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Pradip Debnath

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Guest Editors
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worldwide, fostering interdisciplinary approaches to fixed p oint t heory a nd i ts a pplications in

differential and integral equations.

Pradip Debnath

Pradip Debnath is an Associate Professor in the Department of Mathematical Sciences at Tezpur

University, India. He has been recognized among the World’s Top 2% Scientists by Stanford University,

published by Elsevier, for two consecutive years (2023 and 2024).

He has served as an Associate Editor for the Mathematics section of Heliyon (Elsevier) and

is currently on the editorial boards of several leading journals, including Scientific Reports (Nature),

Research in Mathematics (Taylor & Francis), PLoS ONE, and the TWMS Journal of Applied and Engineering

Mathematics, among others. He is also a Topical Advisory Panel Member for Axioms and Fractal and

Fractional, and has acted as Guest Editor for special issues in journals such as Symmetry, Axioms, and

Contemporary Mathematics.

Dr. Debnath earned his Ph.D. in Mathematics from the National Institute of Technology Silchar,

India. His research interests span fixed p oint t heory, f unctional a nalysis, s oft c omputing, and

mathematical statistics. He has authored over 70 papers in internationally reputed journals, reviewed

more than 450 manuscripts for 65+ international journals, and serves as a reviewer for Mathematical

Reviews (American Mathematical Society). As editor and author, he has published 10 books with

renowned publishers including Springer, CRC Press, De Gruyter, and World Scientific.

His academic career includes faculty positions at Assam University, Silchar, and the North Eastern

Regional Institute of Science and Technology (NERIST). He has supervised Ph.D. students in nonlinear

analysis, soft computing, and fixed point theory, and completed a major Basic Science Research Project

funded by the UGC, Government of India. An academic gold medallist during his postgraduate

studies at Assam University, he has also qualified in several national-level mathematics examinations

in India.

vii





Preface

It is our pleasure to present this reprint on Trends in Fixed Point Theory and Fractional Calculus,

which brings together a diverse collection of recent advances at the intersection of two vibrant areas of

mathematical analysis. Fixed-point theory continues to play a fundamental role in nonlinear analysis,

variational inequalities, operator theory, and the solvability of integral equations, while fractional

calculus extends classical differentiation and integration to non-integer orders, providing powerful

tools for modeling memory effects and hereditary dynamics in applied sciences. The motivation

for assembling this reprint arises from the growing synergy between these fields, particularly in

addressing challenges in stability analysis, iterative algorithms, and fractional differential systems.

This work is addressed to researchers, graduate students, and practitioners who seek both theoretical

insights and concrete applications. We gratefully acknowledge the efforts of the contributing authors

for their valuable research, the reviewers for their critical evaluations, and the editorial team of Axioms

for their professional support. We hope that this collection not only highlights the state-of-the-art in

the subject but also inspires further exploration and collaboration across mathematics and applied

disciplines.

Boško Damjanović and Pradip Debnath

Guest Editors
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Editorial

Trends in Fixed Point Theory and Fractional Calculus

Boško Damjanović 1 and Pradip Debnath 2,∗

1 Department of Mathematics, University Union—Nikola Tesla, 11158 Belgrade, Serbia; dambo@agrif.bg.ac.rs
2 Department of Mathematical Sciences, Tezpur University, Assam 784028, India
* Correspondence: pradip.debnath@aus.ac.in or pradip@tezu.ernet.in

1. Introduction

This Special Issue of Axioms, titled “Trends in Fixed Point Theory and Fractional
Calculus”, presents a collection of ten high-quality papers reflecting the latest develop-
ments in two intertwined areas of modern mathematical analysis. Fixed-point theory
serves as a cornerstone of nonlinear analysis, with far-reaching applications to functional
equations, variational inequalities, and operator theory. Fractional calculus, by extending
the concept of differentiation and integration to non-integer orders, has proven to be a
versatile tool for modeling memory effects and hereditary properties in complex physical
and engineering systems.

The synergy between these areas has become increasingly evident in the study of
differential and integral equations, stability problems, and iterative algorithms. The con-
tributions in this Special Issue span both theoretical advances, such as new contractive
conditions, generalized spaces, and stability criteria, and practical applications, including
integral equations and fractional differential systems.

2. Overview of the Published Papers

1. Fixed-Point Theorems in Branciari Distance Spaces (Seong-Hoon Cho) introduces
σ-Caristi and generalized σ-contraction maps, establishing fixed-point results that
extend Caristi’s theorem and Banach’s contraction principle and clarifying the rela-
tionships among various contraction conditions.

2. m-Isometric Operators with Null Symbol and Elementary Operator Entries (Bhag-
wati Prashad Duggal) investigates strict (m, X)-isometric operator pairs on Banach
spaces, offering structural insights relevant to functional analysis and operator theory.

3. Relational Almost (ϕ, ψ)-Contractions and Applications to Nonlinear Fredholm

Integral Equations (Fahad M. Alamrani et al.) presents new fixed-point results under
relational strict almost (ϕ, ψ)-contractions, with applications to the solvability of
nonlinear Fredholm integral equations.

4. Fixed-Point Results of F-Contractions in Bipolar p-Metric Spaces (Nabanita Kon-
war and Pradip Debnath) develops Banach-type and Reich-type theorems for F-
contractions in bipolar p-metric spaces, supported by illustrative examples.

5. Fixed Point Results in Modular b-Metric-like Spaces with an Application (Niza-
mettin Ufuk Bostan and Banu Pazar Varol) introduces modular b-metric-like spaces,
defines notions of ξ-convergence and ξ-Cauchy sequences, and proves fixed-point
theorems with practical applications.

6. Enriched Z-Contractions and Fixed-Point Results with Applications to IFS (Ibrahim
Alraddadi et al.) initiates a broad class of enriched (d, Z)-contractions on Banach
spaces, establishing uniqueness and existence theorems and applying them to iterative
function systems.

Axioms 2025, 14, 660 https://doi.org/10.3390/axioms14090660
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7. Nonlinear Contractions Employing Digraphs and Comparison Functions with an

Application to Singular Fractional Differential Equations (Doaa Filali et al.) extends
Jachymski’s contraction principle via digraphs to study fixed points in graph metric
spaces, applying the results to singular fractional differential equations.

8. Stability of Fixed Points of Partial Contractivities and Fractal Surfaces (María A.
Navascués) examines a wide class of contractions in b-metric spaces, including Banach
and Matkowski maps, providing convergence and stability results for Picard iterations
with implications for fractal geometry.

9. Three Existence Results in the Fixed Point Theory (Alexander J. Zaslavski) offers
three new existence theorems for fixed points of nonexpansive and set-valued map-
pings, generalizing known results on F-contractions and set-valued contractions.

10. Fixed-Point Results of Generalized (ϕ, Ψ)-Contractive Mappings in Partially Or-

dered Controlled Metric Spaces with an Application to a System of Integral Equa-

tions (Mohammad Akram et al.) proves multiple fixed-point and coincidence point
results, applying them to solve a system of integral equations.

3. Concluding Remarks

The contributions gathered here demonstrate both the diversity and the depth of
current research in fixed-point theory and fractional calculus. From abstract generalizations
in metric and Banach space settings to concrete applications in integral and fractional
differential equations, these works collectively advance the frontiers of the field.

We thank all the authors for their valuable contributions, the reviewers for their careful
evaluations, and the Axioms editorial team for their support in producing this Special Issue.
We hope that these papers will serve as a source of inspiration for future research, fostering
new connections between theoretical exploration and applied problem-solving.

Conflicts of Interest: The authors declare no conflicts of interest.
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Article

Fixed-Point Theorems in Branciari Distance Spaces

Seong-Hoon Cho

Department of Mathematics, Hanseo University, Seosan-si 31962, Chungnam, Republic of Korea;
shcho@hanseo.ac.kr; Tel.: +82-41-660-1316

Abstract: In this study, the concepts of σ-Caristi maps and generalized σ-contraction maps
are introduced, and fixed-point theorems for such maps are established. A generalization
of Caristi’s fixed-point theorem and Banach’s contraction principle is proved. The relation-
ships among the various contraction conditions introduced in this paper are examined.
Examples are provided to elucidate the main theorem, and applications to integral and
differential equations are also discussed.

Keywords: fixed point; contraction; generalized contraction; Caristi map; metric space;
generalized metric space

MSC: 47H10; 54H25

1. Introduction

In 1922, Banach [1] proved a famous fixed-point theorem, which is called the Banach
contraction principle. Since then, this contraction principle has played an important
role in mathematical analysis and applied mathematical analysis, and many authors have
proposed generalizations and extensions of the Banach contraction principle. Many authors,
such as [2–6] and those that are referenced in their studies, investigated various forms of
contractive conditions and proved related fixed-point results.

On the one hand, many authors studied fixed-point theory in various spaces. Several
authors generalized metric spaces and extended Banach’s contraction principle. For exam-
ple, Huang and Zhang [7], Matthews [8], Amini-Harandi [9], and Branciari [10] introduced
the concepts of cone metric spaces, partial distance spaces, metric-like spaces, and Branciari
distance spaces, respectively.

Guo and Lakshmikantham [11] investigated some coupled fixed-point results by intro-
ducing the concept of coupled fixed points, and an application to coupled quasisolutions
of the initial value problems for ordinary differential equations. Samet and Vetro [12]
introduced the notion of n-tuple fixed points as a generalization of coupled fixed points
and established related fixed-point results. Rad, Shukla, and Rahimi [13] proved that the
results of n-tuple fixed points in cone metric spaces and metric-like spaces can be obtained
from fixed-point theorems; the converse is also true.

Antón-Sancho [14] also studied fixed-point theory in the field of Higgs bundles,
pursuing another direction of research. He proved the existence of fixed points for auto-
morphisms of the moduli spaces of principal bundles over a compact algebraic curve, and
he [15,16] obtained fixed-point results for automorphisms of the vector bundle moduli
spaces and involutions of G-Higgs bundle moduli spaces.

Axioms 2025, 14, 635 https://doi.org/10.3390/axioms14080635
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Caristi [17] proved the fixed-point theorem in the so-called Caristi fixed-point theorem,
which states that a map S : X → X, where (X, d) is a complete metric space, has a fixed
point provided that it satisfies the following condition:

d(x, Sx) ≤ φ(x)− φ(Sx), ∀x ∈ X

where φ : X → [0, ∞) is a lower-semicontinuous function.
After that, it was shown that this theorem is equivalent to Ekeland’s variational princi-

ple and the Bishop–Phelps theorem, which have a great number of applications in many
branches of mathematics and applied mathematics and are crucial tools in many fields, in-
cluding nonlinear analysis, dynamic systems, optimization theory, game theory, economics
modeling, equilibrium theory, optimization problems, computational methods, variational
inequalities, differential equations, integral equations and control theory, population dy-
namics, and epidemiological methods. It is also known as the most beautiful and useful
extension of Banach’s contraction principle, and due to its importance, many authors,
such as [18–21] and those that they reference in their studies, obtained generalizations and
extensions of Caristi’s theorem; in addition, some authors [22–26] presented new proofs of
Caristi’s theorem.

Very recently, Isik et al. [27] presented a generalization of Caristi’s fixed-point theorem
in complete metric spaces by using the concept of the control function.

In this study, we give the concept of σ-Caristi maps and prove the existence of fixed
points for such σ-Caristi maps in Branciari distance spaces. We generalize the notion
of σ-contractions and obtain related fixed-point results in Branciari distance spaces. We
examined the interrelations among the various contraction conditions presented in this
paper. In addition, we present examples to analyze the main theorems, and we give
applications to integral equations and differential equations.

2. Preliminaries

Jleli and Samet [28] gave the concept of σ-contractions and used this notion to general-
ize Banach’s contraction principle. Whenever σ : (0, ∞) → (1, ∞) is non-decreasing and
satisfies (σ1) and (σ2),

(σ1) For any sequence {un} ⊂ (0, ∞),

un → 0 (as n → ∞)⇔ σ(un)→ 1 (as n → ∞);

(σ2) There are κ ∈ (0, 1) and ℵ ∈ (0, ∞]:

σ(u)− 1
uκ

→ ℵ (as u → 0+).

Ahmad et al. [29] obtained an extension of the result of [28] to metric spaces by
replacing (σ2) with the condition that

(σ3) σ is continuous on (0, ∞).

Very recently, Işik et al. [27] generalized Caristi’s result in metric spaces with (σ2), (σ3),
(σ4) and (σ5), where

(σ4) For any μ, ν > 0,
σ(μ + ν) ≤ σ(μ)σ(ν);

(σ4)’ For any μ, ν > 0,
σ(μ + ν) = σ(μ)σ(ν);

(σ5) σ is strictly increasing;

5
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(σ6) For any μ, ν > 0,

σ(μ− ν) ≤ σ(μ)

σ(ν)
;

(σ7) For any μ > 0 and r > 0,
[σ(μ)]r ≤ σ(rμ).

In 2000, Branciari [10] introduced the notion of Branciari distance spaces and extended
the Banach contraction principle to Branciari distance spaces with two conditions:

(c1) The topology generated by the Branciari distance is a Hausdorff space;
(c2) Any Branciari distance is continuous in each coordinate.

Since then, the authors of [30,31] investigated the characteristics of Branciari distance
spaces. They obtained the following characteristics.

(b1) A Branciari distance does not have to be continuous at each coordinate;
(b2) A convergent sequence does not have to be a Cauchy sequence;
(b3) The limit of a convergent sequence is not guaranteed to be unique;
(b4) An open ball does not necessarily need to be an open set. Hence, the existence of a

topology compatible with the Branchiari distance is not guaranteed.

However, many researchers have realized that, despite the aforementioned topological
disadvantages, Brancian distance spaces are attractive spaces for studying and developing
fixed-point theory without additional conditions. It is for this reason that a considerable
number of researchers ([30–39] and the references therein) have expressed interest in the
Branciari distance spaces; consequently, they have undertaken studies of fixed-point theory
in these spaces.

Recall the definition of Branciari distance spaces in [10].
Let B( 	= ∅) be a given set. A map ρ : B× B → [0, ∞) is called a Branciari distance,

provided that for all υ, ζ ∈ E and for all ς, ι ∈ B \ {υ, ζ} with ς 	= ι,

(ρ1) ρ(υ, ζ) = 0 ⇐⇒ υ = ζ;
(ρ2) ρ(υ, ζ) = ρ(ζ, υ);
(ρ3) ρ(υ, ζ) ≤ ρ(υ, ς) + ρ(ς, ι) + ρ(ι, ζ) (trapezoidal inequality).

Here , (B, ρ) is called a Branciari distance space.

Remark 1 ([40]). For a Branciari distance space (B, ρ), the following holds:

(i) (B, ρ) is not reducible to a metric space;
(ii) In general, the topology on B generated by ρ does not exist.

Remark 2. A trapezoidal inequality holds whenever a triangular inequality is satisfied. However,
the converse is not true. Metric spaces are included in the family of Branciari distance spaces.

The concept of convergence in Branciari distance spaces is defined similarly to that of
metric spaces.

Let (B, ρ) be a Branciari distance space and let {ξn} ⊂ B be a sequence. Then, we
say that

(i) {ξn} converges to ξ if it satisfies

lim
n→∞

ρ(ξn, ξ) = 0;

(ii) {ξn} is Cauchy whenever the condition

lim
n,m→∞

ρ(ξn, ξm) = 0 holds;

6
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(iii) (B, ρ) is complete when every Cauchy sequence in B converges to a point in B.

Let (B, ρ) be a Branciari distance space, and let ᵀρ be a topology on B such that, for
any E ⊂ B and any sequence {cm} ⊂ E,

B− E ∈ ᵀρ ⇐⇒ [ lim
m→∞

ρ(cm, c) = 0 ⇒ c ∈ E]. (1)

Here, (B,ᵀρ) is called a sequential topological space (see [34]).
A map T : B → B is continuous [34] whenever the following condition holds.
For any sequence {cm} ⊂ B,

lim
m→∞

ρ(cm, c) = 0 ⇒ lim
m→∞

ρ(Tcm, Tc) = 0.

In Example 1.1 ([31]) and Example 3 ([34]), we can see the properties (b1) ∼ (b4) of
Branciari distance spaces.

In the following example, we can see some characteristics of sequential topology on
Branciari distance spaces.

Example 1. Let B = {1, 2} ∪ {1− 1
n : n = 1, 2, 3, · · · }. Suppose that ρ : B× B → [0, ∞) is a

map defined by

ρ(ξ, ζ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, (ξ = ζ),

1, (ξ, ζ ∈ {1, 2}),
1, (ξ, ζ ∈ {1− 1

n : n ∈ N}),
1
n , (ξ ∈ {1, 2} and ζ ∈ {1− 1

n : n ∈ N}).

Then, (B, ρ) is a complete Branciari distance space.
It follows from (1) that the sequential topology ᵀρ on B generated by the Branciari distance

space given in Example 1 is

ᵀρ = {∅, B, {1− 1
n

: n ∈ N}, {1} ∪ {1− 1
n

: n ∈ N}, {2} ∪ {1− 1
n

: n ∈ N}}. (2)

Remark 3. We have some properties of sequential topology and sequential continuity on Branciari
distance spaces.

(i) From (2), we have that the sequential topological space (B,ᵀρ) generated by the Branciari
distance space given in Example 1 is not a Hausdorff space.

(ii) ρ is not continuous with respect to (B,ᵀρ) because

lim
k→∞

ρ(1− 1
k

, 2) = 0 implies lim
n→∞

ρ(1− 1
k

,
1
2
) 	= ρ(2,

1
2
). (3)

Throughout this paper, unless otherwise stated, we let B denote a Branciari distance
space with Branciari distance ρ. In addition, we represent by CM(B, B) the class of all self
maps defined on a complete Branciari distance space B.

Lemma 1 ([41]). Let (B, ρ) be a complete Branciari distance space. Assume that {ξn} ⊂ B is a
Cauchy sequence and ξ, ζ ∈ B. If there exists k0 ∈ N such that

(i) ξn 	= ξm ∀n, m > k0;
(ii) ξn 	= ξ ∀n > k0;
(iii) ξn 	= ζ ∀n > k0;
(iv) limn→∞ ρ(ξn, ξ) = limn→∞ ρ(ξn, ζ),

then ξ = ζ.

7
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Lemma 2 ([37]). Let {ξm} ⊂ B be a Cauchy sequence such that

lim
m→∞

ρ(ξm, ξ) = 0.

Then,
lim

m→∞
ρ(ζ, ξm) = ρ(ζ, ξ), ∀ζ ∈ B.

3. Fixed Points

We introduce the notion of the σ-Caristi map on Branciari distance space; it is the
motivation from the paper by Isik et al.

Let σ : (0, ∞)→ (1, ∞) be a function.
Then, we say that C ∈ CM(B, B) is a σ-Caristi map if there exists an lsc function

φ : B → [a, ∞), where a > 0, such that

σ(ρ(ξ, Cξ)) ≤ σ(φ(ξ))

σ(φ(Cξ))
, ∀ξ ∈ B(ξ 	= Cξ). (4)

Proposition 1. Let C ∈ CM(B, B) be a σ-Caristi map with an lsc function φ : B → [a, ∞),
where a > 0.

For each ξ ∈ B, let

R(ξ) = {ζ ∈ B : ζ 	= ξ, σ(ρ(ξ, ζ)) ≤ σ(φ(ξ))

σ(φ(ζ))
}.

If σ is non-decreasing and satisfies the condition (σ4), then the following hold:

(i) R(ξ) 	= ∅, ∀ξ ∈ B;
(ii) φ(ζ) < φ(ξ), ∀ζ ∈ R(ξ);
(iii) R(ζ) ⊂ R(ξ), ∀ζ ∈ R(ι), ∀ι ∈ R(ξ).

Proof. Since C is a σ-Caristi map, it satisfies that for all ξ ∈ B with ξ 	= Cξ,

σ(ρ(ξ, Cξ)) ≤ σ(φ(ξ))

σ(φ(Cξ))
.

Hence, Cξ ∈ R(ξ), and so R(ξ) 	= ∅. Thus, (i) is proved.
Let ζ ∈ R(ξ). Then, we have

ζ 	= ξ and σ(ρ(ξ, ζ)) ≤ σ(φ(ξ))

σ(φ(ζ))
,

which implies
σ(φ(ζ)) < σ(φ(ξ)),

and so
φ(ζ) < φ(ξ).

Hence, (ii) is satisfied.
Let ι ∈ R(ξ), and let ζ ∈ R(ι).
Then, we have that

ι 	= ξ and σ(ρ(ξ, ι)) ≤ σ(φ(ξ))

σ(φ(ι))
,

ζ 	= ι and σ(ρ(ι, ζ)) ≤ σ(φ(ι))

σ(φ(ζ))
.

Assume that ς ∈ R(ζ).

8
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Then, we obtain that

ς 	= ζ and σ(ρ(ζ, ς)) ≤ σ(φ(ζ))

σ(φ(ς))
.

Hence,
σ(φ(ς)) < σ(φ(ζ)) < σ(φ(ι)) < σ(φ(ξ)). (5)

If ς = ξ, then from (5), we have

σ(φ(ξ)) < σ(φ(ξ)),

which is a contradiction. Thus,
ς 	= ξ. (6)

Applying (ρ3) and (σ4), we infer that

σ(ρ(ς, ξ))

=σ(ρ(ξ, ς))

≤σ(ρ(ξ, ι))σ(ρ(ι, ζ))σ(ρ(ζ, ς))

≤σ(φ(ξ))

σ(φ(ι))

σ(φ(ι))

σ(φ(ζ))

σ(φ(ζ))

σ(φ(ς))

=
σ(φ(ξ))

σ(φ(ς))
.

(7)

It follows from (6) and (7) that
ς ∈ R(ξ).

Thus, (iii) is proved.

Remark 4. Proposition 1 holds whenever (σ4) and (σ5) are satisfied.

Theorem 1. Let C ∈ CM(B, B) be a σ-Caristi map with an lsc function φ : B → [a, ∞), where
a > 0. If σ satisfies (σ1), (σ3), (σ4) and (σ5), then C possesses a fixed point.

Proof. Assume that
ξ 	= Cξ, ∀ξ ∈ B.

Let ξ1 ∈ B be given.
Since R(ξ1) 	= ∅, we can choose a point ξ2 ∈ R(ξ1) such that

φ(ξ2) ≤ inf
ι∈R(ξ1)

φ(ι) + 1.

Inductively, we can construct a sequence {ξn} ⊂ B such that

ξn+1 ∈ R(ξn) and φ(ξn+1) ≤ inf
ι∈R(ξn)

φ(ι) +
1
n

, ∀n ∈ N. (8)

Since ξn+1 ∈ R(ξn),

ξn+1 	= ξn and σ(ρ(ξn, ξn+1)) ≤ σ(φ(ξn))

σ(φ(ξn+1))
(9)

which implies
σ(φ(ξn+1)) < σ(φ(ξn)) ∀n ∈ N.

9
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Thus, the sequence {φ(ξn))} is decreasing.
We now show that {ξn} is Cauchy.
Using (9) and (σ4), we find that

σ(φ(ξ1)) >
σ(φ(ξ1)

σ(φ(ξn)

=
σ(φ(ξ1))

σ(φ(ξ2))

σ(φ(ξ2))

σ(φ(ξ3))
· · · σ(φ(ξn−1))

σ(φ(ξn))

≥σ(ρ(ξ1, ξ2))σ(ρ(ξ2, ξ3)) · · · σ(ρ(ξn−1, ξn))

=σ(
n−1

∑
k=1

ρ(ξk, ξk+1)),

which implies
n−1

∑
k=1

ρ(ξk, ξk+1) < φ(ξ1).

Hence,
∞

∑
n=1

ρ(ξn, ξn+1) < ∞. (10)

Let ε > 0 be given.
From (10), there exists a positive integer N such that

∞

∑
n=N

ρ(ξn, ξn+1) < ε.

Thus, we have that for all n, m > N,

ρ(ξn, ξm) <
∞

∑
n=N

ρ(ξn, ξn+1) < ε.

Hence, {ξn} is a Cauchy sequence.
By the completeness of B, there is ξ∗ ∈ B with

lim
k→∞

ρ(ξ∗, ξk) = 0. (11)

Since φ is an lsc function and {φ(ξn)} is a decreasing sequence,

φ(ξ∗) ≤ lim
n→∞

inf φ(ξn) ≤ inf
n∈N

φ(ξn) ≤ φ(ξn), ∀n ∈ N. (12)

We show that
ξ∗ 	= ξn, ∀n ∈ N. (13)

If ξ∗ = ξl for some l ∈ N, then it follows from (9) and (12) that

1 < σ(ρ(ξl , ξl+1)) ≤ σ(φ(ξl))

σ(φ(ξl+1))
≤ σ(φ(ξl))

σ(φ(ξ∗))
≤ σ(φ(ξ∗))

σ(φ(ξ∗))
= 1,

which is a contradiction.
Thus, (13) holds.
Next, we assert that ⋂

m∈N
R(ξm) = {ξ∗}.

10
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By (σ4) and (9), we find that

σ(ρ(ξn, ξm))

≤σ(ρ(ξn, ξn+1))σ(ρ(ξn+1, ξn+2)) · · · σ(ρ(ξm−1, ξm))

≤ σ(φ(ξn))

σ(φ(ξm))
, ∀m, n ∈ N, m > n.

