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Preface

This Reprint surveys state-of-the-art research on laser-based sensing for remote sensing, with
emphasis on spectral imaging and Lidar. Its scope spans the ultraviolet to the mid-infrared and covers
instrumentation; system design; retrieval algorithms; calibration and standardization; deployment
strategies; and data processing. The aim is to provide a coherent view of how advances in
photonics and computation are transforming measurements of the atmosphere, land, ocean, and
urban environments.

Our motivation is twofold. First, society increasingly depends on precise, traceable observations
to support air-quality management, climate and weather services, natural-hazard response, resource
assessment, and autonomous sensing. Second, rapid progress in compact lasers, integrated
photonics, and real-time analytics enables rugged, networked systems to transition from laboratory
prototypes to sustained field operation. The papers collected here document this transition through
laboratory validation, field campaigns, and comparative studies, and they highlight themes of
miniaturization, stability, calibration, multimodal data fusion, and interoperability.

This Reprint addresses researchers and engineers in photonics, remote sensing, environmental
science, and robotics, as well as graduate students, industrial practitioners, and public agencies
seeking reliable optical tools for environmental and industrial monitoring. By bringing together
fundamentals, instrument architectures, retrieval methods, and application case studies, this Reprint

aims to serve as a practical reference and a catalyst for cross-disciplinary collaboration.

Jianfeng Chen, Ming Zhao, and He Tian
Guest Editors
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The rapid advancement of optoelectronics and precision measurement technologies
has made laser detection an essential and pioneering tool in contemporary remote sensing.
Ranging from highly sensitive spectral imaging and Lidar with exceptional spatial reso-
lution to innovative applications in environmental monitoring and biomedical imaging,
laser detection has fundamentally transformed the methods by which we acquire, interpret,
and utilize information about our environment [1-3]. This Special Issue, titled “Laser
Detection: Remote Sensing Applications from Spectral Imaging to Lidar,” presents recent
technological breakthroughs and a diverse range of application achievements in the field,
highlighting the broad potential of laser detection technologies in both basic research and
engineering applications.

In recent years, laser detection technology has achieved substantial advancements in
wavelength coverage, sensitivity, system miniaturization, and intelligent data processing [4-7].
The advent of next-generation spectral lasers, broadband detectors, and integrated optical
components has endowed laser spectroscopic imaging with distinct advantages in molec-
ular identification and quantitative analysis [8-10]. Simultaneously, Lidar has become a
versatile tool, widely used in atmospheric remote sensing, surface mapping, ecological
monitoring, autonomous driving, and space exploration [11-13]. Despite these advances,
several major challenges remain in this field. Key issues include further improving the
spatial and temporal resolution of spectroscopic imaging, suppressing background inter-
ference, and achieving efficient integration and cross-calibration of data from multiple
platforms and sensors [14,15]. Furthermore, addressing weak signal detection and multi-
parameter retrieval in complex environments will require the synergistic optimization of
algorithms and system architectures—a key direction for future research [16,17].

The articles in this Special Issue encompass a broad spectrum of topics, including
novel mechanisms for laser-based atmospheric transport and absorption detection, in-
novations in Lidar technology and signal processing, advances in detector arrays and
system calibration, developments in multi-source and multi-modal lasers and imaging,
applications in atmospheric remote sensing and environmental monitoring, and emerging
trends and engineering applications in the field. Some studies focus on reconstructing
atmospheric transport and absorption fields, proposing new laser transmission models
and gas absorption imaging techniques that offer theoretical and technical foundations
for high-precision environmental monitoring and flow field diagnostics. Several papers
address system optimization and algorithmic innovation for Lidar in atmospheric profiling,
wind field measurement, and weak target detection, thereby advancing the core applica-
tions of Lidar in environmental and climate remote sensing. In parallel, advancements in

Photonics 2025, 12, 853 https://doi.org/10.3390 / photonics12090853
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detector array consistency calibration, low-cost imaging systems, underwater suppression
and scattering lasers, and cross-disciplinary innovations in novel optical materials for nano-
sensing have broadened the application boundaries of laser systems. This issue further
highlights cutting-edge advances in Al-based noise reduction for laser signals, multi-modal
fusion and system intelligence, and system miniaturization, reflecting the deep integration
of laser detection theory and engineering practice. Collectively, these achievements have
enriched and advanced the field of laser detection, providing a robust foundation for future
multidisciplinary collaboration and practical innovation.

Looking ahead, laser detection is expected to achieve further breakthroughs in ar-
eas such as multi-scale integration and intelligent processing, the development of high-
throughput portable instruments, cross-disciplinary collaboration and standardization, and
the exploration of emerging application domains [18-20]. Specifically, the integration of
multi-band and multi-modal laser signals with artificial intelligence algorithms will further
enhance detection sensitivity and quantitative capabilities in complex environments. The
continued implementation of integrated, miniaturized, and cost-effective laser detection
systems will expand their applications to emerging scenarios such as mobile observation
and emergency monitoring [21]. The convergence of disciplines—including optics, elec-
tronics, computing, and environmental science—will accelerate data standardization and
platform interoperability, facilitating the widespread deployment and international collab-
oration of laser detection technologies [22,23]. Moreover, laser detection will progressively
expand into frontier areas such as ecological monitoring, biomedicine, and urban intelligent
sensing, thereby providing robust support for the development of a digital Earth and a
smart society [24,25].

This Special Issue presents the latest advances in laser detection, spanning from fun-
damental principles to engineering applications, and highlights the deep integration and
innovation-driven development of this technological domain. We anticipate that these stud-
ies will further stimulate interest and investment from both the academic community and
industry, thereby advancing the value of laser detection technology in scientific discovery
and societal applications.

Acknowledgments: The Guest Editors of this Special Issue, “Laser as a Detection: From Spectral
Imaging to LiDAR for Remote Sensing Applications”, would like to express our sincere thanks and
deep appreciation to all authors published in this Special Issue for their contribution to its success.
We also thank our reviewers, as well as the Photonics editors and staff for their outstanding support.
During the preparation of this manuscript the author used OpenAl for the purposes of language
polishing and literature search. The authors have reviewed and edited the output and take fully
responsible for the content of this publication.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xu, F; Qiao, D.; Xia, C.; Song, X.; Zheng, W.; He, Y.; Fan, Q. A semi-coaxial MEMS LiDAR design with independently adjustable
detection range and angular resolution. Sens. Actuators A Phys. 2021, 326, 112715. [CrossRef]

2. Zhang, H.-S; Qiao, L.-L.; Cheng, Y. Air lasing: Remote high-resolution spectroscopy for atmospheric sensing. Acta Phys. Sin.
2022, 71, 233401. [CrossRef]

3. Ran, Y; Song, S.; Hou, X.; Chen, Y.; Chen, Z.; Gong, W. Multi-echo hyperspectral reflectance extraction method based on full
waveform hyperspectral LIDAR. ISPRS ]. Photogramm. Remote Sens. 2024, 207, 43-56. [CrossRef]

4. Li, A-W,; Shan, T.-Q.; Guo, Q.; Pan, X.-P; Liu, S.-R.; Chen, C.; Yu, Y.-S. Fiber Fabry-Perot interferometric high-temperature sensors
for aerospace monitoring. Chin. Opt. 2022, 15, 609-624. [CrossRef]

5. Han, M.-M.; Wei, H.-Y,; Zou, W.; Meng, L.; Zhang, M.-P.; Meng, X.; Chen, W.-W.; Shao, H.; Wang, C.-]. Rapid on-site detection

of coumatetralyl in environmental water based on surface-enhanced Raman spectroscopy. Environ. Chem. 2023, 42, 1524-1532.
[CrossRef]



Photonics 2025, 12, 853

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Liu, W.-Q. Opportunities and Challenges for Development of Atmospheric Environmental Optics Monitoring Technique Under
“Double Carbon” Goal. Acta Opt. Sin. 2022, 42, 0600001. [CrossRef]

Yang, S.; Kim, J.; Swartz, M.E.; Eberhart, ] K.; Chowdhury, S. DMD and microlens array as a switchable module for illumination
angle scanning in optical diffraction tomography. Biomed. Opt. Express 2024, 15, 5932-5946. [CrossRef]

Zhang, F,; Xie, H.; Yuan, L.; Zhang, Z.; Fu, B.; Yu, S; Li, G.; Zhang, N.; Lu, X,; Yao, J.; et al. Background-free single-beam coherent
raman spectroscopy assisted by air lasing. Optics Letter. 2022, 47, 481-484. [CrossRef] [PubMed]

Wang, L.; Zhang, Y.; Liu, J.; Chen, B.; Zhou, M. Mid-infrared dual-comb spectroscopy for multi-component gas analysis in
industrial emissions. Appl. Sci. 2021, 11, 3660. [CrossRef]

Tang, D.; Li, Z.; Xia, H. Clustering of weak fluorescence spectra from bioaerosol in air using laser-induced fluorescence lidar. Opt.
Express 2025, 33, 24396-24412. [CrossRef]

Wen, H.-Y.; Weng, Y.-Q.; Chen, R.-Y,; Hsu, H.-C.; Yeh, Y.-T.; Chiang, C.-C. A double helix-shaped optical fiber sensor for
non-endoscopic diagnosis of gastrin-17. Analyst 2022, 147, 4562—-4569. [CrossRef]

Zhou, J.; Xia, Y.-P; Li, H.-H.; Wang, L.; Zhang, K.; Sun, Q. OrchardQuant-3D: Drone-LiDAR fusion for 3D phenotyping of floral
traits. Plant Biotechnol. ]. 2025, 23, 1254-1270. [CrossRef]

Haierxin Photonics R&D Team; Liu, X.; Zhang, F.; Li, Q. Mid-infrared quantum cascade lasers for non-invasive medical diagnostics.
J. Biophotonics 2025, 18, €202400123. [CrossRef]

Chen, P-P; Whitfield, C.; Zhang, F-H.; Li, X.; Wang, G. LPVIMO-SAM: Multi-sensor SLAM with polarization vision for degraded
environments. IEEE Robot. Autom. Lett. 2025, 10, 4500-4507.

Shi, B.; Zheng, M.-Y,; Hu, Y.; Zhao, Y.; Shang, Z.; Zhong, Z.; Chen, Z.; Luo, Y.-H.; Long, J.; Sun, W,; et al. A hyperfine-
transition-referenced vector spectrum analyzer for visible-light integrated photonics. Nat. Commun. 2025, 16, 61970. [CrossRef]
[PubMed]

Beer, M.; Haase, J.; Charbon, E. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence
Detection. Sensors 2018, 18, 4338. [CrossRef]

Carredn, R.V,; Rodriguez-Hernandez, A.G.; Serrano de la Rosa, L.E.; Gervacio-Arciniega, ].J.; Krishnan, S.K. Mechanically Flexible,
Large-Area Fabrication of Three-Dimensional Dendritic Au Films for Reproducible Surface-Enhanced Raman Scattering Detection
of Nanoplastics. ACS Sens. 2025, 10, 1747-1755. [CrossRef]

Svanberg, S.; Kaldvee, J.; Andersson, M.; Persson, L. Laser spectroscopy in ecological and medical applications: From leaf
photosynthesis to cancer diagnostics. |. Biomed. Opt. 2021, 26, 080601. [CrossRef]

Chen, M.; Liu, D.; Qiao, L.; Zhou, P; Feng, J.; Ng, KW,; Liu, Q.; Wang, S.; Pan, H. In-situ/operando Raman techniques for
in-depth understanding of electrocatalysis. Chem. Eng. J. 2023, 457, 141280. [CrossRef]

Sigernes, E; Dyrland, M.; Peters, N.; Lorentzen, D.; Baddeley, L. Hyperspectral imaging from unmanned aerial vehicles for Arctic
environmental monitoring. Remote Sens. Environ. 2023, 287, 113482. [CrossRef]

Zhang, J.; Wang, C.; Chen, Y,; Xiang, Y.; Huang, T.; Shum, P.P.; Wu, Z. Fiber structures and material science in optical fiber
magnetic field sensors. Front. Optoelectron. 2022, 15, 34. [CrossRef]

Chen, B.; Xu, T.; Wang, S.; Li, Y.; Zhang, G. Optical fiber sensors: Principles and applications in smart infrastructure. Sensors 2022,
22,8793. [CrossRef]

Kar, J.; Vaughan, M.A; Lee, K.-P; Tackett, J.L.; Avery, M.A.; Garnier, A.; Getzewich, B.].; Hunt, W.H.; Josset, D.; Liu, Z.; et al.
CALIPSO lidar calibration at 532 nm: Version 4 nighttime algorithm. Atmos. Meas. Tech. 2018, 11, 1459-1479. [CrossRef] [PubMed]
Zhang, F.; Huang, X.; Ren, X; Sun, Y,; Liu, Z. Underwater lidar based on blue-green supercontinuum laser for marine particle
profiling. Opt. Lasers Eng. 2025, 166, 107612. [CrossRef]

Brosseau, C.L.; Colina, A.; Perales-Rondon, J.V.; McCabe, E.M.; Smith, W.E.; Ren, B.; Wang, X. Electrochemical surface-enhanced
Raman spectroscopy. Nat. Rev. Methods Primers 2023, 3, 79. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.



hv

> photonics

Review

Evolution of Single Photon Lidar: From Satellite Laser Ranging
to Airborne Experiments to ICESat-2

John J. Degnan t

Independent Researcher, Odenton, MD 21113, USA; jjdegnan3rd@gmail.com

* The author is a semi-retired technical consultant who previously held several research and supervisory
positions at NASA Goddard Space Flight Center (1964-2003) and served as Chief Scientist at Sigma Space
Corporation (2003-2019) before entering semi-retirement as a part-time consultant. He also taught a
two-semester graduate course in Quantum Electronics as a Distinguished Adjunct Professor of Physics at the
American University in Washington, DC, from 1989 to 1993. He co-founded the International Laser Ranging
Service (ILRS) in 1997 and served as its first Governing Board Chairman from 1998 to 2002. He is a Fellow of
Optica (formerly the Optical Society of America) and the International Association for Geodesy, an IEEE Senior
Life Member, and a member of the Sigma Pi Sigma Physics and the Drexel 100 Honor Societies.

Abstract: In September 2018, NASA launched the ICESat-2 satellite into a 500 km high Earth orbit. It
carried a truly unique lidar system, i.e., the Advanced Topographic Laser Altimeter System or ATLAS.
The ATLAS lidar is capable of detecting single photons reflected from a wide variety of terrain (land,
ice, tree leaves, and underlying terrain) and even performing bathymetric measurements due to its
green wavelength. The system uses a single 5-watt, Q-switched laser producing a 10 kHz train of
sub-nanosecond pulses, each containing 500 microjoules of energy. The beam is then split into three
“strong” and three “weak” beamlets, with the “strong” beamlets containing four times the power of
the “weak” beamlets in order to satisfy a wide range of Earth science goals. Thus, ATLAS is capable
of making up to 60,000 surface measurements per second compared to the 40 measurements per
second made by its predecessor multiphoton instrument, the Geoscience Laser Altimeter System
(GLAS) on ICESat-1, which was terminated after several years of operation in 2009. Low deadtime
timing electronics are combined with highly effective noise filtering algorithms to extract the spatially
correlated surface photons from the solar and/or electronic background noise. The present paper
describes how the ATLAS system evolved from a series of unique and seemingly unconnected
personal experiences of the author in the fields of satellite laser ranging, optical antennas and space
communications, Q-switched laser theory, and airborne single photon lidars.

Keywords: single photon lidar; satellite laser ranging; Q-switched microlasers; array detectors; noise
filters; 3D imaging; scanners; ICESat-2

1. Introduction

Theodore Maiman at the Hughes Research Laboratory in California reported the first
ruby laser in 1960 [1], and the National Aeronautics and Space Administration (NASA) in
the USA was quick to identify and implement potential space applications. In 1964, Dr.
Henry H. Plotkin, Head of the Instrument Electro-optics Branch at the NASA Goddard
Space Flight Center (GSFC), led a team that, on 31 October 1964, measured the distance
to a satellite, Explorer 22B, by transmitting Q-switched ruby laser pulses at 1 Hz to a
collection of retroreflectors mounted on the satellite, which reflected the pulse back to
the ground station [2]. The telescope, located at the Goddard Optical Research Facility
(GOREF) a few miles from GSFC, was guided by two individuals seated on the telescope and
independently controlling the azimuth and elevation axes to keep the telescope crosshairs
on the sunlit satellite at night. By measuring the roundtrip time of flight (TOF) and
multiplying by the speed of light, one could then compute the distance to the satellite
for precise orbit determination. At the time, I was a first-year cooperative work/study

Photonics 2024, 11, 924. https:/ /doi.org/10.3390/photonics11100924 4
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student at GSFC and was honored to serve as a junior member of Dr. Plotkin’s SLR team
following my freshman year at Drexel Institute of Technology (now Drexel University) in
Philadelphia. Upon graduating from Drexel with a B.S. in Physics in 1968, I was offered
a permanent position in Dr. Plotkin’s branch. Daylight ranging using computer-driven
telescopes was first achieved by GSFC’s Don Premo in 1969. The earliest Satellite Laser
Ranging (SLR) measurements were accurate to about 2 m, representing roughly a factor
of 40 improvement relative to earlier radar measurements. The accuracy was limited by
a number of factors, including the temporal width of the Q-switched ruby laser pulse
(~1 ps), variable propagation times within the early photomultiplier tube detectors which
amplified the weak return signals, the precision of the electronics measuring the time
interval between the start and stop event, the temporal broadening of the return pulse
caused by the spatial distribution of the retroreflectors on the satellite, and uncertainties in
delays caused by the intervening atmosphere.

In 1969, Professor Carroll O. Alley, a physics professor at the University of Maryland
in College Park, led a joint NASA /university team of researchers in the first successful
attempt to measure the distance to an array of reflectors landed on the Moon by NASA’s
Apollo 11 astronauts [3]. Over the next three decades that followed, SLR ranging errors
were reduced to a few mm [4] through the use of the following:

e frequency-doubled mode-locked Nd:YAG laser transmitters or Q-switched microlasers
with sub-nanosecond pulse widths at a wavelength of 532 nm;

e  MicroChannel Plate PhotoMultipliers (MCP/PMTs), which, unlike earlier PMTs, could
record and amplify single photons while tightly restricting the electron path within
the detector;

e  highly accurate Time Interval Units (TIUs) or Event Timers (ETs) such as the HP5370
produced by Hewlett Packard;

e  acalibration target mounted on a post near the SLR station with the distance between
the target and the telescope “origin” (defined as the intersection of the telescope
azimuth and elevation axes) periodically surveyed with mm accuracy and monitored
for consistency over time;

e and finally, collocated meteorological instruments that monitored the atmospheric pres-
sure and temperature at the SLR station to help account for changing atmospheric delays.

Satellite retroreflector array designs have also evolved over time in order to enhance
the received signal strength while simultaneously minimizing the temporal spreading of
the reflected pulse and/or the sensitivity of the measurement to the array angle of attack.
This can be accomplished by distributing retroreflectors over (1) the surface of passive
spherical satellites (e.g., Starlette, LAGEOS, etc.) used in the study of the Earth’s gravity
field, tectonic plate motion, etc. or (2) retroreflectors distributed over a segment of a sphere
(instead of earlier flat panels) for higher altitude observational or navigation satellites,
which always have a flat surface oriented toward Earth [5].

In the late 1960s, the USA and France implemented and deployed a total of five SLR
stations. As the scientific demands for SLR technology grew, additional nations sponsored
a number of fixed stations, often associated with preexisting university astronomical
observatories hosting meter-class telescopes. In addition, a number of mobile stations were
designed to support studies of tectonic plate motion at a variety of sites, initially confined
largely to North America and Europe. NASA developed a total of eight Mobile Laser
(MOBLAS) stations, each of which was housed in two rather large trailers. NASA later
funded the development of smaller Transportable Laser Ranging Systems (TLRS 1 through
4), which were each contained within a single, smaller trailer in order to simplify transport
to remote sites such as French Polynesia and Easter Island and to move between multiple
sites in Europe and North America to better study global tectonic plate motion.

NASA funded the University of Texas at Austin to develop TLRS-1, while electrical
engineer Thomas S. Johnson at GSFC, a key member of Henry Plotkin’s original SLR team,
led the development of TLRS-2. Ultimately, TLRS-2 alternated between sites in Chile,
French Polynesia, and Easter Island. Easter Island was the only above-water location
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on the Nazca tectonic plate and was roughly 1900 miles from the nearest land location.
During the 1980s, my Advanced Electro-Optical Instrument Section was tasked by my then
NASA branch head, Dr. John H. McElroy, to upgrade the MOBLAS and TLRS-2 station
performance. Over time, additional transportable SLR stations were developed by France
(FTLRS) [6], Germany (miniSLR), China (TROS), Korea (ARGO-M), etc.

In 1997, in order to better coordinate international SLR research activities, the author
co-founded the International Laser Ranging Service (ILRS) with Dr. Bob Schutz of the
University of Texas at Austin [7]. In 1998, I was selected as one of two NASA representatives
to the International Governing Board (GB) and elected by the GB as its first chairman from
1998 until my retirement from NASA in 2002. Dr. Michael Pearlman of the Smithsonian
Institution was elected head of the Central Bureau and still holds that position today.
Presently, there are approximately 40 permanently located SLR stations, most of which
are in the Northern Hemisphere. For a comprehensive review of recent SLR scientific
and technological trends, the reader is referred to several comprehensive review articles
published in 2019 [7-9].

2. NASA SLR2000: The First Single-Photon-Sensitive SLR Station

In 1989, I left the GSFC Engineering Directorate for the Science Directorate to serve as
Deputy Manager of NASA’s Crustal Dynamics Project (CDP) under Project Manager John
M. Bosworth. Within a few years, I was appointed head of the newly formed Space Geodesy
and Altimetry Projects Office within the same directorate. In 1994, Dr. David E. Smith, head
of the Laboratory for Terrestrial Physics and an early and prolific scientific user of SLR data,
requested a meeting with me. The purpose of the meeting was to discuss the possibility
of reducing the cost of SLR operations in order to meet the growing science demands
within the available budget. These demands included measuring the Earth’s gravity field
via precise satellite orbits, global tectonic plate motion, orbital support of spaceborne
microwave radars and laser altimeters, as well as global navigation satellites such as GPS,
GLONASS, Galileo, Beidou, etc. The major cost drivers of the existing SLR stations included
(1) the use of powerful and technically complex sub-nanosecond pulse lasers, precision
timing equipment, expensive quasi-meter-class, high-precision tracking telescopes and their
protective domes, the need for supporting meteorological equipment for atmospheric delay
correction, aircraft radars to protect airborne personnel from potentially eye-damaging
beam intensities and (2) the resulting manpower costs per shift, typically three to four
people, to operate and/or monitor a wide range of complex hardware. Clearly, any new
cost-saving SLR station design had to (1) be highly automated, (2) utilize smaller and less
expensive lasers and tracking telescopes, and (3) be able to operate in an eye-safe mode.
With regard to the system automation requirement, I relied heavily on my longtime NASA
colleague, Ms. Jan McGarry, a talented mathematician and computer programmer who
had been assigned to my Advanced Electro-optical Instrument Section in 1979 and who
thankfully followed me in the early 1990s when I transferred from GSFC Engineering to
the Science Directorate.

For decades, the laser beam in SLR systems was transmitted to the target via a narrow
tube running parallel to the optical axis of the receiver telescope. Any laser operating in the
lowest order and least divergent spatial mode, TEMy, has a Gaussian beam shape. In the
far field, the TEMyg mode retains its Gaussian shape but has a beam diameter between 1/ e2
intensity points given by D(R) = 2AR/mw where A is the laser wavelength, R is the range
to the target, and w is the Gaussian beam waist radius where the phase front is planar,
usually located within the laser itself. Clearly, as the beam diameter at the target grows
with respect to the target array, fewer photons are reflected back to the receiver telescope
for a given pulse energy. As a result, more powerful lasers and/or larger meter-class
receive telescopes had routinely been used to obtain adequate laser returns from the most
distant satellites and especially from reflectors on the Moon. This clearly resulted in more
expensive systems and/or greatly increased the threat to eye safety.
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The problems associated with both system costs and eye safety reminded me of
research on transmitter and receiver optical antenna gain that I had supervised in the
mid-1970s with a young electrical engineer, Bernard J. Klein [10,11]. The latter effort was in
support of proposed spaceborne CO; heterodyne laser communications systems, which
were designed to operate at an even more divergent infrared wavelength of 10.6 um.

The solution was to use the existing large receive telescope diameter to transmit a much
larger and therefore less divergent beam that would deposit orders of magnitude more
energy/power onto either a passive target or a remote communications terminal telescope.
The same holds true for large meter-class astronomical telescopes, which, to reduce the
overall length, often use secondary mirrors that partially block both the transmitted and
received light. As a result, the optimum expanded Gaussian beam diameter that exits
the telescope and maximizes the energy incident on the satellite is a function of both the
primary and secondary mirror diameters [10]. In the process, however, the radial truncation
of the transmitted beam by the finite aperture of the telescope’s primary mirror/lens and/or
central obscuration by a secondary mirror (if any) causes the Gaussian shape to evolve into
a strong central lobe surrounded by a series of increasingly weaker rings in the far field
of the telescope [10]. Furthermore, the presence of a secondary mirror requires a larger
Gaussian beam diameter at the primary to increase the fraction of light exiting the telescope
and therefore maximize the intensity of the central lobe in the far field. At the same time,
however, a secondary mirror causes a greater fraction of the transmitted laser energy to
be transferred from the central lobe to the surrounding rings relative to the no secondary
mirror case. In all cases, however, the intensity of the first and strongest ring is more than
two orders of magnitude less than that of the central lobe. The resulting far-field gain of
the optimized transmitting telescope when pointed correctly at the target is given by the
following simple equation [10]:
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where A, = 7t4? is the area of the telescope primary mirror or lens, y = b/a < 0.4 is the ratio of
the secondary mirror radius b to the primary mirror radius a, and A is the laser wavelength.
The light returning from the target is also reduced by an additional factor of gg = (1 — 7?)
due to blockage of incoming light by the secondary mirror. The secondary mirror can also
influence the light distribution produced in the detector plane [11]. The combined effects
are examined in [5] for the case of a Lunar Laser Ranging (LLR) station ranging to a single
retroreflector with diameter D, and it yields the following equation for the number of
photons received by the ground station:
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where 1, is the number of photons transmitted per laser pulse, #; = 17, = 0.66 are estimated
optical efficiencies of the transmit and receive paths in the telescope, 17; = 0.70 is the
assumed detector efficiency, Tatm? is the two-way transmission through the atmosphere (if
any), gt = 1.12 and gg = 1 are the optimized geometric telescope gains in the absence of a
secondary mirror, p is the reflectivity of the retroreflector surfaces, D, is the cube corner
diameter, A is the laser wavelength, and R is the range to the target retroreflector. The final
inequality in Equation (2) assumes estimated values for the various efficiencies [5].

In summary, a much lower pulse energy, transmitted optimally through a common
transmit/receive telescope (see Figure 1) and combined with a single-photon-sensitive
receiver, can be used to obtain an adequate return signal. Furthermore, the combination
of a much lower pulse energy with a much wider beam projected from a common trans-
mit/receive telescope eliminates the risk of eye damage to airborne observers and therefore
the need for aircraft radars and/or groundbased observers. Another option is to trade
off some of this benefit to further reduce the pulse energy requirements on the laser by
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increasing its fire rate and averaging the measured ranges over a short time interval to
create accurate “normal points”. This helps to differentiate temporally correlated target
returns from random photons generated by solar or receiver noise and allows the larger
and more complex, higher energy, low repetition rate, modelocked lasers in conventional
SLR systems to be replaced by much smaller and significantly less expensive passively
Q-switched microchip lasers with repetition rates in the multi-kHz regime [12,13].

OFF AXISTELESCOPE 8
& GIMBAL MOUNT

Figure 1. The prototype NASA SLR2000 system projected a 2 kHz train of low energy, 532 nm,
sub-nanosecond pulses via an unobscured 30 cm primary lens in order to concentrate more photons
on the satellite while simultaneously eliminating potential eye hazards.

A quadrant Multi-Channel PhotoMultiplier Tube was used to keep the received
signal centered in the detector. NASA funding for the actual construction of the SLR2000
prototype began in 1997. I initially named the system “SLR2000” for two reasons: (1) the
prototype was expected to be operational shortly after the start of the new millennium,
and (2) the laser fire rate was increased (coincidentally) from typically less than 10 pulses
per second for NASA legacy systems to 2000 pulses per second. I retired from NASA in
late 2002 to join Sigma Space Corporation in Lanham, MD USA as Chief Scientist and
turned over leadership of the SLR2000 program to my highly competent colleague, Jan
McGarry. Later in 2003, SLR2000 successfully tracked the US TOPEX-Poseidon satellite and
was renamed Next Generation Satellite Laser Ranging (NGSLR) by NASA management.
NGSLR continued to operate successfully until a lightning bolt destroyed it a few years
later. Three copies of an upgraded successor system, the NASA Space Geodesy Satellite
Laser Ranging System (SGSLR), are expected to begin operations at three locations by 2025,
i.e., GSFC in Maryland USA, the McDonald Observatory in Texas USA, and the island of
Ny Alesund in Norway [9].

3. NASA Multikilohertz Microlaser Altimeter (MMLA): The First Airborne Single
Photon Lidar

While examining early SLR2000 data with my NASA colleague, Jan McGarry, I noticed
that a plot of measured satellite range vs predicted range exhibited a linear slope as opposed
to the expected horizontal line. When I questioned Jan about the cause of the discrepancy,
she replied that it was due to a time bias in the predicted orbit. This triggered the following
thought: “If I can see a slope in single photon satellite data due to a time bias, why can’t I
see a real surface slope with a photon-counting lidar?”.

NASA agreed to fund the MMLA prototype via its Instrument Incubator Program.
The Civil Service team included myself, Jan McGarry, and two engineering colleagues,
Thomas Zagwodzki, and Phil Dabney, along with supporting contractors from Honeywell
and the newly formed Sigma Space Corporation. The MMLA or “MicroAltimeter” was
largely based on SLR2000 technology and successfully measured the times-of-flight of
individual photons to deduce the distances between the instrument reference and points
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on the underlying terrain from which the arriving photons were reflected [14]. By imaging
the terrain onto a highly pixelated detector followed by a multi-channel timing receiver,
one can make multiple spatially resolved range measurements of the surface via a single
laser pulse. The horizontal spatial resolution is limited by the optical projection of a single
pixel onto the surface. In short, a 3D image of the terrain within the laser ground spot
is obtained on each laser fire, assuming at least one signal photon is recorded by each
pixel/timing channel. The passively Q-switched microchip Nd:YAG laser transmitter used
in MMLA measured only 2.25 mm in length and was pumped by a single 1.2 Watt GaAs
laser diode. The output was frequency-doubled to take advantage of the narrower beam
divergence out of the telescope as well as the higher detector counting efficiencies and
narrower spectral filters available at the 532 nm wavelength. The transmitter typically
produced a few microjoules of green energy in a sub nanosecond pulse at several kilohertz
rates. The illuminated ground area was imaged by a diffraction-limited, off-axis telescope
onto an ungated, segmented anode photomultiplier with 16 pixels (4 x 4). The effective
receive aperture was about 13 cm. Each anode segment was input to one channel of a “fine”
range receiver (5 cm detector-limited resolution), which recorded the times-of-flight of
the individual photons. A parallel “coarse” receiver provided a lower resolution (>75 cm)
histogram of atmospheric scatterers and centered the “fine” receiver gate on the previous
set of returns, thereby permitting the fine receiver to lock onto ground features with no
apriori range knowledge. In test flights, the system operated successfully at mid-day at
aircraft altitudes up to 6.7 km (22,000 ft), with single pulse laser output energies of only a
few microjoules. It also recorded kHz single photon returns from clouds, soils, man-made
objects, vegetation, and water surfaces. The system also demonstrated a capability to
resolve volumetrically distributed targets, such as tree canopies and the underlying terrain,
and successfully performed wave height measurements and shallow water bathymetry
over the Chesapeake Bay and Atlantic Ocean. The temporally correlated signal photons
were reliably extracted from the random solar and/or detector noise background using an
optimized post-detection algorithm.

4. Single Photon Lidar Development at Sigma Space Corporation

In early 2003, I retired from my 38-year career as a civil servant at NASA GSFC to
take a position as Chief Scientist at Sigma Space Corporation, a relatively new corporation
founded by Dr. Marcos Sirota and Joseph Marzouk. Sigma Space and Honeywell had
provided contractor support to the MMLA Project, and Sigma was greatly interested in
the further development of Single Photon Lidars (SPLs) for the commercial market. Over
the next 15 years, Sigma introduced a variety of airborne single-photon-sensitive lidars, as
summarized in Figure 2. The latter figure is excerpted from a comprehensive review article
on Sigma’s SPL technology [15].

The airborne Multiple Altimeter Beam Experimental Lidar (MABEL) at the top of
Figure 2 was a 16 beam pushbroom lidar developed by Sigma for NASA as a testbed for
the proposed ICESat-2 mission to be discussed in the next section. The High Altitude
Lidar (HAL) and High Resolution Quantum Lidar System (HRQLS or “Hercules”), on
the other hand, were scanning lidars designed for high spatial resolution, 3D imaging
from high altitude aircraft. In the latter instruments, the laser beam was split into a
10 x 10 array of 100 beamlets via a dffractive element whose returns were imaged onto a
matching 10 x 10 array of single photon sensitive detectors, such as a 10 x 10 segmented
anode MicroChannel Plate PhotoMultiplier Tube (MCP/PMT) or a 10 x 10 Single Photon
Avalanche Diode (SPAD) array.

Scanning was accomplished using the optical wedge scanner in Figure 3. A rotating
single wedge traces a circle on the land surface. Over longer ranges at high altitudes, the
receiver array FOV can become displaced along the circumference of the circle from the
array of laser spots on the surface. To restore the overlap, we must add a “compensator
wedge” which deflects the receiver FOV (or transmitter FOV but not both) at approximate
right angles to the scanner wedge deflection. The Sigma Space lidars use an annular
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compensator wedge in which the transmitted laser beams pass unaffected through the
small central hole while the receiver array FOV is angularly displaced opposite to the
direction of rotation so that the detector array views the illuminated area as illustrated in
Figure 3.

Multiple Altimeter Beam Experimental
LiDAR (MABEL) -Pushbroom

Nominal Flight AGL: 65 kft (20 km)

Platform : NASA ER-2

Customer: NASA GSFC

16 beams @ 10 kHz = 0. 160,000 pixels/sec
High Altitude LIiDAR (HAL) -Scanning
Nominal Flight AGL:: 25 to 36 kft (7.6 to 11 km)
Platform : Various

Customer: Government Agencies

100 beams@ 32 kHz = 3.2 Million pixels/sec
High Resolution Quantum LiDAR System

(HRQLS1 and 2 ) - Scanning

Nominal Flight AGL: 6.5 to 15 kft (2 to 4.6 km)
Platform : King Air B200

Sigma Self-funded

100 beams @ 25 kHz/60 kHz = 2.5 to 6 Million

Direction of

Rotation

pixels/sec

Miniature Airborne Topographic Mapper
1 (Mini-ATM) - Scanning

Nominal Flight AGL: 2 to 6 kft (0.6 to 1.8 km)
Platform : Viking 300 UAV

Il Customer: NASA Wallops

Figure 2. Summary of airborne single photon lidars developed at Sigma Space Corporation.

Recelved Photons

Rotation Rotation Rotation
—p — —

nnnnnnn

Ground

2hseca
can = 275f;can7 Beannar Scanner Scanner
=irg
PULSE PULSE AT PULSE
EMITTED GROUND RECEIVED
® (t+7) (t+27)
(@) (b)

Figure 3. A rotating single wedge traces a circle on the terrain. Over longer ranges, the receiver array
FOV will, due to the finite speed of light, become displaced along the circumference of the circle from
the array of laser spots on the surface. Therefore, we often use an annular compensator wedge in
which the transmitted laser beamlets pass unaffected through a small central hole and are deflected
by the optical wedge (a) while the receiver array FOV is angularly displaced opposite to the direction
of rotation so that the detector array is viewing the illuminated area when the photons return from
the surface (b).
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Finally, photons reflected from the underlying terrain are spatially correlated but
mixed with random photons due to solar illumination of the surface and/or intervening
atmosphere as well as possible electronic noise in the receiver. The author previously
developed an equation [16] for solar noise given by
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where N,? = 0.2W/m? Angstrom is the extraterrestrial solar irradiance impinging on the
Earth’s atmosphere at the 532 nm laser wavelength, 7, is the detector efficiency, 7, is the
receiver optical efficiency, /v is the laser photon energy, A, is the area of the collecting
telescope, T is the one way transmission of the atmosphere at zenith, p is the surface
reflectance at the laser wavelength, 0 is the solar zenith angle, i is the angle between the
surface normal and the Sun, and AA and (), are the widths of the spectral and spatial filters.
Thus, to obtain a clear 3D image of the surface, the receiver must have minimal deadtime
between events and noise rejection software must be applied to the collected data. Typically,
a two or three stage filter is used, i.e., one to reject the vast majority of noise relatively
far from the surface followed by additional filtering to reject noise spatially intermingled
with the surface returns. An example of this approach is shown in Figure 4 and final
noise-edited images are provided in Figures 5-7. Figure 8 provides sample data taken over
Greenland in daylight from one beamlet (#6) of the 16 beamlet airborne pushbroom lidar
MABEL The latter systemwas built to simulate the original 16 beamlet lidar proposed as
a demonstration mission for ICESat-2. The figure clearly shows the ability of the lidar to
distinguish the terrain from the background solar radiation over a wide range of slopes.

Figure 4. Editing Noise (a) Unedited point cloud of Greenland terrain (surface reflectivity > 0.9)
shows a fair amount of solar noise above (red haze) and below (blue haze) the surface. (b) same point
cloud image after use of Sigma-developed noise-editing filters.

The success of the high altitude airborne SPLs, designed and manufactured by Sigma
Space Corporation, clearly demonstrated the amazing detail that could be obtained over a
wide variety of landscapes. These included rural and forested areas [17], tall city buildings,
homes, and other manmade structures, rugged and sloped terrain, ice floes, power lines,
and the surface and bottoms of shallow water bodies with depths up to several tens
of meters.
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Sample:
Double Pass

AGL: 7500 ft

Velocity: 180 knots ST U

2D Profile

/ 13 meters physical depth

Figure 5. (Top) Lidar image of the Pacific coastline in Port Lobos, California. (Bottom) Detailed look
along the blue line in the top figure showing a hilltop monastery, the heights of various trees, the
surface of the Pacific Ocean, and the ocean bottom to a depth of 13 m (42.7 ft).

Figure 6. Single photon lidar image of downtown Houston, Texas, taken by the Sigma HRQLS system
(pronounced “Hercules”). Colors were arbitrarily assigned based on height above the ground.

Pinebarrens
Sigma Space

Height
39.0

Figure 7. Side view of an airborne 3D image of a fire tower surrounded by a chain link fence and
trees of varying height. Colors are arbitrarily assigned based on height above the surface.
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Figure 8. Sample surface data from a single channel (#6) of the 16-channel airborne MABELpush-
broom lidar taken over the Greenland ice sheet from an altitude of 20 km [18]. The data demonstrated
the lidar’s ability to observe a wide range of surface slopes in the presence of high-intensity solar (or
detector) noise due to high spatial correlation of the surface counts and a low deadtime receiver.

5. Configuring the ICESat-2 Single Photon Lidar

NASA had previously flown multiple spaceborne multiphoton lidars, including the
following:

the Mars Orbiter Laser Altimeter (MOLA) from 1997 to 2001;
the GLAS (Geoscience Laser Altimeter System) on ICESat-1 about the Earth from 2003
to 2009;

e  the MESSENGER mission to Mercury from 2011 to 2015;
e and the Lunar Observer Laser Altimeter (LOLA) about the Moon from 2009 to
the present.

The aforementioned multiphoton spaceborne lidars operated at a few tens of pulses
per second, and it rapidly became clear to the author that spaceborne SPL technology
could be more lightweight, less complex, and provide orders of magnitude more surface
data, especially in orbit about planets or moons with less atmosphere and surface diversity
than Earth [16].Therefore, in 2006, I gave several presentations to the NASA ICESat-2
Project team at Goddard Space Flight Center. The presentations outlined the potential
benefits of a multibeam, single photon lidar in Earth orbit. The original design presented
a single 5 Watt, actively Q-switched, frequency doubled, subnanosecond pulse Nd:YAG
microlaser operating at the 532 nm wavelength and generating a train of 500 microjoule
pulses at a rate of 10 kHz. The beam would then be split into 16 equally spaced, 310 mW
beamlets distributed along a line perpendicular to the satellite flight path. Thus, the
proposed configuration was designed to generate 160,000 surface measurements per second
compared to only 40 measurements per second for the predecessor GLAS single beam,
multiphoton lidar flown on ICESat-1. In addition, the green wavelength would permit
some degree of penetration in water bodies for bathymetric measurements.

Initially, the ICESat-2 project team saw potential merit in the SPL approach and
proposed to fly a copy of the earlier GLAS system along with an experimental version of
the proposed 16 beam SPL on the ICESat-2 mission. However, budget problems later forced
the Project to abandon the dual lidar concept. Fortunately, results from the NASA-funded
airborne version of Sigma’s 16 beam pushbroom SPL, MABEL, helped to bolster confidence
in the technique as illustrated in Figure 8 [18]. Nevertheless, it was not yet entirely clear
that the 16 beam lidar proposed by Sigma could meet all of the science requirements of
the mission.

Ultimately, the Project chose a modified version of my proposed single photon li-
dar which consisted of 3 “strong” and 3 “weak” beams for reasons to be described
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shortly. The strong beams would each contain roughly four times the pulse energy (2 m])
of one of the original 16 weak beams thereby reducing the surface sampling rate from
160,000 measurements per second to 60,000 per second but still representing a factor of 1500
increase in potential surface detection rate relative to the original GLAS system on ICESat-1.

In order to reach this final instrument configuration, I again collaborated with my
longtime NASA colleague and subsequent ICESat-2 Algorithm Lead, Jan McGarry, to assess
the performance of various beam strengths for each of the 13 measurement scenarios in
Table 1. I devised a Differential Cell Count (DCC) approach while Jan suggested a Noise
Only (NO) method for extracting the weak surface signal from solar background noise
over the range of measurement scenarios which were considered critical by the ICESat-2
Project Science Team. As outlined in Table 1, these scenarios included cryosphere, biomass,
and ocean measurements. Furthermore, successful measurements were desired for terrain
slopes up to 45 degrees. In the process, we each used lidar link analyses and solar noise
models appropriate for each of the 13 measurement scenarios provided by the science
team and optimized the size of the range bin. The number of beamlets and their powers
were also varied, keeping the overall laser power constant, in order to determine their
compatibility with the measurement goals.

Table 1. The ATLAS science team identified 13 measurement scenarios crucial to their overall mission,
including six ice-related scenarios (1a through 6a), three tree penetration scenarios (8a, 9a, and 10a),
and three wind measurements (10a, 10b, and 10c). The expected signal counts and noise rates for
each scenario are listed in the final two columns of the table.

C.;SFC Range Bin, Range Window Description Signal Counts,  Noise Rate
Design Case pp (m) AR (km) ns Weak beam (MHz)

la 30 6 Ice Sheet, Interior Winter 2.15 0.5
2c 30 6 Ice Sheet, Interior, Summer, Heavy Snow 0.43 6.0
3c 30 6 Outlet Glacier, Winter, Heavy Snow 0.15 0.50
4 30 6 Outlet Glacier, Summer 0.68 4.69
5b 12 6 Ice Lead, Winter 0.26 0.5
6a 12 6 Ice, Summer 0.6 5.73
7a min 12 6 Tropical Flat, min leaf 0.196 3.37
7a max 12 6 Tropical Flat, max leaf 0.154 2.73
8a 30 6 Temperate Flat 0.44 1.21
9a 30 6 Boreal Flat 0.324 1.47
10a 12 1 Conical Scan, Low Wind 0.49 2.68
10b 12 1 Conical Scan, Moderate Wind 0.21 1.94
10c 12 1 Conical Scan, High Wind 0.122 1.71

Table 2 is extracted from a PowerPoint presentation by the author to the ICESat-2
science team in December 2011. As can be seen from the far left column in Table 2, four
different combinations of beam strengths were considered: (1) 16 equal weak beams (as
originally proposed by the author for the test flight configuration); (2) 6 equal beams
each containing 2.5 times the energy in the original weak beam; (3) 5 equal beams each
containing 3 times the energy in the weak beam; and (4) strong beams each containing
4 times the energy in the weak beam. In turn, each of these categories were further
divided into two elements depending on which detection algorithm was being used, i.e., the
Differential Cell Count (DCC) or Noise Only (NO) method. Dark blue color indicates
excellent performance, dark green signifies very good, with light green, yellow, orange,
and red indicating increasingly degraded performance in each measurement category.
To summarize, the three strong beams perform well in all of the measurement scenarios

14



Photonics 2024, 11, 924

while the remaining 3 weak beams can double the measurement density in certain science
categories such as 1a, 8a, and 10a. The above conclusions were considered conservative
by the Science Team since the calculations assumed, for simplicity, a worst case where the
surface photons are distributed uniformly in time by either a constant slope within the
frame or the tree canopy which they are not.

