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Abstract: This comprehensive review examines the role of sustainable aviation fuels (SAFs) in
promoting a more environmentally responsible aviation industry. This study explores various types
of biofuels, including hydroprocessed esters and fatty acids (HEFAs), Fischer-Tropsch (FT) fuels,
alcohol-to-jet (AT]) fuels, and oil derived from algae. Technological advancements in production and
processing have enabled SAF to offer significant reductions in greenhouse gas emissions and other
pollutants, contributing to a cleaner environment and better air quality. The review addresses the
environmental, economic, and technical benefits of SAF, as well as the challenges associated with
their adoption. Lifecycle analyses are used to assess the net environmental benefits of SAF, with a
focus on feedstock sustainability, energy efficiency, and potential impacts on biodiversity and land
use. Challenges such as economic viability, scalability, and regulatory compliance are discussed, with
emphasis on the need for supportive policies and international collaboration to ensure the long-term
sustainability of SAF. This study also explores current applications of SAF in commercial airlines
and military settings, highlighting successful case studies and regional differences driven by policy
frameworks and government incentives. By promoting technological innovation and addressing
regulatory and economic barriers, SAF has the potential to play a crucial role in the aviation industry’s
transition toward sustainability.

Keywords: sustainable aviation fuels; aircraft engine; hydroprocessed esters and fatty acids; synthetic
iso-paraffin; Fischer-Tropsch fuels

1. Introduction
1.1. Background on Aviation and Environmental Concerns

Aviation is a significant contributor to global carbon emissions, posing substantial
environmental challenges that exacerbate climate change. Aviation emissions, particularly
carbon dioxide (CO,), nitrogen oxides (NOx), and water vapor, directly contribute to
global warming and climate change through the greenhouse effect and cloud formation
enhancements [1,2]. The persistent growth in air travel demand ensures that these emissions
will continue to rise without significant interventions in aircraft fuel technologies and air
traffic management [3].

Sustainable aviation fuels (SAFs) are pivotal to the future of aviation, offering a viable
alternative to conventional jet fuels, which are major sources of aviation-related emissions.
SAFs, derived from bio-based resources, significantly reduce the lifecycle carbon emissions
associated with aviation, providing a critical solution to the pressing need for the aviation
sector’s decarbonization [4,5]. The adoption of SAFs not only aligns with global carbon
reduction targets but also helps in mitigating the climate impact of non-CO, emissions,
such as those from NOx and contrails, which are significant contributors to radiative
forcing [6,7].

Energies 2024, 17, 2650. https:/ /doi.org/10.3390/en17112650 1 https://www.mdpi.com/journal/energies



Energies 2024, 17, 2650

1.2. Importance of Sustainable Aviation Fuels (SAFs)

The aviation industry is undergoing a resurgence since the COVID-19 pandemic,
resulting in a heightened global demand for aviation fuel. The International Air Transport
Association (IATA) projects this demand to reach 6.46 million gallons per day, which is
equivalent to approximately 19.8 thousand tons per day. The increased consumption of
aviation fuel will impact the environment and human health by raising greenhouse gas
(GHG) emissions. In 2019, air transport generated 914 million tons of CO,, accounting for
2.1% of total human-produced CO, emissions and 12% of CO, emissions from the transport
sector [8].

Achieving net zero carbon dioxide (CO;) emissions by 2050 is a key objective for the
aviation industry, governments, and regulatory bodies. High-level strategies, scenarios,
and roadmaps have been proposed to support this transition. Examples include the
European Green Deal with its Fit-for-55 package, IATA’s “Fly Net Zero” strategy, and
EUROCONTROL's aviation outlook for 2050 [9]. The transition to SAFs offers numerous
benefits over traditional fuels. SAFs contribute to energy security by diversifying the fuel
supply and reducing dependency on oil markets. They also support rural development
and agricultural diversification through the use of non-food bio-feedstocks [10,11].

Despite these advantages, the widespread implementation of SAFs faces significant
challenges, including high production costs, feedstock availability, and the need for sub-
stantial technological and infrastructural developments to support large-scale deploy-
ment [12,13]. To realize the full potential of SAFs, coordinated efforts among governments,
industry stakeholders, and the scientific community are essential. This includes invest-
ments in research and development to improve fuel efficiency and reduce costs, as well as
policies to support the market uptake of SAFs [14-16].

The main goal of this review paper is to thoroughly investigate the environmental
challenges presented by the aviation sector, particularly its substantial contribution to global
carbon emissions. The paper examines the impact of these emissions—such as carbon
dioxide, nitrogen oxides, and water vapor—on global warming and climate systems, both
directly and indirectly. It also explores the role of sustainable aviation fuels (SAFs) as a
feasible alternative to conventional jet fuels, emphasizing their potential to lower lifecycle
carbon emissions and support the decarbonization of the aviation industry.

2. Methodology
2.1. Data Sources and Selection Criteria

The selection of sources for this comprehensive review was guided by specific criteria
to ensure the relevance and reliability of the information pertaining to sustainable aviation
fuels and their application in aircraft engines. Initially, the primary data sources were peer-
reviewed journal articles, industry reports, and authoritative publications from significant
entities in the aviation and environmental sectors, such as the International Air Transport
Association (IATA) and the International Civil Aviation Organization (ICAO). The relevance
of each source was determined based on its publication date, preferably within the last five
years, to ensure the currency of the data in the rapidly evolving field of aviation biofuels.

Reliability was assessed through the source’s peer-reviewed status, citation metrics,
and the recognition of the publishing journal or organization within the scientific and
aviation communities. Sources were also selected based on the specificity of their focus
on biofuels’ lifecycle analysis, emission impacts, economic viability, and regulatory frame-
works. This ensured a comprehensive collection of data that spans across the necessary
dimensions of the study topic.

2.2. Approach to Literature Review and Analysis

The approach to the literature review and analysis involved a structured process to
synthesize and interpret the gathered data effectively. The review started with a broad
search of keywords and phrases related to “sustainable aviation fuels”, “biofuel use in
aviation”, and “environmental impact of aviation fuels”. This initial search was refined by
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applying the selection criteria to narrow down the most relevant and reliable sources. Each
selected source was then meticulously reviewed to extract data pertinent to the environ-
mental impacts, technical performance, economic aspects, and regulatory environments
associated with biofuels in aviation.

The synthesis of information was conducted through a thematic analysis, where
data were categorized into themes such as environmental benefits, technical challenges,
economic feasibility, and policy implications. This thematic approach allowed for a coherent
structure in which to discuss the findings comprehensively. The analysis also included a
critical evaluation of conflicting data and gaps in current research, providing a balanced
perspective on the potential and limitations of sustainable aviation fuels. The review
culminated in integrating these insights into a narrative that reflects both the current state
of knowledge and the future directions for research and policymaking in the domain of
sustainable aviation fuels.

3. Overview of Aircraft Engine Types
3.1. Piston Engines

Piston engines, also known as reciprocating engines, are among the oldest types of
aircraft engines and are primarily used in small general aviation aircraft. They operate
similarly to automobile engines, using the expansion of burning gas to drive pistons.
These engines are typically powered by avgas (aviation gasoline), which is a high-octane
fuel suitable for the high compression ratios of aviation engines [17,18]. The transition
to biofuels in piston engines poses challenges primarily due to the biofuels’ different
chemical characteristics compared to avgas, such as lower energy content per volume
and variations in stoichiometric fuel-to-air ratio, which can affect engine performance and
maintenance [19,20]. Research into biofuel compatibility with piston engines has indicated
that modifications to the fuel delivery systems and ignition timing may be necessary to
accommodate some types of biofuels [21,22]. Studies have also highlighted the potential
for biofuels to reduce emissions of unburned hydrocarbons and carbon monoxide in piston
aircraft engines, aligning with environmental sustainability goals [20,23].

3.2. Turboprop Engines

Turboprop engines combine aspects of both jet engines and propellers. These engines
are used primarily in aircraft that require short take-offs and landings or in those flying at
lower speeds for regional transport. Turboprops are known for their efficiency at speeds
below 450 miles per hour and are typically more fuel-efficient than turbojets or turbofans
at these lower speeds [13,15]. The use of biofuels in turboprop engines has been explored,
with studies demonstrating that biofuels such as HEFAs (hydroprocessed esters and fatty
acids) can be integrated without significant modifications to the engine [5,9].

Research has shown that SAFs, including those derived from jatropha, camelina,
and even used cooking oils, can meet the stringent energy density and freezing point
requirements necessary for turboprop applications [12,14]. These studies underline the
potential for significant reductions in lifecycle greenhouse gas emissions when switching
from conventional jet fuel to biofuels in turboprop engines [5,24].

3.3. Jet Engines (Turbojet and Turbofan)

Turbojet and turbofan engines are the most common engines used in commercial
aviation, with turbofans being more prevalent due to their greater efficiency and reduced
noise output. These engines work by drawing air into the engine, compressing it, mixing
it with fuel, and igniting the mixture to produce thrust [25,26]. The compatibility of
biofuels with jet engines has been extensively tested, demonstrating that biofuels can
replace conventional jet fuel up to a 50% blend with minimal to no modifications required
to the engines [22]. Figure 1 shows a basic illustration of a turbofan engine.
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Figure 1. A simplified diagram of a turbofan engine in the upper left corner, and the byproducts of
ideal and actual combustion in an aircraft engine in the upper right corner. Various atmospheric pro-

cesses, products, environmental impacts, effects on human health, and sinks for emitted compounds
are in the bottom section [27].

The studies have highlighted that biofuels can significantly reduce the emission of
pollutants such as sulfur oxides and particulate matter, which are prevalent in emissions
from conventional jet fuels [28,29]. The aviation industry sees this as a crucial step toward
achieving carbon-neutral growth, with the added benefit of reducing contrail formation,
which has a high climate impact due to its greenhouse gas trapping ability [20,30].

3.4. Compatibility of Different Engines with Biofuels

The compatibility of different engine types with biofuels is a critical area of research,
particularly as the aviation industry seeks sustainable fuel alternatives to meet environ-
mental targets. While piston and turboprop engines may require some adjustments for
optimal biofuel performance, turbojet and turbofan engines have shown a higher degree of
readiness for biofuel integration, particularly with SAFs [10,20]. Each engine type presents
unique challenges, from material compatibility and fuel system adjustments to efficiency
metrics and emission profiles.

Studies continue to focus on the long-term impacts of biofuel use on engine wear
and tear, maintenance schedules, and overall lifecycle costs [19,26]. Additionally, the
research emphasizes the need for industry-wide standards and certification processes to
ensure that biofuels not only meet the technical requirements of various engines but also
contribute positively to environmental sustainability goals without compromising safety
or performance [14,15].

4. Types of Biofuels in Aviation
4.1. Hydroprocessed Esters and Fatty Acids (HEFAs)

Hydroprocessed esters and fatty acids (HEFAs) are among the leading types of sustain-
able aviation fuels (SAFs) currently being integrated into the aviation sector. HEFA fuels are
produced through the hydroprocessing of vegetable oils or animal fats, which involves the
removal of oxygen and other non-hydrocarbon molecules to create hydrocarbons that are
structurally similar to those found in conventional jet fuels. This process results in a renew-



Energies 2024, 17, 2650

able jet fuel that can be used as a direct drop-in replacement for traditional jet fuels without
requiring modifications to aircraft engines or fuel distribution infrastructure [31,32].

One of the crucial points for HEFA production is hydrogen production. This is a signif-
icant factor affecting both the economic viability and the environmental footprint of HEFA,
particularly when considering green hydrogen. A recent study by Pipitone et al. (2023)
addresses both the economic and environmental impacts of hydrogen production in HEFA
processes, underscoring the importance of green hydrogen in reducing lifecycle emis-
sions [33].

The appeal of HEFA fuels lies in their significant environmental benefits. They do
not contain sulfur and have the potential to reduce greenhouse gas emissions by up to
80% over their lifecycle compared to conventional jet fuels. This reduction is primarily
due to the sustainable nature of the feedstocks and the potential for the carbon dioxide
released during combustion to be offset by the carbon dioxide absorbed during the growth
of the feedstocks [34]. Technological advancements in the HEFA production process have
focused on optimizing yields and improving the cold flow properties of the fuel, which are
critical for aviation use. Techniques such as adjusting the isomerization process have been
explored to enhance the yield while maintaining the necessary freezing point properties
required for aviation fuels [31]. Additionally, ongoing research aims to expand the variety
of feedstocks that can be used, thereby increasing the scalability and economic feasibility of
HEFA fuels [35].

One of the critical challenges facing the adoption of HEFAs as a sustainable aviation
fuel is the economic viability. The cost of production remains higher than that of conven-
tional jet fuels, primarily due to the high cost of bio-based feedstocks and the complexity
of the production process. However, economic analyses suggest that with strategic policy
support and technological advancements, HEFA fuels could become more competitively
priced, fostering broader adoption in the aviation industry [32]. HEFA fuels have been
demonstrated to perform comparably to conventional fuels in terms of engine efficiency
and emissions. Studies have shown that HEFA can significantly reduce emissions of par-
ticulate matter and other pollutants, contributing to cleaner engine operations and less
environmental impact. Continued research and development are focusing on further reduc-
ing any potential toxicological impacts associated with HEFA fuel usage, ensuring safety
and sustainability in its application [33].

4.2. Synthetic Iso-Paraffin (SIP) Fuel

Synthetic iso-paraffin (SIP) fuels, often referred to as synthetic paraffinic kerosene
when used in aviation, are a type of sustainable aviation fuel (SAF) that holds significant
promise for reducing the aviation sector’s carbon footprint. SIP fuels are produced using the
Fischer-Tropsch process or through the hydroprocessing of renewable fats and oils. These
processes yield a high-quality fuel that contains no sulfur and has excellent combustion
properties [36,37]. The benefits of SIP fuels include their ability to significantly reduce
emissions of particulates and greenhouse gases compared to conventional jet fuels. For
example, the use of SIP in aircraft engines has demonstrated a reduction in the emission of
soot and other particulate matter, which are known contributors to atmospheric warming
and pollution [36]. Moreover, due to their cleaner burning characteristics, SIP fuels can
help improve air quality around airports and major cities.

Technologically, SIP fuels are compatible with existing aircraft engines and fuel distri-
bution infrastructure, which allows them to be blended with traditional jet fuels without
any modifications to aircraft systems. This compatibility is pivotal for the adoption of SIP
fuels in the aviation industry, as it enables airlines to transition to greener fuels without
incurring substantial retrofitting costs or operational changes [37]. There are challenges
associated with the widespread adoption of SIP fuels. The production of SIP is currently
more costly than that of conventional jet fuel, primarily due to the high cost of produc-
tion facilities and the need for significant upfront investment in technology development.
Moreover, while the feedstocks used in the production of SIP are renewable, the scalability
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of these resources and the sustainability of their supply chains are critical factors that
need further exploration and optimization to meet the growing demand of the aviation
industry [38].

In terms of safety and performance, studies have shown that SIP fuels perform well
under various atmospheric conditions, maintaining stability and energy content compara-
ble to traditional fuels. This aspect is crucial for ensuring that the adoption of SIP does not
compromise the safety and reliability of air travel [36].

4.3. Fischer=Tropsch (FT) Fuel

Fischer-Tropsch (FT) synthesis is a versatile and well-established process used to
convert syngas (a mixture of carbon monoxide and hydrogen) derived from various car-
bonaceous materials like coal, natural gas, or biomass into liquid hydrocarbons. This
technology is critical for producing synthetic fuels, including sustainable aviation fuels
(SAFs), that are virtually sulfur-free and have significantly lower greenhouse gas emissions
compared to conventional jet fuels [39,40]. FT fuels are praised for their cleanliness and
high performance in aircraft engines. They can be tailored to produce a wide range of
hydrocarbon chains, making them highly suitable for aviation purposes. The adaptabil-
ity of FT synthesis allows for the production of fuels that meet stringent aviation fuel
standards regarding purity and performance. Furthermore, FT fuels have the potential to
significantly reduce particulate matter emissions and other pollutants associated with jet
engines, contributing to cleaner airport environments and reducing the aviation industry’s
overall carbon footprint [41,42].

Despite their benefits, the scale-up and economic viability of FT fuels face several
challenges. The capital-intensive nature of FT synthesis plants and the variability in feed-
stock costs can hinder the broader deployment of this technology. However, advancements
in catalysis and process engineering are continually being explored to reduce these costs
and improve efficiency. For instance, innovations in catalyst formulations and reactor
designs have shown potential to enhance conversion rates and selectivity towards desired
fuel components, thereby optimizing production costs and environmental benefits [43,44].
Moreover, the sustainability of FT fuels largely depends on the source of the hydrogen
and carbon monoxide used in the synthesis process. Utilizing biomass or waste-derived
syngas aligns with circular economy principles and further enhances the environmental
credentials of FT fuels. The integration of carbon capture and utilization technologies into
the FT process also presents a promising avenue to reduce the overall carbon intensity
of the produced fuels, aligning with global carbon reduction goals [45]. Fischer—Tropsch
synthesis can be conducted at varying temperatures. In processes using iron catalysts,
the synthesis temperature can range from 220 °C to 340 °C, depending on the specific
technology employed [46].

4.4. Alcohol-to-Jet (AT])

Alcohol-to-jet (AT]) technology represents a transformative approach to sustainable
aviation fuel (SAF) production, converting alcohols such as ethanol or isobutanol into
synthetic paraffinic kerosene suitable for jet engines. This pathway leverages established
catalytic processes to dehydrate alcohols into alkenes, which are then oligomerized into
larger hydrocarbon chains typical of jet fuels. AT]J fuels are distinguished by their ability to
blend seamlessly with conventional jet fuel, meeting the stringent specifications required for
commercial aviation without modifications to existing engines or fuel systems [47,48]. AT]’s
appeal lies in its use of renewable feedstocks, including sugars, starches, and lignocellulosic
biomass, which can be fermented into alcohols before conversion. This flexibility allows
the utilization of a wide range of raw materials, including non-food crops and agricultural
residues, potentially reducing competition with food sources and minimizing land use
impacts [49,50]. Furthermore, the AT] process is capable of producing jet fuel that performs
comparably to conventional jet fuel in terms of energy density and cold-flow properties
while significantly reducing lifecycle greenhouse gas emissions.
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Figure 2 illustrates the process of converting bio-ethanol to bio-jet fuel hydrocarbons.
This process includes ethanol C-C coupling, distillation of oil-phase high-carbon alcohols,
and hydrodeoxygenation (HDO) of heavy alcohols. Verification of the entire process re-
sulted in the production of bio-jet fuel hydrocarbons, predominantly composed of branched
hydrocarbons. Additionally, the C4-C7 high-carbon alcohols present in the light alcohols
can be further upgraded to synthesize C8-C16 high-carbon alcohols, thereby enhancing
the yield of bio-jet fuel hydrocarbons [51].

Xceer = 32.9%
Xcsc1e= 67.1%

) Distillation

Figure 2. Comprehensive flow diagram of kilogram-scale bio-ethanol to jet fuel hydrocarbon produc-
tion [51].

Despite its advantages, the adoption of ATJ technology faces challenges, primarily
related to the cost-effectiveness of production at scale. The initial capital investment for AT]
facilities is significant, and the economic viability depends heavily on the cost of feedstock
and the efficiency of the alcohol fermentation process [52]. Moreover, the regulatory land-
scape for biofuels can influence the deployment of AT] technology, necessitating supportive
policies to ensure a competitive edge against traditional jet fuels. From an environmental
perspective, AT]J fuels promise substantial reductions in particulate emissions and other
pollutants. Studies have shown that AT]J fuels can lower the emission of soot and sulfur
oxides, contributing to cleaner combustion and less environmental impact at airports and
in the upper atmosphere, where jet travel predominates [53].

4.5. Oil from Algae

Oil derived from algae, particularly microalgae, is a promising source of sustainable
aviation fuel (SAF). Algae-based oils are regarded for their rapid growth rates and high
oil yields per area, making them a highly productive source of biofuels compared to
traditional bioenergy crops. Algae can be cultivated in various environments, including
freshwater, marine settings, and even in non-arable lands, which minimizes competition
for agricultural resources and does not contribute to deforestation [54,55]. The process
of converting algae into biofuel typically involves cultivating the algae, harvesting the
biomass, extracting the lipids, and then refining these lipids into biofuel through processes
like hydroprocessing or transesterification. This biofuel is capable of being a “drop-in”
replacement for conventional jet fuels, meaning it can be used without modifications to
existing aircraft engines or fuel distribution infrastructures [56,57].

However, despite these advantages, several challenges remain in the path to com-
mercializing algae-based aviation fuels. These include the economic costs associated with
large-scale production, the energy-intensive nature of algae cultivation and harvesting,
and the need for technological advancements to improve lipid extraction and conversion
efficiencies. Studies also focus on optimizing the conditions under which algae grow to
maximize lipid production, such as by adjusting light intensity, nutrient availability, and
CO; supplementation [56,58].

The sustainability of algae-based aviation fuel production depends significantly on
the lifecycle analysis of emissions and energy use. The integration of algae cultivation with
waste management systems, such as using municipal or industrial wastewater as a nutrient
source, can improve the sustainability and economic viability of this biofuel source. This
integration not only helps in treating wastewater but also in reducing the operational costs

7
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associated with algae cultivation [54,59]. Algae-based fuels also present an opportunity
for decarbonizing the aviation sector, which is under increasing pressure to reduce its
environmental impact. As research continues, the scalability of algae as a biofuel source
holds the potential to meet a significant portion of aviation fuel demand, contributing to
the reduction of greenhouse gas emissions and reliance on fossil fuels [54,60].

4.6. Other Emerging Biofuels

The landscape of sustainable aviation fuels (SAFs) is rapidly evolving, with several
emerging biofuel technologies showing promise for revolutionizing energy sources within
the aviation industry. These include advanced biofuels such as lignin-based fuels, solar fuels,
and electrofuels, each offering unique benefits and challenges to sustainable aviation [61].

Lignin-Based Biofuels: Lignin, a major component of plant biomass, provides a
promising feedstock for biofuel production due to its abundance and relatively low value
in the current market. Research into lignin-based biofuels primarily focuses on converting
this complex polymer into simpler hydrocarbon chains that can serve as drop-in fuels for
aviation. While the process is challenging due to the recalcitrant nature of lignin, advances
in catalytic hydroprocessing and genetic engineering are improving the efficiency of these
conversions, promising a sustainable route to high-energy-density jet fuels [61].

Solar Fuels: Solar fuels are produced through the conversion of solar energy into
chemical energy, typically via processes that mimic natural photosynthesis. Although still
at an experimental stage, solar fuels could potentially provide limitless carbon-neutral
energy, sourced directly from sunlight and air. The integration of solar energy systems with
catalytic processes to produce liquid hydrocarbons could significantly reduce the carbon
footprint of aviation fuels, aligning with global decarbonization goals [62].

Electrofuels: Produced from carbon dioxide and water using electrical energy (often
sourced from renewable sources), electrofuels represent a groundbreaking approach to
sustainable fuel production. This technology is particularly attractive for the aviation
industry due to its potential for high energy density and compatibility with existing fuel
infrastructure. Electrofuels can be synthesized through various pathways, including the
electrochemical reduction of CO,, offering a versatile and potentially scalable solution to
reduce aviation’s reliance on fossil fuels [63].

Table 1 serves to highlight the distinct features and considerations of each biofuel
type, offering a clear comparison to facilitate understanding of their potential impact on
the aviation sector.

Table 1. Summary of biofuels for aviation: production processes, benefits, challenges, and technologi-
cal aspects.

Type of Biofuel Production Process Benefits Challenges Technological Aspects
. . Higher production costs; . .
Hydroprocessed . Dlrfd drop n r?plgcement, up to economic viability depends on Improving o eld and cc?ld
. Hydroprocessing of vegetable 80% reduction in lifecycle GHG . flow properties; exploring
Esters and Fatty Acids . - e L . policy support and . .
oils or animal fats [31,32] emissions; no sulfur content; 4 wider variety of feedstocks
(HEFAs) g . technological advancements
reduced particulate emissions [34] 132] [31]

Synthetic Iso-paraffin
(SIP) Fuel

Fischer-Tropsch process or
hydroprocessing of
renewable fats and oils [36,37]

Reduction in particulate and GHG
emissions; compatible with
existing engines and
infrastructure [36,37]

Higher production costs;
scalability and sustainability of
feedstock supply chains [38]

High-quality fuel with no
sulfur; excellent combustion
properties [36]

Fischer-Tropsch
(FT) Fuel

Conversion of syngas (from
coal, natural gas, or biomass)
into liquid
hydrocarbons [39,40]

Sulfur-free; lower GHG emissions;
high performance in
engines [41,42]

Capital-intensive production
plants; variability in feedstock
costs [43,44]

Advances in catalysis and
process engineering;
integration of carbon capture
and utilization
technologies [45,46]

Alcohol-to-Jet (AT])

Conversion of alcohols
(ethanol, isobutanol) into
synthetic paraffinic
kerosene [47,48]

Uses renewable
feedstocks;sSignificant GHG
emissions reduction [49,50]

High initial capital investment;
economic viability depends on
feedstock costs and
fermentation efficiency [51]

Established catalytic
processes for dehydration
and oligomerization [47,48]

Oil from Algae

Cultivation of algae, lipid
extraction, and refining into
biofuel [54-57]

High oil yields per area; can be
cultivated in diverse
environments without competing
with agricultural resources [54,55]

Economic costs of large-scale
production; energy-intensive
cultivation and harvesting
processes [56-58]

Optimization of growth
conditions; integration with
waste management
systems [59,60]




Energies 2024, 17, 2650

5. Production and Processing of Aviation Biofuels
5.1. Feedstock Sources and Sustainability

The production of sustainable aviation fuels (SAFs) starts with the selection of suitable
feedstock, which significantly impacts both the sustainability and economic viability of
the fuel produced. Feedstocks for SAFs include a wide range of biomass sources, such
as agricultural residues, non-edible oil crops, algae, and municipal solid waste. Each
of these sources has its own set of sustainability challenges and benefits, making the
choice of feedstock crucial for the overall sustainability of the fuel production process [59].
Sustainable feedstock sourcing must consider environmental, social, and economic aspects,
ensuring that the production does not adversely affect food security, biodiversity, or lead
to deforestation. Technologies such as the hydrothermal liquefaction of algae and the
Fischer—Tropsch synthesis using lignocellulosic biomass are being developed to increase
the sustainability and efficiency of feedstock conversion. Innovations in genetic engineering
and agronomic practices are also improving the yields and reducing the environmental
impacts of these crops [64].

5.2. Conversion Processes

The conversion of biomass into aviation biofuel can be achieved through several
pathways, each with its own technological and economic challenges. The most common
processes include hydroprocessing of oils and fats, Fischer—Tropsch synthesis from syngas,
and the alcohol-to-jet (AT]) pathway. Hydroprocessing involves removing oxygen from
triglycerides to form hydrocarbons that can be used directly in jet engines. Fischer-Tropsch
synthesis, on the other hand, involves gasifying biomass to produce a synthesis gas, which
is then converted into liquid hydrocarbons through a catalytic process. The ATJ] pathway
involves the conversion of alcohols, which can be produced from sugars or starches, into
synthetic paraffinic kerosene [65,66].

Each of these conversion processes requires specific catalysts, temperatures, and
pressures, and the efficiency of these processes is continually improving through research
and development. Challenges such as catalyst deactivation, high energy requirements, and
the need for large-scale infrastructure investment remain, but advances in catalytic science
and process engineering are progressively overcoming these barriers [67,68].

5.3. Blending with Conventional Jet Fuels

Blending bio-based aviation fuels with conventional jet fuels is a practical approach to
introducing SAF into the current fuel supply without extensive modifications to aircraft or
fuel distribution infrastructure. Biofuels must meet stringent specifications for viscosity,
freezing point, and energy content to be compatible with existing jet fuels. Research into
the blending properties of various biofuels has shown that certain bio-derived synthetic
paraffinic kerosenes can be blended at ratios of up to 50% with conventional jet fuels without
adverse effects on engine performance or emissions [69,70]. Studies have demonstrated
that blends of biofuels and conventional jet fuels can reduce emissions of greenhouse gases
and particulate matter, contributing to cleaner combustion and reduced environmental
impact. However, the stability, cold flow properties, and combustion characteristics of
these blends are critical parameters that need continuous monitoring and optimization to
meet the operational requirements of commercial aviation [71,72].

6. Advantages and Challenges
6.1. Economic Viability and Cost Factors

Economic viability remains a significant challenge for SAFs, with production costs typ-
ically higher than those of conventional jet fuels. Several factors contribute to these higher
costs, including the expense of feedstocks, energy-intensive conversion processes, and the
need for large-scale production facilities. Despite these challenges, the growing demand
for sustainable fuels and supportive government policies are driving down costs through
economies of scale and technological advancements [65]. To achieve economic viability,
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SAF production must be scalable and cost-effective. This involves optimizing feedstock
sourcing, improving conversion efficiency, and developing robust supply chains. Innova-
tive technologies, such as hydroprocessing, Fischer-Tropsch synthesis, and alcohol-to-jet
(AT]J), are becoming more efficient, helping to lower costs. Additionally, financial incentives
and carbon pricing mechanisms are playing a role in making SAF more competitive with
traditional fuels [61].

6.2. Scalability and Supply Chain Issues

Scalability is a critical factor in the widespread adoption of SAF. The aviation industry
requires large volumes of fuel, necessitating a scalable supply chain for SAF production and
distribution. Challenges in scalability often stem from feedstock availability, transportation
logistics, and production capacity. A diverse range of feedstocks, such as algae, agricultural
residues, and non-food crops, can improve scalability by reducing reliance on a single
source [64]. Developing robust supply chains involves addressing logistical issues related to
feedstock transportation, storage, and distribution. The integration of SAF production with
existing infrastructure and the ability to blend with conventional jet fuels are essential for
ensuring a smooth transition to sustainable aviation. Scalability also requires investment in
large-scale production facilities, which can be capital-intensive but are crucial for meeting
the aviation industry’s demand [65].

6.3. Technical and Regulatory Challenges

Technical challenges for SAF primarily concern engine compatibility, fuel stability, and
combustion characteristics. SAF must meet stringent specifications to ensure safety and
performance in aircraft engines. This requires rigorous testing and certification processes
to guarantee that SAF blends are safe for use in commercial aviation [67]. Research into the
blending properties of SAF with conventional jet fuels is ongoing, focusing on maintaining
the necessary energy content, freezing point, and viscosity for aviation applications.

Regulatory challenges also play a significant role in the adoption of SAF. The aviation
industry is subject to strict regulations, and any new fuel must comply with these standards.
Harmonizing regulations across different countries and regions is crucial for the global
adoption of SAF. Supportive policies and financial incentives can encourage airlines to
transition to SAF, while international agreements, such as those under the International
Civil Aviation Organization (ICAO), are instrumental in setting industry-wide sustainability
goals [65].

7. Case Studies and Current Applications
7.1. Use in Commercial Airlines

Sustainable aviation fuels (SAFs) have gained traction in commercial airlines due
to their potential to reduce greenhouse gas emissions and dependence on fossil fuels.
Commercial airlines have begun incorporating SAF into their operations, with many
conducting test flights and some establishing long-term agreements for SAF supply [73].
For example, several major airlines, including British Airways and United Airlines, have
partnered with biofuel companies to promote the use of SAFs on their flights. This shift
toward biofuels is part of a broader effort to meet international sustainability goals and
reduce the environmental impact of air travel [74].

Drop-in biofuels are particularly attractive to commercial airlines as they can be
blended with conventional jet fuels, allowing for a smoother transition to sustainability
without requiring significant infrastructure changes. Airlines have conducted successful
test flights with SAF, demonstrating that these fuels do not adversely impact engine
performance or maintenance schedules [75,76]. However, to increase the adoption of
SAF in commercial airlines, consistent policies, reliable feedstock sources, and scalable
production facilities are required to meet demand and reduce costs [77].

10
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7.2. Military Applications

The military has also shown interest in using biofuels, primarily to increase energy
security and reduce reliance on fossil fuels. The U.S. Navy, for example, has used algae-
based biofuels in ships and aircraft, demonstrating that blending algal biofuels with ultra-
low-sulfur diesel fuel can reduce pollutants and improve fuel economy [78]. Additionally,
the military is exploring hybrid propulsion systems for aircraft and other equipment,
aiming to enhance energy efficiency and reduce carbon emissions [79].

These military applications of biofuels highlight the potential for broader adoption in
the aviation industry. However, challenges remain, including the high costs of biofuels, lim-
ited feedstock availability, and the need for specialized infrastructure to support these fuels.
The military’s efforts to use biofuels could serve as a catalyst for broader adoption across
other sectors, encouraging innovation and investment in sustainable aviation fuels [78,80].

7.3. Regional Differences and Policy Impacts

Regional differences and policy impacts play a significant role in the adoption of SAF.
Countries with strict environmental regulations and supportive policies are more likely to
foster the growth of biofuels in aviation. For instance, Norway has implemented mandates
requiring that a certain percentage of aviation fuels come from renewable sources, driving
the adoption of SAF in airports like Oslo Gardermoen [16]. Similarly, Brazil has favorable
conditions for SAF production due to its abundant feedstocks and policies encouraging
renewable energy sources [81].

In contrast, regions with less supportive policies and limited infrastructure for biofuels
face challenges in adopting SAF. The cost of production, transportation logistics, and regu-
latory compliance can hinder the growth of biofuels in these areas [82]. To promote broader
adoption of SAF, policymakers need to address these challenges by providing incentives for
biofuel production, encouraging investment in infrastructure, and harmonizing regulations
across regions to facilitate the global adoption of sustainable aviation fuels [83].

8. Environmental Impact Assessment
8.1. Environmental Benefits

Sustainable aviation fuels (SAFs) offer considerable environmental benefits compared
to conventional jet fuels. One of the primary advantages is the significant reduction in
greenhouse gas emissions. SAF, derived from renewable resources, typically has a lower
carbon footprint across its lifecycle because the carbon dioxide released during combustion
can be offset by the carbon dioxide absorbed during the growth of the biofuel feedstocks [84].
This creates a more circular approach to carbon, contributing to efforts to combat climate
change. SAF has the potential to reduce other pollutants such as sulfur oxides (SOx),
nitrogen oxides (NOx), and particulate matter, which are common byproducts of fossil-
based jet fuels. By using cleaner feedstocks and advanced processing techniques, SAF can
contribute to better air quality around airports and reduce environmental impact at high
altitudes where contrails and other emissions have significant climate effects [69]. These
benefits make SAF an attractive option for airlines aiming to meet stricter environmental
regulations and contribute to sustainability goals.

8.2. Reduction in Greenhouse Gas Emissions

Sustainable aviation fuels (SAFs) offer a significant reduction in greenhouse gas (GHG)
emissions compared to conventional jet fuels. Lifecycle assessments of various SAFs
reveal that they can achieve GHG reductions ranging from 40% to 80%, depending on the
feedstock and production process [85]. The key to these reductions lies in the renewable
nature of the feedstock, which absorbs CO; during growth, offsetting the CO, released
during combustion in aircraft engines.

One critical aspect of GHG reduction is induced land use change (ILUC), which
can either contribute to or detract from the net environmental benefits of SAF. Certain
feedstocks, such as those cultivated on marginal or degraded lands, present lower ILUC

11
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risks, leading to significant reductions in GHG emissions [41]. Advanced biofuel pathways,
like hydroprocessed esters and fatty acids (HEFAs) and Fischer-Tropsch (FT), have shown
promise in reducing GHG emissions when appropriate safeguards are in place to minimize
deforestation and other high-emission activities [86]. Another pathway for GHG reduction
is the utilization of oilseed cover crops, which can serve as feedstocks for biofuels without
requiring additional agricultural land. This approach can lead to significant land-use
savings, reduce ILUC emissions, and contribute to overall GHG reduction goals [87]. The
successful implementation of these pathways could contribute substantially to aviation’s
efforts to achieve net-zero emissions by 2050.

8.3. Lifecycle Analysis and Net Environmental Benefit

Lifecycle analysis (LCA) plays a crucial role in assessing the environmental impact
of SAF. This method evaluates the entire lifecycle of aviation biofuels, from feedstock
production to fuel combustion, providing a comprehensive view of the net environmental
benefits. Studies focusing on LCA demonstrate that while SAF generally offers lower
GHG emissions, there are significant variances depending on the production process and
feedstock source [88].

A key component of LCA is understanding the broader environmental implications be-
yond GHG emissions. This includes evaluating the impacts on soil health, water resources,
and biodiversity. For instance, biofuels derived from certain feedstocks may require large
amounts of water, potentially impacting local ecosystems and water availability. Biodiver-
sity concerns also emerge when biofuel production leads to deforestation or the conversion
of natural landscapes into agricultural land [89,90]. Net environmental benefit assessments
must also consider the effects of policy interventions and regulatory frameworks. Certain
policies may inadvertently incentivize practices that contribute to ILUC or other envi-
ronmental harms, while others encourage sustainable practices and renewable feedstock
use [91]. Harmonizing these policies across regions and ensuring consistent sustainability
criteria is essential to achieving a net environmental benefit from SAFE.

8.4. Biodiversity and Land Use Considerations

The impact of biofuel production on biodiversity and land use is a critical consideration
for the environmental sustainability of SAF. Biodiversity can be adversely affected if biofuel
production leads to deforestation or disrupts existing ecosystems. Land use changes driven
by biofuel production may also contribute to soil degradation, loss of habitat, and declines
in regional food security [89,90].

To minimize biodiversity loss, SAF production must prioritize feedstocks that do
not compete with food crops or lead to large-scale land conversion. Utilizing marginal
or degraded lands for biofuel production can mitigate some of these risks, providing a
sustainable source of feedstock while preserving existing ecosystems [41]. Additionally, im-
plementing policies that promote land use efficiency and encourage the use of sustainable
feedstocks can reduce the pressure on biodiversity [89]. Effective land conservation strate-
gies, combined with sustainable agricultural practices, are essential for ensuring that SAF
contributes to environmental sustainability without causing undue harm to biodiversity
and land use. The integration of SAF production with existing agricultural systems and
the use of cover crops can help maintain biodiversity while providing a reliable source of
biofuel feedstock [86,87].

9. Future Directions and Research Needs

To further advance the field of sustainable aviation fuels (SAFs), ongoing technological
innovations are crucial. Recent developments in production and processing technologies
have demonstrated that emerging pathways, such as catalytic hydrothermolysis and electro-
fermentation, offer new opportunities for SAF production. These innovations focus on
increasing efficiency, reducing energy consumption, and maximizing yield from various
feedstocks, including lignocellulosic biomass and microalgae [92,93].

12
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Catalytic hydrothermolysis (CH) is gaining traction due to its ability to produce high-
quality renewable jet fuels. It uses high temperatures and pressures to convert biomass into
a mixture of hydrocarbons that can be refined into SAF. This technology shows promise for
economic viability and environmental sustainability, with the potential to utilize diverse
feedstocks, including agricultural waste and non-food crops [94].

Electro-fermentation, on the other hand, represents a novel approach that combines
traditional fermentation with electrical stimulation to enhance the production of biofuels
and biochemicals. This technology can increase the yield and efficiency of biofuel produc-
tion, providing a scalable option for SAF [93]. Continued research in this area can lead to
breakthroughs in SAF production, offering cost-effective and sustainable solutions for the
aviation industry.

10. Conclusions

Sustainable aviation fuels (SAFs) play a pivotal role in transitioning the aviation
industry towards a more environmentally responsible future. This review underscores
the multifaceted benefits of SAF, from reducing greenhouse gas emissions to promoting
sustainability. Through technological innovations such as catalytic hydrothermolysis and
electro-fermentation, SAF production is becoming more efficient and cost-effective. Gov-
ernment policies and incentives are essential for driving the adoption of SAF, fostering
public-private partnerships, and harmonizing regulations to ensure consistency across
regions. The environmental impact assessment, including comprehensive lifecycle analy-
ses, is crucial for evaluating the net environmental benefits of SAF and ensuring that its
production does not negatively affect biodiversity, water resources, or land use.

Technological, economic, and regulatory challenges remain, but ongoing research and
supportive policies can help overcome these barriers. Policies that encourage investment
in SAF production and promote a robust supply chain are critical to the long-term sus-
tainability of SAF. The aviation industry’s future will depend on the collaboration among
stakeholders, including airlines, fuel producers, governments, and international organiza-
tions, to create a more sustainable aviation sector. By focusing on these key areas, SAF can
significantly contribute to the aviation industry’s efforts to reduce its carbon footprint and
achieve a greener, more environmentally conscious future.
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Abstract: Thailand’s civil aviation industry has expanded rapidly in the past ten years resulting in
increasing aviation greenhouse gas (GHG) emissions and energy consumption. The rapid growth
in air transport is anticipated to continue further. Presently, domestic aviation and the economy
of many countries are recovering rapidly in the post-COVID-19 period, resulting in fuel consump-
tion and GHG emissions gradually increasing again. However, despite implementing the ICAO’s
CORSIA (International Civil Aviation Organization’s Carbon Offsetting and Reduction Scheme for
International Aviation) rule for international aviation, GHG emissions in the domestic aviation sector
are largely unregulated. Moreover, the literature lacks a GHG emissions analysis that considers
this sector’s potential growth and mitigation policies for future GHG emissions. To close the gap,
this study conducted a GHG emissions analysis from this sector under various scenarios through
2050 using historical data during 2008-2020 to forecast future trends. It evaluates the impact of
the mitigation policies, such as fuel switching and aircraft technology, on improving fuel efficiency
due to technological advancements in aircraft and carbon pricing. The results show that the fuel
switching option would result in a significant long-term reduction in GHG emissions, whereas the
carbon pricing option and aircraft technology option are desirable in reducing GHG emissions in
the short term. Therefore, to meet GHG emissions reduction targets more successfully, all measures
must be simultaneously executed to address short- and long-term mitigation strategies. These find-
ings have significant implications for both present and future GHG emissions reduction measures,
supporting Thailand’s 2050 climate targets and energy efficiency policies as the domestic aviation
industry adjusts.

Keywords: greenhouse gas emissions; aviation sector; mitigation; policy; energy consumption;

scenario analysis

1. Introduction

In 2004, the global air transport sector utilized 0.19 billion metric tonnes (Mt) of
fuel, producing approximately 0.59 billion tonnes of CO, emissions [1]. Air travel flights
accounted for 2-3% of global anthropogenic CO, emissions in 2012 [2]. Projections indicate
that global air traffic will double within 15 years from 2012, with a corresponding doubling
of energy consumption and CO; emissions within 25 years [3]. The aviation industry is
one of the largest markets worldwide, transporting approximately 2.2 billion passengers
annually and employing 32 million people globally [4]. This sector has a significant
economic impact, contributing approximately 3.56 trillion USD or around 7.5% of the
global gross domestic product (GDP) [5].

While it has been established that transportation emissions from rail, road, and water
conveyance significantly impact the environment and contribute to climate change [6-9],
aviation exhaust is the second-largest contributor to emissions. This constitutes approxi-
mately 12% of the annual emissions from all modes of transportation and contributes to
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around 4% of the current observed global warming caused by human activities [10,11].
In addition to its role in climate change stemming from aircraft operations, the aviation
industry bears responsibility for various other environmental issues associated with the
supporting systems of aircraft, such as airports and fuel production, as well as all stages of
its value chain, including aircraft manufacturing and disposal. Examples of these impacts
encompass noise pollution, the limited use of rare metals (like cobalt or chromium in
specialized alloys), and potential harmful effects from the release of chemicals, all of which
have the potential to harm human health, ecosystems, and deplete natural resources [12,13].
The aviation industry has experienced steady growth in recent years until it was abruptly
halted by the onset of the COVID-19 pandemic [14]. In 2018, global CO, emissions from
aircraft operations, encompassing passenger and cargo transport, amounted to 0.92 bil-
lion metric tonnes [15]. This accounted for 2.4% of the estimated 37.9 gigatonnes of CO,
emitted globally that year due to fossil fuel usage [16]. Commercial aviation’s CO, emis-
sions increased by 32%, from 0.69 billion tonnes in 2013 to 0.92 billion tonnes in 2018 [17].
Consequently, CO, emissions from international aviation are projected to triple by 2050,
surpassing the rate forecasted by ICAO, corresponding to a compound annual growth rate
of 5.7% [18]. Furthermore, there was a resurgence in worldwide international travel starting
around June/July 2020, with notable improvements particularly observed by November
2020. Substantial expansion has persisted since June 2021, and this growth has been consis-
tently maintained in numerous aviation markets. Domestic travel has displayed greater
resilience in passenger volume when compared to the international tourism sector [19].

In Thailand, commercial aviation is one of the transportation sectors that contributes
significantly to CO, emissions. The emissions from international commercial aviation
experienced a 29% growth, rising from 10.2 million tonnes of CO; in 2014 to 13.2 million
tonnes of CO, in 2018 (an overall increase of 29%). Another notable source of CO, emissions
in Thailand is commercial domestic aviation. Emissions from passenger and freight flights
grew by 42%, increasing from 1.9 million tonnes of CO; in 2014 to 2.7 million tonnes of
CO, in 2018 [20]. The rapid increase in fuel consumption for commercial, domestic aviation
generates substantial CO; emissions. The issue of reducing CO; emissions in Thailand’s
domestic aviation industry is gaining more attention, particularly following Thailand’s
government commitment to reducing GHG emissions during the UNFCC’s COP-20 [21].

The Thai government aims for its Nationally Determined Contribution (NDC) in line
with global climate efforts. As a result, Thailand aims to reduce its GHG emissions by
20-25% (555 Mt-CO,-eq) in 2030, compared to the business-as-usual (BAU) scenario [22].
Thailand aims to decrease GHG emissions by approximately 111 to 139 Mt-CO;-eq. Climate
policies are necessary across all industries and countries to achieve the objectives outlined in
the 2015 Paris Agreement and limit global warming to 2 °C. Furthermore, a comprehensive
study of greenhouse gas emissions in the aviation sector is required [23].

In 2016, following a comprehensive research-driven examination of the aviation in-
dustry, the ICAO Assembly reached a consensus to implement a global, market-driven
initiative aimed at mitigating greenhouse gas emissions, arising from international aviation.
This initiative is known as the Carbon Offsetting and Reduction Scheme for International
Aviation (CORSIA) [24]. Furthermore, CORSIA mandates that airlines must offset CO;-eq
emissions exceeding the levels recorded in 2019. The CORSIA framework is designed
to facilitate offsetting through the use of credits or CORSIA Eligible Fuels (CEFs), with
these choices determined by impact assessments and current scientific understanding.
The overarching goal of this approach is to ensure that international aviation achieves
carbon-neutral growth, commencing in the year 2020 [25].

The current focus on reducing GHG emissions in the aviation sector, particularly seen
in ICAO’s CORSIA initiative, does not extend to domestic aviation [26,27]. However, the
domestic aviation sector plays a role in national GHG mitigation efforts and contributes to
the Nationally Determined Contributions (NDC) under the UNFCCC. Unfortunately, poli-
cymakers do not actively monitor the emissions from commercial domestic aviation. Thus,
this study emphasizes the importance of forecasting energy use and GHG emissions in the
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commercial, domestic aviation industry. This study highlights the need for appropriate
policies to effectively reduce future GHG emissions from the aviation sector, aligning with
environmental and climate-related solutions.

Our literature review reveals that numerous studies have examined the issue of CO,
emissions from the aviation industry, both on a global and national scale. Some of these
studies have focused on medium- to long-term scenario analysis [28-30]. Additionally,
past research was concentrated on policies aimed at reducing GHG emissions in the
medium to long term [29,31-35] and the different factors that influence the growth of GHG
emissions [36—41].

Pathways for the mitigation of aviation sector have adopted a comprehensive mitiga-
tion strategy that relies on the successful implementation of individual policies or measures
and other strategies. The International Civil Aviation Organization (ICAO) proposes five
significant measures for reducing emissions in commercial aviation: Operational efficiency
improvement; Use of alternative fuels; Demand shift engineering; Technological efficiency
improvement; and Carbon pricing (market-based incentives) [33]. These efforts include
advancing aircraft-related technologies and standards to encourage their adoption, en-
hancing air traffic management and aircraft operations (with a primary focus on reducing
fuel consumption per flight through measures such as more direct cruise paths and more
efficient altitude profiles in air traffic management), promoting the development and use
of Sustainable Aviation Fuels (SAFs), and implementing market-based measures (MBMs)
at both global and regional scales [42]. The initial two aspects, aircraft technology and
operational enhancements, primarily aim to reduce fuel consumption as their main ob-
jective, ultimately resulting in a reduction in CO, emissions [42]. However, all measures
proposed by ICAO can be applied in the domestic aviation sector to reduce greenhouse gas
emissions, aligning with national strategies for emission reduction.

This study is timely considering the current COVID-19 situation and the ongoing mar-
ket restructuring in the aviation industry. This restructuring will impact energy efficiency
and technology, bringing changes in the domestic aviation market. The aviation industry
was significantly affected by the COVID-19 pandemic between 2020 and 2021, with the
government implementing lockdown measures during this period, resulting in a direct
impact on the decline in aviation activity. Domestic air travel within Thailand experienced
a downturn, leading to a significant decline in both passenger numbers and flight frequen-
cies, affecting both the domestic and international segments of the aviation industry [43].
The domestic aviation sector is currently experiencing a recovery phase. This recovery is
expected to lead to structural adjustments and changes in the domestic aviation market.
Previous studies have shown that the increase in the tourism industry and domestic air
travel demand will correspond to a rise in energy consumption and emissions [44]. There-
fore, this period of market adjustment in the domestic aviation sector presents a crucial
opportunity to assess future trends in GHG emissions following the market restructuring
and address the impact of the COVID-19 situation and the pandemic measures, factors that
contribute to making the forecasting of energy consumption in the aviation sector more
accurate and precise. Furthermore, it serves as a starting point for implementing policies to
reduce greenhouse gas (GHG) emissions in the domestic aviation sector, aligning with the
country’s targets for GHG reduction under the UNFCCC. Considering the current context,
this study holds significant importance in understanding and addressing the future impli-
cations of market changes and the recovery of GHG emissions in the domestic aviation
sector. It also highlights the need for appropriate policy interventions.

Over the past decade, Thailand has witnessed a significant increase in the number of
travelers. The compound annual growth rate (CAGR) for all travelers from 2010 to 2019
was 11.38%, with a CAGR of 10.77% for international travelers and 12.13% for domestic
travelers [45]. Before the COVID-19 pandemic, Thailand experienced a notable surge in
domestic aviation passengers, rising from 3.482 million in 2008 to 76.256 million in 2019 [46].
These figures demonstrate domestic aviation’s substantial growth and importance in
Thailand, driven by international and domestic travel demand.
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In parallel, jet fuel consumption in Thailand’s domestic aviation sector witnessed a
notable increase, rising from 246 kilotonnes of oil equivalent (ktoe) in 2008 to 856 ktoe in
2018 [47]. It is noteworthy that Thailand’s Nationally Determined Contribution (NDC) sets
a greenhouse gas reduction target of 20-25% lower than the Business-As-Usual prediction
for 2030 across all sectors [48]. Furthermore, during the UNFCCC’s COP-26 in Glasgow,
Thailand committed to achieving carbon neutrality by 2050 and net-zero emissions by 2065.
It indicates that Thailand’s domestic aviation sector can align with its climate commitments
even during growth. However, medium-term to long-term GHG emissions forecasting
and policies to reduce future emissions in the domestic aviation sector have yet to be
developed and implemented. These observations highlight the need for comprehensive
GHG emissions forecasting and the implementation of policies to reduce emissions in the
domestic aviation sector to align with Thailand’s climate targets.

This study aims to contribute to understanding reference future scenarios, quantifica-
tion of GHG emissions, and the mitigation potential of policies in Thailand’s commercial
and domestic aviation sector for the medium-term (2030) and long-term (2050). It seeks
to fill the research gap by being the first study to assess medium- and long-term mitiga-
tion policies tailored to Thailand’s commercial domestic aviation sector. Furthermore, the
study aims to provide novel insights into the benefits of these policies in reducing GHG
emissions. For example, Sustainable Aviation Fuel (SAF) can help mitigate the aviation
sector’s impact on global warming [49]. Additionally, improving the auxiliary power unit
(APU) can contribute to reducing greenhouse gas emissions within the aviation sector [50],
aligning with Thailand’s greenhouse gas emission reduction targets under the UNFCCC.
By conducting this analysis, the study intends to inform decision-makers and stakeholders
about the effectiveness and implications of various mitigation policies in the domestic
aviation sector. The findings can guide the development and implementation of targeted
strategies to reduce GHG emissions in line with Thailand’s climate goals.

