

Table 3 provides the data needed to build fertilizer recommendations. The first step is
to conduct a comprehensive soil analysis. Different crop types have different nutrient needs,
so it is essential to understand each crop’s specific N-P-K requirements at different growth
stages. Using expert knowledge and proven scientific data, the system establishes rules to
ensure reliable recommendations. The system then cross-references the user’s input with
fertilizer data to determine if the soil pH falls within the acceptable range for the chosen
crop. If the soil pH is within the acceptable range, the system recommends the optimal
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amounts of N, P, and K based on the nutrient needs specified in the fertilizer table. If the
soil pH is not within the acceptable range, the system advises the user to adjust the soil pH
and suggests potential soil amendments. The system also offers alternative crops that could
thrive in the existing soil pH range, along with the N, P, and K fertilizer recommendations
for those crops. This approach allows the system to make precise and comprehensive
fertilizer recommendations without requiring the explicit training of a predictive model on
a dataset. The rationale behind this method is the universal nature of the recommended
nutrient values for each crop type, thus providing a straightforward measure of the required
fertilizer based on the difference between the current and recommended N, P, and K values.
The utility of this rule-based approach lies in its ability to provide transparency and
personalized fertilizer recommendations.

Table 3. Ideal nutrient levels and pH ranges for effective crop cultivation.

Crop Nitrogen (N) Phosphorus (P)  Potassium (K)  Suitable pH Range

Maize 120-150 60-80 40-60 5.5-7.0
Sorghum 100-120 50-70 40-60 5.5-7.5
Cassava 60-90 3040 50-70 5.0-6.5
Beans 60-90 20-30 3040 5.5-7.0
Potato 80-100 40-60 60-80 5.0-6.5
Coffee 60-80 20-30 40-60 5.5-6.5
Banana 100-120 60-80 60-80 5.0-7.0
Kidney beans 60-90 20-30 30-40 5.5-7.0
Onion 40-60 20-30 3040 6.0-7.0

The proposed system can also reduce farmers’ costs by precluding the overuse or
underuse of fertilizers. An additional environmental advantage of this system is its po-
tential to minimize the detrimental impact of excessive fertilizer usage, such as water
pollution caused by fertilizer runoff. Finally, the system equips farmers with the informa-
tion needed to make informed decisions about crop rotation based on soil’s pH suitability
for various crops.

The system starts by receiving user inputs on the crop type and the soil’s pH value. It
then cross-references this with a precompiled fertilizer table containing the ideal pH ranges
and nutrient (N, P, K) requirements for various crops. Depending on the pH level input,
the system first classifies the soil into categories ranging from “Strongly acidic” to “Very
strongly alkaline”. It then checks if the input pH falls within the appropriate range for the
chosen crop. If the pH level is suitable, the system provides fertilizer recommendations
specific to the crop, considering the nutrient needs from the fertilizer table. The recommen-
dations regarding the required amounts of N, P, and K are given. If the soil pH is not right
for the chosen crop, the system will tell you how to adjust it to the correct range. It will
also suggest ways to improve the pH using soil amendments. In addition, the system will
list alternative crops that could grow well in the current soil pH range. It will also provide
N, P, and K fertilizer recommendations for each of these crops.

4. Result and Discussion

The development of the proposed recommendation models is carried out using python
programming language in Anaconda distribution installed on windows 10 machine.This
section presents the performance analysis of the proposed predictive model for crop recom-
mendation. The accuracy of the predictions was assessed using various metrics, such as
accuracy, precision, recall, F1-score, and the ROC curve. These metrics provide a compre-
hensive view of the model’s performance, ensuring that the recommendations it provides
are both precise and reliable. The performance metric accuracy is the proportion of the
total number of predictions that were correct. It is given as follows:
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TP+ TN 5
TP+ TN+ FP+FN @
where TP denotes True Positives, TN is the True Negative, FP is False Positives, and FN
refers to False Negatives.
Precision is the proportion of positive identifications that were actually correct. It is
computed as follows:

Accuracy =

TP
Precision = ——.
recision = - ~Fp 3)

Recall (or Sensitivity) is the ability of a model to find all the relevant cases within a
dataset. The recall is given by:

TP
Recall = TPLEN 4)

F1 Score is the harmonic mean of precision and recall, aiming to find a balance between
both. The formula for computing F1 Score is given as follows:

Precision x Recall
FI Score =2 x Precision + Recall ©®)

4.1. Training Performance Analysis

The training phase of a machine learning model is crucial because it determines how
well the model learns the patterns in the training data. The training accuracy is a measure of
how well the model can predict the labels of the training data. If a model has poor training
accuracy, it indicates that there may be problems with the dataset, the model architecture,
or the hyperparameters. Training accuracy is also an important metric for ensuring that the
model generalizes well, meaning that it can make accurate predictions on new data that it
has not seen before. This is because a model with high training accuracy following high
validation accuracy has learned the underlying patterns in the data, not just the specific
examples in the training set. Figure 8 shows the training performance of a neural network
over 200 epochs.

From Figure 8, the training accuracy reaches up to 99%, indicating that the model has
learned the underlying patterns in the training data very well. However, it is worth noting
that a training accuracy of 100% is not always desirable, as it can lead to overfitting, where
the model becomes too specific to the training data and performs poorly on unseen data.
Therefore, the study considers validation of the model during the training processes. It
can be seen that the validation accuracy reaches up to 95%, which is slightly lower than
the training accuracy. This can be due to the fact that the model may have overfit to the
training data or that the validation set may have some variability that the model could not
capture. However, a validation accuracy of 95% is still a good level of accuracy, indicating
that the model can generalize well to new, unseen data. Overall, the high training and
validation accuracy suggest that the model is a good fit for the data and has the potential
to make accurate predictions.
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Figure 8. Training and validation curve.

4.2. Model Performance on Test Data

This section evaluates the performance of the model on the test dataset for crop rec-
ommendations. The metrics considered for this analysis are precision, recall, and F1-score
across different crop classes and overall accuracy, as shown in Table 4. The support column
indicates the sample size for each class, offering context to the reported statistical outcomes.

Table 4. Performance analysis of the proposed model.