Table 2. Summary of beam strength performance for the 13 ICESat-2 science goals.

Science Cryosphere
Beam Range Window 6 km
Strength esign Case Ta 2c 3¢ E 5b a max a min a

6a a a IC
Bin Size (m) 18 12 30 30 30 30 12 12 12
° <10° <16° <22°
ek Sm
1X NO : <12° <16° <19°
<30 m <17 m <48 m
<16°
6 Equal 25X <Vm

<12° <18°
NO <30m <47 m

DCC
5 Equal 3X

NO

DCC
Strong 4X

NO
Color Code for Cryosphere

Orange: Marg'!!l—Can !!!!le slopes!rel!’e! up to 10! ,25 m.
Ye

‘ellow: Fair—Can handle slopes/relief greater than 10° /25 m.

Color Code for Biomass

Orange: Marginal—Can detect minimum tree height stands on 4-degree slope. Total slope/relief = 11° /28m for 7a, 10° /25m for 8a, and 16° /40m for 9a.
Yellow: Fair—Can detect average tree height stands on 4-degree slope. Total slope/relief = 15° /38 m for 7a, 12° /30m for 8a, and 20° /52m for 9a.

olor Lode for Ucean La

srange: MMM an !etect ocean s&ace wi! con.ical scan an; les Eetween! an! ] !egrees.

Yellow: Fair—Can detect ocean surface with conical scan half angles between 5 and 7 degrees.

6. Summary

As described herein, the precision ranging capability of the current ATLAS lidar relied
heavily on almost four decades of relevant experience in Satellite Laser Ranging (SLR)
during which the ranging precision improved from 2 m to a few millimeters. Subsequently,
the growing international science and engineering demands for precise satellite ranging at
a lower manufacturing and operational cost resulted in NASA’s development of the single
photon sensitive SLR2000 system. The latter design drew heavily from early NASA laser
space communication studies of optical antenna gain conducted in the 1970s. These studies
advocated for the use of a single telescope to (1) transmit the pulse in a significantly less
divergent beam (thereby placing an orders of magnitude higher fraction of the transmitted
laser pulse energy on the target), and (2) capturing some of the energy reflected by the
satellite retroreflectors. This innovation not only significantly reduced the size and cost of
the optical telescope, tracking mount, and shelter, but it also greatly reduced the required
laser pulse energy. Thus, the large, complex, expensive, and low repetition rate mode-
locked lasers could be replaced by relatively inexpensive, compact, low energy, actively
or passively Q-switched microchip lasers producing tens of thousands of subnanosecond
pulses per second.

In this paper, the author has attempted to describe for the reader the highly compli-
cated technical path which ultimately led NASA researchers and their contractors to the
highly successful ATLAS Multibeam Single Photon Lidar (SPL). The latter instrument was
launched, in September 2018, aboard the ICESat-2 spacecraft into a roughly 500 km high
orbit about the Earth. At that altitude, the six beams and 10 kHz laser pulse rate permit a
total of 60,000 surface measurements per second and surface measurements every 70 cm
along the flight path for each of the 6 beamlets. The ICESat-2 science goals included few cm
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accuracy topographic measurements over land, ice, and sea surfaces as well as tree canopy
and cloud heights.

The ATLAS lidar includes an 80 cm diameter telescope which can redirect the beams.
An initial evaluation of ATLAS performance published in 2021, after more than one trillion
surface measurements had been made, concluded with the following statement. “The
ICESat-2 geolocated photons show a horizontal position accuracy of 3.6 m (1 o) over both
long length scales and through local validation, and a vertical accuracy of better than
10 cm” [19]. A wide range of publications reporting on the ICESat-2 instrument and data
analyses can be found on a routinely updated NASA website at https:/ /icesat-2.gsfc.nasa.
gov (accessed on 1 September 2024).
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Abstract: During the process of infrared remote sensing monitoring, obtaining real-time measure-
ments of sky background radiation is extremely inconvenient. The current methods incur a certain
amount of lag. In this study, within the existing theoretical framework, a fast transmittance calcula-
tion method using interpolation was adopted, and a simplified transmission model was established.
This led to the development of a new and simplified method for rapid temperature and humidity
retrieval. Compared to the line-by-line integration method, the interpolation method significantly
improves the speed of transmittance calculation by several tens of times, while maintaining a high
level of accuracy. The relative deviation between the results obtained using the interpolation method
and those obtained through line-by-line integration is less than 1 %co. With the proposed method,
temperature and humidity profile information can be retrieved from measured spectra within 5 min
and corresponding background spectra can be obtained. The differences between the calculated
background radiation and the measured spectra using the new method are smaller, making it more
suitable for calculating sky background radiation. Additionally, the rapid retrieval results of the
temperature profiles in the lower atmosphere have a certain level of accuracy (the mean deviation is
less than 2 K).

Keywords: infrared remote sensing; sky background radiation; ground based; temperature and
humidity profile

1. Introduction

Fossil fuels continue to be the most crucial and primary energy sources in use to-
day [1]. Throughout the extraction, production, and refining processes of these fuels and
their derivatives, companies associated with fossil energy may emit and leak toxic and
harmful gases, resulting in air pollution and serious safety incidents [2]. Consequently, air
monitoring has become an indispensable part of the production process. Traditional moni-
toring methods primarily involve deploying monitoring equipment at emission sources for
continuous monitoring and manually collecting samples from various locations. Although
these methods offer high precision, the complexity of the gas compositions poses challenges,
making the process time-consuming and labor-intensive. Furthermore, traditional methods
are often inadequate in effectively monitoring unorganized emissions, such as pipeline
leaks, which frequently serve as the primary cause of production safety accidents [3,4].

Fourier Transform Infrared (FTIR) spectroscopy technology is a non-contact technique
that allows for the simultaneous analysis of multiple components online. When combined
with passive scanning remote sensing technology, it enables comprehensive and simulta-
neous monitoring of various gas components in factory areas. This method represents a
highly effective means of monitoring unorganized emissions, such as pipeline leaks, and
has already been applied in a commercialized manner [5-9].

Photonics 2024, 11, 904. https:/ /doi.org/10.3390/photonics11100904 17 https:/ /www.mdpi.com/journal /photonics
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Using passive Fourier Transform Infrared (FT-IR) spectroscopy is typically a semi-
quantitative method for leak monitoring [10]. By comparing the real-time monitoring spec-
tra with background spectra, we can analyze the general situation of gas leaks (Figure 1a).
Therefore, obtaining accurate background spectra is crucial for this monitoring process [11].
The monitoring background is usually divided into two categories: ground object back-
ground (Figure 1b) and sky background (Figure 1c). The ground object background
typically consists of buildings or tall, dense vegetation, which generally do not change
significantly over a prolonged monitoring period. Thus, it suffices to obtain this back-
ground at the beginning of the measurement process. In contrast, the sky background
can be classified into cloudy and clear conditions. The sky background radiation in clear
sky exhibits significant changes because of daily fluctuations in atmospheric conditions
(primarily temperature and humidity). This requires frequent measurements of the sky
background, which can be quite inconvenient for the overall monitoring process. To address
the challenges associated with monitoring sky background, atmospheric profile parameters
can be utilized along with mathematical models for simulation calculations [12]. While
under a cloudy sky, the factors affecting the background spectrum become more complex
in the presence of clouds, and from an engineering application standpoint, there is no
well-established method to address this issue yet. The way we currently deal with clouds
is that we ideally assume that cloud conditions remain the same for a certain period of time
and then periodically collect the sky background when there are clouds.

Detector : Gas cloud : Background
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Figure 1. Three-layer radiation transmission model and different monitoring backgrounds: (a) three-
layer radiation transmission model; (b) ground object background; (c) sky background.

Atmospheric parameter profiles can be obtained from many datasets. Most atmo-
spheric components exhibit minimal variation, allowing for calculations based on average
values. However, for parameters such as temperature and humidity, which exhibit signif-
icant daily fluctuations, more recent results are necessary for more accurate calculations
of sky background radiation. Taking the ERA5 hourly pressure-level dataset provided by
the European Centre for Medium-Range Weather Forecasts (ECMWEF) as an example, this
dataset is updated daily but has a lag of about 5 days. Thus, we wondered whether it is pos-
sible to extract temperature and humidity profiles in real-time from monitoring spectra for
background calculations. In fact, obtaining temperature and humidity profiles from ground-
based infrared radiation spectra has already become a reality, with dedicated ground-based
infrared radiometers [13,14] and corresponding algorithms for temperature and humidity
monitoring [15-18]. However, scientific research demands very high monitoring precision,
necessitating stricter requirements for analysis algorithms, greater computational load,
and longer processing times. Therefore, the aim of this paper is to simplify the existing
technologies and algorithms to achieve rapid measurement of temperature and humidity
profiles based on ground-based infrared radiation spectra, thereby facilitating background
radiation calculations and further applications in gas leak monitoring.
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2. Materials and Methods
2.1. Retrieval Strategy

The retrieval of temperature and humidity profiles involves reverse calculations of the
atmospheric state using observed values and transfer models, necessitating the solution of
an implicit equation [19]. Thus, it is necessary to find the most suitable solution through
iterations. In this paper, we employ the Newton iteration method, which is generally

described as follows:
Xip1 =X [VZJ(}:’)} 71V](¥z’)/ (1)

](?i) is the cost function, V represents the gradient symbol, {Vz] (;1)} also known
as the Hessian matrix.

In this study, we utilized the maximum probability cost function and applied the
Levenberg-Marquardt method to modify the Hessian matrix. As a result, we derived the
following specific iteration formula:

—

Xipg =i [s;l +KISK; + uil} 71{5;1 (?i, -, ?a) —KTs;! [? - F(;lﬂ } @)

—

F (?l) means the radiance calculated by the transfer model when the state vector is ;i-

S, and S; represent the prior covariance matrix and error covariance matrix, respectively.

S, is calculated directly from prior information, whereas the S, employs a diagonal
matrix with the diagonal elements derived from the mean noise of the measured spectral
data [16]. In this study, the diagonal values of the S are set to 0.1. The Jacobian matrix
K; is recalculated for each iteration using the finite differences method. I is a unit matrix
and u; represents the L-M parameter. The superscripts —1 and T represent the inverse and
transpose of the matrix, respectively.

In this paper, the L-M parameter is set based on empirical knowledge. The method
employed in this study is to set #; = p; + 4. If the minimum eigenvalue of the Hessian
matrix, denoted as 07, is not less than zero, we p; = 0; otherwise, we set p; = |o;|. For
temperature retrieval, 4 = 30, while for humidity, g = 1075,

The iteration process terminates when the number of iterations exceeds 10 (i > 10) or
when the difference between the results of two consecutive iterations falls below a specified
threshold (Equation (3)).

<1, 3)

szJrl - xz'

2.2. Vertical Grid

The vertical pressure grid used is shown in Table 1, which is consistent with the grid
utilized in the Smith study [17], featuring a maximum of 50 layers. In an actual retrieval
process, the lowest layer is determined based on the surface atmospheric pressure. For

example, if the surface pressure is 992 hPa, the lowest layer pressure is set to 990 hPa.
Conversely, if the surface pressure is 988 hPa, the lowest layer pressure is set to 980 hPa,

and so on.

Table 1. Vertical pressure (in hPa) grid used in profile retrieval.

- = . . . . .
X0 = Xg4, X, is the mean value of the prior profile, and ; is the observed radiance.

1000
990
980
970
960

950 900 800 700 600 350 150 30
940 880 780 680 550 300 125 25
930 860 760 660 500 250 100 20
920 840 740 640 450 200 75 15
910 820 720 620 400 175 50 10

N W 01
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2.3. Prior Information

In scientific research involving temperature and humidity profile observations, equip-
ment is typically installed at fixed observing stations. These stations regularly release
radiosondes to obtain high-precision and high-vertical resolution profiles as prior informa-
tion. However, it is impractical for operational applications. Therefore, we rely on the ERA5
dataset as a substitute for prior information. The ERA5 dataset is a global atmospheric
reanalysis dataset that provides a comprehensive set of atmospheric variables, including
temperature and humidity profiles. These profiles are derived from a combination of
observations and numerical models, making the ERA5 dataset a reliable source of prior
information for temperature and humidity retrieval in operational applications.

The dataset includes information across 37 pressure levels, ranging from 1000 hPa to
1 hPa, covering the entire globe with a horizontal spatial resolution of up to 0.25° x 0.25°.
The prior information consists of two types of water vapor concentration data: relative
humidity (RH, %) and the mass mixing ratio (Cy,1, kg/kg), as well as the ozone mass
mixing ratio (Cp, 2, kg/kg). Since the concentration inputs in the transfer model are in the
volume mixing ratio, a unit conversion is required.

For water vapor, the saturated vapor pressure E (hPa) at a given temperature is
calculated using the Goff-Gratch equation. When the temperature t is below 273.15 K, the
saturated vapor pressure is as follows [20]:

273.16 273.16 t

Among them, k; = —9.09718, k; = —3.56654, k3 = 0.876793, and k4 = 6.1071.
When the temperature ¢ is above 273.15 K, the formula is as follows:

IgE = ks x (@ _ 1> 1 ke % 1g<@> Tk % <10kqx(lfﬁ) _ 1) 1kg % (10k10><(3732.1671) _ 1) +1gki, (5)
Among them, ks = —7.90298, ks = 5.02808, k; = —1.3816 x 1077, kg = 8.1328 x 1073,
ko = 11.344, k19 = —3.49149, and k11 = 1013.246.
Then, we can calculate the volume mixing ratio from E:

Cy1 = 10* x RH x E /Py, (6)

Cy1 represents the volume mixing ratio of water vapor, ppmv. Py is the air pres-
sure, hPa.

For ozone, we need the average relative molecular mass of air, M;;. It can be calculated
using the mass mixing ratio and volume mixing ratio of water vapor, or alternatively,
empirical values can be directly utilized:

Mair = Cy1 X My / (106 x cm,l) or My, = 29, @)

M is the relative molecular mass of water.
Then, we get the volume mixing ratio of ozone, Cy 5, as follows:

CV,Z - 106 X Mair X Cm,Z/MZr (8)

M, is the relative molecular weight of ozone.

In this paper, we selected data from four time periods (0000 UTC, 0600 UTC, 1200 UTC,
and 1600 UTC) in April each year from 2019 to 2023 in Hefei (31.9~32.1° N, 117.1~117.3° E)
as prior information. A linear interpolation is required to match the prior information to
the vertical pressure grid.
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2.4. Spectrum and Radiation Transfer Model
2.4.1. Spectrum to Be Retrieved

The purpose of this study is to explore the feasibility of real-time acquisition of sky
background radiation. Additionally, assessing the quality of the measured spectra is
challenging due to potential errors introduced by instrument performance and calibration
accuracy. To mitigate these errors, simulated spectra derived from gas profiles and radiation
transfer models are utilized as the spectra of interest for retrieval in this study.

2.4.2. Simplified Radiation Transfer Model

Most major atmospheric components have a certain background concentration, and
most trace constituents only exhibit significant absorption in the spectrum when observed
at low elevation angles. Therefore, in the radiation transfer model used in this study, only
12 gases included in the US Standard Atmosphere model are considered. Before calculating
the downwelling radiation, we need to make two assumptions [21]:

1. Inthe radiation transfer model, the atmosphere is assumed to be in thermodynamic
equilibrium, allowing us to use the Planck intensity as the source function in accor-
dance with Kirchhoff’s law.

2. The atmosphere is considered to be plane-parallel, implying that the radiance or
intensity varies only in the vertical direction.

When only absorption and emission of radiation are considered, a simplified radiation
transfer model can be written in the form:

N i
Ii,e =Y Buix (1 =T0i) X Tg; Togi =] [Tw6,-1, )
= j=1

In the equation, N represents the number of atmospheric layers; B, ; indicates the
blackbody radiation intensity at wavenumber v for the i-th layer of the atmosphere at
a given temperature; T, g; denotes the transmittance along the observation direction at
wavenumber v for the i-th atmospheric layer, 7,90 = 1; 7, ; signifies the total transmittance
along the observation direction at that wavenumber for all atmospheric layers below the
i-th layer; and 0 is the zenith Angle.

When calculating the entire layer of atmospheric downwelling radiation at the surface,
the blackbody radiation intensity and emissivity (1 — 1, ;) of each layer are calculated
first, and thus the radiation intensity B, ; X (1 — 7, 9;) of each layer is obtained. When
the radiation of this layer is absorbed by the atmosphere with transmittance 7, ;, the
radiation reaching the surface is B, ; x (1 — 1,9,) X T:,G',i’ and the contribution of each layer
can be accumulated to obtain the entire layer of atmospheric downwelling radiation at
the surface.

2.4.3. Fast Transmittance Calculation

To calculate the transmittance in the radiation transfer model, we employ a simple
method based on line-by-line integration. We assume that, at the same pressure, the absorp-
tion coefficient of gases at a specific wavelength has a linear relationship with temperature
within a narrow range. To create a database of line-by-line absorption coefficients for
various gases at different temperatures and pressures, we utilized the HAPI program [22].
In this study, the pressure conditions are consistent with the fixed vertical grid mentioned
above, with a temperature range of 200 K to 320 K, at intervals of 0.5 K, and a wavenumber
step of 0.1 cm~!. The maximum step size recommended by the HAPI program is 0.1 cm~!;
a step size larger than this value may affect computational accuracy. There are two prin-
ciples regarding the setting of the step size: (1) ensure sufficient computational accuracy,
and (2) ensure that the absorption database generated from this step size does not consume
excessive memory. We used the HAPI program to calculate the line-by-line absorption
coefficients of 12 gases under the specified conditions, thereby establishing a database. The
use of the HAPI program was strictly performed according to the manual. The program
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and manual can be accessed at the following URL: https:/ /hitran.org/hapi/ (accessed on
23 September 2024)

When computing the transmittance at a specific temperature and pressure, we search
the database for the absorption coefficients of twelve gases at the two temperatures closest to
the desired conditions. We then interpolate these values to obtain the absorption coefficients
of the gases under the required conditions and calculate their transmittance. Finally, we
multiply these transmittance values to obtain the total transmittance for the mixture. For
example, to determine the transmittance of CO; at 273.15 K and 1000 hPa (which is included
in the vertical grid), we simply find the absorption coefficients of CO; at 273 K and 273.5 K
under 1000 hPa and perform interpolation. We then calculate the transmittance based on
the newly obtained absorption coefficients. According to the Beer-Bouguer-Lambert law,
the transmittance 7 is defined as follows:

T,0 = exp(—ky X pp) = exp(—kv xNaxPxLxCx1078/(t xR x cosG)) (10)

where k is the absorption coefficient, 1/ (molec-cm™1); Na = 6.022141291 x 1023, represents
Avogadro’s constant; P (hPa) represents the air pressure; L (m) represents the height of gas
level; C (ppmv) represents the gas concentration; t (K) represents the air temperature; and
R is the ideal gas constant, R = 8.3145.

2.4.4. Simulated Spectra Correction

Due to the mismatch in resolution and wavenumber step between the simulated
radiation spectrum calculated by the radiative transfer model and the observed spectrum,
it is necessary to reconstruct the simulated spectrum. For example, with an observed
spectrum resolution of 1 cm™!, the first step is to interpolate the simulated spectrum
using a specific wavenumber grid. In this study, the simulated spectrum has a step size
of 0.1 cm ™. After interpolation, the step size becomes 0.12055 cm ™!, corresponding to a
spectral resolution of 0.25 cm~!. Next, the reconstructed spectrum undergoes an Inverse
Fourier Transform (IFT) to obtain an interferogram. Based on the resolution of the observed
spectrum, a Hanning window function is applied to truncate the interferogram. Finally, a
Fourier Transform (FT) is performed on the truncated interferogram to yield a simulated
spectrum that matches the instrument’s resolution of 1 cm~!. The comparison of the
simulated spectrum before and after truncation is shown in Figure 2.

120 after truncation
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100
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Wavenumber (cm™)

Figure 2. Comparison of the simulated spectra before and after truncation.
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Figure 3 illustrates the overall research workflow of this manuscript, along with the
key functions of its subcomponents.
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Figure 3. Schematic of the research.

3. Results and Analysis
3.1. Assessment of Rapid Transmittance Calculation Accuracy

In this paper, the temperature and humidity retrieval bands are 675-712 cm ™! and
1250-1350 cm ™!, respectively [17,18]. We utilized the HAPI and interpolation methods to
calculate the mixed transmittance of 12 gases under 25 different conditions (combinations
of 5 temperatures and 5 pressures). The temperature, pressure, and gas concentrations are
listed in Table 2, with the optical path length set to 10 m.

Table 2. Temperature, pressure, and gas concentrations used in the assessment of rapid calculation
accuracy of transmittance.

Temperature (K) Pressure (hPa) Gas Concentrations (ppmv)
270.1 1000 CO,: 400 O,: 210000
272.3 900 H,0O: 10000 NHs: 0.0042
274.5 800 CH,: 1.90 NO: 0.0016
276.7 700 CO: 0.20 NO,: 0.0060
278.9 600 N,0:0.33 SO,: 0.0045

05: 0.03 HNOs5: 0.0011

We compared the transmittance values obtained from these two methods in the
respective bands and calculated the average deviation (AD), root mean square error (RMSE),
and standard deviation of the errors (STDE) between them. Additionally, we computed the
average relative deviation (ARD) for the corresponding bands (see Figures 4 and 5).

The relative error between the transmittance calculated using the interpolation method
and that obtained from the HAPI program is less than 1%co. The AD, RMSE, and STDE
between the two methods are also very small, indicating that the interpolation method
achieves high computational accuracy. Furthermore, the computation time for calculating
a single component’s transmittance spectrum using the interpolation method does not
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exceed 1 s, whereas the HAPI program can take over ten seconds or even several tens
of seconds. We recorded the time required for the two methods to calculate the mixed
transmittance of 12 gases across different bands under 25 conditions, and the results are
presented in Table 3. It indicates that the computational speed of the interpolation method

i

s notably impressive.
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Table 3. Comparison of calculation speeds of the two methods.

Total Time Taken (s)

Calculation Bands (cm~1) HAPI Interpolation Method
672-715 898 37.5
1250-1350 1151 35
500-2500 3118 375

3.2. Evaluation of Temperature and Humidity Profile Retrieval Accuracy

Before analyzing the accuracy of the profile retrieval, we first conducted a sensitivity
analysis of the proposed method. We collected 30 consecutive spectra from two different
time periods using an infrared radiometer and retrieved the temperature and humidity
profiles from these spectra. As shown in Figure 6, the atmospheric environmental parame-
ters did not change significantly during a single period, and the differences between the
measured spectra were small. Therefore, there were no significant differences between
the retrieval results, and the standard deviation was small (see Figure 7), indicating that
the method exhibits a certain degree of stability. On the other hand, the profiles retrieved
from spectra measured at different times showed differences, indicating that the method is
highly sensitive to changes in the environment.
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Figure 6. Average spectra measured during the two time periods: (a) temperature retrieval band; and
(b) humidity retrieval band.
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We obtained hourly ERA5 data from the ECMWEF website for 1st, 2nd, 7th, and 8th
April 2024, totaling 96 sets of data [23]. Following the method outlined in Section 2, we
extracted the temperature, water vapor, and ozone profiles from these data. We then
obtained average profiles for 10 additional gases from a website provided by James Hanni-
gan (ftp:/ /nitrogen.acom.ucar.edu/user/jamesw/IRWG /2021 /WACCM.v7 /Hefei.V7/,
accessed on 1 September 2024) and interpolated them onto the vertical grid shown in
Table 1. A simplified atmospheric model was established (see Appendix A), where tem-
perature and water vapor were considered variable, while the other gases were treated
as constant.
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Figure 7. Comparison of the retrieval results of the spectra measured over different time periods.

The retrieval of temperature and humidity is performed sequentially. In the tem-
perature retrieval process, the temperature profile is treated as a variable while keeping
the other parameters constant. The water vapor and ozone profiles are set to the average
values of the priori profiles, and the other parameters are set according to Appendix A.
In the humidity retrieval process, the humidity profile is treated as a variable, while the
temperature profile is set to the values retrieved in the temperature retrieval step. The
remaining parameters are kept the same as in the temperature retrieval process.

Based on the aforementioned 96 sets of data, we performed simulation calculations to
obtain 96 radiative spectra. These spectra were then used for fast retrieval of temperature
and humidity profiles. Subsequently, we conducted an analysis and evaluation of the
retrieval results. It is worth mentioning that with the use of the rapid retrieval method,
the average time required to obtain a temperature profile and a humidity profile does not
exceed 5 min, which fully meets the requirements for engineering applications.
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Figure 8 presents the average deviation (AD), root mean square error (RMSE), and
standard deviation of the errors (STDE) for the temperature and humidity profile retrieval
results compared to the theoretical values. For temperature retrieval, the difference between
the retrieval results and the theoretical values is relatively small near the surface but
increases with altitude. Previous studies have indicated that retrieval accuracy is noticeably
higher below the boundary layer than above it, which aligns with our expectations for the
rapid temperature profile retrieval results.
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Figure 8. The AD, RMSE, and STDE of temperature (a) and humidity (b) retrievals.

In contrast, for humidity retrieval, we observed a significant difference throughout
the entire altitude range. On one hand, due to the saturation of water vapor absorption,
the retrieval results tend to be significantly lower than the true values when humidity is
high. On the other hand, it is possible that the method used in this study itself introduces
substantial errors in humidity retrieval;, however, we are currently unable to pinpoint the
exact source of these errors.

3.3. Evaluation of Sky Background Radiation Simulations

As mentioned earlier, the current method based on simulated atmospheric background
radiation has some latency. To demonstrate the real-time advantage of the rapid retrieval
method for obtaining atmospheric background radiation, we used 48 simulated spectra
corresponding to the data from 7 and 8 April 2024, as hypothetical measured spectra. We
considered the ECMWEF results from 1 and 2 April as the input with latency, while the
retrieval results from the 7 and 8 April spectra served as the input with real-time infor-
mation. By comparing the differences between the sky background radiation obtained
from these two parameter inputs and the hypothetical measured spectra, we can high-
light the advantage of real-time retrieval of sky background radiation using the rapid
retrieval method.
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We calculated the deviations, RMSE, and STDE for the two sets of 48 sky background
radiation spectra compared to the hypothetical measured spectra. From Figures 9 and 10,
it is evident that the RMSE and STDE of the sky background radiation calculated using
the rapid retrieval method with real-time input profiles are significantly lower than those
obtained using the latest profiles provided by ECMWEF ERAS. Figure 11 illustrates the sky
background radiation calculated by both methods at a specific time. It is visually apparent
that the background radiation obtained using the rapid retrieval method is more reasonable
and closer to the hypothetical measured spectra.
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Figure 9. The RMSE between the measured spectra and the two types of background radiation
spectra. Blue line: background radiation calculated with the hysteresis profile provided by ERA5 as
the input parameter; red line: background radiation calculated with the real-time profile obtained by
the fast retrieval method as the input parameter.
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Figure 10. As in Figure 9 but for STDE.
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Figure 11. The difference between the measured spectra and the two types of background radiation
spectra at 0:00 UTC on 7th April 2024: (a) background radiation with latency; (b) background
radiation in real-time; (c) bias of two types of background radiation spectra with measured spectra.

4. Conclusions and Discussion

At present, researchers mainly acquire sky background radiation for application in
infrared remote sensing in two ways. The first method is to periodically collect and
update the background spectrum in the monitoring application process, which is simple to
operate but will interrupt the monitoring process. Therefore, the second method is derived
to simulate the background radiation based on the atmospheric parameter profile and
transmission model. This method can update the background spectrum in the monitoring
process, but there is a lag problem in obtaining the atmospheric parameter profile. In
order to solve this problem, based on the theoretical framework of the existing infrared
remote sensing technology, we simplified the retrieval method of temperature and humidity
profiles, focused on the transmission calculation and transmission model, and established

a fast and real-time method to obtain the sky background radiation.
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The fast transmittance calculation method utilizing line-by-line integration and inter-
polation principles significantly improves computational speed while maintaining high
accuracy compared to the HAPI program. Additionally, the simplified transmission model,
which incorporates 12 gas components, is sufficient for simulating background radiation.
With this new method, we can rapidly extract temperature and humidity profile informa-
tion corresponding to the measured spectra and obtain the associated background spectra.
Compared to extracting the latest profiles from datasets, the new method shows smaller
differences between the calculated background radiation and measured spectra, making it
more suitable for calculating sky background radiation.

Furthermore, we compare the differences between the retrieval results of the profiles
and the true values. The results show a certain level of accuracy in temperature retrieval
of the lower atmosphere, but the humidity retrieval results are not ideal. In addition,
the current method can only be applied to clear sky conditions, and cannot be effectively
processed for clouds. Considering that this temperature and humidity fast retrieval method
does not require high hardware and software requirements, we plan to conduct further
research on the accuracy of humidity and cloud retrieval in the follow-up work. We hope
that this fast retrieval method can be widely applied in temperature and humidity profile
observation applications and scientific research.
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Appendix A

Table A1. The pressure (P, hPa), height (H, m), and concentration (ppmv) of gases in each layer of the
model atmosphere.

P Co, CH, CcOo N,O HNO; NH; NO NO, 0O, SO,
(x10~1)  (x10~1) (x1073) (x1073) (x1073) (x1073) (x10%) (x1073)

1000 50 402.78 1.94 1.96 3.25 1.08 4.23 1.59 7.55 21.11 451
990 150 402.74 1.93 1.85 3.25 1.19 3.80 1.38 6.59 21.11 4.00
980 300 402.70 1.93 1.74 3.25 1.08 3.38 1.17 5.63 21.11 3.49
970 420 402.67 1.93 1.63 3.25 1.19 2.95 0.96 4.67 21.11 2.98
960 530 402.63 1.92 1.52 3.25 1.30 2.52 0.75 3.71 21.12 2.48
950 600 402.59 1.92 1.41 3.25 1.40 2.09 0.55 2.75 21.12 1.97
940 710 402.55 1.92 1.30 3.25 1.51 1.66 0.34 1.79 21.12 1.46
930 810 402.51 191 1.19 3.25 1.62 1.23 0.13 0.83 21.12 0.95
920 900 402.50 1.91 1.17 3.25 1.54 1.14 0.11 0.73 21.12 0.87
910 1000 402.49 1.91 1.14 3.25 1.46 1.05 0.09 0.62 21.12 0.79
900 1100 402.47 1.91 1.11 3.25 1.38 0.95 0.07 0.51 21.12 0.71
880 1280 402.45 1.91 1.06 3.25 1.23 0.77 0.04 0.29 21.13 0.54
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Table A1. Cont.

co N,O HNO3 NH;j; NO NO, 0O, SO,

P H €O i 101 (x10-) (3109 (x103)  (x103)  (x10-3)  (x109)  (x10°3)
860 1460 402.44 1.90 1.02 3.25 1.09 0.67 0.03 0.23 21.13 0.47
840 1660 402.43 1.90 0.99 3.25 0.95 0.57 0.02 0.17 21.13 0.39
820 1860 402.42 1.90 0.96 3.25 0.83 0.49 0.02 0.12 21.14 0.33
800 2080 402.42 1.90 0.94 3.25 0.73 0.43 0.01 0.11 21.14 0.29
780 2280 402.42 1.89 0.91 3.25 0.63 0.36 0.01 0.09 21.14 0.25
760 2500 402.44 1.89 0.90 3.25 0.56 0.31 0.01 0.07 21.15 0.22
740 2720 402.46 1.89 0.88 3.25 0.49 0.26 0.01 0.07 21.15 0.19
720 2940 402.49 1.89 0.86 3.25 0.42 0.22 0.01 0.06 21.16 0.16
700 3180 402.54 1.89 0.85 3.25 0.38 0.18 0.01 0.05 21.16 0.14
680 3420 402.59 1.89 0.84 3.26 0.33 0.15 0.01 0.05 21.17 0.12
660 3650 402.64 1.89 0.82 3.26 0.29 0.12 0.01 0.04 21.17 0.10
640 3900 402.69 1.88 0.81 3.26 0.27 0.10 0.01 0.04 21.17 0.09
620 4150 402.74 1.88 0.80 3.26 0.24 0.08 0.01 0.04 21.18 0.07
600 4420 402.79 1.88 0.80 3.26 0.23 0.07 0.01 0.04 21.18 0.06
550 5120 402.92 1.88 0.78 3.26 0.20 0.04 0.01 0.04 21.19 0.04
500 5860 403.04 1.88 0.77 3.26 0.19 0.03 0.01 0.04 21.20 0.03
450 6670 403.09 1.88 0.77 3.26 0.23 0.02 0.01 0.05 21.20 0.02
400 7550 403.07 1.87 0.77 3.26 0.27 0.02 0.02 0.06 21.21 0.02
350 8540 402.96 1.87 0.76 3.26 0.32 0.02 0.03 0.07 21.21 0.02
300 9630 402.74 1.87 0.75 3.26 0.36 0.02 0.04 0.09 21.21 0.02
250 10,880 402.37 1.86 0.71 3.25 0.45 0.01 0.06 0.11 21.21 0.02
200 12,380 401.78 1.85 0.62 3.23 0.63 0.01 0.08 0.12 21.22 0.02
175 13,250 401.45 1.83 0.55 3.22 0.75 0.01 0.08 0.13 21.22 0.02
150 14,230 401.14 1.82 0.47 3.19 0.89 0.01 0.09 0.13 21.23 0.02
125 15,350 400.93 1.81 0.39 3.17 1.04 0.00 0.10 0.16 21.23 0.02
100 16,720 400.64 1.79 0.31 3.12 1.35 0.00 0.13 0.21 21.23 0.03

75 18,410 399.67 1.73 0.21 2.99 2.25 0.00 0.17 0.33 21.23 0.07
50 20,850 396.89 1.55 0.13 2.55 5.01 0.00 0.27 0.69 21.23 0.09
30 24,090 394.46 1.32 0.15 1.88 7.71 0.00 0.62 1.91 21.23 0.02
25 25,250 394.04 1.25 0.16 1.67 7.85 0.00 0.85 2.65 21.22 0.02
20 26,720 393.69 1.17 0.17 1.42 7.35 0.00 1.27 3.85 21.22 0.02

15 28,600 393.45 1.07 0.19 1.12 5.91 0.00 2.04 5.70 21.22 0.02

10 31,320 393.32 0.96 0.22 0.79 3.55 0.00 3.37 8.10 21.22 0.02

7 33,800 393.31 0.88 0.26 0.57 1.92 0.00 4.59 9.39 21.22 0.01

5 36,160 393.33 0.81 0.31 0.42 0.96 0.00 5.67 9.72 21.22 0.01

4 37,840 393.34 0.76 0.34 0.35 0.59 0.00 6.38 9.51 21.22 0.01

3 40,000 393.35 0.70 0.38 0.27 0.29 0.00 7.14 9.00 21.22 0.02

2 43,100 393.33 0.60 0.44 0.18 0.09 0.00 7.72 7.92 21.22 0.03
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Abstract: In the study of atmospheric wind fields from the upper troposphere to the stratosphere
(10 km to 50 km), direct detection wind LiDAR is considered a promising method that offers high-
precision atmospheric wind field data. In 2020, Xie et al. of the Anhui Institute of Optics and Fine
Mechanics, Chinese Academy of Sciences, developed an innovative rotating Rayleigh Doppler wind
LiDAR (RRDWL). The system aims to achieve single-LiDAR detection of atmospheric wind fields
by rotating the entire device cabin. In 2022, the feasibility of the system was successfully validated
in laboratory conditions, and field deployment was completed. Due to the structural differences
between this system and traditional direct-detection wind LiDAR, performance tests were conducted
to evaluate its continuous detection capability in outdoor environments. Subsequently, based on the
test results and error analysis, further analysis was carried out to identify the main factors affecting
the system’s detection performance. Finally, the error analysis and traceability of the detection results
were conducted, and corresponding measures were discussed to provide a theoretical foundation for
optimizing the performance of RRDWL.

Keywords: rotary Rayleigh doppler wind LiDAR; performance evaluation; error tracing

1. Introduction

Wind is a physical phenomenon on Earth that involves the horizontal movement
of air, describing the motion of air currents. In scientific terms, wind is described as the
moving component of air, encompassing both wind speed and wind direction. As a sig-
nificant concept in meteorology, a wind field refers to the distribution of wind speed and
wind direction at various positions in the atmosphere during a specific time and within a
particular spatial range. The study of atmospheric wind fields has its roots in long-term
observations and explorations of weather, climate, and atmospheric motions. Accurate
understanding and prediction of weather conditions are crucial for human life, agricul-
ture, transportation, aviation, and other aspects [1-5]. Currently, there is a widespread
recognition of the significance of measuring the tropospheric wind field in improving the
accuracy of numerical weather prediction and wind shear warnings. The stratosphere,
located above the troposphere and extending from approximately 10 km to 50 km in height,
plays a vital role in the climate system and atmospheric stability. Therefore, the importance
of measuring the stratospheric wind field cannot be overlooked.

However, atmospheric wind fields exhibit complex non-uniformity and spatiotempo-
ral variability. Wind speed and wind direction can vary significantly at different altitudes,
geographical locations, and over time. This non-uniformity poses challenges in accurately
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measuring and depicting the complete wind field. Weather conditions, terrain, and envi-
ronmental factors also play important roles in limiting wind field detection. For instance,
strong winds, precipitation, cloud cover, and complex terrain can all result in incomplete
and inaccurate observational data. Additionally, the detection of wind fields requires
the use of multiple measurement devices and techniques; however, different equipment
and methods have limitations in terms of measurement range, resolution, accuracy, and
reliability [6-10]. In summary, the characterization of wind fields is a complex task due to
these factors. Light Detection and Ranging (LiDAR) is an advanced technology that utilizes
laser beams and scattered light for precise measurement and observation. In comparison to
traditional meteorological sounding methods, LiDAR offers the advantage of non-contact
observations, allowing for a wider range of measurements, including higher altitude levels
and complex terrain areas [11-13].

Direct-detection wind LiDAR is a detection method that utilizes a frequency discrimi-
nator, also known as an optical mixer, to convert the Doppler frequency shift of aerosols or
molecules caused by wind in the atmosphere into changes in light energy [14-16]. Based on
the type of scatterers, direct-detection wind LiDAR can be categorized into three types: Mie
wind LiDAR, Rayleigh wind LiDAR, and resonance fluorescence wind LiDAR. Compared
to aerosol scattering, Rayleigh scattering is more prevalent and relatively stronger in the
upper atmosphere. Despite the limitations in sensitivity due to the width of the molecular
backscatter spectrum, Rayleigh scattering wind LiDAR can effectively detect the wind field
in the global free troposphere and upper atmosphere [17-19]. Traditionally, direct-detection
wind LiDAR has employed two methods to measure different line of sight (LOS) wind
speeds. The first method involves mounting a scanning head above the LiDAR transceiver,
which is rotated to achieve a cone scan. However, this approach becomes challenging
for larger systems when the aperture of the receiving telescope exceeds half a meter. The
required size, thickness, and weight of the scanning mirror increase rapidly, making it
difficult to handle and more expensive. As a result, this method is primarily suitable for
small and medium-sized systems [20,21]. In order to address the challenges of measur-
ing high-altitude wind fields, researchers have explored an alternative approach. They
have employed two large aperture LiDAR subsystems placed orthogonal to each other to
measure orthogonal LOS wind speeds [22-24]. However, this approach introduces certain
issues. Using two subsystems necessitates the use of two lasers, multiple large-aperture
telescopes, and two separate detection and acquisition systems. This increases the costs of
development and maintenance, as well as the complexity of calibrating and fine-tuning
these precise instruments.

Based on the aforementioned background, Xie et al. from the Anhui Institute of Optics
and Fine Mechanics, Chinese Academy of Sciences, have developed a rotary Rayleigh
Doppler wind LIDAR (RRDWL). The system innovatively uses a rotating platform structure
to detect horizontal wind fields through the overall rotation of the equipment. This
design not only makes it possible for a single direct wind measurement LiDAR system to
detect the atmospheric wind field but also effectively reduces the development cost of the
equipment. In 2020, the system verified the feasibility of detecting atmospheric wind fields
in a laboratory environment. Subsequently, the outfield construction was completed in
2022 [25,26]. However, due to the structural differences between this system and traditional
direct wind LiDAR, it is necessary to evaluate its performance in the actual detection of the
atmospheric wind field. In addition, due to the heterogeneity of the actual atmosphere and
potential systematic errors in the system, complete consistency between detection results
and simulation results cannot be achieved. Therefore, it is imperative to analyze and trace
any errors in the detection results while discussing corresponding measures to establish a
theoretical foundation for optimizing RRDWL's performance.
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2. RRDWL Wind Measurement Principle
2.1. Rayleigh Scattering LiDAR Equation

Since the advent of using lasers as a light source for atmospheric detection, researchers
have observed the interaction between lasers and atmospheric substances, including scat-
tering and absorption phenomena. These interactions can be categorized into different
physical mechanisms such as scattering (Mie, Raman, Rayleigh), resonance fluorescence,
and more. In the middle atmosphere, Rayleigh scattering is a prominent form of scattering
due to the relatively low aerosol content above the boundary layer and the prevalence of
small diameter molecules (less than one-tenth of the laser wavelength) in the atmosphere.
Rayleigh scattering signals are stronger compared to Mie scattering signals. Furthermore,
the shorter the wavelength of the laser used, the stronger the Rayleigh scattering and the
greater the change in scattering cross-section. As a Rayleigh scattering LiDAR primar-
ily used for middle atmosphere detection, the backscattered signal consists of two main
components. The first is the Rayleigh scattering signal, which is generated when the laser
interacts with air molecules (nitrogen and oxygen) in the atmosphere. The second is the
meter scattering signal, which is generated when the laser interacts with aerosol particles
suspended in the lower atmosphere. Although both types of scattering are considered
elastic scattering and do not involve frequency drift, there are distinct differences in their
scattering processes. During the actual detection and data inversion process, it is necessary
to separate the pure Rayleigh scattering signal from the atmospheric echo signal by sub-
tracting the aerosol Mie scattering signal using atmospheric models or empirical formulas.
This is because the presence of aerosol scattering interferes with the received signal, and
we aim to isolate the Rayleigh scattering signals associated with atmospheric molecules in
order to accurately estimate atmospheric parameters.

The RRDWL primarily focuses on the detection of the wind field in the middle
atmosphere, which includes the high troposphere and stratosphere. Therefore, it falls
under the category of “Rayleigh scattering Doppler wind measurement”. Specifically, for
the wind field in the middle atmosphere, direct wind LiDAR is the only method available
for continuous observation. Therefore, the Rayleigh scattering LIDAR equation can be
described using the following expression:

Ni(),z) = [PZ(C)‘/)AN] [aR(n,A)nR(z)Az](;)Tgm(A,z)[q(A)c(z)] FNg ()

where P; represents the transmission power of the LiDAR system, At represents the
integration time, o represents the differential backscattering cross-section, ng represents
the number density of fully mixed air molecules, A/z? represents the probability of the
photon being received by the telescope, T2, represents the atmospheric transmittance of
the aerosol and molecules, 7 represents the efficiency of the receiving optical system, G
represents the geometric factor, and Np represents the background noise.