2. Methodology and Data

This study employs a comprehensive framework, as depicted in Figure 1, to forecast
medium-term (2030) and long-term (2050) GHG emissions in Thailand’s commercial do-
mestic aviation sector. The forecasting of GHG emissions is based on key factors such as
the number of passengers, freight, gross domestic product (GDP), and jet fuel price.

Considering the above variables, this study uses a multiple linear regression method
to forecast fuel consumption. By applying this approach, the study aims to provide an
estimation of future fuel consumption in the commercial domestic aviation sector. This
study also evaluated the impacts of three key policies in shaping reference future scenarios
for GHG emissions reduction in Thailand’s commercial domestic aviation sector. These
policies are fuel switching, carbon pricing, and advancements in aircraft technology. By
analyzing these policies, the study aims to identify their potential impacts on reducing
GHG emissions.

2.1. Key Data Sources

The data used in this study encompass all 39 airports in Thailand, as reported by [45].
Several key variables were gathered from official data sources from 2008 to 2020 to forecast
fuel consumption in Thailand’s commercial domestic aviation sector. These variables
include the number of passengers, the amount of freight, gross domestic product (GDP),
jet fuel prices, and emission factors. The data sources are summarized and presented in
Table 1. The data sources provide the necessary information to estimate fuel consumption
and assess the factors influencing GHG emissions in Thailand’s commercial domestic
aviation sector. This comprehensive data set allows for robust analysis and forecasting of
reference future scenarios.
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Table 1. Variables, description, period, sources factors of GHG emissions forecasting, and sources of
the estimation of GHG emissions.

Variables Period Description Sources

Petroleum Authority of Thailand
3Jet fuel prices (USD/Litre) 2008-2020 Aviation jet fuel prices (PTT Qil and Retail Business Public
Company Limited) [51]

Number of passengers in 2008-2020 The number of passengers in domestic The Civil Aviation Authority of
domestic flight (person) aviation sector Thailand [46]
Emissions factors (kg/TJ), 2006 Emission factors for calculating GHG Intergovernmental Panel on Climate
(kg/LTO) emissions from fuel consumption Change [52]
i g . L Department of Alternative Energy
Aviation Jet fuel use (ktoe) 2008-2020 Jet fuel use in domestic aviation sector Development and Efficiency [47]
Number of freights in 2008-2020 The number of freights in domestic The Civil Aviation Authority of
domestic flight (kg) aviation sector Thailand [46]
Gross domestic product (GDP) 2008-2020 Thailand’s gross domestic product Bank of Thailand [53]
(Billion Baht) (Base year is 2008) The World bank [54]

2.2. Forecasting Model of Jet Fuel Consumption
2.2.1. Multiple Linear Regression (MLR)

To forecast fuel consumption in the commercial domestic aviation sector, the Multiple Lin-
ear Regression (MLR) method was employed in this study. The future estimates were based on
2008, considering planning horizons up to 2030 and 2050. The analysis results were presented
at five-year intervals, corresponding to 2025, 2030, 2035, 2040, and 2050. The MLR method has
been widely utilized in previous research to predict energy consumption [40,55-59]. In this
study, the dependent variable is the aviation jet fuel use in Thailand’s commercial domestic
aviation sector, while the independent variables include aviation jet fuel prices, the amount
of freight, the number of passengers, and GDP. The formula for Multiple Linear Regression
is shown in Equation (1).

B = ¢+ mja; + mpap + mzaz + myay (1)

where

B = Dependent variable of aviation jet fuel consumption (Liter);

¢ = Intercept (constant term);

mj, mp, m3, my = Regression coefficient;

aj, ap, a3, a4 = Independent variable of aviation jet fuel prices (USD/Liter), the amount of
freight (kg), the number of passengers (person), and GDP (Billion USD).

The MLR method enables the study to establish a quantitative relationship between
fuel consumption and the independent variables, allowing for estimating future fuel
consumption based on changes in the identified factors.

Linear regression is a statistical technique to model the relationship between an
outcome variable and one or more explanatory factors. In this study, linear regression was
employed to forecast the amount of freight, the number of passengers, aviation jet fuel
prices, and GDP. The relationship is expressed mathematically through Equation (2):

B; = ¢+ mja; )

where

B; = Dependent variable;

¢ = Intercept (constant value);
m; = Coefficient values;

a;j = Independent variable.
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By estimating the coefficients through the linear regression analysis, the study could
quantify the relationship between the explanatory factors and fuel consumption, enabling
the prediction of future fuel consumption based on changes in the identified factors.

The correlation coefficient (r) is a statistical measure that evaluates the strength and
direction of the relationship between two quantitative variables. It quantifies the degree to
which the variables are linearly related. The correlation coefficient (r) was calculated using
Equation (3):

r e [n(Yab)] — [(Ya)(Lb)] 3)

[/ [nzat = (o] x [nze - (£b)7)

where

r = Correlation coefficient;

n = The amount of data;

Y"a = The first variable’s total value;

Y b = The second variable’s total value;

Y_ab = The second value and the sum of the products of;
Y a2 = Sum of the squares of the first value;

Y b? = Sum of the squares of the second value.

The coefficient of multiple determination (R?) is a commonly used statistical metric in
multiple regression analysis. It assesses the proportion of the variance in the dependent
variable that the independent variables in the model can explain. R? compares the model’s
accuracy to a basic benchmark model, where the forecast is the data’s average. It was
calculated using Equation (4):

Yy, —§f~>2>
RP=1- L Ji 4
(Zi(Yi _Vi)z @

where

R? = The coefficient of multiple determination;
y; = The actual value;

¥; = The predicted value of y;

¥; = The mean of y values.

In linear models, the Adjusted R? is a measure commonly used to assess the proportion
of variation in the target variable that can be explained by the input or inputs in the model
while considering the number of predictors and the sample size. The Adjusted R? is
calculated using Equation (5):

(1 —RZ)(T— 1)
T—v—-1

Adjusted R =1 — ©)

where

R? = R-squared sample;
T = Total sample size;
v = The number of independent variables.

2.2.2. Formula for Future Projection

Table 2 presents the Multiple Linear Regression forecasting models for aviation jet fuel
consumption in the commercial domestic aviation sector. It includes the sample R-squared
(r), which measures the strength of the correlation, and the coefficient of multiple determi-
nation (R?), which indicates the proportion of variation in fuel consumption explained by
the independent variables in the model.
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Table 2. Forecasting model.

Type of Fuel Used R? R-Value  Adjusted-R? Equation

Y = (14.170 x X;) — (0.924 x Xp) + (190,013.386 x X3) —

Aviation Jet fuel 0.987 0.994 0.982 (132,057,994.567 x Xy)

2.3. Assumptions and Scenarios for Analysis of Policies or Measure

It is essential to consider the potential reduction in energy-related greenhouse gas
(GHG) emissions for each option to evaluate the effectiveness of various mitigation options
and inform the development of appropriate regulations. Considering the reference future
scenario, this study forecasted the fuel consumption and GHG emissions of Thailand’s
commercial domestic aviation sector from 2021 to 2050. Three mitigation scenarios were
assessed for their potential to reduce GHG emissions in Thailand’s domestic commercial
aviation sector. The assumptions for each scenario are described below.

2.3.1. Reference Future Scenario

In the reference future scenario, after the recovery of the domestic economy and
domestic transportation from the COVID-19 crisis, this study assumed that no changes
would happen in the medium-term and long-term trends in demand for commercial
domestic aviation fuel consumption. Additionally, no mitigation options are considered
from 2021 to 2050. The study analyzed four-factor variables related to GHG emissions
growth to create a realistic time series and project future fuel consumption. The study aims
to capture each factor’s real behavior and realism by reproducing the historical time series
of each factor’s growth. This approach creates a time series that reflects the continuous
behavior cycle observed in the historical data. The analysis of these factor variables helps
in understanding their impact on fuel consumption and enables the projection of future
fuel consumption based on their historical trends. Figure 2 shows the historical data of
four-factor variables related to GHG emissions growth for the analysis and time series.

2.3.2. Fuel Switching Scenario

Using alternative fuels in the aviation industry is of utmost importance for two key
reasons: reducing dependency on fossil fuels and mitigating GHG emissions. Aviation
specialists and researchers have been actively exploring alternatives to conventional jet
fuel [60,61]. Numerous studies have demonstrated the potential of biofuels and synthetic
fuels as substitutes for traditional petroleum-derived jet fuels to reduce emissions of
pollutants [62,63]. Adopting alternative fuels in aviation presents an opportunity to address
environmental concerns and contribute to reducing pollution emissions. Biofuels and
synthetic fuels are being investigated as viable options for the industry.

This study focuses on reducing greenhouse gas (GHG) emissions in commercial do-
mestic aviation by using hydro-processed esters and fatty acids (HEFA) as an alternative
to conventional jet A-1 fuel. The choice of HEFA was based on the suitability of oil-to-jet
technology, which utilizes biomass as a raw material. This approach takes advantage of
the underutilized biomass resources available in the country and benefits from indirect
biomass utilization, contributing to the reduction of GHG emissions [64]. Palm has a high
agricultural yield, with a production rate of 15.7 tons/ha and an oil content ranging from
21% to 37%. Globally, palm production amounts to 282.2 million tons, with major producers
including Indonesia (45%), Malaysia (37%), and Thailand (5%) [65]. The European Com-
mission guidelines utilize Sustainable Aviation Fuel (SAF) volume shares. These volume
shares indicate the proportion of SAF used in the aviation sector from 2021 to 2050. The
European Commission guidelines serve as a reference for reducing conventional jet fuel
use and transitioning to SAF to mitigate GHG emissions. The volume shares of SAF are
presented in Table 3. This represents the recommended SAF ratios according to European
Commission guidelines, illustrating the growing proportion of SAF usage in the domestic
aviation sector over time.
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Figure 2. The historical data of four-factor variables related to the growth in GHG emissions. (a) The
number of passengers and the amount of freight 2008-2020. (b) Aviation Jet fuel price and GDP
2008-2020.

Table 3. Volume shares of SAF fuel from 2021 to 2050.

Year SAF Percentage (%)
2021 0

2025 2

2030 5

2035 20

2040 32

2045 38

2050 63

Sources: [66].

2.3.3. Aircraft Technology Scenario

The primary factor contributing to emissions reduction in the aviation sector is the
improvement in fuel efficiency. Effective strategies for enhancing efficiency include using
fuel-efficient next-generation aircraft, advancements in air traffic management (ATM),
re-engineering processes, and implementing technologically enhanced flight patterns [67].
The introduction of advanced aircraft designs has increased fuel economy in the aviation
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industry. ICAQ’s predictions for international aviation activities indicate a future decrease
in fuel demand. With a projected reduction of 10 MCMOED (million cubic meters of oil
equivalent per day) by 2050, the scenario that achieves the 2% yearly fuel efficiency target
yields the most significant savings. The ICAO has set a target of 2% improved efficiency
for the global aviation fleet from 2021 to 2050 through non-engine-based efficiency en-
hancements and fuel efficiency improvements. Non-engine-based efficiency enhancements,
such as lighter aircraft components and improved fuel efficiency, are considered crucial in
significantly reducing aviation sector GHG emissions [33].

Improving fuel efficiency is crucial for reducing CO, emissions in the aviation industry.
Fuel costs account for approximately 20% of total operating costs for modern airplanes [68].
Over the years, significant advancements in aircraft fuel efficiency have been achieved.
Since 1960, aircraft fuel efficiency has improved by approximately 70-80% [69]. Projections
indicate that 40-50% improvements are possible by 2050 [68]. To incorporate the potential
fuel efficiency improvements in this study, it is assumed that aircraft technology will
continue to advance. Specific engine performance enhancements have been achieved
through upgrading programs in recent years, reducing fuel usage by up to 2% [70].

Additionally, new engines and auxiliary power units (APUs) are expected to consume
at least 15% less fuel than the aircraft they replace. These improvements are made possible
through innovations in engine technologies, including materials, coatings, combustion
methods, sensors, and cooling methods [70]. Based on the ICAO target, this study assumes
that aircraft technology will continue to improve fuel efficiency by 2% annually from 2021
to 2050. This assumption reflects the ongoing efforts and advancements in aircraft design
and technology to achieve greater fuel efficiency and reduce CO, emissions.

2.3.4. Carbon Pricing Scenario

Carbon pricing is widely recognized as the primary policy tool for countries to reduce
GHG emissions globally [71]. Imposing a price on carbon through taxes, emissions trading,
or regulation is considered the foremost objective of mitigation policies [72]. Carbon pricing
creates incentives for investments in new technologies that can mitigate global warming
and holds emitters accountable for the environmental impact of their emissions [73,74]. By
increasing the cost of carbon-intensive production, carbon pricing can reduce demand for
fuel-based products, encouraging the substitution of technologies. Therefore, in theory, an
effective carbon price should lower aircraft emissions by raising prices and subsequently
reducing demand. Thus, market-based measures (MBM) are recognized as one of the inter-
national guidelines for reducing GHG emissions. This measure is in line with the existing
international policy framework provided by the International Civil Aviation Organiza-
tion (ICAO). MBMs encompass mechanisms such as carbon offset programs or emissions
trading schemes, which create economic incentives and market mechanisms to encourage
emissions reductions in the aviation sector. Carbon pricing and market-based measures
play significant roles in global efforts to reduce GHG emissions and are particularly relevant
in the aviation industry.

Carbon pricing mechanisms, such as cap and trade or direct taxation systems, can
impact fuel use and CO, emissions. As the price of carbon increases, the effective fuel price
also rises, leading to a reduction in consumption due to the demand-—price relationship.
Hasan et al. [33] anticipated that increasing the high carbon price could result in a 12%
reduction in overall emissions, equivalent to 180 MtCO, of emissions in the mitigation
pathway. To estimate the price elasticity of fuel demand, income elasticities were used to
adjust the price elasticity. Hasan et al. [33] estimated that price elasticity of fuel demand
is —0.48, indicating that a 10% increase in price will result in a 4.8% decrease in demand.
This relationship demonstrates the responsiveness of fuel consumption to changes in price.
In Thailand’s domestic aviation sector, this study examined the change in demand for
fuel consumption and aviation jet fuel prices during 2009-2010 and 2016-2017. Figure 3
illustrates the relationship between jet fuel price increases and the corresponding change in
demand for fuel consumption. The jet fuel prices increased and had an impact on decreased
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demand twice: first, between 2009 and 2010, when jet fuel prices increased by around 12%,
resulting in an average 6% decrease in demand; and second, between 2016 and 2017, when
jet fuel prices increased by around 7%, resulting in an average 4% decrease in demand.
Therefore, the results show that the average increase in jet fuel prices in both periods was
10%, resulting in an average 4.9% decrease in demand. Based on these observations, the
study assumes an annual increase in jet fuel prices by 10% from 2021 to 2050 will result in a
4.9% decrease in fuel demand. This assumption reflects the anticipated impact of carbon
pricing on fuel consumption in the domestic aviation sector.
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Figure 3. The relationship between fuel consumption and jet fuel prices.

2.4. Calculation Method for GHG Emissions

The Intergovernmental Panel on Climate Change (IPCC) used the tier-I method to
calculate GHG emissions from the domestic aviation sector’s jet fuel consumption activi-
ties [75]. This method is based on the quantity of energy used (aviation fuel consumption)
multiplied by an average emission factor. Equation (6) shows the formula to estimate
GHG emissions. Firstly, the activity data for aviation mode was established. After that, the
amounts of aviation fuel consumed in physical units or other energy units (such as 1, ktoe,
kg, etc.) were converted to the terajoule (TJ), the common international energy unit; and
the fuel consumption was multiplied by the factor for carbon emission to determine the
carbon emission. Finally, only the fraction of oxidized carbon was utilized to determine the
actual CO; emission, as not all the carbon in the fuel is oxidized to generate carbon dioxide.

CO,= E¢ x N¢ % CE. (6)

where

CO; = An emission of carbon dioxide (t CO»);

E = A specific energy usage (ktoe);

N = A net calorific value specific to fuel (T]/ktoe);
CE, = A factor for carbon emissions (kg/TJ);

f = Type of fuel.

The global warming potential (GWP) conversion factors calculated GHG emissions
to CO, equivalent units. The impact of individual greenhouse gas emissions on global
warming cannot be easily compared on a mass basis since the gases’ physical and chemical
properties vary. Therefore, IPCC advises converting all computed greenhouse gas emissions
to CO; equivalent units using the GWP conversion factor to precisely compare the global
warming effects between individual GHGs. The Global Warming Potential (GWP) value
from IPCC, AR5 [76] and IPCC, ARG6 [77] is used in this study. Table 4 shows the global
warming potential (GWP). Moreover, the default parameters adopted in this study are
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those recommended by the IPCC [52], as shown in Table 5 for CO; emission and non-CO,
emission factors and Table 6 for net calorific values.

Table 4. The global warming potential (GWP) in IPCC 5th and 6th Assessment Reports.

Industrial Designation or The GWP Value for the 100-Year Time Horizon

The Formula for Chemical

Standard Name Fifth Assessment (AR5) Sixth Assessment (AR6)
Nitrous oxide N>,O 265 273
Methane CH,4 28 29.8
Carbon dioxide CO, 1 1

Table 5. CO, emission factors.

Fuel CO; Default (kg/T])  CHj4 Default (kg/TJ)  N,O Default (kg/T]J)
Jet fuel (Jet Kerosene) 71,500 0.5 2

Table 6. Net calorific values.

Fuel Factors
(TJ/10? tonnes)
Jet Kerosene 4459

2.5. Empirical Data

In this study, the forecasting of GHG emissions for 2021-2050 was calculated by
forecasting fuel consumption and calculating GHG emissions using IPCC, Tier-1 [52].
The data on fuel consumption for the domestic aviation sector was derived from the
Department of Alternative Energy Development and Efficiency’s statistical data reports
for 2008-2020 [47]. Gross domestic product (GDP) figures are available from the World
Bank—Thailand Bureau through their statistical data report on gross domestic product [54].
However, GDP was converted into terms representing ‘real prices’. The conversion was
performed using a deflator derived from the World Bank’s national accounts and the
Organization for Economic Cooperation and Development’s (OECD) national accounts
data [71,78]. The number of passengers and freights in the domestic aviation sector was
obtained from the Civil Aviation Authority of Thailand (CAAT) [46]. Information on jet
fuel prices is sourced from the Petroleum Authority of Thailand’s statistics data reports
for 2015-2020 (Petroleum Authority of Thailand Oil and Retail Business Public Company
Limited) [51]. However, jet fuel prices from 2008 to 2014 were calculated from the estimated
rate of change of Brent crude oil futures. Moreover, all jet fuel prices include interior tax,
a 7% VAT, and excise tax. For consistency in calculations, prices were converted to USD
per liter.

3. Results
3.1. Historical Trends

The results highlight the rapid growth of domestic commercial aviation activities
in Thailand, which can be attributed to various strategies to stimulate the economy, par-
ticularly targeting air travel and tourism. The implementation of Thailand’s Transport
Infrastructure Development Strategy 2015-2022 has played a significant role in supporting
the growth of the aviation sector. This strategy focuses on constructing domestic airports
that meet international standards and cater to the increasing travel needs of the population.
Additionally, the strategy emphasizes the utilization of regional airports to enhance their
contribution to the country’s aviation industry. Through these efforts, the number of pas-
sengers in the domestic commercial aviation industry has witnessed a substantial increase
of approximately 214% from 2008 to 2019.
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Similarly, freight volume experienced a remarkable growth of about 793% during
the same period. These statistics demonstrate the growing demand and importance of
the aviation industry in Thailand. Consequently, the increased activity in the commercial
domestic aviation sector has led to a significant rise in aviation fuel consumption. From
2008 to 2019, aviation fuel consumption in this sector increased from 246 ktoe (kilo-tonnes
of oil equivalent) to 716 ktoe, representing a surge of approximately 190%.

In 2020, aviation fuel consumption decreased from 716 ktoe in 2019 to 477 ktoe in
2020 due to the COVID-19 pandemic, and Thailand proclaimed a state of emergency in all
areas in March 2020 [79]. The pandemic affected the domestic and international aviation
sectors [43]. The number of passengers and freight, GDP, fuel price, and aviation fuel
consumption from sources mentioned in Table 1 are presented in Table 7.

Table 7. Historical trends of the number of passengers and amount of freight, GDP, fuel price, and
aviation fuel consumption in Thailand’s commercial domestic aviation industry from 2008 to 2020.

Year Passengers Freight GDP Fuel Prices Fuel Consumptions
(Person) (kg) Billion Baht (at 2008 Price) (USD/Litre) (ktoe)
2008 24,310,188 8,706,271 7722 1.19 246
2009 26,219,477 9,273,089 7668 0.81 288
2010 27,208,643 9,109,330 8243 1.06 258
2011 31,623,503 10,238,865 8302 1.47 265
2012 36,192,158 10,777,970 8903 1.43 261
2013 42,427,923 11,210,853 9143 1.41 295
2014 50,059,872 12,800,068 9233 1.22 625
2015 62,216,533 14,292,021 9523 0.72 732
2016 70,327,980 119,490,892 9866 0.62 818
2017 75,342,243 112,653,693 10,260 0.73 757
2018 78,625,622 93,682,980 10,692 0.89 856
2019 76,253,599 77,828,059 10,887 0.89 716
2020 41,996,665 32,214,457 10,348 0.60 477

3.2. Forecasting of Fuel Use and GHG Emissions

The analysis of GHG emissions in the reference future scenario is presented in Figure 4,
reflecting forecasted trends based on factors such as aviation jet fuel price, the number
of passengers and amount of freight, and GDP. Using Equation (6), the study calculated
the predicted GHG emissions in the domestic aviation sector. The results indicate that
GHG emissions and aviation fuel consumption trends will increase from 2021 to 2050.
GHG emissions are expected to rise from 2340 thousand tonnes of CO,-eq in 2021 to
7200 thousand tonnes of CO;-eq in 2050, representing an average annual growth rate of
3.99%. This is consistent with other research on future increases in GHG emissions [31,80].
This growth rate signifies a substantial GHG emissions increase over the predicted period.
The emissions are projected to increase by more than 9.2 times, reflecting the substantial
impact of the sector on overall emissions in the long term. The forecasted increase in GHG
emissions emphasizes the urgency of implementing measures to reduce emissions, aligning
with the country’s climate targets.

3.3. Pathways for Mitigation in the Domestic Aviation Industry

The following sections describe mitigation measures or policies that were analyzed
and considered to reduce the domestic aviation sector’s GHG emissions that could pave the
path for sustainable reduction of aviation industry GHG emissions and support Thailand’s
goal of reducing GHG emissions by 2050. Figure 5 shows the forecasting of the usage
of aviation fuel and the mitigation pathways for greenhouse gas (GHG) emissions for
each scenario.
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Figure 4. Forecasting fuel consumption and GHG emissions for the reference future scenario.
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3.3.1. Fuel Switching

According to the European Commission regarding volume shares of SAF fuel in
Section 2.3.2, the use of alternative fuels in 2025 will be 2% and increase every five years.
The results in Figure 5 indicate that GHG emissions in this scenario show a downward
trend from 2025 to 2050. The GHG emissions reduction depends on the proportion of
alternative fuels. The most considerable GHG emissions reduction is in 2050, when the
proportion of alternative fuels is around 63%. It decreased by around 2300 thousand tonnes
of CO,-eq compared to the reference scenario 2050. In addition, with the reduction of GHG
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emissions from alternative fuels compared to other scenarios, alternative fuels can reduce
GHG emissions the most, according to the results of calculations and analysis.

3.3.2. Aircraft Technology

One method of reducing GHG emissions in the aviation industry is through increased
fuel efficiency and non-engine-based efficiency improvements. This is the main factor and
an important factor in reducing GHG emissions. Figure 5 shows that the goal is to enhance
fuel efficiency by 2% annually regardless of costs or obstacles. It begins from 2021 to 2050,
according to the ICAO target. The trends in GHG emissions are projected to decrease from
2021 to 2050. It decreased from 2340 thousand tonnes of CO;-eq to 2293 thousand tonnes of
CO,-eq compared to the reference future scenario 2021, decreasing yearly. The short-term
reductions in GHG emissions will be very effective because the first period (2021-2025) is
the beginning of the aviation sector’s growth after the COVID-19 situation. As a result,
the fuel consumption during that period was not intense compared to the improving fuel
efficiency. However, improving fuel efficiency will be less efficient in the long term due to
increased fuel consumption, because historical data on the growth of the aviation sector
shows that Thailand’s aviation sector is growing rapidly, but the efficiency improvement
goals will remain stagnant.

3.3.3. Carbon Pricing

Through the demand-price relationship, rising carbon prices lead to rising effective
fuel prices, reducing consumption [41]. As mentioned in Section 2.3.4, a 10% increase
in jet fuel price will lead to a 4.9% reduction in fuel consumed on demand. The results
in Figure 5 show that GHG emissions will decrease from 2021 to 2050. GHG emissions
began to decrease in 2021, from 2340 thousand tonnes of CO,-eq to 2225 thousand tonnes
of CO,-eq, decreasing every year. The reduction in GHG emissions from this scenario
depends on carbon pricing and the demand—price relationship. However, carbon pricing
will be less efficient in the long term due to the forecasted increase in fuel consumption
from the reference future scenario (the rapid growth of the aviation sector in the past). It
will increase fuel consumption and GHG emissions; however, carbon pricing remains the
same, causing a decrease in the efficiency of this scenario.

3.3.4. Creating Multi-Policy Scenarios by Combining Different Policies

The policies outlined in Section 2.3, aimed at reducing GHG emissions in the domestic
aviation sector (e.g., fuel switching, aircraft technology, and carbon pricing), have been
examined individually in specific areas of improvement. However, in this section, we
analyze all these policies concurrently, as this represents the primary strategy for reducing
GHG emissions from 2021 to 2050.

The three policies considered in this study have the potential to significantly reduce
domestic aviation emissions by 2050 compared to employing only one policy to reduce
greenhouse gas emissions. Combining all three scenarios leads to a greater reduction in
GHG emissions than any single scenario alone. Specifically, it results in a decrease of
approximately 2796 thousand tonnes of CO,-eq, equivalent to a 39% reduction compared
to the reference future scenario projected for 2050.

4. Discussion

Figure 5 illustrates the mitigation pathways, each with its advantages and challenges.
For instance, alternative fuels offer substantial potential for reducing emissions. However,
there are limitations, including constraints on arable lands for biofuel production, the
high cost of alternative fuels, and the need for policy support to facilitate large-scale
production and utilization. Another effective approach to curbing GHG emissions is the
implementation of carbon pricing [81]. Carbon pricing, often enacted as a carbon tax, has
proven effective in reducing greenhouse gas (GHG) emissions by discouraging carbon
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emissions through increased fossil fuel prices, thereby reducing their use [35]. Additionally,
carbon pricing mechanisms have been shown to promote biofuels [82].

Despite efforts to enhance fuel efficiency in the aviation industry, GHG emissions
from this sector are projected to increase. Thailand’s aviation industry has undergone
rapid growth, driven by the country’s economic development and the implementation of
the Transport Infrastructure Development Strategy 2015-2022. Addressing rising GHG
emissions requires accurate estimation of future emissions and fuel consumption in the
commercial domestic aviation sector. This estimation forms the basis for implementing
mitigation strategies over the next three decades, which include fuel switching, aircraft
technology improvement, and carbon pricing. The objective of these mitigation measures
is to reduce GHG emissions in Thailand’s aviation sector, aligning with the country’s
commitment to decreasing GHG emissions under the UNFCCC. Accurate estimation of
GHG emissions and fuel usage provides essential guidance for policymakers and stake-
holders, aiding in the development of effective strategies to mitigate emissions and attain
climate targets.

5. Conclusions

The forecasted growth in aviation fuel consumption in Thailand’s domestic commer-
cial aviation sector indicates an average annual increase of approximately 4% over the past
decade. In the reference future scenario, GHG emissions from the domestic commercial
aviation industry are anticipated to more than triple, which is in line with other research
that predicts a significant increase in the aviation sector’s GHG emissions [31,80]. This
signifies a substantial increase in emissions over the three-decade period, highlighting the
urgent need for mitigation strategies to address the environmental impact of the aviation
sector. Adopting fuel switching, particularly alternative fuels, can significantly reduce
greenhouse gas (GHG) emissions from Thailand’s domestic aviation sector. By 2050, the
potential reduction in GHG emissions is projected to be as high as 2279.4 thousand tonnes
of CO; equivalent. This signifies a substantial decrease in emissions, highlighting the
effectiveness of fuel switching as a mitigation strategy for reducing the environmental
impact of the domestic aviation sector. The achievement of these reductions depends on
the implementation of fuel switching measures and the gradual increase in the utilization
of alternative fuels.

The aircraft technology and carbon pricing scenarios play important roles in reducing
greenhouse gas (GHG) emissions from the domestic aviation sector in the short term. In
the case of aircraft technology, the scenario will reduce 145.2 thousand tonnes of CO,
equivalent in GHG emissions by 2050. Similarly, the carbon pricing scenario aims to impose
a price on carbon, incentivizing fuel consumption and GHG emissions reduction. This
scenario will reduce 355.8 thousand tonnes of CO, equivalent in GHG emissions by 2050.
However, it is important to note that the effectiveness of these scenarios diminishes in the
long term due to the constant goals of aircraft technology and carbon pricing.

All of the individual scenarios for reducing GHG emissions have differences in ef-
ficiency in short- and long-term reductions. However, each scenario has limitations and
relevance to reducing GHG emissions in the future. For example, alternative fuels require
arable lands that are limited for biofuel production, alternative fuels are currently expen-
sive, and policy support is required for large-scale use and production. In addition, carbon
pricing has been effective in promoting biofuels [82]. Therefore, combining all scenarios
can reduce GHG emissions by about 2796 thousand tonnes of CO,-eq or 39% compared
with the reference future scenario in 2050.

Indeed, reducing GHG emissions in Thailand’s aviation sector requires implement-
ing significant ICAO measures and collaborating with various stakeholders. While the
identified policies can potentially reduce emissions, it is important to acknowledge the
obstacles and limitations associated with their implementation. Factors such as the avail-
ability of personnel and expertise, budgetary support, technological advancements, societal
acceptance, and policy frameworks play significant roles in determining the success of
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emission reduction measures. Governmental policymakers and industry executives should
engage in ongoing discussions, surveys, and assessments to identify and address barriers
to implementation, prioritize effective policies, and promote best practices. By actively
involving relevant stakeholders, including government bodies, industry players, research
institutions, and civil society, developing comprehensive strategies that consider the unique
context of Thailand’s aviation sector will be possible. Continuous dialogue and collabo-
ration are essential to foster a supportive environment for adopting effective policies and
measures to drive significant GHG emission reductions while aligning with national goals
and international commitments. Through these efforts, Thailand can progress in achieving
its GHG emission reduction targets, contributing to global climate change mitigation efforts
and creating a more sustainable aviation sector.
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Abstract: Currently, steady-state analysis predominates in combustion chamber design,
while dynamic combustion characteristics remain underexplored, and there is a lack of a
comprehensive index system to assess dynamic combustion behavior. This study conducts a
numerical simulation of the dynamic characteristics of the combustion chamber, employing
a method combining large eddy simulation (LES) and Flamelet Generated Manifold (FGM).
The inlet air temperature, air flow rate, and fuel flow rate were varied by 1%, 2%, and
3%, respectively, with a pulsation period of 0.008 s. The effects of nine different inlet
parameter pulsations on both time-averaged and instantaneous combustion performance
were analyzed and compared to benchmark conditions. The results indicate that small
pulsations in the inlet parameters have minimal impact on the steady-state time-averaged
performance. In the region near the cyclone outlet, which corresponds to the flame root area,
pronounced unsteady flame characteristics were observed. Fluctuations in inlet parameters
led to an increase in temperature fluctuations near the flame root. Analysis of the outlet
temperature results for each operating condition reveals that inlet parameter fluctuations
can mitigate the inherent combustion instability of the combustion chamber and reduce
temperature fluctuations at the outlet hot spot.

Keywords: large eddy simulation; staged combustion chamber; dynamic combustion
characteristics

1. Introduction

The combustion process in the main combustion chamber of an aero-engine is inher-
ently dynamic. Under steady operating conditions, the physical quantities and their spatial
distribution within the combustion chamber fluctuate over time. Under transient operating
conditions, the physical fields in the combustion chamber exhibit dynamic variations.
As performance requirements for both military and civil aircraft continue to evolve, the
design of hot-end components is increasingly focused on precision, with the performance
indices now extending beyond steady-state parameters to include both steady-state and
dynamic performance metrics. However, research on the dynamic combustion characteris-
tics of the combustion chamber remains insufficient, and a comprehensive index system
for evaluating these dynamic characteristics is lacking. To address this gap, this study
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presents a numerical simulation of the dynamic combustion characteristics of the com-
bustion chamber, providing both data and methodological support for future fine-tuned
design of combustion chambers based on dynamic combustion behavior [1].

With advancements in laser and combustion diagnostic technologies, detailed stud-
ies of dynamic combustion within combustion chambers have become increasingly feasi-
ble [2-5]. Fu et al. [6] utilized a high-speed camera and laser to measure OH* Chemilumines-
cence (CL), CH;O, and SO,-PLIF at a frequency of 20 kHz to capture the two-dimensional
structure and heat release distribution of the flame. They observed that fluctuations in fuel
mass flow rate fluctuation could extend blowoff limits. Stohr et al. [7,8] investigated the
Lean Blowout (LBO) characteristics of partially premixed combustors using synchronized
stereo Particle Image Velocimetry (PIV) and OH Planar Laser-Induced Fluorescence (PLIF)
techniques. Their findings revealed that the flame root exhibits inherent instability near the
LBO, characterized by frequent extinction and reignition events. These results underscore
the critical role of the flame root and suggest that targeted modifications to the flow field or
mixture fraction in this region could potentially extend the LBO limit. Zhao et al. [9] em-
ployed CH* chemiluminescence high-speed imaging technology to visualize spray flames
in a multi-swirl staged combustor and applied Fast Fourier Transform (FFT) and Proper
Orthogonal Decomposition (POD) methods to analyze high-speed imaging data collected
at various time points prior to flame extinction. Their results identified key precursor
phenomena leading to flame extinction. Broda et al. [10] utilized CH* chemiluminescence
imaging to capture unstable flame dynamics in their experiments and investigated the
impact of inlet temperature variations on the flame morphology of a premixed swirl burner.
The experimental results demonstrated that, as the inlet temperature gradually increased
beyond a critical threshold, the flame became unstable, with a shortened flame length
that eventually entered the corner vortex recirculation zone. Guiberti and Boyette [11,12]
conducted a series of experimental studies on high-pressure turbulent non-premixed jet
flames, examining the variations in flame lift-off height and flame length with pressure
at different inlet Reynolds numbers. Their findings indicated that an increase in pressure
enhanced the stability of jet flames at high Reynolds numbers. Additionally, they observed
that, as pressure increased, the flame reaction zone became thinner, and the flame front
exhibited significantly enhanced wrinkling.

In numerical simulations, although the Reynolds-Averaged Navier-Stokes (RANS)
method is widely used, it is unable to capture the detailed characteristics of complex
transient flows. In contrast, LES can directly resolve the large-scale structures within the
flow, accurately model the combustion field in the combustion chamber, and capture
the transient behavior of the flow. LES has become a critical tool for dynamic combus-
tion research [13-17]. Xu Jianguo et al. [18] conducted a large eddy simulation study on
methane-air turbulent combustion in a dual-swirl combustor. They found that the recircu-
lation zone velocity increased with pressure, the flame structure became more compact at
higher pressures, and both the Precessing Vortex Core (PVC) frequency and the outlet gas
temperature significantly increased with rising pressure. Nan Meng et al. [19] investigated
the effects of flame tube structure on flame propagation and pressure fluctuations in the
combustion field using LES and Power Spectral Density (PSD) coupling. Their results
demonstrated that the presence of primary combustion and mixing holes in the combustion
chamber increased the amplitude of pressure oscillations and heat release rate, with peak
values occurring in the shear layer and vortex structure regions. Lv et al. [20] employed the
FGM combustion model in combination with a Weighted-Model Large Eddy Simulation
(WMLES) to examine the dynamic combustion characteristics of a coaxial staged combustor,
varying the equivalence ratio of the pilot stage by adjusting the pilot fuel flow rate. Chen
et al. [21] used LES to study the dynamic flame structure during stable and unstable com-
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bustion in a dual-swirl combustor, accurately capturing various flow dynamics induced by
PVC and thermoacoustic oscillations. They identified the stagnation point caused by PVC
as a critical factor in flame stabilization.

At present, most of the research on dynamic combustion explores the influence of
combustion chamber structure and large-scale changes in inlet parameters on dynamic
combustion. However, the influence of engine inlet parameter pulsations or speed fluctua-
tions on the pulsation characteristics of the combustion chamber under stable operating
conditions remains underexplored. Therefore, this paper presents a large eddy simulation
study of a staged combustion chamber, coupled with the Flamelet Generated Manifold
combustion model, to investigate the effects of inlet air flow, temperature, and fuel flow
pulsations on dynamic combustion behavior. The findings of this study provide both data
and methodological support for the future design optimization of combustion chambers
based on dynamic combustion characteristics.

2. Computational Models and Methods
2.1. Physical Model and Meshing

This study investigates a single-head fan-shaped model of a three-swirl high-
temperature rise combustor, as illustrated in Figure 1. The model consists primarily of
a casing, head swirler, nozzle, and flame tube. Air enters the flame tube through the
head swirler, the primary holes, the dilution holes, and the cooling holes, creating the re-
quired flow field structure and outlet temperature distribution for combustion. Specifically,
45.05% of the air enters through the head of the flame tube, forming a recirculation zone that
organizes the combustion process. A total of 17% of the air enters through the primary holes,
with part of it participating in the combustion within the main combustion zone, while the
remainder contributes to the initial mixing of the combustion chamber’s temperature field.
Another 17% of the air enters through the dilution holes, where it mixes with the upstream-
burned high-temperature gas to achieve a uniform temperature distribution suitable for
turbine acceptance. The remaining 21.05% of the air enters through the cooling holes, where
it provides protection to the flame tube via adherent film cooling. There are 4 primary holes,
4 dilution holes, and 1655 cooling holes. The design parameters of the swirler are provided
in Table 1. In the swirler design, the two-stage fuel nozzles consist of centrifugal nozzles and
multi-point injection air atomizing nozzles, arranged from the innermost to the outermost
stages. The pre-combustion fuel is discharged through the centrifugal nozzle and atomized
by the air shear generated by the first and second-stage cyclones. The main combustion fuel
is released through small holes in the wall of the third-stage cyclone. The fuel distribution
between the pre-combustion and main combustion stages is 30% and 70%, respectively. The
swirl number of the three-stage axial cyclones increases from the innermost to the outermost
stages. The rotation directions are clockwise for the first stage, counterclockwise for the
second, and counterclockwise for the third.

Due to the dense, multi-inclined hole design of the flame tube cooling holes, unstruc-
tured grids are employed to mesh the cyclone, combustion zone, and cooling holes, thereby
reducing the overall grid count. This approach facilitates the meshing of the cyclone and
flame tube, enabling accurate capture of the dynamic combustion process. Structured grids
are used for the remaining areas.

Table 1. Design characteristics of the triple swirler.

Swirler Vane Angle Swirl Number Air Split Ratio
1st swirler 35° 0.59 13.1%
2nd swirler —45° 0.86 29.8%
3rd swirler —50° 1.06 57.1%
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Figure 1. Schematic of the combustion chamber: (a) combustion chamber; (b) triple swirler; (c) midplane.

Three sets of grids with varying numbers of elements were generated using the same
method, and the axial velocity profile at Line 2 was selected to assess grid independence.
The results are presented in Figure 2. After comparison, it was determined that the grid
with 17.89 million elements was the most suitable. The grid distribution for the cross-
section and the swirler within the combustion chamber is shown in Figure 3. The grid size
for the flame tube and the head cooling hole is set to 0.2 mm, while the maximum grid size
overall is 1.6 mm. The final grid contains 17.89 million elements.
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Figure 2. Grid independence verification.
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(a) Combustor (b) Swirler

Figure 3. Mesh distributions: (a) combustor; (b) swirler.

2.2. Calculation Methods and Operating Conditions

In this paper, large eddy simulation is used for turbulence calculation. The filtered

control equation is as follows:
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The Wale model is used to close the sub-grid stress, the combustion chamber is

partially premixed combustion, and the FGM model is used to close the chemical reaction

source term. The fuel is represented by n-decane, with a skeletal mechanism containing
77 components and 359 reactions [22]. The SIMPLE algorithm is employed for the numerical
solution. The near-wall region is handled using the standard wall function. Fuel droplets

are simulated using the Discrete Phase Model (DPM). The main combustion stage nozzle is

a hollow cone, while the pre-combustion stage nozzle is a solid cone. The side walls of the

fluid domain in the single-head annular combustor are modeled with a rotating periodic

boundary condition, with a rotation angle of 18°.

Due to the detailed computational grid required by LES, the time step must be kept

relatively small. The maximum time step for LES calculations must satisfy the follow-

ing condition:

Ax
At < =
- u

©)

Ax represents the grid size, and U denotes the average flow velocity within the grid.

Taking into account the difference between the instantaneous velocity and the average veloc-

ity, it is assumed that the Courant number is less than 0.5, which satisfies the requirements

for LES calculations. The calculation formula for the Courant number is as follows:

UAt
Co = Ax

(6)

To improve computational efficiency, LES calculations are performed based on the
results of the RANS calculations. A time step of 107 s is selected, and the Courant
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number distribution across the combustion chamber cross-section is obtained. As shown in
Figure 4, the global Courant number is less than 0.5, which satisfies the requirements for
LES calculations.

N | (U | [

Courant number 0 0.05 0.1 0.15 02 025 03 035 04 045 05

Figure 4. Courant number distribution.

The simulation conditions are summarized in Table 2. The inlet pressure of the com-
bustion chamber is 500 kpa and the pressure drop is 6%. To investigate the impact of small
pulsations in inlet parameters on the dynamic combustion characteristics of the combustion
chamber, the inlet conditions are varied based on the benchmark conditions, with pulsa-
tions introduced as sine waves at amplitudes of 1%, 2%, and 3%. The pulsation frequency
of the air and fuel boundary conditions, representing typical system-level pulsations, is
simulated. The typical dynamic pulsation frequency of the combustion chamber is around
100 Hz, and the pulsation level does not exceed 3% of the mean value. Therefore, the
pulsation period is selected as 0.008 s.

Table 2. Operating conditions.

Case P/(kpa) T/(K) ma/(kg/s) mf/(kg/s)
0 500 600 0.739 0.02733
1 500 600 £ 6 0.739 0.02733
2 500 600 £ 12 0.739 0.02733
3 500 600 £ 18 0.739 0.02733
4 500 600 0.739 £ 0.0074 0.02733
5 500 600 0.739 £ 0.0148 0.02733
6 500 600 0.739 £ 0.0222 0.02733
7 500 600 0.739 0.02733 + 0.000273
8 500 600 0.739 0.02733 + 0.000546
9 500 600 0.739 0.02733 + 0.000819

2.3. Model Evaluation

To verify the accuracy of the large eddy simulation and obtain high-resolution reactive
flow simulation results, grid quality is crucial. Two LES turbulence criteria proposed by
Professor Pope [23] are employed to assess the quality of the simulation: the grid resolution
criterion and the power spectral density of the velocity. The turbulent kinetic energy of
the large-scale structures is resolved by the LES, while the turbulent kinetic energy of the
small-scale structures is resolved by the sub-grid scale model. The ratio of the turbulent
kinetic energy of the large-scale structures to the total turbulent kinetic energy in LES is
referred to as the turbulent kinetic energy resolution percentage:
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kres

— 7
Kres + ksgs @)

where ksgs is the sub-grid turbulent kinetic energy, and kyes is the resolved turbulent kinetic
energy. ks can be obtained using the following formula:

percentage =

1,
kres = 5 (W'’ + 00 +w'w) (8)

where u” is the root mean square error of axial velocity, v’ is the root mean square error of
radial velocity, and w’ is the root mean square error of tangential velocity.

In this study, LES calculations are performed for the reference condition. The turbulent
kinetic energy resolution ratio at the cross-section of the combustion chamber and the
velocity energy spectrum at a monitoring point 20 mm downstream of the pre-combustion
stage nozzle are obtained, as shown in Figure 5. According to Professor Pope, a well-
converged LES should resolve at least 80% of the turbulent kinetic energy. As shown in
Figure 4, the turbulent kinetic energy resolution ratio in most regions of the combustion
chamber exceeds 80%, indicating that the current grid quality and solver settings meet the
requirements for LES calculations. Additionally, a region exhibiting a slope close to —5/3 is
observed in the velocity energy spectrum in Figure 6, which aligns with the Kolmogorov
turbulence theory [24]. This suggests that the current grid quality and solver settings are
capable of capturing the multi-scale characteristics of the flow field.

Percentage(%) 80 82 84 8 8 90 92 94 96 98 100

Figure 5. Percentage of resolved turbulent kinetic energy.
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Figure 6. Kinetic energy spectra.
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To further validate the accuracy of the large eddy simulation method, both experiments
and simulations were conducted for the multi-swirl staged combustion chamber. The
numerical approach and model used are consistent with those presented in this paper. The
experimental methodology is detailed in Ref. [25]. The multi-swirl staged combustion
chamber adopts the centrally staged method, and the injector consists of a pilot stage and
a main stage. The pilot stage consists of two counter-rotating axial swirlers and an air
atomizing nozzle. The main stage contains one axial swirler and one radial swirler. Plain-
orifice atomizers are equidistantly arranged on the sidewall of the 4th swirler. Figure 7
shows the distribution of the average axial velocity. The left side is the experimental result,
and the right side is the simulation result. The red solid line marks the location where the
average axial velocity is zero. From the comparison, it is evident that typical swirl flow
field features, such as the recirculation zone and high-speed shear layers, are present in
the combustion chamber. The size and position of the recirculation zone in the simulation
results are in good agreement with the experimental observations, and the variation of
the average axial velocity within the combustion chamber is accurately captured. These
verification results demonstrate that the meshing and numerical simulation methods for
the staged combustion chamber are reliable.
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Figure 7. Comparison of experimental results and simulation results of average velocity field.

3. Results

Based on the reference condition (case 0), the inlet temperature, air flow rate, and
fuel flow rate pulsate in the form of a sine wave by 1%, 2%, and 3%, respectively, and the
pulsation period is 0.008 s. The results are compared to analyze the influence of small
pulsations of inlet parameters on flow field characteristics, local high-temperature zone
evolution, and outlet temperature distribution.
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3.1. Time-Averaged Analysis

The characteristics of the recirculation zone are critical indicators of combustion
performance within the combustion chamber. Figure 8 presents the time-averaged velocity
field of the combustion chamber under reference conditions. The left panel shows the axial
velocity field, while the right panel depicts the radial velocity field. Due to the combined
effects of the three-stage swirler, a distinct confined swirl flow is generated downstream
of the swirler head, exhibiting typical swirl combustion chamber flow features, including
pilot swirl jets (Pilot SW]s), main swirl jets (Main SW]Js), the central toroidal recirculation
zone (CTRZ), the corner recirculation zone (CRZ), and the shear layer (SL). The red line
in the axial velocity field indicates the location where the axial velocity is zero. A large-
scale, low-velocity zone is formed downstream of the cyclone outlet, which promotes
flame stability.

1 1
20 40 60 80 100
x(mm) x(mm)

(a) Axial velocity (b) Radial velocity
Figure 8. Time-averaged velocity field (Case0): (a) axial velocity; (b) radial velocity.

Figure 9 illustrates the axial distribution of the time-averaged axial velocity within the
combustor under inlet temperature fluctuations, as well as the radial distribution curves at
various axial positions along the flame tube. The dashed line indicates the point at which the
axial velocity is zero. The position distribution of Linel-Line5 can be seen in Figure 1. From
the figure, it is evident that the time-averaged axial velocity distributions of the combustion
chamber under different temperature pulsations exhibit similar trends. The axial velocity
distribution along the axial direction shows that the axial length of the recirculation zone
remains relatively constant under different operating conditions, and the axial velocity
profile within the main recirculation zone exhibits minimal variation.

The radial distribution curve of axial velocity at different axial positions reveals
multiple velocity peaks at Line 1, which are attributed to the outlet velocities from the first,
second, and third-stage cyclones, as well as the head cooling hole. Among these, the outlet
velocity from the third-stage cyclone is the largest. As the axial distance increases, the
velocity differences gradually diminish, and the radial distribution of axial velocity adopts
an ‘M’ shape. Furthermore, as the axial distance increases, the asymmetry of the velocity
distribution becomes more pronounced, with the axial velocity peak on the lower side of
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the flame tube significantly higher than that on the upper side. This asymmetry is primarily
attributed to the structural design of the flame tube, where the number and area of cooling
holes on the upper and lower sides are uneven. Additionally, the cross-sectional area of the
inner ring flow is smaller than that of the outer ring, leading to an uneven distribution of
air intake across the upper and lower sides of the flame tube. This results in a higher axial
velocity on the lower side. At Line 4, the radial extent of the main recirculation zone reaches
its maximum. The influence of intake flow and fuel flow pulsation on the steady-state flow
field structure is similar, and is not analyzed further.

Case2 Case3 —-—-V=0
Linel Line2 Line3 Line4 Line5

Case) — Casel
Line6

120

N
(=}
T

Case0

o0
S
N
(=1
T

S5
=3
T

N
(=)

Axial Velocity(m/s)
S

Radial Distance(mm)

393
=}
T

A
=)
T

=N
(=3
T

-40 L . 1 1 1 1 1 1 1 1 1 1 1 1 1 L1 1 1 1 1 1 1

0 50 100 150 200 40 0 40 80 -40 0 40 80 -40 0 40 80 -20 0 20 40 -30 0 30 60
Axial Distance(mm) Axial Velocity(m/s)
(a) Axial distribution (b) Radial distribution

Figure 9. Axial velocity distribution under temperature fluctuation: (a) axial distribution; (b) ra-
dial distribution.

To quantitatively analyze the influence of different inlet parameters on the extent
of the main recirculation zone, the length and width of the recirculation zone under
various operating conditions were calculated, as presented in Table 3. From the table, it
is evident that the width of the main recirculation zone under pulsating inlet conditions
is smaller than that under the baseline operating conditions. Furthermore, as the degree
of pulsation increases, the width of the main recirculation zone decreases. When the fuel
flow pulsation reaches 3%, the width of the main recirculation zone attains its minimum
value. By observing the length and width of the main recirculation zone in each operating
condition, it is found that the difference is very small, and the change is not regular, which
has little effect on the overall structure of the recirculation zone.

Table 3. The range of the main recirculation zone under different operating conditions.

Case 0 1 2 3 4 5 6 7 8

Length/mm 66 64 64 68 67 62 67 63 64
Width/mm 65 64 62 62 64 63 62 61 65

66
56

Figure 10 presents the time-averaged temperature distribution in the middle section
of the combustion chamber under the reference condition (Case0). As shown in the figure,
a “W’-shaped low-temperature zone is formed at the outlet of the head swirler due to the
two-stage fuel injection and the swirling airflow. This swirling airflow creates a cooling
film near the cooling hole of the flame tube, which serves to protect the flame tube and
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enhance its service life. The jet from the main combustion hole significantly reduces the
high-temperature zone in the primary combustion region. Following the mixing jet, the
high-temperature zone at the outlet of the combustion chamber is substantially diminished,
resulting in a more uniform temperature distribution at the outlet. The fluctuation of inlet
parameters has a minimal impact on the time-averaged temperature distribution within
the combustion chamber and is therefore not analyzed further.

HE (7] T

Temperature(K) 600 800 1000 1200 1400 1600 1800 2000 2200

Figure 10. Time-averaged temperature distribution in the midplane of the combustor (Case0).

The uniformity of the outlet temperature distribution in the combustion chamber
directly influences the service life of the turbine. The outlet temperature distribution OTDF
and RTDF of each pulsating condition of the research object in this paper are analyzed. The
temperature distributions for each operating condition are presented in Table 4. It is evident
that the outlet temperature of the combustion chamber exhibits only slight variations across
different conditions, suggesting that small pulsations in the inlet parameters have minimal
impact on the time-averaged outlet temperature distribution. Compared with the reference
condition, the fluctuation of inlet temperature and flow rate increases the steady-state
OTDF, resulting in the increase of outlet hot spot temperature. Fuel flow pulsation has little
effect on steady-state OTDFE.

Table 4. Time-averaged outlet temperature distribution.

