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Preface

In recent years, the utilization of machine learning (ML) techniques in the area of natural
language processing (NLP) has witnessed tremendous growth. Innovative studies in the field have
revolutionized numerous applications, including human-computer interaction, information retrieval,
and language understanding. This rapid evolution is mainly driven by advances in ML techniques,
particularly deep learning, transformer architectures, and unsupervised learning methods. These
innovations have significantly enhanced the ability of machines to comprehend human language and
respond with a remarkable naturalness.

This Reprint contains 10 research studies that explore novel solutions with cutting-edge machine
learning models and their impact on diverse NLP tasks. Sentiment analysis, linguistic improvement
and text classification are among the most significant problems to which the contributions of machine
learning are central. The introduction of large-scale pre-trained language models such as BERT, GPT,
and their successors demonstrates how data-driven learning, combined with scalable computational
resources, has enabled breakthroughs previously thought unachievable.

The goal of this Reprint is twofold: first, we aim to offer the scientific community a rich collection
of state-of-the-art studies in the area on NLP; second, we wish to provide a comprehensive overview
of the most significant ML advancements that have contributed to the progress of NLP. Emphasis
is placed not only on technical achievements but also on the broader implications, including ethical
considerations and bias in language models.

This Reprint serves as a valuable resource for researchers, practitioners, and students seeking to
understand the state of the art in ML-driven NLP. As the field continues to evolve at a rapid rate, we

hope this work provides a foundation for deeper exploration and inspires further innovation.

Leonidas Akritidis and Panayiotis Bozanis
Guest Editors
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Machine Learning Advances and Applications on Natural

Language Processing (NLP)

Leonidas Akritidis * and Panayiotis Bozanis *

Department of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece
* Correspondence: lakritidis@ihu.gr (L.A.); pbozanis@ihu.gr (P.B.)

The recent technological advances in the research field of machine learning have
played a crucial role in the improvement of Natural Language Processing (NLP). Today,
state-of-the-art models and algorithms are allowing machines to understand, interpret, and
generate human language of unprecedented quality. These advances allowed researchers
to introduce effective tools and solutions for a wide variety of applications, including
sentiment analysis, machine translation, conversational Al, question answering, named
entity recognition, and others.

Deep learning stands at the heart of most modern NLP applications. Initially, the intro-
duction of Recurrent Neural Networks (RNNs) [1] and their improved variants (i.e., Long-
Short Term Memory-LSTM [2], Gated Recurrent Units—GRUs [3], etc.) allowed the effective
processing of sequential data and the capture of contexts in text. Despite their inherent
problems (i.e., unstable training due to the phenomenon of the vanishing and exploding
gradients), these models have largely managed to overcome the severe limitations of the
traditional NLP approaches.

Another milestone in the development of NLP was the introduction of word embed-
dings. Algorithms such as Word2Vec [4], GloVe [5], and FastText [6] have been designed to
transform each word into a vector representation in a continuous space, while capturing
the semantic relationships among words. These embeddings significantly improved the
performance of the aforementioned NLP models across various tasks, replacing the sparse,
non-informational TF-IDF vector representations [7].

The introduction of the Transformer architecture by Vaswani et al. in 2017 marked
the beginning of the revolution era of NLP [8]. Unlike Convolutional Neural Networks
(CNNs) [9] and RNNSs, Transformers are not based on convolution or recurrence opera-
tions. Instead, they rely entirely on an innovative attention mechanism that enables the
modeling of long-range dependencies in text. More specifically, the mechanism weighs the
importance of different tokens in a sequence relative to a specific token. This is achieved by
computing three vectors for each token: Query, Key, and Value. Each vector is obtained by
multiplying the input embeddings with learned weight matrices.

Through its attention mechanism, the Transformer model became the building block
of powerful pre-trained language models that revolutionized the area of NLP. In par-
ticular, BERT (Bidirectional Encoder Representations from Transformers) introduced a
Transformer-based architecture that processes the entire sequence of words simultaneously,
considering the context from both directions (namely, left-to-right and right-to-left) [10].
This bidirectional nature allows BERT to capture deeper semantic relationships in text.

After the introduction of BERT, numerous variants have been developed to enhance
its performance and adapt it to different use cases. RoBERTa (Robustly optimized BERT
approach) improves BERT by using a larger training corpus, eliminating the next-sentence
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prediction task, and training for longer periods [11]. On the other hand, DistilBERT is
a smaller and faster variant of BERT that is considered to be more suitable when the
underlying computational resources are limited [12].

In contrast, GPT (Generative Pre-trained Transformer) adopts a different approach
compared to BERT. More specifically, GPT is a unidirectional language model trained to
predict the next word in a sentence, generating text based on the left-to-right context. While
BERT excels in tasks requiring deep understanding of bidirectional context, GPT is designed
for tasks such as text generation, language modeling, and conversational Al [13,14].

This Special Issue explores the most recent machine learning advancements in the
research field of NLP. It includes ten original articles that systematically study popular
NLP problems and introduce novel technologies, models, and algorithms to address them.

Sentiment analysis is a traditional NLP problem that focuses on the identification of
the emotional tone behind a body of text. It is frequently treated as a typical classification
problem that classifies the content of a text as positive, negative, or neutral. The relevant
techniques can be applied to various data sources, including product reviews, social media
posts, user comments, and customer feedback. These elements render them particularly
important, since they provide the businesses and organizations with tools that allow them
to gain insight into public opinion, customer satisfaction, and brand perception.

Motivated by the significance of the sentiment analysis techniques, the present Special
Issue published five articles on the topic. More specifically, Y. Fu et al. (Contributor 5)
introduced Self-HCL, a new method for multimodal sentiment analysis. Self-HCL first
enhances the unimodal features using a unimodal feature enhancement module, and then,
it jointly trains both multimodal and unimodal tasks. The proposed framework integrates
a hybrid contrastive learning strategy with the aim of improving multimodal fusion and
performance, even when unimodal annotations are lacking.

On the other hand, Faria et al. (Contributor 8) studied the emerging problem of
sentiment analysis for memes in under-resourced languages. In this context, they devel-
oped three deep learning-based approaches: (i) a text-based model that uses Transformer
architectures; (ii) an image-based model leveraging visual data for sentiment classifi-
cation; and (iii) SentimentFormer, a hybrid model that integrates both text and image
modalities. The authors evaluated the three models with the MemoSen dataset and
concluded that the hybrid SentimentFormer model was the most effective. Moreover,
Papageorgiou et al. (Contributor 1) investigated stock market prediction using reinforce-
ment learning (specifically, a double deep Q-network), combined with technical indicators
and sentiment analysis. The proposed model predicts short-term stock movements of
NVIDIA, using data from Yahoo Finance and StockTwits. The results indicate that the
inclusion of sentiment analysis elements in the prediction improves profitability and
decision making.

Apart from the articles that introduce original models and techniques, this Special
Issue also contains survey and investigation papers on sentiment analysis. More specifically,
Kampatzis et al. (Contributor 2) conducted a survey that examined sentiment classification
techniques in texts containing scientific citations. The authors explored various methods
(from lexicon-based to machine and deep learning approaches) and highlighted the impor-
tance of interpreting both the emotional tone and intent behind citations. In another study,
Kang et al. (Contributor 9) explored the use of GPT and FinBERT for sentiment analysis in
the finance sector. The investigation focuses on the impact of news and investor sentiment
on market behavior, and compares the performance of GPT and FinBERT, using a refined
prompt design approach to optimize GPT-4o.
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Text classification is not just limited to sentiment analysis applications. It is extended
to cover other downstream tasks, such as named entity classification (e.g., news, products,
articles, etc.), document categorization, acceptability of linguistic quality, and others. This
Special Issue includes two studies related to the generic field of text classification. The first
one is the work of Kalogeropoulos et al. (Contributor 3), which enhances the Graphical
Set-based model by integrating node and word embeddings in its edges. In particular,
the proposed technique employs the well-established Word2Vec, GloVe, and Node2Vec
algorithms with the aim of generating vector representations of the text. Subsequently, it
utilizes these representations to augment the edges of the model in order to improve its
classification accuracy. The second study was authored by Guarasci et al. (Contributor 4)
and introduced a new methodology for automatically evaluating linguistic acceptability
judgements using the Italian Corpus of Linguistic Acceptability. By leveraging the ELEC-
TRA language model, the proposed approach outperformed the existing baselines and
exhibited a capability in addressing language-specific challenges.

Named Entity Recognition (NER) constitutes another fundamental NLP task. Given
a corpus of text, the goal of NER is to automatically identify and classify named entities
into predefined categories. In other words, NER facilitates the recognition of key pieces
of information within unstructured text. This is often proved to be crucial for tasks,
such as information retrieval, question answering, and text summarization. In this spirit,
Gao et al. (Contributor 6) presented a NER framework for extracting entities from Chinese
equipment fault diagnosis texts. The framework integrates the following three models:
RoBERTa-wwme-ext for extracting context-sensitive embeddings, a Bidirectional LSTM for
capturing context features, and CRF for improving the accuracy of sequence labeling.

Finally, two research groups presented original studies on other interesting topics.
More specifically, the work of Hirota et al. (Contributor 7) explored the use of descriptive
text as an alternative to visual features in Visual Question Answering (VQA) tasks. Instead
of relying on visual features, the proposed approach employs a language-only Transformer
model to process description—question pairs. The authors also investigate strategies for
data augmentation, with the aim of improving the diversity of the training set and reducing
statistical bias.

Furthermore, Fernandes et al. (Contributor 10) evaluated the performance of 16 LLMs
in automating engineering tasks related to Low-Power Wide-Area Networks. The main
focus is whether lightweight, locally executed LLMs can generate correct Python code for
these tasks. The models were compared with state-of-the-art models, such as GPT-4 and
DeepSeek-V3. The evaluation revealed that while GPT-4 and DeepSeek-V3 consistently
provided correct solutions, smaller models like Phi-4 and LLaMA-3.3 also performed well.

The diversity of the studies of this Special Issue indicates that NLP-related research
constantly improves and evolves toward the introduction of models that truly understand
the meaning of text. However, there are still many challenges on the way, including ambi-
guity and context understanding, performance improvement for low-resource languages,
model explainability, and multimodal integration. Addressing these challenges is crucial
for building more accurate and generalizable NLP systems.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Stock market prediction is a subject of great interest within the finance industry and beyond.
In this context, our research investigates the use of reinforcement learning through implementing
the double deep Q-network (DDQN) alongside technical indicators and sentiment analysis, utilizing
data from Yahoo Finance and StockTwits to forecast NVIDIA’s short-term stock movements over
the dynamic and volatile period from 2 January 2020, to 21 September 2023. By incorporating
financial data, the model’s effectiveness is assessed in three stages: initial reliance on closing prices,
the introduction of technical indicators, and the integration of sentiment analysis. Early findings
showed a dominant buy tendency (63.8%) in a basic model. Subsequent phases used technical
indicators for balanced decisions and sentiment analysis to refine strategies and moderate rewards.
Comparative analysis underscores a progressive increase in profitability, with average profits ranging
from 57.41 to 119.98 with full data integration and greater outcome variability. These results reveal
the significant impact of combining diverse data sources on the model’s predictive accuracy and
profitability, suggesting that integrating sentiment analysis alongside traditional financial metrics
can significantly enhance the sophistication and effectiveness of algorithmic trading strategies in

fluctuating market environments.

Keywords: data mining; machine learning (ML); double deep Q-network (DDQN); reinforcement
learning; sentiment analysis; stock forecasting

1. Introduction

The field of stock market forecasting has always been a subject of great interest within
the finance industry. It has been the focus of extensive research and innovative practices,
with various traditional methods utilized to predict market trends. These methods include
technical analysis, which examines historical market data such as price and volume, and
fundamental analysis, which assesses a stock’s intrinsic value. Additional techniques
involve quantitative and econometric models, applying mathematical, statistical, and
economic analyses to forecast market directions [1].

However, these traditional approaches face challenges in managing the vast and in-
tricate datasets prevalent in today’s financial markets. Machine learning (ML) has led to
the introduction of revolutionary methodologies in stock market prediction, leveraging ad-
vanced algorithms to analyze vast quantities of data beyond human capacity. These models
identify intricate patterns and relationships by training on extensive historical datasets,
mirroring the learning process of human traders but with superior processing power [2].
Notably, ML has been employed in the field of finance for algorithmic trading. This strategy
employs computer algorithms to execute trades at optimal speeds and volumes based on
predefined criteria derived from various data sources, including market indicators and
news events. Algorithmic trading enhances trade execution, minimizes costs, and improves
risk management, with algorithms capable of evolving in response to market dynamics,
thereby continuously optimizing trading strategies [3].
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In addition to conventional data sources, social media platforms have become a great
source of insightful information for analyzing the stock market. Popular platforms such as
Twitter, StockTwits, and Reddit offer forums for users to share their views, expectations,
and analyses of stock and market trends, making user-generated content a powerful source
of sentiment data. These data reflect the collective mood and outlook of individuals
concerning specific stocks or the market at large. The integration of social media sentiment
analysis into stock market prediction models is an expanding field of interest. Sentiment
analysis applies natural language processing (NLP), text analysis, and computational
linguistics to identify, quantify, and examine emotional states and subjective insights from
text [4,5].

By evaluating sentiments from social media content, researchers and analysts can
assess public sentiment toward certain stocks or the overall market. This approach is
invaluable for predicting short-term market movements influenced by public sentiment.
Merging traditional market data with social media sentiment analysis offers a comprehen-
sive approach to stock market forecasting [6]. ML models that assimilate and scrutinize
both types of data can achieve more precise and holistic market predictions, capturing
not only historical market trends but also market participants” prevailing sentiments and
expectations [7].

The potential of ML to enhance stock market predictions is significant. These models
can analyze vast amounts of data and technical indicators beyond human capabilities
and excel at detecting intricate patterns that may elude human analysts. This proficiency
promises to refine trading strategies and improve returns. However, it is crucial to ac-
knowledge the inherent challenges and limitations given the susceptibility of the stock
market to unpredictable factors [8]. With ongoing technological advancements and the
increasing availability of data, the landscape of stock market prediction is poised for further
innovation. The dynamic interplay between technology and finance is exemplified by the
merger of ML and social media sentiment analysis, which offers advanced and effective
trading strategies. As exploration and refinement of these methods continue, the future of
stock market forecasting appears vibrant and promising [9,10].

This study aims to explore the potential of using reinforcement learning, specifically
through the double deep Q-network (DDQN) [11], to predict stock market trends. The
research focuses on NVIDIA, a company with a reputation for volatility and significant
market presence. The main goal and contribution of this research is the methodological
application of the DDQN to predict short-term stock movements into three sequential
phases, focusing on the NVIDIA stock and providing valuable insight into the ML model’s
efficiency, integrating diverse data sources, including traditional financial indicators and
sentiment analysis, to enhance predictive accuracy and profitability. The study com-
prehensively analyzes how combining these data sources refines trading strategies and
increases profitability, demonstrating a clear progression as model complexity increases.
Furthermore, it focuses on the impact of sentiment analysis, using NLP to integrate market
sentiments from social media. Ultimately, this study aims to lay the groundwork for a more
nuanced understanding of how data integration impacts algorithmic trading efficacy in the
dynamic stock market environment by demonstrating that layered data integration can
optimize algorithmic trading strategies in dynamic market environments.

2. Related Work

Stock market forecasting has evolved significantly, moving from traditional theories
to leveraging cutting-edge technologies and incorporating psychological insights. Foun-
dational theories such as the efficient market hypothesis (EMH) [12] and random walk
theory [13] initially framed the understanding of market dynamics, suggesting that stock
prices fully reflect all available information and follow unpredictable paths. These concepts
have been instrumental in shaping investment strategies and financial analyses. However,
criticisms from the realm of behavioral finance have exposed gaps in these theories, empha-
sizing the need to consider the psychological aspects that influence market movements and
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investor decisions. This has paved the way for a more nuanced understanding of market
behaviors that incorporate both rational and irrational factors [14].

The field has since witnessed a shift toward integrating diverse forecasting method-
ologies, including fundamental and technical analysis, alongside advanced statistical and
computational models [1]. The application of ML techniques, such as support vector
machines (SVMs) [15], long short-term memory (LSTM) networks [16,17], and deep rein-
forcement learning (DRL) [18,19], represents a significant step toward enhancing predictive
accuracy and processing complex datasets. These technological advancements have led to
the development of sophisticated algorithmic trading strategies that can more effectively
navigate the complexities of financial markets. Additionally, sentiment analysis, fueled
by the wide spread of social media, has introduced a novel dimension to forecasting by
capturing the collective mood and opinions of market participants. This convergence of
quantitative analysis and qualitative insights underscores the multifaceted nature of stock
market forecasting, reflecting an ongoing journey of adaptation and innovation in the face
of financial market intricacies [20].

2.1. Core Theories of Stock Market Forecasting

The EMH, in [21], states that stock prices reflect all available information, making
modern investment strategies possible. It is categorized into three forms: the weak form,
which negates the predictive value of historical prices; the semi-strong form, which states
that all public information is already priced; and the strong form, which suggests that
no investor can consistently outperform the market due to the immediate incorporation
of all information into stock prices [22,23]. Despite its widespread influence on passive
investment strategies, EMH is assessed by behavioral finance to overlook human biases
that may delay information assimilation [24].

Random walk theory, developed in [25] and later promoted in [26], declares that stock
prices follow an unpredictable path, indicating that traditional forecasting methods are inef-
fective. This theory argues that stock movements are independent and random, challenging
the ability of actively managed funds to surpass passive index funds in performance. How-
ever, this theory was reinforced in [24] by illustrating the futility of attempting to outguess
market trends. Moreover, the analysis in [27] for random walk theory underscores the
importance of developing economic models that account for observable patterns in asset
pricing without necessarily disputing market efficiency.

Compared to related work and studies focused on the evolution of stock market
forecasting from foundational theories to incorporating diverse statistical and machine
learning methodologies, our study centers on the practical application of the DDQN and
its benefits. We investigate integrating a multi-layered data strategy, including technical
indicators, financial data, and sentiment analysis, highlighting not only the enhancement of
the predictive accuracy of our DDQN model for NVIDIA’s short-term stock movements, but
also presenting the methodology which advances those results and significantly improves
algorithmic trading strategies in a volatile market. Unlike broad theoretical explorations,
our research provides a detailed analysis of how layering distinct data types incrementally
benefits the predictive capabilities of DDQN, demonstrating its practical implications.

2.2. Stock Market Prediction Methodologies

Stock market forecasting combines fundamental and technical analysis, time series,
and momentum investing strategies to predict market movements. Fundamental analysis
evaluates a stock’s value through economic indicators, company performance, and market
demand [23,28,29]. Influential research has highlighted the importance of using financial
ratios and accounting data for valuation, advocating for sector-specific studies [30-33].

Technical analysis utilizes historical price data and indicators such as the simple
moving average (SMA), exponential moving average (EMA), moving average convergence
divergence (MACD), relative strength index (RSI), and on-balance volume (OBV) to forecast
trends [34-37]. In [38], it was emphasized that market prices reflect all available information,
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trends can be identified and exploited, and historical patterns often repeat. Moreover, time
series analysis predicts stock prices by analyzing past trends and employing models such
as ARIMA to account for seasonality and trends [39]. Additionally, the EMH challenges
the premise of prediction based on historical data by stating that prices already reflect all
known information [21]. Additionally, momentum investing is based on the observation
that stocks with strong past performance tend to continue outperforming stocks with
weak past performance in the short term. Studies [40—42] support this trend but also
note concerns regarding transaction costs and the sustainability of momentum strategies.
Behavioral finance studies, such as [43], show the complex influence of market trends on
investor behavior.

2.3. Advances in Stock Market Forecasting through Machine Learning

A study in [44] aimed at predicting daily fluctuations in the Korea Composite Stock
Price Index (KOSPI) utilized technical indicators as predictive variables. The goal was to
forecast daily index movements, categorizing outcomes into two types: a decrease (“0”) or
an increase (“1”) relative to the current day’s index value. The study analyzed data from
2928 trading sessions between January 1989 and December 1998, with 20% reserved for
testing and the rest reserved for model training. Data normalization ensured consistent
scaling within [—1.0, 1.0] to balance the influence of different variables and improve predic-
tion accuracy. The research evaluated support vector machines (SVMs) using polynomial
and Gaussian radial basis kernels against back propagation neural networks (BPNs) and
case-based reasoning (CBR), and revealed that the performance of SVMs is superior due
to their reliance on the structural risk minimization principle, suggesting that SVMs are
effective at predicting financial time series and stock indices. These findings underscore
the potential of SVM in enhancing stock market forecasting methods, offering significant
implications for academic and practical applications in finance.

Researchers [45] studied the effectiveness of ML techniques, specifically the back
propagation technique (BPN) and support vector machine (SVM) technique, in forecasting
futures prices in the Indian stock market. Using real index futures data from the National
Stock Exchange of India, this study compared these methods using statistical metrics
such as the normalized mean squared error (NMSE), mean absolute error (MAE), and
directional symmetry (DS) to evaluate the prediction accuracy. The results indicated SVM's
superior performance over BPN in forecasting accuracy for futures prices, highlighting
SVM’s potential in financial forecasting within the Indian market context.

Furthermore, the application of long short-term memory (LSTM) models for stock
market trend prediction has gained prominence due to their ability to capture complex
temporal patterns in financial data. A study in [46] developed a classification model
using LSTM networks aimed at predicting short-term price movements of Brazilian stocks,
showcasing its efficacy in real-time trading with the model being retrained daily. This
model, which integrates past pricing data and technical indicators, demonstrated significant
predictive accuracy over baseline methods, underscoring the utility of LSTM in enhancing
stock market prediction strategies. In another study [17], LSTM networks were applied to
predict stock returns in the Chinese market, demonstrating a significant improvement in
prediction accuracy from 14.3% to 27.2% over random predictions. The research utilized
900,000 training sequences of 30-day spans with 10 learning features and 3-day return rate
labels and tested them on an additional 311,361 sequences, highlighting the potential of
LSTM for financial forecasting within the volatile Chinese stock market.

The emergence of deep reinforcement learning (DRL), particularly deep Q-networks
(DQNs), has influenced stock market prediction. DQN integrates reinforcement learn-
ing with deep neural networks to navigate the financial market’s inherent uncertainty
and volatility, making informed sequential decisions based on historical data [47]. Previ-
ous research [48] introduced a DQN-based algorithmic trading (AT) system designed for
single-stock trading with daily actions—"hold”, “long”, or “short”—and a reward system
encouraging trend-compliant actions. By incorporating trading charges, the model outper-
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formed the decision tree and buy-and-hold strategies across various metrics, including the
accumulated return and Sharpe ratio, indicating that the DQN is effective at enhancing
trading strategies and reducing portfolio volatility. This work presented the potential
of the DQN in algorithmic trading, particularly in handling single-stock investments for
improved financial performance. In managing the complexities of financial markets, the
robustness and stability provided by methods used in fractional-order uncertain BAM
neural networks [49] prove beneficial for ensuring reliable predictive performance un-
der volatile conditions. Similarly, applying deep neural networks for probabilistic state
estimation demonstrates their ability to surpass traditional methods, enabling real-time,
uncertainty-aware decision making in dynamic environments [50].

2.4. The Role of Sentiment Analysis in Stock Market Forecasting

Researchers in [51] highlight the innovative use of time-specific data divisions to ana-
lyze investor sentiment through tweets and news articles, focusing on the more predictive
value of sentiments expressed during stock market hours than natural day cycles, applying
their methodology to companies’ stocks like Amazon, Netflix, Apple, and Microsoft, and
showecasing that sentiment analysis during opening hours can better forecast next-day
stock trends. Another study in [52] expands this concept by developing a user-facing
application that dynamically assembles stock-related news to predict stock prices in real
time using deep learning models. Additionally, in [53], a more general exploration of
sentiment analysis on Twitter showcases its potential to estimate public sentiment towards
specific stocks or sectors. They conclude that the effectiveness of such tools depends mainly
on data quality and the precision of sentiment analysis algorithms.

Researchers in [54] present a sophisticated approach using neutrosophic logic to refine
sentiment analysis processes by effectively handling uncertain and indeterminate data
within social media content. Their methodology is based on feeding into a long short-
term memory network, which uses the results from the sentiment analysis combined
with historical stock data to predict market movements more accurately than previously
compared models. Moreover, in [55], researchers integrated sentiment analysis with
graph neural networks for stock predictions, highlighting the synergy between graph
neural networks’ structural data representation capabilities and sentiment interpretation.
They explored various graph structures, like stock and investor networks, and how those
can incorporate sentiment data extracted from news articles, social media feeds, and
financial reports.

The rise of social media has transformed societal interaction, enabling a digital land-
scape where “online individualism” continues to increase, enhancing dialog and collective
action. This digital era emphasizes the importance of sentiment analysis, which aims to
automate the extraction of subjective information—opinions, feelings, and attitudes—from
natural language texts [56-59]. In financial contexts, sentiment reflects market participants’
collective optimism or pessimism, significantly influencing asset prices. Discrepancies
between trading prices and inherent values often highlight the impact of sentiment, incor-
porating emotional responses and other exogenous factors into pricing mechanisms. This is
central to behavioral finance, which investigates the effect of biases on financial decisions,
and technical analysis, where price movements are seen as combinations of factual and
emotional responses. Analysts and researchers have focused on identifying price levels
that indicate emotional extremes, predicting potential corrections and market backsliding
to mean values [60]. This approach underscores the critical role of sentiment in financial
markets, offering insights into price deviations and correction predictions.

A study in [61] analyzed the impact of Twitter sentiment on stock market trends,
specifically examining Microsoft (SMSFT). They collected 2.5 million tweets over a year,
filtering them with Microsoft-related keywords. Preprocessing procedures, which included
tokenization, stop word removal, and special character elimination, were used to prepare
the tweets for analysis. Tweets were annotated for sentiment, and ML models classified the
emotions of the remaining dataset. The logistic regression and LibSVM models achieved
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accuracies of 69.01% and 71.82%, respectively, demonstrating a significant correlation be-
tween Twitter sentiment and stock market movements, with model performance improving
as the data volume increased. Researchers in [62] further investigated Twitter’s influence
on stock markets during the COVID-19 pandemic, comparing its effect to that during the
HIN1 pandemic. Their findings indicated that a lexicon-based method combined with
correlation analysis could uncover subtle relationships between Twitter sentiment and
financial indices, with the SenticNet lexicon proving particularly effective. This study
confirmed social media’s increasingly pivotal role in forecasting stock market trends.

3. Data

This research’s methodology is based on the systematic collection of necessary data
from three distinct sources chosen for their unique contributions to the research. This
section details the selection criteria for these datasets and the preparation steps for analytical
readiness, aiming for transparency in the data acquisition and modeling process.

3.1. Data Collection

This research specifically focuses on NVIDIA stocks, spanning from 2 January 2020
to 21 September 2023, a period denoted by significant volatility and changes in NVIDIA’s
market valuation, thus making it an ideal period for investigating the dynamics of stock
behavior and the efficacy of the DDQN integrating diverse data sources. The data were
sourced from StockTwits, Yahoo Finance, and the yfinance Python library, with each
source’s contribution detailed in subsequent sections.

3.1.1. StockTwits

The StockTwits platform [5,7], which is consistent with the platform’s user engagement
patterns, was utilized for the sentiment analysis component of the study. Posts related to
NVIDIA tagged as $SNVDA were collected. StockTwits is a unique social media platform
designed specifically for investors and traders. It was launched in 2008 and has grown
into a vibrant community where participants share insights, strategies, and real-time
market trends. Unlike traditional social media platforms, StockTwits is focused on the
financial market, offering an environment for discussing stocks, bonds, cryptocurrencies,
and other investment vehicles. The study gathered a range of attributes for each post on
the StockTwits platform to ensure a comprehensive analysis. These attributes include:

ID: A unique identifier for each post.

Body: The main content or message of the post.

Created_at: The original timestamp at which the post was created.
User.home_country: The user’s home country.

User.followers: The number of followers the user has on StockTwits.

Likes.total: The total number of likes the post received.

Entities.sentiment.basic: A basic sentiment analysis of the post, if available, categoriz-
ing it as bullish or bearish.

3.1.2. Technical Indicator Overview

Technical indicators are crucial for traders worldwide, assisting in making informed
decisions. This study focuses on five widely recognized and effective indicators sourced
from the yfinance Python library, chosen for their analytical relevance:

SMA Fast;

RSI;

SStoch RSI;

MACD;

Volume weighted average price (VWAP).

SMA Fast is utilized for its responsiveness to recent price movements and for iden-
tifying short-term trends [63]. RSI, a momentum oscillator [64] ranging from O to 100, is
employed for spot overbought or oversold conditions, with values above 70 indicating
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overbought situations and values below 30 indicating oversold situations. Stoch RSI offers
a more sensitive measure for detecting these conditions [65]. MACD, a trend-following
momentum indicator, identifies buy or sell signals through the relationship between two
moving averages of stock prices [66]. Finally, VWAP [67] provides a day-trading bench-
mark, reflecting the average price a security trades at, weighted by volume, which is useful
for institutional investors managing large trades.

3.1.3. Historical and Financial Data

Yahoo Finance [68], a well-known financial news and data platform, offers extensive
financial resources such as real-time stock quotes, market data, portfolio management
tools, and comprehensive news coverage. Its design facilitates easy monitoring of personal
investments and market analysis, supplemented by interactive charts, historical stock data,
and live earnings call webcasts.

For this study, historical data on NVIDIA stocks were retrieved from Yahoo Finance.
The data encompasses key metrics such as closing, opening, high, and low prices, trading
volume, and adjusted prices for the study period, with a focus on trading days only.
Particular attention was given to analyzing the closing prices of NVIDIA stocks.

3.2. Data Wrangling

In our study, we used data wrangling techniques to enhance ML and sentiment
analysis efficacy, utilizing the advanced RoBERTa model [69] for analyzing social media
sentiments on StockTwits. This progression from conventional models to RoBERTa, notable
for its adeptness with informal social media language, enables more accurate sentiment
analysis, revealing a generally positive sentiment toward NVIDIA stocks. This finding is
consistent with user engagement trends on the platform and NVIDIA’s market performance,
illustrating the tendency of users to actively participate in discussions when they presented
positive sentiments toward a stock.

Furthermore, our analysis incorporates essential technical indicators such as SMA,
RSI, Stoch RSI, MACD, and VWAP, which were chosen for their ability to provide a detailed
understanding of market behavior and assist in trading decisions. Coupled with Yahoo
Finance data, which focus on active trading days and omit nontrading days for dataset
consistency, our approach provides a robust foundation for reinforcement learning model
development. This compact, focused strategy for data preparation and analysis sets the
groundwork for leveraging reinforcement learning and sentiment analysis in financial
market predictions, ensuring relevance and coherence with real-world trading activities.

3.2.1. Sentiment Analysis Methodology

In sentiment analysis, various models, such as VADER [70] and TextBlob [71], assess
text sentiment polarity, categorizing it as positive, negative, or neutral. This study, how-
ever, utilizes the more recent and advanced RoBERTa model, an evolution of the BERT
architecture, marking significant progress in the field. RoBERTa, which was introduced
in “RoBERTa: A Robustly Optimized BERT Pretraining Approach” [69], is the basis for
numerous specialized models for distinct text analysis tasks.

The chosen model for this analysis is the “Twitter-roBERTa-base for Sentiment Anal-
ysis”, detailed in “TWEETEVAL: Unified Benchmark and Comparative Evaluation for
Tweet Classification” [72]. This model, fine-tuned on approximately 58 million tweets via
the TweetEval benchmark, is especially effective for sentiment analysis of concise, often
informal social media texts, like those found on StockTwits. Its selection was strategic,
considering the dataset’s resemblance to Twitter’s content, enabling precise sentiment
analysis of StockTwits posts.

Figure 1 indicates a generally positive sentiment toward NVIDIA stocks, demonstrated
by a sentiment scale ranging from —1 (negative) to +1 (positive), with a median sentiment
value of 0.10, indicating a modestly positive average sentiment. The lower quartile (Q1)
shows that 25% of sentiments are neutral or less, while the upper quartile (Q3) at 0.21 con-
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firms a positive sentiment trend. The absence of negative outliers and a cluster of positive
outliers highlight days with notably positive sentiment. This trend aligns with NVIDIA’s
significant stock price growth in recent years, capturing user interest.

NVIDIA Sentiment Values Statistics

Q1:0.00 Q3:0.21

] f———fomw®o® o

-0.2 0.0 0.2 0.4 0.6 0.8
Average Daily Sentiment

Figure 1. NVIDIA sentiment value statistics.

In summary, the analysis shows that the NVIDIA stock has a mildly positive sentiment
on StockTwits. Users expressing positive sentiment toward a stock tend to be more active,
leading to an increased presence of positive sentiment in posts. This reflects the natural
tendency of optimists to share their views and follow related stock pages, suggesting that
sentiment analysis on such platforms tends to lean positive, fueled by the enthusiasm of
supportive users.

3.2.2. Technical Indicators

This study incorporates key technical indicators calculated using specified parameters,
focusing on SMA, RSI, Stoch RSI, moving MACD, and VWAP.

SMA [63] is calculated over a 14-day period using closing stock prices, a method
chosen for balancing recent price trends and volatility smoothing. The closing price, the
last trade price during regular trading hours, offers a reliable market sentiment indicator.

RSI [64], a momentum oscillator, assesses the speed and change of stock price move-
ments within a 14-day window to identify overbought or oversold conditions, with values
over 70 indicating potential pullbacks and values below 30 indicating price rebounds. It
underscores market strengths or weaknesses.

Stoch RSI [65], which enhances RSI’s sensitivity, applies stochastic calculations to
RSI values to detect earlier market sentiment changes. Values above 0.8 suggest over-
bought conditions, and values below 0.2 indicate oversold states, aiding in identifying
market trends.

MACD [66], a trend-following momentum indicator, illustrates the relationship be-
tween two EMAs, specifically the 12-period and 26-period EMAs. The MACD line is
derived by subtracting the 26-period EMA from the 12-period EMA, with a nine-day EMA
of MACD serving as a signal line for buying or selling cues.

VWAP [67] provides the average price a security has traded throughout the day,
combining price and volume data. It offers a benchmark for evaluating trade efficiency,
with purchases below VWAP and sales above it considered favorable.

Each indicator offers unique insights into market behavior, contributing to the devel-
opment of a comprehensive technical analysis framework for informed trading decisions.
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3.2.3. Yahoo Finance

The Yahoo Finance dataset captures daily trading activities, excluding weekends and
holidays, to focus exclusively on active market days. This study primarily analyzes closing
prices, confronting challenges associated with missing data on nontrading days.

Two prevalent methods address this issue: linear interpolation and the complete
omission of nontrading days. This research removed nontrading data from the analysis
to ensure a consistent and uninterrupted dataset for modeling, as further explored in a
subsequent section on reinforcement model structuring. Similarly, this exclusion principle
applies to sentiment analysis of StockTwits posts, where nontrading days are ignored to
prevent their influence on sentiment metrics. This strategy maintains the relevance and
consistency of the sentiment analysis with actual trading periods.

4. Modeling

In the Modeling section of our study, we focus on developing and implementing an
advanced stock market trading agent, leveraging the DDQN methodology to address and
mitigate the overestimation biases commonly found in DQN models. This refinement
allows for a more precise assessment of action values by separating the processes of action
selection and evaluation. The agent is programmed with the capability to perform “BUY”
and “SELL” actions based on predictive analyses of daily market changes, supported by a
meticulously designed reward system that aligns with the fundamental trading principle
of buying low and selling high. By integrating a policy network for decision making and
a target network to enhance training stability, along with employing experience replay
for a varied and efficient learning experience, our model simulates a realistic trading
environment requiring nuanced daily market evaluations.

This section further explores the created reinforcement learning environment that
frames the agent’s operational context, detailing the structure of the action space and the
formulation of the reward function to encapsulate a realistic trading scenario. By creating
multiple DDQN environments, each incorporating varying levels of market data complexity,
our study aims to assess the impact of different data types—ranging from closing prices and
technical indicators to market sentiment—on the agent’s ability to forecast short-term stock
movements. This comprehensive approach highlights the versatility of DDQN in adapting
to complex market conditions and emphasizes the potential of reinforcement learning to
transform financial market strategies, demonstrating the way for future advancements in
algorithmic trading.

4.1. Agent

This study introduces a stock market trading agent for daily operations. It utilizes
the DDQN technique to overcome the overestimation bias prevalent in DQN models.
By decoupling action selection from evaluation, DDQN ensures more accurate value
assessments [73].

The agent employs “BUY” and “SELL” actions in response to daily market dynamics.
BUY actions are predicated on expected stock value increases, while SELL actions anticipate
decreases, aiming to capitalize on or mitigate market fluctuations. The reward system is
drafted to promote sound trading decisions, with “BUY” rewards based on subsequent
price increases and “SELL” rewards based on decreases, signifying the principle of buying
low and selling high. Figure 2 presents the schema of the Q-network process.

DDQN’s framework includes a policy network for decision making and a target
network for stability during training, with the latter’s parameters periodically refreshed
to minimize volatility. A key learning mechanism is experience replay, which stores
and randomly samples experiences to enhance training inputs and improve learning
efficiency. The emphasis on daily trading aligns the agent’s operation with real-world
trading environments, requiring daily market assessments to inform actions [74]. This
DDOQN-based approach aims to simulate effective trading strategies, highlighting the
potential of advanced reinforcement learning in stock trading applications.
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Figure 2. Schematic representation of the Q-network process.

4.2. Environment in Reinforcement Learning

In reinforcement learning (RL), the environment is a crucial element that outlines the
context for agent operations, defining external conditions and parameters for decision mak-
ing. Specifically, within the DDQN, the environment is instrumental in directing the agent’s
learning and decision-making processes. It encompasses the state space, action space, and
reward system, presenting the agent with states and evaluating its actions through rewards
or penalties, consequently facilitating learning and adaptation to environmental dynamics.

This study explores three DDQN environments, each adding complexity through
additional market data:

1. Closing Price Environment: This environment focuses on daily stock closing prices,
serving as a foundational framework for understanding basic market fluctuations.

2. Technical Indicators with Closing Price Environment: Enhances the closing price data
with technical indicators (SMA, MACD, RSI, Stoch RSI, VWAP), offering a multi-
faceted market perspective that includes trend, momentum, and volume analysis.

3. Technical Indicators, Sentiment, and Closing Price Environment: Integrates closing
price, technical indicators, and market sentiment (from StockTwits) for comprehensive
stock market analysis, encouraging the agent to consider quantitative and qualitative
data in decision making.

Normalization across these environments utilizes RobustScaler [75], which is notably
suitable for financial data prone to volatility and outliers. This scaler ensures data integrity
and consistent model training, and its stability to outliers and trend accommodation
maintains data point relevance during normalization.

This environmental setup presents agents with escalating market complexities, from
basic price trends to combined technical and sentiment analysis. Employing RobustScaler
ensures uniform input scaling, promoting unbiased learning. This progressive environmen-
tal design prepares the DDQN agent for diverse trading scenarios, reflecting the complexity
of real-world stock trading.

4.3. Action Space

In this reinforcement learning experiment, the action space [76] is critically designed
to enable the agent’s decision making with two fundamental actions: “BUY” (0) and
“SELL” (1). This binary structure serves the experiment’s goal of evaluating the agent’s
ability to predict daily stock price movements, either upward or downward, thereby
assessing its capability for making profitable trading decisions.

4.4. Reward Function

The reward function [77] in our study is designed to be direct and impactful, focusing
on the financial consequences of the agent’s actions using real financial figures without
normalization. This approach ensures that the rewards genuinely reflect the outcomes of
trading decisions, thereby motivating the agent to develop effective trading strategies. The
reward mechanism operates as follows:

e SELL action: The reward is calculated based on the difference between the selling
day’s closing price and the following day’s closing price. A positive reward indicates
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a profitable sell (price dropped the next day), and a negative reward suggests a loss
(price increased the next day).

e  BUY action: The reward is the difference between the next day’s closing price and the
current day’s closing price, with a positive reward indicating a gain (price increased
the next day) and a negative reward indicating a loss (price decreased the next day).

This method of calculating rewards based on actual price movements provides a
realistic measure of trading success and offers the agent clear feedback on its decisions.

This study focuses on analyzing the impact of different data types on agents’ predictive
abilities rather than simulating a comprehensive trading scenario. By simplifying the
reward structure and limiting the action space to buying and selling, this study aims to
directly evaluate how closing prices, technical indicators, and sentiment analysis influence
short-term stock predictions.

This simplified approach examines the contribution of each data layer to the agent’s
decision-making process, avoiding the complexity of more intricate trading simulations
that could weaken the clarity of these insights. This methodology underlines the potential
of reinforcement learning in financial market applications, demonstrating its capacity for
profit generation, and deepening our understanding of market dynamics.

4.5. Advanced Techniques in DDQN Model Optimization

This section presents the intricate mechanisms and strategic methodologies underpin-
ning our DDQN model, aimed at refining the decision-making processes in stock market
trading. Central to our model’s learning and adaptation capabilities is the experience replay
memory technique, a cornerstone in DRL that significantly enhances algorithmic perfor-
mance by mitigating the correlation among sequential learning samples. This technique,
supplemented by a capacity of 100,000 steps, ensures a rich repository of experiences for
the agent, facilitating a sophisticated learning process across varied market scenarios.

Additionally, we implement a step-decaying learning rate and a decaying epsilon-
greedy strategy, which are crucial for balancing the exploration of new strategies against
exploiting known profitable actions. The step-decaying learning rate methodically reduces
the learning rate to fine-tune the model’s adjustments for precision. At the same time, the
decaying epsilon-greedy strategy systematically lowers epsilon and shifts focus from explo-
ration to exploitation as the agent acquires additional information. These methodologies
optimize the training process and ensure a well-rounded and adaptive learning experience,
highlighting the sophisticated design and execution of our DDQN model.

4.5.1. Experience Replay Memory in Deep Q-Networks

Experience replay memory is a key strategy in DQNs and is essential for enhancing
learning stability and efficiency in DRL. Researchers in [78] used this method, involving the
storage and reutilization of past transitions (state, action, reward, next state) for learning.
This approach mitigates the correlation among sequential learning samples, which is a
challenge in deep RL, particularly with high-dimensional inputs such as Atari game frames.

The utility of experience replay stems from its capacity to ensure a diversified and
uncorrelated selection of experiences for training batches, thereby improving algorithmic
performance and learning robustness. It randomizes the learning updates by drawing sam-
ples from a replay buffer, granting even rare but crucial experiences repeated opportunities
to impact the learning outcome and aid in retaining knowledge over time [79].

For our study, experience replay memory was essential, given the limited size of
the dataset. With a capacity of 100,000 steps, it provided a comprehensive repository of
encountered experiences, enabling the agent to leverage and learn from various situations.
This extensive memory allowed for the revisiting of past transitions, contributing to a
well-informed and refined learning process by utilizing every piece of data within the
dataset for informed decision making.
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4.5.2. Step-Decaying Learning Rate

In the DDQN framework, the implementation of a step-decaying learning rate [80]
serves to strategically refine the learning process. This technique, in contrast to a static
learning rate, systematically lowers the learning rate at predetermined periods, facilitating
several advantages:

e  Efficient convergence: Starting with a higher learning rate to achieve quick conver-
gence to a viable solution, the rate to fine-tune the adjustments gradually decreases,
culminating in a more refined and precise model.

e Adaptability: Adjusts the learning pace according to the agent’s progression, em-
ploying larger steps for swift initial learning and smaller steps for meticulous model
refinement in later stages.

e  Prevention of oscillations: A reduced learning rate in advanced training phases shortens
fluctuations near the optimal solution, enhancing the model’s precision and stability.

This approach effectively balances exploration and exploitation by modulating the
learning velocity in sync with the agent’s incremental task comprehension.

The step-decay procedure is illustrated in Figure 3 for a model starting with an initial
learning rate of 0.0045. A decay factor of 0.8, applied at fixed intervals—every 20 epochs—
characterizes this method. The learning rate is kept constant within each interval before
being reduced multiplicatively by the decay factor. This creates a staircase effect on the
learning rate across 300 epochs, optimizing the training process and allowing the model
to adjust smoothly to the evolving learning rate for an efficient and effective learning
experience. Additionally, this controlled approach assists in reducing the risk of exceeding
the minimum of the loss function, which can be particularly useful in the later stages of
training when finer adjustments are essential for stabilizing the model.

Learning Rate Step Decay

—— Learning Rate Schedule

0.004

0.003 A

0.002 -

Learning Rate

0.001 A

0.000 A

Epoch
Figure 3. Learning rate step decay.

4.5.3. Decaying the Epsilon-Greedy Strategy

The epsilon-greedy strategy, which is pivotal in the realm of DQNs for reinforcement
learning, is formulated to strike an optimal balance between the exploration of new actions
and the exploitation of familiar ones [81]. It operates on a mechanism where the agent,
based on a predefined probability epsilon (¢), either randomly selects an action or commits
to the most advantageous known action with a probability of 1 — . Starting with a higher
¢ promotes exploration, facilitating the acquisition of varied environmental insights. Over
time, ¢ decreases to enhance the focus on exploiting accumulated knowledge for optimal
decision making. This methodology enables the agent’s learning by ensuring a balanced
approach to discovering new strategies and applying learned experiences.
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In our DDQN model, the decaying epsilon-greedy approach is essential for modulating
the exploration—exploitation trade-off. Initially, set high, epsilon propels the agent toward
exploration, enabling a broad sampling of actions for environmental learning. As the agent
becomes more knowledgeable, epsilon decays, gradually orienting the strategy toward
exploiting learned behaviors.

The key advantages of this strategy include the following:

e Balanced exploration and exploitation: This prevents the agent from being overly
cautious or excessively daring, ensuring a well-rounded learning experience by inte-
grating discoveries with existing knowledge.

e Adaptive learning: The strategy’s decaying nature allows the agent’s exploration-
exploitation balance to adjust over time, which is tailored to the pace of learning,
ensuring a smooth transition from exploration to exploitation.

e  Enhanced decision making: With the reduction in epsilon, the agent increasingly relies
on its learned Q-values for making decisions, resulting in more accurate and optimal
choices reflecting its cumulative experiences.

Therefore, the decaying epsilon-greedy strategy is fundamental to the DDQN model,
facilitating effective navigation between exploring novel strategies and leveraging known
rewards, which significantly contributes to a sophisticated and efficient learning process.

Our research examined the epsilon decay strategy across 350 epochs, which is integral
to balancing exploration and exploitation in reinforcement learning. Initially, at 1.0, epsilon
indicates the likelihood of the model taking a random action to promote exploration.
Throughout the training, we applied a decay rate of 0.991 per epoch, reducing epsilon to
a floor of 0.05. This methodical reduction in epsilon facilitates a smooth transition from
an exploration-dominant approach to one that favors exploitation, progressively favoring
informed decisions over random actions. The observed epsilon trend depicted a consistent
exponential decrease, illustrating the effectiveness of this strategy in adjusting the model’s
learning focus over time.

5. Results

This section evaluates the performance of a DDQN agent within the stock market
prediction context by examining its behavior through diverse training stages and environ-
mental conditions. We focus on the agent’s performance during the training and testing
phases across three distinct and complex environmental settings.

The initial environment is based on the stock’s closing price, providing a basic under-
standing of market trends. The second setting incorporates technical indicators to enrich
the model’s inputs, which is crucial for analyzing market patterns and predicting future
price shifts. These indicators offer insights into market momentum, trends, and volatility,
providing the agent with a more detailed awareness of market dynamics. The last set
includes sentiment analysis, introducing a component that captures the sentiment and
subjective dimensions of the market. This addition aims to mirror the impact of public
sentiment, as reflected on social media, on stock prices.

Throughout the training phase, the agent’s goal is to refine its strategy for optimal
performance based on the state representations of each environment. This phase is essential
for the agent to enhance its prediction and market strategy skills. Performance is measured
by the total profits achieved by the agent in each episode.

During the DDQN model training phase, 890 active trading days were utilized, exclud-
ing weekends, public holidays, and market closure days, starting on 2 January 2020, with
an opening stock price of USD 59.97, and ending on 17 July 2023, with a closing price of
USD 464.60. This period encompasses various market conditions, from volatility triggered
by global events in 2020 to recovery and growth in the following years, providing a rich
dataset that likely improved the training robustness and enabled the DDQN model to
adjust to different trading environments.

18



Electronics 2024, 13, 1629

5.1. Experiment Setup

In this research, we conducted a series of experiments to evaluate the efficacy of
DDON within three uniquely defined environmental states. Each state was subjected to
three distinct tests, employing predetermined random seeds to ensure consistency and
reproducibility of the results. The strategic application of these seeds across all tests was
critical for maintaining the integrity and comparability of our findings.

In ML and, more specifically, reinforcement learning, random seeds serve as the
foundation for generating reproducible sequences of random numbers. These sequences
are essential to numerous aspects of the learning process, including but not limited to
the initial setting of network weights, the selection of actions, and the sampling from
experience replay buffers. The value of a random seed lies in its ability to generate a
consistent sequence of “random” numbers across different runs, provided that the seed
value is unchanged.

A uniform set of random seeds across various experiments guarantees that each
trial is conducted under the same initial conditions and random processes. This unifor-
mity was crucial for accurately comparing the performance of the DDQN agent across
different environmental states, as it minimizes the impact of random variations in the
learning process.

Furthermore, the fixed random seed methodology directly links the observed per-
formance differences to the modifications in environmental states, eliminating random
variability as a confounding factor. This practice significantly strengthens the trustworthi-
ness of our experimental conclusions.

Reinforcement learning frameworks, such as the DDQN, are prone to overfitting,
particularly in intricate scenarios such as predicting stock market movements. Overfitting
describes a scenario where a model excessively learns from the training data to the detri-
ment of its performance on unseen data by capturing noise and anomalies as if they were
significant patterns. This issue is a prominent concern in reinforcement learning due to the
critical balance required between the exploration of new strategies and the exploitation of
known rewards.

To reduce the risk of overfitting in our study, we meticulously calibrated the number
of training episodes. This planning aimed to provide the agent with satisfactory learning
opportunities while safeguarding against the potential for overfitting to the training data
patterns. By adopting this approach, we aimed to cultivate a strategy within the agent
that is both generalizable and resilient rather than overly tailored to the specific instances
presented during training.

5.2. Training Phase

During the training phase of this study, the DDQN model was evaluated across three
sequential experiments, each designed to progressively integrate layers of information and
assess their impact on the model’s ability to predict stock market movements. Starting
with a basic environment that utilized only NVIDIA’s closing stock prices, this phase
set a foundational benchmark for the model’s performance, highlighting the limitations
of relying on a singular data point for decision making. As the study advanced, the
environment was enriched first with technical indicators, offering a broader perspective
on market dynamics, and then with sentiment analysis from the StockTwits platform,
incorporating qualitative insights into market sentiment. This enhancement allowed for a
detailed examination of how varying types and complexities of data influence the model’s
trading strategies and effectiveness.

The findings of these experiments revealed a clear trajectory toward improved prof-
itability and strategic sophistication within the DDQN model’s operations. Experiment 1
demonstrated the inherent limitations of a closing price-based model, prompting a move
toward a more nuanced approach in Experiment 2 with the introduction of technical in-
dicators. This shift yielded a more balanced distribution of buy and sell actions, paving
the way for Experiment 3’s integration of sentiment analysis, which further refined the
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trading strategies by incorporating public opinion and market sentiment. Through this
phased approach, the research showcased the progressive enhancement of the model’s
predictive accuracy and profitability and underscored the necessity of embracing a mul-
tifaceted data integration strategy. The insights gleaned from this training phase, which
will be presented in the following subsections, emphasize the significance of combining
diverse data sources, including both quantitative and qualitative information, to bolster
the sophistication and effectiveness of algorithmic trading strategies in navigating the
complexities of the stock market.

5.2.1. Closing Price Environment (Experiment 1)

The initial experiment within our investigation sets the stage with the most basic
configuration, focusing exclusively on the stock’s closing price. This environment, the
simplest of the three evaluated, bases its entire premise on this singular data point, offering
a foundational yet narrow perspective for the trading agent’s decision-making process.

This simplified approach has several limitations. While the closing price reflects the
stock’s final trading position each day, it does not provide a comprehensive view of the
market’s broader movements. Consequently, the agent is bereft of critical information that
could facilitate a more rounded understanding of market behaviors and trends.

Figure 4 illustrates the agent’s buy and sell actions in the final episode. A dominance
of buy actions is noted, indicating an expectation of higher returns from buying rather than
selling. The absence of deeper market insights, such as those from technical indicators on
market momentum or comprehensive trends, significantly restricts the agent’s ability to
distinguish and respond to market developments. Given the agent’s limited operational
scope, any perceived short-term trends based solely on closing prices are vulnerable to
sudden and inexplicable changes.

Count of Buy and Sell Actions in Experiment 1

Count

Buy Sell
Actions

Figure 4. Experiment 1—buy/sell actions.

Figure 5 reveals the variability in total profits across episodes, highlighting the agent’s
struggle to stabilize its trading strategy. This fluctuation suggests that without a broader
array of market data, the agent struggles to form a consistent approach to trading, hindered
by the sparse information available in this elementary environment.

Thus, while this initial setting provides an introductory platform for the agent’s
engagement with the stock market, its basic nature significantly constrains the agent’s
capacity to develop a sophisticated market analysis. The findings underscore the need for
a more enriched environmental setup, incorporating a wider spectrum of market data, to
empower the agent with the knowledge necessary for executing informed and strategic
trading decisions.
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Figure 5. Experiment 1—evolution of total profits per episode.

5.2.2. Enhanced Environment with Technical Indicators (Experiment 2)

In this phase of our study, the environment for the DDQN model incorporates technical
indicators, providing a richer dataset for the agent’s decision-making processes. This
augmentation significantly influences the agent’s trading behavior, as evidenced in Figure 6,
where the agent executed a balanced mix of 483 buy and 406 sell actions. This contrasts with
the previous experiment’s dominance of buy actions, illustrating how technical indicators
have equipped the agent with a deeper understanding of market dynamics, facilitating
a finer strategy in trading decisions. This development underscores the pivotal role of
comprehensive data in refining trading strategies and enhancing market analysis.

Count of Buy and Sell Actions in Experiment 2

Count

Buy Sell
Actions

Figure 6. Experiment 2—buy/sell actions.

The training progress in this enriched environment shows less volatility across episodes
than that observed in the initial experiment, suggesting a more stable and comprehensible
environment for the agent. This stability indicates that the introduction of technical indica-
tors provides sufficient information for the agent to discern optimal actions early in the
training process, indicating the effectiveness of these indicators in improving performance.

In Figure 7, the trajectory of total profits during training episodes demonstrates a
marked improvement in the agent’s ability to identify optimal trading actions, with profits
peaking at approximately USD 3500 before reaching a plateau. This enhanced performance
relative to the initial experiment highlights the value of integrating technical indicators into
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the trading environment, enabling the agent to achieve better-informed trading decisions
and, consequently, more consistent profits.
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Figure 7. Experiment 2—evolution of total profits per episode.

5.2.3. Comprehensive Environment with Closing Prices, Technical Indicators, and
Sentiment Analysis (Experiment 3)

In this concluding experiment of the training phase, the environment encompasses
closing prices, technical indicators, and market sentiment analysis, providing a comprehen-
sive market overview. This multifaceted approach merges quantitative data (such as closing
prices and technical indicators) with qualitative insights (derived from sentiment analysis),
challenging the agent to navigate through empirical evidence and sentiment-driven market
trends in its decision-making process.

In Figure 8, we observe the agent’s trading decisions. The number of “buy” actions,
totaling 475, slightly surpassed the number of “sell” actions, which accounted for 414. This
distribution reflects the agent’s strategic balance in action selection, informed by a broad
spectrum of market data.

Count of Buy and Sell Actions in Experiment 3
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Actions

Figure 8. Experiment 3—buy/sell actions.
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Figure 9 illustrates the cumulative profit trajectory over 300 training episodes within
the DDQN model. The graph shows an ascending profit curve, demonstrating the DDQN
agent’s effective learning process. This ascending trend suggests the agent’s increasing
adeptness at securing profitable transactions within the given market simulation. Toward
the training’s conclusion, cumulative profits exceed USD 3500, indicating an optimal
performance level achieved by the agent.
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Figure 9. Experiment 3—evolution of total profits per episode.

The execution of 300 episodes proved satisfactory for the agent to refine and optimize
its policy. Notably, the profit graph does not plateau, suggesting the potential for further
improvements in agent performance with additional training episodes. However, this
scenario also raises concerns about overfitting. The final episodes show profits reaching
USD 4000, signifying the agent’s expedited learning and application of optimal actions
within the enriched environment.

This experiment’s stable profit trajectory, without significant fluctuations or down-
turns, signifies a consistent and effective learning process. In the context of reinforcement
learning, especially within volatile financial markets such as stock trading, such stabil-
ity is crucial. This implies the agent’s ability to learn, adapt, and proficiently apply this
knowledge effectively. The steady increase in total profits further indicates that the training
reward function is aptly designed to align with the goal of profit maximization.

5.3. Evaluation Phase

The evaluation phase is essential, as it assesses the model’s proficiency in applying
its acquired strategies to unseen datasets, a critical attribute for a resilient trading algo-
rithm. Following the training of the DDQN agent within three distinct environments, each
reflecting distinct market dynamics or asset behaviors, a real test of its utility coverage was
conducted during the evaluation phase.

Spanning 47 trading days, the evaluation phase is designed to cover a timeframe not
previously encountered by the agent in its training, offering a thorough examination of the
agent’s adaptability across varying market conditions. This duration is selected to provide
an insightful analysis of the agent’s capability through multiple market situations, from
short-term volatilities to more extended market trends, confirming the effectiveness of the
DDQN model in real-world trading settings. Currently, the agent’s performance serves as
a reliable measure of its practical value and adaptability in dynamic trading environments,
where estimating accordingly to new information is crucial.

In financial time series analysis, an innovative normalization technique known as
adaptive/dynamic normalization [82,83] has emerged, particularly aimed at tackling the
challenges of nonstationary data. Traditional normalization methods, such as min—-max
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scaling and z score normalization, often do not efficiently address the variable nature of
financial time series characterized by frequent shifts in scale and distribution.

The dynamic window-based normalization method [84] bypasses these issues by
adjusting normalization parameters in alignment with the latest available data, ensuring
that test data are normalized contextually appropriately. This approach is especially
relevant for financial time series forecasting, where it is vital to incorporate recent market
trends and volatilities into the normalization process.

This methodology selects a recent “window” of data points from the training set, with
the window’s size reflecting the data’s volatility and frequency—typically the past few
weeks or months—for daily stock prices. Normalization parameters, such as the mean and
standard deviation, are derived from this window and applied to the test data. For our
study, we considered the most recent 30 days of data for this purpose. A significant benefit
of this approach is its sensitivity to recent market conditions, enabling a more realistic
and flexible data processing framework. This is particularly beneficial in fast-changing
environments such as the stock market.

Nevertheless, this technique also presents challenges, including the selection of win-
dow size and normalization metrics, which can affect model performance. Moreover, if
the window size is too small, there is a risk of overfitting to short-term trends, potentially
overlooking longer-term market behaviors. The following sections will present and discuss
the results, highlighting these considerations.

5.3.1. Validation in a Closing Price Environment (Experiment 1)

Figure 10 shows the results from Experiment 1, where the agent was tested under three
distinct random seeds—42, 75, and 93—introducing variability to its training conditions to
evaluate the stability of its trading strategy. For seeds 42 and 75, the agent’s trading actions
(buys and sells) distribution remained notably uniform, with buys constituting 63.8% and
sells constituting 36.2%. The introduction of seed 93 led to an altered distribution, with
buys increasing to 68.1% and sells decreasing to 31.9%. This shift indicates that the agent’s
strategy has a certain level of robustness but remains sensitive to the influence of initial
conditions determined by the random seed. The buying action preference may suggest an
inherent learning bias or reflect the market conditions encountered during the experiment.
The prominent difference with seed 93 underlines the importance of randomness in training
to strengthen the strategy’s adaptability to diverse market environments.

Buy/Sell Actions - Random Seed 42 Buy/Sell Actions - Random Seed 75 Buy/Sell Actions - Random Seed 93

Figure 10. Experiment 1—buy/sell actions across three different random seeds.

Figure 11 presents the dynamics of positive and negative rewards by the agent for
each test day, aligned with the training phase’s random seeds. The outcomes illustrate
minimal variation in the seed reward patterns, signifying a consistent mechanism for the
agent’s actions irrespective of the seeds’ initial conditions. The rewards exhibit similar
fluctuations across all seeds, denoting the stability of the agent’s learning and decision-
making framework against the randomness introduced at the training’s outset.
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Figure 11. Experiment 1—daily profits (green) and losses (red) across three different random seeds.

The agent can navigate and identify advantageous actions despite the environment’s
simplicity, focused exclusively on the stock’s closing price. The reward distribution repre-
sents the agent’s proficient decision-making capabilities, consistently securing positive and
negative rewards across various seeds and days. This consistent performance underscores
the agent’s aptitude for recognizing and leveraging profitable ventures within a limited
informational framework. This signifies the efficacy of the underlying learning algorithm
in distilling valuable insights from a constrained dataset, indicating the model’s utility in
practical settings well.

5.3.2. Validation of the Closing Price with the Technical Indicator Environment
(Experiment 2)

Figure 12 presents the division of buy and sell decisions made by the agent in Ex-
periment 2, where technical indicators are integrated alongside closing price data within
the trading framework. For Seed 42, buy actions accounted for 68.1%, and sell actions
accounted for 31.9%. Seed 75 demonstrated a more equitable distribution, with 59.6% of
the participants exhibiting buy actions and 40.4% exhibiting sell actions. Moreover, 93
seeds exhibited 63.8% of buy actions and 36.2% of sell actions.

Buy/Sell Actions - Random Seed 42 Buy/Sell Actions - Random Seed 75 Buy/Sell Actions - Random Seed 93

Buy

Figure 12. Experiment 2—buy/sell actions across three different random seeds.

The analysis depicted in Figure 13 shows the daily rewards, both positive and nega-
tive, leveraging similar random seeds. This experiment’s findings, compared to those of
Experiment 1, which solely relied on closing price information for the agent’s decisions,
illustrated a significant evolution in trading behavior. Including technical indicators has
prompted the agent to adopt a more evenly distributed trading approach, particularly
with Seed 75. The agent’s previous predilection for buying actions seen in Experiment 1
decreased, indicating a moderate bias in Experiment 2.
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Figure 13. Experiment 2—daily profits (green) and losses (red) across three different random seeds.

Moreover, the reward patterns in Experiment 2 show a reduction in extreme losses,
indicating that the extended data from technical indicators enabled more informed and prof-
itable trading decisions. This addition has expanded the agent’s capability beyond tracking
short-term price movements, enabling it to discern and act on wider market indicators.

The integration of technical indicators has enriched the agent’s informational environ-
ment, facilitating more sophisticated navigational and decision-making capabilities within
the trading scenario, evident in both the action distribution and the daily reward pattern,
where the agent exhibits an enhanced ability to secure rewards and execute balanced trad-
ing decisions. Such improvements suggest a more in-depth understanding of the market
and a strengthened trading strategy, which can be attributed to the inclusion of complex
input data.

5.3.3. Validation of the Closing Price with Technical Indicators and the Sentiment
Environment (Experiment 3)

In Experiment 3, the trading environment is enriched with sentiment analysis from the
StockTwits platform, introducing an additional layer to the already utilized closing prices
and technical indicators from Experiment 2. This inclusion aims to provide a holistic view
of market dynamics by combining quantitative data with qualitative sentiment insights.

Figure 14 displays the distribution of buy and sell actions by the trading agent, show-
casing a nearly even split: 53.2% of buys and 46.8% of sells. This balanced action distri-
bution is consistently observed across all three evaluated random seeds—42, 75, and 93.
This indicates that including sentiment data might have allowed the agent to adopt a more
unbiased stance in its trading decisions, moving away from the pronounced buy or sell
bias observed in earlier experiments.

Buy/Sell Actions - Random Seed 42 Buy/Sell Actions - Random Seed 75 Buy/Sell Actions - Random Seed 93

Buy Buy

Figure 14. Experiment 3—buy/sell actions across three different random seeds.

Figure 15 compares the daily rewards, both positive and negative, across the random
seeds. Differing from Experiment 2, the integration of sentiment analysis has refined the
agent’s reward dynamics, potentially tempering the extremities of gains or losses and
offering a deeper comprehension of the market factors influencing trading choices.
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Figure 15. Experiment 3—daily profits (green) and losses (red) across three different random seeds.