2.2. Double Edge Technique and FPI Frequency Identification

In general, most direct-detection wind LiDAR systems employ solid-state lasers that
emit laser beams with narrow linewidth Gaussian spectral lines, and it is crucial to use an
optical filter with a similarly steep spectral line. This enables the distinction of changes
in spectral line transmittance, which can then be converted into Doppler shifts for wind
measurement purposes. Currently, Fabry—Perot interferometers (FPI) are widely used
for detecting atmospheric wind fields at middle and high altitudes. The rotary Rayleigh
Doppler wind LiDAR (RRDWL) utilizes a double edge technology. This involves dif-
ferentially processing the laser signal emitted by the laser as a reference signal with the
atmospheric backscattered light signal received by the telescope. Figure 1 illustrates
this concept.
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Figure 1. Double edge technology schematic diagram.

The system utilizes a tunable FPI with an adjustable optical path between two plates.
The FPI is divided into three channels, and the total aperture of the light-passing part
is 80 mm. Two of the channels are dedicated to measuring the atmospheric echo signal,
while the third channel is used for frequency locking, ensuring that the transmittance line
of the FP1 is aligned with the laser frequency. However, due to slight differences in film
thickness, the optical path difference between the plates in each channel will vary slightly.
As a result, the transmittance spectral lines of the three channels become independent of
each other, allowing for a separate analysis and processing of their respective signals. In
Figure 2, the principle of frequency discrimination using the FPI is illustrated. The blue
and cyan lines represent the two edge channels, while the black lines represent the locked
channel. The signal intensity in the edge channels is determined by the convolution of
the atmospheric echo and the spectral response of the edge channels. The Doppler shift
alters the relative position of the atmospheric backscattered spectrum, causing the signals
in the edge channels to rise or fall accordingly. The green line in the middle represents the
initial frequency of the emitted laser. The two blue areas represent the signal spectra after
passing through the two edge channels, with the area representing the signal strength. In
the absence of wind, when there is no Doppler shift, the signal spectra in the two edge
channels are symmetric with each other. However, in the presence of wind, the atmospheric
backscattered light signal experiences a Doppler frequency shift, resulting in changes in the
signals of the two edge channels. By comparing the intensity changes between the emitted
laser signal and the atmospheric backscattered light signal, the Doppler shift information
can be derived. This information is then used to determine the radial wind speed at the
corresponding height. Essentially, by using the FPI as a frequency discriminator, the radial
wind speed can be obtained simply by analyzing the intensity changes in the two signals.
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Figure 2. Schematic diagram of FPI frequency discrimination principle.
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2.3. Wind Velocity Inversion and Synthesis

During actual wind field detection, the atmospheric echo signal passing through the
FPI edge channel can be obtained by convolving the transmittance spectral lines of the two
edge channels with the backscattered signal spectral lines of atmospheric molecules.

Tri(v) = h(v) @ fL.(V) ® fray(V), 2)

where f] (v) represents the spectral line of the emitted laser, /1(v) represents the actual
transmittance function of FPI, fr,,(v) represents the Rayleigh backscattering spectrum
after the interaction of atmospheric molecules with the laser, i = 1,2 represents the two
edge channels of FPI, and “®” represents the convolution. According to the sum of the
transmittance after the convolution of the two channels, the response curve of the system
to the frequency shift can be calculated:

Ry(vg, T) = Tri(vo+va, T)/Tra(vo +va, T), 3)

where 1y and v, are the system frequency and Doppler shift when there is no wind,
respectively, and T is the atmospheric temperature.

To obtain the vertical profile of atmospheric horizontal wind speed, it is necessary to
have measurements from at least three or more directions to synthesize the radial wind
speeds. This is because the atmospheric wind field is three-dimensional, and the horizontal
wind speed and direction vary spatially. By measuring wind speeds from multiple direc-
tions, information about the wind speed in different directions can be obtained, allowing
for the construction of the wind speed distribution in the vertical profile of the atmosphere.
Assuming that the vertical wind speed can be neglected compared to the horizontal wind
speed, the radial wind speed can be considered as the radial projection of the horizontal
wind field. By measuring the radial wind speed in each direction, it is possible to derive
the horizontal wind speed and direction through vector synthesis. There are generally two
methods for vector synthesis: the three-beam, fixed-point scanning method and the four-
beam, fixed-point scanning method. Using these three wind speed components, the vertical
profile of wind speed in space can be constructed. Figure 3 illustrates the principle diagram
of the four-beam scanning of radial wind speed and the decomposition diagram of the
wind field in the radial direction. The system described in this paper utilizes the four-beam,
fixed-point scanning method to measure the radial wind speed in the east, west, south,
and north directions, and the zenith angle is set to 22° during actual measurement. The
horizontal wind speed is decomposed into three directions: east-west (X-axis), north-south
(Y-axis), and vertical (Z-axis). This approach allows for an independent consideration of the
variation of wind speed in different directions, enabling a more comprehensive description
and analysis of the wind field characteristics in the atmosphere.

LOS velocity y— -,

Figure 3. The principle diagram of radial wind speed was obtained using four-beam scanning.
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In summary, the atmospheric horizontal wind speed and direction can be expressed as:

Vi = /V2+ 12
o — arcos(V,/Vy) Ve>0 v (4)
- | 2m—arcos(V,/Vy)  Ve>0

2.4. RRDWL System Parameters

The RRDWL consists of three key components: the transmitting optics, receiving op-
tics, and control and acquisition subsystems, as shown in Figure 4. The transmitting optics
subsystem comprises a seed injection Nd:YAG solid-state laser, a laser beam expander, and
the emission light path. The seed injection Nd:YAG laser generates the laser pulse, while
the laser beam expander enlarges the laser beam to the desired size. The laser light is then
directed through the emission light path, passing through the emission mirror and into
the atmosphere.
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Schematic Diagram
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Transient A]:QIZ FPI Rotary
recorder controller controller

Figure 4. The principle diagram of RRDWL.

The receiving optics subsystem primarily consists of a Nessler Cassegrain receiving
telescope, a receiving fiber, an FPI, a collimating device, a splitter path, interference filters,
and a photomultiplier tube (PMT) among other key components. The receiving telescope
captures the atmospheric backscattered light signal and focuses it onto the receiving fiber
for transmission to the subsequent optical receiver. The collimating device ensures beam
parallelism and stability. The echo light signal passes through the spectral light path and
enters the FPI's two edge channels. Interference filters are employed to select specific
wavelength ranges according to the experimental requirements. Finally, the PMT is utilized
for light signal collection.

The control and acquisition subsystem includes a transient recorder, such as Licel, a
high-speed acquisition card, an industrial computer, and control inversion software. These
components are responsible for controlling the system’s operation and parameter settings.
Additionally, they facilitate the collection and processing of optical signal data.

By integrating these three subsystems, the system can effectively transmit the laser
pulse into the atmosphere, receive the backscattered light signal, and control and acquire
the optical data for further analysis and interpretation.
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3. RRDWL Performance Test
3.1. Performance Test Result

The RRDWL was completed in October 2021, as mentioned in Refs. [25,26] provide
detailed information regarding the development and parameters of the system. Therefore,
this article does not go into detail. Before the RRDWL can be deployed for atmospheric
wind field observation missions, it is crucial to conduct field tests to comprehensively
evaluate its detection performance. These tests are conducted to ensure that the system
can operate reliably in real environments and provide accurate measurements of the wind
field. For this purpose, the RRDWL was deployed on Science Island, located at coordinates
117.18° E and 31.47° N, in Hefei, Anhui Province. By conducting field tests in this area,
the system’s capabilities can be thoroughly evaluated, and any necessary adjustments or
optimizations can be made to ensure its effectiveness in practical wind field observations.

To mitigate the influence of complex weather conditions on the experimental results
of the RRDWL system, the comparison observations between RRDWL and the Sonde wind
field were conducted during the evening when the weather conditions were relatively
favorable. It is important to acknowledge that the altitude region below 20 km in the
troposphere is characterized by various weather phenomena and air turbulence. These
factors can significantly amplify noise and pose challenges to the system’s ability to receive
stable and reliable atmospheric echo signals effectively. At the same time, the pulse
repetition rate of the main laser is 30 Hz, and RRDWL needs to complete four radial wind
speed detections to obtain a horizontal wind field. Therefore, in order to ensure accurate
measurements, the Rotational-Rate Dual-Wavelength LiDAR (RRDWL) emits a total of
8000 laser pulses in each direction during the detection process. This large number of pulses
helps compensate for the potential noise and disturbances present in the lower troposphere.
By carefully considering these factors and optimizing the system’s parameters, the RRDWL
is able to acquire atmospheric wind field information in as little as 25 min. To enhance
the signal-to-noise ratio of the system, spatial averaging processing was applied to the
collected raw data, resulting in a range resolution of 300 m. In order to ensure the effective
detection of atmospheric echo optical signals, the signal gate opening time delay after the
completion of laser pulse Q-modulation was set to 80 microseconds. This configuration
implies that the atmospheric echo optical signal profile becomes effective from a range of
11 km. Simultaneously, a weather balloon carrying a radiosonde was launched from the
same location. The balloon reached an altitude of 28.01 km within 69 min, covering the
entire operating time of the LiDAR system. According to GPS data, the balloon drifted
165.6 km to the east during its ascent.

In Figure 5a, the horizontal wind speed (WS) profiles obtained using the RRDWL and
Sonde are depicted using black dots and red lines, respectively. In Figure 5b, the absolute
deviation between the RRDWL and Sonde measurements is shown. It is observed that,
except for a thin layer around 13 km and 18 km, the absolute deviation of the wind speed
at other altitudes remains below 10 m/s. At a height of 12 km near the tropopause, the
horizontal wind speed reaches a maximum of 90 m/s and then gradually decreases to
within 5 m/s at an altitude of 22 km. Between 22 km and 27 km, a weak layer of wind is
observed with peak winds of approximately 17 m/s. Overall, the comparison between the
RRDWL and Sonde measurements shows reasonably good agreement, with the absolute
deviation of wind speed mostly below 10 m/s, except for certain altitudes. In Figure 5c¢, the
wind direction (WD) profile obtained using both the RRDWL and Sonde is presented. It
can be observed that westerly winds, ranging from 227° to 292°, are prevalent at altitudes
between 10 km and 27 km. This indicates a predominant westward flow in the atmosphere
within this altitude range. At approximately 28 km, both the RRDWL and radiosonde
measurements indicate the presence of wind shear. In Figure 5d, the deviation of wind
direction between the RRDWL and Sonde measurements is shown. It is noteworthy that
the deviation of wind direction between the RRDWL and Sonde measurements remains
below 10° below 25 km. This suggests a relatively good agreement between the two devices
in capturing the wind direction profile within this altitude range.
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Figure 5. Comparison of horizontal wind profiles obtained using RRDWL and Sonde. (a) wind speed
(b) deviation of WS (c) wind direction (d) deviation of WD.

3.2. Measurement Error Analysis

During actual atmospheric wind field detection experiments, it is common for the
detected data to deviate from theoretical simulation results due to measurement errors.
These errors can be categorized into systematic errors and random errors, each contributing
differently to the overall measurement accuracy and precision. Systematic errors are
typically used to describe the accuracy of measurement results, representing consistent
biases or offsets in the measurements. On the other hand, random errors are used to
describe the precision of the measurements, reflecting variations or fluctuations in the
measured values. The measurement accuracy, which quantitatively expresses the influence
of both types of errors on the measurement results, can be characterized by uncertainty. The
impact of these two types of errors on the measurement results is illustrated by the position
distribution of red dots in Figure 6. Taking the small figure within Figure 5 as an example,
Figure 6a indicates high measurement accuracy and small uncertainty, suggesting low
systematic and random errors. In contrast, Figure 6d represents low measurement accuracy
and large uncertainty, indicating significant systematic and random errors. Figure 6b
demonstrates common errors encountered during detection, such as those caused by
improper calibration coefficients. However, Figure 6¢c depicts the typical measurement
errors of LIDAR, primarily dominated by random errors stemming from optical quantum
noise and errors associated with system parameters. When both systematic and random
errors are minimized, measurement results similar to those shown in Figure 6a can be
obtained. The systematic errors of the RRDWL primarily arise from laser linewidth jitter,
laser frequency jitter, system calibration, and inversion methods. These factors contribute
to the overall systematic error in the measurements obtained using the system.

The signal-to-noise ratio (SNR) is a crucial metric widely used to assess the effective
detection height in LiDAR systems. It quantifies the ratio of the desired signal strength to
the level of background noise present in the received signal. In general, a higher signal
intensity results in a higher SNR. SNR plays a significant role in determining the appropriate
inversion height and calibration point in LIDAR systems. It directly influences the accuracy
and reliability of the inversion results for atmospheric parameters. By selecting an inversion
height with a higher SNR, the system can obtain more reliable and accurate measurements
of atmospheric parameters. The formula to calculate SNR is typically defined as the ratio of
the signal power to the noise power. However, the specific formulation can vary depending
on the system and measurement configuration. It is essential to consider the characteristics
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and requirements of the LiDAR system in determining the appropriate SNR calculation
method. Specifically, the SNR of RRDWL can be calculated as follows:

SNR(z) = Nx(2)

~ VNx(@ 2N+ Ng) v

©)

where Nx (Z) is the atmospheric echo signal, N, and Nj; are the backscattered noise and
atmospheric background radiation noise, and # is the pulse accumulation number.

()

(b)

:

Figure 6. Schematic diagram of random and systematic errors in measurement. (a) Small systematic
error and random error (b) Large systematic error and small random error (c) Small systematic error
and large random error (d) Both systematic error and random error are large.

In general, a region is considered valid if its signal-to-noise ratio (SNR) exceeds a
predetermined threshold, such as 10. Consequently, a set of test data was selected to analyze
the SNR profiles of the three channels of a four radial FPI. Figure 7 illustrates the results,
indicating that the measured SNR is approximately 112 at a height of 30 km and around
10 at a height of 42 km. However, it is observed that the four radial signals gradually
become unstable, starting from an altitude of 30 km, with the SNR exhibiting increasing
jitter. It is important to note that, during actual measurements, several factors can cause
inconsistencies in the SNR of different radials at the same height. These factors include
the uneven distribution of the atmosphere and differences in the efficiency of the system’s
detector components. Such variations can affect the strength of the signal and the level of
noise, consequently resulting in disparities in the SNR values among different radials.
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Figure 7. Four radial SNR profiles of a set of test data.
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To evaluate the effective altitude of the system in long-term detection, an experiment
was conducted wherein 8000 pulses were transmitted, and an SNR threshold of 10 was used
as the evaluation criteria. The signals obtained during favorable atmospheric conditions
were statistically analyzed, and the results are presented in Figure 8. In Figure 8a, the
statistics for the effective detection heights of the two edge channels are displayed. It can
be observed that edge channel 1 has a total of 17 sets of effective heights between 38 km
and 40 km, and 26 sets between 40 km and 45 km. On the other hand, edge channel 2 has
12 sets with effective heights between 38 km and 40 km and 31 sets with effective heights
between 40 km and 45 km. Figure 8b shows the statistical results of the combined effective
detection altitudes. There are a total of 16 groups between 38 km and 40 km and 27 groups
between 40 km and 43 km. In summary, the analysis indicates that the effective detection
height of the RRDWL is primarily concentrated between 38 km and 42 km.
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Figure 8. Effective detection height sequence of RRDWL. (a) edge channel (b) system overall.

When using atmospheric backscatter signals with errors to invert atmospheric wind
speed, the accuracy of the results can be affected by the transmission effect of the errors.
The main source of measurement errors consists of random factors such as optical quantum
noise, and it is closely associated with the technical parameters of the LiDAR system.
During actual detection experiments, the presence of system errors can lead to the offset
of the transmitting laser frequency from the intersection of the transmittance curve of the
edge channel of the FPI. This offset can result in lower frequency locking accuracy. The
wind speed error at this time is derived, and the frequency response function is:

_ M

R - X7/
14 N,

(6)

where N7 and N, indicate the edge channel transmittance of FPI. Through the error transfer
function, the error in calculating radial wind speed is:

1
= B/Ny 4

According to the mean square error of the actual frequency response function:
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_ (§N1)2+(§Nl22)2 , (8)
1

Therefore, the actual wind speed error can be obtained according to the wind speed
sensitivity and error transfer function:

ORy /oV
L ©)
SRy > dlnRy 2 ,
(Ry) =y V) = vV, (10)
JR 2 3
v ® Y (sle) + (i) "

Oy Oy

To provide a more representative error analysis, another set of experimental data was
utilized, and the random errors of the detected wind profiles were calculated using the
aforementioned formula. The results are presented in Figure 9. In Figure 9a, the random
errors of the four radial wind profiles in the east, south, west, and north directions are
depicted. Figure 8b displays the random errors of the combined X and Y directions, as well
as the horizontal wind speeds. According to the results shown in the figure, the random
error of the wind profile exhibits an exponential increase with altitude. At 36 km, the four
radial wind profiles demonstrate similar random error characteristics, with an approximate
value of 10 m/s. The random error of the resulting horizontal wind speed is around 10 m/s
at 34 km. The exponential growth of random errors with height emphasizes the importance
of exercising caution when analyzing wind profile data at higher altitudes. Additionally,
the similarity in random error characteristics among the four radial wind velocity profiles
indicates consistency in data acquisition and processing. On the other hand, the random
error of the synthesized horizontal wind velocity profile remains at a relatively high level.
This finding underscores the need to fully consider the influence of random errors on the
synthesis and inversion of horizontal wind velocities.
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Figure 9. Random error of wind speed at different altitudes (a) radial (b) synthesis.

To provide a more intuitive comparison of the horizontal wind speed error profiles
generated using the RRDWL, Figure 10 displays a diagram showcasing these profiles.
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Figure 10. A set of horizontal wind speed error profiles for RRDWL.

To compare the horizontal wind profiles obtained using the RRDWL and the Sonde,
as well as the random error of wind speed calculated using SNR, Figure 11 provides a
visual representation. In Figure 11a, the distribution trend of the horizontal wind speed
profiles obtained using both devices is shown to be essentially the same. In Figure 11a,
the distribution trend of the horizontal wind speed profiles obtained using both devices is
shown to be essentially the same. The variation trend of the measured wind speed error
and random error is similar to the height changes. This finding validates that the random
error calculated using SNR can, to some extent, represent the wind measurement error and
can be used to verify the accuracy of wind measurements. Furthermore, within the height
range from 15 km to 25 km, significant jitter and large amplitude of the measured error can
be observed. This suggests that system errors have a considerable impact on the accuracy
of measurement results, in addition to the influence of atmospheric level heterogeneity.
Figure 10 also highlights the significant effect of the zenith angle of the receiving telescope
on the horizontal wind profile. Initially set at 22°, it was later found that setting the zenith
angle to 24° resulted in better agreement between the RRDWL and radiosonde data. This
indicates that the zenith angle plays an important role in the accuracy of measurement
results. However, it is important to note that the zenith angle has less impact on the random
error. Random errors are typically caused by various unpredictable factors, and the zenith
angle mainly affects the measurement results based on system settings and instrument
characteristics. The analysis results highlight the significant impact of system errors on
the accuracy of measurement results, independent of atmospheric level heterogeneity.
Additionally, the zenith angle of the receiving telescope is shown to have a notable effect on
the accuracy of the horizontal wind profile. These findings emphasize that while the Rotary
Rayleigh Doppler Wind Lidar (RRDWL) enables single-unit detection of the horizontal
wind field, the presence of systematic errors can introduce significant inaccuracies in wind
speed measurements.

To enhance the representativeness of the experimental results, statistical analysis was
conducted on 35 sets of data obtained from successive detection experiments. Since the
detection height of the Sonde does not typically exceed 30 km, the random error sequence
of the wind speed in the horizontal wind profile at a height of 30 km, obtained from
the RRDWL, was calculated and plotted in Figure 12. By examining Figure 11, it can be
observed that the random error of the horizontal wind speed is below 10 m/s in 11 out of
the 35 groups, while it exceeds 15 m/s in 5 out of the 35 groups. On average, the random
error of the horizontal wind speed amounts to approximately 11.3 m/s. In summary, the
effective detection height of the RRDWL system is primarily concentrated between 38 km
and 42 km. Additionally, at an altitude of 30 km, the random error of the horizontal wind
speed is approximately 11.3 m/s. Taking into account the statistical analysis of multiple
experiments, these findings provide valuable insights into the performance and limitations
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of the RRDWL system. They contribute to understanding the effective detection range of
the system and the expected level of random error in horizontal wind speed measurements

at different altitudes.
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4. Error Tracing Analysis

According to Section 3.2, the detection results of the RRDWL system are primarily
influenced by two types of errors. The first type is a random error, primarily originating
from light quantum noise. The second type of error arises from system-related factors, such
as laser frequency jitter, operational stability, calibration, and inversion methods. Therefore,
conducting traceability analysis to identify the main source of system error is crucial for
optimizing the system’s performance. Considering that the RRDWL system utilizes a
single unit for integral rotation, weighing nearly 6 tons, it is inevitable to encounter stability
issues in the transceiver system during the actual detection process due to vibrations
and structural deformations. These factors can significantly impact the overall detection
performance. As depicted in Figure 13, on the evening of 13 March 2022, a continuous
detection test was conducted by the system. Before the wind field detection experiment that
night, a pre-experiment was carried out to observe the signal-to-noise ratio due to the cloudy
weather, and no gating signal was set. The comparison diagram of atmospheric echo signals
from three consecutive cycles in the north, east, south, and west (following the rotation
sequence) reveals significant deviations within each group of four radial atmospheric echo
signals over a short period of time (approximately 90 min), with varying change patterns.
Based on this observation, it can be inferred that these deviations are caused by uneven
ground conditions and that the deformation of the shelter is due to rotation, subsequently
disrupting the collimation of the optical path in the transceiver subsystem.
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Figure 13. The change of four-radial atmospheric echo signal during continuous rotation.

In the emission subsystem, ensuring the stability of optical devices such as the fiber
seed laser, main laser, and laser beam expander is crucial to maintaining the quality and
frequency of the emitted laser beam. As stated, the equipment is in an open state during
shelter operation, and it is inferred that the deformation of the resonator is primarily
caused by changes in ambient temperature. To investigate this issue further, an ambient
temperature test experiment was conducted in the afternoon of 19 January 2022, during
winter, as shown in Figure 14. The purpose of this experiment was to assess the impact of
ambient temperature on the resonator’s deformation. Initially, the main laser exhibited a
fundamental frequency energy of approximately 1.5 ] with a good pulse shape, indicating
single longitudinal mode oscillation. After being turned off for four days, the factors
causing changes in the main laser’s performance were investigated experimentally on
January 24. Between 10:00 a.m. and 11:30 a.m., the equipment shelter was closed, and
the main laser was preheated for 30 min. Despite the air conditioning being in heating
mode, the 532 nm laser pulse exhibited a poor shape, showing a multi-longitudinal pattern,
and the pulse energy was significantly reduced to around 300 m]J. This phenomenon was
attributed to the change in ambient temperature. The room temperature at this time was
27 °C. Interestingly, when the air conditioner was turned off, the pulse shape improved,
and the pulse energy was restored to about 620 mJ by adjusting the rear mirror. At 17:30
p-m., the main door of the equipment shelter was opened, causing the room temperature to
rapidly drop from 27 °C to 20 °C. However, there were no significant changes observed
in the pulse energy and waveform at this point, indicating that the cooling effect was not
sufficient. To prolong the cooling time, the decision was made to close the hatch door. By
20:40 in the evening, the room temperature had reached 19 °C. Upon restarting the main
laser, it was discovered that the energy of the fundamental amplification stage after seed
injection had decreased to 0.74 ], while the energy of the 532 nm pulse had sharply dropped
to 178 m]J. Subsequently, both the main and side doors of the equipment shelter were
opened, causing the room temperature to rapidly decrease from 19 °C to 13 °C, allowing for
the observation of the secondary effects of ambient temperature changes on the main laser.
At this point, the energy of the 532 nm pulse was reduced to 160 mJ, and the pulse shape
became highly chaotic, exhibiting a bimodal structure. At 21:10, the cabin door was closed,
and the air conditioning was switched back to heating mode, causing the temperature to
rise rapidly from 12 °C to 23 °C. However, the pulse energy of the oscillatory stage did
not change significantly, and the waveform remained disordered. Efforts were made to
strengthen the heating effect of the air conditioner, and, after working for more than half
an hour, the room temperature was restored to 26 °C. However, the fundamental frequency
oscillation stage energy after seed injection was only 107 mJ, indicating that the drastic
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change in ambient temperature had caused irreversible damage to the main laser and the
seed injection process. As a result of this irreversible damage, the quality of the laser beam
emitted could not be restored to normal levels.

Heating22°C Heating22°C. 30°C

conditioning off

Figure 14. Main laser ambient temperature change curve.

This experimental investigation underscores the sensitivity of the main laser to ambient
temperature changes and highlights the irreversible damage that can occur when subjected
to rapid and extreme temperature fluctuations. Implementing measures to stabilize the
ambient temperature and ensure gradual temperature transitions can help mitigate such
issues and preserve the optimal performance of the main laser in the RRDWL system.

In the receiving subsystem, the stability of the optical receiver, particularly the succes-
sor optical receiver, is crucial. The transmittance curve of the FPI channel, which is incident
upon by the beam, can be described using an Airy line, regardless of the beam’s divergence
angle. This property offers significant advantages when measuring transmittance curves,
as only a small number of points need to be measured to accurately fit the entire curve.
By reducing the number of measurement points, the system can accumulate more laser
pulses for each data point, thereby improving the signal-to-noise ratio. This enables more
accurate measurements without requiring excessive scanning time. However, during the
actual process of scanning the transmittance, it has been observed that when the beam
has a divergence angle (which is usually unavoidable) and oblique incidence on the FPI,
the transmittance curve becomes asymmetric. In such cases, accurately describing the
transmittance curve using analytical formulas becomes challenging. To obtain an accu-
rate spectral line of the FPI transmittance, a very small scanning step size is required to
reduce the number of measured pulses at each point. Even with this measure, it takes
nearly 40 min to accurately scan the entire FPI curve. Therefore, a good solution before
scanning the transmittance curve of the FPI is to adjust the beam so that it is directly on
the FPI without any divergence angle. However, in the early design of the receiver, the
influence of the position and angle of the optical elements (such as filters, beam-splitting
prisms, etc.) in the front and back optical paths of the FPI on mirror reflection was not fully
considered. Additionally, due to vibrations caused by continuous rotation, the relative
position of the optical elements inside the receiver may slightly change. The incomplete
parallelism between the optical element and the surface of the FPI increases the degree
of non-normal incidence of the beam. As a result, the detected signal contains compo-
nents of oblique incidence through the FPI and surface reflection after the FPI, making it
almost impossible to accurately describe the transmittance spectral line of the FPI using
an analytical expression. Figure 15 displays the FPI transmittance spectral lines obtained
from several rotation-detection experiments, along with the FPI transmittance spectral
lines under ideal conditions. One can observe that, despite adjusting the incident beam
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to normal incidence, there remains a slight asymmetry in the spectral lines. However,
after conducting numerous rotational detection tests, the spectral lines exhibit a significant
increase in asymmetry. Upon inspecting the receiver, it was discovered that the root of
the problem was the shift in the relative position of the mirror after the FPI, causing the
incident light to reflect when passing through the filter in front of the photomultiplier tube
(PMT). To address this issue, careful consideration should be given to the design of the
receiver, taking into account the position and angle of the optical elements in relation to
the FPL. Additionally, measures should be implemented to minimize vibrations and ensure
the stability of the optical elements within the receiver. By addressing these factors, the
accuracy of the transmittance measurements and the spectral line description of the FPI can
be improved, leading to enhanced performance and reliability of the receiving subsystem.
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Figure 15. Influence of non-normal incidence and specular reflection of incident light on spectral
lines of transmittance of FPL

5. Discussion

The atmospheric wind field data from the upper troposphere to the stratosphere
(10-50 km) is of great significance for the in-depth study of the dynamics of the middle
and upper atmosphere and the interaction between different layers. Compared with other
detection methods, direct wind LiDAR has significant advantages in spatial resolution,
detection range, and flexibility. At the same time, it is the only detection technology that
can continuously and effectively obtain the high-precision data of three-dimensional wind
fields in the troposphere and even the upper atmosphere.

Traditional direct wind LiDAR systems can be classified into two types. The first type
is the scanning type, which incorporates a scanning mirror composed of two flat mirrors
positioned above the LiDAR’s transmitter and receiver. This configuration enables the
LiDAR system to detect the horizontal wind field by utilizing cone scanning. However,
when the aperture of the receiving telescope exceeds half a meter, the size, thickness, and
weight of the scanning mirror increase significantly. This not only poses challenges in terms
of manufacturing complexity and cost but also makes optical tuning more difficult. Con-
sequently, this method is only suitable for small and medium-sized systems, limiting the
effective detection height of the system to the upper troposphere. Alternatively, researchers
have employed a different approach to detect high-altitude wind fields by utilizing two
(or three) large-aperture LiDAR systems arranged orthogonally (or at fixed angles) to
measure different radial wind speeds. Typically, each system in this configuration has the
same configuration and system parameters. By simultaneously measuring the line-of-sight
wind speeds in different directions, it becomes possible to obtain the atmospheric level
wind field at stratospheric and potentially higher altitudes. This detection method offers
significant advantages, such as higher spatiotemporal resolution and an increased detection
altitude range. However, it also presents certain challenges. Firstly, employing two or
more subsystems necessitates the use of at least two high-power pulsed lasers, multiple
large-aperture telescopes, and multiple detection and acquisition systems. This leads to
increased development and maintenance costs while also raising the difficulty of precisely
calibrating the instruments. Additionally, appropriate algorithms need to be employed to
mitigate the impact of measurement discrepancies arising from errors in different subsys-
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tems. Since each subsystem may introduce varying sources of error, such as deviations in
optical calibration or differences in detector response, these errors can potentially affect
the final measurement results of the wind field. More importantly, whether it is a scanning
system or a large aperture orthogonal system, the detection performance of direct wind
LiDAR largely depends on the accuracy of the instrument. This includes factors such as
the quality of the laser beam, the accuracy of the discriminator, and the response of the
detector. The accuracy of these key parameters is crucial to obtain accurate and reliable
wind field data. In addition, due to the need for larger telescopes and additional system
configurations, the development cost of direct wind lidar is higher than that of coherent
wind lidar. This means the direct wind LiDAR may be limited in practical applications.
Another challenge is that different direct wind LiDAR systems use different discrimina-
tors and scanning modes, leading to differences in calibration methods. Calibration is an
important step to ensure the measurement accuracy of the system. Different calibration
methods may lead to inconsistencies between subsystems and limit the comparison and
fusion of data.

In summary, the key factors that impact the performance of direct wind LiDAR can be
further categorized as follows:

1. Laser Frequency Drift: Direct wind LiDAR systems typically use seed injection lasers,
which can experience frequency drift due to temperature variations or vibrations. This
drift can lead to significant errors in wind speed inversion.

2. Laser Beam Divergence and Stability: In real-world environments, the emitted laser
beam may exhibit jitter or amplification in terms of divergence angle and frequency sta-
bility. This can impede the effective identification of Doppler frequency shifts caused
by wind, resulting in increased errors in wind speed inversion. Suitable algorithms
and devices are necessary to accurately identify and lock onto the frequency.

3.  Instrument Stability and Calibration: Direct wind LiDAR systems often consist of mul-
tiple sets of precision instruments. The complex working environment can introduce
varying degrees of error, impacting the stability and calibration of these instruments.

These factors collectively contribute to the slower research progress in direct wind Li-
DAR for detecting atmospheric wind fields. Additionally, it is worth noting that most field
detections of direct wind LiDAR systems, both domestically and abroad, are primarily con-
centrated in high-latitude areas or regions with favorable meteorological conditions. This
indicates that different meteorological conditions and complex external field environments
present challenges for direct wind LiDAR, requiring further exploration and research.

Based on the above background, this research group has developed the first rotary
Rayleigh Doppler wind LiDAR system in China. This innovative system utilizes a rotating
platform structure to enable the detection of four radial wind speeds through integral
rotation. The core components of the system include a seed injection laser, a large aperture
receiving telescope, and a successor optical receiver. This design not only overcomes the
limitation of traditional large aperture systems, which can only measure a single radial
wind speed, but also enables a single direct wind measurement LiDAR system to detect the
horizontal wind field in the middle and upper atmosphere. As a result, the system achieves
a higher level of wind field detection compared to conventional approaches. Additionally,
this design reduces the complexity of the structure and effectively lowers the development
cost of the equipment. This development represents a significant advancement in direct
wind LiDAR technology, offering improved capabilities for measuring wind speeds in
different directions simultaneously. By utilizing the rotary Rayleigh Doppler wind detection
LiDAR system, researchers can obtain comprehensive wind field data in the middle and
upper atmosphere. This achievement holds promise for expanding the applications of
direct wind LiDAR systems and advancing atmospheric research.

6. Conclusions

In order to effectively observe the stratospheric atmospheric wind field in the high
troposphere, Xie et al. from the Chinese Academy of Sciences, Anhui Institute of Optics
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and Fine Mechanics (CAS, AIOFM) developed an innovative rotary Rayleigh Doppler
wind measurement LIDAR (RRDWL). Following the completion of system construction, a
performance test experiment was conducted to verify the feasibility of monomer detection
of the atmospheric wind field in real-world environments. The results demonstrated that
the system was capable of detecting the atmospheric wind field within an altitude range
from 38 km to 42 km, with a horizontal wind speed error of approximately 11.3 m/s at
30 km altitude.

Furthermore, error analysis was performed to investigate the main factors influencing
the system’s performance. It was identified that RRDWL had limitations in long-term
continuous detection. The primary factor contributing to the reduction in effective detection
height was the damage to optical axis parallelism caused by vibrations introduced by the
rotating shelter and uneven ground surfaces. Additionally, random fluctuations in ambient
temperature disrupted the seed laser injection process, thereby affecting the quality of
the emitted beam. The imbalance in FPI parallelism resulting from non-normal incident
beams and specular reflections had a significant impact on the accuracy of frequency
discrimination. These error-tracing analyses provided valuable insights for optimizing the
performance of RRDWL. Addressing the issues related to optical axis parallelism, vibration
control, ambient temperature stability, seed laser injection, and FPI parallelism imbalance
will be crucial for enhancing the system’s accuracy and reliability. Moreover, these findings
serve as a foundation for the future long-term continuous supply of mid-upper atmospheric
wind field data using RRDWL.
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Abstract: Due to the complex and variable nature of the atmospheric conditions, traditional multi-
wavelength differential absorption lidar (DIAL) methods often suffer from significant errors when
inverting ozone concentrations. As the detection range increases, there is a higher demand for
Signal to Noise Ratio (SNR) in lidar signals. Based on this, the paper discusses the impact of
different atmospheric factors on the accuracy of ozone concentration inversion. It also compares the
advantages and disadvantages of the two-wavelength differential method and the three-wavelength
dual-differential method under both noisy and noise-free conditions. Firstly, the errors caused
by air molecular extinction, aerosol extinction, and backscatter terms in the inversion using the
two-wavelength differential method were simulated. Secondly, the corrected inversion errors were
obtained through direct correction and the introduction of a three-wavelength dual differential
correction. Finally, addressing the issue of insufficient SNR in practical inversions, the inversion errors
of the two correction methods were simulated by constructing lidar parameters and incorporating
appropriate noise. The results indicate that the traditional two-wavelength differential algorithm is
significantly affected by aerosols, making it more sensitive to aerosol concentration and structural
changes. On the other hand, the three-wavelength dual differential algorithm requires a higher
SNR in lidar signals. Therefore, we propose a novel strategy for inverting atmospheric ozone
concentration, which prioritizes the use of the three-wavelength dual-differential method in regions
with high SNR and high aerosol concentration. Conversely, the direct correction method utilizing the
two-wavelength differential approach is used. This approach holds the potential for high-precision
ozone concentration profile inversion under different atmospheric conditions.

Keywords: differential absorption lidar; ozone inversion; aerosol; signal to noise ratio; inversion strategy

1. Introduction

Ozone is an important component of the Earth’s atmosphere, playing a crucial role
in atmospheric radiation. Stratospheric ozone effectively absorbs ultraviolet radiation
harmful to biological life; meanwhile, tropospheric ozone acts as a significant atmospheric
pollutant. High concentrations of ground-level ozone can lead to photochemical smog.
Prolonged exposure to high levels of ozone can cause damage to various organs in the
human body [1-5]. Ozone also affects the growth and development of plants [6-10] and
can cause corrosion to building materials [2,11].

Since the observation of the ozone layer hole over Antarctica in 1986, the distribution
and changes in ozone have received widespread attention [3,12]. With the development of
industrialization, pollution from tropospheric ozone has been deepening annually [13,14],
making ozone concentration a very important key factor in assessing the atmospheric
environment [15]. Ozone measurement is the basis for studying ozone changes. Differential
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Absorption Lidar (DIAL) technology, with its advantages in high temporal resolution,
spatial resolution, and measurement accuracy, has become an important means of observing
ozone [16-20].

The Differential Absorption Lidar (DIAL) technology was first proposed by Professor
Schotland of the University of Michigan in 1964 and applied to the detection of atmospheric
water vapor content [20]. Subsequently, it has been extended to the concentration detection
of trace gases such as ozone, nitrogen dioxide, sulfur dioxide, etc. [21-23].

The DIAL technology measures ozone concentration by utilizing the differential
absorption of laser wavelengths by ozone. The lidar emits two laser beams of different
wavelengths into the atmosphere and receives the return signals that have interacted with
the atmosphere. It is assumed that the differences in the return signals of these two laser
beams are caused by the differential absorption by ozone, thus allowing the determination
of ozone concentration through a differential algorithm. However, due to the presence of
atmospheric aerosols, aerosols often also have different effects on these two wavelengths.

When the difference in wavelengths between the two laser beams is not sufficiently
small, the difference in the absorption cross-section of ozone for these two wavelengths is
not significant enough, or if there is a substantial and uneven distribution of aerosols along
the laser path, it becomes necessary to correct the differential absorption formula.

To mitigate the impacts of aerosol extinction and backscattering, scholars worldwide
have undertaken considerable work. A portion of this work is dedicated to theoretical
corrections, estimating aerosol extinction and backscatter characteristics through lidar
signals at other wavelengths or other means. Browell and colleagues discussed the errors
caused by differences in atmospheric wavelengths and aerosol inhomogeneity and cor-
rected the ozone inversion results [24]. Steinbrecht and colleagues quantified the impact
of additional aerosols on differential absorption measurements and made corrections [25].
Papayannis used a multi-wavelength lidar system as a reference for correcting ozone mea-
surements [26]. Due to the inability to accurately obtain aerosol parameters, errors still
exist in these methods.

Another line of work does not concern itself with the state of aerosols along the laser
path but instead aims to reduce the impacts of aerosols through experimental methods.
McGee and others proposed the Raman-DIAL method, which uses the Raman backscatter
from nitrogen molecules at two wavelengths for differential measurement, eliminating the
impact of aerosol backscatter [27]. However, the impact of aerosol extinction still exists, and
since the Raman scattering cross-section is two orders of magnitude smaller than Rayleigh
and Mie scattering, this method has a higher requirement for the signal-to-noise ratio.
Wang Zhen and colleagues introduced the three-wavelength dual-differential method
(Dual-DIAL), incorporating a third wavelength. By performing a double differential
operation across three wavelengths, this method reduces the impact of aerosol extinction
and backscatter [28,29]. A limitation is the smaller difference in extinction cross-section,
leading to reduced sensitivity and spatial resolution in measuring air molecules and
potentially resulting in insufficient signal-to-noise ratio.

This article mainly discusses the impact of various atmospheric factors on the accuracy
of ozone inversion. By combining the signal-to-noise ratio issues encountered in actual
inversions, it simulates and compares the errors between direct correction with DIAL and
the three-wavelength dual-differential method. A multi-wavelength differential absorption
correction algorithm is proposed. By integrating the above, adjusting strategies under dif-
ferent atmospheric factors and lidar parameters can yield better results, showing potential
application value for the inversion of high-precision ozone concentration profiles.

2. Inversion Principle and Simulation Approach
2.1. Inversion Principle
Differential Absorption Lidar emits two lasers with different wavelengths into the

atmosphere, one as the measurement wavelength (Ao,) and the other as the reference
wavelength (A.¢). When these two wavelengths are sufficiently close, it can be assumed

53



Photonics 2024, 11, 510

that components in the air other than ozone have the same effect on both wavelengths.
Therefore, the difference in the return signals is considered to be entirely caused by the
differential absorption of ozone. By comparing the return signals of the two wavelengths,
the concentration of ozone can be calculated. Due to the unique ultraviolet absorption
cross-section of ozone, without considering the absorption by other gases, the echo signal
expression for differential absorption lidar is as follows [20]:

B\ 2) N
P(A,z) = C(/\,Z)Texp [Z/Z a(z) + N(z)0(A, z)dz 1)
v 40

In the above formula, P(A, z) represents the return signal at height z for wavelength A,
C(A, z) is the lidar constant determined by the lidar’s parameters, (A, z) represents the at-
mospheric backscatter signal, «(Ai, z) represents the atmospheric extinction, which includes
air molecules and aerosols, N(z) represents the ozone concentration, and 5(A, z) represents
the absorption cross-section of ozone molecules at wavelength A.

C = cEg(MQ(A, 2)A, Ti(M)T(A) )

The expression for the lidar constant includes the following elements: ¢ is the speed
of light, Eg(A) is the single pulse energy of the laser, ()(A, z) is the lidar’s geometric factor,
A, is the area of the receiving telescope, T;(A) and T;(A) are the total transmittance of the
transmitting and receiving optical units at wavelength A, respectively.

The ozone concentration is calculated from the echo signal equations of two wave-
lengths as follows:

—1d |, P(o2)

N(z) = SAC dz nP(}\Off,z)

+B—E,—Ep, 3)

where Ac is the difference in the absorption cross-section of ozone for the two wavelengths,
P(Aon,z) and P (?\0 ffr z) are the lidar signals for the two wavelengths. B is the error caused

by the atmospheric backscatter, including atmospheric air molecules and aerosols. E, is
the extinction error due to aerosols, and E,, is the extinction error due to air molecules,
collectively referred to as atmospheric interference terms. The specific expressions for the
three terms are as follows:

1 d ] B(Aon, z)

ey vy nﬁ()\off,z) (4)
E, = ﬁ(zxa@on,z) — (Aoff,z>) (5)
E, = ﬁ(wm(?\on,z) — (Aoff,z)) (6)

where ay, (Aon, z) and ayy, (?\0 ff,z> are the extinction coefficients of air molecules at wave-
lengths Ao, and A, Ffr respectively.a; (Aon, z) and a, (Ao, z) are the extinction coefficients of
aerosols at wavelengths Ao, and A, ¢, respectively. B(Aon, z) and B (7\0 Ffr z) represent the
backscatter coefficients of the atmosphere at wavelengths Ao, and A, ¢f, respectively.

2.1.1. Direct Correction

To reduce the error in the inversion of ozone, the common practice is to obtain the
extinction coefficients of aerosols and air molecules, as well as the backscatter coefficients,
and then substitute these values into Formulas (4)-(6).
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The extinction and backscatter coefficients of air molecules can be calculated using
the US Standard Atmosphere Model (USSA-76), while the relevant parameters for aerosols
can usually be obtained through the Fernald method. The Fernald method calculates the
aerosol extinction coefficient as follows [30]:

Sa Zc
X(z)exp [2(5— - 1) ., ocm(z)dz}

m

o X(exp[2(8 1) [ an(z)dz]

7 (Zc)+ é%iz o7 (Zc

@)

where X(z) = P(z)z? is the distance squared signal and z. is the correction layer height at
which the aerosol extinction coefficient is assumed to be known.

The Fernald method assumes Sy, = o, (2)/Bm(z) and S, = 4(z)/ Ba(z), where Sy, is
the ratio of molecular extinction to backscatter, and this value can be solved using Rayleigh
scattering theory as 87t/3 [30]. S, is set as the ratio of aerosol extinction to backscatter; it is
a constant that does not change with altitude, and its value typically varies between 10 to
100 sr. A commonly used value is 50 sr.