Thus, from (12), we infer that

σ(ρ(ξn, ξm)) ≤ σ(φ(ξn))

σ(φ(ξm))
≤ σ(φ(ξn))

σ(φ(ξ∗))
. (14)

Since (σ5) is satisfied, (14) yields the following inequality:

ρ(ξn, ξm) ≤ σ−1
(σ(φ(ξn))

σ(φ(ξ∗))

)
. (15)

By applying Lemma 2 to (11) to (15), we find that

ρ(ξn, ξ∗) ≤ σ−1
(σ(φ(ξn))

σ(φ(ξ∗))

)
,

which yields

σ(ρ(ξn, ξ∗)) ≤ σ(φ(ξn))

σ(φ(ξ∗))
, ∀n ∈ N.

Hence,
ξ∗ ∈ R(ξn), ∀n ∈ N,

and thus,
ξ∗ ∈

⋂
n∈∈N

R(ξn).

Applying Proposition 1(iii) to ξn ∈ R(ξn−1), we find that

R(ξ∗) ⊂ R(ξn−1) ∀n = 2, 3, · · · ,

which implies that
R(ξ∗) ⊂

⋂
n∈N

R(ξn). (16)

Let
ι ∈ ⋂

n∈N
R(ξn).

Then, we infer that

ι ∈ R(ξn+1) and ξn+1 ∈ R(ξn) ∀n ∈ N.

By applying Proposition 1(iii),

R(ι) ⊂ R(ξn), ∀n ∈ N.

From (8), we infer that ∀n ∈ N,

σ(ρ(ξn, ι)) ≤ σ(φ(ξn))

σ(φ(ι))
≤ σ(φ(ξn))

σ(infι∈R(ξn) φ(ι))
≤ σ(φ(ξn))

σ(φ(ξn+1)− 1
n )

. (17)

11
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Since {φ(ξn} is decreasing and φ is bounded below by a, there exists L ≥ a such that

lim
n→∞

φ(ξn) = L. (18)

By letting n → ∞ in Equation (17) and using (σ3),

lim
n→∞

σ(ρ(ξn, ι)) = 1. (19)

It follows from (σ1) that
lim

n→∞
ρ(ξn, ι) = 0. (20)

Applying Lemma 1,
ξ∗ = ι,

and hence, ⋂
n∈N

R(ξn) = {ξ∗}.

From (16), we find that
R(ξ∗) ⊂ {ξ∗}.

Because ξ∗ 	= Cξ∗, it follows from (4) that

Cξ∗ ∈ R(ξ∗),

and so
ξ∗ = Cξ∗,

which leads to a contradiction.
Hence, C possesses a fixed point.

Remark 5. (i) If σ is a non-decreasing function in Theorem 1, then C possesses a fixed point.
(ii) Theorem 1 extends Theorem 2 of [27] to Branciari distance spaces.

We now present an example to analyze Theorem 1.

Example 2. Let B = {1, 2, 3, 4}, and let ρ : B× B → [0, ∞) be a map defined as follows:

ρ(1, 2) = ρ(2, 1) = 3,

ρ(2, 3) = ρ(3, 2) = ρ(1, 3) = ρ(3, 1) = 1,

ρ(1, 4) = ρ(4, 1) = ρ(2, 4) = ρ(4, 2) = ρ(3, 4) = ρ(4, 3) = 4,

ρ(z, z) = 0, ∀z ∈ B.

Then, (B, ρ) is a complete Branciari distance space (see [32]).
Let C : B → B be a map defined by

Cξ =

⎧⎨
⎩1 (ξ = 1, 2),

3 (ξ = 3, 4).

Suppose that φ : B → [a, ∞), where a > 0, is a map defined by φ(x) = 5x, and let
σ(ı) = eı, ∀ı > 0.

Then, (σ4) and (σ5) hold, and φ is an lsc function.
We now show that C is a σ-Caristi map with lsc φ(x) = 5x.

12
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We infer that

ρ(ξ, Cξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(1, 1) = 0 (ξ = 1),

ρ(2, 1) = 3 (ξ = 2),

ρ(3, 3) = 0 (ξ = 3),

ρ(4, 3) = 4 (ξ = 4).

Hence,
ρ(ξ, Cξ) > 0 ⇐⇒ ξ = 2, 4.

Consider the following two cases.
First case: Let ξ = 2.
Then, we have that

σ(φ(ξ))

σ(φ(Sξ))
=

σ(10)
σ(5)

= e5 > e3 = σ(ρ(ξ, Sξ)).

Second case: Let ξ = 4.
Then, we find that

σ(φ(ξ))

σ(φ(Sξ))
=

σ(20)
σ(15)

= e5 > e4 = σ(ρ(ξ, Sξ)).

Hence, C is a σ-Caristi map with φ(x) = 5x. The suppositions of Theorem 1 hold, and there
are fixed points 1 and 3 on the map C.

Corollary 1. Let C ∈ CM(B, B) be such that

σ(ρ(ξ, ζ)) ≤ σ(ϕ(ξ, ζ))

σ(ϕ(Cξ, Cζ))
, ∀ξ, ζ ∈ B(ξ 	= ζ), (21)

where ϕ : B× B → [a, ∞), where a > 0, is lsc with respect to the first variable. If σ satisfies (σ1),
(σ3), (σ4), and (σ5), then C possesses only one fixed point.

Proof. For each ξ ∈ B, let ζ = Cξ and φ(ξ) = ϕ(ξ, Cξ).
Then, φ : B → [a, ∞) is an lsc function. It follows from (21) that for all ξ ∈ B with

ξ 	= Cξ,

σ(ρ(ξ, Cξ)) ≤ σ(φ(ξ))

σ(φ(Cξ))
.

By Theorem 1, C possesses a fixed point.
We now show that C possesses only one fixed point.
Let u = Cu and v = Cv be such that u 	= v.
From (21), we acquire that

1 < σ(ρ(u, v)) ≤ σ(ϕ(u, v))
σ(ϕ(Cu, Cv))

=
σ(ϕ(u, v))
σ(ϕ(u, v))

= 1,

which leads to a contradiction.
Hence, C possesses only one fixed point.

Corollary 2. Let C ∈ CM(B, B) be such that

σ(ρ(Cξ, Cζ)) < σ(φ(ρ(ξ, ζ))), ∀ξ, ζ ∈ E(Cξ 	= Cζ), (22)

13
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where φ : [0, ∞)→ [0, ∞) is an lsc function with φ(t) < t, ∀t > 0, and φ(t)
t is a non-decreasing

function. If σ satisfies (σ1), (σ3), (σ4), (σ5), (σ6), and (σ7), where

(σ6) ∀μ, ν > 0 with μ− ν > 0,

σ(μ− ν) ≤ σ(μ)

σ(ν)
;

(σ7) ∀μ, r > 0,
[σ(μ)]r = σ(μr),

then C possesses only one fixed point.

Proof. As (σ5) holds, it follows from (22) that

ρ(Cξ, Cζ) < φ(ρ(ξ, ζ)),

which implies
0 < ρ(ξ, ζ)− φ(ρ(ξ, ζ)) ≤ ρ(ξ, ζ)− ρ(Cξ, Cζ).

Hence, we find that

σ

((
1− φ(ρ(ξ, ζ))

ρ(ξ, ζ)

)
ρ(ξ, ζ)

)

=σ
(

ρ(ξ, ζ)− φ(ρ(ξ, ζ))
)

≤σ
(

ρ(ξ, ζ)− ρ(Cξ, Cζ)
)

.

Let ϕ(ξ, ζ) = a + ρ(ξ,ζ)

1− φ(ρ(ξ,ζ))
ρ(ξ,ζ)

for all ξ, ζ ∈ B with ξ 	= ζ, where a > 0.

Then, ϕ : B× B → [a, ∞) is an lsc function with respect to the first variable. Since
ρ(Cξ, Cζ) < ρ(ξ, ζ) and φ(t)

t is non-decreasing, it follows from (σ5) and (σ6) that

σ(ρ(ξ, ζ))

=[σ(
(

1− φ(ρ(ξ, ζ))

ρ(ξ, ζ)

)
ρ(ξ, ζ))]

1

1− φ(ρ(ξ,ζ))
ρ(x,y)

≤[σ(ρ(ξ, ζ)− ρ(Cξ, Cζ))]

1

1− φ(ρ(ξ,ζ))
ρ(ξ,ζ)

=σ

⎛
⎝
⎛
⎝a +

ρ(ξ, ζ)

1− φ(ρ(ξ,ζ))
ρ(ξ,ζ)

⎞
⎠−

⎛
⎝a +

ρ(Cξ, Cζ)

1− φ(ρ(ξ,ζ))
ρ(ξ,ζ)

⎞
⎠
⎞
⎠

≤
σ

(
a + ρ(ξ,ζ)

1− φ(ρ(ξ,ζ))
ρ(ξ,ζ)

)

σ

(
a + ρ(Cξ,Cζ)

1− φ(ρ(ξ,ζ))
ρ(ξ,ζ)

)

)

≤
σ

(
a + ρ(ξ,ζ)

1− φ(ρ(ξ,ζ)
ρ(ξ,ζ)

)

σ

(
a + ρ(Cξ,Cζ)

1− φ(ρ(Cξ,Cζ))
ρ(Cξ,Cζ)

)

=
σ(ϕ(ξ, ζ))

σ(ϕ(Cξ, Cζ))
.

By applying Corollary 1, C possesses only one fixed point.

14
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Remark 6. Taking σ(u) = eu, ∀u > 0 in Corollary 1 (or Corollary 2), we have Corollary 2.1 (or
Corollary 2.3) of [20].

A map C ∈ CM(B, B) is called a generalized σ-contraction if it satisfies the
following condition.

There exists a function σ : (0, ∞)→ (1, ∞) such that

σ(ρ(Cξ, Cζ)) ≤ σ(φ(ρ(ξ, ζ))

σ(φ(ρ(Cξ, Cζ))
, ∀ξ, ζ ∈ B(Cξ 	= Cζ), (23)

where φ : (0, ∞)→ (0, ∞) satisfies

lim
t→0+

φ(t) = 0. (24)

Theorem 2. Let C ∈ CM(B, B) be a generalized σ-contraction. If σ satisfies (σ1), (σ4), and (σ5),
then C possesses only one fixed point.

Proof. Let ξ0 ∈ B, and let ξn = Cξn−1, ∀n ∈ N.
Then, we infer that ξn−1 	= ξn, ∀n ∈ N. Otherwise, C possesses a fixed point. So, the

proof is finished.
From (23), we find that ∀n ∈ N,

1 < σ(ρ(ξn, ξn+1)) ≤ σ(φ(ρ(ξn−1, ξn)))

σ(φ(ρ(ξn, ξn+1)))
. (25)

We now show that {ξn} is Cauchy.
From (25) and (σ4), we find that

σ(
n−1

∑
k=1

ρ(ξk, ξk+1))

≤σ(ρ(ξ1, ξ2))σ(ρ(ξ2, ξ3)) · · · · · · σ(ρ(ξn−1, ξn))

≤σ(φ(ρ(ξ0, ξ1)))

σ(φ(ρ(ξ1, ξ2)))

σ(φ(ρ(ξ1, ξ2)))

σ(φ(ρ(ξ2, ξ3)))
· · · · · · σ(φ(ρ(ξn−2, ξn−1)))

σ(φ(ρ(ξn−1, ξn)))

=
σ(φ(ρ(ξ0, ξ1)))

σ(φ(ρ(ξn−1, ξn)))

<σ(φ(ρ(ξ0, ξ1))).

Hence, we acquire

n−1

∑
k=1

ρ(ξk, ξk+1) < φ(ρ(ξ0, ξ1)),

which yields
∞

∑
n=1

ρ(ξn, ξn+1) < ∞.

Thus, {ξn} is Cauchy. Because B is complete, there is ξ∗ ∈ B such that

lim
n→∞

ρ(ξ∗, ξn) = 0.

15
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By (ρ3), (σ4), and (23), we infer the following inequality,

σ(ρ(ξn, Cξ∗)
≤σ(ρ(ξn, ξ∗))σ(ρ(ξ∗, ξn+1))σ(ρ(ξn+1, Cξ∗))

≤σ(ρ(ξn, ξ∗))σ(ρ(ξ∗, ξn+1))
σ(φ(ρ(ξn, ξ∗)))

σ(φ(ρ(ξn+1, Cξ∗)))
<σ(ρ(ξn, ξ∗))σ(ρ(ξ∗, ξn+1))σ(φ(ρ(ξn, ξ∗))).

(26)

Applying (24) to the term φ(ρ(ξn, ξ∗)) in (26), we find that

lim
n→∞

φ(ρ(ξn, ξ∗)) = 0,

because
lim

n→∞
ρ(ξn, ξ∗) = 0.

Hence, we infer that
lim

n→∞
σ(φ(ρ(ξn, ξ∗))) = 1. (27)

By letting n → ∞ in (26) and applying (27),

lim
n→∞

σ(ρ(ξn, Cξ∗)) = 1,

which yields
lim

n→∞
ρ(ξn, Cξ∗) = 0.

Applying Lemma 1, we find that ξ∗ = Cξ∗, and C possesses a fixed point.
We now show that C possesses only one fixed point.
Let μ = Cμ and ν = Cν be such that μ 	= ν.
Then, it follows from (23) that

1 < σ(ρ(μ, ν)) = σ(ρ(Cμ, Cν)) ≤ σ(φ(ρ(μ, ν))

σ(φ(ρ(Cμ, Cν))
= 1,

which leads to a contradiction.
Hence, C possesses only one fixed point.

Applying Theorem 2 to Newton’s method, we can find the roots of equations.
We recall Newton’s iterative scheme:

ξn+1 = ξn − f (ξn)

f ′(ξn)
, n = 0, 1, 2, · · ·

where f : X → R, X ⊂ R, is a differentiable function, and ξ0 is an initial point for finding
the root of the equation f (ξ) = 0.

Example 3. Let f (ξ) = ξ2 − 4, and let us apply Theorem 2 to determine the roots of the equation
f (ξ) = 0.

We define a map C : [2, ∞)→ [2, ∞) using

Cξ = ξ − f (ξ)
f ′(ξ) =

1
2
(ξ +

4
ξ
).

Then, we have that for ξ ∈ [2, ∞), Cξ = ξ if and only if f (ξ) = 0.
Let σ(u) = eu ∀u > 0 and φ(t) = 2t ∀t > 0.

16



Axioms 2025, 14, 635

We find that for all ξ, ζ ∈ [2, ∞) with ρ(Cξ, Cζ) > 0,

σ(ρ(Cξ, Cζ)) = σ(| Cξ − Cζ |) = σ(
1
2
| (ξ + 4

ξ
)− (ζ +

4
ζ
) |)

=σ(
1
2
| ξ − ζ || 1− 4

ξζ
|) ≤ σ(

1
2
| ξ − ζ |)

≤σ(2 | ξ − ζ | − | ξ − ζ |) ≤ σ(2 | ξ − ζ | −2 | Cξ − Cζ |)

=σ(φ(ρ(ξ, ζ))− φ(ρ(Cξ, Cζ))) =
σ(φ(ρ(ξ, ζ)))

σ(φ(ρ(Cξ, Cζ)))

By Theorem 2, C has a fixed point ξ∗ ∈ [2, ∞). In fact, ξ∗ = 2. Thus, the equation f (ξ) = 0
has a solution ξ∗ = 2.

Corollary 3 is obtained by taking σ(ı) = eı ∀ı > 0 in Theorem 2.

Corollary 3. Let C ∈ CM(B, B) be such that

ρ(Cξ, Cζ) ≤ φ(ρ(ξ, ζ))− φ(ρ(Cξ, Cζ)), ∀ξ, ζ ∈ B(Cξ 	= Cζ),

where φ : (0, ∞)→ (0, ∞) satisfies (24).
Then, C possesses only one fixed point.

Remark 7. Corollary 3 generalizes and extends Theorem 4 [27] to Branciari distance spaces without
the continuity of map C and φ(0) = 0.

Remark 8. It follows from Remark 2 that our main theorems also hold in complete metric spaces.

4. Corollaries

In this section, we give several fixed-point results and coupled fixed-point results that
are obtained by applying the main theorem.

Corollary 4 (Caristi). Let C ∈ CM(B, B) be such that

ρ(ξ, Cξ) ≤ f (ξ)− f (Cξ), ∀ξ ∈ B(ξ 	= Cξ), (28)

where f : B → [0, ∞) is an lsc function.
Then, C possesses a fixed point.

Proof. Let σ(ν) = eν, ∀ν > 0.
It follows from (28) that for all ξ ∈ B with ξ 	= Cξ,

σ(ρ(ξ, Cξ)) = eρ(ξ,Cξ) ≤ e f (ξ)− f (Cξ) =
e f (ξ)

e f (Cξ)
. (29)

We define f : B → [0, ∞) by

f (ξ) = −a + ln(σ(φ(ξ)))),

where φ : B → [a, ∞), a > 0, is an lsc function.
Then, f is an lsc function. From (29), we acquire that for all ξ ∈ B with ξ 	= Cξ,

σ(ρ(ξ, Cξ)) ≤ e f (ξ)

e f (Cξ)
=

σ(φ(ξ))

σ(φ(Cξ))
.

17
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By Theorem 1, C possesses a fixed point.

Recall that a map C ∈ CM(B, B) is called σ-contraction [28] if it satisfies

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]k, ∀ξ, ζ ∈ B(Cξ 	= Cζ), (30)

where k ∈ (0, 1), and σ : (0, ∞)→ (1, ∞) is a function.
Jleli and Samet [28] proved that every σ-contraction C ∈ CM(B, B) possesses only

one fixed point whenever σ is non-decreasing and satisfies (σ1) and (σ2).

By applying Corollary 2, we have Theorem 2.1 of [28].

Corollary 5 (Jleli and Samet). Let C ∈ CM(B, B) be a σ-contraction. If σ satisfies (σ1), (σ3),
(σ4),(σ5), (σ6), and (σ7), then C possesses only one fixed point.

Proof. We define φ : [0, ∞)→ [0, ∞) by φ(s) = ks, ∀s > 0, where k ∈ (0, 1).
Then, φ is an lsc function. By applying (30) and (σ7), we have that for all ξ, ζ ∈ B with

Cξ 	= Cζ,
σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]k = σ(kρ(ξ, ζ)) = σ(φ(ρ(ξ, ζ)).

By Corollary 2, C possesses only one fixed point.

Corollary 6. Let C ∈ CM(B, B) be such that

σ(ρ(Cξ, CCξ)) ≤ [σ(ρ(ξ, Cξ))]k, ∀ξ ∈ B(Cξ 	= CCξ),

where k ∈ (0, 1). If σ satisfies (σ1), (σ3), (σ4), (σ5), (σ6), and (σ7), then C possesses only one
fixed point.

Remark 9. Let (B, ρ) be a Branciari distance space such that ρ is an lsc function with respect to
the first variable. If (σ7) is satisfied, then the σ-Caristi map is a generalization of a σ-contraction. In
fact, if C : B → B is a σ-contraction, then there is k ∈ (0, 1) such that

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]k, ∀ξ, ζ ∈ B(Cξ 	= Cζ).

Let k = 1− r, r ∈ (0, 1).
We find that

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]k = [σ(ρ(ξ, ζ))]1−r =
σ(ρ(ξ, ζ))

[σ(ρ(ξ, ζ))]r
,

which implies

σ(ρ(ξ, ζ)) ≤ [σ(ρ(ξ, ζ))]
1
r

[σ(ρ(Cξ, Cζ))]
1
r
=

σ( 1
r ρ(ξ, ζ))

σ( 1
r ρ(Cξ, Cζ))

.

Let ζ = Cξ and φ(ξ) = 1
r ρ(ξ, Cξ).

Then, we infer that

σ(ρ(ξ, Cξ)) ≤ σ(φ(ξ))

σ(φ(Cξ))
.

Hence, C is a σ-Caristi map.

Remark 10. Inequality (23) of Theorem 2 is a generalization of a σ-contraction whenever (σ7) is
satisfied. In fact, if C is a σ-contraction, then

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]k, ∀ξ, ζ ∈ B(Cξ 	= Cζ) where k ∈ (0, 1).

18
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Then, we have that

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]
k

1+k−√k ,

which implies that

[σ(ρ(Cξ, Cζ))]1−
√

k ≤ [σ(ρ(ξ, ζ))]k

[σ(ρ(Cξ, Cζ))]k
.

Hence, we infer that

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]
k

1−√k

[σ(ρ(Cξ, Cζ))]
k

1−√k

=
σ( k

1−√k
ρ(ξ, ζ))

σ( k
1−√k

ρ(Cξ, Cζ))
.

Let φ(s) = k
1−√k

s, ∀s > 0.
Then, we find that

σ(ρ(Cξ, Cζ)) ≤ σ(φ(ρ(ξ, ζ)))

σ(φ(ρ(Cξ, Cζ)))
.

A map C ∈ CM(B, B) is called a σ-(φ, ϕ)-contraction if it satisfies the following condition.
There exists a function σ : (0, ∞)→ (0, ∞) such that

σ(φ(ρ(Cξ, Cζ))) ≤ σ(φ(ρ(ξ, ζ)))

σ(ϕ(ρ(ξ, ζ)))
∀ξ, ζ ∈ B(ξ 	= ζ) (31)

where φ : [0, ∞) → [0, ∞) is a continuous and strictly increasing function and
ϕ : [0, ∞)→ [0, ∞) is a continuous and non-decreasing function such that φ(t) = ϕ(t) = 0
if and only if t = 0 and

0 < φ(t) ≤ t, ϕ(t) ≥ t, ∀t > 0 (32)

Note that φ : (0, ∞) → (0, ∞) is a continuous and strictly increasing function and
ϕ : (0, ∞)→ (0, ∞) is a continuous and non-decreasing function such that (32) is satisfied.

Remark 11. A generalized σ-contraction is a generalization of a σ-(φ, ϕ)-contraction, where σ is
satisfied (σ5). Actually, if C ∈ CM(B, B) is a σ-(φ, ϕ)-contraction, then from (31), we have that

φ(ρ(Cξ, Cζ)) < φ(ρ(ξ, ζ)) because (σ5) holds.

Hence, ρ(Cξ, Cζ) < ρ(ξ, ζ) and, thus, ϕ(Cξ, Cζ) ≤ ρ(ξ, ζ). It follows from (31) that

σ(φ(ρ(Cξ, Cζ))) ≤ σ(φ(ρ(ξ, ζ)))

σ(ϕ(ρ(ξ, ζ)))
≤ σ(φ(ρ(ξ, ζ)))

σ(ϕ(ρ(Cξ, Cζ)))

≤ σ(ρ(ξ, ζ))

σ(ϕ(ρ(Cξ, Cζ)))
≤ σ(ϕ(ρ(ξ, ζ)))

σ(ϕ(ρ(Cξ, Cζ)))
, ∀ξ, ζ ∈ B(Cξ 	= Cζ).

Hence, we infer that

σ(ρ(Cξ, Cζ)) ≤ σ(ϕ(ρ(ξ, ζ)))

σ(ϕ(ρ(Cξ, Cζ)))
, ∀ξ, ζ ∈ B(Cξ 	= Cζ).

Remark 12. A σ-contraction map is σ-(φ, ϕ)-contraction, where σ is satisfied (σ5), (σ6) and (σ7).
Let C : B → B be σ-contraction. Then there exists 0 < k < 1 such that, for all ξ, ζ ∈ B,

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]k.

Let φ(t) = t, ϕ(t) = rt, r = 1− k and let σ(t) = et, ∀t > 0.
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Then, we have that

σ(φ(ρ(Cξ, Cζ))) ≤ [σ(ρ(ξ, ζ))]1−r =
σ(ρ(ξ, ζ))

[σ(ρ(ξ, ζ))]r

=
σ(ρ(ξ, ζ))

[σ(rρ(ξ, ζ))]
=

σ(φ(ρ(ξ, ζ)))

σ(ϕ(ρ(ξ, ζ)))
, ∀ξ 	= ζ.

Hence, C is a σ-(φ, ϕ)-contraction map.

The following example shows that σ-Caristi map is not a σ-contraction map, and it is
not a generalized σ-contraction.

Example 4. Let B = [0, ∞) and ρ(ξ, ζ)) =| ξ − ζ |, ∀ξ, ζ ∈ B.
Let us define a map C : B → B by Cξ =

√
ξ, and let φ(t) = ϕ(t) = t, σ(t) = et, ∀t > 0.

Then, we infer that, for all ξ ∈ B,

σ(ϕ(ξ))

σ(ϕ(Cξ))
= σ(ϕ(ξ)− ϕ(Cξ)) = σ(ξ −√

ξ) = σ(ρ(ξ, Cξ)).

Hence, C is a σ-Caristi map.
We now show that C is not a generalized σ-contraction map.
Suppose that C is a generalized σ-contraction map.
Then, for all ξ, ζ ∈ B with ξ > ζ,

e
√

ξ−√ζ = σ(ρ(Cξ, Cζ))

≤ σ(ϕ(ρ(ξ, ζ)))

σ(ϕ(ρ(Cξ, Cζ)))
=

σ(ρ(ξ, ζ))

σ(ρ(Cξ, Cζ))

=
eξ−ζ

e
√

ξ−√ζ
= e(

√
ξ−√ζ)(

√
ξ+
√

ζ−1).

Hence, √
ξ +

√
ζ − 1 ≥ 1

which leads to a contradiction, for ξ = 1
4 , ζ = 1

16 .
Hence, C is not a generalized σ-contraction.

