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Editorial

New Advances in Oil, Gas and Geothermal Reservoirs:
2nd Edition

Daoyi Zhu

Faculty of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China;
zhudaoyi@cupk.edu.cn

Oil, gas, and geothermal resources, including conventional fossil fuels (oil and natural
gas) and unconventional resources (geothermal, shale gas, and tight oil), are key to meeting
global energy demands [1,2]. These resources are divided into extractive (e.g., hydro-
carbons) and renewable (e.g., geothermal) sources, both essential for sustaining energy
systems and supporting environmental sustainability [3,4].

The exploitation of unconventional and depleted reservoirs—particularly heavy oil
formations and tight reservoirs—represents a critical frontier in modern hydrocarbon
production [5,6]. Improved oil recovery (IOR) techniques, such as thermal stimulation
for viscous crude and advanced conformance control (e.g., water shutoff and profile
modification), are essential to maximize extraction from challenging reserves with minimal
energy expenditure [7-11]. Innovations like steam-assisted gravity drainage (SAGD) and
cost-effective hydraulic fracturing have significantly improved the economic viability of
unconventional plays [12-16]. As reservoirs age, optimizing waterflood management,
reservoir characterization, and recovery rates remains a focal point of research [17-20].

The integration of big data analytics and artificial intelligence (Al) is transforming
upstream operations [21,22]. Machine learning-based predictive models and real-time
surveillance systems enable production optimization, hazard mitigation, and performance
enhancement, while concurrently addressing challenges in reservoir stewardship and cost
optimization. Al-powered decision-support tools further facilitate operational efficiency
gains and lifecycle cost reductions [23,24].

Gas storage and sequestration technologies are crucial for resource management
and reducing environmental impacts [25,26]. Storing natural gas and injecting CO, un-
derground helps cut greenhouse gas emissions and mitigate climate change. Advanced
methods for CO, or Hj sequestration in depleted oil and gas fields and saline aquifers are
key to meeting climate goals [27]. These technologies are evolving rapidly, with innovations
in modeling, monitoring, and safety assurance.

This collection, which is in conversation with the Special Issue of Energies, emphasizes
fundamental innovations and has compiled eight new publications on the original appli-
cation of new ideas and on methodologies that will lead to new advances in oil, gas, and
geothermal reservoirs.

The papers are organized into three major directions: development of mature and
unconventional reservoirs, big data and artificial intelligence in oil and gas fields, and gas
storage and sequestration technologies. Below, we provide an overview of the core findings
from each paper, organized by these thematic categories.

The first category focuses on the challenges and innovations associated with improving
recovery in both conventional and unconventional oil reservoirs, including heavy oil fields
and water-flooded mature fields. Yu et al. [28] investigate the microscopic flow channels in
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ultra-high water-cut reservoirs of the Shengli Oilfield. Their study visualizes the evolution
of water flooding in reservoirs, highlighting how the dominant flow channels and residual
oil distribution evolve as the water cut increases. Their research indicates that strategic
adjustments in liquid extraction and flow direction can enhance oil recovery, especially in
the later stages of ultra-high water-cut development, achieving an impressive recovery rate
of 68.02%. This study offers valuable insights for optimizing water flooding practices in
mature oilfields.

In recent years, the development of heavy oil reservoirs has gained significant attention.
Tian et al. [29] investigated the changes in the thermal and physical properties of reservoir
rock surfaces during the pre-heating phase of SAGD. Fu et al. [30] investigate supercritical
multicomponent thermal fluids (scMCTF) for offshore heavy oil recovery. Their research
reveals that the composition of thermal fluids, especially the ratio of water to organic
matter, significantly impacts the recovery efficiency. By exploring reaction conditions,
they find that crude oil can be effectively used instead of diesel to generate supercritical
fluids, with notable economic and technical advantages. This opens new possibilities
for improving thermal recovery in offshore heavy oil reservoirs. Yang et al. [31] build
upon the previous study with a focus on optimizing the composition and injection rate
of scMCTF for offshore heavy oil recovery. Through molecular simulation, they identify
how factors such as temperature, pressure, and organic matter concentration influence
the yield and composition of the thermal fluids. They propose a model for controlling
the injection rate and fluid composition, providing an effective approach to enhancing
the thermal recovery of heavy oil. Zhang et al. [32] examine the influence of reaction
conditions on the yield of scMCTE. Their findings suggest that temperature, reaction time,
and catalyst concentration have a positive correlation with product yield, while the raw
material concentration negatively affects the production rate. This study contributes to
the understanding of how various factors influence the efficiency of supercritical fluid
generation in oil recovery.

The second category emphasizes the integration of big data and artificial intelligence
(AI) technologies to optimize production in oil and gas fields, particularly through pre-
dictive modeling and fault detection. Zhang et al. [33] developed a data-driven natural
gas production prediction model for volcanic reservoirs. By considering multiple factors
such as formation pressure, effective reservoir thickness, and gas well production data,
they establish a predictive model with high accuracy (R? = 0.99). This model provides
valuable tools for optimizing gas production in volcanic reservoirs, enabling more efficient
resource management. Zhang et al. [34] also contribute to Al applications in oil production
by developing a hybrid Al model for fault prediction in rod pumping systems. Using
deep learning algorithms, their model achieves a remarkable prediction accuracy of 98.61%,
significantly improving the reliability and safety of rod pumping operations in Xinjiang
Oilfield. The study underscores the potential of Al in enhancing production efficiency and
reducing downtime due to mechanical failures.

The third category focuses on advancements in gas storage, particularly for the
purposes of sequestration, which is crucial for reducing greenhouse gas emissions.
Chen et al. [35] provide insights into the design and performance of a liquid helium
Dewar system for thermal insulation. While not directly related to gas sequestration, the
study’s findings on thermal efficiency and heat leakage in cryogenic storage systems could
have implications for gas storage technologies, especially in the context of developing more
efficient storage solutions for gases like CO,.

This second edition of New Advances in Oil, Gas and Geothermal Reservoirs high-
lights key advancements in the development of mature and unconventional (especially
heavy oil) reservoirs, the application of big data and artificial intelligence in oil and gas
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fields, and innovative gas storage and sequestration technologies. The contributions pre-
sented in this issue offer new insights into enhancing recovery from challenging reservoirs,
optimizing field operations through data-driven approaches, and advancing gas storage
methods. These breakthroughs provide valuable knowledge to support the efficient and
sustainable management of energy resources, guiding future research and industrial appli-
cations in the evolving energy landscape.

Conflicts of Interest: The author declares no conflicts of interest.
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A Microscopic Experimental Study on the Dominant Flow

Channels of Water Flooding in Ultra-High Water Cut Reservoirs
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Abstract: The water drive reservoir in Shengli Oilfield has entered a stage of ultra-high water cut
development, forming an advantageous flow channel for the water drive, resulting in the inefficient
and ineffective circulation of injected water. Therefore, the distribution characteristics of water
drive flow channels and their controlled residual oil in ultra-high water cut reservoirs are of great
significance for treating water drive dominant flow channels and utilizing discontinuous residual
oil. Through microscopic physical simulation of water flooding, color mixing recognition and image
analysis technology were used to visualize the evolution characteristics of water flooding seepage
channels and their changes during the control process. Research has shown that during the ultra-high
water content period, the shrinkage of the water drive seepage channel forms a dominant seepage
channel, forming a “seepage barrier” at the boundary of the dominant seepage channel, and dividing

the affected area into the water drive dominant seepage zone and the seepage stagnation zone.

The advantage of water flooding is that the oil displacement efficiency in the permeable zone is as
high as 80.5%, and the remaining oil is highly dispersed. The water phase is almost a single-phase
flow, revealing the reason for high water consumption in this stage. The remaining oil outside the
affected area and within the stagnant flow zone accounts for 89.8% of the remaining oil, which has
the potential to further improve oil recovery in the later stage of ultra-high water cut. For the first
time, the redundancy index was proposed to quantitatively evaluate the control effect of liquid
extraction and liquid flow direction on the dominant flow channels in water flooding. Experimental
data showed that both liquid extraction and liquid flow direction can regulate the dominant flow
channels in water flooding and improve oil recovery under certain conditions. Microscopic physical
simulation experiments were conducted through the transformation of well network form in the later
stage of ultra-high water content, which showed that the synergistic effect of liquid extraction and
liquid flow direction can significantly improve the oil recovery effect, with an oil recovery rate of
68.02%, deepening the understanding of improving oil recovery rate in the later stage of ultra-high

water content.

Keywords: ultra-high water cut period; advantageous seepage channels; seepage barrier; remaining
oil distribution; improved oil recovery

1. Introduction

The onshore 0il reservoirs in eastern China are mainly composed of clastic rock
deposits, and the reservoirs have complex heterogeneity in both horizontal and vertical
directions. The reservoir development method is mainly the water drive. At present, it has
generally entered a high water content stage, with a water content of more than 90%, but
the average recovery rate is less than 40%, and more than 60% of the oil and gas resources
are retained underground. In the high water content stage, various dominant seepage
channels are generally formed in the main reservoirs [1,2], and the injected water circulates
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ineffectively in the reservoir, which inhibits the potential of the remaining oil in other
layers [3-5], resulting in the deterioration of the output and economic benefits of oilfields.

In oilfields, through conventional means such as tracer monitoring and isotope anal-
ysis, it can be determined whether there is a certain dominant flow channel between
the injection well and the production well. However, when multiple reservoirs are de-
veloped at the same time, it is difficult to determine which layer is the dominant flow
channel [6]. In addition, the dominant seepage channel technology based on reservoir
numerical simulation, streamline simulation, and reservoir engineering methods has also
been widely developed. The accuracy of reservoir numerical simulation in identifying the
dominant seepage path depends largely on rock physical parameters such as grid porosity,
permeability, and relative permeability. The simulation process obtains these parameters
through wells’ point data difference, which does not allow for an accurate understanding
of the reservoir [7]. Streamline simulation technology can effectively model and predict
the dominant flow path, but due to the uncertainty of mapping physical properties from
grid to one-dimensional space, certain errors may occur in the calculation [8]. Based on
reservoir engineering methods, the quantitative evaluation of inter-well dominant flow
paths has attracted widespread attention due to the advantages of easy data acquisition,
rich information, and low cost. Commonly used methods include excess water analysis [9],
multivariate linear regression model [10], capacitance-resistance model (CRM) [11,12], and
inter-well connectivity numerical simulation model (INSIM) [13-15]. The excess water
analysis method [9] is based on traditional seepage theory, based on which excess wa-
ter (the difference between the actual injected water volume and the predicted injected
water volume) is divided into different injection and production directions and reservoir
parameters such as dominant flow, permeability, and pore throat radius are determined. It
assumes that fluid flow follows Darcy’s law and regards the flow in the dominant channel
as a one-dimensional flow. However, a large number of experiments have shown that high-
speed non-Darcy flow is widely observed in the dominant channel, indicating that there is
a significant difference between assumptions and actual situations, so the results obtained
by excess water analysis are less reliable. The multivariate linear regression method [10]
estimates the weight coefficient of the degree of the well connectivity through the volatility
of well production data but ignores the attenuation and hysteresis behavior of injected
water between well pairs, which usually leads to some defects in practical applications.
The capacitance-resistance model [12,16] takes into account the attenuation and hysteresis
of the inter-well signal and derives the relationship between the production well fluid
production, initial production, injection water volume, and bottom hole pressure based
on the material balance equation. There are still some assumptions in CRM, and whether
these assumptions are valid in oilfields has not been confirmed. The INSIM is based on
the principle of material balance, based on which a numerical simulation kernel function
of the well connectivity (such as a capacitance-resistance model) is constructed [17,18],
simplifying the kernel function with the help of predetermined assumptions, and then the
dominant flow problem is solved. The above methods all use field tests and simulation
calculation methods to study the dominant channels of water flow.

In order to explore the evolution mechanism of the dominant flow channel and its
influence on reservoir parameters, a large number of indoor experimental studies have
been conducted. Kalaydjian [19] studied the microscopic residual oil distribution when
oil, gas, and water coexisted by scanning electron microscopy; in a series of long-term
water injection experiments, Liu [20] found that with an increase in water injection pore
volume, the reservoir permeability polarized, the permeability of the high-permeability
area increased, and the permeability of the low-permeability area decreased. The clay
mineral content has the greatest influence on changes in rock physical parameters, while
the pore throat distribution and rock wettability have little influence. Liu [21] revealed that
changes in porosity, permeability, heterogeneity, and cementation are the main geological
factors explaining the formation of the dominant flow channel. Zhong [22] found that
changes in porosity, permeability, heterogeneity, and cementation are the main geological
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factors explaining the formation of the dominant flow channel. It is believed that the
sedimentary microfacies and sand body thickness at the macroscale control the formation
of the dominant flow channel, while the sand body lithology, stratigraphic rhythm, rock
physical properties, and diagenetic evolution degree at the microscale usually have a
greater impact on the formation of the dominant flow channel. Yao [23] found that injected
water can flush the surface of oil-bearing pores, causing clay minerals to swell and migrate
and thus resulting in the thinning or destruction of the oil film attached to the clay surface,
thereby changing the wettability of the reservoir rock. Huang [24] believed that in medium-
and low-permeability reservoirs, after long-term water injection development, the porosity
and permeability increase, the heterogeneity intensifies, the water sensitivity decreases,
and the acid sensitivity intensifies.

Indoor experiments have shown that by improving the hydrodynamic conditions,
the water drive efficiency can exceed 70%, and the recovery rate can reach more than
50% [9,25,26]. However, the water flooding effect observed in large-scale pilot experiments
and indoor simulations is still challenging [27-30]. Among these challenges, understanding
the evolution of water flooding channels during the regulation process and their effective
characteristics, as well as the distribution and utilization characteristics of remaining oil
under the control of water flooding channels, are key issues in improving the effectiveness
of hydrodynamic regulation in the ultra-high water cut period [6,31,32]. Previous studies
lacked research on the dominant flow channel system from the perspective of fluid me-
chanics. There is an urgent need to establish a new method for identifying and observing
the dominant flow channels in ultra-high water cut reservoirs that takes into account the
time-varying effects of reservoir parameters and uses it to effectively guide the actual
development of oilfields. To this end, we studied the evolution characteristics of seepage
channels during water flooding through microscopic physical simulation experiments and
visualized the dominant seepage channels of water flooding in the late stage of ultra-high
water cut; the color mixing principle was used to change the color of the injected water at
different stages of water flooding to trace the water seepage channels. For the first time,
it was discovered that the water flooding seepage channels in the late stage of ultra-high
water cut shrank and solidified to form dominant seepage channels, and the control effect
of the dominant seepage channels on the distribution of residual oil was quantitatively
analyzed. Furthermore, a redundant index was established to quantitatively evaluate the
inhibitory effect of two hydrodynamic control measures, namely, liquid extraction and
liquid flow diversion, on the dominant seepage channels of water flooding. Finally, micro-
scopic physical simulation of chemical flooding and hydrodynamic control was used to
synergistically break the existing dominant seepage channels of water flooding, reconstruct
an efficient displacement flow field, greatly improve the degree of remaining oil utilization,
and achieve a recovery rate of more than 70%, thus achieving the goal of significantly
improving the recovery rate in the late stage of ultra-high water cut.

2. Microscopic Simulation Methods for Waterflooding Microflow in Porous Media

Microscopic simulation of waterflooding microflow is one of the important means
to study the characteristics of waterflooding flow in porous media. The entire physical
simulation method includes three key technologies: microscopic model fabrication, experi-
mental control techniques for microscopic waterflooding, and post-processing techniques
for microscopic waterflooding image data. Among them, the fabrication of the microscopic
model is key.

During the experimental process, thin sections of representative reservoir cores were
selected, and binary images of the pore network were extracted. Using image fusion and
stitching methods, multiple binary images of pore networks were reconstructed into pore
network patterns of different sizes and specifications. Then, the pore network patterns were
mapped and etched onto a glass substrate using laser etching technology. A precision en-
graving machine was used to drill holes based on the well-pattern deployment, simulating
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well positions. Finally, the etched glass substrate was encapsulated using high-temperature
bonding technology.

The process of microscopic waterflooding experiments was the same as that of con-
ventional core waterflooding experiments. A high-resolution camera captured and stored
dynamic and static images of the waterflooding process in a computer. The experimental
procedure is shown in Figure 1. After the experiment, image analysis techniques were
used to analyze and quantitatively calculate the image data qualitatively [33]. This analysis
clarifies the waterflooding process’s microscopic flow characteristics, the oil displacement’s
effectiveness, and the state of remaining oil distribution. It provides theoretical support for
regulating water flow paths during the ultra-high water cut period, the effective mobiliza-
tion of remaining oil, and improving oil recovery.
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Figure 1. Microscopic oil displacement simulation’s experimental device.

3. Characteristics of the Evolution Process of Dominant Seepage Channels in
Water Flooding

3.1. Characteristics of the Evolution Process of Seepage Channels Based on Injected Water
Color Tracing

In reservoir water flooding development, the oil phase is continuously cut by the
water phase, increasing dispersion. The two-phase flow of oil and water gradually changes
from continuous flow to discontinuous flow. During the water flooding process, due to the
increasing dynamic heterogeneity of reservoir properties and residual oil saturation, the
distribution of residual oil becomes more scattered and smaller in scale. The distribution
of the seepage channels for the injected water tends to stabilize, eventually entering the
ultra-high water cut stage. Laboratory microphysical simulation visual studies were used
to study the water flooding oil process. Initially, blue water was used for water flooding
until the ultra-high water cut stage, and then pink water was used to displace the crude oil,
as shown in Figure 2.

From Figure 2, it can be observed that in the low water cut stage, due to reservoir
heterogeneity, water injection leads to fingering (Figure 2a). In the medium water cut stage,
due to the interference between the two-phase flow of oil and water in the porous medium,
the swept area continues to expand even after the injected water breaks through to the
outlet (Figure 2b). In the high water cut stage, the phase interference in porous media is
weakened, and the spreading ability of injected water is weakened with the increase in
outlet moisture content (Figure 2c). In the ultra-high water cut stage, the swept area reaches
its maximum, and residual oil distribution becomes relatively stable (Figure 2d).
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Figure 2. Evolution process of seepage path from water drive to high water content stage. The arrows
represent the direction of flow.

3.2. Visualization and Identification of Dominant Seepage Channels in Water Flooding Based on
Color Mixing Principles

After entering the ultra-high water cut stage, the injected water changed from blue to
pink. During the experiment, as the pink water gradually entered the porous medium, it
mixed with the blue water in the pores. This mixing process is shown in Figure 3a-d, with
local areas of the images enlarged. Figure 3d shows a microscopic displacement image
after injecting 30 pore volumes (PV) of pink water, representing the late stage of ultra-high
water cut, with full-color mixing.

Figure 3 shows that the injected water changed from blue to pink during the ultra-high
water cut stage. During the injection process, a color mixing process occurred between the
blue and pink water, with the colors transitioning from blue to light purple to purple to
pink. Different colors represent different intensities of color mixing, indicating the extent
of mixing caused by the seepage intensity of the injected water. In the late stage of the
ultra-high water cut stage, the color mixing process reached equilibrium, and the pink
areas in Figure 3d show the complete replacement of blue water with pink water. This
seepage area represents the dominant seepage channels during the late stage of ultra-high
water cuts.
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Figure 3. Tracing process of dominant water drive seepage channels in the later stage of ultra-high
water content. The arrows represent the direction of flow.

In summary, the evolution characteristics of dominant seepage channels during water
flooding include directional advancement in the low water cut stage, lateral expansion
in the medium-high water cut stage, and contraction and stabilization in the ultra-high
water cut stage. The tracing process of dominant seepage channels during water flooding
indicates that in the late stage of ultra-high water cut, flow mainly occurs in some pores
within the swept area, rather than all pores participating in the seepage flow.

4. The Control Effect of Water Flooding Dominant Flow Channels on Remaining Oil
4.1. Distribution Characteristics of Flow Regions Controlled by Dominant Flow Channels in
Water Flooding

The water flooding process involves a two-phase flow, where the porous medium
contains either water or oil. The distribution and displacement intensity of water flooding
flow channels control the remaining oil. Figure 4 shows the distribution of oil and water
under the control of dominant flow channels in the late stage of high water cut.
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Figure 4. Distribution of remaining oil under the control of water flow advantage channels. Numbers
1-5 label the five areas filled with remaining oil. The blue arrows label each of the four remaining oil
types. Red arrows mark the color of the liquid.

As shown in Figure 4, the sweep efficiency of water flooding in the late stage of high
water cut is relatively high, with the swept area accounting for 85.4%. The swept area
is further divided into the dominant flow area (pink, 42.7%) and the stagnant flow area
(blue, 42.7%). In the late stage of high water cut, water in the stagnant flow area remains
blue, indicating that the pores in this area do not participate in flow, no mixing process
occurs, and blue water is not replaced with pink water. The pores in the dominant flow
area are the main flow channels, and the water in these pores is completely replaced with
pink water. Further observation of Figure 4 reveals a relatively continuous light purple
mixed-color strip (near the red ant lines) at the boundary between the dominant flow area
and the stagnant flow area. This strip acts as a flow barrier, separating the dominant and
stagnant flow areas.

4.2. Oil Displacement Efficiency and Remaining Oil Analysis in Different Flow Areas

The regional distribution of water flooding flow paths in the late stage of high water
cut controls the remaining oil distribution. The type and scale of remaining oil vary
significantly across different flow areas. In the unswept area, the remaining oil is distributed
in contiguous patches (marked as locations 3, 4, and 5 in Figure 4). In the stagnant flow
area, the remaining oil is mainly bypassed network-like oil (marked as locations 1 and 2 in
Figure 4), with some single-pore and multi-pore dispersed remaining oil. In the dominant
flow area, the remaining oil is highly dispersed, mainly consisting of single-pore and
multi-pore dispersed oil. The percentage of the remaining oil in different flow areas relative
to the total remaining oil and the oil displacement efficiency is shown in Figure 5.

As shown in Figure 5, the oil displacement efficiency in different flow areas during the
late stage of high water cut follows the following order: dominant flow area (80.5%) > stag-
nant flow area (44.6%) > unswept area (0). The proportion of remaining oil in each flow area
relative to the total remaining oil is as follows: stagnant flow area (49.5%) > unswept area
(40.3%) > dominant flow area (10.2%). The dominant flow area, serving as the main flow
channel, contains only 10% of the remaining oil but has an oil displacement efficiency of up
to 80.5%. In the experiments, the water phase in this area approached single-phase flow
during the late stage of high water cut, resulting in the lowest flow resistance. The stagnant
flow area, with nearly 50% of the remaining oil, is crucial for tapping the remaining oil in
the late high water cut stage.
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Figure 5. Oil displacement efficiency and remaining oil proportion in different seepage areas of
water flooding.

In summary, the water flooding flow areas in the late stage of high water cut are
divided into unswept areas, dominant flow areas, and stagnant flow areas. The remaining
oil in the dominant flow area is highly dispersed and small in scale, with the water phase
approaching single-phase flow, making the recovery of the remaining oil challenging. The
stagnant flow area contains bypassed network-like remaining oil, accounting for nearly
50% of the total remaining oil, making it a key area for tapping remaining oil in the late
stage of high water cut. The unswept area contains 40.3% of the total remaining oil and is
the most difficult to mobilize under unchanged hydrodynamic conditions.

5. Regulation and Evaluation of Water Flooding Dominant Permeability Channels

In the late stage of the ultra-high water cut, dominant permeability channels are
developed in the swept areas, which control the distribution of remaining oil through the
barrier effect of these channels. The field regulates these dominant water flooding channels
by increasing liquid production or altering liquid flow direction, further enhancing recovery
efficiency. Microscopic physical simulations in the laboratory were used to study the effects
of increasing liquid production and altering liquid flow direction on the regulation of
dominant water flow channels. In the experiment, colorless water was first used to drive to
the ultra-high water cut stage, and then blue water was used to increase liquid production
for displacement gradually, and finally, pink water was used for flow direction alteration
displacement. Image analysis methods were employed to quantitatively evaluate the
effects of increasing liquid production and altering liquid flow direction on the regulation
of dominant water flow channels.

5.1. Characteristics and Effect Evaluation of Liquid Production Regulation of Water Flooding
Permeability Channels

Increasing liquid production by increasing the displacement pressure leads to the non-
selective expansion of the swept area of the injected water, thereby inhibiting the dominant
permeability channels in the late stage of ultra-high water cut and further enhancing
recovery efficiency. The image of the experiment for tracing the dominant permeability
channels at 1 pL./min water flooding until reaching the ultra-high water cut stage is shown
in Figure 6.

Figure 6 shows that in the late stage of ultra-high water cut, the injected water generally
sweeps through the area, developing dominant water flooding permeability channels (blue)
within the swept region. The experimental images were re-rendered to quantitatively
evaluate the effect of liquid production expansion using image analysis methods, as shown
in Figure 7a. To illustrate the evolution of dominant water flooding permeability channels
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during the stepwise liquid production process, the re-rendered images of these channels
are shown in Figure 7b—d.

Figure 6. Tracer image of the dominant seepage channel in the water drive during the later stage of
ultra-high water content. The arrows represent the direction of flow.

(¢) 3pL/min (d) SpL/min

Figure 7. Evolution of dominant seepage channels during stepwise liquid extraction. The arrows
represent the direction of flow.
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Figure 7 shows that with the increase in injection speed, the dominant water flooding
permeability zone (pink) gradually overcomes the barrier effect and continues to expand.
In contrast, the stagnant flow zone continuously shrinks. On the pore scale, the number of
pores participating in the flow within the swept area gradually increases. The remaining
pores that are not yet involved in the flow are defined as redundant pores. The redundancy
index is defined to quantitatively evaluate the effect of liquid production regulation on the
dominant water flooding permeability zone:

Ri— (1— Dominant seepage area
N Affected area

) x 100%

The relationship between the increased injection speed and the redundancy index in
the late stage of ultra-high water cut is shown in Figure 7.

Figures 7 and 8 show that in the late stage of ultra-high water cut, with the stepwise
increase in liquid production, the redundancy index continuously decreases, the dominant
permeability zone continuously expands, the barrier effect is continuously broken, and oil
recovery efficiency increases. Within the experimental range, when the injection speed is
increased fivefold (to 5 pL/min), the redundancy index is 22.8%. The primary effect of in-
creased liquid production is to mobilize the remaining oil in the redundant zone, achieving
an oil recovery efficiency of 46.7%. This is mainly due to the non-selective flow of injected
water breaking the original barrier effect, expanding the dominant permeability zone, and
displacing the remaining oil in redundant pores, thus improving oil recovery efficiency.
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Figure 8. Relationship between stepwise liquid extraction and redundancy index in the later stage of
ultra-high water content.

5.2. Characteristics and Effect Evaluation of Flow Direction Alteration in Regulating Water
Flooding Permeability Channels

After the blue water flooding and stepwise liquid production equilibrium, pink water
was used to alter the flow direction by 90° for displacement, regulating the water flooding
permeability channels. The image of the experimental process is shown in Figure 9a. After
the equilibrium of flow direction alteration displacement, blue water was used for flow
path tracing, and its image is shown in Figure 9b.
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Figure 9. Tracer images of fluid flow turning in the water drive advantage seepage channel. (a) The
image of the experimental process of liquid flow turns. (b) Tracer image of fluid flow reaching
equilibrium in the dominant seepage channel. Solid pink arrows represent the main flow direction.
Dashed arrows represent flow directions perpendicular to the main flow direction. Short blue arrows
represent the direction of flow after outflow. The long blue arrow represents the direction of flow
after improvement.

Figure 9 shows that the backward water flooding sewerage channel is reconstructed
by liquid flow, and Figure 10 shows the corresponding image after secondary rendering.

Figure 10. Evolution of dominant seepage channels during fluid flow turning. Short blue arrows
represent the direction of flow.

It can be seen from Figure 10 that after the liquid flow reaches displacement equi-
librium, there are still dominant seepage channels of water flooding in the reconstructed
water flooding seepage channels (yellow area in Figure 10), as indicated by quantitative
analysis of redundancy index and displacement efficiency (see Figure 11).

From Figure 11, it can be seen that in the initial stage of flow direction alteration, oil
recovery efficiency significantly increases. As displacement continues, dominant water
flooding permeability channels form again, the redundancy index increases, and oil recov-
ery efficiency almost no longer increases, entering a high water consumption displacement
stage. The changes in the dominant water flooding permeability channels and oil recovery
efficiency after flow direction alteration in the late stage of ultra-high water cut indicate
that the effectiveness of flow direction alteration in enhancing recovery is time-sensitive.
In the ultra-high water cut stage, dominant water flow channels re-form, reducing the
effectiveness of flow direction alteration in improving oil recovery.
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Figure 11. Changes in the redundancy index and oil displacement efficiency of fluid flow direction
displacement until reaching equilibrium.

5.3. Evaluation of the Effect of Synergistic Regulation of Water Flooding Permeability Channels on
Enhanced Oil Recovery

In the late stage of ultra-high water cut, after multiple rounds of increased liquid
production and flow direction alteration, the remaining oil becomes highly dispersed, and
the adaptability of single water flooding regulation technology gradually deteriorates.
Indoor experiments were conducted to simulate the synergistic effect of increased liquid
production and flow direction alteration on enhancing recovery through flow field regula-
tion. As shown in Figure 12, a one-injection and one-production microphysical simulation
experiment was first conducted. After displacement to the ultra-high water cut stage, the
well pattern was changed to a two-injection and six-production pattern while maintaining
the injection speed, achieving the synergistic regulation of the flow field through increased
liquid production and flow direction alteration. The results of the sweep efficiency and
oil recovery efficiency analyses after equilibrium in the one-injection and one-production
experiments, as well as the two-injection and six-production experiments, are shown in
Figure 13.