Case 0 1 2 3 4 5 6 7 8 9
RTDF 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.10 0.12 0.09
OTDF 0.17 0.20 0.19 0.18 0.20 0.20 0.21 0.16 0.18 0.16

Figure 11 presents a comparison of the average radial temperature distribution at
the combustion chamber outlet under different inlet parameter pulsations. The radial
temperature distribution curves across the various operating conditions exhibit a similar
‘bimodal’ pattern, with high-temperature regions located at the upper and lower sections of
the flame tube outlet. Notably, when the inlet fuel flow pulsation is 3%, the average radial
temperature distribution at the combustion chamber outlet is more uniform compared to
the other operating conditions.
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Figure 11. Comparison of time-averaged RTDF of combustion chamber outlet section.

3.2. Instantaneous Temperature Field Analysis

Figure 12 illustrates the instantaneous temperature evolution in the middle section of
the combustion chamber over a cycle under inlet temperature fluctuations. The diagram
reveals that the temperature distribution in the combustion chamber is similar across
different operating conditions. In the main recirculation zone, the high-temperature region
is more concentrated. Further downstream, the temperature fluctuations become more
pronounced, primarily due to the mixing effects of the main combustion hole jet and the
mixing hole jet. The mixing holes located in the rear section of the flame tube are arranged
in a cross-pattern, allowing air to enter the flame tube through these holes and mix with
the high-temperature gases. This mixing process helps to achieve a more uniform outlet
temperature distribution. The interaction between the jet air around the primary holes and
the dilution holes and the small eddy current in the combustion field inevitably causes a
certain degree of temperature fluctuation.

To more intuitively illustrate the effect of inlet parameter pulsations on the temperature
within the combustion chamber, the root mean square (RMS) value of the axial temperature
over a period of 0.008 s is calculated. The formula is as follows:

Towss = || S0 (T~ T)° ©

where T is the instantaneous temperature and T is the time-averaged temperature.
Figure 13 presents the axial distribution curve of temperature fluctuations over a cycle
under different operating conditions. From the diagram, the temperature fluctuations
are more clearly observed, with the root mean square value of the temperature being
largest near the outlet of the cyclone. This is attributed to the stability of the flame in
this region, which corresponds to the flame root, where unsteady characteristics are more
pronounced. Fluctuations in the inlet parameters lead to enhanced temperature variations
near the flame root. In the vicinity of the primary combustion hole, the root mean square
value of temperature decreases overall; however, the axial temperature profile still exhibits
significant fluctuations. This suggests that the fuel is influenced by the jet mixing near
the primary combustion hole, which intensifies the temperature fluctuations. Conversely,
near the mixing hole and towards the outlet of the flame tube, the temperature profile
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becomes smoother, indicating a reduction in localized high-temperature areas due to the
mixing of cold and hot gases. As a result, the temperature distribution at the outlet becomes

more uniform.
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Figure 12. Instantaneous temperature evolution in the middle section of the combustor under inlet
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Figure 13. Comparison of axial distribution of temperature fluctuation under different working
conditions: (a) temperature pulsation; (b) air pulsation; (c) fuel pulsation.

Figure 14 shows the frequency domain diagram of heat release rate pulsations under
different operating conditions. The monitoring point is point 1, within the central recir-
culation zone. As seen in the figure, there are slight differences in the frequency domain
characteristics of the heat release rate across the various operating conditions; however, the
overall trends are similar. The primary difference is observed in the peak values. When
the inlet fuel flow pulsation is 3%, the peak amplitude of the heat release rate reaches a
maximum value of 5.6 x 10° W-m~3 in each working condition. This shows that the fuel
pulsation increases the unsteady pulsation characteristics of the flame, resulting in severe
pulsation of the heat release rate. The primary peak frequency for each operating condition
ranges from 100 to 200 Hz, which is consistent with the pulsation frequency of the inlet
parameters. This suggests that the pulsations in this event are primarily governed by the
inlet fluctuations.
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Figure 14. Frequency domain diagram of heat release rate pulsation under different working condi-
tions: (a) temperature pulsation; (b) air pulsation; (c) fuel pulsation.

3.3. Analysis of Outlet Temperature Fluctuation

Figure 15 illustrates the temporal variations of the inlet parameters and the average
outlet temperature of the combustion chamber under different operating conditions. As
shown in the figure, over a large time scale, the average outlet temperature for all con-
ditions remains close to 1800 K, exhibiting varying degrees of pulsation over time. On a
smaller time scale, the time distribution of the average outlet temperature for different inlet
parameters follows a pattern similar to that of the reference condition. The key difference
is that there is a phase shift, either “lead” or “lag”, relative to the reference condition,
which is attributed to the average temperature variation induced by fluctuations in the
inlet parameters. Positive fluctuations in inlet airflow, along with negative fluctuations
in inlet temperature and fuel flow, result in a decrease in the average outlet temperature,
and vice versa. Additionally, the average outlet temperature displays a sine wave-like
fluctuation with a “decrease-increase-decrease” trend over time, which correlates with the
sine wave oscillations of the inlet parameters, particularly in the case of inlet airflow and
fuel flow rate.

To quantitatively characterize the response of the average outlet temperature fluctua-
tion to the inlet parameter fluctuations, the transfer function (TF) is employed to describe
the system behavior. The calculation formula is given as follows:

Fo/L
X/X

In the formula, T and T represent the fluctuation and average values of the average

= Ge'd? (10)

outlet temperature of the combustion chamber, respectively; X and X represent the fluc-
tuation and average values of the inlet parameters (inlet temperature, air flow rate, and
fuel flow rate), respectively; G denotes the gain; 7 is the imaginary unit; and Ag is the
phase difference. The transfer functions for different operating conditions are calculated,
and the corresponding gain and phase values are presented in Table 5. In general, under
conditions of inlet temperature fluctuation, the amplitude of the outlet temperature fluctu-
ation is larger, and the transfer function gain G is correspondingly higher. However, as the
pulsation degree of the inlet parameters increases, the transfer function gain G exhibits a
decreasing trend. This suggests that, when the pulsation magnitude is small, the inherent
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combustion instability of the combustion chamber amplifies the inlet pulsations, leading to
a larger gain. Conversely, as the amplitude of the inlet pulsations increases, the gain does
not increase proportionally. This shows that the pulsation of the inlet parameters has an in-
hibitory effect on the inherent combustion instability of the combustion chamber. The flow
pulsation exhibits a phase difference of approximately 0.5 7t, while the fuel pulsation phase
difference is close to 7. This is consistent with the phase difference observed between the
outlet temperature fitting curve and the inlet pulsation curve in Figure 14. As the amplitude
of the inlet parameter pulsations increases, the phase difference gradually decreases.

620 2000

Case0 Case0
Casel
Case2
L Case3 —_
610 % 1900
L
b=
=
600 £.1800
£
g
3
5
590 |- O 1700
80 1 L L 1600 1 1 1
0.014 0.016 0.018 0.020 0.022 0.014 0.016 0.018 0.020 0.022
Time(s) Time (s)
(a) temperature pulsation
0.77 TascO 2000
Case4
0.76 CaseS
Case6 —_
g 1900
0.75 >
2
s
0.74 | 2 1800
£
2
0 F k]
=
© 1700
072 |
0.71 L L L 1600 L L 1
0.014 0.016 0.018 0.020 0.022 0.014 0.016 0.018 0.020 0.022
Time(s) Time (s)
(b) air pulsation
102 Cased 2000
Case7
Case8
|- Case9 _
100 2 1900
[5)
E
£
98 | 2.1800
£ \
2
3
5
9 | O 1700
94 L L 1 1600
0.014 0.016 0.018 0.020 0.022 0.014 0.016 0.018 0.020 0.022

Time(s) Time (s)
(c) fuel pulsation

Figure 15. Comparison of inlet parameters and outlet average temperature of combustion cham-

ber with time under different operating conditions: (a) temperature pulsation; (b) air pulsation;
(c) fuel pulsation.
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Table 5. Gain and phase of outlet temperature response under different operating conditions.

Case G Ag
1 1.51 092
2 1.37 0.45m
3 0.76 048
4 1.68 044
5 1.12 0.62 7
6 0.99 0257
7 1.77 0.99
8 1.63 0.80 7
9 1.56 0.82 7

Figure 16 shows the distribution of the outlet time-averaged temperature under differ-
ent operating conditions, with the blue point representing the location of the maximum
outlet time-averaged temperature. As observed, the outlet temperature distribution of
the combustion chamber exhibits similar patterns across various operating conditions. To
quantitatively analyze the impact of inlet parameter fluctuations on outlet temperature
variations, the dynamic outlet temperature distribution coefficient (DOTDF) is defined.
The calculation formula is as follows:

T4max rms
DOTDF = _—=MixIms (11)
T4ave - T3uve

® 1o

Temperature(K) 1000 1200 1400 1600 1800 2000

A

¢

e eee—
A

W —
Case7 Case8 Case9

Figure 16. The outlet time-averaged temperature distribution under different operating conditions.
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Here, Typax rms represents the root mean square value at the location of the maximum
time-averaged outlet temperature of the combustion chamber, T34, is the average inlet
temperature, and Ty, is the average outlet temperature of the combustion chamber.
The dynamic outlet temperature distribution coefficient is calculated for each operating
condition, with the results shown in Figure 17. According to the definition of the formula, a
higher root mean square value for the maximum outlet temperature corresponds to a higher
DOTDE indicating a greater degree of outlet temperature fluctuation. As seen in the figure,
the DOTDF for inlet parameter pulsations is lower than that for the reference condition.
Additionally, under conditions involving inlet temperature and fuel flow pulsations, the
DOTDEF decreases with increasing pulsation amplitude. However, under airflow pulsation
conditions, the DOTDF increases as the pulsation amplitude increases. This suggests that
fluctuations in inlet parameters help suppress outlet hot spot temperature fluctuations,
although excessive fluctuations in airflow should be avoided.
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Figure 17. Distribution of DOTDF.

4. Conclusions

In this study, a method combining large eddy simulation and Flamelet Generated
Manifold is employed to numerically simulate a three-swirl staged combustion chamber.
The effects of nine different inlet parameter pulsations on the dynamic combustion behavior
of the chamber are analyzed and compared with the reference conditions. The results are
as follows:

(1) The steady-state time-averaged results of each working condition were analyzed.
The three-swirl staged combustion chamber forms a large, low-speed recirculation
zone that enhances flame stability. The flow field and temperature distribution for all
operating conditions show minimal differences, indicating that, on a large time scale,
small pulsations of the inlet parameters have no significant impact on the steady-
state, time-averaged performance. Furthermore, as the pulsation intensity of the inlet
parameters increases, the recirculation zone tends to expand horizontally.
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(2) The transient temperature field results for each operating condition were analyzed,
revealing a similar temperature distribution across all conditions. Near the outlet of
the cyclone, the flame root region exhibits pronounced unsteady flame characteristics.
Fluctuations in the inlet parameters lead to an increase in the temperature variations
in this flame root area.

(3) The outlet temperature results for each operating condition were analyzed. It was
observed that, when the inlet pulsation amplitude is small, the inherent combustion
instability within the combustion chamber amplifies the inlet pulsations. As the inlet
pulsation amplitude increases, the influence of inlet parameter fluctuations on the
outlet pulsations becomes more pronounced, suggesting that inlet pulsations have a
suppressive effect on the inherent combustion instability of the chamber. Analysis of
the outlet dynamic OTDF reveals that fluctuations in the inlet parameters can mitigate
the fluctuations in the outlet hot spot temperature.
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Abstract: With the increasing global demand for renewable energy, biodiesel has become a promising
alternative to fossil fuels with significant environmental benefits. This article systematically reviews
the latest advances in predictive modeling techniques for estimating the characteristics of biodiesel
and its impact on diesel engine performance. Various methods for predicting the key performance of
biodiesel and the performance and emissions of diesel engines have been summarized. According to
the categories of parameters, research cases in recent years have been listed and discussed separately.
This review provides a comprehensive overview and serves as a reference for future research and

development of biodiesel.
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1. Introduction

With the increasing global demand for renewable energy, biodiesel as a clean energy
source is being applied in an increasing number of fields. It can directly replace or be
mixed with petroleum diesel and is widely used in transportation, agricultural machin-
ery, power generation equipment, and other fields. In recent years, many countries and
regions have promoted the production and use of biodiesel through policy incentives and
regulatory requirements to reduce dependence on fossil fuels and reduce greenhouse gas
emissions [1-3].

Among various alternative energy sources, biodiesel has become a highly promising
alternative fuel due to its renewability, environmental friendliness, and compatibility with
existing diesel engines [4]. Biodiesel is a fuel obtained through the transesterification
reaction of vegetable oil, animal fat, or waste oil with alcohols (such as methanol or
ethanol), and its main component is fatty acid methyl esters (FAMEs). Compared with
traditional petroleum diesel, biodiesel can not only reduce greenhouse gas emissions but
also effectively reduce the emissions of carbon monoxide (CO), hydrocarbons (HC), and
particulate matter (PM), thereby reducing air pollution and improving environmental
quality [5].

On a global scale, the application of biodiesel not only promotes the development
of agriculture and industry but also effectively reduces dependence on petrochemical
fuels [6]. However, despite the advantages demonstrated by biodiesel in the fields of
environment and energy, there are still many problems in its practical application. For
example, the physicochemical properties of biodiesel vary significantly due to differences
in raw materials and production processes, which directly affect its performance in diesel
engines [7]. In addition, the combustion characteristics, emission characteristics, and engine
performance impact of biodiesel in engines also vary depending on the fuel composition.
Thus, accurately predicting biodiesel properties and its performance in diesel engines is a
key focus of current research [8].

The properties of biodiesel directly affect its performance in diesel engines. The physic-
ochemical properties of biodiesel, such as viscosity, density, heating value, and oxidation
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stability, not only determine the combustion efficiency of the fuel in the engine but also
affect the engine’s starting performance, fuel consumption, emission characteristics, and
long-term reliability. In diesel engine systems, the combustion process of biodiesel directly
affects the thermal efficiency, power output, and emission generation of the engine. For
example, the high oxygen content of biodiesel can promote the completeness of the com-
bustion process and reduce the emissions of HC and CO [9]. However, this characteristic
may also lead to an increase in nitrogen oxide (NOy) emissions. Therefore, during engine
optimization design, it is crucial to consider both the physicochemical properties and
combustion characteristics of the fuel. Accurate prediction models must be established to
evaluate the overall performance of biodiesel.

In traditional research methods, the properties of biodiesel are mainly obtained
through experimental measurements, but this method is not only time-consuming and
costly but also has certain experimental errors [10]. As computing technology and data
science advance, predictive methods based on mathematical models and machine learning
(ML) have emerged as prominent areas of research. These methods can rapidly predict
biodiesel properties by leveraging existing experimental data, providing a robust scientific
basis for fuel development and application.

The establishment of predictive models can not only save a lot of experimental time
and costs but also explore the impact of different raw materials and production pro-
cesses on fuel performance, thereby optimizing the production process and improving
fuel quality [11]. For example, prediction models based on linear regression, support
vector machines (SVMs), and artificial neural networks (ANNSs) can accurately predict key
attributes such as heating value, viscosity, and oxidation stability of biodiesel [12]. The
application of these models enables researchers to better understand the characteristics of
different biodiesel fuels, providing effective tools for fuel optimization design. At the same
time, an increasing number of researchers are adopting data-driven methods to predict the
performance of biodiesel in engines. By analyzing a large amount of experimental data and
training models, ML methods can capture the complex nonlinear relationships between fuel
properties and engine performance, thereby achieving high-precision predictions. These
methods provide new perspectives for studying biodiesel-engine interactions. They also
offer robust support for optimizing fuel blends and engine design.

Due to its renewability, lower carbon dioxide emissions, and good biodegradability,
biodiesel, as an important renewable energy source, offers significant environmental bene-
fits and application prospects. Research related to biodiesel has rapidly developed, with
researchers continually expanding the raw material sources, fuel blend formulations, and
application scenarios for biodiesel [13,14]. The performance of biodiesel varies depending
on the type of raw materials used [15]. Additionally, biodiesel is typically blended with
diesel using additives for practical use. Therefore, the properties of biodiesel blends and
their performance in diesel engines are more complex compared to other alternative fuels.

This article aims to systematically organize and review the research progress in pre-
dicting the properties of biodiesel and its performance in diesel engines in recent years.
Starting from the key attributes and performance parameters of biodiesel, specific research
cases were cited, covering application examples of different prediction models and experi-
mental methods. This review highlights the advantages and limitations of these methods in
practical research. These cases help identify best practices and potential improvements in
current methods, provide guidance for future research, and promote further development
of biodiesel applications.

2. Biodiesel
2.1. Production and Main Components of Biodiesel

Biodiesel is a renewable fuel obtained through the transesterification process from
vegetable oils or waste edible oils. Compared with traditional petroleum diesel, biodiesel
is a more environmentally friendly alternative fuel, mainly composed of FAMEs. The
production of biodiesel is primarily achieved through transesterification reactions using
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raw materials such as edible oils, inedible oils, waste oils, and algae [16-18]. This process
requires mixing the raw oil and fat with methanol or ethanol under the action of a catalyst,
heating, and reacting to produce FAMEs and glycerol. Common catalysts include NaOH,
KOH, and acidic catalysts such as HySO4. The efficiency of the transesterification reaction
is influenced by various factors, including reaction temperature, reaction time, molar ratio
of alcohol to oil, and catalyst amount.

The composition of FAMEs varies depending on different raw oils and fats and usually
includes the following main components [19-21]:

Saturated FAMEs, such as palmitic acid methyl ester (C16:0) and stearic acid methyl
ester (C18:0), typically have high melting points and viscosities. Unsaturated FAMEs, such
as oleic acid methyl ester (C18:1) and linoleic acid methyl ester (C18:2), have lower melting
points and better fluidity. Linolenic acid methyl ester (C18:3) has a lower melting point
and poorer oxidation stability.

The physical and chemical properties of biodiesel, such as density, viscosity, combus-
tion characteristics, etc., are mainly determined by its fatty acid composition [22]. The
structure of fatty acid components, including carbon chain length, saturation, number,
and position of branched or double bonds, plays a decisive role in the final performance
of fuels [23]. The composition of biodiesel results in distinct physical and chemical prop-
erties compared to petroleum-based diesel [24]. The advantages of biodiesel include
high oxygen content, high cetane number, high flash point, and excellent lubricity [25].
Biodiesel molecules contain higher oxygen content than petroleum diesel, allowing for
more complete combustion and reduced emissions of HC and CO [26]. The sulfur content
of biodiesel is extremely low, which greatly reduces the emission of SO, and helps alleviate
the formation of acid rain [27].

In addition to the aforementioned advantages, the drawbacks of biodiesel are also
evident. The long fatty acid chains in biodiesel contribute to its high viscosity and low
fluidity, particularly at low temperatures [28]. This characteristic is particularly evident in
low-temperature environments and may cause clogging in fuel injection systems, which
may be mitigated by using additives or blending with petroleum diesel. Meanwhile,
unsaturated FAMEs are prone to oxidation, leading to the deterioration of biodiesel during
storage [29]. Depending on the storage environment and the composition of biodiesel
itself, this oxidative deterioration may accelerate [30]. To enhance its stability, it is typically
necessary to add antioxidants and implement an appropriate storage strategy [31].

2.2. Main Properties Affecting the Performance of Biodiesel in Diesel Engines
2.2.1. Density and Kinematic Viscosity

The density of biodiesel is higher than that of diesel. The density increases as the fatty
acid chain length decreases and the degree of unsaturation increases.

The density of biodiesel has a significant impact on its combustion characteristics
and performance in diesel engines [32]. High-density biodiesel can lead to increased
injection volume, poor fuel atomization quality, and thus affect the mixing efficiency and
combustion completeness of air and fuel [33]. This phenomenon usually manifests as
prolonged ignition delay and combustion duration. Ultimately, it will lead to a decrease in
combustion efficiency and an increase in the generation of incomplete combustion products,
affecting the overall performance and emission characteristics of the engine.

Kinematic viscosity significantly affects the spray characteristics and combustion
quality of the fuel [34]. If the viscosity is too high, it may result in poor flow of the fluid
between certain components, causing energy loss and reduced engine efficiency. At the
same time, high viscosity often leads to the formation of larger droplets during injection,
resulting in poor atomization [35].

2.2.2. Cetane Number

The cetane number (CN) is the key indicator for measuring the spontaneous com-
bustion quality of fuel. The CN of biodiesel is affected by the chain length and degree of
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unsaturation of the FAMEs. Biodiesel usually has a higher CN than diesel fuel. A high
CN helps reduce the formation of white smoke and improves cold start performance. A
low CN will increase ignition delay, thereby increasing the likelihood of knocking in diesel
engines [36].

2.2.3. Thermophysical Properties

The thermophysical properties of biodiesel, including heating value, thermal con-
ductivity, specific heat capacity, and coefficient of thermal expansion (CTE), are the key
factors affecting its combustion characteristics, heat transfer efficiency, and overall en-
gine performance. These thermal properties are not only important for the energy out-
put of fuel but also affect the temperature distribution and combustion efficiency in the
combustion process.

Heating value is the energy released during fuel combustion, and it is an important
index to measure the energy density of biodiesel. Biodiesel with a high heating value
usually has a higher energy density and can provide greater power output [37]. Thermal
conductivity determines the heat transfer efficiency of biodiesel in the combustion process
and has a direct impact on the temperature distribution and combustion stability of the
combustion chamber [38]. Specific heat capacity is an index describing the ability of
fuel to absorb or release heat during heating, which directly affects the heating rate and
combustion efficiency of fuel. The CTE, which measures the volume change of fuel when the
temperature changes, has an important impact on the design and safety of fuel systems [39].

3. Classification of Prediction and Optimization Techniques for Biodiesel Properties
and Engine Performance

3.1. Statistical Modeling and Regression Methods

Statistical modeling and regression methods are traditional analytical tools used to
reveal and quantify relationships between variables. These methods describe patterns in
data by establishing mathematical models that provide a basis for prediction. The following
will introduce several commonly used statistical modeling and regression methods and
their specific applications in biodiesel research.

Response surface methodology (RSM) is a method that combines experimental de-
sign, regression modeling, and optimization techniques, particularly suitable for handling
multivariate problems in complex systems. In biodiesel research, RSM is commonly used
to optimize fuel formulations, evaluate the effects of different production processes on
biodiesel properties, and predict the performance and emission characteristics of diesel
engines [40]. The construction of RSM models typically involves conducting quadratic
regression analysis on experimental data to generate a mathematical equation that de-
scribes the relationship between input variables and output response. By analyzing these
models, researchers can identify the factors that have the greatest impact on the prop-
erties of biodiesel and determine the optimal production conditions [41]. RSM has also
demonstrated strong application potential in predicting diesel engine performance. The
performance and emission characteristics of diesel engines are influenced by multiple
factors, including fuel composition and engine operating conditions (such as speed and
load), injection timing, and injection pressure [42,43]. RSM can systematically study the
interaction of these factors and predict their impact on engine performance by designing a
reasonable experimental plan. Table 1 shows the comparison between the predicted results
and experimental validation results after optimizing the three parameters: injection pres-
sure, injection timing, and exhaust gas recirculation using the RSM model by Saravanan,
Setal. [44].
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Table 1. Comparison of predicted results from the RSM model and experimental validation re-

sults [44].
NOy Smoke CO, BTE BSFC
(g/kWh) Opacity (kg/kWh) (%) (kg/kWh)
Predicted 16.918 10.228 0.624 35.874 0.253
Actual 17.178 10.55 0.646 355 0.2572
% Error 1.51 3.05 341 1.05 1.63

Regression analysis methods are used to quantify the linear relationship between
one or more independent variables and the dependent variable. The most basic linear
regression can be used to estimate the production of biodiesel [45]. However, the limitation
of linear regression is that it assumes that the relationship between variables is linear, while
actual combustion processes often have complex nonlinear characteristics. Nonlinear re-
gression is suitable for modeling complex relationships between variables using nonlinear
functions [46]. In the research of biodiesel and engines, nonlinear regression can be used to
predict complex dynamic changes during engine operation. For example, Figure 1 shows
the variation of braking thermal efficiency with power output [47]. This enables researchers
to describe engine performance under different conditions more accurately. Multiple regres-
sion is an extension of linear regression that allows for simultaneous analysis of the effects
of multiple independent variables on a single dependent variable. In the study of biodiesel
and engine performance, multiple regression is widely used to simultaneously consider
the comprehensive impact of multiple factors (such as fuel composition, engine operating
conditions, and environmental conditions) on the output results. For example, predicting
the physical properties such as viscosity, density, and flash point of biodiesel based on
raw materials [48]; predicting biodiesel performance based on fatty acid composition [49];
When predicting engine emissions (such as CO, NOy, and HC), multiple regression models
can integrate multiple input variables to establish a comprehensive prediction model [50].

0 T T T T
0 1 2 3 4

Power (kW)

S

Figure 1. Variation of brake thermal efficiency with power output. The figure is recreated using data
from reference [47].

Statistical modeling and regression methods have significant application value in
the study of biodiesel and engine performance. They can provide clear explanations of
variable relationships, which are easy to understand and implement. However, these
methods typically assume that the model structure is known and there are no significant
nonlinear or interactive effects in the data, which may limit their accuracy and applicability
in practical applications. Therefore, when researchers use these methods, they usually
need to perform sufficient preprocessing and exploratory analysis on the data to ensure the
rationality and reliability of the model.
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3.2. Machine Learning and Artificial Intelligence Methods

ML and artificial intelligence methods are increasingly important tools for predicting
biodiesel properties and engine performance. This is due to their powerful nonlinear
modeling capabilities, automatic feature learning capabilities, and advantages in processing
high-dimensional data [51,52]. These methods can not only significantly improve prediction
accuracy but also reduce the number of experiments and optimize the design process. The
following are several common ML and artificial intelligence methods and their applications

in predicting biodiesel properties and engine performance.

An ANN is a computational model that simulates biological neural networks and can
learn complex nonlinear relationships between inputs and outputs through a large amount
of training data. An ANN is particularly suitable for processing high-dimensional data
and nonlinear systems, demonstrating extremely high accuracy in predicting the perfor-
mance, such as brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC),
and emission characteristics of biodiesel blends [53-55]. Figure 2 shows the structure of the
ANN used to study biodiesel performance and its performance in diesel engines. Research
has shown that ANNSs can accurately predict the performance and emissions of engines
using different biodiesel blends by capturing the subtle impact of fuel composition changes
on engine behavior. For example, when studying the effects of certain biodiesel additives
on engine performance, ANN models can accurately predict how changes in additive
concentration affect the combustion efficiency and emission levels of the engine by learning
experimental data [56]. This high-precision predictive ability makes an ANN a valuable

tool in biodiesel research.
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Figure 2. The structure of the ANN used to study biodiesel performance and its performance in

diesel engines.

SVM is a supervised learning model based on statistical learning theory, commonly
used for classification and regression problems. The advantage of SVM in predicting the
properties and engine performance of biodiesel lies in its powerful nonlinear processing
capability and efficiency in processing high-dimensional data. SVM maps input data
to a high-dimensional space through kernel functions, enabling it to identify and cap-
ture hidden patterns and relationships in complex biodiesel-blended fuel datasets [57,58].
Figure 3 illustrates the application of SVM in predicting biodiesel yield. The SVM has
shown significant performance in optimizing the production process and composition of
biodiesel [59,60]. When studying engine emission characteristics, SVM can handle complex
combinations of input variables, such as different biodiesel components, engine operating

conditions, etc., to provide accurate emission predictions [61].

A decision tree is a predictive model that establishes relationships between input
variables and target outputs by recursively splitting the data [62]. Random forest is an
ensemble method of decision trees that enhances the stability and accuracy of the model
by constructing multiple decision trees and combining their prediction results. In the
prediction of biodiesel properties and engine performance, random forest can automatically
identify and select the most important feature variables, thereby improving prediction
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performance. For example, when predicting engine combustion efficiency or emissions,
random forests can identify the factors that have the greatest impact on target output from
multiple fuel components and engine operating variables, thereby improving the accuracy
and reliability of predictions [63,64].

12 4
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Figure 3. RMSE value comparisons for biodiesel yield by SVM regression with three kernels. The
figure is recreated using data from reference [59].

ML and artificial intelligence methods offer significant advantages in predicting the
properties and engine performance of biodiesel. They are capable of handling complex non-
linear relationships, automatically extracting data features, and providing high-precision
prediction results [65]. However, these methods also face challenges, such as the large
amount of data required for model training, high data quality requirements, and the opacity
of the models that may limit interpretability. To overcome these challenges, researchers
are exploring hybrid models that combine ML with other methods to improve model
interpretability while ensuring high-precision predictions [66,67].

3.3. Evolutionary Algorithms and Optimization Methods

Evolutionary algorithms and optimization methods are powerful tools developed
based on the principles of natural selection and genetics and are widely used in solving
complex problems and multi-objective optimization [68]. These methods are suitable for
the prediction and optimization of biodiesel properties and engine performance because
they can search for the optimal solution in a wide range of search spaces, deal with complex
multi-objective optimization problems, and do not depend on the specific mathematical
model of the problem. The following are some common evolutionary algorithms and opti-
mization methods in recent years and their applications in biodiesel and engine research.

A genetic algorithm (GA) is an evolutionary algorithm that simulates the process
of natural selection. It optimizes candidate solutions in the search space through se-
lection, crossover, mutation, and other operations [69]. GA is widely used in biodiesel
research, such as predicting the properties of biodiesel or optimizing the biodiesel pro-
duction process [70,71]. In the prediction of biodiesel properties and engine performance,
GA is used to find the best fuel ratio to optimize combustion efficiency and reduce emis-
sions [72]. GA’s adaptability enables it to handle multi-objective optimization problems
with complex nonlinear relationships and find the optimal fuel combinations and engine
operating parameters.

Particle swarm optimization (PSO) is an optimization algorithm based on swarm
intelligence that simulates the collective behavior of organisms, such as birds or fish, dur-
ing foraging. PSO gradually approaches the global optimal solution through information
sharing and cooperation among individuals. In biodiesel and engine research, PSO can be
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used to optimize multivariable systems, including fuel composition, engine tuning parame-
ters. PSO is characterized by its fast convergence speed and simple calculation, which is
especially suitable for continuous optimization problems [73]. Researchers can use PSO to
find the optimal ratio of biodiesel-blended fuel to achieve the best combustion performance
and the lowest emission level [74]. In addition, PSO can also be used to optimize the
multi-objective performance of the engine, such as fuel economy and power output.

Genetic programming (GP) is an evolutionary computation method based on GA that
is used to automatically generate computer programs. GP can be used to model complex
nonlinear systems, predict the physical and chemical properties of biodiesel, and optimize
the production process [75]. Figure 4 shows the GP tree model used for predicting kine-
matic viscosity [76]. In the prediction of biodiesel properties and engine performance, GP
can generate nonlinear regression models or classifiers to predict engine performance and
emissions under different fuel conditions. This method does not rely on the pre-defined
model structure but automatically generates the optimal model through the evolution pro-
cess. Researchers can use GP to generate a prediction model for simulating and optimizing
engine operating parameters and fuel ratio to improve overall performance [77].

X,: catalyst concentration

X,: reaction temperature

X4: alcohol-to-oil molar ratio
X4: reaction time

Figure 4. The GP tree model used for predicting kinematic viscosity. The figure is recreated based on
the content of reference [76].

The application of evolutionary algorithms and optimization methods in biodiesel
and engine research demonstrates great potential and flexibility. These methods can
deal with complex multi-objective optimization problems and do not depend on the
specific mathematical model of the problem, so they are widely applicable. However, these
methods may face the problems of computational complexity and convergence speed when
dealing with high-dimensional problems. In addition, the randomness and multiplicity
of evolutionary algorithms may lead to the uncertainty of the results, which need to be
addressed.

3.4. Scientific Modeling and Simulation Methods

Scientific modeling and simulation are key tools for studying complex physical and
chemical processes. In the prediction and analysis of biodiesel and engine performance,
these methods can simulate the actual combustion process and engine working state and
provide in-depth theoretical support for optimizing design and improving performance [78].
Scientific modeling and simulation are not only limited to the analysis of experimental
results but also can explore system behaviors under different conditions through virtual
experiments so as to reduce the number and cost of actual experiments.

Computational fluid dynamics (CFD) is a scientific method that uses numerical anal-
ysis and data structures to simulate fluid flow. In biodiesel and engine research, CFD is
widely used to simulate fluid flow, fuel injection, and combustion processes, as well as their
impact on emissions in the combustion chamber [79]. CFD models can describe in detail the
atomization, mixing, ignition, and combustion processes of fuel in the combustion chamber
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and predict engine performance and emission characteristics [80-82]. CFD simulation can
provide the detailed distribution of temperature field, pressure field, and chemical reaction
in the combustion process, which is very important for understanding the combustion
behavior of biodiesel under different working conditions. For example, Gowrishankar, S.
et al. [83] used CFD tools to compare and analyze the differences between conventional
injection mode and premixed mode based on delayed injection. As shown in Table 2.

Table 2. CFD simulation results of two injection strategies [83].

. Cylinder Heat Release
Combustion PR Temperature
Mod Pressure Rate Fuel Distribution Distributi
ode (Error %) (Error %) 1stribution
Conventional 1.50% 13% Near piston bowl Higher overall
Throughout the Lower
Late injection 10% 15% combustion
temperatures
chamber

The chemical kinetic model is used to simulate the chemical reactions in the combus-
tion process, including reaction rate, product distribution, heat release, etc. In biodiesel
combustion, chemical kinetic models can help to study the decomposition, oxidation,
and product formation processes of fuel molecules under high temperature and high
pressure [84,85]. At present, the study of chemical kinetic models often involves the simpli-
fication of reaction mechanisms. Reaction mechanism simplification is a technique used to
accelerate the calculation by simplifying the complex chemical reaction network, which is
suitable for large-scale combustion simulation. In the combustion simulation of biodiesel,
the chemical reaction network is usually very complex, including a large number of chemi-
cal substances and reaction steps. By simplifying the reaction mechanism, the reactions
and substances that have little impact on the combustion behavior can be removed, so as to
reduce the computational complexity and shorten the simulation time [86,87].

Scientific modeling and simulation methods offer powerful tools for the study of
biodiesel combustion characteristics and engine performance. These methods can deeply
reveal complex physical, chemical, and thermodynamic processes and provide high-fidelity
simulation results. However, scientific modeling and simulation methods also face some
challenges, such as the high demand for computing resources, the fact that the accuracy
of the model depends on the accuracy of input parameters, and the high dependence
on experimental data in some cases. To overcome these challenges, researchers usually
combine experimental verification and optimization techniques to ensure the reliability
and applicability of simulation results.

4. Recent Research Case Analysis
4.1. Properties of Biodiesel

As an alternative fuel, the physical and chemical properties of biodiesel have a direct
impact on its performance in the engine. Understanding and predicting these properties
not only helps optimize the production process of biodiesel but also improves engine
combustion efficiency and reduces emissions. Related studies are shown in Table 3. This
paper selects several key properties related to biodiesel combustion: density, viscosity, CN,
and thermophysical properties. In the following chapters, we will discuss these properties
in detail and analyze their impact on the performance of biodiesel.
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Table 3. Summary of research on predicting the properties of biodiesel.

Ref. Algorithm/Model Type Input Parameters Output Parameters Fuel Composition
Kinematic viscosity, flash
[75] GP Fatty acid composition ~ point, cold flow properties, ~ Various biodiesel compositions
CN and iodine numbers
Ethanol, diesel, . . . Ethanol-diesel-biodiesel
[88] RSM biodiesel blend ratios Density, viscosity blends
[89] Empirical Correlations Biodiesel blend ratios Density, viscosity Ternary biodiesel blends
Intermolecular
[90] ANN, LSSVM interactions, Density Various biofuels
temperature
Molecular weight, Kinematic viscosity, cloud
[91] GPR carbon number, double point, pour point, iodine Various biodiesel compositions
bonds, fatty acid types value
Kinematic viscosity, density,
Biodiesel composition, flash point, oxidation e g
[92] ANN, Random Tree fatty acid profile stability, acid value, and Hybrid biodiesel fuels
calorific values
[93] Empirical Correlation Fatty acid composition CN Various biodiesel compositions
LSSVM, GA, PSO, . . .. .\
[94] HGAPSO FAME composition CN Various biodiesel compositions
[95] ANN, SVM FAME composition CN Various biodiesel compositions
[96] ANN FAME composition CN Various biodiesel compositions
[97] ANFIS, PSO Fatty acid composition CN Various b“’d;ielssel and diesel
98] Grey Wolf' Optimizer, Fuel Composition, Calorific value Nicotiana Tabacum L. oil
Experimental Temperature methyl ester
. . Temperature, Pressure, .. Methyl pentanoate, methyl
[38] Experimental Analysis Fuel Composition Thermal conductivity octanoate, methyl decanoate
. . Temperature, Pressure, Density, viscosity, specific Rapeseed and soybean oil
[59] Experimental Analysis Fuel Blend Ratio heat methyl ester blends
[100] Empirical Correlation, Temperature, Pressure, Dens;ltg;’:nissco(iilg;jieaﬁc Waste cooking oil biodiesel,
PC-SAFT Fuel Blend Ratio ’ N 1-butanol
compress-ibility
[101] ANN Temperature, Solid fraction, cold flow Ethylic biodiesel blends
Composition properties
CN, density, kinematic
[49] Multiple Regression Fatty acid composition viscosity, Various biodiesel compositions
Heating value
Storage time,
antioxidant Jatropha and Pongamia
[102] Regression Model concentration, Viscosity pha anc &
P biodiesel
saponification value,
acid value
[103] Empirical Models Chemical st.r}lcture, Flash point HC, blodlese.I, petroleum
composition fractions
[104] Multivariate Regression Near-infrared COld. filter plugglng .pomt, Biodiesel and blends
spectroscopy data kinematic viscosity
[105] ML Temperature, pressure, Density, viscosity Biodiesel and diesel blends

composition
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Table 3. Cont.

Ref. Algorithm/Model Type Input Parameters Output Parameters Fuel Composition

[106] ANN, Empirical Models Temper;ié’lcgge, blend Viscosity Various biodiesel blends
[107] Multiple Regression Fatty acid composition lodine Valusélssgomflcatlon Various biodiesel compositions
[108] Experimental, Modeling Temperature, Pressure Thermal conductivity Methyl butyrate, methyl

caproate

4.1.1. Density and Kinematic Viscosity

The density and kinematic viscosity of biodiesel are important physical parameters
that determine its combustion characteristics and engine performance. These properties
directly affect the fuel injection, atomization, and combustion processes. Therefore, accurate
prediction of these physical properties is very important for optimizing the formulation
of biodiesel. In the research of this field, the traditional empirical formula can estimate
these attributes to a certain extent, but with the progress of technology, researchers are
increasingly turning to computational modeling and data analysis technology.

Existing models usually use the FAMEs component of biodiesel as input to predict
multiple physical or chemical properties, including density and kinematic viscosity.

Researchers are increasingly focusing on predicting the properties of mixed fuels
rather than studying single categories of biodiesel. For example, Razzaq et al. [88] studied
the density and viscosity model of ethanol-diesel-biodiesel ternary mixture. It is pointed
out that the physical properties of these mixtures can be effectively predicted by combin-
ing experimental data with regression analysis. This method shows the importance of
combining experimental data with modeling technology.

Mujtaba et al. [89] evaluated the performance of three regression methods (linear
regression, polynomial regression, and exponential regression) in predicting the density
and viscosity of biodiesel-diesel mixtures containing additives. The study found that the
exponential regression model performed well under specific conditions, but its versatility
and accuracy still need to be further improved in the face of different biodiesel mixtures.
This finding highlights the applicability differences of different regression methods in
specific application scenarios.

In the application of ANN/ML, Nabipour et al. [90] tested four models to estimate
the density of biofuels based on intermolecular interactions and the van der Waals radius
of atoms, a least squares support vector machine (LSSVM), a radial basis function artifi-
cial neural network, a multilayer perceptron artificial neural network, and an adaptive
neuro-fuzzy inference system (ANFIS). Among them, LSSVM performs best. This method
provides a highly accurate density estimation model than the traditional method by ana-
lyzing the interaction of different fatty acids in biodiesel. By comparing various models,
this study shows the superior performance of LSSVM in dealing with complex biofuel
attribute prediction.

Pustokhina [91] successfully predicted the viscosity and other properties of biodiesel
using a Gaussian process regression (GPR) model combined with a variety of kernel
functions. The results show that the Matérn kernel function performs best in viscosity
prediction, the determination coefficient R? reaches 0.992, and the root mean square error
(RMSE) is 0.157, which indicates that the GPR model has high robustness and accuracy in
dealing with nonlinear problems. This shows that nonlinear modeling technology has a
wide application potential in predicting the complex properties of biodiesel. Giwa et al. [92]
used ANN and a random tree algorithm to predict the density and viscosity of two or more
kinds of oil-synthetic biodiesel blends. The research shows that the two kinds of prediction
models based on FAME components have high prediction accuracy and perform well in
processing complex data.
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Additionally, Alviso et al. [75] used a GP model to predict the physical and chemical
properties of biodiesel, including density and viscosity. The results show that GP can
effectively capture the complex relationship between fatty acid composition and density,
viscosity, and is also a reliable prediction tool. The introduction of GP technology provides
a new solution for dealing with complex nonlinear relationships.

412.CN

CN of biodiesel is the key index to measure its ignition performance. High CN means
that the ignition delay time of fuel is short, and the combustion is more complete, thereby
improving the engine performance and reducing pollution emissions. With the increasingly
important role of biodiesel in replacing traditional diesel fuel, accurate prediction of its CN
is very important for optimizing fuel performance.

Some researchers used a linear regression model and multivariate analysis to estimate
CN. For example, Lin et al. [93] used the composition information of fatty acid methyl ester
(FAME) to predict the CN through a regression analysis model. The results showed that
there was a significant correlation between different fatty acid compositions and CN, and
the regression model could effectively estimate the CN of different biodiesel.

With the development of ML and artificial intelligence technology, more complex
models are gradually applied in this field to improve the accuracy of prediction.

Bemani et al. [94] used LSSVM combined with GA, PSO, and hybrid genetic particle
swarm optimization to predict CN, showing the potential of these evolutionary algorithms
in optimizing models. The author believes that the combination of the LSSVM algorithm
and GA, PSO, or hybrid genetic particle swarm optimization can be used as an accurate
estimation model of the CN of biodiesel fuel. These methods show the advantages of
the combination of evolutionary algorithms and ML technology and can achieve better
prediction results on complex data sets.

Ghiasi et al. [95] compared the prediction performance of LSSVM and extra tree (ET).
The results show that ET has higher reliability and stability in predicting CN.

Rahaju et al. [96] used a cascade neural network to predict the CN of 63 kinds of
biodiesel. After training with 10 different algorithms, the study found that the Levenberg-
Marquardt algorithm has the highest prediction accuracy, with a determination coefficient
(R?) of 0.9245 and a RMSE of 3.1541.

In addition, Noushabadi et al. [97] studied the prediction performance of the hybrid
model based on PSO and ANFIS for the CN of biodiesel. The model can effectively integrate
FAME:s data and optimize model parameters through an evolutionary algorithm so as to
improve the prediction accuracy.

4.1.3. Thermophysical Properties

The interaction between thermophysical properties has complex effects on the overall
performance of biodiesel. Research has shown that biodiesel blends exhibit higher insta-
bility compared to pure diesel [3]. Therefore, when developing biodiesel formulations,
not only these thermal properties should be considered separately, but also their synergy
should be comprehensively analyzed to optimize fuel performance and ensure long-term
stable operation of the engine. This overall analysis method can help researchers more
comprehensively understand the performance of biodiesel in practical applications.

Samuel et al. [98] used the grey wolf optimizer (GWO) to predict the heating value
of biodiesel. GWO is an optimization algorithm based on swarm intelligence, which
optimizes the solution of the problem by simulating the hunting behavior of gray wolves.
This algorithm is applied to the heating value prediction of tobacco oil methyl ester, and
the effectiveness of the model is verified by experimental data. The results show that
the GWO model can accurately predict the heating value of biodiesel, showing high
prediction accuracy. This research highlights the potential of the GWO in predicting
complex fuel attributes.
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Zheng et al. [38] measured the thermal conductivity of three biodiesel compounds
(methyl valerate, methyl octanoate, and methyl decanoate) by experimental method. Using
the transient hot wire method, the researchers obtained the thermal conductivity data of
these compounds at different temperatures and pressures and used these data to verify
and improve the existing prediction model.

Giuliano Albo et al. [99] proposed a formula for indirectly calculating the specific heat
capacity of biodiesel through sound velocity and density. However, the accuracy of the
results, especially, depends on the accuracy of density. This method can be used as an
alternative method when the specific heat capacity cannot be measured directly.

Ait Belale et al. [100] studied the thermophysical properties of the binary liquid
mixture of waste edible oil biodiesel and 1-butanol and predicted and correlated these
thermophysical properties through experimental data and models (Tait equation and PC-
SAFT model). The Tait equation fits the experimental data well, but due to its empirical
nature, it cannot explain the interaction between fluid molecules. In contrast, the PC-SAFT
model has many parameters, but it can better explain the intermolecular interaction and
shows good prediction ability in the whole concentration range.

A neural network also shows great potential in the prediction of complex thermophys-
ical properties, especially when dealing with multivariable nonlinear relationships.

Magalhaes et al. [101] used the multilayer perceptron feed-forward neural network
to predict the CTE and solid fraction of ethyl-biodiesel mixture. The ANN model can
effectively predict the thermal expansion behavior of fuel at different temperatures by
learning the nonlinear relationship in the experimental data, and the results show good
prediction accuracy.

4.2. Performance and Emissions of Biodiesel in Diesel Engines

The performance and emission characteristics of diesel engines are significantly af-
fected by fuel types and properties. As an alternative fuel, biodiesel has unique advantages
in diesel engine performance due to its high oxygen content and excellent combustion
characteristics. However, the disadvantages of biodiesel, such as high viscosity, poor
low-temperature fluidity, and poor oxidation stability, may lead to engine performance
degradation or emissions increasing under specific operating conditions. Therefore, accu-
rately predicting the performance of biodiesel in diesel engines is of great significance for
promoting the widespread application of biodiesel. Related studies are shown in Table 4.

Table 4. Summary of research on the performance of biodiesel in diesel engines.

Ref. Theme Algorlfrl;r;)léModel Input Parameters Output Parameters Fuel Composition
[54] Engine performance ANN RSM Enginfi 10?:11.' b;ocﬁesel BTE, BSFC, EGT, NOy, Biodiesel-diesel
and emissions ! ato, mjectio CO, HC, smoke blends
pressure
Engine performance Fuel blend ratio, BTE, BSFC, NOy, CO, Blodlesel—d'lesel
[77] .. GP . blends with
and emissions engine load smoke -
nanoparticles
. Injection timing, fuel . .
[109] Engine per.fo1.*mance ANN blend ratio, engine BTE, BSFC, NOy, CO, Waste. Coqkmg oil
and emissions HC biodiesel
speed
Engine performance . BTE, CO, HC, NOy, Waste cooking oil
[110] and emissions ANN Engine load, fuel type smoke biodiesel blends
[111] Engine per'formance ANN, RSM Engine loaq, biodiesel BTE, BSFC, NOy, CO, Amma.l fa.t-derlved
and emissions ratio smoke biodiesel
. Engine load, fuel . 1 g
[112] Engine per.fo1."mance ANN, GEP injection parameters, BTE, BSEC, CO, NOy, Linseed oil biodiesel
and emissions UHC blends

blending ratio
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Table 4. Cont.

Ref. Theme Algorithm/Model Input Parameters Output Parameters Fuel Composition
Type P P P
Palm biodiesel-diesel
[113] Engine performance ANN Engine load, fuel, BTE, HC, CO, NOy, blends with
and emissions additive, CN smoke nanoparticles and
ethanol
Engine performance Random Forest, Addlt.lve BTE, NOy, CO, HC, . Biodiesel .Wlth
[114] . concentration, fuel diphenylamine and
and emissions SVM, ANN . Smoke . .
blend, engine load ceria nanoparticles
. Engine load, fuel . ..
[115] Engine per.fOI.'mance ANN, RSM blend ratio, DMC BTE, BSFC, N.OX' CO, Du.esel—Bael bloc.htesel
and emissions o . exergy efficiency with DMC additive
additive concentration
Engine performance Engine load, quantum BTE, BSFC, NO,, CO Blg(ltrelfie:;vdiltehSd
[116] gine pertor ANN dot concentration, fuel ’ ’ Xr =
and emissions . HC carbon-doped
blend ratio
quantum dots
[117] Engine performance RSM Engine load, fuel BTE. BSEC. NO.. CO Algal biodiesel-diesel
and emissions blend ratio ’ ’ X blends
. Engine load, biodiesel e g
[118] Engine per'formance ANN, GA blend ratio, injection BTE, BSEC, NOy, CO, Castor oil biodiesel
and emissions Smoke blends
pressure
Engine load, alumina
[119] Engine performance ANN nano-catalyst BTE, NOy, CO, UHC, Diesel-biodiesel with
and emissions concentration, fuel vibration alumina nano-catalyst
blend ratio
Engi rforman Engine load, producer BTE, BSFC, NOy, CO, Biodiesel-producer gas
[120] ngine pertormance ANN, RSM gas flow rate, biodiesel ’ ! i P &
and emissions ratio smoke dual-fuel
Engine performance 11 Multiple _Engine load, BTE, BSFC, NOy, CO,  Biodiesel-alcohol
[121] .. Regression, biodiesel-alcohol
and emissions . . smoke blends
Taguchi blend ratio
. Engine load, decanol Palm
[122] Engm:lz per.fo1.*mance ANN, RSM proportion, fuel blend BTE, BSsFrrCK’)lI:(Ie Ox, CO, biodiesel-decanol
and emissions ratio blends
Engine load, fuel
[13] Engineperformance  \\pig ga pgo - Injection timing, fuel BTE, UHC, NO, Jojoba biodiesel blends
and emissions injection pressure,
biodiesel blend
Combustion Engine load, fuel type, .. Diesel and biodiesel
(571 characteristics ANN, SVM injection timing Ignition delay (ID) blends
Combustion Chemical kinetic Hydroge.n Igmtl.on delay,. Biogas-hydrogen-—air
[124] L. concentration, combustion duration, .
characteristics model ;i . . mixtures
biogas—air ratio flame speed
Heat release rate,
[125] Combustion CFD Engine load, fuel type, cylinder pressure, Various biodiesel
characteristics heat loss parameters exhaust gas blends
temperature
CombusF lo.n Chemical kinetic Engine load, air—fuel Heat release rate, NOy, Diesel-natural gas
[126] characteristics, .
Emission model ratio, fuel type CcO dual fuel
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Table 4. Cont.

Ref. Theme Algorlfrl;’rrr)\éModel Input Parameters Output Parameters Fuel Composition
Combustion Engine lgad, fu_el He'at release rate, Diesel-tomato seed oil
[127] L. ANN, CFD blend ratio, engine cylinder pressure, ..
characteristics .. biodiesel blends
speed ignition delay
Combustion cylinder pressure, heat Diesel-safflower
[128] characteristics ANN Engine load, fuel type  release rate, ignition biodiesel blends

delay

When studying the performance and emission characteristics of compression ignition
engines, selecting appropriate parameters is the key. The selected parameters need to be
able to fully reflect the operating efficiency, fuel economy, and environmental impact of
the engine. In this paper, the key parameters such as combustion characteristics, BTE,
BSFC, torque, and emission (such as NOx, CO, HC, and particulate emissions) are selected
for discussion.

4.2.1. Combustion Characteristics

The combustion characteristics of biodiesel in diesel engines have an important impact
on its dynamic performance and emission performance. Combustion characteristics include
combustion rate, ignition delay, heat release rate, and cylinder pressure, which directly
determine engine efficiency and emissions.

Combustion rate refers to the speed at which fuel is burned in unit time, which is
usually expressed by the mass or volume change rate of fuel.

Ignition delay refers to the time between fuel injection into the combustion chamber
and fuel combustion, which is an important performance of the fuel injection system and
fuel spontaneous combustion characteristics. Heat release rate is the heat released from
the fuel per unit time, which reflects the energy release rate of the combustion process.
In-cylinder pressure refers to the pressure measured inside the engine cylinder, which is
usually measured at different stages of the combustion process. The cylinder pressure
reflects the gas state in the cylinder and has a direct impact on the working process and
performance of the engine.

In previous research, many mature thermal mathematical models have been widely
used in the field of combustion research. They are used to simulate combustion charac-
teristics and heat loss in compression ignition engines. In some papers focusing on the
analysis of experimental data, the existing models will be combined to support their conclu-
sions [124]. For example, Alhikami et al. [129] studied the spray ignition characteristics of
biodiesel and other fuels through constant volume combustion chamber experiments. They
made a comparative analysis with the prediction results of the model in the literature to help
explain the relationship between the difference in ignition delay and fuel characteristics.