Class Label Precision Recall F1-Score Support
0 Maize 1.00 0.80 0.89 23
1 Sorghum 1.00 0.98 0.99 300
2 Cassava 0.90 0.95 0.93 435
3 Beans 1.00 1.00 1.00 23
4 Potato 1.00 1.00 1.00 11
5 Coffee 0.99 0.99 0.99 566
6 Banana 1.00 1.00 1.00 3
7 Kidney beans 0.84 0.74 0.78 208
Overall Accuracy 0.97

As shown in Table 4, for class 0, the model correctly predicted this class with 100%
precision, meaning that every time the model predicted class 0, it was correct. The re-call of
80% indicates that the model was able to identify 80% of the actual instances of class 0 in
the data. The F1-score, which is the harmonic mean of precision and recall, is 0.89. There
were 25 instances of class 0 in the test set. Additionally, the model performed very well on
Class 1, with a precision and recall of 1.00 and 0.98, respectively. This means that the model
correctly identified 98% of the Class 1 instances, and none of the predictions were false
positives. The F1-score of 0.99 for Class 1 indicates a strong balance between precision and
recall. The model’s performance on Class 2 was slightly lower, with a precision of 0.90 and
recall of 0.95. This means that the model correctly identified 95% of the Class 2 instances,
but there were some false positives. The F1-score of 0.93 for Class 2 still indicates a good
balance between precision and recall.

The model performed perfectly on Classes 3, 4, and 6, achieving a precision, recall,
and Fl-score of 1.00 for all three classes. However, it is important to note that these classes
were very underrepresented in the dataset, with only 20 instances for Class 3, 4 instances
for Class 4, and 1 instance for Class 6. This means that the model’s perfect performance on
these classes may be due to their simpler nature or distinctive features, which made them
easier to distinguish. Class 5 was also well-represented in the dataset, with 557 instances.
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The model performed very well on this class, with a precision and recall of 0.99. This
means that the model correctly identified 99% of Class 5 instances and made very few
false positives. Class 7 was the only class where the model’s performance was not as good.
The model had a precision of 0.84 and recall of 0.74, meaning that it correctly identified
74% of Class 7 instances and made 16% false positives. The F1-score of 0.78 indicates that
there was a moderate balance between precision and recall for this class. Class 8 was the
largest class in the dataset, with 543 instances. The model performed very well on this class,
with a precision, recall, and F1-score of 0.99. This means that the model correctly identified
99% of Class 8 instances and made very few false positives.

The Receiver Operating Characteristic (ROC) score is a widely used metric to evaluate
the performance of classification models.Based on the outcome statistics shown in Figure 9,
the Receiver Operating Characteristic (ROC) score, which measures a trade-off be-tween
the True Positive Rate (sensitivity) and False Positive Rate (specificity). The ROC score
ranges from 0 to 1, where a score of 1 denotes a perfect classifier, and a score of 0.5 indicates
a model that is no better than random chance.
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Figure 9. Analysis of ROC curve; (a) ROC plot; (b) Magnified view of overlapping ROC regions.

The study also considers a comparison of the performance of the proposed neural
network model with other different supervised classifiers as crucial in determining its
suitability for specific tasks. A comparative analysis was conducted in Figure 10 to assess
the proficiency of the proposed neural network and three other different models, namely,
SVM (Support Vector Machines), Decision Tree, and XGBoost. The evaluation considered
three vital metrics—weight precision, recall, and F1-Score—to gauge the performance
nuances of each model. Based on the outcome analysis, the proposed neural network
model outperformed all other models, including SVM, Decision Tree, and XGBoost, in a
comparative evaluation. The neural network achieved a precision of 99.18%, while XGBoost
came in second with a precision of 97.36%. The Decision Tree performed similarly to
XGBoost, with a precision of 97.36%. SVM performed the worst, with a precision of 93.93%.
This analysis shows that the neural network model is exceptionally capable of accurately
identifying correct classifications. The proposed neural network model has a high recall of
98.66%, which means that it can accurately identify a large portion of the actual positive
examples in the dataset. XGBoost is also effective, but its recall is slightly lower at 97.03%.

The F1-score, which measures the balance between precision and recall, is even higher
for the neural network model at 98.98%. XGBoost is a close second with 97.17%, followed
by the Decision Tree with 96.87%. Based on the comprehensive evaluation, the proposed
neural network model distinctly outperforms the other models. Its consistently high scores
across all metrics not only underline its accuracy in predictions but also its capacity to
maintain a balance between precision and recall.
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Figure 10. Comparative analysis with different predictive models.

4.3. Real-World Testing

This section discusses how we deployed and tested our crop recommendation system
in real time and the results we obtained when using it with live data. The most important
part of evaluating our system is the data it uses. For this study, we collected data from a
set of IoT sensors (Five-pin soil transmitter (Type485) sensors, Shandong Renke Control
Technology Co. Ltd., Jinan City, Shandong Province, China), that we strategically deployed
across agricultural fields, as shown in Figure 11. The solar panels capture sunlight, convert
it to electricity, and then tranfer that electricity to a battery. The battery powers a printed
circuit board (PCB), which provides electrical connection and mechanical support to the
electrical components of a circuit (sensor, GSM, microcontroller). The transmitter steel
needle (sensor) was inserted horizontally into the soil in a pit that was dug with a diameter
of >20 cm vertically to detect soil properties, which are transmitted to the cloud using GSM
sim 900,and a microcontroller was integrated into a system to manage the device function.

(b) (c)
Figure 11. Visual depiction of IoT sensor setup; (a) sensors, battery and solar; (b) sensor assembled;
(c) sensor deployed in cropland.