By analyzing the findings from Experiment 2, it is evident that sentiment analysis
contributes significantly to the agent’s trading strategy. While Experiment 2 marked a
progression in the agent’s capability to balance buy and sell actions beyond the fundamental
model, Experiment 3 showcases a further refined trading method, as reflected by the
equitable distribution of actions. Additionally, the patterns of rewards imply that sentiment
integration provides the agent with an added layer of market insight, enriching its decision-
making process and leading to steadier performance under various market scenarios.

Nonetheless, Experiment 3’s increased complexity also brings about a degree of vari-
ability among the outcomes derived from the three distinct random seeds. Despite achiev-
ing higher overall profits compared to Experiment 2, the daily actions exhibited variability
across seeds, suggesting the introduction of fluctuations within this enriched environment.

6. Discussion

The ascending trajectory in average profits and outcome variability from Experiments
1 through 3 indicates a progressive increase in the complexity of the training environment.
This escalation likely provided the DDQN model with a more diverse array of data points
and scenarios, enhancing its ability to make informed and profitable decisions in real-world
trading situations. Figure 16 compares outcomes from three distinct experiments utilizing
the DDQN model to forecast stock market movements. The outcomes from each experiment
are illustrated through a range of results (minimum to maximum) depicted by blue boxes,
with the mean outcome of each experiment marked by a red line.
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Figure 16. Comparison of total profit range across experiments and random seeds.
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Experiment 1’s average profit is 57.41, with outcomes showing limited variability. This
consistency points to uniform performance across the board, although the average profit is
lower than that in the latest experiments. The minimal variability highlights the simplistic
nature of this initial experiment, which focused solely on the day’s closing price.

Experiment 2 records an enhanced average profit of 80.82 along with a wider spread
of outcomes, presenting exposure to a more complex trading environment (comprising
closing prices + technical indicators). Despite the enlarged outcome range, consistency
remains across the three random seeds used.

Experiment 3 shows a notable increase, with an average profit of 119.98, which sig-
nificantly increased from the initial experiments. This experiment also exhibited the most
considerable spread in outcomes, indicating a highly dynamic environment enriched with
closing prices, technical indicators, and sentiment analysis. This wide range suggests that
while the model achieved higher performance peaks, it also faced substantial troughs,
reflecting the environment’s increased complexity and the exogenous factors affecting stock
market predictions.

The trend of growing average profits based on the trajectory of experiments suggests
that the DDQN model is continually refining its predictive process and decision-making
strategies. The expansion in both average outcomes and their ranges indicates an improved
capability of the model to navigate the stock market, leveraging a richer dataset for its
trading decisions. Nevertheless, the extensive variability observed in Experiment 3 also
highlights a greater degree of performance unpredictability. This suggests that while the
DDQON model has the capacity for high returns, it is also exposed to significant losses,
reflecting the dual edge of engaging with a more complex and variable trading environment.

It is worth mentioning that while the model developed for NVIDIA stock demon-
strated effectiveness in a volatile market, its application to other datasets requires careful
consideration. The DDQN presented performance is tailored to the specific dynamics
of NVIDIA stock and could potentially limit its transferability to stocks with different
characteristics. For experiments with broader applicability, the model could be retrained or
fine-tuned with new data to accommodate dissimilar market conditions or sector-specific
factors. Additionally, robustness checks by back-testing on diverse datasets could benefit
from assessing their generalizability. Lastly, adjustments and validations are essential to
confirm the model’s effectiveness across varying market scenarios for reproducibility in
other stock dynamics.

7. Conclusions

This research focuses on developing and optimizing a DDQN model to examine the
impact of progressively adding layers of information on its stock market prediction ca-
pabilities, specifically focusing on volatile and significant NVIDIA stocks. Initiated with
a basic setup that only considered the stock’s closing prices, this research established a
performance baseline for the DDQN model without complex market variables, allowing
for a step-by-step evaluation of additional information layers (technical indicators and sen-
timent analysis). Then, we expanded the model’s environment by incorporating technical
indicators to enhance market insight and assess their influence on forecasting accuracy. A
vital factor of the investigation was integrating sentiment analysis to quantify the influ-
ence of public opinion on stock performance, utilizing social media commentary from the
StockTwits platform to estimate investor sentiment toward NVIDIA stocks.

The DDQN model’s performance was comprehensively evaluated across each stage,
aiming to compare the environment’s complexity with its trading efficacy. The initial
experiment, which relied only on closing prices, involved setting the groundwork. Further-
more, in the second experiment with technical indicators, a significant improvement in
the model’s decision making was observed, denoted by a more balanced distribution of
buy and sell actions and an increase in cumulative profits. This progression was finalized
in the third experiment, where sentiment analysis introduced a more profound layer of
market understanding, subsequently enhancing profitability. However, this increase in
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profitability was accompanied by heightened complexity in the model environment. Every
additional layer of information not only broadened the model’s analytical and predictive
scope, but also introduced more variability in outcomes. This complexity, resulting in a
wider range of potential outcomes, suggests that while added information can boost profits,
it necessitates a thorough consideration of the environment’s intricacies and the resilience
of the underlying trading strategies.

The exploration of the DDQN model in forecasting NVIDIA’s stock movements over a
volatile period has yielded significant insights into the benefits of layered data integration
in algorithmic trading strategies. From a simple model based on closing prices to gradu-
ally incorporating technical indicators and sentiment analysis, the study’s approach has
demonstrated a clear trajectory of strategic evolution and improved profitability. The initial
model’s tendency towards buy actions underscored the need for a more comprehensive
approach to decision making within the trading algorithm. The integration of technical
indicators marked the first step toward achieving this, leading to a more balanced distribu-
tion of trading actions and an initial increase in profitability. The subsequent incorporation
of sentiment analysis, capturing market participants’ collective mood and outlook, further
refined the model’s trading strategies.

Comparative analysis across the three stages revealed increased profitability, demon-
strating the significant impact of combining sentiment analysis with traditional financial
metrics. From an average profit of 57.41 in the simplest model setup to 119.98 with full
data integration, the findings underscore the potential for sophisticated data synthesis to
enhance predictive accuracy and trading performance. This incremental improvement,
however, came with increased variability in outcomes, suggesting a more complex environ-
ment for the model to navigate. The research concludes that while adding data sources
can substantially boost the model’s profitability, it also necessitates a deeper understand-
ing of the underlying complexities and a careful consideration of the robustness of the
trading strategies. The insights gained from this study establish the value of integrating
sentiment analysis alongside traditional financial metrics, increasing the sophistication and
effectiveness of algorithmic trading strategies in the face of fluctuating market conditions.

Finally, by addressing off-market days such as weekends and holidays, which were
excluded from the dataset for continuity, this approach might overlook critical events
that could significantly affect stock sentiment and prices. Future research could explore
methods such as linear interpolation [85] to effectively bridge this data gap, potentially
allowing for a more refined stock performance analysis. Moreover, the sentiment analysis
methodology, based on average daily social media sentiment, could be used in future
studies to include weighted sentiment scores that reflect the influence of individual posts,
enhancing the depth of market sentiment analysis.

Investigating hyperparameter optimization and architectural enhancements presents
opportunities for further refinement of stock market predictions with the DDQN model.
With no standardized approach for tuning reinforcement learning models to financial tasks,
future research could explore adjustments in neural network architecture and other model
components to discover more subtle market patterns. In conclusion, exploring advanced
time series forecasting techniques beyond sliding window normalization [86], such as
“differencing”, could be an alternative approach for handling financial data, potentially
leading to more accurate and robust forecasting models in future studies.
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Abstract: Sentiment Analysis in text, especially text containing scientific citations, is an emerging
research field with important applications in the research community. This review explores the field
of sentiment analysis by focusing on the interpretation of citations, presenting a detailed description
of techniques and methods ranging from lexicon-based approaches to Machine and Deep Learning
models. The importance of understanding both the emotion and the intention behind citations is
emphasized, reflecting their critical role in scientific communication. In addition, this study presents
the challenges faced by researchers (such as complex scientific terminology, multilingualism, and
the abstract nature of scientific discourse), highlighting the need for specialized language processing
techniques. Finally, future research directions include improving the quality of datasets as well as
exploring architectures and models to improve the accuracy of sentiment detection.

Keywords: natural language processing (NLP); machine learning; deep learning; sentiment analysis;

scientometrics; sentiment analysis of scientific citations

1. Introduction

Starting with the definition, sentiment analysis is a growing field of science that inter-
sects with fields such as Artificial Intelligence (Al), Statistical Analysis (SA), and Natural
Language Processing (NLP). Its central goal is to identify and evaluate the emotional expres-
sions contained in texts. This approach uses various methods of data analysis to identify
and evaluate the different nuances of the emotions and subjective elements expressed. Key
work in this field includes the detection of emotion polarity (positive, negative, neutral),
extraction of opinion elements, and overall emotional perception of texts [1].

In recent years, the problem of emotion analysis has attracted the interest of the
scientific community, and the ability to assess people’s preferences quickly and reliably for
a topic has lead many companies and organizations to invest in this process. According to
M. Wankhade et al. [1], applications of sentiment analysis are very useful in areas such as
companies (product and service evaluations), the health sector for categorizing medical
data, art (music, movie reviews, etc.), and social networks for monitoring public opinion.
In addition, Sentiment Analysis has been explored at different levels, such as the Document
Level, Sentence Level, Phrase Level and Aspect Level, as shown in Figure 1.

The Document Level focuses on evaluating the emotional charge of a whole text, with
the purpose being to determine whether the document has positive, negative, or neutral
emotional connotations. Both supervised and unsupervised learning approaches can be
used. However, this type is not often used, mainly due to the large number of ideas and
conflicting emotions. The Sentence Level focuses on assessing the emotion conveyed by
each individual sentence. This method allows for a more detailed analysis compared to
the Document Level, as it separates the text into sentences to evaluate the sentiment of
each one individually. The Phrase Level focuses on specific expressions within a sentence
and identifies the emotion present in smaller sections of the text. This level of analysis can
reveal subtle variations in emotion that may be lost in a more generalized analysis at the
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Document or Sentence Levels. Aspect Level analysis focuses on understanding the emotion
associated with specific features of a product or service. For example, in mobile phone
reviews, aspects may include design, durability, performance, battery life, camera, etc.

Assessing overall sentiment of
a document. It can be used to
classify chapters of a book or
article as positive or negative

Document
Level

Useful for detailed

analysis of text where the
Sentiment Sentence | tone can vary significantly
Level from sentence to sentence

Analysis

Phrase
Level

This approach focuses on smaller
pieces of text, such as individual
words or phrases that contain
significant emotional weight

An approach that focuses on

Figure 1. Sentiment Analysis Approaches.

The importance of literature references in the world of scientific research is a long-
lasting and dynamic phenomenon. As the scientific community grows and evolves in
the digital age, citations continue to be a vital link between research papers, allowing for
interaction, acknowledgement, and critique between researchers. In this context, digital
libraries and analytical services provide a rich source of information, facilitating access to,
and evaluation of, scientific papers [2]. In fact, a citation is a textual element in a scientific
publication that highlights and links to previous work for various reasons. It can be used
to compare or highlight and identify different sources or previous work, thus contributing
to academic discussion and scientific debate [2].

According to Alvarez et al. [3], in the field of citation analysis, qualitative evaluation
is as important as quantitative evaluation, with the latter focusing on the frequency of cita-
tions. It is also argued that citations present different weights depending on the influence
of the works that cite them, with it being thought that sentiment analysis can enhance
the evaluation of the influence of scientific works by considering the author’s disposition
towards the cited work. Similarly, in [4,5], the authors provide a detailed examination of
both quantitative and qualitative evaluation of citations. The quantitative evaluation con-
cerns the frequency of citations and how this correlates with various aspects of the research
work. On the other hand, the qualitative evaluation focuses on the quality of the citations,
examining their importance, relevance, and weight within the text, and it is considered to
be more critical than a quantitative evaluation. Therefore, by considering both quantity and
quality, researchers can gain a more complete picture of both the influence and importance
of a work in the scientific field.

Many research papers define a text that includes citations to a publication as a “citation
context”. They classify citations into being either explicit and implicit, with an explicit
citation involving one or more sentences around a citation position in a document. This
means that explicit citations are those that directly and clearly mention a source or previous
work within the text of the article, usually stating the names of the authors. In contrast, an
implicit or implied citation is a sentence that is not directly linked to the cited article and
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is usually quoted within the text following an explicit citation [2,6,7]. For example, in the
following text:

“Gregoriet al. [19] introduced an innovative algorithm for sentiment analysis, leveraging
a revolutionary methodology that enables the identification of nuanced emotional nuances
within textual data. This state-of-the-art approach provides an adaptable, user-defined,
and context-independent framework for sentiment analysis, thereby enhancing accuracy
and efficiency in natural language processing tasks”.

The first sentence, “Gregori et al. [19] introduced . .. within textual data”, is an explicit
citation, while the second sentence, “This state-of-the-art ... natural language processing tasks”,
is an implicit citation.

Athar and Teufel [7] examine the detection of implicit citations in sentiment analyses
of scientific texts. They emphasize the importance of including such citations to improve
the quality of the overall polarity assignment. Finally, they point out the weakness of many
recognition techniques, which usually ignore implicit citations by focusing only on citations
that contain a direct reference to the author’s name and publication date.

As the above demonstrates, the citation framework is an important resource for a vari-
ety of applications that need to identify the purpose or thematic objective of a citation, the
reasons for citing a particular idea, as well as the critique of concepts that have preceded it
in the academic literature. It is very important for new researchers to be able to understand
the perspective of a project in a particular field; therefore, they will be able to discover any
gaps in the literature if they identify a citation with a negative polarity or acknowledge
the researchers’ contribution by identifying citations with a positive sentiment [2]. The
development of methods to evaluate citations with a deeper understanding and accuracy,
focusing on both quality and quantity, has proven to be challenging. Sentiment analysis, as
part of this approach, reveals new dimensions in evaluating the impact and contribution of
a scientific project, thus helping to better understand the value of scientific communication
as it impacts the academic community.

Recognizing that scientific texts hide a wealth of affective cues that are often over-
looked, this study aims to provide a framework for analyzing these affective data. The
aim of this review is therefore to highlight the importance of the emotional expressions
that emerge in texts and scientific publications. The study aims to reveal patterns in
the ways that emotions influence scientific discourse and the judgments that are formed
around research results. Using modern Natural Language Processing and Neural Network
techniques, it encourages the development of advanced systems capable of detecting and
analyzing both the emotional connotations and the intensity of the reactions behind cita-
tions. The aim is to enhance transparency and accuracy in scientific communication, as
well as to ensure a framework that encourages critical thinking and the constant review of
research methods.

2. Research Methodology

The continuous development and evolution of research in each field makes it necessary
to carry out extensive literature reviews to summarize and evaluate existing knowledge. In
this context, previous work in the field of NLP and Sentiment Analysis has focused on the
analysis of specific areas and other specific subject areas while also remaining limited in
terms of methodology and scope. In contrast, this paper aims to provide a broader and more
systematic literature review using the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) methodology [8]. The PRISMA methodology, which is based
on rigorous criteria for selecting and evaluating items, allows for the development of a
transparent and reproducible literature review, thus providing significant added value to
the field. Therefore, to conduct our systematic review, we followed the below steps:

e  Defining the research questions.
e  Searching for literature in reliable repositories.
e  Setting criteria for rejecting certain papers.
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e Removal of duplicate documents.

2.1. Research Questions

Below are the research questions that will be addressed in this study in order to
explain the importance of classification in texts. Through these questions, we will examine
how classification can contribute to exploring the role of each citation, highlighting the
complexity of scientific discourse. In addition, these questions will seek to highlight the
challenges faced by Sentiment Analysis while also exploring the contribution of advanced
Machine Learning techniques that improve the evaluation of scientific research.

e  RQI. What algorithms and models have been developed for Sentiment Analysis in
texts and how do they compare with traditional methods?

e  RQ2. What preprocessing methods and classification accuracy metrics are applied in
Sentiment Analysis?

e  RQ3. In which cases do Machine Learning models perform better compared to Deep
Learning models?

e RQ4. Which types of learning are most often used in classification problems in
Sentiment Analysis?

e RQ5. How can Sentiment Analysis improve the understanding and evaluation of
scientific communication?
RQ6. What are the challenges in Sentiment Analysis in scientific texts?
RQ7. What classifications are generally applied in the analysis of reporting frame-
works?
RQ8. Are there datasets available for Sentiment Analysis in citation contexts?
RQ9. What is the role of emotions in communicating scientific results and how do
they affect the acceptance of information?

All research questions will be answered in Section 5 (Discussion) after presenting the
literature review.

2.2. Search Strategy and Selection Criteria

To find articles covering Sentiment Analysis in text and citations, we selected eight
(8) databases: Springer, Google Scholar, Semantic Scholar, Science Direct, Association for
Computing Machinery (ACM), MDPI, ACL Anthology, and IEEE Xplore. In each database,
we performed several search queries to identify articles related to our review topic. The
search queries were defined based on the requirements of each database, selecting and
combining keywords to match the scientific and research focus of each platform. In general,
we did not apply strict temporal search filters. In some of the queries, there was a need
to restrict results, resulting in us activating a filter for the year of publication. Table 1 lists
the queries that returned the most relevant results. In some platforms, however, it took
more than one query before we found results that covered the scope of our work, while in
others, such as IEEE, we identified relevant results with just one query. We also identified
criteria for including and excluding articles in order to focus on the topic of the review. The
included papers were screened to meet the following selection criteria:

Be Conference Papers or Journal Articles.

Apply NLP and Machine Learning methods.

Apply Sentiment Analysis methods in citation contexts.

Be Research Papers.

The full text is available.

Be published in reputable Journals or Conferences that show high-quality research.

Additional reasons for rejecting articles are as follows:

e Rejection due to contradictions. If there are contradictions in the data or results presented,
the article may not be credible.

e  Rejection based on content. If the screening process finds that the content of the article is
not relevant to the topic of our study, we reject it.
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Table 1. Search queries.

Digital Repositories/Databases

Number of Query

Query

Springer

with the exact phrase: Sentiment Analysis Challenges.
with at least one of the words: sentiment analysis
challenges methods
[Filters] year: 2021-2022

with at least one of the words: Scientometrics Citation.
where the title contains: “Citation Context” OR “Citation Function
Classification”

with at least one of the words: Polarity Classification.
where the title contains: “Polarity Classification” AND “Twitter”

with all the words: Automatic Content Extraction.
with the exact phrase: Named-entity Recognition.
with at least one of the words: Sentiment Analysis Polarity
Detection.
where the title contains: “Sentiment Analysis” AND “Mining”
[Filters] year: 2014-2019

with at least one of the words: Scientific Citation Sentiment
Function BERT.
where the title contains: “Scientific Citations” OR “BERT” AND
“Formal Citation”

Google Scholar

(“sentiment analysis” AND “emotions”) AND (“Word2Vec”) AND
“lexicon” AND (“word embeddings”) AND “NLP” AND “machine
learning” AND “online user reviews”

(“Text Classification” AND “Product Reviews”) AND (“Sentiment
Analysis” OR (“Support Vector Machines” AND “TF-IDF” AND
“Naive Bayes” AND “BERT”)

“sentiment classification” AND “comparative experiments” AND
“product reviews” OR “text reviews”

’

“Patterns” AND “Scientometrics” AND “Scientometrics Analysis”
AND “Citation Analysis”

“Sentiment Analysis” AND “Natural Language Toolkit” AND
(“Twitter Messages” OR “tweets”) AND “Word2Vec” AND
(“CBOW” AND “Skip-Gram”)

“Sentiment Analysis” OR “Scientometric Analysis” AND
“Convolutional Neural Networks” AND “CNN” AND “KNN”"
AND “Explicit Features”

“Scientometrics” AND “citation function” AND “citation role”

“Role” AND “Negative Citations” AND “natural language
processing” AND “objective citations”

Bibliometric AND “Analysis Methods” AND PageRank AND
“ Author citation”

10

“Conditional random fields” AND “Extracting citation metadata”
AND “citation indexing” AND “CiteSeer” AND “Extracting
Citation Contexts”

11

“BERT” AND “Attention Layer” AND “Sentiment Classification”
AND “Attention” AND “Classification” AND “Citation” AND
“Dictionary”
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Table 1. Cont.

Digital Repositories/Databases Number of Query

Query

Semantic Scholar 1

“Basic Emotions” AND “Detection of Implicit Citations”
[Filters] Fields of Study: Psychology, Computer Science
Date Range: 1990-2012, Has PDF = ON

“Characteristics” AND “Citing Paper” AND “Cited and Citing”
[Filters] Fields of Study: Computer Science
Date Range: 1980-2007, Has PDF = ON

“citation identification” AND “text citations” AND “Citation
sentiment analysis” AND “Analysis Using Word2vec” AND
“CBOW” OR “Skip-Gram”

[Filters] Fields of Study: Computer Science, Has PDF = ON

Science Direct 1

(“Sentiment Analysis” AND “word embeddings” AND “Machine
Learning”) AND (“Sentiment lexicon” OR emotions OR
“lexicon-based”) AND “Supervised Machine Learning”

(“Sentiment Analysis” AND “Reviews”) AND (“LSTM” OR
“Word2vec” AND (“RNN” OR “CNN”) AND (“CBOW” OR
“Skip-gram”)

Association for Computing
Machinery (ACM)

[[[Full Text: tweets] AND [Full Text: hashtags]] OR [[Full Text:
“hashtag sentiment”] AND [Full Text: “sentiment lexicon”]]] AND
[Title: tweets hashtags] AND [[Title: sentiment] OR [Title: lexicon]]

[All: “citation recommendation system”] AND [All: “citation
recommendation”]

MDPI 1

(Title: Sentiment Analysis) AND (Title: Social Media) OR (Title:
Scientometric Analysis) AND (Title: Convolutional Neural
Networks) AND (Full Text: CNN) OR (Full Text: NER)
[Filters] year: 2021-2022, Journals: Electronics and Information,
Article Types: Article

ACL Anthology 1

“Sentiment Detection” AND “Polarity” AND “Citation” AND
“Implicit Citations” OR “Survey in Sentiment”

“HMM” AND “Hidden Markov Models” AND “CRF” AND
“Conditional Random Fields” AND “Information Extraction”

Dataset Bibliographic Research

Citation Analysis AND Neural networks

“Conditional Random Fields” OR “CRF” AND “Function” AND
“Analysis” AND “Citation”

“Sentiment Analysis” AND “Citations” AND “Polarity Features”
AND “Sentence Splitting”

“scientific papers” AND “citation intent classification” AND
“sentence extractions” OR “citation intent classification”

IEEE Xplore 1

(“Document Title”: Citing Sentences) AND (“Document Title”:
Research Papers) OR (“Full Text Only”: Citation Analysis) AND
(“Document Title”: Challenges) OR (“Document Title”:
Applications) AND (“Document Title”: Sentiment Analysis)
[Filters] year: 20102022

By applying the search queries, we obtained a total of 6801 articles. Due to the large
volume of results, we decided to discard many papers. We applied the following approach:
When a query returned more than 50 results, we saved the papers on the first results page;
otherwise we saved all returned papers. We then discarded more papers, duplicates, and
those that did not match the selection criteria we set. Table 2 shows the search results for
each query in each database, as well as the articles we saved for further analysis. Most of
the queries were performed on Google Scholar (11 queries). Table 3 shows the total number
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of papers found per database, the total number of papers we saved, and the total number
of papers we finally included in our review. Of the 6801 articles initially found, we saved
468 and finally included 37. A very large volume of papers was found via Google Scholar
and ACL Anthology.

Table 2. Papers found and saved by search query.

Digital Repositories/Databases ng::;; of gzz;rg I;ig::ls
Springer 1 16 16
2 43 43
3 17 17
4 15 15
5 10 10
Google Scholar 1 53 10
2 768 10
3 651 10
4 508 10
5 305 10
6 51 10
7 17 17
8 6 6
9 62 10
10 10 10
11 246 10
Semantic Scholar 1 783 10
2 62 10
3 12 12
Science Direct 1 205 25
2 353 25
ACM 1 36 36
2 21 21
MDPI 1 30 30
ACL Anthology 1 6 6
2 585 10
3 782 10
4 67 10
5 702 10
6 4 4
7 51 10
IEEE Xplore 1 324 25

Table 3. Papers found, saved, and included in the review by Database/Digital Repository.

. . e . Papers Papers Papers

Digital Repositories/Databases Found Saved Included
Springer 101 101 8
Google Scholar 2677 113 10
Semantic Scholar 857 32 3
ScienceDirect 558 50 1
ACM 57 57 3
MDPI 30 30 2
ACL Anthology 2197 60 8
IEEE Xplore 324 25 2
Total 6801 468 37

In the process of systematically reviewing the existing literature, in addition to using
reliable scientific databases, we also included papers discovered through citations of the
included articles as well as work-projects from relevant websites. The selection of these
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papers was shaped by their contribution to strengthening and deepening our review. This
approach guarantees transparency in the methodology and source selection, ensuring that
each incorporated paper or source contributes substantially to the understanding and
interpretation of the research area of interest. At this point, we should mention that papers
found via citations (as well as websites) are not considered in the PRISMA methodology,
although we did include them in our review.

Figures 2 and 3 show the number of papers found, saved, and finally evaluated (bar
graph), as well the percentages of papers included in the review (pie graph). Table 4 shows
the number of all types of publications included in the review (Journal Article, Conference
Paper, Website). Table 5 shows the publication types of only the papers found in the
databases we used.
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Figure 2. Articles found, saved, and included in the review.
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Figure 3. Percentage of papers included in our review by Digital Repository.
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Figure 4 shows the percentages of publication types, with websites taking the smallest
share. An equal number of papers are published in conferences and journals. Figure 5
shows the percentages of papers found in databases. Most of the papers are publications in
conference proceedings.

Journal Article
45%

Conference Paper
46%

B Journal Article  ® Conference Paper ® Web page

Figure 4. All types of publications of reviewed papers (includes papers found in papers we included
in the review from the Digital Repositories).

Journal Article

Conference 16%

Paper
54%

® Journal Article  ® Conference Paper
Figure 5. Publication types of reviewed papers (only in Digital Repositories).

Table 4. All types of publications included in the review.

Publication Type Number of Papers
Journal Article 211
Conference Paper 211
Website 4
Total 46

1 Four (4) Journal Articles and one (1) Conference Paper were found in the papers we have included in the review
from the Digital Repositories.
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Table 5. Publication types of only the papers found in the Databases/Digital Repositories.

Publication Type Number of Papers
Journal Article 17
Conference Paper 20
Total 37

Figure 6 shows in detail the steps we followed according to the PRISMA Search
Methodology. All steps were recorded, from the identification of papers found in digital
libraries to the inclusion of the final papers in our review. At intermediate stages, we
recorded the reasons for rejecting the papers.

Identification of studies via Digital Libraries

o
Records identified from 8 Digital Libraries: Records removed before screening:
1. Springer (n=101) 1. Large number of records
5 2. Google Scholar (n=2,677) (n=6,333)
‘E 3. Semantic Scholar (n = 857) 2. Full text is not available
= 4. Science Direct (n=558) > (n=127)
5 5. ACM (n=57) 3. Duplicate records
2 6. MDPI (n=30) removed (n=9)
7. ACL Anthology (n=2,197)
8. IEEE Xplore (n=324)
— Records excluded for not meeting the
> research criteria: (n=181)
Records screened: (n=332)
E’ ¢ Reports not retrieved:
: . .
9 Reports sought for retrieval: (n = 151) > 1. The content of the article is
5 not related to the subject of
e * the study (n=39)
Reports assessed for eligibility: (n =40) 2. The content does not meet
your research questions
—
(n=72)
o
5 Y
3 Studies included in the review: (n=37) Reports excluded:
E Contradictions in the data or results
— presented in the article (n=3)

Figure 6. Papers retrieval steps (PRISMA Searching Methodology).

3. Literature Review

In this section, we focus on Sentiment Analysis and Scientometrics, presenting sig-
nificant works conducted in these fields. Subsequently, we examine studies on scientific
publication analysis related to classification and citation recommendation.

3.1. Sentiment Analysis

Before the introduction of Machine Learning and the so-called Transformer models in
NLP, the process of detecting and understanding emotions in texts relied mainly on the
use of specific dictionaries containing words with specific emotional values or tendencies.
A prominent benchmark is the dictionary created by the researchers [9], which includes
more than 2000 words categorized according to emotion polarization (positive, negative, or
neutral emotion), objectivity, and Ekman’s six basic emotions [10]. In addition, [9] used
the Twitter API over a two-day period in March 2014, collecting 250,000 tweets written
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in English and applying an ensemble Machine Learning algorithm that combines the
predictions of several models to produce a more reliable prediction. In their experiments,
this algorithm achieved an excellent average accuracy of 81.81%.

S. Symeonidis et al. [11] used the above dictionary to perform sentiment identification
based on data from the social network Twitter in order to identify the sentiment emerging
from the most popular topics (hashtags). The aim of this paper was to conduct an analysis
of sentiment by covering Ekman’s key emotions and not necessarily to identify polarity.
They applied methodologies such as Arithmetic Mean, Quadratic Mean or Root Mean
Square (RMS), Maximum, and CombMNZ. As statistical measures, they used the Pearson
and Kendall correlation coefficients, where the highest Pearson score recorded was 0.26 for
“Happiness” and the corresponding Kendall value was 0.22 for the same emotion.

Also, researchers P. Tsantilas et al. [12], utilized a different dictionary that consisted of
at least 6000 words which are classified as positive or negative. In this case, the goal was
reputation management, and a rule system was used to categorize sentiment in a dataset
of more than 2000 texts; the accuracy of this methodology approached 64%. For polarity
identification, they described an application for text analysis known as PaloPro, which
combines several technologies, one of which is the OpinionBuster system, for extracting
named entities. Finally, data were collected from a wide range of sources, including
news from two Greek newspapers (Real News and Kathimerini), and posts on Facebook
and Twitter.

More advanced methods use Machine Learning algorithms, while many different
approaches can be found in the literature. The main divergences lie in the creation of
so-called word embeddings, as well as in the choice of architecture and model parameters.

The resources [13,14] trace sentiment in a database of reviews in stores on the Skroutz
platform, and they are an additional important source. In these sources, Neural Networks
are used, where in [13], the researcher creates a Deep Neural Network by introducing an
embedding layer, which transforms the multidimensional input into smaller dimensional
vectors and achieves 92% accuracy. In [14], a version of the Bidirectional Encoder Represen-
tations from the Transformer (BERT) model is used, with 96% accuracy being achieved.

Similarly, the study [15] uses a Dataset for sentiment analysis of product reviews
written in Greek, which includes less than 500 sentences classified as positive or negative,
taken from the Skroutz website. This researcher uses two traditional Machine Learning
algorithms: Support Vector Machine (SVM) and Naive Bayes (NB). He combines SVM
with Unigram features and the Term Frequency-Inverse Document Frequency (TF-IDF)
technique. He also uses Unigram and Bigram features with NB by applying and deleting
Stopwords. In addition, the researcher also considers a variant of the BERT model. With
this small dataset, the researcher manages to achieve an excellent 97% accuracy with BERT
over four training epochs. Regarding the SVM and NB models, in the case where all words
were used as features, SVM scored 87% accuracy, followed by NB with 86%. When using
Unigrams, SVM again prevailed with 86% accuracy, while NB achieved 84% accuracy. As
for the Bigrams features, only the NB algorithm was used, featuring an accuracy of 89%.
To improve the accuracy of NB, the paper tested its use with the help of the Stopwords
deletion technique, where, in combination with Unigrams and Bigrams, they achieved
87% and 89% accuracy, respectively. Finally, another experiment was conducted in which
SVM was used in combination with the technique of estimating the importance of a word
in a text (TF-IDF). The result was satisfactory, as the accuracy reached 92%. From the
experiments conducted in [15], a clear picture emerges of the dynamics that Transformer
models, such as BERT, incorporate in regard to sentiment analysis.

The contribution of [16] to the research community is also important. In this paper,
we consider another Machine Learning methodology using the SVM algorithm on datasets
expressing people’s opinions in different languages. More specifically, the researchers
consider a hybrid approach for sentiment prediction in which they use the Word2Vec
methodology to generate word embeddings in combination with the use of dictionaries.
Finally, by applying different combinations, they achieve an accuracy of 83.60% on a set
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of user ratings (Dataset MOBILE-PAR: includes 1976 ratings for training and 3329 for
testing), a performance that significantly stands out from the unsupervised methods of
other researchers, where, according to [16], they achieved an accuracy of 78.05%. Due to its
great potential, the Word2Vec model has been used in many NLP research projects, offering
remarkable results.

Cui et al. [17] conducted research on product reviews online and classified them as
either positive or negative. They examined at least 100,000 product reviews collected
from Froogle (an early name of Google’s product search service; it was renamed Google
Shopping in 2007) and trained Passive—Aggressive (PA) algorithms, which are variations
of SVM models, and Language Modeling (LM) algorithms, which calculate the probability
of a text appearing based on the n-gram occurrence frequency. The best accuracy achieved
was reported using the PA Classifier with n-gram features for n = 6, where the overall
F1-score approached 90%. The use of more complex features, such as higher-order n-grams,
seems to confirm that the accuracy of sentiment classification in product reviews can be
improved, providing more detailed and satisfactory content analysis.

The paper [18] presents and discusses the use of the Word2Vec model for sentiment
classification in Twitter posts about US airlines. The models used in this research are
Logistic Regression (LR), Gaussian Naive Bayes (GNB), Bernoulli Naive Bayes (BNB), and
SVM. In addition, the CBOW and Skip-Gram methods, two key approaches to Word2Vec,
were examined. Skip-Gram attempts to predict neighboring words given a central word,
while CBOW attempts to predict a central word based on its neighboring words. The best
accuracy obtained by CBOW is for the SVM classifier at 70%, while Skip-Gram achieves a
higher accuracy of 72% when combined with SVM and LR.

The research paper [19] discusses sentiment analysis of hotel reviews in the Indonesian
language retrieved from the Traveloka website using Selenium and Scrapy detection
libraries. This research achieved an average accuracy of 85.96% on 2500 review texts using a
combined approach featuring Word2Vec and the Long Short-Term Memory (LSTM) model.
More specifically, Word2Vec was used to generate the word embeddings from the hotel
reviews, and these embeddings were then fed into the input of the LSTM model to classify
them with a positive or negative polarity. The LSTM architecture has the advantage of being
able to maintain an internal state (cell state) which acts as a memory that allows information
to be stored for long periods of time while having the ability to forget information that is
not useful.

Another very important contribution to the research community is the work of [20].
In this study, the researchers use a dataset that includes at least 7900 negative comments,
more than 7000 positive comments, and over 44,000 neutral comments of varying length, all
originating from different social media platforms. They perform tests on binary (2 classes:
negative and positive) and three-class (3 classes: negative, positive, and neutral) classifi-
cation, using Transformers models and other advanced architectures. They are particu-
larly interested in three-class classification, with which they train a GreekBERT model, a
PaloBERT model based on the Robustly Optimized BERT Pretraining Approach (RoBERTa),
and a GreekSocial BERT model, which is an extension of GreekBERT. Although the dataset
does not have balanced class-clusters, the researchers achieve an excellent performance,
scoring 99% accuracy while using a Generative Pre-trained Transformer (GPT) model for
binary classification. On the other hand, in the three-class case, the GreekSocial BERT model
shows the highest performance, achieving 80% accuracy.

3.2. Scientometrics

An important branch of research dealing with the measurement, analysis, and evalu-
ation of scientific activity is Scientometrics [21], which is often considered the science of
science. The main difference between Scientometrics and Sentiment Analysis is that it uses
mainly quantitative methods. The goal of Scientometrics is to evaluate the development of
a field and the influence of scientific publications. It essentially monitors research, eval-
uating the scientific contribution of author-researchers, journals, and specific papers, as
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well as evaluating the development and dissemination of scientific knowledge [22]. The
researchers Gonzalez-Alcaide et al. [23] used scientometric methods to identify the main
research interests and directions regarding cardiomyopathy in the MEDLINE Database,
one of the most well-known and authoritative databases in the field of medicine and health,
which is under the auspices of the National Library of Medicine (NLM) of the United
States. They identify research patterns and trends in Chagas’ cardiomyopathy. Similarly,
Mosallaie et al. [24] used scientometrics approaches to identify trends in cancer research,
while Wahid et al. [25] applied scientometric methods and a comparative analysis to a
group of authors to determine their scientific productivity. Additionally, [26] presented an
alternative approach by mainly applying Convolutional Neural Networks (CNNs) to clas-
sify scientific literature. The model they proposed performed better compared to classical
Machine Learning methods in terms of accuracy.

3.3. Scientific Citation Analysis (SCA)
3.3.1. Citation Contribution

In the world of scientific research, no research work is exclusively independent, as it is
necessarily embedded in the literature of the respective research field. Citation-referencing,
a vital element of this embedded structure, reveals the relationships and interactions
between research articles, confirming the interactivity and ongoing debate within the
scientific community. Beyond being just a reference method, citations have a critical role in
the scientific literature, contributing to the ranking of various aspects, such as the ranking
of research institutions and authors [5]. Citation analysis is at the core of bibliometrics,
functioning as the science that studies these complex relationships between research articles.
This systematic process through which authors cite the works of others creates a dense
network of citations that is essential for the maintenance and advancement of scientific
knowledge [5,27].

As mentioned above, sentiment analysis identifies and classifies opinions expressed in
documents. Sentiment analysis of citations has attracted particular attention for two main
reasons: First, to improve bibliometric metrics by focusing primarily on the quality rather
than quantity of citations, with the aim of reducing bias and providing evidence-based
support for writing. Second, to detect non-reproducible research, i.e., the identification
of research papers or results that cannot be replicated or verified by other researchers,
especially in the biomedical field, where unfavorable attitudes may be early indicators
of the non-reproducibility of research, thus saving time and resources [28]. Therefore,
although positive polarity citations have a significant impact on science, as they can
enhance the validity and reliability of findings and even promote the reputation and career
of researchers, the study by Catalini et al. [29], however, equally highlights that negative
citations can also play an important role in science. Indeed, in some cases these citations
can help to improve initial findings and aid in the development of a field, indicating the
multidimensional importance of emotion analysis in scientific research. Often, however,
due to their nature, such citations may simply not attract attention, and the information
they offer may take some time to become widely known [29]. Therefore, observing the
trajectory of negative citations, as well as the various motivations that lead to the citation
of prior literature, is a very important process [29].

3.3.2. Text and Citation Preprocessing

Text Preprocessing before classification is a critical step in the process of extracting
useful information and knowledge from the data. This process usually involves techniques
such as tokenization, whereby a text is broken down into tokens; cleaning the text of
unwanted elements, such as punctuation and other special characters; removing words
without significant meaning (Stopwords); and converting to lower case. In addition, there
are other important techniques, such as Lemmatization, where words in various forms
are converted to their basic form (known as lemma), and Entity Recognition, where a
system attempts to identify and categorize the names of people, organizations, places, etc.
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within the text. Entity Recognition or Named Entity Recognition (NER) is particularly
useful for structured organization of information, as it helps to further analyze the data
and therefore is also part of the preliminary steps that prepare the text for more specialized
Machine Learning techniques [5,18]. In addition, the Term Frequency-Inverse Document
Frequency (TF-IDF) and Word2Vec techniques are also part of the broader text processing
process. They refer to the phase of representing words in the form of vectors, which usually
follows basic pre-processing. TF-IDF is a statistical method used in NLP to evaluate how
important a word is in a document. The more often a word appears in a document, the
greater its importance. Word2Vec is also a technique that generates word vectors using
Deep Neural Networks. These vectors represent words in a continuous-dimensional space
where words with similar semantic properties are close to each other. This allows the
models to understand words based on their context of use and their relationship with other
words [5,18].

At this point, it should be emphasized that there are significant differences in prepro-
cessing plain text compared to a scientific text. These differences stem from the nature of the
vocabulary, the structure of the text, and the complexity of the information. Scientific texts
include technical terminology, so preprocessing must manage these concepts appropriately
and preserve relevant terms rather than removing them as noise. Scientific texts include
citations to other works that need to be recognized and managed differently from the
plain text. To effectively preprocess scientific texts, there are several steps that can help to
better manage and analyze the data. In terms of special character management, characters
that are important in scientific terminology, such as mathematical formulas, should be
preserved. In addition, in terms of identifying citation contexts, keywords should be kept
that identify semantic citations such as expressions of the form “according to <author>" or
the form “author et al.”. This depends on the citation style used. Finally, in scientific texts,
an excellent preprocessing technique is the NER procedure mentioned above. NER can
improve the way words are represented within a document, identify entities, and extract
information from a large volume of scientific articles. Finally, NER systems are very often
combined with ontologies to identify categories of entities, moving beyond general labels
such as “person” to more specific and scientifically relevant labels.

3.3.3. Citation Context Retrieval Methods and Classification

Retrieving citation context from scientific articles aims to understand and analyze the
content. The process starts with the identification and extraction of sentences containing
citations. This is usually achieved using NLP models and Machine Learning algorithms,
such as SVM or Conditional Random Fields (CRFs), which analyze the text and identify
areas that may contain citations. Once these areas are identified, the next phase is to
interpret the content to apply further analysis techniques depending on the research
objectives, such as the polarity assessment discussed in the previous sections. Figure 7
shows the basic steps of text classification.

Many researchers have used open-source tools or other techniques to retrieve and
analyze citations. Awais Athar [30], in his research in 2011, studied Supervised Learning by
applying the SVM model with n-grams, length 1-3, and other features to analyze citations.
He chose the ACL Anthology Network [30-32] for data collection and analyzed a total of
8736 citation frames from 310 scientific articles via manual labelling methods, classifying
each sentence into a category: positive, negative, or neutral. In addition, he separated
the data into 1472 samples for training and 7264 samples for control, of which 6277 were
classified as neutral, 743 as positive, and 244 as negative. Thus, an unbalanced data set was
formed. The results of his experiments showed that applying such an approach is useful
for identifying only explicit citations [2]. As evaluation metrics he reported macro-F1 and
micro-F1 using 10-fold Cross Validation. The best results obtained were 76.40% and 89.80%
for macro-F1 and micro-F1, respectively [30].
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Figure 7. The basics steps for Text Classification with a focus on Citation Contexts.

Councill et al. [33], in their 2008 research, describe ParsCit, an open-source software
tool for retrieving the citation context from research papers and analyzing literature strings.
To enable comparison with other related tools, the researchers focused on literature analysis,
meaning that they examined the references typically listed in the last section of a scientific
article, ignoring the contextual contexts within the text. At the core of ParsCit is a pre-
trained CRF model that is used to label the tokens of strings. Furthermore, it offers
additional functionality using state-of-the-art Machine Learning models and heuristics to
achieve high accuracy in text segmentation, as well as in string recognition and retrieval.
Also, the software comes with utilities to run as a standalone or as a Web service. One
of the key works of [33] was the comparison of ParsCit with an older CRF-based system
proposed by Peng and McCallum in 2004 [34]. This system was the source of the research
of [33]. The dataset they used was Cora [35], which is one of the earliest works in text
analysis. This dataset created a template with 200 reference samples collected from a variety
of scientific publications in the field of computer science [33]. Each of these references
was divided into thirteen distinct categories: “author”, “book title”, “date”, “publisher”,
“organization”, “journal”, “location”, “notes”, “pages”, “publisher”, “technology”, “project
title”, and “volume” [33]. The results showed the superiority of ParsCit (with Average
F1-score: 95%) over Peng CRF (with Average F1-score: 91%) [33].

Due to the effectiveness and widespread use of the SVM algorithm, the team of Ezra
et al. [36] successfully applied this algorithm to classify citation sentences within the text.
According to them, existing bibliometric measures usually provide quantitative indicators
of how good a scientific paper is. However, this does not necessarily mean that they reflect
the level of quality of the work exposed in the research. For example, when calculating
a researcher’s h-index, every incoming citation is considered in the same way, ignoring
the possibility that some of them might be negative [36]. Thus, researchers [36] proposed
the use of NLP techniques to add a qualitative aspect to bibliometrics. Specifically, they
analyzed the citation contexts of scientific articles obtained from the ACL Anthology Net-
work [32] and applied supervised Machine Learning methods to determine the purpose and
polarity of the citations. To categorize purpose, they used six category-classes: “Critique”,
“Comparison”, “Use”, “Documentation”, “Base”, and “Other”. For their experiments, they
applied several classification models, including LR, Naive Bayes Classifier, and SVM. The
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researchers do not present the results of all the algorithms; however, they do highlight
SVM, which achieved the highest Accuracy of 70.50%, while macro-F1 reached 58%. For
the citation polarity classification, only the results for the SVM model are also presented.
Two experiments were conducted: in the first one, only explicit citations were used without
considering any other context of the text, while in contrast, the second experiment used the
wider context surrounding a sentence. This broader context does not exclusively involve
implicit citations; it simply includes those sentences that are close to the referencing sen-
tence and are considered important or relevant by human evaluators for understanding
the meaning of the citation. The results noted with SVM are Accuracy 74.20% and 84.20%
and macro-F1 62.10% and 74.20% for the first and second experiments, respectively [36].
The findings of the study point out that incorporating the wider context of the citation
significantly contributes to improving classification accuracy (especially in the categories
with subjective nature, and particularly in the negative category). This can be seen through
the improvement in the Recall metric of the negative category, which, while only reaching
71.10% in the first experiment, improves by 10 points to approach 81.10% in the second
experiment [36].

A different approach from the above papers that focuses on literature analysis and
the purpose/polarity classification of citations is the research by Kumar et al. [37], who
applied Supervised Learning using Maximum Entropy (ME) and SVM classifiers. Their
goal was to determine whether a sentence in an article is a citation to another article or
not, thereby making it a Binary Classification problem. They used the ACL Anthology
Reference Corpus (ACL ARC) [32,38] for their experiments. The ACL ARC numbered about
10,921 articles by February 2007, and the researchers were able to retrieve features from a
total of 955,755 sentences. Then, for citation identification, they identified 112,533 sentences
as instances containing citations (positive samples), followed by subsequent processing to
remove citation markers (e.g., IEEE styles such as [1,2] or APA such as Schmidt, 2017) from
them. The remaining 843,222 sentences were classified as sentences that did not constitute
citations (negative samples) [37]. Thus, they formed a dataset and applied the 10-fold
Cross Validation evaluation method by separating the data into two parts: 90% for training
and 10% for testing. This procedure was repeated 10 times to obtain the results of the
evaluation [37]. According to their results, the lowest accuracy was noted in the “Bigram”
feature for both models. ME achieved an accuracy of 82.70%, while SVM reached 85.10%.
On the other hand, the highest accuracy was achieved on the features “Proper Noun” and
“Previous and Next Sentence”. Both ME and SVM achieved the same maximum accuracy of
88.20% in both the above features [37]. Also noteworthy is the conclusion drawn about the
size of the training data. By changing the volume of this data, variations in the performance
of the models can be discerned; however, the ME shows more variation mainly in the
accuracy of the “Unigram”, “Bigram” and “All” features. This means that the accuracy of
these features depends on the volume of training data, and it follows that, the larger the
size of these data, the higher the classification accuracy that can be achieved [37].

The features retrieved by [37] to construct their classifiers are presented in more
detail below:

e  Unigram. Unigram refers to a model of language analysis where the key element is
the individual word. In this framework, each word in a sentence is considered an
independent element or feature. In NLP, Unigrams are used to analyze and understand
texts based on the individual words that make up the texts [37].

e  Bigram. Bigram is a linguistic unit consisting of two consecutive words. In NLP,
Bigrams are used to understand the relationships and structures created between two
consecutive words in a sentence. This helps in analyzing the language flow and word
combinations that are frequent in each text [37].

e  Proper Nouns. These are nouns that describe the names of people, places, and organ-
isms. These features are of great importance in the detection of referential sentences,
as it is known that such sentences tend to focus on different institutions, specific
scientists, and the systems they have developed [37].

49



Electronics 2024, 13, 1753

e  Previous and Next Sentence. This is information about neighboring sentences. For
example, if a sentence follows a sentence with a citation, it may continue the discussion
of the same topic, so it is less likely to include an additional citation [37].

e  Position. The position attribute provides information about the part of the document
in which a sentence appears. These attributes are important, as sentences appearing
in certain sections have different probabilities of containing a citation. For example,
sentences in the middle or at the end of a research article are more likely to discuss
authors” works, evaluations, or experiment results, so they are considered less likely
to be areas with citation compared to the beginning of the article, where authors often
discuss and acknowledge previous work [37].

e  Orthographic. This group of features looks at various morphological elements in
sentences, including the specific orthographic forms used. Sentences that include
numbers or single capital letters tend to be more suggestive of citation sentences, as
they may indicate comparative figures or the initial letters of the name of the authors
of the papers being referenced [37].

e  All Includes all the above features.

One of the main difficulties in Machine Learning approaches is their dependence on
the correct choice of features [2], at least as far as Sentiment Analysis in texts and scientific
citations are concerned. Therefore, feature extraction methods are not effective in some
cases, as is the case with recognizing the negation or opposite meaning of a sentence. For
example, the sentence “I hate violence” might not elicit any negative emotion; however, a
Machine Learning model might, due to the presence of two negative words, classify it as a
sentence with a negative polarity. These are the limitations that Deep Learning models are
called upon to address, as they can produce semantic representations. According to [2], not
much research has been conducted regarding the Sentiment Analysis of scientific citations
with Deep Learning models; however, they propose the implementation of Recurrent
Neural Networks (RNNSs) to test the effectiveness, as they show good performances in
regard to interpreting semantic content.

One research that examines Neural Networks for Sentiment Analysis in citations is
the work of Munkhdalai et al. [39]. Their study describes the development of a new Neural
Network model called Compositional Attention Network (CAN). They use data from
PubMed Central, focusing on function categorization and sentiment analysis in four classes:
“Negational”, “Confirmative”, “Neutral”, and “Do Not know”. Specifically, they selected
5000 citation sentences from 2500 random articles, then organized a tagging scheme for
these sentences where each sentence was tagged by five human annotators. Finally, they
constructed two datasets for training and evaluation. The first dataset consisted of labels on
which at least three of the five annotators agreed (Three Label Matching). This resulted in
3624 citations for sentiment analysis. To construct the second dataset, most of the opinions
of the five commentators were relied upon. In other words, a label was chosen for each
citation text only if that label was decided by a majority of the five commentators (Majority
Voting). This means that, even if only two commentators agreed on a label, it would be
entered into the dataset because it represented a clear majority, as the other three labels
differed. As a result, a total of 4423 citation suggestions for sentiment classification were
entered into the second dataset. It becomes obvious from the above that the Majority Voting
approach is more lenient compared to the Three Label Matching method. In addition,
the researchers applied models such as LSTM, Bi-LSTM, and attention models. CAN
shows significant improvement in accuracy, especially when additional sentence context
information is included. For sentiment analysis, the LSTM model combined with CAN
achieves the highest accuracy compared to the other models (76.04% for Majority Voting and
78.10% for Three Label Matching), showing its superiority in handling more information
and providing better representations of the data. It should also be mentioned that the study
of [39] also used the SVM model, which showed low generalization to new data as it scored
the lowest accuracy in both methods (75% for Majority Voting and 71.95% for Three Label
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Matching) compared to the Neural Network models, which highlights the superiority of
Deep Learning.

Progress in the field of Deep Learning led to the creation of the Transformer language
models. These models are a powerful class and have proven their effectiveness in many
Al applications. These models were originally introduced to solve problems in the NLP
domain, such as text generation and entity recognition. The main feature of Transformers
is their ability to consider the semantic dependencies between words in a text without the
use of traditional recursive architectures. This is achieved through mechanisms that focus
on parallel processing of information in large sequences of data, such as the Attention
Mechanism. Important research on sentiment recognition using Transformer models was
conducted by researchers Dahai Yu and Bolin Hua [40]. In their study, they emphasized
the importance of pre-trained models such as BERT, which was trained on general texts
from the internet, and SCIBERT, which is a variant of BERT and was trained using scientific
articles. According to [40], SCIBERT is considered more suitable for applications related to
the scientific and academic community, such as the classification of scientific texts and the
recognition of emotions in them. After a detailed investigation, it was found that several
sentiment analysis studies did not disclose the datasets, while, in other cases, the available
datasets proved to be of low quality [40]. To further improve the accuracy of content-
level training, the researchers decided to use the SCICite dataset proposed by Arman and
colleagues [41]. This dataset included a training set of about 10,000 citations and a control
set of about 1000 citations, which were classified into three categories in terms of intent:
“Method”, “Background” and “Result” [40]. They also considered the dataset proposed by
Athar in [30] and, after extracting about 1000 citations from SCICite, they enhanced Athar’s
dataset. Finally, the aggregated dataset consisted of 7912 suggestions, including 1237
positive, 347 negative, and 6328 neutral [40]. To perform their experiments, in addition to
the two pre-trained models (BERT, SCIBERT) used as a basis, they designed and proposed
the DictSentiBERT model, which adapts the Dictionary-based Attention Mechanism and
applies emotion categorization of scientific citations [40]. In addition, four other models,
LSTM, FeedForward NN (FNN), TextCNN, and Self-Attention, were tested. The models
were trained on an RTX A4000 processor with 16 GB of memory and a maximum number
of epochs of 50. During an epoch, the data was split into an 80% for the training set and
a 20% for the test set. The Batch Size and Learning Rate parameters were set to 32 and
5 x 107, respectively. AdamW was used as the optimizer, and cross-entropy was used
as the loss function [40]. From the data presented in Table 6, the FNN, LSTM, TextCNN,
Self-Attention, and DictSentiBERT models based on both BERT and SCIBERT showed high
Accuracy, with DictSentiBERT achieving the highest accuracy (BERT 93.49% and SCIBERT
95.20%). Additionally, the BERT model showed an average accuracy of 91.23% and an
average macro-F1 value of 74.60%. In contrast, SCIBERT showed even better results, with
an average accuracy of 94.80% and an average macro-F1 value of 85.20%. This finding
suggests that SCIBERT, which, as mentioned, was specifically trained on scientific texts,
is more suitable for analyzing and categorizing emotions in citation texts. Furthermore,
the improved performance of DictSentiBERT indicates the advantage of incorporating a
sentiment lexicon into the model [40].

Table 6. Experimental results. Accuracy and macro-F1 (%) [40].

BERT SCIBERT
Models Accuracy Macro-F1 Accuracy Macro-F1
FNN 93.05 80 95.14 86
LSTM 93.11 80 94.63 84
TextCNN 83.20 52 94.57 86
Self-ATTENTION 93.30 80 94.44 84
DictSentiBERT 93.491 81 95.20 ! 86

! Max Accuracy for DictSentiBERT.
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The dynamics of Transformer models were also highlighted in the study by Ning
Yang et al. [42], which analysed the effectiveness of BERT-based methods for identifying
scientific data citations while focusing on information extraction from bioinformatics texts
and citation recognition as a Binary Classification problem. The texts were obtained from
PubMed Central (PMC), where 35 journals were collected as data sources and 38,931 full-
text documents were retrieved. The paper classified the diverse forms of text citations into
the categories of “scientific data citations” and “non-scientific data citations”; these two
categories were treated as positive and negative, respectively (Binary Classification). In the
end, 3067 citations (positive samples) and 12,869 citations (negative samples) were obtained.
The study compared the performance of some models, such as SCIBERT discussed above,
with classical Machine and Deep Learning models. The study also found that BERT-
based models, especially BioBERT, perform better compared to other models. For their
experiments, in addition to SCIBERT, BERT and BioBERT, classical models such as, Decision
Tree model, Random Forest model, TextCNN, and TextRCNN were used. In Table 7, we
present the results, which show the superiority of the BERT based models. Precision, Recall,
and F1-score metrics are also shown. Of significant interest is the BioBERT model proposed
by Lee et al. [43], which is based on BERT and applied to the biomedical domain (which
is closely related to the field of bioinformatics). This makes it a high-performance model
which, in the study of [42], scores the highest Recall.

Table 7. Models and Metrics. Precision (%), Recall (%), F1-score (%) [42].

METRICS

Models Precision Recall F1-Score
Random Forest 82.80 71.60 75.20
Decision Tree 75 75.40 75.20
TextCNN 86.40 75.60 79.40
TextRCNN 84.20 76.50 79.50
BERT 86.90 82.70 84.60
SCIBERT 86.70 84.10 85.30
BioBERT 85.70 84.90 ! 85.30

1 Max Recall for BioBERT.

Finally, this research [42] demonstrates that Machine and Deep Learning techniques
are successful in detecting and classification scientific citations. Moreover, the findings of
this study support that Deep Learning outperforms traditional models by achieving higher
generalization and performances, as it considers the semantic features of a document. The
capability of these models makes them an important tool in natural language analysis and
processing, offering significant potential for accurate interpretations of information.

3.3.4. Citation Recommendation

The development of a Citation Recommendation System (CRS) can help researchers
discover additional research relevant to their topic. Through sophisticated algorithms and
Machine Learning models, such a system can recommend citations that are closely related
to the content of the article. By highlighting the most relevant citations, researchers can
enhance the validity and relevance of their work. When writing research articles, there are
often instances where previous research needs to be referenced, but there is no certainty in
selecting cited sources. In their study, He et al. [44] propose a context-aware CRS. Creating
high-quality citation proposals can be significantly challenging as the citations proposed
must be relevant to the topic of the article and adapted to the specific contexts where they
are used. The main idea of [44] is therefore to design a new non-parametric probabilistic
model that can evaluate the relevance of a citation context and a paper. Similarly, the issue
of citation recommendation was also addressed by Silvescu et al. [45]. In their research,
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they examined the challenges of discovering relevant citations by focusing on the use of
the Singular Value Decomposition (SVD) technique compared to Collaborative Filtering
(CF) methods. The results of their experiments showed the superiority of the proposed
SVD approach, which achieved significant success compared to CF methods. Their paper
also discussed the creation of a new dataset from the CiteSeer Digital Library [46] for
experimentation and evaluation on more advanced recommendation models.

The above research highlights the importance of the evolution in citation recommen-
dation technology, offering more interesting, comprehensive, and relevant information
to researchers.

4. Challenges in Sentiment Analysis

Sentiment Analysis in text, in general, faces several challenges that range mainly from
technical issues to semantic aspects. Some of the most basic challenges are discussed below:

e  Syntax errors. Natural language is complex, and people often make syntactic errors
which can make it difficult to process language automatically.

e Multiple meaning. Words can have multiple meanings depending on the context in
which they are used, which can create confusion and misinterpretation. The use of
complex vocabulary usually makes it difficult to understand the information. For
example, in a text containing the phrase “It was terribly good”, the word “terrible”
usually has a negative connotation; however, in this phrase it is used to reinforce a
positive adjective, “good”, which can confuse automated sentiment analysis systems.

e  Variety and style. Texts in general can include various types of written expression, such
as literature, essay, narrative, journalism, and many others, each with its own style
and mode of expression.

e  Complexity. Natural language in general is complex and multidimensional, with
sarcasm, allegory, hyperbole, and other elements adding considerable complexity to
the analysis of emotions [47]. Irony and innuendo often escape analysis by automatic
systems, which can lead to misunderstandings and misinterpretations of emotional
tones in research.

e  Subjectivity. As the understanding of emotions is subjective, different people may
interpret the same texts differently [47].

e Ambiguity. Dealing with vague or contradictory statements in texts is a very impor-
tant challenge.

o  Cultural differences. Cultural and dialectal differences can affect the way emotions are
expressed, making analysis difficult for systems not trained in different languages
or cultures [47]. For example, in some cultures, the expression of anger may be less
direct or intense compared to others. This may affect the accuracy of emotion analysis
models that have not been trained to recognize such variations.

e  Spam detection. The content present in messages can be complex, which makes it
difficult to identify as spam. Moreover, the amount of data to be analyzed is huge,
making spam detection resource intensive [47].

e  Language evolution. Natural language is dynamic and constantly evolving, requiring a
corresponding evolution of methods and systems for emotion analysis.

There are significant differences in the challenges encountered when analyzing emo-
tions in texts compared to those encountered in scientific publications. When examining
scientific citations, emotion identification is a complex challenge due to the specialized na-
ture of language, the need to accurately understand emotional nuances, and the complexity
of scientific concepts. This requires the development of advanced algorithms that can adapt
to the constant changes in the field of linguistic and scientific development. Some of the
fundamental challenges are discussed below:

o Complexity and complex vocabulary. Scientific citations often include specialized vocabu-
lary and technical terms that may not express emotions in the traditional way.

e  Abstraction. The use of language is often more abstract and less direct, resulting in a
lack of strong feelings towards the reported research [2].
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Multilingualism. Citations can be written in multiple languages, increasing the com-
plexity of sentiment analysis due to differences in grammar, syntax, and affective
expressions that are specific to each language [2].

Context and social environment. Understanding the context and social environment in
which a scientific article was written is essential for accurate analysis of emotions.
NLP methods. The development of algorithms that can recognize and interpret polarity
in scientific texts requires advanced NLP techniques.

Lack of datasets. There are not many datasets available that are labeled either for purpose
or for citation polarity [2]. The creation of a database that is enriched with citation
contexts to serve later in the training of a model capable of recognizing citations in
scientific texts (while, at the same time, distinguishing their polarity) emerges as a
significant challenge.

Stop words. As mentioned, these are a category of words that are usually removed from
the data in NLP applications. These words often include prepositions, links, and other
common words that do not add significant meaning to the essence of a document.
However, in scientific texts, the absence of some of these words can negatively affect
classification performance [2].

Exporting a citation context. Identifying the right context is an important issue. The
contexts derived are varied. Some researchers focus on extracting a single sentence,
while others extract entire paragraphs. This diversity makes accurate extraction an
important and complex process [2].

Citation label. How a class is assigned to a citation sentence is of great importance.
In many cases this process is undertaken manually, making it difficult to label large
datasets. Therefore, the process of automatic tagging in such texts is a very important
challenge [2].

Words of denial. The role of negation words is crucial in determining the emotional
direction of a citation context. Identifying and handling negation is a difficult process
and continues to be a significant challenge, as it can result in reverse polarity [2].

Below, we present a concise table that compiles and examines the primary challenges

encountered, the Machine Learning models, the management of available resources and
datasets, as well as the performance analysis through the experiments of the studies
investigated (Table 8). Papers that do not provide enough information, such as models,
datasets, and experimental results, were not included in the table.

Table 8. Comprehensive Overview of Machine Learning Challenges, Data Management, and Perfor-

mance Insights.

Models, Datasets, Data Experimental
Authors, Year Challenges Techniques Sources Results
H. Cui et al., 2006 Sentiment Analysis in Passive-Aggressive (PA) Froogle Accuracy:
[17] Product Reviews Language Modeling (LM) & 90%
. ParsCit
References Extraction,
I. G. Councill et al., . / . micro-F1: 95%
2008 [33] Parsglc’)c I;s.alziesr;gn CRF ParsCit, Peng CORA Dataset Peng CRF
P macro-F1: 91%
Min Accuracy (Bigram
Feature)
ME: 82.70%
K. Sugiyama et al., Citation Recognition, SuMaQFSEZ?EZ&h:(?{He ACL Antholo SVM: 85.10%,
2010 [37] Binary Classification PP (SVM) &Y Max Accuracy (Proper

Noun and Previous and
Next Sentence)
ME and SVM: 88.20%
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Table 8. Cont.

Models, Datasets, Data Experimental
Authors, Year Challenges Techniques Sources Results
. . ACL Anthology ) o
A. Athar, 2011 [30] T olarity Analysis in SVM, WEKA and macro-Fl: 76.40%
Explicit Citations 1 micro-F1: 89.80%
Resources
SVM only
Purpose Class.
Accuracy: 70.50%
Citation Context macro-F1: 58%,
Analysis, . . Polarity Class. Explicit
A AZO];) 3afg 6? al, Citation Purpose S?ﬁg Iﬁiﬁ:%fefse(;sgn ACL Anthology Accuracy: 74.20%
Classification, Citation ’ 4 macro-F1: 62.10%,
Polarity Classification Polarity Class. Wide
Content
Accuracy: 84.20%
macro-F1: 74.20%
A. Tsakalidis et al., gwfertli FAIACtion  TBR, FBR, LBR, CR, Twitter & ) Aceuracy: 8181
2014 [9] olarity Analysts, API, Ensemble Algorithm esources ceuracy: o1.o4%
Feature Extraction
. . 5
P. Tsantilas et al., Sentiment Anglysm, PaloPro 3 Real. Nevys. 6 PP
2014 [12] Named Entity OpinionBuster 4 Kathimerini Accuracy: 64%
Recognition Facebook, Twitter
Greek tweets Maximum, CombMNZ, Pearson Correlation
S. Symeonidis et al., Extraction. Sentiment Arithmetic Mean, Dataset with 0.26
! Quadratic Mean, Twitter Greek tweets Kendall Correlation
0.22

2015 [11] Analysis

Streaming API

Citation Function
Fl-score Bi-LSTMs + CAN
Majority Voting: 60.67%

Citation Function PubMed Central and
T. Munkhdalai Classification, Compositional Attention (PMC) and Three Label Matching:
et al., 2016 [39] Citation Sentiment Network (CAN) 78 75.57%,
e s Resources - L .
Classification Citation Sentiment
Fl-score LSTM + CAN
Maj. Vot.: 76.04% and
T. L. Matching: 78.10%
M. Giatsoglou et al., Sentiment Word2Vec, . Accuracy:
2017 [16] Analysis Lexicon Based Mobile—PAR 83.60%
LR, Gaussian Naive Bayes Accuracy
J. Acosta et al., 2017 Sentiment Analysis (GNB), Bernoulli Naive Twitter. Kagole ? CBOW + SVM: 70%
[18] of Twitter Messages Bayes (BNB), SVM, CBOW, er, Raggle Skip-Gram + SVM: 72%
Skip-Gram, Word2Vec Skip-Gram + LR: 72%
P. Muhammad Sentiment Word2Vec, LSTM, Traveloka Travel Accuracy: 85.96%
etal.,, 2021 [19] Analysis Selenium, Scrapy Platform 1° Yz 897070
Binary Classification
g . . Transformers, GreekBERT, GPT Accuracy: 99%
(; ?116)2(8;;1 1&12c(1)1]s in Iéif;litgiir;?lﬁézia PaloBERT, RoBERTa, Greek Social Media Multi Classification
v GreekSocialBERT, GPT GreekSocialBERT
Accuracy: 80%

Database from

Accuracy: 92%

N. Avgeros, 2022 . .
[13] Sentiment Analysis Neural Networks Skroutz
N. Fragkis, 2022 . . Database from ogo
[14] Sentiment Analysis BERT Model Skroutz Accuracy: 96%
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Table 8. Cont.