With the wide application of biodiesel as an alternative fuel, based on the existing
theoretical framework, improving the accuracy of biodiesel combustion characteristics
prediction through experimental verification and model adjustment has become the focus
of research. Kamta Legue et al. [125] analyzed the effect of heat loss model changes on
biodiesel combustion characteristics in combination with experiments and simulations.
Through model prediction, the fuel ratio can be optimized, the heat loss can be reduced,
and the combustion efficiency can be improved.

Another idea is to simplify the complex chemical mechanism model and analyze
the interaction and influence of various components in the chemical reaction through the
chemical reaction kinetics analysis technology. This method is also common in predicting
the combustion characteristics of other fuels. For example, Liu [126] developed a simplified
multi-component combustion mechanism for predicting the combustion characteristics of
diesel natural gas dual fuel engines. In this study, several simplified steps and methods were
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introduced into the mechanism model, such as direct relationship graph, error propagation
extended direct relationship graph, and species-wide sensitivity analysis. Through cross-
reaction analysis, the model can accurately predict the combustion rate of fuel mixture, and
the main emissions generated. This method not only reduces computational cost but also
provides reliable prediction results. It is a direction worthy of further exploration in the
future of biodiesel-related research.

In addition, some researchers choose to combine ANN/ML technology with other
technologies to predict the combustion characteristics of biodiesel.

Karami et al. [127] used ANN and CFD models to predict the combustion character-
istics of diesel engines using a tomato seed oil-biodiesel mixture. The results show that
the ANN model can effectively predict the ignition delay, combustion duration (CD), heat
release rate (HRR), and cylinder pressure (CP) under different biodiesel mixing ratios, and
it is highly consistent with the experimental data.

Tuan et al. [57] compared the performance of ANN and SVM models in predicting the
ignition delay of diesel and biodiesel blends. The results show that SVM has better predic-
tion ability and accuracy than the ANN model. The authors suggest that SVM can be used to
predict the ignition delay of diesel and biodiesel engines to improve combustion efficiency.

Dharmalingam et al. [109] used the Bayesian regularization neural network model
to optimize the stratified injection strategy of waste edible oil biodiesel in diesel engines
to improve combustion performance. The model successfully predicted the combustion
characteristics under different injection conditions and reduced the generation of emissions
through optimization.

4.2.2. BTE and BSFC

The performance of biodiesel in diesel engines, especially BTE and BSFC, is an impor-
tant index to evaluate fuel economy and engine performance. BTE reflects the efficiency
of the engine in converting the chemical energy of fuel into mechanical energy, while
BSFC measures the amount of fuel consumed by the engine in generating unit power.
Biodiesel usually has high oxygen content, which can improve combustion efficiency, but
its low energy density may lead to the increase of BSFC. Therefore, how to accurately
predict and optimize the BTE and BSFC of biodiesel has become a research hotspot in the
academic community.

Although the traditional experimental methods can obtain accurate data, due to
their high cost and time consumption, more and more researchers turn to the modeling
method based on ML. These methods can deal with the complex nonlinear relationship
and accurately predict the BTE and BSFC of biodiesel under different operating conditions.

Many researchers have introduced ANN, ML, and other models in the study of
biodiesel engine performance.

Patnaik et al. [110] used the ANN model to predict the BTE and BSFC of biodiesel-
blended fuel made from waste edible oil. The researchers trained the ANN model through
a large number of experimental data and obtained the engine performance under different
loads and different fuel ratios. This study shows the advantages of an ANN model in
complex nonlinear data processing, especially when dealing with fuel mixtures under
transformation conditions it can provide high-precision prediction results. Similarly, Simsek
etal. [111] explored the effect of ANNs and RSMs to predict the BTE and BSFC of animal fat
biodiesel in diesel engines. Moreover, the fuel ratio was adjusted according to the predicted
results, optimizing the fuel economy of the engine.

Sharma et al. [130] compared the performance of enhanced regression tree (BRT) and
ANN in predicting BTE and BSFC of biogas biodiesel dual fuel engines. The use of the BRT
model shows its powerful ability in small samples and high-dimensional data. Especially
in practical engineering applications, the robustness of BRT makes it an effective alternative
to ANN. However, due to the complexity and high computational requirements of BRT
models, their application may be limited to some extent.
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In addition, some authors chose to use the gene expression programming (GEP)
model and compared it with ANN. Sharma et al. [112] compared the performance of
GEP and ANN in predicting the performance of biodiesel engines (including BTE and
BSFC). The GEP model generates prediction models through an evolutionary algorithm,
showing high prediction accuracy. The GEP model can generate accurate and explanatory
prediction models through its unique evolutionary algorithm. Although its computational
complexity is high, it has significant advantages in finding the optimal prediction formula
and processing complex nonlinear data.

With the development of biodiesel research, more and more researchers have begun
to explore the performance of biodiesel in the presence of different additives. At the same
time, the prediction of diesel engine performance when using biodiesel with additives has
become a hot research field. At present, many models can achieve this prediction goal
more accurately.

Sule et al. [113] discussed the effect of adding nano particles and ethanol to biodiesel
diesel blend fuel on engine BTE and BSFC. Through the ANN model, the researchers
predicted and optimized the effect of additives on fuel performance. This study shows
the advantages of combining experiment and modeling, especially when predicting and
optimizing complex fuel formulations containing multiple additives.

Similarly, Kumar et al. [114] used ML methods to predict the BTE and BSFC of
biodiesel-blended fuel with diphenylamine antioxidant and ceria nanoparticles in diesel
engines. The ML algorithm effectively captures the performance changes of different
additives and fuel ratios.

Ghanbari et al. [77] used the GP model to predict the BTE of biodiesel diesel blended
fuel with nanoparticles. The GP model also has certain interpretability, which can generate
accurate predictions of different fuel ratios and provide detailed performance analysis.
By simulating the natural selection process, the model generates and optimizes the fuel
performance prediction formula, which provides data support for the addition of differ-
ent nanoparticles. This study shows the potential of evolutionary computation in fuel
performance prediction.

Some researchers choose to combine ANNs and RSMs to make full use of their ad-
vantages: an ANN is good at processing complex data, while an RSM is outstanding in
optimization. This method can provide a more comprehensive optimization scheme and
has high practical application value. Aydin [54] and others combined ANNs and RSMs to
predict and optimize the BTE and BSFC of biodiesel diesel blend fuel. The ANN model is
used to predict the fuel performance, and RSM is used to optimize the fuel ratio to improve
BTE and reduce BSFC.

In the face of biodiesel containing additives, the optimization method combining ANN
and RSM also performs well. Pitchaiah [115] and others predicted and optimized BTE and
BSFC of diesel engines using Bael biodiesel and DMC additives through ANN and RSM
models. The study combines energy and exergy analysis to comprehensively evaluate the
fuel performance.

4.2.3. Torque

In a diesel engine, the torque performance of biodiesel is an important index to
measure its power output capacity. The torque directly affects the acceleration performance
and traction of the engine. Accurately predicting the torque output of biodiesel under
different operating conditions is very important for optimizing engine performance.

Some researchers also mentioned the attribute of torque when studying the prediction
model of engine performance. In the following research cases, the torque is predicted by
ANN, RSM, and a multi-objective optimization algorithm.

Taheri Garavand et al. [116] applied ANN to predict the torque performance of a
carbon-based biodiesel mixture doped with quantum dots in internal combustion engines.
The research shows that the ANN model can well predict the torque output of the engine
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under different load and speed conditions, indicating that this model has significant
advantages in capturing complex fuel combustion characteristics.

Umeuzuegbu et al. [117] used RSM to model and predict the torque of seaweed
biodiesel diesel blend fuel under different engine loads and speeds. The results show
that with the increase in load, the torque also increases, while the increase in biodiesel
proportion slightly reduces the torque output. This result proves the effectiveness of RSM
in capturing torque changes.

Khoobbakht et al. [118] used computational modeling and multi-objective optimiza-
tion technology to predict the torque of biodiesel made from castor oil in the engine. The
results show that castor oil biodiesel can provide higher torque output under high load
conditions, and the model optimization results show that the torque performance can be
further optimized by adjusting the fuel ratio and engine operating parameters.

4.2.4. Emissions

Co, NOy, HC, PM, smoke opacity, and other parameters are often considered when
studying the emissions of biodiesel [131,132]. Among them, NOy is one of the main
pollutants emitted by diesel engines, which is formed at high temperatures. The use of
biodiesel usually leads to an increase in NOy emissions, which is due to the high oxygen
content in biodiesel, resulting in an increase in combustion temperature. Therefore, the
generation and control of NOy has become an important research focus in the study of
biodiesel emissions [133]. The mixing ratio of the biofuel mixture needs to be optimized
according to engine operating conditions to balance the amount of NOy and other exhaust
emissions [134].

CO and HC emissions are usually related to incomplete combustion. Since the combus-
tion efficiency of biodiesel is typically higher than that of traditional diesel, these emissions
are often lower [135]. Researchers often track these pollutants to assess the environmental
benefits of biodiesel.

In actual biodiesel diesel engine experiments, researchers can usually obtain informa-
tion including BTE, BSFC, and various emissions parameters at the same time. Therefore,
while training models to predict BTE and BSFC, many studies also predict emission charac-
teristics (such as CO and NOy), as shown in Table 4. This comprehensive data acquisition
makes the prediction model more comprehensive and effective in application. However,
although the prediction of CO and NOx has received extensive attention in the research, the
research on HC emissions and smoke opacity is relatively less mentioned. This difference
may be related to the low emission of HC in biodiesel combustion, but it is still necessary
to further explore the prediction of HC in order to improve the accuracy of the overall
emission model.

ANN and RSM are considered to be accurate and reliable ways to predict HC emissions
and smoke opacity [54,111,113]. For example, Hosseini [119] and others used experimental
data to train multilayer perceptron feedforward neural networks through a back propa-
gation algorithm. In the prediction of emissions, the model shows high accuracy. When
predicting HC emissions, the model achieved a correlation coefficient of 0.98, indicating a
strong relationship between the predicted and actual values.

Singh et al. [136] proposed a hybrid model combining ANFIS and GA to predict
diesel engine performance and emission parameters, including HC emissions. This
method significantly improves the prediction accuracy of engine performance and emission
parameters. Compared with the ANFIS model alone, the hybrid model shows higher
prediction accuracy.

In addition, some researchers have trained models specifically on the data of emissions.
For example, Zhang et al. [137] use supervised ML tools to handle complex emission
prediction tasks. The specific models used include multi-output least squares support
vector regression and two types of ANN models (cascaded feedforward neural network
and multilayer perceptron neural network). The results show that mls-svr model performs
best in predicting CO,, CO, and NOy emissions.
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5. Conclusions

Biodiesel is increasingly becoming an important alternative to fossil fuels due to
its environmental and economic benefits. The development of predictive models and
optimization techniques is crucial for the widespread application of biodiesel.

This article reviews the prediction models and optimization techniques for the charac-
teristics and engine performance of biodiesel in recent years, analyzes statistical modeling,
ML, and evolutionary algorithms, and emphasizes their effectiveness in predicting biodiesel
characteristics (such as viscosity, density, and CN) and their impact on engine performance
indicators (such as BTE and BSFC).

These studies indicate that combining experimental data with advanced computing
techniques to improve prediction accuracy can provide important reference opinions for
optimizing biodiesel formulations and engine tuning. Although significant progress has
been made in this type of research, there are still challenges, such as relying on the data
quality and interpretability of complex models. Future research can focus on improving
these models and exploring hybrid methods to enhance their predictability and applicability
in biodiesel engine systems. Research on the performance prediction of biodiesel can
be expanded to include biodiesel derived from non-traditional biomass sources such as
microalgae and waste oils. Given that many countries are promoting policies for the use of
biodiesel, future studies could focus on increasing the proportion of biodiesel in fuel blends
to develop comprehensive predictive models. This would broaden the applicability of
these models. Additionally, research can be conducted to predict engine performance using
biodiesel under specific operating conditions, further enhancing the practical relevance of
these models.
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Nomenclature

ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network

BRT Enhanced regression tree

BSFC Brake specific fuel consumption
BTE Brake thermal efficiency

CFD Computational fluid dynamics
CN Cetane number

CcO Carbon monoxide

CTE Coefficient of thermal expansion
FAMEs Fatty acid methyl esters

GA Genetic algorithm

GEP Gene expression programming
Gp Genetic programming

GPR Gaussian process regression

HC Hydrocarbons

LSSVM Least square support vector machine
ML Machine learning

NOy Nitrogen oxide

PM Particulate matter

PSO Particle swarm optimization
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RMSE Root mean square error
RSM Response surface methodology
SVM Support vector machine
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Abstract: Compression ignition engines are widely recognized for their reliability and effi-
ciency, remaining essential for transportation and power generation despite the transition
toward sustainable energy solutions. This study employs ANSYS Forte to analyze the com-
bustion and performance characteristics of a direct-injection, single-cylinder, four-stroke
engine fueled with an n-heptane-based diesel surrogate. The investigation considers vary-
ing SOI timings (—32.5°, —27.5°, —22.5°, and —17.5° BTDC) and EGR rates (0%, 15%, 30%,
45%, and 60%). The simulation incorporates the RNG k-¢ turbulence model, the power-law
combustion model, and the KH-RT spray breakup model. The results indicate that the
optimal peak pressure and temperature occur at an SOI of —22.5° BTDC with 0% EGR.
Advancing SOI enhances oxidation, reducing NOx and CO emissions but increasing UHC
due to delayed fuel-air mixing. Higher EGR rates lower in-cylinder pressure, temperature,
HRR, and NOx emissions while elevating CO and UHC levels due to oxygen depletion
and incomplete combustion. These findings highlight the trade-offs between combustion
efficiency and emissions, emphasizing the need for optimized SOI and EGR strategies to
achieve balanced engine performance.

Keywords: IC engine; engine performance; exhaust emission; numerical analysis; FORTE

1. Introduction

Internal combustion engines have long been the dominant power source in the trans-
portation sector, with hydrocarbons serving as the primary fuel for over a century. The
increasing demand for heavy-duty vehicles is expected to drive diesel consumption at a
higher rate than gasoline. However, advancements in engine efficiency—achieved through
downsizing, turbocharging, and reductions in vehicle weight—are anticipated to mitigate
the growth in gasoline consumption [1]. The rapid expansion of the automotive industry
and the rising number of vehicles have significantly contributed to elevated exhaust gas
emissions, exacerbating environmental concerns and accelerating the depletion of fossil
fuel reserves [2,3]. In response to stringent emissions regulations and the growing emphasis
on ecological sustainability, the engine industry has intensified research into alternative
energy sources for next-generation powertrains [4,5].

Combustion characteristics and emission profiles are largely dictated by engine design
and operational parameters, such as pressure dynamics, fuel spray models, and injec-
tion timing, which play a pivotal role in overall engine performance [6,7]. To address
future demands for high-efficiency and low-emission combustion systems, researchers
have explored various advanced combustion strategies. Among these, low-temperature
combustion (LTC) has emerged as a promising approach, integrating several modern com-
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bustion techniques to achieve significant NOx reductions. However, LTC requires a high
activation energy threshold, posing challenges in its practical implementation [8,9].

In the automotive sector, exhaust gas recirculation (EGR) has gained popularity due to
its ability to significantly lower engine emissions, especially NOx emissions, a dangerous
environmental pollutant that must be minimized [10,11]. Part of the engine’s exhaust
gasses is diverted and reintroduced into the intake mechanism to properly dilute the
entering air-fuel mixture [12]. Instead of depending exclusively on aftertreatment systems,
this strategy seeks to reduce pollutant production during the combustion process, which
has been investigated as an alternative to conventional post-treatment techniques [13].
Recirculation of exhaust gasses has been widely recognized as an effective strategy for
reducing engine emissions. By introducing recirculated exhaust gasses into the intake
air, the overall oxygen concentration is reduced, leading to a lower peak combustion
temperature [12]. Since NOx formation is highly temperature-dependent, this reduction in
peak temperature significantly inhibits its production [13]. The primary objective of the
EGR system is not only to decrease combustion temperatures but also to ensure they remain
below 1500 °C (1750 K), a critical threshold beyond which NOx formation occurs through
a chain reaction mechanism. By maintaining combustion temperatures below this limit,
EGR effectively mitigates NOx emissions while contributing to improved environmental
performance. Moreover, adding ineffective exhaust gasses to the blend of air and fuel
can produce more uniform combustion surroundings, which may help lower particulate
matter and other controlled pollutants that are generally linked to concentrated regions of
higher temperatures and substantial air—fuel proportions [12,14]. The EGR has been widely
recognized for its ability to enhance engine efficiency while significantly reducing NOx
emissions. As the EGR rate increases, NOx emissions decrease due to lower combustion
temperatures, contributing to improved environmental performance [11,15,16]. However,
several studies have reported that EGR reduces the oxygen concentration in the intake
air, leading to incomplete combustion and a marginal decline in brake power and brake
thermal efficiency [17]. Additionally, the increased presence of inert gasses within the
combustion chamber elevates specific fuel consumption [18]. Nevertheless, recent research
indicates that optimizing EGR rates and incorporating alternative fuels can effectively
counteract efficiency losses while maintaining the NOx reduction benefits [19].

The combustion and performance characteristics of an engine are profoundly influ-
enced by the timing of fuel injection, commonly referred to as the start of injection (SOI).
Modifying the timing of both main and pilot injections significantly affects engine efficiency
as well as emissions of carbon monoxide (CO), nitrogen oxides (NOx), and unburned
hydrocarbons (HCs), as it alters multiple aspects of combustion dynamics [20]. One of the
primary advantages of direct fuel injection over conventional port-fuel injection systems
is the precise control it offers over injection timing, enabling more effective regulation
of fuel-air mixture formation and combustion processes [21]. Additionally, variations in
injection angles have been shown to influence combustion temperature and in-cylinder
pressure, further impacting emissions of HC, NOx, and CO [22].

Direct injection technology provides several key benefits, including enhanced volumet-
ric efficiency, reduced heat losses, and the ability to operate at higher compression ratios,
all of which contribute to improved engine performance and fuel efficiency. As a result,
the optimization of fuel injection strategies has become a critical research area for both
academics and original equipment manufacturers (OEMs). Particular attention has been
given to leveraging direct injection for advanced combustion techniques, such as stratified
charge direct injection, which aim to maximize efficiency while minimizing pollutant for-
mation [23]. The precise timing of fuel injection plays a crucial role in shaping combustion
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behavior by influencing fuel spray dispersion, turbulence interactions, and in-cylinder air
motion, all of which directly impact combustion efficiency and emissions [23].

A comprehensive understanding of in-cylinder flow dynamics and fuel-air mixture
formation is essential for optimizing combustion characteristics and minimizing emis-
sions [24]. While blending alternative fuels with diesel or gasoline can effectively reduce
emissions, it often results in a slight compromise in brake power output [25]. Diesel and
gasoline fuels consist of hundreds of chemical compounds, making it impractical to model
their combustion behavior with a complete reaction mechanism (RM) that accounts for
all chemical species. This challenge extends to diesel substitutes as well. Consequently,
surrogate fuels—simplified fuel models that emulate the key physicochemical properties
of real fuels—are widely used to facilitate combustion research [24].

Single-component surrogates such as n-dodecane and n-heptane are well-characterized
in terms of their physicochemical properties, making them valuable in studies related to
spray atomization, chemical kinetic modeling, and combustion simulation [26]. In nu-
merous combustion investigations, an n-heptane-based surrogate has been widely used
to reproduce the characteristics of diesel fuel and has generated a great deal of scientific
interest. Diesel fuel combustion’s varied characteristics can lead to unfavorable engine
performance and adverse environmental consequences, including loud knocking and high
emissions of particulate matter and nitrogen oxides [27]. An n-heptane-based surrogate is
widely accepted for diesel engine simulations due to its well-defined combustion character-
istics, simplified chemical kinetics, and computational efficiency [28]. Diesel is a complex
mixture of hydrocarbons, making multi-component surrogates more representative but
computationally demanding. n-heptane (C;Hj¢) provides a practical alternative by closely
approximating key diesel combustion properties such as autoignition delay and ignition
temperature [29]. With a cetane number of approximately 56, it effectively replicates igni-
tion behavior, making it useful for autoignition and combustion studies [30]. Furthermore,
its well-documented chemical reaction mechanisms enable reduced kinetic models, al-
lowing for faster, more accurate numerical simulations compared to multi-component
surrogates, which require solving intricate reaction pathways [31]. Despite these advan-
tages, n-heptane has notable limitations, primarily its inability to capture the aromatic
and cycloalkane components of real diesel, leading to discrepancies in soot formation and
emissions predictions [32]. Additionally, unlike diesel fuels, which exhibit a distribution of
ignition delays due to their diverse hydrocarbon composition, n-heptane follows a single
ignition delay behavior, making multi-component surrogates more suitable for advanced
combustion strategies like low-temperature combustion [33]. While these limitations re-
strict its applicability for precise emissions modeling, n-heptane remains highly valuable in
engineering applications where computational efficiency and fundamental ignition studies
are prioritized. It is widely employed in computational fluid dynamics (CFD) simulations
and chemical kinetics modeling due to its well-established reaction mechanisms and its
ability to approximate ignition delay and flame propagation under high-pressure diesel
engine conditions [30]. However, for real-world diesel performance optimization and emis-
sions analysis, more complex surrogates incorporating aromatics and cycloalkanes may be
preferable [34]. Despite this, n-heptane remains a practical and widely accepted surrogate
for diesel engine simulations, particularly when prioritizing computational efficiency and
fundamental combustion studies. This numerical study aims to analyze the behavior of a
diesel engine under varying SOI timing and EGR conditions while ensuring computational
efficiency by using n-heptane-based surrogate fuel.

The study considers EGR levels from 0% to 60% to comprehensively evaluate its
impact on combustion characteristics and emissions. While excessive EGR (>45%) can in-
troduce combustion instability due to oxygen dilution and lower in-cylinder temperatures,
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investigating a wide range of EGR rates provides valuable insights into the transition from
stable to unstable combustion regimes [35,36]. Additionally, high EGR rates significantly
influence HC and CO emissions due to incomplete oxidation, making it essential to quantify
the trade-offs between NOx reduction and combustion efficiency [37]. By extending the
analysis up to 60% EGR, this study aims to establish critical limits beyond which combus-
tion performance deteriorates, contributing to a more comprehensive understanding of the
practical feasibility of high EGR applications in diesel engines.

CFD simulation has been used to continue the analysis since numerical analysis has
become a valuable tool for studying and developing engine control techniques because
of its greater flexibility and cheaper cost. It plays a crucial role in combustion research by
providing insights into complex processes such as fluid flow, heat transfer, and chemical
reactions [38]. The simulation used ANSYS 2022 R1 Forte, one of the most excellent
tools for analyzing engine efficiency and emissions, to make optimization decisions [39].
This application can be used to analyze several engine data, including temperature, fuel
consumption, in-cylinder pressure, and emissions of HC, NOx, and CO. This software
simulates internal combustion engine combustion procedures by combining liquid fuel
spray, turbulent gas dynamics, and comprehensive chemical kinetics in a highly effective
way [40].

2. Materials and Methods
2.1. Simulation Setup

The operation of an IC engine was simulated using the FORTE 2022 R1 software, devel-
oped by ANSYS. This software integrates CFD for modeling liquid fuel spray, turbulent gas
dynamics, and transport phenomena with an industry-standard chemical kinetics solver
(CHEMKIN files). The inclusion of CHEMKIN ensures accurate resolution of chemical
reaction mechanisms and thermodynamic properties, enhancing the fidelity of combus-
tion simulations.

In this study, a Cummins N-14 single-cylinder diesel engine was utilized. The engine
configuration consisted of one exhaust valve and two intake valves, with direct injection
implemented in a quiescent combustion chamber. The detailed engine specifications are
presented in Table 1 [41].

Table 1. Engine specification.

Parameters Unit Description
Engine type Cummins N-14 DI diesel
Number of cylinders 1
Swirl ratio 0.5
Engine RPM 1200
Bore cm 13.97
Stroke cm 15.24
Displacement L 2.34
Connecting rod length cm 30.48
Compression ratio 16.0
Fuel injector type Common rail
Number of nozzles 8, equally spaced

Diesel fuel combustion was modeled using a simplified n-heptane chemical mech-
anism. The chemical kinetics were represented using a standard ANSYS Chemkin Pro
chemistry set, incorporating a semi-detailed n-heptane mechanism comprising 36 species
and 74 reactions [42]. The key chemical properties of this n-heptane-based surrogate fuel
are summarized in Table 2 [43].
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Table 2. Chemical properties.

Fuel Properties Unit Value
Density at 298 K kg/ m3 684
Boiling point K 371
Ignition temperature K 496

Lower heating value KJ/kg 44,926

Heat of vaporization KJ/mol 31.77
Viscosity mbPa-s 0.42

Cetane number 56

The lower density of n-heptane (684 kg/m?®) compared to conventional diesel
(850 kg/m?) poses significant challenges for high-pressure common rail systems, such
as those in Cummins N-14 DI engines operating at ~1000 bar, particularly in maintaining
consistent volumetric energy delivery and equivalence ratios. To address these challenges,
this study employed ANSYS Forte simulations with meticulously calibrated injection pa-
rameters, including pressure and duration, to ensure accurate fuel mass delivery and
combustion modeling. While the reduced density of n-heptane could theoretically increase
leakage risks in diesel-optimized fuel systems, the simulations assumed idealized sealing
conditions, a well-established approach in surrogate fuel studies that effectively isolates
combustion dynamics from mechanical inefficiencies. This methodology enables a robust
representation of spray development, mixture formation, and combustion phasing, pro-
viding critical insights into the adaptability of common rail systems to alternative fuel
properties without compromising analytical fidelity.

2.2. Governing Equations

Internal combustion engines utilize both the air-fuel mixture before combustion and
the burned byproducts after combustion as working fluids. To simulate the turbulent
reacting flows in diesel engines, ANSYS Forte was employed, incorporating turbulent
flows governed by the Navier-Stokes Equation with chemical blending and reaction. The
Eulerian-Lagrangian formulation method was applied to model reactive spray, a key char-
acteristic of diesel engine combustion [44]. The RNG k-¢ turbulence model was selected
due to its capability to accurately depict turbulent transport in highly sheared circulatory
flows at a lower computational cost [45]. This model enhances estimations of swirling
and recirculating flows for spray and combustion simulations by incorporating an addi-
tional component into the dissipation rate equation, improving precision in highly strained
flows [46]. However, while the RNG k-¢ model is more accurate than the standard k-¢
model, it struggles with identifying significant anisotropic turbulence and compressibility
effects, which can be critical in transient diesel combustion scenarios. Alternative turbu-
lence models, such as Large Eddy Simulation (LES) and the Reynolds Stress Model (RSM),
have demonstrated superior accuracy in analyzing complex flow systems, though at a
significantly higher computational cost [47].

To accurately capture flame propagation dynamics, the G-equation combustion model
was utilized, while the KH-RT droplet breakup model was applied to simulate the atomiza-
tion and breakup of diesel fuel spray, ensuring a realistic representation of spray-induced
turbulence. Additionally, the Han-Reitz heat transfer model was implemented to enhance
the accuracy of in-cylinder heat transfer predictions and thermal loss estimations [48]. To
strike a balance between computational efficiency and predictive accuracy, a simplified
chemical kinetics model based on an n-heptane single-fuel surrogate was used, incorporat-
ing 36 species and 74 reactions. This approach significantly reduced computational costs
while preserving critical combustion characteristics. However, the simplification of reaction
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pathways may introduce discrepancies in ignition delay, flame speed, and pollutant for-
mation, particularly for emissions such as NOx and soot [49]. A more detailed multi-step
reaction mechanism, although computationally demanding, could improve forecasting
accuracy by accounting for intermediate species and complex oxidation pathways [50].

2.2.1. Eulerian Phase

The fuel’s vapor phase and the surrounding air are both included in the Eulerian phase.
The Navier-Stokes equations of mass, momentum, and energy conservation represent the
motion of the Eulerian phase. Equation (1) is applied for mass conservation:

d(pv) | d(pou;) _
oF T ox om

M

where pv is the steam density and u; represents the Eulerian velocity. S, does droplet
evaporation derive the source. This phrase makes the link between the Eulerian and
Lagrangian phases possible. Using the term origin, the mass dissipated throughout the
liquid phase’s evaporation can be added to the Eulerian phase.
Equation (2) is utilized for the momentum conservation:
Ipuw;) __dp . 9T

d(pu) _
o oy, ox o

+38, ()

The stress tensor T;; is given by Equation (3):

2 au] ou; 2 9Juy
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where J;; represent as the Kronecker symbol.
Equation (4) is used for energy conservation:
dpver) | dpvern;) _ d(puy) | d(mijui) g
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Heat flux g; and e; are calculated through Equations (5) and (6).
1
e = ryvli 1 + Euiui, (5)
oT
q; = _vax/ (6)

]
where 7, is an adiabatic index of gas and k; represents the thermal conductivity index of
gas. S, is the inverse of heat change due to evaporation and conduction.

2.2.2. Lagrangian Phase

The liquid phase of the fuel is contained in the Lagrangian phase. Transfer param-
eters allow the two phases to be linked together, with this phase imposed on top of the
Eulerian phase.

duy 8(p1 = po) @)

L _F — F o\l = o)
TS (o — up) + Fnmv + o ,
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Equation (7) represents the conservation of momentum where Fr is the drag force,
Fpy is virtual mass. These can be solved using Equations (8) and (9)

_ 18u,CpRe, 1

F , 8
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2.2.3. Standard k-¢ Model

A semi-empirical method, the k-¢ model assumes that the flow is entirely turbulent
and particle viscosity has little effect. This framework determines the turbulent kinetic
energy k and its dissipation rate ¢ separately using two transport equations [44]. The
model works well in several turbulent scenarios and is stable and computationally effective.
Equations (10) and (11) represent the transport equations of k and «.

ag—tk +V- <p’ﬁk) - —%ﬁ'ﬁv-ﬂ+ (T—T): Vi+V- (”“‘TW) _pd+ W (0)

3 Pr.

k

.S
Here, Pry, Pre, C1, C2, Ce3 are constants of the model and W represents the negative rate
of the turbulent eddies of dispersing spray droplets.

2.2.4. RNG k-¢ Model

The Reynolds Average Navier-Stokes (RANS) is a time-averaged equation and can be
expressed as in Equation (12) [45].

_~ ~ o ~ ~ ~ ~ ~ - S
e L v. (pue) — —(2Cq — Cu)peV - u+V- (UEZTVE) +5 [Csl((f—l") . Vil — Ceope + CW | — pRe

R can be defined from the following Equation (13)

R — (13)
(14 pr)k
where 77 can be derived from Equation (14)
y = 5%, (1)

Scalar quantity S can be derived from Equation (15)
§=V2S§:8§, (15)

S represents the tensor of the mean strain rate, which can be derived from Equation (16)

_ ~ ~T
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In the ANSYS Forte model, constant values Pry, Pre, C¢1, Cen, Ce3 were modified to
account for the compressibility effect [45]. Equations (17)—(19) represent the constants” modifi-
cation.

_ —1+42Ce, —3m(n—1) + (~1)°V/6C,Cyyy

€3 — 3 (17)
where m = 0.5, n = 1.4 for an ideal gas
_
R — n(1- %)
SN (18)
(1+pr°)
With N
g JLifvu<0 (19)
0if Vu>0

With this method, the value of C, fluctuates between —0.9 and 1.72621, and ANSYS
Forte is automatically calculated based on the model’s other constant specifications and
flow circumstances. Table 3 shows the values of constants in both the standard k-¢ model
and the RNG k-¢ model.

Table 3. Constant values in standard k-¢ model and RNG k-¢ model.

Model Cy Cq Ce, Ce, 1/Pry 1/Pr, 7o B
Standard k-¢ model 0.09 1.44 1.92 —-1.0 1.0 0.769 - -
RNG k-¢ model 0.0845 1.42 1.68 - 1.39 1.39 4.38 0.012

2.2.5. Turbulent Flame Speeds

The flame front and flame position are tracked using a Favre-averaged G-equation.
Throughout combustion, the unburned zone’s flame front has a G-equation of zero-G
(x, t) <0, but the burnt zone has a G (x, t) > 0 [51]. Equations (20)—(23) can be written as
follows to calculate the flame speed [52,53].

%f+<;;mm>.v5:%m9wvélh%vé, (20)
b
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b k

Here, v represents the tangential gradient operator, u fluid velocity, ﬁvmx is the mov-
ing vertex velocity, p,, and p,, respectively, denote the average densities of the unburned

and burned blends. k is the Favre mean flame front curvature and Dt denotes turbulent
diffusivity. In the G-equation, S?, the turbulent flame can be derived from the follow-
ing equation.
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where Cg, a4, b1,b3 are model constants, laminar flame thickness, and the turbulence integral
length scale are, respectively, shown by I}, and Ir. The laminar flame speed 5S¢ can be
derived from the following equation.

x B
50 — g0 Tu P (23)
L L, ref Tu,ref pref ils

Here, ref is denoted as the reference condition, which is 1 atm and 298 K. F;; represents

factor for the diluent’s effect.

2.2.6. Injection Model

The spray division is captured using the KH-RT spray model [51]. Equations (24)
and (25) represent the KH-RT spray model, where Axp is the wavelength and Qg is the
rate of increase in the fastest-growing wave.

9.02r0(1+045VZ ) (1+04T7)
(14 0.865Wel67)%7

0.34 + 0.38Wel? T
Qxy = —, 25
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2.2.7. Exhaust Gas Recirculation

AkH = , (24)

The exhaust gas recirculation (EGR) percentage can be calculated using Equation (26) [54].

%of EGR = —"EGR (26)
mg + mf

where mgggr, m,, and m ¥ respectively represent the mass of EGR, mass of air, and mass
of fuel.

Balanced stoichiometric combustion reaction for n-heptane with air is shown in
Equation (27).

CyHq6 + 11(02 + 3.76N2) = 7CO, + 8H,0 + 41.36N, (27)

Molar mass of C7Hj¢ is 100 g/mol.
Equation (28) shows the stoichiometric air—fuel ratio and for n-heptane it is 15.1.

Mass of air

AFR = Mass of fuel

(28)
Mass of air, m, is 15.1 mg, then total mass of air and fuel is 16.1 mp.
Using Equation (26), mass of EGR can be calculated. On the other hand, the mass of
EGR is the sum of the masses of CO,, H,O, O,, and Nj. Consequently, the value of mass of
fuel, m ¢ can be obtained.

2.3. Computational Domain and Meshing

In ANSYS Forte, the Sector Mesh Generator is employed to construct the compu-
tational geometry required for simulations, optimizing mesh efficiency and reducing
computational costs. Given the combustion chamber’s design, which features eight fuel
injection holes, the computational domain is divided into eight periodic sectors to en-
hance simulation accuracy while minimizing computational demand. The 45-degree sector
model is generated based on key engine parameters, including bore, stroke, crevice width,

91



Energies 2025, 18, 1082

and squish. Additionally, the engine bowl geometry is utilized to define the combustion
chamber topology, ensuring an accurate representation of in-cylinder flow and combustion
dynamics. Figure 1 provides a visualization of the 3D combustion chamber geometry and
the mesh layout of the computational domain.

Front view Top view

<+ Cylinder wall

Cylinder head —s

Injector tip mmmmmps -

e

t

Pisto’r-’lx)owl bottom
(a) (b)
Figure 1. (a) 3D geometry of the combustion chamber; (b) mesh layout of the computational domain.

Ansys Forte software employs an immersed boundary approach to generate real-time
Cartesian volume meshes, which are automatically updated at each piston position based
on specified criteria and refinement parameters. When no mesh refinement is applied, the
global mesh size determines the background mesh resolution. Mesh refinement enhances
surface definition and computational accuracy in critical regions, adapting dynamically to
parameters such as velocity and temperature. Although finer meshes improve accuracy,
they demand higher computational resources, necessitating a balance between precision
and efficiency. To evaluate mesh sensitivity, six different grid resolutions were tested
under identical boundaries and initial conditions. Table 4 presents a comparison of the cell
numbers and their corresponding maximum pressure and temperature.

Table 4. Cell numbers and their corresponding maximum pressure and temperature.

Cell Numbers Maximum Pressure (MPa)  Maximum Temperature (K)
1386 8.34 1215
8262 8.46 1236
15,560 8.48 1237
17,619 8.51 1249
21,784 8.51 1240
32,671 8.5 1238

Considering the computational time with 17,619 cells, it has considerable capacity for
ensuring grid-independent solutions.

2.4. Boundary Conditions and Numerical Parameters

Boundary conditions play a crucial role in defining the model’s scope and ensuring the
accurate representation of physical phenomena in computational simulations. They explain
the effects of these models before going into detail about new behaviors and connecting
models from various physics theoretical frameworks. The boundary conditions employed
in this study are detailed in Table 5. To match with the injection requirement for the cylinder

displacement and proper air-fuel mixing, 53.5 mg of fuel was injected into the combustion
chamber [55].

92



Energies 2025, 18, 1082

Table 5. Boundary conditions.

Variables Unit Description
Engine speed rpm 1200
Piston temperature K 500
Cylinder wall temperature K 420
Cylinder head temperature K 470
SOI deg —17.5, —22.5, =275, —-32.5

Injection duration deg 7.75
Injected fuel mass mg 53.5

Heat transfer model Han-Reitz

Droplet breakup model

Combustion model

Kelvin Helmholtz-Rayleigh
Taylor (KH-RT)
G-equation

Additionally, various numerical parameters essential for the simulation setup are

presented in Table 6.

Table 6. Numerical parameters.

Variables Description
Turbulence model RNG k-¢
Epsilon coefficient 1 1.42
Epsilon coefficient 2 1.68
Viscosity coefficient 0.085
RNG beta parameter 0.012
Epsilon spray coefficient 1.5
Droplet breakup model KH-RT
Size constant of KH breakup 1.0
Time constant of KH breakup 40
Size constant of RT breakup 0.15
Time constant of RT breakup 1.0
RT distance constant 1.9
Droplet size distribution Uniform
Reaction mechanism n-haptane
No. of species 36
No. of reactions 74

2.5. Model Validation

The numerical simulation was performed using ANSYS Forte, and the model was
validated to ensure the reliability and accuracy of the obtained results. For validation,
the simulated data from the current study was compared with findings from existing

literature. Figure 2 illustrates the simulation outcomes for the n-heptane combustion

process, providing a comparative analysis of in-cylinder pressure between the present study

and previously published data, which demonstrate sufficient consistency. Approximately
2.47% [56], 1.18% [57], 2.12% [58], and 6.46% [24] variation in maximum pressure have
been identified compared to the current study, indicating that the current model can be

used for additional analysis.
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Figure 2. Comparison of in-cylinder pressure in the CI engine between the current study, Lapointe
et al. [56], Mondo et al. [57], Curran et al. [58], and Pei et al. [24].

3. Result and Discussion

This study provides a comprehensive evaluation of engine performance and com-
bustion characteristics for an n-heptane-based diesel surrogate, focusing on variations in
fuel injection timing and EGR. The SOl is a critical parameter, as it directly influences
combustion initiation, emissions, and overall engine performance. Optimizing injection
timing can enhance these characteristics, leading to a more efficient combustion process.

EGR is a widely adopted technique for reducing NOx emissions by recirculating a
portion of exhaust gasses into the intake air before combustion. The study examines key
in-cylinder parameters, including pressure, temperature, heat release rate, CO emissions,
unburned hydrocarbons, and NOx emission index (EINOXx), across different crankshaft
angles. These parameters were analyzed under varying SOI and EGR conditions to assess
their impact on engine behavior.

For model validation against the existing literature, the SOI and EGR values were
set at —22.5° crank angle before the top dead center (BTDC) and 0%, respectively, in the
current study. These conditions serve as the reference case for further analysis involving
different SOI and EGR levels.

3.1. In-Cylinder Pressure and Temperature

In an internal combustion engine, in-cylinder pressure and temperature vary
with crank angle due to changes in cylinder volume, combustion, and heat transfer.
Figures 3 and 4 illustrate the variation in in-cylinder pressure in terms of SOI and EGR
across crank angles. At 0% EGR and an SOI of —22.5° BTDC, the peak pressure reaches 8.51
MPa, but it decreases by 3.1%, 1%, and 1.31% when the SOI is shifted to —17.5°, —27.5°,
and —32.5°, respectively. This trend highlights the role of combustion phasing, where
intermediate SOI values (—22.5° to —27.5° BTDC) achieve higher peak pressures compared
to earlier (—32.5° BTDC) or later (—17.5° BTDC) injections. Earlier SOI provides extended
time for fuel-air mixing, potentially enhancing charge homogeneity, yet excessively early
injection may lead to wall-wetting and mixture cooling, reducing combustion efficiency.
Conversely, delayed SOI limits mixture formation and flame propagation, leading to incom-
plete combustion and lower peak pressures. The optimal SOI balances mixture preparation
and combustion phasing, maximizing pressure near top dead center (TDC) to improve
engine work output.

94



Energies 2025, 18, 1082

)
7.00 —+-S0I-17.5] 1 7.00
——S01-22.5 (] ~EGRO
S0l -27.5/ ! . ——EGR 15
6.00 - 501325 1 6.00 —~—EGR 30
1 + EGR45

~EGR 60

o
o
S

Pressure (MPa)
o
°
8

Pressure (MPa)
&
=
8

© >
o o
3 3
I3
o
3

-150  -120 -90 -60 -30 0 30 60 920 120 -150  -120 -90 -60 -30 0 30 60 90 120

Crank Angle (deg) Crank Angle (deg)
(a) (b)
Figure 3. In-cylinder pressure distribution at: (a) 0% EGR; (b) SOI —22.5°.
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Figure 4. In-cylinder temperature distribution at: (a) 0% EGR; (b) SOI —22.5°.

This variation in in-cylinder pressure highlights the combined effects of SOI timing
and EGR on combustion characteristics and engine performance. Reduced air—fuel mixing
time at SOI —17.5° and earlier combustion during the compression stroke at —27.5° and
—32.5° influence pressure development, as a portion of combustion energy counteracts the
upward piston motion, reducing peak pressure despite longer mixing durations. At an
SOI of —22.5° BTDC, increasing EGR from 0% to 60% results in a proportional pressure
reduction of 6.73%, 15.9%, 29.69%, and 31.09% at EGR levels of 15%, 30%, 45%, and
60%, respectively. This inverse relationship between EGR rate and peak pressure stems
from both physical and chemical effects. EGR introduces inert exhaust gasses into the
intake charge, diluting the air-fuel mixture and increasing the specific heat capacity of the
charge. This leads to a lower combustion temperature, as a portion of the heat released
during combustion is absorbed by the inert gasses rather than contributing to pressure rise.
Additionally, higher EGR rates reduce the availability of fresh air and oxygen, leading to
incomplete combustion and further suppressing pressure buildup.

The in-cylinder temperature distribution is significantly influenced by SOI timing
and EGR, mirroring pressure trends. At 0% EGR, peak temperature reaches 2228.12 K at
an SOI of —22.5° BTDC, decreasing by 45.54% (1213.34 K), 1.65% (2191.44 K), and 3.6%
(2147.83 K) at —17.5°, —27.5°, and —32.5°, respectively. Intermediate SOI timings (—22.5°
to —27.5° BTDC) yield higher peak temperatures compared to earlier (—32.5° BTDC) or
later (—17.5° BTDC) injections due to the balance between fuel-air mixing and combustion
phasing. While earlier SOI allows extended mixing, excessive advances may induce over-
mixing and cooling effects, slightly lowering peak temperature. Conversely, delayed SOI
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limits mixture preparation, resulting in less complete combustion and lower temperatures.
Furthermore, increasing EGR from 0% to 60% progressively reduces peak temperature
by 9.26% (2021.83 K), 15.71% (1878.12 K), 42.06% (1290.97 K), and 59.12% (910.75 K) at
EGR levels of 15%, 30%, 45%, and 60%, respectively. This reduction is attributed to the
dilution of the air—fuel mixture and the increased specific heat capacity of the charge,
which absorbs more combustion heat, leading to lower peak temperatures. While EGR
effectively suppresses NOx emissions by reducing combustion temperature, excessive EGR
can negatively impact combustion efficiency and power output due to slower burn rates
and reduced energy release.

3.2. Heat Release Rate

The HRR indicates the combustion rate, and Figure 5 shows the fluctuation in heat
release rate along the crank angle at various SOIs and EGR percentages. The combustion
process is divided into two phases: the first phase shows a slight increase in HRR due to
fuel-air mixing, where the dispersion of turbulent combustion rises with an increase in
the air-fuel mixture, while in the second phase, the HRR reaches its peak due to a higher
air-fuel equivalent ratio.
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Figure 5. The heat release rate variation at: (a) 0% EGR; (b) SOI —22.5°.

The HRR at SOI —22.5° was 384.14 ] /degree, increasing by 8.9% and 5.74% at SOI
—17.5° and —32.5°, respectively, but decreasing by 25.79% at —27.5°. At —17.5°, the higher
HRR is attributed to enhanced fuel accumulation within a shorter ignition delay, causing
combustion to begin abruptly but inadequately. Despite the higher HRR, it does not result
in higher pressure or temperature since combustion starts later in the expansion stroke. At
—27.5°, HRR is reduced due to premature heat losses and a more extended combustion pe-
riod. Partial recovery of HRR is observed at —32.5° due to improved premixed combustion,
though losses persist. Lower HRR limits peak pressure and temperature, but improved
mixing at —32.5° partially increases HRR. However, while varying EGR percentages from 0
to 15, 30, 45, and 60, HRR rates gradually decreased by 42.93%, 64.32%, 89.83%, and 91.93%.

3.3. CO Mass Fraction

The variation in carbon monoxide (CO) emissions is strongly influenced by SOI
timing and EGR, as shown in Figure 6. CO emissions primarily result from incomplete
combustion due to insufficient oxygen or a rich air-fuel mixture, with peak CO formation
occurring near combustion events. Later SOI timings (—17.5° and —22.5° BTDC) exhibit
higher CO emissions compared to earlier SOI timings (—27.5° and —32.5° BTDC) due
to reduced mixing time, leading to locally fuel-rich zones where incomplete oxidation
occurs. Advancing SOI improves fuel-air mixing, enhancing combustion efficiency and
lowering CO emissions by 14.62% and 7.43% at —27.5° and —32.5° BTDC, respectively.
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However, excessive SOI advancement can impact overall combustion efficiency, reducing
peak temperature and pressure. Additionally, increasing EGR levels affects CO emissions
due to temperature-dependent oxidation. At 15% and 30% EGR, CO emissions rise by
3.36% and 5.87%, respectively, due to lower oxygen availability and incomplete combustion.
However, at higher EGR rates of 45% and 60%, significant temperature reductions suppress
CO formation, leading to emission reductions of 3.53% and 40.45%, respectively.
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Figure 6. Variation in CO mass fraction across CA: (a) 0% EGR; (b) SOI —22.5°.

3.4. Unburned Hydrocarbon

The formation of unburned hydrocarbons (UHCs) in exhaust gasses is strongly in-
fluenced by the homogeneity of the air-fuel mixture, which plays a critical role in flame
propagation. The presence of squish volumes and crevices contributes to UHC generation,
as the flame tends to be extinguished in these near-wall regions.

At an SOI of —22.5°, UHC emissions were recorded at 937.75 g/kg-fuel. As the SOI
was retarded to —17.5°, the ignition delay decreased, leading to improved fuel consumption
and a 7.16% reduction in UHC emissions. However, when the SOI was advanced to —27.5°
and —32.5°, UHC emissions increased by 3.36% and 5.38%, respectively. This increase can
be attributed to prolonged ignition delay, which limits effective fuel-air mixing and results
in incomplete combustion.

At a fixed SOI of —22.5°, increasing the EGR rate to 15%, 30%, 45%, and 60% led to
a progressive reduction in oxygen concentration within the combustion chamber. This
resulted in a deteriorated air—fuel mixture, causing UHC emissions to rise by 2.03%, 3.09%,
3.53%, and 4.24%, respectively. Figure 7 illustrates the impact of varying SOI and increasing
EGR rates on air-fuel mixture uniformity, ignition delay, and subsequent UHC emissions.
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Figure 7. Unburned hydrocarbon emission depending on: (a) 0% EGR; (b) SOI —22.5°.
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3.5. Emission Indexed NOx (EINOx)

Figure 8 illustrates the EINOx distribution for various SOI and EGR rates, highlighting
the significant impact of increased EGR on NOx formation. As the EGR rate increases, the
reintroduction of exhaust gasses into the combustion chamber reduces oxygen availabil-
ity and lowers combustion temperatures, thereby suppressing thermal NOx formation.
The results indicate that at EGR 0%, NOx emissions are 1.27 g/kg-fuel, which decreases
substantially with increasing EGR. At EGR 15% and 30%, NOx emissions drop to 0.15 g/kg-
fuel and 0.03 g/kg-fuel, respectively, and are nearly eliminated at EGR 45% and 60%,
reaching 0.00 g/kg-fuel. Additionally, advancing the SOI further contributes to NOx re-
duction, as earlier combustion results in greater heat loss to the cylinder walls, limiting
peak flame temperatures. While higher EGR rates effectively mitigate NOx emissions,
excessive EGR can lead to combustion inefficiencies, necessitating careful optimization for

practical applications.
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Figure 8. EINOx distribution at: (a) 0% EGR; (b) SOI —22.5°.

3.6. Fuel Vapor Mass Fraction Contour

Figure 9 visually represents the n-heptane surrogate, illustrating fuel injection through
fuel vapor mass fraction contours at various crank angles (CAs). During the intake stroke,
the temperature remains nearly constant but gradually increases throughout the com-
pression stroke. After —20° BTDC, as fuel begins to be injected into the cylinder, the
temperature rises rapidly, reaching a maximum of 2228.12 K. This contour corresponds to

fuel injection at an SOI of —22.5° and a 0% EGR rate.
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4. Conclusions

Computational fluid dynamics is a powerful tool for evaluating combustion character-
istics and pollutant emissions in internal combustion engines. In this study, a CFD simula-
tion was conducted to analyze the combustion and emission behavior of a single-cylinder
direct injection diesel engine operating at 1200 RPM, fueled with an n-heptane-based sur-
rogate. The k-¢ RNG turbulence model was employed to predict combustion dynamics
and emissions. The study investigated the effects of fuel injection timing at SOI values of
—17.5°, =22.5°, =27.5°, and —32.5° BTDC, as well as the impact of EGR at rates of 0%, 15%,
30%, 45%, and 60%. The key findings are summarized as follows:

1. A fuel injection timing of —22.5° BTDC with 0% EGR results in increased in-cylinder
pressure, temperature, HRR, and EINOx emissions.

2. Advancing SOI to —27.5° and —32.5° BTDC leads to earlier combustion energy
release, which counteracts the piston’s upward movement, affecting overall engine
performance. While this can lower CO emissions due to improved fuel oxidation,
it also increases UHC emissions due to prolonged ignition delay and incomplete
combustion.

3. Advancing SOI significantly reduces NOx emissions by increasing heat transfer to the
cylinder walls during the early combustion phase.

4. Higher EGR rates reduce fresh air intake, leading to lower in-cylinder pressure, HRR,
temperature, and EINOx emissions. However, excessive EGR increases UHC and CO
emissions due to diminished oxygen availability and incomplete combustion.
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Abbreviations

The following abbreviations are used in this manuscript:

LTC Low-Temperature Combustion
RM Reaction Mechanism

RNG Re-Normalization Group

HRR Heat Release Rate

DI Direct Injection

KH-RT Kelvin-Helmholtz-Raleigh Taylor
OEMs Original Equipment Manufacturers
CI Compression Ignition

CO, Carbon Dioxide

HC Hydrocarbon

CcO Carbon Monoxide

NOx Nitric Oxides

IC Internal Combustion
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LES Large Eddy Simulation
RSM Reynolds Stress Model
AFR Air Fuel Ratio

3D Three Dimension

CA Crank Angle

TDC Top Dead Center

BTDC Before Top Dead Center
UHC Unburned Hydrocarbon

J/degree  Joule per degree
g/kg-fuel ~Grams per kilogram of fuel
RANS Reynolds Averaged Navier-Stokes

CFD Computational Fluid Dynamics
K Kelvin

SOI Start of Injection

EGR Exhaust Gas Recirculation
RPM Revolution Per Minute
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Abstract: Cylinder-pressure-based control is a key enabler for advanced pre-mixed combustion
concepts. In addition to guaranteeing robust and safe operation, it allows for cylinder pressure
and heat release shaping. This requires fast control-oriented combustion models. Over the years,
mean-value models have been proposed that can predict combustion metrics (e.g., gross indicated
mean effective pressure (IMEPg), or the crank angle where 50% of the total heat is released (CA50))
or models that predict the full in-cylinder pressure. However, these models are not able to cap-
ture cycle-to-cycle variations. The inclusion of the cycle-to-cycle variations is important in the
control design for combustion concepts, like reactivity-controlled compression ignition, that can
suffer from large cycle-to-cycle variations. In this study, the in-cylinder pressure and cycle-to-cycle
variations are modelled using a data-based approach. The in-cylinder conditions and fuel set-
tings are the inputs to the model. The model combines principal component decomposition and
Gaussian process regression. A detailed study is performed on the effects of the different hyperpa-
rameters and kernel choices. The approach is applicable to any combustion concept, but is most
valuable for advance combustion concepts with large cycle-to-cycle variation. The potential of the
proposed approach is successfully demonstrated for a reactivity-controlled compression ignition
engine running on diesel and E85. The average prediction error of the mean in-cylinder pressure
over a complete combustion cycle is 0.051 bar and of the corresponding mean cycle-to-cycle vari-
ation is 0.24 bar?. This principal-component-decomposition-based approach is an important step
towards in-cylinder pressure shaping. The use of Gaussian process regression provides important
information on cycle-to-cycle variation and provides next-cycle control information on safety and
performance criteria.