Figure 12. Collaborative regulation of water drive’s seepage channels through well network transfor-
mation. The pink arrow represents the direction of fluid flow. The pink origin represents the location
of the simulated injection well. The orange and blue boxes point out two areas where the fluid flow
conditions differ.
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Figure 13. Effect of well network transformation on oil displacement efficiency and sweep coefficient.

Figure 13 shows that after changing from a one-injection and one-production to a
two-injection and six-production method, the sweep efficiency increased from 76.8% to
93.7%, and oil recovery efficiency increased from 59.3% to 72.6%. Two typical regions were
selected for comparative analysis in the model to further analyze the improvement in oil
recovery efficiency by increased liquid production and flow direction alteration. Taking
the orange box in Figure 12 as an example, the oil recovery efficiency considering the
synergistic effect of increased liquid production and flow direction alteration after the
change in well pattern is shown in Figure 14a. Considering the blue box in Figure 11, the
oil recovery efficiency due to increased liquid production is shown in Figure 14b.

Unswept Area

X vy A X X

2 A Y s, =

(b) Improvement in oil displacement by liquid extraction

Figure 14. Improvement in oil displacement effect by different mechanisms of well network transfor-
mation. The pink arrow represents the direction of fluid flow. The pink dashed line separates two
regions with different fluid flow conditions.
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Figure 14 shows that after the change in well pattern, the orange box region shifted
from a non-mainstream area to a mainstream area. Due to the dual effect of increased
liquid production and flow direction alteration, the previously unswept area was effectively
swept, significantly improving oil recovery efficiency.

In contrast, the blue box region remained a mainstream area after the change in well
pattern. Since the injection speed remained unchanged before and after the transformation,
only the mechanism of increased liquid production contributed to the improvement in oil
recovery efficiency. As seen in Figure 14b, even after transitioning to a two-injection and
six-production pattern, this area did not complete the mixing process, indicating limited
improvement. The oil recovery efficiency of the two regions before and after the change in
well pattern is shown in Figure 15.
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Figure 15. Comparative analysis of oil displacement efficiency in typical areas after well net-
work transformation.

Figure 15 shows that the synergistic effect of increased liquid production and flow
direction alteration in the orange region increased oil recovery efficiency from 51.2%
to 74.5%. In the blue region, where only increased liquid production was applied, oil
recovery efficiency increased from 26.8% to 28.7%. The synergistic effect of increased liquid
production and flow direction alteration significantly enhanced oil recovery efficiency.

6. Conclusions and Insights

1.  We proposed the use of a mixing method for tracing water flooding permeability
channels and visualizing the evolution characteristics of dominant channels in ultra-
high water cut reservoirs: targeted advancement in low water cut stages, lateral
expansion in medium-to-high water cut stages, and contraction and solidification in
ultra-high water cut stages.

2. During the ultra-high water cut period, dominant water flooding channels control the
remaining oil distribution. The barrier effect divides the swept area into dominant
and stagnant flow zones. The dominant flow zones exhibit near-single-phase flow,
making the remaining oil highly dispersed and difficult to mobilize. This contributes
to high water consumption in the late ultra-high water cut period. In contrast, the
stagnant flow zones contain pores that do not participate in flow, resulting in rela-
tively enriched remaining oil, representing important areas for potential recovery
enhancement during the ultra-high water cut period.

3. Increased liquid production regulates the dominant water flooding zones through non-
selective flow, while flow direction alteration reconstructs the water flooding flow field.
Flow direction alteration initially improves oil recovery efficiency significantly, but
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the secondary formation of dominant water flooding channels limits the effectiveness
over time.

4. Physical simulation experiments demonstrate that the synergistic regulation of water
flooding permeability channels through increased liquid production and flow direc-
tion alteration can significantly expand the sweep and enhance oil recovery efficiency,
achieving a recovery rate of up to 68.02% during the ultra-high water cut period. This
indicates that significant improvements in recovery rates can still be achieved through
coordinated adjustments in the late ultra-high water cut period.

5. The formation of high water consumption channels is an inevitable phenomenon for
field practice, and EOR can be further enhanced by increasing water injection intensity
and changing injection direction. However, there are two problems: On the one hand,
the enhanced strength of injected water must be enough to overcome the effect of the
seepage barrier at the boundary of the dominant seepage area in order to improve
the EOR. On the other hand, changing injection direction can significantly improve
oil recovery, but there is a risk of secondary formation of the dominant seepage area,
so the flow direction of injected water must be adjusted dynamically. The method
for improving oil recovery by enhancing injection strength and changing injection
direction through well-pattern infilling is a promising technology.
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Abstract: The incorporation and application of SAGD rapid preheating technology effectively solve
the problem of the long preheating cycle in the SAGD steam cycle. The thermal properties of reservoir
rocks are an important factor affecting the heat transfer law governing their formation during the
rapid preheating process of SAGD. During the rapid preheating process of SAGD, the expansion
of the reservoir and the steam cycle process will cause changes in the pore permeability, oil-water
saturation, and temperature of the reservoir rocks, which will inevitably lead to differences in the
changes that occur in the thermal properties of the reservoir rocks, compared to those under the
influence of a single factor. In this study, experiments were conducted to determine the thermal
properties of reservoir rocks under the combined influence of pore permeability, oil-water saturation,
and temperature, quantitatively characterizing the changes in the thermal properties of reservoir
rocks. Using the orthogonal method to design and carry out experiments for determining the thermal
properties of reservoir rocks, the main factors affecting the thermal properties of reservoir rocks and
the significance of each factor’s impact on the thermal properties of reservoir rocks were determined
through intuitive analysis and variance analysis of the experimental results. Finally, a regression
equation that can characterize changes in the thermal properties of reservoir rocks under the influence
of multiple factors was obtained through multiple nonlinear regressions of the experimental results.

Keywords: SAGD; rapid preheating; thermal properties

1. Introduction

Cyclic steam stimulation and steam circulation are commonly used as SAGD pre-
heating methods. Compared to cyclic steam stimulation preheating, steam circulation
preheating heats the formation relatively uniformly and has better connectivity, so steam
circulation preheating is the most widely used preheating technology. Although the pre-
heating effect of the steam cycle is better, its long preheating time not only leads to huge
steam consumption but also produces a large amount of difficult-to-treat oil residue during
the circulation process. These problems increase the development cost of SAGD technology
to some extent and have a negative impact on the improvement of economic benefits. In
order to solve the problem of the long preheating time, the BitCan Company in Canada
proposed the use of SAGD rapid preheating technology in 2015 and it has been adopted
rapidly both domestically and internationally. The SAGD rapid preheating technology
utilizes the stress dilatation principle in rock mechanics to expand the rock of the reservoir
near the wellbore before preheating, causing changes in the rock particle structure of the
reservoir, forming a dilatation area with roughly the same increase in permeability and
porosity. This allows the steam to develop thermal connectivity between the two wells
more quickly, achieving the goal of shortening the preheating time. During the rapid
preheating process of SAGD, parameters such as reservoir porosity, oil-water saturation,
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and temperature will change, all of which will cause changes in the thermal properties
of the reservoir, thereby affecting the application of the heat transfer law in the reservoir.
The thermal properties of reservoir rocks mainly include thermal conductivity, specific
heat capacity, and the thermal diffusion coefficient. There are many factors that can af-
fect the thermal properties of reservoir rocks, including their petrological characteristics,
porosity, oil-water saturation, pressure, and temperature. Xu Zhenzhang from China [1]
systematically elaborated on the factors affecting the thermal properties of reservoir rocks
in 1992 and analyzed the mechanisms of changes in reservoir rock thermal properties
under the influence of various factors based on research data at that time. However, due to
the limited testing technology and instrument conditions of early rock thermal properties
testing, testing could only be conducted at room temperature and pressure, which cannot
effectively simulate geological conditions. Therefore, the accuracy of rock thermal property
testing results is poor [2]. In recent years, there has been significant development in testing
technology and instruments, with significantly improved accuracy of test results and the
ability to effectively simulate various temperature and pressure conditions for determining
rock thermal properties.

Considering the influence of temperature on the thermal properties of rocks, Sun
et al. [3] measured the thermal properties of dry sandstone under different temperature
conditions and described the changes in thermal properties of the sandstone under con-
ditions of 25 °C to 900 °C in four stages, based on the measurement results. The thermal
conductivity of the rock showed an overall decreasing trend, while the specific heat ca-
pacity was proportional to temperature before 200 °C, fluctuating between 200 °C and
400 °C, and was inversely proportional to temperature after 600 °C. Abdulagaov [4] and
Emirov [5] also reached similar research conclusions. Geng et al. [6] investigated the effect
of temperature on the thermal diffusion coefficient through experimental measurements
and found that the thermal diffusion coefficient of sandstone is inversely proportional to
temperature and tends to stabilize when the temperature reaches 600 °C or above. As a
result of such analysis, it is believed that the decrease in thermal diffusion coefficient from
25 °C to 300 °C is mainly due to the escape of attached water, bound water, and structural
water. Between 300 and 600 °C, the thermal response of minerals in sandstone increases the
development of microcracks and weakens the thermal diffusion coefficient of sandstone.
Unlike in previous research, Liu et al. [7] conducted experimental and modeling studies
on heat transfer in sandstone under low-temperature conditions, and conducted thermal
property tests on saturated water, saturated oil, and dry sandstone under low-temperature
conditions (—196.13-19.85 °C). The test results show that the thermal conductivity of dry
sandstone under low-temperature conditions increases with an increase in temperature,
which is different from the situation where the thermal conductivity decreases with an
increase in temperature under high-temperature conditions. Analysis suggests that this is
mainly related to the strong phase transition, which absorbs a large amount of latent heat.

Considering the influence of oil-water saturation on the thermal properties of rocks,
Guo Yeping et al. [8] measured the thermal conductivity of sandstone under different tem-
perature and water-content conditions. The analysis showed that the thermal conductivity
of sandstone is inversely proportional to temperature, and the thermal conductivity of
sandstone in a saturated state will undergo a sudden change near 0 °C due to the influence
of the water phase change. However, under a constant temperature, the thermal conductiv-
ity of sandstone is directly proportional to the water content, and the growth rate of thermal
conductivity is inversely proportional to the ambient temperature. Hu Rong et al. [9] con-
ducted a measurement study on the thermal properties of rocks in the Chunguang Oilfield,
analyzing the effects of oil-water saturation and rock density on thermal properties. The
study found that the thermal conductivity and specific heat capacity of rocks are directly
proportional to their water saturation and density, and are inversely proportional to their
oil saturation. In addition, by regressing the results of thermal property testing, a regression
relationship equation was obtained for calculating rock thermal properties through the
difference in logging acoustic time. Song Xiaoqging et al. [10] conducted a study on the
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thermal properties of the main rocks in Guizhou, and the results showed that the thermal
conductivity of rocks under saturated water conditions increased by 2-17% compared
to those under dry conditions, the thermal diffusion coefficient increased by 1-16%, and
the specific heat capacity decreased by 3.08-21.79%. Analysis suggests that in addition
to the petrological characteristics, the water content of rocks is the main factor affecting
their thermal properties. Zhen Zuolin et al. [11] conducted experiments to determine the
thermal properties of underground transportation surrounding certain rocks in Lanzhou.
The experimental results showed that the thermal conductivity of the surrounding soil
samples increased linearly with the increase in water content; the volumetric specific heat
capacity decreased first and then increased with the increase in water content, and the
thermal diffusion coefficient increased first and then slowly decreased with the increase in
water content.

In terms of the impact of changes in pore permeability on the thermal properties of
rocks, Scharli et al. [12] and Sayed et al. [13] conducted studies on the influence of rock
porosity on rock thermal properties in 1984 and 2011, respectively. The results showed
that the porosity of rocks was inversely proportional to their thermal conductivity, but
this result was only based on data analysis and did not provide empirical evidence. In
2020, Zhu et al. [14] used scanning electron microscopy to obtain images of rock samples,
analyzed the microstructure of different rock types, and studied the relationship between
thermal conductivity and porosity using eight different thermal conductivity porosity
models. The results indicate that the thermal conductivity decreases with an increase in
porosity, confirming the previous research findings.

Given the impact of changes in pore permeability on the thermal properties of rocks,
studies by Scharli et al. [12] in 1984 and Sayed et al. [13] in 2011 investigated the relationship
between rock porosity and thermal properties. These findings indicated that the porosity
of rocks is inversely proportional to their thermal conductivity, though these results were
solely based on data analysis and were not empirical. In 2020, Zhu et al. [14] utilized
scanning electron microscopy to capture images of rock samples and examined the mi-
crostructure of various rock types. They further examined the correlation between thermal
conductivity and porosity using eight distinct thermal conductivity-porosity models. Their
results suggest that thermal conductivity decreases as porosity increases, corroborating the
previous research findings.

In predicting the thermal properties of rocks, various models have been proposed [15-21],
all of which are obtained through regression methods based on a large amount of exper-
imental data, and these models only consider the influence of single factors for thermal
property prediction. However, there are many factors that affect the thermal properties
of reservoir rocks, and the direction of their influence is also different. Therefore, many
prediction models that only consider the influence of single factors have significant limita-
tions.

Opverall, there is currently a wealth of research on changes in reservoir thermal proper-
ties, and scholars have conducted quantitative or qualitative studies on the various factors
that affect reservoir rock thermal properties. They have summarized the mechanisms and
predictive models of reservoir thermal property changes under the influence of correspond-
ing factors. However, the shortcomings are that currently, most research conclusions are
obtained through experimental analysis under the control of single-factor variables, and
there is no research on the changes in reservoir thermal properties under the joint influence
of multiple factors. For the rapid preheating process of SAGD in the F reservoir studied
in this study, factors affecting the thermal properties of reservoir rocks include increased
local reservoir porosity and permeability after expansion, as well as changes in oil-water
saturation and temperature that are caused by steam entering the formation. From previous
research, it can be seen that the influence of these factors on thermal properties, especially
thermal conductivity, is not consistent. Therefore, the changes in rock thermal properties
under the combined action of multiple factors is a problem worthy of in-depth research, and
it is also the basis for conducting subsequent research on heat transfer laws in reservoirs.
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2. Apparatus and Procedures
2.1. Materials

The oil for the experiments (Figure 1) was taken from reservoir F; the viscosity of
crude oil was 39,952 mPa-s under reservoir temperature (22 °C) conditions. The rock cores
used in the experiment are shown in Figure 2.

Figure 1. Crude oil used in the experiment.

Figure 2. Cores used in the experiment.

2.2. Apparatus and Procedures
2.2.1. Oil-Water Core Saturation

Before conducting thermal property measurements, it is necessary to fully saturate
the core sample with oil and water according to the experimental design requirements and
slice it into slices. The core saturation device used in the experiment includes a formation
fluid saturation system (Figure 3) and an oil-water saturation device (Figure 4).

The formation fluid saturation system is mainly used in experiments to saturate the
formation water of artificial rock cores. The specific steps are as follows:

(1) Prepare a sufficient amount of formation water according to the experimental require-
ments and fill a water tank with it;

(2)  After placing the rock core into the rock ventricle, close the rock ventricle and turn on
the rock ventricle vacuum pump, continuously vacuuming it for 48 h;

(3)  Turn off the vacuum pump and open the valve between the formation water tank and
the rock core chamber;
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(4) Slowly apply pressure to the rock ventricle using a hand pump;

(5) Stop pressurization when the pressure of the rock ventricle remains unchanged for
12 h;

(6) Reduce the pressure of the rock ventricle to 0 MPa, open the vent valve to drain excess
formation water, remove the rock core, inspect and clean the equipment, and prepare
for the next experiment.

One-way valve

Core holder
One-way valve

Measuring
cylinder

Air bath

Figure 4. Steady-state oil-water saturation device.

Due to the strict requirements for core oil-water saturation in thermal property testing
experiments, conventional oil-water saturation methods cannot accurately control the
oil-water saturation of artificial cores. Therefore, by referring to the steady-state method for
measuring the oil-water permeability of rock cores, the oil-water saturation of the saturated
water rock cores was controlled. The experimental setup flowchart is shown in Figure 4.
Two constant flow pumps are used to pump oil and water into the rock core. During
this process, the proportion of the oil and water injection rate remains constant. When
the pump pressure is stable and the produced oil-water ratio remains consistent with the
injected oil-water ratio for 20 min, it can be considered that the oil-water ratio in the rock
core pores is the same as the injected oil-water ratio, which achieves the goal of controlling
the oil-water saturation of the core. The specific steps are as follows:

(1) Connect up the equipment and open the constant temperature box at least 30 min
before the experiment, then adjust the temperature of the constant temperature box to
80 °C;

(2) Place the saturated formation water core into the core gripper, then connect the core
gripper to the device according to the flowchart;
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Close the outlet valve of the rock core gripper, open the ISCO pump to inject formation
water into the rock core, and check the sealing;

After confirming the sealing of the device, open the outlet valve of the gripper, and
after the water stabilizes, close the ISCO pump and all valves;

Turn on two ISCO pumps, adjust to the specified flow rate according to experimental
requirements, open all valves, and saturate the core with oil and water simultaneously;
After the oil and water at the outlet end of the core gripper are discharged for 5 min,
use a measuring cylinder at the outlet end to collect the produced liquid in time
intervals (10-20 min each time) and observe the pressure changes of the ISCO pump.
When the pump pressure is basically stable and the oil-water ratio of the produced
liquid is the same as the injected oil-water ratio, close the ISCO pump and all valves;
Close the constant-temperature box, lower the temperature of the gripper to room
temperature, then open the gripper and remove the rock core;

Clean the device and prepare for the next experiment.

2.2.2. Thermophysical Property Determination

The experimental device for measuring thermal properties adopts the LFA467 laser

thermal conductivity instrument produced by the NETZSCH company in Selby, Germany,
as shown in Figure 5.

Figure 5. LFA467 laser thermal conductivity meter.

@
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The specific testing steps are as follows:

Turn on the instrument power and wait for about 10 s before the “unlock” light turns
on. Simultaneously press the “close + safety” button until the “close” light remains
on and the instrument is ready;

Turn on the computer and water bath, set the water bath temperature to 2 °C above
room temperature;

Add liquid nitrogen to the infrared detector and stabilize it for 30 min before testing
begins;

Use nitrogen as the blowing gas and set the output pressure to 0.05 MPa;

Cut the saturated oil and water core into rock sample slices according to the exper-
imental requirements (as shown in Figure 6), and spray graphite on the upper and
lower sides of the slices;

Simultaneously press the “close + safety” button to open the injection port, place the
sample into the instrument, and prepare for testing (as shown in Figure 7);

Open the measurement software, set the measurement parameters, and start the test
(as shown in Figure 8);
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(8) After the test is completed, open the analysis software to analyze the test results and
output the test report;

(9)  When the temperature of the sample tray cools to below 100 °C, open the furnace and
take out the sample.

Figure 7. Samples to be tested.
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Figure 8. Effect curve of thermal diffusivity.
During the experiment, attention should be paid to protecting the eyes and other
parts of the human body from ultra-low-temperature burns when adding liquid nitrogen;

similarly, be careful of high-temperature components when opening the furnace body to
avoid high-temperature burns.
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2.2.3. Experimental Plan and Parameter Design

In order to study the changes in reservoir thermal properties under the influence of
multiple factors through experiments, based on survey data and laboratory conditions,
three influencing factors were selected: pore permeability change amplitude, water satura-
tion, and temperature (Table 1). Five levels were selected for each factor, and a six-factor
five-level orthogonal design table (three empty columns) was used to carry out a three-
factor five-level orthogonal experimental design (Table 2).

Table 1. Orthogonal experimental factor level table.

Factors
Level Amplitud [} Changes i ’ N
mplitude o anges in . °
Porosity and Permeability, % Water Saturation Temperature, °C
1 5 0.2 60
2 10 0.4 120
3 15 0.6 180
4 20 0.8 240
5 25 1 300

Table 2. Experimental scheme design table of thermal property measurement.

Amplitude of Changes in

No. Porosity and Permeability, % Water Saturation Temperature, °C
1 5 0.2 60
2 5 0.4 120
3 5 0.6 180
4 5 0.8 240
5 5 1 300
6 10 0.2 120
7 10 0.4 180
8 10 0.6 240
9 10 0.8 300
10 10 1 60
11 15 0.2 180
12 15 0.4 240
13 15 0.6 300
14 15 0.8 60
15 15 1 120
16 20 0.2 240
17 20 0.4 300
18 20 0.6 60
19 20 0.8 120
20 20 1 180
21 25 0.2 300
22 25 0.4 60
23 25 0.6 120
24 25 0.8 180
25 25 1 240

Due to limitations in the experimental conditions, it is necessary to manufacture artifi-
cial rock cores as thermal property measurement samples, based on the pore permeability
conditions, when conducting thermal property measurement experiments. The parameters
of the core samples are shown in Table 3.
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Table 3. Experimental scheme design table of thermal property measurement.

No. Permeability, D Porosity
1 0.885 0.3175
2 0.885 0.3175
3 0.882 0.312
4 0.882 0.312
5 0.899 0.3559
6 0.916 0.3605
7 0.916 0.3605
8 0.924 0.327
9 0.924 0.327
10 0.924 0.312
11 0.965 0.346
12 0.965 0.346
13 0.965 0.331
14 0.965 0.331
15 0.975 0.3632
16 1.008 0.3637
17 1.008 0.3637
18 1.009 0.3650
19 1.009 0.3650

20 1.015 0.378
21 1.050 0.358
22 1.050 0.358
23 1.050 0.364
24 1.050 0.364
25 1.050 0.3507

3. Results and Discussion

The experimental results for the samples’ thermal properties obtained from the LFA
thermal conductivity tester are shown in Table 4.

Table 4. Experimental scheme design table of thermal property measurement.

No Am}i)rlllgﬁgs(;f C::;ges Water Temperature, Thermal Diffusion Thermal Conductivity Specific Heat,
: P Y o Saturation °C Coefficient, mm?/s Coefficient, W/(m-K) J/(g-K)
ermeability, %
1 5 0.2 60 0.751 1.422 1.790
2 5 0.4 120 0.690 1.360 1.820
3 5 0.6 180 0.622 1.330 1.829
4 5 0.8 240 0.540 1.331 1.811
5 5 1 300 0.469 1.360 1.770
6 10 0.2 120 0.601 1.199 1.800
7 10 0.4 180 0.570 1.180 1.830
8 10 0.6 240 0.544 1.180 1.820
9 10 0.8 300 0.500 1.220 1.801
10 10 1 60 0.711 1.301 1.570
11 15 0.2 180 0.480 0.990 1.833
12 15 0.4 240 0.480 1.000 1.850
13 15 0.6 300 0.492 1.050 1.840
14 15 0.8 60 0.690 1.270 1.590
15 15 1 120 0.620 1.190 1.572
16 20 0.2 240 0.387 0.793 1.880
17 20 0.4 300 0.430 0.840 1.890
18 20 0.6 60 0.630 1.220 1.611
19 20 0.8 120 0.602 1.141 1.610
20 20 1 180 0.560 1.100 1.590
21 25 0.2 300 0.330 0.600 1.910
22 25 0.4 60 0.533 1.120 1.647
23 25 0.6 120 0.530 1.050 1.673
24 25 0.8 180 0.540 1.020 1.660
25 25 1 240 0.540 1.149 1.630
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3.1. Intuitive Analysis and Analysis of Variance
3.1.1. Intuitive Analysis

Based on the orthogonal experimental factor level table and experimental results, a
visual analysis is conducted on the test results for the thermal diffusion coefficient, thermal
conductivity coefficient, and specific heat. The vacant columns (D, E, F) are used as error
columns and have no practical significance. In the intuitive analysis table (Tables 5-7),
Ki is the sum of the experimental values of the level i of the corresponding factors in the
column; ki is the average experimental value of the level i of the corresponding factors in
the column, ki = Ki/number of levels; R is the range of the mean values at each level.

Table 5. Thermal diffusivity experimental results: intuitive analysis table.

Factor
No. Thermal Diffusion Coefficient, mm?/s
A B C D E F
1 1 1 1 1 1 1 0.75
2 1 2 2 2 2 2 0.69
3 1 3 3 3 3 3 0.62
4 1 4 4 4 4 4 0.54
5 1 5 5 5 5 5 0.47
6 2 1 2 3 4 5 0.6
7 2 2 3 4 5 1 0.57
8 2 3 4 5 1 2 0.54
9 2 4 5 1 2 3 0.5
10 2 5 1 2 3 4 0.71
11 3 1 3 5 2 4 0.48
12 3 2 4 1 3 5 0.48
13 3 3 5 2 4 1 0.49
14 3 4 1 3 5 2 0.69
15 3 5 2 4 1 3 0.62
16 4 1 4 2 5 3 0.39
17 4 2 5 3 1 4 0.43
18 4 3 1 4 2 5 0.63
19 4 4 2 5 3 1 0.6
20 4 5 3 1 4 2 0.56
21 5 1 5 4 3 2 0.33
22 5 2 1 5 4 3 0.53
23 5 3 2 1 5 4 0.53
24 5 4 3 2 1 5 0.54
25 5 5 4 3 2 1 0.54
Ky 3.072 2.549 3.315 2.821 2.885 2.955
K5 2.926 2.703 3.043 2.820 2.840 2.814
K3 2.762 2.818 2.772 2.883 2.745 2.662
Ky 2.609 2.872 2.491 2.690 2.726 2.691
Ks 2.473 2.900 2.221 2.628 2.646 2.720
kq 0.614 0.510 0.663 0.564 0.577 0.591
ko 0.585 0.541 0.609 0.564 0.568 0.563
ks 0.552 0.564 0.554 0.577 0.549 0.532
ky 0.522 0.574 0.498 0.538 0.545 0.538
ks 0.495 0.580 0.444 0.526 0.529 0.544
R 0.120 0.070 0.219 0.051 0.048 0.059

From the data in the table above, it can be seen that the range values Ra, Rg, and
Rc, corresponding to the amplitude of pore permeability change (A), water saturation (B),
and temperature (C), are arranged in descending order: Rc > Ra > Rg. This indicates that
the change in temperature (C) has the greatest impact on the thermal diffusion coefficient
of the reservoir among the three factors studied in this article and is the main factor
affecting changes in the thermal diffusion coefficient. Therefore, the order of the degree
of influence on the thermal diffusion coefficient of the reservoir among the three factors
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is: temperature (C) > amplitude of pore permeability change (A) > water saturation (B).
Similarly, the range of factors that affect the thermal conductivity of reservoirs is ranked
as follows: Rp > Rc > Rp, and the amplitude of pore permeability change (A) is the main
factor affecting the thermal conductivity of reservoir rocks. The order of magnitude of
the impact of the three factors on the thermal conductivity of reservoir rocks is: pore
permeability change amplitude (A) > temperature (C) > water saturation (B). The range
order of factors affecting the specific heat of reservoir rocks is Rg > Rc > Rp, and the water
saturation (B) is the main factor affecting the specific heat of reservoir rocks. The order of
the degree of influence of the three factors on the specific heat of reservoir rocks is: water
saturation (B) > temperature (C) > pore permeability change amplitude (A).

Table 6. Thermal conductivity experimental results: intuitive analysis table.

Factor
No. Thermal Conductivity Coefficient, W/(m-K)
A B C D E F
1 1 1 1 1 1 1 1.42
2 1 2 2 2 2 2 1.36
3 1 3 3 3 3 3 1.33
4 1 4 4 4 4 4 1.33
5 1 5 5 5 5 5 1.36
6 2 1 2 3 4 5 12
7 2 2 3 4 5 1 1.18
8 2 3 4 5 1 2 1.18
9 2 4 5 1 2 3 1.22
10 2 5 1 2 3 4 1.3
11 3 1 3 5 2 4 0.99
12 3 2 4 1 3 5 1
13 3 3 5 2 4 1 1.05
14 3 4 1 3 5 2 1.27
15 3 5 2 4 1 3 1.19
16 4 1 4 2 5 3 0.79
17 4 2 5 3 1 4 0.84
18 4 3 1 4 2 5 1.22
19 4 4 2 5 3 1 1.14
20 4 5 3 1 4 2 1.1
21 5 1 5 4 3 2 0.6
22 5 2 1 5 4 3 1.12
23 5 3 2 1 5 4 1.05
24 5 4 3 2 1 5 1.02
25 5 5 4 3 2 1 1.15
Ky 6.803 5.004 6.333 5.792 5.652 5.942
K; 6.080 5.500 5.940 5.524 5.939 5.510
Ks 5.500 5.830 5.620 5.788 5.372 5.653
K4 5.094 5.982 5.453 5.521 5.800 5.512
Ks 4.939 6.100 5.070 5.791 5.653 5.799
kg 1.361 1.001 1.267 1.158 1.130 1.188
ko 1.216 1.100 1.188 1.105 1.188 1.102
ks 1.100 1.166 1.124 1.158 1.074 1.131
ky 1.019 1.196 1.091 1.104 1.160 1.102
ks 0.988 1.220 1.014 1.158 1.131 1.160
R 0.373 0.219 0.253 0.054 0.113 0.086
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Table 7. Visual analysis table of specific heat tests: experimental results.