Example 5. Let B = [5, ∞) and ρ(ξ, y) =| ξ − y |, ∀ξ, y ∈ B.
Define a map C : B → B by Cξ = 1

5 ξ + 4, and let φ(t) = t, ϕ(t) = 1
2 t, σ(t) = et ∀t > 0.

σ(ρ(Cξ, Cζ)) = σ(
1
5
| ξ − ζ |)

≤σ(
4
5
| ξ − ζ |) = σ(φ(| ξ − ζ |)− φ(| Cξ − Cζ |))

=σ(φ(ρ(ξ, ζ))− φ(ρ(Cξ, Cζ))) =
σ(φ(ρ(ξ, ζ))

φ(ρ(Cξ, Cζ))
.

Thus, C is a generalized σ-contraction map.
We now show that C is not a σ-Caristi map.
We infer that, for all ξ, ζ ∈ B,

σ(φ(ξ)

σ(φ(Cξ))
= σ(φ(ξ)− φ(Cξ)) = σ(

2
5

ξ − 2)

<σ(
4
5

ξ − 4) = σ(ρ(ξ, Cξ))
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This implies that C is not a σ-Caristi map.

The following figure is derived from the previously mentioned remarks and the above
examples. Here, the conditions of σ applied in each remark are also applied.

The following Figure 1 was created with reference to [42].

σ-Caristi map Generalized σ-contraction

σ-contraction σ-(φ, ϕ)-contraction

Remark
9

Remark
11

Remark 11 and 12

Remark 10

Figure 1. Relationships between different types of contractions.

From the above figure, it can be seen that a σ-contraction implies a σ-Caristi mapping,
a generalized σ-contraction, and a σ-(φ, ϕ)-contraction. Moreover, a σ-(φ, ϕ)-contraction
also implies a σ-contraction. On the other hand, there is no implication relationship between
the generalized σ-contraction and the σ-Caristi mapping.

By taking σ(u) = 1 + ln(1 + u), u > 0 in Theorem 1, we acquire Corollary 7.

Corollary 7. Let C ∈ CM(B, B) be such that

1 + ln(1 + ρ(ξ, Cξ)) ≤ 1 + ln(1 + φ(ξ))

1 + ln(1 + φ(Cξ))
, ∀ξ ∈ B(ξ 	= Cξ),

where φ : B → [a, ∞) is an lsc function, a > 0.
Then, C possesses a fixed point.

We apply Theorem 1 to prove the existence of coupled fixed points.
Let B be a nonempty set, and let P : B× B → B be a map. A point (ξ, ζ) ∈ B× B is

said to be a coupled fixed point of P if it satisfies

P(ξ, ζ) = ξ and P(ζ, ξ) = ζ.

Lemma 3 ([43]). Let B be a nonempty set, (ξ, ζ) ∈ B× B, and let P : B× B → B be a map. We
assume that Q : B× B → B× B is a map defined by

Q(ξ, ζ) = (P(ξ, ζ), P(ζ, ξ)). (33)

Then, we find that

P(ξ, ζ) = ξ and P(ζ, ξ) = ζ ⇐⇒ Q(ξ, ζ) = (ξ, ζ).

Lemma 4. Let (B, ρ) be a complete Branciari distance space. We define ρ̂ : B2 × B2 → [0, ∞) by

ρ̂((ξ, ζ), (ς, ι)) = ρ(ξ, ς) + ρ(ζ, ι). (34)

Then, (B× B, ρ̂) is a complete Branciari distance space.

21



Axioms 2025, 14, 635

Proof. Let (ξ, ζ), (ς, ι) ∈ B× B. Then, we have that

ρ̂((ξ, ζ), (ς, ι)) = 0 ⇔ ρ(ξ, ς) + ρ(ζ, ι) = 0 ⇔ (ξ, ζ) = (ς, ι).

Thus, (ρ1) is satisfied. Obviously, (ρ2) holds.
We infer that for all (ξ, ζ), (ς, ι) ∈ B × B and for all distinct points (μ, ν), (κ, ω) ∈

B× B \ {(ξ, ζ), (ς, ι)},

ρ̂((ξ, ζ), (ς, ι)) = ρ(ξ, ς) + ρ(ζ, ι)

≤ρ(ξ, μ) + ρ(μ, κ) + ρ(κ, ς) + ρ(ζ, ν) + ρ(ν, ω) + ρ(ω, ι)}
≤ρ(ξ, μ) + ρ(ζ, ν) + ρ(μ, κ) + ρ(ν, ω) + ρ(κ, ς), ρ(ω, ι)

=ρ̂((ξ, ζ), (μ, ν)) + ρ̂((μ, ν), (κ, ω)) + ρ̂((κ, ω), (ς, ι)).

Thus, (ρ3) holds. Hence, (B× B, ρ̂) is a Branciari distance space.
We now show that (B× B, ρ̂) is complete.
Let {�n = (ξn, ζn)} ⊂ B× B be a Cauchy sequence, and let ε > 0 be given.
Then, there exists n0 ∈ N such that for all m > n > n0,

ρ̂(�n, �m) < ε,

which implies that

ρ(ξn, ξm) <
1
2

ε and ρ(ζn, ζm) <
1
2

ε for all m > n > n0.

Hence, {ξn} and {ζn} are Cauchy sequences in B. From the completeness of B, there exist
ξ, ζ ∈ B such that

lim
n→∞

ρ(ξ, ξn) = 0 and lim
n→∞

ρ(ζ, ζn) = 0.

Hence, there exists n1 ∈ N such that for all n > n1,

ρ(ξn, ξ) <
1
2

ε and ρ(ζn, ζ) <
1
2

ε.

Thus, we have that for all n > n1,

ρ̂(�n, (ξ, ζ)) = ρ̂((ξn, ζn), (ξ, ζ)) = ρ(ξn, ξ) + ρ(ζn, ζ) < ε.

Hence, we have the desired result.

Corollary 8. Let (B, ρ) be a complete Branciari distance space. We assume that P : B× B → B is
a map such that for all (ξ, ζ) ∈ B× B with (ξ, ζ) 	= (P(ξ, ζ), P(ζ, ξ)),

σ(max{ρ(ξ, P(ξ, ζ)), ρ(ζ, P(ζ, ξ))}) ≤ σ(φ̂(ξ, ζ)))

σ(φ̂(P(ξ, ζ), P(ζ, ξ)))
(35)

where φ̂ : B× B → [a, ∞) is an lsc function, a > 0. If σ satisfies (σ1), (σ3), (σ4), and (σ5), then P
possesses a coupled fixed point.

Proof. Let Q and ρ̂ be defined as in (31) and (32), respectively.
Then, from (33), we find that for all (ξ, ζ) ∈ B× B with (ξ, ζ) 	= Q(ξ, ζ),

σ(ρ̂((ξ, ζ), Q(ξ, ζ)) = σ(max{ρ(ξ, P(ξ, ζ)), ρ(y, P(ζ, ξ))})
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≤ σ(φ̂(ξ, ζ))

σ(φ̂(P(ξ, ζ), P(ζ, ξ)))
=

σ(φ̂(ξ, ζ))

σ(φ̂(Q(ξ, ζ)))
.

By Theorem 1, Q possesses a fixed point. Thus, P possesses a coupled fixed point.

The following result is obtained using Remark 2.

Corollary 9. Let (B, ρ) be a complete metric space. We assume that P : B× B → B is a map such
that for all (ξ, ζ) ∈ B× B with (ξ, ζ) 	= (P(ξ, ζ), P(ζ, ξ)),

σ(max{ρ(ξ, P(ξ, ζ)), ρ(ζ, P(ζ, ξ))}) ≤ σ(φ̂(ξ, ζ)))

σ(φ̂(P(ξ, ζ), P(ζ, ξ)))
(36)

where φ̂ : B× B → [a, ∞) is an lsc function, a > 0. If σ satisfies (σ1), (σ3), (σ4), and (σ5), then P
possesses a coupled fixed point.

Lemma 5. Let (B, ρ) be a complete Branciari distance space. Suppose that σ satisfies (σ1), (σ3),
(σ4), and (σ5).

Then, the following assertions are equivalent.

(i) We assume that P : B× B → B satisfies the condition

σ(ρ(P(ξ, ζ), P(ξ∗, ζ∗)) ≤ [σ(ρ(ξ, ξ∗))]α[σ(ρ(ζ, ζ∗))]β (37)

for all ξ, ζ, ξ∗, ζ∗ ∈ B, where 0 < α + β < 1.
Then, P possesses a unique coupled fixed point.

(ii) We assume that C : B → B satisfies the condition

σ(ρ(Cξ, Cζ)) ≤ [σ(ρ(ξ, ζ))]k (38)

for all ξ, ζ ∈ B, where 0 < k < 1.
Then, C possesses a unique fixed point.

Proof. Firstly, we show that (i) implies (ii).
Let k = α + β. Then, for all ξ, y, ξ∗, y∗ ∈ B, it follows from (i) that

σ(ρ̂(Q(ξ, ζ), Q(ξ∗, ζ∗)
=σ(ρ̂((P(ξ, ζ), P(ζ, ξ)), (P(ξ∗, ζ∗), P(ζ∗, ξ∗)))
=σ(ρ(P(ξ, ζ), P(ξ∗, ζ∗)) + ρ(P(ζ, ξ), P(ζ∗, ξ∗)))
≤σ(ρ(P(ξ, ζ), P(ξ∗, ζ∗)))σ(ρ(P(ζ, ξ), P(ζ∗, ξ∗)))
≤[σ(ρ(ξ, ξ∗))]α[σ(ρ(ζ, ζ∗))]β[σ(ρ(ζ, ζ∗))]α[σ(ρ(ξ, ξ∗))]β

=[σ(ρ(ξ, ξ∗))]α+β[σ(ρ(ζ, ζ∗))]α+β

=[σ(ρ(ξ, ξ∗))]k[σ(ρ(ζ, ζ∗))]k

=[σ(ρ(ξ, ξ∗))σ(ρ(ζ, ζ∗))]k

=[σ(ρ(ξ, ξ∗) + ρ(ζ, ζ∗))]k

=[σ(ρ̂((ξ, ζ), (ξ∗, ζ∗)))]k.

Hence, the proof follows from (ii).
Let us define a map P : B× B → B using

P(ξ, ζ) = Cξ.
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It follows from (34) that for all ξ, ζ, ξ∗, ζ∗ ∈ B,

σ(ρ(P(ξ, ζ), P(ξ∗, ζ∗))) ≤ [σ(ρ(ξ, ξ∗))]k,

which corresponds to (35) with α = k and β = 0.
Thus, by (i), P has a unique coupled fixed point (ξ, ζ) ∈ B× B. Hence,

x = P(ξ, ζ) = Cξ and ζ = P(ξ, ζ) = Cζ.

From (26), we have

ρ(ξ, ζ) = ρ(P(ξ, ζ), P(ζ, ξ)) ≤ kρ(ξ, ζ),

which implies that ξ = ζ.
Thus, C has a unique fixed point.

Corollary 10. Let (B, ρ) be a complete Branciari distance space. Suppose that ρ satisfies (ρ1), (ρ3),
(ρ4), and (ρ5). We assume that P : B× B → B satisfies the condition

σ(ρ(P(ξ, ζ), P(ξ∗, ζ∗)) ≤ [σ(ρ(ξ, ξ∗))]α[σ(ρ(ζ, ζ∗))]β (39)

for all ξ, ζ, ξ∗, ζ∗ ∈ B, where 0 < α + β < 1.
Then, P possesses a unique coupled fixed point.

Proof. By Remark 9 and Theorem 1, C has a fixed point whenever the contractive condition
in (36) is satisfied. Obviously, the contractive condition in (36) guarantees the uniqueness
of the fixed point. From Lemma 5, we have the desired result.

Remark 13. The above result is an extension of Theorem 2.2 from [13], and Lemma 5 and
Corollary 10 hold for n-tuple fixed points (see [13]).

5. Applications

The most interesting application of fixed-point theory is its application to function
spaces. In this section, we show the existence and uniqueness of solutions to integral
equations and differential equations in function spaces.

Let C([0, T],R) = { f | f : [0, T] → R be continuous}, and let ρ( f , g) = sup{| f (t)−
g(t) |: t ∈ [0, T]}, where T > 0. Obviously, (C([0, T],R), ρ) is a complete metric space, and
hence, it is a complete Branciari distance space.

5.1. Integral Equations

We consider an integral equation of the form

f (t) = p(t) +
∫ T

0
H(t, s)K(s, f (s))ds, t ∈ [0, T] (40)

where p : [0, T] → R, K : [0, T]×R → R and H : [0, T]× [0, T] → R are continuous, and
H(t, ·) : [0, T]→ R is measurable.

Theorem 3. We assume that H(t, s) ≥ 0 for all t, s ∈ [0.T], and
∫ T

0 H(t, s)ds ≤ 1 for all
t ∈ [0, T], and we suppose that for each t ∈ [0, T] and for all f , g ∈ C([0, T],R),

| K(t, f (t))− K(t, g(t)) |≤ −1 +
√

1 + ( f (t)− g(t))2.
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Then, the integral Equation (31) has a solution in C([0, T],R).

Proof. We define a map S f (t) = p(t) +
∫ T

0 H(t, s)K(s, f (s))ds, t ∈ [0, T], and suppose that
σ satisfies (σ1), (σ3), (σ4), (σ5), and (σ6).

We infer that for all t ∈ [0, T],

| S f (t)− Sg(t) |=|
∫ T

0
H(t, s)(K(s, f (s)− K(s, g(s))ds |

≤
∫ T

0
H(t, s) | K(s, f (s)− K(s, g(s) | ds

≤
∫ T

0
H(t, s)(−1 +

√
1 + ( f (s)− g(s))2)ds

≤
∫ T

0
H(t, s)(−1 +

√
1 + (ρ( f , g))2)ds

≤− 1 +
√

1 + (ρ( f , g))2.

By taking the supremum and applying (σ6), we find that

σ(ρ(S f , Sg)) ≤ σ(−1 +
√

1 + (ρ( f , g))2),

which implies that

σ(ρ(S f , Sg)) ≤ σ(ρ( f , g))2 − (ρ(S f , Sg))2) (41)

=σ(φ(ρ( f , g))− φ(ρ(S f , Sg))) (42)

≤ (φ(ρ( f , g))
φ(ρ(S f , Sg))

∀ f , g ∈ [0, T]

where φ(t) = t2.
By Theorem 2, S has a fixed point. Thus, Equation (31) has a solution.

5.2. Differential Equations

Our objective is to apply Theorem 2 to show the existence of a solution for the following
first-order periodic boundary value problem:

⎧⎨
⎩ f ′(t) = θ(t, f (t)), t ∈ [0, T],

f (0) = f (T)
(43)

where f ∈ C([0, T],R), and θ : [0, T]×R→ R is a continuous function.
Let G(t, s) be a Green function defined by

G(t, s) =

⎧⎨
⎩

eη(T+s−t)

eηT−1
, 0 ≤ s ≤ t ≤ T,

eη(s−t)
eηT−1

, 0 ≤ t ≤ s ≤ T

for any positive real number η with η > T.
Note that

sup
t∈[0,T]

∫ T

0
G(t, s)ds = 1.

The preceding problem (34) is equivalent to the integral equation

f (t) =
∫ T

0
G(t, s)[θ(s, f (s)) + η f (s)]ds. (44)
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We define the map S : C([0, T],R)→ C([0, T],R) by

S( f (t)) =
∫ T

0
G(t, s)[θ(s, f (s)) + η f (s)]ds, t ∈ [0, T].

Then, f is a solution of (34) if and only if it is a fixed point of S. q

Theorem 4. We assume that for any f (t), g(t) ∈ C([0, T],R),

| θ(t, f (t)) + η f (t)− [θ(t, g(t)) + ηg(t)] |≤ −1 +
√

1 + 4[ f (t)− g(t)]2

2
(45)

where t ∈ [0, T], η > T > 0.
Then, Equation (34) has a solution.

Proof. Suppose that σ satisfies (σ1), (σ3), (σ4), (σ5), and (σ6).
Applying (36), we infer that for any f (t), g(t) ∈ C([0, T],R),

| S( f (t))− S(g(t)) |

= |
∫ T

0
G(t, s)[θ(s, f (s)) + η f (s)]ds−

∫ T

0
G(t, s)[θ(s, g(s)) + ηg(s)]ds |

≤
∫ T

0
G(t, s) | θ(s, f (s)) + η f (s)− θ(s, g(s))− ηg(s) | ds

≤ sup
t∈[0,T]

| θ(s, f (s)) + η f (s)− θ(s, g(s))− ηg(s) |
∫ T

0
G(t, s)ds

≤−1 +
√

1 + 4[ f (s)− g(s)]2

2

≤−1 +
√

1 + 4[ρ( f , g)]2

2
.

We take the supremum to find that

ρ(S( f ), S(g)) ≤ −1 +
√

1 + 4[ρ( f , g)]2

2
,

which implies that

σ(ρ(S( f ), S(g)))

≤σ([ρ( f , g)]2 − [ρ(S( f ), S(g))]2)

=σ(φ(ρ( f , g))− φ(S( f ), S(g)))

≤ σ(φ(ρ( f , g))
φ(S( f ), S(g))

, where φ(t) = t2 ∀t > 0. (46)

By Theorem 2, S has a fixed point. Hence, Equation (34) has a solution.

6. Conclusions

In this study, we give the concepts of σ-Caristi maps and generalized σ-contraction
maps and have related fixed-point results in the setting of complete Branciari distances.
By applying the main theorem, we have several corollaries, including Caristi’s fixed-point
theorem, Jleli and Samet’s fixed-point theorem, and coupled fixed-point theorem. We give
examples to illustrate the sequential topology and the main theorem. In particular, we
provide an example of applying the main theorem to Newton’s method to find the roots
of an equation. We investigated the relationships among various contraction conditions
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introduced in this paper. As applications, we solve an integral equation and an ordinary
differential equation with the help of our main result.

In the future, based on our main theorem, we will investigate the σ-Ekland variational
principle and the σ-Takahashi minimization principle, and we will discuss their equivalence
with our main theorem.
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Abstract: A pair (A, B) of Banach space operators is strict (m, X)-isometric for a Banach

space operator X ∈ B(X ) and a positive integer m if�m
A,B(X) =

(
m
∑

j=0

(
m
j

)
Lj

ARj
B

)
(X) =

0 and �m−1
A,B (X) 	= 0, where LA and RB ∈ B(B(X )) are, respectively, the operators of left

multiplication by A and right multiplication by B. Define operators EA,B and EA,B(X)

by EA,B = LARB and (EA,B(X))n = En
A,B(X) for all non-negative integers n. Using little

more than an algebraic argument, the following generalised version of a result relating
(m, X)-isometric properties of pairs (A1, A2) and (B1, B2) to pairs (EA1,A2(S1), EB1,B2(S2))

and (EA1,A2 , EB1,B2) is proved: if Ai, Bi, Si, X are operators in B(X ), 1 ≤ i ≤ 2 and X a
quasi-affinity, then the pair (EA1,A2(S1), EB1,B2(S2)) (resp., the pair (EA1,A2 , EB1,B2)) is strict
(m, X)-isometric for all X ∈ B(X ) if and only if there exist positive integers mi ≤ m,
1 ≤ i ≤ 2 and m = m1 + m2 − 1, and a non-zero scalar β such that I − EβA1,A2(S1) is
(strict) m1-nilpotent and I − E 1

β B1,B2
(S2) is (strict) m2-nilpotent (resp., (βA1, B1) is strict

(m1, I)-isometric and ( 1
β B2, A2) is strict (m2, I)-isometric).

Keywords: Banach space; m-isometric; left/right multiplication operator; null symbol;
strict m-isometric operator

MSC: 47A55; 47A05; 47A65; 47B25

1. Introduction

Let B(X ) (resp., B(H)) denote the algebra of operators, i.e., bounded linear transfor-
mations, on a complex infinite dimensional Banach space X (resp., Hilbert space H) into
itself. An operator pair (A, B) ∈ B(X )× B(X ) is (m, X)-isometric for some positive integer
m, m ∈ N+, and operator X ∈ B(X ), if

�m
A,B(X) = (I − LARB)

m(X) =

(
m

∑
j=0

(−1)j

(
m
j

)
Lj

ARj
B

)
(X)

=
m

∑
j=0

(−1)j

(
m
j

)
AjXBj

= 0,

where I is the identity of B(X ), LA and RB ∈ B(B(X )) are the operators

LA(Z) = AZ and RB(Z) = ZB, Z ∈ B(X ),

of left multiplication by A and right multiplication by B, respectively. (m, X)-isometric
operators arise naturally in classical Function Theory and a study of the structure of such

Axioms 2025, 14, 503 https://doi.org/10.3390/axioms14070503
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operators has been carried out by a number of authors in the recent past (see [1–8] and some
of the references cited there). A number of the properties of (m, X)-isometric operators lie
on the surface and are readily obtained. Thus,

(A, B) ∈ (m, X)− isometric =⇒ �m+t
A,B (X) = �t

A,B(�m
A,B(X)) = 0 for all t ∈ N;

�m
An ,Bn(X) = 0 ⇐⇒ (I − Ln

ARn
B)

m(X) =

(
n−1

∑
j=0

(LARB)
j

)m

(�m
A,B(X)) = 0 for all n ∈ N;

�m
A,B(X) = 0 ⇐⇒ �m−1

A.B (X) = LARB(�m−1
A,B (X))⇐⇒ �m−1

A.B (X) = Ln
ARn

B(�m−1
A,B (X)) for all n ∈ N.

Some other properties of (m, X)-isometric operators lie deeper and their proof requires
some argument. For example, if �m

A,B(X) = 0, N1 ∈ B(X ) is an n1-nilpotent operator for
some positive integer n1 ∈ N, [A, N1] = AN1 − N1 A = 0 (i.e., A commutes with N1), then

�m+n1−1
A+N1,B (X) =

m+n1−1

∑
j=0

(−1)j

(
m + n1 − 1

j

)
(LN1 RB)

j�m+n1−1−j
A,B (X)

= 0,

since �m+n1−1−j
A,B (X) = 0 for all m + n1 − 1− j ≥ m, equivalently, j ≤ n1 − 1, and Lj

N1
= 0

for all j ≥ n1. Furthermore, if N2 ∈ B(X ) is also an n2-nilpotent operator which commutes
with B, then

�m+n1+n2−2
A+N1,B+N2

(X) =
m+n1+n2−2

∑
j=0

(−1)j

(
m + n1 + n2 − 2

j

)
(LA+N1 RN2)

j�m+n1+n2−2−j
A+N1,B (X) = 0,

since �m+n1+n2−2−j
A+N1,B (X) = 0 if m + n1 + n2 − 2− j ≥ m + n1 − 1, equivalently, j ≤ n2 − 1,

and Rj
N2

= 0 if j ≥ n2. Conclusion: if (A, B) is (m, X)-isometric, Ni are ni-nilpotent operators,
and [A, N1] = [B, N2] = 0, then (A + N1, B + N2) is (m + n1 + n2 − 2, X)-isometric.

Let A, B, S, Ai, Bi, Si ∈ B(X ), 1 ≤ i ≤ 2, and let EA,B ∈ B(B(X )) and EA,B(S) ∈ B(X )

be the operators defined by

EA,B = LARB so that En
A,B(S) = (LARB)

n(S) = AnSBn for all n ∈ N,

EA,B(S)
n = En

A,B(S) = AnSBn for all n ∈ N, in particular EA,B(S)0 = S.

This paper considers (m, X)-isometric pairs (EA1,A2(S1), EB1,B2(S2)) such that�m1
A1,A2

(S1) =

0 = �m2
B1,B2

(S2) for some integers m1, m2 ∈ N+, and pairs (EA1,A2 , EB1,B2). ((m, X)-isometric
operators with entries (EA1,A2(S1), EB1,B2(S2)) have been called (m, X)-isometric operators
with null symbol entries [2,7]; m-isometric operators with entries of type (EA1,A2 , EB1,B2) have
been considered by Gu [1], and Duggal and Kim [9,10].) Let X be a quasi-affinity. (Thus, X is
injective and has a dense range.) Using little more than linear algebra, we generalise [2] (The-
orems 1 and 2(iii)) to prove that “any two of the conditions (i) (EA1,A2(S1), EB1,B2(S2)) is
(m, X)-isometric; (ii) there exists a positive integer m1 ≤ m such that I − EA1,A2(S1) is
m1-nilpotent; (iii) there exists a positive integer m2 ≤ m such that I − EB1,B2(S2) is m2-
nilpotent implies the third.” Recall that an (m, X)-isometric pair is strict (m, X)-isometric
if �m

A,B(X) = 0 and �m−1
A,B (X) 	= 0. In a similar vein, we say that an operator A is strict

m-nilpotent if Am = 0 and Am−1 	= 0. Answering an open problem raised in [2] (Sec-
tion 4), we give an elementary proof that the pair (EA1,A2(S1), EB1,B2(S2)) (resp., the pair
(EA1,A2 , EB1,B2)) is strict (m, X)-isometric for all X ∈ B(X ) if and only if there exist pos-
itive integers mi ≤ m, 1 ≤ i ≤ 2 and m = m1 + m2 − 1, and a non-zero scalar β such
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that I − EβA1,A2(S1) is strict m1-nilpotent and I − E 1
β B1,B2

(S2) is strict m2-nilpotent (resp.,

(βA1, B1) is strict (m1, I)-isometric and ( 1
β B2, A2) is strict (m2, I)-isometric).