Keywords: internal combustion engine; combustion modelling; control-oriented modelling; eigen-
pressure; Gaussian process regression

1. Introduction

Concerns about global warming have resulted in dramatic reduction targets for CO;
emissions from on-road applications. This has boosted interest in high-efficiency and low-
carbon propulsion methods in the transportation sector. This has led to a trend towards
electrification for personal mobility, but the go-to technology for heavy-duty applications
has not yet been decided. High-efficiency and clean internal combustion engines together
with sustainable fuels are expected to play a significant role in the future [1-3]. Advanced
combustion concepts provide promising solutions to increase thermal efficiency. Con-
cepts like homogeneous charge compression ignition, partial premixed combustion, and
reactivity-controlled compression ignition (RCCI) have been proposed [4]. From these
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concepts, RCCI provides high thermal efficiency and fuel flexibility as well as controllability.
RCCI uses a combination of a low- and high-reactivity fuels during combustion [5,6]. By
changing the ratio between low- and high-reactivity fuels and their injection timing, it is
possible to optimise combustion phasing, duration, and magnitude. However, continuous
monitoring of the combustion process and regulation of this ratio and timing is required to
guarantee robust and safe operation [7,8].

1.1. Control Challenges for Advanced Combustion Concepts

The introduced advanced combustion concepts rely on controlled auto-ignition of the
in-cylinder mixture of air, residuals from previous combustion, and fuel. These concepts
are sensitive to changes in operating conditions, such as intake temperature and intake air
mixture. This can result in misfires as well as undesired large cyclic variations, which are
associated with unstable combustion. Also, mechanical limits for safe operation can be
violated. This can lead to engine damage.

Cylinder-pressure-based control (CPBC) is a key concept for guaranteeing safe and
stable operation of these advanced combustion concepts [8]. Typically, the measured in-
cylinder pressure is used in next-cycle combustion control strategies to minimise cyclic
variations in key combustion metrics. Several CPBC strategies have already been proposed
in the literature; an overview of applied combustion metrics and control approaches can
be found in [9]. Traditionally, these methods aim to realise the desired engine load and
combustion phasing by controlling gross indicated mean effective pressure (IMEPg) and
the crank angle (CA) where 50% of the heat is released (CA50), respectively. Combustion is
considered to be stable in case the cyclic variance in IMEPg is below 5%. For engine safety,

peak pressure (max(p)) and peak pressure rise rate (max (Z—g) ) are monitored.

Alternatively, CPBC opens the route to in-cylinder pressure and heat release shaping.
More precisely, contrary to the traditional control of individual combustion metrics, this
approach aims to control the entire in-cylinder pressure curve. Consequently, focus is on
the realisation of ideal thermodynamic cycles, which are associated with maximal thermal
efficiency [10]. This is a promising approach that can explicitly deal with in-cylinder-
pressure-related safety constraints and that further enhances robustness of the controlled
combustion process. However, for this approach, control development requires information
of the entire pressure curve.

1.2. Control-Oriented Combustion Modelling

Models are becoming increasingly important in control development. In addition to
their role as digital twins in simulations, they are used in control design, they can assist in
control calibration, and they can be embedded in model-based controllers. In this work, we
focus on the development of control-oriented models (COMSs) for controller design and
calibration. To support in-cylinder pressure shaping studies, the COM should describe the
relevant combustion characteristics, including the relation between the in-cylinder mixture
composition, intake manifold pressure, and temperature, as model inputs, and the full
in-cylinder pressure curve. In case of advanced combustion concepts, a description of the
cycle-to-cycle variations should also be available.

For the COMs, a distinction can be made between two types of models:

¢ Physics-based models, that use first-principle physical relations to capture combus-
tion behaviour;

e Data-based models, that use black-box modelling methods, where measurements are
used to create a mapping from input to output.

For combustion modelling, various models are found in the literature.

1.2.1. Physics-Based Combustion Models

To model important combustion metrics, e.g., IMEPg or CA50, basic physics-based
models have been proposed [11-16]. These models provide a deterministic and dynamic
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view of the relationship between actuation and combustion metrics without determining
the full in-cylinder pressure. To add new combustion metrics these models should be
extended with new descriptions to capture the behaviour of these new metrics. This
can be time-consuming and reduces the flexibility of these models during combustion
control development.

To model the full in-cylinder pressure, more complex first-principle models have been
proposed. These include a multi-zone model [17] and a fluid dynamic model [18]. The
complexity of these models results in computation times that exceed the combustion time.
Therefore, they are not suited as COMs. A reduction in computation time is achieved
by using static, data-driven, deterministic regression models to capture the behaviour of
important combustion metrics.

1.2.2. Data-Based Combustion Models

Various data-based combustion modelling approaches have been introduced. For
example, a Gaussian process regression (GPR) model to map in-cylinder conditions to
combustion metrics [19]; a state-space model identified using data to model combustion
phasing and peak pressure rise rate [20]; or a frequency response function method to
determine cylinder-individual behaviour [21]. These models are made to only provide
information on the modelled combustion metrics. Therefore, the model has to be extended
to include other metrics.

Capturing the full in-cylinder pressure using data, principal component decompo-
sition (PCD) models have been proposed. These models consist of a weighted sum of
principal components, where the weights are modelled using regression methods. A deter-
ministic neural network to capture the behaviour of the weights has been proposed [22].
To include cycle-to-cycle variations in the model, a GPR model to capture the behaviour
of the weights has been proposed [23]. Alternatively, a method that uses double Wiebe
functions to model the full in-cylinder pressure curve has been used [24]. The parameters
of the double Wiebe function are determined using measurement data. A random forest
machine learning approach is applied to describe the change in the mean behaviour and
cycle-to-cycle behaviour of these parameters. However, determining these parameters from
a measured in-cylinder pressure curve can be difficult.

The use of the PCD of the in-cylinder pressure has already been proposed in several
control and detection methods. This decomposition was used as input to a virtual emis-
sion sensor [25]. They were able to predict the air-to-fuel ratio and NO, emissions quite
accurately. Also, this decomposition was used for knock detection and avoidance [26,27].
They used the decomposition to derive a measure of proximity to engine knocking. This
decomposition was used as an alternative method to maximise the thermal efficiency [10].
They used the decomposition to derive a measure of the closeness of a measured in-cylinder
pressure to an idealised thermodynamic cycle.

1.3. Research Objective and Main Contributions

In this study, we will extend the work of Vlaswinkel et al. [23] by giving an extensive
analysis on (1) the comparison of different kernels in the GPR approach with regards
to prediction quality of important combustion metrics; (2) understanding the effects of
modelling a correlated process as an uncorrelated Gaussian process; (3) using a data set
with a wide range of operating conditions to show the effectiveness of the model.

This work is organised as follows. In Section 2, an overview is given of the experi-
mental setup and the data sets used. Section 3 describes the data-based combustion model,
including cycle-to-cycle variation. A detailed analysis of the effect on different hyperpa-
rameters is presented in Section 4. The prediction quality of the combustion model is
demonstrated and validated in Section 5.
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2. Single-Cylinder Engine Test Bench

In this section, we will give a description of the setup and the data sets used. A
discussion is provided on the chosen inputs to the model and how these are determined.

2.1. System Description

In this study, a modified PACCAR MX13 engine is used, as shown in Figure 1. Cylin-
ders 2 to 6 have been removed and only cylinder 1 is operational. To keep the engine
running at a constant speed, the electric motor of the engine dynamometer provides the
required torque. The focus is on RCCI combustion with a single injection of diesel to
autoignite the well-mixed charge of E85, air, and recirculated exhaust gas. The injection of
diesel does not ignite the mixture, but the ignition is caused by the increased temperature
as a result of cylinder compression. Therefore, there is a clear temporal separation between
the injection of diesel and combustion. The direct injection (DI) of diesel is handled by
a Delphi DFI21 injector connected to a common rail. The E85 port fuel injection (PFI) is
handled by a Bosch EV14 injector fitted into the intake channel set at 5bar. Both the DI
and PFI fuel mass flows are measured using a Siemens Sitrans FC Mass 2100 Coriolis mass
flow meter coupled with Mass 6000 signal converters. Boosted intake air is supplied at
8bar and the pressure and temperature are regulated using a pressure regulator and an
electric heater, respectively. The exhaust gas recirculation (EGR) fraction is regulated by the
EGR and back-pressure butterfly valves. The EGR flow is cooled down to approximately
room temperature by a cooled stream of process water. The condensation tank collects the
condensation from the EGR flow and is drained regularly. The expansion and mixing tank
are both attached to a surge tank to dampen pressure fluctuations in the intake and exhaust
manifold as a result of single-cylinder operation. The in-cylinder pressure is sampled at
0.2° CA with a Kistler 6125C uncooled pressure transducer and amplified with a Kistler
5011B. A Leine Linde RSI 503 encoder provides crank angle information at a 0.2° interval.
A Bronkhorst IN-FLOW F-106BI-AFD-02-V digital mass flow meter is used to measure
the mass of the intake air flow. Pressures and temperatures located at different locations
in the air path are measured every combustion cycle using a Gems Sensors & Controls
3500 Series pressure transmitter and Type-K thermocouples, respectively. The concentration
of CO; in the intake and exhaust flows are measured using an Horiba MEXA 7100 DEGR
system. Table 1 lists the main specifications of the engine setup.

Table 1. Main specifications of the engine setup.

Parameter Value

PFI fuel E85

DI fuel Diesel (EN590)
Compression ratio 17.2

Intake valve closure —173° CA aTDC
Exhaust valve opening  146° CA aTDC
Engine speed 1200 rpm

Oil temperature 90°C

Coolant temperature 87°C
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Figure 1. Schematic of the single-cylinder PACCAR MX13 engine equipped with exhaust gas
recirculation (EGR), direct injection (DI), and port fuel injection (PFI).

2.2. Data Set for Model Training and Validation

The model relates in-cylinder conditions, determined at intake valve closing, to a
resulting in-cylinder pressure. These conditions consist of a range of parameters related to
engine speed, cylinder wall temperature, and mixture composition, pressure, and tempera-
ture. Since the engine is running at a single speed and at steady-state conditions the most
relevant changes throughout the data set are a result of differences in mixture composition,
pressure, and temperature. These can be described using intake and fuelling conditions.
The chosen measurable parameters used to describe in-cylinder conditions are:

¢  Total injected energy
Qtotal = MprrLHVpEr + mpLHVpy, (1)

where mpp; and mpy are the injected masses of PFI and DI fuels, and LHVpp; and
LHVpy are the lower heating values of the PFI and DI fuels;
*  Energy-based blend ratio

BR — mPFILHVPFI; o)
Qtotal
e  Start of injection of the directly injected fuel SOIpy;
e  Pressure at the intake manifold pin;
e Temperature at the intake manifold Tj,;
e  EGRratio
COyin
X = : 3
EGR = &g, 3)

with COy i, and COy oyt the concentrations of CO; as a fraction of the volume flow at
the intake and exhaust, respectively.

The variations in the in-cylinder conditions for the training data and validation data
are shown in Figure 2. Figure 2a shows the distribution of each individual measure for
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the in-cylinder conditions. Figure 2b shows the joint distribution of the measures used
for the in-cylinder conditions. The data set contains 95 different measurements consisting
of ncyc = 50 consecutive cycles each. Both small and large cycle-to-cycle variations, and
non-firing behaviour are present within the data set. In this work, each cycle is used
and no averaging over the 7¢yc in-cylinder conditions and in-cylinder pressure traces in
a measurement is performed before analysis. The data set is randomly divided into a
training set of n1y,in = 75 measurements and a validation set of the remaining 1, = 20

measurements.
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Figure 2. Distribution of the in-cylinder conditions of the training (black) and validation data (red).

3. Combustion Model

In this section, the data-based approach to model the in-cylinder pressure is introduced.
It is based on the method presented in Vlaswinkel et al. [23]. The approach combines
principal component decomposition (PCD) and Gaussian process regression (GPR). To
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describe the in-cylinder pressure during the compression and power stroke, PCD is used
to minimise the amount of information required by separating the influence of the in-
cylinder conditions sjcc and the crank angle 6 into two different mappings. GPR gives
the possibility to model the in-cylinder pressure and cycle-to-cycle variation at different
in-cylinder conditions. In Vlaswinkel et al. [23], the entire combustion cycle, including
compression and expansion during motoring, is captured using the PCD/GPR method.
In this study, the compression and expansion effects are separated from the effects of the
actual combustion. The compression and expansion effects are modelled using adiabatic
compression and expansion, while the effects of the actual combustion are modelled using
the PCD/GPR method.

3.1. Principal Component Decomposition of the In-Cylinder Pressure

The in-cylinder pressure p(6, sj-c) at crank angle § € {—180°, —180° + ACA, ...,
180° — ACA, 180°}, with ACA the crank angle resolution, is decomposed as

p(6, sicc) = pmot(0, sicc) + w(sice) T £(6), 4)

where w(sj-) is a vector of weights and f(6) is the vector of principal components. In
these vectors, the ith element is related to the ith principal component (PC). The in-cylinder
condition sj-- € §* C S is in the set $* containing all in-cylinder conditions present in the
training set and the set S spanning the modelled operation domain. It is assumed that the
in-cylinder pressure during the intake stroke is equal to pip,.

The PCs are computed using the eigenvalue method. The 7in - ficyc in-cylinder
pressures p(6, sjoc) contained in the training set are used. The vector F; is the ith unit
eigenvector of the matrix PPT, where P € R"CAXMmain"leye with ney the number of crank
angle values. The elements in matrix P are defined as

[Plab == p(0a, siccp) — Pmot(8a, Sicc ) ©)

such that the ath row of P contains the values of the in-cylinder pressure at the ath crank
angle for all sjo~ € S* and the bth column of P contains the full in-cylinder pressure
atall § € {—180°, —180° + ACA, ..., 180° — ACA, 180°} for the bth sj--. The ith PC is
defined as

fi(6a) = [Eia. (6)
The weight related to the ith PC is given by

wi(sicc) = P(sice) Fis @)

where [P(sjcc)]la = p(6a, Sicc) — Pmot(6a, Sjcc)- The training set generates a single set
of PCs. These PCs are ordered by relevance, where i = 1 is the most relevant PC. The
determination of the PCs and the required number of PCs will be considered later in this
study.

3.2. Gaussian Process Regression to Capture Effects of In-Cylinder Conditions

GPR is used to estimate the behaviour of w(sicc) over the full operation domain S.
To include cycle-to-cycle variations, w(sjcc) is described by a stochastic process as

w(sicc) == N (d(sice), W(sice)) ®)

with mean @ (sicc) := E[w(sicc)] and variance W(sicc) := E[(w(sicc) — @(sicc)) (w(sicc)
— @(sicc))T]. During this study, the correlation between the output variables w;(sicc)
and wj(Slcc) Vi, j € {1, 2, ..., npc} with npc, the number of PCs, will be neglected (i.e.,
W (sicc) is a diagonal matrix), since most of the literature on GPR assumes the output
variables to be uncorrelated. This might affect the quality of the prediction of the cycle-to-
cycle variation.
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To improve the accuracy of prediction and the determination of hyperparameters,
normalised in-cylinder conditions 3jcc and weights @;(s{-) will be used. Scaling the in-
cylinder condition uses the mean jis: ; and standard deviation 7y ; of the jth in-cylinder
condition variable over the full training set S* as

SICC,j — Hsiec

©)

Siccj = ——
Osic

The scaling of the weights uses the mean Pt and standard deviation T of the ith
in-cylinder conditions variable over the full training set S* as

wj (stC) — flu,

G (10)

@i(sicc) =
Following [28], the scaled expected value and scaled covariance matrix without correlation
can be computed as

@i (51cc) = K(Sice, Siee, ¢)(K(Sjee, Sicer ¢) + @nl) @i (Sjec) (11)

and _
Wii(Sicc) = K(3icc, Sice, ¢) —

L . AT -
K(31cc, Sices ¢)(K(3iees Sice, @) + ¢nl) ™ K (Sicc, Sice, @),

where K(, -, ¢) is the kernel and ¢ and ¢y, are the kernel’s hyperparameters. The selection
of both elements will be discussed in the next section.

To optimise the set of hyperparameters ¢ and ¢, found in the kernels, the marginal
log-likelihood is maximised for each PC separately. The marginal log-likelihood is often
used in determining the hyperparameters in GPR and does not depend on the kernel type.
It is given by

(12)

1 Nexph
In(Prob(@; | iye, ¢)) = —lwiTK%\}cwi—Eln(det(Kg* ) - TS o), (13)

2 vC

where @; is a vector of the weights related to the ith PC at measured 5}y, in the training set
and Kgi:(VC = K(S_ikvc, S_ikvc, 4)) + qonl.

Finally, the scaled expected value and scaled covariance matrix are descaled to com-
plete the description of (8). The descaled expected value is given by

@;(Sice) = i(Sice) T, + flu, (14)
and the descaled covariance matrix is given by
Wii(sicc) = Wii(S1cc) T, (15)

3.3. Reconstructing the In-Cylinder Pressure with Cycle-to-Cycle Variation

The PCs f(0) (Section 3.1) and the estimate behaviour of w(sjcc) (Section 3.2) can be
combined to reconstruct a predicted in-cylinder pressure p(6, sicc). Using (4), the mean
and variance of the in-cylinder pressure can be described by

p(6, sicc) = E[p(8, sice)] = @ (sicc) f(6) + fmot (8, sice) (16)
and
62(6, sicc) = E[(p(6, sicc) — Elp(6, sicc)])’| = fTOW(sicc)f6),  (17)
respectively.
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4. Combustion Model Identification

The PCD and GPR require the selection of the number of PCs as well as the kernel
type and hyperparameters. The training set is used to determine the PCs and values for
the hyperparameters, while the validation set is used to determine the required amount of
PCs npc and the best performing kernel type. For this selection, an assessment is made on
the prediction accuracy of combustion metrics that are relevant for control [29]. To this end,
the mean absolute error (MAE) is analysed, which is defined as

1 Nyalleye

MAE(z) :=

, (18)

|Zk,meas — Zk,model
Ryallleye 15

where 1, is the number of validation measurements, and zZyeas and zy,o4e are the com-
bustion metrics resulting from the measured in-cylinder pressure and modelled in-cylinder
pressure, respectively. The following combustion metrics are studied:

e  gross indicated mean effective pressure,

IMEP, — / ) av(e) (19)
& Vy Jo——180° P

with displacement volume Vy;
e peak pressure, max(p(0));
e peak pressure rise rate, max (Z—S) ;

e crank angle where 50% of the total heat is released,

_ Q) _
CA50 = {9 ‘ (0~ 0.5} (20)
with the heat release given by [30]
1 a0 v 1
QO) = —pOVO) + [ p(e) Grdn— ——p(~1807)V(<180°); (1)

®  burn duration, CA75-CA25, with CA75 and CA25 computed in a similar fashion to CA50;
e  burn ratio,
CA75 — CA50

Ry, = ——2 =0
b ™ CA50 — CA10

(22)

4.1. Selection of Principal Components

The first hyperparameter is the number of PCs npc. The GPR formulation proposed in
Section 3.2 is not used in this part of the discussion. Figure 3 shows the four most relevant
PCs derived from the training data, as discussed in Section 3.1. This figure illustrates that
adding more PCs will add more higher-frequency components to the in-cylinder pressure.
Figure 4 shows the absolute error in the corresponding combustion metrics by comparing
measurements and model results. The modelled, decomposed in-cylinder pressure is based
on an increasing number of PCs, using (6) to compute the required weights. Each measured
cycle in the validation set is analysed separately. The figure indicates the minimum,
maximum, median, and first and third quartiles, while the crosses show outliers. It can
be seen that the largest gain in improvement is made at lower numbers of PCs. From the
used training and validation sets, it is concluded that having more than eight PCs gives a
negligible improvement. Therefore, npc = 8 is used in this study.
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Figure 3. Four most relevant principal components (PCs) resulting from the used training data.

10! . T T T
o a

Bl j § 100iaﬁx . n

fm*“@ﬁ‘ééx 1 = HBBBB*
S R R O N RN RS AR L LTINS
S| 1 enssbbiganyy 5wl EEERO00ORAAY
= SR R R I o
< ‘ [ €3) A L
S 105 | t ! 1= 10t N a

0 | | | = | l |
1 ) 10 15 20 1 ) 10 15 20

npc [ npc [

(a) Gross indicated mean effective pressure (b) In-cylinder peak pressure
g T T T 101; E
o L IV = b ]
E 100;»_ %gé;?;ﬁxxxx X X x EC 100%5 X % ?
= Peobaesinaticiial £ ol it :
% _92 \\\\ll\‘ﬁ\ﬁaaﬁaﬂﬁﬁﬁ /%\10_1?11155; >f>‘<"*>'<§§§§§§5
SRR ] 2 e ’BEHEBQHQ' i
y PLoo et 2E BEQEHE
< o = E R
o) - § wE
< | | b 10-4L \ \ | 2
= 1 5 10 15 20 1 5 10 15 20

npc [ npc [

(c) In-cylinder peak pressure rise rate
Figure 4. Cont.

(d) Crank angle at 50% total heat release

112



Energies 2024, 17, 1881

10! ¢ T 100§XXMX
3wl | oL
Q‘) 101&: ‘ 'fi:xxxxx . :|102:111>HBBQ h LR %y XY

q10~" g ﬁ* £ 10770 EHHQ =
e= 0 cilbpgetoedpdggad £ 1 tiiRUYOpege
52102 et 2 103 et S
= i septin b 3 B Vot
= 107°%F i E 10741 e
= E l i E t
07— 10 5 20 0T 10 15 20

nec [-] nec [-]

(e) Combustion duration (f) Burn ratio

Figure 4. Prediction error of combustion metrics for the validation data set using different numbers
of principal components npc. The box plot shows the minimum, maximum, median, and first and
third quartiles, while the crosses show outliers.

4.2. Selection of Kernel

Another important aspect in the quality of the model lies in the chosen kernel. This
describes the correlation between all measured w(sj-c) and predicted means @(sicc) and
variance W (sicc). The kernel types compared in this study rely on the distance measure

r(5ice, Sice) = \/(§1CC = 5icc) T2 (510 — Sie), (23)

where 5icc and §jo are scaled in-cylinder conditions. Each element of the kernel is
computed individually. The elements of the kernels used in this work are:

®  square exponential (SE):

ksg (Sice, Siec) = ¢f eXP(%V(S'ICC, §icc)2) (24)

with the set of hyperparameters ¢ = {¢;, O1};
e Matérn withv = 3:

khatern (51cC, Slcc) = @ (1 +V/3r(Sicc, §{cc)) eXp(—\@V(STICC, S_icc)> (25)

with the set of hyperparameters ¢ = {¢;, ®;};
e  Matérn withv = %:

kMatern (1cC, Slcc) i= @F (1 + V57 (81ce, Siec) + 5r(3ice, S'{Cc)2> X

(26)
exp (— V5r(Sice, s‘{CC))
with the set of hyperparameters ¢ = {¢;, O1};
®  rational quadratic (RQ):
- - _ _ Pu
kro (Sicc, Siec) = q’f(ﬁr(slccl Sfcc)z) (27)

with the set of hyperparameters ¢ = { ¢, ¢n, D1}

For each kernel, a distinction is made between with and without automatic relevance
determination (ARD). In the case where ARD is not used, the hyperparameter ®; reduces
to a scalar. In the case where ARD is used, the hyperparameter ®, is a diagonal matrix with
unique elements on the diagonal. The hyperparameters are determined by maximising the
marginal log-likelihood, as described in (13), using the training set.
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For the studied combustion metrics, Tables 2 and 3 show the mean absolute error
in the mean behaviour and in the standard deviation, respectively. For each combustion
metric, the best result is in bold. In some cases, the difference between the best and second
best option is negligible. The Matérn kernel with v = % gives the best result for most of
the combustion metrics in both mean behaviour and standard deviation for the data sets
used. The resulting MAE of the mean-value behaviour shows a comparable or improved
modelling error to those found in the literature, as illustrated in Table 4. Although the
model accuracy of this work seems to be similar, the results have to be handled with care.
It is difficult to give a fair comparison since most studies only give absolute errors and are
unclear on the operating conditions.

Table 2. Mean absolute error in the mean behaviour of key combustion metrics for the validation set
using different kernels with npc = 8. The best result for each combustion metric is in bold.

Without ARD With ARD
SE Matérn Matérn RQ SE Matérn Matérn RQ
V= % V= % v = % v = %
IMEP; [bar] 0.2255 0.2061  0.2088 0.2330 0.4161 0.2489  0.3006  0.2769
max(p(0)) [bar] 24564 1.6567  1.8007 1.9383 25273 1.6653  2.0811 2.1632
max( d9> [bar/CAD] 0.8269 0.7880 0.7962 0.7896 0.7546 0.7515  0.7987 0.7724
CA50 [CAD] 0.6121 0.5499  0.5591 0.5489 09507 0.5580  0.5258 0.5323
CA75-CA25 [CAD] 0.7178 0.6795  0.6884 0.6570 09371 0.5712  0.6364 0.5554
Ry [-] 0.1456  0.1407 0.1403 0.1325 0.2616 0.1239  0.1669 0.1284

Table 3. Mean absolute error in the standard deviation of key combustion metrics for the validation
set using different kernels with npc = 8. The best result for each combustion metric is in bold.

Without ARD With ARD
SE Matérn Matérn RQ SE Matérn Matérn RQ
V= % V= % v = % v = %
IMEP; [bar] 04775 0.3280 0.3770 0.3685 0.4960 0.4426 04113 0.4210
max(p (9)) [bar] 1.6716  0.9952 12239 1.1792 1.7561 1.4948 13761 1.4194
max(d9> [bar/CAD] 0.1177 0.1183  0.1152 0.1116 0.1288 0.1461  0.1571  0.1466
CA50 [CAD] 0.2806 0.2261  0.2379 0.2448 0.2664 0.2276  0.2533  0.2329
CA75-CA25 [CAD] 0.6130 0.5248  0.5424 0.5327 0.5144 04510 0.4930 0.4740
Ry [-] 0.1340 0.1296  0.1340 0.1355 0.2616 0.1393  0.1518 0.1584

Table 4. Comparison of the mean behaviour MAE of key combustion metrics between this work and
studies in the literature [11-13,18,20,24]. The best result for each metric is in bold.

This work [11] [12] [13] [18] [20] [24]
IMEP; [bar] 0.21 - - 0.43 0.22 0.033 0.008
max(p(0)) [bar] 1.66 - - - - - 0.20
max(de) [bar/CAD]  0.79 - - - 6.4 0.015 0.71
CA50 [CAD] 0.6 0.3 0.36 1.0 0.22 0.7 0.2
CA75-CA25 [CAD] 0.7 0.2 - - 24 - -
Ry [] 0.14 - - - - - -

5. Validation of the Prediction Quality of the Combustion Model

The main goal of this work is to predict the in-cylinder pressure and cycle-to-cycle
variation. In this section, the outcome of the model is compared to measurements using
the validation data set. The hyperparameters shown in Table 5 are used. These choices
for hyperparameters give the overall best prediction for the used data set, as discussed in
Section 4.
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Table 5. Selected hyperparameters and kernel used during the validation in Section 5.

Parameter Value
Nirain 75
Teye 50
npc 8
Kernel Matérn with v = 3

2

5.1. Overall Prediction Quality

First, the overall quality of the prediction is assessed. To evaluate the quality of the
predicted in-cylinder pressure over a complete combustion cycle, the following measure is
used for the mean behaviour:

1 nca .
ep(sicc) = — Y (p(6i, sice) — p(6i, sice)) (28)
nca 5
and for cycle-to-cycle variation:
NnCcA
eq, (s1cc) = Z (0, sicc) — 0p(6;, sice))- (29)

To assess the prediction quality of the combustion metrics, the observed average, minimum,
and maximum relative differences between the predicted and measured combustion metrics
are determined for the mean behaviour and cycle-to-cycle variation. In all metrics, a positive
value is related to predicting higher values compared to the measured values.

The results are summarised in Table 6. For the validation set, the data-based com-
bustion model is capable of accurately predicting the mean in-cylinder pressure curve:
absolute errors are smaller than 0.59 bar. The variance error is also small. Furthermore,
this table shows that, except for max(ie the mean behaviours have a good prediction
quality (with a mean relative error up to —3.9%). According to the minimum and maximum
relative difference, both over- and under-prediction are observed. Only the mean behaviour

of max(’;e) shows a bad prediction quality and the model always under-predicts these

values. This is expected, since peak pressure rise rates are difficult to predict; see also
Figure 4. The prediction quality of the cycle-to-cycle variations can be improved, since
most of the time the amount of cycle-to-cycle variation is over-predicted. Again, the worst

performance is observed in max ( Z—’S) .

Table 6. Prediction quality of the full in-cylinder pressure (absolute error) and of the related combus-
tion metrics (relative error) for the validation set.

Mean Behaviour Cycle-to-Cycle Variation
Mean Minimum Maximum Mean Minimum Maximum

ep [bar] 0.051 —0.40 0.59

eg, [bar?] 0.24 0.10 0.56
IMEPg 2.3% —15.9% 31.3% 65.6% 7.4% 89.0%
CA50 —3.9% —39.5% 17.9% 21.5% —40.3% 54.7%
CA75-CA25 —0.5% —24.7% 12.4% 56.0% 37.5% 68.5%
Ry —1.2% —21.6% 16.6% 57.0% 18.8% 79.1%
max(p 9)) 0.4% —5.9% 4.7% 37.0% —3.4% 84.5%
max(ﬂg) —22.7% —48.1% —7.2% —85.1% —252.6% 39.5%
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5.2. Variation in Start-of-Injection of Directly Injected Fuel

Figure 5 shows the modelled mean-value and cycle-to-cycle variations of important
combustion parameters over a range of SOIp; and the nominal conditions shown in Table 7.
The results are in line with the results shown in Table 6. Except for the peak pressure rise
rate, the mean value of the model is similar to that of the measurements. The modelled
trend in the peak pressure rise rate seems to correspond to the measured values. The
standard deviation of the model only matches with max(p(6)). The trend in the standard
deviation of the model of max (%) and R}, seems correct, but it is either too high or too
low. The standard deviation of the model does not match the measurements for the IMEPg,

CA50, and CA75-CA25.

Table 7. Nominal operating conditions of the simulated model for the results shown in Figures 5 and 6.

For reference, the ranges in experiments are indicated.

Simulated Measured
Qrot [K]] 23 22t024
BR [-] 0.8 0.75 to 0.85
SOIp; [CADaTDC] 40 40
Pim [bar] 1.55 1.45 to 1.65
Tim [°C] 45 40 to 50
Xgcr [-] 0.2 0.1t00.3
120
E % 100 | t
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& =
= ;W f
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| | | | | |
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Figure 5. Cont.
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Figure 5. Average and cycle-to-cycle variations of important combustion metrics (black) and the
measured distribution (red) for different values of SOIp; and the nominal conditions shown in Table 7
using the hyperparameters shown in Table 5.

5.3. Variation in Intake Manifold Temperature

Figure 6 shows the modelled mean-value and cycle-to-cycle variations of impor-
tant combustion parameters over a range of Ti;,, and the nominal conditions shown in
Table 7. Again, the results are in line with the results shown in Table 6. Similarly to
the sweep of SOIpj, the mean value of the model is similar to that of the measurements
except for the peak pressure rise rate. The modelled trend in the peak pressure rise rate
seems to correspond the the measured values. The standard deviation of the model only
matches with max(p(6)) and CA50. The trend in the standard deviation of the model of
CA75-CA25 seems correct, but it is too high. The standard deviation of the model does not

match the measurements for the IMEPg, max (Z—Z) ,and Ry,.
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Figure 6. Cont.
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Figure 6. Average and cycle-to-cycle variations of important combustion metrics (black) and the
measured distribution (red) for different values of Tj,, and the nominal conditions shown in Table 7
using the hyperparameters shown in Table 5.

5.4. Discussion on the GPR Modelling of Cycle-to-Cycle Variation

In both sweeps, the predicted standard deviations do not always match the measure-
ments. In (8), w;(stvc), and w;(stve) Vi, j € {1, 2, ..., npc} are assumed to be independent
to align with the available GPR literature; however, this independence is not necessarily the
case. To evaluate the correlation between weights at a fixed sjcc, the Pearson correlation
matrix R is used. This is given by

B ZZZi(wa,k(SICC) — fiw, (s10C) ) (wp e (S1CC) — flany, (S1CC))
[R(sice)lar = Fw, (S1CC) T, (S1CC) ’ (30)

where iy, (sicc) and Gy, (sicc) are the mean and standard deviation of the measured
weights at sicc, respectively. The values of R range from —1 to 1. When an element of R is
zero, there is no correlation between the two variables. However, when an element is —1 or
1 there is full correlation between the two variables. The determinant of the R can be used
as a measure for the amount of correlation, where det(R) ranges from 0 to 1. If det(R) =1
all variables are fully uncorrelated. However, if det(R) = 0 at least two variables are
fully correlated.

Figure 7 shows the distribution of the weights for 50 consecutive cycles of the first five
PCs running at a constant sj-- € S* with the least amount of coupling according to the
determinant of the Pearson correlation matrix. In Figure 7, the weights have been scaled as

wj(sicc) — flw; (S1cC)
Tw, (SICC)

w;(sicc) = (31)

to emphasise the coupling. The corresponding symmetric Pearson correlation matrix is

given by
1 0.6762 —0.3265 —0.2830 0.0240
1 —0.5037 0.0088  0.2896
R = 1 0.1368  —0.3906 (32)
1 —0.2157
1

with det(R) = 0.23. This shows that the distributions between some of the weights are
significantly correlated, as is also illustrated in Figure 7. Therefore, it is no surprise that the
quality of the prediction of the cycle-to-cycle variation deviates from the proposed model.
This emphasises the importance of developing GPR methods that include the correlation
between the outputs.
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Figure 7. Distribution of the weights for 1¢yc = 50 cycles for the first five PCs for a constant sjo € S*
with the least amount of coupling according to the Pearson correlation matrix.

6. Conclusions

In this study, a data-based model for the in-cylinder pressure and the corresponding
cycle-to-cycle variations is proposed. This model combines a PCD of the in-cylinder
pressure and GPR to map in-cylinder conditions and account for cyclic variations.

The proposed data-based modelling approach is successfully applied to an experi-
mental RCCI engine setup. The assumption that the model can be split into a general
principal component part and operating-condition-dependent weights is confirmed. A
detailed analysis of the hyperparameters for the PCD and GPR is performed. It is found
that, for the used data set, more than eight PCs do not further improve the accuracy of
the decomposition based on important combustion metrics. For the GPR, the Matérn
kernel with v = % and without ARD gives the best results. The average prediction error
of the mean in-cylinder pressure over a complete combustion cycle is 0.051 bar and the
corresponding mean cycle-to-cycle variation is 0.24 bar?. The prediction quality of the
mean behaviour of the evaluated combustion metrics has a relative inaccuracy ranging
from —3.9% to 2.3%. The prediction error of the cycle-to-cycle variation of the evaluated
combustion metrics ranges from 21.5% to 65.5%. The peak pressure rise rate is traditionally
hard to predict; in the proposed model it has an inaccuracy of —22.7% in mean behaviour
and —85.1% in cycle-to-cycle variation.

In the presented approach, the correlation between w;(srvc) and w;(stvc) has been ne-
glected for ease of implementation. To improve the accuracy of the cycle-to-cycle variations,
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this correlation should be added. However, there are very few approaches that extend the
GPR framework to including correlation between model outputs known in the literature.

In conclusion, the mean-value performance of our model is comparable or shows improve-
ments compared to models found in the literature. This shows that, even when neglecting
correlation, the model performs well. The model can be used for in-cylinder pressure shaping
as proposed in Vlaswinkel and Willems [10]. Furthermore, it can be used in model-based
optimisation approaches that take into account cycle-to-cycle variations and safety criteria.
When combined with the PCD-based emission model of Henningsson et al. [25], the model
provides a base for optimisation approaches with emission constraints.
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Abstract: This study focused on evaluating the combustion ignition, burnout, stability,
and intensity of Hwange coal and Pinus sawdust blends within a drop tube furnace (DTF)
through modelling. The cocombustion of coal with biomass is gaining attention as a strategy
to improve fuel efficiency and reduce emissions. Hwange coal, a key energy source
in Zimbabwe, produces significant emissions, while Pinus sawdust offers a renewable
alternative with favourable combustion properties. Optimising cocombustion performance
is highly dependent on understanding various mass- and energy-conservation-related
parameters in detail, hence the motivation of this study. The fuels of interest were blended
through increasing the Pinus sawdust mass percentages up to 30%. A DTF that is 2 m
long and 0.07 m in diameter was modelled and validated successfully using particle
residence time and temperature profiles. An increase in blending resulted in an increase
in combustion intensity, as made apparent by the heat of reaction profiles, which were
also shown to be dependent on the kinetic rate of the reaction between CO and O, to form
COs,. The burnout rate profiles demonstrated that as blending increased, heat was released
more abruptly over a short distance; hence, combustion became less stable. The burnout
rate profiles were shown to be dependent on the kinetic rate of reaction between char and
O; to form CO. The effect of DTF wall temperatures (1273, 1473, and 1673 K) was also
studied, with the results showing that at a low temperature, the reaction zone was delayed
to a distance of 0.8 m from the injection point, as compared to 0.4 m at 1673 K. In summary,
this study demonstrated that combustion ignition, burnout, and intensity increased with
the blending ratio of Pinus sawdust, whilst combustion stability decreased.

Keywords: ignition; burnout; combustion stability; combustion intensity; drop tube furnace

1. Introduction

The cocombustion of coal with biomass waste has been under investigation for a long
time with the main aim of reducing emissions traditionally obtained from coal combustion
on its own [1]. Varied experimental techniques ranging from pilot-scale to actual power plant
combustion scenarios have been studied over the years with success [2,3]. With the continued
developments in technology, the modelling of cocombustion has also taken a prominent role
as engineers seek to optimise the combustion process by extracting maximum energy and
maximum waste incineration at reduced emissions and minimum cost [4,5]. Some researchers
then saw it fit to characterise the change in combustion parameters from a technical point
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of view, thus studying the influence of cocombustion on burnout, ignition, stability, and
intensity [6]. Being able to predict the influence of cocombustion on various combustion
parameters is of practical importance to furnace operators in industry. Good and predictable
ignition properties imply that combustion reactions commence within the expected time
range, thus avoiding problems caused by premature or delayed ignition [7]. Consequently,
the energy absorbed from the furnace to offset ignition is accurately predicted, leaving
furnace operators with useful optimum operating parameters.

Burnout can be described as the ability of a fuel sample to extinguish its combustible
material, which includes the volatile matter and char constituents. With respect to solid fuel
combustion, most researchers monitor burnout in the same manner by measuring the char
content only at the furnace exit in comparison to the initial fixed carbon content [7]. Benim
et al. [2] during their studies with pre-dried lignite and torrefied biomass and Gao et al. [§]
during their studies with Colombian coal and woodchip directly or indirectly showed
improvement in the overall burnout as blending increased when they monitored the
char content in the products. It is important not to overlook the homogenous gaseous
combustion products when analysing burnout since carbon monoxide and other unburnt
gaseous constituents also influence the overall burnout percentage [9]. Some heavy volatile
components released during the devolatilisation process of solid fuels require relatively
long residence times to attain complete combustion [10]. As far as the researchers are
concerned, no CFD studies have been reported that have managed to monitor both carbon
in ash and carbon monoxide in flue gases concurrently as a function of burnout percentage.

The application of mass conservation towards cocombustion entails looking at the
quantity and composition as well as the rate of production or depletion of combustion
species. By extension, the validation of a cocombustion model is usually based on
measuring the species molar fraction along and across the furnace. The application of energy
conservation towards cocombustion modelling entails monitoring temperature-related
parameters. The basic parameters that are mainly used for cocombustion model validation
are temperature and wall heat flux [11]. Of equal importance, but less alluded to during
the combustion modelling of boilers, are flame stability and intensity. Combustion stability,
a measure relatively linked to ignition and homogenous combustion, is generally used
to monitor the predictability of a combustion process [6]. When fuel blending is being
monitored, it is imperative that stability is maintained to avoid any flashback or liftoff
flames or, in extreme cases, flame extinction [12]. Ma et al. [13] monitored the heat flux
profiles that are exhibited by blended samples, which can be used to evaluate combustion
stability and intensity. To be more accurate, it makes sense to monitor combustion stability
through plotting rate of heat release profiles, as residence time is also incorporated into the
analysis. It is expected that homogeneous volatile combustion is less stable compared to
heterogeneous char combustion, which means that highly blended samples are less stable
when comparing the activation energy required in each case [14,15].

Interestingly, the lesser the stability, the higher the combustion intensity, which is
closely linked to the heat released, as demonstrated by Marangwanda et al. [6] during their
studies with coal and sawdust. As far as experimental procedures are concerned, the use of
image processing techniques will likely give a complete understanding of flame behaviour,
which can help with the evaluation of combustion intensity. Unfortunately, most of these
experimental procedures require specialised equipment [16,17].

Table 1 summarises different modelling studies that have been carried out and how they
reported on ignition, burnout, intensity, and stability. The ability to capture almost all of these
combustion parameters by CFD makes it an indispensable and affordable tool with regard to
cocombustion optimisation. This study addresses the gap existent with regard to combining
most of these combustion parameters whilst optimising the cocombustion process.
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Table 1. Summary of methods used to report on combustion parameters.

Method of Reporting on
Description Fuels - - -
Ignition Burnout Intensity Stability
Combustion in Char
a 150 kW reactor [18] Coal and wheat straw ~ Temperatures percentage - -
Lab-scale bubbling Coal, lignite, spruce
fluidised bed wood, wheat straw, - [iz}:)‘tl)grr:t - -
combustor [19] and hazelnut shell
Cocombustion in Coal and sewage
a 660 MW tangentially lud & - - Heat flux -
fired boiler [4] sludge
Experlment.al stu(':ly on Coal, poplar wood, Temp.ergture Image
combustion with Radiation - - .
. and corn stalks processing
nitrogen [20] spectrum
Cocombustion in Coal slurry Ternperature Species molar ) )

a 500 MW boiler [21]

fractions

2. Experimental Methods
2.1. Fuel Blend Characterisation

The physical and chemical fuel specifications of the fuel blends of interest have been
detailed in a prior publication by the same authors [22]. Hwange coal, a bituminous
thermal-grade coal, is widely used in Zimbabwe’s power generation due to its high
availability and established infrastructure for extraction and utilisation. However, its
combustion leads to significant greenhouse gas emissions, making it necessary to explore
alternative co-firing strategies. Pinus sawdust, on the other hand, is an abundant
waste biomass in Zimbabwe, primarily sourced from sawmill operations in the Eastern
Highlands. Its high volatile matter and lower sulphur content make it a suitable candidate
for cocombustion with coal, contributing to emission reduction and improved combustion
characteristics [6,22]. Using the fuel characterisation results, the volatile composition
for each blend was determined. It was assumed that each volatile had a lumped form
represented by C,H,OcNg4Se regardless of the various constituents of volatiles such as
CHy4, CO, etc. Using proximate, ultimate, and calorific experimental data, the lumped
volatile composition for each fuel blend was derived through analytical methods [23], as
demonstrated by the equations in Table 2.

Table 2. Volatile composition determination.

Constituent %Weight %Mol
C 7Cda\fn\_/[:§daf 11*2 x [Cda\f/;/[:jdaf} X Mryglatie= @
: e ] et
o) vcﬁzfaf % X :V?\/OIIZZJ X Mryolatile= €
: Wi e -VI;\IEZZJ  Mrvetatte=
S V?\C/lljaf 317 X V?\(jljaj X Mrylatile= €
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Here, VM and FC represent volatile matter and fixed carbon, whilst the subscript daf
denotes “dry ash free”. C, H, N, S, and O represent carbon, hydrogen, nitrogen, sulphur,
and oxygen. To determine the enthalpy of formation for the volatile (Hg,,), Equation (3)
was employed after rearranging Equations (1) and (2).

Hf,fuel = FCdaf X Hf,char + VMdaf X Hf,Vol (1)
Hf,char : C+ 0, =COy (_32'8M]/kg>; Hf,char = LCV a1 ()
HCV 1— h] tent H20 X MCar Har X MI‘(HQO)
H —1CV _ coa atent, _ Ha h 3
f,char coal 1— MCar _A Shar 2 % Mr (H) X latent,H20 ( )

This method offered a more comprehensive approach to representing fuel properties,
avoiding the assumption that the fuel sample consists solely of methane or butane, as
suggested by some authors [24,25]. The proximate and volatile compositions of the blends
that were used are presented in Table 3.

Table 3. Chemical compositions of fuel blends.

Fuel Blend Proximate Analysis Volatile Molar Volatile Enthalpy of Formation
on a Dry Basis Composition Molar Mass for Volatile (Hg 1)
100HC 53.97FC, 23.10VM, 22.93Ash Cp.292H2.20000.618N0.08650.014 17.24 —5.904 x 107
90HC10PS 48.21FC, 29.91VM, 21.88Ash C0_535H2.102001556N0406465().0111 18.68 —7.862 x 107
80HC20PS 46.35FC, 31.82VM, 21.83Ash Co559H2.3600.618N0.058550.011 20.11 —9.819 x 107
70HC30PS 46,02FC, 33.74VM, 20.24Ash Co579H2.61500.683N0.05250.011 21.55 —1.178 x 108
100PS 15.62FC, 80.68VM, 3.70Ash C1.107H2.3700.99Np 01 31.63 —2.548 x 108

The molar ratio of carbon showed an increase with blending from 0.292 up to 0.579 for
a 30% blending ratio, as summarised in Table 3. Similar trends were also experienced with
hydrogen and oxygen though to a lesser magnitude. Nitrogen in the volatile decreased with
blending from 0.086 to 0.052 as blending increased, whilst the sulphur content decreased
marginally with blending. This is supported by other authors indirectly through the assertion
that biomass contains higher volatile matter than coal. This translates to a gradual decrease in
energy content since the H/C ratio of blended volatiles is lower than that of the unblended
sample [26]. Maisyarah et al. [27] also suggested that a lower H/C ratio tended to result in
a higher mass loss for the overall sample at the end of the combustion process. As such, a higher
mass loss was expected for the blended fuel samples. The kinetic parameters of the fuel blends
as obtained from thermogravimetric analysis are summarised in Table 4, representing the
homogenous (volatile) and heterogenous (char) combustion stages. Detailed information about
kinetic parameter determination is available in a previous paper by the same authors [22].

Table 4. Activation energy and pre-exponential factor values for the fuel blends heated in air.

Fuel Blend Stage E. (kJ/mol) A (s
100HC Volatile combustion 92.98 5.84 x 10°
Char combustion 52.90 1.16 x 103
Volatile combustion 107.89 5.05 x 100
90HCI0PS Char combustion 68.99 2.78 x 104
Volatile combustion 104.95 2.94 x 108
80HC20PS Char combustion 90.52 9.53 x 10°
Volatile combustion 106.05 2.72 x 10°
70HC30PS Char combustion 103.85 6.12 x 107
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2.2. Drop Tube Furnace Experimental Setup

The drop tube furnace (DTF) experimental setup consisted of an alumina tube serving
as the furnace, with a total height of 2032 mm and an internal diameter of 70 mm. A
detailed description of the setup and procedure is available in the work of Marangwanda
and Madyira [28]. The furnace had an alumina silicate refractory lining, with heating
tubes systematically positioned around the alumina tube. Fuel blends were introduced
through a 2 mm cooled injector at 373 K, while a 6 mm cooled sampling probe at the
reactor exit facilitated collection. Within the fuel feeding system, 15 g of fuel blends
was placed in a test tube, which was connected to the primary carrier gas flowing at
an average rate of 2.5 NL/min (within a 1.5-3.5 NL/min range). An electromechanical
vibrator enabled controlled fuel feeding, ensuring fluidisation by the primary carrier gas,
which transported the fuel into the outgoing pipe leading to the furnace. The water-cooled
sampling probe maintained a suction flow rate of 6-15 NL/min, while the secondary
gas was preheated to 1273 K and supplied at 10-20 NL/min, depending on the required
furnace residence time. The collecting probe was positioned at variable distances 520 mm,
920 mm, and 1320 mm along the furnace centreline at pre-determined experimental
conditions. A bag filter was located at the outlet such that char and ash could be collected
for subsequent analysis.

During devolatilisation, the system operated at a single set temperature of 1273 K,
whereas during char combustion, three furnace temperature settings (1273 K, 1473 K,
and 1673 K) were investigated. The injector was modelled to introduce fuel in a normal
direction to the inlet, making an assumption that no swirl effects existed. The experimental
procedure was conducted in two distinct stages. The first stage was performed under
a nitrogen atmosphere, simulating the devolatilisation process, while the second stage
took place in an oxygen-enriched environment, representing char combustion. During
the first stage, only solid char was collected and analysed, as the released volatiles were
carried away with the exhaust gases. Given that devolatilisation requires short residence
times, a 520 mm probing position was deemed adequate for data collection. Following char
collection and characterisation, the second stage involved reintroducing the char into the
DTF under an oxygen-enriched atmosphere (3% O;, 97% N»), leading to the final production
of ash. The use of a two-stage approach was necessitated by DTF operating temperature
limitations and combustion atmosphere constraints. A controlled 3% O, concentration
ensured the development of gradual combustion profiles suitable for this study. Higher O,
concentrations tend to accelerate combustion reactions, potentially leading to intensified
reaction zones or even explosive conditions, making precise measurement difficult with
the available instrumentation.

These observations were experimentally demonstrated by Zou et al. [29] whilst
studying the combustion of pulverised coal under various atmospheres ranging from
21% to 50% O;.

Within a DTE, the fuel is exposed to an isothermal heating rate within the range of
10* and 10° K/s, which is quite high when compared to any TGA analysis. Liu et al. [30]
studied the cocombustion kinetic parameters of biomass and plastic at high heating rates
within the range of 10* K/s. Their findings demonstrated that in as much as combustion
parameters vary by large factors when the heating rate increases, kinetic parameters
such as the activation energy and pre-exponential factor succumb to the compensation
effect at high heating rates. The heating rate increased with activation energy at first; it
then decreased and eventually remained at the same value for heating rates of 750 and
1000 K/min. However, Czajka et al. [31], whilst extrapolating the kinetic parameters of
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South African coal during the pyrolysis process, suggested using corrections, as given in
Equations (4) and (5).

Kheat1 _ (Aheatl )n _ ( Pheat1 )n @)
kheatZ AheatZ BheatZ
A
_heatl _ 01.exp(9,.E) (5)
Bheatl

where k denotes the kinetic rate, 3 is the heating rate, n is a factor dependent on the amount
of weight released, heatl and heat?2 refer to parameters at the 1st and 2nd heating rates, and
¥ is a parameter which is closely related to the compensation effect [32]. Through inference
from their findings, the authors determined the corresponding kinetic parameters for DTF
simulation. As noted, during the first stage of the experiment, which was conducted under
a nitrogen atmosphere, the released volatiles were entrained in the carrier gas, while the
solid char was collected using a bag filter at the outlet. In the second stage, which was
under an oxygen-enriched atmosphere, the char underwent complete combustion, leaving
behind ash, which was collected at the outlet as well. The properties of the particles that
were not directly measurable were estimated indirectly using experimental data, which
included the use of fluid velocity and particle size distribution.

3. Numerical Methods

ANSYS FLUENT 2021 R1 was used to implement the cocombustion model that had
been developed which is based on the conservation equation, as given in Equation (6) [33].

9 9 9 (.09
5(9@) + a*Xi(PUﬁP) = 3 (raxl) +Se (6)

where the following variables are used:

p: represents the density;

@: variable (mass, specific enthalpy, or species mass fraction);
Uj: velocity (u, v, w);

T': variable diffusion coefficient;

S: variable source or sink.