Factor
No. Specific Heat, J/(g-K)
A B C D E F
1 1 1 1 1 1 1 1.79
2 1 2 2 2 2 2 1.82
3 1 3 3 3 3 3 1.83
4 1 4 4 4 4 4 1.81
5 1 5 5 5 5 5 1.77
6 2 1 2 3 4 5 1.8
7 2 2 3 4 5 1 1.83
8 2 3 4 5 1 2 1.82
9 2 4 5 1 2 3 1.8
10 2 5 1 2 3 4 1.57
11 3 1 3 5 2 4 1.83
12 3 2 4 1 3 5 1.85
13 3 3 5 2 4 1 1.84
14 3 4 1 3 5 2 1.59
15 3 5 2 4 1 3 1.57
16 4 1 4 2 5 3 1.88
17 4 2 5 3 1 4 1.89
18 4 3 1 4 2 5 1.61
19 4 4 2 5 3 1 1.61
20 4 5 3 1 4 2 1.59
21 5 1 5 4 3 2 191
22 5 2 1 5 4 3 1.65
23 5 3 2 1 5 4 1.67
24 5 4 3 2 1 5 1.66
25 5 5 4 3 2 1 1.63
Ky 9.020 9.213 8.208 8.704 8.732 8.700
K, 8.821 9.037 8.475 8.770 8.695 8.730
K3 8.685 8.773 8.742 8.739 8.769 8.729
Ky 8.581 8.472 8.991 8.734 8.688 8.777
Ks 8.520 8.132 9.211 8.680 8.743 8.691
kq 1.804 1.6264 1.642 1.741 1.746 1.740
ko 1.764 1.6944 1.694 1.754 1.738 1.746
ks 1.736 1.7546 1.748 1.748 1.754 1.746
ky 1.716 1.8074 1.798 1.746 1.738 1.754
ks 1.704 1.8426 1.842 1.736 1.748 1.738
R 0.100 0.216 0.200 0.018 0.016 0.016

We can map the effect curves of each indicator based on the data in the table as follows.

According to Figures 8-10, it can be seen that within the parameter range studied in
this article, the thermal diffusion coefficient is negatively correlated with the amplitude
of pore permeability changes, positively correlated with water saturation, and negatively
correlated with temperature. The thermal conductivity is negatively correlated with the
amplitude of pore permeability changes, positively correlated with water saturation, and
negatively correlated with temperature. The specific heat is negatively correlated with
the amplitude of pore permeability changes, positively correlated with water saturation,
and positively correlated with temperature. The variation trends of the thermal diffusion
coefficient, thermal conductivity coefficient, and specific heat obtained from orthogonal
experiments with respect to each factor are consistent with the research results for single-
factor influences in References [6-8], indicating that the results of this study are consistent
with those in previous studies.
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Figure 9. Effect curve of thermal conductivity.
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3.1.2. Variance Analysis

60 120 180 240 300

Temperature, °C

The main influencing factors of each indicator and the changing trends of the three
indicators with each factor were determined through intuitive analysis in the previous
section. However, intuitive analysis can only determine the magnitude of the impact of
different factors on the indicators and cannot quantify the degree of impact. Therefore,
an analysis of variance was chosen to determine the significance of the impact of each
factor on different indicators. For this, we calculate the sum of squared deviations, degrees
of freedom, and mean square of each factor that affects the thermal diffusion coefficient,
thermal conductivity coefficient, and specific heat, based on the intuitive analysis table’s
F-value. The F-critical value and p-value were used for the analysis of variance, and the
calculation results are shown in Tables 8-10 below.

Table 8. Thermal diffusion coefficient variance analysis table.

Sum of Squared Degree of Mean .o
Factor Deviations Freedom Square F-Value Fo.o5 p-Value Significance
A 0.0459 4 0.0115 5.0295 3.260 0.0129 Significant
B 0.0166 4 0.0041 1.8156 3.260 0.1907 Not significant
C 0.1502 4 0.0375 16.4378 3.260 0.0001 Significant
Error 0.0274 12
Table 9. Thermal conductivity variance analysis table.
Sum of Squared Degree of Mean .
Factor Deviations Freedom Square F-Value Fo.05 p-Value Significance
A 0.4692 4 0.1173 17.3986 3.260 0.0001 Significant
B 0.1559 4 0.0390 5.7806 3.260 0.0079 Significant
C 0.1842 4 0.0461 6.8319 3.260 0.0042 Significant
Error 0.0809 12
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Table 10. Specific heat variance analysis table.

Sum of Squared Degree of Mean s
Factor Deviations Freedom Square F-Value Fo.o5 p-Value Significance
A 0.0321 4 0.0080 1.1911 3.260 0.3639 Not significant
B 0.1507 4 0.0377 5.5879 3.260 0.0089 Significant
C 0.1274 4 0.0319 4.7245 3.260 0.0160 Significant
Error 0.0028 12 0.0002

In the above analysis of variance table, the significance level is « = 0.05 (confidence
level of 95%), and the calculated F-critical value at Fy g5 is 3.260.

According to Table 8, if the F-means of the pore permeability variation amplitude (A)
and temperature (C) factors are greater than Fy s, then the pore permeability variation
amplitude (A) and temperature (C) have a significant impact on the thermal diffusion
coefficient of reservoir rocks at a confidence level of 95%. According to Table 9, the F-values
of the pore permeability variation amplitude (A), water saturation (B), and temperature
(C) factors are all greater than Fygs. Therefore, at a confidence level of 95%, the pore
permeability variation amplitude (A), water saturation (B), and temperature (C) have a
significant impact on the thermal conductivity of reservoir rocks. According to Table 10, if
the F-values of water saturation (B) and temperature (C) factors are greater than F s, this
indicates that water saturation (B) and temperature (C) have a significant impact on the
specific heat of reservoir rocks at a confidence level of 95%.

Based on the experimental results and literature research results, we analyzed the
mechanism of changes in reservoir rock thermal properties under the influence of multiple
factors. The amplitude of pore permeability changes has a significant impact on the
thermal diffusion coefficient and thermal conductivity of reservoir rocks. This is mainly
because when there are more pores in the reservoir rocks, the fluid in the pores will
occupy a larger proportion of space and form a continuous phase. At this point, more
resistance and dispersion effects need to be overcome when transferring energy inside
the medium, thereby slowing down the speed of heat transfer. Therefore, as the porosity
and permeability increase, the thermal diffusion coefficient and thermal conductivity of
reservoir rocks will decrease. Water saturation has a significant impact on the thermal
conductivity and specific heat of reservoir rocks, mainly because water has a higher specific
heat and thermal conductivity. As the water saturation of reservoir rocks increases, their
average thermal conductivity and specific heat will gradually increase. It should be noted
that in practical situations, the influence of water saturation on the thermal conductivity
and specific heat of reservoir rocks of different types, pore structures, and permeability
may also vary. For example, when the pore connectivity of reservoir rocks is good and the
morphology is regular, the fluid flow in them is better, and the thermal conductivity of
reservoir rocks is also better. When the pores of reservoir rocks are small, dispersed, or
fractured, this will affect the contact area between liquid water and solid rocks, thereby
reducing the total specific heat of reservoir rocks. Temperature has a significant impact
on the thermal diffusion coefficient, thermal conductivity, and specific heat of reservoir
rocks, mainly because as the temperature increases, the internal microstructure and oil-
water saturation of the rocks change. Firstly, as the temperature increases, the vibration
frequency of molecules and atoms inside the rock increases, which enhances the rate of
energy transfer and diffusion. In theory, the thermal conductivity and thermal diffusion
coefficient should increase with the increase in temperature. However, in reality, the small
pores and cracks inside the rock can form thermal barriers, hindering the transfer and
diffusion of heat. Therefore, the thermal conductivity and thermal diffusion coefficient
will actually decrease with the increase in temperature. In addition, as the temperature
increases, atoms and molecules in the rock begin to vibrate more violently, leading to an
increase in the interaction force between atoms and molecules in the reservoir rock. This
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interaction force creates a tendency in the rock to resist external changes; that is, the specific
heat of the reservoir rock increases.

3.2. Regression Analysis

After determining the impact trend and significance of each factor on different in-
dicators through intuitive analysis and an analysis of variance, regression analysis of
experimental data is also necessary to establish regression equations to characterize the
quantitative relationship between each factor and different indicators. When conducting
regression analysis on experimental data, multiple regression is used to characterize the
relationship between each variable and the dependent variable, with the dependent vari-
ables being Y (thermal diffusion coefficient), Y, (thermal conductivity), and Y3 (specific
heat), while the independent variables are X5 (pore permeability change amplitude), Xp
(water saturation), and Xc (temperature).

3.2.1. Multiple Linear Regression

A multiple linear regression method was used to perform regression analysis on the
data, and the regression results analysis table is as follows.

According to Table 11, the fitting degree of the regression equations for the thermal
diffusion coefficient and thermal conductivity coefficient obtained by the multiple linear re-
gression method is relatively low (below 0.9). Although their p-values meet the significance
test requirements, the fitting degree of the regression equation is poor and cannot meet the
accuracy requirements of the prediction results. The regression equation of specific heat
obtained from multiple linear regressions has a high degree of fit (greater than 0.95), and the
p-value meets the significance test requirements. This indicates that the linear regression
equation has a good fit and can meet the accuracy requirements of the prediction results.

Table 11. Multivariate linear regression analysis table.

Regression Equation R? F-Value p-Value
Thermal diffusion coefficient ¥1= 0.7554 — 0.00604X 5 4 0.0080 1.1911
+ 0.087Xp — 0.00091 X
Thermal conductivity Y= 1.4388 — 0.01884 X4 4 0.0377 5.5879
+ 0.268Xp — 0.001Xc
Specific heat Y3= 1.8318 — 0.00496X s 4 0.0319 4.7245

+ 0.273Xp+0.00084X

The results of multiple linear regressions indicate that there is no non-linear relation-
ship between the three factors involved in this article and the thermal diffusion coefficient
and thermal conductivity coefficient, and that linear regression cannot be used for quan-
titative analysis. The regression equation of specific heat obtained from multiple linear
regression meets the requirements of fitting and significance, and a linear relationship can
be considered to characterize the quantitative relationship between specific heat and the
three factors involved in this article.

3.2.2. Multiple Nonlinear Regression

The multiple nonlinear regression method used in References [22,23] was used to per-
form multiple nonlinear regression on the experimental results. The Levenberg—Marquardt
method was chosen as the estimation method, and the regression results are shown below
(Table 12).

According to Table 13, the fitting degree of the multiple nonlinear regression equations
for the three indicators is relatively high (greater than 0.99), and their p-values are far less
than 0.05. This indicates that the results of multiple nonlinear regressions are superior to
those of multiple linear regression in terms of fitting degree and significance.
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Table 12. Multivariate nonlinear regression equation coefficient table.

Thermal Diffusion Coefficient

Coefficient Equation Thermal Conductivity Equation Specific Heat Equation
n 1 2 3
a 0.966 1.776 1.832
b —10,293.401 10,301.728 —10,271.272
c 10,293.402 —10,301.727 10,271.273
d 4.234 x 107° 5533 x 107° 1.164 x 107°
e 0.031 0.035 0.011
f 2.762 x 107° —8.954 x 107> —3.524 x 107°
g 0.001 1.11 x 1074 —0.001
h —0.032 —0.045 —0.022
i —1.41 —0.344 —0.221
j —0.001 —0.01 —0.002
Table 13. Multivariate nonlinear regression analysis table.
Regression Equation R2 F-Value p-Value
Thermal
s 4 -33
dlfi?s?on Yo=a+bX3 +cX3 0.999 7.89 x 10 1.59 x 10
ot +dX2 + eXaXp + fXaXc
erma + gXpXc +hXa +iXp+jXc 0991 62115 3.02 x 10725
conductivity
Specific heat 0.998 1.78 x 10° 3.6 x 10713

From the analysis results, it can be seen that the influence direction and significance of
the three factors of pore permeability change amplitude, water saturation, and temperature
on the thermal diffusion coefficient, thermal conductivity coefficient, and specific heat of
reservoir rocks are different. Moreover, during the rapid preheating process of SAGD,
reservoir expansion and the steam circulation process will cause simultaneous changes in
pore permeability, oil-water saturation, and the temperature of reservoir rocks. Therefore,
it is only by analyzing the changes in thermal properties of reservoir rocks and establish-
ing corresponding multiple nonlinear regression equations to characterize them before
conducting SAGD rapid preheating operations that we can more accurately predict the
changes in reservoir rocks during production and construction and can further evaluate
the effectiveness of SAGD rapid preheating construction more accurately.

3.3. Prediction Model for the Thermal Properties of Reservoir Rocks

The main controlling factors, significance, and regression equations affecting the
thermal diffusion coefficient, thermal conductivity coefficient, and specific heat of reservoir
rocks have been determined through intuitive analysis, variance analysis, and regression
analysis in the previous section. Taking into account the accuracy and significance of
the regression results, a multiple nonlinear regression equation was ultimately chosen
to characterize the quantitative relationship between the thermal diffusion coefficient,
thermal conductivity coefficient, and specific heat indicators and the changes in porosity
and permeability, water saturation, and temperature.

The regression equation for thermal diffusion coefficient is as follows:

a= 0.966 — 10,293.401x2 + 10,293.40253, + 4.234 x 10 °T? + 0.031xSw )
+2.762 x 10~5xT; 4+ 0.001Sw T — 0.032x + —1.41Sw — 0.001T;

The regression equation for thermal conductivity is as follows:

Ag=1.776 + 10,301.728x% — 10, 301.7275%, + 5.533 x 10-°T? + 0.035xSw

—8.954 x 107 2xT; + 1.11 x 10745y T} — 0.045x + (—0.344Sy)—0.01T; @
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The regression equation for specific heat is as follows:

Mg= 1.832 — 10,271.272x% + 10,271.2735%; + 1.164 x 1076T? + 0.011xSw 3)
—3.524 x 10~5xT; — 0.001Sw T — 0.022x + —0.221Syy — 0.0027T;

a—Thermal diffusion coefficient of reservoir rocks, mm?/s
x—Increase in pore permeability, %

Sw—DReservoir rock water saturation, dimensionless
T+—Reservoir rock temperature, °C

Ap—Thermal conductivity coefficient of reservoir rock, W/(m-K)
Mpyr—specific heat of reservoir rocks, ] /(g-K)

4. Conclusions

(1) The main factor affecting the thermal diffusion coefficient of reservoir rocks is the
amplitude of pore permeability changes. The main factor affecting the thermal conductivity
of reservoir rocks is temperature. The main factor affecting the specific heat of reservoir
rocks is water saturation.

(2) The thermal properties of reservoir rocks are influenced by the amplitude of pore
permeability changes, water saturation, and temperature. An increase in porosity and
permeability will cause the fluid to form a continuous phase, resulting in the need to
overcome more resistance and dispersion when transferring energy within the medium,
thereby slowing down the rate of heat transfer. The specific heat and thermal conductivity
of water are relatively high. As the water saturation of reservoir rocks increases, the
average thermal conductivity and specific heat of reservoir rocks will gradually increase.
An increase in temperature will increase the vibration frequency of molecules and atoms
inside the rock, increasing the rate of energy transfer and diffusion. However, the small
pores and cracks present in the rock will form thermal barriers, which, in turn, reduce the
thermal conductivity and thermal diffusion coefficient. In addition, the specific heat of
reservoir rocks increases due to the increased temperature, which enhances the interaction
forces between atoms and molecules in the reservoir rocks.

(3) Taking into account the accuracy and significance of the regression results, a multi-
ple nonlinear regression equation was ultimately chosen to characterize the quantitative
relationship between reservoir thermal properties and pore permeability changes, water
saturation, and temperature.
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Abstract: Supercritical multicomponent thermal fluid technology is a new technology with obvious
advantages in offshore heavy oil recovery. However, there is currently insufficient understanding of
the generation characteristics of the supercritical multicomponent thermal fluid, which is not con-
ducive to the promotion and application of this technology. In order to improve the economic benefits
and applicability of the supercritical multicomponent thermal fluid thermal recovery technology,
this article reports on indoor supercritical multicomponent thermal fluid generation experiments
and compares the reaction characteristics of different fuels in the supercritical multicomponent
thermal fluid generation process. The research results indicate that the main components of the
products obtained from the supercritical water—crude oil/diesel reaction are similar. Compared to the
supercritical water—crude oil reaction, the total enthalpy value of the supercritical multicomponent
thermal fluid generated by the supercritical water—diesel reaction is higher, and the specific enthalpy
is lower. When the thermal efficiency of the boiler is the same, the energy equilibrium concentration
of crude oil is lower than that of diesel. The feasibility of using crude oil instead of diesel to prepare
supercritical multicomponent thermal fluids is analyzed from three aspects: reaction mechanism,
economic benefits, and technical conditions. It is believed that using crude oil instead of diesel to
prepare supercritical multicomponent thermal fluids has good feasibility.

Keywords: heavy oil; supercritical multicomponent thermal fluid; thermal recovery

1. Introduction

China has abundant heavy oil resources, with offshore heavy oil resources mainly
concentrated in the Bohai Bay. The conventional heavy oil thermal recovery technology
has achieved good results on land, but its adaptability is poor in sea [1-5]. The problems
are mainly concentrated in the following aspects: First, conventional thermal recovery
technologies mostly use steam as the heat carrier, which has high requirements for water
quality. The water treatment process on offshore platforms is complex, and the costs
for water treatment and pipeline maintenance are very high. Second, the preparation of
steam heavily relies on diesel fuel, which is costly and emits a large amount of carbon
dioxide. Third, there is severe heat loss during the steam injection process, resulting in low
thermal efficiency.

Therefore, in 2017, Zhou et al. proposed the supercritical multicomponent thermal
fluid technology [6]. Supercritical multicomponent thermal fluids are a type of mixed
fluid generated by the reaction of supercritical water with diesel or crude oil, primarily
consisting of supercritical water, nitrogen, and carbon dioxide. Due to the strong reactivity
of supercritical water, supercritical multicomponent thermal fluid exhibits the following
three characteristics: Firstly, it has high solubility for organic compounds and gases in oil
and can approximate miscible flooding, improving the efficiency of heavy oil displacement;
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Secondly;, it has high diffusivity, low surface tension and dynamic viscosity, large swept
volume after injection into the formation, and a good displacement effect; Thirdly, it has
high reactivity and can significantly reduce the conversion temperature of long-chain
macromolecular hydrocarbons in heavy oil, thereby improving the properties of heavy oil
in the formation and enhancing its flow capacity.

Supercritical multicomponent thermal fluids are primarily composed of supercritical
water, carbon dioxide (CO;), and nitrogen (Ny). Their production predominantly utilizes
techniques such as supercritical water gasification and supercritical water oxidation. Lever-
aging the exceptional solubility and diffusivity of supercritical water, a wide array of
organic waste liquids, including diesel and oily effluents, can be completely dissolved and
rapidly vaporized under the extreme temperature and pressure characteristics of supercrit-
ical conditions. This process converts them into gasification products primarily consisting
of hydrogen (H;) and carbon dioxide (CO,). Subsequently, these products are combusted
with oxygen-enriched gases that are also dissolved in supercritical water, culminating in
the formation of supercritical multisource, multicomponent thermal fluids. This approach
harnesses the unique properties of supercritical water to efficiently transform waste into
a potent source of energy [6-10]. During the supercritical water gasification process, this
unique medium significantly enhances the conversion efficiency of the feedstock. It di-
minishes the coke formation within the system and exerts a profound impact through its
solvent and dispersive capabilities, hydrogen donation, and acid-catalytic functions. These
attributes lead to remarkable desulfurization, denitrification, and the removal of heavy
metals, thereby contributing to a cleaner and more efficient gasification outcome. The trans-
formative power of supercritical water lies in its ability to act as a potent solvent that breaks
down complex organic molecules, while its capacity to transfer hydrogen and catalyze
reactions accelerates the gasification process, yielding a more refined end product [11,12].

In the oxidation process of supercritical water, higher content of organic matter brings
greater heat release [13-16]. Additionally, once the concentration of organic material in
the reaction mixture crosses a specific threshold, the exothermic nature of the reaction
can be harnessed to maintain the heat balance, thereby enabling an energy-self-sustaining
process. This innovative approach significantly enhances the economic viability of the
entire operation. Preliminary findings from our research indicate that an oxygen surplus
exceeding 10% is sufficient to ensure the complete dissociation of all substances involved in
the reaction. Beyond this point, an increase in oxygen levels does not exert any additional
influence on the reaction’s progress [17]. Furthermore, it is observed that when the organic
matter concentration in the supercritical water oxidation reaction exceeds 2%, the reaction
becomes self-heating. This is attributed to the substantial heat liberated during the reaction
process, which is sufficient to sustain the reaction’s temperature requirements without
the need for external heating sources. This self-sustaining characteristic is a significant
advantage, as it contributes to the overall energy efficiency and cost-effectiveness of the
process [18-21]. Experiments on wastewater with different chemical oxygen consumption
ranges show that as long as the chemical oxygen consumption ranges from 183 to 437 g/L
and the mass flow rate ranges from 20.83 to 104.17 kg /h, the reaction can be maintained
entirely by the heat released from its own reaction [21].

Previous work mainly focuses on the supercritical water treatment of wastewater,
and the research on the reaction mechanism of supercritical water and the products after
the reaction is relatively mature. However, there is currently little discussion on using
different fuels to generate supercritical multicomponent thermal fluids under different
conditions, let alone comparing the similarities and differences of different fuels in the
process of generating supercritical multicomponent thermal fluids and the substitutability
between fuels. However, these are precisely the things that oil field engineers are very
concerned about. In view of this and to better understand the process of generating su-
percritical multicomponent thermal fluids using different fuels and clarify the differences
brought about by various fuels, in this study, we conducted experiments on the gener-
ation of supercritical multicomponent thermal fluids using diesel and crude oil under
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different conditions. Based on the experimental results, the characteristics of supercritical
multicomponent thermal fluids prepared using different fuels under different conditions
were compared and analyzed, and the feasibility of using crude oil instead of diesel to
generate supercritical multicomponent thermal fluids was tested. This study marks the first
comprehensive comparison of the differences in generating supercritical multicomponent
thermal fluids using various fuels. It holds significant guiding importance for the rational
selection of fuels for the generation of supercritical multicomponent thermal fluids.

2. Materials and Methods
(1) Experimental materials

The diesel used in these experiments is 0# diesel, and the crude oil is from the L block
of Bohai Bay, China. At reservoir temperature (50 °C), the viscosity of crude oil is 1756

MPa-s, which belongs to ordinary heavy oil. The SARA analysis results of crude oil are
shown in Table 1.

Table 1. SARA analysis results of crude oil.

No. Component Wt.%
1 Asphaltenes 25.99
2 Resins 8.14
3 Aromatics 19.65
4 Saturates 46.22
5 Total 100.00

(2) Apparatus

As illustrated in Figure 1, the experimental setup is anchored by a supercritical multi-
component thermal fluid generation system and a chromatographic analysis apparatus.
The former includes a high-temperature, high-pressure reactor (as shown in Figure 2), an
ISCO pump, a check valve, and an intermediate holding vessel, all meticulously designed
to facilitate the generation process. The chromatographic analysis apparatus, on the other
hand, is equipped with both a gas chromatograph and a liquid chromatograph, ensuring a
comprehensive analysis of the thermal fluid components. This sophisticated arrangement
of equipment ensures a seamless workflow from the production of supercritical fluids to
their detailed characterization.

Sampling Temperature & Pressure
Bag Transducer

PC

P

Unidirectional

Valve
Hand
Pump Reactor
0, N,
Volumetric
Cylinder
ISCO Pump

Figure 1. Experimental flow of supercritical multicomponent thermal fluid generation.
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Figure 2. High temperature and pressure reactor.

(3) Procedures

(DAnalyzing diesel oil/crude oil samples by liquid chromatography before the experiment.

@ Checking the status of experimental equipment and repairing faulty components.

(® Connecting the experimental equipment according to the experimental flow chart.

(® Carefully measuring diesel oil or crude oil sample and water according to the
predetermined ratio; the mixture is introduced into the high-temperature, high-pressure
reactor, ensuring a secure seal to contain the process within. The experimental vessel is
crafted from HC276 alloy, a material renowned for its durability and resistance to extreme
conditions. It is designed to withstand a maximum working pressure of up to 40 MPa
and can operate effectively at temperatures reaching as high as 600 °C, providing a robust
platform for conducting experiments under demanding thermal and pressure regimes.

(® Opening the air inlet and outlet, charging nitrogen for more than 10 min through
the air inlet with a large displacement to ensure that the air in the reactor is cleared, and
then closing the air outlet.

(® Filling nitrogen into the reactor up to the design pressure and then turning on the
reactor power supply and the heating mode.

@ Upon attaining the supercritical state within the reactor, as indicated by the optimal
temperature and pressure thresholds, the heating process is gradually discontinued, and
the agitation function is engaged. Throughout the entirety of the reaction experiment, the
reactor is continuously supplied with oxygen, ensuring a steady progression of the reaction
to its conclusion. Concurrently, the fluctuating temperatures and pressures within the
reactor during the experiment are meticulously monitored and documented in real time,
capturing the dynamic essence of the supercritical transformation.

Once the reaction is complete, the reactor is allowed to cool, descending from its
supercritical temperatures to a safe, ambient level. As the reactor’s temperature returns
to normalcy, the air outlet is cautiously opened, facilitating the collection of gas samples
that have been formed within the vessel. Subsequently, the pressure within the reactor
is gradually relieved, and the reactor itself is opened to carefully harvest any remaining
liquid and solid residues, if present, ensuring that all components are accounted for in the
post-reaction analysis.

(9 Analyzing the collected gas-liquid samples by chromatography.

The parameters determined for the experiment are shown in Table 2. Given the
specific conditions on the oil field, two types of fuels, three temperature conditions, and
two pressure conditions are being considered.
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Table 2. Experimental parameters of supercritical water—oil reaction.

Case Reactant Initial Temperature and Pressure
1 45 mL water + 5 mL diesel oil 400 °C/23 MPa
2 45 mL water + 5 mL diesel oil 400 °C/25 MPa
3 45 mL water + 5 mL diesel oil 450 °C/25 MPa
4 45 mL water + 5 mL diesel oil 500 °C/25 MPa
5 45 mL water + 5 mL diesel oil 500 °C/23 MPa
6 45 mL water + 5 mL diesel oil 400 °C/25 MPa
7 28.3 mL water + 5 mL diesel oil 400 °C/25 MPa
8 20 mL water + 5 mL diesel oil 400 °C/25 MPa
9 15 mL water + 5 mL diesel oil 400 °C/25 MPa
10 11.67 mL water + 5 mL diesel oil 400 °C/25 MPa
11 45 mL water + 5 mL crude oil 400 °C/23 MPa
12 45 mL water + 5 mL crude oil 400 °C/25 MPa
13 45 mL water + 5 mL crude oil 450 °C/25 MPa
14 45 mL water + 5 mL crude oil 500 °C/25 MPa
15 45 mL water + 5 mL crude oil 500 °C/23 MPa
16 45 mL water + 5 mL crude oil 400 °C/25 MPa
17 28.3 mL water + 5 mL crude oil 400 °C/25 MPa
18 20 mL water + 5 mL crude oil 400 °C/25 MPa
19 15 mL water + 5 mL crude oil 400 °C/25 MPa

20 11.67 mL water + 5 mL crude oil 400 °C/25 MPa

3. Results and Discussion
3.1. Comparison of Reaction Product Composition, Product State, and Reaction Mechanism of
Supercritical Water—Crude Oil and Water—Diesel Oil

Following the completion of the supercritical water—oil (encompassing diesel oil and
crude oil) reaction experiment, which was conducted under various oil-water ratios and
a range of temperature and pressure settings, the reactor was allowed to cool down to
ambient temperature. Subsequently, the gaseous contents within the reactor were extracted
and subjected to chromatographic analysis. This process was undertaken to ascertain the
precise makeup of the supercritical multicomponent thermal fluid.

The chromatographic analysis results (Figures 3 and 4) indicate that the primary
constituents of the gaseous byproducts from the reactions involving diesel oil and heavy
oil (at room temperature) are largely identical. This implies that the primary components
are carbon dioxide, nitrogen, and oxygen that were not utilized in the reaction process.
However, when contrasting the reaction outputs of diesel oil with those of heavy oil, it is
evident that the latter reaction yields a higher concentration of impurity gases, including
sulfur dioxide and nitrogen dioxide. This disparity is attributed to the fact that heavy oil,
unlike diesel oil, contains asphaltene, which is composed of heteroatom elements, such
as sulfur and nitrogen. These elements, upon undergoing complete combustion in an
oxygen-rich environment, transform into sulfur dioxide and nitrogen dioxide.
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Figure 3. Gas chromatography analysis of supercritical water—diesel oil reaction products.
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Figure 4. Gas chromatography analysis of supercritical water—crude oil reaction products.

The influence of the oil-water ratio in the reactants is more pronounced on the chro-
matographic outcomes. In the experiments, while the overall quantity of oil was kept
constant, the oil-water ratio was modified by varying the volume of water. Given a fixed
reactor size, the amount of nitrogen required to achieve the same initial pressure varied de-
pending on the oil-water ratio. Specifically, a higher oil proportion, which corresponds to a
lower water volume, results in a smaller combined volume of oil and water. Consequently,
more nitrogen is needed to reach the same starting pressure compared to other experi-
ments with different oil-water ratios. As a result, the examination of the chromatograms
from the gases collected post-reaction reveals a clear trend: as the oil ratio increases, the
concentration of carbon dioxide diminishes, and the concentration of nitrogen increases.
Since the quantity of oil in the reaction is constant, the amount of oxygen introduced is
roughly equivalent across experiments. Thus, the residual oxygen’s proportion in the
chromatographic results remains essentially consistent.