Most of our notation is standard (and any non-standard notation will be explained at
the point of its introduction). We write A− λ for A− λI, and σa(A) for the approximate
point spectrum of the operator A. We say that the pair (A, B) of operators in B(X )× B(X )

is m-isometric if it is (m, X)-isometric for all X ∈ B(X ).
The plan of the paper is as follows. We consider null symbol operator pairs

(EA1,A2(S1), EB1,B2(S2)) in Section 2, Section 3 considers pairs (EA1,A2 , EB1,B2), Section 4
consists of a concluding remark.

2. Null Symbol Entries: Pairs (EA1,A2(S1),EB1,B2(S2))

If (A, B) ∈ B(X )× B(X ) is (m, X)-isometric for some X ∈ B(X ), then

0 = �m
A,B(X) =

(
m

∑
j=0

(−1)j

(
m
j

)
(LARB)

j

)
(X)

=

(
m

∑
j=0

(−1)j

(
m
j

)
Ej

A,B

)
(X)

=
m

∑
j=0

(−1)j

(
m
j

)
EA,B(X)j

= (I − EA,B(X))m = ∇m
A,B(X)

(by the definition of the operator EA,B(X)n, n ∈ N+). Hence, the pair (A, B) is (strictly)
(m, X)-isometric if and only if the operator ∇A,B(X) = (I − EA,B(X)) is (strictly) m-nilpotent.

Recalling that (A, B) is strictly (m, X)-isometric if and only if �m
A,B(X) = 0 and

�m−1
A,B (X) 	= 0, it follows that if ∇A,B(X) is strictly m-nilpotent, then the sequence of

operators {∇j
A,B(X)}m−1

j=0 is linearly independent. Again, if (A, B) is (m, X)-isometric, then

∇m
A,B(X) = (I − EA,B(X))∇m−1

A,B (X) = 0

⇐⇒ ∇m−1
A,B (X) = EA,B(X)∇m−1

A,B (X)

⇐⇒ ∇m−1
A,B (X) = En

A,B(X)∇m−1
A,B (X)

for all n ∈ N. Let Ai, Bi and Si, 1 ≤ i ≤ 2, be operators in B(X ) such that

∇m1
A1,A2

(S1) = 0 = ∇m2
B1,B2

(S2), m1 and m2 ∈ N+.

The following proposition relates (m1, S1)-isometric pairs (A1, A2) and (m2, S2)-isometric
pairs (B1, B2) to (m, X)-isometric pairs (EA1,A2(S1), EB1,B2(S2)).

Proposition 1. If X ∈ B(X ) is a quasi-affinity, then any two of the following conditions implies
the third:

(i) there exists m ∈ N+ such that (EA1,A2(S1), EB1,B2(S2)) is (m, X)-isometric;
(ii) there exists m1 ∈ N+, m1 ≤ m, such that ∇A1,A2(S1) is m1-nilpotent;
(iii) there exists m2 ∈ N+, m2 ≤ m, such that ∇B1,B2(S2) is m2-nilpotent.
(Here, if (ii) and (iii) hold, then m = m1 + m2 − 1.)

Proof. Let, for convenience, EA1,A2(S1) = A and EB1,B2(S2) = B.
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(ii) + (iii) =⇒ (i). Let m1 + m2 − 1 = m. By definition

�m
A,B(X) = (I − LARB)

m(X) = ((I − LA)RB + (I − RB))
m(X)

=

(
m

∑
j=0

(
m
j

)
((I − LA)RB)

m−j(I − RB)
j

)
(X)

=
m

∑
j=0

(
m
j

)
(I − A)m−jXBm−j(I − B)j

=
m

∑
j=0

(
m
j

)
∇m−j

A1,A2
(S1)XBm−j∇j

B1,B2
(S2)

(since [I − LA, RB] = [RB, I − RB] = 0). Since ∇m−j
A1,A2

(S1) = 0 for all m− j ≥ m1, equiva-

lently, j ≤ m−m1 = m2 − 1, and since ∇j
B1,B2

(S2) = 0 for all j ≥ m2, �m0
A,B(X) = 0 for all

m0 ≥ m.
(i) + (iii) =⇒ (ii). Considering next (i) and (iii), we may assume without loss of

generality that (A, B) is strict (m, X)-isometric and ∇B1,B2(S2) is strict m2-nilpotent. Since

∇m2
B1,B2

(S2) = 0 ⇐⇒ ∇m2−1
B1,B2

(S2) = Bn∇m2−1
B1,B2

(S2)

for all n ∈ N, the strictness implies that the sequence

{Bn∇j
B1,B2

(S2)}, 0 ≤ j ≤ m2 − 1

is linearly independent for all n ∈ N. If (i) holds, then (see above)

0 = �m
A,B(X) =

(
m

∑
j=0

(
m
j

)
Lm−j
∇A1,A2 (S1)

Rm−j
B Rj

∇B1,B2 (S2)

)
(X)

=
m2−1

∑
j=0

(
m
j

)
∇m−j

A1,A2
(S1)XBm−j∇j

B1,B2
(S2)

(since ∇t
B1,B2

(S2) = 0 for all t ≥ m2). The linear independence of the sequence

{Bn∇j
B1,B2

(S2)}m2−1
j=0 , taken along with the fact that X has a dense range, implies that

∇m−j
A1,A2

(S1)X = 0 ⇐⇒ ∇m−j
A1,A2

(S1) = 0, 0 ≤ j ≤ m2 − 1.

In particular, letting j = m2 − 1,

∇m−m2+1
A1,A2

(S1) = ∇m1
A1,A2

(S1) = 0.

(i) + (ii) =⇒ (iii). The proof here is similar to that of the previous case except for the
fact that we now consider the adjoint operators

(�m
A,B(X))∗ = �m

B∗ ,A∗(X∗) = �m
EB∗2 ,B∗1

(S∗2 ),EA∗2 ,A∗1
(S∗1 )

(X∗)

and
(∇m1

A1,A2
(S1))

∗ = ∇m1
A∗2 ,A∗1

(S∗1).
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Assuming strictness, it is seen that the sequence {A∗n∇j
A∗2 ,A∗1

(S∗1)} is linearly independent
for all 0 ≤ j ≤ m1 − 1 and n ∈ N; hence, since X is a quasi-affinity,

∇m−j
B∗2 ,B∗1

(S∗2)X∗ = 0 ⇐⇒ ∇m−j
B∗2 ,B∗1

(S∗2) = 0 ⇐⇒ ∇m−j
B1,B2

(S2) = 0

for all 0 ≤ j ≤ m1 − 1. In particular, ∇m−m1+1
B1,B2

(S2) = ∇m2
B1,B2

(S2) = 0.

If (EA1,A2(S1), EB1,B2(S2)) is strict (m, X)-isometric and∇B1,B2(S2) is strict m2-nilpotent,
then the argument of the proof of the proposition shows that ∇A1,A2(S1) is strict
m1 = m−m2 + 1 nilpotent. (Reason: if ∇A1,A2(S1) is t-nilpotent for some t < m1,
then (ii) and (iii) taken together imply (EA1,A2(S1), EB1,B2(S2)) is (t + m1 − 1(< m), X)-
isometric—a contradiction.) Indeed, if (EA1,A2(S1), EB1,B2(S2)) is strict (m, X)-isometric,
∇A1,A2(S1) is m1-nilpotent, and ∇B1,B2(S2) is m2 nilpotent, then

�m−1
A,B (X) =

m−1

∑
j=0

(
m− 1

j

)
∇m−j−1

A1,A2
(S1)XBm−j−1∇j

B1,B2
(S2)

=
m2−1

∑
j=0

(
m− 1

j

)
∇m−j−1

A1,A2
(S1)XBm−j−1∇j

B1,B2
(S2)

(∇j
B1,B2

(S2) = 0 for all j ≥ m2)

=

(
m− 1
m2 − 1

)
∇m1−1

A1,A2
(S1)XBm−j−1∇m2−1

B1,B2
(S2)

(∇m−j−1
A1,A2

(S1) = 0 for all m− j− 1 ≥ m1)

=

(
m− 1
m2 − 1

)
∇m1−1

A1,A2
(S1)X∇m2−1

B1,B2
(S2)

(∇m2
B1,B2

(S2) = 0 =⇒ Bm−j−1∇j
B1,B2

(S2) = ∇j
B1,B2

(S2) for all j ≥ m2)

	= 0.

Thus
(I − A)m1−1X(I − B)m2−1 	= 0,

and the conditions (I − A)m1−1 	= 0 and (I − B)m2−1 	= 0 are necessary for (EA1,A2(S1),
EB1,B2(S2)) to be strict (m, X)-isometric. These conditions are, however, not sufficient.
For example, if we choose X to be such that it maps the range of (I − B) into the null space
of (I − A), then (I − A)m1−1X(I − B)m2−1 = 0 even though neither of (I − A)m1−1 and
(I − B)m2−1 is the 0 operator. If, however, (EA1,A2(S1), EB1,B2(S2)) is strict m-isometric (i.e.,
strict (m, X)-isometric for all X), then, necessarily, (I − A)m1−1X(I − B)m2−1 = 0 if and
only if one (I − A)m1−1 or (I − B)m2−1 is 0. The proof of the following proposition uses
little more than linear algebra to prove a necessary and sufficient condition for the operator
pair (EA1,A2(S1), EB1,B2(S2)) to be strict (m, X)-isometric for a given quasi-affinity X.

Proposition 2. Given operators Ai, Bi, Si ∈ B(X ), 1 ≤ i ≤ 2, and a quasi-affinity X ∈ B(X ),
the pair of operators (EA1,A2(S1), EB1,B2(S2)) is a strict (m, X)-isometry if and only if there exist
integers mi ∈ N+ (1 ≤ i ≤ 2) and a non-trivial scalar β such that m = m1 + m2 − 1,

(i) ∇βA1,A2(S1) is a strict m1 nilpotent, ∇ 1
β B1,B2

(S2) is a strict m2-nilpotent;

(ii) ∇m1−1
A1,A2

(S1)X∇m2−1
B1,B2

(S2) 	= 0.
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Proof. As before, for convenience, we let

EA1,A2(S1) = A, EB1,B2(S2) = B, I − βA(= I − EβA1,A2(S1)) = ∇(βA), and

I − 1
β

B = I − 1
β
EB1,B2(S2) = 1− E 1

β B1,B2
(S2) = ∇(βB).

To prove the “if part” of the theorem, we start by observing that

�m
βA, 1

β B(X) =

(
m

∑
j=0

(
m
j

)
Lj

βARj
1
β B

)
(X) = �m

A,B(X).

If ∇(βA) is m1-nilpotent and ∇(βB) is m2-nilpotent, then

�m1+m2−1
βA, 1

β B
(X) = �m1+m2−1

A,B (X) = �m
A,B(X) = 0.

Also, if condition (ii) is satisfied, then �m−1
A,B (X) 	= 0, i.e., (A, B) is strict (m, X)-isometric.

For the “only if part” of the proof, we start by recalling that

�m
A,B(X) =

(
m

∑
j=0

(−1)j

(
m
j

)
Lj

ARj
B

)
(X)

=
m

∑
j=0

(−1)j

(
m
j

)
E j

A1,A2
(S1)XE j

B1,B2
(S2).

We claim that there exists a non-trivial β ∈ σa(B). For this it will suffice to prove that
0 /∈ σa(B). If 0 ∈ σa(B), then there exist sequences {xn} and {x′n}, in X and (the dual space)
X∗, respectively, such that

x′n(xn) = 〈xn, x′n〉 = 1 for all n ∈ N+ and lim
n→∞

〈Bxn, x′n〉 = 0.

We have

�m
A,B(X) =

m

∑
j=0

(−1)j

(
m
j

)
AjX lim

n→∞
〈Bjxn, x′n〉

= 0

for all j except for j = 0 when we have �m
A,B(X) = X = 0. The operator X being a

quasi-affinity, this is a contradiction and our claim is proved.
Let (0 	=)β ∈ σa(B). Then, by an argument similar to the one used above to prove

0 /∈ σa(B),

0 = �m
A,B(X) =

(
m

∑
j=0

(−1)j

(
m
j

)
βj Aj

)
(X)

⇐⇒
m

∑
j=0

(−1)j

(
m
j

)
βj Aj = (I − βA)m = 0.

Let m1 be the least positive integer such that

(I − βA)m1 = (I − βEA1,A2(S1))
m1 = (I − EβA1,A2(S1))

m1 = 0.
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Then I − βA is strictly m1-nilpotent and the sequence {∇j(βA)}m1−1
j=0 is linearly indepen-

dent. Since

0 = �m
A,B(X) = �m

βA, 1
β B(X)

=

(
(I − R 1

β B) + (I − LβA)R 1
β B

)m
(X)

=

(
m

∑
j=0

(
m
j

)
(I − R 1

β B)
m−jRj

1
β B
(I − LβA)

j

)
(X)

=
m

∑
j=0

(
m
j

)
∇j(βA)X(

1
β

B)j∇m−j(βB)

=
m1−1

∑
j=0

(
m
j

)
∇j(βA)X(

1
β

B)j∇m−j(βB)

(since ∇t(βA) = 0 for all t ≥ m1)

=⇒ X(
1
β

B)j∇m−j(βB) = 0 for all 0 ≤ j ≤ m1 − 1.

Since both X and B are injective, recall that X is a quasi-affinity and B is left invertible,
∇m−j(βB) = 0 for all 0 ≤ j ≤ m1 − 1. In particular,

∇m−m1+1(βB) = ∇m2(βB) = 0.

The strict (m, X)-isometric property of the pair (A, B), taken in conjunction with the fact
that m2 = m−m1 + 1, implies that ∇(βB) is strict m2-nilpotent. The necessity of condition
(ii) having already been seen (above), the proof is complete.

The Hilbert space case In the case in which A∗1 = A2 = A and B∗1 = B2 = B are
Hilbert space operators,

EA∗ ,A(I)n = En
A∗ ,A(I) = A∗n An, EB∗ ,B(I)n = En

B∗ ,B(I) = B∗nBn,

�n
EA∗ ,A(I),EB∗ ,B(I)(X) =

n

∑
j=0

(
n
j

)
A∗j AjXB∗jBj

for all n ∈ N+. Proposition 2 in such a case takes the following form.

Corollary 1. Given operators A, B, X ∈ B(H), X a quasi-affinity, the pair (EA∗ ,A(I), EB∗ ,B(I))
is strict (m, X)-isometric if and only if there exist positive integers mi ≤ m, m = m1 + m2 − 1,
and a (non-trivial) positive scalar β such that (βA∗, A) is strict (m1, I)-isometric, ( 1

β B∗, B) is

strict (m2, I)-isometric, and �m1−1
βA∗ ,A(I)X�m2−1

1
β B∗ ,B

(I) 	= 0.

In the absence of the property EA,B(I)n = En
A,B(I) for all n ∈ N, the strict (m, X)-

isometric property of the pair (EA∗ ,A(I), EB∗ ,B(I)) for a quasi-affinty X implies

�n
EA∗ ,A(I),EB∗ ,B(I)(X) =

n

∑
j=0

(
n
j

)
|A|2jX|B|2j;

there exist positive integers mi ≤ m, m = m1 + m2 − 1, and a (non-trivial) positive scalar
β such that (β|A|, |A|) is strict (m1, I)-isometric, ( 1

β |B|, |B|) is strict (m2, I)-isometric and

�m1−1
β|A|,|A|(I)X�m2−1

1
β |B|,|B|

(I) 	= 0.
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3. Pairs (EA1,A2 , EB1,B2)

Proposition 1 fails in the absence of the (fairly restrictive) hypothesis EA,B(S)n =

En
A,B(S). This follows from the following elementary example.

Example 1. Trivially, the pair (I, I) satisfies �I,I(S) = 0 for all S ∈ B(X ). Considering the pair
(EI,I(S1), EI,I(S2)), the validity of (ii) + (iii) implies (i) in the proof of the proposition implies
�EI,I(S1),EI,I(S2)

(X) = 0 for all X ∈ B(X ), i.e., X = S1XS2 for all S1, S2 and X ∈ B(X ). This is
absurd.

Observe that En
I,I(S) = S 	= Sn = (EI,I(S))n and En

A,B(I) = AnBn 	= (AB)n =

EA,B(I)n. An immediate consequence of examples of the above type is that the proposition
cannot be used, contrary to the claim made in [2] (Corollary 1), to deduce results of the the
type “(A1, A2) is (m1, I)-isometric and (B1, B2) is (m2, I)-isometric, then (EA1,A2 , EB1,B2) is
(m1 + m2 − 1, X)-isometric for all X ∈ B(X )”. Indeed, if we let the pair (EA1,A2 , EB1,B2)

be such that (A1, A2) = (I, I) and choose the pair (B1, B2) to be (m, I)-isometric for some
m ∈ N+, then for all X ∈ B(X ),

�m
EA1,A2 ,EB1,B2

(X) =

(
m

∑
j=0

(−1)j

(
m
j

)
Lj

EA1,A2
Rj

EB1,B2

)
(X)

=
m

∑
j=0

(−1)j

(
m
j

)
Lj

EA1,A2

(
Lj

B1
XRj

B2

)

=
m

∑
j=0

(−1)j

(
m
j

)
Lj

EA1,A2

(
Bj

1XBj
2

)

=
m

∑
j=0

(−1)j

(
m
j

)
Lj

A1

(
Bj

1XBj
2

)
Rj

A2

=
m

∑
j=0

(−1)j

(
m
j

)
Aj

1Bj
1XBj

2 Aj
2

=
m

∑
j=0

(−1)j

(
m
j

)
Bj

1XBj
2 = �m

B1,B2
(X).

Evidently,�m
EA1,A2 ,EB1,B2

(X) cannot be 0 for all X (i.e., (ii) and (iii) imply (i) of Proposition 1

fails for pairs (EA1,A2 , EB1,B2)). We remark here that even though [2] (Theorem 1) makes no
explicit mention of the hypothesis EA,B(X)n = En

A,B(X), its use is implicit in the proof of
the theorem.

A pair (X , X̃ ) of Banach spaces is a dual pairing if either X = X ∗ or X = X̃ ∗.
If we let x ⊗ y′, x ∈ X and y′ ∈ Y∗, Y a Banach space, denote the rank one operator
Y → X , y → 〈y, y′〉x, then the operator ideal J between Y and X is a linear subspace
B(Y ,X ) equipped with a Banach norm ν such that (i) x ⊗ y′ ∈ J ; ν(x ⊗ y′) = ‖x‖‖y′‖
and (ii) EA,B(X) = LARB(X) = AXB, ν(AXB) ≤ ‖A‖ν(‖X‖)‖B‖ for all x ∈ X , y′ ∈ Y∗,
X ∈ J , and A ∈ B(X ) and B ∈ B(Y). Thus defined, each J is a tensor product relative to
the dual pairings (X ,X ∗) and (Y ,Y∗) and the bilinear mapping

X ×Y∗ → J , 〈x, y′〉 → x⊗ y′,
B(X )× B(Y∗)→ B(J ), (A, B∗)→ A⊗ B∗,

where A ⊗ B∗(X) = AXB = EA,B(X) [11] (page 51). It is known, see [9] (Corollary 2)
(see also [1,7]), that for Ai, Bi ∈ B(X ), 1 ≤ i ≤ 2, (EA1,A2 , EB1,B2) is strict (m, X)-isometric
if and only if there exist positive integers mi ≤ m and a non-zero scalar β such that
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m = m1 + m2 − 1, (βA1, A2) is strict (m1, I)-isometric, ( 1
β B2, A2) is strict (m2, I)-isometric,

and �m1−1
βA1,B1

(
�m2−1

1
β B2,A2

(X)

)
	= 0 for X ∈ J . This result does not follow from Proposition 2,

even for the case in which X is a Hilbert space and the pair (EA1,A2 , EB1,B2) is the pair
(EA∗ ,A, EB∗ ,B). The following theorem, our main result, uses an algebraic argument to
prove this result for the case in which the operator pair (EA1,A2 , EB1,B2) is strict (m, X)-
isometric for a quasi-affinity X ∈ B(X ).

Theorem 1. Given operators Ai, Bi ∈ B(X ), 1 ≤ i ≤ 2, the pair (EA1,A2 , EB1,B2) is strict (m, X)-
isometric for a quasi-affinity X ∈ B(X ) if and only if there exist positive integers mi ≤ m and a
non-trivial scalar β such that m = m1 + m2 − 1, (βA1, B1) is strict (m1, I)-isometric, ( 1

β B2, A2)

is strict (m2, I)-isometric, and �m1−1
βA1,B1

(I)X(�m2−1
1
β B2,A2

(I)) 	= 0.

Proof. We start by proving the “only if” part: the proof depends upon a judicious use of
the properties of the operator Lj

EA1,A2
Rj

EB1,B2
. If the pair (EA1,A2 , EB1,B2) is (m, X)-isometric,

then

�m
EA1,A2 ,EB1,B2

(X) =

(
m

∑
j=0

(−1)j

(
m
j

)
Lj

EA1,A2
Rj

EB1,B2

)
(X) = 0.

By definition

Lj
EA1,A2

Rj
EB1,B2

(X) = Lj
LA1

RA2
Rj

LB1 RB2
(X)

=
(

Lj
LA1

Lj
RA2

Rj
LB1

Rj
RB2

)
(X)

=
(

Lj
LA1

Rj
LB1

Lj
RA2

Rj
RB2

)
(X) ([LC, RD] = 0 for all operators C, D)

=
(

LLA1
RLB1

)j
X
(

LRA2
RRB2

)j

= Lj
LA1

Rj
LB1

(
Lj

RA2
XRj

RB2

)
= Lj

LA1
Rj

LB1

(
Rj

A2
XRj

B2

)
= Lj

LA1
Rj

LB1

(
XBj

2 Aj
2

)
(1)

= Lj
A1

(
XBj

2 Aj
2

)
Lj

B1
= Lj

A1
Bj

1

(
XBj

2 Aj
2

)
= Aj

1Bj
1XBj

2 Aj
2. (2)

For convenience, set LLA1
RLB1

= C and LRA2
RRB2

= D. We claim that σ(D) 	= {0}. Let
us suppose to the contrary that σ(D) = {0}. Then there exist sequences {Zn} and {Z′n} of
unit vectors (in B(B(X )) and its dual space, respectively) such that

Z′n(Zn) = 〈Zn, Z′n〉 = 1 for all n ∈ N+ and lim
n→∞

DZn = 0.

We have

�m
EA1,A2 ,EB1,B2

(X) =
m

∑
j=0

(−1)j

(
m
j

)
CjX lim

n→∞
〈DjZn, Z′n〉 = 0

for all j except j = 0 when we obtain X = 0. The operator X being a quasi-affinity, we
have a contradiction. Hence (0 /∈ σa(D) and) there exists a non-trivial scalar β ∈ σa(D).
Assuming {Zn} and {Z′n} to be sequences of unit vectors such that Z′n(Zn) = 1 for all
n ∈ N+ and limn→∞〈DZn, Z′n〉 = β, we have

37



Axioms 2025, 14, 503

0 = �m
EA1,A2 ,EB1,B2

(X)

=
m

∑
j=0

(−1)j

(
m
j

)
CjX lim

n→∞
〈DjZn, Z′n〉

=

(
m

∑
j=0

(−1)j

(
m
j

)
(βC)j

)
X

=

(
m

∑
j=0

(−1)j

(
m
j

)
(βA1)

jBj
1

)
X (see (2))

=
(
�m

βA1,B1
(I)

)
X.

The operator X being a quasi-affinity, we conclude (βA1, B1) is (m, I)-isometric. Conse-
quently there exists a positive integer m1 ≤ m such that (βA1, B1) is strict (m1, I)-isometric,
and hence the set

{�j
βA1,B1

(I)}m1−1
j=0 , equivalently {�m−j

βA1,B1
(I)}m

j=m−m1+1, is linearly independent.

Once again, for convenience, set LLβA1
RLB1

= Cβ and LRA2
RR 1

β
B2

= Dβ. Then

�m
EA1,A2 ,EB1,B2

(X) = �m
EβA1,A2

,E
B1, 1

β
B2
(X)

=

(
I − LLβA1

RLB1
LRA2

RR 1
β

B2

)m
(X)

=
(

I − CβDβ

)m
(X)

=
(
(I − Cβ)Dβ + (I − Dβ)

)m
(X)

=

(
m

∑
j=0

(
m
j

)
(I − Cβ)

m−jDm−j
β (I − Dβ)

j

)
(X)

=

(
m

∑
j=0

(
m
j

)(
m−j

∑
p=0

(−1)p

(
m− j

p

)
Cp

β

)
Dm−j

β

(
j

∑
k=0

(−1)k

(
j
k

)
Dk

β

))
(X).

Since

Dm−j
β

(
j

∑
k=0

(−1)k

(
j
k

)
Dk

β

)
(X)

= X(
1
β

B2)
m−j Am−j

2

(
j

∑
k=0

(−1)k

(
j
k

)
(

1
β

B2)
k Ak

2

)

= X(
1
β

B2)
m−j Am−j

2 �j
1
β B2,A2

(I)

and (
m−j

∑
p=0

(−1)p

(
m− j

p

)
Cp

β

)
X

=

(
m−j

∑
p=0

(−1)p

(
m− j

p

)
(βA1)

pBp
1

)
X

= �m−j
βA1,B1

(I)X,
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we have

�m
EA1,A2 ,EB1,B2

(X) =
m

∑
j=0

(
m
j

)
�m−j

βA1,B1
(I)X(

1
β

B2)
m−j Am−j

2 �j
1
β B2,A2

(I)

= 0.