Models, Datasets, Data Experimental
Authors, Year Challenges Techniques Sources Results
NB + Bigrams + Stopwords
- . Accuracy: 89%
D. Bilianos, Sentiment SVM, NB, 1 /
2022 [15] Analysis TF-IDF, BERT Resources SVM + TF-IDF

Accuracy: 92%,
BERT Accuracy: 97%

M. Daradkeh et al.,

2022 [26] Scientometrics CNNs Models Unknown Accuracy: 81%
Sentiment BERT, SCIBERT, DictSentiBERT (BERT)
D. Yu et al., 2023 Cl;ssi;icaetion DictSentiBERT, LSTM, Resorees 1213 Accuracy: 93.49%,
[40] ¢ Siontific Citation FNN, TextCNN, esources DictSentiBERT (SCIBERT)
Of eietific tatio Self-Attention Accuracy: 95.20%
Entity Citation Random Forest,
N. Yang et al., 2023 Rectz), nition Decision Tree, TextCNN, PubMed Central SCIBERT and BIOBERT
[42] Binar Cfa ssi fica,tion TextRCNN, BERT, (PMCQ) F1-score: 85.30%
y SCIBERT, BIOBERT

! Resources by Athar: “https://cl.awaisathar.com/citation-sentiment-corpus/ (accessed on 8 April 2024)”;
2 Resources by Tsakalidis (github): “https://github.com/socialsensor/sentiment-analysis/tree/master/src/
main/resources (accessed on 10 April 2024)”; 3 Palo Digital Technologies Ltd. (Athens, Greece): “https://www.
palo.gr/ (accessed on 10 April 2024)”; 4 OpinionBuster has been developed as part of the Ellogon Platform:
“http:/ /www.ellogon.org (accessed on 10 April 2024)”; 5 “https:/ / www.real.gr/ (accessed on 11 April 2024)”;
6 “https:/ /www.kathimerini.gr/ (accessed on 11 April 2024)”; 7 Yelp 2013: “https:/ /www.yelp.com/dataset/

documentation/main (accessed on 11 April 2024)”; 8 IMDb Movie Reviews: “https://paperswithcode.com/

dataset/imdb-movie-reviews (accessed on 12 April 2024)”; o “https:/ /www.kaggle.com/ (accessed on 12 April

2024)”; 10 Traveloka website: “https:/ /www.traveloka.com/ (accessed on 13 April 2024)”; 11 Resources by
Billianos (github): “https:/ /github.com/DimitrisBil/greek-sentiment-analysis (accessed on 13 April 2024)”;
12 (github): “https:/ /github.com /UFOdestiny / DictSentiBERT (accessed on 13 April 2024)”; 13 (github): “https:
//github.com/allenai/scibert/tree/master/data/text_classification/sci-cite (accessed on 14 April 2024)”.

5. Discussion

This section will answer the Research Questions noted in Section 2.1.

e  RQI. Machine Learning based techniques, such as SVM, Naive Bayes, and Decision
Tree, and advanced Machine Learning models, such as LSTM, BERT, RoBERTa, and
BioBERT, have provided significant improvements in the accuracy of detection and the
analysis of emotions. Deep Learning models have shown wonderful progress because
they can identify semantic patterns in the data. However, Deep Learning requires
significant computational resources and expertise, while traditional methods are often
simpler and more accessible.

e RQ2. In our review, the researchers used several preprocessing methods, such as
removing unimportant words (stopwords) from the text and converting words to
vectors using TF-IDF and Word2Vec techniques. Additionally, precision, recall, and
accuracy were used as evaluation metrics.

e  RQ@Q3. Machine Learning models, such as SVM, Naive Bayes, Decision Tree, etc., may
perform better in applications where data is limited or where parameters need to be
slightly modified. In contrast, Deep Learning models, such as CNN, LSTM, BERT, etc.,
are more suitable in cases of large and complex datasets. This is confirmed in [15],
where a small dataset was used and the SVM achieved excellent classification accuracy,
coming very close to the BERT model.

e  RQ4. In Sentiment Analysis, and classification tasks in general, the two main types
of learning used are Supervised Learning and Unsupervised Learning. Supervised
Learning is particularly popular because of its ability to provide accurate predictions
based on labelled data, which is critical in Sentiment Analysis. Unsupervised Learning
is a type of Machine Learning where models are trained on previously unlabeled data.
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Its goal is to discover hidden patterns in the data. In our review, we observed the
implementation of Supervised Learning.

RQ5. Sentiment Analysis allows for the identification of both positive and negative
emotions in scientific citations, increasing the ability to critique and understand the mo-
tivations behind scientific findings. By understanding the emotion conveyed through
scientific texts, researchers can improve communication and collaboration among
themselves. Recognizing the emotional cues in texts can help avoid misinterpretations
and create more constructive communication.

RQ6. Challenges include dealing with complex scientific terminology, multilingual-
ism, and the abstract nature of discussions that require specialized language process-
ing techniques.

RQ7. In addition to polarity detection, many researchers, as we observed in our review,
apply classification based on the purpose of the citation. For example, a frame of
reference can be supportive (supportive type) and reinforce an idea or viewpoint
presented in the text, critique another research (critique type), be used to compare
research results of papers (comparison type), document important previous studies
that support or influence the current research (documentation type), or even refer to a
paper that forms the theoretical background of the current study (base type).

RQ8. The availability of public datasets is still limited. Although there are some
sources that offer access to scientific articles and their references, datasets that include
labeled citation contexts are rare. One reason for this relates to the copyright that
protects scientific documents. Moreover, in the case of Supervised Learning it is
necessary to label citations manually, which makes it a complex process.

RQ9. Emotions play a crucial role in communicating scientific results, as they influence
the acceptance of information by the scientific community and the wider public.
Emotions can strengthen or weaken the persuasiveness of arguments, and they can
also encourage confidence in findings or, conversely, cause doubt. For example, a
scientific article that receives more positive citations may stimulate more interest and
active acceptance, while an article that receives negative citations may potentially raise
reservations among other researchers.

6. Future Research

Some recommendations for improvement in future related work are as follows:

Increase data. By increasing the amount of data, models become more accurate and
achieve higher generalization. In addition, the ability to collect data from different
platforms offers a more comprehensive approach to analyzing emotions.
Combination of different types of data. Merging information, such as text, image, audio,
and video, can improve the accuracy and completeness of sentiment analysis.
Pre-process methods. Data processing prior to model training can have a major impact
on the final performance. The choice of the most appropriate pre-processing method
depends on the nature of the data and the goal of each application.

Model selection. The process of selecting the appropriate model for solving a Machine
Learning problem is also a very important process. Any model trained on specific
data will perform well on such new data.

Architecture. The use of more complex Neural Network architectures (number of layers
and neurons) clearly affects the performance of the models.

Analysis of implicit and explicit citations. Extensive studying of the distinction and
interpretation of implicit and explicit citations within scientific texts for a better under-
standing of purpose and polarity.

Citation context retrieval methods. Focus on developing and improving methods for
retrieving, processing, and analyzing the citation context, including more advanced
approaches to reveal its deeper meaning.

Having reviewed the current challenges in the field of research regarding the analysis

of polarity in scientific texts, it is important to mention the prospects for future work. In the
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next stage of research, emphasis will be placed on the development of NLP and Machine
Learning methods. An important goal is to create a new dataset for both experimentation
and detecting polarity in scientific publications, as well as for comparing the results with
those reported by the research studies reviewed in this paper. Also, the intention behind
a citation in a scientific article will be investigated. Finally, there is the consideration
of developing a Citation Recognition System using pre-trained language models based
on BERT.

7. Conclusions

This research approached the analysis of emotions in text and scientific publications by
combining techniques from the fields of Machine Learning and Deep Learning, highlighting
the need for more advanced methods for detecting and evaluating emotional nuances.
Through the analysis of the polarity of emotions and understanding the purpose of citations,
their complexity and importance in scientific communication was revealed. With the help
of the research papers reviewed, this study highlighted the need for further research and
development in this area, enhancing the understanding of the value and influence of
scientific papers.
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Abstract: This paper aims to enhance the Graphical Set-based model (GSB) for ranking and classi-
fication tasks by incorporating node and word embeddings. The model integrates a textual graph
representation with a set-based model for information retrieval. Initially, each document in a collec-
tion is transformed into a graph representation. The proposed enhancement involves augmenting the
edges of these graphs with embeddings, which can be pretrained or generated using Word2Vec and
GloVe models. Additionally, an alternative aspect of our proposed model consists of the Node2Vec
embedding technique, which is applied to a graph created at the collection level through the ex-
tension of the set-based model, providing edges based on the graph'’s structural information. Core
decomposition is utilized as a method for pruning the graph. As a byproduct of our information
retrieval model, we explore text classification techniques based on our approach. Node2Vec embed-
dings are generated by our graphs and are applied in order to represent the different documents in
our collections that have undergone various preprocessing methods. We compare the graph-based
embeddings with the Doc2Vec and Word2Vec representations to elaborate on whether our approach
can be implemented on topic classification problems. For that reason, we then train popular classifiers
on the document embeddings obtained from each model.

Keywords: information retrieval models; set-based model; graphical document representation;
embeddings; text classification

1. Introduction

The primary focus in information retrieval lies in developing models that are both
effective and efficient, aligning with the information-seeking needs expressed by users
through unstructured queries. That process is conducted via information retrieval models
separated into three categories, set-theoretic, algebraic, and probabilistic; moreover, nu-
merous hybrid models have been developed, integrating a complexity that spans multiple
scientific domains beyond the scope of classical approaches [1].

One of the previously mentioned areas pertains to the field of graph theory. The
inception of graph-theoretic models for information retrieval can be traced back to approx-
imately 1957, as highlighted by Firth [2]. Subsequently, numerous graphical formalisms
have been applied to represent textual data in the format of these graphs. Blanco and
Lioma [3] introduced two distinct aspects of co-occurrence text graphs. The first aspect
involves an undirected structure, where an edge connects two nodes (terms) if they are
found within a specified window of terms. Term weights are computed using a method-
ology similar to TextRank [4], a variant of PageRank [5], or with a degree-based metric
known as TextLink. The second aspect entails a directed co-occurrence graph incorporating
grammatical constraints, expressed through part-of-speech (PoS) tagging.

Classical information retrieval models generate sparse document representations, giv-
ing rise to the concept of “Sparse Retrieval”. However, the evolution of information retrieval
has integrated machine learning algorithms to generate document vectors containing term
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scores learned from the documents, akin to traditional term frequency. This integration of
machine learning, primarily based on neural networks, has led to the emergence of Neural
Information Retrieval [6].

Previously, models were trained on documents to learn sparse vector representations.
However, with the advent of transformers and attention mechanisms in 2017 [7], models
with dense vector representations have become prevalent in the literature. Consequently,
depending on the shape of the document vectors, the retrieval method can be categorized
as “learned sparse” [8-12] or “dense” [13-15]. Many dense retrieval models leverage
representations derived from BERT [16], which may introduce latency issues in delivering
final results. Hence, it is common practice to employ a two-stage pipeline comprising an
initial ranking stage followed by a re-ranking stage. A sparse model, such as the BM25, is
commonly implemented as a first-stage ranker.

This study adopts the methodology introduced by Kalogeropoulos et al. [17] and seeks
to augment the extension of the Set-Based model [18,19] proposed by them. The primary
objective of this research is to introduce a robust initial ranking approach, integrating
graphs with the set-based model, enriched with word and node vector representations,
commonly referred to as embeddings. In a general sense, embeddings are real-valued
vectors containing semantic or structural information about the term. Each document will
be represented as a graph, a structure exploitable for various tasks, including keyword
detection, summarization, and classification.

Another contribution of our work is that, besides addressing the information retrieval
aspect, it also tackles the text classification task, which involves organizing text documents
into predetermined categories or classes. The primary objective is to automatically assign a
label or category to a given piece of text based on its content. This task holds significance
for various applications, including spam detection, sentiment analysis, and topic modeling.
Textual data can be represented as numerical features, which will serve as input for machine
learning algorithms. Common techniques encompass bag-of-words representations such
as tf-idf (Term Frequency-Inverse Document Frequency) and word embeddings. These em-
beddings can be generated either through contextualized pretrained models like BERT [16]
or from count-based models such as Word2Vec or GloVe [20,21].

The foundation of the graph-based extension of the set-based model’s [17] scheme rests
on the assumption that every term in a document shares an equal bidirectional relationship
with all others, creating a complete graph for each document. Terms are depicted as nodes
and their connections as edges in this graph. However, linguistically, it is evident that the
initial hypothesis is overly simplistic. Therefore, it becomes crucial to limit the relationships
within a document, which will be considered in our experimental evaluation.

A similar method, known as Graph of Words (GoW), waws proposed by Rousseau and
Vazirgiannis [22]. They proposed a degree-based evaluation scheme based on the BM25
model [23,24], which implements an overlapping sliding window to limit the correlation of
terms in a sentence on the graph creation process. Their graph algorithm is implemented
with minor variations on multiple applications. The implementation of directed graphs
proved beneficial in applications like document summarization or phrasal indexing.

Furthermore, when addressing the keyword detection problem, they [25] employed
core decomposition [26]. The identification of document keywords was achieved by
preserving nodes within the main core of each textual graph. Subsequently, the authors
introduced techniques for estimating crucial nodes by considering dense subgraphs beyond
the main core. In their initial exploration, they concentrated on dense cores or trusses [27],
ultimately suggesting a node ranking based on the sum of core numbers to which each
neighbor belongs for a given node [28]. These methods have the ability to isolate significant
components within a large graph, often as dense subgraphs. Therefore, they can be
applied as edge removal techniques, and they are also useful in tasks like identifying
important nodes.

The remainder of this paper is structured into five sections. The second section
(Section 2) will delve into a theoretical analysis of significant methods and models that
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are pertinent to this study. Specifically, it will encompass discussions on the basic set-
based model, its graph extensions, graph decomposition techniques, and embedding
methodologies.

The third section (Section 3) will outline the contributions of the paper to ranking and
classification tasks. Following this, the fourth section (Section 4) will delve into the results
obtained from the proposed approach.

Concluding remarks, limitations, and future directions will be addressed in the fifth
and final section (Section 5).

2. Preliminaries and Methods

This section outlines the baseline and introduces some novel concepts proposed by
Kalogeropoulos et al. [17]. Prior to delving into the proposed model, it is imperative to
elucidate and grasp the functioning of the simple set-based model along with its extension.

2.1. Set-Based Model

The set-based model is a combination of set theory with an algebraic influence on the
way weights are computed. It introduces the concept of term sets, where if each term in a
particular set exists in a text, then the text is defined as containing that set. Initially, the sets
may appear to be very large, but in practice, this is not the case; it is proportional to the
size of the query. Thus, a model is created with high accuracy in combination with the cost
of equivalent efficient models.

Every term that appears in any document of the collection belongs to the collection’s
vocabulary V. Every subset of the vocabulary constitutes a set of terms 7 in size, where # is
the number of terms it contains. A vocabulary of size m can potentially generate 2" sets of
terms. Naturally, several of these sets may not exist in any document of the collection. For
this reason, the frequency of appearance of each set of terms in the texts, denoted as 45;
and defined as the cardinality of the set of documents for each term set, is the frequency of
its occurrence.

The model decreases the number of term sets even more, by considering only the
frequent sets in the termset creation process. A set of terms is called frequent if the number
of occurrences of it is greater than a minimum threshold set by the model creator. Therefore,
the Apriori algorithm is implemented for the process of term set creation in the simplest
form of the model [29]. The Apriori algorithm is a popular algorithm used for association
rule mining in data mining and machine learning. By considering the text as a transaction
database and the terms as an item, the algorithm can discover frequent itemsets from
the database. It is important to notice that in our approach, we implemented the Eclat
algorithm [30] as it will result in similar itemsets with lower time complexity.

The model utilizes, as previously mentioned, term sets as structural elements for
representing text queries. Specifically, each text and query is represented as a vector that
includes the weight of each set in that particular text or query. The term sets are determined
by the terms of the query. The calculation of the weight for each frequent term set is
influenced by the number of occurrences of the entire set in the text, the rarity of the set in
the collection texts, and the size of the referenced text. Naturally, a set that appears in many
texts has less semantic value than a rarer one. Additionally, large texts may contain more
than one term set from the query, which, if not addressed, could provide an advantage
in the retrieval process. Therefore, an algebraic weight calculation scheme similar to the
Vector Space Model (tf-idf) is followed (Equation (1) and (2)). Notably, the reference is to
sets of terms rather than individual terms of the query. Thus, the term frequency is replaced
by the set frequency Sf;; for text j and set S;, and similarly, the inverse document frequency
in the collection pertains to the corresponding set idS;. The variable N represents the total
number of texts, while dS; expresses the number of texts in which the set S; appears.

N
Wset—basedsl./. = (1 + log Sfij) . log (1 + dS) (1)
i
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N
Wqu = log (1 + dS) (2)
1

_>
Finally, the document (d;) and query (6) vectors are formed with a size of at most 2"
elements, where 7 is the number of unique terms that the query contains (Equation (3)).

dj = (Ws,j, Wsyjo -+ W)
Q= (W51q/ WSZq/ Tty WSan) (3)

It is imperative to notice that a collection-wise termset calculation would be non-
realistic, since it is computationally expensive because the lexicon size N is vastly larger
than the number of query terms (N > n). As the set-based model dictates, the ranking
scheme is expressed as the ordered cosine similarity between the collection documents and

th, .
e query. N

d; - 0

j ,d;) = 4
Qb = S @

2.2. Core Decomposition

Core Decomposition was proposed by Seidman [26] and is used in many applications
of important node estimation, or subgraph mining.

Let G = (V,E) be a graph, and let S = (Vj, E(Vj)) be its subgraph. The k-core (order
k) of graph G is a subgraph S where each node u € Vj has a degree greater than k. The
set of all k-core cores constitutes the core decomposition of graph G. The decomposition
based on core numbers (K-core decomposition) has been proposed as a tool for studying
graphs, aiming to identify vertices of particular significance that exert a more substantial
influence on the graph. The absence of these vertices could potentially lead to issues with
connectivity.

Qualitatively describing the above definition, we observe that a subgraph has the order
K if and only if every node within it has a degree greater than or equal to K. Meanwhile, a
node has a core number of K if it belongs to the K-core but not to the (K + 1)-core. In graphs
with weighted edges, the degree order of a node is the sum of the weights of its edges. For
small values of K, the K-core tends to be large, and its cohesion increases as K grows.

2.3. Graphs and Set-Based Model

Kalogeropoulos et al. [17] proposed a novel extension to the simple set-based model
(GSB), which accumulates structural information about the text and the collection using
graphs. Figure 1 illustrates the model architecture. At first, their approach considers a fully
connected graph (complete graph) for each document that, in the most naive approach, is
combined in a collection-wide graph. Each node represents a document term, and the edge
weight among terms is calculated multiplicatively by the nodes’ respective term frequency.

To elaborate further, the document graph referred to as the Rational Path Graph is
a co-occurrence graph characterized by two types of edges: in-edges and out-edges. An
in-edge is a self-loop on a node N with a weight W;,, equal to w and the out-edge
is an edge between two nodes N, M with weight Wy, ,, = TF, - TFy, where TF,; or TFy, is
the term frequency of the respective term in the document.

They introduced the graph union operation [31] as a graph merge method. That
operator (Equation (5)) will accumulate all document graphs into one graph. Each term is
considered a node, and the resulting edge weight is calculated by the sum of the weights
that the edge has in every graph that exists.

Gp =G ®)
i=1
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Thereafter, for each node/term, a graph derived from the union is calculated
(Equation (6)) and indexed. It is important to note that the parallelization of the graph
construction and union and the weight parallelisation are feasible tasks.

_ Woutk 1
nwy = log (1 +a(ka (Ot 1)) log (1 + bian T 1) (6)

The aforementioned weights will be implemented on the set-based weighting scheme,
with the variable tnws,. That variable is the product of the nwy weights for every term k
that the termset contains.

Ws

i = Wsetfbaseds,. : tani (7)
Y

The nwy is a compilation of the sum of the out-edges related to node k (Wyyt,), the
weight of the self-loop (W, ), and the number of the node’s k neighbors (Cr).
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Figure 1. Graph-based extension of the set-based model.

However, unlike the naive approach, they include a level of document graph process-
ing before the graph union operation. At first, a running method can be used to reduce
the number of edges, keeping only the important ones, which are expressed by the re-
spective edge weight. Therefore, the model removes edges to an extent that is less than
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the percentage of the average edge weight. Furthermore, following the work of Rousseau
and Vazirgiannis [25] and Tixier et al. [28], they amplify the keyword-related edges by an
importance variable h. Such keywords have been located that implement methods and
algorithms that include core decomposition. This process assists the model in identifying
and handling noisy data, without any performance loss. On the contrary, the ranking
process in many cases supersedes the simple set-based model.

2.4. Word Embeddings

Word2Vec [20] efficiently captures semantic relationships by mapping words to high-
dimensional vector spaces. The fundamental idea behind Word2Vec is that it learns dis-
tributed representations for words based on their contextual usage in a given corpus. The
model is trained to predict the likelihood of words appearing together in a given con-
text, enabling it to create dense vectors where words with similar meanings or contexts
are geometrically closer. This not only preserves semantic relationships but also allows
mathematical operations on word vectors to produce intriguing results, such as analogies.

Node2Vec [32] is a powerful graph embedding algorithm designed to represent nodes
in a network as continuous vectors in a multi-dimensional space. Developed to capture
intricate structural and semantic relationships within graphs, Node2Vec extends the concept
of Word2Vec to network data. It navigates through the graph by employing a flexible biased
random walk strategy, allowing it to balance between exploring local neighbourhoods and
jumping to more distant nodes. This nuanced exploration approach enables Node2Vec to
generate embeddings that preserve the network’s topology and community structure.

GloVe [21] is designed to transform words into continuous vector representations,
capturing the semantic relationships between them based on their co-occurrence patterns in
a given corpus. The underlying principle involves constructing a word-word co-occurrence
matrix from the corpus, followed by training the model to learn word embeddings. The
objective function of GloVe is carefully crafted to maximize the dot product of word vectors
for frequently co-occurring words while minimizing it for those that rarely co-occur.

3. Proposed Methods

In our approach, we will explore the enhancement of the graph-based extension of
the set-based model with embedding vectors on two different problems, a ranking one
and a classification one. We will try to gauge in our experimental approach whether the
information retrieval model is capable of categorizing documents or not as a byproduct of
the ranking process. If the model exhibits good performance on the classification task, we
can imply that the produced graphs contain and retain semantic and structural information
derived from the document.

3.1. Ranking

In the ranking problem, which is an information-retrieval task, we will mainly expand
the graph-based extension of the set-based model to include semantic or structural informa-
tion from embedding vectors. Such vectors will be considered on the edge weights, which
will later affect the ranking schema of the graph-based extension of the set-based model.
The gist of our approach is to generate embeddings or implement pretrained embedding
vectors for each term of a collection of documents. Such vectors will be applied to the
graph construction algorithm on the edge weight scheme.

The graph construction algorithm is similar to preliminary work [17], but as a pruning
method, we consider the notion of a text window, which is a segment of the document
that the graph construction algorithm will regard as an input. In our experiments, we
will explore the complete document case, an overlapping sliding windowed case, and
lastly, a fixed sliding window one. The base model implements a pruning method that
removes edges with a weight less than a user-defined percentage of the graph’s average
weight. However, this creates a computationally expensive revision step, which will cost
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time O(m), where m stands for the total number of edges. It is important to note that in a
large document corpus, such a method might deteriorate the model’s performance.

3.1.1. Word Embeddings on Graphs

To incorporate semantic information in our graph representation, we used word em-
beddings derived from Word2Vec [20] or GloVe [21]. Pretrained embeddings are generated
by training the Word2Vec model or GloVe on a large corpus of text data, such as Wikipedia
articles, news articles, Twitter, or other web pages. After training, the final learned word
embeddings are extracted and made available for downstream tasks such as natural lan-
guage understanding, sentiment analysis, and machine translation through the Gensim
framework [33] or Stanford’s website for the GloVe case. We explored either pretrained
options or generated on a specific collection option, but the results were pretty similar.
Therefore, we decided to follow the first option for complexity and generalization purposes.
The embeddings inclusion framework is outlined in Figure 2.

After the graph creation process is finished, an element-wise summation operation is
conducted for each edge between the embedding vectors of the respective nodes, resulting
in an edge vector. The vector quantification is achieved through a straightforward averaging
of the values it encompasses. The most simple approach is the complete windowed, which
is shown in Equation (8).

W, =TF,j Tk, - mean(emby , + emby ., - - -, embpg, + embyy ) (8)

dgen/k
In the windowed case, the above equation is transformed into Equation (9).

N
Wedge,,,k = ( Z (TFn,j,w ' TFk,j,w)) ' me”n(embl,n + embl,k/ T /embM,n + embM,k) (9)

w=0

The edge weight, before implementing the embeddings in the windowed graph, is
calculated as the sum of the term frequency inside a text segment for each segment. This
notion is expressed by the variable w in the above equation. For symbolism, the TF; ; or
TF,  is the term frequency of a word in the whole text or a segment, and the constant
emb;  is the embedding vector value for the term k.

Document Collection Export Indexes
A
Indexing Weights with
Embeddings Vectors
h
Graph Creation | Graph with Word - )
Process g Embeddings iy Union Graph
A

Apply Word
Embeddings to
Edges

Training Collection | Word Embeddings
[Google News, Wilkipedis) | (Word2Vec, Glove)

Figure 2. Word embedding on ranking.

For notation purposes in Equation (8), the TF, ; is the term frequency of term n in
document j, and TF, ; ; is the term frequency of node n in the window w of document j in
Equation (9). The element-wise summation of embedding value, denoted as emb; ,, + emb, ,
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generates an edge embedding vector that is subsequently consolidated into a single value
through the mean operation on the edge vector.

From this point, the model continues its functionality identical to Section 2.3. After
each document is represented as a graph, the union graph is created, and the nwy is
calculated. The necessary values are indexed alongside the terms in an inverted index,
which will later be used in the termset-document weighting scheme of the extension.

3.1.2. Node Embedding on Ranking

A node-embedding vector can offer the model structural information about the nodes
on the collection. Such pretrained vectors do not contain meaningful information, since
they are created from a different collection. The graph-based extension of the set-based
model constructs a collection-wide graph (Figure 3). Thus algorithms that produce graph
or node embeddings can be applied. Subsequently, vectors with structural information can
be formulated.

Export Indexes

Indexing Weights with
Embeddings Vectors

Graph Creation Core
Decompostion

v

Document Collection — Union Graph

Process

F

Mode
Embeddings

Figure 3. Node embeddings on ranking.

In our approach, we utilize the Node2Vec algorithm [32] to generate vector repre-
sentations for nodes in the union graph. However, this approach is somewhat naive
and computationally intensive. To address this, we leverage insights from the keyword
detection findings of Rouseau and Vazirgiannis [28], Tixier et al. [25], and Kalogeropou-
los et al. [17]. Specifically, we focus solely on the main core subgraph as input for the
embedding algorithm. This introduces another challenge: many nodes may not exist in this
maximal subgraph, resulting in vector representations consisting of ones for such nodes.
Finally, by normalizing the existing values to 1, our model combines structural knowledge
with important node amplification methods.

Both approaches for integrating word or node embeddings into the graph-based
extension of the set-based model, despite being computationally intensive tasks, can be
concurrently applied, as depicted in Figure 4, although this may not represent the optimal
solution or implementation.
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Figure 4. Node and word embeddings on ranking.

Embeddings @
3.2. Text Classification

In the text classification problem, we implement the graph creation algorithms of the
graph-based extension of the set-based model to assort textual data into different categories,
using embedding vectors derived from the graph. The produced document graphs contain
edges that function as bridges among cliques. Upon examining the graph construction
algorithm, we will notice that the most common nodes that create such edges will be
either stopwords or keywords. Therefore, we will enforce three independent preprocessing
methods on the textual data.

3.2.1. Preprocessing

The proposed approach explores three different types of document preprocessing
in order to estimate the effect of stopwords, stems, and lemmas not only on the graph
process but also on the text classification task. Therefore, we implemented our model with
documents preprocessed in three different ways.

®  Basic preprocessing: removal of URLs/emails, punctuation marks, and digits; conver-
sion of all letters to lowercase; and tokenization.

e Basic preprocessing and removal of stopwords, e.g., “a”, “the”, “is”, “are”. The total
number of stopwords that we used in our approach following the Python NLTK
library is 40.

e  Basic preprocessing and application of stemming/lemmatization, meaning the re-
moval of prefixes/suffixes and retaining the stem/lemma of each word.

3.2.2. Node Embeddings from Graphs

As a baseline of our approach, the Word2Vec [20] and Doc2Vec [34] algorithms will be
used. The algorithms will be trained on our collection, due to the performance improvement
achieved in comparison to the pretrained case.

As Figure 5 depicts, for each preprocessed case, the Word2Vec model generates em-
beddings for each term ¢ in the vocabulary V. We index these embeddings, and for each
document, we create a vector representation as the embedding vectors’ element-wise aver-
age vector and use them as feature vectors on classification algorithms. These algorithms
are Support Vector Machines, Logistic Regression, and multi-layer perception networks.
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Figure 5. Word embedding on text classification.

Furthermore, the process on Doc2Vec is similar to that no Word2Vec without the need
to merge word embedding vectors into one document vector. The algorithm will produce a
document vector alongside the terms.

Figure 6 shows the node embedding process. The main difference in this approach
is located in the Node2Vec training process. For each document, the respective graph is
created. When the union graph is completed, the embedding process begins with that
graph as an input. Later, the vectors are indexed and used, similar to the Word2Vec method,
to create document vectors.

Node Embeddings

Node 1: Embedding Vector Average Embedding
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Node 2: Embedding Vector the Document
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Embeddings
Basic Preprocessing
Collection
Preprocessed
Document 1: Category 1 Documents
Document 2: Category i Basic Preprocessing —_ Generate Document Generate Union
- + Stopword Removal = Graphs Graph Generale
Dataset
Document N: Category m
Basic Preprocessing N
+ Stopword Removal Classification Dataset
+Stemming Get Categories Doc1:(0.1,02 . 0.9) |Category 1
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Doc N:(0.18, 05 ...,0.3) | Category N

Figure 6. Node embedding on text classification.

4. Experiments

This section consider the results of our experiments regarding the two aforementioned
tasks on multiple collections. Table 1 shows the collection name, size, and task that each
collection was used for to evaluate the ranking and classification aspect. Those experiments
aim to determine the ranking performance of our approach versus the complete extension
of the set-based model, as well as the set-based model itself, while being a competent
document classification method.
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Table 1. Collections and types of experiments used on each one.

Name Acronym Docs Queries/Categories Task
Cystic Fibrosis CFC 1.239 100 Ranking
20newsgroups 20news 20.000 20 (used 18) Classification

BBC News BBC 2.225 5 Classification
Spam/Ham emails SP 5.728 2 Classification

The Cystic Fibrosis collection contains 1.239 abstracts regarding the disease. The
collection is accompanied by 100 queries with respective expert-derived relevant document
lists, which can be used to assess the ranking performance. The 20newsgroups collection
contains 20 different categories. However, in our experiments, we tried to make our data
set be balanced or fairly balanced; thus, two categories were omitted. It is important to
notice here that the 20 labels can be merged into larger groups (Figure 7), thus creating
dependencies among classes and rendering the task even more difficult.

The BBC News collection is a balanced five-category collection and the Spam/Ham
Emails collection is an imbalanced binary collection, which will be used for the classification
task. That way, we can estimate the performance on standard and difficult multi-class
issues without disregarding the more simple binary task.

comp.graphics
omp.0s. ms-windows.mis
comp.sys.ibm.pc hardware
comp.sys. mac. hardware
comp.windows.x

rec.autos
rec. motorcycles

sci.crypt
scielectronics
sci.med
sci.space

rec.sport. baseball
rec.sport.hockey

talk politics. misc
misc.forsale talk politics.guns
talk politics. mideas

talk religion.misc
alt.atheism
soc.religion.christian

Figure 7. 20newsgroup categories.

4.1. Models’ Performance on Ranking

In this subsection, we evaluate the performance of the proposed embedding method
on a classical information retrieval application as depicted in Figure 8. Given a collection of
documents, alongside the respective queries and relevant documents, we will apply each
model separately. For each query—document pair, a similarity function will be implemented,
resulting in a ranking that will be evaluated by employing the appropriate metrics (Average
Precision per query and Mean Average Precision). The CF collection contains 100 queries
on which our model will offer rankings. We will estimate the average precision of each
approach and compare it with that of the simple set-based model, creating a metric that
will express the number of queries each method supersedes in the set-based model. That
method of validation will render the set-based model as our baseline, as shown in Figure 8.
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Figure 8. Ranking experiments.

First, we will evaluate the performance of the complete case [17] augmented with
embeddings of Node2Vec, Word2Vec, and GloVe with embedding vector sizes of 50 and
200. Immediately, we can notice a substantial performance improvement versus the simple
model. The best embedding technique in this approach seems to be the Word2Vec one, as
shown in Figure 9.
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Figure 9. Ranking performance on each approach.
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At this point, instead of a pruning method, we will apply our graph creation algorithm
on non-overlapping text segments—windows. We can notice a slight performance increase
when implementing GloVe vectors. However, the most important observation lies in the
stability of the performance regardless of the window size. This shows that our windowed
approach is window-agnostic, which was a drawback of the simple model.

Finally, if we allow the text segments to overlap, we can notice a performance drop
in the general model. However, the general stability of the model is increased. The GloVe
vectors in this case also yield the best results. Table 2 depicts the best-noted results in
each case.

Table 2. Best cases for each approach.

w/o Embeddings Word2Vec  GloVe 50 G;ggle Node2Vec
GSB 57 79 75 77 71
Constant Window 82 78 81 82 80
Overlapping Window 77 72 81 81 77

The complete extension is highly amplified by inducing embeddings on the edges.
Although the overall highest performance on the windowed options is slightly impacted
by our approach, the stability of each model’s precision is greatly improved, as mentioned
in the above figures.

Table 3 provides a concise overview of several state-of-the-art models, categorised
based on their underlying principles. More information about BERT-based models and
other variants of them can be found in the literature [15,35]. The first section of the table
includes vector-space-probabilistic models, followed by BERT-based models in the second
section, and graph-based models in the final section. We will compare the performance
of the models in those categories in a later table. It is noteworthy that models like BM25,
GoW, or GSB can be utilized as first-stage rankers. Contextual embeddings extracted from
BERT are frequently employed as representations in both dense and sparse approaches.
Later on, we will compare models from each category with our proposed methods.

In Table 4, we present a comparison of the Mean Average Precision (MAP) for each
model concerning the 100 queries contained within the Cystic Fibrosis collection. The per-
formance of the set-based model is enhanced through the incorporation of graphs, leading
to the graph-based extension. This extension effectively captures structural information,
particularly with the inclusion of windows. The results for the windowed case closely
resemble those of the BM25 model (and in some queries improve it). The BM25 model
is widely recognized as a foundational model that is frequently utilized for re-ranking
purposes in the initial stage. Moreover, our approach is close to (and in some queries
an improvement on) the colBERT model and, in conjunction with it, can yield better re-
sults, as observed in preliminary experiments (these experiments are the subject of future
work). Overall, this outcome suggests that our approach could be effectively employed as
a first-stage model alongside dense retrieval models.

Table 3. A theoretic comparison among models.

Model Description

Utilizes singular value decomposition to reduce the dimensionality of

LSt {36l the term-document matrix and capture latent semantic relationships.

A probabilistic information retrieval model that calculates the rele-
BM25 [37] vance score of a document to a query based on the term frequencies
and document lengths.
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Table 3. Cont.

Model Description

Bidirectional Encoder Representations from Transformers (BERT) is a
pre-trained language model that can be fine-tuned for various NLP
tasks, including information retrieval, by considering the context of
words in both directions.

BERT [16]

A self-supervised pretraining approach for dense retrieval that lever-
SPLADE [10] ages positive and negative passages to learn dense representations of
documents and queries.

A late interaction model that employs cross-attention to compute the
relevance score between a query and a document by simultaneously
attending over the tokens of both query and document representa-
tions.

ColBERT [13]

Utilizes pretrained contextualized representations to perform re-
Deep Impact [9] trieval with fine-grained ranking based on deep semantic matching
and a learnable re-ranking mechanism.

Utilizes a graph-based representation of words with overlapping
GoW [22] sliding windows to capture information for information retrieval
tasks with a degree-based weighting scheme.

Enhances the traditional set-based information retrieval model by
incorporating graph-based representations. It employs graphical
structures during indexing while maintaining the set-based approach
for querying and document representations.

GSB [17]

Table 4. Comparison of models on their best case at CFC.

Model MAP
1 Set Based Model 0.161875265
2 Graphical Extension of SB 0.186186087
3 BM25 0.222656198
4 Graph of Words 0.117287827
5 Windowed Model + Word Embeddings 0.221905122
6 Windowed Model + Node Embeddings 0.212273438
7 colBERT 0.226567975

4.2. Text Classification Performance

In this section, we present the results of our classification model trained on the dataset.
We evaluate the performance of the model using various metrics and analyze its effective-
ness in accurately predicting the target classes. The design of the experiment is depicted in
Figure 10.

In Tables 5-7, we can observe that the Word2Vec embeddings are slightly better
against the Node2Vec (Tables 8-10) in some cases, and Doc2vec (Tables 11-13) falls short
as an embedding technique in the classification task; however, in general, the Node2Vec
approach yields results that are competitive with those of Word2Vec. Therefore, we can
conclude that our graph creation algorithm can be implemented and perform competitively
on classification tasks, such as topic modeling. Furthermore, in each of the columns of
the following tables, the preprocessing is more aggressive from left to right, as explained
before. Regarding the preprocessing aspect of the textual data, we can conclude that a
stemming/lemmatization process deteriorates the performance of the model due to the
information loss that occurs. On the other hand, a stopword removal phase seems to
increase the classifiers’ performance.

From Tables 5-13, we can conclude that the Multilayer Perceptron (MLP) outperforms
the rest of the classifiers on every task at hand. For the hard multi-class problem, the
Node2Vec results dominates slightly amongst the embedding techniques. However, on
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easier tasks such as a simple multi-class or a binary classification case, Word2Vec yields
better results as the number of classes dwindles. Eventually, Doc2Vec cannot compete
equally with the under-discussion models and techniques with a substantial performance
loss with respect to the Word2Vec-Node2Vec comparison.

Classification TestTrain Dataset

Doc1: (01,02 ... ,09) |Category1
Doc 2 (012, 022 ... ,0.5) | Category Z

Document

k.

Doc M: {(0.18, 0.5 ...,03) | Category N

Embeddings

Classifier:
SVM,
MLP,

Logistic Regression

True Labels

Document
Categories
Labels

Evaluation:
Accuracy,

Figure 10. Classification experiment.

Table 5. Word2Vec Embeddings: 20newsgroups.

L 4

Precision

20newsgroups 1

20newsgroups 2

20newsgroups 3

Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.812 0.8153 0.8269 0.8275 0.81266 0.8148
SvC 0.8123 0.814 0.8395 0.8427 0.81 0.8149
Logistic Regression  0.8003 0.8014 0.8225 0.8244 0.7921 0.7947
Table 6. Word2Vec Embeddings: BBC News.
BBC1 BBC2 BBC3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.9685 0.9687 0.9707 0.9709 0.9685 0.9685
SvC 0.964 0.964 0.964 0.9643 0.9617 0.9619
Logistic Regression ~ 0.9595 0.96 0.9595 0.9597 0.9595 0.9597
Table 7. Word2Vec Embeddings: Spam/Ham Emails.
Spam 1 Spam 2 Spam 3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.9912 0.9913 0.9904 0.9903 0.9921 0.9921
SvVC 0.9912 0.9912 0.9877 0.9878 0.9904 0.9905
Logistic Regression ~ 0.986 0.986 0.986 0.986 0.9851 0.9852
Table 8. Node2Vec Embeddings: 20 Newsgroups.
20newsgroups 1 20newsgroups 2 20newsgroups 3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.8006 0.8002 0.8284 0.8287 0.7947 0.7925
SvC 0.7877 0.7971 0.8152 0.8201 0.7628 0.7709
Logistic Regression ~ 0.7833 0.7859 0.8055 0.8075 0.7678 0.7705
Table 9. Node2Vec Embeddings: BBC News.
BBC1 BBC 2 BBC3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.8584 0.8605 0.9393 0.9393 0.7707 0.7721
SvVC 0.7955 0.81 0.9101 0.9106 0.4584 0.2503
Logistic Regression  0.7865 0.8118 0.9258 0.9262 0.6404 0.7615
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Table 10. Node2Vec Embeddings: Spam/Ham Emails.

Spam 1 Spam 2 Spam 3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.9773 0.9773 0.9799 0.9801 0.9703 0.9737
SVC 0.9624 0.9624 0.972 0.9733 0.9616 0.9641
Logistic Regression  0.9554 0.955 0.9712 0.9718 0.9563 0.956
Table 11. Doc2Vec Embeddings: 20 Newsgroups.
20newsgroups 1 20newsgroups 2 20newsgroups 3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.7276 0.7267 0.6964 0.6972 0.7288 0.7299
SVC 0.6866 0.6889 0.6815 0.6811 0.6725 0.6771
Logistic Regression ~ 0.732 0.7318 0.7152 0.7145 0.7229 0.723
Table 12. Doc2Vec Embeddings: BBC News.
BBC1 BBC2 BBC 3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.8157 0.8201 0.8764 0.8808 0.8247 0.8243
SVC 0.8 0.7995 0.8606 0.8611 0.7775 0.7773
Logistic Regression 0.8 0.7994 0.8494 0.8498 0.7595 0.7591
Table 13. Doc2Vec Embeddings: Spam/Ham Emails.
Spam 1 Spam 2 Spam 3
Accuracy Precision Accuracy Precision Accuracy Precision
MLP 0.9284 0.9275 0.9415 0.94174 0.9389 0.9399
SVC 0.8368 0.8252 0.8246 0.8099 0.8333 0.8212
Logistic Regression  0.8455 0.8362 0.8202 0.8044 0.8263 0.8123

In terms of computational performance, it is evident that Doc2Vec can generate the

required document vectors more efficiently than the Word2Vec model. This efficiency stems
from the fact that Doc2Vec does not require the vector aggregations that the basic Word2Vec
model needs to compute in order to merge term vectors into a single document vector.
On the other hand, the Node2Vec model inherently involves computationally intensive
tasks [32]. Initially, it must calculate transition probabilities for each node, followed
by computing the necessary paths. This process inherently introduces computational
complexity, which can be mitigated through pruning or subgraph mining techniques such
as core decomposition, as implemented in this paper. Furthermore, akin to Word2Vec,
Node2Vec also needs to transform term-node vectors into document vectors through
aggregation, thereby potentially compromising the model’s efficiency.

In the following figures, we will delve into the Word2Vec and Node2Vec methodologies
through visualization, employing t-SNE, a potent technique for dimensionality reduction
and data visualization. Figures 11-17 illustrate documents in a two-dimensional space,
with each colored according to its respective class under different preprocessing techniques.
Notably, we observe that Node2Vec yields more distinct clusters in this space. A similar
trend is apparent in the BBC collection, as depicted in the figure.
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Figure 11. Visualizing embeddings on BBC.
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Figure 12. Preprocess Type 1: visualizing Word2Vec embeddings.
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Figure 14. Preprocess Type 3: visualizing Word2Vec embeddings.
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Figure 15. Preprocess Type 1: visualizing Node2Vec embeddings.
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Figure 17. Preprocess Type 3: visualizing Node2Vec embeddings.

5. Conclusions and Future Work

In this paper, we proposed an initial ranking approach that can be implemented as
a first-stage ranker in reranking schemes or, in some cases, as a standalone ranker. The
model offers structures that can be exploited in various domains, such as in classification.
In conclusion, the proposed extensions notably enhance the graph-based extension of the
set-based model. The inclusion of text segments as windows for pruning has notably
boosted the performance of the ranking model, particularly for larger window sizes, while
the integration of embeddings ensures result stability, particularly for large window sizes.
Therefore, the proposed model exhibits capability in addressing ranking tasks, whether as
a standalone model or as a first-stage ranker.

Additionally, the proposed method contains intermediate structures that can be imple-
mented for various tasks. The main task we explored in this paper was that of classifying
documents into categories. We observed that the proposed graph methods contain infor-
mation capable of categorizing documents on a binary problem, as well as on multiple
classification problems regardless of the number of categories, leveraging node embeddings.
Therefore, we offer a model that is capable of tackling the two main tasks of information
retrieval and data mining.

The existence of an intermediate structure creates an increase in time and space com-
plexity in the model’s indexing stage. However, if the model is applied to an information
retrieval task, document graphs and the collection union graph can be disregarded af-
ter the indexing phase. Although, to fully acknowledge the models’ advantages, it is
recommended that such structures be stored in appropriate databases (e.g., Neo4j [38]).

Another important aspect to consider pertains to the absence of embeddings. Despite
the abundance of pretrained embeddings, we cannot guarantee the presence of a represen-
tation for every term, nor can we ensure its quality. The quality of embedding vectors is
not solely determined by the model that generates them; rather, it is context-dependent.
Consequently, there may be instances where fine-tuning or even training the model from
scratch becomes necessary. While this process can increase computational complexity, such
cases are rare.
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In future research, a focal point of its direction should elaborate on the window aspect
of the model, exploring linguistically sound window options that will also capture the no-
tion of a paragraph. The windowed algorithm creates cliques connected with bridge edges.
Such edges contain nodes that are important for graph cohesion. Exploratory research
about the importance of those nodes in the document, as well as their role inside the text
(i.e., keywords or stopwords), should be conducted as a keyword- or stopword-detection
problem that can be applied in summarization tasks. Furthermore, for the computational
aspect, the model contains algorithms that can be parallelized or computed for distributed
implementation frameworks such as Apache Spark [39]. Finally, the collection union graph
can be implemented as an online indexer. Each node can contain a label, which will store
any information needed by the model to form a knowledge graph-like structure. When an
edge information is changed, the respective nodes will recalculate the necessary weights.
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Abstract: The task of automatically evaluating acceptability judgments has relished increasing success
in Natural Language Processing, starting from including the Corpus of Linguistic Acceptability (CoLa)
in the GLUE benchmark dataset. CoLa spawned a thread that led to the development of several
similar datasets in different languages, broadening the investigation possibilities to many languages
other than English. In this study, leveraging the Italian Corpus of Linguistic Acceptability (ItaCoLA),
comprising nearly 10,000 sentences with acceptability judgments, we propose a new methodology
that utilizes the neural language model ELECTRA. This approach exceeds the scores obtained from
current baselines and demonstrates that it can overcome language-specific limitations in dealing with
specific phenomena.

Keywords: natural language processing; sentence classification; acceptability judgments; BERT;
ELECTRA; low-resource languages

1. Introduction

In recent years [1], scholarly interest in acceptability judgments has been rekindled,
sparked by the creation of the Corpus of Linguistic Acceptability (COLA) [2], the first
large-scale resource collecting acceptability judgments designed specifically to be used
for training neural models in the Natural Language Processing field. Such a resource has
given rise to a strand of research on this task that started in English and has since expanded
to various other languages. Acceptability judgment is a pivotal concept in theoretical
linguistics. It can be defined as the assessment of how natural a sentence is perceived by a
speaker in his or her native language. Although they are de facto recognized as the main
source of linguistic data [3,4], there is still a heated debate about the methodologies for
collecting and evaluating such judgments [5-7].

Concerning NLP, developing larger and more powerful Neural Language Models
(NLMs) has led researchers to explore their capacity to encode various forms of linguis-
tic information. Studies have ranged from investigating specific linguistic phenomena
to general grammar knowledge [8-12]. In this context, acceptability judgments have
emerged as a crucial domain for evaluating the linguistic knowledge acquisition of these
models [13,14], mainly since COLA has been incorporated into the widely used GLUE
evaluation benchmark [2]. Subsequently, similar resources have been released in different
languages, including those belonging to very different language families: Russian [15],
Japanese [16], Norwegian [17], Swedish [18], Spanish [19], and Italian [20], which is the
language that is the subject of this work.

These datasets have been typically used with monolingual and cross-lingual ap-
proaches to assess the syntactic abilities of NLMs or to evaluate the goodness of models in
natural language generation tasks [21]. Currently, BERT-based models are the ones that
achieve the best performance.
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This paper proposes an approach for the Italian language using ELECTRA [22] for the
acceptability task, demonstrating that it can exceed the performance currently achieved
in the literature. In recent years, ELECTRA has demonstrated that it can overcome BERT
in different NLP tasks [23,24] with equal size and available resources, with a particular
focus on its application in languages other than English [25,26]. The dataset on which the
model is tested is ItaCoLA [20], the largest current resource in the Italian language for
acceptability judgments. ItaCoLA includes around 9700 sentences from linguistic scientific
literature spanning four decades. These sentences have been manually transcribed and
converted into digital format [27].

Adhering to the prevailing methodology in this domain, the acceptability assessment
is based on binary judgments, as determined by expert linguists. In addition to the
quantitative analysis, which compares performance with the current ItaCoL A baseline,
a qualitative analysis is also proposed, which takes advantage of the large number of
linguistic phenomena covered by the corpus and the manual annotation [28,29].

Notice that the work’s primary contribution is to demonstrate how applying a model
like ELECTRA, whose main feature is to achieve superior performance to models such
as BERT with lower computational cost and fewer examples, can improve performance
on acceptability judgment tasks in the Italian language. Although the task of predicting
acceptability judgments has been heavily discussed in recent years, and more resources
are being released in other languages, often the time costs and complexity of the models
used make it difficult to achieve a very satisfactory cost-benefit ratio [30], even if results
are promising.

The paper’s organization is the following: Section 2 briefly describes recent works on
acceptability judgments. Section 3 describes the resources and models taken into account,
along with the experiment setup. In Section 4, the results of the analyses, both from a
quantitative and qualitative perspective, are presented and discussed. Finally, Section 5
summarizes the work and provides the conclusions.

2. Related Work

Accurately classifying acceptability judgments has always been a popular topic of
discussion in linguistics because of its theoretical aspects related to cognitive science
or issues concerning the connection between syntax and knowledge [31]. Concerning
NLP, the task is at the heart of many applications, ranging from simple tasks such as
grammar correction to more elaborate ones such as machine translation and evaluation of
automated dialogue systems. Consequently, several challenges arise in this context. The
first issue is the subjective nature of acceptability judgment, which can vary according
to context and language and is influenced by syntactic or semantic features as well as
pragmatic and dialogic ones. Therefore, models facing this task must be able to identify
and capture complex linguistic structures [32] and exploit cross-lingual approaches to
generalize between languages [33].

Moreover, an additional bottleneck is the cost and difficulty of obtaining annotated
data that may suit these models. Often, it is necessary to rely on crowdsourcing or the
support of domain experts.

The event that caused great traction for the assessment of acceptability tasks has been
the public release of the CoLa corpus [2], the most extensive existing English acceptability
corpus that includes over 10,000 sentences. Numerous neural network-based approaches
were compared on the CoLA corpus, which was then incorporated into the widely known
natural language understanding (NLU) benchmark dataset GLUE [34].

Regrettably, most studies within GLUE have reported accuracy instead of the Matthews
Correlation Coefficient (MCC), making it challenging to determine the optimal approach.
Nevertheless, it is noteworthy that top-ranking systems are transformer-based models,
i.e., ALBERT [35] (69.1 Accuracy), and StructBERT [36] (69.2 Accuracy). Instead, another
line of research has approached the task using entailment and exploiting small-scale
models [37] showing promising results (86.4 Accuracy).
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The methodology introduced in CoLA has been the starting point for several deriva-
tive resources developed recently and focused on languages other than English. Such
languages include Italian [20], Norwegian [17], Swedish [18], Russian [15], Japanese [38],
Chinese [39,40], and Spanish [19]. It is important to note, however, that since acceptability
has always fascinated scholars, small datasets had already been released before ColLa,
mainly focused on theoretical linguistics or cognitive science-related tasks [41-43]. In
addition to English, informal acceptability judgments have been evaluated in Hebrew and
Japanese [32], as well as in French [44] and Chinese [45]. A small Italian dataset focusing
on complexity and acceptability has also been released [46]. Notice that—in the context
of the newborn field of Quantum Natural Language Processing (QNLP)—ItaCola has
been used to evaluate the feasibility of a quantum machine learning algorithm to classify
acceptable/unacceptable sentences using the new distributional compositional models of
language [47].

3. Materials and Methods
3.1. Dataset

The resource employed in this work is ItaCoL A, which stands for the Italian Corpus
of Linguistic Acceptability [20]. [taCoLA has been meticulously constructed to encompass
a diverse spectrum of linguistic phenomena while making a clear distinction between
sentences regarded as acceptable and those deemed unacceptable. The process used to
curate this corpus has been closely modeled after the methodology applied in creating the
original CoLA [2].

ItaCoLA consists of 9700 sentences whose origins vary. These sentences encompass a
wide array of linguistic phenomena for comprehensive coverage of the linguistic literature.
The acceptability assessment of each sentence comes from experts who authored the diverse
data sources and is formulated as a binary score.

The sentences have been collected from a wide range of linguistic publications span-
ning four decades, meticulously transcribed by hand, and made available in digital format.
A sample extracted from ItaCoLA with some acceptable sentences (label 1) and some
unacceptable ones (label 0) is shown in Table 1.

As mentioned above, the annotation process lies in domain-expert judgments. This
procedure, already known in corpus linguistics studies [48], has become the standard de
facto for this type of task, shared by all the works in other languages derived from CoLa.
The possibility of using crowdsourcing approaches and naive annotators is still debated
in the literature [49], as well as creating deliberately unacceptable examples ad-hoc by
compromising well-formed sentences [50], a procedure widely used in other NLP tasks,
such as sentiment analysis or fake news detection [51-54].

Table 1. Sentences from ItaCoLA. The first column indicates the acceptability judgment (1 = accept-
able, 0 = not acceptable).

Label Sentence

0 Maria andava nella sua I'inverno passato citta.
(Maria went to her winter past city)

1 Max vuole sposare Andrea
(Max want to marry Andrea)

0 11 racconto ti hanno colpito.
(The story have impressed you)

1 11 racconto ti ha colpito.
(The story has impressed you)

ItaCoLA is divided as follows: 7801 sentences compose the test set, the validation set
includes 946 sentences, while the test set is 975. The ratio of acceptable to unacceptable
sentences in each split is balanced.
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3.2. Models
3.2.1. BERT

In the realm of NLMs, BERT has emerged in the literature as the most widely adopted
model due to its remarkable efficiency [55]. BERT is based on a Transformer encoder [56],
and it needs several non-annotated data for the training phase, articulated in two different
training objectives, namely masked language modeling (MLM) and next sentence prediction.

MLM entails randomly masking a portion of words of the training dataset. This
technique enables the model to capture information bidirectionally within sentences while
simultaneously predicting the masked words. It is worth noting that two possible options
for vocabulary (cased or uncased) imply two distinct pre-trained models. This bidirectional
analytical adaptability allows the model to maintain a significant generative capacity
through the inner layers of the network while also facilitating adaptation to specific tasks
during the subsequent fine-tuning phase.

BERT operates by initiating each input word sequence with a special token, marked
as “[CLS]”. This token is crucial in deriving an output vector of size H, corresponding
to the hidden layers” dimensions and the whole input sequence. Furthermore, another
unique token, “/SEP]”, needs to be correctly situated within the input sequence following
each sentence. Starting from a sequence of input words denoted as t = (t1,tp,...,tm),
BERT produces an output represented as h = (hg, hy, hy, ..., hy). In this representation,
ho € RH is the ultimate hidden state of the special token “[CLS]”, acting as a comprehensive
representation for the entire input sequence. Meanwhile, hy, hy, ..., hy, signify the final
hidden states of the remaining input tokens.

The context-dependent representation of sentences obtained from this training phase
can be further customized to specific tasks by fine-tuning and modifying several hyper-
parameters. The BERT},;s, model has 110 million parameters (12 hidden layers, each
composed of 768-dimensional states and 12 attention heads). Every layer of the model
produces a unique embedded representation of the input words, whose dimension is
limited to a maximum of 512 tokens.

For the fine-tuning of BERT in classifying input sequences of words into K distinct
text categories, the final hidden state /iy can serve as the input to a classification layer.
Subsequently, a softmax operation [57] is employed to transform the scores corresponding
to each text category into probabilities.

P = softmax(CWT) 1)

The parameter matrix of the classification layer as W € RX* is the one selected for

this work. Concerning the BERT version, the dbmdz Italian BERT model (XXL, cased) [58]
has been chosen. It is an Italian pre-trained version of BERT trained using different
corpora [59,60]. The corpus used for the training is 81 GB and includes 13,138,379,147 tokens.

3.2.2. ELECTRA

The other NLM under consideration is ELECTRA, first introduced in [22]. ELECTRA
has demonstrated superior proficiency in capturing contextual word representations, sur-
passing other models in downstream performance when subjected to identical model sizes,
data, and computational resources, as noted by [61]. ELECTRA’s pre-training includes two
transformer models: the generator (G) and the discriminator (D), as shown in Figure 1. G
is devoted to replacing some tokens in a sequence, typically trained as a masked language
model. In contrast, the main focus in ELECTRA is on the discriminator model D, which
aims to discern the tokens substituted by G in the sequence.
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They ' They original

l ate | ate original E
bz T amaimin = pasta | = EE o > [RERLAGERN)

=.with . Hwith original

. anchovies . anchovies original

masked

Figure 1. ELECTRA overview with replaced token detection.

In a specific scenario, when certain tokens within a given input sequence are randomly
substituted with a unique “[MASK]” token, the aim of G is to predict the original tokens for
all the masked instances. Following this, a sequence with fake tokens is generated for D,
which is trained to distinguish genuine from fake tokens using a method called replaced
token detection (RTD). The RTD offers the advantage of not compromising the model’s
overall performance while having fewer examples available.

Similarly to BERT, a version of the model used is dbmdz Italian ELECTRA [62].
Here are the details: starting from a sentence « of raw text ), made of a set of tokens
K = w1, Wy, ..., wy, where w; (1 <t < n) is a generic token, x is encoded in a sequence of
contextualized vector representations /() = hy,hy, ..., h, by G and D. After that, using a
softmax layer, G is the probability of generating a specific token w; for each position t for
which w; = [MASK].

r(wi) e (1)
w|x) = @)
el = b @) o)
The embedding function is represented by 7(-) : w¢ € x — R4"™; dim is the chosen
embedding size, while the prediction of whether w; is original or fake is given by D. A
sigmoid layer, o, is used to perform this task:

D(x,t) = o(r(w;) hp(x):) ®)

During the pre-training, the combined loss function is minimized:

min Y Lcen(x,16) + ALpis(k,11D) 4)
NGAD ey

Note that Lgen represents the loss function of G and Lp;s that of D. Subsequently,
only D is used for the fine-tuning.

Techniques like MLM, exemplified by BERT, introduce input corruption by substi-
tuting a masked token for an original one, which the trained model then retrieves. Such
methods yield commendable results when applied to downstream NLP tasks; they typically
demand substantial computational resources for optimal effectiveness.

By contrast, RTD provides a more efficient pre-training technique, corrupting a sub-
set of input tokens with plausible alternatives using a generator network. ELECTRA’s
efficiency compared to models such as BERT lies in including the predictions of all input
tokens, not only the masked ones. Therefore, D loss can also be computed on the whole set
of tokens in the input sequence, allowing the use of examples in the training phase without
compromising performance.

4. Results and Discussion

Two different types of analysis have been carried out: quantitative, which aims to
verify the performance achieved by the tested models using metrics well known in the
literature and the improvement from the baseline, and qualitative, which aims to deepen
the analysis and estimate whether there are specific phenomena that impact performance
the most.
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4.1. Quantitative Analysis

According to previous studies approaching this task, two different metrics have been
used for the analysis: accuracy and the Matthews Correlation Coefficient (MCC). Accuracy
is the most commonly used basic metric and is also the one used to be able to compare with
GLUE. MCClis a correlation metric increasingly used in binary classification tasks [63].

The Adam optimizer has been used for training (learning rate of 2 x 1075, epsilon
of 1078), while batch size has been set to 32, with 2 labels, 0 warm-up steps, a maximum
input sequence length of 64 words, categorical cross-entropy as the objective function. The
number of epochs on which the model has been trained is 7.

As evidenced by the loss functions shown in Figure 2, ELECTRA is more efficient than
BERT at loss-minimizing learning to perform classification.

—8—ELECTRA —@—BERT
0.45
04
0.35
0.3
0.25

Loss

0.2
0.15

1 2 3 4 5 6 7
Epoch

Figure 2. The loss functions for BERT and ELECTRA training.

Concerning NLMs tested, as shown in Table 2, it can be noted that both BERT and
ELECTRA outperform the classic LSTM baseline.

Table 2. Classification results comparing LSTM, BERT, and ELECTRA.

Model Accuracy MCC

LSTM 0.794 0.278 £ 0.029
BERT 0.904 0.603 £+ 0.022
ELECTRA 0.923 £ 0.008 0.690 £ 0.035

Notice that, although it is an outdated architecture [64], LSTM (Long Short-Term
Memory) models have been used in several works for acceptability classification [2,65].
Their peculiarity is, in fact, their ability to adequately capture and handle long-term
dependencies in sequential data. Furthermore, LSTM memory cells are able to maintain
long-term information, unlike traditional RNNS.

In particular, experiments carried out using ELECTRA achieve the best results, reach-
ing an accuracy of 0.923, while the BERT-Classic reaches a lower score, ending at 0.904. By
using MCC as a metric, the result is even more significant.

This result is attributable to a more efficient use of available data. ELECTRA's pre-
training strategy is not limited to learning only masked words, as with BERT. Unlike MLM,
RTD produces a better contextual representation by learning from all input words and using
a similar amount of data, model size, and computational cost [66]. Further confirmation of
the validity of this approach is given by its application in similar binary classification tasks
in different languages [53,67,68].
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4.2. Qualitative Analysis

The evaluation has also been extended to a qualitative level to take advantage of
fine-grained annotations provided along with ItaCoLA.
Since its release, around 30% of the sentences composing the corpus have been anno-
tated using labels covering nine linguistic phenomena, as shown in Table 3. The phenomena
combine some classes proposed for the AcComplit dataset [46] and other ones used in [69]
for the English language.

Table 3. Overview of different phenomena collected in ItaCola.