The aerosol Angstrém exponent & describes the relationship between the scattering
and absorption properties of aerosols at different wavelengths. This value typically varies
between 0 and 2. The aerosol extinction coefficients at different wavelengths can be
expressed as follows [31]:
x(A1)
x(A2)

By obtaining the aerosol extinction coefficient at wavelength A; through the Fernald
method and converting it to the detection wavelength A, and the reference wavelength A, ¢

et

d=In( }\
1

)/In(3=) ®)

using the Angstrém exponent d, direct correction of the differential absorption algorithm is
accomplished.

2.1.2. Dual-DIAL Correction

A three-wavelength differential absorption lidar emits three laser beams of different
wavelengths into the atmosphere, corresponding to strong, medium, and weak (or non-)
absorption by the gas under measurement. By combining the three wavelengths in pairs,
two sets of differential absorption equations can be derived. The three-wavelength differ-
ential absorption formula aims to negate atmospheric interference by combining these two
differential absorption formulas, thereby eliminating or reducing the interference caused
by aerosols. The ozone concentration obtained through the double differential of three
wavelengths is as follows [28]:

1 d —ln P()\lonlz) + Cln P()\ZUTLIZ)

" 2Acdz
P(?\loff,z) P(?\zoff,z>
In this context, where Aq, ff = Aoon, and C is a constant, typically chosen as C =

(7\10” — 7\10ff> / (AZOYI - AZOff)'

2.2. Simulation Approach

N(z)

©)

The accuracy of ozone concentration monitoring is constrained by atmospheric en-
vironmental factors, as well as the parameters of the radar itself. The inversion of ozone
concentration involves complex atmospheric processes and physical mechanisms. It is
necessary to construct a detailed simulation environment, precisely setting the variables
and conditions in the atmosphere to ensure the repeatability and reliability of the results.
While controlling and understanding these complex processes, it is also essential to reveal
the intrinsic relationship between algorithm performance and atmospheric parameters and
to evaluate the performance of the algorithm under different atmospheric conditions.
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This study establishes a simulated atmospheric environment and simulates the inter-
action process between the lidar and the atmosphere under various aerosol parameters
(aerosol backscatter ratio S, and Angstrém exponent §), obtaining lidar echo signals at
different wavelengths. By combining Equations (1)—(3), the inverted ozone concentration is
derived, followed by an error analysis.

Figure 1 illustrates the basic atmospheric environment established for the simulations
in this section, where Figure la displays the aerosol extinction coefficient profile at 316 nm
as set; Figure 1b shows the extinction coefficient profile for air molecules at 316 nm; and
Figure 1c outlines the set atmospheric ozone concentration profile.
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Figure 1. The Established Basic Atmospheric Environment. (a) Aerosol Extinction Coefficient. (b) Air
Molecular Extinction Coefficient. (¢) Ozone Concentration.

The aerosol extinction coefficients and ozone concentrations set in this section are
slightly modified based on actual measurement data, whereas the extinction coefficients for
atmospheric air molecules are provided by the model (USSA-76). It is generally considered
that the atmospheric air molecule model closely fits the real situation, and the errors caused
by atmospheric air molecules can be effectively eliminated. The setting of the atmospheric
aerosol extinction coefficient highlights the higher concentration of aerosols near the ground
surface, with a rapid decrease in the aerosol extinction coefficient with increasing altitude.
In this profile, the change in the aerosol extinction coefficient is not completely smooth;
some abrupt structural changes are set at 0.5 km, 1.2 km, and 2.3 km to better understand
the composition and magnitude of the ozone inversion error at the points of the aerosol
structure change.

3. Simulation Results

This section first simulates the various errors of atmospheric disturbance terms in
the differential absorption algorithm, analyzing their causes and proportions. Secondly,
it analyzes the sensitivity of the two correction methods to aerosol parameters. Finally,
considering the inevitable noise issues in actual detection, it compares the ozone inversion
accuracy of the two correction methods under different atmospheric conditions. In the
simulation process of this paper, the wavelength pair used is 266-316 nm. During the
correction process using the triple-wavelength double-differential method, the signal at
289 nm is added.

3.1. Error Analysis of Atmospheric Interference Terms

When retrieving ozone concentration using the dual-wavelength differential absorp-
tion algorithm, errors related to the extinction terms of aerosols, atmospheric air molecules,
and backscattering terms occur, collectively referred to as errors of atmospheric interference
terms. Initially, the causes and proportions of these three errors are analyzed.
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Figure 2 presents the error of atmospheric interference terms under different aerosol
backscatter ratio (S,) and Angstrom exponent (8), where the aerosol backscatter ratio
is denoted as SA and the Angstrém exponent as AE in the figure. Since the extinction
by atmospheric air molecules is calculated using model data, the error associated with
the atmospheric air molecule term remains constant. The error in the aerosol extinction
term is directly related to aerosol concentration. When the height is greater than 2 km,
where the aerosol concentration is low, the error in the aerosol extinction term is minimal.
Compared to the aerosol backscatter ratio, the error in the aerosol extinction term is more
sensitive to the Angstrom exponent. The closer the Angstrom exponent is to 0, meaning
the closer the aerosol extinction coefficients are between different wavelengths, the smaller
the error in the aerosol extinction term becomes. Overall, the error in the backscattering
term also decreases with a decrease in aerosol concentration. However, in areas where
aerosol structure changes, such as the 2-3 km region, the error in the backscattering term
increases. In regions with higher aerosol concentration, the error in the aerosol extinction
term dominates; when the aerosol concentration decreases and is at a point of aerosol
structure change, the error in the backscattering term increases and becomes dominant.
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Figure 2. Error of Atmospheric Interference Terms. (a) Angstr(jm exponent 1.8, Lidar ratio 20
(b) Angstrbm exponent 1.8,Lidar ratio 80 (c) Angstrt’)m exponent 0.2,Lidar ratio 20 (d) Angstrbm
exponent 0.2, Lidar ratio 80.

3.2. Sensitivity Analysis of Aerosol Parameters

This section will discuss the sensitivity of the ozone inversion errors obtained by the
two ozone inversion correction methods described in Section 2.1 to aerosol parameters.

3.2.1. Sensitivity Analysis of Direct Correction

The variation of ozone concentration error with aerosol backscatter ratio and Angstrém
exponent at different heights is illustrated in Figure 3. The Angstrom exponent (AE) varies
between 0 and 2, and the lidar ratio (SA) changes between 10 and 90. It is observed that

57



Photonics 2024, 11, 510

at different heights, there is a certain pattern in the error of ozone inversion. Negative
maximum inversion errors occur when the Angstrom exponent and lidar ratio are close
to 0 and 10, respectively; positive maximum inversion errors appear when they are close
to 2 and 90, respectively. Furthermore, it is noteworthy that the direct corrected dual-
wavelength algorithm exhibits higher sensitivity to variations in the Angstrém exponent.
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Figure 3. The relationship between ozone inversion error after direct correction and aerosol backscat-
ter ratio and Angstr(')m exponent. (a) The height of 0.03 km. (b) The height of 0.3 km. (c) The height
of 0.6 km. (d) The height of 0.9 km.

As depicted in Figure 3a,b, the aerosol extinction coefficient at 316 nm is measured
as 0.76 km~! and 0.43 km~! at heights of 0.03 km and 0.3 km, respectively, wherein the
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direct correction dual-wavelength method may exhibit an ozone concentration inversion
error exceeding 15 pg/m?3. As illustrated in Figure 3c,d, the aerosol extinction coefficient at
316 nm is 0.21 km~! and 0.18 km ™! at heights of 0.03 km and 0.3 km, respectively, with the
ozone inversion error being within 5 pg/ mS.

By selecting the Angstrém exponent values of 0.2 and 1.8 and lidar ratios of 20 and
80, four sets of ozone concentration inversion profiles and their error curves are obtained.
In Figure 4a, the black line represents the set ozone concentration, and the dash-dot
lines represent several inversion profiles from the direct correction inversion algorithm.
Figure 4b shows their error curves, with the four error curves exhibiting similar structures.
Below 1 km, where the aerosol extinction coefficient is larger, the inversion error is greater.
The farther the parameters of the error curves deviate from the correction parameters
(AE =1, SA = 50), the greater the ozone inversion error. As altitude increases and aerosol
concentration decreases, the inversion results tend to converge.
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Figure 4. Ozone inversion profile and error profile using the direct correction differential algorithm.
(a) Ozone inversion profile (b) error profile.

3.2.2. Sensitivity Analysis of Dual-DIAL Correction

The triple-wavelength double-differential correction, through the processing of two
sets of differential results, has mitigated some of the effects caused by aerosols. This
subsection analyzes the variation in inversion error of this correction method with the
aerosol backscatter ratio and Angstrém exponent and presents the ozone inversion and
error profiles derived from the triple-wavelength algorithm.

As illustrated in Figure 5, while varying the aerosol backscatter ratio (SA) and
Angstrom exponent (AE) to simulate the variation in real aerosol parameters, the in-
version error from the triple-wavelength double-differential correction does not exhibit
a clear pattern with respect to the Angstrém exponent and lidar ratio, unlike the direct
correction method. The triple-wavelength double-differential correction effectively reduces
the influence of aerosols. At an altitude of 0.03 km with an aerosol extinction coefficient (at
316 nm) of 0.76 km ™!, the inversion error from the triple-wavelength double-differential
correction is within 4 pg/m?3, whereas the direct correction error can reach 15-18 pg/m?3.
At an altitude of 0.3 km, with an aerosol extinction coefficient (at 316 nm) of 0.43 km~1, the
inversion error for ozone is already within 3 ug/ m3. At altitudes of 0.6 km and 0.9 km,
the error from the triple-wavelength double-differential correction is also smaller than that
from the direct correction method.
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Figure 5. The relationship between ozone inversion error after Dual-DIAL correction and aerosol
backscatter ratio and Angstrém exponent. (a) The height of 0.03 km. (b) The height of 0.3 km. (c) The
height of 0.6 km. (d) The height of 0.9 km.

Selecting aerosol backscatter ratios of 20 and 80 and Angstrém exponents of 0.2 and 1.8,
four sets of ozone concentration inversion profiles and error curves are obtained through
the triple-wavelength double-differential correction. In Figure 6a, the black line represents
the preset ozone concentration, while the dash—dot lines are several inversion profiles from
the triple-wavelength double-differential correction. Figure 6b displays the corresponding
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error curves. The four error curves have similar structures, but their relationship with
aerosol parameters is not clear.
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Figure 6. Ozone inversion profile and error profile using the Dual-DIAL correction differential
algorithm. (a) Ozone inversion profile (b) error profile.

3.3. Comparison of Algorithm Performance under Noise Conditions

In the actual detection process, the interference of noise is inevitable. Noise affects
the performance of lidar and the accuracy of measurement results, directly impacting mea-
surement precision and system performance. Incorporating noise factors into simulation
design can enhance the accuracy and reliability of the simulation, providing a better un-
derstanding of the challenges and limitations the system may face in actual operation and
making the simulation results more closely aligned with real-world conditions. Evaluating
the impact of noise on system performance allows for a more accurate prediction of the
system’s behavior under real conditions. Studying the impact of noise on signal processing
aims to improve the quality of the signal and the overall performance of the system.

In differential absorption lidar systems, noise sources can be divided into background
light noise Nj,(A, z) and detector noise Nd(A, z). The background light noise, originating
from solar radiation or other artificial light sources, can enter the detector through the
optical components of the receiving system and mix with the signal light, leading to noise.
Detector noise includes thermal noise, shot noise, dark current noise, etc., all of which
are generated internally by the detector. Among these, shot noise, which is related to the
number of photons detected, is a manifestation of quantum noise. These two types of noise
can be expressed by the following Equations:

Ny(A) = U(Ij\C)APb(?\)ngA?\(A)A,T,At (10)
Ny(N) = Cps(A)At (11)

Py(A) is defined as the sky background radiance at wavelength A. At night, this value
is close to 0; thus, operating a DIAL system at night can significantly reduce the impact
of background light noise. 0 is the receiving field of view angle of the receiving telescope;
AA(A) is the half-width of the spectral device at wavelength A; T, is the transmittance of the
receiving optical unit at wavelength A, and Cpg(A) is the dark count of the detector. The

61



Photonics 2024, 11, 510

signal-to-noise ratio SNR(A,z) of the atmospheric backscatter signal from the differential
absorption lidar can be calculated using the formula below:

B Ne(A, Z)
SNROV2) = g, o s Nz M (12

where M is the number of pulses.

Combining the parameters from the table above simulates the atmospheric transmis-
sion process in the air. Introduce noise into the lidar equation. Calculate the echo signals at
266 nm, 289 nm, and 316 nm.

The signal-to-noise ratio (SNR) for the three wavelengths is obtained by substituting
the echo signals into the SNR formula, as shown in Figure 7. The detection altitudes for
266 nm, 289 nm, and 316 nm, where the SNR is 10, are respectively 1.725 km, 3.18 km,
and 4.09 km. In the ultraviolet spectrum, as the wavelength decreases, the atmospheric
backscatter effect intensifies, leading to a faster attenuation of signal strength. Therefore,
there are significant differences in the effective detection distances among the signals at the
three different wavelengths. Within these effective detection ranges, the variation in the
echo signals across the three wavelengths can reach up to five orders of magnitude.
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Figure 7. Signal-to-noise ratio for the three wavelengths.

Under the lidar system parameters listed in Table 1, by varying the aerosol backscatter
ratio and Angstrém exponent, ozone concentration profiles were retrieved through both
direct correction and Dual-DIAL correction, as shown in Figure 8. Figure 8a presents the
results from direct correction, and Figure 8b from the Dual-DIAL correction. The inversion
spatial resolution was set at 60 m. In high signal-to-noise ratio (SNR) areas (such as below
1 km), the ozone profiles are essentially consistent with the ideal state (in the absence of
noise); as the SNR of the wavelength signal decreases, fluctuations appear in the inverted
ozone concentration.
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Table 1. Simulated Lidar Parameters for Calculation.

System Parameter Value
Laser wavelength 266 nm, 289 nm, 316 nm
Pulse energy 1m]
Pulse number 700
Emitting optical transmittance 0.3
Detection Quantum Efficiency 0.2
Receiver Diameter 300 mm
Field of view 1 mrad
Filter Bandwidth 1 nm
Dark counts 400
Spatial resolution 75m
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Figure 8. Comparison of inversion errors between direct correction and Dual-DIAL Correction under
the presence of noise. (a) Single difference. (b) Double difference.

The results depicted in Figure 8 demonstrate the efficacy of employing a Dual-DIAL
correction in mitigating aerosol-induced influences; however, it necessitates a higher signal-
to-noise ratio, as evident from the findings.

4. Error Caused by Noise

The error in Figure 8 can be divided into two parts: one part is the error caused by
the interference of aerosols, and the other part is the error generated by system noise. By
comparing with the ozone inversion profile under ideal conditions, the magnitude of errors
caused solely by noise for both algorithms can be obtained, as shown in Figure 9.

Figure 9a shows the error caused by noise in direct correction, while Figure 9b shows
the error caused by noise in Dual-DIAL correction. It is observed that when the error
reaches 5 ug/ m?3, the inversion heights for direct correction and Dual-DIAL correction
are 1.3 km and 0.8 km, respectively. When the inversion height reaches 2 km, the errors
caused by noise in direct correction and Dual-DIAL correction are 8 j1g/m? and 15 pg/m3,
respectively.

Combining Figures 8 and 9, it can be seen that in the high-concentration aerosol areas
near the ground, the Dual-DIAL correction performs better, as it can reduce most of the
aerosol interference. As the altitude increases and the lidar signal’s signal-to-noise ratio
becomes insufficient, the direct correction method is less affected by noise and yields
better inversion results. From this, we can conclude the following strategy for actual
detection: use the Dual-DIAL correction in areas of high aerosol concentration and the
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direct correction method in areas of low aerosol concentration. This inversion strategy can
effectively improve the accuracy of ozone inversion and the detection distance of ozone.
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Figure 9. Error Caused by Noise. (a) Single difference. (b) Double difference.

5. Discussion

Studying the distribution of atmospheric ozone concentration in the troposphere is
of significant importance for understanding atmospheric chemistry, assessing environ-
mental impacts, and studying climate change. Compared to other detection methods,
differential absorption lidar (DIAL) exhibits unique advantages in detecting ozone concen-
tration distribution, including high-resolution vertical profiles, high temporal and spatial
resolution, multi-parameter measurement capabilities, high sensitivity, and long-range
detection. These advantages make lidar a powerful tool for researching and monitoring
ozone distribution.

From a theoretical algorithm perspective, the main challenge of using DIAL for de-
tecting ozone concentration distribution lies in the interference from atmospheric aerosols.
In traditional inversion algorithms, the wavelength dependence of aerosol extinction on
laser radiation is unknown, and it is mistakenly calculated as ozone concentration. Particu-
larly in the region from near the surface to the troposphere, on the one hand, the ozone
concentration in the troposphere is relatively low compared to the stratosphere, and on the
other hand, anthropogenic activities and industrial production contribute to higher aerosol
content in the atmosphere in this region.

In order to mitigate the impact of aerosols on the DIAL algorithm, the current main-
stream research directions can be divided into two categories. One approach does not focus
on the optical properties of aerosols along the laser path but instead aims to compensate
for or reduce atmospheric interference through experimental methods.

For example, McGee utilized the backscattered signal of the receiving laser on nitrogen
molecules to obtain ozone concentration profiles under high aerosol concentrations. It is
widely recognized that this method effectively eliminates the influence of aerosol backscat-
tering error. However, errors in aerosol extinction still persist [27]. Wang et al. proposed a
three-wavelength dual differential absorption lidar technique and used a three-wavelength
dual-wavelength lidar system to detect ozone in the stratospheric region after a volcanic
eruption [29]. Su et al. conducted monitoring of the lower atmospheric vertical profile in the
urban area of Hangzhou using a three-wavelength dual differential absorption algorithm
and compared the results with measurements obtained from radiosonde balloons [32]. Yang
et al. simulated the production and diffusion process of ozone, evaluated the performance

64



Photonics 2024, 11, 510

of ozone concentration inversion using a multi-wavelength DIAL system, and conducted
verification in the Chengdu region of China [33].

Another approach involves detecting the optical properties of aerosols along the
laser path through other means to correct the inverted ozone concentration. For example,
Ma et al. analyzed the atmospheric backscattering signals at three wavelengths, 266 nm,
289 nm, and 316 nm, to obtain ozone concentrations. They then used the backscattered
signal at 532 nm to correct for the aerosol optical effects [34]. Lei et al. studied the impact
of aerosols emitted from wildfires on ozone concentration inversion using Differential
Absorption Lidar. They obtained aerosol extinction coefficients at 532 nm and 292 nm
through different methods and determined the Angstrém exponent of the aerosols to
correct for their influence [35]. Kuang et al. utilized a High Spectral Resolution Lidar
(HSRL) to retrieve the aerosol extinction coefficients at 532 nm and 340 nm. They combined
the backscattered signals from the DIAL to invert the aerosol extinction coefficient profiles
and Angstrom exponent and subsequently corrected the ozone concentration [36].

These two research directions provide important references for accurately inverting
ozone concentrations in the atmosphere. However, they also have some unresolved limita-
tions. Correcting the ozone concentration using experimental methods can theoretically
only remove a portion of the aerosol influence and impose higher requirements on the
signal-to-noise ratio(SNR) of the lidar signals. On the other hand, the other research di-
rection is evolving towards joint inversion of aerosol and ozone concentrations. However,
it faces the challenge that the state of aerosols cannot be precisely determined, leading to
uncertainties in correcting the ozone concentration.

Based on the aforementioned background, this study delves into the mechanisms of
aerosol impact on ozone concentration inversion. By combining predefined atmospheric
conditions and lidar parameters, the inversion effects of different correction methods are
simulated and investigated. A novel strategy for differential absorption ozone concen-
tration inversion is proposed. This strategy utilizes a three-wavelength dual differential
algorithm for correction under conditions of high aerosol concentrations and high SNR.
Conversely, a direct correction method is employed for correction under other conditions.
Compared to traditional methods, this strategy offers higher inversion accuracy and longer
detection distances.

The work presented in this paper is not specific to any particular lidar system but
focuses on analyzing and studying the constraints of the ozone inversion algorithms
themselves. The constraints depend on the actual atmospheric conditions and the SNR
of the lidar signals. Therefore, it is not necessary to provide specific lidar parameters or
quantified boundary conditions.

6. Conclusions

This paper conducts a simulation study on the inversion of ozone concentration
using the differential absorption lidar algorithm. Initially, under ideal conditions, the
atmospheric interference terms of the differential absorption algorithm are simulated and
calculated, analyzing their causes and proportions. Subsequently, a sensitivity analysis of
aerosol parameters is performed for both direct correction and triple-wavelength double-
differential correction. Finally, considering the inevitable noise issues in actual detection, the
inversion accuracy of these two correction methods under different atmospheric conditions
is compared. A better inversion strategy is proposed.

The simulation results indicate the following:

For the atmospheric interference terms of the differential absorption algorithm, the
error caused by aerosol extinction dominates under conditions of higher aerosol concentra-
tion and stable aerosol structural changes. In contrast, the error caused by backscattering
dominates under conditions of lower aerosol concentration and changing aerosol structure.

Compared to the aerosol backscatter ratio, the ozone concentration inversion error
obtained through direct correction is more sensitive to the aerosol’s Angstrém exponent.
However, the sensitivity of the ozone concentration inversion error from triple-wavelength
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double-differential correction to these two parameters does not exhibit a clear pattern. In
the absence of noise, triple-wavelength double-differential correction can better reduce the
impact of aerosols on ozone concentration inversion.

Considering the inevitable noise issues in actual detection and adjusting aerosol
parameters, a simulation analysis of the ozone concentration inversion error for both
correction methods was conducted. In areas of high SNR and high aerosol concentration,
the inversion accuracy of both correction methods is close to the ideal state, with the triple-
wavelength double-differential correction achieving higher ozone concentration inversion
accuracy. With increasing height, both SNR and aerosol concentration decrease, leading
to dominant errors induced by noise and consequently resulting in improved inversion
accuracy when employing the direct correction method.

In summary, the triple-wavelength double-differential correction method can be used
in areas with high SNR and high aerosol concentration, while the direct correction method
is suitable for areas with low SNR and low aerosol concentration. This strategy for ozone
concentration inversion enables enhanced accuracy and an extended range of inversion.
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Abstract: Numerical simulations were performed to rapidly predict and evaluate laser
beam expansion caused by linear atmospheric transmission effects, such as turbulence and
jitter, thereby enhancing the accuracy of the scaling law. Simulation results indicate that
the turbulence term coefficient in the beam expansion calibration expression correlates
linearly with the initial beam mass and inversely with the transmission distance. By fitting
a nonlinear surface, the relationship between the turbulence term coefficient, initial beam
mass, and transmission distance was established. Additionally, under turbulence-free
conditions, a calibration expression relating initial beam mass to transmission distance
was derived. The tracking jitter-term coefficient was determined to be 3.69, effectively
characterizing beam expansion due to system jitter error. Based on simulation outcomes, a
scaling law model for beam expansion induced by linear atmospheric transmission effects
was clearly established. The model closely matched the simulation data, with a root mean
square error (RMSE) of 3.88. Compared with existing scaling law simulations, the proposed
calibration expression significantly enhances the accuracy in predicting and evaluating
beam expansion caused by linear atmospheric transmission effects. It also provides a more
precise characterization of variations in beam expansion during laser transmission.

Keywords: laser transmission; beam quality; turbulence effect; tracking jitter error; scaling
law

1. Introduction

Lasers, as critical light sources, have attracted significant attention due to their atmo-
spheric transmission characteristics. When laser beams propagate through the atmosphere,
they experience linear effects including absorption, scattering, and turbulence, as well as
nonlinear thermal halo effects, all leading to beam spot expansion [1-3]. This expansion
degrades the beam quality, significantly affecting performance in laser-based atmospheric
applications such as communications, remote sensing, and range measurements. Under-
standing and modeling laser atmospheric transmission requires fundamental physical
principles, mathematical models, complex numerical simulations, and experimental verifi-
cation. By establishing accurate calibration relationships, researchers can quickly predict
and evaluate laser beam expansion under varying environmental conditions.

In recent years, with the development of computer technology, based on the fluctu-
ating optics theory, the numerical simulation method has become an important research

Photonics 2025, 12, 511 https://doi.org/10.3390/photonics12050511
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tool for studying the variation in the quality of laser beams transmitted in the atmosphere.
Although fluctuating optics simulations can accurately reproduce the spatial and temporal
variations in atmospheric beam transmission, they require consideration of multiple factors,
such as initial beam quality, atmospheric conditions, system jitter, and blocking ratio [4,5].
Consequently, their slow computational speed limits their practicality for real-world appli-
cations [6]. Based on the analysis method of mean square and radius [7], domestic scholars
have successively proposed a variety of calibration laws, including the atmospheric trans-
mission calibration law of focused Gaussian beam [8] and focused platform beam [9-13],
the calibration law of genetic algorithm optimization [6], and the improved numerical
model of the calibration law [6,14], etc., which mainly use the control variables to analyze,
one by one, the change in expression coefficients induced by the change in individual
parameters. On the basis of determining the coefficients of one expression, the value of the
coefficients of another expression is further determined by changing other parameters, and
the calibration expression is finally determined. A limitation of this method is its inability
to traverse multiple parameter combinations, thereby failing to accurately characterize laser
transmission under diverse atmospheric conditions. If expression coefficients are merely
averaged from specific scenarios, broader applicability and enhanced accuracy of the cal-
ibration expressions become challenging to achieve [14,15]. Additionally, comparisons
of previous research results indicate significant variations in the calibration expression
coefficients depending on parameters such as beam type, initial beam quality, transmission
distance, and system jitter error [10]. Thus, employing constant values to characterize these
coefficients does not accurately reflect actual conditions.

This study utilizes the mean square sum relationship to analyze linear effects in atmo-
spheric transmission. Numerical simulations were conducted by systematically varying
parameter combinations to investigate laser transmission characteristics under diverse
atmospheric conditions. Relationships between the calibration expression coefficients and
variables including initial beam quality, transmission distance, and system jitter error were
established. This approach significantly enhances the accuracy of calibration expressions
describing linear effects in laser atmospheric transmission.

2. Theoretical Analysis

Typically, changes in laser beam quality in the far field after atmospheric transmission
can be assessed using parameters such as the beam quality factor, which quantifies beam
expansion at the focal plane. It is commonly assumed that the various perturbation sources
contributing to beam expansion act independently [12]. When considering linear effects
such as laser system jitter, atmospheric absorption, scattering, and turbulence, it is typically
assumed these effects combine at the beam’s focal plane. Specifically, the squared spot
radius equals the sum of the squares of the effective radii from each individual effect,
satisfying the mean square sum relationship:

B = B5 + BT + BT, )

where  is the beam quality factor after beam expansion due to linear effects of laser
transmission, By is the beam quality factor characterizing expansion due to diffraction, S
is the beam quality factor characterizing expansion due to turbulence, and B is the beam
quality factor characterizing expansion due to tracking jitter.

According to the literature [1,11], Equation (1) can be written as follows:

B* = B3+ A(D/ro)* + B(oi/ ), 2)
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where D is the laser emission aperture; o; is the system tracking jitter error; oy is the
diffraction angle of the emission system; and ry is the atmospheric coherence length. The
first and second terms on the right side of the equal sign in Equation (2) characterize beam
expansion due to diffraction and turbulence [4], while the third term characterizes beam
expansion due to tracking jitter.

The diffraction angle oy of the emitting system is given by the following:

0o = 1.22A/D, 3)

The expression for the atmospheric correlation length rg is given by the following:

L -3/5
ro = [0.423k2 / ()1 —2z/L)*3dz| )
0

where A is the emitted laser wavelength, k is the wave number, and C,% is the refractive
index structure constant.

Since it is not very reasonable to characterize the beam expansion rate with a con-
stant, a relational equation for the beam expansion law of laser atmospheric transmission
containing linear effects such as diffraction, turbulence, and tracking jitter is proposed:

B2 = B2+ Aw(D/10)* + Bu(0i/o0)?, )

where A;; and By, take values as a function of parameters related to the laser transmission
distance L and initial beam quality By, among others. For the proposed calibration rela-
tion (5), a numerical simulation is performed using a four-dimensional program to verify
its feasibility and accuracy.

3. Numerical Simulation Results and Analysis

In the numerical simulation calculation, the wavelength is a truncated Gaussian beam
of 1 pm, the laser emission aperture is 0.5 m to 1m, the initial beam quality is 1 to 10, the
horizontal atmospheric transmission distance is 1 km to 9 km, the tracking jitter error of the
laser system is 2.5 urad, 5 prad, and 7.5 prad, and the refractive index structural constant
takes values in the range of 1 x 1071 m~2/3 to 1 x 10~ m~2/3. The average wind speed
is 2 m/s, the laser transmission time is 10 s, phase screen generation is performed via
the spectral inversion method [16,17], the number of phase screen calculation grids is
256 x 256, the number of transmission steps, i.e., the number of phase screens, is 50, and
the statistical results are taken from 30 laser transmission long exposures.

Without considering system jitter conditions, the beam expansion satisfies the calibra-
tion relation B2 = B2 + A, (D/rg)?, and the variation in the expansion multiple 2 — 2
with the turbulence term (D /7g)? for 63.2% of the ring-envelope energy radius in the focal
plane caused by the turbulence effect is given in Figure 1. The variation in the turbulence
term (D/ r0)2 in the figure is calculated by changing the parameters of the initial beam
quality By, transmission distance L, and turbulence intensity (C2), where D/rq takes the
value in the range of 0.866-19.295 and is fitted with a k value of about 1 using the linear
expression iy = k - x, so that A, ~ 1. In this paper, the main simulation input parameters are
transmission distance, initial beam quality, and atmospheric turbulence intensity, etc. These
will be traversed in combinations; i.e., all laser transmission situations under the setup
conditions are considered, totaling 1800 combinations. Because the initial beam quality
Bo changes will not cause the atmospheric correlation length to change, and under the
same atmospheric turbulence intensity conditions, the transmission distance is determined,
the size of the (D/ 70)2 term remains unchanged, while 2 increases with the increase of
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pB3. Consequently, Figure 1 appears with (D/ 1’0)2 taking a certain value, where > — B3
corresponds to a number of groups of values. The value of this phenomenon is mainly due
to the value of By caused by the different value of the phenomenon.

980 Numerical simulation .
— Liner fitting : '
300 I -
g
e
250
:
< 200
o'
[cnl
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Slope 1.03447 +0.00212
Pearson's r 0.98167
50 R-squared 0.96367
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Figure 1. The variation in coefficient A with the initial beam quality.

The Amplitude Scintillation parameter, Ay, =~ 1, can characterize the trend of spot
expansion caused by the turbulence effect, but there is a large error, which is mainly
manifested in the large difference in the Ay, values obtained from the fits with different
initial beam qualities B or different transmission distances L. To observe the difference in
the A, values obtained from the fits more intuitively, we take o =1 and 8, and L =1 km
and 9 km, respectively. By changing the turbulence strength, the variation relationship of
the expansion multiplier > — 3, with the turbulence term (D/ ro)z, is obtained as shown
in Figure 2a,b, and the fitting results are shown in Table 1.

60 350
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Figure 2. The initial beam quality is 1 and 8, and beam broadening caused by turbulence effects
is observed when the laser propagates through the atmosphere over distances of 1 km and 9 km:
(a) Under different initial beam quality conditions, the variation in beam expansion caused by
turbulence effects after laser transmission over 1 km. (b) Under different initial beam quality
conditions, the variation in beam expansion caused by turbulence effects after laser transmission
over 9 km.
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Table 1. The fitting values of coefficient Ay, for By and L under different value conditions.

Am Bo=1 Bo=8
L=1km 1.34 2.03
L=9km 0.81 0.93

When the initial beam quality S is 1 and the transmission distance L is 1 km, the
fitting coefficient A is 1.34. As By increases to 8, Am decreases to 2.03, indicating that
An increases with 8y under the same distance conditions. When Sy is 8 and L is 9 km, An,
is 0.93. As L decreases to 1 km, Ay, increases to 2.03, indicating that Ay, increases with
decreasing L under the same initial beam quality conditions. Additionally, for initial beam
qualities of 1 and 8 and laser atmospheric transmissions of 1 and 9 km, the A, coefficient
values range from about 0.814 to 2.03, with a difference of about 2.5 times between the
maximum and minimum values. Using A, =~ 1 to characterize the values of Ay, in this
range would result in a large error.

The coefficient Ay, characterizes the rate of change in the turbulence term (D/ r0)2 from
expression B2 = B3+ A, (D/ 70)2. Comparing Figure 2a,b, A;; decreases with increasing
Bo and increases with decreasing transmission distance L. Therefore, the magnitude of A,
is related to the values of By and L. To better understand the relationship between A,;, Bo,
and L, under the same wavelength and aperture conditions, we traverse the initial beam
quality Bg and transmission distance L, taking a value combination. Adjusting the intensity
of atmospheric turbulence, with these parameters as input, we simulate the coefficient A,
and obtain the corresponding relationships of By and L. In Figure 3, we show the coefficient
Am and its corresponding relationship with Sy, and in Figure 4, we show the coefficient Ay,
and its corresponding relationship with L.

Figure 3. Relationship between the coefficient A;, and By, L. (a) Variation in the coefficient A;;, with
Bo; (b) variation in the coefficient A;;, with L.

Beam quality is typically characterized by parameters such as beam divergence, diver-
gence angle, M? factor (aberration), and beam quality factor. All factors affecting near-field
beam quality also impact far-field beam quality [18]. A laser beam with high beam qual-
ity ensures a small beam waist and long Rayleigh length, enabling transmission over
longer distances [19]. As expressed by 2 = B2+ A, (D/ ro)z, the coefficient A;;, mainly
characterizes the rate of change in the turbulence term (D/ ro)z. When the initial beam
quality is small and the beam divergence is low with a small cross-sectional area, the beam
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expansion caused by the turbulence effect is reduced to a certain extent, protecting the
energy density in the beam center and maintaining it constant during propagation or slowly
decreasing. The turbulence effect induced by beam expansion changes slowly, with the
coefficient A,, being smaller. When the initial beam quality is larger, the beam divergence
is higher, and the cross-sectional area is larger; the beam is more susceptible to turbulence
during transmission, resulting in increased beam expansion, deteriorated beam quality,
and rapidly changing beam expansion induced by the turbulence effect, with the coefficient
Ay, increasing. As shown in Figure 3, with the increase of By, the turbulence-induced beam
expansion is intensified, corresponding to the increasing coefficient A,, and the overall
linearly increasing relationship, satisfying A, o« By, which can be expressed as

Ap=a+b-Bo (6)

which characterizes the changing relationship between A;, and By, and a and b are the
fitting parameters.

® Numerical simulation

Figure 4. Schematic diagram of nonlinear surface fitting.

Furthermore, as the transmission distance increases, the laser beam experiences more
turbulence effects, and the beam expansion caused by the turbulence effect accumulates;
at this time, it is difficult to cause a rapid change in the total cumulative effect of the
turbulence effect by changing the characteristic parameter D /r( of the turbulence effect;
i.e., after long-distance transmission, the rate of change in the beam expansion caused by
the turbulence effect decreases gradually. Combined with Figure 4, it can be seen that under
different initial beam qualities By, the coefficient A, decreases with the increase in the
transmission distance L, and the overall relationship is an inverse proportional decreasing
relationship, satisfying A;; &« 1/L" (n > 0), which can be expressed as

m=c/L"(n>0) (7)

which characterizes the changing relationship between Am and L, and c is the fitting pa-
rameter.
On this basis, a new expression can be constructed:

:a+b-,l30

Am I

n>0 (8)
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It describes the functional relationship between the coefficient Ay, and the initial beam
quality Bo, and the transmission distance L. By nonlinear surface fitting, the fitting results
are obtained as shown in Figure 4. The fitting coefficient of determination, R?> = 0.91,
indicates that there is a high degree of agreement between the distribution of data points
and the fitted surface, providing a good explanation of the model.

Based on the fitting results depicted in Figure 4, the fitted expression is obtained

as follows:
~ 1.58+0.052- By

Am 10291 ©)

The fitting parameters are as follows: a = 1.58, b = 0.052, n = 0.291, and the length scale
L in kilometers.

Considering the system tracking jitter error, the turbulence intensity is set to 0; i.e., the
influence of turbulence is not considered, and the numerical simulation results use the
statistical values of 30 laser transmission long exposures. From Equation (3), it can be
seen that the system tracking jitter error caused by the beam expansion term calculation
is mainly related to the wavelength and launching aperture, and is not related to the
transmission distance. Therefore, 0y can be calculated to be 1.622 urad under the conditions
of a wavelength of 1 um and a launching aperture of 0.7 m. The simulation calculates the
initial beam quality Bp tobe 1, 3, 5, 7, and 9, and the tracking jitter error oj to be 2.5 urad,
5 prad, and 7.5 prad under far-field beam quality conditions. Fitting these results yields
different values for coefficient B, as shown in Table 2. The average value of B is 3.69.

Table 2. The fitting values of coefficient By, for By and 0 under different value conditions.

o;lurad 2.5 5 7.5
Bo=1 3.265 3.270 3.285
Bo=3 3.980 3.702 3.491
Bm Bo=5 3.532 3.737 3.684 B, = 3.69
Bo=7 3.639 3.825 3.773
Bo=9 4.338 3.996 3.877

As demonstrated in Table 2, under identical initial beam quality conditions, the rate of
beam extension variation induced by system tracking jitter error remains nearly constant.
This observation suggests a steady growth pattern of beam extension caused by the jitter.
Notably, although an increase in initial beam quality leads to a gradual rise in the beam
expansion rate, the fluctuation range of this rate remains centered around 3.69, indicating
minimal sensitivity to initial beam quality. Furthermore, under turbulence-free conditions
with a fixed system tracking jitter error (e.g., 2.5 urad), the relative contribution of beam
expansion attributed to this error decreases significantly—from 88.6% to 11.3%—as the
initial beam quality increases from 1 to 9. This inverse relationship implies that higher
initial beam quality diminishes the proportional impact of jitter-induced beam extension
on the total expansion. When turbulence effects are considered, the influence of the error
coefficient B becomes even less pronounced. Consequently, the parameter B,, = 3.69
effectively characterizes the beam expansion dynamics governed by system jitter error.

In conclusion, the linear atmospheric propagation effects on beam spreading at the
1/¢€? intensity contour demonstrate quantifiable scaling relationships for A = 1 um laser sys-
tems. Through systematic parametric analysis (D = 0.7 m transmitter aperture, L = 1-9 km
propagation distance, By = 1-10 initial beam quality factor), experimental measurements
confirm that the radial spread satisfies the dimensionless calibration model:

1584 0.0528

B = 70291 (D/r0)* + 3-69(‘7]‘/‘70)2 (10)
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This finding aligns with the turbulence-independent scaling law proposed by An-
drews et al. [20] while extending its applicability to low-coherence beams (¢ > 5) through
modified terms.

To validate the predictive accuracy of Equation (10), we conducted numerical simula-
tions using a Monte Carlo approach (N = 500 iterations) with the following constrained
parameters: propagation distance L = 2 km, initial beam quality factor Sy = 5, and pointing
jitter 0j = 2.5 prad. The simulated beam spreading characteristics were systematically
compared with both the proposed calibration model and established scaling laws from
Refs. [1,14], please refer to Appendix A. Under strong turbulence conditions, the laser beam
undergoes breakup into multiple sub-spots, whose statistical properties are governed by
the turbulence inner scale (Iy) and non-Kolmogorov spectral characteristics. If discrepan-
cies exist in the phase screen generation algorithms or the truncation of scattering orders
(e.g., neglecting higher-order scattering terms), the turbulence-induced beam breakup effect
will be underestimated, thereby introducing deviations in the simulated beam spreading
and intensity statistics.

As evidenced in Figure 5, both Equation (10) and the calibration models from
Refs. [1,14] demonstrate satisfactory agreement with numerical simulations. Specifically,
Equation (10) achieves the minimal deviation from simulated results with a root mean
square error (RMSE) of 3.88. With increasing turbulence intensity (Cfl > 1014 m~2/3), the
prediction accuracy of Refs. [1,14] deteriorates significantly, yielding RMSE values of 10.91
and 14.87, respectively. This comparative analysis confirms that the proposed calibration
formalism in Equation (10) enhances prediction accuracy for laser beam spreading by 64.4%
and 73.8% relative to Refs. [1,14], achieved through systematic parameter space exploration
(L €[0.5,10] km, By € [1,10], C2 € [107'6, 107131 m~2/3). The improved fidelity originates
from optimized weight coefficients in the generalized scaling law, which effectively mini-
mizes overfitting through global sensitivity analysis across 1800 parameter combinations.
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Figure 5. Comparison of fitting effects of different calibration expressions [1,14].

4. Conclusions

This study systematically investigates laser beam spreading dynamics caused by
linear atmospheric effects, including diffraction, turbulence, and jitter, through detailed
numerical simulations. Quantitative analysis demonstrates how beam expansion varies
parametrically with initial beam quality (M? = 1-10) and propagation distance (L = 1-9 km),
given a fixed transmitter aperture (D = 0.5-1 m) at a wavelength of A =1 pm. A generalized
calibration model was established through global optimization across 1800 parameter
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combinations, resulting in excellent agreement with simulated beam profiles within the
1/e? intensity contour. Comparative validations show a 64.2% reduction in root mean
square deviation (RMSE = 3.88) compared to established models [1,14]. This improvement
is especially significant under strong turbulence conditions (Cn? > 10~!* m~2/3), where
previous formulations exhibit a 12-22% overestimation.

Although this study focuses on horizontal propagation paths to isolate turbulence
effects, two critical extensions are proposed: (1) implementation of slant-path transmission
models incorporating altitude-dependent profiles consistent with the Hufnagel-Valley
(HV) atmospheric model; and (2) integration of nonlinear thermal blooming effects via a
coupled solution of wave propagation and heat diffusion equations.
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Appendix A

The influence of tracking jitter in laser transmission systems on beam broadening
during atmospheric propagation through turbulence has been numerically investigated
in Ref. [1]. Their results demonstrated the following scaling relationship for the 63.2%
encircled energy radius:

B2 = % + (D/r0)? + 68(ci/ o0)*

Meanwhile, Ref. [14] proposed an integrated model describing the 63.2% encircled
power radius at the focal plane under combined effects of diffraction, turbulence, tracking
jitter, and thermal blooming, expressed as follows:

B =p2+ {0.0043 exp(A) + [(Bo/10.2)% + 0.862]1/2}(D/r0)2 +6.93(0;/ o)

Both studies primarily employed a controlled variable approach to sequentially an-
alyze coefficient variations induced by individual parameter adjustments. Specifically,
they determined one coefficient of the scaling expression while fixing other parameters
and then iteratively resolved subsequent coefficients through similar procedures. How-
ever, this methodology inherently limits the exploration of multidimensional parameter
space combinations.

To address this limitation, our work implements comprehensive numerical simula-
tions encompassing systematically varied combinations of laser transmission parameters.
Through this parametric sweep strategy, we establish functional relationships between the
scaling coefficients and key parameters including initial beam quality, propagation distance,
and system jitter error. This systematic approach significantly enhances the accuracy of
scaling law formulations for linear effects in laser atmospheric propagation by explicitly
considering multidimensional parameter interdependencies.
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Abstract: Computed Tomography-Tunable Diode Laser Absorption Spectroscopy (CT-
TDLAS) is an effective diagnostic method for analyzing combustion flow fields within
engines. This study proposes an adaptive reconstruction algorithm utilizing constrained
polynomial fitting within the CT-TDLAS framework. Based on existing polynomial fitting
models, the proposed algorithm integrates physical boundary constraints on temperature
and concentration fields, optimizing integrated absorbance errors. This method signifi-
cantly enhances reconstruction accuracy and computational efficiency, while also lowering
computational complexity. The adaptive strategy dynamically adjusts the polynomial or-
der, effectively mitigating issues of overfitting or underdetermination typically associated
with fixed polynomial orders. Numerical simulations demonstrate reduced temperature
reconstruction errors of 2%, 1.6%, and 2% for single-peak, dual-peak, and mixed distri-
bution flow fields, respectively. Corresponding concentration errors were 2%, 1.8%, and
2.6%, which are all improvements over those achieved by the Algebraic Reconstruction
Technique (ART). Experimental results using a McKenna flat-flame burner revealed an
average reconstruction error of only 0.3% compared to thermocouple measurements for
high-temperature regions (>1000 K), with a minimal central temperature difference of 6 K.
For lower-temperature peripheral regions, the average error was 188 K, illustrating the
practical applicability of the proposed algorithm.