Figure 11a shows a visual representation of the IoT soil sensor, battery, and solar as a
power source. Figure 11b shows sensors were meticulously positioned within croplands,
silently working to gather valuable agronomic data. Figure 11c showcases an IoT sensor,
equipped with solar panels, ready for data collection. The IoT sensors measure N, P, and K
in parts per million (ppm), which is a common unit used in soil testing. In this case, ppm
represents absolute concentrations, not percentages. Therefore, the study converted the
raw data from the IoT sensors from ppm to kg/ha before feeding it to the trained model
for the proposed crop recommendation system. The conversion between the two depends
on the depth of soil sampled and its bulk density. To convert from ppm to kg/ha, the study
followed the standard convention that 1 ppm is equivalent to 1 mg/kg. So, if we had
a reading of 50 ppm N, that means there are 50 mg of nitrogen per kg of soil. Hence,
in a hectare, we have 50 mg/kg x 2,600,000 kg = 130,000,000 mg of nitrogen, which is
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130 kg of nitrogen. The study converted all of the data collected by the IoT sensor node in
real time from ppm to kg/ha in this manner. The transformed data were then fed to the
trained model for the proposed crop recommendation system. The results of the study were
promising, justifying the scope of the proposed work. This suggests that the proposed crop
recommendation system can be used to accurately recommend crops for farmers based on
the real-time data collected from IoT sensors.

4.4. Scope and Limitations

The proposed crop recommendation and rule-based fertilizer system holds immense
promise, with a wide scope and diverse applicability. By soil data attributes and machine
learning algorithms, it considers N, P, K, and soil quality pH, which are crucial for crop
growth based on soil conditions. A balanced pH ensures optimal nutrient uptake, pro-
moting healthy crop growth. By ensuring that these core parameters are in their ideal
ranges, a significant portion of crop health following fertilizer recommendation yield op-
timization is addressed. By factoring in these vital soil attributes, the system ensures a
tailored approach to crop cultivation, rooted in the specific conditions and needs of the
soil. By focusing on these four key parameters, the study reduces the complexities often
associated with integrating multiple environmental factors. While environmental factors
such as rainfall and temperature can vary significantly across regions and seasons, the im-
portance of N, P, K, and pH remains consistent for crop growth globally. This gives the
proposed system a universal applicability, making it relevant across diverse geographical
areas. However, despite the advantages of proposed system, it has limitations too when
considering the implementation at a large scale in the agriculture sector. The potential
challenges and limitations are highlighted as follows.

Data Generalization: The system is based on specific soil properties, such as N, P,
K, and pH. However, when scaled up, these properties can vary widely across different
regions, which could limit the accuracy of the recommendations. Additionally, it is difficult
to create a comprehensive dataset that includes all possible soil, crop, environmental,
and geographic conditions. Inaccuracies can also arise from inconsistent or incomplete data.

Exclusion of Environmental Factors: The model does not consider factors such as
rainfall, humidity, and temperature. While N, P, K, and pH are important, the absence
of these environmental variables may not provide a complete view of what is needed for
all regions.

Infrastructure Challenges: Large-scale implementation may require extensive infras-
tructure, including IoT sensors, data transmission systems, and more.

Maintenance and Updation: The model will need to be updated regularly as soil
conditions, crop varieties, and farming practices change. This will be challenging on a
large scale.

Economic Implications: While the system might reduce some costs, the initial setup,
training, and maintenance can be economically taxing for small-scale farmers or in regions
with limited funding.

Rule-Based Fertilization Challenges: For rule-based fertilization recommendation
models, the fixed set of rules might not adapt quickly to changing conditions. It can also
become complex to update the rules for too many crops. If there are too many rules, it can
potentially lead to contradictions.

4.5. Use Case Scenario and Conceptual Architecture of IoT Farm

Figure 12 shows sensors that are deployed in cropland to monitor and collect detailed
data on soil nutrient levels (nitrogen, phosphorus, and potassium), as well as other im-
portant parameters. The IoT gateway connects the sensors to the cloud and securely and
quickly transfers the data to a cloud database. This robust and scalable storage solution
archives the collected data. Being cloud-based, it ensures that the data are accessible, redun-
dant, and secure. The proposed system is deployed over the cloud and leverages the power
of machine learning to analyze the real-time data using predictive algorithms to generate
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two key outputs: crop recommendations and fertilizer recommendations. The user can
access both the real-time monitoring data and the generated recommendations through a
tailored interface, enabling informed decision-making. Therefore, the proposed system’s
conceptual architecture showcases an end-to-end solution, from data collection in croplands
to actionable insights delivered to the user. This synergy ensures that farmers are equipped
with the best tools and information to drive productivity and sustainability in their work.

IoT Gateway Pre_processing

Database Soil Detection Feature
Modelling
Decision

Analytics

Recoded x ‘g'. Predictive Decision: Recommend:
S~
H

Data & suitable crop
Sensor
I::I I ‘
“Sensor End User 2
End User 1

(Can be a Farmer, Agriculture Expert or Any Concerned Entity)

Figure 12. A schematic illustration of an IoT-assisted agriculture farm.

5. Conclusions

This study has introduced a novel crop and fertilizer recommendation system (CFRS)
that is personalized specifically for Rwanda’s agricultural landscape. The system uses
machine learning and data analysis to give farmers insights that can help them make in-
formed decisions about crop selection and fertilizer use. In rigorous comparative analyses,
the neural network outperformed other popular machine learning models, demonstrating
its precision, balance, and proficiency. The system has the potential to improve crop yield
and quality, while also promoting cost-effective agricultural practices and reducing envi-
ronmental impact. However, the system is not without its limitations. It needs to consider
more environmental and geographical factors, and the data modeling and feature extrac-
tion process needs to be refined and expanded. Future work will focus on incorporating
additional environmental and geographical factors, such as rainfall, temperature, humidity,
and altitude, into the system. The study will also adopt more sophisticated deep learning
algorithms and collaborate with environmental scientists, agronomists, and technologists
to develop a more comprehensive, adaptive, and impactful system.
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Abstract: In blueberry farming, accurately assessing maturity is critical to efficient harvesting. Deep
Learning solutions, which are increasingly popular in this area, often undergo evaluation through
metrics like mean average precision (mAP). However, these metrics may only partially capture
the actual performance of the models, especially in settings with limited resources like those in
agricultural drones or robots. To address this, our study evaluates Deep Learning models, such as
YOLOv7, RT-DETR, and Mask-RCNN, for detecting and classifying blueberries. We perform these
evaluations on both powerful computers and embedded systems. Using Type-Influence Detector
Error (TIDE) analysis, we closely examine the accuracy of these models. Our research reveals that
partial occlusions commonly cause errors, and optimizing these models for embedded devices can
increase their speed without losing precision. This work improves the understanding of object
detection models for blueberry detection and maturity estimation.