Phenomenon Sentences Description Example
. One-verb sentences composed of only “Marco ha baciato Alice” (En. Marco
Simple 365 . .
mandatory arguments. kissed Alice.)
in which . . A
. S?ntences mwhich a c.onstltu.er.lt e “E Clara che Anna ha visto uscire” (En. It
Cleft constructions 136 displaced from its typical position to give . .
) . is Clara whom Anna saw leaving.)
it emphasis.
“Maurizio sostiene che Lucia ha parlato di
. Sentences lacking the agreement in gender  lui a casa con la moglie” (En. Maurizio
Subject-verb agreement 406 or number between subject and verb. claims that Lucia talked about him at home
with his wife.)
Sentences with one or more indefinite " . .
. . . Spero in qualcosa che arrivera” (En. I am
Indefinite pronouns 312 pronouns referring to someone or . ;
. hoping for something to come.)
something.
Sentences in which the subject is . ”
. e . Cicerone era un grande oratore” (En.
Copular constructions 855 connected to a noun or an adjective with a .
. Cicero was a great speaker.)
copulative verb.
- Sentences containing the verb “essere” (to  “Stavamo correndo nel pomeriggio” (En.
Auxiliary 398 " . S
be) or “avere” (to have). We were running in the afternoon.)
. Sentences. in which apaphorl.c clements are “Cesare adula se stesso” (En. Caesar
Bind 27 grammatically associated with flatters himself)
their antecedents. ‘
o . “Che opera lirica avevi suggerito di
Wh-islands violations 53 Sentences at the beginning of which there andare a vedere stasera?” (En. What opera
is a Wh- clause. . .
did you suggest we see tonight?)
Vs s : b2
Questions 177 Interrogative sentences. E tua quella bicicletta rossa?” (En. Is that

red bicycle yours?)

Since only 2088 sentences are accompanied by a fine-grained linguistic annotation,

the train, test, and validation splits have been altered to achieve this objective: the whole
set comprising all the 2088 sentences is designated the test set. Therefore, the remaining
7632 sentences in the dataset have been divided into two subsets, training and validation,
which are composed of 6833 and 800 sentences, respectively. ELECTRA has undergone
fine-tuning using identical parameters to those in previous experiments.

Concerning accuracy, as reported in Figure 3, some uniformity can be seen with a
significant gap only in sentences belonging to the bind class.

As expected, sentences involving pervasive constructions of the Italian language are
simpler for the model to handle. This is true for copular constructions and questions. Such
sentences achieve almost identical results (accuracy equal to 0.88 and 0.86, respectively). In
the other phenomena, on the other hand, the deviation is very low, in the range of 3 points.

The only exception, as mentioned above, concerns the bind class, classified poorly
using BERT (0.55) but which undergoes a significant increase using ELECTRA (0.70). This
is a very interesting result since binding is a complex phenomenon studied in various
languages, related to well-known concepts in theoretical linguistics such as anaphora and
ergative verbs [70,71], which have often posed numerous critical issues in NLP [72].
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Figure 3. Comparison of performance in terms of accuracy between BERT and ELECTRA.

Unexpectedly, simple sentences do not yield the highest results. In contrast, this cate-
gory achieves the best outcomes in the original English CoLA corpus [69]. This discrepancy
can be attributed to English’s extremely straightforward syntax and strict SVO (subject—
verb—object) order [65], factors that contribute to sentences lacking any particular criticality.

The same is not true for Italian, where the syntax is often characterized by hypotaxis
and the presence of pro-drop, and the free order of constituents constitute major critical
factors that affect performance [73].

Furthermore, it is notable that ItaCoLA allows multiple annotations for the same
sentence in case phenomena coexist.

Almost a third of the sentences in the dataset used for this experiment have multiple
annotations. As for simple sentences, 77% have more than one annotation, which could be
another reason they tend to be misclassified.

Opverall, as shown in Table 4, the application of ELECTRA achieves values consistently
better than or equal to BERT, both using accuracy and MCC in every phenomenon.

Table 4. Results of two models using MCC and Accuracy (ACC) with respect to each phenomenon
taken into account.

Phenomenon Model
ELECTRA BERT
MCC/ACC
Cleft construction 0.53/0.82 0.48/0.80
Copular construction 0.56/0.88 0.36/0.88
Subject-verb agreement 0.54/0.88 0.41/0.86
Whe-islands violations 0.5/0.83 0.46/0.81
Simple 0.54/0.89 0.35/0.86
Question 0.50/0.86 0.37/0.86
Auxiliary 0.47/0.85 0.30/0.82
Bind 0.43/0.70 0.18/0.55
Indefinite pronouns 0.51/0.87 0.28/0.83
Total 0.54/0.87 0.37/0.84

Considering the MCC as a metric, a major variability across phenomena can be
observed (see Figure 4). An issue highlighted at the release of ItaCoLA was the low
performance on the copula constructions and Wh-violations. This result strongly contrasted
with the results obtained for English: in [69], a value of MCC > 0.50 was presented for both
phenomena. This problem seems to be overcome using ELECTRA; in both cases, the values
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sharply increase, reaching MCC scores of 0.56 and 0.58, which is in line with English CoLa
scores. Although interesting from a cross-linguistic perspective, it should be noted that
many of these phenomena are highly language-specific. Therefore, a true Italian-English
comparison for each phenomenon is not possible.

MCC
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Figure 4. Comparison of performance in terms of MCC between BERT and ELECTRA.

5. Conclusions and Future Work

In this work, an approach that raises the bar for the performance of acceptability
judgment tasks in Italian has been presented. In particular, using the ELECTRA model has
enabled surpassing baselines and state-of-the-art BERT-based approaches.

ELECTRA performance has also been investigated in depth through a qualitative
analysis that focused on specific linguistic phenomena, showing a generalized improve-
ment, particularly regarding marginal phenomena poorly represented in the sample under
analysis, in which BERT has been underperforming.

Following the insight already presented in [15], the work’s future development consists
of exploring the possibilities of cross-lingual approaches [74].

Obviously, many open issues cannot disregard the nature of the task itself, since
the unacceptability of certain syntactic structures is strictly language-dependent. For
this reason, it would be fruitless to compare global performance through cross-linguistic
approaches; rather, it would be appropriate to focus on specific phenomena, as already
demonstrated in other studies in the literature [75]. Concerning further experiments,
additional models, such as decoder-only or encoder—-decoder models, will be tested, and
the effect of in-context learning and knowledge transfer from additional languages will be
considered, following the most recent research trends in this topic.

Finally, given the recent interest in the syntactic evaluation of NLMs, to make the
methodology more robust, a comparison with experienced and unskilled human annotators
will be introduced, as proposed in [28,49], and a semi-automatic systematic evaluation
system based on a set of minimal pairs, as has happened with English [76] and Japanese [38].
Furthermore, new lines of research will be investigated concerning the promising results in
the area of QNLP obtained from the preliminary experiments [77] and the chance to also
opt for different strategies based on zero or few-shot learning using other NLMs on this
task [78].
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Abstract: Multimodal Sentiment Analysis (MSA) plays a critical role in many applications, including
customer service, personal assistants, and video understanding. Currently, the majority of research
on MSA is focused on the development of multimodal representations, largely owing to the scarcity
of unimodal annotations in MSA benchmark datasets. However, the sole reliance on multimodal
representations to train models results in suboptimal performance due to the insufficient learning
of each unimodal representation. To this end, we propose Self-HCL, which initially optimizes the
unimodal features extracted from a pretrained model through the Unimodal Feature Enhancement
Module (UFEM), and then uses these optimized features to jointly train multimodal and unimodal
tasks. Furthermore, we employ a Hybrid Contrastive Learning (HCL) strategy to facilitate the
learned representation of multimodal data, enhance the representation ability of multimodal fusion
through unsupervised contrastive learning, and improve the model’s performance in the absence of
unimodal annotations through supervised contrastive learning. Finally, based on the characteristics of
unsupervised contrastive learning, we propose a new Unimodal Label Generation Module (ULGM)
that can stably generate unimodal labels in a short training period. Extensive experiments on
the benchmark datasets CMU-MOSI and CMU-MOSEI demonstrate that our model outperforms
state-of-the-art methods.

Keywords: contrastive learning; feature optimization; multitask learning; multimodal sentiment

analysis

1. Introduction

The rapid development of neural network modeling has brought diverse techniques
and methods to the field of human—computer interaction. Long Short-Term Memory
Networks (LSTMs) [1] have effectively solved the limitations of traditional Recurrent
Neural Networks (RNNs) [2] in dealing with long-term dependencies by introducing a
gating mechanism, which is especially suitable for analyzing and predicting time series
data. The Transformer model based on the self-attention mechanism is able to deal with
long-range dependencies and is now widely used in various sequence modeling tasks. In
addition, “Knowing knowledge: Epistemological study of knowledge in transformers [3]”
investigates the role of neural models in human-computer interaction, thus providing new
perspectives for understanding how neural networks facilitate knowledge exchange.

Multimodal sentiment analysis (MSA) plays a crucial role in the field of human-
computer interaction and has become a hot research topic in recent years [4]. MSA has
received much attention in recent years compared to traditional unimodal sentiment
analysis methods, MSA has demonstrated significant advantages in terms of robustness,
and it has made breakthroughs in processing social media data in particular. With the
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explosive growth of user-generated content, MSA has been used in a wide range of domains,
including social monitoring, consumer services, and the transcription of video content.
By integrating information from different modalities, such as textual, audio, and visual
data, this analytic approach is able to capture and parse the user’s affective state more
comprehensively, thus improving the accuracy and reliability of sentiment recognition.

Today, research in MSA mainly focuses on how to effectively learn joint representations.
Researchers have evolved their work from tensor-based approaches [5] to approaches based
on attention mechanisms [6,7], and they have continuously worked on designing modules
that capture crossmodal information interactions and utilize multimodal representations
to train models. However, relying solely on multimodal representations to train models
often leads to suboptimal performance [8]. This is mainly due to the lack of unimodal
annotations in the MSA benchmark dataset, thereby making it difficult for models to
capture unimodal-specific information. As shown in Figure 1, uniform multimodal labels
are not always appropriate for unimodal learning, which limits the model’s ability to
understand each unimodal state in depth. A number of attempts have been made by some
researchers to solve this problem. Yu et al. [9] proposed the Self-MM, which calculates
the distance between the modal representation and the category centroid to quantify
the degree of similarity. Han et al. [10] designed the MMIM, which enhances the effect of
multimodal fusion by increasing the mutual information between unimodal representations
and the shared information between fusion embedding and unimodal representations.
Furthermore, Hwang et al. [11] presented SUGRM using recalibration information to
generate unimodal annotations with dynamically adjusted features. However, how to better
learn unimodal feature representations and optimize multimodal feature representations
in the absence of unimodal annotations remains to be further explored.

_\

@ "' - P E— @ Multimodal

Labels
® Alot of sad parts /

Figure 1. An example of unimodal labels and multimodal labels. The blue dotted lines represent the

Unimodal Labels

process of backpropagation.

In order to address the above problems, we designed an innovative Multimodal
Sentiment Analysis framework called Self-HCL. The framework initially employs the
Unimodal Feature Enhancement Module (UFEM) to optimize the learning of unimodal
features. Specifically, the UFEM computes and assigns attentional weights to modal features
in the channel and spatial dimensions by using the Convolutional Block Attention Module
(CBAM) [12]. It then uses these weights to optimize the representation of unimodal features
by finely tuning the original features and selectively reinforcing them through gating
mechanisms and elemental multiplication. Next, the Sparse Phased Transformer (SPT) [13]
is used to capture and integrate the final feature representations for each modality. In
addition, Self-HCL integrates a Hybrid Contrastive Learning (HCL) strategy to optimize
the representation learning process for multimodal data. On the one hand, we adopt the
principle of Unsupervised Contrast Learning (UCL) [14], which enhances the extraction of
interrelated information between the fused features and each unimodal modality through
iterative operations so as to reveal the deep relationships between modalities and optimize
the spatial layout of fused features. On the other hand, to address the problem of the scarcity
of unimodal annotation data, we introduce a Supervised Comparative Learning (SCL)
strategy. We map the features of different modalities into the same high-dimensional feature
space to facilitate the aggregation of samples with the same emotion label in the embedding
space while ensuring the differentiation of differently labeled samples. Finally, we improve
the Unimodal Label Generation Module (ULGM) proposed by Hwang et al. [11]. We
constructed a new UCL space based on it and combined with the properties of UCL, which
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enables the ULGM to output unimodal labels stably in a shorter period of time. The
improved ULGM not only fully utilizes the advantages of contrast learning in mining
feature differences and uniqueness, but it also successfully overcomes the limitations
encountered by Hwang et al. [11] in dealing with the modal feature similarity puzzle. To
summarize, the primary contributions of this work are as follows:

*  We construct a novel MSA framework called Self-HCL, which improves the identifica-
tion of salient features in the absence of unimodal annotation using the UFEM and
optimizes the features by combining the gating mechanism with element multiplica-
tion, which effectively improves the representation learning of unimodal features.

e A hybrid contrastive learning strategy is designed for the purpose of deep exploration
of the fused multimodal features and the inherent relationship between each single
modal feature and emotional labels.

e We propose an improved ULGM, which reveals the deep relationship between differ-
ent modalities and optimizes the spatial distribution of modal features by constructing
a new unsupervised contrastive learning space, thus achieving the stable generation
of unimodal labels within a short training cycle.

2. Related Work
2.1. Multimodal Sentiment Analysis

Multimodal Sentiment Analysis (MSA) is an approach for identifying and understand-
ing emotions by analyzing speech, facial expressions, voice, music, and body movements.
The discipline has advanced using publicly available datasets, including CMU-MOSI,
CMU-MOSEI, and IEMOCAP [15]. There are three main MSA research directions: (1) Ini-
tially, multimodal fusion used techniques like tensor fusion networks [6] and low-rank
multimodal fusion [16] with LSTM [1] to create high-dimensional tensors for integrating
diverse data sources. (2) Modal interaction modeling [17] explores complex interactions
between modalities using MCTN [18] and MulT [4], which enhance intermodal transfor-
mations using cyclic consistency loss and the Transformer architecture encoder/decoder,
respectively. Sun et al. [19] offered deep normalized correlation analysis for improved
intermodal consistency in high-dimensional nonlinear spaces. (3) Mode consistency and
disparity techniques, which seek coherence and highlight discrepancies between modali-
ties, have garnered attention. For example, Yu et al. [9] created a self-supervised learning
module for label generation in multimodal and unimodal training tasks, thus minimizing
mode differences. Han et al. [10] used mutual information in MSA and proposed a learning
framework to preserve task-relevant information. In their model MISA [5], modal vectors
were mapped into two spaces, and regularization was added to aid in learning shared and
distinct modal properties.

2.2. Multitask Learning

Multitask learning is a key branch of machine learning that focuses on optimizing the
connections between multiple related tasks simultaneously [20]. It falls under the migrating
learning framework, which aims to extract and apply domain-specific knowledge from
training data for various related tasks. In multitask learning, model parameters act as a
sharing mechanism during training, thus allowing the model to extract common feature
representations from different tasks to improve its generalization across various tasks.
There are two main types of parameter sharing: soft sharing, where model parameters
are adjusted for different tasks, and hard sharing, where fixed global parameters aid in
learning all tasks. In the field of MSA, multitask learning has been widely used to integrate
information from different modalities like text, speech, and image, thus leading to improved
sentiment recognition and emotion analysis [21,22].

2.3. Contrastive Learning

Contrastive learning, based on the InfoNCE theory [23], uses a loss function to in-
crease the mutual information between feature representations of the same object from
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different perspectives or conditions while reducing it between unrelated objects (negative
sample pairs). This approach helps the model develop more distinct feature representa-
tions. Recent methodologies like SimCLR [24] and MoCo [25] have advanced the practical
applications and theoretical exploration of contrastive learning in computer vision, thus
improving learning outcomes in unsupervised settings through data augmentation and
queuing mechanisms. As deep learning techniques have evolved, contrastive learning has
expanded beyond visual data like images to fields such as natural language processing
and multimodal learning. It has been successful in extracting unified representations from
various data types, including text, images, and audio. For example, Khosla et al. [26] ex-
tended contrastive learning by incorporating supervised information into the unsupervised
framework, thus allowing for multiple positive samples to be associated with the same
anchor sample. Moreover, Han et al. [10] enhanced contrastive learning by maximizing
mutual information across different aspects of a single input instance, thus filtering and
amplifying feature information relevant to the target task.

2.4. ULGM

Designed and developed by Yu et al. [9], ULGM aims to automatically generate
unimodal labels for multimodal tasks. The module relies on the assumption that label
differences between categories are directly related to differences in the distances of modal
eigenvectors from category centers. Labels from unimodal data should align with those
from multimodal fusion information. However, close interclass distances and indistin-
guishable category centers can lead ULGM to produce unstable or inaccurate labels, thus
impacting learning stability and causing the model to converge to a local optimum. Hwang
etal. [11] proposed an enhancement based on Yu et al. [9] to address this issue. The enhance-
ment scheme generates unimodal labels based on distances between the feature space and
label space. ULGM proposes that the distances between feature points in a semantic space
are linked to the distances of their corresponding labels. By calculating feature distances
using multimodal tag information, ULGM infers and generates unimodal tags. It considers
offset size and direction, thereby determining the offset by comparing distances between
multimodal and unimodal features with the maximum tag space distance and analyzing
positive and negative tag center positions relative to multimodal features.

3. Approach
3.1. Problem Definition

MSA is a technique that combines multiple modal signals such as text, audio, and
visual to accurately determine sentiment states. In this study, the input to the model is
defined as I;, where s € {t,a,v}. And this composite input consists of three key compo-
nents: textual modality, audio modality, and video modality. The core task of the model is
to predict the corresponding sentiment intensity value 7, € R after receiving inputs such
as Is. To optimize the learning process of the model, in the training phase, we generate
the corresponding labels ys € R for each modality separately. Although the model can
produce multiple potential outputs, in practical applications, we only select 7, € R as the
final sentiment prediction index.

3.2. Overall Architecture

Self-HCL facilitates the sharing of fundamental modal representations by incorporat-
ing multimodal tasks, unimodal activities, and hybrid contrastive learning tasks. When
faced with problems that involve several modes of input and various types of unimodal
tasks, we employ a hard sharing method to construct a shared underlying learning network.
Figure 2 depicts the comprehensive structure of Self-HCL, thus showcasing how modal
representation information may be efficiently exchanged and utilized across activities.
In Figure 2, ys is the unimodal annotation generated by ULGM based on the manually
annotated multimodal labels v, for supervised learning of the unimodal task. §s; and 7,
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are the predicted sentiments for the unimodal task and the multimodal task, respectively,
where s € {t,a,0v}.
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Figure 2. Overall architecture of Self-HCL.

3.3. Multimodal Task

For the multimodal task, we extract modality features F! from pretrained BERT [27],
COVAREP [28], and FACET [29] models for textual, acoustic, and visual input, respectively.
Subsequently, the Unimodal Feature Enhancement Module (UFEM) is employed to opti-
mize the extracted features for each modality type, and the Sparse Phased Transformer
(SPT) is utilized to capture and integrate the final feature representation for each modality.

Unimodal Feature Enhancement Module: The UFEM primarily utilizes the Convo-
lutional Block Attention Module (CBAM) [12], a specialized attention mechanism module
designed for Convolutional Neural Networks (CNNs) [30], thus aiming to enhance the
network’s expressiveness and performance in processing visual tasks by strengthening
the attention to key features. The CBAM comprises two primary modules: the Channel
Attention Module (CAM) and the Spatial Attention Module (SAM). Here, we show how
the CBAM can be applied to the UFEM. The UFEM receives F! € Rs*% as input, where I
is the length of the sequence, and d; is the modal feature dimension, and we squeeze the
input along the sequence length using global average pooling;:

Is )
= 1Y Fi(La) M
S 1=1

where s € {t,a,v},and d = 1,2, ..,ds. The compression feature S is then connected and
fed into a series of fully connected networks and ReLU to learn the global multimodal
embedding Sg:

S¢ = ReLU(W,[St; Sa; So] + by) 2)

where [;] denotes the feature concatenate, W; is a 3 x 3 weight matrix, and b; is a bias
term. The global multimodal embedding S I is then fed into the channel attention module,
which is compressed into two one-dimensional vectors by average pooling and maximum
pooling, which are then passed through a shared Multilayer Perceptron (MLP) and finally
normalized to the interval [0,1] by the sigmoid function to obtain the Mcan:

Mcam = o(MLP(1(Sg)) + MLP(y(Sg))) (©)
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where o (-) denotes the sigmoid function, and 7 and 7 represent average pooling and
maximum pooling, respectively. Similarly, in the SAM, average pooling and maximum
pooling are again performed to aggregate the feature information and generate the 2D
spatial attention map Mg using a convolutional layer of size 7 x 7:

Msam = o(f77([1(Mcam); ¥(Mcam)])) 4)

where f7*7 represents a convolutional layer of size 7 x 7, and ;7 and 7y represent average
pooling and maximum pooling, respectively. Accordingly, the augmented feature S
adjusted by CAM and SAM weighting is denoted as follows:

S¢ = Msam ® Mcam ©)

where ® denotes the elemental multiplication. The dimensions are then restored to the
original modal features using a fully connected layer:

Rs = WsSq + bs (6)

where Ws and bs represent the fusion weight matrices and bias terms of the fully linked
network. Finally, the original input features are recalibrated using a gating mechanism:

Fl=2x0(Rs) @ F! @)

where ¢(+) denotes the sigmoid function, f”*7 denotes the elemental multiplication, and
the coefficient 2 in Equation (7) serves as an amplification factor to further enhance the
impact of the important features and ensure that the important features can receive more
attention during the feature importance adjustment process. Overall, the textual, acoustic,
and visual features after UFEM augmentation can be described as follows:

F{ = UFEM(F;;0UFEM) ¢ I ®)

where 0YFEM represents all the learnable parameters in the UFEM.
Sparse Phased Transformer: In the multimodal task, we use the Sparse Phased Trans-
former, SPT [13], architecture to extract the respective final feature representations from the

data of different modalities. For any unimodal feature F!, the final feature representation
obtained after applying the SPT can be expressed as follows:

F; = SPT(F;6°") )

where 6°7! is the learnable parameter of the SPT, and s € {t,a,v}. To obtain the fused
feature representation, we first concatenate each unimodal feature representation and then
project each one into a lower-dimensional feature space R%. This process can be specifically
expressed through linear transformation:

E;, = ReLU(W"[E}; EY; Ex] + b (10)

where Ft* ; 15;‘ ; E¥ denote the final eigenvectors of the text, audio, and visual modalities,
respectively, and W{" and bj" are the corresponding fusion weight matrices and bias terms.
Finally, sentiment prediction based on the fused multimodal feature vectors is implemented:

Jm = Wy'Fyy + b7 (11)

where F, is the fused multimodal eigenvector, Wy and b}’ represent the weight matrix and
bias term of the sentiment prediction output layer, respectively, and 7, is the predicted
sentiment label.
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3.4. Unimodal Task

In the three unimodal tasks, we adopt the same modal characterization approach as
the multimodal task, thus mapping each feature representation to the common semantic
feature space R% as follows:

Ff = ReLU(WSFE +1b5) (12)

where s € {t,a,v}. Next, the feature representations for each modality are further pro-
cessed through their respective independent fully connected layer networks to obtain the
corresponding sentiment prediction output for each modality:

Js = W3S +b3 (13)

In order to facilitate the training process of the unimodal task, we have developed a
novel ULGM, which is capable of generating unimodal labels. A detailed description of the
specific architecture of the ULGM and its working principle will be provided in Section 3.6.
The ULGM is calculated as follows:

ys = ULGM(yy, Fj, X, 0ULCM) (14)

where v, stands for multimodal labels, and 8Y¢M stands for ULGM learnable parameters.
Finally, we adopted a joint learning strategy that combines the manually annotated mul-
timodal label y,;, and the automatically generated single modal label y; to jointly train a
multimodal task and three unimodal subtasks that are only relevant during the training
phase. It is important to emphasize that these unimodal tasks only exist during the training
period. Consequently, we utilize 7, as the ultimate result.

3.5. Hybrid Contrastive Learning

Unsupervised Contrastive Learning: Although the SPT successfully improves the
expressiveness of fused features, it does not deeply explore the intrinsic connections
between unimodal features F! and fused features F},. Therefore, we use Unsupervised
Contrastive Learning (UCL) with the aim of strengthening these connections and further
optimizing the quality of fusion features. The goal of our design is to maximize the mutual
information between the fused features and the inputs of each unimodal modality, which
is optimized through repeated iterative optimization; thus, the network can effectively
transition from each independent modality to the fusion features. Given that the current
Self-HCL has obtained the multimodal fusion result F;;, via the SPT network, an effective
mapping from the fusion feature F};, back to each unimodal input F! has not yet been
established. Therefore, we follow the operation of [10] and adopt a strategy to measure the
correlation between them using a function Corr(-) with normalized prediction vectors and
true vectors, which is defined as follows:

] Go(FL)
Go(Ff) = L m> i s (15)
oFn) = 16 T TER

Corr(E,, Fy) = exp(Fi(Gy(F;))") (16)

where G, is a neural network with parameter ¢ that generates the prediction of F! from
F;,and || - || is the L2 normalization. The loss between individual modalities and fused
features is computed by treating all other modal representations as negative samples in the
same batch of samples:

L —Eq|! (17)

i
F Fs

Corr(E}, Fl)
L Corr(F;;, Fl)
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where N is the number of samples in the batch, and L. 1 denotes the contrastive learning

loss function between the two vectors F}, and F.. Ultimately, the overall loss function of the
UCL consists of the sum of the losses of the fused features F, with respect to the textual,
visual, and audio modalities:

EUCL = 'Cm,t + Em,a + Em,v (18)

where m represents the fusion feature F;;,.

Supervised Contrastive Learning: By utilizing the label information to the fullest, Su-
pervised Contrastive Learning (SCL) treats all samples in the collection with the same label
as positive samples and those with different labels as negative samples, thus presuming
that attention will be paid to specific key labels. In particular, when dealing with datasets
such as CMU-MOSI and CMU-MOSEI, which are only labeled with multimodal labels
but not unimodal labels, the SCL approach can skillfully utilize the label information to
achieve efficient feature learning and expression enhancement. Specifically, the model first
encodes the different modal features (e.g., text, audio, visual) corresponding to the samples
within each batch into consistent high-dimensional vectors. Embeddings of similarly la-
beled samples will be close to each other during the comparison learning process, while
dissimilarly labeled samples will be far away from each other. This facilitates Self-HCL
to capture potential semantic associations between different modalities related to specific
sentiment categories and to combine information from multiple modalities to accomplish
effective sentiment recognition tasks despite the lack of unimodal fine-grained labeling.
The SCL loss Lscr, is computed as follows:

Z = [F;F}; Fy; By (19)

exp((Zi-Zp)/T)

SIM(p,i) = lo (20)
(. gZaeA(i)eXP(Zi'Zp/T)
ﬁSCL:ZP—. Y SIM(p,i) (21)
it IO &)

where Z € RL¥4 j ¢ [ = {1,2,...,L} denotes the index of a batch of samples, T € RT
denotes the temperature coefficient used to control the distances between the samples,
P(i) = Ij—; — {i} denotes the samples that share the same sentiment category as i but
exclude i itself, P(i) denotes the number of samples, and A(i) = [ — {i} denotes the
samples in a batch of samples other than itself.

3.6. ULGM

The objective of the ULGM is to generate labels for each unimodality by applying
multimodal labels and modality representations. Our ULGM design has been extended
and optimized based on the work of Hwang et al. [11], whose design concept is that the
distance between two features in the common semantic feature space is proportional to
the distance between the corresponding labels in the Label Space. Based on this concept,
and combining the features of unsupervised contrastive learning, we propose the Unsu-
pervised Contrastive Learning Space (UCL Space). In the UCL Space, we map the data
of different modalities into a unified representation space. In this space, if data points
have similar attributes, they tend to be close to each other and form tight clusters, thus
reflecting the similarity between data points. In contrast, data points that belong to different
categories or have significant differences will be mapped to the far end of the space, thus
highlighting the differences between them. The architecture of these three feature spaces is
illustrated in Figure 3. In summary, the ULGM scheme is based on two key assumptions
and mechanisms:
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(1) The Common Semantic Feature Space is consistent with Label Space: The distance
D! . between the eigenvectors of Fusion feature F};, and the eigenvectors of the unimodal
feature F; should be proportional to the semantic or categorical distance DL . . between
the labels of the two modalities corresponding to the two modalities in the Label Space.

(2) The Common Semantic Feature Space is associated with the UCL Space: The
distance DY, _,, within the feature space matches the relative position DS, ., between the
fusion feature F,;, and unimodal feature F; embodied in the unsupervised contrastive
learning. In summary, the design philosophy of the ULGM can be summarized as follows:
o« DL

F F C
Dm—>s m—»ss Dm—>s D

m—s

(22)

where s € {t, a, U}. The ULGM method proposed in this work determines the amount of
deviation of a unimodal label ys with respect to a multimodal label y,, by measuring the
distance from the multimodal feature to each unimodal feature. In the process of calculating
the deviation, we focus on two core elements: the magnitude and the direction.

Common Semantic Unsupervised
Feature Space Label Feature Space Contrastive Learning Space

Figure 3. Schematic representation of the Common Semantic Feature Space, the Label Space, and the
UCL Space.

Magnitude of Offset: To compute the offset, we argue that the greatest distance
inside the common semantic feature space is proportional to the maximum distance within
the Label Space. In the CMU-MOSI and CMU-MOSEI datasets, the multimodal labels
vary from —3 to +3. This means that the distance between multimodal features with
labels —3 (F;;~3) and +3 (F;;"3) must be the largest within the common same semantic
feature space. Therefore, any Df . higher than the maximum distance is clipped to

Drljzax = ||Fl;k¢+3 - FrZ73|| :
DF _ { ||Fp;z _FS*H/ ifDiﬁs < Dﬁaxr (23)
ﬁ - .
s Doy otherwise,
where F;;*3 and Fj; 2 are the mean values of F;;"3 and F},;~3, respectively, and || - || is

the L2 normalization. Based on the concepts and points mentioned, we can consider the
following relations to calculate the offset magnitude from multimodal to unimodal labels:

D1§1—>5/D111:1ux = D1%1—>S/D£3—>+3 (24)
DF
Dyyss = D";HS DLy s (25)

max

Under the current conditions, the unimodal labels y; can be estimated as follows:

Ys = Ym + Dl (26)
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For the results of UCL, due to its wider range, it is necessary to define a maximum

distance that is consistent with the previous setting. Therefore, we set DS, = |Fit3 —

F

Fi73||. In order to establish the connection between D, ., DS,_,, and ys, v, we consider

the following two relations:

yS Di%%s yS Dfn%s Dicnﬁs
vn " Dyme  Un Do 0 Diu " 7
ys_ymochn—)s_Dfnax:>yS:Dfn—>s_Dfnax+ym (28)

Combining the above relations, the unimodal label ys in this condition is obtained
using equal weight summation:

Ys = Ym + Pcm (29)

c c
Dm%s 7Dn111x
1l .

DC 7DC
Where q)cm - ym( m;ls)c mﬂx) +

Direction of Offset: In order to determine the direction of the offset, the spatial
location of the unimodal features relative to the multimodal features is first analyzed.

This process first involves obtaining the average of the multimodal features with positive

annotations F;;" and negative annotations Fy,~ as a reference datum. Then, with reference
to this benchmark, the multimodal features and unimodal features are localized in the
feature space, as shown in Figure 4. By calculating the L2 distances from various types of

)to Fi" and F};~, the directions of the offsets can be

modal representations (e.g., F7 (m a0}

deduced and determined accordingly:

.. D' _ DI
+, lf D7g < Di;’n/
. . 14 P
Direction = { —, if % > %, (30)
S m
¢ DI _ Dl
0, if D = D

where D! = ||F; — Fy"||, DI = ||F; = Fpi” ||, Db = ||F; = E7l|, Dy = ||y, — Far” [, and
||I-|| are the L2 normalizations. Finally, the unimodal label y; is obtained as follows:

Ym +a x DL+ B X @ep, if direction is +,
Vs = Ym —a X DL, — B X @, if direction is —, (31)
Yo if direction is 0.

where « and  represent the Label Space weight coefficients and the UCL Space weight
coefficients, respectively.

F*

m

Figure 4. An illustration of the position of modality representations relative to the mean of multimodal

representations with Fj;" and Fj;~.
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3.7. Objective Function for Training

We use the £ loss as the main optimization objective of the model. In the unimodal
task s, we use the difference between the automatically generated unimodal labels and
the manually annotated multimodal labels as the weight of the loss function. This design
means that the network will pay more attention to samples with large label differences,
thereby improving the model’s sensitivity to key differences. In addition, the unimodal
task s provides an independent unimodal supervision signal and assists in multimodal
task learning, thereby helping the model learn more discriminative modality-specific
representations. The specific calculation formula is as follows:

1N {t,a,0} ) ) .
Ly :£1+NZ Y (W |9, — vil)
1 S

N {tav}

1y . 1 o
= 2 (T =y + 52 Y Wex [ —wil) (32)
N i N i s
_1 .o i {t'ﬂ'v}wi N
- NZ(WM yM| + Z s X |ys ys‘)
i s

where N is the number of training samples. Wi = tanh(|ys — y|) is the weight of the ith
sample for the unimodal task s. The overall loss function £ of Self-HCL combines the above
components and is computed as follows:

L= MNLo+MLsc +ALycL (33)

where A is the weight of the L loss, and A and A, are the weights of Lgcp and Ly,
respectively, which are used to balance the contribution of different loss terms to model op-
timization.

4. Experimental Settings
4.1. Datasets

In this work, we conduct extensive experiments on two benchmark datasets in MSA.
We give a brief introduction to each of them and summarize their basic statistics in Table 1.

CMU-MOSI: The CMU-MOSI dataset, introduced by [31], is widely acknowledged
as a notable benchmark dataset for MSA. The dataset contains samples that have been
annotated by human annotators with sentiment scores ranging from —3 (indicating strongly
negative sentiment) to +3 (indicating very positive sentiment).

CMU-MOSEI: In contrast to CMU-MOSI, the CMU-MOSEI dataset [32] comprises
a greater quantity of utterances, a more diverse sample of speakers, and a greater range
of topics. In the same manner as MOSI, the CMU-MOSEI dataset is annotated with a
sentiment score of —3 to +3 for each sample.

Table 1. Dataset statistics of CMU-MOSI and CMU-MOSEI.

Dataset Train Valid Test Total
CMU-MOSI 1284 229 686 2199
CMU-MOSEI 16,326 1871 4659 22,856

4.2. Baselines
In order to fully ensure the validity of Self-HCL, we provide a fair comparison between
the baseline and state-of-the-art methods in the Multimodal Sentiment Analysis:

e TEFN [6]: The Tensor Fusion Network (TFN) applies a subnetwork for modality embed-
ding, along with tensor fusion, to understand both the intra- and intermodality dynamics.

e LMF [16]: Low-Rank Multimodal Fusion (LMF) carries out the fusion of multiple
modalities by utilizing low-rank tensors, thus enhancing computational efficiency.
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e RAVEN [33]: The Recurrent Attended Variation Embedding Network (RAVEN) cap-
tures the detailed structure of nonverbal subword sequences and adapts word repre-
sentations in response to nonverbal signals.

¢ MulT [4]: The Multimodal Transformer (MulT) employs a crossmodal transformer
with crossmodal attention to facilitate modality translation.

e  MISA [5]: The Modality-Invariant and -Specific Representations (MISA) projects
features into two separate spaces with specific constraints and performs fusion on
these features.

e MAG-BERT [34]: The Multimodal Adaptation Gate for BERT (MAG-BERT) designs
an alignment gate and inserts that into a vanilla BERT model to refine the fusion
process.

e Self-MM [9]: Learning Modality-Specific Representations with Self-Supervised Multi-
task Learning (Self-MM) assigns each modality a unimodal training task with auto-
matically generated labels, thus aiming to adjust the gradient backpropagation.

e MMIM [10]. Multimodal InfoMax (MMIM) uses the first implementation of the
InfoMax principle on an MSA task, where the fusion representation is learned by
maximizing its mutual information with unimodal representations.

e SUGRM [11]: The Self-Supervised Unimodal Label Generation Model (SUGRM)
leverages recalibrated information to produce unimodal annotations by adaptively
tuning features, thus postulating that the distance between two representations in a
shared space should correspondingly reflect the distance between their associated
labels in the label space.

4.3. Implementation Details

Experimental Details: Self-HCL was implemented on the Pytorch framework. For
training the model, we used the Adam optimizer and implemented an early stopping
strategy with eight cycles to monitor the performance of the model. To find the best
combination of hyperparameters, we performed a stochastic search. Table 2 shows the
detailed configuration of the CMU-MOSI and CMU-MOSEI datasets. All training and
testing procedures were performed on a single NVIDIA GeForce RTX 3060 Ti GPU.

Evaluation Metrics: Following the previous works [9] , we report our experimental
results in two forms: classification and regression. For classification, we report the weighted
F1 score (F1-Score) and binary classification accuracy (Acc2). Specifically, for the CMU-
MOSI and CMU-MOSEI datasets, we calculated the Acc-2 and F1-Score in two ways:
negative/non-negative (nonexclude zero) and negative/positive (exclude zero). For the
regression, we report the mean absolute error (MAE) and Pearson correlation (Corr). Except
for the MAE, higher values denote better performance for all metrics.

Table 2. Main hyperparameters used in CMU-MOSI and CMU-MOSEL

Hyperparameter CMU-MOSI CMU-MOSEI
Early Stop 8 8
Batch Size 32 32
LR for BERT 5x107° 5x107°
LR for Others 1x1072 1x1073
Encoder Layer 4 4
Num Heads 8 4
Output Dropout 0.3 0.1
Attn Dropout 0.3 0.1

5. Results and Analysis
5.1. Quantitative Results

The comparative results for the Multimodal Sentiment Analysis on the CMU-MOSI
and CMU-MOSEI datasets are presented in Table 3. In this table, T+ means the results
provided by MMIM [10], and £ is from SUGRM [11]. Models with * have been reproduced
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under the same conditions. Bold numbers indicate the best performance. Based on the
various types of datasets, they can be categorized as aligned or unaligned. Generally,
models using aligned datasets will achieve superior performance [4]. In this work, we
conducted experiments using unaligned datasets on our model. As described in Table 3, we
achieved significant improvements in all the assessment metrics compared to the unaligned
models (TFN and LMF). Even when compared with aligned models (RAVEN, MulT, MISA,
and MAG-BERT), our approach achieved competitive results. In addition, we reproduced
the three best baselines Self-MM, MMIM, and SUGRM under the same conditions. We
found that our model outperformed them in most of the evaluations. Specifically, in the
CMU-MOSI dataset, only MMIM outperformed our model in the evaluation metric of the
MAE, which we analyze as a result of the fact that MMIM uses a historical data memory
mechanism for entropy estimation, which ensures the stability and accuracy of the training
process. And on the CMU-MOSEI dataset, our model successfully exceeded all baseline
metrics and reached the optimal level.

Table 3. Experimental results on CMU-MOSI and CMU-MOSEL

CMU- CMU-
Model MOSI MOSEI Data State
Acc-2 F1-Score MAE Corr Acc-2 F1-Score MAE Corr
TEN t -/80.8 -/80.7 0.970 0.698 - /825 -/82.1 0.593 0.700 Unaligned
LMF + - /825 -/824 0.917 0.695 -/82.0 - /821 0.623 0.677 Unaligned
RAVEN 1 -/78.0 -/76.6 0.915 0.691 -/79.1 -/79.5 0.614 0.662 Aligned
MulT + 81.5/84.1 80.6/83.9 0.861 0.711 - /825 - /823 0.580 0.703 Aligned
MISA t 80.79/82.10 80.77/82.03 0.804 0.764 82.59/84.23 82.67/83.97 0.568 0.724 Aligned
MAG-
BERT 82.5/84.0 82.4/84.0 0.778 0.766 81.3/84.8 81.7/84.7 0.567 0.742 Aligned
i
Self-MM  84.00/85.98 84.42/85.95 0.713 0.798 82.81/85.17 82.53/85.30 0.530 0.765 Unaligned
MMIM 84.14/86.06 84.00/85.98 0.700 0.800 82.24/85.97 82.66/85.94 0.526 0.772 Unaligned
SUGRM 84.4/86.3 84.3/86.3 0.703 0.800 83.7/84.4  83.6/84.0 0.544 0.748 Unaligned
Self-MM *  82.60/84.67 82.52/84.66 0.726 0.786 82.51/84.99 82.57/85.02 0.535 0.769 Unaligned
MMIM *  82.94/84.91 82.81/84.84 0.707 0.785 82.89/85.34 82.75/85.48 0.552 0.768 Unaligned
SUGRM *  82.36/83.99 82.35/84.04 0.727 0.776 82.85/83.81 82.94/83.83 0.542 0.742 Unaligned
Ours * 83.14/84.91 83.17/84.96 0.711 0.788 83.12/85.91 83.19/85.93 0.531 0.775 Unaligned

5.2. Ablation Study

Unimodal Task Analysis: To evaluate the contribution of unimodal tasks in Self-HCL,
we conducted experiments to test the effects of different unimodal task combinations. As
shown in Table 4, the overall performance of the model was improved after integrating
unimodal tasks, and M, T, A, and V represent multimodal, text, audio and visual tasks,
respectively. In the CMU-MOSI dataset, the model performance improved regardless
of which modality task was added individually. In particular, the “M, A, T” and “M,
V, T” combinations performed better than the “M, A, V” combination. A comparable
phenomenon can be observed in the CMU-MOSEI dataset. To summarize, unimodal tasks
have a positive effect on enhancing model performance. Specifically, text and audio modal
tasks have been demonstrated to have a more significant influence on improving performance.

UFEM: To examine the efficiency of our proposed UFEM in improving unimodal
features, we performed an ablation experiment using the baseline model SUGRM [11]. We
made adjustments to SUGRM: we removed its modal feature calibration (MRM) component
and implanted the UFEM for feature enhancement while keeping the other modules
unchanged. The same adjustment was applied to the Self-HCL to compare the performance
differences between the UFEM and MRM. Table 5 shows the performance comparison
results of the two models on the unaligned datasets CMU-MOSI and CMU-MOSEIL The
underlined numbers indicate improved performance compared to the baseline model. As
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can be seen in Table 5, when our model adopted MRM , its performance generally showed
a downward trend. In contrast, when the SUGRM adopted our proposed UFEM, its overall
performance showed a significant improvement. This is attributed to the fact that the
UFEM enhances the focus on key features and improves the expressiveness of the features,
thus improving the performance of the model.

Table 4. Ablation study of unimodal task dominance using the unaligned datasets CMU-MOSI and

CMU-MOSEL
CMU- CMU-
MOSI MOSEI
Task Acc-2 F1-Score MAE Corr Acc-2 F1-Score MAE Corr
M 81.78/83.73  81.80/83.91 0.729 0.775 82.19/84.15 82.70/84.42 0.548 0.757
M, T 82.13/83.93 82.07/83.99 0.737 0.783 82.40/84.70 82.42/84.15 0.538 0.758
M, A 82.20/84.06 82.19/84.13 0.748 0.772 82.70/84.77 82.90/84.60 0.543 0.762
M,V 81.47/84.23 82.51/84.06 0.742 0.769 82.23/83.52 82.36/83.73 0.546 0.751
M, A,V 82.99/84.77 82.55/84.56 0.722 0.782 82.23/84.23  82.68/85.29 0.544 0.761
M,A,T 83.02/84.92 83.21/84.95 0.728 0.783 83.20/85.43 83.07/85.51 0.543 0.762
M,V, T 82.92/85.08 82.72/84.86 0.718 0.775 82.23/85.23 82.68/86.10 0.529 0.757
M, T,A,V 83.14/8491 83.17/84.96 0.711 0.788 83.12/85.91 83.19/85.93 0.531 0.775
Table 5. UFEM ablation study on the unaligned datasets CMU-MOSI and CMU-MOSEIL
CMU- CMU-
MOSI MOSEI
Model Module Acc-2 F1-Score MAE Corr Acc-2 F1-Score MAE Corr
SUGRM MRM 82.36/83.99 82.35/84.04 0.727 0.776 82.85/83.81 82.94/83.83 0.542 0.742
UFEM 82.47/84.23 82.45/84.27 0.723 0.779 83.02/84.23 83.11/84.43 0.538 0.756
Ours MRM 82.84/84.52 82.93/84.47 0.718 0.780 82.94/85.63 82.96/85.71 0.536 0.762
UFEM 83.14/84.91 83.17/84.96 0.711 0.788 83.12/85.91 83.19/85.93 0.531 0.775

HCL: In order to explore the impact of Hybrid Contrastive Learning (HCL) on our
model performance, we conducted an ablation study on the unaligned datasets CMU-MOSI
and CMU-MOSEL. Since HCL contains both Unsupervised Contrastive Learning (UCL) and Su-
pervised Contrastive Learning (SCL) mechanisms, our ablation design was specified as follows:

e Employ w/o UCL: Remove only unsupervised contrastive learning from Self-HCL
while leaving the rest unchanged.

e Employ w/o SCL: Remove only supervised contrastive learning from Self-HCL while
keeping the remaining parts unaltered.

Table 6 shows the results of this ablation experiment. It is observed that when UCL
was removed, the model showed a slight decrease in all the metrics, thus indicating that
the UCL has a positive impact on improving the model’s accuracy, F1-score, and Corr, as
well as contributes to reducing the MAE. A similar trend can be observed when SCL was
removed, thus confirming the effectiveness of HCL in enhancing the model in complex
sentiment analysis tasks.

ULGM: The unique feature of our proposed ULGM is the introduction of a new unsu-
pervised contrastive learning space, which is missing in the baseline model SUGRM [11].
Therefore, we did not directly apply the ULGM to the SUGRM, but we instead chose to
perform ablation experiments within the Self-HCL framework. The specific settings are the
following: ULGMp,,,s represents using our proposed ULGM in Self-HCL while ensuring
that all other component configurations remain unchanged. For comparison, ULGMg;Grm
represents the ULGM proposed using the SUGRM in Self-HCL while also keeping other
components constant. Table 7 shows the results of the two processing methods on the
unaligned CMU-MOSI and CMU-MOSEI datasets. We can observe from the table that
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when Self-HCL adopted the ULGMg;Grpm, Various performance indicators of the model
declined to varying degrees. This is because ULGMg;grpm faces challenges when dealing
with similarity modal features, while ULG M, takes full advantage of contrastive learning
in mining feature differences by introducing a new UCL Space, thereby successfully solving the
limitations of ULGMg;grm and ultimately improving the overall performance of the model.

Table 6. Ablation study of HCL on the unaligned datasets CMU-MOSI and CMU-MOSEI.

CMU- CMU-

MOSI MOSEI
Model Acc-2 F1-Score MAE Corr Acc-2 F1-Score MAE Corr
w/o UCL 82.55/84.26 82.60/84.25 0.728 0.769 82.62/85.45 82.60/85.38 0.558 0.759
w/oSCL 82.78/84.23  82.86/84.57 0.722 0.773 82.87/85.68 82.86/85.68 0.546 0.762
Ours 83.14/84.91  83.17/84.96 0.711 0.788 83.12/85.91  83.19/85.93 0.531 0.775

Table 7. Ablation study of ULGM on the unaligned datasets CMU-MOSI and CMU-MOSEL

CMU- CMU-

MOSI MOSEI
Model Acc-2 F1-Score MAE Corr Acc-2 F1-Score MAE Corr
ULGMgygrm 82.49/84.30 82.58/84.33 0.727 0.768 82.50/85.47 82.66/85.58 0.552 0.760
ULGMopyys 83.14/84.91 83.17/84.96 0.711 0.788 83.12/85.91 83.19/85.93 0.531 0.775

5.3. Case Study

HCL: To facilitate a qualitative examination of the Hybrid Contrastive Learning (HCL),
we employed t-SNE [35] to visualize the preliminary distribution of some data and the
hidden layer dynamics of the model subsequent to the application of HCL. As shown in
Figure 5, the data without HCL processing had random distribution characteristics with no
clear boundaries or clustering tendencies. In contrast, after applying HCL, the correlation
between data points was optimized, the data points of the same category were aggregated
to form a tight structure, and the separation between different categories was improved,
thus showing stronger structure and recognizability. This shows that HCL plays a key role
in improving model learning efficiency by strengthening feature fusion and contrastive
learning, in addition to using multimodal label information to guide model training.
Nevertheless, some data points may still be misclassified due to factors such as noise
interference, modal mismatch, and sample complexity. Despite these problems, overall,
HCL significantly improved the model’s representation and classification performance for
multimodal data. This finding prompts us to further optimize the learning strategy of the

model to reduce misclassification.

(a) Before HCL (b) After HCL

Figure 5. T-SNE visualization of the embedding space.

ULGM: To evaluate the performance of the ULGM, we conducted experiments on the
unaligned CMU-MOSI dataset. Figure 6 shows the trajectory of the unimodal labels, which
gradually stabilized as the number of training iterations increased. After approximately
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12 training epochs, the unimodal label distribution generated by the ULGM showed
significant stability. Furthermore, to quantitatively evaluate the quality of the multimodal
labels generated by our model, we compared it with two baseline models: the Self-MM
and SUGRM. Table 8 shows a detailed comparison of the fit between multimodal labels
generated by different models and real labels. The results show that the multimodal labels
generated by our proposed model fit the real labels more closely, which further proves the
effectiveness and advancement of the ULGM.
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Figure 6. Visualization of the generated unimodal labels update process across epochs on the
CMU-MOSI dataset.

Table 8. Case study for the Self-MM, SUGRM, and our model on the CMU-MOSI dataset.

Example Annotation Self-MM SUGRM  Ours

Save your money wait till it comes out on rental.

-2.0 -2.0 -1.9 -2.0
And I liked the first movie. I thought the first
movie was really good.

15 1.6 15 1.5

!

i\

.
And I guess normally Shrek is for adults.

0.0 0.1 0.1 0.0

6. Conclusions

In this work, we have presented a novel Multimodal Sentiment Analysis framework:
Self-HCL. This framework optimizes the learning of unimodal feature representations in
the absence of unimodal labeling by applying the Unimodal Feature Enhancement Mod-
ule (UFEM), and it utilizes the Sparse Phased Transformer to capture and integrate the
final feature representations for each modality. Furthermore, we implemented a Hybrid
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Contrastive Learning (HCL) strategy to enhance the representation of multimodal data
and proposed a novel Unimodal Label Generation Module (ULGM) to generate stable
unimodal labels in a brief timeframe. Although Self-HCL introduces multiple optimization
mechanisms, this may result in increased complexity and computational requirements for
the model. However, we acknowledge that the introduction of multiple optimization mech-
anisms has increased the model’s complexity and computational demands. This tradeoff
between performance and computational efficiency is a critical consideration, especially in
resource-constrained environments.

In light of these findings, we have identified avenues for future research. The primary
focus will be on simplifying the model’s architecture while striving to maintain or enhance
its performance. This endeavor will involve exploring more lightweight components
and algorithms that can offer comparable or superior results with reduced computational
overhead. Moreover, we will delve deeper into the analysis of the results obtained, thus
examining the impact of each component of Self-HCL on the overall performance. This
comprehensive evaluation will provide valuable insights into the strengths and limitations
of our framework, thus guiding further refinements and optimizations. Finally, we are
committed to extending the applicability of Self-HCL to diverse domains and datasets,
thus ensuring its robustness and versatility in real-world scenarios. By doing so, we
aim to contribute to the broader field of sentiment analysis and pave the way for more
sophisticated and efficient multimodal frameworks.
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Abstract: Equipment fault diagnosis NER is to extract specific entities from Chinese equipment fault
diagnosis text, which is the premise of constructing an equipment fault diagnosis knowledge graph.
Named entity recognition for equipment fault diagnosis can also provide important data support for
equipment maintenance support. Equipment fault diagnosis text has complex semantics, fuzzy entity
boundaries, and limited data size. In order to extract entities from the equipment fault diagnosis
text, this paper presents an NER model for equipment fault diagnosis based on RoBERTa-wwm-ext
and Deep Learning network integration. Firstly, this model uses the RoBERTa-wwm-ext to extract
context-sensitive embeddings of text sequences. Secondly, the context feature information is obtained
through the BiLSTM network. Thirdly, the CRF is combined to output the label sequence with a
constraint relationship, improve the accuracy of sequence labeling task, and complete the entity
recognition task. Finally, experiments and predictions are carried out on the constructed dataset. The
results show that the model can effectively identify five types of equipment fault diagnosis entities
and has higher evaluation indexes than the traditional model. Its precision, recall, and F1 value
are 94.57%, 95.39%, and 94.98%, respectively. The case study proves that the model can accurately
recognize the entity of the input text.

Keywords: equipment fault diagnosis; named entity recognition; RoBERTa-wwme-ext; deep learning;
knowledge graph

1. Introduction

With the extensive application of advanced science and technology in the military field,
weapons and equipment continue to develop with a focus on information and intelligence.
Complex high-tech equipment is constantly used in modern warfare and training, and
high-level equipment’s support capability is a key factor in the operational effectiveness of
equipment and can determine the outcome of a war. However, the continuous application
of new technology makes the complexity of equipment and the difficulty of support
increase rapidly. The task of equipment support is to ensure the normal operation and use
of equipment, so the main focus of equipment support is the maintenance of equipment to
prevent failure. Equipment fault maintenance refers to the methods, techniques, skills, and
means used for the maintenance and repair of equipment after failure. Equipment in the
process of use will encounter a variety of failures, and troubleshooting and maintenance
personnel mainly rely on their accumulated experience and technical specifications. In the
troubleshooting process, the methods, processes, skills, and means adopted by maintenance
personnel are usually recorded in the form of unstructured text, and these maintenance
experiences are difficult to be effectively reused. Therefore, it is of great significance to
efficiently use the data accumulated in equipment maintenance failure records, deeply mine
the knowledge and potential relationship in the fault log text, and assist the maintenance
personnel to quickly complete the fault analysis and troubleshooting in the process of
equipment support.
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Knowledge graph (KG) technology provides a better method for industry knowledge
mining, representation, and management by mining the entities and relationships in
the information and presenting them in the form of a visual semantic network [1]. By
using the method of a knowledge graph, fault knowledge can be effectively mined from
equipment fault texts. Through the integration and association of knowledge, combined
with reasoning analysis, the equipment fault maintenance plan is formulated to assist
maintenance personnel to quickly find, locate, diagnose, and repair faults [2]. At present,
an increasing number of scholars have introduced KGs into fault diagnosis practice. For
example, Deng et al. [3] explored strategies for building a KG for the fault diagnosis
of robotic transmission systems. The BiLSTM network is used to capture the context
information features in the fault text, the self-attention is used to accurately extract the
interdependence features between characters in the multi-dimensional subspace, and
the CRF is used to realize the effective identification of key entities, which plays a vital
role in promoting the autonomous fault diagnosis. Tang et al. [2] used Deep Learning
technology to extract the entity, relationship, and attribute information from aircraft fault
diagnosis data to build a KG in the field of aircraft faults. Liu et al. [4] constructed an
electrical equipment fault KG based on the text of the electrical equipment operation and
maintenance records, showing the correlation of faulty equipment and components. In the
process of constructing the KG of equipment fault diagnosis, NER plays a vital role. With
the continuous accumulation and increase in equipment fault record data, it is unrealistic
to rely on manual methods to extract the required information from a large number of
texts. Deep Learning technologies have shown great potential in the task of NER for
equipment fault diagnosis, which provides strong support for automatically extracting
fault information and constructing KGs [5]. At present, there is little research in the field
of equipment fault diagnosis NER, but researchers have carried out a lot of research and
achieved certain results in the field of power equipment, aircraft, railway equipment, and
the recognition of other named entities. For example, Gong et al. [6] introduced BiLSTM
and CRF models on the basis of BERT, and entities related to High-Voltage Isolating circuit
breakers and thermal faults are identified from power grid fault texts. Through the joint
recognition model based on the sequence and TreeBiLSTM, Meng et al. [7] extracted the
interdependence between the related entities and relationships in the area of aircraft health
management. Using the fault reports provided by China Railway Administration as the
data source, Yang et al. [8] fuses BERT, BiLSTM, and CRF to perform text mining on the
fault reports of Chinese railway operation equipment and extract relevant entities.

The relevant entities in the equipment fault diagnosis text include equipment name,
fault part, fault phenomenon, fault reason, and troubleshooting way. Compared with entity
recognition in other fields such as finance, tourism, medicine, agriculture, culture and so
on, the characters of equipment fault diagnosis entities are longer and include more proper
names. In addition, there is also the phenomenon that different entity types nest with each
other. At present, there is a lack of public datasets in the field of equipment fault diagnosis,
and it will be a challenging work to carry out an equipment fault diagnosis NER.

In order to complete the work of NER for an equipment fault diagnosis, this study
will propose an NER model based on the fusion of RoBERTa-wwm-ext and Deep Learning.
Based on the equipment fault database, we extracted entities such as equipment name,
fault part, fault phenomenon, fault reason, and troubleshooting way according to the
fault text characteristics. Referring to NER models in other fields, this paper proposes a
RoBERTa-wwm-ext-BiLSTM-CRF NER model for equipment fault diagnosis and proves
the effectiveness of the model through experiments.

The main contributions of this paper are as follows:

(1) We collected and sorted out the fault diagnosis text from the equipment fault database;
constructed a dedicated Chinese corpus in the field of equipment fault diagnosis;
cleaned the data carefully, implemented sentence segmentation; labeled the entity
labels of equipment name, fault location, phenomenon, cause, and elimination method;
and completed the text preprocessing task.
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(2) We use RoBERTa-wwme-ext to process the labeled fault diagnosis text, and a neural
network combining BILSTM and CRF is used to extract the context feature information
of the text to obtain the optimal prediction sequence and complete the NER task.

(3) Through experiments, the performance of different models is compared, and the
effectiveness of the presented NER model for equipment fault diagnosis is veri-
fied. The precision, recall, and F1 value of the model reach 94.57%, 95.39%, and
94.98%, respectively.

(4) Through experiments, the influence of different entity types on the model is evaluated,
the hyperparameters of the model are explored, and the performance of NER is
improved. The case study proves that the model can accurately recognize the entity
of the input text.

2. Related Work

Early entity recognition is mostly based on rule templates, which are often reasonably
designed by domain experts, but the expansibility of rule templates is poor and the cost of
system migration is high [9]. Later, traditional Machine Learning technologies are widely
applied in entity recognition. The commonly used models include ME [10], HMM [11], and
CREF [12], etc. In recent years, as the core technology driving the vigorous development of
Al Deep Learning has also been widely applied in the field of natural language processing
and KG and has gradually become the mainstream method of entity recognition. Compared
with the early manual methods based on dictionary matching and templates, the Deep
Learning model can learn features and patterns from sample data and does not need to
manually select features. It has a better effect, higher efficiency, and stronger universality
and is suitable for solving sequence labeling problems. RNN is suitable for processing
and predicting sequence data, but it is prone to the problem of vanishing gradients when
facing very long sequences. Hochreiter and Schmidhuber [13] proposed LSTM network to
solve the problem of the insufficient reflux of error information and gradient attenuation.
Huang et al. [14] presented a variety of sequence labeling models based on an LSTM
network and proved that the BILSTM-CRF model can effectively use forward and backward
text input features through experiments. Miao et al. [15] presented a model consisting of
LSTM and fully connected layers for short-term fog prediction. An et al. [16] applied a
MUSA-BiLSTM-CRF model in the field of Chinese clinical NER, which greatly improved
the entity recognition performance.

In 2018, Google introduced the BERT pre-training model, which quickly became a
popular model in the field of NLP due to its powerful structural and semantic under-
standing capabilities. Since then, scholars have continuously applied pre-trained language
models to named entity recognition tasks. Devlin et al. [17] utilize BERT and a bidirectional
Transformer model to generate word embedding vectors containing positional information
and contextual features, achieving excellent performance on sentence-level and token-level
tasks. Guo et al. [18] used BERT-BiLSTM-CREF to identify case entities in Chinese domestic
legal texts. Lin et al. [19] presented an entity extraction method for fault information of
railway signaling equipment based on RoBERTa-wwm and Deep Learning. RoBERTa-wwm
was used to generate word vectors of text sequences, and BiLSTM and CNN were used to
obtain contextual features and local feature information. Liang et al. [20] proposed ALBERT
fault pre-training model with fault data embedding for communication equipment faults
of industrial Internet of Things. Kong et al. [21] presented a NLP algorithm based on a
dictionary, language technology platform tools, and a BERT-CRF hybrid to perform entity
recognition on electrical equipment fault texts in power systems and optimized the context
relationship and preferred word labels. Chen et al. [22] used BERT-BiLSTM-CREF to recog-
nize entities in the fault diagnosis text of air compressor and proved that the model showed
an excellent performance in extracting entities in the field of compressor fault diagnosis
by comparing with other sequence labeling models. Zhang et al. [23] used BERT-CRF to
realize the recognition of power equipment fault entities and proved through experiments
that the model can extract a wider range of power equipment fault entities from a small
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corpus. Zhou et al. [24] used the BERT model to extract the initial semantic information
in the text of power equipment defects and then further extracted the context and local
semantic features through BiILSTM-CNN, which provided a reference for the intelligent
extraction of power equipment text information.

At present, there are relatively few studies on named entity recognition in the field
of equipment fault diagnosis. In this paper, an equipment fault diagnosis corpus is con-
structed, the RoOBERTa-wwm-ext-BiLSTM-CRF model is applied to recognize the named
entities in the equipment fault diagnosis text, and the five types of equipment fault diagno-
sis entities are effectively extracted: equipment name, fault part, fault phenomenon, fault
reason, and troubleshooting method.

3. Methodology

In this section, we will elaborate on the NER model for equipment fault diagnosis
based on the fusion of RoOBERTa-wwm-ext and BiLSTM-CRF architectures, and Figure 1
shows overall structure of model, including RoBERTa-wwm-ext, BILSTM, and CRF layer.
Firstly, RoBERTa-wwm-ext layer was used to convert the equipment fault diagnosis text
data into word embedding vector representation. Then, the trained word vector sequence
was input into BILSTM network layer to fully extract the context feature information in
text. Finally, dependency relationship between adjacent labels was learned in CRF layer,
output results of BILSTM layer were decoded, optimal label sequence with constraints was
output, the entities in sequence were extracted and classified, and NER was completed.
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Figure 1. NER model based on RoBERTa-wwm-ext-BiLSTM-CRF network.
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3.1. RoBERTa-wwm-ext Layer
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Figure 2. The structure of Transformer.

RoBERTa-wwm-ext model is a Chinese pre-trained model released by HFL (HIT
iFLYTEK Language Cognitive Computing Lab), which is a derivation and optimization of

BERT model is built on the basis of the 12-layer encoder component of Transformer
architecture. The deep bidirectional Transformer encoder is used to learn the rich semantic
information in the text data. Figure 2 shows the framework structure of the Transformer.
BERT learns the context information of the corpus through two pre-training tasks: MLM
and NSP. Figure 3 shows the model structure of BERT. The input of model consists of two
pieces of text concatenation, labels [CLS] for sentence classification tasks and labels [SEP]
for two input sentence segmentation tasks.
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Figure 3. The structure of BERT.

Figure 4 shows the input representation of BERT, which consists of the sum of word
vectors, block vectors, and position vectors [25]. The formula for computing the input
representation v is as follows:

v="0v"+0°+0f 1)

where o refers to the word vector, v° refers to the block vector, and v? refers to the position
vector. The first layer of word vector represents transforming the words in the input text
into 768-dimensional vectors, the second layer of block vector determines which sentence
the current word belongs to, and the third layer of position vector encodes the absolute
position of each word.

Input [CLS]The air conditioning power supply of the search command vehicle is abnormal[SEP]
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Tok
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Figure 4. Input representation of BERT.

RoBERTa-wwm-ext model is an improved RoBERTa model, especially suitable for Chi-
nese text processing. Compared with BERT model, the following improvements are made:

(1) Dynamic masking technology is introduced to ensure that the same text has different
masking patterns under different training epochs, which improves the richness of
training data and the efficiency of data reuse.

(2) NSP tasks are discarded to improve the efficiency of downstream tasks.

(3) Using the whole word mask technology, the context semantics can be better under-
stood, and the accuracy and efficiency of Chinese text processing can be improved.

(4) Improving model performance by using larger batches, longer training steps, and
larger data sizes.

Figure 5 shows the input representation of RoOBERTa-wwm-ext model. The input text
is first processed with labels [CLS] and [SEP] indicating where each text begins and ends,
using a dynamic masking technique with labels [MASK] randomly masking characters
in the text [19]. The input of the text consists of adding word vector, block vector, and
position vector.
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resulting in no heating of the air conditioning[SEP]

]

resulting in no heating of the [MASK] [MASK][SEP]

[ [CLS]The air [MASK] [MASK] supply of the [MASK] [MASK] vehicle is abnormal[SEP]

J
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Figure 5. Input representation of RoOBERTa-wwm-ext.

3.2. BiLSTM Layer

RNN is a neural network model specifically designed to process sequence data, which
captures the contextual feature information of fault text through internal feedback links.
However, the basic RNN has gradient explosion and gradient disappearance, which has
drawbacks when dealing with long-distance dependence problems [26]. LSTM is an
improvement of the basic RNN and is designed to solve the problem of long-distance
dependence in sequence modeling. LSTM network consists of basic LSTM units. Figure 6
shows the internal structure of LSTM network unit.