3.1. Furnace Geometry and Meshing

The boundaries drawn and meshed were simplified to only capture the important
physics that influence the combustion process.

Since the experimental DTF had a cylindrical shape, only 30° of the DTF was modelled
due to the following:

e  There was a need to reduce the computational power required to run the setup;

e  The geometry was cylindrical about the furnace axis;

e A 3D analysis would be able to capture the axial and radial variation in parameters
with more precision as compared to a 2D analysis;

e  The inlets (fuel inlet and secondary carrier gas inlet) and outlet boundaries were all
normal to the symmetrical planes that were defined;

e  The expected flow was going to be repeated periodically about the axis since the fuel
and secondary carrier gas inlet flows were distributed evenly and normal to their
corresponding boundaries.

A structured mesh was employed for the furnace meshing; thus, hexa-meshing was
performed. During meshing, emphasis was placed on achieving acceptable determinant
(>0.2), angle (>18°), and warpage (<10) values for all the meshes that were generated so
as to reduce any errors associated with bad meshing in the later stages. All the structured
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meshes had some wall inflation to capture the boundary layer and a bit of refinement
towards the axis to anticipate the reaction zone position. Illustrations of the meshing

employed within this study are given in Figures 1 and 2.

Fuel Inlet

Secondary Inlet

Symmetry Side

Furnace
Wall

001 (m)

Outlet .
4

0 0.01 (m)
A —

Figure 2. DTF mesh showing outlet.

3.2. Cocombustion Model Setup

The submodels that were used to capture combustion were compiled within ANSYS
FLUENT 2021 R1. The main strength of ANSYS FLUENT 2021 R1 with regard to combustion
modelling lies within its ability to handle user-defined functions (UDFs). UDFs allowed the
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researchers to include customised submodels other than those built in by default within
ANSYS FLUENT 2021 R1. Due to their versatility and conciseness, C** codes were written
to act as the UDFs for incorporation into the ANSYS FLUENT 2021 R1 overall combustion
model. The UDFs were used to customise mainly the furnace freeboard temperature profile,
particle drag properties of the coal and biomass species as they travelled through the
furnace, and specific heat capacities of the various participating gaseous species such as
CO,, Ny, Oy, and H,O. Table 5 summarises the boundary conditions that were employed
by the researchers.

Table 5. Combustion model boundary conditions.

Physics Model
Turbulence RNG k-epsilon, scalable wall function
i Discrete ordinate model, P1 model weighted sum of grey gases model
Radiation (WSGGM)
Particle 40 continuous-phase iterations per DPM iteration
distribution Rosin—-Rammler diameter distribution
Fuel velocity inlet as 1.85 m/s
For a 30° modelled section, total fuel mass flow rate translated to
Inlets 6 . .
2.08 x 107° kg/s, primary carrier gas mass flow rate was
4.85 x 1077 kg/s, and secondary carrier gas was 2.43 x 107 kg/s
Chemical . . o
rection Species transport option, eddy dissipation concept

The sawdust particles utilised a shape factor of 0.83 since a cylindrical shape was
assumed due to the fibrous nature of biomass. In as much as the pulverised Hwange coal
particles were irregular in shape, they were assumed to be spherical because when small
coal particles heat up, they tend to soften up and adopt a spherical shape [26].

Since the first stage was carried out under a nitrogen-enriched atmosphere, resembling
the devolatilisation process, the main chemical reactions that were expected were related to
the release of volatiles. As already investigated under the TGA experiments, devolatilisation
was deduced to follow the single-rate kinetic devolatilisation submodel, as given in
Table 4. The second stage was carried out under a 97% nitrogen and 3% oxygen atmosphere,
resembling the heterogenous combustion of char. No homogenous combustion of volatiles
was expected because all the volatiles were carried along with the carrier gas in the first
stage and, thus, were not present during the second stage. The heterogenous surface reaction
mechanisms are also known as multiple surface reaction mechanisms because the reactions
are assumed to take place within the boundary layer and bulk flow simultaneously. The
activation energy and pre-exponential factors during heterogenous combustion are given in
Table 4, as determined by the researchers using TGA experiments. The gasification reactions
of char with CO, or H,O were overlooked since the reaction temperatures within the reactor
were not high enough to warrant their influence. Furthermore, the concentrations of CO,
and HyO were low as compared to N [34].

The furnace was calibrated using a different coal sample to verify the effectiveness
of the thermal measurements. In as much as the furnace wall was set to have a certain
temperature, the actual furnace wall temperature was slightly different from the setting,
as shown in Figure 3. A known fuel sample made of South African coal was used to
calibrate the furnace and validate the cocombustion model. Table 6 summarises the chemical
properties of the South African coal used for furnace calibration and validation.
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Figure 3. Furnace wall temperature calibration.

Table 6. South African coal chemical analysis.

Ash VM FC MC C H N S Carbonates O HHV (MJ/kg)

289 204 479 28 5475 241 130 147 3.96 441

3.3. Drop Tube Furnace Model Sensitivity Analysis

The grid convergence index (GCI), as propounded by Roache [35], looks at the effect
of mesh density on the variation in performance parameters. This index is adapted for

fluid-based analysis through its ability to analyse boundary layer effects by the use of

near-wall inflation monitoring. Only the GCI analysis was conducted, as it was deemed

enough to analyse the combustion parameters under consideration. More focus was

placed on the near-wall inflation parameters, hence the GCI. The performance parameters

were those variables of interest to the user during the modelling practice. As such, mesh

independence was achieved when the index approached unity. In this case, the particle final

residence time and particle peak temperature were used to evaluate the GCI. As illustrated
in Figures 1 and 2, the shortest edge had a distance of 1.109 mm, which was used to guide

the initial seed element size for the course mesh.

Refinement was then carried out depending on the required emphasis, as presented. The
399,200-cell mesh (mesh 1), 159,755-cell mesh (mesh 2), and 60,208-cell mesh (mesh 3) were
evaluated to give a refinement ratio (r) of around 2.576. Equations (7) to (10) were thus employed

to evaluate the GCI based on the parameters of interest, as presented in Table 7.

f3 — f
p=In f3 f2 /In(r)
2—h
Fs x |20
. 1
GClIyp = o
Fs x —f3f_f2
_ 2
GClys = ——7
GClp 1
TP X GCI]QN
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where the following variables are used:

p: order of convergence;

f: performance parameter;

r: refinement ratio = 2.576;

GCI: grid convergence index;

Fs: factor of safety (in this case, 2 levels of refinement = 1.25).

As illustrated in Table 7, the asymptotic range values are both within the range of
unity, highlighting how the solution is mesh-independent for the three meshes under
consideration. Potgieter et al. [36] made a similar conclusion with regard to the grid
convergence index during their heat transfer studies, which further supports the robust
nature of this approach.

Table 7. Mesh sensitivity based on grid convergence index.

Mesh Asymptotic
Mesh Cells Label Performance Parameter p GCIy GClI, Range Value
[Particle residence time (s)]

399,200 1 1.2991

159,755 2 1.2407 0.4986 0.0932 0.1565 1.0471

60,208 3 1.3343

[Particle peak temperature (K)]

399,200 1 1006.14

159,755 2 1029.03 1.1840 0.0137 0.0413 0.9778

60,208 3 958.85

Figure 4 shows a trace of the average particle residence time as it passes through
the furnace for the South African fuel sample under a 1273 K furnace temperature with
a 520 mm probing position setting. All CFD meshes demonstrated a good initial estimation
of particle residence time up to around 250 mm from the injection point. Eventually, the
course mesh (60,208 cells) produced the least deviation from the experimental values by
staying closer to the 95% confidence band up to the furnace exit.

1.6 - -m- -Exp
| | ]95% confidence band

—— CFD (399,200 cells)
—a— CFD (179,755 cells)
—4&— CFD (60,208 cells)

0 100 200 300 400 500
Distance from injection point (mm)

Figure 4. Mesh sensitivity analysis.
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In conclusion, mass conservation suggested the use of a medium-density mesh,
whilst analysis based on energy conservation suggested the use of a course-density
mesh. Correlation with the experimental parameters suggested the use of the course
mesh; thus, all subsequent analysis employed a mesh density similar to the course mesh.

3.4. Cocombustion Model Validation

The char produced during stage 1 was then passed through the DTF under an oxidative
atmosphere of 0.3% Oy and 97% Nj. As expected, this triggered oxidation reactions as far
as the char particle is concerned; hence, the experimental results related to the oxidation
of SA coal char were subsequently used to validate the model further with respect to
the particle residence time and particle temperature. The stage 2 setup allowed for extra
probing positions at 520 mm, 920 mm, and 1320 mm from the fuel injection point. The stage
2 setup also allowed the researcher to investigate the effect of the heating rate as the SA
char particle moved through the DTF by having different furnace wall temperatures of
1273, 1473, and 1673 K. Data obtained on the variation in the experimental and predicted
residence time with respect to the position when the char from the SA coal sample was
combusted within the DTF are presented in Table 8 and Figure 5.

Table 8. DTF stage 2 experimental and predicted residence times of SA coal sample.

Residence Time at Various Furnace Wall

Position Designation Temperatures (s)
1273 K 1473 K 1673 K
500 SA coal (Exp) 1.3000 1.1000 1.0000
mm SA coal (CFD) 1.5217 1.2755 1.0826
920 SA coal (Exp) 2.2000 1.9000 1.7000
mm SA coal (CFD) 3.3290 2.9557 2.5335
1300 SA coal (Exp) 3.2000 2.8000 2.5000
mm SA coal (CFD) 4.7551 3.3035 2.9774
RSME 1.1168 0.6828 0.5566
5
SA Coal 1673K (CFD)
- == SA Coal 1473K (CFD)
‘; 4 4 w—SA Coal 1273K (CFD)
E = SA Coal 1673K (Exp)
Y 3] e SACoal 1473K (Exp)
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Figure 5. DTF stage 2 plot of experimental and predicted residence times of SA coal fuel.

The predicted values produced a similar trend as compared to experimental values,
though an overprediction was experienced at all probing positions. A furnace temperature
of 1273 K allowed the combusting particles to have a predicted residence time of 1.523 s
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when probed at 520 mm from the injection point. As the particle moved further within
the furnace, the residence time increased to 4.755 s when probed at 1320 mm from the
injection point. When compared to experimental residence times, a deviation of 17.05%
was experienced at a 520 mm probing position. A deviation of 48.60% was experienced at
a 1320 mm probing position. Averaging these deviations in the predicted particle residence
times against the experimental residence times resulted in a root mean square error (RMSE)
of 1.117 for a furnace temperature of 1273 K.

An increase in the DTF heating rate through an increase in the furnace temperature
resulted in a decrease in the deviation between the experimental and predicted particle
residence times. A furnace temperature of 1673 K resulted in a predicted particle residence
time of 1.083 s at a probing position of 520 mm compared to an experimental value
of 1.000 s, which represents a deviation of 8.30%. At a probing position of 1320 mm,
the predicted particle residence time was 2.977 s compared to an experimental value of
2.500 s, representing a deviation of 19.08%. Similarly, averaging the deviations between the
experimental and predicted values at a furnace temperature of 1673 K showed an RMSE
value of 0.557.

The overprediction can be attributed to various factors related to the determination
of the experimental particle residence time. The experimental particle residence time
was determined indirectly through experimental measurements of fluid velocity and
temperature at various positions. The evaluation of the experimental particle residence
time assumed a constant particle diameter and density, though in reality, combustion causes
a loss in mass for the char particle. This, in turn, gave a semblance of a heavy particle,
whilst in reality, it is lighter in weight. Consequently, the terminal velocity was skewed to
appear as if the particle was moving fast, which is far from reality (DTF used downward
firing; thus, particles moved in the same direction as gravitational force).

Secondly, the drag model that was employed during CFD prediction is based
on Haider and Levenspiel [37], whilst that used in the experimental determination is
anchored on a constant derived from Stokes” Law. This allowed the prediction model to
capture the drag induced by an irregular-shaped particle, unlike the approach used in
the experimental determination. Lastly, the deduction used for the experimental particle
residence time assumes that all particles travel in a one-dimensional direction without any
recirculation. This, in turn, overlooks the effect of the recirculation and three-dimensional
movement of particles, as utilised by the CFD model. Thus, the overprediction of
particle residence time is justified and within the acceptable range for the predicted and
experimental values.

As the fuel particle travelled through the furnace, the experimental and predicted
values of particle temperature were also evaluated for validation purposes. Table 9 and
Figure 6 summarise the experimental and predicted results. As the combusting particles
travelled through the DTF, comparison between the experimental and predicted particle
temperatures demonstrated a reduction in deviation. At a furnace wall temperature
of 1673 K, the combusting particle attained an experimental temperature of 1676.80 K
compared to a predicted value of 1289.18 K when probed at a distance of 520 mm
from the injection point. This represented a negative deviation of 23.11%. When probed
at 1320 mm from the injection point, a positive deviation of 4.79% was experienced
between the experimental particle temperature of 1511.19 K and the predicted value of
1583.59 K. Monitoring these deviations at various probing positions showed that when
the DTF is under a high heating rate, the RSME attains its lowest value of 0.1422. This
is mirrored by the RSME values for the particle residence time, which also show better
prediction as the furnace wall temperature increases.
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Table 9. DTF stage 2 experimental and predicted particle temperatures of SA coal sample.

Particle Temperature (K)

Position Designation
1273 K 1473 K 1673 K
520 SA coal (Exp) 1248.00 1459.82 1676.80
mm SA coal (CFD) 939.61 1048.27 1289.18
920 SA coal (Exp) 1191.80 1411.48 1633.88
mm SA coal (CFD) 997.21 1145.57 1519.20
1300 SA coal (Exp) 1042.74 1276.33 1511.19
mm SA coal (CFD) 970.60 1140.55 1583.59
RSME 0.1759 0.2052 0.1422
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Figure 6. DTF stage 2 plot of experimental and predicted particle temperatures of SA coal sample.

The deviation between the experimental and predicted particle temperature values
can be attributed to the manner in which the experimental particle temperatures were
determined. The experimental particle temperatures were not determined directly but
rather through experimental furnace wall temperatures and equations related to the
theory of char combustion. One of the steps used to determine the experimental particle
temperature involved the use of a single-step mechanism to represent the oxidation of
char. The single-step mechanism stipulates that char oxidises to CO, without any formation
of intermediate species. This notion contradicts what other researchers such as Zhou
et al. [38] and Graeser et al. [39], who investigated coal char under different operating
conditions, have suggested. As such, the cocombustion model employed the two-step
mechanism which also catered for particle diffusion, conductivity, variable specific heat
capacity, and the change in char porosity during the combustion process. In summary, the
cocombustion model did manage to predict the char combustion of SA coal at different
furnace temperatures with success. Measuring combustion parameters during drying,
devolatilisation, char combustion, and volatile combustion is very difficult and largely
dependent on sophisticated instruments since the residence time is very small. In as
much as Table 9 and Figure 6 demonstrate deviations between the experimental and CFD
temperature parameters, the trends correspond to each other. As articulated by Zhang
et al. [40], at high heating rates, such as those encountered within a DTF, the validation of
combustion models using experimental values tends to be centred around verifying if the
trends correspond rather than obtaining accurate values.
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4. Results and Discussion

Due to the release of heat during combustion, parameters related to the conservation
of energy were monitored in detail for the different fuel blends using the developed
cocombustion model (100HC, 90HC10PS, S0HC20PS, and 70HC30PS). These parameters
included the particle temperature, sensible heat of the reaction, absolute heat of the reaction,
and ignition, as well as the burnout properties. The heat released during char oxidation
was modelled as a two-step reaction by assuming the formation of CO within the boundary
layer and its subsequent oxidation to CO; in the bulk flow. Since coal char had a higher
combustible fraction than sawdust char, as demonstrated in a publication by the same
authors [22], more heat was expected from the unblended sample. Figure 7 shows the
particle temperature of the 100HC case as well as the 70HC30PS case when combusted in the
DTF with a wall temperature of 1473 K. Blending did not result in any significant variation
in the particle temperatures along the axis or radially. One of the main characteristics that
influences solid fuel combustion is surface area. The particle sizes that were employed were
relatively small to warrant influence due to size difference. Mande et al. [41] suggested that
pulverised samples adopt a quasi-similar spherical shape during combustion unlike large
particles, which was demonstrated in this study. Blending was performed on a mass basis;
thus, the fuel flow rates that were employed were constant regardless of fuel blending.
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Figure 7. DTF stage 2 particle temperature on axial and radial planes for (a) 100HC and (b) 70HC30PS
fuel samples at 1473 K DTF wall temperature.

With the small flow rates that were employed in this study, furnace wall temperatures
rather than combustion reactions were able to influence the particle temperature, as
demonstrated in Figure 8. The figure demonstrates the influence of having a DTF wall
temperature of 1673 K and 1273 K on the combustion of a 70HC30PS fuel sample. As
the flow developed in an almost similar fashion, the particles under a high DTF wall
temperature were able to attain higher values along the axial direction. Correlating with
Figure 9, which shows species molar fractions of CO, at various DTF wall temperatures, it
is evident that particle temperature plays an important role in aiding the formation of CO5,
as higher temperatures promote the formation of CO,.
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Figure 9. DTF stage 2 axial variation in CO, mole fraction for an 80HC20PS fuel sample at different
DTF wall temperatures.

With respect to the heat released, Figure 10 shows heat of reaction contours along
the axis and radially for the 70HC30PS case as a function of furnace temperature. Since
the oxidation of char is treated as a two-step reaction, the contours of the kinetic reaction
rates were also superimposed on the figures for better analysis. The setting up of the
cocombustion model had to resemble the experimental conditions, which required an
artificial atmosphere containing 97% N, and 3% O; by volume; Equations (11) and (12)
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were employed after assuming a 100% excess O, scenario. This was deduced through
calculating the average experimental O,-to-fuel ratio for the various fuel blends.

0125 0375

C+ 0.5 [0y +32.333 Np] - —CO + 16.167 N, (11)
CO + 1.0 [0y + 32333 N, ] — CO, +32.333 N, + 0.5 O, (12)

Heat of Reaction Kinetic Rate [ CO + 0.5 02 =>CO2]
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Figure 10. DTF stage 2 heat of reaction contours and kinetic reaction rate contours for a 70HC30PS
fuel sample at (a) 1273 K and (b) 1673 K DTF wall temperatures.

The high N, content in the products of combustion due to the artificial atmosphere
resulted in a reduced heat of reaction for all the cases. This can be attributed to the fact
that Ny has a higher specific heat capacity than O,. This allows N to absorb more heat
than O, just to raise the temperature by a unit temperature [42]. By correlating with
Figure 11, which shows discrete-phase particle burnout superimposed with contours of
the Equation (11) kinetic rate of reaction, it becomes quite evident that most of the heat
was released during the oxidation of CO. The initial heat released during char oxidation
corresponded to the particle burnout profiles. Low DTF wall temperatures reduced the
heat of the reaction, as shown in Figure 10. As expected, low DTF wall temperatures
hindered the oxidation of CO to form CO,, thus delaying the reaction zone to an average
location of 0.8 m from the injection point as compared to the initial 0.4 m obtained at high
furnace temperatures. The nature of the flow development resulted in a reaction zone
that tended to be concentrated towards the centreline for high temperatures and near
walls for low temperatures. The sensible heat released during combustion increased with
temperature, as shown in Figure 12. As already discussed, high furnace temperatures
increased the subsequent kinetic reaction rate associated with char oxidation and the heat
of the reaction.

137

0.0
[mol/m®.s']

2



Energies 2025, 18, 1322

Burnout rate

‘ 9.70

Kinetic Rate [ C + 0.5 02=>CO ]

72.727
68.182
63.636

| 8.48
59.091
i
6.06 a) 1273K case T 45455
i __—Kinetic rate 40909 |
1 ) 31818
3.64 27273
! 22727 |
e
H o
I 121 Burnout raté_ 2001 N
0.00 0 0.250 0.500 (m) 0.000 ,L.
[kg/s] x 10713 J [mol/m®.s']

Burnout rate

' 9.70

0.125 0375

Kinetic Rate [ C +0.502=>CO ]

72.727
68.182 |
63.636

848 b) 1673K case
1 1 59.091
727 __—~Kinetic rate %!
50.000
- 6.06 45.455
40.909 |
485 3818
3.64 il 27273
I Burnout rate 22727 |

242
I 1.21
0.00

[kg/s] x 10713

18.182 |
13.636
9.091
4.545

0.500 (m)
]

0.125 0375

0.000
[mol/m?.s']

Figure 11. DTF stage 2 particle burnout contours and kinetic reaction rate contours for a 70HC30PS
fuel sample at (a) 1273 K and (b) 1673 K DTF wall temperatures.

Sensible Enthalpy

969697
909091

- 848485
787879
727273
666667
606061

| 545455
484848
424242
363636
303030
242424
181818

121212
60606
0

[J/kg]

Sensible Enthalpy

969697
909091

Kinetic Rate [ CO + 0.5 02 => CO2 ]

0.485 H

0.455

E-‘ -
-—

- =

— —

Sensible heat

0.250 0.500 (m)

0.125 0.375

| 84gass b) 1673K case I 0424
727273 _ /Klnetlc rate 0.364
666667 e a 0.333

g e e
434848 e 0.242

H‘ prares ' S H
| < 5 |
303030 Sensible heat 815

I Isiis ; S 0001 I
60606 0.030 [
0 0.125 0.375 0.000 . ,
[J/kg] [mol/m?.s']

Figure 12. DTF stage 2 sensible heat contours and kinetic reaction rate contours for a 70HC30PS fuel
sample at (a) 1273 K and (b) 1673 K DTF wall temperatures.

The effect of blending on the heat of the reaction is represented in Figure 13 with

an illustration of axial and radial contours. Blending affected the heat of the reaction
by delaying the reaction zone as well as increasing the intensity of combustion within
the zone. The intensity of combustion is an index (Y1) that can be investigated through
thermogravimetric experiments as well. Thermogravimetric experiments demonstrated
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Heat of Reaction

an increase with respect to the combustion intensity index from 17.0470 x 1078 to
38.9440 x 10~% as blending increased from 90HC10PS to 70HC30PS for a heating
rate of 20 K/min [6]. Figure 13 supports these findings by highlighting where these
high-combustion-intensity zones are located within the furnace with respect to the
injection point.
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Figure 13. DTF stage 2 heat of reaction contours and kinetic reaction rate contours for (a) 70HC30PS
and (b) 90HC30PS at 1473 K.

The 70HC30PS fuel blend contours show a gradual release of heat which is directly
linked to the gradual burnout of the char particles. In contrast, the 9OHC10PS fuel sample
shows a shorter intense reaction zone. Even though a higher combustible matter fraction
was associated with the 90HC10PS fuel, the rapid release of CO, hence burnout, was
experienced due to its lower porosity as seen by the early onset of the CO oxidation. A
low porosity is associated with high-density particles as with the coal char particle, hence
less surface area available for combustion reactions. This assertion is supported by other
researchers such as Tang et al. [43] during their studies with demineralised coal, Di Blasi [44]
during his pyrolysis studies of wood, and Sadhukhan et al. [45], who focused on large coal
particles. As demonstrated in Figure 14, blending increased particle burnout maximum
values marginally, though the reaction zone for all the cases was located within the same
region. The burnout contours showed dependence on the kinetic reaction rate of char with
05 to form CO.

Specifically, HC exhibits a lower porosity compared to PS, and increasing the proportion
of PS in the blend augments the fuel’s porosity. This enhancement facilitates improved air
permeability and oxygen diffusion during combustion, promoting more efficient combustion
reactions and leading to an increased heat release rate. This aligns with the experimental
data obtained by Marangwanda et al. [6] which demonstrate that a blend containing 30% PS
by weight results in a 15% increase in combustion efficiency compared to pure HC. Further
supporting this, Vyas et al. [46] emphasised that increased porosity in biomass fuels enhances
internal surface area, facilitating better oxygen diffusion and more complete combustion.
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Figure 14. DTF stage 2 DPM burnout contours and kinetic reaction rate contours for (a) 70HC30PS
and (b) 90HC10PS at 1473 K.

5. Conclusions

The cocombustion model was successfully employed to predict the combustion

behaviour of coal and biomass fuel blends. In summary, the findings of this study are

as follows:

The variation in the particle residence time and temperature within the DTF was used
to validate the cocombustion model. The predicted values produced a similar trend as
compared to experimental values, though an overprediction was experienced with
an average root mean square error (RMSE) of 1.117 at a 1273 K DTF wall temperature
and 0.557 at a 1673 K DTF wall temperature. This overprediction was attributed to
various factors related to the experimental procedure; hence, further research with
regard to the characterisation of the char and volatiles produced by devolatilisation
was suggested.

Increasing the Pinus sawdust blending ratio resulted in more volatiles being released,
as mirrored by the proximate composition of the fuel blends. As such, the volatile
composition on the fuel blends showed that the molar ratio of carbon increased with
blending (0% to 30% sawdust) from 0.292 up to 0.579. The hydrogen and oxygen molar
ratios also increased with Pinus sawdust blending, though to a lesser magnitude. The
nitrogen molar ratio decreased from 0.086 to 0.052 as blending with Pinus sawdust
increased, whilst the sulphur molar ratio decreased marginally.

The cocombustion model was able to bring synergy between various submodels of
interest which tend to be overlooked in certain instances. The eddy dissipation concept
submodel captured the combustion mechanisms successfully; the weighted sum of
grey gases model captured the radiation from the combustion products successfully.

The visualisation of various profiles highlighted the co-dependency of certain
combustion parameters on others. The discrete-phase particle burnout profiles were
shown to be dependent on the oxidation of CO to form CO; kinetic rate of reaction. It
was also made evident that low DTF wall temperatures hindered the oxidation of
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CO to form CO,, thus delaying the reaction zone to an average location of 0.8 m
from the injection point as compared to the initial 0.4 m obtained at high DTF wall
temperatures.

e Blending affected the heat of the reaction by promoting the onset of the reaction zone
as well as increasing the combustion intensity within the reaction zone. The gradual
release of heat was shown to be directly linked to the gradual burnout of the char
particle. In conclusion, the reaction zone was modelled successfully to highlight the
important combustion parameters.
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Nomenclature

The following units, symbols, and abbreviations were used in this manuscript:

Units
Ea Activation energy (kJ/mol)
T Static temperature (K)
A Pre-exponential factor )
U; Velocity (m/s)
Greek Symbols
p Density
) Variable (mass, specific enthalpy, or species mass fraction)
T Variable diffusion coefficient
Se Variable source or sink
Abbreviations
HC Bituminous coal
PS Pinus sawdust
TGA Thermogravimetric analysis
CFD Computational fluid dynamics
FC Fixed carbon
VM Volatile matter
DTF Drop tube furnace
EDC Eddy dissipation concept
HHV Higher heat value
GCI Grid convergence index
Subscripts
daf Dry ash free
vol Volatile
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Abstract: This study investigated the influence of particle size on combustion performance
using equivalent characteristic spectrum analysis (ECSA) on a TG-MS platform. The
experiments were conducted at heating rates of 10 °C/min and 20 °C/min for three
granular coal types with particle sizes of 1 mm, 4 mm, and 8 mm. The results showed
that the ignition temperature, burnout temperature, and burnout time generally increased
with particle size, while the combustion characteristic index for the 8 mm particles was
28.81% lower than that for 1 mm particles. The particle size effects were more pronounced
at lower heating rates. Combustion kinetics revealed that the pre-combustion endothermic
stage had a significant impact on the ignition temperature, followed by the volatilization
stage. For Shenmu bituminous coal (SBC), a 1 kJ/mol reduction in apparent activation
energy during the endothermic stage increased the ignition temperature by 13.02 °C
(10 °C/min) or 17.11 °C (20 °C/min). Similar trends were observed for Datong bituminous
coal (DBC) and Jincheng anthracite coal (JAC). A gas product analysis indicated that the
peak release temperatures rose with particle size, and particle size variations affected the
maximum release rates and combustion stage duration. Smaller particles generally released
less NO during combustion.

Keywords: gaseous coal; combustion characteristic; kinetic analysis; gaseous release;
particle size variation; apparent activation energy

1. Introduction

With the continuous and increasing penetration rate of renewable energy generation,
building a power system that is highly adaptable to the growing proportion of new energy
sources is essential for achieving carbon neutrality [1-3]. This approach also constitutes one
of the most practical and effective strategies for promoting the transformation of society to-
wards high-quality development [4]. However, the inherent instability of renewable energy
inevitably imposes significant peak load pressures on the power grid, thus requiring the
transformation of thermal generator sets from providing basic power generation guarantees
to offering system regulation and supporting grid security. Due to its unique circulation
loop and heat storage capabilities regarding bed materials, the circulating fluidized bed
(CFB) boiler is bound to play an increasingly significant role in the development of this
modern power system [5].

Against the aforementioned research background, numerous scholars have employed
diverse methods to investigate the rapid peaking of the CFB, achieving certain progress.
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Arias B et al. [6,7] investigated an oxygen-enriched CFB boiler unit equipped with a TES
system and two silos for solid /bed material storage at different temperatures. This design
led to a 50% reduction in fuel consumption during 12-h flexible operations. Hu X et al. [8]
demonstrated that modifying the system configuration improved the operational flexibility
of the unit. Gao M et al. [9] presented an advanced energy balance control system, increas-
ing the maximum variable load rate of sub-critical 350 MW CFB units to approximately
2.7% per minute. Hou Y et al. [10] explored the challenges related to control optimization
in supercritical CFB units and developed an advanced fast-response coordinated control
system. In Europe, only a few studies have been conducted; however, successful operations
with a load change rate of 4% per minute were reported at the Lagisza and Turow power
plants in Poland [11]. Further investigations revealed that CFB boilers exhibited a relatively
sluggish variable load rate, mainly owing to their unique combustion characteristics. This
slow load variation was predominantly influenced by three types of inertia and pollutant
emissions control, namely, flow inertia, reaction inertia, and heat transfer inertia [12]. The
combustion reaction rate of the fuel was a crucial factor in determining the variable load
rate of CFB boilers [13]. When the combustion reaction rate was sufficiently rapid, adjusting
the fuel input could effectively regulate the combustion rate, thereby enabling quicker load
adjustments [14]. In response to this requirement, the Institute of Engineering Physics of
the Chinese Academy of Sciences devised a high-temperature preheating modification
technology for fuel. Specifically, at a low air equivalence ratio (0.3 to 0.5), the fuel pre-
heating modification device converted solid fuel into high-temperature gas—solid mixed
fuel. The high-temperature gas—solid fuel was composed of high-calorific-value gas and
high-physical-sensible-heat semi-coke [15,16]. The combustible components within the
gas comprised CO, Hy, and CHy. Compared with the raw fuel, the high-temperature
semi-coke obtained through preheating and modification had smaller particle sizes and
a more elaborate pore structure [17,18]. These characteristics conspicuously mitigated
the reaction resistance exhibited by the fuel to the CFB boiler and made a substantial
contribution to the rapid and efficient combustion within the CFB furnace. Zhu S et al. [19]
explored the variable load characteristics of a fuel preheating modification device on a
1 MW pilot test platform through the implementation of the aforementioned modification
technology. The findings demonstrated that the device was capable of achieving a variable
load rate of 3.33% per minute, thereby facilitating the rapid load adjustment of CFB boilers.
Furthermore, Tang Z et al. [20] conducted an investigation into the 0.1 MW CFB test plat-
form to study its combustion and emissions characteristics under different loads, as well
as the variations in temperature and pollutant emissions during load adjustments. The
results indicated that, at lower loads, the temperature distribution along the height of the
furnace decreased.

In conclusion, as the proportion of renewable energy in the power system rises, tradi-
tional coal-fired thermal power plants face greater challenges in flexibility transformations.
The preheating modification technology has been used in CFB boilers, showing practicality
and potential. However, the current research mainly focuses on pulverized coal size, while
industrial CFB boilers use granular coal of 0-10 mm. There is a lack of research on granular
coal. Thus, the existing research is insufficient for various fuel sizes. The study of granular
coal combustion characteristics is highly valuable.

2. Experiments
2.1. Fuel Properties

Due to their distinct volatile content, SBC, DBC, and JAC were selected as the research
samples in this experiment. The study of its combustion reaction mechanism could be of
great significance in realizing the industrial application of granulated coal. As comparative
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samples, SBC was sourced from Shenmu, Shaanxi Province; Datong DBC was sourced
from Datong, Shanxi Province; and JAC was sourced from Jincheng, Shanxi Province. All
samples were dried at 105 °C for 24 h, followed by crushing and sieving to obtain granular
coal fuel with particle sizes of approximately 1 mm, 4 mm, and 8 mm. The particle sizes
of the obtained granular coal are illustrated in Figure 1, while the properties of SBC, DBC,
and JAC are detailed in Table 1.

I
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Figure 1. Coal particles of different sizes.

Table 1. The properties of SBC, DBC, and JAC.

Items SBC DBC JAC
Ultimate analysis (wt. %, air dry)

Carbon (Coq) 73.60 45.99 54.93
Hydrogen (H,q) 4.30 2.94 2.28
Oxygen (O,q) 11.43 8.98 0.82
Nitrogen (N,q) 0.94 0.90 3.65
Sulfur (S,q) 0.32 0.36 1.09

Proximate analysis (wt. %, air dry)
Moisture (M,q) 493 1.56 0.80
Volatile matter (V,q4) 32.59 22.59 7.68
Fixed carbon (FC,q) 58.00 36.58 55.09
Ash (A,q) 4.48 39.27 36.43
Low heating value (M] /kg) 28.49 17.22 20.49

Note: corner mark ‘ad’ stands for air-dried samples.

2.2. Experimental Methods

TG-MS Experiment: Thermogravimetric analysis coupled with mass spectrometry
(TG-MS) is a widely recognized and essential technique for investigating combustion char-
acteristics and the gaseous products generated during the combustion process. Previous
research has validated the feasibility of using TG-MS to study the combustion behavior of
granular coal. The TG-MS system monitored the ionic current intensity corresponding to
specific mass-to-charge ratios, allowing for the quantification of gas product concentrations.
This study focused on the TG testing and kinetic analysis of granular coal combustion
characteristics. The structure of the TG-MS system is illustrated in Figure 2. The detailed
operational procedures were as follows: During the preparation phase, approximately
50 £ 0.5 mg of the sample was placed in an Al,O3 crucible. Gas cylinders supplied gases
that were mixed according to specified ratios. Upon introduction into the TG system, the
flow rates were maintained at 20 mL/min for O, and 80 mL/min for Ar. The samples
were initially held at room temperature before being heated from ambient conditions to
1200 °C at a predetermined heating rate over a period of 30 min. The gases introduced
into the TG system include CO,, O;, and Ar, all supplied by cylinders with purities exceed-
ing 99.999%.
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Figure 2. Diagram of the TG-MS system.

In the TG-MS experiment, the mass flow of each gas was analyzed using the ECSA
method. ECSA can effectively separate the mass spectrum of gases released during TG-MS
into distinct component spectra, even in cases where characteristic peaks overlap [21]. By
employing the equivalent characteristic spectrum, the flow rate, concentration, and distri-
bution of each component gas can be precisely determined, thereby enabling the accurate
calculation of the pressure of all gases. This study mitigated the mass resolution effect
in ECSA mass spectrometry, the diffusion effect in TG, and the temperature-dependent
ion flow effect [22,23]. By integrating the escaping gas flow rates, the temporal variation
in total gas emissions can be quantified. Detailed experimental conditions are provided
in Table 2.

Table 2. TG-MS experimental conditions.

Sample Case Particle Size (mm) Heating Rate (°C/min)
SBC-1 1 10
SBC-2 20
SBC-3 10
SBC SBC-4 4 20
SBC-5 8 10
SBC-6 20
DBC-1 1 10
DBC-2 20
DBC-3 10
bBC DBC-4 4 20
DBC-5 8 10
DBC-6 20
JAC-1 . 10
JAC-2 20
JAC-3 10
JAC JAC-4 4 20
JAC-5 g 10
JAC-6 20
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3. Results and Discussion
3.1. Effect of Particle Size Change on the Combustion Performance Parameters of Granular Coal

The combustion performance of the fuel is assessed based on its ignition difficulty
and degree of burnout. The ignition temperature (T;) can be determined using the tangent
method on the TG curve [24,25], while the burnout temperature (T}) is defined as the
temperature at which 98% of the fuel’s weight has been lost [26]. These characteristic
parameters from the TG curve provide an intuitive reflection of the combustion perfor-
mance of pulverized coal. Specific parameters including the ignition temperature, burnout
temperature, and burnout time are shown in Table 3.

Table 3. T}, Ty, and t;, of coal particles of varying sizes under different heating rates.

Samples Case T; °O) Ty, (°C) t;, (min)
SBC-1 384.521 571.435 55.811

SBC-2 403.545 597.557 57.535

SBC-3 433.835 627.175 61217

SBC SBC-4 398.235 810.957 39.935
SBC-5 441914 804.235 39.557

SBC-6 438.275 756.717 37.114

DBC-1 455.257 761593 74.353

DBC-2 475.736 770.137 75214

DBC DBC-3 483278 815.653 79.778
DBC-4 452.635 848.517 41,553

DBC-5 504.314 877.132 43114

DBC-6 499.185 898.514 44252

JAC-1 433.914 702.367 68.314

JAC-2 468.358 717.335 69.953

JAC JAC-3 497.221 750.114 73414
JAC-4 460.835 821.178 40.353

JAC-5 501.614 846.153 41.614

JAC-6 510.936 936.135 45.823

Note: t; (min) stands for the burnout temperature.

When the heating rate was maintained at 10 °C/min, the T; and T}, of the three types
of coal particles demonstrated a mostly steady ascending tendency along with the increase
in particle size, although the magnitudes varied. Notably, the T; of JAC exhibited the most
remarkable change, with an increase of 14.59%. When the heating rate was increased to
20 °C/min, the trends in T; and Tj, diverged for different coal species as the particle size
increased. Specifically, when the particle size increased from 1 mm to 4 mm, the T; rose by
approximately 50 °C across all coal types, among which SBC showed the largest increase of
13.65%. Conversely, further increases in particle size from 4 mm to 8 mm led to negligible
changes in T;. Based on previous studies [27-29], it can be inferred that, under a given
heating rate, the T; stabilizes beyond a certain critical particle size, while higher heating
rates lead to a lower critical particle size. However, due to the inherent differences among
coal types, the trends in T}, remain inconsistent.

The aforementioned phenomenon can be ascribed to the non-uniform heating of
granular coal within the crucible during the experimental heating procedure. A temperature
gradient existed between the surface and internal areas of the granules [30], causing a delay
in the volatilization of the internal components. This led to ignition delay [31,32], which
was more prominent for larger particle sizes. The T; and T}, of the fuel were related to the
coal rank, both T; and T}, increased significantly as the volatile matter content decreased
across different types of coal.
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To more comprehensively evaluate the combustion characteristics of the fuel, several
key parameters are typically employed to reflect the combustion performance of coal. The
specific calculation formulas are presented as Equations (1) to (3):

(1) Flammability parameter (Fj;): the Fy, quantifies the initial reactivity of pulverized
coal. It is characterized by the trend from the ignition point to the peak combustion re-
action rate on the TG curve. A higher Fj;;, signifies the enhanced ignition performance
of the fuel. This parameter is determined using the following formula [33]:

da/d
( “/T;>max (1)

1

Fiy, =

where (da/dt)max denotes the peak weight loss rate, %/min; and T; denotes the
ignition temperature of the fuel, °C.

(2) Burnout characteristic parameter (Cp): the C, reflects the combustion reactivity of coal
during the later stages of combustion. This parameter is influenced by factors such
as the heating rate and burnout time. A higher value of the burnout C;, indicates the
superior burnout performance of pulverized coal in the later stages of combustion.
The calculation formula is as follows [34]:

Cb:fixfh (2)

ty

where f; represents the initial burnout rate, defined as the ratio of the combustion
weight loss at the ignition point on the TG curve to the total combustible content in
the coal powder, %; f;, denotes the late burnout rate, which is the difference between
the final burnout rate of the combustible substances in the granular coal and the initial
burnout rate, %; and t, is the time corresponding to the burnout temperature, min.

(3) Combustion characteristic parameter (S): combustion characteristics encompass pa-
rameters such as the ignition and burnout properties of granular coal. These param-
eters are crucial for a comprehensive evaluation of the combustion performance of
granular coal. A higher value of S indicates superior combustion characteristics. The
expression is as follows [35]:

(dﬂé/dl')mgx X (d“/dt)meum

S:
2
T2 X T,

®)

where (dw/dt)eqan represents the mean weight loss rate, %.

The combustion performance parameters of coal fuels with diverse particle sizes are
delineated in Table 4, while the tendencies of each parameter influenced by changes in
particle size are depicted in Figure 3. At a heating rate of 10 °C/min, the Fjy, for different
coal types diminished as the particle size increased. Nevertheless, the trends for the Cj, and
S exhibited inconsistency. Specifically, for SBC, the C;, increased while the S declined with
the increase in the particle size. For DBC, the Cj, initially decreased before experiencing an
upswing, peaking at 8 mm, while the S registered a reduction of 17.16%. In the case of JAC,
the C;, initially rose before falling, while the S demonstrated a steadily decreasing trend,
with both indices reaching their lowest values at § mm. At a heating rate of 20 °C/min, the
variation trends of the combustion parameters among different coal types became more
distinct. For SBC, both the Fjy, and S initially decreased before surging significantly, with an
increase rate exceeding 20% relative to their respective minimum values. For DBC, as the
particle size increased, the C;, rose marginally, while the Fjy, and combustion characteristic
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indices declined. For JAC, the combustion performance parameters initially decreased

before rebounding with the increase in particle size.

Table 4. Combustion performance parameters of coal particles of varying sizes under different

heating rates.

Samples Case F;;, (10~6-min—1.°C~2) Cp (10-3-min—1) S (10-8-min—2.°C—3)
SBC-1 38.895 2232 11.654
SBC-2 36.653 2235 10.193
SBC-3 33.205 2.802 8.265
SBC SBC-4 44,342 2776 13.097
SBC-5 41171 3.983 12.384
SBC-6 49,533 6.029 16.853
DBC-1 15.707 1.565 1.697
DBC-2 15.338 1.463 1.404
DBC-3 14.995 2.645 1.403
DBC  ppca 22.034 2523 3.817
DBC-5 16.751 2,585 2.695
DBC-6 14.642 2743 2242
JAC-1 16.245 1.901 2.157
JAC-2 15.903 2.988 2.025
JAC JAC-3 12.381 1.593 1434
JAC-4 19.057 4163 3.661
JAC-5 13.573 2.643 2013
JAC-6 16.201 3308 2937

—=— SBC,Fith—=— SBC,Cb —=— SBC,S
—e— DBC,Fith—*— DBC,Cb—*— DBC,S
—— JACFith —— JAC,Cb —— JAC,S
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Figure 3. Variation in combustion characteristic parameters with particle size.

8 mm

In summary, diverse coal types manifested distinct combustion characteristics at

varying particle sizes. Specifically, when the heating rate was 10 °C/min, the T; of 8§ mm

coal particles in JAC was 14.59% higher than that of the 1 mm particles. Normally, as

the particle size increased, the T;, Tj,, and t;, tended to ascend, resulting in a significantly

lower S for the 8 mm particles compared to the 1 mm particles, with an average reduction

of 28.81%. Additionally, it was observed that the changes in particle size had a more

pronounced effect on the combustion performance parameters of granular coal at lower

heating rate

S.
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3.2. Effect of Changes in Particle Size on the Combustion Kinetics of Granular Coal

In this study, we used the Coats—Redfern integral expression within the single scan
rate method to calculate the activation energy of granular coal fuel with varying particle
sizes and coal types. The Coats—Redfern integral expression is as follows [36]:

o= "0 100% @)
mo—mf
G@)] ., [(AR\ Eu
w72 =n(5g) - 77 ©

where m denotes the initial mass of pulverized coal (mg); m; represents the instantaneous
mass during the combustion process (mg); 1y signifies the residual mass after combustion
(mg); « indicates the conversion rate of the combustion process (%); A is the pre-exponential
factor (min~—1); E, represents the apparent activation energy of the combustion reaction
(k] /mol); R is the ideal gas constant (8.314 ]-mol ~!-K~1); and G(«) symbolizes the integral of
the mechanism function. For the combustion reaction of pulverized coal, G(«) is commonly
expressed as —In(1 — w).

The linear correlation between 1/T and In(B/T 2) was utilized to conduct a linear
regression analysis of the aforementioned equation, from which the apparent activation
energy E;, was derived based on the obtained slope. By examining the variations in
E, values, the reaction process was segmented and reflected in the DTG curve. According
to changes in E,, the entire coal combustion process from 200 °C to the end of burning
was divided into five distinct stages [37-39] (the dehydration process below 200 °C was
not considered to involve significant chemical reactions and thus was not analyzed in
this study). (1) The endothermic phase (EP): during this phase, the temperature was
insufficient to meet the ignition requirements of the coal particles. Consequently, instead of
releasing heat, the coal absorbed heat, resulting in a negative E,. For ease of comparison,
E, values are presented as absolute values below. (2) The volatiles release phase (VRP): as
the temperature rose, volatile components within the coal begin to escape. Upon reaching
adequate temperatures, these volatiles could ignite after their release. (3) The volatile
oxidation phase (VOP): upon reaching the ignition temperature, volatile components
ignited first, releasing a significant amount of heat, which subsequently initiated the
ignition of coke. (4) The coke oxidation phase (COP): during this phase, the primary
combustible components of the fuel underwent combustion, typically accounting for the
longest duration of chemical reactions in the entire process. (5) The burnout phase (BP): as
the combustible components diminished, the combustion rate decelerated, marking the
transition into the burnout phase.

The division and changes in the E, of SBC under varying particle sizes during the
combustion stage are illustrated in Figure 4. At a heating rate of 10 °C/min, the duration of
the EP, VOP, and COP intervals was progressively extended as the particle size increased.
Notably, the most pronounced effect was observed in the EP interval, with an increase of
79.23%, followed by 55.38% for the VOP interval and 18.37% for the COP interval. This
phenomenon could be attributed to the fact that, during the preparation phase preceding
combustion, the E, values for the EP and VRP intervals for a particle size of 1 mm were
higher than those for larger particle sizes, thereby facilitating the rapid release of volatile
fractions. Consequently, upon reaching a sufficient temperature, ignition occurred more
swiftly, transitioning into the VOP interval and subsequently driving the combustion of the
residual carbon structure. This clarified the observed increase in T; and Tj, with escalating
particle size at a heating rate of 10 °C/min. When the heating rate was 20 °C/min, during
the preparation stage, E, gp and Ea yrp initially rose, then dropped, and subsequently
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continued to increase along with the growth in particle size. The changing trend in the
T; was identical to that of Ea gp. It was hypothesized that the influence of E, gp on the T;
was greater than that of E; yrp during the preparation stage. Moreover, as the particle size
increased, the maximum reaction rate also rose correspondingly. This is because, at a higher
heating rate, the thermal stress disparity between the interior and exterior of large particles
intensified with the increase in the particle size. Thus, larger particles were more prone to
fracture, thereby exposing the internal structure of the particles to release volatiles [40,41].
They ignited rapidly upon reaching the T;, generating additional heat to accelerate the
combustion of coke, which is reflected as E; as E; yrps > E; vrpa > E, vrp1- This explains
that the T}, of large particles was reduced with the increase in particle size after the reaction

when the T; was elevated.

DTG (%/min)

DTG (%/min)

400

400

vor
cop
VRP 40

BP -0

SBC-1.

P |
=
(=1

E,(kd/mol)

SBC-3"

(=]

—— DTG curve -
-0

—Ea

SBC-5 |

600
Temperature (°C)

(a) 10 °C/min.

600
Temperature (°C)

(b) 20 °C/min.

800 1000

—— DTG curve__

_Ea

SBC—61

800 1000

Figure 4. DTG-E, curve of SBC as a function of particle sizes.

152

—20

E (kJ/mol)



Energies 2025, 18, 1347

As depicted in Figure 5, the division of the combustion stage and the variations in
the E, of DBC under different particle sizes were examined. When the heating rate was
10 °C/min, the intervals of EP and VRP initially expanded and subsequently narrowed
with the increase in particle size. In contrast, the intervals of VOP and COP presented the
opposite tendency, initially narrowing and then widening. Concerning E,, both EP and
VRP were verified to be critical factors influencing the T;; a higher E, yrp indicated that the
DBC particles were ignited more readily. Furthermore, the maximum reaction rate emerged
at a particle size of 8 mm, which coincided with the peak values of E, yrp. It can be deduced
that, under this heating rate, the maximum reaction rate of the DBC particles could be
characterized by E, yrp. Higher E, yrp values indicated greater energy demands for the
reaction, resulting in more intense reactions. Despite the occurrence of the maximum rate
at 8 mm, the consumption of combustible substances within the VOP interval and the
carbonate removal reaction around 750 °C led to lower E, yrp values in the COP interval,
thereby prolonging the time needed for complete combustion. This explained the increase
in the T; and T}, of DBC particles as the particle size increased at a heating rate of 10 °C/min.
When the heating rate was 20 °C/min, as the particle size increased, the EP interval initially
broadened and then narrowed, the VRP interval expanded steadily, the VOP interval
contracted, and the COP interval initially narrowed and subsequently widened. Among
these changes, the VRP region presented the most significant amplitude of change, with the
4 mm and 8 mm regions increasing by 98% and 134%, respectively, compared to the 1 mm
region, while the VOP interval decreased by 21% and 33%, respectively. The underlying
principle behind this phenomenon was that smaller particles exhibit more uniform heat
distribution, thereby substantially enhancing the heat absorption efficiency. This shows
that, when the T; of large-particle-size coal was higher, it was E, gp1 > E,; gpa > E; gpg, which
is conducive to particle ignition. Additionally, the difference between the total width of the
VRP interval and the VOP interval under various particle sizes was less than 10%. Under
these circumstances, it could be suggested that the small particle size, which was more
prone to ignition, was largely analogous to the poor coal particle fuel with a broader VOP
interval and a larger E, yop, while the overall combustion duration was shorter and the T},
was lower. This explains the fact that the T; and T}, of the DBC particles increased with the
increase in the particle size when the heating rate was 20 °C/min. Although the results
were comparable when the heating rate was 10 °C/min and 20 °C/min, the variations in
the width of the reaction intervals and E, still differed.

As illustrated in Figure 6, we classified the combustion process stages of JAC and the
variations in E, for different particle sizes. When the heating rate was 10 °C/min, the EP
interval gradually expanded along with the increase in particle size. Given the relatively
low volatile content of JAC, it was determined that there was no obvious limit for the release
of volatiles before combustion within the VRP interval and VOP interval. Hence, the VRP
interval and VOP interval were combined and are discussed together (hereafter referred
to as the VP interval), and E, yp values were calculated. It was found that the VP interval
gradually widened with the growth in particle size. When the particle size was 8 mm, the
width of the VP interval increased by 22.86% compared to when the particle size was 1 mm,
but E, yp decreased by 9.07%. This indicates that, under this temperature condition, the
ignition of the JAC particles was gradually delayed with the increase in particle size. In
addition to the prolonged duration required in the endothermic stage, another crucial factor
was that the reaction intensity of the VP interval was gradually weakened, and the length
of the COP interval was influenced by the reaction intensity of the VP stage. The more
intense the reaction in the VP interval, the fewer flammable substances remained in the
COP interval; thus, the COP interval demonstrated a gradually narrowing trend compared
to the VP interval. The numerical manifestation indicated that E, cops exceeded E, copa,
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which in turn surpassed E, copi. In contrast to E, yp, the COP interval of all particle sizes
increased, with an increase of 95.39% for 8 mm. When the heating rate was 20 °C/min, the
interval widths of EP, VP, and COP expanded concurrently with the increase in the particle
size, while E, gp, and E, cop gradually decreased, and E, yp initially rose and then dropped.
This suggests that the maximum reaction rate of coal combustion in the JAC was 4 mm, but
the T), at 4 mm was slightly higher than that at 1 mm due to the relatively weak reaction in
the front and back intervals. The conclusion was similar to that of DBC. Even though the T;
and T}, of granular coal rose along with the increase in particle size at the heating rates of
10 °C/min and 20 °C/min, the E; of each interval length did not change steadily.
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Figure 5. DTG-E, curve of DBC as a function of particle sizes.
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To sum up, the following two points can be delineated:

The preheating stage prior to combustion had an impact on the ignition temperature
of the coal particles. The endothermic stage was of the utmost importance, followed
by the volatilization stage. Our calculations revealed that, for SBC, for every 1 kJ/mol
reduction in the E; during the endothermic stage, the T; rose by 13.02 °C and 17.11 °C
at heating rates of 10 and 20 °C/min, respectively. At the aforementioned heating
rates, for DBC and JAC, the corresponding temperature alterations were 1.43 °C and
4.94 °C, and 5.32 °C and 5.03 °C, respectively.