Keywords: blueberry detection; maturity estimation; edge computing; smart agriculture; computer

vision; machine learning

1. Introduction

In modern agriculture, accurately determining the number and maturity of blueberries
is essential for identifying the ideal harvest time. With noticeable variations in maturity
levels among blueberry clusters [1], obtaining accurate and timely information is vital in
enhancing productivity, reducing costs, and maximizing profits. This challenge has guided
research efforts toward automating such assessments, offering a more data-driven and
efficient strategy for determining the optimal harvesting period.

Recognizing the importance of this problem, agricultural sector researchers have
achieved substantial advancements, particularly in Deep Learning applications, with
convolutional neural networks (CNNs) leading these developments. Known for their
exceptional ability to process complex visual data, CNNs excel in a variety of intricate tasks
such as object recognition, image classification, and instance segmentation, all of which
are highly valuable in numerous agricultural applications (e.g., [2-9]). These applications
underscore the versatility and adaptability of CNNs in meeting the diverse challenges
faced by the agricultural sector.

In blueberry detection and maturity estimation, considerable advancements have
been made, leveraging a fusion of machine learning and computer vision techniques
(e.g., [10,11]). Innovative approaches, including hyperspectral imaging, partial least squares
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regression, and Deep Learning models, have been employed to extract color and texture
features for maturity classification [12,13]. Notable contributions include pipelines designed
by Gonzalez et al. [14] and Ni et al. [1], which use CNN models for classifying blueberry
traits, including maturity estimation.

More novel approaches such as the work conducted by Mu et al. [15] significantly
enhanced the accuracy and efficiency of blueberry quality detection, leveraging Deep
Learning for classification tasks. Obsie et al. [16] demonstrated the viability of various
machine learning algorithms in developing predictive models for blueberry yield prediction.
MacEachern et al. [17] successfully trained models to identify wild blueberry ripeness
stages, achieving high mean average precision (mAP) values for two and three types of
ripeness, alongside an impressive runtime inference compared to previous approaches.

While advancements in Deep Learning for agriculture are significant, a critical area of
research remains in assessing their real-world viability, especially on embedded devices
like those in agricultural robots and drones. These autonomous systems require careful
consideration of processing power, size, weight, and connectivity, typical of edge computing
environments. Furthermore, cost-effectiveness in processing is crucial for widespread
adoption. Although edge computing devices are affordable and compact, they present
challenges in balancing speed and precision. Effectively applying these methods for tasks
such as blueberry detection and maturity estimation in practical settings is an evolving field.

Additionally, the practical application of these advancements warrants further ex-
ploration. Most existing research involves image acquisition in controlled environments,
which only partially represents the complexities of real-world conditions. This discrepancy
between laboratory and field settings and the computational challenges addressed in this
study highlight the need for more research to bridge the gap between theoretical models
and their practical implementation in agriculture.

Contributions of the Study

This study evaluates various state-of-the-art models for detecting and estimating
blueberry maturity across multiple devices, assessing their real-world application potential.
Utilizing a dataset specially curated for this purpose, the performance of these models
is examined, employing the Type-Influence Detector Error (TIDE) method for a detailed
analysis of prevalent issues. This approach identifies critical areas needing improvement
and facilitates a discussion on future research directions, potentially leading to more refined
and efficient methods in agricultural technology.

The main contributions of this work are as follows:

* Anew and publicly available dataset of blueberries for object detection tasks covering
various maturity stages has been created, captured, and labeled. While other datasets
include object detection labels, this incorporates maturity classification.

¢  This study offers novel insights into the performance of current models, particularly in
terms of runtime and error analysis. State-of-the-art blueberry detection and maturity
estimation models have been thoroughly evaluated, with the errors identified and
quantified using the TIDE method. These insights are crucial for guiding future
research efforts.

*  An essential contribution of our study is the exploration of model adaptability in edge
computing environments, explicitly examining their computational demands and
performance. We show that some object detection models can operate in real-time on
edge devices while maintaining their ability to detect and classify blueberry maturity
effectively. Although runtime information for these models on embedded devices
is known, the impact of optimization techniques required for these devices on their
capability for blueberry detection and maturity estimation was previously unexplored.

e  The code associated with the evaluations is made available to promote research
reproducibility and encourage further advancements in this field. The code can be
accessed at https:/ /github.com/ngunsu/bb2023 (accessed on 13 November 2023).
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2. Materials and Methods
2.1. Image Dataset

In this study, a set of blueberry images was collected from a plantation situated in
Quillén, a town in the Nuble Region of Chile. This region is known for its mild microclimate,
exhibiting an average annual temperature of 14.9 °C. Typical January temperatures fluctuate
between 27 and 30 °C, while the annual precipitation ranges from 700 to 1000 mm, with
most rainfall occurring between April and September. The images were captured on three
separate occasions, from late October to early December 2021, during sunny days when the
temperatures exceeded 20 °C.

2.1.1. Image Acquisition

The image acquisition process employed a Nikon Coolpix B700 and a Basler acA2440-
20gc camera, both firmly mounted on a SOLIGOR WT-330A tripod to ensure stability
during the capture process. Figure 1 displays the configuration of this imaging system. The
Nikon Coolpix B700, equipped with a 60x optical Zoom-NIKKOR glass lens (4.3-258 mm),
captures images with a resolution of 5184 x 3888 pixels. Meanwhile, the Basler acA2440-
20gc, using a Fujinon HF9HA-1B Lens (9 mm 1.5MP 2/3"" £/1.4 C-Mount), captures images
at 2448 x 2048 pixels.

< )

Nikon B700

1 -1 L] oc
AC

Battery 12VDC Inverter Switch D-Link DGS-1100

Basler acA2420-20gc

Figure 1. Camera acquisition setup showcasing two cameras: the Nikon Coolpix B700 and the Basler
acA2440-20gc. The Nikon Coolpix B700 is directly connected to a notebook, while the Basler acA2440-
20gc connects to the notebook via an ethernet switch. The notebook facilitates the capture process.
Power to the ethernet switch, vital for the Basler camera’s operation, is supplied by a 12-volt battery.