(Wishj.1+bin)

(W ohhj.1+bah)
+(Wixxjtbix)

}f +(Woxxj+box)

o (Wenhi.i#bep)
{ + (chxj+ bcx)

Figure 6. The internal structure of an LSTM network unit.

+

The mathematical expressions of LSTM network model are given by Equations (2)—(7).

f = sigmoid(Wexj + by + Waihj 1+ bgy)
i = sigmoid (Wixxj + biy + Wiyhj_1 + by
g = tanh (WexX; + bex + Wohj_1 + by
0 = sigmoidh(WoxX; + box + Wophj_1 + boy)
cj :f®c]-_1 +i®g

hj=o (09 tanh(c;)

@

®)

(4)

©)

(6)

@)

The LSTM network unit processes the input data through forget gate, input gate, and
output gate to realize the memory mechanism at long and short distances. Forget gate
forgets the information in the memory and determines the unimportant and discarded
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information in the memory; Equation (2) represents its calculation process. Input gate
processes the new information and decides information to be memorized; Equation (6)
represents its calculation process, where Equation (3) calculates the brand new information
to be memorized and Equation (4) calculates the update of the old information. Output gate
processes input information, both by direct processing of the current input and by modify-
ing these inputs based on previously memorized information, and Equations (5) and (7)
represent their computation processes, respectively.

BiLSTM is a bidirectional LSTM network constructed based on LSTM units. BiLSTM
connects the same input sequence into the forward and backward LSTMS [27], concatenates
the hidden layers of LSTM network, and accesses output layer together for prediction.
Figure 7 shows the structure of BILSTM network. For NER task, BILSTM network is used to
extract context feature information, which can not only realize the dependence of backward
text on forward text, but also realize the dependence of forward text on backward text,
which can effectively solve the dependence problem of distant entities.

Output
Layer

Hidden
Layer

Input
Layer

Figure 7. The structure of BiILSTM network.

3.3. CRF Layer

In NER task, BILSTM layer extracts the context feature information of the fault text
and obtains the probability of occurrence of each word on each label, but it lacks the ability
to process the dependency between labels [28]. CRF can calculate the relationship between
adjacent labels from a global perspective and obtain the optimal prediction sequence. CRF
makes up for the BILSTM layer’s inability to deal with neighboring label dependencies and
reduces the number of invalid predicted labels. The BILSTM-CRF network model has been
shown to significantly improve the precision of NER. Figure 8 shows the structure of CRFE.

Figure 8. The structure of CRFE.

In a given observation sequence x = (x1,X2,x3,---,X,), a label sequence
y = (Y1,¥2,¥3, - - ,yn) and Equation (8) calculates the corresponding score(x,y), where A;
denotes the corresponding weight and f; denotes the characteristic function.

score(x,y) = Z]. Zi AifiWi-1,Yirx,0) 8)

Softmax function is used to normalize all possible sequence paths, and the condi-
tional probability distribution p(y|x) of the predicted sequence is obtained according to

Equation (9), where y represents the current predicted tag sequence, Y, represents the set
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of all possible tag sequences, and score (x, ;) represents the total score under the current

predicted sequence. Taking the logarithm of both ends of Equation (9) yields the maximum
likelihood probability function of the correct predicted label, as shown in Equation (10).

p(yl) = exp{score(x,y)}N 9
vev. exp{score(x, y)}
log p(y|x) = score(x,y) —log| Y score(x,y) (10)
yEYy

Finally, the maximum likelihood function argmax() is used to decode, and optimal
sequence is selected from all predicted label sequences, and the optimal sequence is the
final label result, as shown in Equation (11).

y* = argmax(score(x,y)), (y € Yy) (11)

4. Experiment and Analysis

This section introduces the experimental process of the equipment fault diagnosis text
NER based on the fusion of the pre-trained model and Deep Learning model, including
text preprocessing, text label, experimental environment setting, training parameter setting,
result analysis, and the comparison of different model combination effects.

4.1. Text Preprocessing

The original data in this paper are 1302 fault records obtained from the equipment
IETM fault database and the equipment user fault register, totaling about 50,000 words.
These raw texts have many problems and cannot be directly utilized. For example, most
of the content exists in the form of tables and flow charts, which cannot be recognized
as text. In addition, when the text length is too long, the recognition precision is often
affected and decreased. Therefore, it is crucial to pre-process the raw text. In this paper,
text preprocessing mainly performs text cleaning, segmentation, and format conversion.
In order to obtain text for entity annotation, the main work of text preprocessing includes
correcting errors, filling in missing values, cutting long text, and converting tables and
flow charts into text. The standardized sentences that only include words, numbers, and
punctuation are obtained by text preprocessing.

4.2. Text Label

The text label is fundamental for building corpora and performing NER tasks. In this
paper, the BIO format is used to annotate the entities in the text: “B-entity type” denotes
the beginning of each entity, “I-entity type” denotes the rest of each entity, and “O” denotes
non-entity words. A total of 3422 entities are annotated in this paper, including five main
types of equipment fault diagnosis: equipment name, fault part, fault phenomenon, fault
reason, and troubleshooting way, as shown in Table 1.

Table 1. Type and quantity of equipment fault diagnosis entity.

Label Type Number
Equipment equipment name 67
Part fault part 884
Phenomenon fault phenomenon 977
Reason fault reason 973
Way troubleshooting way 521

The specific labeling work has the following steps: upload the text to the Label-Studio
labeling tool, set the required labels, label each entity with the corresponding label, select
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the “json” format to export after the labeling is completed, and then convert the label
format into the “BIO” format text through the format conversion program.

4.3. Training

In this paper, according to the allocation ratio of 80% training set, 10% test set, and 10%
validation set, the dataset is divided into three parts containing 2737, 349, and 336 entities,
respectively, for training, testing, and verifying model performance. The pre-trained models
used in the experiments are “Chinese-RoBERTa-wwm-ext” and “Chinese-BERT-base”,
which contain 12 layers of transformers, 12 self-attention mechanisms, and 768 hidden
layer dimensions. Word vectors output by model are the weighted average of the 12-layer
network, and the final 768-dimensional word vector will be fed into the BiLSTM + CRF
layer [5]. Table 2 shows experimental environment setup.

Table 2. Experimental environment.

Type Configuration

CPU: 13th Gen Intel Core i7-13620H
GPU: NVIDIA Tesla P40
OS: Windows 11
Video memory: 24 GB

CUDA: 10.2
Python: 3.12.2
Tensorboard: 2.16.2
Transformers: 4.42.3
Tqdm: 4.66.4
Numpy: 1.26.4

Hardware configuration

Software environment

To ensure reliability of results when conducting comparative experiments, it is nec-
essary to use fixed hyperparameters for training, and the specific hyperparameters of the
model settings are shown in Table 3. “max_seq_length” specifies maximum length of the
input sequence, “epoch” specifies number of training rounds, “batch_size” specifies size
of the training round, “learning_rate” controls the weight update rate of the model, and
“dropout” reduces overfitting during training. “bilstm_size” is used to specify number of
hidden units of a BILSTM layer.

Table 3. Hyper-parameters of models.

Hyper-Parameters Parameter Values
max_seq_length 128
epoch 10
batch_size 32
learning_rate 3x107°
dropout 0.1
bilstm_size 128

4.4. Evaluation Metrics

This paper evaluates the precision (P), recall (R), and F; value of all models in NER
task of equipment fault diagnosis text, and these three evaluation indicators are widely
used in NER tasks [29]. The formulas for the calculation of these three evaluation indicators
are given in Equations (12)—(14).

TP
P= TP+ FP (12)
TP
R=—" 1
TP +FN (13)
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2xPxR

F=———
P+R

where TP refers to entities identified from texts, FP refers to incorrectly identifying non-
entities as entities, and FN refers to failure to identify real entities [19]. Precision represents
the fraction of objects identified as entities by the NER system that are truly entities. Recall
represents the proportion of all entities that actually exist that are correctly identified
by the NER system. Fj is the harmonic mean of precision and recall, which is used to
comprehensively evaluate the performance of NER systems.

(14)

4.5. Experimental Results and Analysis

In this paper, the NER task is implemented for five different models on the equipment
fault diagnosis dataset, and the actual performance of models is evaluated on the test set.
The results show that the model presented in this paper can effectively extract equipment
fault diagnosis entities. Table 4 show examples of extracting entities from equipment fault
diagnosis texts. In this section, the experimental results are analyzed in terms of models,
hyper-parameters, and entities.

Table 4. The samples of NER in English.

Original Text Entity Recognition
Equipment: search command vehicle;
The transmitter of the search command vehicle Part: transmitter;
has no output of high voltage radiation power. Phenomenon: no output of high voltage

radiation power
Reason: auxiliary power supply combined

The auxiliary power supply combined with the cathode current;
cathode current leads to no output of the Part: transmitter;
transmitter high voltage radiated power. Phenomenon: no output of high voltage

radiation power
Way: Replace the modulator plug-in in the
auxiliary power supply combination;
Part: transmitter;
Phenomenon: no output of high voltage
radiation power

Replace the auxiliary power supply in the
combination of modulator plug-in transmitter
high voltage radiation power no output
phenomenon eliminated.

4.5.1. Comparison of Different Models

Table 5 shows results of five NER models, and the results are analyzed as follows:

Table 5. Model experimental results.

Model Precision Recall Fq{-Value
RoBERTa-wwm-ext-BiLSTM-CRF 0.9457 0.9539 0.9498
BERT-BiLSTM-CRF 0.9347 0.9481 0.9413
RoBERTa-wwm-ext-CRF 0.9259 0.9366 0.9312
BERT-CRF 0.9157 0.9395 0.9275
BiLSTM-CRF 0.8068 0.8251 0.8158

(1) The P, R, and F; values of BILSTM-CRF and BERT-BiLSTM-CRF reach 0.8068, 0.8251,
0.8158 and 0.9347, 0.9481, 0.9413, respectively. Through comparison, it is found that
the introduction of the pre-trained model can effectively improve the P, R, and F;
value of NER.

(2) The F; values of RoOBERTa-wwm-ext-BiLSTM-CRF and RoBERTa-wwm-ext-CRF are
0.9498 and 0.9312, respectively. The results show that the introduction of BiLSTM
layer is able to improve the F; value, which verifies the effectiveness of adding the
BiLSTM layer to the NER task.
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(3) The P, R, and F; value of RoBERTa-wwm-ext-BiLSTM-CRF and BERT-BiLSTM-CRF
are 0.9457,0.9539, 0.9498 and 0.9374, 0.9481, 0.9413, respectively. The results show that,
compared with the basic BERT model, RoBERTa-wwm-ext performs better in NER
tasks by introducing dynamic masking technology, discarding NSP tasks, adopting
the full-word masking strategy, and increasing the training batch, training step, and
training dataset size.

(4) The P, R, and F; value of the RoOBERTa wwm-ext-BiLSTM-CRF model reach 0.9457,
0.9539, and 0.9498, respectively, which is the best performance among all models,
proving that the model presented in this paper has superior performance in the NER
task of equipment fault diagnosis.

4.5.2. Effect of Type and Number of Entities

The entities belonging to five types of equipment fault diagnosis, namely equipment
name, fault part, fault phenomenon, fault reason, and troubleshooting way, are identified.
The recognition results of all models are shown in Table 6, and the experimental results are
analyzed as follows.

Table 6. Experimental results of models for the recognition of different entity types and numbers.

Model Evaluate Equipment Part Phenomena Reason Way
ROBERT: P 0.9855 0.9275 0.8873 0.9296 1.0000
o BiL S;BV/IWC"E‘F R 0.9855 0.9275 0.9130 0.9565 0.9859
ext-bi ' F 0.9855 0.9275 0.9000 0.9429 0.9929
BERT P 0.9855 0.9412 0.8493 0.9028 1.0000
BiLSTM éRF R 0.9855 0.9275 0.8986 0.9420 0.9859
! - F; 0.9855 0.9343 0.8732 0.9220 0.9929
ROBERT: P 1.0000 0.9091 0.8219 0.9041 1.0000
0 &V;WI“' R 1.0000 0.8696 0.8696 0.9565 0.9859
ext- Fy 1.0000 0.8889 0.8451 0.9296 0.9929

P 1.0000 0.8400 0.8571 0.8889 1.0000

BERT-CRF R 1.0000 0.9130 0.8696 0.9275 0.9859
£ 1.0000 0.8750 0.8633 0.9078 0.9929

P 0.8855 0.8129 0.7333 0.7667 0.8806

BiLSTM-CRF R 0.8855 0.8006 0.7696 0.8420 0.8551
Fi 0.8855 0.8067 0.7511 0.8028 0.8676

In the recognition of the five types of entities, all models show that the recognition
effect of equipment name and troubleshooting way entities are good, and the F; score is
close to 1. The reason is that the equipment name type entities and the troubleshooting
way type entities have relatively fixed formats in the equipment fault diagnosis text, high
repeatability in each paragraph of fault text, and are easier to identify than other types of
entities. Secondly, the effect of fault part and fault reason entity recognition is also good
because these entity types have a large number of labels. In addition, the effect of entity
recognition for fault phenomena is relatively low because different personnel will have
certain differences in the description and record of fault phenomena, and the difficulty of
recognition will be increased.

4.5.3. The Effect of Model Hyper-Parameters

Setting different values for the model hyperparameters sometimes affects the perfor-
mance of the model, and the most appropriate hyperparameters can be found through
experiments. Learning rate and training epochs are important parameters in the model.
Learning rate determines the step size of the model parameters update, and affects the
training effect and convergence speed of the model. For the adjustment of the model
learning rate, the experimental results are shown in Table 7. When the learning rate is set
to 3 x 1072, the model achieves the best performance.
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Table 7. Model performance at different learning rates.

Learning Rate Precision Recall F1-Value
1x107° 0.8851 0.8876 0.8863
2 x107° 0.9316 0.9424 0.9370
3x107° 0.9457 0.9539 0.9498
4x107° 0.9468 0.9468 0.9468
5x 1075 0.9409 0.9381 0.9395

As the number of iterations grows, Figure 9 illustrates the trend in the F1 score of the
model. RoBERTa-wwm-ext-BiLSTM-CRF has lower F; values than RoBERTa-wwm-ext-
CRF and BERT-CREF in the first two epochs. The F; values of all models become stable
after the fourth to fifth epoch, among which RoBERTa-wwm-ext-BiLSTM-CRF and BERT-
BiLSTM-CRF have the best results, and RoBERTa-wwm-ext-BiLSTM-CRF maintains the
largest F; value after the third epoch.

0.9
0.8
g
=]
8 07
0.6 ROBERTa-BiLSTM-CRF
—— BERTt-BiLSTM-CRF
—— ROBERTa-CRF
o5 4 —— BERT-CRF
’ —— BILSTM-CRF
1 2 3 4 5 6 7 8 9 10

Epoch
Figure 9. Variation of F1 value as the number of training epochs increases.

4.6. Case Study

The trained RoBERTa-wwm-ext-BiLSTM-CRF equipment fault diagnosis NER model
can be directly invoked to recognize the entity of the input text. In order to verify the
recognition effect of the model, we conducted a specific case study, and the results are
shown in Figure 10.

pleae input text:

['B-equipment', 'I-equipment’, 'I-equipment’, 'I-equipment’, 'I-equipment’, 'B-part', 'I-part', '[-part', 'I-part', 'B-phenomenon', 'I-phenomenon',

'I-phenomenon', 'I-phenomenon', 'O', 'B-reason', 'I-reason', 'I-reason’, 'I-reason’, '[-reason', 'I-reason', 'O', '0', 'I-reason', 'I-reason’, 'O',
/', 'T-way', 'I-way', '[-way', 'I-way', 'I-way', '0', 'O', '0', '0', '0', '0']

B I "
equipment

Figure 10. Entity recognition of the input text by the model.

In this example, the input text is “the communication antenna car leveling leg is
working abnormally, the hydraulic oil pipe is damaged, and the oil leakage is caused, and
the problem is solved after replacing the damaged oil pipe”. The model marks the token in
the text with their corresponding labels, and then outputs according to the “BIO” labeling
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rule. It can be seen that the model recognizes “communication antenna vehicle” in the
text as “equipment”, that is, “communication antenna vehicle” as the equipment name;
“leveling leg” is identified as “part”, that is, the “leveling leg” is the fault part; “abnormal
work” is identified as “phenomenon”, that is, “ abnormal work” is the fault phenomenon.
“the hydraulic oil pipe is damaged” is identified as “reason”, that is, “the hydraulic oil pipe
is damaged” is the fault reason. “replace the damaged oil pipe” is identified as “way”,
that is, “replace the damaged oil pipe” is the troubleshooting way. The recognition results
confirm the effectiveness of our proposed model.

5. Conclusions

This paper establishes an NER model for equipment fault diagnosis based on the
fusion of RoBERTa-wwm-ext and Deep Learning, aiming to automatically extract named
entities from a massive set of equipment fault diagnosis text data. This paper then provides
a solid data foundation and support for the construction of equipment fault diagnosis
KGs. The model proposed in this paper is used to extract five types of entities from
equipment fault diagnosis texts. The average P, R, and F; value are 0.9457, 0.9539, and
0.9498, respectively. Based on the experimental results, we draw the following conclusions:
(1) After introducing the pre-trained model into NER task, the precision, recall, and F; value
can be significantly improved. (2) Adding BiLSTM layer can boost model performance.
(3) Comparative experiments show that the model proposed in this paper performs well in
equipment fault diagnosis NER tasks. (4) When the meaning of entities is clear, the format
is fixed, the repeatability is high, and the effect of entity extraction is better.

Although this study is effective for equipment fault diagnosis and named entities
recognition, there are still some aspects worthy of improvement and in-depth exploration
in future work: (1) For the recognition of fault phenomenon entities, the recognition effect is
relatively poor due to the differences in description and record. (2) Due to the small amount
of equipment fault diagnosis text data collection and imperfect performance indicators, we
plan to build a high-quality equipment fault diagnosis corpus with a larger volume of data
and richer entities. (3) The rapid progress of Deep Learning requires us to continuously
optimize our model in pursuit of higher performance standards. (4) We plan to carry out
related algorithm development work in order to effectively improve the P, R, and F1 values
of named entity recognition in the field of equipment fault diagnosis. (5) We plan to apply
the model to extract entities from a larger equipment fault diagnosis text and carry out the
task of entity relation extraction from fault diagnosis text to build a domain knowledge
graph. (6) We will further study the application effect of the model in other fields, such
as the structural composition of equipment and other general fields, to further prove the
effectiveness of the model.
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Abstract: How far can textual representations go in understanding images? In image understanding,
effective representations are essential. Deep visual features from object recognition models currently
dominate various tasks, especially Visual Question Answering (VQA). However, these conventional
features often struggle to capture image details in ways that match human understanding, and their
decision processes lack interpretability. Meanwhile, the recent progress in language models suggests
that descriptive text could offer a viable alternative. This paper investigated the use of descriptive
text as an alternative to deep visual features in VQA. We propose to process description—question
pairs rather than visual features, utilizing a language-only Transformer model. We also explored
data augmentation strategies to enhance training set diversity and mitigate statistical bias. Extensive
evaluation shows that textual representations using approximately a hundred words can effectively
compete with deep visual features on both the VQA 2.0 and VQA-CP v2 datasets. Our qualitative
experiments further reveal that these textual representations enable clearer investigation of VQA
model decision processes, thereby improving interpretability.

Keywords: visual question answering; textual representations; data augmentation; interpretability;
vision-and-language

1. Introduction

Understanding the visual world through language has been a fundamental challenge
in artificial intelligence. Computer vision systems have made remarkable progress in
tasks like object detection [1] and scene understanding [2,3], primarily relying on deep
visual features—mathematical representations of images learned through neural networks.
However, these features face two critical limitations [4-6]: they often struggle to capture
complex semantic relationships in images, and their decision-making process remains
opaque to humans [7].

The English proverb “A picture is worth a thousand words” suggests that visual
information can convey meaning more efficiently than verbal descriptions. However,
recent advances in natural language processing, particularly the emergence of powerful
language models, such as Transformer [8] and Transformer-based models [9-12], have
demonstrated remarkable capabilities in understanding and reasoning about textual infor-
mation, suggesting that concise textual descriptions might serve as an effective alternative
to image representation.

Current approaches to visual understanding tasks, such as Visual Question Answering
(VQA), have explored various ways to represent images. Traditional systems rely on deep
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visual features extracted by object recognition models [1], while more recent approaches uti-
lize Transformer-based models [13-20] like Vision Transformer [21] to learn representations
from image—text pairs. Despite their widespread adoption, these visual representations
often struggle to capture detailed semantic relationships and lack human interpretability,
limiting their effectiveness in complex reasoning tasks like VQA.

In this paper, we explored a different approach to VQA that moves away from con-
ventional visual feature-based methods. Instead of focusing on improving image feature
extraction or visual processing techniques, we investigated the potential of using pure
textual descriptions to represent image content. Specifically, we investigated whether
well-crafted textual descriptions can serve as an effective alternative to traditional visual
features, potentially offering benefits in both performance and interpretability.

To address these challenges, we propose a novel approach that replaces image—question
pairs with image description—question pairs in VQA tasks. Our key research questions are
as follows:

e Can textual representations compete with or outperform deep visual features in

VQA tasks?

e How many words are actually necessary to effectively represent an image for machine
understanding?

¢ (Can data augmentation techniques enhance the performance of text-based image
understanding?

We used RoBERTa [9], one of the most well-known Transformer-based language
models, as our VQA model. The input description—question pairs were jointly fed into the
model to predict an answer. In addition, with the success of data augmentation methods
on both VQA and NLP tasks [22-26], we investigated the use of synthetic samples on
language-only representations. As the aim of the study was to explore the viability of
language-only representations in VQA, we relied on already annotated descriptions from
two standard datasets [27,28]. Automatically generating the image descriptions, although
a necessary future step, is out of the scope of this paper.

Our work makes three key contributions:

*  We demonstrate that textual representations using approximately 100 words can match
or exceed the performance of deep visual features on standard VQA benchmarks,
challenging conventional wisdom about image representation.

e We introduce a more interpretable approach to VQA, where the system’s decision-
making process can be readily understood by examining the textual descriptions
it uses.

*  We present novel data augmentation techniques adapted for text-only VQA, includ-
ing a particularly effective back translation method for questions that significantly
improves performance.

The remainder of this paper is organized as follows: Section 2 reviews related work
in VQA, image representation, and data augmentation. Section 3 details our proposed
approach and methodology. Section 4 presents our experimental results and analysis.
Section 5 provides qualitative analysis and discussion of our findings, Section 6 discusses
the limitations of our approach and the benefits from our results, and Section 7 concludes
with implications for future research.

2. Related Work

Image Representations for VQA. Image representation plays a crucial role in vision-
and-language tasks. Traditional VQA approaches [29-34] rely on deep visual features
extracted by object detectors like Faster R-CNN [1], where each feature vector captures
information about a specific image region. Recent models utilizing Transformer-based ar-
chitectures [21] have shown promising results [13-15,35]. However, these approaches
face two key challenges: they often learn superficial correlations rather than true vi-
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sual understanding [4-6], and their internal representations remain difficult for humans
to interpret [7].

On the other hand, there has been a growing trend in studies utilizing textual repre-
sentations of images [18-20,36—40]. These approaches offer several advantages: they can
capture semantic relationships more explicitly, provide human-interpretable representa-
tions, and leverage recent advances in language understanding. Many works have adapted
Transformer models to fuse visual and textual information [13,16-19,41], achieving high
performance through pre-training with image—caption pairs. For example, Wu et al. [38]
generates question-relevant captions to provide additional context for answering. While
these approaches demonstrate the value of textual information, they typically treat text
as supplementary to visual features rather than as the primary representation medium.
This leaves open the question of whether textual descriptions alone could serve as effective
image representations.

Recent works have shown promising solutions to various VQA challenges: SCLSM [42]
effectively addresses language bias through contrastive learning, Atlantis [43] successfully
integrates aesthetic features for sentiment analysis, and studies on out-of-distribution
detection [44] improve system reliability. While these approaches advance VQA through
different learning strategies, our work takes a fundamentally different direction by investi-
gating the potential of pure textual representations for image understanding.

Data Augmentation for VQA. Data augmentation techniques for VQA have primarily
focused on addressing language bias [4-6], where models tend to exploit superficial corre-
lations between questions and answers in the training set. Chen et al. [23] demonstrated
the effectiveness of counterfactual sample synthesis by manipulating critical parts of input
images, while Gokhale et al. [22] showed that systematic manipulation of both images and
questions can improve model robustness. While these approaches have proven effective,
they require computationally expensive image manipulation.

Our work adapts these counterfactual generation principles to operate directly on
textual descriptions, preserving the benefits of data augmentation while reducing com-
putational costs. Furthermore, we extend these ideas by incorporating techniques from
NLP-based data augmentation, creating a framework that leverages the strengths of both
VQA-specific and text-specific augmentation methods.

Data Augmentation for NLP. The NLP community has developed diverse data aug-
mentation strategies to enhance model performance. Back translation [25,26,45] stands
as one of the fundamental techniques where text is transformed through intermediate
languages to create semantically equivalent but linguistically diverse samples. Another
significant approach is EDA (Easy Data Augmentation) [24], which has demonstrated
success in various text classification scenarios [46-50], particularly when training data are
limited. Recent methods have also explored contextual augmentation, where words are
strategically replaced or inserted based on their semantic context.

Given the text-centric nature of our approach, we investigated how these established
NLP augmentation techniques can benefit VQA tasks when applied to our textual represen-
tations. This novel integration of NLP-specific augmentation methods into VQA presents
an opportunity to leverage well-studied text manipulation strategies in a new context.

Distinction from Previous Work. While previous studies have made significant
progress in VQA, our approach differs in several key aspects. Unlike works that use
textual information as supplementary input [38,39], we explored the potential of using
text as the primary representation of visual content. Moreover, while existing data aug-
mentation methods [22,23] focus on image manipulation, our approach uniquely combines
VQA-specific and NLP-based augmentation techniques in a text-only setting. This not only
reduces computational costs but also provides better interpretability, as all operations are
performed in the human-readable text domain.
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3. Approach

We present a text-based model to explore the potential of language-only represen-
tations for VQA, as shown in Figure 1. The input, comprising a question and a detailed
image description, is processed by a Transformer model with multiple self-attention layers.
The Transformer’s output is then passed to a classifier to predict the answer. Additionally,
we employ data augmentation techniques to expand and diversify the training set.

A brown
nswer %
g |
Classifier
f<s> fWhat f </s> f</s> fHere fwe ftree f </s>
Language-Only Transformer Model
b4 I S S (I
S— S — —
‘ <s> HWhat‘---’ </s> H </s> HHere H we “ tree H</s> ‘
Tokenize
Question Image Description
What color is the table? Here we can see a table, grass,
and tree. In the background
there is sky. ...
Image A brown wooden table some

(not input) brown grass and a green tree
Figure 1. Model overview. Our language-only model takes a question and a description as the input
of a language-only Transformer model and predicts an answer accordingly.

3.1. Language-Only Data

Our language-only VQA framework utilizes the following: (1) questions and answers
from standard VQA datasets, (2) image descriptions representing the image content, and
(3) synthetic data generated through data augmentation techniques.

Questions and Answers. We use the VQA-CP v2 [4] and VQA 2.0 [51] datasets for
the questions and answers. VQA 2.0 consists of 1.1 M question—answer pairs across 204 K
images, while VQA-CP v2 contains 603 K question—answer pairs from 219 K images. Both
datasets use images from the MSCOCO dataset [52]. Although VQA 2.0 is a standard for
natural image VQA, it has been shown to exhibit strong statistical biases in its training
distribution [4-6], allowing models to achieve high accuracy by focusing on the first few
words of a question. VQA-CP v2 mitigates this issue by reorganizing the training and
validation splits.

Image Descriptions. We source image descriptions from two corpora: COCO cap-
tions [27] and Localized Narratives [28]. COCO captions provide five short captions per
image in the MSCOCO dataset [52], with an average of 10.5 words per caption. These
captions focus on describing key elements in the scene, omitting less important details.
Localized Narratives, on the other hand, offer detailed image descriptions for several
datasets, including MSCOCO. Annotators generate these narratives by describing the im-
age aloud while highlighting the relevant regions with a mouse, capturing both prominent
and minor objects. This results in more comprehensive descriptions, averaging 42.9 words
per narrative.
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Synthetic Data. To enhance the diversity of the training set in our language-only
framework, we generate synthetic samples using data augmentation techniques, catego-
rized into two types: Data Augmentation for VQA (Section 3.2) and Data Augmentation
for Language (Section 3.3). For Data Augmentation for VQA (DAV), inspired by recent
multimodal augmentation methods [22,23], which generate new images and questions by
altering objects in an image or question, we adapt these methods for our text-only approach
by creating synthetic descriptions instead of modifying images. For Data Augmentation
for Language (DAL), we employ well-established NLP techniques to enhance language
tasks, drawing from methods such as EDA, back translation, and others [24-26,45].

3.2. Data Augmentation for VQA

We utilize data augmentation methods for VQA [22,23] for our language-only input for
two reasons: (1) to generate diverse training samples that force the model to focus on essential
information rather than superficial patterns, and (2) to achieve this in a computationally effi-
cient way by manipulating text rather than images. While previous approaches [22,23,53,54]
required complex image manipulation through masking or GANs [55], our text-based meth-
ods achieve similar diversity through simple word-level operations.

Let s denote a training triplet, i.e., s = (q,d, A), where q = [g1,- - - ,q@] is a question
sequence with Q tokens, associated with a question type t, and d = [dy,--- ,dp] is a
description sequence with D tokens. The set A = {ay,--- ,ax} contains N ground-truth
answers, with N being at most 10 for VQA 2.0 and VQA-CP v2 datasets, varying across
samples. We propose four data augmentation techniques: (1) hypernym and hyponym
replacement, (2) color inversion, (3) adversarial replacement, and (4) counterfactual samples.
Examples are illustrated in Figure 2.

Hypernym Replacement Hyponym Replacement Color Inversion Adversarial Replacement Counterfactual Samples
What is in the bottle? What is the boy sitting on? What color is the frisbee? What is this vehicle? What color is the fire hydrant?
A bottle on wine next to A young boy sitting on A white dog holding a In this picture we can Ayellow fire hydrant
Original Description - q q - n
a glass of wine. a chair. purple frisbee. see a toy train. sits on the road.
wine chair purple train yellow
A bottle on alcohol next A young boy sitting on A white dog holding a In this picture we can A <mask> fire hydrant
Synthetic Description . . :
to a glass of alcohol. a wheelchair. green frisbee. see a toy bus. sits on the road.
alcohol wheelchair green bus Not yellow

Figure 2. Examples of synthetic samples generated using our proposed data augmentation techniques
for VQA.

Hypernym and Hyponym Replacement. Following [22], we use hypernym and
hyponym replacement to create semantically meaningful variations in image descriptions
while preserving their basic truth value. For example, replacing “fruit” with its hypernym
“food” encourages the model to generalize across broader categories, while replacing it with
its hyponym “apple” allows the model to handle specific instances. In a real-world scenario,
if the description contains the word “car”, it might be replaced with “vehicle” (hypernym)
to generalize, or “sedan” (hyponym) to specialize. This technique forces the model to learn
more abstract or specific concepts, which reduces reliance on narrow language patterns
and helps in combating biases that arise from overfitting to common words in the training
data.

To generate new samples, let A4 be the set of ground-truth answers a that appear in d.
We replace a € A4 with its hypernym h,(a) (or hyponym h,(a)) in both A and d. The new
triplet for hypernym replacement, sy, is defined as follows:

sh = (q, dn, Ap) 1)

Ap = A\ AqU {he(a)}sen, 2)
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d, = [dl,' B ,dL] where d; = hg(ﬂ) ifd;=a, Vae Aq 3)

Similarly, h,(a) is used for hyponym replacement. If hi.(a) € A (or ho(a) € A), we
skip generating sy, to avoid duplicates. Hypernyms and hyponyms are identified using
WordNet [56].

Color Inversion. For color inversion [22], we substitute a color word in a description
with another color word. For example, if the original description states that “the car is
white”, we replace “white” with “black”, resulting in “the car is black”. This method helps
the model handle different color schemes and ensures that it does not overly rely on specific
color cues, making it more robust in tasks that involve color-based questions or object
recognition.

We define a set of K color words, C = {cy,- - -, ck }, and a set of question types related to
colors, Te (Te = {“what color”, “what color are the”, “what color is”, “what color is the”}).
For a training triplet s with question type ¢, if t € T¢ and a ground-truth color answer
a € AN C appears in the description (i.e., d; = a for some i), we randomly replace the color
word a with a different color ¢ # a. The new training triplet s, is as follows:

Sc = (q/ d, Ac) 4)
Ac = A\{a} U{c} ()
dC:[dl,"',dL]Withdi:Cifdl‘:a (6)

Adversarial Replacement. For Yes/No samples, we replace object words in the de-
scription with adversarial words. For instance, if the original description states “the cat
is on the sofa” and the question is “Is the cat on the sofa?”, we might replace “sofa” with
“chair”, resulting in “the cat is on the chair”, forcing the model to change the answer from
“yes” to “no”. This helps the model learn to better distinguish between subtle changes in
object references and makes it more robust in answering questions accurately when similar
but different objects are involved.

For Yes/No samples, i.e., s = (q,d, A) where {yes,no} N A # @, we replace object
words o € O in the description d with adversarial words. O is the set of 80 object classes in
MSCOCO [52]. Following [22], we define an adversarial word, w,q4y(0), as the word most
similar to o but with a different meaning. If o (or its synonyms) appear in q, the answer is
switched from “yes” to “no”; otherwise, the answer remains unchanged. The new training
triplet s, is as follows:

Sa = (q/ da, Aa) (7)
no} ifoisin
4, = o ' ®)
A otherwise
da = [dy, -+, dp] with d; = W,y (0) if d; = o, ©)

where w,q4y(0) is selected as the closest word to 0 € O based on the Euclidean distance
between their GloVe embeddings [57].

Unlike [22], we avoid generating adversarial samples from questions, as altering a
word in the question results in a new answer that cannot be automatically inferred, e.g.,
“How many bins?” —“How many pens?”.

Counterfactual Samples. Counterfactual samples [23] are generated by modifying
parts of the question or description to create alternative scenarios. For example, if the
original question is “What color is the car?”, and the description states “The car is red”,
we modify the description to “The car is blue” to generate a counterfactual sample. This
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forces the model to understand changes in the input and adjust its predictions accordingly,
improving its ability to handle ambiguous or altered situations.

Specifically, we generate counterfactual training samples (CSS) by adapting the method
in [23] for language-only description—question pairs. For a given training triplet s = (q,d, A),
we create counterfactual samples scssq and scss; from the query and description.

Scssq = (qcssq/ d, Acssq) (10)
Scssq — (q/ dcssd/ Acssd ) (11)
To generate scssq, we input q and d into a trained Transformer VQA model M and use

Grad-CAM [58] to find the contribution of each word in q to the answer set A. The top-D
words with the highest contribution form the critical set (0q. Two new questions, qjssq and

Qcss, are created by masking words not in ()q and masking the words in ()q, respectively.

Assq = 191, g1

with g; = <mask> forall g; & Qq (12)
Qe, = 71, 1)
with g; = <mask> forall g; € O, (13)

where Qcss, serves as the question qess, for the CSS sample; the first few words that indicate
the question type (e.g., “what color is”) are not masked, as in [23].

To determine Acss,, we feed qégsq and d back into M to score each candidate answer.
The top-] scoring answers are excluded from the original answer set. Specifically, letting
M; (qjssq, d) represent the top-] answers, the new ground-truth answers are given by

Acssc1 =A \ M](q:rssq/ d) (14)

For scgs,, the values of Qg, dd + Aoy, and My(q, dZ ,) are determined using the
same process.

3.3. Data Augmentation for Language

Given our text-only approach, we leverage established NLP augmentation techniques
that have proven effective in maintaining semantic meaning while introducing linguistic
diversity. We specifically select three complementary techniques: EDA for simple yet
effective transformations, back translation for generating naturally varied paraphrases,
and word replacement/insertion via contextual word embedding for ensuring semantic
coherence. These methods work together to create a robust training set that helps the model
better understand the relationship between textual descriptions and visual concepts. Each
technique is applied to either the description or the question in the input triplet s to create
new samples:

Srllpq = (qnlp/ d, A) (15)
Snlpy = (qr dnlpr A) (16)

where qnp and dy, represent the question and description after applying one of the
transformations below. Examples of generated synthetic samples are provided in Table 1.
EDA (Easy Data Augmentation) [24] includes the following four operations:

*  Synonym Replacement randomly selects 1 words from the sentence and substitutes
them with their synonyms.

e Random Insertion inserts a random synonym of a randomly chosen word into a
random position in the sentence.

¢ Random Swap selects two words from the sentence and swaps their positions.

e Random Deletion removes words from the sentence with a probability of p.
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Table 1. Examples of Data Augmentation for Language when applied to questions.

Original Is This an Ocean Area? What Is the Giraffe Standing Behind?
EDA (Synonym Replacement) Is this an ocean region? What is the camelopard standing behind?
EDA (Random Insertion) Is this sea an ocean area? What is the giraffe abide standing behind?
EDA (Random Swap) Is this ocean an area? What is the standing giraffe behind?

EDA (Random Deletion) Is this an area? What is the standing behind?

Back Translation Is it a maritime area? What's behind the giraffe?

Contextual Word Replacement  Is this an ocean top? What is the giraffe tree behind?

Contextual Word Insertion Is this an urban ocean area? =~ What is the giraffe standing silently behind?

For example, using synonym replacement, the sentence “The cat is sitting on the sofa”
can become “The feline is sitting on the couch”. This introduces variations in the input
data while keeping the meaning intact, making the model more robust to paraphrases and
improving its generalization across different language expressions. For each sample, one of
these four operations is applied at random.

Back Translation [25,26] translates a sentence into another language and then translates
it back into the original language. For instance, translating “The dog is playing in the
garden” to German and back into English might produce “The dog plays in the yard.” This
method introduces linguistic variety while preserving meaning, which helps to reduce bias
introduced by specific language patterns in the training data. By generating paraphrases
that use different sentence structures and vocabulary, the model is exposed to a broader
range of linguistic expressions, reducing overfitting to common phrases and thus mitigating
language bias. For back translation, we implement it using the Python library nlpaug [59],
which translates a sentence into German and back into English. If the sentence remains
unchanged after translation, we discard it.

Contextual Word Replacement/Insertion replaces or inserts words based on the sur-
rounding context. For example, if the original sentence is The dog is running in the park,
the word “park” might be replaced with “field” or “garden” based on the context. This
helps the model to generalize its understanding of different environments while maintain-
ing the overall meaning of the sentence, making it more robust to variations in language
and context. To obtain contextually appropriate words for replacement or insertion, we
leverage the Python nlpaug library [59], selecting random words from the description or
question and replace or insert the most contextually similar words. Pre-trained XLNet [60]
is used for generating the contextual word embeddings needed for these transformations.

3.4. Language-Only VQA Model

Unlike most VQA models that take image—question pairs as input, our language-only
VQA model uses description—question pairs. For the original VQA triplet (q, I, A), where I
is the image related to the question, we generate the image description d by combining the
narrative from Localized Narratives with the captions from COCO captions. Following the
sequence format of the RoBERTa’s implementation in Huggingface [61], the question and
image description are then merged into a single sequence, 1, by inserting a classifier token
<s> at the start, and sentence-ending tokens </s> as follows:

l=<s>4+q+</s>+</s>+d+</s> (17)

where “+” denotes concatenation. The resulting input sequence is then fed into our
Transformer-based language model 7, producing the sequence of embeddings f, i.e.,

f=T(1). (18)
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Then, the embedding corresponding to the classifier token <s> is passed into the
classifier C to generate the final prediction:

p = C(fs>) (19)

List of Abbreviations
We summarize the abbreviations used in our approach and its explanations.

e (SS: Counterfactual Samples Synthesizing;
e  EDA: Easy Data Augmentation;

e VQA: Visual Question Answering;

e NLP: Natural Language Processing.

Summary: This section introduced our approach of using textual representations
and a Transformer-based model, with the support of data augmentation techniques to
enhance performance.

4. Experiments

We conducted five main experiments to evaluate the effectiveness of textual represen-
tations in VQA: (Section 4.1) comparing various image descriptions, (Section 4.2) assessing
different data augmentation techniques, (Section 4.3) comparing textual representations
with deep visual features, (Section 4.4) examining the effect of data augmentation on
questions for models using deep visual features, and (Section 4.5) comparing different
language-only Transformers.

Setup. We chose RoBERTa [9] as the primary Transformer model for our experiments
due to its strong performance on a wide range of natural language processing tasks, includ-
ing question answering and its improvements over BERT [10], such as better pre-training
techniques and removal of the next sentence prediction objective. These optimizations lead
to better generalization and higher accuracy, making RoBERTa well-suited for VQA tasks
where both questions and image descriptions must be processed efficiently. While other
models like BERT and XLNet were also viable, RoBERTa consistently showed superior
results in our experiments (Section 4.5) . For RoBERTa hyperparameters, we used the large
variant with 24 layers and 355 million parameters. The model was trained with a batch
size of 32 and a learning rate of 1 x 10>, using the Adam optimizer with f; = 0.9 and
B2 = 0.999. The maximum sequence length for inputs was set to 512 tokens, and we used
dropout with a rate of 0.1 for regularization. Training was performed for 10 epochs, with
early stopping based on validation loss. As a classifier, we used a multi-layer perceptron
with two fully-connected layers and the Swish activation function [62] between them. We
used softmax cross entropy over the answer vocabulary for the loss function. The param-
eters for the data augmentation techniques were as follows: for counterfactual samples,
we set D = 10 to select critical words and | = 5 to assign new answers. For EDA, the rate
of words to be changed was set to 0.1, as recommended in the original paper [24]. Unless
otherwise specified, the input to our model included the entire sequence of the question,
narrative, and five captions. Results were presented in terms of accuracy, as in [51].

4.1. Describing an Image with Words

This experiment explored how different types and lengths of image descriptions im-
pact VQA performance. The goal was to determine whether more detailed descriptions
improve accuracy and to assess how much information is needed for optimal results. Un-
derstanding this helps to clarify the relationship between the richness of image descriptions
and the model’s ability to answer questions effectively.

Image descriptions. We began by evaluating the performance of different language-
only inputs, including the following: only the question, the question with one to five
randomly selected captions from COCO captions, the question with a narrative, and the
entire input (question, narrative, and five captions). The results, reported in Table 2, also
include the average sequence length.
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The complete input, which combined the narrative with five captions, averaging 95.3 to-
kens per sample, achieved the highest performance, indicating that both datasets provided
complementary information useful for VQA. When comparing captions with narratives,
captions resulted in better accuracy with fewer words. For example, using just two captions
surpassed the performance of narratives, even though the word count was nearly half. This
suggests that the VQA dataset contains a large number of questions about general image
content rather than specific details, as COCO captions tend to focus on prominent elements of
the scene, unlike narratives. In other words, most questions that people ask about an image
pertain to its key elements. This tendency for humans to emphasize the prominent parts while
overlooking minor details is known as reporting bias [63,64].

Input length. We analyzed the relationship between input length and model accuracy by
progressively truncating the image descriptions at test time. The model was trained with the
full input (question, narrative, and five captions). To preserve context, we randomly shuffled
the sentences before truncating them and then returned them to their original order. The
question portion of the input remained intact throughout. The results, shown in Figure 3,
indicate a steady decline in accuracy as more words were removed from the input.

Accuracy decreased consistently up to a 60% truncation rate, after which performance
dropped more sharply. This suggests that while longer descriptions provided useful
context, the model struggled to process the input effectively if too much information
was lost. This trend aligns with the concept of diminishing returns, where adding more
descriptive information initially improves performance but eventually introduces noise or
redundancy. Since COCO captions focus on key elements in the image, truncating beyond
a certain point likely removes critical content, leading to a steep decline in accuracy after
60%.

Table 2. Performance of different language-only inputs on the VQA-CP v2 test set. Length represents
the mean number of tokens in the image descriptions.

Image Description Length  Accuracy
None (Question-Only) - 21.39
One Caption 10.5 35.31
Two Captions 21.0 38.49
Three Captions 31.5 40.09
Four Captions 42.0 41.93
Five Captions 52.5 42.34
Narrative 429 36.45
Whole (Narrative + Five Captions) 95.3 43.64
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Figure 3. Impact of input sequence truncation on VQA-CP v2 test set accuracy. The graph shows
how progressively removing words from the input sequence affected model performance.
4.2. Use of Synthetic Samples

This experiment aimed to evaluate the effectiveness of different data augmentation
techniques in improving VQA accuracy. By analyzing how synthetic samples generated
through various methods affected the model’s performance, we sought to determine which
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techniques enhanced the model’s ability to generalize and handle diverse question types.
We specifically tested the impact of these augmentations on the VQA-CP v2 training set,
using the full description with the narrative and five captions as input.

The results for each of the proposed data augmentation techniques are shown in
Table 3. While most techniques improved accuracy, back translation applied to questions
yielded the largest improvement, particularly for Yes/No questions, with a 17.30 point
gain. This boost of 17.30 points was calculated as the difference between the baseline
Yes/No accuracy of 45.13% and the Yes/No accuracy of 62.43% achieved when the back
translation was applied to the questions. This suggests that paraphrasing through back
translation introduced a diversity of linguistic structures while preserving the semantic
meaning, helping the model generalize better to question variations. In contrast, methods
like hypernym/hyponym replacement or color inversion generated smaller improvements,
likely because they involved limited word-level changes that did not sufficiently alter the
structure of the descriptions or questions to increase generalization significantly. Con-
textual word replacement for descriptions even led to a performance drop, likely due to
the insertion of words that were semantically less relevant, confusing the model during
training.

A notable observation is that applying data augmentation to questions consistently
produced better results than applying it to descriptions. Among the DAV techniques,
hyponym replacement stood out as the most effective, with a significant accuracy boost
of 1.62. Interestingly, combining hyponym and hypernym replacements did not improve
performance beyond hyponym replacement alone. This indicates that, in some instances,
combining synthetic samples from different augmentation techniques can be counterpro-
ductive, possibly confusing the model.

Table 3. Results of data augmentation techniques on the VQA-CP v2 test set, showing the impact of
different data augmentation methods on model accuracy for Yes/No, Number, and Other question
types. D indicates techniques applied to image descriptions, while Q indicates application to ques-
tions. The Gap column highlights the improvement in accuracy compared to the baseline, where no
synthetic data were used.

Input Data Num. Synthetic Num. Total Yes/No Number Other Overall Gap
Narrative + Five Captions - 438,183 45.13 20.06  49.33 43.64 -

w/ Hyponym Replacement 132,570 570,753 45.65 25.36  50.52 4526 +1.62

w/ Hypernym Replacement 23,869 462,052 47.28 17.69  49.10 43.70 +0.06

<>C w/ Hyponym and Hypernym Replacement 183,944 622,177 45.80 2146 5115 4506 +1.42
A  w/ Color Inversion 19,308 457,491 45.61 19.93  50.60 44.47 +1.06
w/ Adversarial Word Replacement 169,929 608,112 44.71 19.84 50.03 4393 +0.29

w/ Counterfactual Samples 438,183 876,366 44.20 19.84 52.07 4486 +1.22

w/ EDA (D) 438,183 876,366 44.68 20.64 50.08 44.02 +0.38

w/ EDA (Q) 438,183 876,366 46.86 2350 50.62 4539 +1.75

w/ Contextual Word Replacement (D) 438,183 876,366 44.69 19.40 4891 4318 —0.46

fﬂ w/ Contextual Word Replacement (Q) 438,183 876,366 46.09 2249  49.10 4416 +0.52
A  w/ Contextual Word Insertion (D) 438,183 876,366 45.15 19.31 48.86 43.27 —-0.37
w/ Contextual Word Insertion (Q) 438,183 876,366 45.86 2144 51.10 45.05 +141

w/ Back Translation (D) 438,183 876,366 45.28 21.01 50.89 4470 +1.06

w/ Back Translation (Q) 293,811 731,994 62.43 27.15 51.84 51.16 +7.52

4.3. Comparison Against Deep Visual Features

This experiment evaluated the effectiveness of text-based representations in compari-
son to models using deep visual features. The key question was whether language-only
representations can encapsulate the necessary visual information as effectively as tradi-
tional visual features. The objective was to assess the potential of text-based approaches as
a viable alternative or complement to deep visual features in tasks like VQA, where the
understanding of both visual and textual elements is crucial.
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We compared our language-only representations (question, narrative, and five cap-
tions) with top VQA models that use deep visual features on the VQA-CP v2 and VQA 2.0
datasets. To ensure fairness, we excluded models designed to address language bias [32-34],
as these techniques can be applied to any model, including ours. Additionally, we did not
use data augmentation for this comparison. Despite the detailed visual information cap-
tured by models like VisualBERT, which is trained on image-text pairs, the results in Table 4
demonstrate that language-based models perform competitively. Our approach surpassed
many deep visual feature baselines, indicating that well-annotated textual descriptions can
effectively capture essential visual details.

One possible explanation for the strong performance of our model is that human-
generated image descriptions tend to focus on the most relevant aspects, filtering out
unnecessary details that deep visual features might capture. Moreover, text-based represen-
tations provide a level of interpretability that may help align the question and description
more accurately. However, NSM [65] achieves slightly better results on VQA-CP v2, likely
due to its ability to capture more intricate visual details, which can be challenging to
express purely through text. Overall, this comparison highlights the advantages of textual
representations in tasks where high-level semantic understanding is crucial. However,
deep visual features may still hold an edge in tasks requiring precise spatial reasoning or
detailed object localization, areas where textual descriptions may fall short.

Table 4. Comparison of language-only models with deep visual feature-based models, showing the
performance of various models on the VQA-CP v2 test and VQA 2.0 validation sets. Results marked

with * are our re-implementations.

VQA-CP v2 Test VQA 2.0 Val
Model Yes/No Number Other Overall Yes/No Number Other Overall
HAN [66] 52.25 13.79 20.33 28.65 - - - -
MuRel [32] 42.85 13.17 45.04 39.54 - - - 65.14
UpDn [29] 42.27 11.93 46.05 39.74 81.18 42.14 55.66 63.48
ReGAT [67] - - - 40.42 - - - 67.18
BAN * [30] 43.14 13.63 46.92 40.74 83.19 48.13 57.52 65.93
VisualBERT * [20] 43.30 15.07 47.83 41.51 84.55 48.19 57.29 66.33
NSM [65] - - - 45.80 - - - -
Ours (Narrative + Five Captions) 45.13 20.06 49.33 43.64 87.91 56.47 59.43 69.74

4.4. Back Translation for Other Models

The results in Section 4.2 demonstrate that back translation significantly boosted
accuracy in our language-only setting. To assess whether this technique can generalize
to other models, we applied back translation to standard VQA models, such as BAN [30]
and VisualBERT [20], by adding synthetic back-translated samples to the training set. This
experiment aimed to test the generalizability of back translation as a data augmentation
technique. We investigated whether the improvements seen in our language-only model
also benefited models that incorporate deep visual features, helping to establish back
translation as an effective tool across diverse VQA architectures.

We present the results in Table 5. Training BAN and VisualBERT with synthesized
back-translated samples significantly boosted performance, with improvements of 2.83 and
5.06 points, respectively. This technique benefited all question types, particularly Yes/No
questions, where the improvement was around 12.65 points. These findings align with our
model’s results, demonstrating that adding synthetically varied questions with the same
meaning is highly effective for enhancing model performance.
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Table 5. Results of applying back translation to different VQA models in the VQA-CP v2 test set.
Gap denotes the improvement achieved by training with synthetic back-translated samples.

Model Yes/No Number Other Overall Gap
BAN [30] 43.14 13.63 4692  40.74 -
w/BT 47.87 16.27 4876  43.57 +2.83
VisualBERT [20] 43.30 15.07 4783 4151 -
w/BT 55.95 1711 49.74  46.57 +5.06

4.5. Comparison of Language Transformers

In this experiment, we compared the performance of various language-only Trans-
former models, including BERT [10], XLNet [60], and RoBERTa [9], in both their base and
large versions. All models were evaluated using the same input—question, narrative, and
five captions. The goal of this experiment was to determine which Transformer architecture
is most effective for handling textual representations in VQA. By analyzing the performance
of different models, we aimed to gain insights into how various language models manage
the complexity of this task.

The results are presented in Table 6. All models exhibited similar performance patterns,
with XLNET large achieving the highest accuracy, outperforming RoBERTa large by 0.59%.
However, the computational time for XLNET large was approximately 2.7 times longer
than for RoBERTa large. Given the minimal accuracy difference, RoBERTa large was a more
efficient choice, offering comparable results while significantly reducing training time.

Table 6. Performance comparison of language-only Transformer models on the VQA-CP v2 test set.
Bold values indicate the highest performance.

Model Yes/No Number Other Overall
BERT base 42.78 1753  46.99 41.27
BERT large 42.72 1743 4847 42.06
XLNET base 43.49 17.61  48.45 42.30
XLNET large 4458 20.67 50.52 44.23
RoBERTa base 44.39 17.46 48.74 42.70
RoBERTa large 45.13 20.06 49.33 43.64

Summary: Our experiments demonstrate that language-only models, when paired
with rich textual descriptions and effective data augmentation, can compete with deep
visual feature-based models in VQA tasks. Detailed captions enhance performance, while
back translation significantly improves accuracy, especially for Yes/No questions. We also
found that models like RoBERTa large provide a strong balance between computational
efficiency and accuracy, making them ideal for language-only VQA tasks. Overall, these
findings highlight the potential of textual representations as a robust alternative to deep
visual features, with wide applicability across different VQA models.

5. In-Depth Analysis of Textual and Visual Representations in VQA

In this section, we provide an in-depth analysis of the strengths and characteristics
of textual representations for images, compared to deep visual features. Specifically, we
focus on two key analyses: (Section 5.1) examining the overlap in predictions between our
language-only model and models using deep visual features, and (Section 5.2) conduct-
ing a qualitative analysis of visual examples. For both analyses, our model’s input is a
combination of the narrative and five captions.

5.1. Error Analysis

We compared our text-only model with models that incorporate deep visual features,
examining whether they make similar or different mistakes. We use BAN [30] and Visual-
BERT [20] as representative models for deep visual features. BAN is a strong pre-Transformer
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model, while VisualBERT uses multimodal Transformers and integrates both image and
caption inputs, making it an intermediate between BAN and our text-only approach.

Figure 4 shows the consistency of correct and incorrect answers across the models.
We used a binary accuracy metric for this comparison, where a prediction is considered
correct if it matches any ground-truth answer, as opposed to the original non-binary metric
used in the main paper [51]. Our model demonstrated high consistency, with similar rates
of correct/incorrect predictions for both BAN and VisualBERT. For 80% of the questions,
all models gave consistent results (blue part). For 12% of the questions, only our model
answered correctly (orange), while this dropped to 8% where only the baseline models
answered correctly (red). This supports the idea that textual image representations can
compete with deep visual features.

OnIy ours is correct

Both are correct Both are incorrect  Our baseline is correct

Figure 4. Answer overlap: comparison of prediction agreement between our language-only model,
BAN, and VisualBERT. Bar graphs show proportions of identical or differing answers.
5.2. Qualitative Analysis

We analyzed qualitative examples (Figure 5) comparing the predictions of our text-only
model, BAN [30], and VisualBERT [20], to identify cases where our method underperformed
and suggest potential improvements.

Q:What is the hand doing? Q: How many ski boards are in the picture? Q: What is the last letter over the plane? Q: What color plate is this?

BAN: cooking X BAN: 4 ) & BAN: ¢ X BAN: white \/

VisualBERT: cooking )} VisualBERT: 4 X VisualBERT: | X VisualBERT: white \/
In this image | see a man who is This image consists of Here in this picture we can see In this image | can see a food
wearing grey t-shirt and | see skiboards, hanged to a stands. white colored airplane flying in item on the plate with a knife,
few pans, boards and number of At the bottom, there is snow. ... sky and we can see clouds also there is a cup with spoon
utensils ... . Aman pointing to Six snowboards are propped in present all over there... A big and sachets on the saucer, ...
pots hanging from a pegboard the snow on a rail. Snowboards plane with AirFrance on the A close up of a slice of cake on
on a gray wall. sticking in the snow by a rack. side of it. a plate.
Ours: pointing \/ Ours: 6 \/ Ours: ¢ X Ours: blue X

(1) (2) (©) 4)

Figure 5. Qualitative comparison: red boxes indicate object detection results by Faster R-CNN with
confidence scores over 0.5. Highlighted words in the descriptions correspond to key details relevant
to the answers.

In Example (1), our text-only model correctly predicted the man’s action based on
the description “A man pointing to pots...”, while both BAN and VisualBERT incorrectly an-
swered “cooking”, likely due to the presence of cooking tools in the scene. This demonstrates
how textual representations can more accurately capture actions by relying on explicit
information, while deep visual models may misinterpret object presence, underscoring our
model’s advantage in avoiding irrelevant visual cues.
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Example (2) highlights another strength of our method: object counting. The detailed
description “Six snowboards” enabled our model to correctly predict the answer, whereas
the object detectors used in BAN and VisualBERT missed detecting all the relevant objects.
This underscores the robustness of our approach in handling precise textual descriptions,
which can outperform deep visual features when object detection is incomplete.

However, Example (3) reveals a limitation: despite the description containing the word
“AirFrance”, our model failed to predict the correct answer. This indicates that our model
struggles with precise visual-text alignment, where deep visual features might provide
stronger spatial or contextual cues. Improvements could focus on better integrating context
from the image to reinforce textual grounding.

Lastly, Example (4) exposes another limitation of our model—handling incomplete
or insufficient text input. The lack of essential details in the description led to incorrect
predictions. This limitation suggests that future work should aim to enhance the model’s
ability to infer or handle ambiguity when text descriptions lack critical information.

Overall, this analysis highlights the advantages of our text-based model in capturing
detailed, action-related, and count-specific information, often missed by deep visual models.
However, it also reveals areas for improvement, particularly in integrating contextual cues
from images and addressing gaps in text descriptions for more robust performance.

Summary: In this section, we analyzed the performance of textual representations for
VQA compared to models that use deep visual features. Through error analysis, we found
that our text-only model can make competitive predictions, often outperforming models
that rely on visual features. Qualitative analysis further revealed that textual input excels
in capturing actions and counting objects, but struggles with precise visual-text alignment
and when descriptions are incomplete. This highlights both the strengths and limitations
of text-based models and points to areas for potential improvement.

6. Discussion

Summary of Results and Time Complexity. Our experiments demonstrate that language-
only models, particularly when combined with data augmentation techniques like back
translation, can achieve competitive performance compared to deep visual models. For
instance, back translation improved Yes/No question accuracy by 17.30 points, outperform-
ing most augmentation methods. While deep visual models like NSM slightly outperform
our model in some areas, the interpretability and semantic richness of text-based mod-
els present a distinct advantage, especially in scenarios requiring human-like reasoning.
Additionally, visual feature-based models like BAN and VisualBERT require more time
to train than our language-only model. This is due to the additional feature merging
module needed to combine image and textual features in these models. For instance, our
language-only model trains approximately 3.2 times faster than BAN, making it a more
efficient choice in terms of computational time while achieving competitive accuracy.

Comparison between text representation and deep visual features. Directly comparing
our language-only model with deep visual feature-based models is challenging due to
different inputs—our model uses human-annotated descriptions, while visual models rely
on extracted visual features. Human descriptions often align better with the questions,
offering a distinct advantage. Despite these differences, our results highlight the parallels
and distinctions between text-based and visual features. A key strength of our approach
is its interpretability, as human-readable descriptions help explain the model’s decisions,
making it a valuable baseline for VQA and showing the potential of textual representations
as a complement or alternative to visual features, especially when interpretability is key.

Future Research Directions. This study opens up new research avenues for VQA
and image understanding. One promising direction is to automatically generate image
descriptions as representations, either to supplement or replace deep visual features. This
could bridge the gap between textual and visual models, combining the interpretability of
text with the precision of deep visual features. Additionally, exploring how textual and
visual features can be harmonized to improve models’ ability to handle complex reasoning
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tasks, such as spatial relationships or fine-grained object recognition, is a logical next step.
Another direction could involve developing models that dynamically decide when to rely
on text versus visual input, optimizing performance based on the complexity of the task
at hand.

Additional baselines. While we acknowledge that including a wider range of baseline
models would provide a more comprehensive benchmark, the scope of this study focused
on representative models that are well-established in the VQA domain. Future work will
aim to incorporate a broader selection of models to further evaluate the generalizability
of our approach. Given the model-agnostic nature of our method, we anticipate that
the benefits observed in this study will extend to other VQA models as well, providing
additional insights into the effectiveness of language-based representations.

7. Conclusions

This paper investigated the use of textual representations of images as an alterna-
tive to deep visual features for VQA. We also applied data augmentation techniques to
both descriptions and questions to expand the training data and improve diversity. Our
experiments showed that the language-only model performs competitively with models
using deep visual features. Notably, back translation for questions significantly boosted
performance. Our findings suggest that machines do not need overly detailed descriptions
to understand images—concise, relevant text is sufficient.
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Abstract: Social media has increasingly relied on memes as a tool for expressing opinions,
making meme sentiment analysis an emerging area of interest for researchers. While
much of the research has focused on English-language memes, under-resourced languages,
such as Bengali, have received limited attention. Given the surge in social media use,
the need for sentiment analysis of memes in these languages has become critical. One
of the primary challenges in this field is the lack of benchmark datasets, particularly in
languages with fewer resources. To address this, we used the MemoSen dataset, designed
for Bengali, which consists of 4368 memes annotated with three sentiment labels: positive,
negative, and neutral. MemoSen is divided into training (70%), test (20%), and validation
(10%) sets, with an imbalanced class distribution: 1349 memes in the positive class, 2728
in the negative class, and 291 in the neutral class. Our approach leverages advanced
deep learning techniques for multimodal sentiment analysis in Bengali, introducing three
hybrid approaches. SentimentTextFormer is a text-based, fine-tuned model that utilizes
state-of-the-art transformer architectures to accurately extract sentiment-related insights
from Bengali text, capturing nuanced linguistic features. SentimentlmageFormer is an
image-based model that employs cutting-edge transformer-based techniques for precise
sentiment classification through visual data. Lastly, SentimentFormer is a hybrid model
that seamlessly integrates both text and image modalities using fusion strategies. Early
fusion combines textual and visual features at the input level, enabling the model to jointly
learn from both modalities. Late fusion merges the outputs of separate text and image
models, preserving their individual strengths for the final prediction. Intermediate fusion
integrates textual and visual features at intermediate layers, refining their interactions
during processing. These fusion strategies combine the strengths of both textual and vi-
sual data, enhancing sentiment analysis by exploiting complementary information from
multiple sources. The performance of our models was evaluated using various accuracy
metrics, with SentimentTextFormer achieving 73.31% accuracy and SentimentImageFormer
attaining 64.72%. The hybrid model, SentimentFormer (SwiftFormer with mBERT), em-
ploying intermediate fusion, shows a notable improvement in accuracy, achieving 79.04%,
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outperforming SentimentTextFormer by 5.73% and SentimentlmageFormer by 14.32%.
Among the fusion strategies, SentimentFormer (SwiftFormer with mBERT) achieved the
highest accuracy of 79.04%, highlighting the effectiveness of our fusion technique and the
reliability of our multimodal framework in improving sentiment analysis accuracy across
diverse modalities.

Keywords: early fusion; late fusion; intermediate fusion; Bengali language; multimodal
sentiment analysis; under-resourced languages; social media; sentiment classification;
machine learning

1. Introduction

The rapid growth of internet usage and the development of various Web 2.0 applica-
tions have led to a significant increase in the use of social media platforms such as Facebook,
X (formerly known as Twitter), and Instagram. These platforms have transformed into
spaces where users share their opinions on a wide range of topics, including business,
politics, entertainment, and current events. Consequently, automated sentiment analysis
of these conversations has attracted significant attention from Natural Language Process-
ing (NLP) researchers, as it helps identify individuals’ opinions or sentiments regarding
specific events or issues. Most existing research in this field focuses on classifying textual
sentiments into three primary categories: positive, negative, and neutral [1,2].

However, the content shared on social media platforms is changing rapidly. More
and more content is multimodal, combining images, text, and videos, which has added a
new layer to sentiment analysis research [3]. Memes, for example, are becoming a popular
way to share information. To understand the sentiment behind memes, it is important to
consider multiple types of media at once. Since memes are often created in people’s native
languages, and social media usage is growing quickly in Bangladesh, there has been a rise
in Bengali memes. Bengali, spoken by about 230 million people in Bangladesh and India, is
one of the most spoken languages in the world [4].