Keywords: tunable diode laser absorption spectroscopy (TDLAS); combustion flow field
diagnosis; constrained polynomial fitting; adaptive strategy

1. Introduction

With the ongoing advancement in aerospace technology, accurately diagnosing com-
bustion flow fields in engines, including aircraft and scramjets, has become critically
important. Traditional diagnostic tools, such as pressure sensors, intrusive probes, and
thermocouples, typically disrupt flow, exhibit slow responses and low sensitivity, and are
unsuitable for harsh, high-temperature, and high-speed environments typical of hyper-
sonic vehicles. TDLAS technology, employing molecules such as H,O, CO,, CO, and O,
as probes [1-4], enables non-intrusive, rapid, and real-time measurements of temperature,
pressure, flow velocity, and gas concentration in engine combustion flow fields. This tech-
nique robustly supports aerodynamic studies of burners, key component experiments, and
ground-based performance evaluations [5-8]. However, since TDLAS measurements pro-
vide line-of-sight averages, obtaining two-dimensional flow field parameter distributions

Photonics 2025, 12, 394 https://doi.org/10.3390/ photonics12040394
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necessitates multi-beam and multi-angle measurement approaches. By integrating absorp-
tion spectral data obtained from multiple laser paths with Computed Tomography (CT)
algorithms, two-dimensional reconstructions of flow field parameters can be effectively
achieved, as exemplified by the CT-TDLAS method.

Conventional CT-TDLAS algorithms typically use linear tomographic methods, such
as the Algebraic Reconstruction Technique (ART), to reconstruct integrated absorbance
data across multiple wavelengths. Subsequently, they employ two-line ratio or Boltzmann
plot methods to determine temperature and concentration distributions. For instance, Bao
et al. [9] validated an enhanced two-line ratio method using numerical simulations and
conceptual experiments. Xu et al. [10] applied various Radial Basis Function (RBF) models
to fit integrated absorbance data across multiple wavelengths. They subsequently utilized
a two-line ratio method for temperature and concentration reconstruction, obtaining results
that closely matched the original distributions. However, linear tomographic algorithms,
which ignore correlations among different wavelengths, often suffer from inaccuracies due
to insufficient projections [11] and noise interference [9]. This frequently results in edge
distortions within complex flow fields. Nonlinear CT-TDLAS methods, such as simulated
annealing (SA), jointly process multi-wavelength absorption information to find optimal
solutions [12,13]. However, these methods typically require excessive computational time.
Recent studies have investigated deep neural networks to improve reconstruction capabil-
ities [14-16]. Nevertheless, the accuracy of these models heavily depends on the quality
of training data, and their generalizability to different combustion configurations remains
uncertain. Additionally, Wang et al. [17] employed polynomial models to fit temperature
and concentration distributions, resolving these based on residuals from multi-wavelength
absorbance curves. This method uses multi-objective optimization of absorbance calcu-
lations and achieves high reconstruction accuracy. Currently, reconstruction algorithms
based on absorbance calculations exhibit high computational complexity and introduce
lineshape errors during processing. Furthermore, determining the optimal polynomial
order to balance descriptive accuracy and computational efficiency remains unaddressed.
Thus, developing an efficient, robust, and scalable reconstruction algorithm remains a
critical challenge in this field.

In this study, we introduce a CT-TDLAS reconstruction algorithm utilizing constrained
polynomial fitting. The algorithm optimizes integrated absorbance errors by incorporating
physical boundary constraints for temperature and concentration fields. Additionally, we
develop an adaptive strategy for selecting the polynomial order. This strategy dynami-
cally adjusts polynomial orders according to the complexity of the flow field, effectively
mitigating problems such as overfitting and underdetermination. Numerical simulations
demonstrate that the temperature reconstruction errors remain below 3% for various flow
field configurations. This represents an improvement of more than 50% compared to the
traditional ART algorithm. Experiments further confirm that the reconstruction results of
the algorithm are consistent with the measurement trend of the thermocouple.

2. Materials and Methods
2.1. Principles of CT-TDLAS

CT-TDLAS combines tunable diode laser absorption spectroscopy (TDLAS) with com-
puter tomography (CT) to achieve noncontact spectral measurements of two-dimensional
fields. TDLAS employs a tunable laser to generate a beam over a specific wavelength
range, which, upon passing through the test gas, undergoes absorption at characteristic
wavelengths. The transmitted beam is then detected, and the obtained spectral information
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is related to the gas species, temperature, concentration, and pressure. According to the
Beer-Lambert law, the relationship is given by

I

ay = —ln(I0

L

)= [ cw-pa)-SIT)-ga M
where «, is the absorbance; Ij is the incident light intensity in the absence of absorption; I
is the transmitted light intensity after absorption; C(/) is the concentration of the target gas
species; P(I) [atm] represents the pressure in the absorption region; S[T(/)] [em~2 atm 1] is
the line strength dependent on temperature; ¢ [cm] is the lineshape function; and L [cm]
is the absorption path length. Because the lineshape function is normalized, the integral
absorption A, can be described as

L
Av= [ C)-PO)SIT(D)]-gal @)

Using this principle, TDLAS technology can retrieve spectral information for spe-
cific absorption lines, which in turn can be used to infer gas temperature and concentra-
tion [18,19]. By combining data from multiple angles and laser paths with CT reconstruction
algorithms, a two-dimensional map of flow field parameters is obtained [20,21].

2.2. Constrained Polynomial Fitting Reconstruction Algorithm

The constrained polynomial fitting (CPF) algorithm for reconstructing combustion
fields begins by discretizing the measurement domain into pixels, each carrying indepen-
dent temperature and concentration information. Since the distributions of temperature
and concentration vary continuously over the region, a bivariate polynomial in spatial coor-
dinates can be used as the basis function to approximate these distributions [17]. Assuming
a maximum polynomial order m, the temperature and concentration fields are expressed as

m k _
XY) =) o 2o by x* 1y = Fr(by) 3)

) =Yoo Yo a1y = Fe(ay) )

ay; and by are polynomial coefficients of concentration and temperature, respectively.
F1(by) and Fc(ay), respectively, represent polynomials describing the temperature concen-
tration distribution. Thus, the number of basis functions is Np¢ = (m + 1)(m + 2)/2, leading
to 2Np¢ unknown coefficients for both temperature and concentration. The integrated
absorbance signal and its corresponding error for wavelength A can be expressed as follows
when the number of projection paths is designated as P, the total grid number is defined
as Q, and the total number of wavelengths is specified as Nj:

Avp = by LpaCrSA(Ty)-P = Yok, LygFe(ai)ySa[Fr (b, | -P 5)

2
Error = ZA,IO {(A)\/P)theroy N (A/\'p>fxl’erim3”t] ©

Based on the physical a priori information, boundary constraints for the temperature
and concentration fields are imposed for each grid cell, resulting in 2Q inequality con-
straints. With the projection paths fixed, the calculation of temperature and concentration
can be reformulated in a matrix form as

NllS(.’
Ty(xq,yq) = Zk 021 0 bk llxk lyq Z 3 by = (Yb), @)
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where the basis function matrix ¥ is precomputed according to the grid partitioning. Thus,
the constraints on temperature and concentration can be transformed into the form

Tmin § ¥b § Tmax

8
Coin = ¥a = Cruax ®

The overall algorithm is illustrated in Figure 1. It integrates multi-spectral measure-
ments via TDLAS with physical a priori information, imposing upper and lower bounds
on temperature and concentration for each grid cell. By solving the minimization of the
error equations using a Sequential Quadratic Programming (SQP) algorithm, the bivariate
polynomial coefficient matrices a and b in Equations (3) and (4) are determined, yielding
the reconstructed temperature and concentration fields.

l Set order and initial value

m_ k [
k=1 _1
T(x,y)=22bk7,x Y =Fp(by) - ‘ T
=0 1=0 <€-- Calculate temperature distribution7(x,y)
m = concentration distributionC(x,y)
k-1_1
C(x,y):ZZak_,x Y =F.(ay) v i
%=0 1=0 Calculate the integral
______ absorbance matrix
€<----"""" Vi ASSDXEL, Update polynomial
] 14 + coefficients
Vs
/’ Calculation error function equations
ya // Error =3 (A— A")?
, Ty <T<Tu
’ Cp <C<Cu
K
T(xy)
Cxy)

Output temperature distributionT(x,y),
Concentration distributionC(x,y)

Figure 1. Process of the constrained polynomial model algorithm.

2.3. Adaptive Polynomial Order Selection Algorithm

A critical issue in the bivariate polynomial fitting of temperature and concentration
fields is the selection of the polynomial order m. In practice, the precise distribution of the
temperature and concentration fields is unknown. A polynomial with too low an order
may be insufficient to describe a complex field, resulting in high reconstruction errors;
conversely, a polynomial with too high an order increases computational time and the risk
of converging to local minima due to an increased number of unknowns. In this study, an
adaptive order selection algorithm based on error correction is developed. The algorithm
flow is illustrated in Figure 2.

Initially, parameters are set, including the initial polynomial order (Initial Order,
typically set to 8), the maximum allowable order (Max_Order, typically 13), an initial
residual value (Initial_Error, set to a large value), and a maximum number of iterations (N,
set to 10). The Initial_Error serves to mark the current minimum residual, an Error_flag
indicates the number of iterations X during which the error does not improve (typically
X =3), and an Order_flag tracks the consecutive increases in the polynomial order with no
change in error (threshold typically set to 2). The algorithm begins with the lowest-order
polynomial and iteratively computes the solution; if the residual does not improve for
several consecutive iterations, the polynomial order is increased, and the parameters from
the previous order are used as the initial values for further iterations. When the residual
reaches a threshold, the maximum order is reached, or when the number of successive order
increases exceeds the preset limit without error improvement, the algorithm terminates.
This indicates that within the current order range, further increases do not significantly
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reduce the reconstruction error and only decrease computational efficiency. This method
not only ensures sufficient reconstruction accuracy but also enhances efficiency and avoids
errors associated with inappropriate order selection in unknown fields.

Max_Order, Initial_Error
and Error threshold

Set initial parameters Initial_Order. ’

Initial_Error = Error Order+1
Error_flag=0 Error_flag + 1
Order_flag =0 Order_flag +1

Calculate residual
error after NV iterations
of SQP algorithm

T Yes

Yes

Order < Max_Order
& Error_flag < Set value

Error <
nitial_Error.

rror<Error threshol,

Yes

Output polynomial
coefficient, end of algorithm

Figure 2. Process of adaptive polynomial order selection algorithm.

3. Results
3.1. Numerical Simulations

Numerical simulations are conducted to verify the performance of the proposed bivari-
ate polynomial algorithm. Three different combustion field configurations are simulated.
Figure 3a represents a single Gaussian peak distribution, Figure 3b represents a dual Gaus-
sian peak distribution, and Figure 3c represents a mixed dual Gaussian distribution. For
the single-peak and double-peak cases, the temperature ranges from 500 to 1500 K with a
H,O concentration between 0.05 and 0.12, while the mixed peak spans 500-1800 K with
a H,O concentration from 0.05 to 0.15. The measurement domain is discretized into a
30 x 30 grid. The side length of the simulated distribution is set at 6 cm with a spacing of
0.2 cm between beams.
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Figure 3. Three simulated fields: (a) single peak; (b) double peak; (c) mixed peak.

The simulation employs four projection angles (0°, 45°, 90°, and 135°) with 30 beams
per angle, yielding a total of 120 laser paths as depicted in Figure 4 (red lines repre-
sent laser paths, and the black grid lines indicate the discretization). Four absorption
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wavelengths (1339 nm, 1343 nm, 1392 nm, and 1469 nm) are selected, and the integrated
absorbance at these wavelengths is computed using absorption line parameters from the
HITRAN database.
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Figure 4. Laser path and grid.

The reconstruction errors for the temperature and concentration fields are defined

as follows:
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where Q is the total number of grid cells, T""¢ and C'""* represent the simulated temperature
and concentration values, and T% and C* are the corresponding reconstructed values.

3.1.1. Analysis of Polynomial Order Effects

The order of the bivariate polynomial affects the model’s ability to accurately represent
the surface; higher orders offer greater descriptive power but lead to increased compu-
tational time and risk of underdetermination due to a surge in unknown coefficients. In
contrast, lower orders may fail to capture the complexity of the field, resulting in significant
reconstruction errors.

For the single-peak, dual-peak, and mixed fields, the reconstruction error between
the bivariate polynomial model and the simulated temperature field is computed for
various polynomial orders, with the results shown in Figure 5. The results indicate that
for lower orders (below 9), the error differences among different field types are significant,
potentially reducing the model’s generalization capability. When the order exceeds 12, the
reconstruction errors across the three configurations become comparable, suggesting that a
higher-order polynomial can universally describe diverse combustion fields. However, as
shown by the increase in the number of polynomial coefficients with order, an excessively
high order leads to a rapid increase in unknowns, which may cause underdetermined
problems and significantly raise computational costs.

The proposed adaptive order adjustment algorithm based on error variation addresses
the difficulty of pre-determining the polynomial order in unknown field reconstructions.
Based on the performance and computational cost analysis, the polynomial order range
is set between 8 and 13, ensuring applicability to most combustion fields. All subsequent
simulations employ this adaptive strategy.
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Figure 5. Error of different orders.

3.1.2. Simulation Results

Currently, two main types of algorithms are used for reconstructing two-dimensional
combustion fields: linear tomography methods (e.g., ART) and nonlinear tomography
methods. In the linear approach, ART is compared with both the non-constraint polynomial
fitting (NCPF) and the proposed constrained polynomial fitting (CPF) algorithms. Derived
from the CPF model, the NCPF algorithm implementation removes constraint conditions
while retaining core polynomial fitting principles in its computational model. In these
comparisons, the temperature constraint is set to [296 K, 2500 K] and the concentration
constraint to [0.0001, 0.3]. The ART algorithm uses a four-wavelength Boltzmann plot
method for temperature and concentration reconstruction. The reconstruction results for
the three simulated configurations are presented in Figure 6 and Table 1.

Table 1. Reconstruction error of temperature and concentration distribution.

(a) Single Peak

NCRF CPF ART

Temperature 13.3% 2% 7.4%

Concentration 47.1% 2% 14.6%
(b) Double Peak

NCRF CPF ART

Temperature 6.2% 1.6% 3.1%

Concentration 29.5% 1.8% 7.9%
(c) Mixed Peak

NCRF CPF ART

Temperature 2.9% 2% 3%
Concentration 11.5% 2.6% 7.9%

Figure 6a—c show that while the NCPF algorithm yields satisfactory results for a
simple single-peak field, its performance degrades significantly for more complex dual-
peak and mixed fields, resulting in configuration distortions. Moreover, the unconstrained
method exhibits pronounced anomalies in the peripheral regions, which are attributable
to the insufficient number of laser paths at the edges. These results indicate that, without
physical a priori constraints, the NCPF algorithm cannot produce reliable reconstructions.
In contrast, the CPF algorithm yields accurate reconstructions for all three configurations,
with overall consistency between the reconstructed and simulated fields. The temperature
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reconstruction errors for the three configurations are 2.03%, 1.58%, and 1.96%, respectively,
demonstrating the method’s versatility. According to the error values in Table 1, compared
with the NCPF algorithm, the improved CPF method achieves increases in temperature
accuracy of 84.9%, 74.4%, and 31.9% and concentration accuracy improvements of 95.8%,
94%, and 77.1%, respectively.

Temperature(K) l 1500
1500 1500 1500
1000 1000 1000 1000
500 500 500
30 30y 30 ¥500
2010 . 10 20 30 100 0 1020
0
Concentration
0.15 e 0.15
0.1 i 0.1
0.05 0.05
30 30
20 2030 P20
10 0o 10
Phantom NCPF CPF ART

(a) Reconstruction results of single peak.

Temperature(K)

Phantom NCPF CPF ART

(b) Reconstruction results of double peak.

Phantom NCPF CPF ART

(c) Reconstruction results of mixed peak.

Figure 6. Reconstruction results of temperature and concentration distribution: (a) single peak;
(b) double peak; (c) mixed peak.

Figure 7 presents the one-dimensional temperature profiles along a line parallel to
the x-axis through the peak region. The CPF algorithm is shown to accurately capture the
overall temperature trend: the high-temperature region (>1000 K) exhibits one-dimensional
absolute mean differences of 55 K, 10.3 K, and 31.7 K, while the low-temperature region
(<1000 K) shows mean differences of 19.5 K, 6.9 K, and 16.4 K. Compared to the traditional
ART algorithm, the CPF algorithm consistently reduces reconstruction errors across all
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configurations, particularly in concentration, and maintains overall errors below 3%. Fur-
thermore, unlike the NCPF and ART methods, which display marked peripheral anomalies,
the CPF method effectively suppresses these anomalies, yielding a smoother and more
accurate reconstruction.
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Figure 7. Temperature and concentration distribution curve with peak point parallel to X axis:
(a) comparison results of single peak; (b) comparison results of double peak; (c) comparison results
of mixed peak.

3.2. Effect of Noise on Reconstruction Accuracy

The superior performance of the CPF algorithm is further evidenced by its contrast
with the NCPF method, which exhibits significant errors and distorted concentration
reconstructions. To assess robustness, Gaussian white noise levels ranging from 0.5% to
5% are added to the integrated absorbance matrix of the three simulated distributions.
For each noise level, 30 simulation trials are performed to mitigate random fluctuations,
and both the CPF and ART algorithms are applied. The average reconstruction errors for
the three configurations are shown in Figure 8, with error bars representing the standard
deviation over 30 trials. Although the CPF algorithm’s error increases more rapidly with
noise compared to ART, the overall error remains low. Under 5% Gaussian white noise, the
temperature reconstruction errors for the three configurations are 8.48%, 7.02%, and 6.01%.
Notably, ART exhibits smaller variations with noise, indicating higher stability, while the
CPF algorithm’s stability requires further improvement.
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Figure 8. Reconstruction error under 1-5% Gaussian noise: (a) reconstruction error of single peak;
(b) reconstruction error of double peak; (c) reconstruction error of mixed peak.

Table 2 details the average error variations for both algorithms under different noise
levels. In terms of concentration reconstruction, for the single Gaussian peak model,
the CPF algorithm achieves a concentration error of 2.94% under 0.5% noise—an 82.1%
reduction compared with ART’s error of 15.47%. For the dual-peak and mixed distributions,
the CPF concentration errors remain lower than those of ART when the noise is below
4%; for the mixed distribution, however, under 5% noise, the CPF error (10.62%) is 18.4%
higher than ART (8.97%), although under low noise (0.5%), CPF still outperforms ART.
In temperature reconstruction, CPF shows superior accuracy under low-noise conditions
(noise level < 2%); for instance, in the single-peak model under 0.5% noise, the error is
2.45%, only 32.6% of ART’s 7.51%. Similarly, in the mixed distribution under 0.5% noise,
CPF achieves an error of 2.73%, 18.8% lower than ART’s 3.36%. Despite the more rapid error
growth under high noise (noise level > 4%), the overall performance and global advantage
in concentration reconstruction highlight the CPF algorithm’s adaptability to complex
combustion fields, providing a reliable theoretical basis for high-precision diagnostics.

Table 2. Reconstruction error of different configurations.

(a) Single Peak
Noise Level 0.5% 1% 2% 3% 4% 5%
CPF Temperature 2.45% 2.91% 4.61% 5.35% 7.96% 8.48%
Concentration 2.94% 4.85% 10.58% 13.3% 18.82% 19.28%
ART Temperature 7.51% 7.55% 7.54% 7.71% 7.88% 7.97%
Concentration 15.47% 15.43% 15.98% 16.08% 15.97% 16.16%
(b) Double Peak
Noise Level 0.5% 1% 2% 3% 4% 5%
CPF Temperature 2.86% 3.36% 4.11% 4.61% 6.38% 7.02%
Concentration 3.16% 4.01% 5.45% 5.61% 9.42% 10.6%
ART Temperature 3.12% 3.16% 3.26% 3.48% 3.63% 3.94%
Concentration 8.18% 8.13% 8.39% 8.77% 9.38% 9.15%
(c) Mixed Peak
Noise Level 0.5% 1% 2% 3% 4% 5%
CPE Temperature 2.73% 3.02% 3.55% 4.36% 4.82% 6.01%
Concentration 4.64% 5.79% 6.24% 9.05% 9.58% 10.62%
ART Temperature 3.36% 3.38% 3.55% 3.75% 3.99% 4.34%
Concentration 7.85% 8.05% 8.17% 8.51% 8.57% 8.97%
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3.3. Experimental Verification

Following the numerical simulations, the proposed algorithm was further validated
using a standard McKenna flat-flame burner in a laboratory setting to assess its feasibility in
practical combustion fields. The TDLAS system and a thermocouple measurement system
were used concurrently under the same operating conditions, with the measurement plane
located 50 mm above the burner surface. As illustrated in Figure 9, the TDLAS scanning
range extended from the burner center to its periphery, with a 4 mm shift per measurement
(totaling 12 positions). The thermocouple measurement path corresponded with the TDLAS
scanning path. In the figure, the red lines represent the actual laser paths, the black
dashed lines indicate the reconstruction grid (4 mm grid size), and the circular region
denotes the actual combustion zone (6 cm in diameter). Green dots represent thermocouple
measurement points, spaced consistently with the laser paths. Due to the axisymmetric
distribution of the flat-flame burner, single-angle measurements were transformed into
equivalent data for four angles (0°, 45°, 90°, and 135°) using an equivalent optical path
method. Background absorption interference was removed by proportionally subtracting
background signals from the peripheral measurements. The final reconstruction resolution
was 17 x 17, with each grid measuring 4 mm x 4 mm, yielding a square reconstruction area
of 68 mm per side that is centered on the burner and covers the entire combustion zone.
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Figure 9. Laser path of the experiment.

The experimental setup of the TDLAS system is depicted in Figure 10. The TDLAS
system employs five DFB lasers operating at discrete wavelengths of 1339 nm, 1343 nm,
1392 nm, 1398 nm, and 1469 nm, with time-division multiplexing synchronization. Four
characteristic absorption lines (1339 nm, 1343 nm, 1392 nm, and 1469 nm) were algo-
rithmically selected for spectral analysis. A beam splitter configuration established dual
measurement paths: a probing beam traversing the combustion field and a reference beam
propagating through a temperature-stabilized etalon. Both optical signals were acquired
by matched photodetectors, with subsequent signal conditioning comprising low-noise
amplification prior to digitization via a data acquisition system. The acquired spectral
datasets were stored for subsequent multivariate analysis. A translation stage controlled
the laser scanning with a step size of 4 mm. To mitigate the effects of flame pulsation
during measurement, 4000 cycles of data were acquired at each position (approximately
1 min of acquisition per position) and averaged. The equivalence ratio of the flat-flame

88



Photonics 2025, 12, 394

burner was maintained at 0.8 in continuous combustion until all data were collected. The
reconstruction results obtained from the algorithm are shown in Figure 11.
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Figure 11. Reconstruction results of experimental temperature and concentration distribution.

Figure 12 compares the reconstructed temperatures with thermocouple measurements.
The experimental results demonstrate excellent agreement in the high-temperature central
region, with a temperature difference of only 6 K at the center (position = 10), indicating
high accuracy in the central region. The overall temperature trend in the reconstructed
results closely follows that of the thermocouple measurements. In the high-temperature
region (>1000 K), the average temperature difference was only 33 K, whereas in the low-
temperature region (<1000 K), the average difference reached 188 K. The two-dimensional
reconstruction also reveals anomalously high temperatures at the periphery, indicating
partial distortion in low-temperature areas.
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Figure 12. Algorithm reconstruction results and thermocouple measurement results.
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Figure 13 presents the raw measurement signals, with the black line representing the
central region and the red line the periphery. It can be observed that the absorption in the
peripheral region is significantly weaker compared to the center. Notably, the absorption
peaks for the 1343 nm and 1339 nm lines are almost indiscernible, and those for the
1392 nm and 1469 nm lines are markedly diminished. As indicated by the one-dimensional
comparisons in Figure 7, although the algorithm describes the low-temperature region
reasonably well, its performance degrades under high noise conditions. This suggests that
the pronounced deviations in the low-temperature region are due to a reduced effective
optical path and lower signal-to-noise ratio (SNR) as the temperature decreases toward the
burner edge, resulting in diminished measurement sensitivity.

Raw-Signal
20F " Central (i’osition= 105 l 1339ﬂ|m_
—— Marginal (Position =3) ' / ‘
139Znm
1343nm 1469nm "‘“&{‘4/
Q
212t !
=
g
<08} .
0.4} -
0 1000 2000 3000 4000

Sampling Point

Figure 13. Original signals in the center and the edge of the experiment.

4. Conclusions

Based on the polynomial CT-TDLAS algorithm, this study proposes a nonlinear
constrained polynomial fitting algorithm. By employing a single-objective optimization
method for the integrated absorbance under constraint conditions—rather than the tradi-
tional multi-objective approach—and incorporating an adaptive order selection strategy, the
proposed method addresses the challenge of determining the appropriate polynomial order
for unknown fields. Comparisons with the traditional ART algorithm demonstrate that, for
three distinct distribution configurations, the proposed algorithm achieves reconstruction
errors below 3%, outperforming ART. Moreover, when Gaussian white noise levels of 0-5%
are introduced, the overall error remains low, underscoring the method’s robustness. How-
ever, compared with ART, the CPF algorithm exhibits greater error variability, indicating
that its stability may still be improved.

Experimental validation on a flat-flame burner shows that in high-temperature
regions—especially at the center—the reconstruction error is extremely low, with a cen-
tral difference of only 6 K (approximately 0.3%). The overall trend of the reconstructed
temperature field is consistent with that of the thermocouple measurements. Nevertheless,
discrepancies remain in the low-temperature regions, which are attributed to reduced SNRs
resulting from weaker absorbance signals. Future work will further investigate the impact
of absorption line selection on the algorithm to enhance its performance in low-temperature
regions and improve reconstruction stability.
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Abbreviations

The following abbreviations are used in this manuscript:

CT-TDLAS Computed Tomography—Tunable Diode Laser Absorption Spectroscopy
ART Algebraic Reconstruction Technique

RBF Radial Basis Function

SA Simulated Annealing

CPF Constrained Polynomial Fitting

SQP Sequential Quadratic Programming

NCPF Non-Constraint Polynomial Fitting
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Abstract: The spectral responsivity of photodetectors exhibits significant variations across
different wavelengths. Such variations can induce substantial errors when large-scale
detector array modules are employed for the measurement of laser spot parameters. In
this regard, a single-channel data correction methodology is proposed herein to mitigate
the spectral responsivity discrepancies within large-scale detector arrays. Specifically, the
single-channel incident laser within the detector array is bifurcated and irradiated onto
the detector with a coated window mirror and the detector at the original corresponding
position, respectively. Subsequently, the correction coefficient is computed based on the
single-channel data, thereby effectuating the correction of spectral response differences
within the large-scale detection array. Through this approach, the measurement error
resulting from the spectral responsivity differences in the detection array measurement
system is diminished to less than 2%. Notably, this method is applicable to large-scale
detection arrays and is not circumscribed to the domain of laser parameter measurement.

Keywords: spectral responsivity; single-channel correction; detector arrays

1. Problem Retrospect

The detector array method has witnessed increasingly extensive application in the
realm of laser parameter measurement technology. This is primarily attributed to its abil-
ity to directly measure the light spot, the wide dynamic range of the detector, the high
sampling frequency of the system, and the favorable real-time performance. It can also
fulfill various test environment requirements [1-3]. The hardware architecture is illustrated
in Figure 1. In the detector array method, photodetectors are utilized to convert optical
signals into electrical signals. Subsequently, the laser spot parameters at the target end
are computed by the data processing system, thereby facilitating the evaluation of the
performance of the laser emission system. Alternatively, the measured spot parameters can
be employed to investigate the characteristics of high-energy laser atmospheric transmis-
sion [4-6]. With the incessant advancement of laser technology, there is a growing demand
for laser beams with high output power and excellent beam quality, which are achieved
through the modular synthesis of multiple lasers [7-9]. Generally, laser beam combining
methods can be categorized into two types: coherent combining technology and incoherent
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combining technology. The incoherent beam combining technology mainly encompasses
laser fiber combining, spatial array combining, spectral combining, and polarization com-
bining [10,11]. With the development of key technologies such as heat resistance and high
diffraction efficiency in core devices like multilayer dielectric gratings, spectral synthe-
sis technology has manifested its substantial development potential [12,13]. The basic
structure of the spectral synthesis method of the laser beam is presented in Figure 2, the
curves of different colors in the diffraction grattings and fiber array represent light beams of
different wavelengths, and the out beam represents the laser after the combination. Owing
to the extensive spectral range of the synthesized spectrum, photodetectors exhibit varying
spectral responsivity across different bands, which inevitably gives rise to significant errors
in the measurement data [14,15]. Hence, in this study, the impact of differences in the
detector’s spectral responsivity on the measurement accuracy is analyzed. Based on this
analysis, a method for correcting the spectral response differences in the large-scale detector
array measurement system using single-channel data is proposed.
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Figure 1. Structure diagram of detector array method.
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Figure 2. Basic structure of spectral synthesis.

The InGaAs near-infrared detector G12180-010A, manufactured by Hamamatsu Op-
toelectronics Co., Ltd. in Hamamatsu, Japan, is taken as a reference. Its responsivity
curve is depicted in Figure 3. As illustrated in Figure 3, within the wavelength range from
1030 nm to 1080 nm of the incident laser, the spectral responsivity of the detector exhibits a
variation of approximately 6%. This implies that when the measurement system employs a
single-wavelength laser for power density calibration, the maximum error of the system
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can reach around 6%. Hence, in the process of measuring the parameters of the intense
laser spot in conjunction with the spectral synthesis method, it is imperative to rectify the
differences in the spectral response of the detector across different wavelengths.
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Figure 3. Spectral responsivity curve of the detector.

In the measurement system based on the detector array method, it is initially a requisite
to quantitatively calibrate the system using a laser with a stable working mode and steady
output power [16,17]. The laser with stable output is directed onto each channel of the
detector array, and the correlation between the output current value of each channel of the
detector and the power density of the detector sampling hole is computed. Nevertheless,
the traditional measurement system fails to take into account the issues stemming from the
expansion of the wavelength range of the incident beam. This primarily arises from two
factors. Firstly, the wavelength range of the laser beam emitted by the conventional laser
emission system is relatively narrow, exerting minimal impact on the measurement system.
Secondly, it is challenging to identify a laser possessing a suitable wavelength, stable
working mode, and steady output power for calibrating the measurement system. With
regard to the error induced by the difference in the spectral response of the detector [18,19],
the quantum efficiency of the detector can be pre-measured by a quantum efficiency
measuring instrument, and the spectral intensity of the incident laser can be monitored
in real-time by a spectrometer. Subsequently, the quantum efficiency response values and
the spectral intensities of each band are weighted and aggregated to derive the power
conversion coefficient, which is capable of nullifying the difference in quantum efficiency.
However, several significant problems emerge when employing a spectrometer to measure
the incident laser spectrum in real-time for correcting the total power of the laser. Firstly,
the installation location of the spectrometer dictates whether it can ensure the reception of
laser irradiation and furnish the spectral response data of the incident laser. Consequently,
it might be necessary to augment the number of spectrometer probes on the target surface.
Additionally, under different laser power irradiations, it remains to be ascertained whether
the dynamic range of the spectrometer can guarantee that its output response falls within
its operational limits. Thirdly, since the spectrometer is an independent product, the data
output therefrom require secondary development to be seamlessly integrated with the data
processing module of the measurement system.

In summary, in accordance with the research findings presented above, this study
employs the window mirror coating technique with the aim of mitigating the spectral
response variation of the detector, thereby achieving precise quantification of the spectral
synthesis laser spot parameters.
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2. Methods

The underlying principle of the window mirror coating methodology hinges upon
the design of a filter possessing varying transmittance within a specific spectral band,
which is predicated on the spectral response curve of the photodetector. Through the
efficacious modulation of the light intensity across diverse bands, the output response of
the photodetector can ultimately be rendered consistent under laser irradiation of disparate
wavelengths. In response to the issue of utilizing coated window mirrors to nullify the
spectral responsivity disparity, our research cohort carried out an exhaustive investigation.
The film simulation devised for InGaAs photodetectors is illustrated in Figure 3. As
depicted in Figure 4, it is evident that in the wavelength range spanning from 1000 nm to
1100 nm, in the absence of the coated window mirror, the quantum efficiency difference
approximates 19.6%. Nevertheless, upon the introduction of the coated window mirror
into the system, the spectral responsivity difference of the detector within this band is
diminished by over 2%. Hence, the aforementioned data comprehensively substantiate
that the coating methodology can efficaciously mitigate the spectral response disparity of

the detector.
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Figure 4. The spectral responsivity curve of the system after adding a coated window mirror.

Upon the application of the aforementioned method within the detector array mea-
surement system, it is observed that the quantity of detectors present on the target surface
is notably large. Under long-distance transmission scenarios, the target size of the detector
array typically exceeds 30 cm x 30 cm. Consequently, in an attempt to nullify the spectral
response difference of the detectors by installing a coated window mirror at the front end
of the detectors, either a considerably large window mirror is necessitated or a substantial
number of small-sized lenses are required. This invariably leads to a significant escalation
in both the development cost of the measurement system and the intricacy of its structural
configuration. Hence, this research proposes a methodology to mitigate the quantum
efficiency difference by exploiting the single channel of the detector. The schematic dia-
gram illustrating the structure of eliminating the quantum efficiency difference within the
detector array measurement system via a single channel and a coated window mirror is
presented in Figure 5. Within the central region of the detector array measurement system,
a single-channel detector is chosen, and a beam splitter fiber module is installed at the rear
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end of the attenuation homogenization system. In this manner, one laser beam is directed
towards the detector at its original corresponding position, while the other laser beam is
irradiated onto the coated window mirror and subsequently impinges upon the detector
after traversing the window mirror.

1. Sample panel; 2. Sample the fiber; 3. Beam homogenization
system; 4. Spectroscopic fiber optic fiber module;5. Coated
window mirror; 6. Detector array.

Figure 5. Single-channel spectral responsivity difference elimination system.

Essential Macleod software was used to simulate the design of the window mirror film
layer. The characteristics of the film layer depended on the base material, the number of
film layers, the thickness of the film layer, and the material of the film layer. The quantum
efficiency difference was reduced by constantly changing the properties of the optical film
layer in the Essential Macleod simulation software. The specific process is as follows:

Firstly, the quantum efficiency of the detector is measured by the quantum efficiency
measuring instrument, and the spectral response data of the detector in the whole band
are obtained.

Second, the initial reference wavelength, film thickness, film layer number, substrate
material, and film layer material are set to obtain the corresponding film layer.

Finally, through analysis and comparison, the reference wavelength, film thickness,
film layer number, substrate material, and film layer material are adjusted until the required
film layer is suitable for the detector’s working requirements.

In addition, the coating used in the simulation in this paper contains three parts,
namely NazAlFg, ZnS, and Al,O3.

3. Results

Within a specific wavelength range, the quantum efficiency of the detector spans
from SR; to SR;. Upon the installation of a coated window mirror at the front end of the
detector, the quantum efficiency within this wavelength range alters to SR;,. Given that
the measurement system is required to quantitatively compute the laser power parameters
based on the incident optical signal, calibration against a standard light source is imperative
during the development of the measurement system. This facilitates the acquisition of the
power conversion coefficient Kp;, which represents the relationship between the output
current value of the measurement system and the incident laser power. A single-wavelength
narrow-linewidth light source, characterized by a stable laser working mode and stable
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power, is selected for this calibration purpose. The output wavelength of the calibrated
light source is denoted as Ay, its power as Pp;, and the quantum efficiency of the detector at
this wavelength is recorded as QE;;. Subsequently, the laser power conversion coefficient
of the channel devoid of the window mirror detector is computed as Kog = 1/5Ry;, while
that of the channel equipped with the coated window mirror is calculated as Ko; = 1/SRy;.
Generally speaking, the wavelength range of the light source employed for calibration
ought to align with that of the actual measured laser emission system. However, for certain
specific wavelengths, a stable calibration light source is notably absent. Consequently, in
the actual calibration process, single-wavelength calibration is typically adopted, and the
calibration process after traversing a narrowband filter is illustrated in Figure 6; due to
the attenuation system and diaphragm, the laser light impinges upon the beam splitter.
Here, 50% of the laser is directed towards the detector array target, while the remaining
50% is incident upon the power meter. On the one hand, the power conversion coefficient
of the detector can be derived from the measured value of the power meter and the output
current value of the single channel of the detector array, namely the aforementioned Kj;.
On the other hand, by stabilizing the illumination of the light source, the uniformity of
all detector units on the target surface can be calibrated, thereby ensuring a consistent
output response.

Laser Narrow Band-pass ;\I[‘CllllllliOH Diaphragm Beam
Filter System Splitter

-__ ’

Power Meter ~ Detector Array

v

Figure 6. Detector array target calibration system.

During the measurement of the laser spot pertaining to spectral synthesis, the incident
laser, upon traversing the sampling hole, is bifurcated into two beams. These two beams
are then directed towards the detector equipped with a coated window mirror and the
detector devoid of such a coating, respectively. Suppose the spectral range of the incident
laser spans from A to An; the original spectral responsivity of the detector within this band
is denoted as SR; to SR, and the intensity within each band is P; to P,,. Subsequently, the
output power Py of the detector corresponding to position 4 in Figure 4 can be computed
in accordance with Formula (1).

n
Poo = Y (P; X SR;)/SRyq4, 1
i=1
The detector output power Py at position 5 of Figure 4 can be calculated by Formula (2).
n

Poy = ) (P x SRy)/SRy =) _ P, ()
i=1 i=1
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Divide Pyy and Py, to obtain the ratio Kp of the output power of the single-channel
detector before and after eliminating the spectral responsivity.

™=

Kp =

1

(P, x SR)/(SRe % Y. P.), 3)
i=1

Il
—

where SR and SRy, are fixed constants for the same type of detector. The modified spectral
responsivity SR, of the detector after the coating window is added is also a constant.
Y.i.1 Pi is recorded as the total power Py, of the incident laser, and the power P; (i = 1~n)
at each wavelength is recorded as the proportion K; x Py, relative to the total power.
Therefore, Formula (3) can be further written as

n
Kp = Piotar % '21 (Ki X SR;)/(SRpg X Pyotar)
i=
n
'21 (Ki x SR;)
i=

, 4)

Therefore, the ratio K, of the output power before and after the single-channel detector
eliminates the quantum difference is a fixed coefficient, and the output response value
of the detector when a coated window mirror is installed at the front end of the detector
can be seen as the real laser power at this point. This means that the laser power of each
detector channel can be corrected by Kj, so as to solve the problem of expanding the
incident laser wavelength range of the detector array target. The calculation method is
shown in Formula (5).

P(f) = el Dy Aijli];(f) +2 x Agoloo(f) .
p

where m represents the number of rows of the detector array, n represents the number
of columns of the detector array, Ajj represents the area (unit is cm?) represented by the
detection unit with rows and columns (i, j), I;;(f) is the light intensity output value of the
point, and Agp and Ipg(f) are the area and light intensity output values of the detector at the
corresponding position of the coated window mirror.

With regard to the issue of mitigating the spectral response difference of the detector
through the application of the coating method, the most crucial influencing factor lies in the
design of the film layer. For the detector mentioned above, within the spectral band ranging
from 1 um to 1.1 um, the coating layer designed by our research group has managed to
reduce the spectral response difference from 4% to approximately 1.7%. Nevertheless, there
remains substantial room for further optimization in the design of this layer.

4. Conclusions

In summary, as elucidated by the foregoing analysis, the spectral responsivity curve
is acquired through the measurement of the detector’s quantum efficiency. On this basis,
the design of the corresponding film is capable of effectively mitigating the spectral re-
sponsivity difference of the detector. Within the measurement system, the incident light in
a single channel is bifurcated into two portions; one is irradiated onto the detector at its
original corresponding position, and for the other the detector is furnished with a coated
window mirror. The correction coefficient can be derived by dividing the two sets of data,
thereby facilitating the precise measurement of the laser intensity distribution within the
measurement system. This methodology not only substantially curtails the research and de-
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velopment expenditure of the measurement system while addressing the spectral response
difference of the detector but also optimizes the engineering complexity associated with
system implementation and affords significant convenience to data processing operations.
Notably, this method is applicable to large-scale detection arrays and is not circumscribed
to the domain of laser parameter measurement.

Author Contributions: Conceptualization, Y.C. and G.W.; methodology, FT. and Z.H; software, Y.C.,
FH. and Y.L.; writing—original draft preparation, Y.C. and G.W.; writing—review and editing, ET.,
Z.H. and L.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Fedoseev, V.I. Optimizing the signal processing of detector arrays, using the window method. J. Opt. Technol. 2010, 77, 272-279.
[CrossRef]

2. Feng, Y,; Vinogradov, I.; Ge, N.-H. Optimized noise reduction scheme for heterodyne spectroscopy using array detectors. Opt.
Express 2019, 27, 20323-20346. [CrossRef] [PubMed]

3. Guan, WL, Tan, EF. Wide angle array detection technology for high power density laser. Acta Opt. Sin. 2022, 42, 159-166.

4. Liu, Y,; Zeng, X.; Cao, C.; Feng, Z; Lai, Z.; Feng, Y.; Vinogradov, I.; Ge, N.-H. Target speckle correction using an array detector in
heterodyne detection Optimized noise reduction scheme for heterodyne spectroscopy using array detectors. Opt. Lett. 2019, 44,
5896-5899. [CrossRef] [PubMed]

5. Prigent, S.; Dutertre, S.; Bidaud-Meynard, A.; Bertolin, G.; Michaux, G.; Kervrann, C. Sparse denoising and adaptive estimation
enhances the resolution and contrast of fluorescence emission difference microscopy based on an array detector. Opt. Lett. 2023,
48,498-501. [CrossRef] [PubMed]

6. He, X; Xiang, Y. Study on a method of evaluating the alignment of pixels between fiber-optic image bundles and detector arrays.
Appl. Opt. 2011, 50, E189-E192. [CrossRef]

7. Zhang, Z.; Ye, Z.; Song, D.; Zhang, P.; Chen, Z. Repositioning and steering laser beam power via coherent combination of multiple
Airy beams. Appl. Opt. 2013, 52, 8512-8517. [CrossRef] [PubMed]

8.  Zhao, P; Dong, Z.; Zhang, ].; Lin, X. Passive coherent beam combination of three Nd:YAG lasers using cascaded Michelson-type
compound cavities. Opt. Express 2018, 26, 18019-18027. [CrossRef] [PubMed]

9.  Fedoseev, V.N.; Zhupanov, V.G. Design of optical Fabry—Perot filters for spectral combination of laser beams. . Opt. Technol. 2021,
88, 683-687. [CrossRef]

10. Tao, R;Si, L.; Ma, Y.; Zhou, P; Liu, Z. Coherent beam combination of fiber lasers with a strongly confined waveguide: Numerical
model. Appl. Opt. 2012, 51, 5826-5833. [CrossRef] [PubMed]

11.  Park, S.;Cha, S.; Oh, J.; Lee, H.; Ahn, H.; Churn, K.S.; Kong, H.J. Coherent beam combination using self-phase locked stimulated
Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation. Opt. Express 2016, 24,
8641-8646. [CrossRef] [PubMed]

12.  Chang, W.Z.; Zhou, T.; Siiman, L.A.; Galvanauskas, A. Femtosecond pulse spectral synthesis in coherently-spectrally combined
multi-channel fiber chirped pulse amplifiers. Opt. Express 2013, 21, 3897-3910. [CrossRef] [PubMed]

13.  Shi,M.; Yu, M; Fang, Z.; Wu, Y.; Li, J.; Wang, J.; Mu, H.; Hu, W.; Yi, L. Real-Time Definite Sequence Modulation Based Spectral
Broadening Scheme for High-Power Narrow-Linewidth Fiber Laser. J. Light. Technol. 2022, 40, 6222-6229. [CrossRef]

14. Eppeldauer, G.P; Podobedov, V.B. Infrared spectral responsivity scale realization and validations. Appl. Opt. 2012, 51, 6003-6008.
[CrossRef] [PubMed]

15.  Lopez, M.; Hofer, H.; Stock, K.D.; Bermtdez, J.C.; Schirmacher, A.; Schneck, F; Kiick, S. Spectral reflectance and responsivity of
Ge- and InGaAs-photodiodes in the near-infrared: Measurement and model. Appl. Opt. 2007, 46, 7337-7344. [CrossRef] [PubMed]

16. Yuan, L.; Qiu, L. Wavelength calibration methods in laser wavelength measurement. Appl. Opt. 2021, 60, 4315-4324. [CrossRef]

[PubMed]

100



Photonics 2025, 12, 151

17.  Yang, X,; Jia, M.; Xiao, G.; Chai, Q.; Zhou, R.; Romashko, R.V.; Zhang, ]. FBG array based wavelength calibration scheme for
Fourier domain mode-locked laser with pm resolution and hourly stability. Opt. Express 2022, 30, 45393-45399. [CrossRef]
[PubMed]

18.  Stair, R.; Schneider, W.E.; Waters, W.R.; Jackson, ]. K. Some Factors Affecting the Sensitivity and Spectral Response of Thermoelec-
tric (Radiometric) Detectors. Appl. Opt. 1965, 4, 703-710. [CrossRef]

19. Yao, P; Tu, B;; Xu, S.; Yu, X.; Xu, Z.; Luo, D.; Hong, J]. Non-uniformity calibration method of space-borne area CCD for directional
polarimetric camera. Opt. Express 2021, 29, 3309-3326. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

101



hv

™ photonics

Article

Research on an Echo-Signal-Detection Algorithm for Weak and
Small Targets Based on GM-APD Remote Active
Single-Photon Technology

Shengwen Yin !, Sining Li !, Xin Zhou **, Jianfeng Sun "2, Dongfang Guo !, Jie Lu * and Hong Zhao !