Using the previously described camera setup, approximately 500 images were cap-
tured from different locations within the plantation. The cameras” automatic illumination
settings were used for each image capture, and any specialized adjustments were delib-
erately avoided. This approach was intentionally chosen to create challenging conditions
where the variable lighting could affect the blueberries’ coloration. This approach aims to
generate edge-case scenarios, thereby providing a comprehensive evaluation of our models’
performance under diverse and demanding environmental conditions.

2.1.2. Image Labeling

Image labeling is crucial in creating datasets for machine learning applications. In
this context, labels serve as the ground truth that a machine learning model aims to learn.
For our study, labeling involved meticulously outlining each blueberry with rectangular
bounding boxes and categorizing them according to their maturity levels. The categories
were defined as follows: berries with green or reddish tones were classified as unripe, those
with light purple to darker red hues were pint, and berries showing blue or dark purple
coloration were labeled as ripe.

Label Studio 1.5.0 was employed to label the images to facilitate this process. Three
individuals participated in this detailed labeling process, carefully drawing rectangular
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bounding boxes around the blueberries and assigning the appropriate ripeness category.
Throughout the labeling process, several images were discarded if a labeler could not
reliably assess the ripeness of any blueberries in the image. This quality control step
resulted in a refined dataset of 265 images, representing a wide range of ripeness stages.
Figure 2 shows examples of these annotations, highlighting the diversity of ripeness stages
included in the dataset.
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(a) Original image (b) Labeled image

Figure 2. Representative image from the dataset. The image on the left presents the original capture,
while the image on the right displays the same capture with manually added labels illustrating
blueberry locations and their respective maturity categories.

2.1.3. Dataset Splits

Of the 265 images labeled, 85% were allocated for training and 15% for testing pur-
poses. The training data were also subdivided into two sets: a primary training set and
a validation set. This subdivision followed the same 15-85% ratio, with 85% of the im-
ages used for training and 15% for validation. Each split was conducted through random
partitioning to ensure variety and unpredictability in the data distribution.

Crucially, the datasets were manually reviewed to guarantee that no clusters of blue-
berries were duplicated across the sets, thus maintaining distinct and unique image sets
for training, validation, and testing. Table 1 displays the final distribution and number of
images across these sets, illustrating the breakdown of the dataset for the different phases
of the machine learning process.

Table 1. Distribution of images across training, validation, and testing subsets within the im-
age dataset.

Data Training Validation Test Total
Images 190 33 42 265

Table 2 presents a comprehensive breakdown of the generated labels for each image,
based on its usage in training and evaluation, as well as its maturity level (see Figure 3). It
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is important to note that the dataset exhibits a slight imbalance, with the pint class having
fewer instances than other classes. This imbalance can be attributed to the date of the
image captures.

Table 2. Classification and distribution of labels corresponding to blueberry maturity stages.

Class Train Validation Test Total

unripe 2825 539 680 4044
pint 431 66 170 667
ripe 3271 556 628 4455

(@) (b)
Figure 3. Examples of blueberry labeling: (a) unripe, (b) pint, and (c) ripe.

2.2. Model Training and Evaluation
2.2.1. Model Training

Training and evaluation were conducted on three distinct object detection architectures
for identifying and classifying the maturity of blueberries: YOLOV? (including YOLOv?7-
tiny, YOLOv7-w6, and YOLOv7-default) [18], Mask-RCNN [19], and RT-DETR-L [20]. The
primary goal of this study was to assess the impact of different models, with their varying
number of parameters and runtime speeds, on the detection and classification accuracy
within our dataset.

A crucial step in training these models was the hyperparameter tuning phase, where a
range of adjustments was explored. Fine-tuning strategies were also implemented, using
pre-trained models from the COCO dataset to enhance the models” performance. This
involved rigorously evaluating various learning rates, a critical factor in how quickly
a model learns during training and, thus, affects its overall performance. Furthermore,
several data augmentation techniques were used to artificially increase the dataset’s size.
Given the small size of our training set, this approach was especially advantageous. Data
augmentation, involving image transformations like rotation or vertical mirroring, allowed
us to generate multiple samples from a single image, thereby improving the model’s
learning efficiency and generalization capability. The optimal hyperparameters for each
model found through grid search are listed in Table 3.

The computational constraints of the GPU setup required minor image size modifica-
tions to ensure successful model training. All experiments were conducted on a computer
system with a 12th Gen Core i7 CPU, 32GB of RAM, a 1TB SSD, and an NVIDIA RTX3080T1
10GB GPU.
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Table 3. Hyperparameters utilized for training each object detector in our experimental analysis,
with a uniform training duration of 350 epochs for all models. All models were pre-trained on the

COCO dataset.
Model Image Size Ir Augmentation

Translation, Scale, Rotation,

YOLOvV7-tiny 640 x 640 0.01 Vertical Flip, Horizontal Flip,
Copy Paste, Mosaic

Translation, Scale, Rotation,

YOLOv7-default 640 x 640 0.001 Vertical Flip, Horizontal Flip,
Copy Paste, Mosaic

Translation, Scale, Rotation,

YOLOvV7-w6 1280 x 1280 0.010 Vertical Flip, Horizontal Flip,
Copy Paste, Mosaic

Translation, Vertical Flip,
RT-DETR-L 640 x 640 0.001 Horizontal Flip, Mosaic
Mask-RCNN [800, 1333] x [800, 1333] 0.010 Vertical Flip, Horizontal Flip

2.2.2. Model Evaluation

The average mean precision is a standard metric for evaluating object detection models,
assessing both the accuracy of the detected objects and the model’s confidence in these
detections. Among its variations, mAP50 is widely used, where detection is considered
accurate if the intersection-over-union (IoU) between the predicted bounding box and the
ground truth is at least 50%. The calculation of mAP50 involves sorting all detections by
their confidence scores, determining each detection as a true positive or a false positive
based on the IoU threshold, and then calculating precision and recall at each threshold
level. The final mAP50 score is an average of these precision values, taken at the points
where recall changes, across all classes in the dataset.