In this experiment, the T; and T}, of the majority of coal particles increased with
particle size, yet the variations in the reaction range and E, were dissimilar. Owing
to the lower volatile matter content and higher ash content, the regularity of the
combustion process of coal particles in each region was more pronounced.
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3.3. Effect of Changes in Particle Size on the Release Rates and Total Number of Particulate
Gas Products

In the experiment, the programmed heating combustion temperature was significantly
lower than the initial temperature for the formation of thermal NOy, and the rapid NOjy
could be disregarded. Therefore, NOy originated from the nitrogen within the fuel. To
further illuminate the impact of particle size variation on nitrogen-phase products during
granular coal combustion, ECSA analysis was employed to calculate the release rate of
related gas products, and the total releases of related gas products under each working
condition were obtained through the temporal integration of the related gas products. For
the same sample, the temperature range of NO production and that of CO, production were
approximately identical, with the peak value of the release rate emerging in both instances,
and the corresponding temperature of the peak value of the NO release rate and the CO,
release rate being close. HCN and NHj were regarded as the main precursors for NO
generation [42]. However, based on the experimental data, it was discovered that the release
rate of CO,, NO, and HCN was considerable, the signal strength and disturbance of NH3
were of the same order of magnitude, and the amount of NHj3 generated was minuscule.
Thus, the yield of NH3; was neglected in the experiment, and no NO, generation was
witnessed throughout the entire experiment. Hence, only HCN is preliminarily discussed
in this paper, and its possible reactions are presented in Equations (6)—(9) [43-45]:

2HCN +250, - 2NO+2CO + H,O (6)
2 HCN + 3 NO — 25N, + 2 CO + H,0 @)
2C+0, -+2CO ®)
2CO +0; —2CO, 9

In the highly oxidizing combustion environment of the TG experiment, the reductive
effect of CO on NO was negligible. Due to the relatively slow heterogeneous reaction
kinetics between C and NO, NO could not be reduced to N, within the limited experimental
period. Moreover, the background carrier gas contained no N, causing the observed N,
release rate to remain consistently at the same level as the signal noise. Additionally,
the volatile oxidation process during coal combustion was highly complex, involving
numerous intermediate reaction products and NO reduction reactions. Therefore, this
analysis mainly focuses on a simplified explanation of the temperature at the first peak for
the generation of HCN, NO, CO,, and CO, as well as the total amount of NO and HCN
released in relation to particle size variations.

Figures 7 and 8 depict the release rate curve and total release amount curve of SBC
under various particle sizes. When the heating rate was 10 °C/min, with the increase in
particle size, the peak temperature of the release rates of the main gas products gradually
rose, and the maximum release rates of NO and CO, gradually increased. The maximum
release rates of HCN and CO initially rose and then decreased, but the length of the
temperature interval varied. Among them, the temperature range corresponding to HCN
gradually widened, and the temperature difference gradually expanded from 43 °C for
1 mm to 118 °C for 8 mm, an increase of approximately 175%, which indicates that,
under this heating rate, fuel with a larger particle size is more likely to generate HCN.
Additionally, when the particle size was 1 mm and 4 mm, the peak temperatures of each
gas product were comparable. However, when the particle size was 8 mm, a platform with
a temperature range of 440 °C to 460 °C emerged at the peak of CO, and the temperatures
at both ends of the platform were respectively similar to the peak temperatures of NO
and HCN. Meanwhile, the CO; release rate kept escalating while the CO release rate
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remained constant within this temperature range. According to the above Equation (6),
HCN preferentially bound O, and continuously transformed into NO. The total amounts
of HCN and NO concurrently increased along with the increase in the particle size. The
total amount of HCN rose from 0.027 mg to 0.093 mg, indicating an increase of 244.44%,
while the total amount of NO rose from 0.292 mg to 0.642 mg, with an increment of 119.86%.
When the heating rate was 20 °C/min, as the particle size expanded, the peak temperature
of the main-gas-phase product release rate initially rose and then declined, and the peak
temperature of 8 mm emerged earlier than that of 1 mm. It was hypothesized that the
potential cause could be that, under this heating rate, the larger particle size had a higher
local temperature, causing a certain area to react initially. The release curve of HCN was
unimodal, and the temperature difference between the peaks initially increased and then
decreased with the particle size, reaching the minimum and maximum values at 1 mm and
4 mm, respectively, with the temperature difference between peaks being approximately
100 °C and 160 °C. The total amounts of HCN and NO also presented a pattern of initially
rising and then falling, with the maximum values of HCN and NO increasing by 59.94%
and 29.07%, respectively, compared to the minimum values. In conclusion, HCN, acting
as a precursor of NO, had a considerable influence on the production of NO. As the total
amount of HCN released from SBC increased, the total amount of NO released also rose.
Therefore, the variation in particle size was capable of influencing the peak temperature
of HCN release and the temperature disparity within the release interval of SBC particles,
thereby exerting an impact on the total amount of NO release.
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Figures 9 and 10 depict the release rate curves and the total release amounts of DBC
under different particle sizes. At a heating rate of 10 °C/min, the first peak temperature
and peak height of other gas products apart from CO; gradually rose with the increase
in particle size, and the release rate of NO fluctuated repeatedly throughout the entire
combustion process. The temperature difference in the peak interval of HCN initially
increased and then decreased as the particle size expanded. When the particle size was
1 mm, HCN mainly transformed into NO at approximately 430 °C, and it then entered the
plateau stage from 550 °C to 590 °C. When the particle size was 4 mm, the peaks of HCN,
NO, and CO emerged successively within the range of 440 °C to 450 °C, and the release
rate of CO; increased significantly at 476 °C, with the second peak temperature of NO and
the first peak temperature of CO; being reached near 540 °C. When the particle size was
8 mm, the release rate of HCN reached its maximum at 451 °C, the release rates of CO and
NO peaked at 455 °C, and, subsequently, the first peak of CO; occurred at 461 °C. With
the increase in particle size, the total release amount of HCN initially increased and then
decreased, with the maximum increase approximating 2.75 times. Nevertheless, the total
release amount of NO rose as the particle size expanded, ranging from 0.352 mg to 0.535 mg,
an increment of 51.99%. When the heating rate was 20 °C/min, with the growth in the
particle size, the occurrence temperature of the first peak of the gas product fluctuated.
Under the condition of a particle size of 1 mm, CO initially achieved the highest release
rate at 421 °C; this was followed by HCN and NO reaching their peaks, respectively, at
429 °C and 435 °C. Ultimately, CO, attained the maximum release rate at 499 °C. When
the particle size grew to 4 mm, the peak temperature of the HCN release rate was reached
slightly earlier than that of CO, and an identical phenomenon transpired at 8§ mm. The peak
release rate of HCN initially decreased and then increased as the particle size expanded,
and the temperature difference between the intervals gradually grew. The total amount
of HCN released initially decreased and then increased, reaching a maximum value of
0.55 mg at 8 mm. Nevertheless, under the comprehensive influence, the release rate of
NO in DBC initially increased and then decreased, attaining the minimum and maximum
values at 1 mm and 4 mm, respectively, with the total release amounts being 0.441 mg and
0.544 mg. In conclusion, variations in particle size could affect the release rate and total
release amount of HCN and NO; however, the specific regular variations produced more
patterns, requiring additional in-depth research for clarification.
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Figure 9. Release rates of gas products and total released amount of DBC at 10 °C/min.
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Figures 11 and 12 present the curves of the release rates and total released amount of
JAC under various particle sizes. When the heating rate was 10 °C/min, the temperature of
the first peak and the peak height of the gas products gradually rose along with the increase
in particle size, yet the height of the first peak varied. When the particle size was 1 mm,
the release rates of HCN, NO, and CO reached their peaks successively within the range
of 420 °C to 424 °C, and, subsequently, the release rate of CO, peaked at approximately
465 °C. When the particle size amounted to 4 mm, the first peak of the CO, release rate
emerged within the range of 434 °C to 451 °C, and, subsequently, the maximum CO,
release rate was attained at 494 °C. When the particle size was 8 mm, the first reaction peak
occurred within the range of 442 °C to 458 °C, and, at 567 °C, the NO release rate reached
its peak and then declined. Taking the CO, release rate as the basis for measuring the
length of the platform, the calculation indicated that the length of the platform combustion
stage initially decreased and subsequently increased with the increase in the particle size.
This is in line with the principle that the total amount of NO released initially decrease
and then rose, suggesting that the particle size would have an influence on the duration
of the high-intensity combustion reaction and subsequently affect the total amount of
gas products released [46]. Under the aforementioned experimental conditions, the total
amount of HCN released initially rose and then declined, with a maximum increase of
44.44%, while the total release amount of NO showed the opposite effect, with a maximum
of 0.453 mg at 1 mm and a minimum of 0.39 mg at 4 mm. When the heating rate was
20 °C/min, the sequence of the appearance of peaks underwent variations. Regarding the
peak of CO, the sequence was 1 mm, 4 mm, and 8 mm, with corresponding temperatures
of 426 °C, 434 °C, and 449 °C, respectively. Concerning HCN, the peak occurred in the
sequence of 8§ mm, 4 mm, and 1 mm, at 439 °C, 447 °C, and 458 °C, respectively. It was
noted that the peak temperatures of HCN and CO gradually converged as the particle size
increased. Meanwhile, the temperature difference between the maximum HCN release
rate and the corresponding temperature range decreased with the growth in the particle
size, resulting in a steady decrease in the total HCN release, with the maximum reduction
reaching 74.61%. Therefore, although the main combustion stage at 8 mm was the longest,
HCN, as the precursor, was the shortest, reducing the combination of HCN with O, to
generate NO. Consequently, the total amount of NO released in the plant initially rose and
then fell, with the minimum being 0.448 mg at 1 mm and the maximum being 0.598 mg
at4 mm.
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In summary, this section expounded the influence of particle size on the gas products’

release rates and the total released amount of various coal particles under different heating

rates. The conclusions are as follows:

@

The effect of particle size on the peak of each gas phase varied with the heating rate,

and the temperature of the peak rose as the particle size increased.

@)

Changes in particle size not only change the maximum release rate of individual gas

components but also prolonged or shortened the duration of the primary combus-
tion phase for granular coal. By integrating the insights from previous studies, it
becomes evident that the overall NO release stemmed from a confluence of multiple
factors [47-49]. However, specific scenarios necessitate individual analysis. In most
cases, smaller coal particles resulted in smaller amounts of NO being released during

combustion, which is basically consistent with the research findings of Tang Z [50].

4. Conclusions

This study delved into and dissected the impacts of variations in granular coal particle

size on the combustion performance parameters, combustion reaction kinetics, and the

release rate and total quantity of gas phase products of coal particles from three perspectives.

The principal conclusions were as follows:
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@

@)

®)

Regarding the combustion characteristic parameters, the different coal particle sizes
exhibited differences in combustion performance. During the heating process in
the experiment, as the granular coal was not heated completely uniformly in the
crucible of the experimental instrument, a temperature disparity existed between the
surface temperature and the internal temperature of the granular coal, leading to a
reaction lag and ignition delay within the granular coal. This phenomenon was more
pronounced for larger particle sizes. The most remarkable discovery was that, at a
heating rate of 10 °C/min, the ignition temperature of the JAC with a particle size
of 8 mm was 14.59% higher than that with a size of 1 mm. In most circumstances,
as the particle size increased, the ignition temperature, burnout temperature, and
burnout time rose. Consequently, the combustion characteristic index of the coal
with an 8 mm particle size was conspicuously lower than the 1 mm sample, with an
average reduction of 28.81%. Simultaneously, we found that the variation in particle
size had a more conspicuous impact on the combustion performance parameters of
granular coal at a lower heating rate.

Regarding the kinetics of combustion reactions, the preparatory stage prior to combus-
tion exerted a considerable influence on the ignition temperature of the granular coal.
The endothermic stage had the most significant impact, followed by the volatilization
stage. Our calculations showed that, for SBC, every 1 kJ/mol reduction in the E,
during the endothermic stage led to T; increases of 13.02 °C and 17.11 °C at heating
rates of 10 and 20 °C/min, respectively. For DBC and JAC at the same rates, the cor-
responding temperature changes were 1.43 °C and 4.94 °C, and 5.32 °C and 5.03 °C,
respectively. Under the conditions of this experiment, the ignition temperature and
burnout temperature of the majority of coal particles rose along with the increase in
particle size, yet the reaction range and the corresponding apparent activation en-
ergy varied. Upon comparison, it was discovered that the length of the endothermic
interval might be associated with the content of C in coal, and the length of the en-
dothermic phase interval gradually rose with the reduction in C. Simultaneously, the
length of the volatile oxidation phase interval also exhibited an inverse relationship
with the volatile content.

Concerning the release rates and total releases of gas products, particle size exerted
diverse influences on the peak temperature of each gas phase at different heating
rates. Generally speaking, with the increase in particle size, the peak temperature
rose. Simultaneously, the variation in particle size affected the maximum release rate
of each gas phase product and the duration of the main combustion stage of granular
coal. Hence, the total amount of NO released was the result of comprehensive factors
and demanded meticulous analysis. Nevertheless, in the majority of cases, the total
amount of NO released during the combustion of granular coal with a small particle
size was relatively low.
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Abstract: Dual-fuel engines are a way of transitioning the marine sector to carbon-neutral
fuels like hydrogen and methanol. For the development of these engines, accurate simula-
tion of the combustion process is needed, for which calculating the pilot’s ignition delay
is essential. The present work investigates novel methodologies for calculating this. This
involves the use of chemical kinetic schemes to compute the ignition delay for various
operating conditions. Machine learning techniques are used to train models on these data
sets. A neural network model is then implemented in a dual-fuel combustion model to
calculate the ignition delay time and is compared using a lookup table or a correlation. The
numerical results are compared with experimental data from a dual-fuel medium-speed
marine engine operating with hydrogen or methanol, from which the method with best
accuracy and fastest calculation is selected.

Keywords: ignition delay; chemical kinetics; ANN; machine learning; lookup table; dual
fuel; multi-zone combustion model; methanol; hydrogen

1. Introduction

Maritime transport contributed nearly 3% of global anthropogenic CO; emissions in
2018 [1]. Within the EU, shipping industry accounted for an estimated 3 to 4% of total
emissions, producing over 144 million tons of CO, in 2019 [2]. The maritime sector is
expected to grow by between 25% and 180% by 2050 [2]. Projections indicate that that the
carbon emissions caused by maritime transport could rise by up to 130% compared to 2008
levels by 2050. In response, the European Union has mandated reductions of 2% by 2025
and 80% by 2050 [1,3,4]. Therefore, urgent actions should be taken to meet the targets.

One of the promising ways to achieve these emission reduction targets is to transi-
tion to renewable fuels like hydrogen and methanol [5,6]. Gaseous hydrogen, as a clean
energy carrier, is highly regarded as a promising fuel for the future, as it can be sourced
from renewable source [7,8]. For marine applications, it is expected to be used where it
outperforms the energy density of batteries, but where autonomy demands are still limited.
If these demands become stricter, a denser energy carrier is needed, for which several
hydrogen carriers are being considered. One of these is methanol [5,9,10]. Being liquid
under ambient conditions, methanol facilitates easy handling and transportation; further-
more it is relatively straightforward to produce from biomass feedstocks and renewable
electricity [11,12].

Hydrogen and methanol can serve as primary fuels in internal combustion engines
(ICE). However, in compression ignition (CI) engines, the prime power plant for marine
transportation, they cannot be used as such, due to their high autoignition temperature
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(reflected in their high octane numbers). A way around this is to use a pilot injection of
a diesel-like fuel with low autoignition temperature (high cetane number), which then
initiates combustion. Thus, methanol and hydrogen can be used in a dual-fuel mode.
Hydrogen has a wide flammability range and fast flame speed, which makes it a promising
solution for managing challenges associated with other gaseous fuels. Its application in
dual-fuel diesel engines can improve thermal efficiency due to its faster flame velocity
than other gaseous fuels [13]. Additionally, hydrogen does not contain structural carbon;
it could thus reduce emissions of unburned hydrocarbons (UHC) and carbon monoxide
(CO) in dual-fuel engines [7,14]. Methanol also demonstrates excellent engine performance
with high efficiency and extremely low emissions compared to hydrocarbons such as petrol
and diesel fuels [5,15,16], with its low flame temperatures leading to reduction in oxides
of nitrogen (NOy) and with no soot formation due to its carbon atom being bonded to an
oxygen atom.

Various approaches are available for dual-fuel engines, primarily determined by the
way hydrogen or methanol is injected into the engine. One of these methods is direct
injection into the cylinder alongside a burning diesel jet [17,18], or they can be fumigated
into the intake manifold at a single point or multiple points before reaching the intake
valves [19,20]. In this study, port fuel injection (PFI) is focused on because it offers the most
convenient solution for retrofitting engines. This is particularly important for the marine
sector as the average age of vessels is over 20 years so one cannot solely rely on newbuilds
to reduce the carbon emissions. The PFI method benefits from a low-pressure (and thus
low cost) fuel circuit and requires very few engine modifications because methanol or
hydrogen are introduced into the intake manifold [19,21]. This fumigation concept has
been extensively studied and demonstrated over the past decade, but challenges persist.
Hydrogen poses significant challenges with PFI, including issues like pre-ignition, knock,
and backfiring due to its wide flammability range, low minimum ignition energy, and
limited quenching distance. Furthermore, hydrogen displaces air in the intake, limiting
the engine’s power density [22]. For methanol, its high heat of vaporization can lead to
potentially severe diesel knock under high load conditions [23]. The strong cooling caused
by this high heat of evaporation also complicates ignition during cold starts, warming up,
and low-load conditions [24,25]. Additionally, there is an increase in the levels of CO and
THC [26] due to the fuel being premixed and thus entering combustion chamber crevices
where a flame cannot propagate.

Conventional high-performance diesel engines normally have high valve overlap to
ensure that residual gases are completely evacuated from the cylinder. Converting these
engines to PFI dual-fuel operation introduces some challenges [27]. In methanol-diesel
dual-fuel engines, some of the methanol-air mixture may escape into the exhaust during
the valve overlap period, a phenomenon known as scavenging loss. This unburned fuel loss
results in two main issues: first, it negatively impacts the engine’s thermal efficiency; second,
it leads to an increase in unburned methanol emissions. Zhenyu Sun et al. [27] found that
valve timing affects methanol film formation and fuel scavenging losses. Therefore, it
can significantly reduce thermal efficiency. They concluded that during the valve overlap
period, unburned methanol escapes into the exhaust, resulting in reduced combustion
efficiency. In hydrogen/diesel engines, hydrogen’s low ignition energy and high diffusivity
increase the risk of backfiring or early ignition during valve overlap. Studies show that high
valve overlap makes this issue worse, but optimizing injection timing and valve overlap
can help reduce the risk [28].

A comprehensive understanding of hydrogen/diesel and methanol/diesel co-combustion
is vital to effectively addressing these challenges. One of the critical parameters for accu-
rately simulating PFI dual-fuel combustion of hydrogen/diesel and methanol/diesel is
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the pilot ignition delay—the time between the start of pilot injection and the start of pilot
combustion—as diesel is now injected into an air-fuel mixture with properties different
from air. The results reported by Dierickx et al. [19], shown in Figure 1, illustrate how
increasing the methanol energy fraction (MEF) significantly influences the ignition delay
time of diesel in a PFI dual-fuel engine. As MEF increases, the start of combustion, shown
by an increase in the pressure rise rate (marked with a red circle), occurs later in the cycle.
This shift clearly reflects a longer ignition delay associated with higher levels of methanol
substitution. If this time is incorrectly estimated, the whole combustion process will be
calculated wrongly. Few studies have looked into how to calculate the ignition delay time in
PFI dual-fuel engines operating on hydrogen or methanol under actual engine conditions.
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Figure 1. In-cylinder pressure for different methanol energy fractions (MEF) at 1500 rpm and BMEP
of 1.23 MPa. Adapted from [19]. As MEF rises, the start of combustion, shown by the pressure rise
rate increase (marked with a red circle), moves to a later point in the engine cycle.

In dual-fuel operation using hydrogen, there is no evaporative cooling, which influ-
ences the intake air temperature since hydrogen is usually introduced as a gas. Hydrogen’s
heat capacity at standard temperature (20 °C) and pressure (1 atm) is approximately
14 times greater than that of air, specifically 14.28 kJ / (kg K). This increased heat capacity of
the mixture results in smaller rise in temperature while compressing [29,30]. Additionally,
when hydrogen is added into the port, it displaces some of the intake air due to its low
density, which reduces the volumetric efficiency compared to diesel operation and conse-
quently lowers reduces the amount of oxygen in the intake mixture [28,31]. All these factors
influence the temperature and the oxygen availability during diesel injection, affecting
the ignition delay [30]. The chemical influence of premixed hydrogen or methanol on the
ignition delay of a diesel pilot was investigated by Parsa et al. [32]. They concluded that
premixed hydrogen did not notably impact the ignition delay of the pilot fuel, except when
the percentage of hydrogen in the premixed fuel was significantly high. However, the
ignition delay of the pilot fuel is greatly influenced by the presence of premixed methanol.

Introducing methanol into the incoming air in dual-fuel applications has been reported
to prolong the ignition delay of the diesel pilot. This delay results from several elements.
Firstly, methanol’s high heat of vaporization [5,20] lowers the temperature of the intake
air-fuel mix significantly, which reduces the temperature and pressure at the moment when
diesel fuel starts being injected [19,33]. In addition, the higher heat capacity of the intake
mixture also limits the rise in temperature as the mixture is compressed [33]. Additionally,
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Yin et al. [34] found that at a methanol-to-air equivalence ratio of 0.1 and temperatures
under 920 K, methanol slows down the initial chemical reaction rate of diesel autoignition.
This effect has been linked to the temperature dependence of radical species conversion,
particularly involving OH: and H,O,.

Few studies have analyzed the ignition delay of hydrogen/diesel and methanol/diesel
dual-fuel engines under actual engine operation scenarios. Dhole et al. [35] conducted an
experimental study on the combustion duration and ignition delay of a dual-fuel diesel
engine using hydrogen, producer gas, and various mixtures of producer gas and hydrogen
as secondary fuels with a diesel pilot. The experiments were performed on a 4-cylinder
turbocharged and intercooled 62.5 kW generator set diesel engine at a constant speed of
1500 rpm. Their findings indicated that at low loads, replacing 30% (mass percentage) of
the diesel fuel with hydrogen extended the combustion duration by 2.5 crank angle degrees
(CA) and lengthened the ignition delay by 2° CA. However, at higher loads (80%) with
50% hydrogen substitution (mass percentage), both the ignition delay and combustion
duration were reduced. The study also found that the ignition delay in dual-fuel engines is
influenced not only by the type and concentration of gaseous fuels but also by the charge
temperature, pressure, and oxygen content.

Some correlations have been proposed for estimating the ignition delay of methanol/
diesel and hydrogen/diesel dual-fuel combustion. Dierickx et al. [36] proposed a correlation
for the calculation of ignition delays in dual-fuel engines with hydrogen or methanol in a
medium speed single cylinder engine. The newly developed methanol dual-fuel correlation
incorporates the inhibition effect using the methanol-air equivalence ratio. Consequently,
the ignition delay increases with a rising methanol-air equivalence ratio, resulting from
an increased methanol content in the cylinder, besides temperature, pressure, and diesel
equivalence ratio effects. In dual-fuel operation with hydrogen, this study discovered that
the measured ignition delay was minimally affected by increasing the hydrogen energy
fraction. However, they observed that ignition delay slightly decreased when they analyzed
the temperature and pressure changes during the ignition delay and their impact on the
various elements of the ignition delay correlations. Zong et al. [37] integrated a skeletal
kinetic model developed by Xu et al. [38] for predicting the ignition delay of methanol/n-
heptane into a diesel-methanol dual-fuel 3D CFD study. Also, Decan et al. [39] used
tabulated ignition delays estimated by detailed chemistry schemes in the CFD simulation
of a fumigated dual-fuel engine.

According to the literature review, an accurate estimation of the ignition delay in dual-
fuel engines operating on hydrogen or methanol is necessary for any simulation of dual-
fuel combustion, and it should be applicable as generally as possible. As discussed above,
the ignition delay can be calculated in different ways: either through a correlation that
typically incorporates some physics but is mostly phenomenological in nature, i.e., fitted to
experimental data; or through chemical kinetic simulations. The latter are the best starting
point, as they do not depend on engine-specific data. However, these require the selection of
appropriate reaction mechanisms, that properly take the effects of both premixed fuel and
pilot fuel into account. Also, as calculating the ignition delay time from chemical kinetics
“on the fly”, i.e., during engine combustion simulations, is computationally expensive,
these mechanisms are typically used to generate a table beforehand, covering all conditions
expected in engines. There are then various options on how to use this table during
engine combustion simulations. It can be used to look up the relevant ignition delay
time during engine combustion simulation, but with the recent improvements in machine
learning, it could also be worthwhile to use machine learning to capture the table data
in a mathematical formulation. Such an approach could potentially speed up the engine
calculations as less time is needed for data retrieval.
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To address these research gaps, the present study thus integrates ignition delay data
from chemical kinetic mechanisms, calculated using Cantera over a wide range of operating
conditions, into a dual-fuel multi-zone combustion model using two different methodolo-
gies: machine learning and look-up tables, and also compares these to the results when
using the correlation from Dierickx et al. [36]. The accuracy of these methodologies is
then evaluated against experimental data from a medium-speed marine engine. While
traditional correlations require calibration based on engine specifications to yield accurate
results, it is evaluated whether the methodologies proposed in this work allow using the
calculated ignition delay times without the need for any pre-calibration. Additionally, as
the data are derived from chemical kinetics, the chemical effect of the premixed fuel on the
ignition delay of the pilot diesel can be further elaborated.

The main long-term objective of this work is to develop a more accurate 0D/1D dual-
fuel combustion model (for which GT-Power V2023 serves as the simulation environment),
serving as a virtual engine for future real engine development. Accurate prediction of
ignition delay time is a critical step toward achieving full-cycle simulation accuracy. This
study focuses specifically on improving the start of combustion by comparing ignition
delay times predicted by different methodologies against experimental engine data under
various operating conditions. While the start of combustion is crucial, accurately simulating
it alone does not ensure improvements across the full combustion cycle. Other factors, such
as laminar and turbulent burning velocities and flame surface area, also significantly impact
the combustion process. However, this study focuses completely on establishing an accurate
methodology for ignition delay time prediction, without attempting full combustion cycle
evaluation, which will be tackled in follow-up work.

In the following sections, a brief explanation of the experimental setup used to col-
lect the data and the study cases examined in this work will be provided. This will be
followed by a detailed explanation of the numerical methodologies, and then the results
and conclusions will be presented.

2. Experimental Setup

In the present study, data measured from the single-cylinder engine (SCE) shown in
Figure 2 are utilized. The engine specifications can be found in Table 1. The SCE, developed
in collaboration with Anglo Belgian Corporation, is located at the WTZ Rofslau laboratory.
The experimental data was obtained from two different bore sizes: one with a bore size of
240 mm (SCE 1) and the other with a bore size of 256 mm (SCE 2).

Table 1. The engine specifications.

Engine Model Name FM24
Cylinders 1
Compression ratio 12.1:1

240 x 290 mm (SCE1)

Bore x stroke 256 x 290 mm (SCE2)

Displacement volume 13.11(SCE1) and 14.91 (SCE2)

Diesel injection system Cam-driven Single Injection Pumps
Nominal power 200 kW (SCE1), 224 kW (SCE2)
Nominal speed 1000 rpm

In the single-cylinder engine, methanol was injected at a low pressure (below 1 MPa)
into the intake port, whereas hydrogen injection was at a constant pressure, 0.05 MPa
higher than the intake air pressure. The intake air temperature and pressure adjustment
were based on the fuel and engine settings, as outlined in Table 2. An air intercooler
positioned after the compressor, which controls the intake air pressure, regulates the intake
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air temperature. An intake air heater was employed to make final adjustments. The in-

cylinder pressure sensor had a resolution of 1 crank angle degree. A pressure sensor was

also used in the diesel high-pressure line of the pump-line-nozzle system. Both SCE1 and

SCE2 are equipped with a single diesel injector that supplies diesel energy in both diesel

and dual-fuel operations. The maximum diesel injection pressure is 100 MPa. Table 2

presents the different experimental cases whose data are used in this study. More details

about the experimental setup and the cases can be found in the literature [36].

]
K

\ :; : I .
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Figure 2. Picture of experimental setup. Methanol fuel supply system: 1: magnetic valve, 2: flexible

hose pipe, 3: pressure sensor, 4: methanol injector, 5: surge tank [36].

Table 2. Experimental cases (MEF and HEF represent methanol energy fraction and hydrogen energy

fraction, respectively [36]).

Campaign Samples Parameter Variations
MEOH-SCE1 1 Pair = 0.35 MPa, Ty = 324.15K, MEF = 60%, load = 75%
2,3 Pair = 0.35 MPa, T,i, = 348.15 K, MEF = 60, 70%, load = 75%
4,5 Pair = 0.35 MPa, Tyi, = 358.15 K, MEF = 70, 73%, load = 75%
6,7 P,ir = 0.35 MPa, T,i, = 324.15K, MEF = 50, 60%, load = 75%
8,9 P,ir = 3.5 MPa, T,;, = 348.15K, MEF = 50, 60%, load = 75%
10, 11 Pair = 0.33 MPa, T,i, = 324.15K, MEF = 50, 60%, load = 75%
12,13 Pair = 0.35 MPa, T, = 324.15K, MEF = 50, 60%, load = 75%
14, 15 Pair = 0.37 MPa, T, = 324.15K, MEF = 50, 60%, load = 75%
MEOH-SCE2 1 P, = 0.37 MPa, T,i, = 324.15K, MEF = 46, 51%, load = 75%
2 Pair = 0.36 MPa, Ty = 358.15 K, MEF = 50%, load = 75%
3 Pair = 0.36 MPa, Ty, = 348.15 K, MEF = 50%, load = 75%
4 Pair = 0.31 MPa, T,;, = 348.15 K, MEF = 45%, load = 75%
5 P,ir = 0.36 MPa, T3, = 348.15 K, MEF = 51%, load = 75%
6-8 P,ir = 0.19 MPa, T,;, = 348.15 K, MEF = 50, 56 ,61%, load = 75%
9,10 Pair = 0.27 MPa, Ty = 348.15 K, MEF = 50, 56%, load = 75%
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Table 2. Cont.

Campaign Samples Parameter Variations
H2-SCE1 1,2 Pair = 0.21 MPa, T, = 309.15 K, HEF = 25, 40%, load = 75%
3,4 P,ir = 0.21 MPa, T3, = 316.15K, HEF = 25, 40%, load = 75%
5-8 P,y = 0.2 MPa, T,;, = 316.15K, HEF = 25,35, 40,44%, load = 75%
9,10 Pair = 0.22 MPa, Ty = 316.15 K, HEF = 25, 40%, load = 75%
11-13 Pair = 0.25 MPa, T,i, = 316.15 K, HEF = 25, 40, 50%, load = 75%
14-16 Pir = 0.26MPa, Ty, = 316.15K, HEF = 25, 40, 50%, load = 75%

3. Numerical Methodology

As mentioned previously, this study employs various methods to estimate the ignition
delay time in dual-fuel marine engines. Initially, a constant volume batch reactor within
the open-source Cantera code is used to calculate the ignition delay time of hydrogen/n-
heptane and methanol/n-heptane mixtures under different operating conditions. Once the
dataset is created, machine learning techniques including Artificial Neural Network (ANN)
and Support Vector Regression (SVR) are applied in MATLAB R2023a to train the models.
The trained neural network is then integrated into the multi-zone combustion model in
GT-Power, a commercial 0D/1D engine simulation software. As an alternative method, the
data from Cantera is also implemented as a lookup table within GT-Power. The following
sections explain the methodologies in more detail.

3.1. Dataset Generation Using Chemical Kinetic Mechanisms and Cantera

First, the chemical kinetic mechanisms developed by Andrae et al. [40] and Liu
et al. [41] are used in Cantera under various operating conditions to generate the datasets
for methanol/diesel and hydrogen/diesel, respectively. It is worth mentioning that the
ignition delay time is defined as the time at which the OH species concentration peaks. Four
input parameters are considered: pressure (P), temperature (T), the overall equivalence
ratio (¢), and the molar percentage of methanol or hydrogen in the mixture. Table 3 shows
the range of input data and the number of data points used for methanol/diesel and
hydrogen/diesel blends.

Table 3. Data range used for training.

Molar Number of

P (MFPa) T ¢ Percentage  Datapoints
Methanol/diesel ~ 7-13 625-1800 0.5-3.5 0-95 5240
Hydrogen/diesel  4-10 625-1100 0.5-3.0 0-95 3485

In the following section, two machine learning methods employed in this work are
explained in more detail.

3.2. Machine Learning Method

In the present work, two different methods, namely Artificial Neural Network (ANN)
and Support Vector Regression (SVR), are introduced and used to train models on the
ignition delay data generated as discussed in the previous section. This is done in MATLAB.
These two different methods are then compared to determine which one performs better in
predicting the targets.

Before the training starts, it is important to preprocess the inputs. Four types of inputs
are used: pressure (P), temperature (T), overall equivalence ratio (¢), and methanol or
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hydrogen molar percentage in total fuel mass. Each input must be normalized separately
to prevent any single feature from dominating due to its scale, thereby improving the
algorithm’s performance. Normalization also facilitates faster convergence during the
training process, especially in neural networks. In this study, the “mapminmax” method,
defined by Equation (1), is employed to normalize input data. This technique, commonly
used in the preprocessing stages of machine learning and neural networks, ensures equal
contribution of all features to the training process and typically scales the data between —1
and 1 or 0 and 1 [42].

_ (Ymax — Ymin) (Xi - Xmin)

=1
(Xmax - Xmin) ’

+y =-1 1)

Yn min Ymax Ymin
Here, Xmax and Xpin represent the maximum and minimum values of the actual data,

respectively, while y  shows the normalized parameter. x; is the actual data to be scaled.

3.2.1. Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are computational models that work similarly to
the human brain. ANNSs are used in a wide range of topics for classification, regression,
pattern recognition, and more [43]. Figure 3 depicts the general structure of the ANN
employed in the present work. The inputs to the ANN are pressure (P), temperature (T),
overall equivalence ratio (¢), and the molar percentage of methanol or hydrogen in the
mixture, and the output is the ignition delay. The ANN consists of neurons organized in
layers: an input layer including ten neurons, one hidden layer including 12 neurons, and an
output layer. The neurons of a layer are individually linked to each neuron of the next layer
via a connection with a specific weight. When a neuron receives inputs from neurons of
the prior layer, each input is multiplied by the related weight of the connection. The small
random values are initially used for the weights. During training, these weights are revised
using optimization algorithms to reach the minimum error in the network’s predictions.
Each neuron also has a related bias term. After adding the weighted inputs, the bias is
added to this sum. This process leads to non-zero output values even when all inputs are
zero. After the weighted sum and bias addition, the result is passed through a transfer
function (like sigmoid, hyperbolic tangent sigmoid, or Rectified Linear Unit), which makes
the network non-linear. The network requires this non-linearity to deal with complex data.
Overall, the primary function of ANNSs is to minimize the error between predicted and
target values by modifying the constants within the transfer functions between layers.
Thus, selecting the transfer function and the specific errors in the training process are
very important.

In the present study, the Levenberg-Marquardt algorithm is employed as the training
function, while the mean squared error (MSE) method is used to evaluate the network’s
performance. Data division is random. Random data division in ANNSs refers to randomly
splitting the dataset into different groups for training, validation, and testing. Conse-
quently, diverse and representative data are used in the model’s performance evaluation.
It will decrease the possibility of overfitting and provide a more precise assessment of its
generalization capability.

The data are divided into three randomly discretized sets, for training, test, and
validation. Approximately 70% of the data are used to train the network, 15% for testing,
and the final 15% for validation. Figures 4 and 5 present diagrams comparing the model
output (y-axis) with the target values (x-axis) for these three datasets, as well as for the
complete data set. In the diagrams, the more data points (shown as circles) lie on the “Fit”
line, the better the model’s performance. According to the figures, the results demonstrate
that the prediction accuracy (R) for training, validation, and testing exceeds 99% for both
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methanol/diesel and hydrogen/diesel ignition delay time data, indicating excellent model
performance. The mean square errors for the best performance are 0.00066 and 0.000042 for
methanol/diesel and hydrogen/diesel, respectively.
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Figure 3. Artificial neural network architecture (w, x, b and g are weights, inputs, bias and activation
function, respectively).
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Figure 4. Regression results of the training for the methanol/diesel data set.
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Figure 5. Regression results of ANN training for the hydrogen/diesel data set.

3.2.2. Support Vector Regression (SVR)

Support Vector Regression (SVR) is a machine learning algorithm based on so-called
Support Vector Machines (SVM). It is widely used for regression tasks where a continuous
target variable needs to be predicted [43]. SVR involves the principles of SVM, which
is traditionally used for classification and regression problems. Traditional regression
methods minimize the error directly, whereas SVR employs an e-insensitive loss function.
This means errors within a certain distance (¢) from the actual values are ignored, as
illustrated in Figure 6. The model is only affected by data points that fall outside the ¢
margin (£ and &'). These crucial points, named support vectors, determine the position
and direction of the regression line. A regularization parameter (C) is responsible for
managing the compromise between the flatness of the regression function and the amount
to which a deviation larger than ¢ is allowed. A larger C value leads to a more correct model
that may overfit, while a smaller C allows for a more generalized model. SVR employs
different kernels to deal with non-linear trends. Common kernels include linear kernel,
polynomial kernel, and Gaussian kernel. This study trains the model using the Gaussian
and polynomial kernels because the data show nonlinear trends.

Figures 7 and 8 show diagrams comparing the SVR-predicted values (y-axis) with
the observed values (x-axis) using two different kernel functions: (a) Gaussian and
(b) Polynomial. These diagrams illustrate how closely the predicted values match the
observed data. The more blue points that lie on the red line (“Fit”), the more accurate the
trained model is. Both kernels demonstrate good performance for both methanol/diesel
and hydrogen/diesel. According to the results, error values for hydrogen/diesel models are
0.9895 for the Gaussian method and 0.9802 for the polynomial method. For methanol/diesel
models, the error values are 0.9947 and 0.9939, respectively.

Both machine learning methods demonstrate high accuracy in predicting the targets.
However, because the training time for the ANN method is approximately five times
shorter, this method is selected for the remainder of this this work.
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Figure 6. Linear SVR (w, b, ¢, € and & are weight, bias, regularization parameter, margin and slack
variables, respectively). The red dotted lines indicate the boundaries of the e-insensitive tube, within
which no penalty is given for errors.
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Figure 7. Regression results of SVR training for methanol/diesel dataset using two different kernels:
(a) Gaussian, (b) polynomial.

It is worth mentioning that statistical processing can enhance the reliability of
simulation-based studies by evaluating the impact of input parameters. Techniques like the
Taguchi design improve efficiency by reducing the number of simulations needed. Similar
methods have been successfully applied in engineering, such as in Milojevi¢ et al. [44], to
optimize system performance.

Before explaining how the ANN method is integrated into the engine simulation
software, the software used in this work is first introduced.
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Figure 8. Regression results of SVR training for hydrogen/diesel dataset using two different kernels:
(a) Gaussian, (b) polynomial.

3.3. Multi-Zone Dual-Fuel Combustion Model in GT-Power

This study employs GT-SUITE’s predictive dual-fuel multi-zone combustion model to
simulate a medium-speed dual-fuel engine. Researchers have previously used this model
to simulate dual-fuel combustion of methane and diesel [45,46]. Three primary models
are integrated into a multi-zone model to simulate dual-fuel combustion, to try to capture
the physics of an autoigniting pilot spray that burns in a non-premixed mode and in turn
ignites a premixed fuel-air mixture that burns in a flame propagation mode: a spray model
(EngCylCombDIPulse), a transition function from spray to flame, and the flame model
(SITurb). Different sub-models are employed by the DIPulse model to estimate spray
entrainment, ignition delay, premixed combustion, and diffusion combustion, all referring
to the pilot injection. The primary strategy involves tracking the fuel from injection, through
evaporation, and mixing with the gas around the diesel spray, until it burns. The cylinder
mixture is divided into three thermodynamic zones, each of which has its own species and
temperature. The outer zone is called the main unburned zone, containing all cylinder
content at intake valve closing time (IVC). The spray unburned zone is the inner zone,
which includes injected fuel and entrained gas. There is a third zone between the mentioned
zones called the burned zone, holding combustion products [46].

The Arrhenius equation presented in Equation (2) is used to estimate the ignition
delay time of the blend in the pilot injection. The Ignition Delay Multiplier (Cig;,) can be
used to adjust the equation.

_ 3500 _
Tign = Cignp LSQXP(T) [02} 0 (2
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The Livengood-Wu integral [47] is a commonly used method in ignition delay mod-
eling. It relies on the conservation of delay principle, which states that the total ignition
delay can be calculated by adding up the instantaneous ignition delays starting from the
injection. Ignition, and thus the start of combustion, happens when the time integral equals
one as is indicated in Equation (3).

/tfsoc 1 _1 3)

sor  Tign (t)

Dierickx et al. [36] compared the GT-Power correlation and several other correlations
for predicting the ignition delay of methanol-diesel and hydrogen—diesel co-combustion,
using measured data from a medium-speed marine engine under real-world conditions.
They found that the GT-Power methodology accurately predicts ignition delay in diesel-
only applications but fails to do so when the methanol energy fraction increases.

The next section explains how the ANN was incorporated into this modeling framework.

3.4. Integration of the ANN into the Multi-Zone Dual-Fuel Combustion Model in GT-Power

To integrate the ANN from Section 3.2.1. into the dual-fuel multi-zone combustion
model in GT-Power, it is first converted into a mathematical formula using its weights (w),
biases (b), and transfer functions (f) [42].

The equation that relates the input and output parameters can be obtained as follows:

W11 ... Wy W11 ... W4 Y1
. . - . Y2
z = fout <W11 W1p--- W1h> X fhidden : o | X finput : ot x v +b; p +by p +bo 4)
3
Wh1 .. Whi Wi1 oo Wig V4

where fout, fhidden, finput are the transfer functions of the output layer, hidden layer, and
input layer, respectively, and by, by, b; are the biases of the output layer, hidden layer and
input layer. The scaled output (z) should be de-normalized using Equation (1) to obtain the
actual output. This involves using the maximum and minimum values of the target data
during the descaling process.

GT-Power software facilitates the development of new models for parameters such
as ignition delay and flame speed through user-defined codes. The DIPulse user code,
explained in the previous section, can be employed to incorporate user-defined models
for estimating ignition delay time. It provides access to pulse conditions such as pulse
temperature, cylinder pressure, and pulse composition.

In this study, the user code is used to implement a trained neural network for calcu-
lating Tg, in Equation (3), using the pulse conditions (P, T, ¢, and methanol or hydrogen
molar percentage) as inputs.

3.5. Look-Up Table and Correlation Methods

Another approach to incorporate the ignition delay data from Section 3.1. into the
multi-zone combustion model is through the use of a look-up table. Initially, a look-up
table is generated to cover a wide range of operating conditions that covers all scenarios
occurring during the injection pulse. Subsequently, specific commands are implemented in
the DIPulse user code to retrieve Tigy(t) as per Equation (3) from the look-up table.

As a final alternative, the phenomenological correlation proposed by Dierickx et al. [36]
is also employed in this work to estimate the ignition delay. They developed a new correla-
tion for dual-fuel operation with hydrogen or methanol in a medium speed single cylinder
engine. Their approach emphasizes the importance of incorporating additional terms, such
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as the methanol equivalence ratio, to accurately describe methanol’s inhibition effect. More
detailed information about their correlation can be obtained from their paper [36].

4. Results and Discussions

The mentioned methods are now used to predict the ignition delay after being inte-
grated in a multi-zone combustion model and the results are compared to the experimental
data from the medium-speed dual-fuel engine as listed in Section 2. The final goal is to see
which method most accurately predicts the ignition delay in real-world engine conditions.

4.1. Methanol/Diesel

Figures 9 and 10 compare the ignition delay predictions for the SCE1 and SCE2
methanol/diesel dual-fuel engine data points (as listed in Table 2) using the different
methodologies. It should be mentioned that the measure ignition delay is derived from
in-cylinder pressure data and is defined as the crank angle at which 2% of the total fuel
mass has been burned. This point is commonly used as a reliable indicator of the start of
combustion (SOC), as it captures the transition from fuel injection to the onset of significant
heat release. To determine this, the apparent heat release rate is first calculated from the
pressure trace using the first law of thermodynamics, and then integrated to obtain the
cumulative heat release. The resulting mass fraction burned curve allows identification of
the 2% burn point, which provides a consistent basis for comparing ignition delays under
varying engine operating conditions. The gray area represents the measurement resolution
of 1 crank angle degree. The methanol energy fraction varies from 50% to 75% for the
SCE1 cases and from 46% to 56% for the SCE2 cases. It can be seen from both figures that
the ignition delay of the pilot diesel is significantly influenced by increasing the methanol
percentage in the premixed fuel under real engine conditions, which is in good agreement
with the findings of previous works [32]. Ignition delay is represented in crank angle in
the figures. It is worth mentioning that one crank angle degree at 1000 RPM is equal to
166.7 microseconds.
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Figure 9. Comparison of results from different methodologies with measured data (SCE1). The gray
area represents the measurement resolution of 1 crank angle degree.

According to Figure 9, the results from the ANN show more accurate predictions
of ignition delay compared to other methods. The average relative errors of the ANN,
correlation, and lookup table methods are 13%, 17%, and 23%, respectively. Furthermore,
the ANN method has the lowest RMSE, approximately 0.91, compared to around 1.09 and
1.52 for the correlation and lookup table methods, respectively. In addition, as shown in
Table 4, the ANN method has a lower mean squared relative error (MSRE) of 0.03. The
MSRE is 0.04 for the correlation method and 0.09 for the lookup table.
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Figure 10. Comparison of results from different methodologies with measured data (SCE2). The gray
area represents the measurement resolution of 1 crank angle degree.

Table 4. Comparison of RMSE and MSRE for the different methodologies.

Engine Methodology Root Mean Square Mean Squared Relative

Error (RMSE) Error (MSRE)
Parsa_ ANN 0.9127 0.0314
SCE1 Parsa_LookUP 1.5192 0.0894
JD_Correlation 1.0909 0.0366
Parsa_ ANN 0.6939 0.1640
SCE2 Parsa_LookUP 0.7927 0.2115
JD_Correlation 0.8996 0.1733

Figure 10 demonstrates the ignition delay predictions of the different methods for the
SCE2 cases. It can be seen that here, too, that the ANN method predicts the ignition delay
time more accurately compared to the other two methods. The average relative error of the
ANN method is about 14%, which is lower than that of the correlation and lookup table
methods, at 15% and 18.17%, respectively. Moreover, Table 4 shows that the ANN method
has the lowest RMSE and MSRE, at approximately 0.7 and 0.2, respectively. Additionally, in
terms of running time, the ANN and correlation methods are about 40% faster than using
the lookup table.

The low accuracy of the lookup table method can be attributed to several factors:
the four input data points required for prediction, the strongly non-linear trend of the
ignition delay time, and the interpolation technique used. The interpolation method and
the number of data points used to create the lookup table are critical factors affecting its
accuracy in such situations. However, increasing the size of the lookup table and employing
more complex interpolation methods will result in longer running times.

It can be concluded that the ANN methodology is the most accurate for predicting
the ignition delay time of a methanol/diesel dual-fuel engine under real engine conditions.
Since the data is derived from chemical kinetics mechanisms, developing a more accurate
mechanism can potentially further enhance this method’s accuracy.

4.2. Hydrogen/Diesel

Figure 11 compares the ignition delay predictions for the hydrogen/diesel operation
using two different methods, ANN and correlation, against the experimental data for SCE1.
There are 12 cases, and the hydrogen energy fraction (HEF) changes between 25% and 50%.
The results from both methods indicate that the ignition delay of the diesel pilot is not
considerably affected by the percentage of hydrogen in the premixed fuel under real-world
engine conditions. This finding aligns with results from other literature [32].
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Figure 11. Comparison of results from ANN and correlation methods with measured data (SCE1).
The gray area represents the measurement resolution of 1 crank angle degree.

The average relative error of both methods is about 10.9%. Furthermore, the RMSE
is 0.57 for the ANN method and 0.53 for the correlation method. Both methods show
good accuracy in predicting the ignition delay time of the diesel pilot in the presence
of a hydrogen/air mixture. The ANN and correlation methods both show the same
running time.

5. Conclusions

Accurate estimation of the ignition delay time of the pilot fuel is essential for sim-
ulating methanol/diesel and hydrogen/diesel dual-fuel combustion. There has been
insufficient investigation into calculating this ignition delay under real engine conditions.
This study aimed to determine the most accurate method for estimating ignition delay times
in methanol/diesel and hydrogen/diesel dual-fuel engines under real world conditions.
Data were used from a medium speed single cylinder setup running in relevant conditions,
to serve as validation data. Unlike traditional correlations that require calibration based on
specific engine parameters to produce accurate results, the proposed methodologies in this
work can principally be used to calculate ignition delay in any dual-fuel engine. For the
SCE1 dataset, the ANN achieved an RMSE of 0.91, outperforming the correlation method
(RMSE = 1.09) and the lookup table method (RMSE = 1.52). Similarly, for the SCE2 dataset,
the ANN method achieved the lowest RMSE of 0.7. For hydrogen/diesel operation, both
ANN and correlation methods achieved good accuracy, with average relative errors of
~10.9% and RMSE values of 0.57 and 0.53, respectively. Additionally, the ANN method is
approximately 40% faster than the lookup table methodology in terms of running time.
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Abstract: The self-diffusion coefficients of carbonaceous fuels in a supercritical CO, environment
provide transport information that can help us understand the Allam Cycle mechanism at a high
pressure of 300 atm. The diffusion coefficients of pure CO, and binary CO,/CH, and CO,/C,yHg
at high temperatures (500 K~2000 K) and high pressures (100 atm~1000 atm) are determined by
molecular dynamics simulations in this study. Increasing the temperature leads to an increase in
the diffusion coefficient, and increasing the pressure leads to a decrease in the diffusion coefficients
for both methane and ethane. The diffusion coefficient of methane at 300 atm is approximately
0.012 cm? /s at 1000 K and 0.032 cm? /s at 1500 K. The diffusion coefficient of ethane at 300 atm is
approximately 0.016 cm?/s at 1000 K and 0.045 cm? /s at 1500 K. The understanding of diffusion
coefficients potentially leads to the reduction in fuel consumption and minimization of greenhouse
gas emissions in the Allam Cycle.

Keywords: diffusion coefficient; supercritical CO,; combustion; methane; ethane; molecular dynamics;
ideal gas kinetic theory

1. Introduction

Diffusion is a fundamental process driven by the random thermal motion of molecules,
which significantly impacts chemical and biological reaction rates [1]. It manifests differ-
ently across gas, liquid, and solid phases, and governs the overall rate of these processes.
This study explores diffusion within supercritical fluid (SCF), which is a unique state where
liquid and gas properties coexist. Such unique properties pose experimental and computa-
tional challenges [2]. SCF mass transfer processes hold immense potential in various fields:
(i) the selective extraction of valuable components from food and environmental samples;
and (ii) design and optimization of SCF reactors with precise control of temperature and
pressure parameters to ensure proper mixing for efficient reactions. Supercritical carbon
dioxide (sCOy) is a promising tool in materials science and biological applications. Notably,
the Allam Power Cycle, a recent breakthrough technology, utilizes sCO, for thermal energy
conversion from carbon fuels [3]. The cycle transforms greenhouse gas CO, in traditional
power plants into a reusable working fluid for spin turboexpanders and then generates
electricity. The power generation cycle was developed in the last 10 years and has turned
the air pollution problem into a solution [3]. However, further research is necessary to
fully unlock its potential. Understanding diffusion is crucial for optimizing several key
aspects of the technology of the Allam Cycle. First, diffusion dictates the mixing of fuels,
like natural gas, with CO, at the molecular level. Improved mixing enhances combustion
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completeness. Second, efficient heat transfer from hot combustion products to CO, working
fluid relies on diffusion within the gas stream. Third, diffusion influences the separation
mechanism of CO, from flue gas after combustion. This study investigates the diffusion
of hydrocarbon in sCO, due to its unique liquid-like and gaseous-like properties, which
influences the diffusion coefficients of various hydrocarbons. Understanding the behavior
of hydrocarbons in high-temperature and -pressure supercritical environments is vital [4].