By the linear independence of the set {�m−j
βA1,B1

(I)} for all m−m1 + 1 ≤ j ≤ m,

X(
1
β

B2)
m−j Am−j

2 �j
1
β B2,A2

(I) = 0

for all 0 ≤ j ≤ m1− 1. Since X is a quasi-affinity and 0 /∈ σa(Dβ) (implies 0 /∈ σa(B
m−j
2 Am−j

2 )),

�j
1
β B2,A2

(I) = 0 for all 0 ≤ j ≤ m1 − 1.

In particular, upon letting m−m1 + 1 = m2,

�m2
1
β B2,A2

(I) = 0.

The strict (m, X)-isometric property of the pair (EA1,A2 , EB1,B2) implies also that

0 	= �m−1
EA1,A2 ,EB1,B2

(X)

= ∑m−1
j=0

(
m− 1

j

)
�m−1−j

βA1,B1
(I)X( 1

β B2)
m−1−j Am−1−j

2 �j
1
β B2,A2

(I)

= ∑m2−1
j=0

(
m− 1

j

)
�m−1−j

βA1,B1
(I)X( 1

β B2)
m−1−j Am−1−j

2 �j
1
β B2,A2

(I)

(�j
1
β B2,A2

(I) = 0 for all j ≥ m2)

=

(
m− 1
m2 − 1

)
�m1−1

βA1,B1
(I)X( 1

β B2)
m−1−j Am−1−j

2 �m2−1
1
β B2,A2

(I)

(�m−1−j
βA1,B1

(I) = 0 for all m− 1− j ≥ m1, equivalently, j ≤ m2 − 2)

=

(
m− 1
m2 − 1

)
�m1−1

βA1,B1
(I)X�m2−1

1
β B2,A2

(I) (3)

(
recall :�m2

1
β B2,A2

(I) = 0 =⇒ ( 1
β B2)

t At
2�m2−1

1
β B2,A2

(I) = �m2−1
1
β B2,A2

(I) for all t ∈ N
)

.

Since �m2−1
1
β B2,A2

(I) = 0 would contradict this condition, the pair( 1
β B2, A2) is strict

(m2, I)-isometric.
The proof of the reverse implication is straightforward. Thus, if (βA1, B1) is strict

(m1, I)-isometric, ( 1
β B2, A2) is strict (m2, I)-isometric, and m = m1 + m2 − 1, then for every

quasi-affinity X ∈ B(X ),

�m
EA1,A2 ,EB1,B2

(X) =
m

∑
j=0

(
m
j

)
�m−j

βA1,B1
(I)X(

1
β

B2)
m−j Am−j

2 �j
1
β B2,A2

(I)

= 0,
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since �m−j
βA1,B1

(I) = 0 for all m − j ≥ m1, equivalently, j ≤ m − m1 = m2 − 1,

and �j
1
β B2,A2

(I) = 0 for all j ≥ m2. The strictness implies

�m1−1
βA1,B1

(I) 	= 0 	= �m2−1
1
β B2,A2

(I)

and this in turn implies �m1−1
βA1,B1

(I)X(�m2−1
1
β B2,A2

(I)) 	= 0.

The proof of Theorem 1 in the case in which A∗1 = B1 = A and A∗2 = B2 = B, A
and B Hilbert space operators, is more straightforward. Thus, if the pair (EA∗ ,B∗ , EA,B) is
(m, X)-isometric for some quasi-affinity X ∈ B(H), then

�m
EA∗ ,B∗ ,EA,B

(X) =
m

∑
j=0

(−1)j

(
m
j

)
A∗j AjXBjB∗j,

0 /∈ σa(B∗), and (0 	=)β0 ∈ σa(B∗) implies

(
m

∑
j=0

(−1)j

(
m
j

)
βj A∗j Aj

)
X = 0 (β = |β0|2)

⇐⇒ �m
βA∗ ,A(I) = 0.

Corollary 2. Given operators A, B ∈ B(H), the pair (EA∗ ,B∗ , EA,B)) is strict (m, X)-isometric
for a quasi-affinity X ∈ B(H) if and only if there exist positive integers mi ≤ m and a non-trivial
scalar β such that m = m1 + m2 − 1, (βA∗, A) is strict (m1, I)-isometric, ( 1

β B, B∗) is strict

(m2, I)-isometric, and �m1−1
βA∗ ,A(I)X(�m2−1

1
β B,B∗(I)) 	= 0.

Since �m
βA∗ ,A(I) = 0 if and only if �m

β0 A∗ ,β0 A
(I) = 0, β0β0 = β, the pair of operators

(β0 A∗, β0 A) is (m, I)-isometric; hence, σa(β0 A) lies in the boundary ∂D of the unit disc D
in C and 1− (β0σa(A∗)(β0σa(A)) = 0. There exists a non-trivial scalar λ, |λ| = 1, such
that β0α = λ and β0α = 1

λ = λ for all α ∈ σa(A). We assert that σa(B∗) consists, at most,
of two points. For if there exist non-trivial μ, ν ∈ σa(B∗), μ 	= β0 	= ν, then σa(μA) =

σa(β0 A) + σa((μ − β0)A) and σa(νA) = σa(β0 A) + σa((ν − β0)A): since 0 /∈ σa(A), not
both of these translations of σa(β0 A) are in ∂D. This argument applies equally to σa(A);
hence σ(A) and σ(B) consist at most of two points. A similar statement holds for operators
A, B ∈ B(H) such that the pair (EA∗ ,A(I), EB∗ ,B(I)) is a strict (m, X)- isometry for some
quasi-affinity X ∈ B(H). For in this case for every β ∈ σa(B), β being necessarily non-
trivial, the pair (βA∗, βA) is (m1, I)-isometric for some positive integer m1 ≤ m (see
Corollary 1). Thus σa(βA) ⊂ ∂D. Let λ ∈ σa(A), and suppose that there exist distinct
scalars μ, ν ∈ σa(B); μ, ν 	= β. Then σa(μA) = σa(βA) + σa((μ− β)A), σa(νA) = σa(βA) +

σa((ν− β)A), and not both these translations of σa(βA) can be in ∂(D). We remark that
both of these classes of operators belong to the class of (m, I)-isometric operators with a
finite spectrum [1,9,10,12,13].

4. A Concluding Remark

Let C2(H) ⊆ B(H) denote the operator ideal of Hilbert–Schmidt operators (equipped
with the Hilbert–Schmidt operator norm). Given A, B ∈ B(H), Gu [1] (Theorem 7) proves
that EA,B ∈ C2(H) is a strict m-isometry, i.e., the pair (E∗A,B, EA,B) is strict (m, T)-isometric
for all T ∈ C2(H), if and only if there exists a non-trivial scalar β and integers m1, m2 ∈ N
such that m = m1 + m2 − 1, βA is strict (m1, I)-isometric and 1

β B is strict (m2, I)-isometric.
Observe that if A, B ∈ B(H) and (A, B) is (m, X)-isometric for a quasi-affinity X ∈ B(H),

40



Axioms 2025, 14, 503

then (our purely algebraic argument from Section 2 shows that) there exist μ ∈ σa(B)
and ν ∈ σa(A∗) such that (I − μA)m = 0 = (I − νB∗)m. Since σ(�A,B) = 1− σ(A)σ(B),
μν = 1, (I − μA)m = 0 = (I − 1

μ B)m. The operators EA1,A2(S1) and EB1,B2(S2) are op-
erators in B(H); if (EA1,A2(S1), EB1,B2(S2)) is (m, X)-isometric, X ∈ B(H) a quasi-affinity,
then there exists a non-zero scalar β such that I − βEA1,A2(S1) and I − 1

βEB1,B2(S2) are m-
nilpotent. Thus, if En

A1,A2
(X) = En

A1,A2
(X) for all n ∈ N, then there exists a non-zero scalar

β such that (βA1, A2) is (m, S1)-isometric and ( 1
β B1, B2) is (m, S2)-isometric. Proposition 2

is a Banach space generalisation of this result. The extension of this algebraic argument
to the pair (EA1,A2 , EB1,B2) ∈ B(B(X ))2 requires a judicious use of the algebraic, especially
the commutative, properties of the left/right regularisation operators (in the terminol-
ogy of Taylor and Lay [14] (Page 392)) LA and RB of the algebra B(X ). We remark in
closing that a proof of the Hilbert space version of this result for the m-null symbols pair
(EA1,A2(S1), EB1,B2(S2)) using arithmetic progressions and a combinatorial argument, thus
avoiding analytic arguments, has been given by Marrero [15].
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Abstract: This paper deals with the fixed-point findings under relational strict almost (φ, ψ)-contraction.
Our findings complement and strengthen prevailing results. In the course of the procedure, we
also derive a related fixed point theorem for strict almost (φ, ψ)-contraction. We provide several
illustrative examples to support the validity of our outcomes. We also argue about the possibility of a
unique solution of a nonlinear Fredholm integral equation via our outcomes.
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1. Introduction

The foremost and traditional method in nonlinear functional analysis is the classical
Banach contraction principle (abbreviated as BCP). There are numerous generalizations of
BCP accessible in the literature. Berinde [1] presented a new generalization of BCP in 2004,
which is known as almost contraction.

Definition 1 ([1,2]). A self-map f on a metric space (V, ω) is known as almost contraction if there
exist 0 < α < 1 and � ≥ 0, enjoying

ω(fv, fu) ≤ α ·ω(v, u) + � ·ω(v, fu), ∀ v, u ∈ V.

Making use of symmetry of ω, the aforementioned condition is identical to the follow-
ing one:

ω(fv, fu) ≤ α ·ω(v, u) + � ·ω(u, fv), ∀ v, u ∈ V.

Theorem 1 ([1]). Every almost contraction map on a complete metric space possesses a fixed point.

The almost contraction is a weak Picard operator, which means that it does not need
to have a unique fixed point but Picard’s iterative sequence remains convergent to a fixed
point of the map. An almost contraction map is not necessarily continuous but it remains
continuous at each of fixed points (c.f. [2]). In addition to the usual contraction, almost
contraction extends not only the usual contraction but also several well-known generalized
contractions, which include Kannan contraction [3], Chatterjea contraction [4], Zamfirescu
contraction, and [5] and a special class of Ćirić’s quasi-contraction [6]. In recent years,
many fixed point results involving almost contraction conditions have been established,
e.g., [7–14].

Babu et al. [15] established a notably restricted category of almost contraction in order
to derive a uniqueness theorem.

Axioms 2025, 14, 1. https://doi.org/10.3390/axioms14010001 https://www.mdpi.com/journal/axioms42
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Definition 2 ([15]). A self-map f on a metric space (V, ω) is known as strict almost contraction if
there exist 0 < α < 1 and � ≥ 0, enjoying

ω(fv, fu) ≤ α ·ω(v, u) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)}, ∀ v, u ∈ V.

Theorem 2 ([15]). Every strict almost contraction map on a complete metric space possesses a
unique fixed point.

Metric fixed-point theory continues to be an exquisite field of study for constructing
fixed-point outcomes in relational metric space. The contraction condition that leads to
such results needs to be satisfied for only comparative elements with regard to the relation.
As of right now, relational contractions continue to be weaker than usual contractions.

In 2015, Alam and Imdad [16] launched this progression by establishing an analog of
BCP in relational metric space. Numerous outcomes have been proven in this strategy since
then. Alam and Imdad [17] investigated certain coincidence and common fixed-point theo-
rems in relational metric space. Alam et al. [18] defined relational analogs of completeness
and continuity and utilized the same to improve the relation-theoretic contraction princi-
ple. Almarri et al. [19] proved fixed-point theorems for relational Geraghty contractions
and provided an application to boundary value problems. Hossain et al. [20] presented
relation-theoretic variants of weak contractions and provided applications to nonlinear
matrix equations. Hasanuzzaman and Imdad [21] proved Feng-–Liu type results in rela-
tional metric spaces and gave an application to nonlinear Bernstein operators. Choudhury
and Chakraborty [22] established some fixed-point results under multi-valued relational
Kannan—Geraghty type contractions employing the concept of w-distance. On the other
hand, Antal et al. [23] utilized the idea of w-distance to prove fixed-point results under
(ϕ, ψ, p)-weakly contractive mappings in relational metric space. Relation-theoretic aspects
of almost contractions are studied in [24–27]. One of the principal features of relational
contractions is that the contraction inequality constitutes acceptable just for comparable
elements. As of right now, relational contractions continue to be weaker than correspond-
ing usual contractions; consequently, they have the potential to resolve boundary value
problems, nonlinear matrix equations, and integral equations, whereas outcomes about the
fixed point in ordinary metric space are not implemented.

Dutta and Choudhury [28] introduced yet another type of contractivity condition
depending on a pair φ and ψ of auxiliary functions, a so-called (φ, ψ)-contraction, which is
defined as follows:

φ(ω(fv, fu)) ≤ φ(ω(v, u))− ψ(ω(v, u)).

By implementing a new pairing of test functions, Alam et al. [29] enhanced the concept of
(φ, ψ)-contraction and utilized it to expand the BCP. The relational analog of results due to
Alam et al. [29] was subsequently achieved by Sk et al. [30].

In this article, we subsume the concepts of relational contraction, strict almost contrac-
tion, and (φ, ψ)-contraction as follows:

φ(ω(fv, fu)) ≤ φ(ω(v, u))− ψ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)},

where the elements v and u are connected via relation on metric space.
Similar to the relation-theoretic contraction principle [16], in order to prove their

relation-theoretic formulations, a few generalized contractions require an arbitrary binary
relation for the existence of fixed points of such map. Apart from this, in the context of
earlier contraction-condition, transitivity of underlying relation is also required. However,
the transitivity requirement is very restrictive. With a view to employing an optimal
condition of transitivity, we adopt ‘locally finitely f-transitivity’, which is relatively weaker
than usual transitivity, local transitivity, f-transitivity, and finitely transitivity (c.f. [30–36]).
Employing the above contraction-condition and locally finitely f-transitive relation, we
prove metrical fixed-point results and present several examples that verify the validity of
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our findings. Through our results, we characterize the possibility of a unique solution of
certain nonlinear Fredholm integral equations when a lower or an upper solution exists.

2. Preliminaries

The sets of natural numbers, whole numbers, real numbers, and nonnegative real
numbers will be symbolized by N, N0, R and R+, respectively. Note that a subset of V2 is
designated as a relation on the set V (Ref. [37]).

Definition 3. Assuming that V remains a set, and ℘ is a relation on V.

• Ref. [16] The elements v, u ∈ V are named as ℘-comparative if (v, u) ∈ ℘ or (u, v) ∈ ℘.
Such a pair is symbolized by [v, u] ∈ ℘.

• Ref. [16] A sequence {vı} ⊂ V, satisfying (vı, vı+1) ∈ ℘, for all ı ∈ N, is named
as ℘-preserving.

• Ref. [38] U ⊆ V is named as ℘-directed if for any v, u ∈ U, ∃ w ∈ V enjoying (v, w) ∈ ℘
and (u, w) ∈ ℘.

• Ref. [39] For U ⊆ V, the relation ℘|U := ℘ ∩U2 on U is named as restriction of ℘ on U.
• Ref. [35] For l ∈ N− {1}, ℘ is named as l-transitive if for any v0, v1, . . . , vı ∈ V,

(vi−1, vi) ∈ ℘ for each i (1 ≤ i ≤ l)⇒ (v0, vl) ∈ ℘.

Thus, the ideas of usual transitivity and 2-transitivity are equivalent.
• Ref. [36] ℘ is named as finitely transitive if for some l ∈ N− {1}, ℘ remains l-transitive.

Definition 4. Assuming that V remains a set, ℘ is a relation on V, and f : V → V constitutes
a mapping.

• Ref. [16] ℘ is named as f-closed if for every v, u ∈ V enjoying (v, u) ∈ ℘, one has

(fv, fu) ∈ ℘.

• Ref. [31] ℘ is named as locally f-transitive if for every ℘-preserving sequence {uı} ⊂ f(V)
with range U = {uı : ı ∈ N}, ℘|U is transitive.

• Ref. [32] ℘ is named as locally finitely f-transitive if for every ℘-preserving sequence {uı} ⊂
f(V) with range U = {uı : ı ∈ N}, ℘|U is finitely transitive.

Proposition 1 ([31]). If ℘ is f-closed then for every ı ∈ N0, ℘ is fı-closed.

Remark 1. The class of finitely transitive relation and the class of locally f-transitive relation both
are contained in the class of locally finitely f-transitive relation.

Definition 5. Assuming that (V, ω) remains metric space, and ℘ is a relation on V.

• Ref. [16] ℘ is named as ω-self-closed if every ℘-preserving convergent sequence in V has a
subsequence, each of its terms is ℘-comparative to the limit of convergence.

• Ref. [17] (V, ω) is named as ℘-complete metric space if each ℘-preserving Cauchy sequence
in V converges.

• Ref. [17] A map f : V → V is named as ℘-continuous at v ∈ V if for each ℘-preserving
sequence {vı} ⊂ V with vı

ω−→ v,

f(vı)
ω−→ f(v).

A map, which is ℘-continuous at each point, is named as ℘-continuous.

Lemma 1 ([35]). In a metric space (V, ω), let a sequence {vı} be not Cauchy. Then, we can find
subsequences {vıκ} and {vjκ} of {vı} and a constant ε0 > 0 such that

(i) i ≤ ıκ < jκ , ∀ i ∈ N,
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(ii) ω(vıκ , vjκ ) ≥ ε0, ∀ ı ∈ N,
(iii) ω(vıκ , vρκ ) < ε0, ∀ ρκ ∈ {ıκ + 1, ıκ + 2, . . . , jκ − 2, jκ − 1}.

Moreover, if lim
ı→∞

ω(vı, vı+1) = 0, then

lim
ı→∞

ω(vıκ , vjκ+λ) = ε0, ∀ λ ∈ N0.

Lemma 2 ([36]). Let V be a set that is associated with a relation ℘. If {vı} ⊂ V remains
℘-preserving sequence and the relation ℘ is l-transitive on U = {vı : ı ∈ N0}, then

(vı, vı+1+λ(l−1)) ∈ ℘, ∀ ı, λ ∈ N0.

Let Φ be the collection of auxiliary functions φ : R+ → R+ meeting the requirements
listed below:

Φ1: φ is right continuous;
Φ2: φ is increasing.

Also, let Ψ be the collection of auxiliary functions ψ : R+ → R+ meeting the requirements
listed below:

Ψ1: ψ(t) > 0, ∀ t > 0;
Ψ2: lim inf

t→r
ψ(t) > 0, ∀ r > 0.

The aforementioned families Φ and Ψ have been described by Alam et al. [29].

Proposition 2 ([29]). Let φ, ψ : R+ → R+ be a pair of auxiliary functions such that φ satisfies
axiom Φ2 and ψ satisfy axiom Ψ1, verifying

φ(s) ≤ φ(t)− ψ(t), ∀ s ∈ R+ and t > 0.

Then
s < t.

By symmetry of metric ω, the following conclusion holds.

Proposition 3. Given φ ∈ Φ, ψ ∈ Ψ and � ≥ 0, the following axioms are identical:

(A) φ(ω(fv, fu)) ≤ φ(ω(v, u))− ψ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)},
for all v, u ∈ V with (v, u) ∈ ℘.

(B) φ(ω(fv, fu)) ≤ φ(ω(v, u))− ψ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)},
for all v, u ∈ V with [v, u] ∈ ℘.

3. Main Results

We look into the fixed point results for relational strict almost (φ, ψ)-contractions.

Theorem 3. Assuming that (V, ω) is a metric space, f : V→ V is a map and ℘ continues to be a
relation on V. Furthermore,

(i) (v0, fv0) ∈ ℘ for some v0 ∈ V,
(ii) (V, ω) is ℘-complete,
(iii) ℘ remains locally finitely f-transitive and f-closed,
(iv) V is ℘-continuous, or ℘ is ω-self-closed,
(v) ∃ φ ∈ Φ, ψ ∈ Ψ and � ≥ 0 enjoying

φ(ω(fv, fu)) ≤ φ(ω(v, u))− ψ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)},

∀ v, u ∈ V with (v, u) ∈ ℘.

Then, f admits a fixed point.

45



Axioms 2025, 14, 1

Proof. Given v0 ∈ V. Construct a sequence {vı} ⊂ V, enjoying

vı := fı(v0) = f(vı−1), ∀ ı ∈ N. (1)

By assumption (i), f-closedness of ℘ and Proposition 1, we obtain

(fıv0, fı+1v0) ∈ ℘,

which owing to (1) reduces to

(vı, vı+1) ∈ ℘, ∀ ı ∈ N0. (2)

Hence, {vı} is a ℘-preserving sequence.
Let us denote ωı := ω(vı, vı+1). If ωı0 = ω(vı0 , vı0+1) = 0 for some ı0 ∈ N0, then in

lieu of (1), one has f(vı0) = vı0 . Hence, vı0 serves as a fixed point of f and thus our task
is over.

In case ωı > 0, for every ı ∈ N0, using item (v), (1) and (2), we obtain

φ(ωı) = φ(ω(vı, vı+1)) = φ(ω(fvı−1, fvı))

≤ φ(ω(vı−1, vı))− ψ(ω(vı−1, vı)) + � ·min{ω(vı−1, vı), ω(vı, vı+1), ω(vı−1, vı+1), 0},

so that

φ(ωı) ≤ φ(ωı−1)− ψ(ωı−1) ∀ ı ∈ N0. (3)

Using Proposition 2 in (3), we obtain

ωı < ωı−1, ∀ ı ∈ N.

It follows that {ωı} ⊂ (0, ∞) is a decreasing sequence. Further, as {ωı} is bounded below
by ‘0’, ∃ ω̄ ≥ 0, verifying

lim
ı→∞

ωı = ω̄. (4)

We shall verify that ω̄ = 0. Assuming on the contrary that ω̄ > 0. Making use of limit
superior in (3), we conclude

lim sup
ı→∞

φ(ωı+1) ≤ lim sup
ı→∞

φ(ωı) + lim sup
ı→∞

[−ψ(ωı)]

≤ lim sup
ı→∞

φ(ωı)− lim inf
ı→∞

ψ(ωı).

Employing right continuity of φ, we obtain

φ(ω̄) ≤ φ(ω̄)− lim inf
ı→∞

ψ(ωı)

implying thereby

lim inf
ωı→ω̄>0

ψ(ωı) = lim inf
ı→∞

ψ(ωı) ≤ 0

which contradicts axiom Ψ2 so that ω̄ = 0. Thus, we have

lim
ı→∞

ωı = 0. (5)

Now, we shall verify that {vı} is Cauchy. Assuming on the contrary that {vı} is not
Cauchy. In lieu of Lemma 1, we can find subsequences {vıκ} and {vjκ} of {vı} and a
constant ε0 > 0, which satisfy
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κ ≤ ıκ < jκ , ω(vıκ , vjκ ) ≥ ε0 > ω(vıκ , vρκ ), for all κ ∈ N, ρκ ∈ {ıκ + 1, ıκ + 2, . . . , jκ − 2, jκ − 1}.

Owing to (5) and Lemma 1, we obtain

lim
κ→∞

ω(vıκ , vjκ+λ) = ε0, ∀ λ ∈ N0. (6)

By (1), we have U := {vı : ı ∈ N0} ⊂ f(V). By locally finitely f-transitivity of ℘,
we can find l ∈ {2, 3, · · · } for which ℘|U is l-transitive. Employing the fact: ıκ < jκ and
l − 1 > 0 and by division algorithm, we obtain

jκ − ıκ = (l − 1)(pκ − 1) + (l − qκ)

pκ − 1 ≥ 0, 0 ≤ l − qκ < l − 1

⇐⇒
{

jκ + qκ = ıκ + 1 + pκ(l − 1)
pκ ≥ 1, 1 < qκ ≤ l.

Clearly, qκ ∈ (1, l]. Thus, we can determine the subsequences {vjκ} and {vıκ} of {vı}
(verifying (6)) for which qκ = q (a constant). Thus, we have

ı′κ = jκ + q = ıκ + 1 + pκ(l − 1). (7)

By (6) and (7), we obtain

lim
κ→∞

ω(vıκ , vı′κ ) = lim
κ→∞

ω(vıκ , vjκ+q) = ε0. (8)

Use of triangular inequality yields that

ω(vıκ+1, vı′κ+1) ≤ ω(vıκ+1, vıκ ) + ω(vıκ , vı′κ ) + ω(vı′κ , vı′κ+1)

and
ω(vıκ , vı′κ ) ≤ ω(vıκ , vıκ+1) + ω(vıκ+1 , vı′κ+1) + ω(vı′κ+1, vı′κ ).

Therefore, we have

ω(vıκ , vı′κ )−ω(vıκ , vıκ+1)−ω(vı′κ+1, vı′κ ) ≤ ω(vıκ+1 , vı′κ+1)

≤ ω(vıκ+1, vıκ ) + ω(vıκ , vı′κ ) + ω(vı′κ , vı′κ+1).