The reaction between supercritical water and diesel oil as well as the reaction be-
tween supercritical water and crude oil can be roughly divided into two stages, i.e., the
supercritical water first disperses the continuous oil, and then the oil is oxidized and
reacted completely under the joint action of supercritical water and oxygen, and inter-
mediates will be generated in the oxidation process. However, since crude oil has more
long-chain compounds, it is not only physically dispersed in the first stage of reaction
with supercritical water but also has an obvious cracking process, which is the difference
between the supercritical water—diesel oil reaction and the supercritical water—crude oil
reaction mechanisms.

3.2. Enthalpy Comparison of Supercritical Water-Crude Oil/Diesel Oil Reactions to Generate
Supercritical Multicomponent Thermal Fluids

Generally speaking, a thermal fluid with greater enthalpy indicates a higher heat
transfer capacity, which is more beneficial for the extraction of viscous oil. Thus the
enthalpy of the thermal fluid produced through the reaction is a very intriguing metric. It
should be noted that due to constraints of the experimental methodology and procedures
employed in this study, the quantities of nitrogen and oxygen introduced into the reactor do
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not mirror the natural ratio found in air. In mining operations, the gas typically introduced
into the reaction is air itself. To ensure that the calculated enthalpy of the supercritical
multicomponent thermal fluid has broad applicability and is comparable, the enthalpy
of the supercritical multicomponent thermal fluid generated in various reactions can be
determined using the output fluid chromatography results. This process involves adjusting
the nitrogen content to align with the air’s nitrogen—oxygen ratio and disregarding the
reaction’s residual oxygen. The calculation formula is as follows:

wi

h= ——h; 1)
Y w;
i=1
Rt @)
¥ w

where /1 is the enthalpy of the supercritical multicomponent thermal fluid, J. /; is the
enthalpy of the component i in the supercritical multicomponent thermal fluid, J. w; is the
mass of the component i in the supercritical multicomponent thermal fluids, g. 7 is any
component in the supercritical multicomponent thermal fluids; % is the specific enthalpy,
which is the enthalpy value of a supercritical multicomponent thermal fluid per unit mass.

Viewing through the lens of specific enthalpy (Figures 5 and 6), an inverse relationship
is observed between the proportion of diesel and the specific enthalpy of the thermal
fluid—it increases as the diesel content diminishes and the water content grows. This
phenomenon can be attributed to the predominant heat-carrying role of supercritical water
within the thermal fluid. An elevated proportion of supercritical water correlates with a
higher enthalpy in the resultant supercritical multicomponent thermal fluid. Employing
the method previously described, we calculated the specific enthalpy values of supercritical
multicomponent thermal fluids produced under various initial temperatures and pressures.
As alluded to earlier, the initial conditions of temperature and pressure exert a negligible
influence on the reaction products’ composition. Consequently, when normalized to a
uniform temperature and pressure (400 °C, 25 MPa), the total and specific enthalpy values
for the thermal fluids, derived from experiments under differing initial states, are strikingly
similar. The computed average values are 180,934.940 ] for total enthalpy and 1506.448 ] /g

for specific enthalpy.
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Figure 5. The supercritical multicomponent thermal fluid generated by supercritical water—diesel

reaction under different oil-water ratios. (a) Enthalpy and specific enthalpy of the supercritical
multicomponent thermal fluid; (b) Mass composition of supercritical multicomponent thermal fluid.
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Figure 6. The supercritical multicomponent thermal fluid generated by supercritical water—diesel
reaction under different initial temperature and pressure conditions. (a) Enthalpy and specific
enthalpy of the supercritical multicomponent thermal fluid; (b) Mass composition of supercritical
multicomponent thermal fluid.
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Consistent with the earlier methodology, the specific enthalpy values of the supercriti-
cal multicomponent thermal fluids produced from the reaction between supercritical water
and crude oil were calculated based on the composition of the output fluid components.
Solely from the perspective of specific enthalpy, the trend is similar to the reaction between
supercritical water and crude oil. Specifically, as the water proportion increases, the pro-
portion of supercritical water in the resulting products also rises, leading to higher specific
enthalpy values in the thermal fluid.

Using the previously described approach, the specific enthalpy values of supercritical
multicomponent thermal fluids produced under varying initial temperature and pressure
conditions were determined. When these values are adjusted to a consistent temperature
and pressure (400 °C, 25 MPa), the total and specific enthalpy values for the thermal fluids
produced under different initial conditions are found to be quite similar, with average
totals of 168,630.034 ] and 1593.106 ] /g, respectively (Figures 7 and 8).
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Figure 7. The supercritical multicomponent thermal fluid generated by supercritical water—crude
oil reaction under different oil-water ratios. (a) Enthalpy and specific enthalpy of the supercritical
multicomponent thermal fluid; (b) Mass composition of supercritical multicomponent thermal fluid.
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Figure 8. The enthalpy of supercritical multicomponent thermal fluid generated by supercritical
water—crude oil reaction under different initial temperature and pressure conditions. (a) Enthalpy
and specific enthalpy of the supercritical multicomponent thermal fluid; (b) Mass composition of
supercritical multicomponent thermal fluid.

Analyzing the results from the four preceding figures, it is clear that the total enthalpy
of supercritical multicomponent thermal fluids resulting from the reaction between diesel
and supercritical water exceeds that of the reaction with heavy oil. Conversely, the specific
enthalpy values show an opposite trend. For instance, in the 10% diesel and 10% heavy oil
reaction experiments, both initiated at 400 °C and 25 MPa, the diesel reaction yields more
carbon dioxide and water, with the excess carbon dioxide being more significant than the
excess water. Further analysis indicates that diesel, which is over 95% hydrocarbons with
90% of those being saturated hydrocarbons, has a lower density than heavy oil. The mass
of 5 mL of diesel is slightly less than the mass of 5 mL of heavy oil. However, due to the
higher oxygen consumption of hydrocarbons, especially the saturated ones, the reaction
with diesel consumes more oxygen, leading to an increased production of carbon dioxide
and water.

Since oxygen is sourced from air, higher oxygen consumption in the diesel reaction
results in a higher nitrogen content in the resulting thermal fluid, which contributes to a
greater mass of gas and, consequently, a higher total mass and total enthalpy. On the other
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hand, heavy oil, with a hydrocarbon content of less than 70% and a saturated hydrocarbon
content about half that of diesel, consumes less oxygen during the reaction. This results in
lower nitrogen content in the thermal fluid from the heavy oil reaction, leading to less gas
mass, total mass, and total enthalpy.

Given that the thermal fluid is predominantly composed of supercritical water and
that gases have significantly lower heat capacity than water, their contribution to the overall
enthalpy is minor. Therefore, for the supercritical multicomponent thermal fluids produced
in the reaction with heavy oil, the proportion of water per unit mass of the thermal fluid is
higher, resulting in a higher specific enthalpy compared to those produced in the reaction
with diesel (Figures 9 and 10).
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Figure 9. Gas-water mass ratio of supercritical multicomponent thermal fluid generated by supercrit-
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Figure 10. Gas-water mass ratio of supercritical multicomponent thermal fluid generated by super-

critical water-crude oil reaction under different conditions.

4. Energy Equilibrium Point in Supercritical Water-Diesel/Crude Oil Reaction Process

In practical applications within oil fields, the preparation of supercritical multicom-
ponent thermal fluids is achieved through the utilization of supercritical multicomponent
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thermal fluid generators. In this preparation process, the energy balance point of the
supercritical water—diesel/crude oil reaction needs to be taken into consideration.

Generally, the energy balance point refers to the equilibrium relationship between
the incoming and outgoing heat in the operation of a generator. Typically, the incoming
heat in a generator operation is considered to be the low calorific value of the fuel, and the
outgoing heat includes the heat utilized in generating steam (or hot water) and the heat
lost without utilization.

Based on this definition, for the oil field preparing supercritical multicomponent ther-
mal fluids through a supercritical multicomponent thermal fluid generator, the following
statement should uphold: when reaching an energy balance, the heat released per unit time
from the supercritical water—diesel/crude oil reaction should be equal to the sum of lost
heat (the heat carried by the generated supercritical multicomponent thermal fluid) and
the heat absorbed per unit time by the incoming materials heated to the supercritical state
inside the generator.

Although several sets of experiments involving supercritical multicomponent thermal
fluid—diesel/crude oil reactions have been conducted, no new reactants were added during
the laboratory reaction experiments. The heat loss from the laboratory reaction vessel
is also irrelevant for the generators used in oil fields. Therefore, the generator thermal
efficiency is introduced here to address the issue of heat loss in generators. In other words,
when achieving energy balance, the heat released per unit time from the supercritical water—
diesel/crude oil reaction multiplied by the generator thermal efficiency should be equal to
the sum of the heat carried by the generated supercritical multicomponent thermal fluid
and the heat absorbed per unit time by the incoming materials heated to the supercritical
state inside the generator. This relationship can be expressed as follows:

E-n=H+Ah 3)

where E is the total heat dissipation of fuel.  is the generator’s thermal efficiency. H is
the enthalpy of the generated supercritical multicomponent thermal fluid. Ah is the heat
absorbed by the new material when heated to the reaction condition.

Since the calculation of this method requires trial calculation, the calculation flow is
shown in Figure 11:

Following this approach and computational procedure, calculations were conducted
for both the supercritical water-diesel reaction and the supercritical water-crude oil reaction.
The thermal efficiency of the generator was varied across five scenarios: 0.5, 0.6, 0.7, 0.8,
and 0.9. Utilizing the energy balance relationship mentioned above, the concentrations of
diesel and crude oil at the energy balance point can be computed. This provides guidance
for the efficient preparation of supercritical multicomponent thermal fluids in oil fields.
The parameter values and calculation results are listed below.

From Figure 12, it is evident that despite the similar combustion heats of the crude oil
and diesel used, the energy balance concentration for crude oil is lower than that for diesel
when the generator efficiency is the same. In other words, if the crude oil from this project
is used to prepare supercritical multicomponent thermal fluids in oil fields, the required
concentration would be lower than that of diesel, meaning less quantity would be needed.

Itis important to note that the energy balance is influenced by various factors. Different
fuels will alter the combustion heat, consequently changing the energy balance point.
Changes in the generator or generator efficiency will also impact the energy balance point.
Moreover, alterations in the temperature and pressure of the output thermal fluid will
result in changes in the energy balance point. To better address this issue, calculations of
the combustion heat for different fuels were conducted (Figures 13 and 14). The combustion
heat for crude oil was determined when its energy balance concentration matched that of
diesel, as well as when the combustion heat for crude oil was equivalent to that of diesel
with the same cost.
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Figure 11. Flow for calculating energy balance concentration of supercritical water-diesel/crude
oil reaction.
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crude oil diesel.

5. Feasibility Analysis of Crude Oil Replacing Diesel Oil to Prepare Supercritical
Multicomponent Thermal Fluid

5.1. Reaction Mechanism Feasibility

From the various research results mentioned earlier, it is evident that the mechanisms
of the reactions between supercritical water and diesel, as well as supercritical water and
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crude oil, are generally similar and can be divided into two stages. In the first stage,
supercritical water disperses the continuous diesel/crude oil, and in the second stage,
under the combined action of supercritical water and oxygen, the oil undergoes complete
oxidation. Intermediate products are generated during the oxidation process. However,
due to the presence of more long-chain compounds in crude oil, during the first stage
of the reaction with supercritical water, there is not only physical dispersion but also a
noticeable cracking process. This is the key distinction between the mechanism of the
reaction between supercritical water and diesel, and the one between supercritical water
and crude oil.

Therefore, it can be considered that utilizing crude oil as a substitute for diesel in
the preparation of supercritical multicomponent thermal fluids is feasible and viable at a
mechanistic level.

5.2. Economic Feasibility

Based on the current international oil prices and domestic refined oil prices, it is
apparent that the price of 0# diesel is 8.13 yuan per liter, while the international Brent crude
oil is equivalent to approximately 3.92 yuan per liter. This implies that the unit price of
diesel is roughly twice that of crude oil. However, as calculated in the previous section
using the energy balance point, under the same generator efficiency, the energy balance
point for crude oil is lower. As long as the combustion heat of crude oil is not lower than
27,000 ]/ g and the generator efficiency is above 50%, it is economically feasible. Therefore,
solely from the perspective of fuel consumption, the use of crude oil demonstrates favorable
economic feasibility.

5.3. Technical Feasibility

From the aforementioned research results, it is evident that regardless of whether it is
the supercritical water—diesel reaction or the supercritical water—crude oil reaction, there
will be coke as an intermediate product. Moreover, notably, the amount of coke in the
intermediate products of the supercritical water-crude oil reaction is higher than that in
the supercritical water—diesel reaction. Additionally, experimental tests indicate that the
oxygen consumption of diesel is higher than that of crude oil.

In the actual preparation of supercritical multicomponent thermal fluids in oil fields,
when using diesel, more air needs to be injected into the generator, resulting in a higher
flow rate and a further reduction in the likelihood of coke generation and deposition in the
generator. However, for crude oil, the possibility of coke generation and deposition in the
generator exists, especially when using high carbon-hydrogen ratio crude oil (i.e., high
viscosity crude oil).

In summary, when preparing supercritical multicomponent thermal fluids using crude
oil, at the technical level, attention should be paid to inject a sufficient amount of air into
the generator. This is to ensure that the crude oil reacts completely, thereby reducing the
generation of coke.

6. Conclusions

(1) Inreactions involving supercritical water with crude oil or diesel, an increased pro-
portion of water among the reactants results in a greater share of supercritical water
in the resulting products. This, in turn, leads to an elevated specific enthalpy within
the thermal fluid. The total enthalpy of the supercritical multicomponent thermal
fluid produced from the interaction between diesel and supercritical water has an
average value of 180,934.940 ], which exceeds the total enthalpy of the fluid produced
from the reaction with crude oil, with an average value of 168,630.034 J. Conversely,
the specific enthalpies of these two scenarios are inversely related.

(2) The combustion heat of crude oil is close to that of diesel, but when the generator
efficiency is the same, the energy balance concentration for crude oil is lower than
that for diesel. In other words, if the crude oil is used to generate supercritical
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multicomponent thermal fluids in oil fields, the required concentration would be
lower than that for diesel, meaning less quantity would be needed.

(3) Considering the reaction mechanisms, economic benefits, and technical conditions,
using crude oil instead of diesel to generate supercritical multicomponent thermal
fluids is feasible and has favorable potential.
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Abstract: Supercritical multicomponent thermal fluid injection is a new technology with great
potential for offshore heavy oil thermal recovery. In the process of thermal fluid generation, the
reaction conditions including temperature, pressure, and the organic mass concentration in the
reaction material will significantly affect its composition and injection rate and will further affect the
thermal recovery and development quality of heavy oil. However, there is a lack of relevant research
on the variation rules and control methods of the composition and injection rate of supercritical
multicomponent thermal fluids, resulting in a lack of technical mechanisms for effective optimization.
To fill this gap, a reaction molecular dynamics simulation method was used to simulate thermal fluid
generation under different temperatures, pressures, and organic mass concentrations. The changes
in thermal fluid composition and yield with reaction conditions were studied, and a control model
of thermal fluid composition and yield was established. The proportional relationship between the
thermal fluid generation scale of an offshore heavy oil platform and the simulated thermal fluid
generation scale is analyzed, and a collaborative optimization method of thermal fluid composition
and injection rate in field applications is proposed. The results show the following: (1) The higher
the mass concentration of organic matter, the higher the content of supercritical carbon dioxide and
supercritical nitrogen in thermal fluids, and the lower the content of supercritical water. (2) The
higher the temperature and pressure, the higher the thermal fluid yield, and the higher the organic
mass concentration, the lower the thermal fluid yield. (3) The component fitting model conforms
to the power function relationship, and the coefficient of determination R? is greater than 0.9; the
yield fitting model conforms to the modified inverse linear logarithmic function relationship, the
determination coefficient R? is greater than 0.8, and the fitting degree is high. (4) The ratio between
the actual injection rate of thermal fluids in the mine field and the molecular simulated thermal fluid
yield is the ratio of organic matter mass in the platform thermal fluid generator and organic matter
mass in the simulated box. (5) Based on the composition and yield control model, combined with
the simulation of the ratio relationship between yield and injection rate in the field, a collaborative
optimization method of thermal fluid composition and injection rate was established. The research
results can provide an effective technical method for predicting, controlling, and optimizing the
composition and injection rate of supercritical multicomponent thermal fluids.

Keywords: supercritical multicomponent thermal fluids; offshore heavy oil thermal recovery;
supercritical multicomponent thermal fluid composition; supercritical multicomponent thermal
fluid yield; co-optimization; molecular dynamics simulation
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1. Introduction

Supercritical multicomponent thermal fluids (scMCTF) are an innovative heat carrier
used for thermal recovery of offshore heavy oil. They consist of supercritical water (scH,O),
supercritical carbon dioxide (scCO;), and supercritical nitrogen (scN»), offering superior
heat-carrying, oil-solubilizing, viscosity-reducing, and pressure-maintaining properties.
Compared to traditional steam and conventional multicomponent thermal fluids, scMCTFs
significantly enhance the recovery rate of heavy oil [1-4]. Additionally, waste fluids
produced from oil wells can be used as feedstock to generate scMCTFs, allowing the
generation system to be self-sustaining without external energy inputs [5,6]. Due to its
notable advantages in enhancing recovery efficiency and reducing costs, scMCTF injection
is widely regarded as one of the most promising and valuable next-generation thermal
recovery technologies for offshore heavy oil. It also has potential applications in onshore
heavy oil fields [7,8].

The typical principle behind scMCTF generation involves gasification and oxidation
reactions of organic matter in a supercritical water environment [9]. Reaction conditions
influence the composition and yield of scMCTFs, which in turn determine the physical
properties of the thermal fluid and the rate at which the scMCTF is injected from offshore
platforms into reservoirs. The properties and injection rate of scMCTFs are key factors
affecting the effectiveness of thermal recovery [10,11]. Therefore, it is critical to study how
scMCTF composition and yield vary with reaction conditions and to establish a control
model that enables precise adjustment of scMCTF composition and yield. This will help
optimize the parameters for scMCTF injection, improving the quality of offshore heavy
oil recovery.

Currently, research on scMCTF injection for heavy oil recovery is scarce, with related
studies mainly emerging in the past three years [1-9,12]. No reports have been found on
control models or optimization methods for scMCTF composition and yield, highlighting
the lack of effective technical approaches. In this context, molecular dynamics simulations
are employed to study scMCTF composition and yield under varying temperatures, pres-
sures, and feedstock concentrations. The goal is to establish a control model for scMCTF
composition and yield, analyze the relationship between the scale of scMCTF generation
in offshore platforms and simulation results, and propose methods to optimize both the
composition and injection rate of scMCTFs in field applications. These research findings
aim to provide effective technical methods for predicting, controlling, and optimizing
scMCTF composition and injection rates, offering crucial technical support for parameter
optimization in future offshore heavy oil development projects.

2. Reaction Molecular Dynamics Simulation Model
2.1. Modeling System

Based on the Materials Studio platform for atom or molecule system construction,
optimization, and simulation, a multicomponent diesel molecular model was constructed
using paraffins, cycloalkanes, monocyclic aromatics, and bicyclic aromatics as model
compounds [13], and the ratio of paraffins, cycloalkanes, monocyclic aromatics, and bicyclic
aromatics molecules number is 5:3:1:1.

Subsequently, after fixing the number of organic molecules, different numbers of
water molecules were added to establish reaction systems with varying organic con-
centrations, followed by molecular geometry optimization. The organic concentration
in the system ranged from 8.39% to 25.14% (Figure 1). Reaction systems with higher
organic concentrations have fewer water molecules, fewer total molecules, and looser
molecular arrangements.
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Figure 1. Concentration reaction system.

2.2. Simulated Force Field and Program Setup

The reactive molecular dynamics simulations were carried out using the LAMMPS
(Large-scale Atomic or Molecular Massively Parallel Simulator) platform. The ReaxFF
reactive force field applied was the C/H/O force field proposed by Chowdhury and van
Duin in 2017 [14], which has been widely utilized for simulating the combustion, pyrolysis,
and gasification of organic compounds under supercritical water conditions [15-17]. The
global simulation time step was set to 0.1 fs, and the simulation procedure included
the following steps: (D Charge equilibration using the QEQ method. (2 System energy
minimization via the conjugate gradient method. (3 Random initialization of atomic
velocities at 200 °C according to the Maxwell-Boltzmann distribution. (4) System relaxation
under specified temperature and pressure based on the NPT ensemble using the Nose—
Hoover method to control temperature and pressure, with damping coefficients 100 times
and 1000 times the time step for temperature and pressure, respectively. The relaxation
time was 10 ps, allowing the system to reach equilibrium. (§) Resetting of the time step after
removing the ensemble setting. (6) Reaction simulation of supercritical multicomponent
thermal fluids using the NPT ensemble, with the reaction temperature and pressure set
according to simulation settings. The damping coefficients for temperature and pressure
remained unchanged. (7) Output and recording of system parameters such as temperature,
pressure, system volume, and atomic positions every 100 time steps, along with the storage
of product information.

2.3. Model Verification

Based on the different organic matter concentration reaction systems established, the
molecular simulation software LAMMPS 64-bit 2Aug2023-MSMPI was used to calculate
the system’s density. Additionally, molecular simulations of supercritical multicompo-
nent thermal fluid (scMCTF) generation were performed under varying temperatures
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(3500-5500 °C) and pressures (23-35 MPa). Physical experiments were also conducted
under real laboratory conditions for systems with the same organic matter concentrations,
covering temperatures (400-500 °C) and pressures (23-25 MPa).

In reactive molecular dynamics simulations, reaction temperatures are typically ele-
vated to accelerate reaction rates because the simulation timescales are often on the order
of picoseconds (ps) to nanoseconds (ns) [18,19]. According to the Arrhenius equation
describing the relationship between reaction temperature and reaction rate [20], scholars
such as Voter and S®rensen introduced the Temperature-Accelerated Dynamics (TAD)
method to increase the simulation temperature, which speeds up the reaction process
without significantly affecting the reaction mechanisms [21]. This method has been widely
applied and validated [22-24]. Therefore, the simulation temperatures in this study were
set higher than those in the physical experiments.

A comparison of the simulation and experimental results (Figure 2) shows that the
densities of the simulated and measured reaction systems were similar. Furthermore, the
mass concentrations of products generated under different reaction pressures, temperatures,
and organic matter concentrations from the simulations were numerically close to those
obtained from the physical experiments, with highly consistent trends. Therefore, it can be
concluded that reactive molecular dynamics simulations can accurately reflect the actual
scMCTF generation process.
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Figure 2. Comparison of molecular dynamics simulation results and experimental results.
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3. Change Law of scMCTF Composition and Yield

Based on the established reactive molecular dynamics model, a simulation study of the
supercritical multicomponent thermal fluid (scMCTF) generation process was conducted. The
simulation parameters were set as follows: a temperature range of 3500 °C to 5500 °C with a
step size of 500 °C; a pressure range of 23 MPa to 35 MPa with a step size of 3 MPa; and an
organic matter concentration range of 8.39% to 25.14%, with a step size of 4.20%. In total, the
reactive molecular dynamics simulations included 125 sets of conditions (5 x 5 x 5).

3.1. Change Law of Composition

Based on the mass concentrations of each component in scMCTF generated under
different temperatures, pressures, and organic matter concentrations in the feedstock
(Figure 3), the component concentration-temperature—pressure surface for different organic
matter concentrations is essentially flat. This indicates that the composition of scMCTF
does not significantly vary with temperature and pressure, meaning that temperature and
pressure are not the primary controlling factors for scMCTF composition. However, the
concentration of organic matter in the feedstock has a greater impact on the composition of
scMCTE. As shown in Figure 3, the concentrations of scCO, and scN, increase with the rise

in organic matter concentration, while the concentration of scH,O increases as the organic
matter concentration decreases.
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Figure 3. Change law of scMCTF composition.

This is because higher organic matter concentrations in the feedstock mean more
organic content, leading to a higher total carbon count in the reaction system, which ul-
timately results in the formation of more scCO, after the reaction. At the same time, the
more organic matter there is, the more feedwater is consumed in the reaction, so the concen-
tration of scH,O decreases as the organic matter concentration increases. Correspondingly,
since the generation of scCO, and scH,O consumes oxygen from the air, the more that
is produced, the more oxygen is used. This means that the remaining nitrogen in the air,

which does not participate in the reaction, increases, leading to a rise in scN, concentration
with increasing organic matter concentration.
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3.2. Change Law of Yield

Based on the scMCTF yield generated under different temperatures, pressures, and organic
matter concentrations in the feedstock (Figure 4), it can be seen that higher pressure results
in a higher thermal fluid yield, although this effect is relatively small. As the organic matter
concentration in the feedstock increases, the yield decreases, while higher reaction temperatures
lead to a higher yield, with temperature having a very significant impact on yield.
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Figure 4. Change law of thermal fluids yield.

From the perspective of molecular collision theory, chemical reactions occur through
collisions between molecules. The higher the pressure, the closer the initial distance between
molecules, increasing the probability of collisions and thus raising the reaction yield as
pressure increases. The effect of organic matter concentration on yield is relative. A higher
organic matter concentration means more molecules per unit volume, which favors collisions
and accelerates the reaction rate. However, the gasification reaction of organic matter in
a supercritical water environment is sensitive to water concentration; the lower the water
concentration and the higher the organic matter concentration, the less active the gasification
reaction becomes [25]. As a result, the influence of organic matter concentration on yield is a
combined effect of these two factors, with the latter being dominant. Higher temperatures
increase molecular speed and kinetic energy, raising both collision energy and collision
probability, thus enhancing the reaction rate and ultimately increasing the yield.

4. Model of scMCTF Composition and Yield Control
4.1. Model of Composition Control

Based on the previous analysis, it is evident that temperature and pressure have
minimal impact on the composition of scMCTFE. Therefore, their influence is neglected
in the modeling process, and a correlation model is established between the scMCTF
composition and the organic matter concentration in the feedstock. Additionally, since the
sum of the three components in scMCTF equals 1, only the models for scCO, and scH,O
with respect to the organic matter concentration are developed.

As seen from the fitting results of scCO; and scH,O with organic matter concentration
(Figure 5), both scCO; and scH,O follow a power function relationship with organic matter
concentration, with the fitting coefficients of determination (R?) exceeding 0.99, indicating
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a high degree of fit. Therefore, an scMCTF composition control model can be established
based on these fitting equations (Equations (1)—(3)), and the organic matter concentration
required for the reaction can be calculated based on the desired content of a particular
scMCTF component, thereby achieving control over the composition of scMCTF injected
into the reservoir.

C(scHy0) = 0.1360C(OMC) 0382 1)
C(scCOy) = 0.3924C(OMC)*6126 )
C(scNp) = 1—C(scH,0) — C(scCO;y) ©)]

where C(scH,0), C(scCO,), and C(scNy) represent the mass concentrations of supercritical
water, supercritical carbon dioxide, and supercritical nitrogen, respectively; f. OMC is the
mass concentration of organic matter in the feedstock, f.
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Figure 5. Relationship model between content and mass concentration.

4.2. Model of Yield Control

Compared to the composition control model, the yield control model is more complex
because it is influenced by three factors: temperature, pressure, and organic matter con-
centration. Therefore, a control model is established based on a quadratic fitting approach.
First, temperature and pressure are treated as independent variables, and a modified in-
verse linear logarithmic model is used to develop the relationship between temperature,
pressure, and thermal fluid yield under different organic matter concentration conditions
(Equation (4), Table 1). It is worth noting that 10~2# in Equation (4) is just an order of mag-
nitude conversion coefficient of the fitting results and has no actual physical significance.

TP

_ 1024
v=10 a+bn(T)

4)
where v represents the molecular simulation thermal fluid yield, g-ps~!. T is the reac-

tion temperature, °C. P is the reaction pressure, and MPa. a and b are the model fitting
coefficients, which are dimensionless.
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Table 1. Model coefficients of different organic matter mass concentration conditions.

Organic Mass Fittin Fittin
Number Con%entration, f Coefficieit a Coefﬁciegnt b R?
1 0.0839 1.11 x 10° —1.22 x 10* 0.87
2 0.1259 1.08 x 10° —1.23 x 10* 0.80
3 0.1679 1.37 x 10° —1.47 x 10* 0.90
4 0.2097 1.37 x 10° —1.54 x 104 0.88
5 0.2514 1.57 x 10° —1.75 x 10* 0.92

Based on the fitting coefficients 4, b, and the corresponding organic matter concen-
tration data, the relationship curves of fitting coefficient a—organic matter concentration
and fitting coefficient b—organic matter concentration were plotted by Microsoft Office
EXCEL 2019 (Figure 6). As shown in Figure 6, the fitting coefficient a increases as the
feedstock organic matter concentration increases, while fitting coefficient b decreases with
the increase of the feedstock organic matter concentration. The fitting equation for 4, or-
ganic matter concentration, has a coefficient of determination R? of 0.88, and the fitting
equation for b, organic matter concentration, has a coefficient of determination R? of 0.94.
Both show a good linear relationship with the organic matter concentration. Therefore,
the relationship models for fitting coefficient a, organic matter concentration, and fitting
coefficient b, organic matter concentration, can be established (Equations (5) and (6)).

a =290 x 10°0MC + 8.14 x 10* (5)
b = —3.27 x 10*OMC — 8.95 x 103 (6)
1.8x105
- y=2.90x105x+8.14x10* °
2 1.4x105 R2=0.88 o o e
S e
= e
S 1.0x10° | ¢ e
s ® Fitting parameter a
° 0.6x10°
§ ® Fitting parameter b
Z 0.2x105 |
=
T _ 5 | @:oeeee @:-eeenn @ eeee @:-oeeee
£ 020 327x10%-8.95%10° ¢
2=
-0.6x105 R*=0.94 1 .
0 0.1 0.2 0.3

Organic mass concentration
Figure 6. Relationship model between fitting coefficient and mass concentration.