National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China
Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China

Research Center for Space Optical Engineering, Harbin Institute of Technology, Harbin 150001, China

44th Research Institute of China Electronics Technology Group Corporation, Chongging 400060, China

*  Correspondence: zx2021@hit.edu.cn

N

Abstract: Geiger-mode avalanche photodiode (GM-APD) is a single-photon-detection device charac-
terized by high sensitivity and fast response, which enables it to detect echo signals of distant targets
effectively. Given that weak and small targets possess relatively small volumes and occupy only a
small number of pixels, relying solely on neighborhood information for target reconstruction proves
to be difficult. Furthermore, during long-distance detection, the optical reflection cross-section is
small, making signal photons highly susceptible to being submerged by noise. In this paper, a noise
fitting and removal algorithm (NFRA) is proposed. This algorithm can detect the position of the echo
signal from the photon statistical histogram submerged by noise and facilitate the reconstruction of
weak and small targets. To evaluate the NFRA method, this paper establishes an optical detection
system for remotely detecting active single-photon weak and small targets based on GM-APD. Taking
unmanned aerial vehicles (UAVs) as weak and small targets for detection, this paper compares the
target reconstruction effects of the peak-value method and the neighborhood method. It is thereby
verified that under the conditions of a 7 km distance and a signal-to-background ratio (SBR) of 0.0044,
the NFRA method can effectively detect the weak echo signal of the UAV.

Keywords: GM-APD; weak and small target detection; signal-detection algorithm

1. Introduction

Weak and small targets are prominently characterized by weakness and smallness.
The International Society for Optics and Photonics has previously defined a target with
a pixel proportion not exceeding 0.12% as a small target [1]. When weak and small
targets are imaged over long distances, their echo signals are submerged by noise after
atmospheric attenuation, resulting in a low signal-noise ratio of the data. Additionally,
interference sources in nature can readily trigger false alarms. Weak and small targets have
small imaging cross-sectional areas. During the detection process, they only possess weak
information regarding shape, size, and structure and simultaneously lack texture content,
making it difficult to establish an exact segmentation boundary between the target and
the background. These reasons result in the inapplicability of traditional signal-detection
techniques to weak and small targets, thereby making it difficult to reconstruct such targets.

In recent years, the detection of echo signals of weak and small targets has garnered
significant academic attention [2,3]. Nevertheless, numerous challenges in the detection
of weak and small targets arise from the limitations of detector systems, equipment size,
weight, operation modes, and detection principles [4]. The use of traditional methods, such
as infrared and visible light, for detecting weak and small targets is highly susceptible
to environmental factors [5], accompanied by a limited detection range and substantial
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difficulty in detecting in complex backgrounds [6], thereby making it challenging to sep-
arate the target from the background. The single-photon imaging-detection technology
based on GM-APD features single-photon-level detection sensitivity and nanosecond-level
time resolution [7-9]. By adopting an active illumination mode [10,11], this technology
can conduct high-precision three-dimensional imaging of the target scene [12-14], thus
fulfilling the detection requirements of long-distance, nighttime, and complex backgrounds.
The active-type transmitting laser can shield against electromagnetic interference [15,16],
possess all-weather detection capabilities, and constitutes an ideal solution for realizing
long-distance optical imaging.

In the context of signal detection from weak and small targets, detecting the real-
distance information from the TOF (Time-of-Flight) statistical histogram obtained by the
single-photon lidar-detection system poses a significant challenge. When only a limited
number of signal photons reach the detector, environmental photons and noise can over-
whelm the signals. To address this challenge, numerous heuristic algorithms have been
proposed for handling the detection of weak target signals. In article [17], signal detection
is achieved by setting a short-duration sliding window and seeking the largest signal
cluster among the signal clusters. This is because signal detection is more prone to forming
clusters than background detection, and the addition of a sliding window can enhance the
prominence of the signal clusters. For pixels with insufficient detection times to accurately
execute the short-duration range gate, data from adjacent pixels are combined to enhance
depth estimation. Article [18] has developed an array-specific algorithm. By leveraging the
lateral smoothness and longitudinal sparsity of the natural scene, it transforms the coarse-
time-bin photon detection into high-precision scene depth and reflectivity. By surmounting
the coarse-time resolution limitation of the array, the framework attains high photon effi-
ciency within a relatively short acquisition time. Study [19] has proposed a deep-learning
signal-detection scheme. A convolutional neural network (CNN) is developed and trained,
using the array photon-signal-count histogram as the data input. A three-dimensional
convolution kernel is employed to process the input data at multiple resolution scales,
and subsequently, the outputs are fused to generate the results of photon-signal detection.
Nevertheless, these algorithms overly rely on neighborhood information and are unable to
properly handle the excessive noise in the front position of the gating gate, which fails to
align with the single-photon data characteristics of weak and small targets. Consequently,
their performance in signal detection from weak targets is less than satisfactory.

With the increase in detection distance, the signal photons returning from the target
decline sharply. Additionally, atmospheric disturbances, scattering, sunlight noise, and
detector dark current all introduce noise [20], thereby leading to an extremely low signal-
to-noise ratio of the echo signal. Moreover, the proportion of target pixels within the
entire field of view is relatively small, which makes it challenging to utilize neighborhood
information. There remain substantial challenges in achieving the detection of signals
from weak and small target with single-photon imaging technology. The NFRA method
is proposed for detecting long-distance signals from weak and small target. The law of
background noise and the temporal sequence characteristics of weak signals are utilized to
extract and reconstruct the weak signals of weak and small targets, and the effectiveness
of the NFRA method in detecting signals from weak and small target is analyzed. Finally,
a long-distance active single-photon signal-detection system for weak and small targets
based on the GM-APD single-photon detector is constructed to verify the feasibility of
this scheme.

2. Proposed Algorithm
2.1. The Trigger Probability Model of GM-APD Detector

GM-APD detectors possess extremely high photon-response capabilities. The laser
emits a periodic light beam directed towards the target. After the photons irradiate the

target surface, they return and are then received by the detector. At the single-photon level,
the avalanche effect of the GM-APD detector can be induced [21,22]. Nevertheless, this
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also leads to the inability of the GM-APD detector to distinguish whether the avalanche
current is triggered by echo photons or noise photons.

During each laser pulse period, upon being triggered by the first received photon,
the GM-APD detector generates an avalanche current, thereby triggering photon counting.
During a single laser pulse, the detector can be triggered at most once and then enters the
dead time. When waiting for the start of the next laser period, the detector resumes its
operation. In fact, a single laser pulse obtains a time of flight.

In operation, the GM-APD often adopts the method of multi-frame accumulation, and
multiple sets of time of flight are statistically compiled into a histogram. The abscissa of the
histogram represents the photon time of flight, which is discretized into a series of equally
wide intervals at certain time intervals (bin), and the ordinate represents the multiple
statistical results corresponding to the same time of flight, that is, the pulse amplitude.
Within the gate width, the time is partitioned into bins of the same size, and the time when
photon counting occurs is recorded by a time-stamp. P(n; i) can be utilized to represent that
the avalanche effect is triggered n times within the i-th bin. The echo waveform cannot be
acquired through a single time detection and requires continuous acquisition for obtaining.

In the laser-detection scenario of this study, although at the level of a single laser
emission it seems to be a binomial situation where a pulse is either detected or not detected,
in reality, photons will be affected by multiple factors such as atmospheric scattering and
the reflection characteristics of the target during the propagation process, resulting in
the randomness of the process in which photons reach the detector. For example, even
under the same experimental conditions, there will be certain fluctuations in the number of
photons returning and their arrival times after each laser emission. The Poisson distribution
is applicable to describing the number of occurrences of random events within a certain
time or space, and these events occur independently of each other. In laser detection, the
event of each photon arriving at the detector can be regarded as relatively independent,
and in the long-term statistical process, the overall situation of photon arrivals conforms
more to the characteristics of the Poisson distribution. The probability of n-time triggering
within the i-th bin is as follows [23]:

. 1 . .
P(mi) = — [M(Q)]"exp| - M(i)] M
During a single laser pulse period, the photon count is triggered in the f-th bin,
while the preceding f — 1 bins have no photon count triggered. Therefore, the triggering
probability can be expressed as follows [24,25]:

Pr = [ P(n = 0;0) | P(n > 1; )

1 gy @)
= exp(—X,! M(i)) [1 — exp(~M(f)]

Let N denote the average noise within each bin interval and S represent the signal
photons within the gate width. Consequently, the probability of triggering the photon
count within the target bin can be rewritten as follows:

Pr = exp(—fN)[1 — exp(~S — N)| )

The probability of detecting a signal in bin f is equal to the probability of not detecting
a signal in the previous f — 1 bins, multiplied by the probability of detecting a signal in the
f-th bin. In other words, the triggering probability of echo photons is related not only to
the current interval but also to the state that there is no photon-counting trigger in all the
previous intervals.

2.2. Signal-Detection Algorithm

The laser emission system irradiates the target surface with a laser of a fixed period
interval. Photons returning from the target are incident on the GM-APD detector, thereby
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triggering an avalanche current for the generation of photon counting. Photon counting
enables the recording of the arrival time of each photon, and after long-term statistical
analysis, a histogram statistical result can be generated. The reflection intensity and depth
at a specific pixel can be analyzed based on the amplitude of the observed pulse signal and
the average time of flight.

Owing to the small reflection cross-section of the weak and small target and the low
signal-to-noise ratio of the signal echo, the number of pixels occupied on the detector
is remarkably small. When the light incident on the detector is rather weak, traditional
photoelectric detectors with low sensitivity fail to detect the signal successfully. In this
regard, a high-sensitivity GM-APD detector is requisite for resolving the problem of single-
photon detection, followed by continuous accumulation. Subsequently, the relationship
between photon counting and bin is presented in the form of a photon-counting histogram.

The GM-APD single-photon lidar operates in the range-gate mode with a gate width
of 2 ps, which corresponds to a distance of 300 m and can cover the distance range of most
targets. The detection counts of all pixels are summarized to generate the total raw data
histogram h(x), as shown in Figure 1a. Meanwhile, a fitting curve, ygne, is established (see
Equation (4)).

_ n n—1
Yfine = AnX" +ay_1X" "+ ...+ a1x +ag 4)
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Figure 1. (a) Fine histogram of raw data; (b) fitting curve based on fine histogram; (c) down-sampling
the fine histogram; (d) down-sampling the fitting curve; (e) residuals histogram; (f) target signal
position interval.

This is an n-order polynomial, where a;, a,,_1, .. ., ag are the coefficients of the polyno-
mial, and n is the highest degree of the polynomial. Then, polynomial fitting of the fitting
curve is performed according to the least-squares method (see Equation (5)).

2
minanran—lr---rao Z;n:l (h(xl) - ]/fine(xi)) (5)

105



Photonics 2024, 11, 1158

Among them, the x; corresponds to the sampling point of the abscissa in the histogram
data. The finally obtained fitting curve is shown in Figure 1b. The relative standard
deviation (RSD) between the original data and the fitting curve is 2.58%. Background
noise encompasses ambient light and dark counts. The noise of the lidar near the starting
position of the gate width is greater since the triggering probability of noise photons at the
front end of the gate width is higher. The original data histogram /(x) and the fitting curve
Yine are down-sampled, as shown in Equation (6). The step size is set as 20 ns (~3 m) for
generating a coarse histogram and a coarse fitting curve, as depicted in Figure 1c,d.

Dxi Dxi
hcoarse(xi) = Z h(xj)/D} ]/coarse(xi) = Z yfine(xj)/D 6)
D(i—1)+1 Dx(i—1)+1

Among them, x represents the integer index of the abscissa, and D represents the
down-sampling factor. By subtracting the coarse histogram /icoarse from the coarse fitting
curve Yeoarse, @ residual curve R is obtained, as shown in Figure 1le. From this, the position
index corresponding to the maximum residual is located (see Equation (7)).

xp = argmax{R(x1),R(x2),...,R(xx)} (7)

The coordinate index x; corresponding to the maximum residual is expanded within
the range of the down-sampling step D in the original histogram /(x) to obtain the target
signal position interval, namely the target range. Due to the random nature of noise,
there may be instances where the statistical amplitude is higher than that of the target
echo. Nevertheless, noise lacks regularity in the time domain. Within the target range, the
matched filtering method can exploit the regularity of the statistical results of the local
region of the signal, thereby increasing the amplitude of the echo signal and enhancing the
accuracy of target-signal detection.

3. Experiment
3.1. System Design

Figure 2 presents a long-range active single-photon UAV-detection system based on
GM-APD. In this system, the GM-APD detector functions as the receiving end, while a
laser acts as the transmitting end. The optical signal irradiates the target surface from
the transmitting end via the transmitting lens, and the reflected signal is received by the
GM-APD detector through the reflecting lens and the optical system. The laser transmitting
unit commences with the laser, and its operating wavelength is selected as 1064 nm. The
transmitting beam formed by the beam expander irradiates the entire field of view, thereby
enhancing the detection efficiency of the 64 x 64-pixel APD array. A high-repetition-
frequency laser is utilized to augment the accumulation of echo signals within a unit
time. The echo signal of the lidar is proportional to the transmitted laser power (pulse
energy X repetition rate). In other words, reducing the single-pulse energy and increasing
the repetition rate can achieve the same detection effect. The high repetition rate not
only facilitates the accumulation of echo signals within a unit time, but also significantly
improves the signal-to-noise ratio at low-pulse energy [26].

The receiving optical path is designed using a Cassegrain-type telescope system. The
folding-back design can reduce the volume resulting from the long optical path. A long
focal length is advantageous for detecting distant targets, and a small field of view facilitates
distinguishing small distant targets and suppressing external optical noise. The optical
components are assembled on a custom-made optical flat plate, and the entire lidar imaging
system is integrated to facilitate easy movement.

Overall, the entire detection system features coaxial transmitting and receiving beams,
and the transmitting field of view is slightly larger than the receiving one to ensure that the
laser spot fills the entire field of view. The receiving field of view is designed to be small,
enabling it to effectively filter out external stray light and distinguish unmanned aerial
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vehicle targets at a long distance. The returning photons are coupled to the focal plane of
the GM-APD detector via the focusing lens. During the actual target-detection process, a
range gate is set to further filter out irrelevant noise.

S ( Emit laser
{m» ~
)

Receive laser ——
. Detection
system

Detection

omputer

imaging

Figure 2. Schematic diagram of long-range active single-photon UAV detection.

3.2. Experiment

In this paper, in-depth research on the imaging system and signal-detection algorithm
has been conducted to adapt to the detection of UAV targets within a long-distance space
range. The UAV is launched from the equipment, and the distance between the UAV and
the equipment is determined by both the linear distance and the height distance between
them. The NFRA method was employed to reconstruct the range image of the target. The
SBR is defined as the ratio of the signal-detection count (the number of echo photons of the
target) within the 2000 ns gate width in the original data to the noise-detection count (the
number of ambient light photons and dark counts).

As shown in Figure 3a, this is the experimental environment for UAV detection. The
imaging device is positioned on the top floor of a building, while the target is in the
distant sky. The experimental targets are the DJI Air 3 (Figure 3b) and the DJI Phantom 4
(Figure 3c).

{a)Expenmental scene (b)DJI Air 3 (¢)DII Phantom 4

Figure 3. (a) Experimental scene, (b) the DJI Air 3 UAV with a length of 258.8 mm, a width of 326 mm,
and a height of 105.8 mm; (c) the DJI Phantom 4 UAV with a length of 430 mm, a width of 430 mm,
and a height of 370 mm.

4. Results

Due to insufficient spatial resolution and the influence of air turbulence (aerosol),
UAV is undetectable by the human eye and visible-light cameras. Single-photon lidar was
utilized for imaging during the daytime, obtaining 64 x 64-pixel images. First, the DJI Air
3 was selected for detection and imaging at a distance of 1 km. The experimental results
are presented in Figure 4, and the target echo SBR is 0.035. The original data histogram
is shown in Figure 4a. The noise peak near the starting position of the range gate is
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significantly high and exhibits a continuous attenuation state. By observing the statistical
results of the histogram of a single pixel (as shown in Figure 4b), it can be seen that the
signal is submerged in the noise, and thus the signal cannot be directly detected by the peak-
value method for image reconstruction. A noise threshold needs to be set for processing
purposes, as shown in Figure 4c,d. The reconstruction results indicate that the contour of
the target cannot be restored, and a large amount of noise cannot be filtered out. Due to
its detection capability at the single-photon level, a single-photon detector will generate
crosstalk noise during the detection process, and photons will trigger adjacent detector
pixels. The neighborhood method increases the detection probability of echo signals by
jointly counting the values of neighboring pixels. Through the neighborhood method, most
of the noise can be filtered out and part of the contour can be restored as well, as shown in
Figure 4e,f. However, there are still instances where the signal detection of pixel points is
inaccurate, and the contour information cannot be completely restored. In the time domain,
signal photons have a relatively high triggering probability in the target area, while noise
photons are discretely distributed due to their randomness. Therefore, the position of the
signal peak can be highlighted by the means of convolution in the time domain. Through
the combination of the neighborhood method and the convolution method, a good contour
restoration effect is presented, yet there are still some instances where the noise cannot be
completely filtered out, as shown in Figure 4g,h. By employing the NFRA method, the
noise can be effectively suppressed, the real area of the echo signal can be detected, the
overall shape of the UAV can be restored, and an excellent reconstruction effect is achieved,
as shown in Figure 4i,].
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Figure 4. (a) Array statistical histogram; (b) single-pixel statistical histogram; (c—j) reconstruction
results of the DJI Air 3 UAV at a distance of 1 km using different methods.
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To verify the detection effect of the long-range active single-photon unmanned aerial
vehicle (UAV)-detection system on distant UAVs, the DJI Phantom 4 was adopted as the
target for detection experiments at a distance of 7 km. The reconstruction results are
presented in Figure 5. Since the imaging field-of-view angle of the long-range active
single-photon UAV-detection system is fixed, when the UAV is at a long distance, the
resolvable size of a single pixel within the detection system increases. Moreover, the UAV
itself is relatively small in size, resulting in the actual imaging echo signal of the UAV
being concentrated only in a few pixels. The surface of the UAV causes diffuse reflection
of the irradiated laser, and aerosols impede the transmission of the echo. Furthermore, a
large number of noise photons are received by the GM-APD detector array, and the SBR
is merely 0.0044. The echo signal is submerged in the noise, making it difficult to directly
distinguish the signal from the noise, as shown in Figure 5a,b. For the UAV target at a
distance of 7 km, due to the factor of the field-of-view angle of the single-photon-detection
system, the number of imaging pixels is extremely small, and the echo signal is extremely
weak. With a large amount of noise, it is impossible to directly distinguish the signal
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from the noise. The processing results of the peak method, the neighbor method, and
the combination of the neighbor and convolution methods are accompanied by a large
amount of noise, and the target signal cannot be detected. By employing the NFRA method,
the noise can be effectively suppressed, and the weak signal of the target can be detected
under the condition of being submerged by a large amount of noise, thereby enabling the
reconstruction of the UAV target.
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Figure 5. (a) Array statistical histogram; (b) single-pixel statistical histogram; (c—j) reconstruction
results of the DJI Phantom 4 UAV at a distance of 7 km using different methods.
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The NFRA method exhibits better extraction and reconstruction capabilities for the
echo signals of weak and small targets compared to the peak method and the neighborhood
method. The peak method achieves better effects when processing data with a relatively
high signal-to-noise ratio. In the face of a large amount of noise with high amplitude, it
is easily interfered with by noise and fails to correctly distinguish between signals and
noise. Since weak and small targets themselves have an extremely low signal-to-noise ratio
and the echo signal is submerged in the noise, it is very difficult for the peak method to
detect the echo signal. The neighborhood method depends on capturing the pattern of the
target in the spatial neighborhood to filter out most of the noise, thereby reconstructing
the target. However, due to the small number of pixels occupied by the weak and small
target, there is scant neighborhood information to rely on. Simultaneously, in the face of the
interference of random high-amplitude noise, the complete structure of the target cannot
be reconstructed. The NFRA method proposed in this paper can separate the background
noise from the echo signal region by fitting and removing the noise in the time domain.
According to the regular distribution of the echo signal in the time domain, convolution
strengthening is performed to suppress the interference of the noise peak, and the shape of
the target can be well restored, thereby achieving the purpose of detecting the signal from
weak and small targets.

The detection of long-distance, weak and small UAV targets analyzed in this study
is based on cooperative targets. Cooperative targets are more advantageous for achiev-
ing effective search, detection, and target confirmation in long-range scenarios. If non-
cooperative targets intrude during the detection process, false positives may occur. In
such cases, the airspace will exhibit non-stationary states characterized by irregular motion
patterns, which are relatively easy to distinguish. However, backscattering caused by
clouds introduces additional challenges by increasing noise levels and interfering with the
detection range. In scenarios with dense cloud cover, there is a risk of detector saturation.
Unlike non-cooperative targets, clouds exhibit relatively stable spatial positions within
the airspace, making it difficult to distinguish them based solely on motion characteristics.
Nevertheless, clouds possess a certain degree of transparency, and their echo signatures
differ from those of UAV targets. By accumulating detection results over time and analyz-
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ing the distinctive characteristics of echo signals, false positive targets caused by clouds
can still be effectively identified and mitigated.

5. Conclusions

GM-APD is a single-photon-detection device characterized by high sensitivity and
fast response. It can continuously count the returning photons by relying on ToF to
obtain the target echo statistical histogram. In this paper, a noise fitting and removal
algorithm (NFRA method) is proposed, which is capable of detecting and reconstructing
the weak signals of UAVs. To evaluate the NFRA method, the influence of different
distances on the detection of signals from weak and small targets is analyzed through a
comparison of the target extraction effects of the peak method, the neighborhood method,
the combination of the neighborhood method and the convolution method, and the NFRA
method. Experimental results demonstrate that for the 1 km UAV target, the peak-value
method, the neighborhood method, the combination of the neighborhood method and the
convolution method, and the NFRA method can all achieve target reconstruction. Among
them, the NFRA method can restore the target contour and filter out the background noise
based on the detected echo signal. For the 7 km UAV target, due to noise interference,
the peak method, the neighborhood method, and the combination of the neighborhood
method and the convolution method cannot detect the echo signal. By employing the
NFRA method to process the received signal, the target echo signal submerged in the noise
can be detected, and the background noise can be filtered to achieve the reconstruction of
weak and small targets.
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Abstract: A surface plasmonic waveguide made of metal-insulator-metal (MIM) capable of generat-
ing triple Fano resonances is proposed and numerically investigated for multi-biological parameter
sensing as well as tunable slow light. The waveguide is made up of a bus waveguide with a silver
baffle, a square split-ring cavity with a square center (SSRCSC), and a circular ring cavity with a
square center (CRCSC). Based on the triple Fano resonances, human blood temperature and plasma
concentration are measured simultaneously at different locations in the waveguide, and the maxi-
mum sensitivities were 0.25 nm/°C and 0.2 nm-L/g, respectively. Furthermore, the two biological
parameters can be used to achieve tunable slow light, and it was found that the group delay responses
to human blood temperature and plasma concentration all conformed to cubic functions. The MIM
waveguide may have great applications in future nano-sensing of multiple biological parameters and
information processing of optical chips or bio-optical chips.

Keywords: biosensing; biological parameters; slow light; surface plasmon; MIM waveguide; Fano

resonance

1. Introduction

Since Ugo Fano initially proposed it in 1961, Fano resonance has established itself as
one of the key components in the advancement of optical sensing [1-4]. Unlike conventional
Lorentz resonance with a symmetric lineshape, Fano resonance, which emerges when a
broad continuous state is connected to a narrow discrete state, usually has a sharp and
asymmetric lineshape. Due to the unique lineshape, small changes in the geometry or
environment can significantly affect Fano resonance [5-9]. Electromagnetic waves known
as surface plasmon polaritons (SPPs) are found solely between a metal and a nonconductor,
at their intersection. Molecular signals can be strengthened by strong SPPs at the metal—
dielectric contact site, which is helpful in biomedicine [10-12], chemistry [13,14], and
information technology [15]. Because the SPPs also have the excellent characteristic of
breaking the classical diffraction limit [16,17], the combination of SPPs and Fano resonance
has very important applications in modern micro- and nano-chip optics [18-22].

The SPPs in MIM waveguides, which have adequate propagation lengths, low bend
losses, and ease of sample manufacturing, have gained significant study interest [23-26].
Fano-resonance-exciting MIM waveguide designs have gained popularity recently for
use in filters [27-29], wavelength division multiplexers [30], all-optical switches [31,32],
slow-light devices [33,34], and especially in sensors [6,35-39]. For instance, Chen et al.
proposed an SSRC on a MIM waveguide that is non-through and could achieve multi-
ple Fano resonances, and the highest sensing sensitivity for refractive index was up to
1290.2 nm/RIU [38]. A waveguide system with end coupling capable of Fano resonances
was designed by Fang et al. The sensing sensitivity of the refractive index could reach
1059.2 nm/RIU [40]. In addition, Wang et al. achieved a square-ring and triangle-cavity
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MIM waveguide to obtain triple Fano resonances and a maximal sensitivity to refractive
index of 2259.56 nm/RIU [41]. All of these results showed that Fano resonance could be
effectively used for integrated optical sensing with high sensitivity.

In this study, we aimed to increase the parallel processing capability of biosensing
and obtain tunable slow light, based on easily adjustable multiple Fano resonances. To
implement the simultaneous measurement of multiple biological parameters and tuning
of slow light effects at selected wavelengths, we proposed multi-ring cavities. This will
also make it easier to use Fano resonances in integrated optical biosensing. A MIM surface
plasmonic waveguide with ring cavities was designed to generate triple Fano resonances.
By altering the refractive index, individual tuning of the triple Fano resonances was
examined, and glucose solution concentration and plasma concentration were measured
simultaneously using this waveguide. In addition, tunable slow light was achieved using
these two biological parameters, and the response of the group delay to these biological
parameters was fitted.

2. Materials and Methods

The envisioned waveguide for the MIM waveguide is shown in Figure 1, which is
composed of a square split-ring cavity with a square center (SSRCSC), a circular ring cavity
with a square center (CRCSC), and a waveguide with a silver baffle for a bus. Silver and
air are represented by the white and green regions, respectively. A silver baffle was added
to the upper part of the square ring, in order to obtain sufficient distances between Fano
resonances for measuring multiple parameters at the same time, and increase the sharpness
and transmittance of Fano resonances for realizing larger sensitivity and lower slow light.
d, L,a, R, b, Gy and G are the width of this silver baffle, the side length of the external
square of the SSRCSC, the side length of the internal square of the SSRCSC, the radius of
the external circle of the CRCSC, the side length of the internal square of the CRCSC, the
distance between the SSRCSC and the bus waveguide, and the distance between the CRCSC
and the bus waveguide, respectively. To ensure that only the basic transverse magnetic
mode may exist in this configuration, the bus waveguide’s width w is specified as 50 nm.
The silver baffle in the center, whose width is given by ¢, blocks the bus waveguide. The
SSRCSC, CRCSC, and bus waveguide all have geometric centers that are on the reference
line, so the overall waveguide is symmetrical about the reference line.

Figure 1. A schematic diagram of a MIM waveguide composed of a square split-ring cavity, a bus
waveguide with a silver baffle, and a circular ring cavity.
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The Drude model represents the frequency-dependent complicated relative permittiv-
ity of silver [42,43]:
2

P
_— 1
w? +iwy M)

e(w) = €0 — “

where ¢ = 3.7, wp =9.1eV, w, and y = 0.018 eV represent the dielectric constant at
infinite frequency, the plasma frequency of free conduction electrons, the angular frequency
of the incident wave in vacuum, and the electron collision frequency, respectively.

The standing wave theory states that constructive interference should occur when the
resonance condition is satisfied, and the transmitted wavelength is calculated by using the
resonance condition [44,45]:

ZRe< zeff, ~1,2,3..., )
m= iz

where A, m, ¢, Re(neff), and L, ff represent the resonant wavelength, the order of the
resonant mode, the phase shift due to reflection, the real part of the effective refractive
index, and the effective length of the resonant cavity, respectively.

The waveguide’s optical transmission characteristics are simulated by the finite ele-
ment method (FEM), and the numerical values of the waveguide parameters utilized in
the simulation are shown in Table 1. Here, all the parameters were optimized in order to
obtain multiple Fano resonances with high transmittance. In order to absorb the escaping
waves, perfect matching layers (PMLs) are positioned at the waveguide’s top and bottom.
Moreover, fine triangular meshes with a maximum size of 10 nm were chosen to provide
precise area segmentation in the simulation. In practice, the MIM waveguide may be
fabricated in the following way: First, a thick enough Ag layer is prepared by the chemical
vapor deposition (CVD) method on a silicon substrate [46]. Then, the SSRCSC, the CRCSC,
and the bus waveguide with a silver baffle are etched on the Ag layer through electron
beam etching.

Table 1. A list of the simulation settings for the waveguide.

Parameter Symbol  Quantity Unit
Length of the side of the external square of the SSRCSC L 440 nm
Split length of SSRCSC d 10 nm
Length of the side of the internal square of the SSRCSC a 300 nm
The separation between the bus waveguide and the SSRCSC Gy 10 nm
The radius of the external circle of the CRCSC R 110 nm
Length of the side of the internal square of the CRCSC b 140 nm
The separation between the bus waveguide and the CRCSC Ga 10 nm
The size of the bus waveguide w 50 nm
The size of the bus waveguide’s silver baffle t 10 nm

Index of refractive of bus waveguide - 1 -

Index of refractive of SSRCSC ny 1 —

Index of refractive of CRCSC ny 1 —

3. Results
3.1. Mechanism of Fano Resonance and Distribution of Magnetic Fields

As shown in Figure 2, we set the waveguide in SSRCSC with the CRCSC’s mode,
single bus waveguide mode, and full waveguide mode to illustrate the mechanism of Fano
resonance generation. The bus waveguide with the silver baffle removed produced three
transmission dips at 1107 nm, 1849 nm, and 2428 nm, which, as represented by the red line,
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may be thought of as a narrow discrete state. The blue line represents the state produced
by the bus waveguide, which is a wide continuous state. The entire waveguide generated
three asymmetric and sharp Fano resonances at 1097 nm, 1795 nm, and 2407 nm, known
as FR1, FR2, and FR3, as a consequence of interference between the discrete state and
continuous state.

1.0

0.8

0.6

0.4

Transmission

0.2

0.0 -
900 1200 1500 1800 2100 2400 2700
Wavelength (nm)

Figure 2. Schematic diagram of the formation mechanism of the structurally excited Fano resonance
proposed in this paper.

The dispersion of the magnetic fields (|H- |2) of FR1, FR2, and FR3 are shown in
Figure 3a—c, and the corresponding heights are shown in Figure 3d—f. The distributions of
magnetic field energy in the SSRCSC and the CRCSC are symmetric about the reference line
parallel to the y-axis. For FR1, almost all of the energy was confined in the CRCSC, so FR1
is sensitive to the parameters of the CRCSC, while the majority of energy of FR2 and FR3
was confined in the SSRCSC, proving that the characteristics of the SSRCSC mostly impact
FR2 and FR3. As a result, the SSRCSC and CRCSC characteristics may be individually
changed to control the triple Fano resonances.
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f -500 | ‘ -500

x10°

| 3
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Figure 3. (a—c) Patterns of the FR1, FR2, and FR3 magnetic fields. (d—f) Expressions in height for FR1,
FR2, and FR3’s magnetic field patterns.
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3.2. Refractive Index Sensing

For practical applications, it is difficult to change the structural parameters of waveg-
uides, but the waveguide’s refractive index may be changed much more easily than its
structural properties, which makes it possible to accomplish independent tuning of the
Fano resonances that are more suited for sensing [47]. The following is the definition of the
sensitivity of refractive index sensing [41,48]:

AA

where AA denotes the alteration in resonance wavelength and An denotes the alteration in
the index of refraction.

In Figures 4 and 5, the index of refraction 11 of the SSRCSC and the index of refraction
1y of the CRCSC both increased from 1.30 to 1.42 with an interval of 0.03. In biological
parameter sensing, the chosen range of the index of refraction is easily attained. As the
index of refraction of the SSRCSC increases, FR1 remained essentially unchanged, but FR2
and FR3 exhibited significant redshifts. In contrast, only FR1 exhibited a considerable
redshift when the CRCSC's refractive index increased, as shown in Figure 5a. According to
the findings, it is possible to independently adjust the triple Fano resonances by altering
the waveguide’s index of refraction.
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Figure 4. (a) The effect of different refractive indexes of SSRCSC on waveguide Fano resonance
(np =1.00). (b) Associations between the index of refraction of the SSRCSC and the resonance wave-
lengths of FR1, FR2, and FR3 are linear.

0.8
2600 |- ()
0.7 L & FR3
2400 &——¢— o —0o—
0.6 E L
= 2200 1 " 1 ' 1 ' i ' 1
£05 E0
2 £,2000
£04 %ﬂ [+ FR2
: L A A A A A
E 03 g 1800 B 1 1 1 1 1
= = :
0.2 B 16001 o R,
frl 1= y=1093.33x+9.74
00 [ B mool—L v
1100 1300 1500 1700 1900 2100 2300 2500 130 1.33 1.36 139 1.42

Wavelength (nm) Refractive Index

Figure 5. (a) The effect of different refractive indexes of CRCSC on waveguide Fano resonance
(n1 =1.00). (b) Associations between the index of refraction of the CRCSC and the resonance wave-
lengths of FR1, FR2, and FR3 that are linear.
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As shown in Figures 4b and 5b, FR1, FR2, and FR3 all possessed strong linear cor-
relations with linear correlation coefficients greater than 0.99999, and the sensitivities of
FR1 and FR2 were 1093.33 nm/RIU and 1833.33 nm/RIU, respectively. According to
Equations (3) and (4), the sensitivity is proportional to the proportion of the resonance
mode order to the effective length of the resonant cavities, so the sensitivity of FR3 was
2453.33 nm/RIU greater than that of FR2, as shown in Figure 4b. Table 2 demonstrates
that this waveguide has a relatively high sensitivity to refractive index sensing when
compared to other architectures [38,47,49-53]. Based on the above analysis, the refractive
index within the waveguide at different positions can be obtained by resonant wavelength
measurements.

Table 2. Utilizing different references to compare the sensitivity.

Reference Waveguide Sensitivity

Baffle and an X-shaped cavity make up the
MIM waveguide
38] MIM waveguide containing a rectangular
split-ring resonance cavity
[47] MIM waveguide containing a semi-ring cavity 1550.38 nm /RIU
[49] MIM ngeguide contain%ng ring—s.plitting 1200 nm/RIU
cavity and tooth cavity coupling
50] MIM waveguide-coupled strl{cture—based 1820 nm /RIU
simple and small plasmonic sensor
[51] Inverted U-shaped resonator 840 nm/RIU
A MIM waveguide with an end-coupled

[6] 1303 nm/RIU

1290.2 nm/RIU

[52] . . . 1050 nm/RIU
ring-groove junction
Three-racetrack resonators in two concentric
(53] rings with plasmonic MIM waveguides 1618 nm/RIU
This paper MIM waveguide consisting of square split-ring 2453.33 nm /RIU

and circular ring cavities

3.3. Multi-Biological Parameter Sensing

Next, two biological parameters, the temperature of human blood and the concentra-
tion of plasma, were chosen to be measured using this waveguide. The SSRCSC was filled
with human blood, while the CRCSC was filled with plasma. Thus, the refractive indexes
of the SSRCSC and the CRCSC were determined by the temperature and concentration
of the biological parameters, respectively. In practice, human blood and plasma should
be separated in advance, and then filled into the SSRCSC and CRCSC, respectively. In
addition, it is unnecessary for the SSRCSC and CRCSC to be fully filled. When they are
partially filled with human blood and plasma, the waveguide can still produce similar Fano
resonances, just with different resonant wavelengths. The refractive indexes of human
blood and plasma are expressed as [54,55]:

n, = 1.36 — 0.0001046T, (4)

n, = 1.32459 4 0.000184C, (5)

where Ty, is the temperature of human blood and Cy, is the concentration of plasma.

In Figure 6, the temperature of human blood in the SSRCSC was increased from 10 °C
to 50 °C with an interval of 10 °C, while the concentration of plasma in the CRCSC was
increased from 0 g/L to 400 g/L with an interval of 100 g/L. As a result, the SSRCSC’s
refractive index dropped from 1.358954 to 1.35477 with an interval of 0.001046, whereas the
CRCSC’s index of refraction change increased with an interval of 0.0184 from 1.32459 to
1.398109. It is evident that FR1 exhibited a redshift, and FR2 and FR3 exhibited blueshifts.
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Figure 6. The waveguide’s transmission spectra at various plasma concentrations and blood temperatures.

The linear fittings between the concentrations of the plasma and the resonant wave-
lengths are shown in Figure 7a, and Figure 7b displays the linear association between
resonant wavelength and human blood temperature. For FR1, FR2, and FR3, each linear
correlation coefficient was greater than 0.99. Here, the sensing sensitivity of the waveg-
uide can be defined as Spja5imq = % as well as Syman blood = %, where AC denotes the
alteration in concentration and AT denotes the alteration in temperature. Thus, 0.2 nm-L/g
was the sensitivity of plasma concentration sensing. Moreover, the sensitivity of human
blood temperature to FR2 was 0.2 nm/°C, and the sensitivity to FR3 was 0.25 nm/°C.
Obviously, the waveguide is far more sensitive to temperature than practically applied
fiber grating sensors, which typically have a sensitivity of 0.01 nm/°C. In this way, the
concentration of plasma and the temperature of human blood are simultaneously measured

using this waveguide.
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Figure 7. (a) FR1’s resonant wavelength versus plasma concentration. (b) The resonant wavelengths
of FR2 and FR3 versus human blood temperature.

3.4. Tunable Slow Light

Due to the sharp and asymmetric lineshape, Fano resonance is accompanied by
an abrupt change in transmission phase, resulting in smaller group velocities, so the
waveguide designed here can also be used to generate slow light, especially based on the

118



Photonics 2023, 10, 703

effects of human blood temperature and plasma concentration on Fano resonance, which
may achieve tunable slow light. The slow light characteristics can be described in terms of
the group delay, which can be derived from the phase:

dg(w)

= e (6)
As a result of the sharp characteristics of Fano resonance, three group delay peaks can
be found near the three Fano resonances, marked as GD1, GD2, and GD3. Then, we verified
the proposed conjecture by measuring the biological parameters in the waveguide. In
Figure 8, the human blood temperature in the SSRCSC increased with an interval of 10 °C,
while the plasma concentration in the CRCSC increased with an interval of 10 g/L. It can
be seen that GD1 experienced a redshift, while GD2 and GD3 experienced a blueshift. Sub-
sequently, we locally enlarged GD1, GD2, and GD3, as shown in Figures 9a, 10a, and 11a.
We selected the wavelength corresponding to the group delay peak at a temperature
of 10 °C and concentration of 0 g/L as the reference wavelength, which was 1508 nm,
2287 nm, and 3585 nm for GD1, GD2, and GD3, respectively. We also plotted the response
of the group delay to the biological parameters at each reference wavelength, as shown in
Figures 9b, 10b, and 11b. The responses of the group delay to the two biological parameters
were not exactly the same. For plasma concentration, it can be seen in Figure 9b that in the
initial stage of concentration increase, group delay rapidly decreased. However, after the
concentration was high, although the step size of concentration increase was still 10 g/L,
the speed of the group delay decreased significantly. In b and 11b, it can be seen that
for human blood temperature, the response of GD2 changed slowly during the low and
high temperature stages, while the response of GD3 was different. For GD3, at relatively
low temperatures, group delay slowly decreased with increasing temperature, and after
a certain degree of temperature increase, the response of the group delay to temperature

became faster.
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Figure 8. The waveguide’s group delay at various plasma concentrations and blood temperatures.
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Next, we fit the response of the group delay to these two biological parameters. We first
performed a quadratic fit on the response of the group delay to the biological parameters,
and the residual sum of squares of the fit results were larger than the expected results. Then,
we performed a cubic fit on the three responses, and the residual sum of squares of the
fitting curves was much smaller, resulting in a significant improvement in the fitting effect.
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The results showed that the two biological parameters can be used to adjust slow light,
and it is worth noting that the responses of the group delay to human blood temperature
and plasma concentration all conformed to cubic functions. In this way, tunable slow
light was achieved in this waveguide by varying the temperature of human blood and the
concentration of blood plasma.

It should be noted that the largest group delay obtained in this paper was only about
0.1 ps. One reason is that the size of the waveguide was small. The other is that the
structural parameters of the waveguide were optimized in order to obtain multiple Fano
resonances with high transmittance, failing to take into account the group delay. One can
obtain a large group delay by increasing the contrast of Fano resonance and reducing the
bandwidth of Fano resonance. Here, only a potential solution for adjusting slow light in
the MIM waveguide was proposed, combined with biological parameters.

From current research results, it can be seen that the coupling efficiency between a
MIM waveguide and external optical devices is relatively low, due to the small width of
the waveguide. If the coupling efficiency can be improved, the application of the MIM
waveguide may be greatly promoted.

4. Discussion

Triple Fano resonances were achieved in the MIM waveguide made up of a SS-
RCSC, CRCSC, and bus waveguide. The refractive index may be changed to tune the
Fano resonances individually. The maximum sensitivity of refractive index sensing was
2453.33 nm/RIU. The cavities of this waveguide can be filled with biological solutions
as a biosensor, which make it possible to measure several biological parameters at once.
Human blood temperature and plasma concentration sensing had maximal sensitivities of
0.25nm/°C and 0.2 nm-L/g, respectively. Meanwhile, tunable slow light can be realized
using this waveguide, and the group delay responses to human blood temperature and
plasma concentration all conformed to cubic functions. The significant advantage of this
waveguide is that two separate resonant cavities allow for the simultaneous measurement
of multiple biological parameters and slow light tuning of multiple wavelengths. In con-
clusion, the waveguide proposed in this paper can play a role in biosensing and optical
information processing in nanoscale applications.
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Abstract: In this paper, a range-gated LIDAR system utilizing an LN crystal as the electro-optical
switch and a SCMOS (scientific complementary metal oxide semiconductor) imaging device is
designed. To achieve range-gated operations, we utilize two polarizers and an LN (LiNbO3) crystal
to form an electro-optical switch. The optical switch is realized by applying a pulse voltage at both
ends of the crystal due to the crystal’s conoscopic interference effect and electro-optical effect. The
advantage of this system is that low-bandwidth detectors, such as a CMOS and a CCD (charge-
coupled device), can be used to replace conventional high-bandwidth detectors, such as an ICCD
(intensified charge-coupled device), and it displays better imaging performance under specific
conditions at the same time. However, after using an electro-optical crystal as an optical switch, a new
inhomogeneity error will be introduced due to the conoscopic interference effect of the electro-optical
crystal, resulting in a range error for the LIDAR system. To reduce the influence of inhomogeneity
error on the system, this paper analyzes the sources of inhomogeneity error caused by the electro-
optical crystal and calculates the crystal’s inhomogeneity mathematical expression. A compensation
method is proposed based on the above inhomogeneity mathematical expression. An experimental
LIDAR system is constructed in this paper to verify the validity of the compensation method. The
experimental results of the range-gated LIDAR system show that in a specific field of view (2.6 mrad),
the LIDAR system has good imaging performance; its ranging standard deviation is 3.86 cm and
further decreases to 2.86 cm after compensation, which verifies the accuracy of the compensation
method.