Similarly, mAP75 follows the same calculation process but with a stricter IoU threshold
of 75%, providing a more rigorous evaluation of the model’s accuracy. This metric is
especially relevant in our study, where precision in the localization of objects is crucial.

Additionally, the precision, recall, and F1 score of the models are evaluated. Precision
measures the proportion of correct identifications made by the model, while recall measures
the proportion of actual positives that were correctly identified. The F1 score is a measure
that combines precision and recall, providing a balance between them. These metrics can
be mathematically represented as follows:

True Positives

Precision = 1
True Positives + False Positives M)

Recall — True Positives o)
~ True Positives + False Negatives

Precision x Recall
F1 Score = 2 x Precision + Recall” @)

These metrics offer a comprehensive evaluation of the model’s performance in object
detection tasks.

Regarding runtime, the same procedure is followed for each model. First, a warmup
phase of 100 runs is started, which initializes the GPU. This step ensures the system is fully
operational before beginning the measurements. After the warmup, an additional 100 runs
are conducted, and the inference times are meticulously recorded. The runtime is then
determined by calculating the average time across these runs.
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2.3. Edge Computing

Edge computing emerged as a solution for situations when the acquired data must
be processed on the spot without the possibility of being transmitted to a remote server.
Therefore, it is a suitable solution for technology’s deployment in rural areas, which
usually lack Internet connectivity. Furthermore, edge computing devices” compact size and
energy efficiency make them ideal for integration into drones or mobile robots, rendering
them fit for real-world applications. This attribute expands the technology’s accessibility,
balancing computational power, energy consumption, and cost-effectiveness. For all the
above considerations, we adopted edge computing as a compelling approach for real-time
blueberry detection and classification.

Selecting appropriate devices for edge computing is crucial, particularly when aligned
with the specific requirements of an application. This study focuses on NVIDIA’s Jetson
line, particularly the Jetson AGX Xavier and Jetson AGX Orin models. These models were
selected for their superior technical features and software compatibility. Essentially, both
Jetson devices are compact computers equipped with integrated GPUs and capable of being
powered by batteries. This setup enables the execution of Deep Learning models with
relatively lower costs than traditional desktop setups. Specifically, we chose the Jetson AGX
Xavier and Orin models for their proficiency in efficiently running advanced Al models,
such as RT-DETR and YOLOV7, which are integral to our research. This efficiency marks a
significant improvement over earlier models like the Jetson Nano, which is limited by its
outdated software capabilities. The technical specifications of the Jetson AGX Xavier and
Orin are detailed in Table 4, underscoring their suitability for our research.

Table 4. Technical specifications of the NVIDIA Jetson devices evaluated in this study.

Device Specifications

Jetson AGX Xavier CPU: 8-core NVIDIA Carmel ARM v8.2 64-bit CPU @ 2.26 GHz
GPU: 512-core Volta GPU with Tensor Cores
DLA: 2 x NVDLA engines
RAM: 16 GB 256-bit LPDDR4x@137 GB/s
Storage: 32 GB eMMC 5.1 onboard
Power: 9 V20V DC

Jetson AGX Orin CPU: 2 x 12-core NVIDIA Arm® Carmel CPU@2.75 GHz
GPU: 2 x NVIDIA Ampere architecture Tensor Cores and 2 x NVIDIA
Volta architecture Tensor Cores
DLA: 2 x NVDLA engines
Memory: 128 GB/s 256-bit LPDDR4x | 200 GB/s 2048-bit LPDDR5
Storage: 1 x 10GbE, 1 x 5GbE, 1 x 2.5GbE, 1 x 1GbE
Power: 9V 36 VDC

It is crucial to emphasize that although the Jetson devices—namely the AGX Xavier
and AGX Orin—are powerful mini-computers, they are primarily designed for inference
tasks rather than for the training phase of machine learning models. Consequently, in our
research, these embedded systems will be utilized exclusively for evaluating the runtime
performance of machine learning models that have already been trained. The training
phase of these models will be conducted on more robust desktop GPUs.

2.4. Optimizing Model Runtime

Deploying Deep Learning models on embedded devices often necessitates a post-
processing phase to optimize them for efficient runtime performance. Typically, these
models are designed for desktop-grade GPUs, and their performance on embedded devices
is comparatively lower due to the limitations of these devices” internal GPUs, such as
reduced memory capacity and fewer GPU cores. Therefore, it is necessary to adapt the
models for these devices to enhance their runtime speed once they are trained. Several
techniques are employed for this purpose. For instance, knowledge distillation, as described
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in [21], involves training a compact model to emulate the behavior of a larger, more complex
model, making the smaller version more suitable for embedded devices. Another prevalent
technique is quantization, which accelerates network inference by utilizing lower precision
computations, like 16-bit, 8-bit, or even 1-bit precision models [22].

However, this study adopts a more direct optimization approach using TensorRT
8.5.0.2 [23], a software tool developed by NVIDIA. TensorRT effectively reduces the model
size and enhances runtime performance through quantization, converting 32-bit floating-
point computations to 16-bit or 8-bit formats. This adaptation increases the runtime speed
as GPUs process these calculations more quickly. TensorRT also implements layer and
tensor fusion, combining operations to run faster and fully utilizing GPU capabilities.
TensorRT takes a trained model as the input and produces a new, more efficient version for
inference. This type of optimization is essential for applications that require high-speed
processing.

While TensorRT offers substantial benefits, assessing its impact on the network’s
performance is crucial. The trade-off between runtime efficiency and model accuracy is
a significant factor in this assessment. Consequently, our article focuses on an in-depth
analysis of TensorRT’s optimization effects, particularly in real-time edge detection and
maturity estimation of blueberries on edge devices.

2.5. The Type-Influence Detector Error

The Type-Influence Detector Error (TIDE) [24] analysis is a tool to examine the types
of errors made by an object detector and how these errors affect the mean average precision
metric (mAP). It provides a detailed perspective on specific categories of errors and their
contribution to the detector’s overall performance. Essentially, TIDE quantifies the impact
of each error type on the total mAP (denoted as dAP), offering an estimate of potential
mAP improvement if a particular error was effectively addressed.