The direct-fired sCO; cycle that utilizes CO, as the working fluid directly is an al-
ternative to current electricity production. The Allam Cycle is a novel power generation
technology and it converts carbon fuels into thermal energy and electricity while capturing
the generated CO; and O,. The cycle involves four stages. First, the cycle begins with
the burning of fuels and oxygen. Fuels and pure O, combust within high-pressure and
high-temperature sCO, in a combustor. The purpose of using pure O; is to replace air for
cleaner combustion and to avoid nitrogen dilution. Second, the hot combustion products,
COy and water vapor, transfer heat to sCO, in a heat exchanger. Third, the heated CO,
expands through a turbine and generates electricity. Lastly, cooled-down sCO; is collected
in a compressor to complete the cycle. The relatively low critical temperature (37 °C) and
critical pressure (8.4 MPa) of sCO, make it an attractive choice as an SCF solvent in the
Allam Cycle. By elucidating the diffusion coefficients, we aim to gain a deeper understand-
ing of the molecular transport phenomena within this cycle, ultimately paving the way for
further power cycle design improvements. The Allam Cycle operates at high pressures
(30-300 atm) and high temperatures (500-1150 °C) [3 4].

SCFs offer significant advantages due to their low viscosity and high solute diffu-
sivity, leading to a multitude of industrial applications. The combination of CO, with
hydrocarbons, like methane and ethane, in supercritical environments holds particular
interest in various fields. For example, efficient carbon capture and storage are crucial for
mitigating climate change. sCO, can effectively capture CO, emissions from industrial
processes. sCO; can also be used to selectively separate and purify desired components
from mixtures to avoid the usage of hazardous organic solvents. Furthermore, sCO, is a
valuable solvent for extracting materials from various sources. These characteristics show
the importance of understanding diffusion properties in the sCO, environment to optimize
these industrial procedures. With its near-perfect CO, capture capability, the Allam Cycle
requires stable diffusion in the combustor. This is the main reason for investigating the
diffusion coefficients of methane and ethane in an sCO, environment to see how stable
the diffusion of hydrocarbon is in such gaseous-like and liquid-like conditions. The Al-
lam Cycle operates at a pressure range of 30-300 atm. At 300 atm, CO, exhibits optimal
thermodynamic properties and translates to high thermal efficiency and reduced material
selection challenge. In addition, the turbine inlet temperature can reach as high as 1150 °C,
which is comparable to modern natural gas combined cycle plants. The broad pressure
and temperature windows play significant roles in the Allam Cycle’s performance and
design [3,4], and this is the goal of our study.

This paper describes the results of the determination of the binary diffusion coefficients
CO,/CHy and CO,/CyHg by classical molecular dynamics (MD) simulations. CHy and
CyHg are prevalent hydrocarbon fuels employed in power cycles. In the past, Stubbs
comprehensively reviewed MD and Monte Carlo (MC) simulations of supercritical HO
as well as sCO, systems in detail, encompassing crucial aspects of the selection of force
fields, the size of the simulation boxes, and the pH at different temperatures, pressures,
and densities [5]. The thermophysical properties in the sCO, environment have been
summarized in his review article. Several studied have employed various force fields
to evaluate diffusion coefficients in systems relevant to this work. Aimoli et al. [6] and
Moultos et al. [7] utilized the transferable potentials for phase equilibria (TraPPE) force field
to assess the diffusion coefficients of pure CO,, CHy, and CO,-H,O mixtures across a broad
range of temperatures (273-623 K) and pressures (0.1-100 MPa). Zhu et al. [8] employed
the elementary physical model (EPM2) force field for a Gibbs ensemble MC simulation
to determine diffusion coefficients at 304 K. The radial distribution function of CO, was
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analyzed to evaluate the validity of their simulations that the first-neighbor C-C distance
is around 4.0 A. Abbaspour and Nameni used a two-body Hartree-Fock dispersion-like
potential to determine the self-diffusion coefficients of CO, and CO,-CH; mixtures at
approximately 300 K [9].

Several studies have investigated diffusion in an sCO, environment relevant to our
research. Guevara-Carrion et al. performed CH, diffusion experiments with the Taylor
dispersion technique and MD simulations [10] at temperatures in the range of 293-333 K
and pressures in the range of 9.0-14.7 MPa, which is typical of Allam Cycle conditions.
This group determined the self-diffusion, Fick, and Maxwell-Stefan coefficients of CHy
diluted in an sCO, environment. Feng et al. collected a series of diffusion coefficients
of n-hydrocarbon (C1-C14) in near-critical and sCO, environments (308 K and 323 K,
respectively, at 10.5 MPa) from experiments and simulations at an infinite dilution. The
ratios of carbon dioxide to hydrocarbon in their simulations are CO,:CH, = 4000:110
and CO,:CoHg = 4000:58 to mimic the infinite dilution of hydrocarbon molecules [11].
Furthermore, in recent years, Asadov et al. experimentally studied the diffusion coefficients
of CO,-CyHg-heavy oil and CO,-C3Hg-heavy oil in an sCO, environment at temperatures
in the range of 320-355 K and pressures in the range of 2-15 MPa [12]. It is important
to note that these examples of previous studies focused on conditions below 623 K and
100 MPa.

More MD and MC simulations were applied to study various physical and chem-
ical properties of hydrocarbons in an sCO, environment. Other MD studies included
of the following: (1) the thermodynamic properties of CHy in an sCO, environment
(CO,:CH4 = 400:100, 323 K at 9.94 MPa), such as potential energy and pressure, mean
square force, and torque, were studied by Skarmoutsos et al. [13]; and (2) Gong et al. stud-
ied the evaporation mode transition of hydrocarbon fuels in subcritical and supercritical
fluids (750-3600 K and 4-36 MPa) to gain insights into air-fuel mixing and combustion
processes [14]. Other MC studies included the following: (1) the chemical potential of
non-polar hydrocarbon in an sCO, environment (300-350 K at 10-500 bar) was examined
by Chang [15]; and (2) the free energy of the solvation and structural properties of CHy
in an sCO, environment (304 K at 80 and 200 atm) were studied by Tafazzoli et al. [16]
These studies show the importance of providing thermodynamic parameters to understand
hydrocarbon reactions in an sCO; environment.

Here, we focus on the self-diffusion coefficients of CO,/CH4 and CO,/CyHg mixtures
in extreme temperatures (500-2000 K) and pressures (100-1000 atm) that were not easily
studied experimentally and/or computationally in the past to mimic the condition of
the Allam Cycle. Studying diffusion under such extreme conditions presents significant
challenges for both experimental and theoretical approaches. From the perspective of the
experimental challenges, specialized equipment is needed to handle such conditions safely
and accurately. The high mobility of molecules and potential for chemical reactions at these
extremes introduce noise to the measurements. Some materials used for the equipment
might be unstable and potentially lead to contamination [3,4,17]. From the perspective
of computer simulation challenges, the accuracy of MD simulations relies heavily on the
selection of force fields for high-temperature and -pressure systems. In addition, diffusion is
a relatively slow process. Simulating realistic timescales at high temperatures and pressures
can be computationally prohibitive [18]. To the best of our knowledge, it is the first time
extremely high temperatures (~2000 K) and pressures (~1000 atm) have been achieved by
computer simulations, and this is systematically discussed under such conditions. Our
simulations explore diffusion behavior at high temperatures and pressures relevant to
the Allam Cycle. While these conditions might be challenging to achieve experimentally,
our simulations provide valuable data for the understanding the system’s behavior at its
operating limits.
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2. Computational Methods

The initial pure CO, diffusion coefficients at various temperatures and pressures
were determined by ChemKin II Fortran version for comparison [19]. All the molecular
dynamics simulations were performed using the LAMMPS program [20]. The force fields
of CO, [21,22], CH4 [23], and CyHg [23,24] we selected were united-atom TraPPE because
of its broad applicability and transferability to carbon dioxide and hydrocarbons. TraPPE
has been successfully validated across various diffusion coefficient evaluations involving
sCO; by comparison with available computational CO; self-diffusion coefficient results [7].
The cutoff radius of Coulomb and Lennard-Jones potentials was set to 14.0 A. A time step
of 1.0 fs was adopted. Simulations were performed under periodic boundary conditions
in a cubic box measuring 35.0 x 35.0 x 35.0 A3 and 40.0 x 40.0 x 40.0 A3, with a particle—
particle particle-mesh calculation in the k-space to better estimate long-range interactions.
The initial geometry of all the simulations was generated by Packmol v20.15.0 [25]. A total
of 77 CO, molecules and binary CO,:CHy = 16:16, 32:32, or 42:42, and CO,:C,Hg = 16:16
or 32:32 molecules were placed in the simulation box. Different numbers of molecules in
simulation boxes of different sizes will lead to different pressures. The reason for using
a one-to-one ratio of carbon dioxide versus hydrocarbon is to achieve high pressure in
the simulations. The selected simulation temperatures are 750, 1000, 1250, 1500, 1750, and
2000 K for pure CO,, and 300, 500, 1000, 1500, and 2000 K for both CO, /CH, and CO,/C,Hgq
mixtures. Energy minimization was the first step to stabilize the simulation box, which was
generated originally using Packmol software. The criteria for stopping minimization were:
a tolerance for energy of 1072, a tolerance for force of 10~7 kcal/mol/ A, max iterations
of the minimizer of 5 million steps, and a max number of force/energy evaluations of
10 million steps. After energy minimization, a constant volume and temperature ensemble
(NVT) were applied for the first 5 million steps (5 ns), followed by a constant volume and
energy ensemble (NVE) for 5 million steps (5 ns) as the production run. A Nosé-Hoover
thermostat was applied for the NVT [26,27]. The damping parameter was 200.0, meaning
we relaxed the temperature at a timespan of 200 femtoseconds for the NVT. At least 5
to 10 independent test runs were averaged (with different initial geometries) to reduce
fluctuations and then receive statistically reasonable results.

The calculations of the self-diffusion coefficients of the Einstein relation are based
upon the mean squared displacement (MSD):

MSD = {|r(t) —r(0)]%). )

The equation describes the rate at which individual molecules move around due to
random thermal motion within a medium. The slope of the MSD versus time is proportional
to the diffusion coefficient of the diffusing atoms. The displacement of an atom is from its
reference position, which is the original position at the time the simulation was started.
MSD reflects the average squared distance a molecule travels over time, indicating how far
it explores its surroundings. The MSD was collected in the NVE production runs. The unit
of diffusion is cm? /s.

3. Results and Discussion

Pure CO,. In order to validate our simulation methods, we compared our 16, 49, 148,
288, 411, and 538 atm MD simulation results for diffusion coefficient D;; to the ideal gas
kinetic theory (IGKT, the selected pressures are 1, 49, 99, 147, and 296 atm) predictions by
ChemKin IT in Figure 1. In the MD simulation, the NVT and NVE are not able to assign
the same pressure as the IGKT results. Therefore, the selection of pressures in the MD
simulation should be as close to the IGKT pressure as possible. This comparison serves a
two-fold purpose. Firstly, it ensures consistency with established principles of the IGKT.
Secondly, it provides a reference point for interpreting the behavior observed in the MD
simulations. D;; of pure CO; from the IGKT creates a gas where particles are point masses
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with negligible interactions. The equation for calculating D;; by the ideal gas kinetic theory
is presented as:
27k3 T3
7 16 Pnaizjﬂ(lfl)* ’

()

where kg is the Boltzmann constant and m;; is the reduced molecular mass for the (i,))
species pair:
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Figure 1. Self-diffusion coefficients (D;;) of CO, computed by the ideal gas kinetic theory (1, 49, 99,
197, and 296 atm) and MD simulations (16, 49, 148, 288, 411, and 538 atm).

Zij is the reduced collision diameter, and QD" is the collision integral based on the
Stockmayer potential [28]. Figure 1 shows the similarities between our MD simulation
results and fitted ideal gas theory results, except at a low pressure of 16 atm at 750 K.
The increase in temperature leads to the increase in Dj;. A higher temperature leads
to faster molecular motion and a higher diffusion coefficient. The increased density in
SCFs due to the pressure increase results in more frequent collisions and more efficient
shuffling between molecules. At a high pressure (above 100 atm), the MD simulation
results are closer to those of the ideal gas kinetic theory (within a factor of 10 of each
other). Ata very high pressure, potentially, sCO, can start to resemble a solid and diffusion
slows down. This causes the slope of Dj; to decline as the temperature increases. An
underestimate of D;; at a lower temperature (750 K) aligns with our previous study of the
chemical kinetics of combustion reactions in an sCO, environment well [29,30]. Table 1
shows the average diffusion coefficients of pure CO, under various temperatures and
pressures by MD simulations and how spread out the data are. The results support
the validity of using the chosen simulation conditions, such as force field TraPPE, to
account for intermolecular interactions for the binary systems containing carbon dioxide
and hydrocarbon, particularly at higher pressures above 50 atm, for accurate predictions
compared to ideal gas assumptions.

186



Energies 2024, 17, 4028

Table 1. Diffusion coefficients (D;j) of CO, under various temperatures (748-2040 K) and pressures
(16-538 atm).

T (K) P (atm) D;j (10~# cm?/s)
748 16 £3 2+1

1012 49 + 32 58 +£24
1243 148 £7 128 + 11
1530 288 + 14 171+ 9
1783 411 + 23 215+ 13
2040 538 + 21 245 + 16

Binary CO; and CH4 mixtures. To understand the combustion of methane in an sCO,
environment, it is necessary to study the diffusion of methane in CO,/CH,4 mixtures.
Figure 2 presents the diffusion coefficient of binary mixtures at various temperatures and
pressures. The general trend of diffusion coefficient Dj; is that, as the temperature increases,
the molecules in the mixture gain kinetic energy and result in the increase in D;;. Both CO;
and CHy4 move faster and collide with each other more frequently. A higher temperature
provides enough thermal energy for molecules to diffuse. As the pressure increases at a
constant temperature, D;; decreases. A higher pressure depresses the diffusion of molecules
as the mean free path of the fluid decreases and starts to resemble a solid so that a more
frequent collision between molecules occurs and then hinders diffusion. Our simulation
results reach as high as 930 atm at 2000 K. D;; at near 300 atm is 0.012 at 1000 K and
0.032 cm? /s at 1500 K. Interestingly, compared with the results of Djj at 300 K from different
groups, our results are ten-times higher than those of Guevara-Carrion et al.’s result of
~0.0002 cm?2 /s at 300 K, 9 MPa [10], and Feng et al.’s result of 0.000272 cm?/s at 299 K,
10.5 MPa [11]. It is important to remember that D;; at low temperatures (300 and 500 K) in
our simulation results is systematically tenfold higher than those the other groups reported.
However, when we compare the diffusion coefficients in terms of absolute values, they
are quite similar. These differences may be from the relatively low mole fraction of CHy
in their study, while our study has a 1:1 carbon dioxide and hydrocarbon ratio. Such a
discrepancy at lower temperatures aligns with our previous study of the chemical kinetics
of combustion reactions in an sCO, environment well [29,30]. We are currently looking
into the additional reasons behind this discrepancy to better understand the implications
for our research.
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Figure 2. Self-diffusion coefficients (D;;) of CHy in binary CO,/CHy4 mixtures at various temperatures
(300, 500, 1000, 1500, and 2000 K) and pressures below 1000 atm.
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Binary CO; and CyH; mixtures. To understand the combustion of ethane in an sCO,
environment, it is necessary to study the diffusion of ethane in CO,/C,Hg mixtures.
Figure 3 presents the trend of the diffusion coefficient (D;j) of CO,/C;Hg that is similar to
that of CO,/CHy4 mixtures. We successfully obtained Dj; for all studied temperatures (500,
1000, 1500, and 2000 K), except 300 K and pressures below 600 atm. As the temperature
increases, D;; increases as a higher thermal energy for molecules. As the pressure increases
at a constant temperature, D;; decreases as more frequent collisions hinder diffusion. Our
simulation can reach as high as 560 atm at 2000 K. D;; at almost 300 atm is 0.016 cm?/s at
1000 K and 0.045 cm? /s at 1500 K. Our results can be compared with Feng et al.’s results,
0.000597 cm? /s at 323 K, 10.5 MPa as well [11], though we are not able to achieve the
simulation condition of 300 K at a mole fraction of 0.50 for CoHg.
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Figure 3. Self-diffusion coefficients (D;j) of C;Hg in binary CO,/C;He mixtures at various tempera-
tures (500, 1000, 1500, and 2000 K) and pressures below 600 atm.

Overall, compared with the CO,/CH4 and CO,/CyHg results in Figures 2 and 3,
respectively, the diffusion coefficient is inversely proportional to the molar volume of the
solute and decreases quickly with the increasing carbon chain for short-chain n-alkanes.
A smaller molar volume indicates a smaller molecule that experiences less friction as it
moves through a solvent molecule. In general, both methane and ethane will experience
similar increases in D;; with the increasing temperature. The pressure influences the
D;; values of methane and ethane differently due to their subtle size difference. Table 2
shows the value of the diffusion coefficients of CO,/CHy and CO,/CyHg under various
temperatures and pressures. It is expected that the diffusion coefficient decreases as the
mass and size of the molecule increase, while the difference is limited. This table also
shows, in general, a greater fluctuation in D;; as the pressure reduces. Feng et al. showed
the limited difference of D;; by experiments and MD simulations from CHy to C14Hz
at 10.5 MPa [11]. For example, D;; ranges from 0.000691 to 0.000220 cm? /s at 323 K.
Our simulations show the importance of the diffusion coefficients of binary CO,/CHy
and CO,/CyHg in an sCO; environment at high temperatures and pressures, which are
challenging to achieve experimentally [2].
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Table 2. Diffusion coefficients (Dj) of hydrocarbon in CO,/CHy and CO,/C;Hg mixtures under
various temperatures (300-2000 K) and pressures (10-1000 atm).

CO,/CH,4 CO,/CyHg
T (K) P (atm) D;; (104 cm?/s) P (atm) D;; (10~* cm?/s)
1244 185 + 29
20 + 11 111 £ 24
300 31+ 11 52+8
104 + 38 32+3
1347 283 + 58 41+3 404 + 54
500 42 + 11 113 + 27 7445 192 + 34
94 + 4 69+9 95 + 14 124 + 18
121 + 21 56 + 17
91 +7 356 + 40 73+5 653 + 88
140 + 9 229 + 20 179 + 14 266 =+ 20
1000 238 + 18 129 + 21 266 + 16 163 £ 15
274 + 20 125 + 16 490 + 31 105 + 11
341 + 31 119 £ 15
232 + 17 484 + 69 144 £ 12 884 + 146
1500 351 + 27 330 + 51 304 + 22 444 + 43
567 =+ 54 202 + 16 384 + 29 376 + 37
726 + 74 167 + 20 557 =+ 37 242 +19
371 + 32 624 + 68 275 + 14 928 + 109
5000 510 + 54 397 + 53 564 + 25 490 + 31
729 + 51 353 + 34
936 + 104 276 + 45

Table 3 shows the fitted equations under various temperatures in the range of 300-2000 K.
The temperature is around 1100 °C (1423 K) and the pressure is around 300 bar (296 atm) of
the Allam Power Cycle. The fitted D;; for methane at 1500 K is 0.038 cm? /s and for ethane

at 1500 K, it is 0.045 cm?/s.

Table 3. Fitted equations of Dj; (y) of binary CO,/CHy and CO,/C,;Hg mixtures under various
temperatures (300-2000 K) and pressures (x).

CO,/CH,4 CO,/C,H,
T (K) Fitted Equation R? Value Fitted Equation R? Value
300 y = 0.1200x 0813 0.9487
500 y =0.1786x 72 0.9979 y = 7.3009x 1392 0.9979
1000 y = 1.8117x 0882 0.9860 y = 4.1986x 0977 0.9981
1500 y = 8.5061x 094 0.9993 y =9.5610x 0940 0.9978
2000 y = 7.3284x 0817 0.9339 y = 13.7450x 089 1.0000

4. Conclusions

We determined the self-diffusion coefficients of pure CO, and simplest hydrocarbons
in binary CO,/CHy and CO,/CyHg mixtures at temperatures in the range of 300-2000 K
and pressures in the range of 10-1000 atm. For the comparison to other experimental and
computational results, we tested lower temperatures (as low as ~300 K) and pressures (as
low as ~10 atm) as well. Our simulations at higher temperatures (as high as ~2000 K) and
pressures (as high as ~900 atm) provide the data to better understand the Allam Power
Cycle at 300 atm and make improvements in the future. The diffusion coefficients of
methane at 300 atm are approximately 0.012 cm? /s at 1000 K and 0.032 cm? /s at 1500 K.
The diffusion coefficients of ethane at 300 atm are approximately 0.016 cm? /s at 1000 K
and 0.045 cm? /s at 1500 K. Our simulation results are far from a perfect fit and still need
improvements, especially at lower temperatures and pressures. Nonetheless, this study
provides valuable information for the improvement of the Allam Cycle in the future. The
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technology of the Allam Cycle is still under development. Besides the understanding
of diffusion coefficients, the Allam Cycle requires further research and experiments to
improve its overall performance and effectiveness to achieve commercial viability.
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Abstract: This study investigates the effects of diffusion modeling and swirl intensity on
flow fields and NO emissions in CHs/NHj3 non-premixed swirling flames using large
eddy simulations (LESs). Simulations are performed for a 50/50 ammonia—methane blend
at three global equivalence ratios of 0.77, 0.54, and 0.46 and two swirl numbers of 8 and
12, comparing the unity Lewis number (ULN) and mixture-averaged diffusion (MAD)
models against the experimental data includes OH-PLIF and ON-PLIF reported in a prior
study by the KAUST group. Both models produce similar flow fields, but the MAD model
alters the flame structure and species distributions due to differential diffusion (DD) and
limitations in its Flamelet library. Notably, the MAD library lacks unstable flame branch
solutions, leading to extensive interpolation between extinction and stable branches. This
results in overpredicted progress variable source terms and reactive scalars, both within
and beyond the flame zone. The ULN model better reproduces experimental OH profiles
and localizes NO formation near the flame front, whereas the MAD model predicts broader
NO distributions due to nitrogen species diffusion. Higher swirl intensities shorten the
flame and shift NO production upstream. While a low equivalence ratio provides enough
air for good mixing, lower ammonia and higher NO contents in exhaust gases, respectively.

Keywords: turbulent non-premixed combustion; differential diffusion; flame structure;
Flamelet progress variable

1. Introduction

The power sector forms a cornerstone of modern civilization, evolving to meet the
growing global energy demand [1]. Among various energy sources, fuels remain the most
energy-dense medium, capable of being burned to produce thermal energy for power
generation in heat engines such as gas turbines and internal combustion engines.

Despite the advantages of fuels, their combustion generates chemical pollutants such
as COy, CO, and NOy, which contribute to greenhouse gas emissions and global warming.
This has prompted the adoption of energy policies prioritizing carbon-neutral and carbon-
free power generation to mitigate environmental impacts. In this context, hydrogen and
ammonia have emerged as promising alternatives to fossil fuels. Being carbon-free species,
their blends can offer a comparable performance to fossil fuels [2]. However, challenges
related to their storage, transportation, and combustion processes remain significant [3].
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Ammonia is a promising fuel because it can be transported and stored using existing
infrastructure with minimal modifications, unlike hydrogen. Additionally, ammonia can
serve as a hydrogen carrier, decomposing into hydrogen and nitrogen when needed [3].
However, ammonia faces challenges due to its low combustion performance, including
a high ignition temperature (930 K) and a low laminar flame speed (0.072 m/s) [4]. To
address these limitations, ammonia is often blended with hydrocarbons such as methane [5]
or with hydrogen [2] to enhance its combustion characteristics.

In the industrial and power sectors, most flames are turbulent to meet power require-
ments while ensuring flame stability. This is often achieved using swirling combustion,
where the air flow creates a recirculation zone near the burner rim. This recirculation
increases the fuel’s residence time in the highly reactive zone, enhancing combustion. As a
result, the swirl number plays a critical role in determining the flame characteristics [6].

The LES/FPV (large eddy simulation/Flamelet progress variable) approach is a widely
adopted modeling framework for turbulent combustion due to its ability to combine de-
tailed chemistry with the resolution of large-scale turbulent structures. In this method,
combustion is represented using precomputed Flamelet libraries parameterized by vari-
ables such as the mixture fraction and a progress variable, while LES resolves the energy-
containing eddies that strongly influence flame dynamics [7,8]. A major advantage of
LES/FPYV is its computational efficiency compared to direct numerical simulation (DNS),
enabling the study of complex, realistic configurations, such as gas turbines and engines,
while capturing key turbulence—chemistry interactions [9]. It also facilitates a direct com-
parison with experiments by allowing the computation of filtered scalar quantities like
LIF and Rayleigh signals [10]. However, the approach relies on assumptions such as the
Flamelet regime being valid and the use of presumed probability density functions (PDFs)
to reconstruct subgrid scalar statistics, which may reduce accuracy in regimes with igni-
tion, extinction, or strong stratification [11]. Despite these limitations, LES/FPV remains
a popular tool due to its balance between physical fidelity and computational feasibility,
making it attractive for both academic and industrial combustion research [12].

The LES/FPV approach is used in the previous works to investigate the flame char-
acteristics. For example, the flame structure of a piloted partially premixed dimethyl
ether (DME) was investigated using LES/FPV. The numerical results were compared with
experimental data, including temperature and species measurements (Raman/Rayleigh,
LIF) and velocity fields (PIV), which showed good agreement [13]. The diffusion models
of the Flamelet libraries were investigated for a turbulent non-premixed oxy-fuel flame
using experimental data and LES simulations [14]. A species-weighted Flamelet model
accounting for DD was developed and applied in the LES of oxy-fuel flames, showing
improved predictions of flame structure and extinction behavior compared to traditional
unity and species-constant Lewis number models [15]. LESs were performed for turbulent
CH4/H; flames with and without fuel stratification, using Flamelet libraries based on
ULN and MAD models. Two approaches were used to access the libraries: one solving
species transport equations and the other solving trajectory variables directly. The results
showed that accounting for heat loss and using the trajectory-based approach improved
agreement with experiments, and that DD effects played a key role in downstream flame
behavior [16]. Building on these studies, the present work incorporates heat loss and
mixture fraction variance in the Flamelet library to model turbulent non-premixed flames,
and systematically compares two diffusion models: ULN and MAD.

Recent studies have advanced the understanding of ammonia and hydrogen combus-
tion. Su et al. [17] analyzed chemiluminescence in NH3-CHy4 laminar flames and identified
CH*/NHy* as a potential marker for ammonia content, but their work was limited to
laminar conditions. Osetrov and Haas [18] developed a Wiebe-based model for hydro-
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gen combustion in spark-ignition engines, focusing on mixture stratification and ignition
control, though their study did not consider ammonia or swirling diffusion flames. Lan
et al. [19] showed that hydrogen enrichment in natural gas flames reduces CO and CO,
emissions but increases NOx, emphasizing trade-offs in fuel composition; however, turbu-
lence and diffusion modeling were not the focus. Liu et al. [20] linked pressure fluctuations
in swirl combustors to heat release, swirl, and flame detachment using EMD, FFT, and
POD, but without exploring diffusion effects. Wu et al. [21] showed the efficiency and
emission benefits of diesel/ammonia dual-fuel engines but did not investigate the turbulent
flame structure or DD effects. Wang et al. [22] investigated the DD effects in transcritical
LO,/CHjy flames using large-eddy simulations and the FPV model, where Flamelets were
solved in mixture fraction space with both unity and non-unity Lewis numbers. In the
present study, DD is treated differently by solving the Flamelet equations in a physical
space using the MAD model, which account for the different values of the Lewis number
for the same species at different conditions, while a constant Lewis number considers only
one value for the Lewis number per species regardless of its different conditions. Obando
Vega et al. [23] focused on modeling the subgrid-scale effects in the LES of turbulent non-
premixed flames using filtered tabulated chemistry to capture flame front wrinkling and
strain-rate influences, while the DD was also considered by solving the Flamelet equation
using a constant Lewis number in mixture fraction space.

To address the limitations highlighted in previous studies, such as the lack of turbu-
lence, swirl effects, and advanced diffusion modeling, this work investigates CH,/NHj3
non-premixed turbulent swirling flames using high-fidelity numerical simulations. It com-
pares two widely used diffusion models in Flamelet equations, the unity Lewis number
(ULN) and mixture-averaged diffusion (MAD) approaches, solved in mixture fraction
and physical space, respectively. Their predictions of key scalar fields, including OH and
NO, are validated against experimental data to evaluate each model’s ability to capture
the flame structure properly. The combined impact of swirl intensity and diffusion treat-
ment on flame structure is further analyzed using Flamelet libraries. By benchmarking
against experimental results from [6], the study provides new insights into the predictive
performance of diffusion models under realistic turbulent combustion conditions.

2. Numerical Methods and Modeling

This study investigates two sets of simulation cases. The first set employs a ULN
Flamelet library, assuming equal diffusivity for all species, while the second set incorporates
DD effects using a mixture-averaged diffusion (MAD) model. The key configurations and
parameters for each case are summarized in Table 1, where S¢ denotes the swirl number
defined in [6] and ¢ is the global equivalence ratio. The selected values are based on the
experimental cases reported in [6], where ¢ = 0.54 produced the highest NO emissions
at Xypgz = 0.5 and Sy = 8, while the other two equivalence ratios, although still lean,
produced lower NO levels. These points were selected to explore the sensitivity of NO
formation to slight variations in fuel-air equivalence under lean conditions.

Table 1. Investigation program.

Case 1 Case 2 Case 3 Case 4
S, =8 S, =8 S, =8 Se =12
8 8 8 8
ULN ¢ = 0.46 ¢ = 0.54 ¢ =077 ¢ = 0.54
So=8 Se=8 Se =8 Se =12
8 8 8 8
MAD ¢ = 0.46 ¢ = 0.54 ¢ = 0.77 ¢ = 0.54
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2.1. Geometry and Grid Configqurations

The LESs are conducted on the same burner and combustor configuration mentioned
in [6]. Figure 1 shows the rendered view of the metallic burner fixed with the fiber glass
combustor: the burner consists of two concentric pipes, the central pipe supplies fuel to the
combustion chamber at constant velocity equal to 13 m/s for all investigated cases, while
the annular pipe has five inlets, one is axial and four are tangential, the flow rates of air
inlets are manipulated to achieve different global equivalence ratios and swirl numbers.
Troda v ( Mair,t

34, ——— ) 2, where r, = d,; — df, d,is
the annular large diameter, i.e., 27 mm and d ris the fuel pipe inner diameter, i.e., 4.4 mm,
Ay is the cross sectional area of all 4 tangential air inlets, while 1., ; and 11, , are the total
tangential and axial air mass flow rates, respectively. Based on this design, the structured
grid is created.

The swirl number is calculated using S =

4 Tangential air paths

|
Annular air path — Central fuel path

Figure 1. Setup configuration with dimensions in mm, the burner and exhaust system are metallic
while the combustor is fiber glass.
2.2. Governing Equations

The governing equations in this LES non-adiabatic Flamelet generated manifold (NA-
FGM) study are solved by front flow red (FFR) solver, they include the density weighted

averaged Conservatlon equations for mass, 1 momentum, enthalpy h NO mass fraction YNO,

mixture fraction Z and progress variable C as in Equations (1)—(6).

a ~
5+ V- (p) =0 W
= +V (puu)——VP+V-O'+V'T 2
apﬁ _~7 =5 o
W+V. puh =V- pDth +V‘qh+Qrad (3)
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where 7 is the subgrid stress derived from the tubulence model, P is the pressure, gy
denotes the subgrid-scale terms for the scalar ¢, and u represents velocity in the three
spatial directions, while Dy is the diffusion coefficient of the scalar ¢, which is calculated
using Equation (7).
K
Dy = — 7
?= Pry @)

2.3. Chemistry Modeling

This study adopts the Flamelet progress variable (FPV) approach, where equilib-
rium thermo-chemical states of laminar Flamelets are precomputed. The Flamelet equa-
tions in [24] are solved with the Okafor mechanism [25], which includes 59 species and
356 reactions. For non-premixed combustion, a wide range of scalar dissipation rates and
stain rates up to extinction are computed for ULN and MAD models, respectively. These
calculations are repeated for the different percentages of the total heat in the adiabatic
case. The resulting data are then used to generate the Flamelet library, where the enthalpy
difference Ah from the adiabatic case is computed. The maximum A is estimated based on

the obtained Flamelet solutions. The library conditions thermo-chemical states on Z, 7" ,C,

~

and Ah. The mixture fraction variance Z'2 follows an exponential distribution from 0 to

0.25, and the corresponding states g?) are computed using Equations (8)-(12) in [8].

~ 1 ~
o= [ 9(2)P(2)iz ®
~ 7t (1-z)F !
P="TFwrp TP ©
«=Zy (10)
p= (1 - 2)7 (11)
2(1 - 2)
Y=t 120 (12)
Z//2

Furthermore, during the LES, the total enthalpy transport equation is solved to de-
termine the physical enthalpy at each grid point. The difference between this enthalpy
and the adiabatic enthalpy from the library represents the local heat loss. This enthalpy
difference is then used to retrieve the appropriate thermo-chemical state from the Flamelet
library, ensuring an accurate representation of non-adiabatic effects in the simulation.
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The Flamelet libraries contain equilibrium solutions of the Flamelet equations. Since
NO has a larger timescale than most major species, particularly those forming the progress
variable, the Flamelet model inevitably overpredicts NO [26]. To address this, the transport
Equation (4) is solved while using the Flamelet library, with its source term modeled
by Equation (13). This approach mitigates the high NO destruction rate, which would
otherwise result from its mass fraction overprediction in equilibrium state.

~—flm

i r?JJrﬂm > wNO

wNo =wno +YNo— 7, (13)
Yno

The flm superscript denotes the data retrieved from the Flamelet library, while +

and — indicate production and destruction rates, respectively. Yo is obtained from the

solution of the transport Equation (4), and wyo represents the updated source term for the
next time step calculation.

2.4. Flamelet Library

In this study, two approaches for treating molecular transport are considered, which
are the MAD model and the ULN model. The MAD model accounts for species-dependent
diffusivities by incorporating the effects of DD based on molecular properties and local
composition. In contrast, the ULN model simplifies the diffusion process by assuming
equal thermal and mass diffusivities (i.e., Lewis number of unity) for all species, which
reduces the computational complexity but may lead to inaccuracies in predicting species
distributions and flame structure under conditions where DD is significant.

From a numerical standpoint, the ULN Flamelet model offers significant advantages
in terms of computational implementation and flexibility. ULN Flamelets are typically
solved in the mixture fraction space, allowing for the pre-tabulation of the entire S-curve,
including both stable and unstable branches. This capability is particularly useful for
studying ignition, extinction, and flame stabilization phenomena. In contrast, the MAD
model must be solved in physical space due to its dependence on local species gradients
and diffusivities. However, the MAD model in physical space is limited to stable flame
regime analyses, leaving the unstable branch unexplored and highlighting opportunities
for further development.

Additionally, practical observations from this study show that ULN Flamelets exhibit
greater numerical robustness under heat loss conditions. Stable solutions could be obtained
with up to 25% heat loss relative to the total energy. In comparison, MAD Flamelet calcula-
tions became unstable beyond 12.5% heat loss. This demonstrates a practical advantage
of the ULN model when simulating flames with radiative or conductive losses. On the
other hand, the MAD diffusion model emphasizes the significant impact of DD on flame
stability under non-adiabatic conditions. The higher diffusivity shortens the residence time
of reactive species, resulting in earlier quenching and flame extinction at lower heat loss
levels compared to the ULN Flamelet model.

Figure 2 (left) presents the scatter plot of the progress variable against the mixture
fraction, specifically for the adiabatic flame without variance in the mixture fraction,
where each point is colored according to the temperature. The ULN Flamelet solution
(top) shows a more concentrated distribution near the stoichiometric mixture fraction
compared to the MAD model (bottom). This behavior is attributed to the ULN approach’s
capability to capture the unstable branch of the S-curve, which improves solution continuity
and resolution in the flame stabilization region. However, the obtained Flamelet library
interpolates any missing data, resulting in both models appearing similar despite the
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differences in the original solutions, as demonstrated in Figure 2 (right). This interpolation
introduces greater uncertainty in the MAD model, as a larger portion of its library is not
directly solved but inferred. Such interpolation may be particularly critical when predicting
the progress variable source term, which is extracted from the library during the LES, as
illustrated in Figure 3 (right).

2185
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R & o
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Figure 2. Temperature distribution in Flamelet solutions and corresponding Flamelet libraries for the
ULN model (top) and MAD model (bottom). Flamelet solutions (left), and the Flamelet libraries are
generated using an in-house code (right).

Figure 4 compares the distributions of Yoy and Yy in the ULN and MAD Flamelet
libraries, highlighting how DD affects their spatial behavior. Figure 3 further illustrates
the source terms of the progress variable (left) and NO (right), using a seismic colormap
in which red indicates production and blue indicates destruction. The green alpha shape
marks the region where the Flamelet solution exists; outside this boundary, the Flamelet
library is either interpolated or copied. This visualization highlights the dynamic balance
between production and destruction in different flame regions and reveals the limitations
of each model in covering the Flamelet library. It also provides insight into how diffusion
models influence the key species responsible for pollutant formation and heat release.

In addition, the MAD library shows a narrower solved region compared to the ULN
library. This gives an advantage to the ULN model, as during LES, the source terms for the
progress variable and NO are retrieved from the library and substituted into the governing
equations. A limited solved region in the MAD library may lead to inaccurate results due
to the absence of unstable branch solutions.

In this study, special emphasis is placed on nitric oxide (NO) and hydroxyl radical
(OH) due to their crucial roles in ammonia combustion chemistry. NO is a primary pollutant
and one of the most harmful nitrogen-containing emissions, which is especially relevant
in ammonia-based fuel systems where nitrogen content is inherently high. Its formation
is governed by complex mechanisms, including prompt NO, thermal NO, and fuel NO
pathways, all of which are influenced by flame temperature, local equivalence ratio, and
radical pool composition.
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OH, on the other hand, serves as a critical intermediate in the oxidation process and
plays a key role in NO formation through reactions such as NH + OH — NO + Hj. Itis
also an indicator of high-temperature reaction zones and is often used to characterize flame
front structures and heat release regions. Monitoring the OH distribution thus provides
insight into the location and intensity of the reaction zones, while also indirectly informing
about the potential for NO formation.
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Figure 3. Distribution of source terms w¢ (left) and wyo (right) in the ULN (top) and MAD (bottom)
Flamelet libraries. The seismic colormap is used, with white corresponding to the zero source term
values. The green contour shows the Flamelet solution region.

Ymax
0.25
ULN ULN

_ Y_OH[-] Y_NO[-]
= 020 Ymax = 0.004445 Ymax =
g 0.15
S
«» 0.10
[}
%
g’ 0.05
R

0.00 0.0

0.25

MAD MAD

T 0.20 Y_OH[-] Y_NO[-]
© Ymax = 0.004542 Ymax = 0.007431
g 015
S
w 0.10
2]
&
& 0.05
Ry

0.00

00 02 04 06 08 1000 02 04 06 08 10
Mixture Fraction [-] Mixture Fraction [-]

Figure 4. Distribution of Ypy (right) and Yyno (left) in the ULN (top) and MAD (bottom)
Flamelet libraries.

199



Energies 2025, 18, 3921

3. Results and Discussion

The presented results are time-averaged over 200,000 time steps, corresponding to an
averaging period of approximately 30 ms. Since the experimental measurements include
OH and NO distributions, the validation is carried out in Section 3.2.

3.1. Temperature Distribution and Flow Field

The temperature distribution in all MAD cases is noticeably higher than in the ULN
cases, with unrealistically elevated temperatures observed downstream of the flame and
away from the flame front, as shown in Figure 5. This raises concerns about the MAD
model, which is expected to be more accurate due to its consideration of DD effects, unlike
the ULN model, which suppresses these effects by assuming equal diffusivities for all
species. However, the MAD model mispredicts scalar fields such as temperature and OH
concentration, as will be further demonstrated in Section 3.2. This discrepancy is discussed
in detail in that section.
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Figure 5. Averaged temperature distribution for Case 2, (left) MAD model, and (right) ULN model.

The flow field is primarily governed by the flow rates of the main streams and the
geometry of the burner and combustor. Figure 6 shows the velocity magnitude distributions
for the ULN model (top row, a-d) and the MAD model (bottom row, A-D). For the
same swirl number (a—c and A-C), reducing the equivalence ratio increases the air flow
rate, enhancing the swirling motion. However, increasing the swirl number has a more
pronounced effect on swirl strength as in (b and d) or (B and D).

While the main flow structures are largely preserved, noticeable differences in velocity
magnitude appear across the entire domain when comparing the two diffusion models.
The MAD model shows higher velocity magnitudes over broader regions both inside
and downstream of the flame, suggesting that enhanced diffusion contributes to stronger
momentum transfer and a more sustained swirling motion.

The velocity magnitude distribution shown in Figure 6 reveals that stronger swirling
motion results in higher negative axial velocity in the central region of the combustor,
as shown in Figure 7, both inside and downstream of the flame. This behavior is more
pronounced in cases with higher swirl numbers, where the enhanced centrifugal force
generates a stronger low-pressure zone along the axis. As a result, the central recirculation
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zone becomes more intense, drawing hot combustion products and reactants back toward
the burner.

Average velocity magnitude [m/s]
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Figure 6. Averaged velocity magnitude distribution for Cases 1, 2, 3, and 4: the top row corresponds
to the ULN model (a—d), and the bottom row to the MAD model (A-D).

This recirculation not only contributes to flame stabilization but also enhances mixing
between fuel and oxidizer, promoting more complete combustion. However, for low-
reactivity fuels such as ammonia, CH;/NHj3 blends do not always exhibit this behavior.
As reported in [6], increasing the ammonia content reduces the influence of swirl on flame
stability. Beyond a certain blend ratio, higher swirl numbers may even worsen flame
stability. This is attributed to the strong shear regions created by intense recirculation,
where the variance of the mixture fraction is also intense, which negatively affects the slow
chemical kinetics of ammonia oxidation.

Moreover, the MAD model consistently exhibits stronger negative axial velocities
compared to the ULN model, suggesting that the diffusion formulation in MAD enhances
the momentum transfer and supports a more vigorous swirling motion. These differences
indicate that both the swirl number and diffusion model play a significant role in shaping
the flow field and, consequently, combustion characteristics.

3.2. Effect of Diffusion Model on NO/OH Distribution and Kinetics

Figure 8 compares the time-averaged OH mass fraction distributions predicted by the
ULN and MAD models with experimental PLIF data [6], while the NO mass fraction is
shown in Figure 9. The OH distribution predicted by the ULN model shows better agree-
ment with the experimental measurements, while the MAD model exhibits a noticeably
narrower OH region near the burner, indicating the stronger confinement of radical species
due to DD. For NO, both models capture the general distribution reasonably well, although
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differences exist: the MAD model predicts a slightly narrower NO region compared to
ULN, yet both remain in an acceptable agreement with the experimental profile. Down-
stream of 65 mm from the burner rim, the MAD model shows a more extended tail in
NO concentration as shown in Figure 10a; however, due to the lack of experimental data
in this region, the accuracy of this prediction cannot be confirmed. In addition, the OH
distribution in this region is high as well for MAD cases.
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Figure 7. Averaged axial velocity magnitude distribution for Cases 1, 2, 3, and 4: the (top) row
corresponds to the ULN model, and the (bottom) row to the MAD model. Isolines represent zero
axial velocity to show recirculation zone boundaries.
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Figure 8. Time-averaged OH mass fractions predicted by LES using the ULN and MAD models,
compared with OH PLIF signal intensities from the experimental data in [6].
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Figure 9. Time-averaged NO mass fractions predicted by LES using the ULN and MAD models,
compared with NO PLIF signal intensities from the experimental data in [6].
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Although the diffusion model only has a minor impact on the overall flow field, it
significantly affects the NO distribution and its source term. Figure 10a shows the NO mass
fraction distribution for Case 2 using both the ULN and MAD models. In the MAD case,
higher NO concentrations are observed further downstream of the flame, while in the ULN
case, the peak NO concentrations are localized near the flame front.

The differences in NO distribution around the flame front between the ULN and
MAD models arise primarily from how species diffusion is treated. In the ULN model, the
assumption of equal diffusivity for all species leads to a more localized flame front, where
peak temperatures and reaction rates align, resulting in an NO formation concentrated near
the front. In contrast, the MAD model accounts for species-specific diffusivities, allowing
the faster diffusion of reactive radicals such as OH and O. This broadens the flame structure
and promotes NO formation farther downstream. However, the high NO concentrations
observed downstream, despite mixing with excess air, are not realistic and are attributed to
the artificial increase in the progress variable, as will also be discussed later in this section
for OH.

This is evident in the NO source term distribution shown in Figure 10b. In the ULN
case, the source term is predominantly negative in the early flame stages near the burner
rim, indicating NO consumption. In contrast, the MAD case shows both positive and
negative source terms in the same region, reflecting ongoing NO production. This behavior
is attributed to the interpolated NO source term shown in Figure 3 (left and bottom), which
appears artificially high due to interpolation. This occurs because NO is not directly solved
in the Flamelet model within the unstable branch region, which lies between the lowest
stable branch and the quenching branch.

The NO source term is retrieved from the Flamelet library during the LES calculations.
As a result, the artificially high source term leads to excessive NO production, which is
then transported downstream with unrealistically high values.

The OH mass fraction distribution shown in Figure 10d for case 2 indicates that the
MAD model predicts elevated OH concentrations downstream of the flame front, in the
flue gas region where it mixes with excess air. This behavior is consistent across all other
cases as well. Consequently, the progress variable also exhibits higher values in these
regions for MAD cases, as illustrated in Figure 11b. This trend can be traced back to the
distribution of the progress variable source term, which is concentrated near the burner rim
in the early stages of the flame. Since the LES framework solves the transport equation for
the progress variable by sampling its source term from the precomputed Flamelet library,
any interpolation artifacts in the library are directly reflected in the LES results.

In the case of the MAD model, a substantial portion of the Flamelet library—
particularly between the extinction curve (where the progress variable equals zero) and
the lowest stable computed Flamelet—is not explicitly solved but interpolated. This is
shown in Figure 2 (left) and Figure 3 (left) for the MAD library. This unsolved region
is significantly larger in MAD than in the ULN model, primarily due to the absence of
unstable branch solutions in MAD. Furthermore, source term values above the highest
stable curve are often extrapolated or copied from the highest computed solution, which
adds to the inaccuracy.

These limitations in the MAD library contribute to an overprediction of the progress
variable and OH mass fraction, both downstream of the flame and within the flame
itself. The broader region of positive source term values in the MAD library—caused by
interpolation across the high-progress-variable zone where unstable branches typically
exist—leads to a more rapid increase in the progress variable throughout the combustion
domain.
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Figure 11. Averaged values comparison between MAD (left) and ULN (right) models for case 2:
(a) averaged source term of progress variable distribution, (b) averaged progress variable distribution.

3.3. Effect of Swirl Number on NO Emissions

As discussed earlier in Figure 6, increasing the swirl number alters the shape of the
flow field as expected. Figure 12 further illustrates the impact of swirl numbers 8 and
12 on the NO mass fraction and source term distributions in the ULN model. A higher
swirl number shortens the reaction region while intensifying the NO source terms near
the burner rim. As a result, NO production becomes more concentrated in the early
stages of the flame, whereas NO consumption is more broadly distributed downstream
with lower intensity. As observed in [6], increasing the swirl number leads to similar NO
emissions across different NH3 /CHy blends. This trend is attributed to the enhanced central
recirculation and flame stabilization at high swirl, which promotes intense combustion and
NO production near the burner. Under these conditions, the flame is shorter, and most
NO is produced in the early stages via the thermal and fuel-bound nitrogen pathways,
with limited residence time for downstream reduction. In contrast, lower swirl numbers
produce a more extended flame with longer residence times and distributed heat release,
allowing blend-specific differences in NO production and post-flame reduction pathways
to become more pronounced. Consequently, the NO emissions become more dependent on
the NH3/CHjy blend ratio under lower swirl conditions.

3.4. Effect of Global Equivalence Ratio on Flame Structure and NO Emissions

In this study, the fuel is supplied at a fixed velocity of 13 m/s for all cases. Therefore,
changes in the global equivalence ratio are achieved solely by adjusting the air mass flow
rate, which is inherently higher than that of the fuel. As a result, this method can also
introduce momentum effects into the flow field. The flame shape changes accordingly, as a
lower global equivalence ratio has a similar effect to increasing the swirl number but not the
same. It enhances the velocity magnitudes and strengthens the swirling motion, as shown
in Figure 6; on the other hand, the swirl number controls tangential and axial momentum
ratios. Consequently, varying the global equivalence ratio significantly influences the flame
structure and its emissions, including NO.
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Figure 12. Comparisons between cases with different swirl numbers 8 (left) and 12 (right) on each
panel for the ULN model, panel (a): averaged NO mass fraction, panel (b): averaged NO source term,
and panel (c): averaged mixture fraction with isoline at the stoichiometric value.

Figure 13 shows the mixture fraction fields for cases 1, 2, and 3 using the ULN
model. At a high equivalence ratio (0.77), the air momentum is relatively low compared
to the fuel jet, preventing proper interaction between the swirling air and the fuel jet.
This results in poor combustion. In contrast, lower global equivalence ratios (0.54 and
0.46) introduce a greater amount of air and higher air momentum, enhancing the air—
fuel mixing. This leads to a reduction in the mixture fraction below the stoichiometric
value throughout the domain, around 100 mm downstream of the burner rim, indicating
improved combustion. Furthermore, although the mixing process improves at lower
equivalence ratios, the flame length remains nearly identical for both cases. This is because,
in non-premixed combustion, once sufficient mixing is achieved, the diffusion process
becomes the dominant factor governing combustion, leading to similar flame lengths.
However, as mentioned in Section 3.3, increasing the swirl number has the strongest effect
on the flow field, resulting in shorter flames, and therefore increasing the swirl number can
improve the combustion process for a high equivalence ratio like 0.77, as mentioned in [6].
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Figure 13. Mixture fraction fields for ULN cases 1, 2, and 3, corresponding to equivalence ratios
of 0.46, 0.54, and 0.77, respectively, shown from left to right. Isolines at the stoichiometric mixture
fraction are also included.

Figure 14 shows the normalized NO mass fractions at 15% O, mass fractions, this
normalization process serves to eliminate the effect of different amounts of air associated
with different equivalence ratios on the NO mass fraction. The high global equivalence
ratio shows the lowest maximum NO mass fractions among the maxima of the three cases,
which is expected due to the poor combustion process, which exhibits lower NO and higher
NHj emissions, as mentioned in [6]
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Figure 14. Normalized Yyo @ 15% Yy, fields for different equivalence ratios of 0.46, 0.54, and 0.77
for ULN cases 1, 2, and 3 from left to right, respectively.

4. Conclusions

This study investigated the effects of the swirl number and diffusion modeling on
the flow field and NO emissions in CH;/NHj3 flames. Large eddy simulations (LES)
were conducted for a 50% ammonia/50% methane mixture by volume, across various
equivalence ratios and swirl numbers. Two diffusion models were considered: the unity
Lewis number (ULN) model and the mixture-averaged diffusion (MAD) model. Several
cases were selected to match those in [6] for comparison.
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The key findings are as follows:

e  While the choice of diffusion model has a minor effect on the overall flow field, it
significantly influences flame structure, and the distribution of reactive species.

e The MAD model predicts higher OH concentrations and broader reaction zones
compared to the ULN model, which better matches experimental OH profiles with
more localized flame structures. This overprediction in the MAD case arises from
artificially elevated progress variable source terms in the Flamelet library, particularly
in regions where an unstable branch was not resolved, unlike the ULN model, which
successfully recovers this branch. As a result, the MAD model exhibits exaggerated
progress variable growth throughout the flame.

e  For NO emissions, the ULN model confines NO formation and reduction to a narrow
region near the flame front, whereas the MAD model shows more spatially distributed
NO profiles, driven by differential diffusion (DD) of nitrogen-based intermediates.

e Increasing the swirl number leads to shorter flames and upstream-shifted NO for-
mation zones. This limits the role of post-flame NO chemistry and suppresses NO
reduction pathways associated with intermediate species such as NH and NH,.

e Reducing the global equivalence ratio to a certain level ensures good air—fuel mixing
near the burner rim, leading to improved combustion. This is associated with reduced
fuel slip to the exhaust and increased NO emissions.

e  Future work includes the development of unstable branch calculation for the MAD
model to enable accurate resolution for it and reduce interpolation artifacts in the
Flamelet library. These findings enhance the understanding of how diffusion models
and turbulent flow conditions influence NO chemistry in ammonia—methane flames
and can inform strategies for low-emission combustion design.
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