This increase in Bengali memes has sparked more interest in sentiment analysis for
different purposes. One key area is political sentiment analysis [5], which helps understand
how people feel about policies and leaders. Other applications include social media emotion
classification [6], which helps track user engagement and mental health, and detecting
hate speech on online platforms to reduce harmful behaviors. Hate speech in Bengali
is a serious concern as it covers a range of issues, from personal complaints to religious,
political, and geopolitical conflicts [7,8]. Additionally, research on the level of toxicity
against distinct groups in Bangla social media comments has highlighted the severity of
harmful content [9]. Sentiment analysis is also being used in areas like news media, where
it helps identify biases or frames in news articles and headlines [10]. These developments
show how important and complex sentiment analysis is, especially when dealing with
diverse types of content and languages.

The literature on sentiment analysis highlights key approaches for understanding
emotional responses but also reveals significant gaps, particularly in the integration of
multimodal data. Abiola et al. [11] conducted a study on emotional responses to the
COVID-19 pandemic using sentiment analysis tools like TextBlob and VADER applied to
tweets, uncovering the pandemic’s impact on Nigeria’s society, environment, and economy:.
However, while the study used topic modeling and visualized data, it lacked a multi-
modal approach, failing to incorporate visual data. Similarly, Sudirjo et al. [12] explored
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ChatGPT’s potential in business customer sentiment analysis, emphasizing its ability to
detect customer emotions. Yet, the study relied solely on text, missing the opportunity
for multimodal sentiment analysis that could include images or videos. Faria et al. [5]
examined political sentiment in the Bangladeshi elections, demonstrating the effectiveness
of Pre-trained Language Models (PLMs) like BanglaBERT and Large Language Models
(LLMs) like Gemini 1.5 Pro for sentiment detection. Despite the study’s focus on Few-Shot
learning, it did not utilize multimodal data to enhance sentiment analysis. Rifa et al. [13]
proposed a sentiment analysis system for YouTube comments related to Bangla movies and
dramas, introducing a dataset of 14,000 preprocessed comments for relevance detection
and sentiment analysis. While the study made strides in analyzing sentiment using trans-
former models, it also lacked multimodal elements, relying solely on text. These studies,
despite their contributions, share the limitation of not integrating visual data, which could
have provided a more comprehensive understanding of sentiment by combining text with
visual or sensory inputs. The absence of multimodal analysis in these works restricts their
potential to capture the full range of human emotions and insights, underscoring the need
for image—text pairing to deepen sentiment analysis capabilities.

To address the limitations of existing approaches in sentiment analysis for Bangla, this
study introduces novel methodologies aimed at improving sentiment classification in this
low-resource language. We propose an integrated approach that combines unimodal text
and image data with multimodal text-image pair analysis. By fine-tuning state-of-the-art
pre-trained models for both text and image data, we enhance the performance of sentiment
detection. Furthermore, we explore various fusion strategies to effectively combine textual
and visual information, improving accuracy and robustness in sentiment analysis. Through
systematic hyperparameter tuning and rigorous evaluation using standard metrics, we en-
sure the models” optimal performance. Additionally, a comprehensive error analysis helps
identify common misclassifications, providing valuable insights for future improvements
in sentiment analysis for Bangla and other low-resource languages.

In this paper, we propose several hybrid methodologies aimed at improving sentiment
classification for Bangla, a under-resourced language. The contributions of this study are
summarized as follows:

¢ We proposed a three-fold approach for sentiment analysis in Bangla, incorporating
unimodal text, unimodal image, and multimodal text-image pair data.

*  We developed a systematic framework involving preprocessing, model development,
and hyperparameter tuning for each modality, ensuring effective sentiment detection
in Bangla.

*  We fine-tuned state-of-the-art pre-trained language models (mBERT, XLM-RoBERTa,
DistilBERT) for Bangla sentiment classification, introducing a specialized framework
tailored for text-based sentiment analysis in the Bangla language.

*  We leveraged advanced image classification models (ViT, Swin Transformer, Swift
Transformer) for sentiment analysis in images, and introduced a fine-tuned framework
for enhancing visual sentiment detection.

*  We introduced a hybrid framework combining both textual and visual modalities to
improve sentiment classification accuracy, specifically addressing the challenges of
sentiment analysis in Bangla.

*  We explored three fusion strategies (early fusion, late fusion, intermediate fusion) to
effectively combine text and image features, boosting performance in multimodal
sentiment analysis for Bangla.
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We conducted systematic hyperparameter tuning for both text and image models, opti-
mizing critical parameters to achieve the best possible performance while maintaining
the models” ability to generalize.

We provided a comprehensive evaluation using metrics such as accuracy, precision,
recall, and weighted F1 score, offering valuable benchmarks for future research in
sentiment analysis for the Bangla language.

We performed a comprehensive error analysis for the multimodal approach to identify
and address potential weaknesses in sentiment classification. This analysis examined
both text and image modalities, pinpointing common misclassifications and their root
causes, leading to insights for improving model performance and robustness.

The structure of this paper is as follows: Section 2 provides a comprehensive review

of the related literature, establishing the foundation for our research. Section 3 explores the

relevant background studies. Section 4 describes the datasets utilized in this study. Section 5

outlines the proposed methodology in detail. Section 6 presents the experiments conducted
and analyzes the results. Section 7 discusses the limitations of the study, Section 8 outlines
potential directions for future research, and Section 9 summarizes the key findings and

conclusions.

2. Literature Reviews

Sentiment analysis has seen substantial progress through both unimodal and multimodal

approaches, with notable contributions leveraging diverse datasets and advanced machine

learning techniques. Tables 1 and 2 summarize the key findings and methodologies from

relevant studies in text-based and image—text pair-based sentiment analysis, respectively.

Table 1. Summary of studies on unimodal (text-based) sentiment analysis.

Authors Year Models Employed Performance Metrics Key Findings

Abiolaetal. [11]  (2023) Sentiment analysis on 1M VADER classified 39.8% Limited to text data; lacks transformer-
Nigerian  tweets using positive, TextBlob iden- based attention mechanisms for deeper
TextBlob and VADER; LDA tified 46.0% neutral, sentiment interpretation
for topic modeling TextBlob was more

accurate for neutral

Manias et al. [14]  (2023)  Multilingual sentiment anal- XLM-R achieved F1 score Limited to text-based classification; no
ysis using BERT-based mod- of 0.7642, fine-tuned mod- multimodal analysis or domain-specific
els (mBERT, XLM-R, Distilm- els performed better than fine-tuning
BERT) zero-shot models

Hu et al. [2] (2024)  Sentiment analysis using en- Naive Bayes (NB) Focused on binary sentiment classification;
semble methods, transfer achieved an F1 Score of no multimodal analysis
learning, and deep learning 0.84
(RNNSs, transformers)

He et al. [15] (2024) Hybrid BERT-CNN-BiLSTM- Improved accuracy by Restricted to binary sentiment classifica-
Att model for sentiment anal- 5.54%  compared to tion;lacked diversity in dataset and multi-
ysis of short movie reviews =~ Word2Vec-BiLSTM and modal elements

BERT-CNN

Gu et al. [16] (2024)  FinBERT-LSTM model inte- FinBERT embedding Relied solely on financial news and histor-
grating stock prices and fi- LSTM architecture 1ical stock prices; overlooked multimodal
nancial news for sentiment achieved the highest data sources

analysis

accuracy of 0.955 at
77 epochs, outperform-
ing other models
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Table 2. Summary of studies on multimodal (image—text pair-based) sentiment analysis.

Authors Year

Models Employed

Performance Metrics

Key Findings

Elahi et al. [3] (2023)

ResNet50, BanglishBERT

weighted F1 score: 0.71

Achieved higher performance than uni-
modal methods, utilized Explainable
Al (XAI) to interpret model behav-
ior. Limited by reliance on CNN archi-
tectures and absence of Vision Trans-
former (ViT).

Hossain et al. (2022)
(1]

ResNet50, BanglaBERT

weighted F1 score: 0.643

Achieved 1.2% improvement in multi-
modal sentiment classification over uni-
modal models using early and late fu-
sion techniques. Did not incorporate
Vision Transformers or intermediate fu-
sion methods.

Alluri et al. [17] (2021)

Vision Transformers
(ViTs), RoBERTa, SBERT

Macro F1 scores: 0.633
(humor), 0.575 (overall
sentiment)

Utilized ViT for image processing and
transformer-based models for text analy-
sis. Limited to English-language memes
and did not explore variations in Vision
Transformer architectures.

Thakkar et al. (2024)
(18]

multilingual BERT, XLM-
RoBERTa, CLIP, DINOv2

F1 score: 76.8

Explored multimodal sentiment analy-
sis for multilingual contexts, achieved
strong results with sentiment-tuned
large language models. Did not explore
fusion techniques (early, late, interme-

diate).

2.1. Unimodal (Text-Based) Approaches in Sentiment Analysis

Abiola et al. [11] analyzed emotional responses to COVID-19 by conducting senti-
ment analysis on over one million tweets from Nigeria, using TextBlob and VADER for
sentiment classification and LDA for topic modeling. Their findings revealed that VADER
classified 39.8% of the tweets as positive, 31.3% as neutral, and 28.9% as negative, while
TextBlob identified 46.0% as neutral, 36.7% as positive, and 17.3% as negative. Despite
the valuable insights provided by this study, it was limited by its unimodal approach,
relying solely on text data. The incorporation of multimodal sentiment analysis, which
could include images or videos, might have offered richer insights. Furthermore, the
absence of transformer-based attention mechanisms in their methodology restricted the
depth of sentiment interpretation, especially given that modern models like BERT were
capable of offering more nuanced and context-aware sentiment analysis. Similarly, Manias
et al. [14] explored multilingual approaches to sentiment and text classification in social
media posts, focusing on BERT-based models and a zero-shot classification approach. Their
study used four multilingual BERT models (mBERT cased, mBERT uncased, XLM-R, and
DistilmBERT) to analyze multilingual datasets, finding that BERT-based classifiers excelled
when fine-tuned on multilingual data, achieving high accuracy. While the zero-shot model
was efficient and scalable, it provided relatively good results across multiple languages
but lagged behind the fine-tuned models in terms of accuracy. The results demonstrated
that XLM-R achieved an F1 score of 0.7642, showcasing its robust performance. However,
similar to Abiola’s study, it was limited by its exclusive focus on text-based classification,
without exploring multimodal approaches. Integrating multimodal data, such as images or
videos, could have provided a more comprehensive understanding of social media con-
tent. Additionally, the reliance on pre-trained models without exploring domain-specific
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fine-tuning may have reduced the model’s effectiveness for certain languages or tasks that
were underrepresented in the training data. In contrast, Hu et al. [2] focused on sentiment
analysis through advanced NLP techniques, such as ensemble methods, transfer learning,
and deep learning architectures. By enhancing the robustness and precision of sentiment
predictions, their approach investigated the impact of various models like recurrent neural
networks and transformer-based architectures. They also introduced a novel ensemble
method that combined multiple classifiers to improve predictive accuracy. However, like
the previous studies, this research was limited to a text-based approach, focusing only
on binary sentiment classification. Although the robustness of the models employed was
notable, the absence of multimodal analysis in their study indicated an opportunity for
more comprehensive sentiment analysis that integrated additional data types, such as
images, videos, or audio. By incorporating multimodal data, future research could have
provided a more nuanced understanding of sentiment in diverse social media contexts.
In the same vein, He et al. [15] proposed a BERT-CNN-BiLSTM-Att hybrid model for
sentiment analysis of short movie reviews, aiming to address challenges like polysemy and
feature extraction in text sentiment analysis. The model employed BERT for dynamic word
vectors, CNN for local feature extraction, and BiLSTM for global feature extraction, with
an attention mechanism to highlight key information. Experimental results showed that
the model outperformed alternatives like Word2Vec-BiLSTM and BERT-CNN, improving
accuracy by up to 5.54%. However, like previous studies, this research was restricted to bi-
nary sentiment classification. Future research could have explored multiclass classification
and expanded the dataset to include diverse elements, such as emoticons, which would
have added to the richness of the analysis. Lastly, Gu et al. [16] predicted stock prices by
integrating historical stock prices and financial news using the FinBERT-LSTM model. The
methodology leveraged the pre-trained FiInBERT for sentiment analysis of financial news
and combined it with stock market data in an LSTM architecture to forecast stock prices.
The results showed that the FINBERT-LSTM model outperformed both standalone LSTM
and DNN models in prediction accuracy, as evidenced by metrics like Mean Absolute
Error, Mean Absolute Percentage Error, and overall accuracy. The dataset used consisted
of over 843,000 articles and stock price data spanning from 2009 to 2020. However, this
study was limited by its reliance on only news sentiment and historical prices, potentially
overlooking other influential factors that might have impacted stock price predictions. In
conclusion, while each of these studies contributed valuable insights into sentiment analy-
sis, they all shared common limitations, such as their exclusive focus on text-based data
and the absence of multimodal approaches. Incorporating multimodal data and exploring
domain-specific fine-tuning could have enhanced the accuracy and depth of sentiment
analysis across various domains.

2.2. Multimodal (Image-Text Pair-Based) Approaches in Sentiment Analysis

Elahi et al. [3] investigated the sentiment analysis of Bengali memes using the newly
introduced MemoSen dataset, which fills a critical gap in low-resource language research.
Specifically, their study combined ResNet50 for image processing and BanglishBERT for
text analysis within a multimodal framework. Notably, this approach achieved a weighted
F1 score of 0.71, surpassing unimodal methods. Moreover, Explainable Al (XAI) was em-
ployed to interpret model behavior effectively. However, challenges such as an imbalanced
dataset and relatively low accuracy were evident. Furthermore, a key limitation was the
exclusive reliance on CNN-based architectures like ResNet50 and DenseNet161, without
exploring Vision Transformer (ViT) models, which could have offered performance im-
provements. Similarly, Hossain et al. [1] introduced MemoSen, a novel Bengali multimodal
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dataset containing 4368 memes annotated with sentiment labels (positive, negative, neu-
tral). They also leveraged ResNet50 for visual analysis and BanglaBERT for textual analysis.
By utilizing early and late fusion techniques, their study achieved a weighted F1 score of
0.643 and demonstrated a 1.2% improvement in multimodal sentiment classification over
unimodal models. Nevertheless, like Elahi’s work, it did not incorporate Vision Transform-
ers or modern variations for visual feature extraction, nor did it investigate intermediate
fusion methods. These limitations highlight opportunities for further enhancements in
model design and performance evaluation. On the other hand, Alluri et al. [17] focused on
meme sentiment analysis using the Memotion dataset, which categorizes memes based on
irony, humor, motivation, and overall sentiment. They exclusively employed Vision Trans-
formers (ViTs) for visual representation alongside advanced transformer-based models
such as RoBERTa and SBERT for textual and multimodal representations. Their multi-
modal approaches, including the IMGTXT, IMGSEN, and CAPSEN models, utilized fusion
techniques to effectively integrate embeddings and achieved macro F1 scores of 0.633 for
humor and 0.575 for overall sentiment. However, despite the robust use of transformer
architectures and innovative fusion methods, their study was limited to English-language
memes. Furthermore, they did not explore variations in Vision Transformer architectures,
which could have provided diverse perspectives and potentially enhanced performance.
In contrast, Thakkar et al. [18] addressed the gap in multimodal sentiment analysis by
transforming a textual Twitter sentiment dataset into a multimodal format, emphasizing
multilingual contexts. Their work utilized pre-trained models such as multilingual BERT,
XLM-RoBERTa, CLIP, and DINOV?2 for baseline experiments comparing unimodal and
multimodal configurations. Through their pipeline, which integrated visual and textual
features via concatenation followed by linear projection, they achieved strong results, par-
ticularly with sentiment-tuned large language models for text encoding. However, the
study did not explore early, late, or intermediate fusion techniques, which could have
provided deeper insights into feature integration and potentially improved classification
accuracy. Taken together, these studies illustrate significant advancements in multimodal
sentiment analysis, particularly for low-resource and multilingual contexts. However, com-
mon limitations, such as the lack of exploration into Vision Transformer architectures and
intermediate fusion techniques, underscore the need for further investigation to enhance
model performance and applicability across diverse datasets.

3. Background Study
3.1. Models for Sentiment Analysis in Bangla Text

The rapid advancements in natural language processing (NLP) have revolutionized
sentiment analysis, enabling robust and efficient classification of textual data. For Bangla,
a low-resource and linguistically complex language, the development of state-of-the-art
(SOTA) models has been particularly impactful. SOTA models such as multilingual
BERT (mBERT), XLM-RoBERTa, and DistilBERT have set new benchmarks in Bangla
sentiment analysis. These models excel in capturing nuanced linguistic structures and
sentiment expressions, making them indispensable tools for this task. By leveraging
extensive pre-training on multilingual corpora and applying fine-tuning techniques to
Bangla-specific datasets, these models achieve remarkable performance, even in resource-
constrained scenarios.

3.1.1. mBERT (multilingual BERT)

mBERT [19], or multilingual BERT, is an extension of Google’s original BERT model,
designed for multilingual NLP tasks. It employs multiple transformer encoder layers with
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self-attention mechanisms to understand complex relationships between words in different
languages. Pre-trained on a diverse multilingual dataset using masked language modeling
(MLM) and next sentence prediction (NSP) tasks, mBERT is highly versatile in cross-lingual
tasks. For Bangla sentiment analysis, mBERT provides robust contextual understanding,
effectively identifying nuanced sentiment expressions, even in the absence of large-scale
annotated datasets.

3.1.2. XLM-RoBERTa

XLM-RoBERTa [20] is a multilingual variant of RoBERTa, optimized for cross-lingual
tasks. Unlike mBERT, it focuses exclusively on MLM during pre-training, using massive
multilingual corpora such as CommonCrawl to predict masked words. This focused
training enhances its cross-lingual generalization and makes it particularly adept for low-
resource languages like Bangla. XLM-RoBERTa has proven effective in sentiment analysis
by capturing context-rich representations, identifying intricate sentiment cues in Bangla
text, and simplifying multilingual workflows with automatic language detection.

3.1.3. DistilBERT

DistilBERT [21] is a lightweight and faster alternative to BERT, trained using knowl-
edge distillation. It retains 97% of BERT’s language understanding capabilities while being
40% smaller and 60% faster, making it an efficient option for sentiment analysis tasks. Dis-
tIBERT uses masked language modeling (MLM) as its primary pre-training objective. For
Bangla sentiment analysis, DistilBERT is highly effective when computational resources are
limited. Fine-tuning DistilBERT on Bangla sentiment datasets can yield competitive results,
enabling the model to discern subtle sentiment patterns while maintaining high efficiency.

3.2. Models for Sentiment Analysis in Images

The rapid advancements in computer vision and multimodal learning have signif-
icantly transformed sentiment analysis in images, particularly in the domain of memes,
where emotions, humor, and context are often conveyed visually. Effective sentiment
analysis for memes requires not only the identification of visual elements but also an
understanding of how these elements interact with text to express emotions. The ability to
capture emotional cues from image features—such as facial expressions, body language,
and scene composition—has become essential for accurately analyzing sentiment in memes.
Recent models have leveraged sophisticated techniques, such as vision transformers and
multimodal architectures, to enhance the analysis of emotions and sentiments from both
the image and text components. Below, we explore several state-of-the-art models that
have been developed to address these challenges.

3.2.1. Vision Transformer (ViT)

Vision Transformers (ViTs) [22] provide a novel approach to image processing by using
a transformer-based architecture rather than traditional Convolutional Neural Networks
(CNNSs). In the context of meme sentiment analysis, a ViT divides images into fixed-size
patches, which are then transformed into vector representations. These patches capture
local image features, such as facial expressions or body language, which are crucial for
detecting emotions. By incorporating positional encoding, the ViT preserves the spatial
relationships between image components, ensuring that important features are properly
contextualized. The model processes the sequence of patch embeddings through trans-
former encoder blocks, using self-attention mechanisms to understand how various parts
of the image relate to one another. This enables the ViT to capture global context in images,
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such as the interaction between the text and visual elements. The resulting image represen-
tations are classified for sentiment, making the ViT highly effective for meme sentiment
analysis.

3.2.2. Swin Transformer

Swin Transformer [23] builds upon Vision Transformer architecture by introducing a
hierarchical approach to image processing. For meme sentiment analysis, this is particularly
advantageous as it allows the model to capture both fine-grained local features (e.g., facial
expressions) and the broader global context (e.g., overall image composition). The image is
divided into progressively smaller patches, which are processed at different hierarchical
levels. This enables Swin Transformer to extract features across scales, enhancing its
ability to capture complex emotional cues from both the image and its surrounding context.
The shifted window-based self-attention mechanism ensures that the model focuses on
important regions, such as the areas around faces or text while maintaining a global context.
This hierarchical structure and the attention mechanism make Swin Transformer well-
suited for understanding the intricate relationships between visual and textual components
in memes, allowing it to accurately predict sentiment.

3.2.3. SwiftFormer

SwiftFormer [24] introduces an efficient additive attention mechanism, which has been
shown to reduce the computational complexity of traditional self-attention mechanisms. In
the context of meme sentiment analysis, SwiftFormer can capture contextual information
from images faster and with fewer resources. This is especially useful for real-time meme
sentiment analysis on mobile devices or other resource-constrained environments. By using
additive attention rather than matrix multiplication, SwiftFormer retains the ability to focus
on important features within the image, such as emotional expressions or key text-image
interactions while significantly improving processing speed. This makes SwiftFormer an
ideal choice for applications requiring fast and accurate meme sentiment analysis, even in
environments with limited computational power.

3.3. Evaluation Metrics for Sentiment Analysis

In evaluating the performance of multimodal sentiment analysis tasks, several key
metrics play crucial roles in assessing the effectiveness of the models:

3.3.1. Accuracy

Accuracy [25] serves as a fundamental metric for assessing the effectiveness of senti-
ment analysis models. It quantifies the proportion of correctly classified sentiment instances
across both text and image modalities within the dataset. A higher accuracy score indicates
that the model has successfully identified sentiment-related information from the multi-
modal data (e.g., text and image), demonstrating its ability to make correct predictions.
Accuracy is a simple but essential metric in determining the model’s overall performance
in sentiment classification tasks.

Number of correctly classified sentiment instances
Total number of sentiment instances

Accuracy =

)

3.3.2. Precision

Precision [26] in sentiment analysis refers to the proportion of instances that were
correctly predicted as a specific sentiment (e.g., positive) out of all instances predicted
as that sentiment. In the context of multimodal sentiment analysis in memes, precision

156



Electronics 2025, 14, 799

measures how accurately the model identifies positive, negative, or neutral sentiments
across all predicted instances of that sentiment.
For a specific sentiment class ¢ € {positive, negative, neutral }, precision is given by:

TP,

PI'ECiSiOHC = W
c [

@

where:

e TP, (True Positives for class c): The number of instances where sentiment ¢ was
correctly predicted as sentiment c.

e  FP,. (False Positives for class c): The number of instances where sentiment ¢ was
incorrectly predicted, but the true sentiment was not c.

For the overall precision across all sentiment classes, we use the weighted average:

C
Z Precision, 3)
c=1

Precisionmacro =

Ol =

where C is the number of sentiment classes (in this case, three: positive, negative, neutral).

3.3.3. Recall

Recall [26] is the proportion of true instances of a specific sentiment class that were
correctly identified by the model. In the context of sentiment analysis of memes, recall
measures how well the model captures all instances of a specific sentiment, even if it results
in false positives. Recall is critical when we aim to ensure that the model identifies every
instance of a sentiment, such as detecting all positive or negative memes.

For a specific sentiment class ¢ € {positive, negative, neutral}, recall is given by:

TP,

Recallc = m (4:)
c c

where:

e TP, (True Positives for class c): The number of instances where sentiment ¢ was
correctly predicted as sentiment c.

e  FN, (False Negatives for class c): The number of instances where sentiment ¢ was
incorrectly predicted as not ¢ (i.e., the model missed an actual instance of sentiment c).

For the overall recall across all sentiment classes, we use the weighted average:

1 C
Recallmacro = = ) Recall, (5)
c=1

where C is the number of sentiment classes (three in this case: positive, negative, neutral).

3.3.4. Weighted F1 score

The weighted F1 score [27] is an extension of the standard weighted F1 score that
accounts for the class imbalances in a dataset by assigning different weights to different
classes based on their frequency or importance. This metric provides a more accurate
reflection of model performance when dealing with datasets where some sentiment classes
(e.g., positive, negative, neutral) are underrepresented compared to others. In multimodal
sentiment analysis, where the model is expected to analyze data from multiple modalities
such as text and images, the weighted F1 score ensures that the evaluation is not dispropor-
tionately influenced by dominant classes. The weighted F1 score is calculated by averaging
the weighted F1 scores for each class, with each weighted F1 score weighted by the support
(the number of true instances) of that class. This allows for a more nuanced understanding
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of model performance, particularly in situations where some sentiment categories may be
less frequent but still critical to the overall analysis.

N
F 1weighted = Z w; - F 1Sentiment,- (6)
i=1

where:
e w; is the weight for sentiment class i, calculated as:

_ Number of true instances of sentiment class i
Total number of instances

w; =
®  Flsentiment; is the weighted F1 score for sentiment class i, calculated as:

2-P Sentiment; * RSentimenti

Flsentiment; =
! P Sentiment; + RSentimenti

®  Psentiment, is the precision for sentiment class i, calculated as:

Correctly classified sentiment instances of class i

Psentiment; = - . - .
Sentiment; ™ "Tital predicted as sentiment instances of class i

®  Rsentiment, is the recall for sentiment class 7, calculated as:

Correctly classified sentiment instances of class i
Total actual sentiment instances of class

RSentimentl- =

4. Dataset Description

In this study, we leverage the MemoSen [1] dataset, a multimodal dataset specifically
curated for sentiment analysis in the Bengali language, to conduct our experiments. Memo-
Sen was meticulously developed to address the lack of resources for multimodal sentiment
analysis in Bengali. The dataset comprises 4368 memes collected from popular social media
platforms such as Facebook, Twitter, and Instagram over a period spanning February 2021
to September 2021. The memes were gathered using targeted keywords such as “Bengali
Memes”, “Bengali Funny Memes”, and “Bengali Troll Memes”, ensuring diverse represen-
tation across various themes. The dataset includes memes with captions written in Bengali,
code-mixed (Bengali and English), or Banglish (code-switched). Memes failing to meet
specific criteria, such as those lacking visual or textual components, containing unreadable
text, or duplicates, were excluded during curation. The final dataset is annotated into
three sentiment categories: positive, negative, and neutral, following rigorous guidelines
to ensure consistency and reduce annotation bias. The annotation process was carried
out by four graduate students with a background in computer engineering. Initially, the
annotators were tasked with determining whether a meme expressed a positive or negative
sentiment. If the annotators classified the meme as positive or negative, they were asked
to provide the reasoning behind their decision. This reasoning was crucial for resolving
any disagreements between annotators. If no clear sentiment was determined, the meme
was labeled as neutral. The annotators were trained with examples to ensure they could
distinguish between the sentiment classes and provide sound reasoning for their choices.
The annotation process was manual, with the final labels being verified by an expert. The
expert reviewed any disagreements between the annotators and, after discussing the rea-
soning behind their choices, set the final label. For each meme, two labels were provided
by the initial annotators, and if they agreed, the final label was determined. In cases of
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disagreement, the expert’s judgment was used to finalize the label. To ensure the quality of
the annotations, the authors calculated the inter-annotator agreement using the Cohen’s
Kappa coefficient. The resulting mean Kappa score of 0.674 indicated a moderate level of
agreement between the annotators, confirming the consistency of the annotation process.
For training and evaluation purposes, the dataset is divided into train (70%), test (20%),
and validation (10%) subsets. A detailed class-wise distribution is provided, along with
representative examples of memes, including their captions and corresponding sentiment
labels. The MemoSen dataset serves as a crucial benchmark for advancing research in
multimodal sentiment analysis, especially for low-resource languages such as Bengali.
Additionally, Figure 1 presents the distribution of samples across the training, test, and
validation sets within the MemoSen dataset. Figure 2 showcases examples from the dataset,
including the memes, their captions, and corresponding sentiment labels.

Number of Samples in Train, Test, and Validation Sets
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Figure 1. Distribution of samples Across train, test, and validation sets in the MemoSen dataset.
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5. Proposed Methodology

We propose three hybrid approaches to multimodal sentiment analysis tailored for
Bangla. “SentimentTextFormer” is a text-based method focused on accurately identifying
sentiment-related information from Bangla texts. “SentimentImageFormer” introduces an
image-based technique aimed at sentiment analysis, utilizing advanced transformer-based
models for precise sentiment classification from visual data. Finally, “SentimentFormer”
integrates text and image data through hybrid fusion techniques (early fusion, late fusion,
and intermediate fusion), enhancing sentiment analysis capabilities across multiple modali-
ties in diverse contexts. Figures 3 and 4 highlight the architectures of SentimentTextFormer
and SentimentImageFormer, respectively, while Figure 5 provides an illustrative overview
of the SentimentFormer framework.All the code and implementation details for the method-
ologies discussed in this paper have been made publicly available to ensure transparency
and facilitate reproducibility. You can access the complete source code, including the fusion
approaches, dimension alignment steps, and hyperparameter schedules, in our GitHub
repository: GitHub repository. This repository contains all the necessary scripts and in-
structions to replicate the experiments and integrate the proposed techniques in your own
research.
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Figure 3. Unimodal sentiment classification framework for Bangla meme captions.
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Figure 4. Unimodal sentiment classification framework for meme images.

5.1. Approach 1 for Unimodal Sentiment Analysis Framework for Bangla Captions

(Step 1) Text Preprocessing: Processing Bangla sentiment data presents unique chal-
lenges due to the language’s rich morphology, flexible syntax, and contextual dependencies.
To ensure consistency and relevance for analysis, we employ a systematic approach to
preprocessing. First, we address the issue of mixed-language text by translating any En-
glish words or phrases into Bangla using Google Translator. While this ensures that the
dataset remains monolingual and reduces inconsistencies from cross-lingual sentiment
shifts, it may also result in potential information loss. The translation process may not
fully capture the nuances of sentiment, as some emotional or contextual subtleties might be
lost when converting between languages with different syntactical and cultural structures.
This is particularly problematic when dealing with expressions or idioms that do not have
direct equivalents in Bangla. Additionally, translation tools like Google Translator might
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introduce biases or inaccuracies in sentiment representation, further complicating senti-
ment analysis. We also handle Banglish (Bangla written in Roman script) by converting it
into standard Bangla script using tools like Google Translator or Gamista. Since Bangla
sentiment often depends on subtle linguistic cues, maintaining script uniformity enhances
model performance. Given that punctuation usage in Bangla is inconsistent and sometimes
optional—similar to Chinese—we remove punctuation marks such as periods, commas,
and exclamation points unless they carry strong sentiment-indicating patterns. Addi-
tionally, unnecessary spaces between words are eliminated to maintain text compactness,
preventing artificial length distortions. Another significant challenge in Bangla NLP is the
presence of spelling variations influenced by dialects, English transliteration, or phonetic
inconsistencies. We normalize such variations to ensure that words with the same meaning
are consistently represented in the dataset. This step is crucial because state-of-the-art
Bangla NLP models, such as mBERT, XLM-RoBERTa, and DisTilBERT, still struggle with
non-standard spelling forms due to limited training data and domain diversity. Finally,
we filter out irrelevant characters, including special symbols and control characters, that
do not contribute to the semantic meaning of the sentiment. These preprocessing steps
collectively enhance data quality, ensuring that the sentiment analysis model operates on a
clean and standardized dataset despite the inherent complexities of Bangla NLP.
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Figure 5. Fusion framework for enhanced multimodal sentiment analysis of Bangla memes.

(Step 2) Sentiment Text Model Development: After text preprocessing, we move
forward with developing the model for sentiment analysis. We utilize state-of-the-art
pre-trained language models, including mBERT, XLM-RoBERTa, and DisTilBERT, all of
which have proven effective in handling a variety of textual data. Each of these models
was fine-tuned using the collected Bangla sentiment datasets to tailor them for the specific
task of sentiment classification. Fine-tuning involves adjusting the model’s parameters
using sentiment-labeled data to enhance its performance in categorizing Bangla text into
different sentiment classes. This process helps the models better understand and classify
the nuanced sentiments expressed in the Bangla language. To address the class imbalance,
especially in the neutral sentiment category, we apply the Synthetic Minority Oversampling
Technique (SMOTE) to generate synthetic samples for the underrepresented classes. First,
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we identify the minority class in our sentiment dataset, which is the neutral sentiment
category. Using SMOTE, synthetic data points are created by selecting two or more similar
instances from the minority class and generating new samples by interpolating their
features. These synthetic samples are then integrated into the original dataset, increasing
the representation of the minority class while preserving the data’s overall distribution. The
model is subsequently trained on this oversampled dataset, which aims to provide a more
balanced class distribution and improve the model’s ability to classify underrepresented
sentiment categories, like neutral sentiment.

(Step 3) Hyperparameter Tuning: For Bangla sentiment text identification, hyper-
parameter tuning plays a crucial role in optimizing model performance. This process
involves fine-tuning key hyperparameters such as learning rate, batch size, dropout rate,
and the number of training epochs, all of which significantly impact the model’s efficiency
and performance. We systematically explore different configurations by adjusting these
hyperparameters to find the optimal combination. Techniques such as grid search and
random search are employed to automate this process, ensuring that the best-performing
settings are identified. The model is trained multiple times with varying hyperparameter
configurations, and the goal is to strike a balance between model complexity and gener-
alization, allowing the model to accurately classify Bangla sentiment text while avoiding
overfitting. Hyperparameter tuning helps in determining the best learning rate for the
optimization process, the ideal batch size for training stability, and the appropriate dropout
rate to prevent overfitting. Section 6.2 summarizes the results of hyperparameter tuning,
showcasing the performance of each model under different settings.

(Step 4) Evaluation of Sentiment Text Classification: After training and fine-tuning
the models, we assess their performance in identifying sentiments from Bangla text. Each
model is evaluated individually to determine its effectiveness in sentiment classification.
The evaluation focuses on key performance metrics such as accuracy, precision, recall, and
weighted F1 score. Accuracy measures the overall correctness of the model in identify-
ing sentiments, while precision reflects the model’s ability to correctly identify positive
sentiment instances. Recall, on the other hand, indicates how well the model identifies
all the positive sentiment cases. The weighted F1 score accounts for class imbalances by
combining precision and recall, providing a single, balanced measure of the model’s perfor-
mance across all sentiment categories. These metrics offer a comprehensive view of how
well the models perform in classifying Bangla text into sentiment categories. Section 6.3
provides a detailed breakdown of the results, showing each model’s performance across
these key metrics.

Algorithmic Framework for Text-Based Bangla Sentiment Analysis

Text Preprocessing;:
Given a Bangla text corpus D = {dy,dy, ...,d,}, the preprocessing begins by translat-
ing any English token e € d; to Bangla b using:

T(e)=b, VYeecd,

where T is the translation function.
Next, punctuation and extraneous spaces are removed:

d; = RemovePunct(d;), d; = TrimSpaces(d;)
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Irrelevant characters are then filtered out:
d; = FilterChars(d;)

The cleaned dataset is represented as:

D' = {d,do,...,dy}

Sentiment Text Model Development:

Let the fine-tuning function F operate on pre-trained models M and a labeled Bangla
sentiment dataset L:

M* = F(M,L)

For models M € {mBERT, XLM-RoBERTa, DistilBERT }:

M]*:F(M],L), j:1,2,...,k

where k is the total number of models.
The output prediction function for sentiment classification is defined as:

P(d;) = softmax(M*(d;))

Hyperparameter Tuning;:
Let the hyperparameter space be H:

H={y,B,AE}

where:

e 77: Learning rate

*  B: Batch size

* A: Dropout rate

e E: Number of epochs

Define the performance function P for a hyperparameter configuration € H:
P(h) = Evaluate(M*,h, L)
Optimization involves finding:

h* = h
arg max P(h)

Search techniques can be applied as:

= GridSearch(H) if exhaustive search is feasible
RandomSearch(H) otherwise

Evaluation of Sentiment Text Classification:
Let the evaluation metrics include:
e Accuracy (A):
B TP + TN
- TP+ TN + FP + FN
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o Precision (P):

TP
b= TP + FP
e Recall (R):
TP
K=t
e Weighted F1 score (F1):
P-R
F1=2.——
P+R

For each model M]’-‘, calculate:
Metricsj = {A], P]', R]', Flj}

5.2. Approach 2 for Unimodal Sentiment Analysis Framework for Meme Images

(Step 1) Image Preprocessing: To ensure uniformity in the input size and optimize
computational efficiency, we began by resizing the images to a consistent format of 224
x 224 pixels. This resizing step guarantees that the images are suitable for deep learning
models while retaining important visual details. In addition, we utilized data augmentation
techniques such as rotation, flipping, and other transformations to enrich the dataset and
enhance the model’s ability to generalize across various scenarios. These modifications
introduce variations in the image orientations, which improves the model’s robustness
when handling new, unseen data. Furthermore, we performed image cleaning to eliminate
any extraneous noise or artifacts that could interfere with the model’s ability to detect
sentiment-specific features. To optimize image quality, we applied image enhancement
techniques, including adjustments to brightness, contrast, and sharpness, ensuring that the
visual clarity of the images is maximized.

(Step 2) Sentiment Identification Image Model Development: After preprocessing
the images, we developed sentiment analysis models using three cutting-edge image classi-
fication models: ViT (Vision Transformer), Swin Transformer, and Swift Transformer. ViT
leverages a transformer-based approach, dividing images into patches and processing them
sequentially to capture global relationships and contextual information. Swin Transformer
improves upon ViT by introducing a hierarchical structure and shifting window attention
mechanism, enabling it to capture both local and global features more efficiently across
varying image scales. Swift Transformer focuses on enhancing computational efficiency by
simplifying the attention mechanism, ensuring faster processing without compromising ac-
curacy in detecting sentiment features. By harnessing the unique strengths of these models,
we aimed to accurately classify images based on their emotional or sentiment content.

(Step 3) Hyperparameter Tuning: Hyperparameter tuning plays a crucial role in
optimizing the performance of sentiment analysis models. This process involves adjusting
several key parameters, such as the learning rate, batch size, and regularization strength, to
find the optimal configuration that enhances model accuracy. The learning rate determines
how quickly the model adjusts its weights during training, with higher rates speeding
up learning but potentially causing instability, while lower rates offer slower, more stable
convergence. Batch size influences how many images are processed before updating the
model weights, with larger batches generally improving model stability but requiring more
computational resources. Regularization strength helps prevent overfitting by penalizing
complex models that may not generalize well to new data. During tuning, we evaluated
model performance using metrics such as accuracy, precision, recall, and weighted F1 score,
which collectively provide a comprehensive assessment of how well the model classifies
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sentiment in images. By systematically experimenting with different hyperparameter
combinations, we identified the most effective settings for the models. Section 6.2 showcases
the results of the hyperparameter tuning process, detailing the performance of each model
under various configurations.

(Step 4) Evaluation of Sentiment Image Analysis: After training and fine-tuning
the models, we evaluated their ability to detect sentiment from images. Each model was
assessed individually to determine its effectiveness in classifying sentiment. The evaluation
process focused on essential performance metrics such as accuracy, precision, recall, and
weighted F1 score. Accuracy measures the overall percentage of correct sentiment classi-
fications, precision quantifies the model’s ability to correctly identify positive sentiment
instances, recall evaluates how well the model identifies all actual positive sentiment cases,
and the weighted F1 score provides a balance between precision and recall. Section 6.3
offers a comprehensive analysis of the evaluation outcomes, highlighting the performance
of each model based on these critical metrics.

Algorithmic Framework for Image-Based Bangla Sentiment Analysis

Image-Based Bangla Sentiment Analysis:
Givenadataset D = {I1, I, ..., I,} containing n images, the preprocessing steps begin
by resizing each image I; to a uniform dimension of a X a pixels:

I; = Resize(I;,a x a), Vi€ {l,...,n}

Next, data augmentation techniques such as random rotation, flipping, and cropping
are applied:
I; = Augment([;), Vie {1,...,n}

Noise removal and image enhancement (e.g., adjusting brightness, contrast, and
sharpness) are then performed:

I = Enhance([;), Vie{1,...,n}

Model Initialization:

Let the set of models be M = { My, My, M3}, where each model M; € M is initialized
with pre-trained weights.

For each model M; € M:

M; = FineTune(M;, D)

Hyperparameter Tuning;:
Let the hyperparameter space be H = {1, B, D}, where:

*  7: Learning rate
*  B: Batchsize
e D: Dropout rate

For each combination of 7, B, and D, train and validate the model M]-:
M; = TrainValidate(M, H)

Record performance metrics such as accuracy, precision, recall, and weighted F1 score
for each configuration:
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Model Evaluation:
For each model M;, evaluate it on the test dataset Dest:

M;?Val = Evaluate(M;, Drest)
Compute evaluation metrics for each model:

Prediction Aggregation:
Combine predictions from all models using majority voting or weighted averaging:

Si= argmfowMj “Pm(Si=k), vie{l,...n}
j

where wy; represents the model weights, and Py, (S; = k) is the probability of sentiment
class k.

Final Sentiment Classification:

The final sentiment classification for each image is denoted as:

S={S1,5,...,5:}

where each S; is the predicted sentiment for image I;.
Return: Final sentiment classification S.

5.3. Approach 3 for Exploring Different Fusion Techniques in Multimodal Sentiment Analysis

In our approach to multimodal Bangla sentiment analysis, we explored three different
fusion techniques: early fusion, late fusion, and intermediate fusion.

(Step 1) Feature Extraction: For text features, we leveraged advanced pre-trained
language models, including mBERT, XLM-RoBERTa, and DistilBERT. These models are
well-suited for extracting semantic and syntactic information from textual data, allowing
us to effectively capture the nuances of sentiment-related expressions in Bangla. mBERT
and XLM-RoBERTa excel at handling multilingual text, while DistilBERT provides a lighter
and faster alternative while maintaining strong performance. From the text, we extract
features such as word embeddings, contextual representations, and sentiment-specific
tokens, which help in understanding the sentiment conveyed through the language. In
parallel, we extracted image features using state-of-the-art models tailored for sentiment
analysis tasks. These models include ViT, Swin Transformer, and Swift Transformer. Each
model has been specifically trained to extract visual features from images, such as facial
expressions, body language, color patterns, and contextual visual elements, all of which are
indicative of sentiment. ViT and Swin Transformer capture global image patterns, while
Swift Transformer focuses on more localized, fine-grained image details. The extracted
image features provide a rich representation of visual sentiment cues, complementing
the text features for a more holistic analysis. By combining these distinct types of fea-
tures—textual and visual—we ensure that both modalities contribute meaningfully to the
sentiment analysis, enhancing the model’s ability to accurately understand sentiment in a
multimodal context.

(Step 2) Fusion Techniques: We utilized three distinct fusion techniques to effectively
combine textual and visual information in our multimodal Bangla sentiment analysis
pipeline. Prior to applying these techniques, we focused on extracting rich features from
both text and images, ensuring that crucial information from each modality was thoroughly
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captured. These fusion strategies allow our model to take advantage of the complementary

nature of text and image data, improving its ability to accurately analyze sentiment in a

multimodal setting. By integrating both textual and visual insights, the model becomes

more proficient at identifying and interpreting sentiment, considering both the language

and the visual context.

(a)

(b)

Early Fusion for Multimodal Sentiment Analysis: For early fusion [28], we com-

bine representations obtained from both text and image modalities at an early stage,
prior to the sentiment classification process. This integration of features from mul-
tiple modalities facilitates the creation of joint representations, enabling a more
nuanced understanding of sentiment by capturing both linguistic and visual cues.
Let X represent the input features from the text modality and Y represent those from
the image modality. The early fusion process can be mathematically described as:

Zearly — f fusion ( [4’text (f text (X) )/' ¢image (f image (Y) )} )

In this equation:

e Xand Y are the input features from the text and image modalities, respectively.

*  frext(-) and fimage(*) are the feature extraction functions for text and images,
respectively.

*  (Prext(-) and Pimage() are non-linear activation functions applied to the ex-
tracted features.

e [, -] denotes the concatenation operation, combining the features from both
modalities.

®  frusion(+) is the function that processes the concatenated features to produce
the joint representation.

®  Zeyly represents the fused features obtained from the early fusion process,
which are then fed into a classifier to predict sentiment.

Late Fusion for Multimodal Sentiment Analysis: For late fusion [28], we aggre-

gate predictions generated by text and image classification models at a later stage,
after individual predictions are made. This technique integrates predictions from
individual models to perform comprehensive sentiment analysis, potentially im-
proving the accuracy and robustness of the final predictions. Let Pieyt represent
the prediction probabilities from the text sentiment classification model and Pimage
represent the prediction probabilities from the image sentiment classification model.
The late fusion process can be represented as:

Pfusion = & - Prext (f’feXt(X)) + (1 - D‘) ’ Pimage(fimagE(Y))
In this equation:

*  Xand Y are the input features from the text and image modalities, respectively.

*  frext(-) and fimage(+) are the feature extraction functions for text and images,
respectively.

*  Prext(frext(X)) represents the prediction probabilities from the text sentiment
classification model applied to the text features.

*  Pimage(fimage(Y)) represents the prediction probabilities from the image senti-
ment classification model applied to the image features.

*  «isa weighting factor that balances the contributions of text and image predic-
tions, which can be fine-tuned for optimal performance.
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*  Prusion represents the final prediction probabilities obtained from the late fusion
process, reflecting the overall sentiment classification result.

(c) Intermediate Fusion for Multimodal Sentiment Analysis: For intermediate fu-

sion [28], we merged features extracted from different modalities at an intermediate
level of representation. By combining intermediate representations obtained from
text and image processing pipelines, this technique captures the nuanced relation-
ships between modalities, thereby facilitating more accurate sentiment analysis. Let
Zext represent the intermediate features from the text modality, and Zimage represent
the intermediate features from the image modality. The intermediate fusion process
can be represented as:

Zysion = f fusion (¢7text (f text (X) )/ ‘Pimage (f image (Y) ) )

In this equation:

e Xand Y are the input features from the text and image modalities, respectively.

*  frext(-) and fimage(+) are the feature extraction functions for text and images,
respectively.

*  (Prext(-) and Pimage() are non-linear activation functions applied to the ex-
tracted features.

*  Ziext = Prext(frext(X)) represents the intermediate features from the text modal-
ity.

*  Zimage = Pimage ( fimage (Y)) represents the intermediate features from the image
modality.

®  frusion(+, -) is the fusion function that combines the intermediate features from
both modalities.

*  Zgusion represents the fused features obtained from the intermediate fusion
process.

(Step 3) Hyperparameter Tuning: Hyperparameter tuning was performed to enhance
the performance of the multimodal Bangla sentiment analysis models. This process in-
volves adjusting several key parameters, including batch size, learning rate, fusion weight,
and regularization strength, to determine the optimal configuration that maximizes perfor-
mance metrics such as accuracy, precision, recall, and weighted F1 score. Specifically, when
applying fusion techniques to combine textual and visual information, hyperparameters
play a crucial role in how these two modalities interact and contribute to the final sentiment
prediction. In the context of fusion, parameters such as fusion weight determine how
much influence the text features and image features will have in the final decision. For
example, a higher fusion weight for text features may indicate that textual information is
given more importance, while adjusting the weight for image features can help balance the
contribution of visual cues. Other hyperparameters, such as the learning rate and batch size,
help fine-tune how quickly the model learns from the data and how much data it processes
at once, directly impacting the efficiency and effectiveness of the fusion process. Further-
more, regularization parameters help prevent overfitting by controlling the complexity
of the model, ensuring that the model generalizes well across unseen data. These tuning
processes are essential for achieving the best performance from the multimodal model, as
they allow the fusion techniques to adapt optimally to the specific characteristics of the
Bangla sentiment analysis task. Section 6.2 display the results of hyperparameter tuning,
showcasing how different configurations affect the model’s performance across various
fusion strategies. These tables provide a detailed comparison of how tuning different
parameters influences the model’s ability to analyze sentiment in both text and images.
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(Step 4) Evaluation of Multimodal Sentiment Analysis: The multimodal sentiment
analysis models are evaluated to assess their performance in accurately identifying and
classifying sentiment from both textual and visual data sources. Section 6.3 provides
a detailed analysis of the performance metrics, such as accuracy, precision, recall, and
weighted F1 score, which are computed to measure the effectiveness of the models. These
metrics help assess how well the model integrates and interprets both textual and visual
features for sentiment classification. Through rigorous evaluation, we ensure that the
multimodal approach is robust and effective in real-world sentiment analysis tasks.

Algorithmic Framework for Multimodal-Based Bangla Sentiment Analysis

Feature Extraction: For text and image features, we use the following equations to
express the extraction process.
For text feature extraction using pre-trained language models:

X = ftext (T) , (Ptext (X) = activation (ftext (T) )

where:

¢ T represents the raw text input.
*  fiext(+) is the feature extraction function for text.
®  prext(-) is the activation function applied to the extracted features.

For image feature extraction using pre-trained models:

Y= fimage(l)r (Pimage(Y) = aCtivation(fimage(I))

where:

e Irepresents the raw image input.
®  fimage() is the feature extraction function for images.
®  Pimage(+) is the activation function applied to the extracted features.

Fusion Techniques: We apply the following fusion strategies:

(@) Early Fusion: The features from both text and image modalities are concatenated
before classification. The fusion process is expressed as:

Zearly — f fusion ( [‘Ptext (f text (X) )/' (Pimage (f image (Y) )} )

where:

X, Y are text and image features.

ftext(+), fimage(+) are feature extraction functions.

Prext(*), ‘Pimage(~) are activation functions.

frusion (+) is the fusion function.

(b)  Late Fusion: The predictions from text and image classifiers are combined using a
weighted sum:

Prusion = & * Prext + (1 - 0‘) : Pimage
where:

®  Prext, Pimage are text and image classifier outputs.
*  uis the fusion weight.

(c) Intermediate Fusion: The features from both modalities are fused at an intermediate
stage:

Zysion = f fusion (¢fext (f text (X) )’ 4’image (f image (Y) ) )
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where:

* X, Y are text and image features.

*  frext("), fimage(-) are feature extraction functions.
*  Prext(*), ¢image(') are activation functions.

*  frusion(+, +) is the fusion function.

Hyperparameter Tuning: Hyperparameters are tuned using the following expres-
sions:
For the learning rate (1), batch size (B), and fusion weight («):

N
Liune = Z Eloss(Yif Vi1l B,IX)
i=1

where:

*  Loss(+) is the loss function.

* y; ¥ are the true and predicted labels.
® 7 is the learning rate.

®  Bisthe batch size.

*  qais the fusion weight.

The optimization process minimizes the loss Liyne to find the best hyperparameter
settings.

6. Experiments and Result Analysis
6.1. Experimental Setup

The experiments were conducted across multiple environments, including Jupyter
Notebook 6.5.5, Kaggle 1.6.17, and Google Colaboratory 0.0.1a2. All experiments were
run using Python and PyTorch, with variations in versions across platforms. Specifically,
the Jupyter Notebook environments utilized Python 3.8.18 with PyTorch 2.0.1, while the
Kaggle setup ran Python 3.10.13 with PyTorch 2.1.2. The Google Colaboratory environment
used Python 3.10.12 with PyTorch 2.3.1.

6.2. Hyperparameter Settings

Table 3 provides the hyperparameter settings for both text-based and image-based
models used in multimodal sentiment analysis of Bangla memes. For the image-based
models, Vision Transformer (ViT), Swin Transformer (SentimentlmageFormer), and Swift
Transformer are fine-tuned with a batch size of 8 and a learning rate of 0.0001, using the
AdamW optimizer. The number of epochs varies slightly: ViT and Swift Transformer are
fine-tuned for 45 epochs, while Swin Transformer (SentimentImageFormer) is fine-tuned
for 40 epochs. For the text-based models, mBERT (SentimentTextFormer), XLM-RoBERTa,
and DistilBERT are fine-tuned with a batch size of 8, a learning rate of 0.0001, and the
AdamW optimizer. These models are fine-tuned for either 45 or 50 epochs, with mBERT
(SentimentTextFormer) being fine-tuned for 50 epochs and the others for 45 epochs.
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Table 3. Hyperparameter settings for text-based and image-based models in multimodal sentiment
analysis of Bangla memes.

Approach Model Batch Size Epoch Learning Rate Optimizer
ViT 8 45 0.0001 AdamW

Image Based Swin Transformer (SentimentlmageFormer) 8 40 0.0001 AdamW
Swift Transformer 8 45 0.0001 AdamW
mBERT (SentimentTextFormer) 8 50 0.0001 AdamW

Text Based XLM-RoBERTa 8 45 0.0001 AdamW
DistilBERT 8 45 0.0001 AdamW

Table 4 provides the hyperparameter settings for early fusion models in the multimodal
sentiment analysis of Bangla memes. For the early fusion models, Vision Transformer (ViT)
+ mBERT, Swin Transformer + mBERT, and Swift Transformer + mBERT are all fine-tuned
with a batch size of 8, a learning rate of 0.0001, and the AdamW optimizer. The number of
epochs varies: ViT + mBERT is fine-tuned for 40 epochs, Swin Transformer + mBERT for
35 epochs, and Swift Transformer + mBERT for 30 epochs. For the ViT + XLM-RoBERTa,
Swin Transformer + XLM-RoBERTa, and Swift Transformer + XLM-RoBERTa models, they
are fine-tuned with a learning rate of 0.001, a batch size of 8, and the AdamW optimizer,
with epochs ranging from 35 to 40. Similarly, the ViT + DistilBERT, Swin Transformer +
DistilBERT, and Swift Transformer + DistilBERT models are fine-tuned with a learning rate
of 0.0001 and the AdamW optimizer, and the number of epochs is either 35 or 40 depending
on the model.

Table 4. Hyperparameter settings for early fusion in multimodal sentiment analysis of Bangla memes.

Approach Model Batch Size  Epoch  Learning Rate = Optimizer
ViT + mBERT 8 40 0.0001 AdamW
Swin Transformer + mBERT 8 35 0.0001 AdamW
Swift Transformer + mBERT 8 30 0.0001 AdamW
ViT + XLM-RoBERTa 8 35 0.001 AdamW

Early fusion Swin Transformer + XLM-RoBERTa 8 40 0.001 AdamW
Swift Transformer + XLM-RoBERTa 8 35 0.001 AdamW
ViT + DistilBERT 8 35 0.0001 AdamW
Swin Transformer + DistilBERT 8 35 0.0001 AdamW
Swift Transformer + DistilBERT 8 40 0.0001 AdamW

Table 5 provides the hyperparameter settings for late fusion models in the multimodal
sentiment analysis of Bangla memes. For the late fusion models, Vision Transformer (ViT) +
mBERT, Swin Transformer + mBERT, and Swift Transformer + mBERT are all fine-tuned
with a batch size of 8 and a learning rate of 0.0001, using the AdamW optimizer. The number
of epochs varies: ViT + mBERT is fine-tuned for 40 epochs, Swin Transformer + mBERT
for 35 epochs, and Swift Transformer + mBERT for 30 epochs. The models ViT + XLM-
RoBERTa, Swin Transformer + XLM-RoBERTa, and Swift Transformer + XLM-RoBERTa
are fine-tuned with a learning rate of 0.001, a batch size of 8, and the AdamW optimizer,
with epochs ranging from 35 to 40. Similarly, the ViT + DistilBERT, Swin Transformer +
DistilBERT, and Swift Transformer + DistilBERT models are fine-tuned with a learning rate
of 0.0001 and the AdamW optimizer, and the number of epochs is either 35 or 40 depending
on the model.
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Table 5. Hyperparameter settings for late fusion in multimodal sentiment analysis of Bangla memes.

Approach Model Batch Size  Epoch  Learning Rate = Optimizer
ViT + mBERT 8 40 0.0001 AdamW
Swin Transformer + mBERT 8 35 0.0001 AdamW
Swift Transformer + mBERT 8 30 0.0001 AdamW
ViT + XLM-RoBERTa 8 35 0.001 AdamW

Late fusion Swin Transformer + XLM-RoBERTa 8 40 0.001 AdamW
Swift Transformer + XLM-RoBERTa 8 35 0.001 AdamW
ViT + DistilBERT 8 35 0.0001 AdamW
Swin Transformer + DistilBERT 8 35 0.0001 AdamW
Swift Transformer + DistilBERT 8 40 0.0001 AdamW

Table 6 outlines the hyperparameter settings for intermediate fusion models used in
the multimodal sentiment analysis of Bangla memes. For the intermediate fusion models,
Vision Transformer (ViT) + mBERT, Swin Transformer + mBERT, and Swift Transformer
+ mBERT (SentimentFormer) are fine-tuned with a batch size of 8 and a learning rate of
0.0001 using the AdamW optimizer. The number of epochs varies slightly: ViT + mBERT is
trained for 40 epochs, Swin Transformer + mBERT for 35 epochs, and Swift Transformer +
mBERT for 30 epochs. The ViT + XLM-RoBERTa, Swin Transformer + XLM-RoBERTa, and
Swift Transformer + XLM-RoBERTa models are fine-tuned with a learning rate of 0.001, a
batch size of 8, and the AdamW optimizer. These models are trained for 35 to 40 epochs.
Similarly, the ViT + DistilBERT, Swin Transformer + DistilBERT, and Swift Transformer +
DistilBERT models are fine-tuned with a learning rate of 0.0001 and the AdamW optimizer,
with the number of epochs ranging from 35 to 40.

Table 6. Hyperparameter settings for intermediate fusion in multimodal sentiment analysis of Bangla

memes.

Approach Model Batch Size Epoch Learning Rate Optimizer
ViT + mBERT 8 40 0.0001 AdamW
Swin Transformer + mBERT 8 35 0.0001 AdamW
Swift Transformer + mBERT (SentimentFormer) 8 30 0.0001 AdamW

Intermediate ViT + XLM-RoBERTa 8 35 0.001 AdamW

Fusion Swin Transformer + XLM-RoBERTa 8 40 0.001 AdamW
Swift Transformer + XLM-RoBERTa 8 35 0.001 AdamW
ViT + DistilBERT 8 35 0.0001 AdamW
Swin Transformer + DistilBERT 8 35 0.0001 AdamW
Swift Transformer + DistilBERT 8 40 0.0001 AdamW

6.3. Result Analysis

Table 7 presents the performance metrics for multimodal sentiment analysis of memes
in Bangla, evaluated across accuracy, precision, recall, and weighted F1 score. Among text-
based models, mBERT (SentimentTextFormer) leads with the highest accuracy (73.31%) and
a weighted F1 score of 64.34, followed by XLM-RoBERTa (72.85%, weighted F1 score 64.03)
and DistilBERT (71.48%, weighted F1 score 62.29). For image-based models, ViT achieves
the best accuracy (62.77%) but has lower precision and recall, resulting in a weighted F1
score of 54.14. The Swin and Swift Transformers show similar performance, with accuracies
of 64.72% and 63.57%, respectively.
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Table 7. Performance metrics of text-based and image-based models for multimodal sentiment
analysis of Bangla memes.

Approach Model Accuracy Precision Recall = Weighted F1 Score
mBERT (SentimentTextFormer) 73.31 62.77 68.60 64.34

Text Based XLM-RoBERTa 72.85 62.38 68.35 64.03
DistilBERT 71.48 60.9 66.14 62.29
ViT 62.77 53.26 59.70 54.14

Image Based Swin Transformer (SentimentlmageFormer) 64.72 53.39 57.39 54.24
Swift Transformer 63.57 53.90 59.84 54.79

Table 8 presents the performance metrics for multimodal-based models with early fu-
sion in the context of sentiment analysis of Bangla memes. Among the model combinations,
Swin Transformer + XLM-RoBERTa achieves the highest accuracy (75.83%) along with solid
precision (64.04%) and recall (67.68%), resulting in a weighted F1 score of 63.88%. Swift
Transformer + mBERT closely follows with an accuracy of 74.46%, precision of 63.24%, and
recall of 68.82%, leading to a weighted F1 score of 63.69%. Another strong performer is
Swin Transformer + mBERT, which achieves an accuracy of 74.68%, with precision (62.97%),
recall (67.04%), and a weighted F1 score of 63.03%. Other combinations, such as ViT +
mBERT, ViT + XLM-RoBERTa, and ViT + DistilBERT, show lower performances, with
accuracies ranging from 69.07% to 72.39%, and weighted F1 scores varying between 55.16%
and 59.13%. These results demonstrate that early fusion of image-based models with
text-based models, particularly Swin Transformer paired with XLM-RoBERTa, provides the
best overall performance for Bangla meme sentiment analysis.

Table 8. Performance metrics for multimodal-based models with early fusion for multimodal senti-
ment analysis of Bangla memes.

Approach Model Accuracy  Precision Recall Weighted F1 Score
ViT + mBERT 72.39 59.67 61.20 59.13
Swin Transformer + mBERT 74.68 62.97 67.04 63.03
Swift Transformer + mBERT 74.46 63.24 68.82 63.69
ViT + XLM-RoBERTa 69.07 56.56 56.19 55.16
Early Fusion Swin Transformer + XLM-RoBERTa 75.83 64.04 67.68 63.88
Swift Transformer + XLM-RoBERTa 71.36 58.44 58.00 57.01
ViT + DistilBERT 70.45 58.03 58.4 56.88
Swin Transformer + DistilBERT 74.68 62.96 67.58 63.23
Swift Transformer + DistilBERT 71.82 59.50 60.61 58.56

Table 9 presents the performance metrics for multimodal-based models with late
fusion in the context of sentiment analysis of Bangla memes. Among the late fusion models,
Swin Transformer + XLM-RoBERTa achieves the highest accuracy (74.8%) with a precision
of 60.38%, recall of 60.97%, and a weighted F1 score of 59.82%. The ViT + DistilBERT
combination follows with an accuracy of 69.87%, precision of 55.69%, recall of 56.33%, and
a weighted F1 score of 55.28%. Swift Transformer + DistilBERT also performs reasonably
well, with an accuracy of 68.73% and a weighted F1 score of 54.68%. Other combinations
such as ViT + mBERT, ViT + XLM-RoBERTa, and Swift Transformer + XLM-RoBERTa
show lower performance, with accuracies ranging from 61.28% to 67.35%, and weighted
F1 scores between 47.63% and 52.81%. These results demonstrate that late fusion models,
particularly Swin Transformer combined with XLM-RoBERTa, outperform other model
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combinations in terms of accuracy, precision, recall, and weighted F1 score for Bangla
meme sentiment analysis.

Table 9. Performance metrics for multimodal-based models with late fusion for multimodal sentiment
analysis of Bangla memes.

Approach Model Accuracy  Precision Recall Weighted F1 Score
ViT + mBERT 61.28 48.78 48.05 47.63
Swin Transformer + mBERT 71.02 56.6 56.97 56.09
Swift Transformer + mBERT 67.35 53.93 54.78 52.81
ViT + XLM-RoBERTa 62.43 49.66 48.84 48.49
Late Fusion Swin Transformer + XLM-RoBERTa 74.8 60.38 60.97 59.82
Swift Transformer + XLM-RoBERTa 62.77 49.61 50.1 49.02
ViT + DistilBERT 69.87 55.69 56.33 55.28
Swin Transformer + DistilBERT 65.29 52.94 53.25 51.98
Swift Transformer + DistilBERT 68.73 55.04 56.23 54.68

Table 10 presents the performance metrics for multimodal-based models with interme-
diate fusion in the context of sentiment analysis of Bangla memes. Among the models with
intermediate fusion, Swift Transformer combined with mBERT (SentimentFormer) achieves
the highest performance, with an accuracy of 79.04%, precision of 71.29%, recall of 77.42%,
and a weighted F1 score of 73.28%. Other notable models include Swift Transformer +
XLM-RoBERTa, which achieves an accuracy of 74.46%, precision of 65.12%, recall of 71.79%,
and a weighted F1 score of 64.84%. Swin Transformer + XLM-RoBERTa follows closely
with an accuracy of 72.16%, precision of 62.85%, recall of 70.52%, and a weighted f1 score of
63.17%. In comparison, models such as ViT + mBERT and ViT + XLM-RoBERTa show lower
performance, with accuracies ranging from 66.44% to 68.73%, and weighted F1 scores be-
tween 56.53% and 58.4%. These results indicate that intermediate fusion, particularly with
Swift Transformer and mBERT, leads to the best overall performance for Bangla meme sen-
timent analysis, outperforming other fusion strategies in terms of accuracy, precision, recall,
and weighted F1 score. Figure 6 presents the confusion matrices of SentimentTextFormer,
SentimentImageFormer, and SentimentFormer on the MemoSen dataset.
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Figure 6. Confusion matrices of SentimentTextFormer, SentimentImageFormer, and SentimentFormer
showcasing their sentiment classification performance on the MemoSen dataset.
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Table 10. Performance metrics for multimodal-based models with intermediate fusion for multimodal
sentiment analysis of Bangla memes.