TIDE analysis gives information about the following:

1. Misclassification errors (Cls), which occur when the detected object is incorrectly
classified;

2. Localization errors (Loc), which arise when the algorithm accurately classifies an

object but inaccurately localizes it, underscoring the need for enhancements in object

detection algorithms;

Combined misclassification and mislocalization errors (Both);

Duplication errors (Dup), which occur when an object is detected multiple times;

5. Background errors (Bkg), which occur when the algorithm wrongly identifies parts of

the background as objects;

Missed errors (Miss), which represent overlooked ground truth tags by the algorithm;

7.  False positive (FP) errors, depicting instances where the algorithm mistakenly identi-
fies non-objects as objects;

8.  False negative (FN) errors result when the algorithm fails to detect an existing object.

Ll

o

3. Results
3.1. Blueberry Detection and Maturity Estimation

Building on the findings in [17], the empirical evaluation has been broadened to
encompass a range of more recent and diverse models. Table 5 presents the results of our
trained models for blueberry detection and maturity estimation. This analysis adheres
to the methodology described in [17], particularly employing a stringent mean average
precision (mAP) criterion of IOU 75%. The findings highlight that the mAP scores for
most models range between 0.3 and 0.5, suggesting a moderate accuracy level. Among the
models, MASK-RCNN stands out for its superior accuracy, though it is also the slowest in
runtime. Additionally, the analysis reveals a consistent precision level across all maturity
levels, indicating that no single class disproportionately contributes to errors despite the
imbalance in the dataset.
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Table 5. This table offers a comparative assessment of various YOLOv7 configurations, RI-DETR-L,
and Mask-RCNN in detecting blueberries at three stages of maturity—ripe, pint, and unripe. The
performance metrics are evaluated on an NVIDIA RTX3080TI GPU, using mAP75.

Model Class Precision Recall F1 mAP75 Rl(lrr:sl? €
YOLOvV7-tiny Ripe 0.547 0.387 0.443 0.330
Pint 0.568 0.433 0.489 0.364 3308
Unripe 0.485 0.323 0.388 0.231 ’
All 0.533 0.380 0.443 0.309
YOLOv7-default Ripe 0.626 0.456 0.528 0.435
Pint 0.641 0.508 0.567 0.432 8.059
Unripe 0.605 0.415 0.492 0.348 ’
All 0.624 0.460 0.530 0.405
YOLOvV7-wé6 Ripe 0.598 0.500 0.544 0.445
Pint 0.631 0.494 0.554 0.431 19.551
Unripe 0.591 0.457 0.516 0.381 ’
All 0.607 0.484 0.539 0.419
RT-DETR-L Ripe 0.547 0.454 0.496 0.416
Pint 0.575 0.348 0.434 0.314 11.551
Unripe 0.518 0.396 0.449 0.309 ’
All 0.547 0.399 0.462 0.346
Mask-RCNN Ripe 0.612 0.490 0.543 0.447
Pint 0.680 0.574 0.622 0.558 34301
Unripe 0.582 0.488 0.530 0.426 ’
All 0.625 0.518 0.565 0.477

Figure 4 presents the detection results from four distinct models applied to the same
image. This comparative analysis reveals that across this particular sample, the detection
bounding boxes generated by each model are similar. Notably, the results from Mask-
RCNN align more closely with the actual contours of the blueberries. Furthermore, the
RT-DETR model uniquely identifies one blueberry that the other models overlooked. Of
particular interest is that Mask-RCNN is the only detector that accurately identifies the
pint berries in this sample, demonstrating its superior precision in distinguishing between
different maturity stages of the blueberries.

3.2. The TIDE Analysis

Table 6 presents our TIDE analysis, which is based on the results from the previous
subsection, explicitly targeting mAP75. This table highlights that the predominant error
is the models’ inability to detect all blueberry instances, leading to many false negatives.
This issue underscores the need for the enhanced localization of blueberries, especially
those partially obscured by plant foliage or too small for the network to detect accurately.
Additionally, localization error (Loc) is the second primary source of inaccuracies. This can
be attributed to the natural clustering of blueberries, where, often, a single detection may
encompass parts of adjacent blueberries, leading to skewed bounding boxes. Furthermore,
there is room for improvement in maturity classification. The analysis suggests that an
average improvement of over five percent is achievable with more accurate classification.
Also, after performing a qualitative analysis of the detection results on the test set, we
discovered that most classification errors occur in two scenarios: first, when a blueberry
transitions between stages, such as partially ripe and unripe, and second, when the bound-
ing box inadvertently includes background elements like leaves, affecting the color analysis.
Figure 5 illustrates some of these common errors made by the object detectors.
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(c) RT-DETR-L (d) Mask-RCNN

Figure 4. Qualitative comparison of detection results using YOLOv7-tiny, YOLOv7-w6, RT-DETR-L,
and Mask-RCNN: this image presents a side-by-side visualization of the detection results from each
model in identifying the maturity stages of blueberries. The color coding for the maturity stages
is as follows: blue indicates pint blueberries, red represents ripe blueberries, and pink denotes
unripe blueberries.

U””PEO%‘ e Urripe 093 7Ul"ll'iDe 0.8

iy

Unnpe 0:83

(a) Cls error (b) Loc error (c) Miss error

Figure 5. Examples of typical errors encountered by object detectors. Figure (a) shows two pint
blueberries incorrectly identified as unripe. In Figure (b), the bounding box has a low intersection-
over-union ratio, encompassing only a portion of a blueberry. Figure (c) illustrates a missed detection
where the object detector fails to recognize a blueberry hidden among the plant’s leaves.
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Table 6. Comparative analysis of types of object detection errors for three classes as identified by
TIDE. Each value indicates the contribution of a specific error type to the overall mAP.