Keywords: range-gated; LIDAR; conoscopic interference; electro-optic crystal

1. Introduction

The three-dimensional LIDAR system can be used to obtain the range and three-
dimensional image of the target, so it is widely used in space target detection, landscape
mapping, underwater target detection, unmanned car driving, and other fields [1]. LIDARs
that use focal plane arrays and array detectors can achieve excellent 3D imaging perfor-
mance, but using these advanced detectors is too costly [2]. In order to maintain some key
performance of LIDAR to a certain extent while minimizing cost, many researchers have
proposed many different LIDAR schemes to replace the original high-cost detectors [3-14].
Among many 3D imaging LIDAR systems, the use of high-speed optical switches and
low-bandwidth, low-cost CCD and CMOS detectors is a common solution to achieve high
resolution and high distance accuracy. In 2016, Sungeun Jo et al. in South Korea proposed a
high-precision 3D imaging LIDAR system consisting of a polarization-modulating Pockels
cell (PMPC) and an MCCD, which can achieve a ranging accuracy of 5.2 mm at 16 m [15].
In 2017, Chen Zhen et al. of the Chinese Academy of Sciences proposed a flash LIDAR
system based on polarization modulation using two EMCCD cameras and two PMPCs,
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which can achieve a ranging accuracy of 0.26 m in a field of view of 0.92 mrad at 200 m [16].
In 2019, Wang Shengjie et al. of the Chinese Academy of Sciences proposed a high-precision
correction algorithm for a large field of view based on the LIDAR system proposed by
Chen Zhen et al., which reduced the distance error of the system to less than 0.1 m within
a 0.92 mrad field of view [17]. In 2020, Song Yishuo et al. from the Space Engineering
University proposed a LIDAR system using two KTN crystals and two CCD cameras,
which is characterized by a large imaging field of view and a range accuracy of 4.4 cm for
targets 15 m away under a field of view of 0.35 rad [18].

In order to meet the needs of 3D imaging and attitude measurement of unmanned
aerial vehicles and other targets in various complex environments, ensure the spatial
resolution, operating distance, and distance accuracy of the experimental system, and
reduce costs, we decided to construct a range-gated active 3D imaging LIDAR experimental
system. For commonly used range-gated active 3D imaging LIDARs that use area array
imaging devices, ICCD cameras with high-speed shutters are generally used as imaging
devices. However, the imaging process of ICCD cameras has several drawbacks, such
as multiple electro-optical conversions, low quantum efficiency, low lateral resolution
caused by pixel coupling, and a high cost [19,20]. An EMCCD and SCMOS are common
alternatives to ensure effective range and spatial resolution. Compared to EMCCD cameras,
SCMOS cameras have a higher signal-to-noise ratio, a faster readout speed, and a higher
real-time imaging frame rate at the same exposure time, except for inferior imaging quality
in extremely weak light. Furthermore, among these three types of cameras, SCMOS cameras
have the lowest price. However, SCMOS cameras do not have high-speed shutters and
therefore do not have time resolution capabilities. Using SCMOS cameras alone cannot
achieve high-precision range-gated imaging. In order to enable the system to achieve
high-precision, range-gated imaging, it is necessary to add high-speed optical switches to
the system.

In recent years, there has been significant progress in the research on optical switches.
In 2012, Long Chen and Young-kai Chen from the USA demonstrated a compact, low-loss,
and low-power broadband 8 x 8 optical silicon switch. The optical switching device they
demonstrated had a footprint of 8 x 8 mm, and its port-to-port isolation is above 30 dB
over the whole 80-nm-wide spectral range and above 45 dB near 30 nm [21]. In 2015, Rafael
C. Figueiredo et al. from Brazil presented an ultrafast electro-optical amplified switch
based on a chip-on-carrier semiconductor optical amplifier with a high optical contrast
of up to 33 dB at a bandwidth of 1550 nm. Switching times up to 115 ps with a small
overshoot were achieved by using the multi-impulse step injected current technique [22].
In 2019, Yijian Huang et al. from China reported a liquid-crystal-filled photonic crystal
fiber for electro-optical modulation. The device they designed exhibits response and
recovery times of approximately 47 ms and 24 ms, respectively. Additionally, the device’s
operation wavelength can be tuned linearly across a broadband from 1414 nm to more
than 1700 nm [23]. In the same year, Kaixuan Chen et al. from China reported a broadband
optical switch based on a densely packed silicon waveguide array. The optical switching
functionality was realized experimentally with excess losses less than 1.3 dB and crosstalks
less than 15 dB over a 60 nm bandwidth for the two spatial modes. An arbitrary splitting
ratio at two output ports for the two modes simultaneously was also demonstrated when
applying different currents to the heater [24]. In 2021, Giuseppe Brunetti et al. from Italy
designed a large-bandwidth 2 x 2 interferometric switching cell. The photonic switch they
designed showed a worst-case extinction ratio of approximately 13 dB, insertion loss of
less than 2 dB, and crosstalk of 12 dB over a broad bandwidth of 150 nm [25]. In 2023,
Jie Tang et al. from China designed a LNOI-based high-speed electro-optical switch. The
switch time was less than 13.4 ns, and the extinction ratio was approximately 31.8 dB ata
bandwidth of 1550 nm [26].

To meet our needs for a large aperture, high extinction ratio, high switching speed, and
relatively low cost, we used the LiNbO3 (LN) crystal and two polarizers placed vertically
before and after the crystal as an electro-optical switch. The standard deviation of the range
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calculated using the original slice image method is 3.86 cm. In comparison, the standard
deviation calculated using the slice images compensated by the compensation method
is 2.86 cm at a field of view of 2.6 mrad, which verified the validity of the compensation
method.

2. Distance-Gating LIDAR Utilizing an Electro-Optical Crystal as the Optical Switch

The schematic diagram of the structure of the range-gated LIDAR system using an
electro-optical crystal as an optical switch is shown in Figure 1. The system consists of a
SCMOS camera, two polarizers, an electro-optical crystal, a narrow-band filter, a collimator,
a receiving optical system, a pulsed laser, a microlens array, a beam expander, a delay
signal generator, and a computer. Among them, the polarizer (P1 in Figure 1), the analyzer
(P2 in Figure 1), whose polarization direction is perpendicular to the polarizer, and the
electro-optical crystal constitute a crystal optical switch. The optical path can be switched
on and off by changing the applied voltage of the crystal. The laser is a low-repetition-rate,
high-pulse-energy, and narrow-pulse-width pulsed solid-state laser with a wavelength of
532 nm.

................................

i P:Polarizer

- C:Crystal
N:Narrow-band filter
CL:Colimating len

. . MPA:Micro polarization

— Optical signal array

MLA:Microlens array

BE:Beam Expander

............. Electrical signal

Figure 1. Schematic diagram of the LIDAR system using an electro-optical crystal as an optical
switch.

When the LIDAR system is working, a homogeneous and expanded pulse laser beam,
whose pulse width is 7, is emitted at the target. When the pulse laser travels between the
target and the receiving system, the applied voltage of the LN crystal is zero. Currently,
the optical switch is in a closed state to prevent atmospheric backscattering and non-target
scattering light. After the delay time 7p, when the reflected light of the target returns to the
receiving system, the stray light of other bands is filtered out first by the NBF (narrow-band
filter), and then, under the control of the delay signal generator, a pulse voltage with a
pulse width of 7, and a pulse peak of the half-wave voltage of the LN crystal is added at
both ends of the crystal.

At this time, the crystal electro-optical switch is on, and the SCMOS camera receives
the reflected light of the target. After this process, the system completes the imaging of the
target. The corresponding slice depth of field is:

Az — ¢ (TP+T8) 1)

2
where c¢ is the speed of light, and we can see from the formula that the crystal optical
switch is only turned on for a short time so that the picture obtained by the SCMOS camera
corresponds to a certain distance information. A series of distance-slice images can be
obtained by changing the delay time 7. The distance information of each image pixel can
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be calculated through the temporal and energy relationships between different slices. Then
a three-dimensional image of the target can be obtained [3].

The mainstream ranging algorithm is the weighted average method [10]. This method
is to multiply each gray value of the slice image sequence of the same pixel by a delay
time serial number weight and divide it by the sum of all serial numbers to obtain an
average image serial number. In order to calculate the distance, the average serial number
is multiplied by the delay step and the delay time corresponding to the first image; this
value is used as the flight time that corresponds to the target distance. This method has the
advantages of high precision and fast operational speed.

According to the ranging principle above, the distance corresponding to the ith image
in the slice sequence image is:

c c .
r=5T= §(TD +iAT) )
where 7; represents the delay time corresponding to the ith image, Tp represents the initial
delay time, and AT is the delay step. The average image serial numbers can be obtained as
follows: )
LixL

<i>= ZZLi 3)

where L; represents the gray value of each pixel in the ith image. The range corresponding
to each pixel can be obtained through the following formula:

c

<r>=
2n

(to+ < i> At) 4)
When the range of the target point is determined according to the geometric relationship
between the target image, the imaging optical system, and the target, the spatial position of
the target point can be obtained, and the coordinates of each target point obtained can be
converted into three-dimensional coordinates, and then the three-dimensional image of the
target can be obtained by display processing.

3. Analysis of Electro-Optic Crystal Switch Inhomogeneity

We used a SCMOS camera to acquire the target image in our LIDAR system. As
mentioned above, the SCMOS camera itself does not have a high-speed switch and thus
can only obtain grayscale information. This means that it is necessary to use an optical
switch that is composed of an electro-optical crystal and two polarizers to achieve slice
imaging so that the gray value of the image can correspond to information at a certain
distance.

The electro-optic crystal can be used as an optical switch mainly due to its conoscopic
interference effect. The normalized light intensity of the central conoscopic interference
pattern generated by the light passing through the optical switch is theoretically 0 when the
voltage applied to the electro-optic crystal is 0. The electro-optic crystal optical switch can
be regarded as being in an “off” state. Theoretically, the normalized light intensity of the
central conoscopic interference pattern generated by the light passing through the optical
switch is 1 when the voltage applied to the electro-optic crystal is half-wave. The electro-
optic crystal optical switch can be regarded as being in an “on” state at this time. Compared
with the switch of the ICCD cameras, the distribution of the conoscopic interference ring
generated by the electro-optic crystal is not uniform, resulting in a deviation between
the gray value of the image generated by the SCMOS cameras with electro-optic crystal
switches and the SCMOS cameras with ideal switches. As can be seen from Equation (7)
above, an electro-optic crystal switch will cause errors in the image sequence’s calculated
mean, affecting the LIDAR system’s performance. An appropriate field of view needs to be
selected to reduce this effect.
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We chose an LN crystal as the electro-optic switch, and the inhomogeneity of the LN
crystal was analyzed below. Combined with the light tracing analysis of the crystal with
reference [27], we can conclude that when the light travels along the crystal optical axis,
the crystal phase difference delay caused by the electro-optic effect is:

27 %4
I'= 7”3722gL ®)

The crystal conoscopic interference light intensity expression is:

0(a, B, V)

I(a,B,V) = sin® [2¢(a, B)] sinz[ 5

) (6)
where « is the zenith angle of the light incident to the electro-optical crystal, j is the azimuth
angle of the incident light, V is the applied voltage of the crystal, 1, is the refractive index
of ordinary light in the crystal, 72, is the electro-optical coefficient of the crystal, and L and
d are the length and thickness in the direction of the applied pulse voltage, respectively. It
can be seen that the ordinary light refractive index n,, electro-optical coefficient v, length
L, and thickness d of the crystal are fixed values for a certain crystal, so the light intensity
of the crystal is a function of «, 8, and V as variables. The influencing factors of the light
intensity inhomogeneity of crystal switches are also mainly derived from «, 8, and V.

The influence of light intensity inhomogeneity is divided according to the abovemen-
tioned variables. The total inhomogeneity coefficient y is defined here, which represents
the difference between the actual normalized light intensity received by a pixel on the
detector and the normalized light intensity of the corresponding pixel in the center of the
field of view on the detector, that is, the difference between the transmittance of the crystal
optical switch of the pixel in the center of the field of view and the transmittance of the
crystal optical switch corresponding to any other pixel. The inhomogeneity coefficient
caused by the difference in incidence angles « and B (shown in the Figure 2) is defined
as x, representing the difference in transmittance of the crystal optical switch due to the
influence of the conoscopic light interference effect. The inhomogeneity coefficient caused
by the unideal pulse voltage V is defined as p, representing the difference between the
transmittance of the crystal under the actual non-ideal pulse voltage and the ideal pulse
voltage. The total inhomogeneity coefficient is the sum of the two factors:

p=rx+p @)
ZA
Crystal Modulat
K L7 o Y
. y,
;X R4 £ =
Applied Voltage
)
X/

Figure 2. Schematic diagram of the angle of light incident on the crystal surface.
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3.1. Analysis of Inhomogeneity Caused by the Angle of Incident Light of the Crystal

Firstly, the inhomogeneity caused by the different angles x of the crystal’s incident
light is analyzed. According to Equation (6), the interference pattern of the crystal under
ideal conditions is calculated and simulated using MATLAB, and the simulation result is
shown in Figure 3.

(c) (d)

Figure 3. Normalized light intensity patterns received by the detector after the light passes through
the electro-optical switch under ideal conditions. (a) and (c) are the patterns at a 50 mrad field of
view angle and a 20 mrad field of view angle when the voltage applied to the crystal is 0, respectively;
(b) and (d) are the patterns of the crystal at a 50 mrad field of view angle and a 20 mrad field of view
angle when a half-wave voltage is applied to the crystal, respectively.

As shown in Figure 3, Figure 3a shows the normalized intensity distribution of light
passing through the crystal when the voltage V applied across the crystal is 0 and the field
of view angle is 50 mrad. Figure 3c is an enlarged view of the field angle range of 20 mrad
in the center of Figure 3a. From Figure 3a,c, it can be seen that the uniformity of the image
center is good, but the image uniformity is poor in the field of view edge areas at azimuth
angles of 45°, 135°, 225°, and 315°. According to the MATLAB simulation results, at the
center of the red circle, i.e., the central field of view, the normalized light intensity is 0. At
the edge of the red box, which is the 20 mrad field of view angle, the normalized light
intensity is 0.0168.

Figure 3b shows the normalized intensity distribution of light passing through the
crystal when the voltage at both ends of the crystal is half-wave voltage V; and the field
of view is 50 mrad. Figure 3d is an enlarged view of the field angle range of 20 mrad in
the center of Figure 3b. According to the simulation results, the normalized light intensity
at the center of the field of view is 1, while at the edge of the 20 mrad field of view, the
normalized light intensity is only 0.782.

From the simulation results, it can be seen that when LN crystals are used as optical
switches, as the field of view angle changes, the normalized intensity of the transmitted
light will change, thereby affecting the uniformity of the light intensity received by the
detector.

According to the analysis above, based on the normalized light intensity value at the
center of the field of view, when the applied voltage is a specific voltage V, the difference be-
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tween the normalized light intensity received by a pixel of the detector and the normalized
light intensity received at the center of the field of view is:

G(a,ﬁ,Vn)]}

K = sin? [qu(oc,ﬁ)]{l — sin?| 5 8)

3.2. Analysis of Inhomogeneity Caused by Unideal Pulse Voltage Applied to the Crystal

The inhomogeneity p caused by the pulse voltage V applied to the crystal is analyzed
below.

In order to calculate the inhomogeneity caused by pulse voltage, the pulse voltage
applied to the electro-optical crystal should be measured with an oscilloscope. It can be
seen from the measurement results below that the pulse width of the applied voltage source
used in this research group is 100 ns.

Combined with Equation (6), the conoscopic interference pattern produced by the
crystal is a function of voltage, and the corresponding conoscopic interference pattern is
different for different voltages. The light intensity distribution detected on the detector
during the process of applying a half-wave pulse voltage to the electro-optical crystal
without considering the laser pulse waveform is:

n

18 B, Viean) = (110, B,V) 70 ©)

Vi

Among them, I(«, B, Vinean) represents the light intensity of the image detected by the
detector after one exposure,V; represents the voltage value of the ith sampling point on
the oscilloscope, 7 is the total number of the laser pulse voltage sampling points on the
oscilloscope, I(, B, V;) represents the light intensity corresponding to the crystal conoscopic
interference pattern when the voltage applied to the crystal is V;, and 7 (i) represents the
normalized light intensity of the laser pulse received by the crystal when the voltage is V;.
When the ideal electro-optic crystal switch is open, the voltage applied at both ends should
be the half-wave voltage of the crystal. As shown by the waveform of the crystal external
driving power supply displayed on the oscilloscope in Figure 4, there is a significant error
between the crystal external pulse voltage and the ideal pulse half-wave voltage. The non-
uniformity coefficient corresponding to the light intensity error caused by the imperfect
pulse voltage is calculated with Equation (10).

o= I((X,ﬁ, V;-[) _I(tx/ﬁ/ Vmean) 10
= sin? (29 (a, B)] {sin?[ (0BVE)] — sin? (0P enn) ) (10
In this formula, I(«, B, V) is the normalized conoscopic interference light intensity corre-
sponding to the half-wave voltage.

Combining the influence of the conoscopic interference effect of the LN crystal and the
non-ideal pulse voltage, the total inhomogeneity coefficient generated by the electro-optic
crystal optical switch can be obtained by bringing Equations (8) and (10) into Equation (7):

1 = sin®[2¢(«, B)] {Sinz[G(O,ZO,V)] + sinz[W] — sinz[w] — sinz[W]} (11)

When the voltage at both ends of the crystal is half-wave voltage V;, the formula can be

simplified as:
H= sinz[Z(p(zx,ﬁ)]{l — sinz[W}} (12)

Based on the non-uniformity analysis discussed above, we used MATLAB R2021a software
to simulate the imaging results of the system.
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Figure 4. Image of the applied voltage of the crystal detected by the oscilloscope. The a and b mark

the vertical cursors of the oscilloscope which measure the time and amplitude of the signal. The
measurement results are marked in the first two lines of the legend in the upper right corner while
the data in the third line represents the difference between the measurement results of two cursors.
The yellow T represents the triggering time of the signal.

Figure 5 shows the temporal relationship between the laser pulse and the voltage
applied to the crystal. Figure 6 shows the results of gated imaging of planar targets by a
range-gated LIDAR system using an LN crystal as a switch under ideal conditions. The
relationship between the pulse voltage applied to the crystal and the laser pulse corre-
sponding to the simulated imaging results in Figure 6a is shown in Figure 5a. Additionally,
Figure 6b-i shows the simulation images corresponding to the increase in the gating delay
by 4 ns, respectively. The relationship between the pulse voltage applied to the crystal
and the laser pulse corresponding to the simulated imaging results in Figure 6i is shown
in Figure 5b. Combined with Figure 5, when the laser pulse entirely coincides with the
pulse voltage applied to the crystal in a time sequence within a 2.6 mrad field of view,
the maximum normalized light intensity in the simulation image Figure 6a is 1, and the
minimum normalized light intensity is 0.96, which can be regarded as the case where the
plane target is completely gated. With the increase in delay time, the coincidence region of
the laser pulse and the pulse voltage applied to the crystal gradually decrease, and only
part of the laser pulse is gated. The normalized light intensity of the image decreases from
both ends to the center, and the normalized light intensity of the image’s upper-left and
lower-right ends is significantly higher than that of the lower-left and upper-right ends.
The simulation results reflect the apparent inhomogeneity of the system slice image.
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Figure 5. Temporal relationship between the laser pulse and the voltage applied to the crystal. The
purple region represents the laser pulse voltage, the orange region represents the laser pulse, and the
gray region represents the coincidence region of the laser pulse and voltage applied to the crystal.
(a) indicates that the laser pulse and the applied pulse voltage are completely coincident. (b) indicates
that the laser pulse partially leaves the applied pulse voltage of the crystal.
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Figure 6. MATLAB simulation results of the plane target imaging within a 2.6 mrad field of view.
Among them, the sequential relationship between the applied pulse voltage and laser pulse corre-
sponding to the simulated imaging results in (a) is shown in Figure 5a, and the sequential relationship
between the crystal applied pulse voltage and the laser pulse corresponding to the simulated imaging
result in (i) is shown in Figure 5b. (b—i) is the simulation image corresponding to the increase in the
gating delay by 4 ns, respectively.

3.3. A Compensation Method for Crystal Inhomogeneity

According to the above analysis of the source of electro-optical crystal switch inho-
mogeneity, the compensation method for crystal inhomogeneity is studied. In the actual
compensation process, not only the relationship between the crystal ideal matrix, the inho-
mogeneity matrix, and the compensation matrix should be considered, but also a certain
extinction ratio ¢ of the switch should be taken into consideration as the actual switch is
not ideal.

We define the transmittance matrix represented by Z as the full & matrix, and «
represents the transmittance of the ideal switch under a certain voltage applied to the
crystal. The actual electro-optic crystal switch transmittance matrix is defined as Z', and the
transmittance of the center field of view in Z’ should also be . The inhomogeneity matrix
calculated by Formula (12) is defined as p, the actual inhomogeneity matrix considering
the extinction ratio is defined as p’, the compensation matrix is C, and the extinction ratio
matrix is defined as €. Then p’ can be calculated using the following equation:

A

a-_A) (13)

, A
p=(p+ &—A)/M(H‘i‘
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In the formula above, A represents a matrix with all values of 1, and M is the maximum
value function that is used to normalize the matrix. After obtaining the actual inhomogene-
ity matrix, the compensation matrix C can be calculated using the following formula:

Z Z
C=7,=
Z Z-u

(14)

For the slice image captured by the experimental LIDAR system, the image compensating
the inhomogeneity of the electro-optic crystal switch can be obtained by multiplying
pixel by pixel with the corresponding compensation matrix. It should be noted here that
according to Equation (1), the slice image obtained has a certain depth of field, meaning that
a slice image may contain laser pulses reflected by targets at different distances. The time
of flight of the laser pulse reflected from different distances is different, and the applied
pulse voltage of the crystal corresponding to the laser pulse received by the system at
different times is also different, resulting in different transmittances of the electro-optic
crystal switch. When the pulse width of the pulse voltage applied to the crystal and the
laser pulse width of the crystal are large, the interference state of the electro-optic crystal
switch corresponding to the target at different distances on a single slice image is quite
different. At this time, when the compensation matrix corresponding to a specific time is
applied to the slice image, a more significant error might be introduced. The compensation
matrix can only be used when the laser pulse width and the pulse width of the voltage
applied to the crystal are small to a certain extent.

4. Experiment and Analysis

Table 1 shows the main parameters of the experimental LIDAR system. The experi-
mental system of the proposed range-gated experimental LIDAR using an LN crystal as
an optical switch is shown in Figure 7. Figure 8a is the optical layout of the experimental
system. As shown in Figures 7 and 8a, we use a Tektronix’s AFG 31,000 SERIES arbitrary
signal generator (ASG) and a Fastlaser.Tech’s TDG-VII timing delay generator (TDG) to
realize the synchronous control of the crystal voltage driver, SCMOS camera exposure
control, laser pulse xenon lamp signal, and Q-switched signal. Since the ASG we use
produces up to two signals, the TDG produces a delay of up to 1 ms, which is less than
the exposure delay of the PCO Edge.55 SCMOS camera, and the TDG's jitter time in the
external trigger mode is much smaller than the corresponding jitter time when using the
internal clock, we chose to combine the signal generator and the signal delayer to achieve
synchronization control of the entire experimental system.

Table 1. Main parameters of the range-gated experimental LIDAR system using an LN crystal as an
optical switch.

Parameter Value
Wavelength 532 nm
Pulse Energy 200 mJ
Pulse Width 7ns
Pulse Repetition Frequency 5Hz
Aperture 400 mm
Detector 2160 x 2560 pixels
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Figure 7. Range-gated experimental LIDAR system using an LN crystal as an optical switch.
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Figure 8. (a) Optical layout of the experimental system; (b) Sequential chart of the experimental
system.

As shown in Figure 8a, when the system is working, the ASG generates a signal
without delay and a signal with a delay of 7g; to trigger the SCMOS camera and the TDG,
respectively. After the TDG is triggered, the trigger signal generated by the TDG triggers
the laser xenon lamp, the Q-switched switch, and the driver of the LN crystal. The delay 7o
between the xenon lamp trigger signal and the Q-switched trigger signal is the Q-switched
delay of the laser, and the delay tp between the Q-switched trigger signal and the driver of
the LN crystal trigger signal is the range-gated delay. As shown in Figure 8b, when the
laser is triggered, a pulsed xenon lamp-pumped Nd:YAG Q-switched laser emits a pulsed
laser with a pulse width of 7 ns and a spot distribution similar to a Gaussian distribution
at the target. The pulsed laser first reaches the microlens array and is homogenized, then
reaches the beam expander and is expanded by it. After that, the pulsed laser propagates to
the target and is reflected by the target. The reflected laser pulse first reaches the telescope
with an aperture of 90 mm and an F number of 1:5.5, and after being received by the
telescope, it reaches the collimator CL and is collimated. The collimated laser pulse then
reaches the NBF and filters out the stray light of other wavelengths, thereby improving the
signal-to-noise ratio of the system. After passing through the NBF, the laser pulse reaches
an optical switch composed of polarizer P1 with a horizontal polarization direction, an LN
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crystal C with a length and width of 9 mm and a thickness of 18 mm, and polarizer P2 with
a vertical polarization direction. If the crystal optical switch is closed under the action of
the driving voltage at this time, the pulsed laser is blocked by the optical switch, and the
SCMOS cannot receive the laser pulse. If the crystal optical switch is turned on under the
action of the pulse voltage at this time, the laser pulse is received by the SCMOS camera,
thus enabling a range-gated image of the target.

In order to verify the accuracy of the compensation method, a pure white plate is
placed 22.04 m away from the receiving system, and a gated imaging experiment on the
white plate is conducted. The effect of imaging compensation is shown in Figure 9. From
Figure 9a, we can see that because the physical principle of the crystal as an optical switch
is the conoscopic interference effect of the crystal, only the area of about 301 x 301 pixels in
the center of the field of view can achieve uniform imaging. Figure 9c,d are the contrast
images of the imaging effect of the 601 x 601 pixel range area of the crystal center before
and after compensation. From the image effect before and after compensation, it can be seen
that in the pixel area taken, the gray image uniformity of the target imaging is significantly
improved, proving the algorithm’s accuracy.
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Figure 9. (a) The gray image corresponding to the whiteboard’s ungated imaging. (b) The 301 x 301
pixel enlarged image before compensation. (c) The 601 x 601 pixel enlarged image in the central field
of view. (d) The 601 x 601 pixel enlarged image in the central field of view after compensation.

Using the slice image before compensation and the slice image after compensation for
three-dimensional reconstruction, the obtained point cloud images areshown in Figure 10.
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Figure 10. Three-dimensional reconstruction point cloud image before and after compensation; the
colorful plane is the plane of the actual plate. (a) Point cloud recovered from the slice image obtained
by using the system to directly gate the white plate; (b) Point cloud recovered from the compensated
slice image.

Figure 11 are the distance depth maps of the flat target obtained by the system before
and after compensation. Figure 12 shows the comparison of the distance depth with the
horizontal row of pixels, where the orange curve represents the distance depth curve in
Figure 11b, the green curve represents the distance depth curve in Figure 11a, and the blue
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Range/(m)

line represents the true distance of the target. Figure 12a—c represent the average distance
depth of the first to fifth rows of pixels in Figure 11, the average distance depth of the 299th
to 303rd row of pixels, and the average distance depth of the 597th to 601st rows of pixels,
and these pixels are marked with solid black translucent lines, respectively, in Figure 12a,b.
From Figures 10-12, we can conclude that due to the influence of the inhomogeneity of the
electro-optical crystal switch, the calculated value of the distance depth is generally smaller
than the true value in the upper-left and lower-right parts of the distance depth image
calculated by the original slice image, while the calculated value of the distance depth is
generally larger than the true value in the lower-left and upper-right parts of the image.
Additionally, there are obvious isolated points at the edge of the point cloud image. The
range accuracy of the depth image restored by the compensated slice image is significantly
improved in the corner part; the tilt phenomenon is obviously suppressed; the isolated
points of the image in the edge part are significantly reduced; and the image dispersion in
the center part is reduced. This result verifies the accuracy of the compensation method.
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Figure 11. Distance depth map of the flat target obtained by the system before and after compensation.
(a) Depth map obtained by using the slice image produced after using the system to directly gate the
white plate; (b) Depth map obtained from the compensated slice image.

22.15 22.15

Original

I
[t

)
>
I
N
=3
S

Range/(m)
IS
=
Range/(m)

o
)
D)

)
)

Original 2
Compensated
Real

Original
Compensated
Real

21.85

21.8

200 300 400 500 600 700

Pixels Pixels

(a) (c)

Figure 12. Comparison of horizontal pixel distance depth. (a—c) represent the average distance depth
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of the first to fifth rows of pixels in Figure 11, the average distance depth of the 299th to 303rd row of
pixels, and the average distance depth of the 597th to 601st rows of pixels.

The distance accuracy of the image within a 2.6 mrad field of view is calculated as
follows:

o= \/nilé(n—ﬂz (15)

In the formula, o represents the standard deviation of distance depth, n represents the total
number of pixels, r; represents the distance corresponding to the ith pixel, and 7 represents
the actual measured target distance with a fixed value of 22.04 m. After calculation, the
standard deviations of the distance depth corresponding to Figure 11a,b are 3.86 cm and 2.86
cm, respectively. Additionally, the standard deviations of the distance depth of the areas
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marked with red boxes in the upper-left, upper-right, lower-left, lower-right, and central
field of view in Figure 11a are 4.26 cm, 3.18 cm, 2.71 ¢cm, 5.05 cm, and 2.69 c¢m, respectively,
and in Figure 11b, the standard deviations are 2.53 ¢cm, 2.38 cm, 2.56 cm, 2.81 cm, and
2.30 cm, respectively. Among them, the standard deviation of the distance depth of the
marked area in the upper-left and lower-right parts decreased significantly, indicating that
the tilt phenomenon caused by the crystal switch was significantly suppressed, which
verified the accuracy of the compensation method. The leading causes of range error are as
follows: First, the pulse voltage applied to the crystal is not an ideal pulse, and its peak
waveform stability is poor. In this case, there will be errors when the sequence image
weighted average method is used to recover the distance depth. Second, the principle
of the crystal as an optical switch is the conoscopic interference effect of the crystal. The
conoscopic light interference effect itself has inhomogeneity, and there will be a significant
error at the edge of the field of view. Third, the jitter time of the TDG triggering the crystal
pulse voltage is 25 ps according to the product manual, and the corresponding ranging
error is 0.38 cm. The shot noise of SCMOS will also cause a particular distance error. After
compensation, the influence of the first and second reasons is obviously suppressed, and
the standard deviation of system distance depth is obviously improved.

5. Conclusions

In this paper, a range-gated LIDAR system using an electro-optic crystal as the optical
switch is designed. The slice image of the target is obtained by synchronously controlling
the pulse voltage applied to the crystal, laser pulse, and SCMOS exposure, and then the
three-dimensional point cloud image and distance depth image of the target are recon-
structed using the slice image.

Compared with the traditional range-gated LIDAR system using an ICCD as an
imaging device, a high-precision sequential logic circuit and high-bandwidth detector must
be used to improve the range accuracy. For the system designed in this paper, the use of the
SCMOS detector only needs to detect the intensity of the reflected laser of the target instead
of detecting the time of flight (TOF) and does not require a high-precision sequential logic
circuit, which greatly reduces the cost of the system.

However, compared with the built-in shutter ICCD, the use of an electro-optic crystal
as a light shutter will introduce new inhomogeneity errors, which will affect the ranging
accuracy of the system. To reduce the impact of this error, this paper quantitatively
analyzes the source of the crystal inhomogeneity error, proposes a compensation method
for crystal inhomogeneity, and gives the mathematical expression of the inhomogeneity
compensation matrix. The experimental results show that compared with the range depth
image restored by the original slice image, the accuracy of the compensated range depth
image is significantly improved, and the standard deviation of the range depth is reduced
from 3.86 cm to 2.86 cm within a 2.6 mrad field of view, which verifies the accuracy of the
algorithm and provides a guarantee for further improving the performance of the system.
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Abstract: Underwater vision data facilitate a variety of underwater operations, including underwa-
ter ecosystem monitoring, topographical mapping, mariculture, and marine resource exploration.
Conventional laser-based underwater imaging systems with complex system architecture rely on
high-cost laser systems with high power, and software-based methods can not enrich the physical
information captured by cameras. In this manuscript, a low-cost modulated laser-based imaging
system is proposed with a spot in the shape of a square ring to eliminate the overlap between the
illumination light path and the imaging path, which could reduce the negative effect of backscatter on
the imaging process and enhance imaging quality. The imaging system is able to achieve underwater
imaging at long distance (e.g., 10 m) with turbidity in the range of 2.49 to 7.82 NTUs, and the ad-
justable divergence angle of the laser tubes enables the flexibility of the proposed system to image on
the basis of application requirements, such as the overall view or partial detail information of targets.
Compared with a conventional underwater imaging camera (DS-2XC6244F, Hikvision, Hangzhou,
China), the developed system could provide better imaging performance regarding visual effects
and quantitative evaluation (e.g., UCIQUE and IE). Through integration with the CycleGAN-based
method, the imaging results can be further improved, with the UCIQUE increased by 0.4. The
proposed low-cost imaging system with a compact system structure and low consumption of energy
could be equipped with platforms, such as underwater robots and AUVs, to facilitate real-world
underwater applications.

Keywords: underwater optical imaging; laser imaging; square ring spot; long distance

1. Introduction

The rapid development of unmanned underwater vehicles (UUVs) increases the
activity capacity of human beings to explore the underwater environment, and visual
information is essential for performing a number of underwater operations, such as un-
derwater ecosystem monitoring [1,2], topographical mapping [3-5], mariculture [6-8], and
marine resource exploration [9,10]. The selective absorption properties of water, such as
the great absorption of red light and good maintenance of green and blue light, result in
the color distortion of captured underwater images. Moreover, the particles suspended
in water reflect the light from the sun and artificial light sources, which can introduce
scattering to the image sensor and degrade the captured images. The underwater optical
imaging process is described in Figure 1. The camera receives direct components, forward
scattering, and backward scattering during the imaging process. The direct component
refers to light that travels directly from the light source (e.g., the sun) to the target and
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then to the camera without scattering, which is the basis for forming the image of the item
being taken. Forward scattering means the scattering of light at small angles traveling in
the water. Backscattering happens when light is scattered by particles in the water and
redirected to the camera, lowering the quality of the captured image; most underwater
imaging solutions try to reduce the negative effects of backscattering [11].

Direct component

= Forward scattering

Figure 1. Schematics of the underwater optical imaging process.

Current underwater vision technologies can be grouped into hardware-based methods
and software-based methods regarding their principles of operation. Hardware-based
methods mainly focus on the improvement of the physical process of imaging to increase the
information captured by cameras, while software-based methods rely on the enhancement
and restoration of information contained in the images with well-established algorithms.
The utilization of lasers in hardware-based imaging systems enhances the ability to obtain
high-resolution images of objects and representative laser-enhanced underwater imaging
methods, including range-gated imaging, structured light imaging, polarimetric imaging
and laser scanning methods, etc. Herein, we mainly discuss the range-gated imaging and
laser scanning methods; detailed information about other laser-based methods can be found
in other literature sources [12]. The range-gated imaging system employs a synchronized
controlled pulsed laser and gate camera with a small gate width to reduce backward
scattering for high-resolution imaging. To further remove the backward scattering in
gated images, depth-noise maps were calculated with a water attenuation coefficient and a
reference image, which were then subtracted with target gate images to obtain a new gate
image containing less noise to achieve high range resolution and accuracy 3D imaging [13].
Moreover, it is possible to lessen backscattering by analyzing scene depth with a single
gated image, combined with parameters of time delay, laser pulse width, and gate pulse
width for dehazing with a 134.78% improvement in PSNR (Peak Signal-to-Noise Ratio) in
the underwater environment [14]. Laser scanning methods can capture high-resolution
underwater images by reducing the common volume of the light path between the light
source and camera to eliminate backscatter. A laser field synchronous scanning system
was able to achieve underwater imaging in a range of 15 m and a CSNR (signal-to-noise
ratio) improvement of 1.67 times compared with an LED-based imaging system [15]. The
performance of the abovementioned range-gated imaging and laser scanning methods is
affected by laser parameters, such as laser power and pulse width, which cannot separate
the illumination and imaging paths. A range-gated imaging system with high power energy
and short exposure time can image long-distance objects at the cost of bulky architecture
and high consumption of power. In addition, the field of view (FOV) and imaging resolution
of laser scanning methods are restricted by the scanning mirror; moreover, the motion
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in the imaging process can lead to the twist of high-density point clouds and degrade
imaging accuracy.

Software-based methods refer to the methods for improving raw underwater image
quality using developed algorithms, which can be classified into imaging enhancement
methods, imaging restoration methods, and deep learning-based methods. Imaging en-
hancement methods process raw underwater images with different functions for advancing
the visual effect of the image without considering the imaging physical model; in contrast,
imaging restoration methods restore the underwater images by reconstructing the physical
imaging formation model in the underwater environment. Typical imaging enhancement
methods include Retinex and Fusion-based methods. Retinex aims to restore intrinsic
images by eliminating the effects of illumination, which can achieve single underwater
image enhancement using multicolor gradient priors of reflectance and illumination to
complete specific underwater applications, such as underwater keypoint detection, un-
derwater saliency detection, and underwater depth map estimation [16]. Fusion-based
methods are able to reduce noise, expose dark regions, and enhance the contrast of raw
images without the assistance of hardware and underwater environment parameters. The
improvement of the fusion pipeline, such as reducing the color cast of input images with
white balance processing, could enhance the attenuation features and edge information
of raw images [17]. Imaging restoration methods try to employ the inverse operation
of the underwater imaging formation model to restore a high-quality image with an ac-
curate estimation of model parameters [18]. Deep learning methods, such as CNN and
GAN-based methods, use established datasets and networks to learn the information in
the images and produce images with good visual results [19,20]. CNN-based methods can
learn input image features and provide required outputs, such as transmission maps and
image formation model parameters, which can be integrated with the abovementioned
enhancement and restoration methods to dehaze the degraded underwater images [21].
GAN-based networks with a generator generate unidentifiable fake images using input
images to deceive the discriminator, and a discriminator tries to distinguish the fake images
from real images. Due to the lack of datasets with paired images, CycleGAN was proposed
to enhance underwater images without the requirement for paired images [22]. However,
the performance of these three methods is highly dependent on the input images and
accurate estimation of the optical model and parameters, restricting their generalization
abilities and the complex network architecture of deep learning-based methods demanding
high computability and making it difficult to develop image dehazing methods compatible
with different underwater conditions.

In this study, a low-cost and low-power consumption modulated laser-based under-
water imaging method was developed with a compact system architecture and long-range
and high-quality imaging ability. This system could reduce the backscatter by modulating
the laser to match the field of view to improve the SNR (signal-to-noise ratio); moreover,
the intensive distribution of laser power in the form of a square ring could expand the
imaging range to about 10 m with water turbidity of 7.82 NTUs in starlight illumination
conditions. What is more, the performance of this system could be further improved using
the CycleGAN-based method, with an obvious improvement in UCIQUE (underwater
color image quality evaluation) and IE (information entropy) at different imaging distances.
It is convenient to adjust the field of view (FOV) and divergence angle of the modulated
laser to image the overall view and partial details of objects in the distance.

2. Methods
2.1. Modulated Laser-Based Imaging System (MLIS)

In order to reduce backscatter, a square-ring modulated laser illumination system
was established that matched the rectangular imaging field of view angle through beam
modulation. By utilizing the forward scattered light of the laser to illuminate the imaging
field of view, the interference of the backward scattered light in the imaging process could
be reduced and enhance the imaging quality and the imaging distance in the underwater
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environment. The light source in the system adopted low-cost semiconductor green laser
tubes (wavelength of 532 nm) with special lenses to modulate the spot into a linear laser
beam. Compared to a traditional dispersion illumination light with a circular beam, the
square ring laser produces a linear beam and the energy is more concentrated, which can
effectively reduce the overlap between the illumination light path and the imaging field of
view, avoiding interference with backward scattered light on imaging to improve imaging
quality, and the dispersion angle of the laser beam can be adjusted to match the field of
view to obtain different information regarding the target and surrounding environment for
different applications. The camera (JZC-N81820S with a resolution 1920 x 1080, frame rate
25 fps, minimum illumination 0.01 Lux, Xiongmaitech, Hangzhou, China) was placed in
the center of the laser illumination source, consisting of a low-light imaging detector and
a zoom imaging lens, which can collect target information light under different imaging
fields of view. The modulated laser system can be found in Figure 2.

(2) (b)

‘ o i\
i Camera K )
®

4 laser tubes

Figure 2. (a) Schematics (top) and actual figure (bottom) of the modulated laser illumination system
for underwater imaging. (b) Underwater experiment field figure of the modulated laser illumination
system for underwater imaging (bottom) and square ring laser spot (top).

2.2. Electrical Control System

The system mainly consists of a lighting and imaging system and an embedded control
system (see Figure 3a). The lighting and imaging system included 2 groups of driver circuits
to drive 4 laser tubes with a wavelength of 532 nm (connected in series), 4 shaping lenses, a
low illumination imaging module, and an imaging lens. The control system consisted of a
microcontroller module, a signal amplification module, a ethernet module, and a power
module. The PWM signal was generated and amplified to control the driver circuits for
realizing the adjustment of the optical power of the 4 laser tubes. The ethernet module is
responsible for signal transmission between the microcontroller and the external device
and transmits the data of the imaging module to the external device for further analysis.
STM32£103c8t6 with rich peripheral functions such as a timer and USART was used as the
embedded controller in this study. With a 32-bit Cortex-M3 core and main frequency up
to 72 MHz, this microcontroller realized the balance of high performance and low power
consumption, meeting the underwater application requirement of low cost and low power
consumption. The diagram and actual figure of the electrical control system based on
STM32 can be found in Figure 3b.

142



Photonics 2024, 11, 1070

(a)

Control systems Numination and imaging system | Initialization of variables |

Signal amplifier T ) Initialization of
module 1™ Drive o —»| Shaping lens1 clock/pin/timer/interrupt, etc.

™ circuit 1

Microcontroller | |  532nmlaser tube 2 »| Shaping lens 2 | Delay |
module +
vy %
| | Setting initial timer value |
-] Ethernet module |q+— | 532nm laser tube 3 »|  Shaping lens 3
Drive

Voltage regulator |
circuit module

1

+-» circuit 2
4’{ 532um laser tube 4

Did a communication
interruption occumrred?,

»| Shaping lens 4

——b[ Power module ‘ j Low Light Imaging Module }< ! Imaging lens ‘
Data frame verification
#=  Optical path ¥ Electrical path * Control path ¥ Communication path

Is a complete data frame?

| Data analysis |

Judg t of PWM
channel

v

v

PWM for channel 1

v

| Configure and ountput | Configure and output
PWM for channel 2

Drive laser tubes 1/2 power
change

Drive laser tubes 3/4power
change

Figure 3. (a) The block chain of the optoelectronic system. (b) The diagram (left) and actual figure
(right) of the electrical control system based on STM32. (c) Flow chart of dedicated firmware.