By combining the temperature-pressure-thermal fluid yield correlation model
(Equation (4)) with the fitting coefficient-organic matter concentration correlation models
(Equations (5) and (6)), an organic matter concentration—temperature—pressure-thermal
fluid yield correlation model is established, namely the scMCTF yield control model
(Equation (7)). Using Equation (7), the scMCTF yield under specific temperature, pressure,
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and feedstock organic matter concentration conditions can be calculated, thereby achieving
the control of the scMCTF yield.

10~24TP

pr— 7
7 (290 x 1050MC + 8.14 x 10%) — (3.27 x 10°0MC + 8.95 x 10%) In(T) @)

5. Optimization Method of Synergistic scMCTF Composition and Yield
5.1. Conversion Relationship Between Yield and Injection Rate

In practical field applications, the injection rate of thermal fluids is typically above the
ton/day scale [26], which is far greater than the scMCTF yield calculated using the reactive
molecular dynamics model. This difference arises from the scale discrepancy between the
thermal fluid generation systems. On-site systems are large-scale, meter-sized scMCTF
generators, whereas the molecular model represents a nanoscale simulation box. Therefore,
it is necessary to analyze the relationship between these two scenarios and establish a
corresponding conversion model.

The scMCTF generation principle in large generators is consistent with the principle
used in the molecular dynamic simulation model. Based on this, when the temperature
and pressure inside the generator are the same as those inside the simulation box, the
simulation box can be considered a microelement within the generator (Figure 7). This is
because, under the same temperature and pressure conditions, substances share the same
thermodynamic state.
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L = T 1 //v
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Figure 7. Comparison of scale relationship between scMCTF generator and molecular simulation box.

Therefore, the scMCTF generator in the field can be viewed as being composed of
countless microelements or, in other words, countless simulation boxes. The conversion
relationship between them depends on the number of microelements inside the generator. The
scMCTF generation scale in the field is X times the scMCTF generation scale in the simulation
box, where X is the ratio of the generator’s internal volume to the simulation box volume.
Under the same temperature and pressure conditions, the fluid density inside the generator
and the simulation box is identical, meaning the volume ratio X equals the mass ratio Y of
the fluid inside them. Furthermore, under the same organic matter concentration, the mass
ratio of the fluid is effectively equal to the mass ratio of the organic matter, Z. For example, if
the mass of organic matter in the simulation box is 1 g and the mass of organic matter in the
field generator is 1000 g, the scMCTF injection rate in the field will be 1000 times the scMCTF
yield in the simulation box. In the simulations mentioned earlier, the organic matter used
was a mixture of five molecules of hexadecane (paraffin), three molecules of cyclopentane
(naphthene), one molecule of benzene (monocyclic aromatic hydrocarbon), and one molecule
of naphthalene (bicyclic aromatic hydrocarbon), with a total mass of 2.572 x 10~2* kg. Based
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on this, a conversion relationship (Equation (8)) between the scMCTF yield and injection rate
is established. Combining Equations (7) and (8), the scMCTF injection rate for offshore heavy
oil development platforms under various reaction conditions can be calculated.

m

1= Ssmx 1057 ®

where I represents the scMCTF injection rate for offshore heavy oil development platforms,
g-ps~ L. m represents the mass of organic matter placed in the platform’s scMCTF generator, kg.

5.2. Synergistic Optimization Method

As previously discussed, in field applications, the composition of the scMCTF injected
into the heavy oil reservoir and the injection rate are two crucial parameters. These
parameters are determined simultaneously at the scMCTF generation point on the platform
and are not affected in subsequent flow stages. Therefore, it is essential to optimize both
the composition and the injection rate in coordination.

Based on the established control models (Equations (1)-(3), (7) and (8)), the com-
position of scMCTF is primarily controlled by the organic matter concentration, while
the injection rate of scMCTF is influenced by temperature, pressure, and organic matter
concentration. Thus, a method for optimizing both the scMCTF composition and injection
rate is proposed (Figure 8). First, determine the required organic matter concentration
based on the target scMCTF composition. Then, based on the temperature and pressure
tolerance limits of the platform’s scMCTF generator, along with other technical and eco-
nomic factors, define an acceptable range for reaction temperature and pressure. Within
this range, select a specific temperature—pressure combination. Next, input the determined
organic matter concentration and selected temperature—pressure data into the scMCTF
yield control equation to calculate the corresponding yield under these conditions. Using
the conversion relationship between the yield and injection rate, determine the scMCTF
injection rate. Finally, assess whether the obtained injection rate meets the target. If it
does, the optimization process ends; if not, adjust the temperature and pressure values and
repeat the optimization process until the injection rate reaches the desired target.

Target mass concentrationsc of scCO, or scMCTF generator temperature and

scH,0 in scMCTF pressure bearing performance indicators or
1 other technical and economic indicators
scMCTF component control model l

Select a set of temperature and pressure
data within an acceptable temperature and
pressure range

Determine the mass concentration of
organic matter required for scMCTF

generation
'_==========l===========ll
I scMCTF yield Conversion relationship between le—| Adjust temperature "
I control model vield and injection rate I and pressure data
l— — & & & & & & & = — — — —

Calculate scMCTF injection rate

| NO|

Determine whether the injection rate of scMCTF meets the expectation —

YES

v

End calculation

Figure 8. Work flow.
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6. Discussion

Currently, laboratory studies on steam-assisted gravity drainage for heavy oil recovery
using injected scMCTF rarely consider the impact of differences in fluid composition or
injection rate on recovery efficiency [1-3,27]. However, optimizing the content of non-
condensable gasses in the thermal fluid and the injection rate is critical for adjusting
injection parameters to achieve the best thermal recovery results [28]. The newly proposed
synergistic optimization method, based on the scMCTF composition and yield control
model, offers a novel global optimization approach. It enables the simultaneous calculation
of optimal reaction conditions required to achieve the desired scMCTF composition and
injection rate while considering technical, economic, and equipment limitations on-site,
thereby significantly enhancing injection operation efficiency.

Despite its advantages, the proposed method also has some limitations, which include
the following two points:

(1) Inability to independently control scCO, and scN; content. Since the control equations
for scHO (Equation (1)) and scCO, (Equation (2)) are both primarily influenced by
organic matter concentration, once one of these components is determined, the other
is passively fixed. According to the relationship between scCO,, scH,O, and scN»
(Equation (3)), once the scCO; and scH,O contents are determined, the scN; content
is also fixed. In other words, the control equations can only adjust the content of one
of the non-condensable gasses, whereas current research often aims to determine the
ratio of these two gasses [28].

(2) Limited consideration of influencing factors. The current experiments, simulations,
and models focus only on the three most fundamental factors: temperature, pres-
sure, and organic matter concentration. However, other factors also affect the re-
action, such as the type of feedstock [29,30], reaction time [31,32], catalyst type,
and concentration [33,34]. Expanding the range of influencing factors would en-
hance the adaptability of the optimization method, enabling its application to a
broader set of field conditions and unlocking more opportunities for technical param-
eter optimization in the field, thereby improving the efficiency of scMCTF thermal
recovery operations.

Given these limitations, future research should focus on the following key areas:

(1) Improving the quality of control equations to enable independent control of individual
component concentrations.

(2) Developing control equations that incorporate additional factors based on field re-
quirements, enhancing the versatility of the optimization method. This would expand
its application scope and provide more flexibility for field parameter adjustments,
leading to more efficient scMCTF thermal recovery operations.

7. Conclusions

(1) The influence of temperature and pressure on the composition of supercritical mul-
ticomponent thermal fluid (scMCTF) is not significant, while the composition is
largely influenced by the organic matter concentration in the feedstock. As the
organic matter concentration increases, the content of supercritical carbon dioxide
(scCOy) and supercritical nitrogen (scN;) rises, while the content of supercritical water
(scH,O) decreases.

(2) Temperature, pressure, and the organic matter concentration in the feedstock all have
an impact on the scMCTF yield. Higher temperatures and pressures lead to a higher
scMCTF yield, while a higher organic matter concentration results in a lower yield.

(3) Using data fitting methods, control models for scMCTF composition and yield were
developed. The scMCTF composition fitting model follows a power function relation-
ship, with a coefficient of determination (R?) greater than 0.9. The scMCTF yield fitting
model follows a modified inverse linear logarithmic function, with an R? greater than
0.8, indicating a high degree of fit for both the composition and yield control models.
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(4) The ratio between scMCTF production in molecular simulations and the actual scM-
CTF injection rate in the field is proportional to the ratio of the mass of organic matter
in the platform’s scMCTF generator to that in the simulation box. This allows for the
conversion of scMCTF yields from simulation-scale to actual field-scale injection rates.

(5) Based on the established composition and yield control models, along with the pro-
posed conversion relationship between the scMCTF yield and injection rate, a syn-
ergistic optimization method for scMCTF composition and the injection rate was
developed. This provides an effective technical approach for simultaneously adjust-
ing and optimizing scMCTF composition and the injection rate in field operations.
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Abstract: Supercritical multicomponent thermal fluid (scMCTF) is a novel medium with great
potential for heavy oil thermal recovery. The production rate of scMCTF will affect the injection
efficiency of thermal fluid, and then affect the development effect of thermal recovery. However,
at present, there are few reports on the production rate of each component of scMCTF, and their
understanding is not clear. According to the existing production rate data of supercritical water
(scH,O) gasification products, based on the generation mechanism of scMCTF, the production rate
of thermal fluid generation products under different generation conditions was calculated, and
its influencing factors were identified. The results show the following: (1) The factors affecting
the production rate of scMCTF generation products can be divided into three categories: reaction
raw material factors, reaction condition factors, and catalytic factors. (2) The hydrocarbon number
of raw material, reaction temperature, reaction time, and catalyst concentration were positively
correlated with the production rate of the product. (3) The concentration of the reaction raw material
is negatively correlated with the production rate of the product. The higher the concentration of the
raw material is, the lower the concentration of H,O is, and the steam reforming reaction is inhibited,
which leads to the decrease in the production rate. (4) The effect of reaction pressure and catalyst load
on the product is not significant. (5) The reaction product production rate increased first and then
decreased with the ratio of H,O to oil in the raw material emulsion and the ratio of preheated H,O to
raw material discharge. (6) The effect of metal salt catalysts is relatively stable, and the catalytic effect
of simple metal catalysts is significantly different under the action of different types of accelerators,
so it is necessary to study the degree of synergization of different accelerators on the catalytic effect.
The results can lay a foundation for the subsequent experimental and theoretical research design.

Keywords: supercritical multicomponent thermal fluid (scMCTF); yield; productivity; factors; heavy
oil thermal recovery

1. Introduction

The development of unconventional oil and gas such as heavy oil, shale gas, and
oil require technological innovation [1,2]. scMCTF injection is a novel thermal recovery
technology for heavy oil proposed in recent years [3,4]. scMCTF is composed of supercritical
water (scH,O), supercritical nitrogen (scN»), and supercritical carbon dioxide (scCO;), and
it possesses high solubility, high diffusivity, and high reactivity [5]. Compared to traditional
steam mediumes, it can significantly enhance heavy oil recovery [6,7].

scMCTF is produced by gasification reaction and oxidation reaction of organic matter
under high temperature and high pressure. The production rate of scMCTF is influenced by
various reaction conditions such as feedstock, temperature, and pressure [8-10], and affects
the thermal fluids’ injection rate and injection volume. The injection rate and volume are
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key parameters in the thermal fluids injection process for heavy oil recovery, and different
injection rate and volume will bring disparate oil recovery. Precisely controlling these
parameters according to the pre-set plan is fundamental to ensuring the effectiveness of
thermal recovery [11,12]. Therefore, accurately understanding the influence of different
reaction conditions on the production rate of scMCTF is crucial for the efficient development
of heavy oil resources using this technology.

However, there is currently a lack of research on the production rate of scMCTE,
leading to insufficient understanding in this area. In light of this, based on existing research
data on the production rate of hydrocarbon organics commonly used in oil fields under
scH,O conditions, and grounded in the theory of scMCTF generation, this study calculates
the production rate of scMCTF under different reaction conditions, analyzes the variation
patterns of production rate with different factors, and identifies the key reaction conditions
influencing the production rate. The research findings can provide a reference for future
research approaches and the design of methodologies for studying the production rate
of scMCTE.

2. scMCTF Yield Calculation

The typical generation process of scMCTF includes two stages: organic matter gasifica-
tion and oxidation of gasification products [13]. The reaction equations for the gasification
process in the first stage (Equations (1)—(3)) and the oxidation process in the second stage
(Equations (4)—(6)) are as follows. Through a literature search, 367 data samples of gasifica-
tion production rates under scH,O conditions for commonly used hydrocarbon organics in
oil fields under different reaction conditions were obtained (Table 1). These samples show
the production rate of gasification products in a scH,O environment, which corresponds to
the production rate of the first-stage products in the generation process of scMCTE.

C +H,0 — CO+H, @
CO 4 H,O — CO, +H, )
CO + 3H, — CH, + H,0 ©)
2H, + O, — 2H,0 4)
2CO + 0O, — 2CO, ®)
CH, 4 20, — CO; + 2H,0 (6)

Table 1. Sample data on the production rate of gasification products from scH,O treatment of
commonly used hydrocarbon organics in oilfields.

Sample Size,

Researcher Time Reference Reaction Raw Material Raw Material Source Group
iso-octane, n-octane, Daejung Chemistry, Korea, Japan
Susanti et al. 2014 [14] n-decane, n-dodecane, Yakuri Pure Chemical, Japan Kanto 9
n-hexadecane Chemical, UK Alfa Aesar Company
Wang et al. 2015 [15] Oily sludge An oil field production site in China 22
Kou et al. 2018 [16] Diesel oil China Petroleum and Chemical 21
Corporation
Xu et al. 2019 [17] Diesel oil China Petroleum and Chemical 12
Corporation
Zhang et al. 2019 [18] n-undecane, n-hexadecane  Shanghai Macklin 10
Duan 2020 [19] Oily sludge An oil field production site in China 20
Peng et al. 2021 [20] Oily sludge Bohai Oilfield 11
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Table 1. Cont.

Sample Size,

Researcher Time Reference Reaction Raw Material Raw Material Source Group

Liu 2021 [21] Oily sludge Changging Oilfield 41

Kou et al. 2021 [22] Diesel oil China Petroleum and Chemical 2
Corporation

Lei 2022 [23] Oily sludge Changging Oilfield 36

Peng et al. 2022 [24] Oily sewage Bohai Oilfield 22

Kou etal. 2022 [25] Diesel oil China Petroleum and Chemical 49
Corporation

Xu et al. 2022 [26] Diesel oil China Petroleum and Chemical 28
Corporation

Wang et al. 2023 [27] Oily sludge Changging Oilfield 23

. China National Offshore Oil

Peng et al. 2023 [28] Oily sewage Corporation 17

Lietal. 2023 [29] Oily sludge Karamay Oilfield 8

Peng et al. 2023 [30] Oily sewage Bohai Oilfield 21

Lietal. 2023 [31] Oily sludge An oil field in Xinjiang, China 15

Based on the production rate data of the first-stage products and using the theory of
scMCTF generation along with the principle of mass conservation, the production rate
of each component in the scMCTF can be calculated. The calculation is based on the
following assumptions: () The organic feedstock and H,O introduced into the gasification
reactor react completely. (@ The reverse reactions of the water-gas shift reaction and
the methanation reaction can be neglected [32,33]. (3 The oxygen (O,) injected into the
oxidation reactor reacts completely with the gasification products from the first stage.
(® The small amounts of C,H,, gases in the products are ignored. (5) The mass fraction of
O; in the air is assumed to be 76.7%, and nitrogen (Ny) is 23.3%. The calculation process is
shown in Figure 1.

Stage 1- Gasification Stage 2— Oxidation

|<— reaction product —’l'— reaction product —'|
180
| Istept 2H, + 02 - 2H,0
=150 | 2C0 + 0 - 2C0
[5] 2
£ L s CH, + 20, -|CO, + 2H,0
= 120
= 90
g
< 0T CO + 3H, & CH/ + H,0
D
= 30 N
| |
0 s s L — L I . : -
H, Cco co, CH, GCH, ~HO HO CO, N,

Figure 1. Schematic diagram for production rate of calculation in the scMCTF (data sourced
from [15]).

Step 1: Obtain and organize the production rate data of the first-stage products from
previous literature.

Step 2: Since previous studies cooled the products before analysis, the reaction-
generated HyO was not included in the product analysis. However, in the methanation
reaction, the molar ratio of methane to H,O in the products is 1:1, which is used to deter-
mine the production rate of H,O in the first-stage gasification reaction.
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Step 3: Based on the production rate of the first-stage products and using the oxidation
reaction equations from the second stage, the production rate of scH,O and scCO, in
the second-stage reaction products can be determined. The Nj production rate is then
determined based on the O, consumption in the second-stage reaction and the O,—N, ratio
in the air.

By following these steps, the production rate of the scMCTF can be established.

3. Influencing Factors of scMCTF Yield

The factors influencing the production rate of scMCTF components can be categorized
into three types: ) Feedstock factors, including feedstock type, feedstock concentration,
and water-to-oil ratio in the feedstock emulsion. (2) Reaction condition factors, including
reaction pressure, reaction temperature, reaction time, and flow rate ratio of preheated
H, O to feedstock during the reaction process. (3) Catalytic factors, including catalyst type,
concentration, and loading.

3.1. Reaction Material Factor

As can be seen from Figure 2, each component’s yield of scMCTF generally increases
with the number of carbon atoms in the reaction raw material. Hydrocarbons are composed
of carbon and hydrogen atoms, and the greater the number of carbon and hydrogen atoms,
the larger the molecular weight of the feedstock, resulting in higher scH,O and scCO,
content in the products after the complete reaction. Additionally, since feedstocks with
larger molecular weights generate more hydrogen and methane during the gasification
stage, more O, is consumed during the oxidation stage, leading to an increase in the amount
of N, remaining in the air.

70
M 5cH,0

60 r M scCO,
M scN,

50

40

30

20

Yield, mol gas/mol feed

10

CSHIS CSHIS CIOHZZ C121_126 C16H34

Figure 2. Production rates of scMCTF from different feedstocks (data from [14]).

Figure 3 shows the negative impact of feedstock concentration on the production
rate of each component in the scMCTE. The higher the feedstock concentration, the lower
the production rate. This is because the steam reforming reaction is sensitive to H,O
concentration [34] and a decrease in H,O concentration inhibits the steam reforming
reaction, leading to incomplete reactions when the feedstock concentration is high [32].
As observed from the overall data distribution in Figure 3, within the low concentration
range, the production rate of components decreases as the concentration increases. As
the concentration continues to rise, the production rate gradually stabilizes, suggesting
the existence of a threshold concentration. Once the feedstock concentration exceeds
this threshold, the impact of concentration on production rate becomes less significant.
Therefore, an appropriate feedstock concentration is crucial: if the concentration is too low,
the amount of each component in the scMCTF may be insufficient, while an excessively
high concentration can inhibit the reaction.
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Figure 3. Relationship between reaction feedstock concentration and production rate of various
components [16,17,19,24,27-30].

Catalysts are widely used in reactions to enhance production rate [16,17,21,22,25].
Commonly used metal salt catalysts and elemental metal catalysts are generally difficult
to dissolve in hydrocarbons. Therefore, the feedstock, H,O, and catalysts are often pre-
pared into an emulsion to improve catalyst dispersion and thus increase catalytic efficiency.
Xu [17], using a continuous reaction system (where the feedstock and products are continu-
ously input and output), studied the effect of the water-to-oil ratio in the emulsion on the
component production rate. They found that the component production rate first increased
and then decreased as the water-to-oil ratio of the emulsion increased (Figure 4). They
attributed this to the dual effects of reaction temperature changes and the micro-explosion
phenomenon. On one hand, a higher water-to-oil ratio means a higher H,O content in
the emulsion, which can lower the local temperature in the reaction zone, leading to an
increase in side reactions and negatively affecting the reaction outcome. On the other hand,
since HyO has a lower boiling point compared to hydrocarbon feedstocks, it reaches a
superheated state more quickly when heated in the reactor. This causes micro-explosions,
breaking the feedstock into smaller droplets, thereby enhancing the reaction efficiency.
Therefore, optimizing the water-to-oil ratio in the emulsion can improve the component pro-
duction rate. Additionally, since the water-to-oil ratio in the emulsion affects the feedstock
concentration, these two factors should be considered together in the optimization process.
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Figure 4. Relationship between water-to-oil ratio and production rate of various components (data
from [17]).

3.2. Reaction Conditioning Factor

Researchers believe that reaction pressure has an insignificant impact on prod-
uct production rate, which has led to the adoption of a fixed reaction pressure in
studies [14-18,23-26]. Some researchers have verified this view by studying the effect
of reaction pressure on production rate [19,27,28]. As shown in Figure 5, the produc-
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tion rate of products shows almost no change with increasing pressure, with only a
slight effect on scCO, production rate [19]. This effect has not been deeply analyzed,
but considering the findings and viewpoints of most researchers, it is likely due to

experimental error.
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Figure 5. Relationship between pressure and production rate of various components [19,27,28].
Reaction temperature is one of the most important factors affecting product production
rate. During the generation of scMCTE, the production rate of all components increases with
rising temperature (Figure 6), and the trend of production rate growth with temperature is
generally consistent across components. Higher temperatures favor the reaction process
and product formation. However, higher temperatures also mean increased temperature
requirements for the supercritical thermal fluid equipment and higher heating fuel costs.
Therefore, it is necessary to lower the reaction temperature as much as possible while still
ensuring adequate product production rate, to reduce equipment demands and fuel costs.
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Figure 6. Relationship between temperature and production rate of various components [16-20,23—

28,30,31].

In a batch reaction system (where feedstock input, reaction, and product output occur
in intermittent cycles), the reaction time is usually sufficient to ensure a complete reaction
of the feedstock. However, in a continuous reaction system, the time during which the
feedstock comes into contact with scH,O determines the extent of the reaction and the
production rate of the products. As shown in Figure 7, the product production rate increases
with a longer reaction time, but after sufficient reaction time, the rate of production rate
increase slows down and eventually levels off. Generally, a reaction time of over 30 min is
sufficient to ensure a complete reaction of the products. However, in continuous systems,
where feedstock is continuously introduced and scMCTF is produced, reaction time for
the feedstock is typically shorter [14,26]. Therefore, to achieve a complete reaction within a
shorter time, it is necessary to increase the reaction temperature or add catalysts to reduce
the time required for the feedstock to fully react.
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Figure 7. Relationship between reaction time and production rate of various components [15,19—
21,23-26,28,31].

In a continuous reaction system, preheated H,O in a supercritical state and the feed-
stock are injected into the reactor through different nozzles at a specific ratio to react.
Therefore, the “preheated water-to-feedstock flow rate ratio” factor applies only to con-
tinuous reaction systems and is not relevant to batch systems. As shown in Figure 8, as
the preheated water-to-feedstock flow rate ratio increases, the product production rate
first increases and then decreases, indicating the existence of an “optimal flow rate ratio”
during this process. This pattern is primarily due to two reasons. First, a larger flow of
preheated HyO enhances heat and mass transfer within the reactor, allowing the feedstock
to quickly absorb heat and react under high flow conditions. However, an excessively
high flow rate shortens the residence time of the reactants in the reactor, which may cause
the feedstock to exit the reactor before fully reacting. Additionally, Figure 8 shows that
the “optimal flow rate ratio” varies across different studies, which is due to differences
in experimental conditions. Therefore, determining the specific “optimal flow rate ratio”
under given conditions is crucial for optimizing the production rate.
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Figure 8. Relationship between flow ratio of preheating water and raw material delivery, and
components production [29,30].

3.3. Catalytic Factor

Metal salt catalysts and elemental metal catalysts are the two most commonly used
types of catalysts in scH,O gasification reactions. Among them, elemental metal catalysts
can be combined with various promoters to enhance their activity. As shown in Figure 9,
all types of catalysts effectively increase production rates. Metal salt catalysts exhibit
a significant catalytic effect, with relatively small differences in performance between
different types of metal salts [21,30], making their catalytic effects quite stable. On the other
hand, the catalytic performance of elemental metal catalysts varies greatly depending on
the type of promoter used. For example, in the study by [16], the catalytic effect of a Ni
catalyst supported on ZrO, showed significant variation when different promoters were
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added. Compared to the catalyst without a promoter, the catalyst with Co as a promoter
nearly doubled the product production rate, while using Y as a promoter resulted in a
catalytic effect that was even worse than that without any promoter.
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Figure 9. Production rate of various components under different catalysts [16,17,21,22,24,25,30].

Catalysts can increase product production rate by promoting steam reforming reac-
tions and water-gas shift reactions. The higher the catalyst mass concentration, the greater
the amount of active catalytic material, which in turn enhances the reaction. As shown in
Figure 10, the production rate of each component in the scMCTF increases with the rise
in catalyst mass concentration. However, the extent of the production rate increase varies
among different studies. For instance, in study [21], raising the catalyst mass concentration
from 1 wt% to 3 wt% led to increases in component production rates of 15.7%, 20.5%, and
15.7%, respectively. In another study [23], increasing the catalyst mass concentration from
1 wt% to 5 wt% resulted in production rate increases of approximately 7.0% for scH,O,
8.2% for scCOy, and 6.5% for scNy. In a third study [30], increasing the catalyst mass
concentration from 4 wt% to 8 wt% resulted in production rate increases of 30.3% for
scH>O, 28.9% for scCO,, and 28.1% for scN».
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Figure 10. Relationship between catalyst mass concentration and production tare of various compo-
nents [21,23,30].

Some elemental metal catalysts tend to deactivate at high temperatures [35]. To retain
the catalytic activity of elemental metals and mitigate deactivation under high-temperature
conditions, combining elemental metals with metal oxide supports to create supported
catalysts is effective. The catalyst loading refers to the mass fraction of the active phase
in the supported catalyst. Lei [23] prepared a supported catalyst with Ni as the active
phase and Al,O3 as the support, studying the impact of catalyst loading on production
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rate. The study revealed that catalyst loading has a minimal effect on product rate, which
is consistent with Lei’s findings on catalyst concentration (Figure 11). This may be due to a
phenomenon similar to the catalyst concentration threshold, where catalyst loading also
has a threshold. In the study [23], the loading likely exceeded this threshold, resulting in
an insignificant change in production rate with varying loading levels.
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Figure 11. Relationship between the amount of catalyst load and components production rate (data
from [23]).

4. Discussion

We mentioned above that the previous work focused on the yield of organic gasifica-
tion products, but did not pay attention to the yield of scMCTF [14-31], because the concept
of scMCTF has been put forward in the past five years [3-7], and there are very few studies
on it. Meanwhile, there is no relevant report on the yield of scMCTF so far. Therefore, it
is a novel work which provides a first view of the factors affecting the scMCTF yield in
generation processes. This view can help scholars understand the factors that affect the
yield of scMCTF and how the yield changes with them, which is the basis for conducting
further experimental or simulation research.

The reference provided by this work is also limited because it has some irremediable
defects. The thermal fluid yield obtained in this work is calculated theoretically based
on the yield of organic matter gasification products in previous works, which means that
research conditions are not uniform. In other words, the data for each of the researchers
we cite may have been obtained under very different experimental conditions [14-31]. For
example, in Section 3.2, the temperature is shown as an important factor (Figure 6). If
the effect of temperature on yield is to be studied, factors other than temperature such as
pressure, catalyst, etc., should be consistent. However, we cannot guarantee that other
factors are the same, which leads to the possibility that other factors may have an additional
effect on the temperature effect. Therefore, this work can only provide a qualitative rule,
but cannot give specific and quantitative suggestions.

5. Conclusions and Prospects

The reaction conditions during the formation of scMCTF significantly affect product
production rate. However, there is currently a lack of research specifically focused on the
production rate of components in scMCTF, leading to an incomplete understanding of the
subject. This paper, drawing on similar studies of scH,O gasification product production
rates and based on the theory of scMCTF formation, calculates the product production rate
under different reaction conditions and investigates the factors influencing the production
rate of each component. The following conclusions were drawn:

(1)  The factors influencing the production rate of scMCTF components can be classified
into three categories: (D) feedstock factors, including feedstock type, feedstock con-
centration, and the water-to-oil rate of the feedstock emulsion; (2) reaction conditions,
including reaction pressure, reaction temperature, reaction time, and preheated water-
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Abstract: Based on on-site construction experience, considering the time-varying characteristics of gas
well quantity, production time, effective reservoir thickness, controlled reserves, reserve abundance,
formation pressure, and the energy storage coefficient, a data-driven method was used to establish
a natural gas production prediction model based on differential simulation theory. The calculation
results showed that the average error between the actual production and predicted production was
12.49%, and the model determination coefficient was 0.99, indicating that the model can effectively
predict natural gas production. Additionally, we observed that the influence of factors such as reserve
abundance, the number of wells in operation, controlled reserves, the previous year’s gas production,
formation pressure, the energy storage coefficient, effective matrix thickness, and annual production
time on the annual gas production increases progressively as the F-values decrease. These insights
are pivotal to a more profound understanding of gas production dynamics in volcanic reservoirs
and are instrumental in optimizing stimulation treatments and enhancing resource recovery in such
reservoirs and other unconventional hydrocarbon formations.