Type Cls Loc Both Dup Bkg Miss FP FN
YOLOv7-tiny 5.71 32.65 0.30 0 0.27 10.66 1035  43.30
YOLOvV7-default 5.84 29.46 0.31 0 0.35 10.18 10.64 38.33
YOLOv7-w6 6.32 26.78 0.26 0 0.26 11.39 9.45 39.15
RT-DETR-L 6.44 38.24 0.33 0 0.54 6.63 11.34 41.08
Mask-RCNN 2.64 27.88 0.14 0 0.77 10.22 9.31 35.69

3.3. Edge Computing

As previously mentioned, Deep Learning models optimized for real-time processing
on high-end GPUs often struggle to perform under similar conditions on edge devices,
necessitating post-processing optimization. In this study, TensorRT was applied to the
models evaluated in earlier sections, assessing their performance using 16-bit precision.
The results of this optimization are presented in Figure 6. The figure shows that most
methods could not achieve real-time performance on the Jetson AGX Xavier, an affordable
embedded vision system. However, on the more expensive and high-end Jetson AGX,
not only YOLOvV7-tiny but also YOLOv7-default could be run in real-time. Networks like
Mask-RCNN, despite their accuracy, proved unsuitable for real-time tasks. In this con-
text, YOLOv7-default emerges as a balanced choice, effectively bridging the gap between
accuracy and runtime performance.

Jetson AGX Xavier Jetson AGX Orin
1 T T T 1 T T T T T
M YOLOvV7-tiny B YOLOv7-tiny
YOLOv7-default YOLOv7-default
0.8 +~  YOLOv7-wé 0.8 ~  YOLOv7-wé
RT-DETR-L RT-DETR-L
0.6 ¢ MaskRCNN 0.6 ¢ MaskRCNN
A, ' A ’
g . S .
0.4 - 0.4 -
= [
0.2 real-time 0.2 real-time
O | | | 0 | | | | | |
20 40 60 20 40 60 80 100 120 140
Frames per second (FPS) Frames per second (FPS)

(a) (b)

Figure 6. Comparative runtime results of the object detection models evaluated on Jetson AGX Xavier
(a) and Jetson AGX Orin (b), following optimizations discussed in Section 2.3.

Regarding mAP, it is noteworthy that the optimization process did not significantly
alter the mAP for any of the models. Only minor and relatively insignificant improvements
were observed across most models, possibly due to the noise reduction during the opti-
mization. The Mask-RCNN model exhibited the most noticeable change post-optimization,
particularly when tailored for Jetson cards, though this change was also minimal. Table 7
details the variations in mAP for a selected model across different devices.

In conclusion, the results indicate that runtime optimization does not significantly
alter the performance of the models in the task of detecting and estimating the maturity
of blueberries, thus facilitating their deployment on embedded devices. However, it is
noteworthy that only a select few models are capable of real-time operation, suggesting
that further optimization may be necessary. This is particularly relevant as more modern,
transformer-based models begin to gain prominence in this field.
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Table 7. Comparison of model performance optimized with TensorRT on various devices: this table
displays the mean average precision (mAP) at a threshold of 75 for different models, illustrating the
impact of TensorRT optimization across multiple devices.

Model RTX 3080T1 16bit Jetson Orin 16bit Jetson Xavier 16bit
YOLOV7-tiny 0.331 0.329 0.329
YOLOv7 0.433 0.434 0.435
YOLOV7-w6 0.436 0.419 0.421
RT-DETR-L 0.321 0.321 0.319
Mask-RCNN 0.462 0.462 0.460

3.4. Discussion

Detecting and estimating the maturity of blueberries remains a complex task, primarily
due to background elements like leaves and natural occlusions inherent to the plant. Most
of the research in this area, including our study, depends on static images from a single
viewpoint, which may limit the accuracy potential. From our findings, we hypothesize
that in field applications, capturing multiple images of the same blueberry cluster from
various viewpoints could significantly enhance the detection process. Selecting images
from multiple angles could reduce the number of occluded blueberries, and analyzing
clusters from these different perspectives might provide critical supplementary information.
This approach could improve detection algorithm performance by offering a more detailed
view of each cluster. However, this hypothesis requires further exploration, as it involves
challenges such as rapid processing speeds and sophisticated tracking capabilities, which
have not been extensively investigated in blueberry research.

In this context, creating datasets that more closely mirror real-world conditions is
essential for advancing research in this field. Shifting our focus from static images to video
data is particularly important, as it aligns more directly with the practical needs of the
industry. This change will allow future research to address the challenges in agricultural
settings more effectively. The limitations highlighted in existing datasets, including the one
used in our study, emphasize the urgency of this transition.

Finally, enhancing the performance of detection models on embedded devices presents
distinct challenges. Our findings reveal that not all embedded systems can run advanced
detection techniques in real-time. Furthermore, object detection and maturity estimation
are often just part of a more extensive system, especially in robotic applications. This
means the runtime must accommodate additional computations for functionalities such as
tracking and navigation. Consequently, there is a critical need for ongoing advancements
in these technologies aimed at boosting performance across a range of devices, including
more cost-effective options. Future research should focus on optimizing processing effi-
ciency to encourage broader adoption and practical implementation of these technologies.
Such advancements could make these solutions more widely available and cost-effective,
potentially transforming agricultural practices on farms of every size.

4. Conclusions

This study has conducted an extensive analysis of various advanced Deep Learning
techniques for detecting and estimating the maturity of blueberries. Our investigations
reveal that while current models are good at localizing individual blueberries, they face
challenges from the inherent constraints of the detection techniques and from the natural
characteristics of blueberry plants, where berries often remain partially occluded.

A significant observation from our research is the difficulty in achieving accurate
localization due to the clustered nature of blueberries and the viewpoint from where the
image was captured. These complexities often result in detection inaccuracies, such as
misclassification or imprecise bounding boxes, as highlighted by our TIDE analysis, which
indicates a significant prevalence of false negatives and localization errors.

Regarding edge computing, our experiments show that some models can perform in
real-time on edge devices without significantly losing precision. However, the efficiency of
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these models varies, with some, like Mask-RCNN, exhibiting higher accuracy but longer
runtime, which restricts their real-time application. In contrast, models such as YOLOv7-
default strike a more effective balance between accuracy and processing speed, making
them more suitable for real-time tasks.

Finally, our findings provide valuable insights into the capabilities and limitations
of current techniques in blueberry detection and maturity estimation. They emphasize
the complexity of this task, influenced by both the nature of the blueberry plants and the
limitations of existing detection models.
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