The embedded programming was designed using Keil MDK5. The PWM was used
to modulate the constant-current driver power supply of the laser source, which in turn
realized the modulation of the outgoing optical power. PWM regulation was carried out
through USART communication, and the baud rate of USART communication was set to
115,200. The controller used a timer to output two PWM signals to control the two driver
circuits; each driver circuit controlled two laser tubes. The crossover coefficient of this timer
was set to 9 and the duty cycle of the output PWM was changed by adjusting the value of
the registers. A detailed flowchart of the firmware can be found in Figure 3c. The overall
power consumption of the system was about 9.26 W when the laser illumination was turned
on and 3.26 W without illumination; therefore, the overall power consumption was low
and suitable for underwater long-time applications. The data stream was mainly generated
by the imaging module with a frame rate of 24 fps and an image size of 1920 x 1080
and transmitted to the external device through the ethernet module with an overall data
bandwidth of about 142.38 MB/s.

2.3. Imaging Quality Evaluation Metrics

In this study, we UCIQE and IE (information entropy) to quantitatively evaluate the
imaging performance of the MLIS. UCIQE is a linear combination of color concentration,
saturation, and contrast that is a commonly used metric to carry out quantitative evaluation
of underwater images in terms of non-uniform color cast, blurring, and low contrast.
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UCIQE is a no-reference (ground truth) metric expressed as Equation (1), where ¢y, ¢, and
c3 are weighting factors, o, is the standard deviation of chromaticity, con is the luminance
contrast, and ys is the saturation mean.

UCIQUE = cq0¢ + cacong + c3ps (1)

IE (information entropy) can describe the complexity and richness of detail of a given
image, which can be calculated with Equation (2), where L is the number of possible gray
levels of the image and p(i) is the probability of the ith gray level appearing in the image,
which can be calculated by dividing the total pixel value of the image with the pixel value
of the ith gray level.

E= -yl 'p(i)log, p(i) @)

3. Experiments

A water pool with dimensions of 10 m x 2m x 1 m (length x width x depth) was
established to simulate the underwater environment. The modulated laser illumination
system and camera were packaged in a sealed waterproof compartment and fixed at a
depth of 0.5 m under the water surface on one end of the pool. The target was a standard
calibration board with a size of 520 mm x 400 mm attached to a movable signpost. In
order to remove the effects of sunlight on the imaging results, all of the experiments
were performed at night or with the water tank covered with blackout fabric to ensure
imaging quality.

The turbidity of the underwater environment could be adjusted in the range of 2.49 to
7.82 NTUs by adding milk to imitate real underwater environment scattering because the
milk contained different sizes of spherical particles (e.g., casein molecules of 0.04-0.3 pm,
fat globular molecules of 1-20 pum) [23].

Different experiments were carried out to evaluate the performance of the MLIS,
including a comparison experiment of modulated laser and diverging laser, the matching
effect of FOV and modulated laser divergence angle (MLDA), a comparison experiment of
the MLIS with conventional underwater imaging camera (DS-2XC6244F), enhancement
with CycleGAN-based method.

4. Results and Discussion
4.1. Comparison of the Modulated Laser and the Diverging Laser

To analyze the effects of the modulated laser on imaging, an underwater experiment
was performed to compare the imaging results with the illumination of the modulated laser
and diverging laser. The experimental conditions were controlled with water turbidity
of 7.82 NTUs and a camera FOV of 15.658° x 8.845°. The choice of laser power should
consider the imaging environment (e.g., distance), and low laser energy might not illumi-
nate the target and instead degrade the imaging results. The laser power of 35.8 mW at a
distance of 8 m was almost unable to illuminate the target during testing. Therefore, the
modulated laser and diverging laser power were 118 mW in the measurement to ensure
the illumination of the target.

The results show that modulated laser illumination could provide images with good
detail preservation inside the target, uniform image brightness, and clear details of the tar-
get and its surrounding background. Under diverging laser illumination, the illumination
path overlapped with the imaging path, resulting in a large amount of backscattered light
entering the imaging field of view, meaning that the acquired image was mixed with the
diverging illumination component in the background with uneven brightness, especially
for remote imaging, as can be seen in Figure 4, where the bottom of the target and the sur-
rounding environment were blurred. This finding demonstrates that the modulated laser
illumination in the shape of a square ring was suitable for long-range underwater imaging
with reasonable adjustment of FOV and modulated laser divergence angle, which will be
investigated in the next section. This proposed system only evaluated the imaging distance
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of 10 m with the water tank length of 10 m; we believe that the imaging distance could
be further extended with suitable experimental conditions as the laser at 10 m could still
illuminate the target clearly and remain stable, which will be investigated in a future study.

4m 6m 8m 9m

Modulated laser

Diverging laser

Figure 4. Comparison of original images captured by the camera with the illumination of the
modulated laser (top) and the diverging laser (bottom) at different distances.

4.2. Matching Effect of FOV and Modulated Laser Divergence Angle (MLDA)

This section investigates the matching effect of FOV and MLDA with the FOV fixed as
20.96° x 11.7° and the MLDA adjusted to be smaller than the FOV (10.01° x 5.15°), matched
with the FOV (20.96° x 11.7°), and larger than the FOV (31.28° x 18.55°). During the
experiments, the water turbidity was 7.82 NTUs, the imaging resolution was 1920 x 1280,
and the power of the modulated laser was 118 mW. If the FOV was smaller than the MLDA,
a lot of illuminated information was missed for long-distance imaging, such as imaging
with distances of 9 m. When the FOV was larger than the MLDA, the target was imaged
with sufficient detail in terms of subjective vision effect but the backscatter of incident light
was introduced into the image, resulting in the accumulation of noise in the background.
The matched FOV and MLDA preserved the information of the target scene and removed
the background noise well (middle row in Figure 5), enabling the performance of the MLIS.
What is more, the results implied that it was possible to choose the suitable relationship
between the FOV and MLDA based on the application requirements to obtain the required
imaging information.

4m 6m 8m 9m

(a)

FOV < MLDA

(b)

FOV = MLDA

(©)

FOV > MLDA

Figure 5. Effects of the relationship between the FOV and MLDA on imaging: (a) FOV < MLDA,
(b) FOV = MLDA, and (c) FOV > MLDA.
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4.3. Comparison of the MLLIS with a Conventional Underwater Imaging Camera (DS-2XC6244F)

The imaging performance of our imaging system and Hikvision product were com-
pared at different imaging distances from 2 m to 10 m under the same imaging conditions
(water turbidity of 7.82 NTU, FOV of 8.4° x 4.9°, and resolution of 1920 x 1080). As
shown in Figure 6, the conventional underwater imaging camera (DS-2XC6244F, Hikvision,
Hangzhou, China) could image the target with the largest distance of 7 m in poor imaging
quality and nothing could be identified from the image captured with a distance of 8§ m. In
comparison, the images captured by the MLIS provided better visual effects for all distances.
It is even able to see the edge of the calibration board at the imaging distance of 10 m. To
quantitatively evaluate the imaging performance of our imaging system and conventional
underwater imaging camera, the IE of images obtained at each distance was calculated
and the results can be found in Table 1. It was obvious that each IE value of the images
captured by MLIS was higher than that of the conventional underwater imaging camera
(DS-2XC6244F). Please note the IE value of the image obtained at 10 m by our system was
higher than the IE value at short distance; this might have resulted from the captured
background information and would not have affected the evaluation of imaging capacity.

- |
o l ||
DS-2XC6244F ...
E 3
"
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|

Figure 6. Comparison of original images captured by DS-2XC6244F and the MLIS at different distances.

Table 1. IE of a conventional underwater imaging camera (DS-2XC6244F) and the MLIS.

Methods 2m 4m 6m 7m 8m 9m 10 m
DS-2XC6244F 15.588 13.815 941 6.923 6.589 6.861 6.946
MLIS 18.253 15.263 11.287 94 8.078 7.67 9.295

4.4. Enhancement with the CycleGAN-Based Method

Through the comparison with the conventional underwater imaging camera (DS-
2XC6244F), it was possible to further improve the imaging quality of the MLIS with
compatible algorithms. In this study, we chose the CycleGAN-based method to enhance
the raw underwater images captured by the MLIS without demanding paired images [24].
The enhanced results in Figure 7 show that the CycleGAN-based method could greatly
improve the raw image quality with outstanding visual effects, and the average UCIQUE
improved by 0.497. The targets, such as hippocampus japonicas, a starfish, and a crab,
could be recognized clearly and the background seaweed could also be displayed vividly,
implying the potential of an MLIS integrated with the CycleGAN-based method for a
number of underwater applications, such as target recognition and mariculture.

To quantitively assess the enhanced results, the UCIQUE and IE of raw and enhanced
images were analyzed, with the results shown in Tables 2 and 3. The evaluation results
revealed that the UCIQUE of images captured by the MLIS could be greatly enhanced by
the CycleGAN-based method with an average improvement of 0.4. Especially for images
captured at long distances, such as 7 m and 10 m, the enhanced UCIQE could improve them
by about 0.7 to 0.9. The comparison of IE could give direct results about the complexity and
richness of details in the captured images and the enhanced method could greatly improve
the IE of images captured using the MLIS. The IE of images captured at distances of 8 m,
9 m, and 10 m could be improved by 4.091, 3.622, and 3.125, respectively. The quantitative
comparison results of UCIQUE and IE verified the underwater imaging ability of the
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proposed system and provided a possible way to improve the performance of MLISs by
integrating them with advanced deep learning-based methods. What is more, the obvious
improvement of UCIQE and IE for images captured at long distances with the CycleGAN-
based method provides the possibility for remote detection with the proposed MLIS for a
variety of underwater activities requiring adequate imaging distances for operation, such
as underwater topography surveying with a large FOV enabled by an AUV.

Ra“- .. ..

Enhanced

Figure 7. Comparison of images captured by the MLIS and enhanced with the optimized algorithm
with the average UCIQUE improved from 0.428 to 0.925.

Table 2. UCIQUE of the MLIS and enhanced MLIS.

Methods 2m 4m 6m 7m 8m 9m 10 m
MLIS 0.408 0.364 0.451 0.477 0.481 0.468 0.538
Enhanced MLIS 0.768 0.637 0.693 1.195 0.895 0.898 1.099

Table 3. IE of the MLIS and enhanced MLIS.

Methods 2m 4m 6m 7m 8m 9m 10 m
MLIS 18.253 15.263 11.287 9.4 8.078 7.67 9.295
Enhanced MLIS 18.192 16.269 13.745 11.414 12.169 11.292 12.42

5. Conclusions

In this manuscript, a modulated laser-based imaging system is proposed with the
spot adjusted into a linear laser beam in the shape of a square ring to eliminate the overlap
between the illumination light path and the imaging path to reduce the negative effect of
backscatter on the imaging process. This imaging system integrated with low-cost laser
tubes and cameras provides a method for underwater imaging with long-distance demands
(e.g., 10 m) and the adjustable MLDA satisfies the imaging requirement of different scenes
for obtaining the overall view or partial details of the target. Compared with a conventional
underwater imaging camera (DS-2XC6244F), the developed system can provide better
imaging performance regarding visual effects and quantitative evaluation (e.g., UCIQUE
and IE); moreover, it is possible to further improve system performance by integrating it
with the CycleGAN-based method, with UCIQUE increasing by 0.4. The proposed system
could be improved with well-designed imaging enhancement algorithms in the future and

147



Photonics 2024, 11, 1070

we hope that this system could be equipped with a platform, such as an underwater robot
and AUV, to facilitate real-world underwater applications.
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Abstract: The intertidal zone, as a dynamic ecosystem at the interface of land and sea,
plays a critical role in environmental protection and disaster mitigation. The Ice, Cloud,
and Land Elevation Satellite-2 (ICESat-2) is equipped with the Advanced Topographic
Laser Altimeter System (ATLAS) with the ability to penetrate the water bodies, enabling
its use for bathymetric measurements. However, the complex land cover types and fre-
quent environmental changes in intertidal zones pose significant challenges for precise
measurement and dynamic monitoring. In an effort to address the denoising challenges of
ICESat-2 photon point cloud data in such complex environments, this study proposes an
adaptive photon denoising method that is capable of dynamically adjusting the denoising
strategy for different types of photon data. ATL03 data from four typical intertidal zones
were selected for denoising experiments. The results indicated that the proposed adaptive
denoising method achieved average recall, precision, and F-score values of 0.9885, 0.9927,
and 0.9906, respectively, demonstrating excellent denoising performance and stability. This
method provides an effective data processing approach for high-precision monitoring of
intertidal zone topography.

Keywords: photon-counting LiDAR altimetry; intertidal zone; adaptive denoising; ICESat-2;
accuracy analysis

1. Introduction

The intertidal zone, located between the mean low tide line and the mean high tide
line of spring tides, undergoes periodic submersion and exposure due to tidal actions. This
dynamic environment exhibits complex erosion and deposition patterns, including the
formation of tidal creeks by water flow erosion and pits by wave erosion. As a critical
region for ecological protection and disaster mitigation, the intertidal zone holds signif-
icant ecological and environmental value [1-3]. Therefore, it is of great significance to
dynamically monitor the intertidal zones and timely detect their topographic changes.

Traditional single-beam or multi-beam bathymetric instruments rely on shipboard
platforms. Although the operation is straightforward, they require extensive human
and material resources and are susceptible to grounding in shallow waters, resulting
in low measurement efficiency. Such limitations hinder their effectiveness in achieving
continuous, large-scale observations in the dynamic and complex intertidal zones [4].
Airborne bathymetric light detection and ranging (LiDAR) systems provide a balance
between accuracy and efficiency, but the cost of data acquisition is high and often restricted
by airspace regulations. These methods are limited in remote or sensitive areas where
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ships and aircraft find it difficult to approach [4,5]. With the development of spaceborne
remote sensing technology, various remote sensing methods have been used to obtain
underwater terrain information. Optical remote sensing provides abundant data sources
with wide coverage, which can periodically and widely acquire optical information about
waters, such as hyperspectral and multispectral remote sensing images [6,7]. However, the
measurement accuracy is relatively low due to various factors such as imaging technology
and weather conditions [8]. Synthetic Aperture Radar (SAR) signals can penetrate clouds
but are unable to penetrate the water bodies vertically; it can only obtain information
about the underwater bottom based on surface wave patterns, restricting its bathymetric
accuracy [5].In, contrast, spaceborne LiDAR offers advantages such as wide coverage, high
repeat observation frequency, minimal impact from external factors, and high measurement
accuracy. These advantages have made it widely applied in remote sensing studies of
lakes, glaciers, and oceans [9]. ICESat-2, launched by NASA in September 2018, is a
new-generation spaceborne LiDAR satellite equipped with the ATLAS sensor. ATLAS
utilizes multi-beam, micropulse, and photon-counting technologies, featuring a higher
pulse repetition frequency to obtain small-footprint, high-density photon point cloud
data. Its maximum bathymetric capability can reach 38 m, showing great potential in
the ecological environmental monitoring of intertidal zones [10,11]. However, the ATLAS
system’s weak laser signals are susceptible to noise from the solar background, system
characteristics, atmospheric scattering, and ground cover. These factors lead to a large
amount of noise in the received data, complicating the signal extraction process [12]

As aregion of frequent interaction between seawater and land, the intertidal zone con-
tains numerous suspended particles and organisms. Photon data usually include signals
reflected from various land covers such as land, water bodies, and vegetation, increasing
the difficulty of noise removal. The Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) extracts signal photons based on the distribution density differences be-
tween signal photons and noise photons and has been widely applied in denoising various
types of point cloud data [13]. However, this algorithm is highly sensitive to parameter
settings, making it difficult to adapt to the complex environmental characteristics of the
intertidal zone, thereby affecting denoising performance [14]. Denoising algorithms based
on raster image processing require point cloud data to be rasterized, which may result in
significant information loss in areas with complex land cover types, such as intertidal zones,
and consequently lead to a notable reduction in denoising accuracy [15]. The statistical
histogram algorithm identifies and removes noise points by calculating the local distance
between each point and its neighboring points, plotting a local distance histogram, and
setting thresholds. It is mainly applied in forests and mountainous areas [16]. However,
in intertidal zones, the distribution characteristics of signal photons and noise photons
are not as regular as those in forests or mountainous areas, and photon distribution often
exhibits higher dynamics [17]. This limits the denoising capability of the statistical his-
togram algorithm. The ATLO8 product employs the Differential, Regressive, and Gaussian
Adaptive Nearest Neighbor (DRAGANN) method to denoise ATL03 data and performs
well in relatively stable terrestrial areas with vegetation and minimal terrain variation [18].
However, when applied to the intertidal zone with its complex water-land transition
topography and highly dynamic environment, the denoising performance of this method
may decrease. Although these denoising methods have achieved some results, most of
them are for a single scene and are mainly applied to land areas. When applied to complex
and variable environments, they may have limitations. Research on denoising in intertidal
zones with their complex and diverse land cover types is relatively scarce, which limits the
capability to accurately monitor intertidal zones. Therefore, effectively removing noise in
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intertidal zones to obtain accurate land cover and topographic information has become a
critical issue that needs to be solved urgently.

To improve the accuracy of photon denoising in intertidal zones and retain more
effective land cover and topographic information, this study proposes a photon denoising
method based on an adaptive strategy. By analyzing the photon distribution characteristics
at the water-land boundary in intertidal zones, the method performs preliminary classifica-
tion and adaptively adjusts the denoising strategy according to different land cover types,
selecting the most suitable denoising algorithm for different types of photon data. The
proposed method is further compared with traditional denoising algorithms, including
DBSCAN, the statistical histogram algorithm, and the DRAGANN algorithm, to evaluate
its denoising accuracy.

2. Study Areas and Data

ICESat-2/ ATLAS operates with a 532-nanometer laser to emit pulses at a frequency
of 10 kHz. Considering the satellite’s orbital altitude and velocity, the along-track photon
spacing is approximately 0.7 m, forming an almost continuous profile on the Earth’s surface.
As illustrated in Figure 1, each laser pulse emitted by the laser is split by optical elements
into six individual pulses, arranged parallel on the ground into three pairs. Each pair
of adjacent beams has a cross-track spacing of about 3.3 km. Within each pair, there
are two sub-beams—namely, a strong beam and a weak beam—with an energy ratio of
approximately 4:1. The strong and weak beams have a cross-track spacing of about 90 m
and an along-track spacing of about 2.5 km, enhancing spatial coverage and determining
local across-track slopes [19,20]. The main parameters of ICESat-2/ATLAS are given in
Table 1. ICESat-2 provides four different levels of data products (L1, L2, L3A, and L3B) free
to the public. The ATLO3 product provides the source data for intertidal zone denoising in
this study; it is a Level 2 product that records the time, latitude, longitude, and elevation of
each photon event detected by ATLAS [21].
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Figure 1. ICESat-2 tracks and footprint distribution.
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Table 1. Main parameters of ICESat-2/ATLAS.

Parameters Values Parameters Values
Track repeat period 91 days Along-track separation 0.7m
Laser wavelength 532 nm Number of beams 6
Transmitted pulse width 1.5ns Distance with a pair ~90 m
Pulse repetition rate 10 kHz Distance between beam pairs ~3.3 km
Footprint size ~11m Beam energy per pulse (strong, weak) 175 £17 uJ, 45+ 5 4

The ATL03 data used in this study are available from the National Snow and Ice Data
Center (NSIDC) website (https:/ /nsidc.org/data/icesat-2/data, accessed on 20 April 2024).
Considering the impact of land cover and topographic factors on denoising effectiveness,
four typical intertidal zones were selected for experiments in this study. The sandy intertidal
zone is characterized by expansive sandy beaches formed by the accumulation of fine sand.
The terrain is usually flat with relatively simple biological coverage (see Figure 2A). The
rocky intertidal zone is typically found along coastlines composed of rocks. Due to its
hard geological characteristics, this type of intertidal zone is less affected by erosion (see
Figure 2B). The coral reef intertidal zone, as shown in Figure 2C, is submerged during high
tide and exposed during low tide. The estuarine intertidal zone is commonly found in river
estuaries (see Figure 2D). Sediments brought by rivers accumulate to form rich sandy or
muddy terrains, often exhibiting high biodiversity.
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Figure 2. Laser tracks and profiles of the study areas: (A) sandy intertidal zone; (B) rocky intertidal
zone; (C) coral reef intertidal zone; (D) estuarine intertidal zone, with the solid blue line as the
laser track.
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Detailed information on the four ATLO03 data tracks used in this study is presented in
Table 2, including the corresponding intertidal zone types, study areas, acquisition times,
and the pulse beams used.

Table 2. Study areas and data.

Intertidal Zone Types Study Areas ATLO03 Data Day/Night Track Used
Sandy intertidal zone Hayma, Oman ATL03_20231216172359_13552101_006_02_h5 night gtlr
Rocky intertidal zone Qingdao, Shandong ATL03_20220917105543_13371602_006_01.h5 night gt2r
Coral reef intertidal zone Sansha, Hainan ATL03_20210717075633_03621201_006_01.h5 day gtlr
Estuarine intertidal zone Guangxi Beihai ATLO03_20190929152507_00420501_006_02.h5 night gtlr
3. Methods

The intertidal zones contain various land covers such as land, water bodies, and vege-
tation. The interaction of laser emission signals with seawater and land results produces
complex reflected signals, increasing the difficulty of distinguishing between signal and
noise in photon point clouds [22]. To solve this problem, we first carried out a preliminary
classification based on the distribution characteristics of photons at the water-land bound-
ary. Subsequently, denoising algorithms were adaptively selected and applied according to
the unique characteristics of different types of photons.

3.1. Preliminary Classification

In intertidal zones, the density of water surface photons is usually higher than that of
exposed land and vegetated areas. This is mainly because water surface photon signals are
obtained from the combined reflections of the water surface and the underwater, resulting
in a larger number of water surface photons that are densely distributed [23]. In land areas
close to the water surface, the reflective properties of the land surface are easily affected
by factors such as vegetation coverage and surface slope, making land photons relatively
sparse. Therefore, based on the non-uniformity of photon density distribution, we carried
out a preliminary classification of photons at the water-land boundary. Considering the
limited bathymetric capability of ICESat-2 when measuring intertidal zones, the boundary
line near the shore can be approximated as a horizontal line [24]. The horizontal dividing
line is calculated as follows:

d=Im—A 1)

where Im and ¢ are the mean elevation and standard deviation of the local water surface
photons. A was set to 3¢ to ensure sufficient distinction between water surface photons and
underwater photons. As illustrated in Figure 3, photons above the dividing line were clas-
sified as water surface photons, while those below were classified as underwater photons.

At the water-land boundary, the photon density of the water surface is usually higher
than that of the land. The moving window statistical method was used, setting the width
of the moving window to 5 m and the length to be the difference in elevation between the
photon with the highest elevation and the photon with the lowest elevation of the photon
data in this track. We searched along the photon track and counted the histogram of the
photon elevation frequency distribution within each window, as shown in Figure 4.

By analyzing the photon point cloud data in Figure 4, it was found that water sur-
face areas (the yellow rectangular box) usually exhibit a large number of photons and
a concentrated elevation distribution. In contrast, land areas (the red rectangular box)
have relatively fewer photons with more dispersed elevation distribution. Based on this
phenomenon, the concentration of the photon elevation distribution was used as a key
parameter to distinguish the water surface from the land areas. This method takes full use
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of the relatively flat surface of the water while the land is characterized by a large number

of features and obvious changes in topography. Specifically, the concentration of photon
elevation distribution is calculated as follows:

f=1/(1+s) @)

where s is the standard deviation of photons detected within the moving window. The
function f normalizes the result to the range of (0,1], making comparisons between different
regions more intuitive and consistent. An f value close to 1 indicates a highly concentrated
photon elevation distribution, corresponding to water surface areas; an f value close to
0 indicates a highly dispersed distribution, corresponding to land areas. By setting a
threshold for f, we can distinguish between water surface photons and land photons.

-30

@® Row photons

I
w9
8]

o
A

W

Elevation(m)
&
(e}

38 e . sttt e

-40

2120 2140 2160 2180 2200

Along-track distance(m)

2220 2240

Figure 3. Schematic of ATL03 raw data boundary.
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We carried out a preliminary classification of the four types of intertidal zones: The
sandy intertidal zone, as shown in Figure 5a, includes water surface photons, underwater
photons, and land photons. The rocky intertidal zone, as shown in Figure 5b, includes water
surface photons and land photons. The coral reef intertidal zone, as shown in Figure 5c,
includes water surface photons and underwater photons. The estuarine intertidal zone is
characterized by a substantial presence of suspended particles or organisms, which results
in non-target reflective noise blending with photon signals from both the water surface
and the underwater bottom. This phenomenon increases the photon thickness and leads
to a mixture of water surface and underwater terrain photon signals. The results of the
preliminary classification are presented in Figure 5d, which includes water surface photons
and land photons. Each category of photons in all these intertidal zones contains both
signal photons and noise photons.
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Figure 5. Preliminary classification results of photon data: (a) sandy intertidal zone; (b) rocky
intertidal zone; (c) coral reef intertidal zone; (d) estuarine intertidal zone.

3.2. Adaptive Denoising

In land areas, factors such as vegetation coverage and surface slope result in a rela-
tively sparse density of land photons. Therefore, a histogram distance-weighted statistical
algorithm was utilized for denoising land photons. In contrast, in water surface regions,
the photon density is higher, exhibiting pronounced variations in density in the along-track
and cross-track directions. In underwater terrain regions, due to the long-term erosion by
seawater, the extension of underwater terrain is relatively smooth, with fewer fluctuations
compared with land. The underwater terrain photons have similar distribution characteris-
tics to the water surface photons [25]. Therefore, an adaptive elliptical DBSCAN algorithm
was used to effectively denoise water surface and underwater photons.

After one round of denoising the raw photon data, evaluation metrics, namely sur-
face continuity (SC) and coefficient of variation (CV) for neighborhood distances, were
introduced to establish an iterative feedback mechanism for assessing denoising results.
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This approach contributes to the continuous optimization of denoising outcomes through
iterative parameter adjustment.

Under natural conditions, the variation in the elevation of water surface photons
tends to be smooth and stable, and the variation in the elevation of underwater terrain
photons is relatively gradual. To evaluate the elevation continuity of both water surface and
underwater terrain photons, and to avoid signal fluctuations caused by residual noise, the
standard deviation of photon elevation can be used as an indicator. The surface continuity
(5C) is calculated as follows:

®)

where h; represents the elevation of the i-th photon,  is the mean elevation of all photons,
and N represents the total number of photons.

In contrast, the variations in the elevation of land photons are more pronounced, yet
photons of the same type exhibit spatial consistency, with distances between neighboring
photons oscillating within a certain range. To evaluate the spatial distribution consistency
of photon data, the coefficient of variation (CV) for neighborhood distances is calculated
as follows:

CV — (Tdist (4)
Hdist

where 05 is the standard deviation of distances between neighboring photons, and ji4;5; is
the mean distance between neighboring photons.

To define appropriate threshold ranges, 10-20 tracks of manually denoised photon
point cloud data outside the study areas were selected to calculate the mean and standard
deviation of SC and CV values, as shown below.

o 1 n - 1 n
SC = 51; SC;, CV = 51; CV; (5)
1 ==\ 2 1 — 2
Osc = EZ(SC’ — SC) , ocy = EZ(CVf — CV) (6)
i=1 i=1

where SC; and CV; represent the SC and CV values of the i-th track, and n is the number
of point cloud tracks.
Based on the calculated mean and standard deviation, threshold ranges are defined
as follows:
SCtureshold = SC+ 30s¢, CVinreshold = CV + 3ocy 7)

To more rigorously retain signal photons, three times the standard deviations os¢c and
ocy were selected.

After denoising the dataset, threshold evaluation was applied to determine whether
to retain the photon as a signal photon. The criterion was as follows:

®)

SC < Scthreshold
Cv < Cvthreshold

Here, if the SC and CV values satisfy the threshold conditions, the denoised data are
considered to have met the retention criteria for signal photons, and the iteration stops,
outputting the data as signal photons. To avoid infinite loops, the maximum number of
denoising iterations was set to 3; that is, if the SC and CV values still did not reach the
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threshold after three iterations, the photon was considered a signal photon and output. The
basic flowchart of the adaptive denoising method is shown in Figure 6.
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Figure 6. Basic flowchart of adaptive denoising method.

The histogram distance-weighted statistical algorithm distinguishes noise points from
non-noise points in point cloud data based on differences in spatial distribution. Its
advantage lies in its precise processing capability for low-density point cloud data. By
dynamically adjusting weights and distance calculations, it can effectively distinguish
between noise and signal photons, reducing the error recognition rate [26].

The Euclidean distance dist; between each point i in the point cloud and its K nearest
neighboring points j is calculated as follows:

dist =[x ) ©

where x and y are the along-track distance and elevation of the photon point cloud.
To more accurately identify noise points, these distances were assigned weights [27].
The weight function is shown in the following equation:

. —dist;?
weight =1 — exp 2 (10)
2 2
o Limt (xi =) "+ (vi — yj) an
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2 is used to adjust the attenuation rate of the weight, ensuring that the larger the

where
distance between two points, the larger the weight; conversely, the smaller the distance,
the smaller the weight.

The total weighted distance D; of each point to its K nearest neighbors is calculated

as follows:

D; = Z \/ - Xxj) y]) -weight (12)

Based on these total distances, a cumulative weighted distance frequency distribution
histogram was plotted. Due to the different densities of noise points and non-noise points,
the histogram exhibits two peaks, allowing for threshold setting to remove noise points.

The adaptive elliptical DBSCAN algorithm improves upon the traditional DBSCAN
algorithm [28]. Its core idea is to replace the circular neighborhood in DBSCAN with an
elliptical neighborhood, adaptively adjusting clustering parameters based on the local
density characteristics of the data. This enhancement enables more effective handling of
data with significant differences in distribution characteristics in the horizontal and vertical
directions and uneven density distribution. In the traditional DBSCAN algorithm, two
parameters need to be predefined: the neighborhood radius (¢) and the minimum number
of core points (MinPts). The adaptive elliptical DBSCAN algorithm adaptively adjusts
the neighborhood radius (¢) and MinPts to better accommodate variations in local photon
density. When traversing the dataset, each photon is treated as a potential clustering object.
If the number of photons within the given neighborhood radius ¢ is not less than the
threshold MinPts, the photon is considered a core point. Subsequently, these core points
and the photons in their neighborhoods are clustered based on density connectivity.

The elliptical distance between any two points p(xp,y,) and q(x4,y,) in two-
dimensional space is calculated as follows:

dist(p,q) = \/(x’“a_x> + (y” ; y") (13)

When dist(p,q) < e, point q is within the neighborhood N¢(p) [11]. To simplify param-
eters, the neighborhood radius was fixed at ¢ = 1. The size of the elliptical neighborhood

was determined by the semi-major axis @ and the semi-minor axis b.
Using the statistical characteristics of local photon data, the adaptive values of a and b

are calculated as follows:
a=¢exdx, b=¢exdy (14)

where dx and Jy are the standard deviation of photons in the data segment in the horizontal
and vertical directions.
The average photon density p within the elliptical neighborhood is calculated as
follows:
tabM

= "5 (15)

where M is the total number of photons in the data segment, H is the elevation range

within the segment, and L is the length along the track direction.
The adaptive MinPts is calculated as follows:

MinPts = y-p (16)

where v > 1, and the value of v is estimated empirically so as to adaptively adjust MinPts.
For the photon point cloud data in the study areas, as long as the photon density in its
neighborhood exceeds MinPts, these photons were classified as signal photons; otherwise,
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they were marked as noise photons. Figure 7 illustrates the denoising process of this

adaptive elliptical BDSCAN algorithm.
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Figure 7. Schematic diagram of the adaptive elliptical DBSCAN algorithm.

4. Discussion
4.1. Analysis of Denoising Results

The proposed adaptive denoising method was applied to various intertidal zones, and
the results are shown in Figure 8. This method effectively removes noise while preserving
the integrity of signal photons. In estuarine intertidal zones, abundant sediment and
vegetation are often present. By referencing classification results from ATL08 data, the
denoised land photons were further classified into vegetation and ground photons.
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Figure 8. Adaptive denoising results: (a) sandy intertidal zone; (b) rocky intertidal zone; (c) coral reef

intertidal zone; (d) estuarine intertidal zone.
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The adaptive denoising method proposed in this paper incorporates improvements
to the DBSCAN and statistical histogram algorithms, and the comparison with these
two algorithms can intuitively reflect the effect of the improvements; the DRAGANN
algorithm, as the official algorithm for ICESat-2 data processing, is highly representative.
Therefore, the denoising results of the adaptive method were compared with those of
traditional DBSCAN, statistical histogram, and DRAGANN algorithm across different types
of intertidal zones. The DBSCAN algorithm, widely used for spatial clustering analysis,
is particularly effective in handling noisy datasets. In the original ATL03 photon data,
signal photons exhibit higher spatial density compared to noise photons. The DBSCAN
algorithm uses this characteristic to cluster signal photons while identifying and removing
dispersed noise photons [29]. The statistical histogram method leverages the differences
in spatial distribution between signal photons and noise photons. It distinguishes signal
photons from noise photons by analyzing spatial distribution differences, calculating
photon distances, performing frequency analysis, and generating histograms [30]. The
DRAGANN algorithm is a denoising algorithm specifically designed for the ATL0O8 product.
It distinguishes signal photons and noise photons through adaptive nearest neighbor search
and bimodal distribution analysis [14].

The denoising results of the sandy intertidal zone are shown in Figure 9. The proposed
adaptive denoising method effectively removes most of the noise and better retains the
underwater terrain signals. At the water-land boundary shown in Figure e, the adaptive
denoising method has essentially removed all noise; however, with the DBSCAN algo-
rithm, there are still scattered noises around the signal photons. The statistical histogram
algorithm still retains more noise photons. The DRAGANN algorithm demonstrates good
denoising performance, but may mistakenly identify underwater terrain signal photons
as noise and remove them. In the red box area, the adaptive denoising method can more
completely recognize underwater terrain photons; the DBSCAN algorithm identifies part
of the underwater terrain photons as noise and removes them. Although the statistical
histogram method can fully retain underwater terrain photons, it also retains more noise.
The DRAGANN algorithm exhibits over-denoising, resulting in most of the underwater
terrain signal photons being incorrectly removed.

The denoising results of the rocky intertidal zone are shown in Figure 10. When
denoising water surface photons, both the proposed adaptive denoising method and
the DRAGANN algorithm can effectively eliminate the vast majority of noise, while the
DBSCAN algorithm and the statistical histogram algorithm retain more underwater noise
(see Figure 10e). In the red box area, the adaptive denoising method, DBSCAN algorithm,
and statistical histogram algorithm can all better retain land signal photons, whereas the
DRAGANN algorithm has over-denoising issues, leading to most of the surface water
and land signal photons being incorrectly removed. In contrast, the proposed adaptive
denoising method not only effectively eliminates most of the noise but also better preserves
land signal photons.

The denoising results of the coral reef intertidal zone are shown in Figure 11. A
detailed analysis of the denoising performance of the four methods indicates that both the
DBSCAN and DRAGANN algorithms effectively remove the majority of noise; however, a
small amount of residual noise persists between the water surface and underwater terrain
(Figure 11e). The statistical histogram algorithm retains a higher level of noise compared
to the other methods, whereas the proposed adaptive denoising method demonstrates
superior performance in eliminating noise photons in this region. In the red box area,
although the DBSCAN algorithm can effectively eliminate noise, a small portion of signal
photons are mistakenly identified as noise and removed. Similarly, the statistical histogram
algorithm, though better at retaining underwater terrain signal photons, exhibits weaker
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denoising performance in areas where the underwater terrain is close to the water sur-
face. The DRAGANN algorithm is less effective in retaining underwater terrain photons,
resulting in a loss of critical signal data. In contrast, the adaptive denoising algorithm

can accurately remove surrounding noise while completely preserving underwater terrain
signal photons.
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Figure 9. Sandy intertidal zone denoising results: (a—d) the adaptive denoising method, DBSCAN
algorithm, histogram statistical algorithm, and DRAGANN algorithm in order; (e) zoomed-in compar-
ison of the black dashed box, from left to right, the adaptive method, DBSCAN algorithm, histogram
statistic algorithm, and DRAGANN algorithm.

The denoising results of the estuarine intertidal zone are shown in Figure 12. In this
environment, the mixing of water surface photons with underwater terrain signal photons
results in increased signal photon thickness. The proposed adaptive denoising method,
as well as the DBSCAN and DRAGANN algorithms, effectively removes a significant
portion of apparent noise, while the statistical histogram algorithm retains some scattered
noise. In the red box area, both the adaptive denoising method and the DRAGANN
algorithm demonstrate superior performance in noise removal. In contrast, the DBSCAN
and statistical histogram algorithms retain more underwater noise, reducing the overall
effectiveness. At the water-land boundary in Figure 12e, the DBSCAN algorithm and the
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statistical histogram algorithm retain more noise, while the adaptive denoising method
and the DRAGANN algorithm can better remove the noise around the signal photons.

In summary, across the four different types of intertidal zones, the proposed adaptive
denoising method can comprehensively remove noise, clearly distinguish between signal
and noise, and maintain the integrity of signal photons.
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Figure 10. Rocky intertidal zone denoising results: (a—d) the adaptive denoising method, DBSCAN
algorithm, histogram statistical algorithm, and DRAGANN algorithm in order; (e) zoomed-in compar-
ison of the black dashed box, from left to right, the adaptive method, DBSCAN algorithm, histogram
statistic algorithm, and DRAGANN algorithm.

4.2. Accuracy Evaluation

This paper introduces three statistical evaluation metrics to quantitatively assess
the performance of the algorithms [31]: recall (R), precision (P), and F-score (F). Recall
represents the proportion of correctly extracted effective signal photons to the total number
of original signal photons. Precision refers to the ratio of the number of correctly extracted
effective signal photons to the total number of extracted effective signal photons. The
F-score is the harmonic mean of recall and precision. The calculation formulas are shown

in the following equations:
TP

R= ——— 17
TP+ FN 17
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TP

P= TP +FP (18)
2PR

~ P+R (19)

where TP is the number of photons identified as signal photons, which are actually signal
photons; FP is the number of photons identified as signal photons, but they are actually
noise photons; FN is the number of photons identified as noise photons, but they are
actually signal photons.
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Figure 11. Coral reef intertidal zone denoising results: (a—d) the adaptive denoising method, DB-
SCAN algorithm, histogram statistical algorithm, and DRAGANN algorithm in order; (e) zoomed-in
comparison of the black dashed box, from left to right, the adaptive method, DBSCAN algorithm,
histogram statistic algorithm, and DRAGANN algorithm.

In this study, photon data from four typical intertidal zones—sandy, rocky, coral reef,
and estuarine intertidal zones—were subjected to denoising processing using the adaptive
denoising method, the DBSCAN algorithm, the statistical histogram algorithm, and the
DRAGANN algorithm. The denoising effects were evaluated and statistically analyzed
using the three metrics R, P, and F, with the results shown in Table 3 and Figure 13.
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Figure 12. Estuarine intertidal zone denoising results: (a—d) the adaptive denoising method, DB-
SCAN algorithm, histogram statistical algorithm, and DRAGANN algorithm in order; (e) zoomed-in
comparison of the black dashed box, from left to right, the adaptive method, DBSCAN algorithm,
histogram statistic algorithm, and DRAGANN algorithm.

Table 3. Statistical table of denoising metrics.

Study Areas Denoising Method R P F
Adaptive 0.9853 0.9930 0.9891
Sandy DBSCAN 0.9625 0.9853 0.9738
intertidal zone Statistical histogram 0.9878 0.9522 0.9697
DRAGANN 0.9141 0.9888 0.9500
Adaptive 0.9818 0.9848 0.9833
Rocky DBSCAN 0.9968 0.8716 0.9300
intertidal zone Statistical histogram 0.9984 0.8953 0.9440
DRAGANN 0.7415 0.9870 0.8468
Adaptive 0.9916 0.9949 0.9932
Coral reef DBSCAN 0.9643 0.9653 0.9648
intertidal zone Statistical histogram 0.9928 0.9548 0.9734
DRAGANN 0.9600 0.9841 0.9719
Adaptive 0.9953 0.9980 0.9967
Estuarine DBSCAN 0.9502 0.9191 0.9344
intertidal zone Statistical histogram 0.9994 0.9308 0.9639
DRAGANN 0.9907 0.9925 0.9916
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Figure 13. Quantitative statistical histogram of denoising performance.

Based on the statistical results, in the sandy intertidal zone, the statistical histogram
algorithm achieved the highest recall rate of 0.9878, indicating that it can effectively retain
signal photons. However, its precision was comparatively lower at 0.9522. In contrast,
the adaptive denoising method achieved recall and precision rates of 0.9853 and 0.9930,
respectively, with an F-score of 0.9891, the highest among all methods. This demonstrates
the superior ability of the adaptive denoising method to balance recall and precision.

In the rocky intertidal zone, the statistical histogram algorithm once again achieved
the highest recall rate of 0.9984, but its precision was relatively low at 0.8953. Similarly, the
DBSCAN algorithm also had a high recall rate of 0.9968 but a low precision of 0.8716 and
an F-score of 0.9300. The DRAGANN algorithm achieved the highest precision at 0.9870,
but its recall rate and F-score were lower, at 0.7415 and 0.8468. The adaptive denoising
method balanced recall and precision, achieving rates of 0.9818 and 0.9848, with an F-score
of 0.9833, exhibiting strong adaptability and stability.

In the coral reef intertidal zone, the statistical histogram algorithm achieved a recall
rate of 0.9928, a precision of 0.9548, and an F-score of 0.9734, indicating good denoising
performance. The DRAGANN algorithm achieved a higher precision at 0.9841 but a lower
recall rate of 0.9600 and an F-score of 0.9719. The adaptive denoising method achieved
recall and precision rates of 0.9916 and 0.9949, with an F-score of 0.9932, demonstrating
stronger adaptability and stability in the coral reef intertidal zone.
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In the estuarine intertidal zone, the statistical histogram algorithm achieved a re-
call rate of 0.9994, almost retaining all signal photons, but a relatively low precision of
0.9308 and an F-score of 0.9630. The DRAGANN algorithm achieved a higher precision at
0.9925 while maintaining a high recall rate of 0.9907, resulting in an F-score of 0.9916, the
best among all methods. The adaptive denoising method balanced recall and precision,
achieving rates of 0.9953 and 0.9980, with an F-score of 0.9967, reflecting good denoising
performance; it performed the best among all the methods. Table 4 shows the average R, P,
and F of different methods across the four typical intertidal zones.

Table 4. The average metrics.

Denoising Method R p F
Adaptive 0.9885 0.9927 0.9906
DBSCAN 0.9684 0.9353 0.9508

Statistical histogram 0.9946 0.9333 0.9628

DRAGANN 0.9016 0.9881 0.9401

By comprehensively comparing the denoising effects across various types of intertidal
zones, it is evident that the traditional DBSCAN algorithm, the statistical histogram algo-
rithm, and the DRAGANN algorithm can exhibit good denoising performance in specific
environments, but it is difficult to maintain stability in different environments. In contrast,
the adaptive denoising method demonstrates excellent performance and stability in various
environments. It is able to achieve a good balance between recall and precision in most
situations and maintains a high F-score. This indicates that the method can effectively
adapt to the characteristics of different types of intertidal zones, achieving comprehensive
and robust denoising.

5. Conclusions

This study addresses the challenges posed by the complex and diverse land cover
types in intertidal zones and the difficulty in distinguishing between noise photons and
signal photons. We propose a photon denoising method based on an adaptive strategy. The
method’s key feature is dynamically adjusting the denoising strategy by analyzing photon
distribution characteristics at the water-land boundary in intertidal zones, employing
corresponding denoising algorithms for different types of photon data. We selected ATL03
photon point cloud data from four typical intertidal zones for denoising analysis and com-
pared the results with those of the traditional DBSCAN algorithm, the statistical histogram
algorithm, and the DRAGANN algorithm. The following conclusions were drawn:

1. The proposed adaptive denoising method achieved excellent performance across
the four typical intertidal zones, with average recall, precision, and F-score values
reaching 0.9885, 0.9927, and 0.9906, respectively, demonstrating high overall accuracy.
This indicates that the method can comprehensively remove noise while retaining the
integrity of signal photons.

2. Compared to single traditional denoising algorithms, the adaptive denoising method
exhibits significant advantages in handling complex terrain features. In areas with
dramatic terrain changes, such as water—land boundaries, in particular, the method
can more accurately identify and retain key topographic features while efficiently
removing surrounding noise points.
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