Keywords: production prediction model; volcanic reservoir; data-driven method; data nondimensional-

ization; dimension recovery

1. Introduction

Hydrocarbon production from unconventional reservoirs requires the integration of
different technologies, including long lateral horizontal drilling and multi-stage, multi-
cluster hydraulic fracture systems that activate natural fracture networks in unconventional
formations [1,2]. Dark box approaches, which involve using data analytics techniques,
have recently gained significant attention in many areas [3-5]. A variety of data analytics
methods, such as machine learning [6], linear regression [7], and neural networks [8], are
used for predicting gas and oil production.

Many scholars [9-13] from all over the world have applied linear regression methods
in predicting gas and oil production. Zhou et al. [14] conducted a multiple regression model
for 173 wells in the Marcellus Formation, predicting the one-year cumulative gas production
as a function of the proppant mass, fracture fluid volume, number of stages, treatment
rate, vertical depth, and lateral length. Grujic et al. [15] developed a predictive model for
172 wells in North America, forecasting oil, gas, and water production as a function of the
volume, petrophysics, temperature, pressure, and geographical and completion parameters.
Zhong et al. [16] predicted oil production in 476 wells in the Wolfcamp Formation as a
function of the well and completion designs, using a multiple regression method and
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comparing it with other methods. Lolon et al. [17] predicted the cumulative oil production
as a function of the stage of cementing, percentage of ceramic proppant, stage spacing,
proppant intensity, water cut, fracturing fluid, and maximum treatment rate, by comparing
some machine learning methods. Khanal et al. [18] forecasted the gas rate, cumulative
gas, and condensate-to-gas ratio (CGR) using linear regression analysis for 335 simulations
and 46 wells in the Eagle Ford Formation. Xue et al. [19] predicted the dynamic shale gas
production rate as a function of hydraulic fracturing and geological properties using a multi-
objective random forest regression method. Their sensitivity analysis revealed that the
most influential parameters were the geological properties, including initial pressure and
formation thickness. Johan et al. [20] employed a genetic algorithm to optimize completion
designs, using several predictor variables, including the depth, lateral length, azimuth,
total fluid, fluid intensity, total proppant, proppant intensity, and additional engineering
features to account for the influence of neighboring wells and depletion.

The overall goal of this study is to develop a time variation characteristic prediction
model that can accurately predict gas production in volcanic gas reservoirs. Specifically,
this study aims to address the limitations of existing prediction models in processing the
dynamic production data of unconventional gas reservoirs, which typically require a large
amount of geological and permeability data. Traditional prediction methods require exten-
sive numerical simulations. To overcome these challenges, we derived a new prediction
model based on differential simulation theory and fitted the model using dimensionless
gas production data obtained from volcanic gas reservoirs. In addition, we also calculated
the error, coefficient of determination (R?), and F-value between actual and predicted gas
production to verify the effectiveness and accuracy of the model. Through this study, we
hope to provide a new and more effective tool for predicting gas production in unconven-
tional gas reservoirs, thereby providing a scientific basis for a development strategy and
production parameter adjustments in oil and gas fields.

2. Methodology
2.1. Workflow

Data-driven prediction, a method grounded in using existing data for analyzing
and modeling to forecast future trends, outcomes, or events, is utilized in this paper to
develop a production forecast model with time-varying characteristics. The methodology is
outlined in a flow chart, depicted in Figure 1, and involves four sequential steps: initial data
preprocessing, which entails the collection and normalization of gas field data to neutralize
dimensional influences, followed by two stages of accumulation to reduce historical data
randomness and prepare the data for modeling; the subsequent establishment of a multiple
linear regression model based on a differential equation; parameter estimation using the
least squares method to ensure predictive accuracy; and finally, data dimension recovery
following two reduction processes to facilitate the computation of projected gas production.
This comprehensive approach ensures the creation of a precise and reliable prediction
model, essential in the accurate forecasting of gas field production.

Step 1: Data preprocessing Step 2: Modeling Step 3: Fitting model parameters Step 4: Dimension recovery

| | |
| | |
| | |
| | |
| . | |
Data collection ! . EStab]lShlllg 4 ! Least square method L First subtraction
: differential equations : :
l I I I l
| | |
| | | .
Nondimensionalize : : : Secondary subtraction
| : : | e |
l | Multiple linear | Fitting 1 l
| regression model | precision |
| | | . .
First accumulation : : : Dimension recovery
| | |
l | | |
| | |
| | | .
Second accumulation t Data import | Ideal model | Gas production
| | |
1 1 [

Figure 1. Flow chart of data-driven prediction.
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2.2. Data Preprocessing
2.2.1. Data Collection

The indices for gas production data in volcanic gas reservoirs are bifurcated into
two primary categories: the prediction index and the main control factor index. The
prediction index is Q(t) (gas production), and the main control factor index mainly contains
U (t) (number of wells in operation), U(t) (production time), Us(t) (effective thickness of
reservoir), Uy(t) (control reserves), Us(t) (reserve abundance), Ug(t) (formation pressure),
and Ujy(t) (energy storage factor). Then, all the data indexes are collected in an Excel sheet.

2.2.2. Data Nondimensionalization

To standardize the data and eliminate the discrepancies arising from different physical
units among various parameters, each data index should be normalized using the following
equation:

0 _*_ 1
X =
SE W
where x(© is the dimensionless value; x is the raw data of the gas field data; and 7 is the
number of data.

2.2.3. Data Accumulation

To mitigate the randomness inherent to historical data and enhance the stability and
reliability of the analysis, the dimensionless data are subjected to a first accumulation
process. This is typically accomplished using the following equation:

SRR VER @
(1)

where x; ’ is the dimensionless value after the first accumulation; x is the value before
normalization; and 7 is the number of data.

Then, the dimensionless data after the first accumulation can be accumulated for the
second time to form a fitting sample library as the following equation:

x? =y 3

2.3. Modeling

Differential simulation theory, a specialized data-driven approach, posits that the
accumulated time series data exhibit exponential variation characteristics, a property that
can be mathematically substantiated [21]. Leveraging this theory, a yield data-driven model
can be formulated to capture the underlying trends and dynamics of the data. The model
development typically involves the following steps:

(@) = a@? (1) + BU (1 @

!
where [Q(Z) (t)} represents the derivative with respect to time t; U (t) =

and B are the non-identified parameters, and B is shown as follows:
B= (Blr BZ/ B3/ ey B7)

The above output data-driven Equation (4) is discretized by first-order approximation
over time as follows:

Q% =aQ® (1) + BUP (1) ()

83



Energies 2024, 17, 5461

Then, this Equation can be converted to the following equation:
Q%) =aQ® + BiUY., + BUG,, + ...+ BUY ©)

The derived parameters a and B, along with the flowchart detailing the least squares
fitting process, are depicted in Figure 2. The dimensionless data, following the second
accumulation, were fed into Equation (6) for comprehensive multiple linear regression
analysis. Employing the least squares method, we calculated the sum of squared residuals
between the actual observed values and those predicted by the model. This approach was
instrumental in determining the optimal parameter values, thereby enhancing the model’s
predictive accuracy and reliability.

Confirm the fitting equation

l

Collect fitting data

!

Set initial parameters [

}

Calculate Jacobian matrix

|

Calculate residual vector

l

Build loss function

Whether the
accuracy is
met

Output optimal parameters

Figure 2. Flow chart of the least squares fitting.

2.4. Dimension Recovery

The predicted gas production is derived after two subtractions, utilizing the fitted
equation. Specifically, the model is applied with the output data from year k + 1 and the
main control factors for year k + 1. Thereafter, the dimensionless production data for year
k + 1, after two accumulations, are computed. Ultimately, the predicted gas production is
ascertained through a series of two subtractions and dimension recovery processes, thereby
yielding a precise forecast.

The first subtraction can be calculated as follows:

1 2 2
Qi =Qh - )

where Q,(igl is the production dimensionless data in k + 1 after the first accumulation; Q,(jr)l

is the production dimensionless data in k after the second accumulation; and Q,(f) is the
production dimensionless data in k after the second accumulation.
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The second subtraction can be calculated as follows:
0 _ ~@ (1)
Qk+1 - Qk+1 = O ®)

where Q,(f_)gl is the production dimensionless data in k + 1; Q,(cl) is the production dimen-
sionless data in k after the first accumulation.
The predicted gas production can be obtained as follows:

0
Qi1 = QYY" Qn )
where Qy. 1 is the production data in k + 1; -1 Qj is the sum of the gas production data.

3. Field Example
3.1. Data Preprocessing

The lithology of the targeted volcanic gas reservoir predominantly comprises acid tuff
breccias, rhyolite, and andesite. The internal interlayering within the gas-bearing strata
of the main rock mass is underdeveloped, with an interlayer density of merely 0.03 m/m,
and the individual gas layers exhibit substantial thickness. A tuffaceous breccia septum,
approximately 13 m thick, is present in the upper section of the gas layer, while a more
substantial septum, about 170 m thick, is observed in the lower part. The fractures within
the lower septum are relatively well developed, constituting 50.5% of the septum’s total
thickness. The porosity within the reservoir fluctuates between 7.1% and 22.2%, with an
average value of 14.4%. The permeability varies widely, from 0.005 mD to 836.000 mD,
averaging at 0.844 mD, indicating a heterogeneous subsurface environment.

The data indices for the targeted volcanic rock well area were categorized into two
distinct groups: the prediction index, which represents gas production, and the main control
factor index, encompassing the number of wells in operation, production time, effective
thickness of the reservoir, controlled reserves, reserve abundance, formation pressure, and
energy storage factor. Subsequently, all index data were meticulously organized in annual
chronological order, as presented in Table 1.

Table 1. Annual natural gas production and main control factor index table.

Time Q) u;(t) U, usz() U, Us(t) U, (t) u;(t)
/Year /%108 m3 /Well /%103 h /m /x108 m3®  /x10% m3/km? /MPa /-

2008 0.05 3 0.89 91.30 18.4 15.51 46.61 943
2009 1.15 8 26.65 94.64 22.6 15.41 45.05 9.46
2010 1.94 11 50.49 86.99 25.2 15.25 43.49 8.81
2011 1.96 13 57.51 80.92 32.3 15.09 41.92 8.31
2012 1.77 15 68.45 81.56 36.0 14.94 40.36 7.83
2013 227 17 85.78 86.77 433 14.75 38.80 9.01
2014 2.35 15 86.99 91.13 69.3 14.56 37.30 9.83
2015 2.71 17 96.56 89.47 77.1 14.33 35.90 9.61
2016 25 20 98.74 89.93 82.9 14.12 34.50 9.95
2017 2.66 21 107.23 86.47 90.1 13.90 33.10 9.38
2018 2.39 21 97.42 87.00 95.7 13.70 31.80 9.50

In accordance with Equation (1), the original data presented in Table 1 were subjected
to dimensionless processing, and the outcomes are detailed in Table 2. The distribution
of these dimensionless data points is graphically represented in Figure 3. The maximum
values of the dimensionless data range from 0.089 to 0.144, indicating a variation of 38.19%.
Conversely, the minimum values span from 0.001 to 0.077, reflecting a substantial change of
98.70%. It is evident that there are considerable disparities among the various data indices,
highlighting the importance of normalization in comparative analyses.
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Table 2. Data after dimensionless processing.

Time/Year Q@) uw @) uy @) ul@) uww ude) ud) us@
2008 0.002 0.017 0.001 0.087 0.027 0.089 0.101 0.085
2009 0.047 0.044 0.030 0.090 0.033 0.088 0.098 0.086
2010 0.079 0.061 0.057 0.083 0.036 0.087 0.095 0.080
2011 0.080 0.072 0.064 0.077 0.047 0.086 0.091 0.075
2012 0.072 0.083 0.077 0.077 0.052 0.085 0.088 0.071
2013 0.093 0.094 0.096 0.082 0.062 0.084 0.084 0.081
2014 0.096 0.083 0.097 0.087 0.100 0.083 0.081 0.089
2015 0.111 0.094 0.108 0.085 0.111 0.082 0.078 0.087
2016 0.102 0.110 0.110 0.085 0.120 0.081 0.075 0.090
2017 0.109 0.116 0.120 0.082 0.130 0.079 0.072 0.085
2018 0.098 0.116 0.109 0.083 0.138 0.078 0.069 0.086
2019 0.110 0.110 0.131 0.083 0.144 0.077 0.066 0.086

0.16
0.14
0.131
0.12 0.116
0.111
0.10
0.09 0.09
2 0.08 - +0.077 *
.. 0.071
0.06 |-
0.04
0.02 - 0.017
0.00 - ~0.002 10.001
1 1 1 1 1 1 1 1

QU Uy UYH U  UYH  UAH  ULH  UAD
Influence factors

Figure 3. The distribution of the dimensionless data.

Utilizing Equation (2), the original data were subjected to the first accumulation,
with the outcomes documented in Table 3. The distribution of the dimensionless data
after the first accumulation is depicted in Figure 4. Notably, the maximum values of
the dimensionless data after this initial accumulation uniformly reach 1, signifying no
variation. The minimum values, on the other hand, range from 0.001 to 0.101, representing a
reduction of 99.01%. This observation underscores that the variability in the dimensionless
data following the first accumulation is markedly diminished compared to the initial
dimensionless data set, thereby illustrating the effectiveness of the accumulation process in
stabilizing data fluctuations.

In advance of the modeling phase, the dimensionless data following the first accumula-
tion were further accumulated using Equation (3), with the results presented in Table 4. The
distribution of the dimensionless data subsequent to the second accumulation is illustrated
in Figure 5. The maximum values of the dimensionless data after this second accumulation
range from 0.089 to 0.144, demonstrating a variation of 38.19%. The minimum values span
from 0.001 to 0.077, indicating a substantial change of 98.70%. These refined data values,
exhibiting reduced variability, are now suitable for inclusion in the modeling process.
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Table 3. Data after the first cumulative processing.

Time/Year Q' ui@) ui@ ui@) s ui) Ui () ui()
2008 0.002 0.017 0.001 0.087 0.027 0.089 0.101 0.085
2009 0.049 0.061 0.031 0.177 0.059 0.177 0.200 0.171
2010 0.128 0.122 0.087 0.259 0.096 0.264 0.294 0.250
2011 0.209 0.193 0.152 0.336 0.142 0.350 0.385 0.326
2012 0.281 0.276 0.228 0.413 0.194 0.435 0.473 0.396
2013 0.374 0.370 0.324 0.496 0.257 0.519 0.558 0.478
2014 0.470 0.453 0.422 0.582 0.357 0.603 0.639 0.567
2015 0.581 0.547 0.530 0.667 0.468 0.684 0.717 0.654
2016 0.683 0.657 0.640 0.753 0.588 0.765 0.792 0.744
2017 0.792 0.773 0.760 0.835 0.718 0.844 0.864 0.829
2018 0.890 0.890 0.869 0.917 0.856 0.923 0.934 0.914
2019 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LOF 11 1 1 1 1 1 1 1
08
0.6
o
g
04
02
0.087 0.089 0.101 2g g5
0.0 0002 0017 <9001 aar
1 1 1 1 1 1 1 1
Qy Uy UMD Uy UXn  Uky UKy ULD
Influence factors
Figure 4. The distribution of the dimensionless data after the first accumulation.
Table 4. Data after the second cumulative processing.

Time/Year Q% UA(t) U2() U2(t) Uz () U2(t) U2(t) UA(t)
2008 0.002 0.017 0.001 0.087 0.027 0.089 0.101 0.085
2009 0.051 0.077 0.032 0.263 0.086 0.265 0.301 0.256
2010 0.180 0.199 0.119 0.522 0.181 0.529 0.595 0.507
2011 0.388 0.392 0.271 0.858 0.323 0.879 0.981 0.832
2012 0.669 0.669 0.499 1.272 0.518 1.314 1.454 1.229
2013 1.043 1.039 0.823 1.768 0.774 1.833 2.012 1.707
2014 1.514 1.492 1.245 2.350 1.131 2.436 2.651 2.273
2015 2.095 2.039 1.775 3.017 1.599 3.120 3.368 2.927
2016 2.778 2.696 2.415 3.770 2.186 3.886 4.160 3.671
2017 3.570 3.470 3.175 4.605 2.904 4.730 5.025 4.499
2018 4.460 4.359 4.044 5.522 3.759 5.653 5.958 5.414
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Figure 5. The distribution of the dimensionless data after the second accumulation.

3.2. Modeling

The dimensionless data after the second accumulation are input into Equation (6), then
the a and B parameters are obtained after multiple linear regression simulation training by
using the least squares method, and the results are shown below:

(2) _ (2) (2) (2) (2)
Q) = —05140” +0147u?, | + 16310, — 143010,
+0.266U'2)

(2) (2)
4 peq 04U +4995U 7, (10)
+8314u,

The gas production data and predicted values for the years 2008 to 2019, along with
the projected production for 2020 to 2024, are graphically represented in Figure 6. A clear
observation is that the predicted production aligns closely with the actual production across
different years, indicating that the gas field reached a stable production phase by 2019.
Additionally, Figure 7 illustrates the discrepancies between the actual and predicted gas
production. The prediction error ranges from 0.46% to 30.47%, with an average error of
12.49%. It is evident that the error tends to diminish progressively with the extension of the
mining period and the accumulation of production data, suggesting an improvement in
the predictive accuracy over time.

3.3. Modeling Evaluation
3.3.1. Coefficient of Determination

The coefficient of determination (R?) is a commonly used statistical indicator to evalu-
ate the fit between the regression model and observed data [14-16]. It obviously indicates
that the fitting model can explain the proportion of observed data variance, with a range
of values between 0 and 1. The higher the R?, the better the fit, and it can be calculated
as follows:

~ 14
v =, i (11)

SST — Z(yi - ?)2 (12)
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SSR =Y (vi—v})® (13)
1
» . SSR
R?=1- 3= (14)

where ¥ is the average of observed value; v} is the predicted value; y; is the true value; SST
is the sum of squares in the real data; and SSR is the sum of residual squares.
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Figure 6. The gas production and predicted data.
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Figure 7. The error between gas production and predicted data.

Utilizing the gas production and predicted data from 2009 to 2019, the coefficient of
determination was calculated to be 0.99, as per Equations (11)-(14). This high value for the
coefficient of determination signifies that the gas production data are closely aligned with
the predictions of the fitting model, thereby confirming the model’s efficacy in capturing
the production trends over the specified period.
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3.3.2. Significance Testing

According to the relevant data of the established multiple linear regression fitting
model, the significance of the regression equation is tested [22-25].
Hypothesis: Hy; : B; = 0,ie{1,2,---,12}, the sum of squared deviations are calcu-

lated as follows: ;

St =3 (vi—7) (15)

Sk =2.(9-7) (16)

St = St — Sk (17)
_ S%/12

- S2/12 18)

F-value is a statistical measure of analysis of variance used to test whether the regres-
sion equation is significant [26-30]. Taking a significance level of F = 0.05, the distribution
table shows Fy_,(k,n —k — 1) = Fy95(729,1974) = 1 < 19.249; thus, the hypothesis should
be rejected.

The F-values for Q(f) (gas production), Uy (f) (number of wells in operation), U(t)
(production time), Uj3(t) (effective thickness of reservoir), Uy (t) (controlled reserves), Us(t)
(reserve abundance), Ug(t) (formation pressure), and Uy(t) (energy storage factor) are
graphically represented in Figure 8. A clear trend is evident, with the F-values arranged
in descending order as follows: U(t), Us(t), Uy(t), Us(t), Q(t), Ua(t), Up(t), and Us(t). This
ranking underscores the increasing influence of the annual production time, effective thick-
ness of the reservoir, energy storage factor, formation pressure, gas production, controlled
reserves, number of wells in operation, and reserve abundance on the annual gas produc-
tion. The visualization of these F-values provides a quantitative assessment of the relative
significance of each factor in the predictive model [31].
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Figure 8. F-values of various influencing factors.
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4. Conclusions

In this study, standardization ensures data consistency and comparability, enhancing
data quality for analysis. Cumulative operations reduce random fluctuations, highlighting
long-term trends for better model predictions. The application of two accumulations
of dimensionless gas production data effectively mitigates the inherent randomness of
historical data, thereby establishing a robust fitting sample library.

Based on on-site construction experience, considering the time-varying character-
istics of the gas well quantity, production time, effective reservoir thickness, controlled
reserves, reserve abundance, formation pressure, and energy storage coefficient, a data-
driven method was used to establish a natural gas production prediction model based
on differential simulation theory. The calculation results showed that the average error
between the actual production and predicted production was 12.49%, and the model de-
termination coefficient was 0.99, indicating that the model can effectively predict natural
gas production.

The F-values in descending order are Uy(t), Us(t), U7(t), Ue(t), Q(t), Ua(t), U;(t), and
Us(t), indicating that the influence of the reserve abundance, number of wells in operation,
controlled reserves, previous year’s gas production, formation pressure, energy storage
coefficient, effective thickness of matrix, and annual production time on the annual gas
production gradually increases.
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Abstract: Rod pumping systems are widely used in oil wells. Accurate fault prediction could
reduce equipment fault rate and has practical significance in improving oilfield production efficiency.
This paper analyzed the production journal of rod pumping wells in block X of Xinjiang Oilfield.
According to the production journal, oil well maintenance operations are primarily caused by five
types of faults: scale, wax, corrosion, fatigue, and wear. These faults make up approximately 90%
of all faults. 1354 oil wells in the block that experienced workover operations as a result of the
aforementioned factors were chosen as the research objects for this paper. To lower the percentage of
data noise, wavelet threshold denoising and variational mode decomposition were used. Based on the
bidirectional long short-term memory network, an intelligent model for fault prediction was built. It
was trained and verified with the help of the sparrow search algorithm. Its efficacy was demonstrated
by testing various deep learning models in the same setting and with identical parameters. The
results show that the prediction accuracy of the model is the highest compared with other 11 models,
reaching 98.61%. It is suggested that the model using artificial intelligence can provide an accurate
fault warning for the oilfield and offer guidance for the maintenance of the rod pumping system,
which is meant to reduce the occurrence of production stagnation and resource waste.

Keywords: rod pumping system; oilfield; fault prediction; artificial intelligence; fault causes

1. Introduction

The rod pumping system has historically been dominant in oilfield production [1].
The system moves up and down through the rod connected by the motor to transfer the
surface energy to the plunger pump and the downhole fluid so as to produce oil. However,
due to the complex environmental conditions, coupled with the influence of sand, water,
gas, and other external factors [2,3], all the rod pumping wells are subject to downtime
and faults, including scale, wax, corrosion and partial wear of sucker rods and tubing,
fatigue, etc. Long-term maintenance is deemed essential. Nearly USD 12,000 will be spent
for a workover operation. It costs oilfields a great amount of labor and money to overhaul
rod pumping wells every year and this has a negative effect on production efficiency
and economic benefits [4]. If oilfields were able to predict the working condition of rod
pumping system, chemical inhibitors and parameters in the conditions of the production
would be adjusted as precautionary measures. Therefore, fault prediction of rod pumping
system in a timely and accurate manner means a lot to oil production [5,6].

So far, there are two main types of methods for fault prediction in the rod pumping
system: one is the physics-based model, and the other is the data-driven model, which
regards big data as the main drive [7]. Table 1 shows the evolution of fault diagnosis
technology in the rod pumping system, guiding the fault prediction technique. In the
early stages, the traditional method of diagnosing faults in the rod pumping system was
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to analyze and judge the downhole conditions by experts. It means that the accuracy rate
depends on the experience of experts. Moreover, it could not grasp the downhole conditions
in real time. In the late 1920s, the surface dynamometer card based on the movement of
polished rod was presented, which allowed the operator to assess the working condition of
the wells. In the 1930s, Gilbert [8] invented the downhole dynamometer, which was sent
into the downhole alongside pumps. It was directly used to measure the pump indicator
cards to obtain the real production data of the pump. In the 1960s, Gibbs and Neely [9] put
forward a computer diagnostic technique for the rod pumping system. According to the
propagation process of force, the wave equation was established and solved to obtain the
indicator cards. It could solve the equation of the indicator diagram but still rely on manual
analysis. In the late 1980s, a rule-based expert system for rod pump unit diagnostics was
developed by Derek et al. [10]. And then Foley and Svinos [11], and Schirmer et al. [12]
upgraded the expert system for rod-pumping diagnosis. In the 1990s, Rogers et al. [13]
introduced artificial neural networks (ANNSs) into the field of condition monitoring in oil
wells for the first time. Ashenayi et al. [14] trained the multilayer neural network model to
identify significant features of the surface dynamometer cards containing 11 underground
working conditions. After entering the 21st century, with the development of artificial
intelligence technology, various fault diagnosis methods emerge endlessly and gradually
move toward automation and intelligence.

Table 1. Development of Fault Diagnosis in Rod Pumping System.

Age Development

The surface dynamometer card based on the movement of polished rod was
presented, allowing the operator to assess the working condition of the wells.
The downhole dynamometer was invented and was directly used to measure the
pump indicator cards to obtain the real production data of the pump.

The computer diagnostic technique for the rod pumping system was put
forward. It obtained the indicator cards by solving the wave equation.

1920s

1930s-1950s

1960s-1970s

1980s A rule-based expert system for rod pump unit diagnostics was developed.
1990s ANN was introduced into the field of condition monitoring in oil wells for the
first time.
More artificial neural networks were used for the recognition of dynamometer
2000s cards. Various software with correlation to condition monitoring

were developed.
Combined with artificial intelligence technology, the fault diagnosis methods for
rod pumping were moving towards intelligence.
With the maturity of industrial Internet technology, the accuracy of fault
diagnosis is further improved.

2010s

2020s

Generally, such physics-based models are exploring the physics behind the technical
topic in good means, however, they are suffering from limitations in terms of model
applications, limited database, low dimensionality, and low accuracy [15]. In recent years,
the emergence of new technologies, such as big data and deep learning, has promoted the
establishment of Smart QOilfield and provided a new approach to the problem of intelligent
fault prediction in rod pumping systems.

According to the research status of domestic and foreign scholars on the fault predic-
tion of rod pumping systems, the fault prediction based on dynamometer cards is the most
popular. Gao et al. [16] (2015) constructed an extreme learning machine (ELM) associated
with the characteristics of the dynamometer card for diagnosing faults in rod pump units.
Lv et al. [17] (2021) proposed an evolutionary support vector machine (SVM) method
based on incremental algorithm and simulated indicator diagrams for working condition
detection in sucker rod pumping systems. Yin et al. [18] (2023) used a mini-batch method
to improve conditional generative adversarial networks (CGANS) to solve the problem
of imbalanced working states recognition. He et al. [19] (2024) recognized the working
condition using 4-segment time-frequency signature matrix (45-TFSM) and deep learning.
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Many experts and scholars have conducted extensive research on fault prediction
methods based on electrical parameters. Zheng et al. [20] (2019) used electric power curves
to extract statistical features and used hidden Markov models to detect faults for sucker
rod pumps. Wei and Gao [21] (2020) proposed a new method called deep and breadth
learning system (DBLS), which is a new method for rod-pumping fault detection based
on motor power. Bai et al. [22] (2022) put forward a method for generating electrical
parameter samples based on time series transform inversion power generation reverse
network (TSC-DCGAN) to address the issue of insufficient data samples for electrical
parameters in rod pumping. Liu et al. [23] (2024) proposed a method based on northern
goshawk algorithm optimized variational mode decomposition (NGO-VMD) and least
squares vector machine (LSSVM).

Furthermore, the production journal is also one of the most important parts of big data
in the oilfield besides dynamometer cards and electrical parameters, yet it is not commonly
used in fault prediction.

This paper analyzes the production journal of various sucker rod pumping wells in
block X of Xinjiang Oilfield. Variational mode decomposition (VMD) and wavelet threshold
denoising were used to reduce the proportion of data noise. Sparrow search algorithm
(SSA) was used to optimize the bidirectional long short-term memory (BiLSTM) network
model. A neural network model that can predict the type of faults to happen was trained,
hoping to provide fault warning accurately and guide the maintenance.

2. Oilfield Overview and Data Collection

The data in this paper are from block X of Xinjiang Oilfield. The beam pumping unit
is the main type of pumping units used in block X, accounting for more than 90%. The
reservoir in the block can be described as low oil-saturation. The block has 1484 wells with
an average pump setting depth of 1430 m. The present daily production is 18,600 bbl of oil.
Its average pump detection period is approximately 330 days.

On the one hand, the average well depth of the oilfield is relatively deep. Due to the
irregular wellbores formed in the drilling process, the rods were easily destabilized and
bent during the reciprocating movement, resulting in the rod and tube partial wear. On the
other hand, at present, block X has entered the water-cut rising period. With the extension
of the production period of oil, the corrosive output liquid contacted the pipe body and led
to the corrosion of the pipe. Fatigue crack and corrosion promoted each other, resulting in
rod fatigue, tubing leakage, and other faults frequently.

The production journal indicates that five kinds of faults including scale, wax, corro-
sion, fatigue, and wear account for about 90% of all faults, which are the main reasons for
oil well maintenance operations. The classification and statistics of five fault causes are
shown in Figure 1 as follows: corrosion (26.2%), fatigue (7.2%), scale (9.5%), wax (23.7%),

and wear (33.3%).
I Corrosion
I Fatigue
Corrosion [l Scale
Wear 26.2% Wax
33.3% Wear
Fatigue
7.2%

Scale
Wax 9.5%

23.7%

Figure 1. Proportion of five fault causes.
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This paper selected 1354 oil wells in the block that caused workover operations due to
the above five fault causes as the research objects. There are a total of 837,625 pieces of data,
including chloride ion concentration, bicarbonate concentration, sulfate concentration, total
salinity, formation crude oil density, formation crude oil viscosity, daily liquid production,
daily oil production, water content, pump hanging depth, tubing pressure, casing pressure,
stroke, and stroke times, a total of 14 kinds of characteristic information in all. The data
were arranged in chronological order of production. These data record the changes of
the pumping wells within a limited period of time, which can reflect the working state of
rod pumping.