Employing κ → ∞ and by (5) and (8), above inequality becomes

lim
κ→∞

ω(vıκ+1, vı′κ+1) = ε0. (9)

Owing to (7) and Lemma 2, we conclude (vıκ , vı′κ ) ∈ ℘. Denote δκ := ω(vıκ , vı′κ ). Employing
the assumption (v), we obtain

φ(ω(vıκ+1, vı′κ+1)) = φ(ω(fvıκ , fvı′κ )) ≤ φ(ω(vıκ , vı′κ ))− ψ(ω(vıκ , vı′κ ))

+� ·min{ω(vıκ , fvıκ ), ω(vı′κ , fvı′κ ), ω(vıκ , fvı′κ ), ω(vı′κ , fvıκ )}

so that

φ(ω(vıκ+1, vı′κ+1)) ≤ φ(δκ)− ψ(δκ) + � ·min{ωıκ , ωı′κ , ω(vıκ , vı′κ+1), ω(vı′κ , vıκ+1)}. (10)

Using upper limit in (10), we obtain

lim sup
κ→∞

φ(ω(vıκ+1, vı′κ+1)) ≤ lim sup
κ→∞

φ(δκ) + lim sup
κ→∞

[−ψ(δκ)] + � ·min{0, 0, ε0, ε0}.
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Due to right continuity of φ and (8), we conclude

φ(ε0) ≤ φ(ε0)− lim inf
κ→∞

ψ(δκ)

yielding thereby

lim inf
κ→∞

ψ(δκ) ≤ 0,

which arises a contradiction. Thus, {vı} is ℘-preserving Cauchy. Using ℘-completeness of
V, ∃ v̄ ∈ V verifying vı

ω−→ v̄.
Ultimately, we utilize assumption (iv) to enclose the evidence. Assume that f is a

℘-continuous map. As {vı} remains ℘-preserving verifying vı
ω−→ v̄, ℘-continuity of f

yields that vı+1 = f(vı)
ω−→ f(v̄) so that f(v̄) = v̄.

Otherwise, assuming that ℘ is ω-self-closed. Consequently, we can find a subsequence
{vıκ} of {vı} satisfying [vıκ , v̄] ∈ ℘, ∀ ı ∈ N. Now, we claim that

lim
κ→∞

ω(vıκ+1, fv̄) = 0. (11)

Whenever vıκ = v̄ for some κ ∈ N. Then, we have vıκ+1 = f(vıκ ) = f(v̄) yielding thereby

lim
κ→∞

ω(vıκ+1, fv̄) = 0.

i.e., (11) holds. Now, we consider vıκ 	= v̄ so that ω(vıκ , v̄) > 0 for all κ ∈ N. On the
contrary, assume that

lim
κ→∞

ω(vıκ+1, fv̄) = ε > 0.

Using assumption (v), we obtain

φ(ω(vıκ+1, fv̄)) = φ(ω(fvıκ , fv̄)) ≤ φ(ω(vıκ , v̄))− ψ(ω(vıκ , v̄))

+� ·min{ωıκ , ω(v̄, fv̄), ω(vıκ , fv̄), ω(v̄, vıκ+1)}.

Using upper limit in above and right continuity of φ, we obtain

φ(ε) ≤ φ(0)− lim inf
κ→∞

ψ(ω(vıκ , v̄)) + � ·min{0, ω(v̄, fv̄), ε, 0}

so that

lim inf
κ→∞

ψ(ω(vıκ , v̄)) ≤ φ(0)− φ(ε).

Using the fact ε > 0 and monotone property of φ, above inequality implies that

lim inf
κ→∞

ψ(ω(vıκ , v̄)) ≤ 0,

which is a contradiction. Therefore, (11) holds and hence, we have

vıκ+1
ω−→ f(v̄).

This concludes that f(v̄) = v̄. Thus, v̄ is a fixed point of f.

Theorem 4. In keeping with the predictions of Theorem 3, f exhibits a unique fixed point if f(V) is
℘-directed.

Proof. By Theorem 3, ∃ v̄, ū ∈ V which enjoys

f(v̄) = v̄ and f(ū) = ū. (12)
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As v̄, ū ∈ f(V), by our assumption, ∃ w ∈ V verifying

(v̄, w) ∈ ℘ and (ū, w) ∈ ℘. (13)

Denote �ı := ω(v̄, fıw). Using (12), (13) and assumption (v), one obtains

φ(�ı) = φ(ω(fv̄, f(fı−1w)))

≤ φ(ω(v̄, fı−1w))− ψ(ω(v̄, fı−1w)) + � ·min{0, ω(fı−1w, fıw), ω(v̄, fıw), ω(fı−1w, v̄)}
= φ(�ı−1)− ψ(�ı−1)

so that
φ(�ı) ≤ φ(�ı−1)− ψ(�ı−1). (14)

If ∃ ı0 ∈ N for which �ı0 = 0, then we have �ı0 ≤ �ı0−1. Otherwise �ı > 0, ∀ ı ∈ N. By
Proposition 2, (14) reduces to �ı < �ı−1. Hence, in both cases, we have

�ı ≤ �ı−1.

By applying reasoning similar to Theorem 3, above inequality becomes

lim
ı→∞

�ı = lim
ı→∞

ω(v̄, fıw) = 0. (15)

Similarly, one can find
lim
ı→∞

ω(ū, fıw) = 0. (16)

By using (15), (16) and triangular inequality, we conclude

ω(v̄, ū) = ω(v̄, fıw) + ω(fıw, ū)→ 0 as ı → ∞

implying thereby v̄ = ū. Therefore, f possesses a unique fixed point.

Under full relation ℘ = V2, Theorem 4 reduces to the following result in abstract
metric space.

Corollary 1. Assuming that (V, ω) remains a complete metric space and f : V→ V is a map. If
there exist φ ∈ Φ, ψ ∈ Ψ and � ≥ 0, enjoying

φ(ω(fv, fu)) ≤ φ(ω(v, u))− ψ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)},

for all v, u ∈ V,

then f possesses a unique fixed point.

In particular, for φ(t) = t and ψ(t) = (1− α)t where 0 < α < 1, Corollary 1 reduces
to Theorem 2.

Setting � = 0 in Theorem 3, we deduce the following outcome of Sk et al. [30].

Corollary 2 ([30]). Assuming that (V, ω) is a metric space, f : V→ V is a map and ℘ continues
to be a relation on V. Furthermore,

(i) (v0, fv0) ∈ ℘ for some v0 ∈ V,
(ii) (V, ω) is ℘-complete,
(iii) ℘ remains locally finitely f-transitive and f-closed,
(iv) V is ℘-continuous, or ℘ is ω-self-closed,
(v) ∃ φ ∈ Φ and ψ ∈ Ψ enjoying

φ(ω(fv, fu)) ≤ φ(ω(v, u))− ψ(ω(v, u)), ∀ v, u ∈ V with (v, u) ∈ ℘.

Then, f admits a fixed point.
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Let ϕ : R+ → R+ be a function verifying ϕ(t) < t, for all t > 0 and lim sup
s→t+

ϕ(s) < t,

for all t > 0. Taking φ(t) = t and ψ(t) = t− ϕ(t) in Theorem 3, we deduce the following
outcome of Alharbi and Khan [26].

Corollary 3 ([26]). Assuming that (V, ω) is a metric space, f : V→ V is a map and ℘ continues
to be a relation on V. Furthermore,

(i) (v0, fv0) ∈ ℘ for some v0 ∈ V,
(ii) (V, ω) is ℘-complete,
(iii) ℘ remains locally f-transitive and f-closed,
(iv) V is ℘-continuous, or ℘ is ω-self-closed,
(v) ∃ a function ϕ : R+ → R+, verifying ϕ(t) < t, for all t > 0 and lim sup

s→t+
ϕ(s) < t,

for all t > 0, and � ≥ 0, enjoying

ω(fv, fu) ≤ ϕ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)},

∀ v, u ∈ V with (v, u) ∈ ℘.

Then, f admits a fixed point.

4. Examples

The following examples are provided for evidence of the results established in the
preceding section.

Example 1. Consider V := R2 with the metric ω defined by

ω((v, u), (w, z)) =
|v−w|+ |u− z|

2
∀(v, u), (w, z) ∈ V.

On V, take a relation ℘ given by

℘ = {((v, u), (w, z)) ∈ V2 : w− v ≥ 0, u− z ≥ 0}.

Then (V, ω) is ℘-complete metric space. Define a map f : V→ V as

f(v, u) =
(

v− 2u
4

,
u− 2v

4

)
, ∀(v, u) ∈ V.

Then, ℘ is f-closed as well as ω-self-closed.
Define

φ(t) =
t
2

, ψ(t) =
t

16
.

Then φ ∈ Φ and ψ ∈ Ψ. Take (v, u), (w, z) ∈ V verifying
(
(v, u), (w, z)

) ∈ ℘. One has

φ(ω(f(v, u), f(w, z))) =
ω(f(v, u), f(w, z))

2

=
1
8
(|(v−w) + 2(z− u)|+ |(z− u) + 2(v−w)|)

=
3
16

(v−w + z− u),

i.e.,

φ(ω(f(v, u), f(w, z))) =
3

16
(v−w + z− u). (17)
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Additionally,

φ(ω((v, u), (w, z)))− ψ(ω((v, u), (w, z))) =
ω((v, u), (w, z))

2
− ω((v, u), (w, z))

16

=
7

16
ω((v, u), (w, z))

=
7

32
(v−w + z− u),

i.e.,

φ(ω((v, u), (w, z)))− ψ(ω((v, u), (w, z))) =
7

32
(v−w + z− u). (18)

From (17) and (18), one obtains

φ(ω(f(v, u), f(w, z))) ≤ φ(ω((v, u), (w, z)))− ψ(ω((v, u), (w, z))) + � ·min{ω((v, u), f(v, u)),

ω((w, z), f(w, z)), ω((v, u), f(w, z)), ω((w, z), f(v, u))},

where � ≥ 0 is arbitrary. Thus, the contractivity condition (v) holds. Further, here f(V) is also
℘-directed and hence by Theorem 4, f enjoys a unique fixed point v = (0, 0).

Example 2. Take V := (−1, 1] with the usual metric ω. On V, define a binary relation ℘ by

℘ = {(v, u) ∈ V2 : v > u ≥ 0}.

Then (V, ω) is a ℘-complete metric space.
Define

φ(t) =

{
t, if 0 ≤ t ≤ 1
t2, if t > 1

and ψ(t) =

{
t2

2 , if 0 ≤ t ≤ 1,
4, if t > 1.

Then, φ ∈ Φ and ψ ∈ Ψ. Define a map f : V→ V as

f(v) =

{
v + 1, if − 1 < v < 0,

v− v2

2 , if 0 ≤ v ≤ 1.

Take v, u ∈ V with (v, u) ∈ ℘, then v > u ≥ 0. Thus, we have

φ(ω(fv, fu)) = (v− 1
2

v2)− (u− 1
2

u2)

= (v− u)− 1
2
(v− u)(v + u) ≤ (v− u)− 1

2
(v− u)2

≤ φ(ω(v, u))− ψ(ω(v, u)) + min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)}.

Therefore, f verifies condition (v) of Theorem 3. Here ℘ is locally finitely f-transitive and f-closed.
Left over the predictions of Theorems 3 and 4 are satisfied and f enjoys a unique fixed point v = 0.

Example 3. Let V = [0, 1) with Euclidean metric ω. Let f : V → V be a map defined by

f(v) =

{v
2

, if v ∈ Q∩V

0, if v ∈ Qc ∩V.

On V, define a binary relation ℘ by

℘ = {(v, u) ∈ V2 : vu ∈ {v, u}.

Then, ℘ is locally finitely f-transitive, f-closed as well as ω-self-closed.
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Define

φ(t) = t, ψ(t) =
t
2

.

Then, φ ∈ Φ and ψ ∈ Ψ. Here, f verifies condition (v) of Theorem 3 for � = 2. Left over, the
predictions of Theorems 3 and 4 are satisfied and f enjoys a unique fixed point v̄ = 0.

Remark 2. The involved map in Example 3 is not ϕ-contraction as in particular for the pair v =
1
2

and u =
1√
2

, we have

φ(ω(fv, fu)) =
1
4

and

φ(ω(v, u))− ψ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv)}

=

(
1
2
− 1√

2

)
− 1

2

(
1
2
− 1√

2

)
+ 2 · 1

4
=

3
4
− 1

2
√

2
=

3−√2
4

>
1
4

.

Thus, Example 3 cannot work in the context of ordinary metric space, which substantiates the utility
of fixed-point outcomes in relational metric space over the corresponding outcomes in ordinary
metric space.

5. An Application

Consider the nonlinear Fredholm integral equation of the form:

v(s) = θ(s) +
∫ 1

0
M(s, τ)�(τ, v(τ))dτ, s ∈ [0, 1]. (19)

Here θ : I → R, � : I ×R → R and M : I2 → R remain functions, where I := [0, 1]. As
usual, C(I) indicates the family of real continuous maps on I.

Definition 6. η ∈ C(I) is known as a lower solution of (19) if

η(s) ≤ θ(s) +
∫ 1

0
M(s, τ)�(τ, η(τ))dτ, ∀ s ∈ I.

Definition 7. μ ∈ C(I) is known as an upper solution of (19) if

μ(s) ≥ θ(s) +
∫ 1

0
M(s, τ)�(τ, μ(τ))dτ, ∀ s ∈ I.

Ω shall stand for the family of functions ϕ : R+ → R+ such that

(i) ϕ is increasing;
(ii) ∃ ψ ∈ Ψ such that ϕ(t) = t− ψ(t), for all t ∈ R+.

Theorem 5. In conjunction with Problem (19), assuming that

(I) θ, � and M are continuous,
(II) M(s, τ) > 0, ∀ s, τ ∈ I,
(III) ∃ ϕ ∈ Ω, verifying

0 ≤ �(s, a)−�(s, b) ≤ ϕ(a− b), ∀ s ∈ I and ∀ a, b ∈ R with a ≥ b,

(IV) sup
s∈I

∫ 1
0 M(s, τ)dτ = 1.

Furthermore, the problem has a unique solution if (19) has a lower solution.
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Proof. On V := C(I), define a metric ω by

ω(v, u) = sup
s∈I

|v(s)− u(s)|, ∀ v, u ∈ V. (20)

On V, define a relation ℘ by

℘ = {(v, u) ∈ V2 : v(s) ≤ u(s), ∀ s ∈ I}. (21)

Take a map f : V→ V defined by

(fv)(s) = θ(s) +
∫ 1

0
M(s, τ)�(τ, v(τ))dτ, ∀ s ∈ V. (22)

We are going to ensure all of the assertions of Theorems 3 and 4.
(i) If η ∈ V is a lower solution of (19), then

η(s) ≤ θ(s) +
∫ 1

0
M(s, τ)�(τ, η(τ))dτ = (fη)(s)

so that (η, fη) ∈ ℘.
(ii) (V, ω) being a complete metric space is ℘-complete.
(iii) Take v, u ∈ V verifying (v, u) ∈ ℘. Using assumption (III), we obtain

�(s, v(τ))−�(s, u(τ)) ≤ 0, ∀ s, τ ∈ I. (23)

Making use of (22), (23) and condition (II), we find

(fv)(s)− (fu)(s) =
∫ 1

0
M(s, τ)[�(τ, v(τ))−�(τ, u(τ))]dτ ≤ 0,

so that (fv)(s) ≤ (fu)(s), which, using (21), yields that (fv, fu) ∈ ℘ and hence ℘ remains
f-closed. Also, ℘ is locally finitely f-transitive.

(iv) Let {vı} ⊂ V be a ℘-preserving sequence such that vı
ω−→ � ∈ V. Then for every

s ∈ I, {vı(s)} is an increasing real sequence such that vı(s)
R−→ �(s). This yields that

vı(s) ≤ �(s), ∀ ı ∈ N and ∀ s ∈ I so that (vı, �) ∈ ℘, ∀ ı ∈ N. Thus, ℘ is ω-self-closed.
(v) Take v, u ∈ V with (v, u) ∈ ℘. By (III), (20) and (22), we conclude

ω(fv, fu) = sup
s∈I

|(fv)(s)− (fu)(s)| = sup
s∈I

[(fu)(s)− (fv)(s)]

= sup
s∈I

∫ 1

0
M(s, τ)[�(τ, u(τ))−�(τ, v(τ))]dτ

≤ sup
s∈I

∫ 1

0
M(s, τ)ϕ(u(τ)− v(τ))dτ. (24)

As ϕ is increasing and 0 ≤ u(τ)− v(τ) ≤ ω(v, u), we obtain ϕ(u(τ)− v(τ)) ≤ ϕ(ω(v, u))
and hence (24) reduces to

ω(fv, fu) ≤ ϕ(ω(v, u)) sup
s∈I

∫ 1

0
M(s, τ)dτ = ϕ(ω(v, u))

so that

ω(fv, fu) ≤ ω(v, u)− ψ(ω(v, u)) + � ·min{ω(v, fv), ω(u, fu), ω(v, fu), ω(u, fv))},

∀ v, u ∈ V such that (v, u) ∈ ℘,
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where � ≥ 0 is arbitrary. Now take v, u ∈ V arbitrary. Set w := max{fv, fu} ∈ V, then we
have (fv, w) ∈ ℘ and (fu, w) ∈ ℘. Hence, f(V) is ℘-directed. Consequently, by Theorem 4,
f admits a unique fixed point, which in lieu of (22) remains a unique solution of (19).

Theorem 6. In conjunction with Problem (I)–(IV) of Theorem 5, the problem (19) admits a unique
solution if the problem has an upper solution.

Proof. Consider a metric ω on V := C(I) and a map f : V → V like as the proof of
Theorem 5. Take a relation ℘′ on V as:

℘′ = {(v, u) ∈ V2 : v(s) ≥ u(s), ∀ s ∈ I}. (25)

If μ ∈ V is an upper solution of (19), then we have

μ(s) ≥ θ(s) +
∫ 1

0
M(s, τ)�(τ, μ(τ))dτ = (fμ)(s)

implying thereby (μ, fμ) ∈ ℘′.
Take v, u ∈ V, verifying (v, u) ∈ ℘′. Using assumption (III), we obtain

�(s, v(τ))−�(s, u(τ)) ≥ 0, ∀ s, τ ∈ I. (26)

By (22), (26) and assumption (II), we obtain

(fv)(s)− (fu)(s) =
∫ 1

0
M(s, τ)[�(τ, v(τ))−�(τ, u(τ))]dτ ≥ 0,

so that (fv)(s) ≥ (fu)(s), which, using (25), yields that (fv, fu) ∈ ℘′ and hence ℘′
is f-closed.

Let {vı} ⊂ V be a ℘′-preserving sequence such that vı
ω−→ � ∈ V. Then for every

s ∈ I, {vı(s)} is a decreasing real sequence such that vı(s)
R−→ �(s). This implies that

vı(s) ≥ �(s), ∀ ı ∈ N and ∀ s ∈ I so that (vı, �) ∈ ℘′, ∀ ı ∈ N. Therefore, ℘′ remains
ω-self-closed.

Therefore, all the assumptions of Theorems 3 and 4 are verified for the metric space
(V, ω) , the map f and the relation ℘′. This concludes the proof.

Intending to illustrate Theorem 5, one considers the following example.

Example 4. Consider the integral equation of the form (19), whereas θ(s) = 2(1− 2s2), �(τ, ξ) =
1
3 ξ, and M(s, τ) = 2sτ. Define a function ϕ : [0, ∞) → [0, ∞) by ϕ(t) = 2

3 t. Obviously,
assumptions (I)–(IV) of Theorem 5 is satisfied. Moreover, θ = 0 forms a lower solution for the present
problem. Therefore, Theorem 5 can be applied to the given problem, and hence, v(s) = 2(1− 2s2) forms
the unique solution of the integral equation.

6. Conclusions

In this work, we investigated fixed-point outcomes for a strict almost (φ, ψ)-contraction
map in the relational metric space. The underlying relation in our findings being locally finitely
f-transitive is restrictive, but the class of functional contraction is weakened. The findings
investigated herewith enrich, improve, and unify several known findings, especially due to
Babu et al. [15], Alharbi and Khan [26], Sk et al. [30], and similar others. Several examples
are also attempted to convey our outcomes. Our outcomes are applied to compute a unique
positive solution of a specific nonlinear Fredholm integral equation where the existence of a
unique solution is ensured by the presence of an upper or a lower solution. In the foreseeable
future, researchers might extend our findings to a pair of maps or more general distance spaces.
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1. Introduction

The Banach fixed-point theorem, a key result in mathematics, was established in
1922. Following this, significant advancements occurred in fixed-point theory. In 1989,
Bakhtin [1] and, in 1993, Czerwik [2] introduced various contraction conditions in b-metric
spaces, extending the concept of metric spaces. In 2016, Mutlu and Gurdal [3,4] defined
bipolar metric spaces and developed numerous theorems based on different contractive
conditions. For a comprehensive study on the comparison of various definitions of con-
tractive mappings, we refer to the famous work of Rhoades [5]. Wardowski [6] introduced
the notion of F-contraction in 2012. For some recent works in F-contractions, we refer
to [7–10]. In 2020, Roy and Saha [11] presented the concept of bipolar cone b-metric spaces.
Paul et al. [12] proved some common fixed points in bipolar metric spaces. The idea of
p-metric spaces was proposed by Parvaneh et al. [13] in 2017. Concurrent developments in
b-metric spaces and Branciari distance were presented in [14,15]. Some historial notes, sur-
veys and non-trivial generalizations of metric spaces and different versions of the Banach’s
fixed-point theorem may be found in [16–21] and in the references therein.

In this paper, we introduce the concept of F-contraction in bipolar p-metric spaces
and explore covariant and contravariant fixed-point theorems within this new framework.
Additionally, we present an example to illustrate and validate one of the results.

For some very recent interesting covariant and contravariant fixed-point theorems
on bipolar and bipolar-p-metric spaces, we refer to the works of Mutlu et al. [22,23]
and Roy et al. [24], respectively. In this paper, in particular, we non-trivially extend
Theorems 3.2 and 3.4 of [24] using Wardowski’s F-contraction [6].

2. Preliminaries

Some important results that are related to the present work are listed below:

Definition 1 ([1,2]). Suppose M is a non-empty set and db : M×M→ [0, ∞) is a mapping. If
db satisfies the following conditions:
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(1) db(ς1, ς2) = 0 if and only if ς1 = ς2;
(2) db(ς1, ς2) = db(ς2, ς1) for all ς1, ς2 ∈M;
(3) There exists a real number s ≥ 1 such that db(ς1, ς3) ≤ s[db(ς1, ς2) + db(ς2, ς3)] for all
ς1, ς2, ς3 ∈M, then db is known as a b-metric on M and (M, db) is a b-metric space.

Definition 2 ([25]). Suppose (M, db) is a b-metric space and {un} is a sequence in M. Then,
(a) {un} is called a convergent sequence in (M, db), if for every ε > 0, ∃ n0 ∈ N, such that
db(un, u) < ε ∀ n > n0. It is denoted by lim

n→∞
un = u or un → u as n → ∞.

(b) {un} is called a Cauchy sequence in (M, db) if for every ε > 0 ∃ n0 ∈ N, such that
db(un, un+p) < ε ∀ n > n0, p > 0.
(c) (M, db) is called a complete b-metric space if every Cauchy sequence in M converges to some
u ∈M.

Definition 3 ([6]). Suppose the function F : (0, ∞) → (−∞,+∞) satisfies the following condi-
tions:
(F1) F is strictly increasing;
(F2) For every sequence {tn}n∈N ⊂ (0, ∞), limn→∞ tn = 0 iff limn→∞ F(tn) = −∞;
(F3) There exist s ∈ (0, 1), such that limt→0 tsF(t) = 0.

Let F be the collection of all functions F and let (M, d) be a metric space. Then, a mapping
S : M→M is known as an F-contraction if ∃ τ > 0, F ∈ F , such that ∀ P, q ∈M, and we have

d(S(P), S(q)) > 0 ⇒ τ + F(d(S(P), S(q))) ≤ F(d(P, q)).

Definition 4 ([13]). Let X 	= φ. A mapping dp : X × X −→ [0, ∞) is called an extended
b-metric or p-metric if ∃ a strictly increasing continuous mapping Ω : [0, ∞) −→ [0, ∞) with
Ω−1(t) ≤ t ≤ Ω(t), ∀ t ≥ 0 and Ω−1(0) = 0 = Ω(0), such that ∀ x, y, z ∈ X, and the following
conditions hold:

(i) dp(ς1, ς2) = 0 iff ς1 = ς2;
(ii) dp(ς1, ς2) = dp(ς2, ς1), for all ς1, ς2 ∈ X

⋂
Y;

(iii) dp(ς1, ς3) ≤ Ω(dp(ς1, ς2) + dp(ς2, ς3)).

Then, (X, dp) is known as a p-metric space.

Definition 5 ([3]). Consider two non-empty sets X and Y. A mapping dbi : X×Y −→ [0, ∞) is
called bipolar-metric on (X,Y) if it satisfies the following conditions:

(i) dbi(ς1, ς2) = 0 iff ς1 = ς2;
(ii) dbi(ς1, ς2) = dbi(ς2, ς1), for all ς1, ς2 ∈ X

⋂
Y;

(iii) dbi(ς1, ς3) ≤ dbi(ς1, ς2) + dbi(x1, ς2) + dbi(x1, ς3), for all (ς1, ς2), (x1, ς3) ∈ X×Y.

Then, (X,Y, dbi) is known as a bipolar-metric space.

Definition 6 ([24]). Suppose Ω is a strictly increasing continuous function. Consider the two
non-empty sets of mappings:

ψ = {Ω : [0, ∞) −→ [0, ∞) : Ω−1(t) ≤ t ≤ Ω(t), ∀t ≥ 0} and
ψ∗ = {Ω ∈ ψ : Ω−1(t1 + t2) ≤ Ω−1(t1) + Ω−1(t2), ∀t1, t2 ≥ 0}.