Approach  Model Accuracy Precision Recall Weighted F1 Score

ViT + mBERT 68.16 57.83 63.45 58.4

Swin Transformer + mBERT 68.73 59.8 68.08 60.43

Swift Transformer + mBERT (SentimentFormer) 79.04 71.29 7742 73.28
Intermediate ViT + XLM-RoBERTa 66.44 56.69 62.23 56.94
Fusion Swin Transformer + XLM-RoBERTa 72.16 62.85 70.52 63.17

Swift Transformer + XLM-RoBERTa 74.46 65.12 71.79 64.84

ViT + DistilBERT 66.44 56.35 61.7 56.53

Swin Transformer + DistilBERT 71.02 61.84 69.35 62.06

Swift Transformer + DistilBERT 73.31 62.37 68.18 62.86

6.4. Error Analysis

In this section, we examine the limitations and misclassifications encountered during
the multimodal sentiment analysis process in memes. By analyzing specific instances in
which the model failed to accurately classify the sentiment (positive, negative, or neutral)
in meme images and texts, we gain insights into the underlying challenges and areas for
improvement. This analysis is crucial for understanding the model’s weaknesses, such as
difficulties in interpreting sarcasm, context, or visual cues, and for guiding the refinement
of multimodal sentiment analysis capabilities. Figure 7 presents a visualization of error
analysis for multimodal sentiment analysis in memes.
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Figure 7. Error analysis of multimodal sentiment classification in Bengali memes.

6.4.1. Misclassification of Humorous Memes Due to Lack of Contextual Understanding
and Cultural Sensitivity in Sentiment Analysis

Image 1 is a meme featuring Tom and Jerry, with Tom sitting on a couch, reading
a newspaper, and the text “I am not getting married now, I need my personal space for
now” above him. Jerry, standing behind Tom, has the text “You will get married, even your
father will get married” above him. Below the image, the text reads “desperate mother
for marriage”. The intended sentiment is likely positive, with humor derived from the
contrast between Tom's desire for personal space and his mother’s eagerness for him to
marry, creating a relatable and exaggerated situation many young adults can understand.
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The humor lies in the exaggerated portrayal of the mother’s determination. A model might
misclassify it as negative due to several factors. First, text-based sentiment analysis might
interpret phrases like “I am not getting married now” and “desperate mother” as negative
indicators. Second, the model might lack contextual understanding, failing to grasp the
humor in the situation. The contrast between Tom’s desire for personal space and his
mother’s insistence on marriage is key to the humor, which might be missed. Additionally,
cultural nuances could play a role, as a model might not fully understand the context of
marriage in Bengali society, which the meme is referencing. Lastly, sarcasm and irony
often found in memes can be challenging for models to detect, further contributing to the
misclassification.

6.4.2. Misclassification of Social Awkwardness as Neutral Sentiment Due to Limited
Contextual Understanding in Humorous Memes

Image 2 is a meme featuring a dialogue between two characters. The first character,
a customer, is talking to the shopkeeper. The text above the customer reads: “Bought a
condom, when I went to my girlfriend’s house, I saw him there again”. The text above the
shopkeeper reads: “Uncle, you?” The intended sentiment of the meme is likely negative,
as the humor arises from the awkward and embarrassing situation where the customer
encounters the shopkeeper at his girlfriend’s house. This unexpected encounter creates a
humorous and relatable scenario, but the underlying situation is likely to cause embarrass-
ment and discomfort for the customer. Several factors could lead a model to misclassify
the sentiment as neutral: lack of contextual understanding, where the model might not
grasp the social awkwardness and embarrassment implied in the situation; a focus on the
literal meaning of the text, which does not explicitly convey negative emotions; limited
training data, which might not cover similar scenarios involving social awkwardness and
embarrassment; and challenges in detecting sarcasm or irony, which are often used in
humor and can be difficult for models to interpret correctly.

6.4.3. Misclassification of Humor in Unexpected Interactions Due to Lack of Situational
and Cultural Awareness in Sentiment Analysis

Image 3 is a meme featuring a dialogue between two characters. The text above the
first character reads, “You won the big lottery, became a millionaire, didn’t you?” and the
text above the second character reads, “I am Jashim, are you?” The intended sentiment of
the meme is likely neutral, with the humor stemming from the unexpected and seemingly
random question posed by the second character. It creates a humorous disconnect between
the first character’s assumed wealth and the second character’s seemingly irrelevant
question. Several factors could lead a model to misclassify the sentiment as negative. First,
the model might not grasp the humor in the situation, interpreting the unexpectedness of
the question and the lack of a clear connection to the first character’s wealth as dismissive
or rude, which could lead to a negative sentiment classification. Additionally, the model
might focus on the literal meaning of the text, which does not explicitly convey positive
emotions, and fail to recognize the underlying humor and intended lightheartedness of
the interaction. If the model was trained on a dataset lacking similar scenarios involving
unexpected or random questions, it might struggle to classify the sentiment correctly.
Cultural nuances could also play a role, as the humor might be lost on a model that lacks
understanding of the Bengali language and the context of such interactions in Bengali
society.
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6.5. Comparison of Results with Existing Approaches

Table 11 presents a comparison of the performance metrics—precision, recall, and
weighted F1 score—of three models for multimodal sentiment analysis of Bangla memes:
the proposed SentimentFormer (Swift Transformer + mBERT), Hossain et al. [1] (ResNet50
+ CNN), and Elahi et al. [3] (Banglish BERT + ResNet50). The SentimentFormer model
outperforms both existing models in all metrics, achieving a precision of 71.29, recall of
77.42, and weighted f1 score of 73.28. In comparison, the model by Hossain et al. [1]
scores 66.3 for precision, 62.8 for recall, and 64.3 for weighted F1 score, while the model by
Elahi et al. [3] scores 69.0, 74.0, and 71.0, respectively. The SentimentFormer model shows
significant improvements, particularly in recall (up by 14.62 over Hossain et al. [1] and
3.42 over Elahi et al. [3]) and weighted F1 score (up by 8.98 over Hossain et al. [1] and 2.28
over Elahi et al. [3]), highlighting the effectiveness of combining Swift Transformer with
mBERT and advanced multimodal fusion techniques. This demonstrates that the proposed
method is more accurate and better at identifying true positive sentiment, making it a more
balanced and robust approach for sentiment analysis in Bangla memes.

Table 11. Performance comparison of proposed method with existing approaches for multimodal
sentiment analysis of Bangla memes.

Model Precision Recall Weighted
F1 Score
SentimentFormer (proposed method) 71.29 77.42 73.28
Hossain et al. [1] (ResNet50 + CNN) 66.3 62.8 64.3
Elahi et al. [3] (Banglish BERT + ResNet50) 69.0 74.0 71.0

7. Limitations

The MemoSen dataset includes diverse multimodal data for Bangla sentiment analysis,
sourced from publicly available platforms such as social media and news articles. While
the dataset offers valuable insights for sentiment analysis research in the Bangla language,
several inherent limitations must be considered when evaluating its comprehensiveness
and generalizability. One key limitation is the representation of regional dialects within
the Bengali language. Bengali is spoken in various regions, each with its own dialectal
variations, yet the dataset primarily focuses on Bengali memes that may not adequately
capture the full diversity of these regional dialects. As a result, the model may struggle
to generalize across all Bengali-speaking communities, particularly those whose dialects
are underrepresented or absent from the dataset. Another limitation is the restricted
scope of sentiment categories. The dataset only includes three broad sentiment labels—
positive, negative, and neutral—which may fail to capture the full spectrum of emotions
conveyed in memes. Memes often express nuanced sentiments such as sarcasm, humor,
irony, or complex emotional gradients, which are difficult to encapsulate within these
limited categories. Moreover, the temporal scope of the dataset, covering a specific time
period from February to September 2021, introduces potential temporal biases. Meme
culture and internet trends evolve quickly, and the sentiments expressed through memes
may change over time. As such, the dataset may not fully represent current meme culture
or the latest forms of sentiment expression in Bengali-language social media, limiting its
applicability to more recent contexts. Additionally, the nature of memes often relies on
humor, cultural references, and social commentary that may be rooted in stereotypes or
specific societal contexts. As a result, the dataset may inadvertently reinforce or perpetuate
negative stereotypes or biases, especially if certain types of memes are more likely to
evoke specific sentiments based on cultural or social contexts. This could lead to a skewed
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understanding of sentiment within the dataset and affect the model’s performance in
real-world applications where such biases are present.

8. Future Works

In future work, we plan to improve our approach to multimodal sentiment analysis
for Bengali memes by exploring several exciting areas. One of the main improvements we
want to make is using Explainable Al (XAI) techniques, such as GradCAM++, LayerCAM,
and ScoreCAM. These techniques will help us better understand how the model makes
its predictions. They will show us which parts of the image and text are most important
in deciding the sentiment. This transparency is important because it helps us understand
the model’s behavior, build trust in it, and make it work better. We also plan to use
advanced Vision-Language Models (VLMSs) like Claude 3.5 Sonnet and GPT-4, which excel
at understanding and generating content that involves both images and text. By using these
models, we aim to improve sentiment analysis in memes by generating responses based
on different prompting techniques. These techniques could include providing specific
instructions about the image or caption, asking the model to focus on certain emotions or
elements, or even prompting it to consider various contextual cues. This approach will
help the model capture subtle emotional clues, tones, and meanings in memes that simpler
models might overlook. By refining the prompts, we can guide the model to generate more
accurate and contextually aware responses, leading to a deeper understanding of sentiment
in multimodal content. Additionally, we want to create a more inclusive and diverse
dataset that includes different regional dialects of Bengali. This will involve collecting
memes from areas like Chittagong, Sylhet, and Noakhali, which have unique dialects that
are not often included in other datasets. Including these dialects will help our model
work better for different Bengali-speaking communities and improve its performance in
real-world situations. This will also ensure that the model understands the full richness of
the Bengali language, including different cultural and regional expressions. By working
on these areas, we hope to create more reliable, accurate, and understandable multimodal
sentiment analysis models for Bengali. Our focus will be on capturing the different ways
people express sentiments in regional languages and cultures.

9. Conclusions

In this study, we explored the emerging field of multimodal sentiment analysis for
Bengali memes using the MemoSen dataset. This dataset consists of 4368 Bengali memes
annotated with sentiment labels (positive, negative, and neutral), offering a valuable re-
source for sentiment analysis in low-resource languages. By proposing and developing
innovative hybrid models, SentimentTextFormer, SentimentlmageFormer, and Sentiment-
Former, we demonstrated the potential of combining textual and visual information to
improve sentiment classification accuracy. The use of advanced deep learning techniques,
such as transformer-based models for both text and image modalities, along with fusion
strategies like early, late, and intermediate fusion, significantly enhanced performance.
Our models achieved notable results, with SentimentFormer (SwiftFormer with mBERT)
reaching an accuracy of 79.04%, showing an improvement of 5.73% over the unimodal
text model (SentimentTextFormer) and 14.32% over the unimodal image model (Senti-
mentImageFormer). This demonstrates the effectiveness of our multimodal approach in
outperforming both text-only and image-only models. However, there are some limitations
in our work, such as the imbalanced class distribution in the MemoSen dataset, which could
impact model performance, especially for the minority neutral class. Additionally, despite
the improvements achieved, there is potential for further enhancement in handling more

178



Electronics 2025, 14, 799

complex and diverse meme types. Future work will focus on addressing these limitations,
including better handling of class imbalance, exploring more advanced fusion techniques,
and expanding the dataset for greater generalization across different meme categories and
sentiment nuances.
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Abstract: GPT (Generative Pre-trained Transformer) is a groundbreaking generative model
that has facilitated substantial progress in natural language processing (NLP). As the GPT-n
series has continued to evolve, its applications have garnered considerable attention across
various industries, particularly in finance. In contrast, traditional financial research has
primarily focused on analyzing structured data such as stock prices. However, recent trends
highlight the growing importance of natural language techniques that address unstructured
factors like investor sentiment and the impact of news. Positive or negative information
about specific companies, industries, or the overall economy found in news or social media
can influence investor behavior and market volatility, highlighting the critical need for
robust sentiment analysis. In this context, we utilize the state-of-the-art language model
GPT and the finance-specific sentiment analysis model FInBERT to perform sentiment and
time-series analyses on financial news data, comparing the performance of the two models
to demonstrate the potential of GPT. Furthermore, by examining the relationship between
sentiment shifts in financial markets and news events, we aim to provide actionable insights
for investment decision-making, emphasizing both the performance and interpretability of
the models. To enhance the performance of GPT-40, we employed a systematic approach
to prompt design and optimization. This process involved iterative refinement, guided
by insights derived from a labeled dataset. This approach emphasized the pivotal im-
portance of prompt design in improving model accuracy, resulting in GPT-40 achieving
higher performance than FInBERT. During the experiment phase, sentiment scores were
generated from New York Times news data and visualized through time-series graphs
for both models. Although both models exhibited similar trends, significant differences
arose depending on news content characteristics across categories. According to the results,
the performance of GPT-4o, optimized through prompt engineering, outperformed that of
FinBERT by up to 10% depending on the sector. These findings emphasize the importance
of prompt engineering and demonstrate GPT-40’s potential to improve sentiment analy-
sis. Furthermore, the categorized news data approach suggests potential applications in
predicting the outlook of categorized financial products.

Keywords: sentiment analysis; GPT; FInBERT; prompt design; The New York Times

1. Introduction

Large language models (LLMs) are massive deep learning models based on trans-
former architecture, and they are pre-trained on vast amounts of text data. These models
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possess the ability to learn from extensive language data, demonstrating remarkable ca-
pabilities in natural language processing (NLP) tasks such as language translation, text
generation and summarization, sentiment analysis (SA), and question-answering systems.
Among these, the Generative Pre-trained Transformer (GPT), first introduced by OpenAl in
2018, has significantly contributed to advancements in NLP. Although its early versions had
limitations in solving real-world problems, GPT’s emergence brought renewed momentum
to Al research, particularly in NLP.

ChatGPT, based on the GPT-3.5 architecture, was introduced by OpenAl as an en-
hanced version of GPT-3 released in 2022 (https:/ /chatgpt.com/, accessed on 1 January
2025). Unlike its predecessors, which were primarily API-based, ChatGPT’s chatbot in-
terface allowed direct user interaction, driving its widespread adoption. Within a week
of its launch, ChatGPT surpassed one million users, demonstrating its explosive popu-
larity. The release of GPT-4, incorporating 100 trillion parameters, further accelerated Al
advancements, expanding LLMs into multimodal models and intensifying competition in
the field. Accordingly, ChatGPT is widely adopted across industries. It assists students in
education [1], shows potential in healthcare [2], and enhances finance and business through
content creation, customer engagement, and research [3-5].

The rise of ChatGPT has driven innovation in various industries, particularly in busi-
ness and economics. Researchers have explored its applications in these fields, including
prompt engineering techniques to optimize performance [6]. In Section 2.1, we present a
concise review of previous studies exploring ChatGPT’s performance across various fields.

ChatGPT’s growing influence in finance is evident as institutions use LLMs to auto-
mate tasks and analyze market behavior. This integration enables advanced applications
like sentiment analysis (SA), risk assessment, and investment. SA quantifies subjective
elements—emotions, thoughts, and opinions—at document, sentence, and aspect levels to
classify sentiment as positive or negative.

In particular, SA traces its roots to early 20th-century public opinion research and
computational linguistics studies from the 1990s. Its study expanded in 2004 with internet
growth and data proliferation [7]. Recently, machine learning-based approaches have
significantly enhanced SA performance [8]. With its growing importance, SA is now widely
used by researchers, businesses, governments, and organizations. Ongoing advancements
in methods, data, and models continue to enhance its effectiveness [9,10]. We provide a
concise review of prior research focused on SA in Section 2.2.

Our study focuses on evaluating the SA performance of GPT-4o, particularly in the
context of analyzing news articles across various sectors. To achieve this, we compare and
assess the performance of GPT-40 against the FInBERT (Financial Bidirectional Encoder
Representations from Transformers) model, which is specifically designed for financial
sentiment analysis. Additionally, we employ a sophisticated prompt design process to
enhance the accuracy and effectiveness of GPT-40’s sentiment analysis.

The goal of this study is to understand the differences between domain-specific models
and general-purpose models, while proposing new possibilities for financial text analysis.
This approach aims to provide insights into the capabilities and limitations of GPT-40 in
comparison to specialized models like FInBERT.

In conclusion, this study highlights the potential of the general-purpose NLP model,
GPT, in sentiment analysis, and seeks to propose new possibilities and directions for
research in sentiment analysis.

To do this, we collect news articles from several sectors. Subsequently, we conduct
SA on the collected news articles using both GPT-40 and the benchmark model FinBERT.
The performance of GPT-4o is influenced by the design of the prompt [11-13]. Accordingly,
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we employ a refined prompt design process to enhance SA performance. Finally, we compare
the SA results from both GPT-40 and FinBERT. In particular, we perform SA using news data
through FinBERT, a model specialized in finance. FInBERT, a specialized language model built
upon BERT, is tailored for financial language processing. Trained on financial texts, such as
news, earnings reports, regulations, and analyst summaries, FInBERT gains prominence for its
efficacy in various studies [14-18]. The detailed workflows are provided in Section 3.2.

GPT’s use in financial sentiment analysis is still emerging. Although versatile, its
lack of financial specialization limits its effectiveness in this domain. Studies have focused
on models like FinBERT, which excels in classifying financial sentiment and analyzing
market trends [14,15,18,19]. Research comparing GPT to FInBERT and exploring their
complementary potential remains limited, restricting insights into GPT’s role in financial
text analysis. In Section 2.3, we also review previous studies that have utilized FInBERT in
various applications.

Consequently, our study makes several significant contributions to the literature. First,
we evaluate the performance of GPT-40 in sentiment analysis and compare it with FinBERT,
analyzing the relative strengths and weaknesses of each model. Second, we propose a
prompt design framework for GPT-4o0 that can be widely applied across various industry
sectors, enhancing both its generalizability and accuracy in sentiment analysis. Third, we
generate time-series data for sentiment scores obtained from GPT-40 and FinBERT and
conduct an event analysis, introducing a new analytical paradigm that extends beyond
traditional technical and fundamental analyses. Ultimately, our findings contribute to the
literature by demonstrating the effectiveness of GPT-40 in sentiment analysis and providing
a time-series perspective on its performance.

The remainder of this paper is structured as follows: The next section provides a brief
review of the existing literature relevant to our study. Section 3 presents the news data and
outlines the research design. In Section 4, we report the SA results obtained using GPT-40
and FinBERT, followed by a comparative analysis of their performances. Finally, Section 5
offers a discussion of the findings and concluding remarks.

2. Literature Review

In this section, we review previous studies relevant to our research, focusing on GPT
performance, sentiment analysis, and the application of FInBERT.

2.1. The Performance of GPT

Ref. [20] attempted zero-shot and few-shot inference using the Chain-of-Thoughts
(COT) methodology with NASDAQ-100 stocks on GPT-4 and supervised fine-tuning with
LLaMA. The experimental results demonstrate that these approaches outperform tradi-
tional statistical models and machine learning techniques in terms of performance. Ref. [21]
utilized GPT-4 to analyze news headlines, Google’s sustainability reports, Midwest Energy
Emissions Corp’s performance records, and Fed FOMC meeting minutes to address four
questions arising when applying ML models in accounting. The results demonstrate that
GPT-4 is highly accurate and efficient in generating quantitative and logical analyses of
textual content. Ref. [22] evaluated whether GPT can assist in stock evaluation using
21 financial knowledge tests. In this test, GPT-3.5 scored 65%, whereas ChatGPT, based on
GPT-4, scored an almost perfect 99%, demonstrating that GPT-4 possesses the capability
to act as a robo-advisor in current financial matters. Ref. [23] utilized GPT to simplify the
process of evaluating publicly listed companies” annual reports and then used the results
for machine learning. This shows promising outperformance against the S&P 500 returns,
indicating that insights derived from LLMs can be useful features for constructing machine
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learning models. Ref. [24] investigated the Al quality management (AIQM) of the Chat-
GPT system in SA by setting prompts and controlling outputs for four types of variations.
The evaluation involved Amazon.com review data and the Stanford Sentiment Treebank,
demonstrating robustness for all variations but showing weakness in synonymic variations.
Ref. [25] prompted ChatGPT-4 to predict earnings announcements and evaluate the relative
attractiveness of each S&P 500 company to determine whether ChatGPT-4 can accurately
predict stock performance and assist in investment decisions. Using a real-time experi-
ment, the study found a positive correlation between ChatGPT-4 attractiveness ratings and
future earnings’ announcements as well as stock returns. Ref. [4] evaluated ChatGPT’s
effectiveness in portfolio management, finding that its asset selections exhibited higher
diversity and outperformed random selections. The results suggest ChatGPT’s potential
as a valuable investment assistant. Ref. [26] analyzed ChatGPT’s portfolio recommenda-
tions, showing alignment with academic benchmarks across investor profiles. The study
highlights ChatGPT’s ability to enhance information presentation and support investment
decisions. Ref. [27] assessed LLM-based chatbots, including ChatGPT, in cybersecurity,
revealing weaknesses in named entity recognition for extracting security-related data.
The findings emphasize the need for further refinement in cyber threat detection. Ref. [28]
proposed the multimodal fusion Bitcoin (MFB) framework, integrating BiLSTM and BiGRU
for market prediction. The study highlights a strong correlation between Bitcoin sentiment
and price, reinforcing sentiment analysis in financial forecasting.

GPT models have demonstrated strong potential in data analysis and decision-making
support within the financial domain. Various studies indicate that GPT outperforms tradi-
tional methodologies in processing complex financial data, asset selection and portfolio
construction, market forecasting, and other financial activities. Notably, GPT optimizes
investment processes by leveraging high reliability and efficiency, while enhancing the
presentation and summarization of information to help users easily understand and uti-
lize key insights. Furthermore, GPT has shown the ability to adapt to specific financial
contexts, offering tailored recommendations based on investor profiles and outperforming
traditional robo-advisors in certain cases. This suggests that GPT can transcend its role
as a mere analytical tool to become a crucial assistant in financial advisory and research.
Its sophisticated language processing and reasoning capabilities provide the potential to
enhance efficiency in financial research and practice, strengthen decision-making support,
and open new possibilities for delivering financial services.

2.2. Sentiment Analysis

Ref. [29] proposed Instruct-FinGPT, trained by fine-tuning LaMA with Twitter financial
news and the FiQA dataset. It demonstrates superiority over widely used LLMs in scenarios
where understanding of numbers and context is crucial. Ref. [30] bootstrapped a smaller student
model, Charformer (CF), by tuning it with COT-integrated data from social media platforms
such as Reddit and FiQA. Despite its smaller size, it achieved comparable or superior perfor-
mance to existing state-of-the-art models in terms of financial outlook for companies. Ref. [31]
utilized instruction tuning and retrieval augmentation modules with Llama-7B, initialized to
train on Twitter financial news and the FiIQA dataset. Consequently, it exhibited significantly
superior performance in financial SA compared to ChatGPT and LLaMA. Ref. [32] performed
tasks such as SA, HC and NER by instructing and tuning various open LLMs. Utilizing datasets
such as FPR, FIQA-SA, Headline Dataset, NER Dataset, and FInRED, it demonstrated remark-
able generalization ability in zero-shot tasks. Ref. [33] conducted financial SA on corporate
financial reports using four LLMs, including OpenAl’s ChatGPT (GPT-3.5), through prompt
engineering. The results indicate that the performance and output quality of the LLMs vary
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depending on the prompt design, content of the reports, and complexity of the task, highlighting
the importance of prompt design in achieving optimal results. Ref. [34] analyzed sentiment
analysis methods using GPT, showing that prompt engineering, fine-tuning, and embedding
classification outperform state-of-the-art models. The study highlights GPT’s strength in han-
dling context, sarcasm, and linguistic challenges in sentiment analysis. Ref. [35] introduced
MarketSenseAl, leveraging GPT-4’s reasoning for stock selection. Integrating Chain of Thought
and In-Context Learning, the framework enhances Al-driven investment decision-making by
improving signal accuracy and reliability. Ref. [36] integrated emotion lexicons with ChatGPT
to enhance empathetic responses in psychotherapy. Using therapy transcripts, they improved
GPT’s empathy, coherence, and fluency, emphasizing the role of emotional embeddings in
LLM performance.

Recent studies in financial sentiment analysis have focused on utilizing GPT to analyze
the complex relationships between financial data and market sentiment. These studies
reveal that GPT outperforms traditional models, significantly enhancing the accuracy
and efficiency of sentiment analysis through advanced capabilities such as context un-
derstanding, addressing complex linguistic challenges, zero-shot learning, and retrieval
augmentation. Furthermore, prompt engineering and systematic data calibration have been
identified as critical factors influencing model performance. Emphasis has also been placed
on adopting approaches that consider the unique context and complexity of financial data.
These advancements enable the effective detection of sentiment patterns across diverse
data sources such as news, social media, and financial reports, linking them to practical
applications such as market prediction, investment decision support, and financial risk
management. Collectively, these studies highlight the potential of GPT-based sentiment
analysis as a powerful tool for understanding and interpreting market sentiment, thereby
expanding its performance and applicability.

2.3. The Application of FinBERT

Ref. [18] evaluated FInBERT for sentiment classification in financial texts, showing it
outperforms benchmark models, including dictionaries and machine learning algorithms,
by leveraging contextual information effectively. Ref. [14] fine-tuned BERT to create Fin-
BERT and demonstrated its superior sentiment classification accuracy over general BERT
using financial datasets, confirming its applicability in finance. Ref. [37] analyzed un-
structured financial text from Bursa Malaysia reports, comparing MiniLM and FinBERT.
The results highlight FInBERT’s effectiveness in categorizing Key Audit Matters, emphasiz-
ing the value of domain-specific models. Ref. [38] explored financial sentiment analysis
in the forex market, showing that ChatGPT 3.5’s zero-shot prompt approach outperforms
FinBERT in predicting market returns from news headlines. Ref. [39] demonstrated the
vulnerability of keyword-based sentiment models, using adversarial attacks on GPT-3 and
contrasting its susceptibility with FInBERT in financial text analysis.

In the financial sector, FINBERT outperforms other machine learning algorithms,
including BERT, in sentiment analysis and classification tasks, demonstrating significant
potential for financial text analysis. It has proven to be highly effective in extracting
insights from diverse financial data, contributing to the literature on financial text analysis.
Additionally, FINBERT can match or even surpass GPT’s performance in certain cases,
making it a suitable benchmark model for comparisons in financial applications.

Building on the existing literature discussed above, it is evident that GPT’s perfor-
mance is advancing rapidly across various fields. Sentiment analyses based on text data
are becoming increasingly significant and widely utilized. Notably, there has been a grow-

185



Electronics 2025, 14, 1090

ing number of studies employing FIinBERT, a model specialized in the financial domain,
for sentiment analysis.

In this study, we apply GPT, which has demonstrated exceptional performance, to sen-
timent analysis and compare its results with those of FInBERT. Furthermore, we conduct
performance comparisons across financial and non-financial domains using sector-specific
news text data. This approach allows us to comprehensively evaluate GPT’s sentiment
analysis performance, offering new insights beyond the scope of previous studies.

3. Data Description and Research Design
3.1. Datasets

In this section, we present the datasets used in our study. Initially, we collected labeled
data to perform the prompt design. We utilized the News SA Dataset provided by Kag-
gle (https:/ /www.kaggle.com/datasets/clovisdalmolinvieira/news-sentiment-analysis,
accessed on 1 January 2025) and converted the CSV file into a DataFrame format. From the
available columns, we focused on the “Headline”, “Description”, “Sector”, and “Sentiment”
fields. These data were categorized by news sectors, specifically “Business”, “Health”, and
“Technology”, by aligning it with the corresponding categories.

To ensure the quality of our dataset and minimize potential biases that could impact
model performance, we performed several preprocessing steps.

First, we applied preprocessing to the headline and description columns, which
involved removing content within parentheses and brackets, as well as eliminating HTML
entities and special characters. Specifically, we used regular expressions to delete any text
enclosed in parentheses () and brackets [], removing unnecessary information from the
headlines. For example, the headline “NMCB 18 and 647th Civil Engineer Squadron Learn
New Technology from ERDC [Image 9 of 11]” was cleaned to “NMCB 18 and 647th Civil
Engineer Squadron Learn New Technology from ERDC”. Additionally, since news article
data often contain HTML-encoded characters such as &#number, &nbsp;, and &ndash;,
we replaced them to ensure a more natural text format. Furthermore, we removed URLs
from the description column, as they can introduce irrelevant information in news article
analysis. By identifying and eliminating these URLs, we reduced noise that could affect
model training and data analysis.

Finally, we removed duplicate rows to ensure data consistency. The deleted records
were exact duplicates, and among the 500 records in each category, 136 records were re-
moved from the Business category, 130 from Technology, and 179 from Health. Additionally,
we removed unnecessary symbols and extraneous text to further refine the dataset and
improve overall data quality.

Table 1 presents the number of data points for each category, along with the distribution of
sentiment labels: positive, negative, and neutral. For the “Business” category, there are a total
of 364 data points, with 254 being labeled as “positive”, 48 as “negative”, and 62 as “neutral”.
The “Health” category comprises a total of 321 data points, with 170 labeled as “positive”, 75 as
“negative”, and 76 as “neutral”. Finally, the “Technology” category contains a total of 370 data
points, with 239 labeled as “positive”, 56 as “negative”, and 75 as “neutral”.

Table 1. Label distribution across different categories. Num. = number.

Sector Total Num. Positive Num. Negative Num.  Neutral Num.
Business 364 254 48 62
Health 321 170 75 76
Technology 370 239 56 75
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The classification of sentiment into “positive”, “neutral”, or “negative” may introduce
subjective biases. However, many previous studies on sentiment analysis have commonly
adopted this three-category approach [40—47]. Following this standard, our study also
applies sentiment analysis to news articles using these three classes.

To enhance the performance of FInBERT, we conducted fine-tuning using a financial
news text dataset labeled with sentiment. This dataset, provided by Kaggle (www.kaggle.
com/datasets/antobenedetti/finance-news-sentiments, accessed on 1 January 2025), con-
sists of 32,583 financial news articles. The dataset was originally in CSV format, which was
converted into a DataFrame format. It contains two primary columns: text and sentiment.
The text column provides summaries of news articles, while the sentiment column contains
sentiment labels for each article.

The sentiment labels categorize each article as either positive, neutral, or negative.
During the fine-tuning process, these labels were mapped to integers in accordance with
FinBERT’s classification system: neutral was mapped to 0, positive to 1, and negative to 2.
This label conversion ensured compatibility with the model’s input format, facilitating the
sentiment classification task.

In the data preprocessing phase, rows containing null and duplicated values were
removed to maintain the quality of the dataset. After this cleaning process, a total of
32,417 valid entries remained, which were subsequently used for fine-tuning.

Table 2 presents the number of data points for each sentiment label in the dataset used
for FinBERT fine-tuning. It consists of 10,841 positive samples, 10,752 neutral samples,
and 10,824 negative samples.

Table 2. Label distribution for FinBERT fine-tuning.

Sentiment Number
Positive 10,841
Neutral 10,752

Negative 10,824

For the experiment data, we collected news articles from The New York Times. Us-
ing the Selenium library for dynamic crawling, we aligned the data with news sector
classifications based on categories provided by The New York Times. For the business
category, we collected articles from April 2024 to June 2024, from May 2023 to July 2024 for
health, and from September 2023 to July 2024 for technology. We extracted the headline,
description, and date of each article using relevant HTML tags and merged this information
into a DataFrame. A total of 1010 data points were used in the analysis. Figure 1 shows a
sample collection of New York Times articles.
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Date

Sector

headline

Description

/N

BUSINESS

Wall Street Law Firm Wants to Define

F

Consequences of Israel Protests

ullivan & Cromwell is requiring job applicants to explain their
[participation in protests. Critics see the policy as a way to silence speech
labout the war.

By Emily Flitter

PRINT EDITION Law Firm Scrutinizing Applicants” Protest Activity | July 10,
2024, Page Bl

12 July 8, 2024 business Boeing Struck a Deal With the Justice Departme... The plane manufacturer must still resolve vari...
13 July 8,2024 business Biden Administration Rule Would Increase Autho... The Committee on Foreign Investment in the Uni...
14 July 8, 2024 business Multibillion-Dollar Fraud Trial Against Archeg... Prosecutors and lawyers presented closing argu...
115 July 8, 2024 business A Wall Street Law Firm Wants to Define Consequ... Sullivan & Cromwell is requiring job applicant...
116 July 8, 2024 business U.S. Creates High-Tech Global Supply Chains to... The Biden administration is trying to get fore...
17 July 8, 2024 business Biden’s Wall Street Donors Are Increasingly ‘C... Major backers in finance spent the weekend dis...
18 July 8,2024 business Copenhagen Tries Rewards for Good Tourist Beha... The Danish capital is offering free museum tou...
119 July 8,2024 business Lausanne, Where the Olympics Never End A new arts district, stylish restaurants and a...
120 July 8,2024 business Boeing Agrees to Plead Guilty to Felony in Dea... As part of the deal, stemming from fatal 737 M...

Figure 1. The New York Times data collection example.

3.2. Research Design

In this section, we provide a detailed explanation of how the experiments were designed.

Figure 2 illustrates the overall process of our study. Our research process can be

broadly divided into three stages: data collection, GPT-40 prompt engineering&FinBERT

fine-tuning, and SA. Each stage is executed from top to bottom, with arrows indicating the

flow of the process. Rectangles represent research activities, whereas diamonds indicate

the corresponding outcomes. A detailed, step-by-step description is provided below.

Data Collection

Dataset for
Prompt Test
(https://www.kaggle.com)

> /(aggle News Dataset

(Labled)

Prompt Engineering

1. Prompt Design & Test

2. Prompt Selection

GPT-40
Evaluation

Finally Prompt Selection

GPT-40
Sentiment Analysis

FinBERT
Sentiment Analysis

‘/(aggle News Dataset

Dataset for
Fine-Tuning 77
Labl
(https://www.kaggle.com) / (tabled)
J
. Dataset ::1; yeis  Newyork Times Dataset

(https://www.nytimes.com/)
J

FinBERT Fine-Tuning

Sentiment Analysis

¥

FinBERT Evaluation

GPT-40
Sentiment Analysis

7 (Unlabled) /

Figure 2. Flow chart.

FinBERT
Sentiment Analysis

Step 1: In the first stage, news articles from three sectors (business, health, and tech-

nology) were collected. Each article included information on the headline, description,

date, and sector. Kaggle’s SA dataset was used for the prompt design, while the experi-

ment data were dynamically crawled from The New York Times, collecting news from

each sector. Additionally, we collected a sentiment analysis (SA) dataset from Kaggle,

which consists of news summary text and sentiment labels, to fine-tune FinBERT.

The entire dataset collected for sector-specific SA was categorized into three sectors:

business, health, and technology. For SA, text data containing sector, news headline,

and news description variables were utilized. FInBERT used merged text comprising
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sector, headline, and description, while GPT-40 incorporated these variables into
prompts using Python 3’s f-string method.

Step 2: In the second stage of our study, SA was conducted on the collected news
articles using both GPT-40 and the benchmark model FinBERT for prompt design and
performance comparison. FinBERT, being pre-trained on financial text data, offers
superior SA performance compared to general language models, making it a valuable
reference for assessing GPT-40’s capabilities.

To enhance FinBERT’s performance on financial news sentiment analysis, we per-
formed a fine-tuning process specifically tailored for this domain. The fine-tuning
was conducted using a financial news dataset provided by Kaggle, where each news
article was labeled as positive, neutral, or negative based on its sentiment.

The dataset was split into a training set (80%) and a validation set (20%) using stratified
sampling to preserve the class distribution across both subsets. This prepared dataset
was then utilized for model training and performance evaluation.

During training, we conducted a random search to determine the optimal hyperpa-
rameters, including the learning rate, number of epochs, and batch size. The AdamW
optimizer was used for parameter optimization, and cross-entropy loss was applied
as the loss function, as it is well suited for multi-class classification tasks.

At the end of each epoch, the model’s generalization performance was assessed using
the validation dataset. A linear learning rate scheduler was also implemented to grad-
ually reduce the learning rate as training progressed, ensuring smoother convergence.
Subsequently, we conducted SA on labeled Kaggle news datasets using the fine-tuned
FinBERT model. For GPT-4o0, a refined prompt design process was implemented
to improve SA performance. This involved analyzing cases where FinBERT mis-
classified sector-specific news sentiment (5 samples per sector, totaling 15 samples).
Eight prompts, referenced from benchmark papers, were utilized for these samples.
Based on performance, the two most effective prompts were selected. Two additional
prompts similar to each were created, resulting in a total of six final prompts applied to
the dataset.

The following describes the process of SA using the GPT-40 model based on
prompt design. The prompt design is developed with reference to benchmark
papers [13,20,38,48], and its return format outputs the sentiment of the text data
(positive, neutral, negative) along with the corresponding probability values on both
models, enabling a precise assessment of sentiment intensity.

Step 3: In the third stage, during the experiment phase, the best-performing prompt
from the prompt design phase was selected for SA on The New York Times data.
FinBERT was also used in this stage to evaluate and compare SA performance. Ul-
timately, the time-varying results for the experiment data were derived using the
best-performing prompt along with both the GPT-40 and FinBERT models, enabling a
comparative analysis.

Each piece of news data, modified according to sector, headline, and description, was

analyzed through the GPT-40 API, which was pre-built as a Python module. This module

was designed based on GPT-40 and was implemented to receive three parameters—system,

assistant, and user—and it ultimately returns the SA results. Table A2 provides the roles

of the three parameters. In this study, the “system” parameter was excluded, and only

the “assistant” and “user” parameters were utilized for prompt engineering. To ensure

consistency in the output, the “assistant” parameter was fixed while the user input was

adjusted to optimize the prompts. The “assistant” prompt used in this study is provided in
Table A3.
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4. Empirical Results

We first present the results of SA conducted using GPT-40 and FinBERT on the Kag-
gle dataset. Specifically, we leverage this labeled dataset to design prompts optimized
for GPT-4o to perform SA. In Section 4.1, we illustrate our prompt design process with
accompanying diagrams. Subsequently, we present the results of emotional analysis using
GPT-40 and FinBERT on The New York Times dataset.

4.1. Prompt Design Results

First, we present a detailed account of the prompt design process for GPT-40. We
generated the initial eight candidate prompts from previous studies [11-13]. The eight
initial candidate prompts are listed in Table Al.

To evaluate the sentiment analysis performance of the model on labeled data, i.e.,
the Kaggle dataset, we used four classification performance metrics (accuracy, precision,
recall, and F1-score). Before explaining the performance metrics, the actual class in a classi-
fication problem can be defined as true or false. True indicates that the model’s prediction
is correct, while false indicates that the model’s prediction is incorrect. The predicted class
returned by the model can be defined as positive or Negative. Positive indicates that the
model predicted the sentiment as positive, and negative indicates that the model predicted
the sentiment as negative.

Therefore, the following outcomes can occur in classification performance: First, when
the model makes correct predictions, true positive (TP) and true negative (TN) can occur.
True positive (TP) indicates that the model predicted positive, and the actual sentiment is
also positive. True negative (T N) indicates that the model predicted negative, and the actual
sentiment is also negative. When the model makes incorrect predictions, false positive (FP)
and false negative (FN) can occur. False positive (FP) indicates that the model predicted
positive, but the actual sentiment is negative. False negative (FN) indicates that the model
predicted negative, but the actual sentiment is positive.

Accuracy measures the proportion of correct predictions out of the total number of
predictions. It represents the frequency at which the classifier makes correct predictions.

TP+ TN
TP+TN+FP+FN

Accuracy =

Precision (positive predictive value) measures the proportion of TP results among all
positive predictions made by the model.

TP

P .. _
recision TP + FP

Recall (sensitivity or true-positive rate) measures the proportion of TP results out of all

actual positive cases.
TP

TP+ FN

Fl1-score is the harmonic mean of precision and recall. This metric balances the two,

Recall =

particularly when there is an imbalance in class distribution.

Fl-Score — 2 x Precision x Recall

Precision + Recall

Additionally, our study considers the macro average (Macro avg.) as it involves
a multi-class classification problem. This approach calculates the arithmetic mean of
individual metrics (precision, recall, and F1-score) across all classes, ensuring equal weight
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for each class. As a result, it provides an unbiased evaluation even in imbalanced datasets
where certain classes have significantly more samples than others. In particular, we use the
Macro F1-score to assess the overall balance of the model’s performance.

1 N
Macro Fl-score = N 1; F1-score;

where N represents the number of classes, and the Macro Fl-score is obtained by averaging
the Fl-scores of all classes.

Using the performance indicators above, we compared the accuracy values of FinBERT
and GPT-4o to assess their performance.

Our initial test with eight candidate prompts revealed that their structure had a signif-
icant impact on GPT-40’s performance. Specifically, Prompt 5 and Prompt 6 demonstrated
the best performance for the business sector, while Prompt 5 was most effective for the
health sector and Prompt 6 for the tech sector.

Based on these results, we selected Prompt 5 and Prompt 6 as the top-performing
prompts. To further refine our approach, we created six additional prompts by modifying
these two—generating two variations for each prompt (prompt5-1, prompt5-2, prompt6-1,
and prompt6-2). These processes are illustrated in Figure 3. These variations involved rear-
ranging sentence structures or replacing words with similar meanings while maintaining
the original intent. The final set of six refined prompts is presented in Table 3. We then
applied these prompts to the labeled dataset to evaluate their effectiveness.

Test Data
for prompt
selection

Initial prompt

Prompt 1 Prompt 2 Prompt 3 Prompt 4
Prompt 5 Prompt 6 Prompt 7 Prompt 8
v
[ Prompt Evaluation ]
v
Prompt 5 Prompt 6
!
[ Derive Prompt J

v

Final prompt

Prompt 5 Prompt 6
I I
Prompt 5-1 Prompt 6-1
I I
Prompt 5-2 Prompt 6-2

Figure 3. Prompt design process.
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Table 3. Prompt design for user.

Role Prompt

Given the news related to the {sector} industry, classify the sentiment as positive,
userb negative, or neutral, based on the headline {headline}, description {description} and
provide the probability value for your response.

Classify the sentiment of the given news headline {headline} and description
user5-1 {description}, which are closely related to the {sector} industry, as positive, negative,
or neutral, and provide the probability values for your classification.

Using the headline {headline} and description {description} of news related to the
user5-2  {sector} industry, classify the sentiment as positive, negative, or neutral, and provide the
probability values for your response.

Given the news related to the {sector} industry, classify the sentiment as positive for
user6 buy, negative for sell, or neutral for hold position, based on the headline {headline},
description {description} and provide the probability value for your response.

Classify the sentiment of the given news headline {headline} and description
{description}, which are closely related to the {sector} industry, as positive for buy,
negative for sell, or neutral for hold position, and provide the probability values for
your classification.

user6-1

Using the headline {headline} and description {description} of news related to the
user6-2  {sector} industry, classify the sentiment as positive for buy, negative for sell, or neutral
for hold position, and provide the probability values for your response.

The performance of SA using the six different prompts (Table 3) across sectors was
evaluated as follows. We provide the SA results for FInBERT and GPT-4o in Tables 4-7.
For the business sector, the average accuracy was 0.43; for the health sector, it was 0.42; and
for the technology sector, it was 0.53. On the other hand, the accuracy of FinBERT in the
business, health, and technology sectors was 0.38, 0.39, and 0.44, respectively, with GPT-40
outperforming FinBERT by an average of approximately 0.06. Based on the performance by
prompt, p5 (user2-1 + assistant) achieved the highest accuracy of 0.45 in the business sector.
In the health sector, p3 (userl-2 + assistant) and p5 (user2-1 + assistant) both achieved
the highest accuracy of 0.43. In the technology sector, p3 (userl-2 + assistant) and p5
(user2-1 + assistant) also recorded the highest accuracy of 0.55. Therefore, we adopted
p5, which exhibited the highest performance, and we applied it to the model for the
experiment data.

Table 4. Performance table of FiInBERT.

Sector Business Health Technology
Label Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Positive 0.84 0.33 0.47 0.69 0.24 0.36 0.77 0.44 0.56
Negative 0.23 0.24 0.23 0.33 0.41 0.37 0.20 0.14 0.16
Neutral 0.20 0.81 0.32 0.31 0.71 0.43 0.26 0.67 0.37
Macro avg 0.34 0.39 0.37
Accuracy 0.38 0.39 0.44
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Table 5. Performance table of GPT-40: business. Notes. The maximum achieved accuracy is 0.45.

Sector Business
Prompt pl (user5 + assistant) p2 (user5-1 + assistant) p3 (user5-2 + assistant)
Label Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score
Negative 0.26 0.44 0.33 0.27 0.42 0.33 0.23 0.34 0.27
Neutral 0.15 0.31 0.20 0.12 0.29 0.17 0.13 0.29 0.18
Positive 0.75 0.46 0.57 0.73 0.43 0.54 0.73 047 0.57
Macro 0.27 0.34 0.34
avg
Accuracy 0.44 0.41 0.42
Prompt p4 (user6 + assistant) p5 (user6-1 + assistant) pb6 (user6-2 + assistant)
Label Precision Recall Fl1-score Precision Recall Fl1-score Precision Recall Fl1-score
Negative 0.26 0.42 0.32 0.25 0.42 0.32 0.24 0.40 0.30
Neutral 0.13 0.27 0.17 0.15 0.29 0.20 0.13 0.23 0.16
Positive 0.74 047 0.57 0.73 0.48 0.58 0.73 0.49 0.59
Macro 0.36 0.37 0.35
avg
Accuracy 0.43 0.45 0.44

To gain a comprehensive understanding of the differences in sentiment analysis mech-
anisms and performance between GPT-40 and FinBERT, an in-depth investigation was
conducted into cases where the two models produced different predictions. The analysis
focused on two key scenarios: instances where GPT-4o correctly classified sentiment and
FinBERT misclassified it, and instances where FinBERT correctly classified sentiment and
GPT-40 misclassified it. The objective of this study was to identify patterns in misclassifica-
tion and explore the underlying factors contributing to these discrepancies.

Table 6. Performance table of GPT-40: health. Notes. The maximum achieved accuracy is 0.43.

Sector Health
Prompt p1 (user5 + assistant) p2 (user5-1 + assistant) p3 (user5-2 + assistant)
Label Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score
Negative 0.33 0.55 0.41 0.32 0.50 0.39 0.34 0.54 0.41
Neutral 0.32 0.36 0.34 0.33 0.43 0.37 0.29 0.32 0.33
Positive 0.62 0.39 0.48 0.61 0.38 0.47 0.62 0.42 0.50
Macro 0.41 0.41 0.41
avg
Accuracy 0.42 0.42 0.43
Prompt p4 (user6 + assistant) p5 (user6-1 + assistant) p6 (user6-2 + assistant)
Label Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score
Negative 0.31 0.51 0.38 0.32 0.55 0.41 0.32 0.53 0.40
Neutral 0.27 0.33 0.30 0.32 0.31 0.31 0.29 0.31 0.30
Positive 0.62 0.36 0.46 0.61 0.43 0.51 0.60 0.42 0.49
Macro 0.38 0.41 0.40
avg
Accuracy 0.39 0.43 0.42
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Table 7. Performance table of GPT-40: technology. Notes. The maximum achieved accuracy is 0.55.

Sector Technology
Prompt pl (user5 + assistant) p2 (user5-1 + assistant) p3 (user5-2 + assistant)
Label Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score
Negative 0.15 0.12 0.14 0.12 0.12 0.15 0.16 0.11 0.13
Neutral 0.36 0.43 0.39 0.27 0.48 0.34 0.34 0.43 0.38
Positive 0.69 0.67 0.68 0.66 0.55 0.66 0.69 0.69 0.69
Macro 0.40 037 0.40
avg
Accuracy 0.54 0.47 0.55
Prompt p4 (user6 + assistant) p5 (user6-1 + assistant) pb6 (user6-2 + assistant)
Label Precision Recall Fl1-score Precision Recall Fl1-score Precision Recall Fl1-score
Negative 0.12 0.12 0.12 0.14 0.12 0.13 0.13 0.12 0.13
Neutral 0.28 0.29 0.29 0.38 0.37 0.38 0.31 0.27 0.29
Positive 0.68 0.66 0.67 0.69 0.67 0.69 0.68 0.72 0.70
Macro 0.36 0.40 0.37
avg
Accuracy 0.51 0.55 0.54

First, in cases where GPT correctly classified sentiment and FinBERT misclassified it,
the findings indicate that FInBERT consistently exhibits a tendency to misclassify positive
or negative sentiments as neutral across all three sectors: business, health, and technology.
In the business sector, 85% of misclassified cases were labeled as neutral by FinBERT,
while in the health and technology sectors, 78% and 86% of cases, respectively, were
also categorized as neutral. A closer examination suggests that FInBERT systematically
underestimates sentiment, particularly for news articles conveying implicit positivity. This
pattern was especially evident in the business sector, where articles highlighting urban
development and business growth were misclassified as neutral. This misclassification
appears to stem from FInBERT’s reliance on explicit financial terminology to determine
sentiment, making it less effective in interpreting sentiment in a broader news context
where financial implications are more subtle.

A similar trend was observed in the health and technology sectors. FinBERT fre-
quently misclassified articles discussing medical advancements, healthcare service expan-
sions, and infrastructure improvements as neutral, whereas GPT-40 successfully identified
the positive sentiment in these reports. Likewise, in the technology sector, FinBERT of-
ten failed to recognize the optimistic tone in articles about technological breakthroughs,
misclassifying them as neutral, while GPT-40 consistently detected their positive sentiment.

On the other hand, in cases where FInBERT correctly classified sentiment while GPT-40
misclassified it, GPT-40 displayed a tendency to overestimate sentiment by incorrectly
labeling neutral articles as either positive or negative. Specifically, in the business sector,
48% of neutral cases were misclassified by GPT-40, while in the health and technology
sectors, the misclassification rates reached 54% and 65%, respectively. A notable example
includes an article about women leaders in business, which was primarily an informational
piece but was misclassified as positive by GPT-40. Similarly, factual reports about health
risks were often misclassified as negative by GPT-40 due to its tendency to over-rely on
emotionally charged keywords, leading to sentiment overestimation in neutral contexts.

These findings highlight fundamental differences in how GPT-40 and FinBERT ap-
proach sentiment classification. FInBERT’s misclassification tendencies can be attributed to
its training data, which are heavily focused on financial news, making it highly sensitive to
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explicit financial sentiment but less effective at recognizing sentiment in broader contexts.
Additionally, its reliance on keyword- and phrase-based sentiment cues limits its ability to
capture subtle contextual nuances in sentiment analysis.

In contrast, GPT-40 demonstrates superior contextual awareness, allowing it to capture
sentiment more effectively across diverse news topics. This capability enables GPT-40 to
correctly classify implicitly positive news articles that FInBERT misclassifies as neutral.
However, GPT-40’s tendency to misclassify neutral articles as either positive or negative
highlights its sensitivity to emotionally charged language, sometimes leading to senti-
ment overestimation.

Overall, this analysis suggests that GPT-4o0 is better suited for general-purpose senti-
ment analyses due to its context-aware approach, while FInBERT’s keyword-based method
is more effective for domain-specific financial sentiment analyses. A hybrid sentiment
analysis strategy that leverages the strengths of both models could enhance classification ac-
curacy. Future research should explore refining FinBERT’s training data with more diverse
news sources and integrating context-aware methodologies similar to those employed by
GPT-40 to develop more robust sentiment analysis models.

4.2. Experiment Results

In this section, we present the results of an SA conducted using GPT-40 and FinBERT
on a dataset consisting of The New York Times news articles. Specifically, we investigated
GPT-40’s sentiment responses based on prompts crafted through the detailed design process
outlined in the previous section.

We performed SA on a news dataset, categorizing sentiments into three classes—
positive, neutral, and negative—along with their corresponding probability values. As mul-
tiple news articles can exist for a given date, we, respectively, defined S| and P} as the
sentiment label and corresponding probability for the k-th news article on day ¢, where ¢
represents the date and k is the index of news articles for that date (k =1,2,...,n).

To quantify the sentiment labels, we mapped positive to +1, neutral to 0, and negative
to —1, and multiplied each by the respective probability Pr. Thus, Sy x P, gives the
quantified sentiment score for each news article, which we define as N}. Finally, to compute
the overall sentiment value for a given date, we calculated the average of the quantified
sentiment scores for all news articles on that day. The sentiment score for day ¢, N tis
given by

Y N
Ci==—, @
where 7 refers to all news articles for the day t. This represents the final daily sentiment
score for the given date.

The sentiment scores were calculated using both GPT-40 and FinBERT across the three
sectors. A five-day moving average was then applied to ensure a more stable analysis.

Table 8 presents the descriptive statistics for each sector after applying a five-day
moving average to the computed sentiment scores C; in (1). The table includes the mean,
maximum, minimum, standard deviation (Std. Dev.), and skewness for the business, health,
and technology sectors, with all values rounded to three decimal places. These statistics
provide valuable insights into the distribution of sentiment probabilities across sectors.
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Table 8. Summary statistics for the sentiment scores C;.

GPT-4o
Sector Mean Max. Min. Std.Dev. Skewness
Business —0.144 0.055 —0.421 0.098 —0.475
Health —-0.170 0.590 —0.759 0.251 0.368
Technology —0.143 0.272 —0.653 0.180 —0.219
FinBERT
Sector Mean Max. Min. Std.Dev. Skewness
Business —0.159 0.005 —0.332 0.063 —0.119
Health —0.194 0.150 —0.558 0.125 —0.010
Technology -0.177 0.155 —0.606 0.149 —0.188

According to the mean values, both GPT-40 and FinBERT exhibit negative averages
across all sectors, indicating that negative sentiment was predominant in the news overall.
Moreover, FinBERT consistently reports lower mean sentiment scores than GPT-40 across
all sectors, suggesting that it captures negative sentiment more strongly.

Regarding the maximum values, a score approaching 1 signifies periods of highly
dominant positive sentiment. GPT-40’s results indicate that the health sector reaches the
highest maximum value of 0.590, while the business sector records a considerably lower
maximum of 0.055. Similarly, FInBERT shows relatively higher maximum values of 0.150
and 0.155 for the health and technology sectors, respectively, while the business sector
records an exceptionally low maximum of 0.005. This suggests that positive sentiment was
significantly less prevalent in the business sector across all models.

A minimum value approaching —1 signifies periods of intense negative sentiment.
In GPT-40’s results, the health sector exhibits the lowest minimum value of —0.759, while
the technology sector also shows substantial negativity with a minimum of —0.653. Fin-
BERT follows a similar trend, reporting minimum values of —0.558 and —0.606 in the
health and technology sectors, respectively. These results indicate that negative sentiment
was particularly dominant in these sectors during specific periods.

In terms of standard deviation, GPT-40 consistently exhibits higher variability across
all sectors compared to FinBERT. Notably, in the health sector, GPT-40 has a standard
deviation of 0.251, which is approximately twice as large as FInBERT’s 0.125. This suggests
that GPT-40 produces sentiment scores with greater variability, whereas FInBERT offers
more stable and moderate assessments.

Regarding skewness, FINBERT maintains values close to zero across all sectors, sug-
gesting that its sentiment score distributions are relatively symmetric. In contrast, GPT-40
demonstrates sector-dependent skewness, with sentiment distributions exhibiting either
positive or negative skewness depending on the sector.

In summary, the two models demonstrate distinct tendencies in sentiment interpreta-
tion. FINBERT consistently captures negative sentiment more strongly than GPT-40 and
provides a more conservative evaluation with a narrower range of sentiment scores. On the
other hand, GPT-40 tends to assign more extreme sentiment values and is more sensi-
tive to positive sentiment than FINBERT. These findings underscore the potential benefits
of integrating the complementary strengths of both models to enhance the balance and
comprehensiveness of sentiment analysis.

We display the results of these calculations in Figures 4-6, which correspond to the
business, health, and technology sectors, respectively.
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Figures 4-6 illustrate the sentiment trends across different sectors over time. The x-axis
represents the publication date of the news articles, while the y-axis shows sentiment scores
calculated using a five-day moving average. The sentiment scores generated by FinBERT
and GPT-4o are represented by blue and orange lines, respectively. Although both models
exhibit similar overall trends, there are specific periods where their sentiment classifications
diverge significantly. These discrepancies, highlighted with gray boxes in the figures,
provide insights into the underlying differences in how each model interprets sentiment.

In the business sector, FINBERT generally exhibited a more conservative stance, often
classifying financial and legal discussions as neutral or negative, whereas GPT-40 tended
to provide a more optimistic interpretation. For instance, in “Paramount Agrees to Merge
With Skydance”, GPT-40 recognized the positive outlook on the corporate merger and
assigned a high sentiment score, while FInBERT classified it as neutral. Conversely, in “New
Plan to Target Russia’s Oil Revenue Brings Debate in the White House”, FInBERT identified
concerns about gasoline price fluctuations and assigned a negative sentiment score, while
GPT-40 maintained a neutral stance. Additionally, when news content was framed as a
question or contained ambiguous interpretations, FInBERT predominantly assigned neutral
sentiment scores, whereas GPT-40 was more likely to classify such content as either strongly
positive or negative. For example, in “Is It Silicon Valley’s Job to Make Guaranteed Income
a Reality?”, FINBERT categorized the sentiment as neutral, while GPT-40 interpreted it
optimistically and assigned a positive sentiment score.

A similar pattern was observed in the health sector, where GPT-40 emphasized the
positive aspects of scientific research and technological advancements, while FinBERT
remained neutral or negative. For instance, in “Scientists Debut Lab Models of Human Em-
bryos”, which described a breakthrough in stem cell research, GPT-40 assigned a positive
sentiment score, whereas FinBERT classified it as negative. However, in cases involving
disease outbreaks and medical risks, GPT-40 assigned stronger negative sentiment scores
compared to FInBERT. This was evident in “Women May Face Higher Risk of Stroke Fol-
lowing Infertility Treatment”, where GPT-4o classified the sentiment as negative, while
FinBERT remained neutral.

In the technology sector, the differences in sentiment classification were largely driven
by the models’ respective approaches to sentiment detection. FinBERT relied primarily
on individual keywords, often resulting in neutral classifications when sentiment cues
were implicit. In contrast, GPT-40 analyzed the broader context of the news article. For in-
stance, in “U.S. Creates High-Tech Global Supply Chains to Blunt Risks Tied to China”,
FinBERT focused on the word “risks” and classified the sentiment as negative, whereas
GPT-40 considered the broader economic context and assigned a positive sentiment score.
Similarly, in “OpenAl Lets Mom-and-Pop Shops Customize ChatGPT”, GPT-40 identified
the opportunities for small businesses and assigned a positive sentiment, while FiInBERT,
relying on individual keywords, classified the article as neutral.

In summary, FInBERT and GPT-40 adopt different sentiment analysis approaches.
FinBERT’s keyword-driven method detects explicit sentiment but often classifies implied
sentiment as neutral. In contrast, GPT-40’s context-aware approach captures subtle sen-
timent shifts but may sometimes overestimate their intensity. FInBERT’s precision suits
financial reports and legal documents, while GPT-40’s holistic interpretation is better for
market trends, innovations, and socio-economic analysis. Given these strengths and lim-
itations, a hybrid sentiment analysis approach—combining FInBERT’s keyword-based
detection with GPT-40’s contextual comprehension—could improve classification accuracy
while enhancing robustness and reliability across finance, healthcare, and technology.

198



Electronics 2025, 14, 1090

4.3. The Relationship Between the Stock Market and Sentiment

Finally, to evaluate the applicability of the sentiment analysis results derived from
this study, we conducted a comparative analysis between sector-specific stock prices and
sentiment scores over time. The sentiment score was obtained using GPT-4o, the primary
model of this study, and the comparison process with stock market data was as follows:

First, sector-specific closing price data were collected from the S&P 500 index. Subse-
quently, only stock price data corresponding to the dates of the sentiment-analyzed news
data were selected for comparison. This step ensured that the sentiment variations in news
data and stock price fluctuations were analyzed over the same time period.

However, since sentiment scores and stock prices have different scales, several pre-
processing steps were implemented to facilitate a consistent comparison. First, to better
capture stock price volatility, closing price data were transformed into log returns. Next,
a five-day moving average was applied to smooth out short-term fluctuations, following
the same procedure used for sentiment scores. Finally, both sentiment scores and stock
prices were normalized using MinMaxScaler to scale the values within the range of —1to 1,
allowing for more intuitive comparisons.

The following graph visualizes the time-series trends of GPT-40’s sentiment scores
and sector-specific stock prices, where the green line represents stock price trends, and the
red line represents sentiment score trends.

The analysis of the graph indicates that, except for the business sector with a relatively
short period of time, most sectors exhibit similar patterns in sentiment scores and stock
price movements. In particular, there are multiple instances where an increase in sentiment
scores corresponds to an increase in stock prices, and a decrease in sentiment scores
coincides with a decline in stock prices. These findings suggest that sentiment analysis
results may be correlated with stock market movements to some extent.

These results imply that news sentiment analysis could serve as a complementary
indicator for stock market prediction, particularly in sectors where sentiment variations
are closely associated with stock price fluctuations. Future studies should aim to further
quantify this relationship by integrating sentiment analysis into predictive stock market
models and evaluating their forecasting performance.

Meanwhile, sector-specific stock prices can be considered an external factor. According
to Figures 7-9, sentiment scores appear to reflect market conditions to some extent based on
sector-specific stock prices. Consequently, the sentiment analysis results can be interpreted
as incorporating some contextual information related to external factors, specifically the
stock market.
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5. Discussion and Concluding Remarks

In this study, sentiment analysis (SA) was conducted on categorized news data using
GPT-40 and FinBERT. To establish the fine-tuning process, prompt design, and experimen-
tal datasets, news data were obtained from Kaggle and supplemented with additional data
collected through dynamic crawling from The New York Times. Subsequently, SA was
performed using GPT-40 and FInBERT by leveraging headlines, descriptions, and sectors
from the labeled news data in Kaggle. To further enhance the performance of FinBERT and
GPT-40 in SA, fine-tuning and prompt engineering techniques were applied, respectively.
We sampled five data points for each sector, selected the two best-performing prompts,
and then generated four additional derivative prompts, resulting in a total of six prompts
from the prompts’ design step. We utilized a confusion matrix as the performance evalua-
tion metric and found that, across all sectors, the performance of GPT-40 with the optimized
prompt design outperformed the fine-tuned FinBERT model.

Next, we conducted a time-series analysis of sentiment scores from both models
on unlabeled data to examine their sentiment trends over time. Although both models
generally exhibited similar trends, they showed contrasting sentiment shifts in certain
periods, highlighting fundamental differences in their sentiment evaluation mechanisms.
Additionally, we compared the sentiment trends of GPT-40 with sector-specific stock return
data. Although variations were observed across sectors, the overall sentiment trends closely
aligned with stock return movements.

According to the SA results, the key findings are as follows: First, when comparing
the sentiment score graphs across the three analyzed categories, the overall trends of the
two models were generally similar. However, some opposing trends were observed in
this process. It was found that FinBERT relies on a keyword-based approach, effectively
detecting explicit sentiment but often classifying implicit sentiment as neutral. In contrast,
GPT-40 adopts a context-aware strategy, assessing sentiment based on the overall narrative
and thematic implications. As a result, while GPT-40 captures subtle emotional shifts, it
may occasionally overlook the importance of explicitly emotional terms.

Second, sector-specific analyses reveal that in the business sector, FInBERT tends to
interpret financial and legal news in a more conservative and negative manner, whereas
GPT-40 provides a more optimistic perspective. In the health sector, GPT-40 frequently
assigns a more positive sentiment to scientific research and technological advancements,
while FinBERT often remains neutral. Additionally, for news related to disease outbreaks
and medical risks, GPT-40 tends to classify such news as more negative, while FinBERT
maintains a neutral stance. In the technology sector, FInBERT’s keyword-based classifica-
tion makes it more sensitive to certain negative keywords, whereas GPT-4o, by considering
the broader context, often interprets news more positively.

Finally, an analysis of these contrasting periods across the three sectors revealed
a common factor contributing to the significant differences in sentiment interpretation
between the two models: ambiguous topics where sentiment varied depending on sub-
jective perspectives. These articles often addressed complex ethical dilemmas without
clear resolutions, leading to substantial variations in how the two models interpreted and
classified sentiment.