3. Methodologies

Variational mode decomposition (VMD) and wavelet threshold denoising were em-
ployed to reduce the proportion of data noise. Variational mode decomposition can
decompose time series data into a series of intrinsic mode functions (IMF). Sparrow search
algorithm (SSA) was used to optimize the bidirectional long short-term memory (BiLSTM)
networks model. As a result, the intelligent model of fault prediction in the rod pumping
system was constructed. The process of fault prediction based on VMD-SSA-BiLSTM is
shown in Figure 2.

Time series of oil well failures and main influencing factors

l

‘Wavelet Threshold Denoising

l

Variational Mode D p
IMF1 IMF2 IMF3 | ...... IMF14

| S

Prediction sequence reconstruction

SSA BiLSTM l l

l l Training Validation Testing

SSA-BILSTM l

|

‘VMD-SSA-BIiLSTM

l

Model reconstruction

l

Prediction results

Figure 2. The structure diagram of the model.

3.1. Denoising Based on Variational Mode Decomposition

Variational mode decomposition (VMD) is an automatic adaptive, non-recursive
information processing method proposed by Dragomiretskiy et al. [24]. VMD serves as a
pivotal signal-processing method extensively applied in practical projects such as signal
processing, data mining, and image processing. It can solve the problem of mode aliasing
that occurs during the decomposition of raw signals. The main idea of this method is
to generate and solve variational problems and achieve adaptive signal decomposition
by determining the optimal solution of the variational model [25]. The VMD algorithm
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decomposes the data into K intrinsic mode function (IMF) components and corresponding
K center frequencies. Its constraint model is as follows:

2
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where 9; represents taking the partial derivative of t; 4(t) is the Dirac function;  is the
convolution operator; u(t) is the kth modal component obtained through decomposition;
wi(t) is the centrality corresponding to the kth modal component; and f () is the original
signal to be decomposed.

To transform the equation into an unconstrained optimization problem, an augmented
Lagrangian function is introduced:
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where « is the quadratic penalty factor; A is the Lagrange constant; and (-) is the inner
product operator.

As can be seen from the above, the VMD results are related to the number of modal
components K and the penalty factor.

The advantage of VMD lies in its ability to specify the number of modes, avoiding
mode aliasing and endpoint effects. It also ensures the sparsity of the decomposition results
in the frequency domain, which can solve the problem of mode aliasing that occurs during
the decomposition of the original signal. It performs excellently in decomposition accuracy,
convergence speed, and anti-interference capabilities.

3.2. Wavelet Threshold Denoising

Wavelet threshold denoising requires selecting appropriate wavelet basis function
and decomposition level based on the characteristics of the dataset, setting thresholds and
threshold functions, processing wavelet coefficients, reconstructing signals, and reducing
noise ratios to achieve the goal of highlighting effective information in the data [26].

The common threshold selection principles include rigrsure, minimaxi, sqtwolog, and
heursure. This paper chose heursure. As a compromise between the rigrsure and sqtwolog,
heuristic will determine whether to use rigrsure or sqtwolog based on the signal-to-noise
ratio of the signal. It decides in the following way:

2
eta = Hx||7n 3)
{log(m} L5
crit = 1\(}”; 4)
_ Ay, eta < crit 5)
min(Aq,Ap), eta > crit

where 7 is the length of the wavelet coefficient vector to be estimated; A; is the threshold
calculated by sqtwolog; and A is the threshold calculated by rigrsure.

According to relevant research and analysis [27-29], it was found that the denoising
performance of soft thresholding is better than that of hard thresholding. Therefore, this
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paper chose to use a soft thresholding function to process parameter thresholding. The
formula for the soft threshold function is as follows:

iy = (=), o> o

where w is the wavelet coefficient and A indicates the threshold calculated according to the
threshold principle.

3.3. Bidirectional Long Short-Term Memory Network

Long short-term memory (LSTM) network is a variation of recurrent neural network
(RNN) proposed to mitigate two problems: the potential loss of information when process-
ing lengthy sequences, and the gradient can become quite low because of the high number
of mathematical operations performed during the processing while remaining far from
reaching the threshold [30]. LSTM adds cell states and a series of gate structures on the basis
of RNN. It propagates information through forward and backward methods. Bidirectional
long short-term memory (BiLSTM) considers fully the interrelationship between time series
data, which enables it to extract the time characteristics of signals more effectively.

The LSTM layer is linked by a number of memory units. The interior of each unit
can be divided into the forgetting gate, the input gate, and the output gate according to
the function. The internal structure of the unit is shown in Figure 3 (Please refer to the
following text for explanations of relevant symbols and arrows).

4 Update the cell state 4 4
X t X t
Ctanh> Ctanh>
) () ! n \ g ) ()
(o J[tanh] o] o i i ; (o J[tanh] [o ]
I T >
! | The forget gate The output gate !
Thelinput gate

Figure 3. The internal structure of LSTM.

The forget gate (denoted as f;) determines whether to retain or discard the status
information of the previous unit and filters important information into the next unit. The
relevant calculation formula is as follows:

v

v
v

v

fe = o (Wl 2] + by ) )

where Wy and by are the forgetting gate weight and bias items, o is the sigmoid activation
function, and [h;_1, x¢] is the matrix composed of the output information #;_; of the
previous moment and the input information x; of the current moment.

The input gate (denoted as i) is used to update the information of the short-term
memory unit, and remember the important information of the previous unit and the current
unit status. The relevant calculation formula is as follows:

it = o(Wilhi—1, x¢] + b;) (8)

Cr = tanh(Welhy 1, xi] + be) )

where i; is the input gate control unit, W; is the input layer weight, and b; is the input gate
bias value; a C; is the candidate state created by the tanh layer, W represents the weight in
the tanh function, and b¢ represents the bias in the tanh function.
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After passing through the forgetting gate and the input gate, the cell state is updated,
and the relevant calculation formula is as follows:

Ct = fiCi_1 +i:Cy (10)

where C;_ is the state of the cell at the previous time, and C; is the state of the cell at the
current time.

The output gate (denoted as o0;) determines the output information after the status
update. The relevant calculation formula is as follows:

0 = O'(Wo [l’ltfl,Xt} + b0> (11)

hy = ostanh (Cy) (12)

where W, is the weight of the output and b, is the offset value of the output; /; is the output
vector at the current time.

On the basis of LSTM, BiLSTM connects forward and backward hidden states to form
a new hidden state, realizing the fusion of past and future information. The expression of
the BILSTM network is shown in the following form:

-
Hy =hi+hy (13)

— —
where h; is the output of the last forward LSTM layer; h; is the output of the last backward
LSTM layer; and H; is the final output of the BILSTM network.

3.4. Sparrow Search Algorithm

Sparrow search algorithm (SSA) is a new optimization algorithm proposed by
Xue et al. [31] (2020). It simulates the foraging process of sparrows to obtain solutions
to the optimization problem. There are producers and scroungers among sparrows. In
addition, there is also the existence of those who are aware of the danger. Producers are
responsible for finding food and have higher energy reserves. Scroungers follow and mon-
itor producers and have low energy reserves; some scroungers compete with producers
for food. When predators appear in a foraging area, a sparrow recognizes the danger and
immediately enters alert mode [32]. The initial positions of these sparrows that are aware
of the danger are randomly generated in the population, accounting for 10% to 20%.

In order to survive better, when in a safe range, the producer enters the wide search
mode. If it exceeds the safety range, it means that some sparrows have discovered the
predator, and all sparrows need to quickly fly to other safe areas. The position update
formula for the producer is the following form:

gt {Xf,j~exp(%) if Ry < ST (14)
L Xf,j—i—Q-L if Rp > ST

where t indicates the current iteration, j =1, 2, ..., d; Xf/ represents the value of the jth
dimension of the ith sparrow at iteration t; itermax is a constant with the largest number of
iterations; a € (0,1] is a random number; R, (R, € [0,1]) and ST (ST € [0.5,1.0]) represent
the alarm value and the safety threshold, respectively; Q is a random number which obeys
normal distribution; and L shows a matrix of 1 x d for which each element inside is 1.
The position update formula for the scrounger is described as follows:
Xt Xt
o ety sy

! 1 (15)
. XG4 ‘th] — X}‘ -AT.L otherwise
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where Xp is the optimal position occupied by the producer, Xyt denotes the current
global worst location. A represents a matrix of 1 x d for which each element inside is
randomly assigned 1 or —1,and A" = AT (AAT) ' When i > 2, it suggests that the ith
scrounger with the worse fitness value is most likely to be starving.

The mathematical model can be expressed as follows:

X{Jest + ,5 : 'Xf,j - Xltaest iffi > fg

xit+l —

(16)

t

L] t ‘Xi,jixztuorst if o
X+ K\ g | Hfi=fe

where Xy, is the current global optimal location, f is the step size control parameter.
K € [~1,1] is a random number; Here f; is the fitness value of the present sparrow; f; and
fuw are the current global best and worst fitness values; and ¢ is the smallest constant.

4. Data Processing

The original production data from the oilfield usually contains interference informa-
tion, such as missing values and duplicate values, which will reduce the accuracy of fault
prediction. Before model training, it is necessary to conduct data preprocessing on the
obtained data with the aim of highlighting the effective information related to different
feature data. The pre-processed data was divided into training set, validation set, and
testing set according to a certain proportion, and then put into model training, model
validation, and model testing, respectively.

4.1. Data Preprocessing

(1) Eliminating unique values

In general, the presence of unique data attributes does not significantly impact the
distribution rule and feature correlation within the sample. However, during LSTM model
training, constant data for certain features can still influence the final results. To mitigate
this issue, this study removed such data items.

(2) Dealing with missing values

Missing values can be categorized into three types based on their distribution: com-
pletely random, random, and non-random. The presence of missing values directly leads to
a loss of valuable information in the system and incomplete variables can disrupt or even
render the training process impossible, thereby reducing the proportion of deterministic
components displayed by the system and increasing errors. Typically, samples containing
missing values are either deleted outrightly or filled using interpolation methods. Given
that there are only a small number of missing values in our dataset of pumping unit wells,
we have chosen to exclude wells with missing data from our training set. Additionally,
excessively small or large data should be removed to minimize errors.

(3) Feature encoding

When learned features contain non-numeric symbols, they need to be encoded for
quantification purposes. One-hot encoding is often used when dealing with few eigenval-
ues to visually distinguish non-numeric features. One-hot coding is also known as one-bit
effective coding. It uses N-bit registers to encode N states, and uses 1 and 0 to indicate the
true or false of the corresponding state. Only one is valid at any time. In this paper, the five
major reasons for the failure of the pumping unit are obtained statistically: wear (00001),
fatigue (00010), scale (00100), wax (01000), and corrosion (10000).

(4) Data denoising

Preliminary model testing has shown that directly training processed data—after re-
moving unique values, handling missing values, and standardization—results in generally
low prediction accuracy at around 50%. In order to improve model prediction accuracy,
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further denoising of our obtained dataset is necessary. Wavelet threshold denoising tech-
nology and variational mode decomposition technology have demonstrated promising
results in signal processing applications. This paper will combine the strengths of both
parties to achieve the goal.

This paper selected heursure threshold principle and soft thresholding function. Based
on the data characteristics of each fault, coif4, bior6.8, db3, sym8, and db4 were used as
wavelet basis functions. The statistical data contained a total of 14 feature quantities, with
a maximum of 90 data retained in each sample. Figure 4 shows the comparison curve of
one feature data of the same sample before and after wavelet threshold denoising. The
curve after wavelet threshold denoising is significantly smoother than the curve of the
unprocessed data, characterizing the non-stationary data well.
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12F —O— Sample After Wavelet Denoising
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Figure 4. Comparison of characteristic curves before and after wavelet denoising.

By using wavelet basis functions to decompose the original data, features with short
time steps could not be decomposed and would be skipped. The selection of time steps
resulted in different sample sizes in the obtained dataset. This paper chose a threshold of
90 to filter out data with many missing values or too short time steps, leaving 714 samples.

VMD can smoothen the image while preserving the detailed components of the
original signal well. After multiple experiments, it was found that K was set to 14, « was
set to 250, tol was set to 5 x 107, and tau was set to 0.01. At this point, the effect of VMD
reached its best. Figure 5 shows a comparison image of data with a time step of 800 before
and after VMD. From the decomposition diagram, it can be seen that VMD converts the
initial signal into non-recursive signals IMF1~IMF14, which represent the trend at different
time scales and frequency ranges. It is the variation trend at different scales that is helpful
to judge the fault type.

(5) Data standardization

When statistical data was collected, there were differences between units. If data
with different units was used directly, data with larger numerical values would dominate,
reducing iteration speed and affecting prediction results. To make the training process
stable and efficient, this paper adopted the standard score method to uniformly process
the data.

(6) Dataset partitioning

After data preprocessing and filtering, a total of 714 sets of data were obtained, with
each array representing a well. The dataset was divided into training set, validation set,
and testing set: 426 groups were the training set (accounting for 60% of the total dataset),
144 groups were the validation set (accounting for 20% of the total dataset), and 144 groups
were the testing set (accounting for 20% of the total dataset).
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Figure 5. VMD results.

4.2. Model Training and Validation

Appropriate parameters are particularly important for the training results of BILSTM
models. Parameter settings need to balance the complexity and generalization ability of the
model, otherwise it may cause overfitting or underfitting problems. Therefore, this paper
introduced SSA to simulate the foraging and predatory behavior of sparrows and retrieve
the optimal parameter combination for the BiLSTM model.

After several optimizations, the optimal parameter combination was obtained as
follows: the optimal number of hidden units was 165, the optimal maximum training
period was 88, and the optimal initial learning rate was 0.0066.

This paper used an adaptive moment estimation (ADAM) optimizer to train on the
training set, with a total of 88 rounds of training, four iterations per round, and a total of
352 iterations. To avoid gradient explosion, the gradient threshold was set to 1. The initial
learning rate was 0.0066, and the learning strategy was adjusted in stages. When to reduce
the learning rate was determined by the learning rate decline cycle. In this article, it was set
to 20, that is, every 80 iterations will reduce one cycle. The BILSTM network was trained
according to the above model parameters. The specific parameters are shown in Table 2.

Table 2. Structure of the Model.

Parameter Description
Problem fault prediction of sucker rod pumping wells
Algorithm VMD-SSA-BiLSTM
Input The production journal of oil wells
Output Fault Type
Data Division Training (60%), Validation (20%), Testing (20%)
Hidden Layer Size 165 neurons
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4.3. Model Testing

As this article focuses on fault type diagnosis, there is only a distinction between 0
and 1 error, which leads to the loss of reference value for indicators such as RMSE, MSE,
and MSE. Therefore, this paper chose accuracy as the sole evaluation indicator.

The test set was put into the trained model to test its effectiveness. Figure 6 shows
the comparison curve between the model fault prediction results and the actual results. To
render the results more effectively, this paper categorized and ranked the test well samples
based on their fault types before generating the visualization. It could be seen from the
figure that the two curves highly overlap. Among the 144 selected test wells, 142 wells had
the same test results as the actual results, with a prediction accuracy of 98.61%, indicating
good testing results.

Real Type
* Predicted Type

5(Corrosion)

o 4(Wax)
<2
&

= 3(Scale)
=
=
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1(Wear)

0 20 40 60 80 100 120 140
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Figure 6. Comparison between the predicted type and the real type.

5. Model Assessment

To demonstrate the effectiveness of the model, different models were tested under the
same environment and parameters, and the accuracy of each model was shown in Table 3.
As indicated by Table 3, there was a certain improvement in the accuracy of each model
after using VMD or optimizing the training model using SSA.

Table 3. The effect of different models in the same environment.

Total Number of Number of Correct

Model Wells Predictions Accuracy Rate
BiLSTM 144 101 70.13%
LSTM 144 104 72.22%
GRU 144 84 58.33%
VMD-BiLSTM 144 141 97.92%
VMD-LSTM 144 139 96.53%
VMD-GRU 144 137 95.14%
SSA-BiLSTM 144 105 72.91%
SSA-LSTM 144 105 72.91%
SSA-GRU 144 88 61.11%
VMD-SSA-BiLSTM 144 142 98.61%
VMD-SSA-LSTM 144 139 96.53%
VMD-SSA-GRU 144 138 95.83%

The predicted results of the VMD-SSA-BiLSTM model, VMD-S5SA-LSTM model, and
VMD-SSA-GRU model were compared with the actual values, respectively. Among them,
BiLSTM performed best. The results are shown in Figure 7.
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Figure 7. Accuracy comparison of different models.

The experimental results showed that the prediction accuracy of the model can be
improved by inputting decomposed data into the model, which proved that VMD can
reduce the noise and complexity of the original data. SSA could help model parameter
selection and improve prediction accuracy. The prediction accuracy of VMD-SSA-BiLSTM
is up to 98.61%, which has broad application prospects.

In addition, for reasons of analyzing the influence of the randomness of the test set on
the prediction accuracy, the prediction score is used to further evaluate the prediction effect
of the model. The value of the prediction score represents the probability that a fault that
will occur in a certain well is predicted to be this type of fault, and the sum of prediction
scores of the five types of faults in each test well is 1. As shown in Figure 8, among the
144 test wells, the prediction scores of a class of faults in most test wells are close to 1, which
indicates that the model achieves great generalization capability and robustness.
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Figure 8. Prediction scores.

6. Conclusions

This paper aims to improve resource utilization and save energy by studying the fault
warning of the rod pumping system. Our study contributes to oilfield development by
proposing a hybrid model based on artificial intelligence that can provide fault warning,
while considering the multiple non-linear interactions between components involved in
such a complex production system. The large amount of data used in this paper was
obtained through cooperation with Xinjiang Oilfield, fully considering practicality. In
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addition, this paper bridges the gap that very little research has been published on using
production journals to improve oilfield production safety conditions.

In this study, deep learning models, especially BILSTM, VMD, and SSA, have proven
to be effective in helping predict faults in the rod pumping system. The outstanding
accuracy of the model proposed in this article in the actual production activities of Xinjiang
QOilfield, reaching 98.61%, shows that using this type of model is conducive to improving
the safety level of oilfields and reducing production risks. In the current situation where the
effectiveness of oilfield data is not high, this hybrid model still has good robustness. But at
the same time, we suggest that oilfields emphasize the importance of maintaining database
consistency to improve the predictive ability of deep learning models and enhance the
safety level of oilfields.

In future research, more input variables can be considered, especially parameters that
can reflect the degree of human operational norms. This would reduce safety incidents
caused by human factors and provide stronger security for oilfield safety. Furthermore,
with the advancement of smart oilfields, the model presented in this paper can be expanded
to include more inputs and larger datasets. The emergence of more effective real-time data
will provide more insightful results.
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Abstract: The research on the thermal insulation performance of experimental systems in
the liquid helium temperature range is relatively scarce. This paper presents the theoret-
ical design and establishment of a liquid helium storage system for insulation research,
consisting of a liquid helium Dewar, a daily boil-off rate test subsystem, and a helium
recovery subsystem. The passive thermal insulation structure consisted of a multilayer
insulation (MLI) system with hollow glass microspheres serving as spacers. Based on
self-built data acquisition, experiments were conducted to investigate the liquid helium
insulation characteristics of an experimental system. A theoretical thermal analysis of the
Dewar was conducted, resulting in the derivation of an expression for the heat leak of
the Dewar. The analysis indicates that the evaporation capacity from the liquid helium
Dewar was significantly affected by the structure of the neck tube. The overall relative
error between the simulated and experimental temperature distribution of the insulation
layer is 14.3%, with a maximum error of 22.3%. The system had an average daily boil-off
rate of 14.4%, a heat leakage of 7.5 W, and a heat flux of 2.254 W/ m?, while the effective
thermal conductivity of the MLI with hollow glass microspheres was determined to be
2.887 x 10~* W/(m-K). Furthermore, the apparent thermal conductivity between differ-
ent layers of MLI significantly fluctuated with increasing temperature, ranging from a
maximum of 5.342 x 10~* W/(m-K) to a minimum of 1.721 x 10~* W/(m-K).

Keywords: liquid helium; thermal insulation characteristics; hollow glass microspheres;
daily boil-off rate; multilayer insulation

1. Introduction

The unique fluid properties of liquid helium, such as its extremely low temperature,
low latent heat of vaporization, and high thermal conductivity, make it one of the most
commonly utilized cryogens [1]. It plays an irreplaceable role in various fields, includ-
ing cryogenic superconductivity, high-energy particle physics, cryogenic medicine, and
quantum computing [2].

Liquid helium plays a crucial role in numerous scientific fields; therefore, enhancing
the thermal insulation performance for the storage of liquid helium is of significant im-
portance. Compared with other cryogenic fluids such as liquid natural gas (110 K), liquid
nitrogen (77 K), and liquid hydrogen (20 K), there are more challenges with achieving liquid
helium storage with the use of thermal insulation materials at 4.2 K. Thermal insulation
structures typically involve both passive and active heat transfer mechanisms. Passive
thermal insulation structures that are currently applicable in the temperature range of
liquid helium include spray-on foam insulation (SOFI), multilayer insulation, and hollow
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glass microspheres (HGMs). On the other hand, active thermal insulation methods involve
active refrigeration at low temperatures to minimize the evaporation of cryogenic fluids,
achieving zero-boil-off (ZBO) conditions [3].

Researchers have conducted extensive studies on various thermal insulation materials.
Tseng et al. [4] experimentally measured the thermal conductivity of SOFI in the tempera-
ture range of 20 K, achieving values as low as 5 x 1073 W/ (m-K). Liu et al. [5] simulated an
MLI system and reported that its thermal conductivity ranged from 10~° to 107> W/ (m-K)
in liquid hydrogen environments, noting the susceptibility of the MLI to high vacuum
and its high cost. The thermal conductivities of HGMs, known for their low density,
high strength, and low thermal conductivity, were measured by M.S. Allen et al. [6] un-
der a vacuum of 1 x 1072 Pa. The HGMs achieved a thermal conductivity as low as
7 x 107* W/ (m-K) in the temperature range of 77-293 K.

Multi-Layer Insulation (MLI) exhibits exceptional thermal insulation properties.
Naes et al. [7] conducted tests on the thermal performance of MLI within the tempera-
ture range of 4.2 K to 100 K, yielding a heat flux of 0.75 W/m?2. M. Vanderlaan et al. [8]
performed repeated tests on 25 layers of MLI at 20 K, observing a heat flux variation
ranging from 0.98 to 1.15 W. Additionally, Q.S. Shu et al. [9] indicated that the optimal
number of layers for MLI at 77 K is between 30 and 40. P.J. Sun et al. [10] examined the
thermal insulation performance of MLI under varying pressure conditions, revealing that
as the thermal boundary temperature increases, the heat transfer coefficient also rises,
with this effect becoming more pronounced as the vacuum quality deteriorates. Based on
experimental findings, S.L. Bapat et al. [11] proposed that during the heat transfer process
in MLI, the gap pressure must be significantly higher than the pressure within the vacuum
chamber, thereby increasing the contribution of gas conduction.

Furthermore, extensive research has been conducted on composite thermal insulation
materials. Hastings et al. [12] performed experimental studies on SOFI and variable
density multilayer insulation (VD-MLI) at liquid nitrogen temperatures and reported
a heat leakage of 0.31 W/m?. Hedayat et al. [13] tested composite thermal insulation
materials, including SOFI and MLI, on the MHTB platform, showing a heat flux as low
as 0.22 W/m? at liquid hydrogen temperatures. Zheng et al. [14] quantitatively analyzed
optimization strategies for MLI + VCS (vapor-cooled shield) and VD-MLI + VCS composite
thermal insulation structures via a thermodynamic model, identifying potential reductions
in the heat flux of 58.05% and 66.32%, respectively, at liquid hydrogen temperatures.
Zhang et al. [15] developed thermodynamic models to analyze various composite thermal
insulation structures within the liquid helium temperature range and determined that
the optimal positions for VCS were 30% from the cold boundary for SOFI + MLI + VCS
and 25% for SOFI + VD-MLI + VCS. Zheng et al. [16] discovered that when subjected to a
vacuum of 1073 Pa and a cold boundary temperature of 20 K, the incorporation of HGM +
VCS resulted in a remarkable reduction in the heat flux of 58.08% compared with that of
HGMs.

To summarize, thermal insulation materials have evolved, from low thermal conduc-
tivity solid materials to high-vacuum multilayer insulation (MLI) materials, and eventually
to composite thermal insulation structures. These materials are applied in various use
cases with differing thermal insulation requirements. For instance, in the 77 K temper-
ature range, SOFI or HGMs are commonly used, while in the 20 K range, where higher
thermal insulation performance is demanded, MLI and composite insulation structures
are more frequently employed. However, for the 4 K temperature range, which requires
extremely high insulation performance, the scarcity of liquid helium and its tendency
to evaporate rapidly complicate the situation. As a result, there is a lack of sufficient
data on the insulation performance of structures for this temperature range, making it
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difficult to optimize designs for such applications. MLI is regarded as the most effective
thermal insulation method. Hollow glass microspheres, in comparison to other spacer
materials, offer advantages such as low thermal conductivity, high strength, and resistance
to deformation. Therefore, in this study, an experimental platform was established to
investigate the insulation characteristics of MLI in the liquid helium temperature range
through theoretical design and experimental research. This platform utilizes MLI with
hollow glass microspheres (HGMs) as spacers [17-19], which are chosen for their high
strength and low thermal conductivity, as the passive thermal insulation structure. Liquid
helium is employed as the working fluid in our experiments to evaluate and analyze the
insulation performance of the experimental system.

2. Theoretical Design of Experimental System for Liquid Helium
Insulation Characteristics

2.1. PFD of Experimental System for Liquid Helium Insulation Characteristics

The test system for evaluating liquid helium insulation is illustrated in the PFD in
Figure 1. It consisted of four primary components: a liquid helium Dewar, a liquid helium
daily boil-off rate test subsystem, and a helium recovery subsystem. These components
were interconnected via bellows tubes, and their functionality was regulated by check
valves to enable various operational modes. This experimental setup facilitated compre-
hensive evaluations of both the daily boil-off rates characteristics of liquid helium.

daily boil-off rate test subsystem

I 0 e

O 4

[ —

D¢ 7 9
4
recovery subsystem

1-check valve 1* 6.check valve 47

2-vaporizer 7.gasbag

3-check valve 2° 8.booster pump

4-check valve 3* 9.10m? helium buffer tank

5-mass flow meter 10.LHe Dewar

Figure 1. PFD of the experimental liquid helium storage system.

2.2. Theoretical Analysis of Heat Leakage from a Liquid Helium Dewar

The heat leakage in each subsystem mentioned above was primarily attributed to the
liquid helium Dewar. A schematic cross-sectional diagram of the liquid helium Dewar is
shown in Figure 2, which illustrates the insulated supports between the inner and outer
tanks, namely, the inner tank, outer tank, and neck tube. The external surface of the liquid
helium reservoir was covered in MLI for thermal insulation purposes.

Cernox-type sensors T01-T03 with an accuracy of +4 mK @ 4.2 K were uniformly
distributed along the entire outer surface of the neck tube from top to bottom. Cernox-
type sensors (Lakeshore, Columbus, OH, USA) T11-T13 and PT100 type T14-T16 with
an accuracy error of 10 mK @ 77 K, were evenly distributed along the insulation layers,
specifically at layers 0, 12, 24, 36, 48, and 60.
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Figure 2. Schematic cross-sectional diagram of the liquid helium Dewar.

Therefore, as illustrated in Figure 3 and outlined in previous work [20], heat leakage
from the Dewar could be categorized into three parts: heat conduction through the neck
tube Qy¢, heat transfer across the insulation layer Q;;, and heat transfer from helium gas
within the neck tube Q,. Thus, heat leakage from the liquid helium Dewar was quantified
via the following equation:

Quewar = Qut + Qit +Q, M)

Qu = 20 [ \ygar @

Qs 27y 1(Ty, — To) 3)
=a

Qg = % [ Agrdt ()

The temperature at the bottom measuring point of the neck tube, denoted as Ty (K)
and oriented vertically upwards in Figure 3, was found to be 10 K on the basis of pre-
vious steady-state experimental observations. Similarly, the temperature at the outlet of
the neck tube was measured to be 30 K. Notably, the thermal conductivities of the solid
of the neck tubes and the gas within these tubes exhibited minimal sensitivity to pres-
sure variations. To accurately represent this behavior over a range of temperatures from
10 K to 30 K, a polynomial approximation was employed for characterizing the thermal
conductivity properties:

Ant = 0.1294T — 0.4132 ®)

Ag = 0.0003T° — 0.0263T2 + 1.5016T + 4.4089 (6)
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Figure 3. Diagram of showing heat leakage from a liquid helium Dewar.

The apparent thermal conductivity of the insulation layer A,;; was determined through
measurements conducted at a physical property testing center, which yielded a value of
7.17 x 1075 W/ (m-K) (77 K-293 K). This parameter was obtained by integrating the given
expression. Specifically, Q,r = 0.016 W, Q;; = 2.096 W, and Q. = 2.891 W were utilized in
calculating the total heat leakage of Q o0y = 5.003 W.

3. Experimental System for Liquid Helium Insulation Characteristics

A picture of the experimental system for liquid helium insulation characteristics is
shown in Figure 4.