Let X and Y be two non-empty sets. A mapping p : X×Y −→ [0, ∞) is known as a bipolar
p-metric on (X,Y) if it satisfies the following three conditions for a function Ω ∈ ψ:

(i) p(ς1, ς2) = 0 iff ς1 = ς2;
(ii) p(ς1, ς2) = p(ς2, ς1), for all (ς1, ς2) ∈ (X

⋂
Y)2;

(iii) p(ς1, ς3) ≤ Ω[p(ς1, ς2) + p(x1, ς2) + p(x1, ς3)], for all (ς1, ς2), (x1, ς3) ∈ X×Y.

And (X,Y, p) is called a bipolar p-metric space.
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Remark 1. The definitions of sequence, Cauchy sequence, convergent sequence etc., in a bipolar
p-metric space are exactly the same as in the case of a usual metric space or b-metric space. Hence,
we omit their exact definitions to avoid repetition.

Remark 2. Any metric space, b-metric space, p-metric space, bipolar metric space, and bipolar
b-metric space is also a bipolar p-metric space. As such, the results established in the current paper
are also true in the aforementioned less general metric spaces.

Definition 7 ([24]). Consider two pairs of sets (X1,Y1) and (X2,Y2). The function f : X1
⋃
Y1 →

X2
⋃
Y2 is known as covariant mapping if f (X1) ⊂ X2 and f (Y1) ⊂ Y2 and it is denoted by

f : (X1,Y1)
−→→ (X2,Y2).

Definition 8 ([24]). Suppose (X1,Y1) and (X2,Y2) are two pairs of sets. The function f :
X1

⋃
Y1 → X2

⋃
Y2 is known as contravariant mapping if f (X1) ⊂ Y2 and f (Y1) ⊂ X2 and

it is denoted by f : (X1,Y1) � (X2,Y2).

3. Extended Interpolative F-Contraction

In this section, we present covariant-type and contravariant-type fixed-point theorems.

Theorem 1. Consider a complete bipolar p-MS (X,Y, p) for some Ω ∈ ψ∗ and a covariant
mapping f : (X,Y, p) −→→ (X,Y, p) such that

τ + F(p( f (ς1), f (ς2))) ≤ c1F(p(ς1, ς2))

holds for (ς1, ς2) ∈ X×Y, τ > 0, c1 ∈ ΔΩ and for any p( f (ς1), f (ς2)) > 0.
Then, the function f : X

⋃
Y→ X

⋃
Y has a unique fixed point.

Proof. Consider (ς0, ζ0) ∈ X×Y. Let us consider the iterative sequences ςn ⊂ X and
ζn ⊂ Y such that ςn = f (ςn−1) = f n(ς0) and ζn = f (ζn−1) = f n(ζ0), for all n ∈ N. Then,
({ςn}, {ζn}) is a bisequence on (X,Y, p) and ςn 	= ζn.

The term bisequence means that the sequence ({ςn}, {ζn}) is a subset of the Cartesian
product of X and Y. The concept of convergence of a bisequence is a natural extension of
the concept of convergence of a sequence.

We then have

τ + F(p(ςn, ζn)) = τ + F(p( f (ςn−1), f (ζn−1)))

≤ c1F(p(ςn−1, ζn−1)).

Therefore,

F(p(ςn, ζn)) ≤ c1F(p( f (ςn−1), f (ζn−1)))− τ

≤ c2
1F(p(ςn−2, ζn−2))− 2τ.

Proceeding in this way, we have ∀n ≥ 1,

F(p(ςn, ζn)) ≤ cn
1F(p(ς0, ζ0))− nτ.

Taking the limit as n → ∞,

lim
n→∞

F(p(ςn, ζn)) = −∞.

Then, from the second property of F-contraction, we have

lim
n→∞

p(ςn, ζn) = 0.

Hence, from the third property of the F-contraction, ∀n ∈ N ∃ t ∈ (0, 1), such that
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lim
n→∞

p(ςn, ζn)
tF(p(ςn, ζn)) = 0.

For all n ∈ N, we have

p(ςn, ζn)
tF(p(ςn, ζn))− p(ςn, ζn)

tF(p(ς0, ζ0))

≤ p(ςn, ζn)
t(cn

1F(p(ς0, ζ0))− nτ)− p(ςn, ζn)
tF(p(ς0, ζ0))

= −p(ςn, ζn)
tnτ

≤ 0.

From the third property of the F-contraction and taking the limit as n → ∞, we have

lim
n→∞

np(ςn, ζn)
t = 0

Hence, there exist n1 ∈ N such that np(ςn, ζn)t ≤ 1 for all n ≥ n1.
Therefore, p(ςn, ζn) ≤ 1

n1/t for all n ≥ n1.
Again,

F(p(ςn, ζn+1)) = F(p( f (ςn−1), f (ζn)))

≤ c1F(p(ςn−1, ζn))− τ

...

= cn
1F(p(ς0, ζ1))− nτ

Taking the limit as n → ∞,

lim
n→∞

F(p(ςn, ζn+1)) = −∞

From the second property of the F-contraction, we have

lim
n→∞

p(ςn, ζn+1) = 0

Hence, from the third property of the F-contraction for all n ∈ N, there exist t ∈ (0, 1),
such that

lim
n→∞

p(ςn, ζn+1)
tF(p(ςn, ζn+1)) = 0

For all n ∈ N, we have

p(ςn, ζn+1)
tF(p(ςn, ζn+1))− p(ςn, ζn+1)

tF(p(ς0, ζ1))

≤ p(ςn, ζn+1)
t(cn

1F(p(ς0, ζ1))− nτ)− p(ςn, ζn+1)
tF(p(ς0, ζ1))

= −p(ςn, ζn+1)
tnτ

≤ 0.

From the third property of the F-contraction and taking the limit as n → ∞, we have

lim
n→∞

np(ςn, ζn+1)
t = 0

Hence, there exist n2 ∈ N, such that np(ςn, ζn+1)
t ≤ 1 for all n ≥ n2.

Therefore, p(ςn, ζn+1) ≤ 1
n1/t for all n ≥ n2.

Consider n0 = max{n1, n2}.
For some 1 ≤ n < m, we have
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p(ςn, ζm) ≤ Ω[p(ςn, ζn) + p(ςn+1, ζn) + p(ςn+1, ζm)]

⇒ Ω−1(p(ςn, ζm)) ≤ 1

n
1
t
+

1

n
1
t
+ p(ςn+1, ζm), for all n ≥ n0

=
1

n
1
t
+

1

n
1
t
+ Ω[p(ςn+1, ζn+1) + p(ςn+2, ζn+1) + p(ςn+2, ζm)]

⇒ Ω−2(p(ςn, ζm)) ≤ Ω−1
[

1

n
1
t
+

1

n
1
t

]
+

1

(n + 1)
1
t
+

1

(n + 1)
1
t
+ p(ςn+2, ζm)

Proceeding in a similar way, we have

Ω−(m−n+1)(p(ςn, ζm)) ≤ Ω−(m−n)
[

1

n
1
t
+

1

n
1
t

]
+ Ω−(m−n)

[
1

(n + 1)
1
t
+

1

(n + 1)
1
t

]

+ . . . + Ω−1

[
1

(m− 1)
1
t
+

1

(m− 1)
1
t

]
+ p(ςm+1, ζm)

≤
m

∑
i=n

Ω−(m−i)
[

1

i
1
t
+

1

i
1
t

]
, for all n ≥ n0

Hence,

p(ςn, ζm) ≤ Ω(m−n+1)

(
m

∑
i=n

Ω−(m−i)
[

1

i
1
t
+

1

i
1
t

])
(1)

Similarly, for any 1 ≤ m < n, we can show that

p(ςn, ζm) ≤ Ω(m−n+1)

(
n

∑
i=m

Ω−(n−i)
[

1

i
1
t
+

1

i
1
t

])
(2)

Since t ∈ (0, 1), the right hand sides of Equations (1) and (2) trend toward 0 as
m, n → ∞.

Hence, the series is bi-convergent and {ςn, ζn} is a Cauchy bisequence in (X,Y).
Let the {ςn, ζn} biconverge to some u ∈ X

⋂
Y. Then, {ςn} → u and {ζn} → u, where

u ∈ X
⋂
Y and { f (ςn)} = {ςn+1} where u ∈ X

⋂
Y. Again, since f is continuous, f (ςn)→

f (u). Therefore, f (u) = u. Hence, u is a fixed point of f . If possible, let v is another fixed
point of f .Then, we have f (v) = v, for some v ∈ X

⋂
Y.

Then,
τ ≤ F(p( f (u), f (v)))− F(p(u, v)) = 0

which is a contradiction. Hence, u = v. Therefore, f has a unique fixed point in
(X,Y, p).

Theorem 2. Consider a complete bipolar p-MS (X,Y, p) for some Ω ∈ ψ∗ and a function
f : (X,Y, p) � (X,Y, p), which is contravariant such that

τ + F(p( f (ζ), f (ς))) ≤ c1F(p(ς, ζ)) + c2F(p(ς, f (ς))) + c3F(p( f (ζ), ζ)),

for (ς, y) ∈ X×Y and τ > 0, where c1, c2, c3 ≥ 0, such that
c1 + c2 + c3 < 1 and

(
c1+c3
1−c2

)(
c1+c2
1−c2

)
∈ ΔΩ.

Then, the function f : X
⋃
Y→ X

⋃
Y ∀ t > 0, c3t < Ω−1(t) has a unique fixed point.

Proof. Consider ς0 ∈ X. Let us construct two iterative sequences ςn ⊂ X and ζn ⊂ Y such
that for some n ≥ 0, we construct ζn = f (ςn) and ςn+1 = f (ζn), for all n ∈ N.

Then, we have
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τ + F(p(ςn, ζn)) = τ + F(p( f (ζn−1), f (ςn)))

≤ c1F(p(ςn, ζn−1)) + c2F(p(ςn, f (ςn)))

+ c3F(p( f (ζn−1), ζn−1))

= (c1 + c3)F(p(ςn, ζn−1)) + c2F(p(ςn, ζn)), for all n ≥ 1

⇒ F(p(ςn, ζn))− c2F(p(ςn, ζn)) ≤ (c1 + c3)F(p(ςn, ζn−1))− τ

⇒ F(p(ςn, ζn)) ≤
(

c1 + c3

1− c2

)
F(p(ςn, ζn−1))− 1

1− c2
τ.

Again,

τ + F(p(ςn, ζn−1)) = τ + F(p( f (ζn−1), f (ςn−1)))

≤ c1F(p(ςn−1, ζn−1)) + c2F(p(ςn−1, f (ςn−1)))

+ c3F(p( f (ζn−1), ζn−1))

= (c1 + c2)F(p(ςn−1, ζn−1)) + c3F(p(ςn, ζn−1))

⇒ (1− c3)F(p(ςn, ζn−1)) ≤ (c1 + c2)F(p(ςn−1, ζn−1))− τ

⇒ F(p(ςn, ζn−1)) ≤
(

c1 + c2

1− c3

)
F(p(ςn−1, ζn−1))− 1

1− c3
τ, for all n ≥ 1.

Therefore we have,

F(p(ςn, ζn)) ≤
(

c1 + c3

1− c2

)(
c1 + c2

1− c3

)
F(p(ςn−1, ζn−1))−

(
c1 + c3

1− c2

)(
1

1− c3

)
τ − 1

1− c2
τ

Let λ =
(

c1+c3
1−c2

)(
c1+c2
1−c3

)
, therefore

F(p(ςn, ζn)) ≤ λF(p(ςn−1, ζn−1))−
(

c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

Proceeding in this way, we have

F(p(ςn, ζn)) ≤ λnF(p(ς0, ζ0))− n
(

c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

Taking the limit as n → ∞,

lim
n→∞

F(p(ςn, ζn)) = −∞

Thus, from the second property of the F-contraction,

lim
n→∞

p(ςn, ζn) = 0.

Hence, from the third property of the F-contraction, ∀n ∈ N, ∃ t ∈ (0, 1) such that

lim
n→∞

p(ςn, ζn)
tF(p(ςn, ζn)) = 0.

For all n ∈ N, we have

p(ςn, ζn)
tF(p(ςn, ζn))− p(ςn, ζn)

tF(p(ς0, ζ0))

≤ p(ςn, ζn)
t(λnF(p(ς0, ζ0))− n

(
c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ)

− p(ςn, ζn)
tF(p(ς0, ζ0))

= −p(ςn, ζn)
tn
(

c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

≤ 0.
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From the third property of the F-contraction and considering the limit as n → ∞, we
have

lim
n→∞

n
(

c1 + c3

1− c3
− 1

)(
1

1− c2

)
p(ςn, ζn)

t = 0

Hence, there exist n1 ∈ N such that np(ςn, ζn)t ≤ 1 for all n ≥ n1.
Therefore, p(ςn, ζn) ≤ 1

n1/t for all n ≥ n1.
Again,

F(p(ςn+1, ζn)) = F(p( f (ζn), f (ςn)))

≤
(

c1 + c2

1− c2

)
F(p(ςn+1, ζn))−

(
c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

...

≤ λnF(p(ς1, ζ0))− n
(

c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

≤ λn
(

c1 + c2

1− c3

)
F(p(ς0, ζ0))− n

(
c1 + c2

1− c3

)(
c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

Taking the limit as n → ∞,

lim
n→∞

F(p(ςn+1, ζn)) = −∞

From the second property of the F-contraction, we have

lim
n→∞

p(ςn+1, ζn) = 0

Hence, from the third property of the F-contraction for all n ∈ N, there exist t ∈ (0, 1),
such that

lim
n→∞

p(ςn+1, ζn)
tF(p(ςn+1, ζn)) = 0

For all n ∈ N, we have

p(ςn+1, ζn)
tF(p(ςn+1, ζn))− p(ςn+1, ζn)

tF(p(ς1, ζ0))

≤ p(ςn+1, ζn)
t
[

λnF(p(ς1, ζ0))− n
(

c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

]
− p(ςn+1, ζn)

tF(p(ς1, ζ0))

= −p(ςn+1, ζn)
tn
(

c1 + c3

1− c3
− 1

)(
1

1− c2

)
τ

≤ 0.

From the third property of the F-contraction and taking the limit as n → ∞, we have

lim
n→∞

np(ςn+1, ζn)
t = 0

Hence, there exist n2 ∈ N, such that np(ςn, ζn+1)
t ≤ 1 for all n ≥ n2.

Therefore, p(ςn+1, ζn) ≤ 1
n1/t for all n ≥ n2.

Consider n0 = max{n1, n2}.
For any 1 ≤ n < m, we have
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p(ςn, ζm) ≤ Ω[p(ςn, ζn) + p(ςn+1, ζn) + p(ςn+1, ζm)]

⇒ Ω−1(p(ςn, ζm)) ≤ 1

n
1
t
+

1

n
1
t
+ p(ςn+1, ζm), for all n ≥ n0

=
1

n
1
t
+

1

n
1
t
+ Ω[p(ςn+1, ζn+1) + p(ςn+2, ζn+1) + p(ςn+2, ζm)]

⇒ Ω−2(p(ςn, ζm)) ≤ Ω−1
[

1

n
1
t
+

1

n
1
t

]
+

1

(n + 1)
1
t
+

1

(n + 1)
1
t
+ p(ςn+2, ζm)

Proceeding in a similar way, we have

Ω−(m−n+1)(p(ςn, ζm)) ≤ Ω−(m−n)
[

1

n
1
t
+

1

n
1
t

]
+ Ω−(m−n)

[
1

(n + 1)
1
t
+

1

(n + 1)
1
t

]

+ . . . + Ω−1

[
1

(m− 1)
1
t
+

1

(m− 1)
1
t

]
+ p(ςm+1, ζm)

≤
m

∑
i=n

Ω−(m−i)
[

1

i
1
t
+

1

i
1
t

]
, for all n ≥ n0

Hence,

p(ςn, ζm) ≤ Ω(m−n+1)

(
m

∑
i=n

Ω−(m−i)
[

1

i
1
t
+

1

i
1
t

])
(3)

Similarly, for any 1 ≤ m < n, we can show that

p(ςn, ζm) ≤ Ω(m−n+1)

(
n

∑
i=m

Ω−(n−i)
[

1

i
1
t
+

1

i
1
t

])
(4)

Since t ∈ (0, 1), the right hand sides of Equations (3) and (4) trend to 0 as m, n → ∞.
Hence the series is bi-convergent.

Therefore, {ςn, ζn} is a Cauchy bisequence in (X,Y).
Let the {ςn, ζn} biconverge to some Z ∈ X

⋂
Y.

Then, we have

τ + F(p( f (Z), f (ςn))) ≤ c1F(p(Z, ζn)) + c2F(p(Z, f (Z))) + c3F(p( f (ζn), ζn))

Moreover,

p( f (Z),Z) ≤ Ω[p( f (Z), f (ςn)) + p(ζn, f (ζn)) + p(ζn,Z)]

≤ Ω[c1F(p(Z, ζn)) + c2F(p(Z, f (Z))) + c3F(p( f (ζn), ζn)) + p(ζn, f (ζn)) + p(ζn,Z)]

Taking the limit as n → ∞, we obtain

p( f (Z),Z) ≤ Ω[c2F(p(Z, f (Z)))]

If f (Z) 	= Z, then

p( f (Z),Z) ≤ Ω[c2F(p(Z, f (Z)))] < p( f (Z),Z)

which is a contradiction.
Hence, Z is a fixed point of f .
If possible, let Z2 is another fixed point of f .
Then, we have for Z,Z2 ∈ X

⋂
Y.

τ + p(Z,Z2) = τ + p( f (Z), f (Z2))

≤ c1F(p(Z,Z2)) + c2F(p(Z, f (Z))) + c3F(p( f (Z2),Z2))

< τ + p(Z,Z2)
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Therefore, p(Z,Z2) = 0 ⇒ Z = Z2.
Therefore f has a unique fixed point in (X,Y, p).

4. Example

This section includes an example to validate Theorem 2.

Example 1. Consider X = [0, 2] and Y = [2, 5] and a mapping p : X×Y → [0, ∞) defined
as p(A,B) = |A−B|2 for all (A,B) ∈ X×Y. Then for the function Ω(t) = 3t for all t ≥ 0,
(X,Y, p) is a complete bipolar p-MS such that ∀ v ∈ X

⋃
Y:

f : (X,Y, p) →→ (X,Y, p) defined as,

f (V) =
(
√

2 + 1)−V√
2

Then, for c1 = 1
2 , c2 = 0, c3 = 0, the map f is a contravariant map.

Next, consider τ = ln 1
2 and F(α) = ln(α).

Now,

τ + F(p( f (ς), f (ζ))) = ln
1
2
+ F

(
p

(
(
√

2 + 1)− ς√
2

,
(
√

2 + 1)− ζ√
2

))

= ln
1
2
+ F

⎛
⎝
∣∣∣∣∣ (
√

2 + 1)√
2

− ς√
2
− (

√
2 + 1)√

2
+

ζ√
2

∣∣∣∣∣
2
⎞
⎠

= ln
1
2
+ F

(∣∣∣∣− ς√
2
+

ζ√
2

∣∣∣∣
2
)

= ln
1
2
+ ln

(
ς− ζ√

2

)2

= ln
1
2
+ 2

[
ln(ς− ζ)− ln

√
2
]

= 2[ln(ς− ζ)] +

(
ln

1
2
− 2 ln

√
2
)

and

c1F(p(ς, ζ)) =
1
2
F(|ς− ζ|2)

=
1
2

ln(|ς− ζ|2)
= ln |ς− ζ|.

Therefore,

τ + F(p( f (ζ), f (ς))) ≤ c1F(p(ς, ζ)) + c2F(p(ς, f (ς))) + c3F(p( f (ζ), ζ)),

for (ς, ζ) ∈ X×Y, where c1, c2, c3 ≥ 0, such that c1 + c2 + c3 < 1 and 1
4 ∈ ΔΩ.

Thus, we observe that all conditions of Theorem 2 are satisfied by f .
Hence, f has a unique fixed point in (X,Y, p).

5. Conclusions

In this paper, we established new extended versions of a covariant Banach-type fixed-
point theorem and a contravariant Rich-type fixed-point theorem in a complete bipolar
p-metric space using the concept of F-contraction. As a results of this work, several existing
results in the literature on Banach- and Reich-type fixed-point theorems (such as Theo-
rems 3.2 and 3.4 in [24]) may be thought of as special cases of Theorem 1 and Theorem 2,
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respectively. This work can be extended in future to investigate some new results of the
fixed points under different types of contractions as indicated in [5] in bipolar p-metric
space. Further, multivalued versions of our results may be investigated, as achieved
in the recent interesting paper [22]. Common fixed-point results of such covariant and
contravariant mappings may also be studied following the directions of [23].
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Abstract: In this study, we introduce a new space called the modular b-metric-like space. We
investigate some properties of this new concept and define notions of ξ-convergence, ξ-Cauchy
sequence, ξ-completeness and ξ-contraction. The existence and uniqueness of fixed points in the
modular b-metric-like space are handled. Moreover, we give some examples and an application to an
integral equation to illustrate the usability of the obtained results.
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1. Introduction

Metric space theory was established by Fréchet [1] and Hausdorff [2]. Banach’s fixed
point theorem (also known as Banach Contraction Principle), in which the concept of metric
space is used, is the cornerstone of fixed point theory. Banach [3] introduced this theorem
in 1922, and it has since become one of the most effective theorems in mathematics due to
its wide applicability and simplicity.

Czerwik [4] presented generalization of some fixed point theorems of the Banach type,
using the idea that some problems, especially the problem of convergence of measurable
functions, lead to a generalization of the concept of the metric. This generalization of the
concept of metric is called the b-metric by Czerwik [4]. For some fixed point results for a
multivalued generalized contraction on a set with two b-metrics, see [5].

Amini-Harandi [6] first introduced a new space called a metric-like space. In this new
concept, X is a nonempty set and σ : X×X → IR+ satisfies all conditions of a metric except
that σ(x, x) may be different from zero for x ∈ X. Then, Amini-Harandi [6] established the
fixed point theory in metric-like spaces by giving some fixed point results in such spaces.
For several concepts related to metric-like spaces, such as equal-like points, cluster points,
completely separate points, distance between a point and a subset of a metric-like space
and distance between two subsets of a metric-like space, see [7].

The concept of b-metric-like space which is generalization of the concepts of metric-like
space and b-metric space was presented by Alghamdi et al. [8]. They also investigated the
existence of fixed points in a b-metric-like space and provided examples and applications
to integral equations.

Nakano [9] introduced the concept of modular spaces. The concept of modular
spaces was also studied by Orlicz [10]. Concepts of metric modular and modular metric
spaces were introduced by Chistyakov [11,12] who constructed the theory of this structure.
According to Chistyakov [13], while the metric on a set represents the non-negative finite
distances between any two points of set, the purpose of a metric modular is to represent
non-negative (possibly infinite valued) velocities. Some results achieved by Chistyakov are
available in [14]. For fixed point results obtained by Chistyakov and applications of them,
see [13,15–17]. Chistyakov compiled many of the works on metric modular spaces in [18].
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Mongkolkeha et al. [19] obtained some results on the existence of fixed points by proving
the fixed point theorems for contraction mappings in modular metric spaces.

Ege and Alaca [20] defined the notion of modular b-metric, which is the generalization
of the metric modular, and introduced definitions to prove the Banach contraction principle
in this new structure. Then, they gave an application of this principle to the system of
linear equations.

Rasham et al. [21] introduced the concept of modular-like metric space. Then, they
achieved some fixed point results for two families of set-valued mappings, satisfying a
contraction in modular-like metric spaces. In [21], some results in graph theory were im-
proved by using multigraph-dominated functions in modular-like metric spaces. Moreover,
applications of fixed point theorems on the existence and uniqueness of the solution of
integral equations have been investigated in [21? –23]. For more fixed point results in
modular-like metric spaces, see [25].

The theory of fixed points also has very proper applications in geometry besides inte-
gral equations, systems of linear equations and differential equations. For example, fixed
points of principal E6-bundles over a compact algebraic curve and of the automorphisms of
the vector bundle moduli space over a compact Riemann surface were introduced by Antón-
Sancho [26,27]. Furthermore, Antón-Sancho [28] presented the notion of an α-trialitarian
G-bundle to describe the fixed points of the automorphism of moduli space.

Despite the important generality of the theory of modular spaces over linear spaces,
due to problems arising from multivalued analysis, such as the definition of metric func-
tional spaces, selection principles, and the existence of regular selections of multifunctions,
the concepts of modular and corresponding modular linear space are very restrictive. For
this reason, Chistyakov introduced a new concept of modular space on an arbitrary set that
is consistent with the classical concept. With this paper, our aim is to modulate the b-metric-
like space in order not to face these restrictions, allowing us to present a more general form
of a metric modular and a modular extension of the concepts in b-metric-like spaces.

In this study, we present the concept of "modular b-metric-like space” by using
the approaches in [8,14] and investigate fixed point theorems for contractive mappings in
modular b-metric-like space. We give the concepts of a ξ-open (ξ-closed) set, ξ-convergence,
ξ-Cauchy sequence, ξ-completeness and ξ-contraction with the help of intelligible examples.
Furthermore, we demonstrate the existence of a solution of integral equations to support
our results.

2. Preliminaries

This section presents fundamental definitions and concepts to facilitate the compre-
hension of the primary results. Throughout this paper, IR and IN will be used to denote
the set of all real numbers and the set of all positive integer numbers, respectively.