This study presents several distinguishing features compared with previous studies.
First, we categorized the nature of the news into specific categories and utilized the news
category, headline, and description for modeling. Second, we iteratively refined and evalu-
ated the performance of the prompts using a labeled text dataset, progressively working
toward an optimal design. A notable aspect of this approach was the clear delineation of
roles—system, user, and assistant—within the GPT-40 prompt design process, executed via

201



Electronics 2025, 14, 1090

the API during both the prompt design and experiment phases. This separation allowed for
a more focused evaluation of each parameter’s contribution to the model performance. We
then conducted a comparative analysis of GPT-40 and FInBERT across different sectors and
prompt designs. Finally, using The New York Times dataset, we generated daily sentiment
scores to explore time-varying characteristics and investigated the anomalies identified
through this process.

Furthermore, our findings present several significant implications. First, FinBERT,
renowned for its effectiveness in financial text analysis and sentiment classification, excels
in domain-specific tasks due to its pretraining on financial data. However, news datasets
often encompass diverse topics beyond finance, limiting FinBERT’s adaptability as a spe-
cialized model. In contrast, GPT-4, trained on a broad dataset with billions of parameters,
exhibits strong general-purpose performance across various tasks, including finance. This
flexibility suggests that GPT-4 may outperform FinBERT in tasks involving diverse content,
such as news datasets. In addition, GPT-4o utilized prompts optimized through the prompt
engineering process. The results, depicted in time series graphs, demonstrated similar
overall trends but emphasized differences during instances of specific terms, abbreviations,
or ambiguous expressions related to judgments or ethical dilemmas. These ambiguous
expressions posed challenges for accurate interpretation due to their inherent subjectivity.
GPT-4, with its capability to generate multi-contextual interpretations, outperformed Fin-
BERT, which primarily focuses on single-context analysis. This made GPT-4 more effective
at handling subtle and complex textual content.

Second, prompt engineering plays a critical role in maximizing GPT’s performance,
particularly for interpreting ambiguous sentences. By refining context or incorporating
additional details into prompts, GPT can provide more accurate or multifaceted interpre-
tations. This synergy between GPT and prompt engineering enables flexible and creative
processing of ambiguous text. Choosing the appropriate model—BERT or GPT—and opti-
mizing prompt design based on the data and analysis goals is essential for effective results.

In addition, the main findings of this study provide several practical applications.
First, by providing a sentiment score for each sector, the results can be utilized for price
prediction, including forecasting the stock index, sector index or ETFs [49-52]. Second,
through the time-varying analysis of both models, we identified which news characteristics
and content cause differences between the two models, specifically leading to ambiguity in
SA. This could be explored as a research topic regarding the factors causing ambiguity in
news sentiment and their handling, which could be useful for SA of news in the future.

Nevertheless, we discuss several limitations of this study. First, the dataset used
for prompt design was relatively small, consisting of approximately 300 samples per
sector. In contrast, the experiment dataset was considerably larger, with around 1000
samples. The limited size of the prompt design dataset can be attributed to the stringent
requirement that news articles be specifically labeled by sector, which significantly restricted
the available data. Second, the prompt design dataset exhibited an unbalanced distribution
of sentiment labels. Of the approximately 300 samples per sector, around 200 were labeled
as positive, while the remaining samples were evenly split between negative and neutral
labels. This imbalance arose from the challenge of collecting sufficient labeled news data for
each sector. Thirdly, our sentiment analysis was conducted in a single experimental setting
and did not account for various market conditions, which may limit its generalizability
across all market environments. However, through performance analysis across different
sectors (business, technology, health, etc.), we observed the potential superiority of GPT-40
over FINBERT. In future research, we plan to incorporate sentiment analysis that considers
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market volatility and major financial events, allowing us to further examine how various
economic factors influence sentiment analysis results.

Finally, we analyzed the time-varying trends of GPT-40 and FinBERT on the exper-
iment dataset and examined the prominent features in the graphs and their underlying
causes. However, because the crawled The New York Times dataset lacks labeled sentiment
values, it was challenging to evaluate the performance with specific metrics. This study
primarily focused on analyzing the sentiment scores generated by GPT-40 and FinBERT
in relation to changes over time. Future research could explore obtaining labeled senti-
ment data for The New York Times articles or utilizing an alternative news dataset with
pre-existing sentiment labels. Additionally, extending the data collection period to cover a
longer time period could provide more comprehensive insights into sentiment trends over
an extended period. Although this would be a time-consuming process, it would enable a
more rigorous comparison of the sentiment scores produced by GPT-40 and FinBERT.

Based on the framework and results of this study, we propose several directions for
future research. First, to mitigate the limitations associated with small dataset sizes, future
research could explore expanding sector-specific datasets with sentiment labels or applying
sentiment analysis to larger datasets using GPT. Similarly, we suggest conducting sentiment
analysis on a wider range of new and diverse datasets as a potential direction for future
studies. This approach is expected to enhance the robustness of the findings presented
in this study. Second, this study exclusively utilized the GPT-40 model as the LLM for
sentiment analysis. Moreover, recent developments have introduced various LLM models,
such as Gemini and Llama. Future research could explore sentiment analysis using these
models or compare their results to those of GPT-4. Third, in this study, sentiment analysis
was limited to three categories: positive, negative, and neutral. However, exploring finer
sentiment labels could unlock significant potential across various fields. Therefore, future
research could investigate sentiment analysis beyond these three categories, focusing on a
broader range of emotional labels. Our study has a limitation in that it does not provide
explanatory power for model decisions. However, this is not a constraint unique to our
research but rather a broader limitation inherent to LLMs. Consequently, enhancing the
interpretability of pre-trained transformer models, such as GPT-40 and FinBERT, represents
a significant avenue for future research.
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Appendix A. GPT-40 Prompts and API

Table A1. The initial Prompts.

Role

Prompt

userl

You are an excellent financial {sector} expert who trades by accurately analyzing the sentiment related
to given news. When news headlines {headline} and descriptions {description} are provided, you can
respond as follows: sentiment of news: positive, sentiment of news: negative, sentiment of

news: neutral

Table A1. Cont.

Role

Prompt

user2

You are an excellent {sector} Sentiment analysis model trained on financial news headlines and
descriptions. When news is provided as (headline: {headline}, description: {description}), you return
the following: sentiment: {{sentiment}}, probability: {{probability}}.

user3

You are an excellent {sector} sentiment analysis service of a financial news. When news headlines
{headline} and descriptions {description} are provided, you can respond like this: sentiment of news:
positive, positive probability: {{probability}}; sentiment of news: negative, negative probability:
{{probability}}; sentiment of news: neutral, neutral probability: {{probability}}; you must choose one.

user4

The given the news related to the {sector} industry, how do you feel about the headline {headline} and
description {description}? Answer in one token: positive, negative, or neutral.

user5

The given the news related to the {sector} industry, how do you feel about the headline {headline} and
description {description}? Answer in one token: positive for buy, negative for sell, or neutral for
hold position.

user6

The given the news related to the {sector} industry, classify the sentiment as positive, negative,
or neutral, based on the headline {headline}, description {description} and provide the probability
value for your response.

user?7

The given the news related to the {sector} industry, classify the sentiment as positive for buy, negative
for sell, or neutral for hold position, based on the headline {headline}, description {description} and
provide the probability value for your response.

user8

This text presents the news headline {headline} and description {description} for the {sector} industry.
Based on this information, would you sell, buy, or hold an ETF in the {sector} industry? The sentiment
of the news can be positive for buying, negative for selling, or neutral for holding. Answer in one
token with the sentiment.

Table A2 presents the main parameters that can be input based on the usage of the

GPT-40 APL The following three parameters each serve a specific role. “System” refers
to the content requested by the user, and while optional, it assigns a role that aligns with
the purpose of using GPT-40. “User” is mandatory and provides the request or opinion
that GPT-40 should respond to. “Assistant” is optional, and although it has the function
of storing previous assistant responses, it can also be written by the user to provide an
example of the desired behavior.

204



Electronics 2025, 14, 1090

Table A2. API parameter definitions.

Role Description
svstem This message sets the behavior of the Al It defines the tone or rules of the conversation, guiding how
y the Al should respond. It helps shape the overall interaction between the user and the AL
assistant This message represents the Al’s response. Based on the {system} and {user} messages, the Al
generates an appropriate reply. It keeps the conversation going.
This message contains the user’s question or request to the Al It provides the topic for the
user . , .
conversation and prompts the Al to respond. It reflects the user’s actual input.
Table A3 contains information about the “assistant” among the GPT-40 API parameters.
It serves as an example to output the sentiment and probability of the news in a consistent
format when the content of the news is provided through the “user”.
Table A3. Prompt design for assistant.
Role Prompt

When news is provided, you can respond with sentiment of news: positive, positive probability:
assistant {probability}, or sentiment of news: negative, negative probability: {probability}, or sentiment of news:
neutral, neutral probability: {probability}. Answer with just one sentence.
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Abstract: This paper investigates the performance of 16 Large Language Models (LLMs) in
automating LoRaWAN-related engineering tasks involving optimal placement of drones
and received power calculation under progressively complex zero-shot, natural language
prompts. The primary research question is whether lightweight, locally executed LLMs can
generate correct Python code for these tasks. To assess this, we compared locally run models
against state-of-the-art alternatives, such as GPT-4 and DeepSeek-V3, which served as
reference points. By extracting and executing the Python functions generated by each model,
we evaluated their outputs on a zero-to-five scale. Results show that while DeepSeek-V3
and GPT-4 consistently provided accurate solutions, certain smaller models—particularly
Phi-4 and LLaMA-3.3—also demonstrated strong performance, underscoring the viability
of lightweight alternatives. Other models exhibited errors stemming from incomplete
understanding or syntactic issues. These findings illustrate the potential of LLM-based
approaches for specialized engineering applications while highlighting the need for careful
model selection, rigorous prompt design, and targeted domain fine-tuning to achieve
reliable outcomes.

Keywords: LoRaWAN; large language models; UAV placement; code generation; IoT

1. Introduction

The rapid expansion of Internet of Things (IoT) applications has led to increased
attention to Low-Power Wide-Area Network (LPWAN) technologies, such as LoRa Wide
Area Network (LoRaWAN), which provide long-range communication with low power
consumption [1]. LoRaWAN networks are particularly appealing for rural areas, where
infrastructure constraints can pose significant challenges to traditional wireless commu-
nication systems [2]. In this context, the integration of Unmanned Aerial Vehicles (UAVs)
as mobile relays has emerged as a promising solution, enabling flexible deployments and
extended coverage [3]. Determining the UAV position that minimizes signal propaga-
tion loss and assessing the corresponding received power are critical for ensuring reliable
connectivity and resource-efficient operations in these rural scenarios [4].

Parallel to these developments in wireless communications, Large Language Mod-
els (LLMs) have shown rapid progress. Modern LLMs—including GPT-4 [5], recent
open-source offerings locally installable with Ollama [6], and novel models such as
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DeepSeek [7]—have shown substantial capabilities in understanding complex tasks and
generating functional code for engineering problems [5]. Furthermore, these models
demonstrate a broad applicability beyond code generation, including text clustering [8],
text summarization [9], machine translation [10], and text classification/question answer-
ing [11]. However, despite these advancements, the effectiveness of lightweight, locally
executed models in generating correct and efficient solutions for domain-specific engineer-
ing tasks remains an open question [12].

This study investigates whether lightweight and locally executed LLMs can generate
correct Python code for UAV planning tasks in LoORaWAN environments. Specifically,
we assess 16 different LLMs by evaluating their ability to generate Python functions that
determine the optimal UAV position from a discrete set of candidate locations, minimizing
propagation loss, and computing the corresponding received power (in dBm). Our primary
goal is to compare the performance of locally run models, such as LLaMA-3.3 [13] and
Phi-4 [14], against state-of-the-art large models such as GPT-4 [5] and DeepSeek-V3 [7],
accessed via their online application programming interfaces (APIs). The inclusion of these
larger models serves as a reference point to establish that such tasks can indeed be solved
using advanced LLMs, allowing for a meaningful comparison with the performance of
smaller, locally executed alternatives. The evaluation uses a zero-shot natural language
prompt configuration, and correctness is measured through a scoring system based on
function extraction and execution results.

Despite significant progress in Al-assisted UAV deployment, previous research has
largely overlooked the unique communication and operational constraints inherent to Lo-
RaWAN environments. LoRaWAN deployments pose distinct challenges such as stringent
power limitations, specialized propagation characteristics at lower frequencies, and long-
range communication requirements that differ fundamentally from scenarios commonly
studied in existing UAV-ALI literature. Existing approaches primarily focus on UAV trajec-
tory planning, mission coordination, or visual scene understanding tasks, without explicitly
addressing scenarios involving the low-power, wide-area network constraints and signal
propagation peculiarities of LoORaWAN systems. This gap motivates our study, which specif-
ically examines whether LLMs—particularly lightweight, locally executable variants—can
effectively generate Python code to solve UAV placement and received power calculation
tasks uniquely relevant to LoRaWAN environments.

The findings of this study are significant for two main reasons. First, they illustrate the
extent to which lightweight, locally run LLMs can perform domain-specific engineering
tasks, providing insight into their potential as cost-effective alternatives to proprietary,
large-scale models [15]. Second, these findings may offer practical guidance not only for
practitioners integrating LLM-generated code into [oT and UAV communication workflows
but also for those in a wide range of other fields, as they highlight critical considerations
such as reliability, correctness, and maintainability. The subsequent sections of this paper
are organized as follows. Section 2 provides background information on the use of LLMs for
human-UAV interaction and code generation, also discussing relevant aspects of prompt
design. Section 3 describes the materials and methods employed, including the engineering
problem context, prompt structure, model selection, and evaluation metrics. Results are
presented in Section 4, followed by a detailed discussion in Section 5. Section 6 outlines the
study’s limitations and opportunities for future research. Finally, Section 7 concludes the
paper with final remarks and recommendations.
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2. Background

In this section, we start by addressing the general goal of integrating LLMs with UAVs
to improve the behavior, organization, and communication of autonomous systems, as well
as the specific implementation of UAVs as mobile relays and antennas in LoORoWAN envi-
ronments. In Section 2.2, we focus on the specific task of generating code for autonomous
devices and on how LLMs are being used to incorporate code generation at different levels
of workflow. Finally, in Section 2.3, we briefly discuss prompt engineering and its princi-
ples, the benefits and drawbacks of conversational and structured prompting, and how
prompt design impacts code generation or task planning.

2.1. LLMs for Human—UAYV Interaction

The nature of UAVs, namely their collective organization and communication re-
quirements, strongly encourages integration with Artificial Intelligence (Al) algorithms.
The recent emergence of LLM technologies in particular is inspiring new frameworks and
prototypes for communication and design of several autonomous systems, and UAVs are
no exception. As LLMs learning and adaptation capabilities in uncertain and dynamic
environments grow and approach human-level proficiency, the scientific literature on the
subject steadily increases [16,17]. Currently, there is a significant amount of knowledge
on LLMs for human-UAYV interaction. For a review on the state-of-the art literature on
LLMs and UAVs, please refer to [16]. For a discussion of key areas where LLMs can impact
UAVs, we urge the reader to refer to the paper by Phadke et al. [17]. In the following para-
graphs, we discuss some recent developments on the usage of natural language models for
controlling UAVs.

In [18], Aikins et al. present LEVIOSA, a framework for the generation of UAV
trajectory based on text and speech. The authors use several LLMs to convert natural
language prompts into sets of coordinates to guide the UAVs and low-level controllers
to control each device in its path, aiming for accuracy, synchronization, and collision
avoidance. LEVIOSA was tested on various scenarios with promising results.

Cui et al. [19] propose a Task Planning for Multi-UAV System (TPML) that uses LLMs
as interfaces to translate UAV’s operator instructions into executable codes. After validating
the system in simulation environments and real-wold scenarios, the authors argue that
TPML is able to control multiple UAVs in both synchronous and asynchronous missions
with a single natural language input.

While most of the studies on natural language processing for UAV's focus on processing
the user messages to program or optimize UAV behavior, others try to provide UVAs with
scene descriptions skills in natural language, taking advantage of their capacity to acquire
visual cues of the environment. In [20], the authors use LLMs and Visual Language Models
(VLMs) to provide UAVs with the ability of scene description using natural language.
The generated tests were subject to a readability test, some achieving a high school senior
reading level (level 12 in the Gunning fog index).

In [21], the authors discuss a framework that integrates a novel factorization
method—QTRAN—in a multi-agent reinforcement learning algorithm (MARL) [22] with
an LLM to optimize UAV trajectories, overcoming limitations of value decomposition
algorithms for trajectory planning, as they have difficulties in associating local observations
with the global state of UAV swarms. Although QTRAN overcomes some of the limita-
tions of standard MARLs, its performance can still be improved, namely by enhancing
the representation network. For that purpose, the authors incorporate LLMs in the frame-
work, boosting its overall performance in trajectory optimization and outperforming other
reinforcement learning methods.
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LPWAN:-based systems are one of the emerging technologies in which UAVs are being
tested and deployed. LPWANS, and LOROWAN:S in particular, rely on a set of fixed sensor
stations, which measure and transmit a number of environmental data to a central unit.
Traditionally, these stations are static, cover only very small areas and can be impaired by
natural disasters. Due to their mobility, UAVs can act as moving communication nodes,
which solves some of the limitations of static LOROWAN:S.

Several methods have been proposed to integrate UAVs in LOROWAN:S. In [23], UAVs
are used to transfer information from ground-based LORAWAN nodes to the base station.
The architecture of the systems thus consists of two layers, the first being the ground nodes
that transmit data using LoRaWAN and the second the swarm of drones communicating
over a WiFi ad hoc network. To enhance the performance of the systems, a distributed
topology algorithm periodically adapts the UAV topology to the position of the ground
nodes. In [24], the authors describe an air quality monitor system based on a LORAWAN
and UAVs. In [25], a UAV emergency monitoring system using a LORAWAN is proposed to
overcome the limitations of ground stations in disaster scenarios. Finally, Arroyo et al. [26]
propose a UAV and LOROWAN system that enables data transfer from sensors to a central
system and then use machine learning to classify the data. To the extent of our knowledge,
there are no studies on the integration of LLMs and UAVs in a LoRaWAN environment.

2.2. Code Generation with LLMs

The landscape of Al-assisted programming has evolved significantly, with extensive re-
search focusing on natural language generation and understanding of large codebases [27].
Shortly after their inception, some LLMs demonstrated capabilities in code assistance and
code generation, even from natural language specifications. In the first models, those skills
were somewhat limited and the output often required post-processing steps to improve
the quality of the suggested code [28]. But LLMs quickly evolved, and their ability to
provide executable code in due time improved significantly [29]. Furthermore, deriva-
tions of popular LLMs, like Open Al Codex [30], a descendant of ChatGPT-3, and Code
Llama [13], Meta’s programming tool, emerged as specialized models for coding. Nowa-
days, Al-assisted programming is a common practice in industry.

In the context of code generation for autonomous devices, Vemprala et al. [31] explore
ChatGPT’s ability on several robot-oriented tasks, including code synthesis. The authors
present a framework for robot control that requires designing and implementing a library
of APIs receptive to prompt engineering for ChatGPT. The proposed framework allows
the generated code to be tested, verified, and validated by a user through simulation and
manual inspection.

In [32], the authors adapt LLMs trained on code completion for writing robot policy
code according to natural language prompts. The generated robot policies exhibit spatial-
geometric reasoning and are able to prescribe precise values to ambiguous descriptions.
By relying on a hierarchical prompting strategy, their approach is able to write more
complex code and solve 39.8% of the problems on the HumanEval [30] benchmark.

Luo et al. [33] use LLMs to generate robot control programs, testing and optimizing
the output in a simulation environment. After a number of optimization rounds, the robot
control codes are deployed on a real robot for construction assembly tasks. The experiments
show that their approach can improve the quality of the generated code, thus simplifying
the robot control process and facilitating the automation of construction tasks.
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2.3. Prompt Design

The piece of text or set of instructions that the user provides to an LLM to generate
a specific response is called a prompt. Designing effective prompts is essential to take
advantage of the potential of LLMs, and in a few years the craft established as a field of
research and development of its own [34].

Prompting strategies can be broadly classified into structured and unstructured ap-
proaches. Structured prompting employs precise instructions with explicitly defined
inputs, outputs, and constraints, often leading to more reliable and accurate code genera-
tion. However, structured prompts typically require a deeper understanding of both the
problem domain and the underlying model, potentially limiting flexibility and accessibility.
Conversely, unstructured prompting uses intuitive, conversational language, making it
accessible to a broader audience, reflecting realistic scenarios where users may not possess
specialized knowledge of prompt crafting. However, this can result in less consistent
outputs due to inherent ambiguity.

Prompts may also be categorized based on the number of illustrative examples pro-
vided: zero-shot prompts provide no examples, one-shot prompts include a single example,
and few-shot prompts incorporate multiple examples. Empirical research supports the
trade-offs associated with different prompt styles; for instance, Liang et al. [32] demon-
strate that structured, code-based prompts generally yield superior results for robot-related
reasoning tasks compared to natural language prompts. However, advances in LLM tech-
nology continue to improve the viability of unstructured, natural language prompting
in complex domains such as robotics [31]. Further improvements in output coherence
have also been observed through structured reasoning techniques such as chain-of-thought
(CoT) prompting [33,35].

In this study, we follow a natural language zero-shot prompt strategy, in which the
request is performed in a relatively unstructured fashion without any examples. Nonethe-
less, established best practices for engineering-focused code generation were followed by
explicitly specifying function inputs, expected return types, and required libraries, thus
improving the clarity and reproducibility of the generated code [36].

3. Materials and Methods

This section starts with an overview of the theoretical context that informs our prompt
design in Section 3.1. Next, Section 3.2 presents the proposed prompts and their respective
scenarios. Section 3.3 describes and justifies the models analyzed in this study. Section 3.4
then outlines the prompting and response processing pipeline. The section concludes
with a description of the experimental setup in Section 3.5, including all tested inputs for
both the LLMs and the generated Python functions, the expected function results, and the
evaluation metrics used.

3.1. Theoretical Context

The IoT paradigm refers to the interconnection of physical devices that collect, ex-
change, and process data over the Internet or other communication networks. According to
Sanguesa et al. [37], it is estimated that by 2030, there will be approximately 125 billion IoT
devices, ranging from simple temperature and humidity sensors to more complex sensors
used in sectors such as agriculture and industry. The main goal of these sensors is to
simplify and optimize daily activities. One of the challenges associated with this paradigm
is the large volume of data generated and how it is processed. A potential solution for
data collection is the use of UAVs, which can fly over (or carry) multiple sensors along a
predefined path planning. These UAVs may or may not be capable of transmitting data in
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real time to a base station (BS). However, to use UAVs efficiently, it is often necessary to
calculate their location and send control commands to adjust their position or even modify
their flight path. Therefore, reliable communication between the UAV and a base station
is crucial. One possible communication protocol for this purpose is LoRaWAN, which is
based on LoRa (long-range) communication and enables effective long-distance data trans-
mission [38,39]. Essentially, LoRa communication establishes a link between two points:
the transmitter—in this case, the BS—and the receiver, i.e., the UAV. This communication is
based on classical propagation models, such as those found in reference [40].

Regarding the modulation of a communication channel, the received power at the
antenna (p,) depends on factors such as the transmit power (p;), the gain of the antennas
(gr and g¢), the distance between the antennas (r), and the losses during transmission (free-
space attenuation). Equation (1) represents the propagation loss [ between the two points:

2 2
ZF _ Pt - &r - 8t _ <W> _ <47T7’f) (1)
Pr A c

where A represents the wavelength. In particular, A = J%, with c representing the speed of

light and f the frequency, which in Europe is 868 MHz.

A lower propagation loss results in a stronger received signal. Propagation losses
are typically expressed in dB units, and for a distance in meters and a frequency in Hz,
Equation (1) can be rewritten as Equation (2), which represents the Free Space Path Loss
formula. This formula is valid under free-space conditions, assuming a direct, unobstructed
line of sight. In terms of notation, lowercase variables denote linear values, whereas
uppercase variables denote logarithmic values.

Lr(dB) = 201log(ry) + 20log( f.) — 147.55 @)

To estimate the received power, it is necessary to consider the transmitted power,
the gain of the transmitting and receiving antennas, and the path losses that occur during
transmission. Thus, Equation (3), derived from Equation (1), can be written as

Pr(dBm) =P+G+G,—Lf 3)

3.2. Scenarios and Prompts

To evaluate the LLM models, three zero-shot prompts with increasing levels of diffi-
culty were designed—see Table 1. In this context, ‘zero-shot’ refers to prompts that do not
provide any examples to the model being tested. Furthermore, these prompts use natural
language, meaning that they are relatively unstructured and have undergone minimal
refinement, apart from ensuring technical precision and clarity. This approach was chosen
as it more closely follows real-world scenarios where domain experts may rely on direct,
straightforward queries to achieve their goals.

The specific request posed by these prompts is for the LLM to identify, from a set of
points, the point where the value of L is the lowest or to determine the received power
at that point (i.e., the point with the lowest Lr). In all scenarios, a frequency of 868 MHz
is considered, as well as a rural area where LoRa communication is possible up to 10 km.
Both antennas are assumed to have a gain of 2.5 dBi each.

To simplify post-processing of responses, all prompts specify the available libraries,
the expected indentation type, and that the return function should be self-contained—i.e.,
all required code including constants and auxiliary functions should be defined within the
requested function.
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Table 1. Prompts designed for this study, requiring the tested LLMs to generate Python functions
that solve increasingly complex tasks related to LoRaWAN and UAVs.

Prompt 1

Consider that the LoRaWAN communication protocol is being used in a rural scenario where a base station communicates with a UAV
at a communication frequency of 868 MHz. Assume a system with two axes (the x-axis and the y-axis) and that the base station is
in position (0,0). Also, assume that all positions are in kilometers (km).

Create a Python function called ~index_position()~ which accepts a list of tuples, with each (x, y) tuple representing a possible
position in which the UAV can be placed with respect to the base station. This function should return the list index of the tuple
(i.e., UAV position) which minimizes the propagation loss. Assume that the math and numpy libraries are imported as follows, and
no more libraries can be used:

import math
import numpy as np

Beyond importing these libraries, the ~index_position()~ function must be self-contained. In other words, all variables,
constants, or helper functions must be defined within the ~index_position()~ function. Provide Python code with 4-space
indentation following PEP 8.

Prompt 2

Consider that the LoRaWAN communication protocol is being used in a rural scenario where a base station communicates with a UAV
at a communication frequency of 868 MHz. Assume a system with two axes (the latitude axis and the longitude axis) where each
value is given in decimal degrees.

Create a Python function called ~index_position()”~ which accepts a list of (latitude, longitude) tuples. The first tuple in this
list represents the position of the base station, while the remaining tuples represent possible positions in which the UAV can be
placed. This function should return the list index of the tuple which minimizes the propagation loss. Assume that the math and
numpy libraries are imported as follows, and no more libraries can be used:

import math
import numpy as np

Beyond importing these libraries, the “index_position()” function must be self-contained. In other words, all variables,
constants, or helper functions must be defined within the ~index_position()~ function. Provide Python code with 4-space
indentation following PEP 8.

Prompt 3

Consider that the LoRaWAN communication protocol is being used in a rural scenario where a base station communicates with a UAV at
a communication frequency of 868 MHz, with a transmission power of 27 dBm. Both the transmitter and UAV antennas have a gain of
2.5 dBi. Assume a system with two axes (the latitude axis and the longitude axis) where each value is given in decimal degrees.

Create a Python function called “power_received()”~ which accepts a list of (latitude, longitude) tuples. The first tuple in this
list represents the position of the base station, while the remaining tuples represent possible positions in which the UAV can be
placed. This function should return the power received (in dBm) by the UAV at the position that minimizes the propagation loss.
Assume that the math and numpy libraries are imported as follows, and no more libraries can be used:

import math
import numpy as np

Beyond importing these libraries, the “power_received()” function must be self-contained. In other words, all variables,
constants, or helper functions must be defined within the ~power_received()~ function. Provide Python code with 4-space
indentation following PEP 8.

The first prompt is presented in the first row of Table 1. In this simpler scenario,
the BS and the UAV’s possible positions, measured in kilometers (km), are defined within
a coordinate system with two axes: the x-axis and the y-axis. The BS is fixed at position
(0,0), while the UAV’s possible positions are provided as an input array to the function
generated by the LLMs. To solve this problem, LLMs must generate a Python function that
calculates the distance (e.g., Euclidean) between the BS and each possible UAV position,
applies Equation (2) to compute power losses, and returns the index of the position with the
lowest loss. The LLM must ensure that power losses maintain a one-to-one correspondence
with the UAV positions to return the correct index.
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Prompt 2, shown in the second row of Table 1, increases the complexity by considering
geographical coordinates—latitude and longitude—instead of a simple (x,y) axis. LLMs
must use a different method to calculate the distances between the UAV’s position and the
BS, such as Haversine’s formula. This prompt further increases the difficulty by requiring
that the UAV’s position be given as the first element of the input array. Consequently,
the generated functions must extract this information and return an index greater than
zero, as index zero contains the UAV’s position.

Prompt 3, presented in the last row of Table 1, closely resembles Prompt 2. However,
instead of returning the index with the lowest loss, the generated function must return the
value of that loss by applying Equation (3).

3.3. LLMs Considered

The LLMs models used in this paper were chosen based on their impact in Al research,
innovative approaches, and performance across different domains such as programming,
advanced reasoning, and computational efficiency. Table 2 lists and characterizes the LLMs
selected for this study. For the remainder of this paper, the number of parameters associated
with each model is expressed in billions or trillions with an uppercase B and T, respectively.

Table 2. Characteristics and main purpose of the LLMs tested in this study. ‘Size’ indicates the
number of parameters in billions (B) or trillions (T). “Tag’ corresponds to the specific model version

invoked in the respective API calls.

Family Version  Size Tag Main Purpose
DeepSeek [7,41] R1 7B deepseek-r1:7b Computationally efficient distilled reasoning model.
R1 70B  deepseek-r1:70b Distilled reasoning model balancing performance and
computational efficiency.
V3 671B  deepseek-v3 Mixture-of-Experts general-purpose model.
Gemma [42,43] 1.1 2B gemma:2b Lightweight model for dialogue, instruction-following,
and coding.
2.0 2B gemma2:2b Compact general-purpose model trained with
knowledge distillation.
GPT [5] 4 1.76T* gpt-4-0613 Multimodal model optimized by OpenAl for text,
audio, and image processing.
LLaMA [13] 3.2 3B 1lama3.2:3b Lightweight text-only model for multilingual
dialogue and text summarization.
3.3 70B  1lama3.3:70b Text-only model for deeper comprehension
multilingual conversation.
code 7B codellama:7b Code generation model.
Mistral [44] 0.3 7B  mistral:7b Efficient model for text and code generation,
supports function calling.
Phi [14] 4.0 14B  phi4:14b Reasoning model trained using high-quality
synthetic data.
Qwen [45,46] 2.5-coder 0.5B  gwen2.5-coder:0.5b Code generation model.
2.5-coder 1.5B qwen2.5-coder:1.5b Code generation model.
2.5-coder 3B qwen2.5-coder:3b Code generation model.
2.5 0.5B qwen2.5:0.5b General-purpose language model.
qwq 32B  qwq:32b Advanced reasoning model for complex

problem-solving tasks.

* Unofficial estimate.
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The DeepSeek family of models includes a range of architectures designed to balance
performance and computational efficiency. DeepSeek-R1 (7B) and DeepSeek-R1 (70B)
are distilled versions derived from the larger DeepSeek-R1 model (671B)—based on the
Qwen and LLaMA architectures—to retain significant reasoning capabilities while reducing
hardware demands [41]. In contrast, DeepSeek-V3 (671B) is a Mixture-of-Experts model
designed to perform well in diverse tasks [7]. Considering these models is crucial due to
their varied architectures and training methodologies, which offer insights into the trade-
offs between model size, training techniques, and task-specific performance. The V3 671B
model was selected over its more developed R1 counterpart, as initial trials demonstrated
it was sufficiently accurate for the prompts presented in Section 3.2, providing a balance
between performance and cost.

The Gemma model family [42,43], developed by Google DeepMind, comprises open
models derived from the research and technology behind the Gemini models. While
influenced by Gemini, Gemma is fully open-source and designed for efficient language
understanding and reasoning. The lightweight Gemma v1.1 (2B) and Gemma2 (2B) imple-
mentations are optimized for resource-limited environments. Gemma2 (2B) incorporates
knowledge distillation, improving efficiency and performance relative to its size. These
models were included to assess the trade-offs in model scaling, particularly for the real-time
and cost-sensitive applications associated with the tested prompts.

OpenAl’s Generative Pre-trained Transformer (GPT) models are proprietary LLMs
designed to understand and generate human-like text, facilitating tasks such as drafting
documents, coding, and responding to queries [5]. Their popularity and advanced capabili-
ties make them essential subjects in LLM comparison studies. In this context, GPT-4-0613
was selected over newer models such as GPT-40 and o1, as preliminary tests indicated its
performance was sufficient for the presented prompts, therefore reducing costs.

The LLaMA series by Meta Al includes models optimized for various applications [13].
LLaMA-3.2 (3B) is a lightweight, multilingual model suited for mobile and edge devices, ap-
propriate for text summarization and classification. LLaMA-3.3 (70B) is a larger, instruction-
tuned model with superior performance in natural conversation and multilingual tasks.
Code Llama (7B) specializes in code generation and understanding. Testing these three
models is important for evaluating how model size, specialization, and efficiency in the
LLaMA family impacts performance across the three implemented prompts.

The Mistral family of language models [44], developed by the French company Mistral
Al, stands out for its efficient architecture and strong performance. Mistral models achieve
high accuracy with fewer parameters, making them more accessible and computationally
efficient compared to many large-scale models. The Mistral v0.3 (7B) model exempli-
fies this approach, demonstrating capabilities in text and code generation, conversation,
and function calling, while effectively handling longer sequences. Its open-source nature
offers a valuable option for research and application development, providing a European
alternative to models predominantly from U.S.- and China-based companies.

The Phi model family [14], developed by Microsoft Research, is focused on the role of
high-quality synthetic data for improving reasoning in compact language models. Phi-4,
a 14-billion parameter model, prioritizes synthetic data to improve problem-solving in
mathematics and coding, outperforming its teacher model, GPT-4, on several benchmarks.
Unlike models that primarily scale with size, Phi-4 follows a distinct training approach,
making it important to compare against other LLMs. Its relatively small size also makes it
relevant for low-resource environments, where optimizing data efficiency can be a crucial
factor in model deployment.
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The Qwen model family, developed by Alibaba Cloud, includes general-purpose [45]
and code-specialized [46] LLMs over a wide range of sizes. Their scalability, architectural
optimizations, and strong reasoning capabilities make them valuable for benchmarking
efficiency and specialization. Here, the most recent 2.5 versions are tested—namely the spe-
cialized coder implementations (0.5B, 1.5B, and 3B) and the general-purpose 0.5B model—as
well as QwQ (Qwen with Questions) 32B model with advanced reasoning capabilities.

3.4. Implementation

The pipeline for submitting a prompt to an LLM, obtaining a response, extracting
a Python function, and executing it is illustrated in Figure 1. The process begins by
iterating through a predefined set of LLMs, seeds, temperatures, and prompts. Each
prompt is submitted to the corresponding LLM, and its response is stored in a text file. Next,
the function from each stored response is extracted by searching for the function definition
(e.g., ‘def requested_function():’) and capturing all internal code up to the last properly
indented ‘return” statement. This ensures that functions defined within the external
function do not prematurely terminate the extraction. The extracted function is then
recorded in a Python file for execution. If the function is not successfully extracted—such
as when the defined function name does not match the expected one—this information is
logged in the results file, and a score of zero is assigned for that LLM, seed, temperature,

and prompt combination.

.ﬁ

Input Data

=g

Temperature

Function Name

‘ Scenario_values.json

Function Parameters .
Function Result
\4 \4
. \
—>»  Pre-Processing —>» Run Python CodeJ —){ Compare Results Processing
\4
answer.txt function.py return value Possible result:
3,4,5
Possible result: 1, 2 \ 4
»
Possible result: 0 :‘ results.csv
Ll
Output Data

Figure 1. Validation pipeline for the results of LLMs under study.

If the Python function is correctly generated and extracted, it is tested under
Python 3.9.6 using the data provided for each scenario (presented in Section 3.5). One of
three possible outcomes may occur:

*  The code contains a syntax error and does not compile, in which case a score of 1 is
recorded in the results file;
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®  The code executes but encounters a runtime error, resulting in an exception, in which
case a score of 2 is stored in the results file;

®  The code executes successfully and returns a result, in which case the score ranges
from 3 to 5, as detailed below.

If the code executes successfully, the function’s output is evaluated as follows: if the
returned value is of a different type than expected (e.g., a float instead of an int), a score
of 3 is recorded in the results file. This type check is performed broadly; for example, if an
integer is expected, types such as int, np.int32, or np.int64 are considered valid (where
np refers to the NumPy library). If the type is correct, the next step is to verify whether the
returned value matches the expected value. For floating-point comparisons, a tolerance
of 1% is allowed. If the result is incorrect, a score of 4 is assigned. Finally, if the returned
value is correct, a score of 5 is recorded, indicating 100% functionally correct code. At the
end of this process, a file containing all recorded scores is available for analysis.

In summary, scores between 0 and 5 are characterized as follows:

0. No Python file was generated—This indicates that the LLM did not generate a
Python function or that the generated function does not have the name specified
in the prompt.

1. Syntax error—The code does not compile.

Runtime error—The code is valid Python but has logic incongruencies and/or does
not conform to the prompt requirements.

3. Code runs but returns an incorrect data type—For Prompts 1 and 2, it should return
an integer (the index value), while in Prompt 3, it should return a float.

4. Code runs but returns an incorrect result.

5. Code runs and returns the correct result.

3.5. Experimental Setup

To thoroughly test the capabilities of the models listed in Section 3.3, the prompts
presented in Section 3.2 were individually submitted to LLMs using six different pseudo-
random number generator seeds across six temperature values, in a total of 36 submissions
per prompt for each LLM. Temperatures were increased in 0.2 increments from 0.0 to
1.0 for locally executed LLMs via Ollama. Although Ollama accepts temperatures in the
range of 0.0-1.0, both DeepSeek-V3 and GPT-4, executed through their online APIs, accept
temperatures in the 0.0-2.0 range. Therefore, temperatures were doubled for these models.
For example, and for the purpose of this study, a temperature of 0.6 in local models is
doubled to 1.2 when submitting a prompt to online LLMs.

The LLM-generated Python functions were tested with the following input data, and
return values for each prompt were expected:

Prompt 1 The input data are an array of four positions, namely [(2,5), (7,7), (1,8), (1,0.5)].
The expected return value is 3, corresponding to coordinate (1,0.5), which is the
closest one to the BS, which is fixed at (0,0).

Prompt 2 The input data are an array containing the following coordinates:

BS /UAV — (38.759297963817374, —9.154483012234662)
Position1 —  (38.749330295687805, —9.15304293547367)
Position2 — (38.75727072916799, —9.157797377555926)
Position3 — (38.737648166512336, —9.138660615310467)
Position4 — (38.76841010033327, —9.160013961052972)

The expected return value is 2, corresponding to the index of Position 2, which
minimizes the power loss.
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Prompt 3 The input data are the same as in Prompt 2, but the expected value is —50.33 dBm,
which is the minimal loss, obtained at Position 2.

As described in Section 3.4, the capabilities of the different LLMs in correctly an-
swering Prompts 1-3 are assessed using a score between 0 and 5. For six submissions
(one per seed) for each prompt-model-temperature combination, four summary statistics
are calculated and presented: the mean score, a non-parametric 95% confidence interval
around the mean, the percentage of perfect scores (score equal to 5), and a histogram of
score distribution. These metrics allow for a detailed performance investigation of the
capabilities of the 16 tested models to generate Python code to solve the three progressively
complex LoRaWAN-related prompts.

In addition to these summary statistics, a formal statistical comparison between
models is conducted using stratified permutation tests [47]. To account for varying prompt
difficulty, model performance is stratified by prompt, allowing all three prompts to be
included in a unified testing procedure. For each pairwise comparison between two models
at a given temperature, scores are pooled by prompt (six scores per model per prompt, 12
in total), and a one-sided permutation test is applied. The test statistic is the sum of mean
rank differences across prompts. All ('2) = 924 possible permutations of model labels are
precomputed per prompt, and 1000 stratified permutations are generated by randomly
selecting one permutation per prompt and combining them. The resulting null distribution
is used to estimate the probability of obtaining a test statistic as large or larger than the
observed one under the null hypothesis of no difference. The tests are one-sided, since the
goal is to determine whether one model significantly outperforms another—not whether
it is worse. Finally, multiple testing correction is applied using the Benjamini-Hochberg
procedure to control the false discovery rate (FDR) across all comparisons [48].

4. Results

Results for the simpler Prompt 1 are shown in Figure 2 and Table 3. While all models
generated accurate code for certain seed/temperature combinations, DeepSeek-V3 and
Phi-4 stood out, consistently providing correct answers across all seeds and temperatures.
The three LLaMA models, the three Qwen coder models, and GPT-4 also demonstrated
strong performance, reliably generating correct code for at least a subset of temperature
values—typically at lower settings. Interestingly, GPT-4 exhibited a significant drop in
answer quality at temperatures of 1.6 and higher (i.e., 2 x 0.8), with responses becoming
essentially random at the highest temperature. In contrast, the DeepSeek-R1 models (7B
and 70B), the Gemma models (2B), the Mistral model (7B), and the non-coder Qwen models
(2.5-0.5B and QwQ-32B) failed to consistently produce correct answers.

Results for the slightly more complex Prompt 2, for which the UAV position is given as
a function argument (i.e., it is not predefined within the function) and actual geographical
coordinates are used, are shown in Figure 3 and Table 4. Only four models consistently
generated accurate code: the larger online DeepSeek-V3 and GPT-4 models, as well as the
smaller, locally tested LLaMA-3.3 and Phi-4. However, the drop in performance for GPT-4
at higher temperatures is even more pronounced for this prompt. Conversely, Gemma (2B),
Mistral (7B), and both 0.5B Qwen models failed to produce a single correct answer.

Prompt 3, while similar to Prompt 2 in many respects, requires the requested function
to return a concrete power loss value rather than merely the index of the position with
the lowest loss. This distinction arguably makes it the most complex task for the models
evaluated in this study. The results for this prompt are presented in Figure 4 and Table 5.
The same four models continued to generate accurate code consistently, though within
a more limited range of temperature settings. DeepSeek-V3 demonstrated the highest
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overall consistency, reliably producing correct code at temperatures of 0.8 (2 x 0.4) and
1.2 (2 x 0.6), while maintaining a high percentage of accurate responses across the remaining
temperatures. GPT-4 and Phi-4 achieved 100% accuracy when the temperature was set
to zero. However, while Phi-4 remained highly consistent at higher temperatures, GPT-4
exhibited a significant decline in performance. LLaMA-3.3 also demonstrated strong
consistency, achieving 100% accuracy in all runs at temperatures of 0.2 and 0.4. None of
the remaining models were able to successfully complete this task. The only exception
was Qwen’s QwQ (32B), which generated a single correct response at a temperature of
0.6. However, beyond this isolated instance, it predominantly produced code containing
invalid syntax or runtime errors.

Figure 5 presents a pairwise significance heatmap based on p-values from a stratified
permutation test, after FDR multiple testing correction, indicating which models (in rows)
statistically outperformed others (in columns) across temperatures. Table 6 summarizes
these results, showing the number of models each system significantly outperformed at
each temperature, as well as the overall total across all temperatures. These results reinforce
what was observed in the descriptive statistics—namely that DeepSeek-V3, GPT-4, Phi-4,
and LLaMA-3.3 are the most consistent and competitive models in these engineering tasks.
At nearly all temperature levels, these models significantly outperformed the majority of
alternatives, with corrected p-values below the 0.05 threshold in a substantial number of
pairwise comparisons. In particular, DeepSeek-V3, Phi-4, and LLaMA-3.3 achieved the
highest number of significant wins at every temperature, while GPT-4 showed similarly
strong performance at lower temperatures but exhibited a sharp decline in statistical
superiority as temperature increased.

In contrast, the two DeepSeek-R1 models, as well as QwQ), registered very few sig-
nificant wins at any temperature. Crucially, their only advantages were against GPT-4
at higher temperatures, where its output becomes increasingly random and unsuitable
for these types of coding tasks. This further confirms their limited effectiveness, as al-
ready observed in previous results. An additional insight—less apparent in the descriptive
statistics but clearly highlighted in Table 6—is the lack of correlation between model size
and performance within the Qwen coder family. Specifically, the 1.5B Qwen coder model
achieved the fourth highest total number of pairwise wins (47), surpassing even GPT-4 (45),
while the larger 3B variant achieved roughly half as many.

Finally, Figure 6 presents the mean scores for the tested models across all three prompts,
aggregating results from all seeds and temperature settings. While the initial assumption
was that Prompts 1 to 3 increase in complexity, and the results thus far appear to support
this hypothesis, Figure 6 provides a more comprehensive perspective. For most models,
the mean score declines progressively with increasing prompt complexity, reinforcing
this assumption. However, exceptions include both Gemma models and the non-coder
Qwen-2.5 model, where the score reduction is not strictly monotonic. Another observation
from this figure is that the highest performing models—DeepSeek-V3, GPT-4, LLaMA-3.3,
and Phi-4—maintain consistent performance across prompts, with only a slight decline in
mean score as complexity increases.
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Figure 2. Prompt 1 mean answer score for the tested models over several temperatures. Each
combination of model and temperature was tested with 6 different seeds. Error bars denote a 95%
confidence interval. Temperatures for online models, deepseek-v3 and gpt-4-0613, are twice the
displayed values.

Table 3. Prompt 1 answer statistics, namely the percentage of correct answers (score equal to 5) and
histogram of scores (0-5) for the tested models over several temperatures. Each combination of model
and temperature was tested with 6 different seeds. Temperatures for online models, deepseek-v3 and

gpt-4-0613, are twice the displayed values.

Temperature

Model

0.0 0.2 04 0.6 0.8 1.0 Overall
codellama:7b 100.0% 1! 100.0% Il 50.0% 1 66.7% Tl 100.0% 1t 833% Ml 83.3% ...l
deepseek-r1:70b 66.7% i ll  333% it 333% [lori 66.7% ritl  167% [l 50.0% il 44.4% F il
deepseek-r1:7b 50.0% 11 50.0% eIl 50.0% evetl 66.7% el 66.7% Il 66.7% .1 58.3% ri—I1
deepseek-v3 100.0% — I 100.0% Il 100.0% I 1000% — I 100.0% Il 100.0% I 100.0% ]|
gemma2: 2b 00% L. 167% .1l 667% 1  333%.0l.n  167% Jtece  167% Trioe 25.0% rion
gemma: 2b 0.0% Il 00% !l 167% [~  333% 1. 167% L~  333% - 167% Il
gpt-4-0613 100.0% ——11  100.0% 11 100.0% Il 66.7% .11 0.0% e 0.0% [ 61.1% reent]
11lama3.2:3b 100.0% — 11 100.0% 11 667% 1 667% — 1 667% —itl  667% il 77.8% ]
1lama3.3:70b 100.0% — ! 100.0% I 100.0% — I 1000% 11 833% 11 1000% 1 972% [l
mistral:7b 50.0% .l 167% Il 500% -l 167% ..llem  333% .0l 333% .Ml 33.3% il
phi4:14b 100.0% —1!1 100.0% Il 100.0% I 1000% I 100.0% .1 100.0% Il 100.0% .|
qgwen2.5-coder:0.5b  100.0% — 83.3% 1l 66.7% vl 50.0% —r1e1 50.0% —1I"1 66.7% L] 69.4% it
gwen2.5-coder:1.5b  100.0% — !l 100.0% — I 100.0% Il 1000% I 500% .1 500% 1  833% ...
qwen2.5-coder: 3b 100.0% .l 833% ....tl  50.0% ol 50.0% ot 833% o d]  167% —nift 63.9% sl
qwen2.5:0.5b 0.0% e 50.0% ceectl 16.7% Tl 0.0% Lo 167% e 167% —Ileer  16.7% —riem
awa: 32b 00% e 167% J1 0.0% L 16.7% e 0.0% e 16.7% 1 8.3% 1
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Figure 3. Prompt 2 mean answer score for the tested models over several temperatures. Each
combination of model and temperature was tested with 6 different seeds. Error bars denote a 95%
confidence interval. Temperatures for online models, deepseek-v3 and gpt-4-0613, are twice the
displayed values.

Table 4. Prompt 2 answer statistics, namely the percentage of correct answers (score equal to 5) and
histogram of scores (0-5) for the tested models over several temperatures. Each combination of model
and temperature was tested with 6 different seeds. Temperatures for online models, deepseek-v3 and

gpt-4-0613, are twice the displayed values.

Temperature

Model

0.0 0.2 0.4 0.6 0.8 1.0 Overall
codellama:7b 00% L. 167% e 167% i 167% ks 0.0% L. 0.0% -l 83% ciir
deepseek-r1:70b 00% rfl.  333% e 333% o 33.3% M 0.0% [T 0.0% Lo 16.7% Mern
deepseek-r1:7b 50.0% 11 33.3% i 833% —cll  167% [l 16.7% [lon  333% fori 38.9% Mt
deepseek-v3 100.0% — 11 100.0% — 11 100.0% [l 1000% — I 100.0% Il  833% .11 972% . [l
gemma2:2b 0.0% Il 0.0% 1. 16.7% 11 0.0% —lr.  16.7% i 0.0% 1. 5.6% Il
gemma: 2b 0.0% L. 0.0% 1. 0.0% Il 0.0% 11w 0.0% 1 0.0% i 0.0% L
gpt-4-0613 100.0% 11 100.0% 11 100.0% — 11 66.7% o 0.0% I 0.0% [l 61.1% 11
1lama3.2:3b 0.0% — L 50.0% —I1.11 0.0% —ILrL. 0.0% L 0.0% L 0.0% Al 83% —Ile
1lama3.3:70b 100.0% 1! 100.0% Il 833% 11 100.0% I  833% 11 833% -~11 91.7% ..l
mistral:7b 0.0% 1. 0.0% 1. 0.0% L. 0.0% .1 0.0% /1. 0.0% L. 00% . L.
phi4:14b 100.0% ! 833% ... {1 100.0% Il 100.0% Il 100.0% | 100.0% ] 972% ... .1l
qgwen2.5-coder:0.5b 0.0% L 0.0% — T 0.0% —IL. 0.0% L 0.0% —T1. 0.0% !l 0.0% 1
qwen2.5-coder:1.5b 0.0% L 0.0% 1L 0.0% 1L 0.0% 1 0.0% Il 333% i 5.6% L
qwen2.5-coder: 3b 50.0% .11 16.7% — Il 0.0% 1. 0.0% ..[lri. 0.0% Il 167% it 13.9% .l
qwen2.5:0.5b 0.0% - rirl. 0.0% —.Iirl. 0.0% i 0.0% -l 0.0% 1. 0.0% —<ir.  0.0% - Ilr
qwq: 32b 0.0% 1. 0.0% ... 33.3% 1l 0.0% e 0.0% il 0.0% 1. 5.6% ..
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Figure 4. Prompt 3 mean answer score for the tested models over several temperatures. Each

combination of model and temperature was tested with 6 different seeds. Error bars denote a 95%

confidence interval. Temperatures for online models, deepseek-v3 and gpt-4-0613, are twice the

displayed values.

Table 5. Prompt 3 answer statistics, namely the percentage of correct answers (score equal to 5) and

histogram of scores (0-5) for the tested models over several temperatures. Each combination of model

and temperature was tested with 6 different seeds. Temperatures for online models, deepseek-v3 and

gpt-4-0613, are twice the displayed values.

Temperature

Model

0.0 0.2 0.4 0.6 0.8 1.0 Overall
codellama:7b 0.0% 11 0.0% -1 0.0% L. 0.0% L. 00%. L. 00%. /5.  00%._h.
deepseek-r1:70b 0.0% 1. 0.0% [ 0.0% [l 00% L. 00%!L__  00%/lL_  00%/l .
deepseek-r1:7b 0.0% I 0.0% [ 0.0% [ 0.0% L 00% [~ 00%/l_—  00%I[l
deepseek-v3 66.7% 1 833% .11 100.0% — ! 100.0% 1| 667% 1 833% .11 833% .1l
gemma2:2b 0.0% - Iirl. 0.0% .. 0.0% .10l 00% /1. 00% .. 0.0% .-l 0.0% Tl
gemma: 2b 0.0% L. 0.0% 1. 0.0% L. 0.0% . 0.0% —tre 0.0% e 0.0% )L
gpt-4-0613 100.0% —— 11 50.0% 1 50.0% 1 0.0% ——T1.  00% L 00%/l_ 333%c.
1lama3.2:3b 0.0% 1 0.0% L. 0.0% 1. 0.0% L 0.0% L 00% -1l 00%_Tl_
11ama3.3:70b 50.0% «—til 100.0% —d | 100.0% ] 833% il 66.7% —ill 16.7% Sl 69.4% il
mistral:7b 0.0% 1. 0.0% 1. 0.0% L. 0.0% 1 0.0% <Ll  00% .-l  00%. L.
phi4:14b 100.0% «od!  66.7% orill  66.7% il 66.7% il 66.7% ot 66.7% it 72.2% el
gwen2.5-coder:0.5b 0.0% 11 0.0% Il 0.0% il 00% e 0.0% L 00% -~ 00% Il
qwen2.5-coder:1.5b 0.0% L 0.0% L 0.0% 1. 0.0% 1. 0.0% L 0.0% v 0.0% It
gwen2.5-coder:3b 0.0% 1. 0.0% 11 0.0% 1. 00% L. 00% .1l  0.0% . 0.0% -l
qwen2.5:0.5b 0.0% 1. 0.0% ... 0.0% 1. 00% [t 0.0% [l 0.0% Tl 0.0% 1o
qwg:32b 0.0% 1 0.0% M 00% M 167% M 0.0% o 0.0% 7 2.8% M
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Figure 5. Pairwise significance heatmap of model performance comparisons for the three prompts
across temperatures. Each colored block represents the p-value of a one-sided, rank-based stratified
permutation test between two models (model in row vs. model in column) for a given temperature.
Cells are colored based on statistical significance after Benjamini-Hochberg FDR multiple testing
correction: dark green indicates a significant advantage of the model in the row against the model in
the column (p < 0.01), light green indicates moderate significant advantage (p < 0.05), and light gray

denotes no significant difference. Temperatures for online models, deepseek-v3 and gpt-4-0613, are
twice the displayed values.
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Table 6. Number of statistically significant pairwise wins (corrected p < 0.05) per model across
temperature settings. Bold values indicate the highest number of wins for each temperature column
(including ties). Each cell represents how many times a given model significantly outperformed others
at the corresponding temperature. Temperatures for online models, deepseek-v3 and gpt-4-0613, are
twice the displayed values.

Model Temperature
ode
00 02 04 06 08 1.0 Overall
codellama:7b 5 5 2 5 9 4 30
deepseek-r1:70b 0 0 0 0 0 0 0
deepseek-r1:7b 0 0 0 0 0 1 1
deepseek-v3 12 12 12 13 13 13 75
gemma2:2b 2 3 2 3 3 3 16
gemma: 2b 2 2 2 2 4 3 15
gpt-4-0613 12 12 12 9 0 0 45
1lama3.2:3b 5 6 3 4 4 4 26
1lama3.3:70b 12 12 12 13 13 13 75
mistral:7b 4 3 2 1 4 4 18
phi4:14b 12 12 12 13 13 13 75
qwen2.5-coder:0.5b 7 6 6 6 6 5 36
qwen2.5-coder:1.5b 7 7 8 8 9 8 47
qgwen2.5-coder: 3b 5 6 2 4 4 3 24
qwen2.5:0.5b 2 6 2 1 4 3 18
qwq:32b 0 0 0 0 1 1 2
5 | I |
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Figure 6. Mean answer score for the tested models and the three prompts. Each combination
of model and prompt was tested 36 times (6 seeds x 6 temperatures). Error bars denote a 95%
confidence interval.
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5. Discussion

Within the DeepSeek model family, there was a surprising discrepancy between
the well-performing DeepSeek-V3 and the underperforming DeepSeek-R1 models. The
DeepSeek-R1 versions (7B and 70B), despite their larger parameter counts, rarely generated
correct code. Interestingly, the DeepSeek-R1 models, as well as Qwen’s QwQ (32B), tended
to generate answers over five times longer than those from other models, yet without
improved correctness. While these verbose outputs are particularly noticeable, we did
not investigate the reasons behind them because this lies beyond the scope of this study.
Nonetheless, the generated data—as well as further analyses on this matter—are avail-
able on Zenodo (https://doi.org/10.5281/zenodo.14888673) and may be addressed in
future studies.

An important observation is that GPT-4 exhibits essentially random outputs when
operating at higher temperatures. This behavior aligns with OpenAl’s own documentation,
which indicates that temperatures above 1.2 or 1.4 may lead to increasingly stochastic
completions. In contrast, the other top-performing models in this study—DeepSeek-V3,
LLaMA-3.3, and Phi-4—remain relatively robust under higher temperature settings. These
considerations indicate that temperature influences each model differently. Differences in
temperature scaling ranges (0-1 vs. 0-2) further complicate direct comparisons.

Although one might expect a clear correlation between model size and code generation
quality, results support a more involved situation among locally run models. Larger
models such as DeepSeek-R1 (70B) and QwQ (32B) do not necessarily outperform smaller
alternatives: their answers were typically long yet largely incorrect. Conversely, some mid-
to large-scale models, such as Phi-4 (14B) and LLaMA-3.3 (70B), consistently provided
accurate solutions to all prompts. Another example, LLaMA-3.2 (3B), showed reasonable
performance for simpler tasks but struggled with more complex prompts, highlighting a
lower boundary for parameter count beyond which performance degrades. In contrast,
Qwen’s smaller coder models (0.5B, 1.5B, 3B) did not show any clear advantage with
increasing size, confirming that raw parameter counts alone are insufficient to predict
success across different tasks.

Within the Gemini-based lineage, Gemma-2 offered marginal improvements over its
older v1.1 sibling, though neither model consistently produced correct outputs. On the
other hand, LLaMA-3.3 (70B) clearly outperformed the related LLaMA-3.2 (3B), a result
likely driven by its substantially larger parameter count. Phi-4 merits special mention
for delivering accurate code across all tasks, seeds, and temperatures, while requiring
considerably fewer parameters (14B) than the largest competitors. This affords Phi-4 a
strong performance/size ratio among the locally executed models.

To support these observations, a stratified permutation test with FDR correction was
applied across all model pairs and temperatures. The resulting significance heatmap
and win counts showed strong agreement with the descriptive statistics. DeepSeek-V3,
Phi-4, and LLaMA-3.3 consistently achieved the highest number of statistically significant
wins, while GPT-4 also dominated at lower temperatures. These results reinforce that the
observed differences in model performance are statistically meaningful and not artifacts of
randomness or scoring variability.

From a broader perspective, these findings support the notion that carefully tuned,
locally run models can achieve near-state-of-the-art performance in specialized Python code
generation tasks without necessarily relying on proprietary solutions. Specifically, both
Phi-4 and LLaMA-3.3 proved capable of reliably generating correct solutions for the type
of UAV/LoRaWAN planning prompts tested in this work. Their consistency in providing
accurate answers under varying seeds and temperature conditions places them among
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the top-performing models overall, comparable to GPT-4 and DeepSeek-V3. These results
address the central research question: lightweight and locally executed LLMs can, in fact,
generate correct Python code for relatively simple LoORaWAN and UAV planning tasks,
provided that their parameter counts and training procedures meet a certain threshold
of quality and scale. The performance of Phi-4 was particularly impressive, especially
considering it is a relatively lightweight model.

6. Limitations

Despite the insights gained from this study, several limitations should be acknowl-
edged. First, the selection of models, while diverse, was not exhaustive. Only a subset of
locally run lightweight models was evaluated, and online testing was limited to GPT-4
and DeepSeek-V3. Several potentially relevant models, such as Claude, Mistral (larger
online versions), and specialized coding models (e.g., Gemma Coder or DeepSeek Coder),
were not included. This restricted scope leaves open the possibility that other models may
perform competitively or even outperform those tested in this study.

Second, model outputs were assessed solely based on functional correctness, with-
out a detailed qualitative analysis of the responses. This introduces the risk that some
answers classified as correct may not have been genuinely derived but instead relied on
unintended memorization, dataset leakage, or other forms of ‘cheating’. While this concern
is most relevant for Prompts 1 and 2, where only an index is returned, Prompt 3 mitigates
this issue by requiring a real-valued output. Nevertheless, a more rigorous analysis of
response quality—including potential hallucinations, redundant reasoning, and incorrect
assumptions—would strengthen future work.

Third, the study relied on a single test case per function, which limits the robustness
of correctness assessments. A more comprehensive evaluation would include multiple test
cases per function, ensuring that responses generalize beyond a specific input scenario.
This is particularly relevant given the stochastic nature of LLM-generated code, where
seemingly minor variations in the prompt or execution conditions can lead to significant
changes in output validity.

Fourth, all evaluations were conducted using zero-shot natural language prompts,
without fine-tuning or explicit prompt engineering. While this choice aligns with practical
use cases where domain experts may rely on straightforward instructions, further experi-
mentation with prompt optimization strategies—such as chain-of-thought prompting or
few-shot learning—could provide deeper insights into model capabilities.

Additionally, the study focused on relatively simple UAV/LoRaWAN planning tasks.
While these scenarios are relevant to real-world applications, they do not necessarily
capture the full complexity of autonomous UAV coordination, network interference, or real-
time decision-making in dynamic environments. The strong performance of top models
suggests they may be capable of handling more complex scenarios, but this remains an
open question for future research.

A final limitation concerns the use of statistical significance testing. While stratified
permutation tests confirmed the robustness of performance differences, they do not ac-
count for the magnitude or practical implications of those differences. Moreover, the use
of discrete, ordinal scores simplifies model outputs and may obscure subtle qualitative
distinctions. Although multiple testing correction was applied to reduce false positives,
this also reduces sensitivity to borderline effects. Additionally, comparisons at non-zero
temperatures should be interpreted with caution, as temperature scaling is handled differ-
ently across models, potentially resulting in varying degrees of output randomness for the
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same nominal value. These tests therefore complement, but do not replace, the broader
descriptive analysis presented earlier.

These limitations do not diminish the validity of the study’s conclusions but high-
light areas for refinement in subsequent investigations. A broader model selection, more
rigorous evaluation metrics, and extended task complexity would further improve the
understanding of LLMs’ capabilities in UAV and LoRaWAN-related computational tasks.

7. Conclusions

This paper analyzed the capabilities of 16 LLMs to generate Python functions for
practical LoRaWAN-related engineering tasks involving UAV placement and signal propa-
gation. By progressively increasing the complexity of prompts, we evaluated each model’s
ability to return valid and correct solutions under a standardized scoring system. The find-
ings indicate that several recent models—particularly DeepSeek-V3, GPT-4, LLaMA-3.3,
and Phi-4—consistently generated accurate and executable functions. Particularly, Phi-4
displayed exceptional performance despite its relatively lightweight architecture, demon-
strating that well-optimized, smaller-scale models can be highly effective for specialized
engineering applications. Models that did not achieve high scores often struggled with
prompt interpretation, code syntax, or domain-specific computations, underlining the need
for careful prompt engineering and model fine-tuning in similar applications.

The demonstrated viability of lightweight and locally executed LLMs for specialized
engineering tasks such as UAV planning in LoRaWAN environments suggests that these
models could significantly lower computational barriers and costs, allowing for broader and
more flexible integration of Al-driven code generation into practical engineering workflows.

While this study highlighted the strong potential of LLMs in engineering work-
flows, certain limitations must be acknowledged, including the constrained model se-
lection, the single test case per function, and the absence of qualitative analysis of re-
sponses. However, these limitations present opportunities for future research. Expanding
test sets, incorporating more complex domain requirements, and evaluating additional
models—particularly other lightweight alternatives—could further enrich our understand-
ing of LLM-driven code generation in wireless communications and related fields. Future
research could also explore the incorporation of reinforcement learning with human feed-
back to further improve the code generation capabilities of lightweight LLMs [49].
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Abbreviations and Symbols

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

API Application Programming Interface
BS Base Station

CoT Chain of Thought

FDR False Discovery Rate

GPT Generative Pre-trained Transformer
IoT Internet of Things

LLM Large Language Model

LoRa Long-range

LoRaWAN LoRa Wide Area Network
LPWAN Low-Power Wide-Area Network

MARL Multi-Agent Reinforcement Learning algorithm
TPML Task Planning for Multi-UAV System

UAV Unmaned Aerial Vehicle

VML Visual Language Models

The following symbols are used in this manuscript:

A Wavelength
¢ Speed of light
Frequency
Gr  Gain of the receiving antenna
G;  Gain of the transmitting antenna
Lr Propagation loss
P, Received power
Py Transmit power

r Distance between the antennas
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