;“:W‘\l W u’_‘ »

§ recuperator 22

Figure 4. Picture of experimental system for liquid helium insulation characteristics.
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The 500 L Dewar (FHF230100, Fullcryo, Zhongshan, China) for liquid helium was
vertically structured, featuring inner and outer containers constructed from 304 stainless
steel. As illustrated in Figure 2, the inner container has a diameter of 950 mm, featuring
a butterfly head structure with a thickness of 3 mm. Notably, the outer layer of the inner
container had a high-vacuum multilayer insulation structure. The thermal insulation
material consists of a total of 60 layers, utilizing polyester as the reflective layer’s film
material, featuring a double-sided aluminum-coated film structure. The spacing material
consists of glass microspheres, applied to one side of the reflective layer, the diameter of
the hollow glass microsphere lattice is 0.2 mm. The arrangement of the spacers and the
perforation pattern is illustrated in Figure 5.

= ,_4 2
. alumin

y & %
. ®

.« ®
<
- *

Figure 5. Picture of MLI with hollow glass microspheres.

The subsystem for testing the daily boil-off rate of liquid helium comprised a manual
shut-off valve, bellows tube, vaporizer, and ALICAT mass flow meter (Alicat Scientific,
Tucson, AZ, USA). The mass flow meter had a range of 0 to 50 SLPM, a response time of
<10 ms, achieved an accuracy better than 1%, and operated within a temperature range
of =10 °C-+60 °C.

To prevent helium wastage, a helium recovery subsystem was employed, comprising
a manual shut-off valve, bellows tube, gasbag, helium recovery compressor, and a 10 m3
buffer tank. During testing, the helium gas emitted from the system at ambient tempera-
ture was directed into the gasbag and subsequently pressurized by the helium recovery
compressor before being stored in the high-pressure buffer tank.

As illustrated in Figure 1, liquid helium evaporates within the Dewar to form cold
helium gas. During the pre-cooling phase, check valves 1, 3, and 4 are opened. The cold
helium gas passes through the vaporizer, warming to ambient temperature, and enters
the gas bag. After being pressurized by the booster pump, it is directed into the buffer
recovery system. Upon completion of the pre-cooling phase, check valve 2 is closed, and
check valve 2 is opened to allow the recovery of gas into the buffer tank. Throughout the
experiment, data acquisition equipment is employed to interface with the temperature
sensors and flow meters.

The data acquisition interface for the experimental system with liquid helium insula-
tion characteristics is depicted in Figure 6. Temperature sensors T01 to T03, located on the
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neck tube, and T11 to T16 within the MLI recorded measurements at one-second intervals.
After the experimental setup is complete, including vacuuming and leak testing, 90% of
the Dewar’s 500 L capacity is filled with liquid helium. The Dewar’s temperature rapidly
decreases, but the internal fluid remains highly unstable due to the large temperature gradi-
ent. This stage lasts for 48 h as pre-cooling. After the first resting period, additional liquid
helium is added to reach 90% fill again, followed by another 24 h rest period until thermal
equilibrium is achieved. This system was subsequently connected to the daily boil-off
rate testing subsystem for a continuous test period of 72 h, during which instantaneous
readings from the flow meter were recorded once every minute.

neck tube
I
] W cernox
9.00K 8.65K

insulation layer
cernox PT100
/2 height| Oth 12th 24th 36th 48th 60th

i T (s N T16
7.38K 37.86K [129.65K 176.43K | 196.74K 267.24K

Figure 6. Data acquisition interface of the setup for determining the liquid helium insulation charac-
teristics of the experimental system.

4. Results and Discussion
4.1. Uncertainty Analysis of Experimental System

Experimental errors mainly come from measurement errors and calculation errors. In
our experiments, the measurement uncertainties attributable to resistance, the measure-
ment bridge, and temperature control fluctuations are 2.5 mK, £1 mK, and +2.5 mK,
respectively. The calibration uncertainties are listed in Table 1 resulting in a combined
standard uncertainty for the temperature sensors of £24.28 mK, equivalent to 1.16%.

Table 1. Calibration uncertainty of temperature sensors.

Model Cernox PT100
Temperature
42K +4 mK —
10K +4 mK —
20K +£8 mK +9 mK
30K F9ImK +9mK
50K +12 mK +10 mK
100 K +16 mK +11 mK
300 K 345 mK +£24 mK

The data processing in this experiment focuses on the calculation of heat leakage and
apparent thermal conductivity. According to the principles of the cryogenic experiment,
the uncertainty analysis for these two parameters primarily encompasses geometry of
insulation layer, temperature measurement, and mass flowmeter, as detailed in Table 2.
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Table 2. Calibration uncertainty of data processing.

Source of Error Uncertainty
Geometry of insulation layer 2.05%
Temperature measurement 1.16%
Mass flowmeter 0.5%
Combined standard uncertainty 2.78%

The experimental conditions and stability criteria are shown in Table 3.

Table 3. Experimental conditions for the liquid helium insulation system.

Working Precooling Static Vacuum Warm Cold Stability
Fluid Duration Duration Degree Boundary Boundary Criterion
He 72h 72h 24x103pa mblent 42K delta T <0.02
temperature degrees C/min

4.2. Analysis of the Daily Boil-Off Rate of the Liquid Helium Dewar

Figure 7 depicts the trend in environmental temperature, with the dashed line in-
dicating the 12 a.m. time point during the static phase. Within each 24 h segment, the
environmental temperature trend was nearly identical, which indicated that the experi-
mental results were not affected by significant environmental temperature fluctuations.
Figure 8 shows the trend in the evaporative mass flow rate over the static phase. During
the initial precooling phase, the mass flow rate rapidly increased until the flow meter was
connected to the system after 60 h of pre-cooling. As shown in Figure 8, the mass flow
rate reached its peak at 69 h and subsequently decreased rapidly before stabilizing after
72 h. Throughout this stable phase, minor fluctuations in the mass flow rate coincided with
minor variations in the environmental temperature, but overall, the temperature followed
an initial increasing and then decreasing pattern, peaking at 101 h.

—— Ambient temperature

20

16

Ambient temperature/C

" 1 " i L |i| 1
80 100 120 140 160

Test time/h

Figure 7. Trends in environmental temperature variations.
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Figure 8. Variation in the amount of helium gas that evaporated from the liquid helium Dewar.

Figure 8 shows the variation in the amount of helium gas that evaporated from the
liquid helium Dewar. Throughout the process of liquid helium evaporation, the amount
of helium that evaporated was influenced by the fill level and by the environmental
temperature. Previous research indicates varying degrees of relative increased container
heat leakage between the gas and liquid phases [21]. As the fill level decreased, there
was an increase in the contact area between the gas phase and the container walls, which
enhanced natural convection and increased container heat leakage. This effect peaked at
101 h (as shown in Figure 8), with a fill level of 57.19%, corresponding to the maximum
evaporation rate. As the volume of the gas phase continued to expand, the amount of heat
transfer through conduction decreased because of the higher overall temperature of the
gas phase than the liquid phase, which resulted in decreased heat leakage and a reduction
in the evaporation rate.

On the basis of the data in Figure 8, the daily boil-off rates were calculated via the
following equation:

dmg
xg = —= x 100% 7
0= oV ()

The daily boil-off rates were 14.3% from 72 to 96 h, 14.5% from 96 to 120 h, and 14.2%
from 120 to 144 h. The measurement error in the daily boil-off rate over three days was
within 5%, validating the accuracy of the data measurements.

4.3. Heat Leakage from the Experimental Liquid Helium Dewar

Figure 9 shows the temperature trend for the sensor T01 at the neck tube, whereas
Figure 10 depicts the temperature distribution for sensors T02 and T03 along the neck tube
over the duration of the static phase. As illustrated in Figure 9, T01 showed significant
temperature fluctuations at 50 h due to helium Dewar reliquification, and the temperature
stabilized after 72 h and exhibited a continuous upward trend within a narrow range. In
Figure 10, it can be seen that the temperatures at sensors T02 and T03 at the neck tube
rapidly decreased in the initial precooling static phase and showed substantial fluctuations
during the nonequilibrium phase at 72 h. Notably, the sharp temperature increases and
decreases corresponded to the liquid helium reliquification intervals, and the temperature

115



Energies 2025, 18, 1349

stabilized gradually after 72 h, with temperatures at the neck tube rising continuously as
the liquid level inside the Dewar decreased.
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Figure 9. Variation in TO1 at the neck tube.
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Figure 10. Variation in T02-T03 at the neck tube.

Thermal Analysis of Dewar

Based on the data from Figures 8-10, both temperature and flow rate exhibit slight
variations during the 72-144 h testing period, but generally stabilize, indicating that a
steady-flow condition is reached during this interval. Temperature data shows a distinct
temperature gradient in the gas phase, with the gradient inside the neck tube being signif-
icantly steeper than that within the container. Therefore, the following assumptions are
made for the thermal analysis in this section:
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1.  The pressure remains constant throughout the test, and steady-flow conditions are
achieved during the 72-144 h period.

2. Heat leakage is assumed to solely originate from the surrounding environment.

3. Theliquid phase is treated as an incompressible fluid, maintaining a saturated and
uniform phase.

4. While the temperature gradients in the gas phase within the container and neck tube
differ, both are assumed to follow a linear distribution.

As shown in Figure 11, Q; is the heat leakage in the liquid phase; Q¢ is the heat leakage
in the vapor phase; Q,; is the heat leakage in the neck tube. During the testing process, heat
is transferred from the surrounding environment to the liquid and gas inside cryogenic
vessel, resulting in the evaporation of a portion of the liquid into gas. This leads to the
formation of vapor at the liquid—gas interface. The vapor then exits the container, and its
volumetric flow rate is measured using a mass flow meter. The mass and energy equations
for both the gas and liquid phases are expressed as follows:

d(pgVs) d(piVi)  d(poVo)
T TR T 8)
d(pgVgeg) | d(piVie) d(poV5)
T e O T ©)
vent gas
Ty
L

boil-off gas
AR

/s
liquid-gas interface

liquid

Figure 11. Diagram of physical model.
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Under the assumptions of incompressible liquid and steady flow conditions,
Equations (8) and (9) can be rewritten as follows:

d(pgVy) av _ Vo
T T i
de d(pgVy) de Y dv,
8 878 l I _
PngE +eq i +P1VZE +Pl€lﬁ =Qw — o dtvhv (11)

As the evaporated liquid is produced at the interface, its volume is occupied by the gas
near the interface, where the gas temperature is equal to the saturated liquid temperature.
Therefore, their relationships can be expressed as follows:

av, av, av,
I U+pﬁ(_ 1

gy =gy T ey

(12)

It is also known that internal energy is a single-valued function of temperature. It can
be expressed as follows:
e=cT (13)

By combining Equations (10)—(13), the energy equation can be rewritten as follows:

peVecg— toiVic— = Qw — pUT: (ho —eg + 01— psg (eg—e1)) (14)

Based on the assumption of steady-state flow, the temperature is considered constant
over time. Therefore, the expression for heat leakage is as follows:

Qw = poVo (o — g + ——(eg — 1)) (15)
P1— Psg
e is the average specific internal energy in the gas phase. As illustrated in Figure 11,
assuming a linear temperature distribution, the temperature distribution in the gas phase
is as follows:

MLl —lg)+Ts lp<I<lp+h

T — 16
8 LU*TOZ,ZO,ll +Ty lh+h <I<Z<Ilp+L+1h (10
I

The cross-sectional area of the container is denoted as A, and the cross-sectional
area of the neck tube is denoted as A;. By combining Equations (13), (15) and (16), the
relationship between the heat leakage, temperature, and flow rate is expressed as follows:

: To TsA L+ Ty A3l Ty TsA L + Ty A3l
QW:vav(hv—Cg( 0 1 0f22 pI (Cgo s vl272

24 Nk S’ i
2 Z(Alll + Azlz) 01 — Psg 2 2(A111 + Azlz)

In practical applications, A1l; > Ajly, thus the above expression simplifies to:

) — CITI)) (17)

: To + Ts L1 To + Ts
= - — T, 1
Qw = poVo(ho Cq 5 + oI — Psg Cg 5 aTi)) (18)

T, = %, the expression can be rewritten as follows:

QW - vaU(hy - eg,g + pl (eg,a - el)) (19)
P1 — Psg
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As shown in Figure 11, the heat leakage in the Dewar can be divided into two compo-
nents: the heat leakage from the inner container and the neck tube. Based on Equation (19),
where T, = T01 and Ty = T03, the expression for the total heat leakage is given as follows:

Qic = p01Vo(hos — ega + ——(ega —e1)) (20)
01 — Psg

Qut = po1 Vo (hor — hos) (21)

On the basis of the NIST database and experimental data, Q;. and Q;; were calculated
at different times, starting from the 72 h static phase, as shown in Figure 12. It can be
observed that Q;. and Qy; fluctuate within a small range; however, it is evident that the
heat leakage from the neck tube is significantly more than that from the container.
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Figure 12. Variation in heat leakage from the liquid helium Dewar.

Based on the above, it can be observed that the heat leakage through the neck tube
is significant, which in turn affects the temperature distribution within the neck tube,
specifically the value of Tp shown in Figure 11. This indirectly influences the evaporation
rate of the inner container. Assuming that the heat leakage of the inner container is constant,
the relationship between the heat leakage through the neck tube and the evaporation rate,
as described by Equations (20) and (21), is shown in Figure 13.

As shown in Figure 13, the heat leakage through the neck tube influences the evapo-
ration rate in a linear fashion. Therefore, the design of the neck tube is of critical impor-
tance. The heat leakage from the inner container is approximately 7.5 W, with a heat flux
of 2.254 W/m?.
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Figure 13. Relationship between evaporation and heat leakage of neck tube.

4.4. Thermal Insulation Characteristics of MLI

Figure 14 displays the temperature variations between layers of the MLI as recorded
by the sensors T11-T16. During the initial 072 h of the precooling static phase, T11 rapidly
decreased within a few hours and stabilized thereafter, whereas T16 stabilized only after
50 h of the static phase. Once stabilized, T15 and T16 exhibited minimal temperature
fluctuations, whereas T11, T12, T13, and T14 exhibited noticeable variations, which were
correlated with environmental temperature changes, eventually stabilizing. Based on the
average temperatures every 24 h during the stable phase, the trends in the MLI temperatures
at 72-96 h, 96-120 h, and 120-144 h of the experiments are presented in Figure 13. Notably,
the temperature at the outer wall of layer 0 of the insulation was equivalent to 7.4 K;
however, this temperature was calculated on the basis of an actual experimental pressure
of 6.7 psia, which should correspond to a saturated liquid helium temperature of 4.63 K.
Therefore, there was a contact thermal resistance between the sensor and the inner container,
referred to as the self-heating effect. The errors caused by the self-heating effect diminish
with increasing temperature; thus, in subsequent calculations, a temperature correction of
4.63 K is only required for the layer 0.

Using a generalized mathematical model for MLI, specifically the layer-and-layer
model [22,23], numerical simulations of temperature among MLIs were conducted and
compared with experimental results.

Layer-and-layer model:

Grotal = 4s +qg + qr (22)
Radiative heat transfer:
o(T; — T2)
=TT % (23)
(q +a—1)

Residual gas conduction:
The formulas for calculating Kn are presented in Equations (24) and (25).

Kn = (24)

!
L
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Figure 14. Temperature variations between multilayer insulation according to sensors T11-T16.

Thus, Kn > 10, which can be calculated according to experimental conditions. The resid-
ual gas is in the free molecular regime. The gas conduction is calculated by Equation (26).

o+l

Solid conduction: A
5. = 221, - 1) @)

For Dacron net, the relationship between A, and T is given by:
Agn = 0.017 +7 x 1076 x (800 — T’) + 0.0228In(T") (28)

For hollow glass microspheres, the relationship between Ay and T’ is described
by Equation (29) [24]:
Agems = 0.9885 x 10767 (29)

Figure 15 shows a comparison between the theoretical simulation results and exper-
imental results of the temperature distribution across the MLI system. Under identical
boundary conditions (warm temperature of 260 K and cold boundary temperature of
4.63 K), the overall relative error between the MLI and HGM temperature distributions
in the simulation results and experimental findings is 14.3%, with a maximum deviation
of 22.3%. The simulation results showed a trend of decreasing temperature gradients
between layers 24 to 60 of the MLI, whereas the experimental results exhibited fluctuations
in the temperature gradients. In the previous literature, researchers extensively discussed
theoretical studies on MLI, often suggesting that temperature gradients within insulation
layers decrease as temperatures increase. However, the experimental results indicate that
temperature gradients within the insulation layers fluctuate with increasing temperatures.
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To explain this phenomenon, the apparent thermal conductivity distribution of the insula-
tion layers was calculated on the basis of experimental data at the midpoint of the 1/2 MLI
layer, which was located at a cylindrical radius with a curvature of 0.495 m. According to
Fourier’s law, the apparent thermal conductivity can be calculated via Equation (30):

CIDIH(%’)

" 2nl(T, - T.) (30)
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Figure 15. Comparison between theoretical simulations and experimental results of the temperature
distribution across the MLI system.

On the basis of the equation above, the apparent thermal conductivity of the 60-layer
MLI with glass microspheres was 2.887 x 10~* W/ (m-K). To better reflect the variation
in apparent thermal conductivity with the number of layers, segmented calculations of
apparent thermal conductivity were conducted on the basis of the experimental data.

As shown in Figure 16, layers 0 to 60 were divided into five regions labeled I to V.
The regions I to V are depicted in Figure 2. The apparent thermal conductivity for each
region was calculated on the basis of the interlayer temperature. The temporal variation in
apparent thermal conductivity between layers of MLI is depicted in Figure 16a. Region I
had the highest values, whereas Region V had the lowest values. In contrast, Regions II, 111,
and IV displayed notable fluctuations in apparent thermal conductivity, which correlated
with variations in ambient temperature.

To further illustrate the trend in apparent thermal conductivity with increasing layer
number, the average temperatures and flow rates from 72 to 96 h, 96 to 20 h, and 120 to
144 h were taken as sample points. The computed values for Region I represent the appar-
ent thermal conductivity between the 0-6th layers, and this process continues sequentially.
Figure 16b shows the variation in apparent thermal conductivity with increasing inter-
layer temperature, which significantly fluctuated as the layer number (and temperature)
increased. The apparent thermal conductivity reached a value of 1.721 x 10~* W/(m-K) in
the temperature range of 4.62-34.2 K and 5.342 x 10~* W/ (m-K) in the range of 179-260 K.
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Figure 16. Apparent thermal conductivity of multilayer insulation as a function of (a) test time and
(b) the number of insulation layers.

In the theoretical analysis of multilayer insulation, the heat transfer coefficient varies
with temperature, indicating that the apparent thermal conductivity of MLIs is a function
of temperature. The experimental results indicated that the use of MLI containing hollow
glass microspheres as spacers resulted in fluctuations in the apparent thermal conduc-
tivity with increasing temperature. According to the expressions for solid heat transfer
and radiative heat transfer, both monotonically increase with temperature. Conversely,
under high vacuum, on the basis of rarefied gas theory [25], the gas thermal conductivity
decreases with increasing temperature. Therefore, in the MLI heat transfer process, the
gas conduction term dominates in the thermal insulation layers 0 to 24, resulting in an
increasing temperature gradient. In layers 24 to 36, solid conduction becomes predomi-
nant, leading to a decreasing temperature gradient. In this range, the trends observed in
both simulation and experiment are consistent. In the outer thermal insulation layers, the
experimental data reveal a contrasting trend to simulation, which could be attributed to
the dominance of the gas conduction term instead. The observed changes in the dominant
term are likely attributable to an uneven distribution of pressure. Although direct measure-
ment of pressure within the insulation layer is challenging, experimental temperature data
and extensive theoretical research on MLI heat transfer mechanisms provide substantial
evidence to support this assertion.

5. Conclusions

In the experiment, MLI with hollow glass microspheres (HGMs) as spacers and liquid
helium as the working fluid were used to study the thermal insulation performance of a
liquid helium Dewar system. The following conclusions were drawn:

(1) The experimental system utilizing the MLI-HGMSs presented an average daily boil-
off rate of 14.4%, heat leakage of 6.6 W, and a heat flux of 2.254 W/ m? from the
inner container.

(2) A theoretical thermal analysis of the experimental Dewar was performed, leading to
the derivation of a relationship between the heat leakage, evaporation rate, enthalpy,
and internal energy. The heat leakage of the neck tube has a significant effect on
the evaporation.

(3) The uncertainty of the temperature sensors is 1.16%, while the comprehensive mea-
surement uncertainty of the system is 2.78%. There exists a certain degree of discrep-
ancy between the simulated and experimental results of the interlayer temperature
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distribution of the insulation layer, with an overall error of 14.3% and a maximum
error of 22.3%.

(4) The apparent thermal conductivity of different layers of MLI is temperature-
dependent, as supported by extensive literature indicating a unidirectional increase
in apparent thermal conductivity with increasing temperature. In this system, ex-
perimental analysis revealed that the overall apparent thermal conductivity of the
60-layer MLI, operating at a cold end of 4.63 K and an ambient temperature of 286 K,
was 2.887 x 10~* W/ (m-K). The apparent thermal conductivity between the layers
of insulation exhibited significant fluctuations with temperature, ranging from a
maximum of 5.342 x 10~* W/ (m-K) to a minimum of 1.721 x 104 W/(m-K).

(5) During the heat transfer process in MLI with HGMs, the dominant heat transfer
mechanisms are likely to vary with temperature. This phenomenon is potentially
associated with the non-uniform distribution of pressure following complete cooling.

In this work, passive insulation performance studies were successfully conducted for
the test system in the liquid helium temperature range. In future studies, the system will
incorporate an external GM cooler to re-liquefy the evaporated helium gas and return it to
the Dewar. The focus will be on investigating the impact of the active cooling structure on
the flow field, particularly the condensation efficiency, energy consumption, and pressure
variations in the internal fluid at different cold head positions. This research is of significant
importance for the zero-evaporation storage of liquid helium.
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Nomenclature
Nomenclature
Q heat leakage, W
A equivalent area,m?
L length of neck tube, m
A thermal conductivity, W/ (m-K)
1 equivalent length, m
r curvature radius of multilayer insulation, m
T absolute temperature, K
m mass flow rate, kg/s
gmg  daily average mass flow rate, kg/d
%4 inner container volume
«g  daily boil-off rate
qo0 volumetric flow rate under standard conditions, m3/s
00 density of helium gas under standard conditions, kg/m?>
hy enthalpy of helium vent gas under actual conditions, J/kg
c specific heat capacity at constant pressure of helium, J/ (kg-K)
e enthalpy of cold helium gas leaving neck tube under actual conditions, J/kg
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Qic heat leakage of inner container, W
Qut  heat leakage of neck tube, W

€ effective emissivity
n dynamic viscosity
l molecular free path
Kn Knudsen number

Y specific heat ratio related to the gas between layers, 1.4 for air
R gas constant, 8.314 J/ (mol-K)
o Stefan-Boltzmann constant, 5.67 x 1078 W/ (mZ-K4>

molar mass related to gas between layers, for air, 29 g/mol

=

characteristic temperature between layers, K
characteristic pressure between layers, pa
constant related to gas

constant related to multilayer insulation
spacer sparsity of multilayer insulation

O™ > & <

distance between layers

Aa apparent thermal conductivity, W/ (m-K)
(o) total heat flux, W

PFD  process flow diagram

Subscripts
nt neck tube
il insulation layer
8 gas
h hot boundary
c cold boundary
rc radiation conduction
gc gas conduction
sc solid conduction
dn Dacron net
References
1. Van Sciver, SSW.; Timmerhaus, K.D.; Clark, A.E. Helium Cryogenics; Springer: New York, NY, USA, 2012.
2. Balibar, S. Laszlo Tisza and the two-fluid model of superfluidity. Comptes Rendus. Phys. 2017, 18, 586-591.
3. Hastings, L.J.; Plachta, D.W.; Salerno, L.; Kittel, P. An overview of NASA efforts on zero boiloff storage of cryogenic propellants.
Cryogenics 2001, 41, 833-839.
4. Tseng, C.; Yamaguchi, M.; Ohmori, T. Thermal conductivity of polyurethane foams from room temperature to 20 K. Cryogenics 1997,
37,305-312.
5. Liu, Z; Li, Y; Xie, F; Zhou, K. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on
orbit period. Appl. Therm. Eng. 2016, 98, 430-439. [CrossRef]
6.  Allen, M.S.; Baumgartner, R.G.; Fesmire, ].E.; Augustynowicz, S.D. Advances in microsphere insulation systems. AIP Conf. Proc.
2004, 710, 619-626.
7. Naes, L.G,, Jr;, Dammann, R. Multilayer insulation performance at low cold boundary temperatures. In Proceedings of the
Cryogenic Optical Systems and Instruments IX, Seattle, WA, USA, 8 July 2002; Volume 4822, pp. 94-103.
8.  Vanderlaan, M.; Stubbs, D.; Ledeboer, K.; Ross, ]J.; Van Sciver, S.; Guo, W. Repeatability Measurements of Apparent Thermal
Conductivity of Multilayer Insulation (MLI). IOP Conf. Ser. Mater. Sci. Eng. 2017, 278, 012195. [CrossRef]
9. Shu, Q.S.; Fast, RW.; Hart, H.L. Heat flux from 277 to 77 K through a few layers of multilayer insulation. Cryogenics 1986,
26, 671-677. [CrossRef]
10.  Sun, PJ.; Wu, ].Y,; Zhang, P; Xu, L.; Jiang, M.L. Experimental study of the influences of degraded vacuum on multilayer insulation
blankets. Cryogenics 2009, 49, 719-726. [CrossRef]
11. Bapat, S.L.; Narayankhedkar, K.G.; Lukose, T.P. Experimental investigations of multilayer insulation. Cryogenics 1990, 30, 711-719.
[CrossRef]
12.  Hastings, L.J.; Martin, J.J. Experimental testing of a foam/multilayer insulation (FMLI) thermal control system (TCS) for use on a

cryogenic upper stage. AIP Conf. Proc. 1998, 420, 331-341.

125



Energies 2025, 18, 1349

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Hastings, L.J.; Hedayat, A.; Brown, T.M. Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation
for Cryogenic Storage. 2004. Available online: https:/ /ntrs.nasa.gov/api/citations/20040121015/downloads/20040121015.pdf
(accessed on 16 December 2024).

Zheng, J.; Chen, L.; Wang, ].; Xi, X.; Zhu, H.; Zhou, Y.; Wang, ]. Thermodynamic analysis and comparison of four insulation
schemes for liquid hydrogen storage tank. Energy Convers. Manag. 2019, 186, 526-534.

Zhang, C.; Li, C; Jia, W.; Pang, Y. Thermodynamic study on thermal insulation schemes for liquid helium storage tank.
Appl. Therm. Eng. 2021, 195, 117185.

Zheng, J.; Chen, L.; Wang, P.; Zhang, J.; Wang, ].; Zhou, Y. A novel cryogenic insulation system of hollow glass microspheres and
self-evaporation vapor-cooled shield for liquid hydrogen storage. Front. Energy 2020, 14, 570-577. [CrossRef]

Wawryk, R.; Rafatowicz, ]. Heat transfer in microsphere insulation. J. Therm. Anal. Calorim. 1988, 34, 249-257.

Wang, P; Liao, B.; An, Z.; Yan, K.; Zhang, ]. Measurement and calculation of cryogenic thermal conductivity of HGMs. Int. |. Heat
Mass Transf. 2019, 129, 591-598.

Fesmire, ].E.; Augustynowicz, S.D. Thermal performance testing of glass microspheres under cryogenic vacuum conditions.
AIP Conf. Proc. 2004, 710, 612-618.

Rugaiganisa, B.M.; Yoshihara, T.; Yoshiwa, M.; Nakagawa, S.; Hirai, A. Experimental investigation on heat leak into a liquid
helium Dewar. Cryogenics 1990, 30, 942-946.

Zuo, Z.; Jiang, W.; Qin, X.; Huang, Y. A numerical model for liquid—vapor transition in self-pressurized cryogenic containers.
Appl. Therm. Eng. 2021, 193, 117005. [CrossRef]

McIntosh, G.E. Layer by layer MLI calculation using a separated mode equation. In Advances in Cryogenic Engineering; Springer:
Boston, MA, USA, 1994; pp. 1683-1690.

Yin, L.; Yang, H.; Ju, Y. Review on the key technologies and future development of insulation structure for liquid hydrogen
storage tanks. Int. |. Hydrogen Energy 2024, 57, 1302-1315. [CrossRef]

Wang, P; Ji, L.; Yuan, J.; An, Z.; Yan, K.; Zhang, ]. Modeling and optimization of composite thermal insulation system with HGMs
and VDMLI for liquid hydrogen on orbit storage. Int. J. Hydrogen Energy 2020, 45, 7088-7097. [CrossRef]

Sundén, B.; Fu, J. Heat Transfer in Aerospace Applications; Academic Press: Cambridge, MA, USA, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

126



MDPI AG
Grosspeteranlage 5
4052 Basel
Switzerland
Tel.: +41 61 683 77 34

Energies Editorial Office
E-mail: energies@mdpi.com

www.mdpi.com/journal/energies

/

MDPI

F

Disclaimer /Publisher’s Note: The title and front matter of this reprint are at the discretion of the Guest
Editor. The publisher is not responsible for their content or any associated concerns. The statements,
opinions and data contained in all individual articles are solely those of the individual Editor and
contributors and not of MDPL MDPI disclaims responsibility for any injury to people or property

resulting from any ideas, methods, instructions or products referred to in the content.






E| Academic Open
‘¢ Access Publishing

t mdpi.com ISBN 978-3-7258-5252-9