We see that the structure of space changes with the change of axioms and then the
concept of modular is combined to these structures below.

Definition 1 ([4]). Let X 	= ∅ and K ≥ 1 be a real number. A mapping d : X × X → [0, ∞) is
called b-metric on X if the following hold for each x, y, z ∈ X:

(bM1) d(x, y) = 0 ⇔ x = y;
(bM2) d(x, y) = d(y, x);
(bM3) d(x, y) ≤ K[d(x, z) + d(z, y)].
The pair (X, d) is called a b-metric space.

Definition 2 ([6]). Let X 	= ∅. A mapping σ : X × X → IR+ is called metric-like on X if the
following hold for each x, y, z ∈ X:

(ML1) σ(x, y) = 0 ⇒ x = y;
(ML2) σ(x, y) = σ(y, x);
(ML3) σ(x, z) ≤ σ(x, y) + σ(y, z).
The pair (X, σ) is called a metric-like space.
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Definition 3 ([8]). Let X 	= ∅ and K ≥ 1 be a real number. A mapping ρ : X × X → [0, ∞) is
called b-metric-like on X if the following hold for each x, y, z ∈ X:

(bML1) ρ(x, y) = 0 ⇒ x = y;
(bML2) ρ(x, y) = ρ(y, x);
(bML3) ρ(x, z) ≤ K[ρ(x, y) + ρ(y, z)].
The pair (X, ρ) is called a b-metric-like space.

Example 1 ([8]). Let X = [0, ∞). Define the function ρ : X×X → [0, ∞) by ρ(x, y) = (x + y)2.
Then, (X, ρ) is a b-metric-like space with constant K = 2.

Example 2 ([8]). Let X = [0, ∞). Define the function ρ : X × X → [0, ∞) by ρ(x, y) =
(max{x, y})2. Then, (X, ρ) is a b-metric-like space with constant K = 2.

Definition 4 ([10]). Let X be a real linear space. A functional δ : X → [0, ∞] is called classical
modular on X if the following hold for each x, y ∈ X:

(CM1) δ(0) = 0;
(CM2) If δ(αx) = 0 for all α > 0, then x = 0;
(CM3) δ(−x) = δ(x);
(CM4) δ(αx + βy) ≤ δ(x) + δ(y) for all α, β ≥ 0 with α + β = 1.

Definition 5 ([14]). Let X 	= ∅. A mapping v : (0, ∞) × X × X → [0, ∞] is called metric
modular on X if the following hold for each x, y, z ∈ X:

(MM1) vλ(x, y) = 0 ⇔ x = y, for all λ > 0;
(MM2) vλ(x, y) = vλ(y, x), for all λ > 0;
(MM3) vλ+μ(x, z) ≤ vλ(x, y) + vμ(y, z), for all λ, μ > 0.

Definition 6 ([20]). Let X 	= ∅ and K ≥ 1 be a real number. A mapping u : (0, ∞)× X× X →
[0, ∞] is called modular b-metric on X if the following hold for each x, y, z ∈ X:

(MbM1) uλ(x, y) = 0 ⇔ x = y, for all λ > 0;
(MbM2) uλ(x, y) = uλ(y, x), for all λ > 0;
(MbM3) uλ+μ(x, z) ≤ K[uλ(x, y) + uμ(y, z)], for all λ, μ > 0.
Then, we say that (X, u) is a modular b-metric space.

Definition 7 ([21]). Let X 	= ∅. A mapping w : (0, ∞)× X× X → [0, ∞) is called modular-like
metric on X if the following hold for each x, y, z ∈ X:

(MLM1) wλ(x, y) = 0 ⇒ x = y, for all λ > 0;
(MLM2) wλ(x, y) = wλ(y, x), for all λ > 0;
(MLM3) wλ+μ(x, z) ≤ wλ(x, y) + wμ(y, z), for all λ, μ > 0.
Then, (X, w) is called a modular-like metric space.

3. Modular b-Metric-like Space

In this section, we start with the introduction of a modular b-metric-like space and
give some properties of this concept besides useful examples to support the structure.

Definition 8. Let X 	= ∅ and s ≥ 1 be a real number. A function ξ : (0, ∞)× X× X → [0, ∞]
is called modular b-metric-like on X if it satisfies the following three conditions for each x, y, z ∈ X:

(MbML1) ξλ(x, y) = 0 ⇒ x = y, for all λ > 0,
(MbML2) ξλ(x, y) = ξλ(y, x), for all λ > 0,
(MbML3) ξλ+μ(x, y) ≤ s[ξλ(x, z) + ξμ(z, y)], for all λ, μ > 0.
Then, the triplet (X, ξ, s) is called modular b-metric-like space.
If we replace (MbML1) with ξλ(x, y) = 0 ⇔ x = y, then ξ becomes a modular b-metric on

X.
In the rest of this paper, for all λ > 0 and x, y ∈ X, ξλ(x, y) = ξ(λ, x, y) denotes the map

ξ : (0, ∞)× X× X → [0, ∞].
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Example 3. Let X = [0, ∞). Define the function ξ : (0, ∞)× X× X → [0, ∞]

by ξλ(x, y) = (x+y)2

λ for all λ > 0 and x, y ∈ X = [0, ∞). Then, (X, ξ, 2) is a modular
b-metric-like space.

It is clear that the conditions (MbML1) and (MbML2) hold. For this reason, only the condition
(MbML3) will be shown:

(MbML3) Since (x + y)2 ≤ 2[(x + z)2 + (z + y)2] for all x, y, z ∈ X, we have

(x+y)2

λ+μ ≤ 2
λ+μ [(x + z)2 + (z + y)2]

= 2[ (x+z)2

λ+μ + (z+y)2

λ+μ ]

≤ 2[ (x+z)2

λ + (z+y)2

μ ]

for all x, y, z ∈ X and all λ, μ > 0.
That means that ξλ+μ(x, y) ≤ 2[ξλ(x, z) + ξμ(z, y)]. Thus, (X, ξ, 2) is a modular b-metric-

like space.

The graphical behavior of the function ξ defined as ξλ(x, y) = (x+y)2

λ on the set [1, 10]× [1, 10]
for the values λ = 1, 2, 3, 4, 5 is given in the Figure 1. Thus, we get a visual idea about how the
function ξ changes on the set [1, 10]× [1, 10] with the change of the value of λ from 1 to 5.

Figure 1. The graphical behavior of the ξλ(x, y) = (x+y)2

λ with λ = 1, 2, 3, 4, 5 and x, y ∈ [1, 10].

Example 4. Let X = [0, ∞). Define the function ξ : (0, ∞)× X× X → [0, ∞] by

ξλ(x, y) = (max{x,y})2

λ for all λ > 0 and x, y ∈ X = [0, ∞). Then, (X, ξ, 2) is a modular
b-metric-like space.

It is clear that the conditions (MbML1) and (MbML2) hold. For this reason, only the condition
(MbML3) will be shown:

(MbML3) Since (max{x, y})2 ≤ 2[(max{x, z})2 + (max{z, y})2] for all x, y, z ∈ X,
we have

(max{x,y})2

λ+μ ≤ 2
λ+μ [(max{x, z})2 + (max{z, y})2]

= 2[ (max{x,z})2

λ+μ + (max{z,y})2

λ+μ ]

≤ 2[ (max{x,z})2

λ + (max{z,y})2

μ ]

for all x, y, z ∈ X and all λ, μ > 0. That means that ξλ+μ(x, y) ≤ 2[ξλ(x, z) + ξμ(z, y)]. Thus,
(X, ξ, 2) is a modular b-metric-like space.

Example 5. Let ℵ = C[0, L] be the set of all continuous real-valued functions defined on [0, L],
where L > 0. Define the function ξ : (0, ∞)× ℵ× ℵ → [0, ∞] by
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ξλ(�(s), ϕ(s)) =
maxs∈[0,L](|�(s)|+|ϕ(s)|)2

λ for all λ > 0 and all �, ϕ ∈ ℵ. Then, (ℵ, ξ, 2) is a
modular b-metric-like space.

It is clear that the conditions (MbML1) and (MbML2) hold. For this reason, only the condition
(MbML3) will be shown:

Since maxs∈[0,L](|�(s)|+ |ϕ(s)|)2 ≤ 2[maxs∈[0,L](|�(s)|+ |κ(s)|)2 +maxs∈[0,L](|κ(s)|+
|ϕ(s)|)2], we have

maxs∈[0,L](|�(s)|+|ϕ(s)|)2

λ+μ ≤ 2
λ+μ [maxs∈[0,L](|�(s)|+ |κ(s)|)2 + maxs∈[0,L](|κ(s)|+ |ϕ(s)|)2]

= 2[
maxs∈[0,L](|�(s)|+|κ(s)|)2

λ+μ +
maxs∈[0,L](|κ(s)|+|ϕ(s)|)2

λ+μ ]

≤ 2[
maxs∈[0,L](|�(s)|+|κ(s)|)2

λ +
maxs∈[0,L](|κ(s)|+|ϕ(s)|)2

μ ]

for all �, ϕ, κ ∈ ℵ and all λ, μ > 0. That means that

ξλ+μ(�, ϕ) ≤ 2[ξλ(�, κ) + ξμ(κ, ϕ)].

Thus, (ℵ, ξ, 2) is a modular b-metric-like space.

Proposition 1. Let X = [0, ∞), and let (X, d) be a b-metric-like space with constant s ≥ 1.
Define the function ξ : (0, ∞)× X × X → [0, ∞] by ξλ(x, y) = d(x,y)

λ for all λ > 0 such that
x, y ∈ X = [0, ∞). Then, (X, ξ, s) is a modular b-metric-like space.

Proof. (MbML1) ξλ(x, y) = d(x,y)
λ = 0 ⇒ d(x, y) = 0 for all λ > 0. Hence, we have x = y,

since d is b-metric-like.
(MbML2) ξλ(x, y) = d(x,y)

λ = d(y,x)
λ = ξλ(y, x) for all λ > 0.

(MbML3) Since (X, d) is a b-metric-like space with constant s, we have d(x, y) ≤
s[d(x, z) + d(z, y)] for all x, y, z ∈ X. It follows that d(x,y)

λ+μ ≤ s
λ+μ [d(x, z) + d(z, y)] =

s[ d(x,z)
λ+μ + d(z,y)

λ+μ ] ≤ s[ d(x,z)
λ + d(z,y)

μ ] for all x, y, z ∈ X and all λ, μ > 0. That means that
ξλ+μ(x, y) ≤ s[ξλ(x, z) + ξμ(z, y)]. Thus, (X, ξ, s) is a modular b-metric-like space.

Definition 9. Let ξ be a modular b-metric-like on X, and let x0 be an arbitrary element in X.
Define set Xξ

f in by Xξ
f in ≡ Xξ

f in(x0) = {x ∈ X : ξλ(x, x0) < ∞ for all λ > 0}.

Definition 10. Let (X, ξ, s) be a modular b-metric-like space. Let x ∈ X, r > 0 and λ > 0. Then,
set Bξλ

(x, r) = {y ∈ X : |ξλ(x, y)− ξλ(x, x)| < r} is called a ξ − open ball relative to λ with
center x and radius r > 0.

Definition 11. Let (X, ξ, s) be a modular b-metric-like space and U be a subset of X. If there exists
r0 > 0 such that Bξλ0

(x, r0) ⊂ U for all x ∈ U and some λ0 > 0, then U is called a ξ − open
subset of X.

If X\U is a ξ − open set, then U is called a ξ − closed set.

Definition 12. Let (X, ξ, s) be a modular b-metric-like space, {xn}n∈IN ⊂ Xξ
f in and x ∈ Xξ

f in.
(i) x is called ξ − limit of the sequence {xn}n∈N if limn→∞ ξλ(xn, x) = ξλ(x, x) for all

λ > 0; moreover, we say that the sequence {xn}n∈N is ξ − convergent to x and we denote it by
xn →ξ x.

(ii) Sequence {xn}n∈N is called ξ − Cauchy if limn,m→∞ ξλ(xn, xm) exists and is finite for
all λ > 0.

(iii) Modular b-metric-like space Xξ
f in is called ξ − complete if every ξ − Cauchy sequence

{xn}n∈N is ξ − convergent to any x such that limn→∞ ξλ(xn, x) = ξλ(x, x) = limn,m→∞ ξλ

(xn, xm) for all λ > 0.

Proposition 2. Let (X, ξ, s) be a modular b-metric-like space, and let V be a subset of X. V is
ξ-closed if and only if for any sequence {xn} ⊂ V, which is ξ-convergent to x ∈ X, we have x ∈ V.
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Proof. Suppose that V is a ξ-closed set, {xn} ⊂ V, x ∈ X, xn →ξ x. Let x /∈ V. By
Definition 11, X\V is a ξ-open set. Since x ∈ X\V, there exists r0 > 0 such that Bξλ0

(x, r0) ⊂
X\V for some λ0 > 0. Since xn →ξ x, we have limn→∞ ξλ(xn, x) = ξλ(x, x) for all λ > 0.
In other words, limn→∞ |ξλ(xn, x)− ξλ(x, x)| = 0 for all λ > 0. Hence, for all λ > 0, there
exists n0 ∈ IN such that |ξλ(xn, x)− ξλ(x, x)| < r0 for all n ≥ n0. Especially for λ = λ0,
we have |ξλ0(xn, x)− ξλ0(x, x)| < r0 for all n ≥ n0. Thus, xn ⊂ Bξλ0

(x, r0) ⊂ X\V for all
n ≥ n0, which is a contradiction. Hence, x ∈ V.

Conversely, assume that for any sequence {xn} ⊂ V, which is ξ-convergent to x ∈ X,
we have x ∈ V. Let y ∈ X\V. We need to show that there exists r0 > 0 such that
Bξλ0

(y, r0) ∩V = ∅ for some λ0. Suppose that for all λ > 0 and r > 0, we have

Bξλ
(y, r0) ∩ V 	= ∅. Then, for all n ∈ IN and λ > 0, choose xn ∈ Bξλ

(y, 1
n ) ∩

V 	= ∅. Hence, |ξλ(xn, y) − ξλ(y, y)| < 1
n for all λ > 0 and n ∈ IN. Then, 0 ≤

limn→∞ |ξλ(xn, y)− ξλ(y, y)| < limn→∞
1
n and we obtain limn→∞ |ξλ(xn, y)− ξλ(y, y)| = 0.

Therefore, limn→∞ ξλ(xn, y) = ξλ(y, y) for all λ > 0 and we get xn →ξ x. Since {xn} ⊂ V,
we have y ∈ V from our assumption, which is a contradiction. Then, for all y /∈ V, there
exists r0 > 0 such that Bξλ0

(y, r0) ⊂ X\V for some λ0 > 0. Thus, X\V is a ξ-open set. So,
V is a ξ-closed set.

Proposition 3. Let (X, ξ, s) be a modular b-metric-like space, and let {xn} be a sequence in X
such that limn→∞ ξλ(xn, x) = 0 for all λ > 0. Then, x is unique.

Proof. Suppose that there exists y ∈ X such that limn→∞ ξλ(xn, y) = 0 for all λ > 0. Then,
for all λ > 0,

0 ≤ ξλ(x,y) ≤ s[ξ λ
2
(x, xn) + ξ λ

2
(xn, y)].

⇒ 0 ≤ limn→∞ ξλ(x,y) ≤ s[limn→∞ ξ λ
2
(x, xn) + limn→∞ ξ λ

2
(xn, y)]

⇒ 0 ≤ ξλ(x,y) ≤ 0.
Hence, ξλ(x,y) = 0 for all λ > 0, and x = y.

Remark 1. In a modular b-metric-like space, the ξ − limit of the ξ − convergent sequence {xn}
may not be unique. Let X = [0, ∞). Define the function d : X × X → [0, ∞) by d(x, y) =
max{x, y}. Then, we know that (X, d) is a b-metric-like space with any constant s ≥ 1. Consider
Proposition 1 and define a sequence {xn} ⊂ Xξ

f in by {xn} = {1 + 1
n}.

If x ≥ 2, then limn→∞ ξλ(xn, x) = limn→∞
d(xn ,x)

λ = limn→∞
max{xn ,x}

λ = limn→∞
x
λ =

max{x,x}
λ = ξλ(x, x) for all λ > 0. Hence, the sequence {xn} is ξ − convergent to all x ∈ Xξ

f in

with x ≥ 2.

4. Fixed Point Results

We prove some related fixed point theorems and give examples to support these
theorems in this part.

Definition 13. Let ξ be a modular b-metric-like on X, and let T : Xξ
f in → Xξ

f in be a mapping.
If for every x, y ∈ Xξ

f in and all λ > 0 there exists 0 < k < 1 such that ξλ(Tx, Ty) ≤ kξλ(x, y),
then the mapping T is called ξ − contraction.

Theorem 1. Let (X, ξ, s) be a modular b-metric-like space such that Xξ
f in is ξ-complete. Let

T : Xξ
f in → Xξ

f in be a ξ-contraction with restriction 0 < k < 1. Then, for the sequence defined
as xn = Txn−1 = Tnx0 where x0 ∈ Xξ

f in, there exists an element x̄ ∈ Xξ
f in such that {xn} is

ξ-convergent to x̄ and x̄ is a unique fixed point of T.

Proof. Let x0 ∈ Xξ
f in and {xn} ⊂ Xξ

f in be defined by xn = Txn−1 = Tnx0. Since T is a
ξ-contraction, we obtain

ξλ(T2x0, T2x1) ≤ kξλ(Tx0, Tx1) ≤ k2ξλ(x0, x1).
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If this procedure is iterated, we get

ξλ(Tnx0, Tnx1) ≤ knξλ(x0, x1),

for all λ > 0 and n ∈ IN.
Since Tnx1 = Tn(Tx0) = Tn+1x0 = xn+1 and Tnx0 = xn, for all λ > 0 and n ∈ IN, we

have
ξλ(xn, xn+1) ≤ knξλ(x0, x1).

Taking the limit as n → ∞ in the above inequality, we get limn→∞(knξλ(x0, Tx0)) =
limn→∞(knξλ(x0, x1)) = 0 because of k ∈ (0, 1) by the definition of the ξ-contraction and
ξλ(x, Tx) < ∞ for all λ > 0 and all x ∈ Xξ

f in.
Then, we have limn→∞ ξλ(xn, xn+1) = 0 for all λ > 0. Hence, for all λ > 0 and ε > 0,

there exists n0 ∈ IN such that ξλ(xn, xn+1) < ε for all n ≥ n0. Without loss of generality,
suppose m, n ∈ N and m > n. Observe that, for λ

m−n > 0, there exists n λ
m−n

∈ N such that

ξ λ
m−n

(xn, xn+1) <
ε

∑m−n
p=1 sp , for all n ≥ n λ

m−n
.

Now, we have

ξλ(xn, xm) ≤ sξ λ
m−n

(xn, xn+1) + s2ξ λ
m−n

(xn+1, xn+2) + ... + sm−nξ λ
m−n

(xm−1, xm)

= sξ λ
m−n

(xn, xn+1) + s2ξ λ
m−n

(Txn, Txn+1) + ... + sm−nξ λ
m−n

(Txm−2, Txm−1)

≤ sξ λ
m−n

(xn, xn+1) + s2kξ λ
m−n

(xn, xn+1) + s3k2ξ λ
m−n

(xn, xn+1) + ... + sm−nkm−1−nξ λ
m−n

(xn, xn+1)

≤ sξ λ
m−n

(xn, xn+1) + s2ξ λ
m−n

(xn, xn+1) + ... + sm−nξ λ
m−n

(xn, xn+1)

= [s + s2 + s3 + ... + sm−n]ξ λ
m−n

(xn, xn+1)

= ∑m−n
p=1 spξ λ

m−n
(xn, xn+1)

≤ ∑m−n
p=1 sp ε

∑m−n
p=1 sp

= ε.

for all m > n and all n ≥ n λ
m−n

.

Therefore, we have limn,m→∞ ξλ(xn, xm) = 0; hence, {xn} ⊂ Xξ
f in is a ξ-Cauchy se-

quence. Since Xξ
f in is a ξ-complete set, there exists x ∈ Xξ

f in such that limn→∞ ξλ(xn, x) =
ξλ(x, x) = limn,m→∞ ξλ(xn, xm) for all λ > 0. Since limn,m→∞ ξλ(xn, xm) = 0 for all λ > 0,
we have limn→∞ ξλ(xn, x) = ξλ(x, x) = 0 for all λ > 0.

It follows that

ξλ(Tx, x) ≤ s[ξ λ
2
(Tx, xn) + ξ λ

2
(xn, x)]

= s[ξ λ
2
(Tx, Txn−1) + ξ λ

2
(xn, x)]

≤ s[kξ λ
2
(x, xn−1) + ξ λ

2
(xn, x)]

for all λ > 0 and all n ∈ IN.
Taking the limit as n → ∞ in the above inequality, we get

limn→∞ ξλ(Tx, x) ≤ limn→∞(s[kξ λ
2
(x, xn−1) + ξ λ

2
(xn, x)])

= s[k limn→∞ ξ λ
2
(x, xn−1) + limn→∞ ξ λ

2
(xn, x)]

= 0

for all λ > 0.
It follows that ξλ(Tx, x) = 0 for all λ > 0. Hence, we have Tx = x from condition

(MbML1). Thus, x is a fixed point of T. Next, we prove that this fixed point x is unique.
Suppose that y is another fixed point of T such that x 	= y. Therefore, we have Ty = y.

Since T is a ξ-contraction, we have ξλ(x, y) = ξλ(Tx, Ty) ≤ kξλ(x, y) for all λ > 0.
It follows that (1− k)ξλ(x, y) ≤ 0. Hence, we have ξλ(x, y) = 0 for all λ > 0. Thus,

we get x = y from condition (MbML1).

74



Axioms 2024, 13, 726

Example 6. Let X = [0, ∞). Define the function ξ : (0, ∞)× X × X → [0, ∞] by ξλ(x, y) =
d(x,y)

λ for all λ > 0 such that d(x, y) = (x + y)2 and x, y ∈ X = [0, ∞). Then, (X, ξ, 2) is a
modular b-metric-like space such that Xξ

f in is ξ-complete since Xξ
f in = X.

Define the map T : Xξ
f in → Xξ

f in by Tx = αx such that α ∈ (0, 1). Then, we have

ξλ(Tx, Ty) = ξλ(αx, αy) = (αx+αy)2

λ = α2(x+y)2

λ = α2 d(x,y)
λ = α2ξλ(x, y) for all λ > 0. Since

α ∈ (0, 1), we have k = α2 ∈ (0, 1). Thus, the mapping T is a ξ-contraction with constant k = α2.
Then, by Theorem 1, there exists a unique fixed point x̄ = 0 ∈ Xξ

f in such that xn = Txn−1 = Tnx0
is ξ-convergent to x̄ = 0.

Indeed, we have limn→∞ ξλ(xn, 0) = limn→∞
d(xn ,0)

λ = limn→∞
(xn+0)2

λ = limn→∞
(xn)2

λ

= 1
λ (limn→∞ xn limn→∞ xn). Then, it follows that xn = Tnx0 = Tn−1(Tx0) = Tn−1(αx0) =

Tn−2(T(αx0)) = Tn−2(α2x0) = · · · = Tn−(n−1)(αn−1x0) = T(αn−1x0) = αnx0, and this
means that xn = αnx0.

Since x0 ∈ Xξ
f in, we have x0 < ∞. Then, limn→∞ xn = limn→∞ αnx0 = 0 since α ∈

(0, 1) and x0 < ∞. Therefore, we have limn→∞ ξλ(xn, 0) = 1
λ (limn→∞ xn limn→∞ xn) = 0 =

(0+0)2

λ = ξλ(0, 0), and this means that limn→∞ ξλ(xn, 0) = ξλ(0, 0) for all λ > 0. Also, since
T(0) = α0 = 0 holds, 0 is a unique fixed point of T.

Remark 2. Let (X, ξ, s) be a modular b-metric-like space. Define ξλ
z : X2 → [0, ∞) by

ξλ
z(x, y) = |2ξλ(x, y)− ξλ(x, x)− ξλ(y, y)|. Clearly, ξλ

z(x, x) = 0 for all x ∈ X.

Theorem 2. Let (X, ξ, s) be a modular b-metric-like space such that Xξ
f in is ξ-complete. Suppose

that the mapping T : Xξ
f in → Xξ

f in is onto and satisfies

ξλ(Tx, Ty) ≥ [r + lmin{ξλ
z(x, Tx), ξλ

z(y, Ty), ξλ
z(x, Ty), ξλ

z(y, Tx)}]ξλ(x, y) (1)

for all x, y ∈ Xξ
f in and all λ > 0, where r > s, l ≥ 0. Then, T has a unique fixed point.

Proof. Let x0 ∈ Xξ
f in. Since T is onto mapping, there exists x1 ∈ Xξ

f in such that x0 = Tx1.
By continuing this process, we get xn = Txn+1 for all n ∈ IN. In case xn0 = xn0+1 for some
n0 ∈ IN, we have Txn0+1 = xn0+1 since Txn0+1 = xn0 . Thus, xn0+1 is a fixed point of T.
Now assume that xn 	= xn+1 for all n. From (1) with x = xn and y = xn+1, we get

ξλ(Txn, Txn+1) ≥ [r + lmin{ξλ
z(xn, Txn), ξλ

z(xn+1, Txn+1), ξλ
z(xn, Txn+1), ξλ

z(xn+1, Txn)}]ξλ(xn, xn+1)

for all λ > 0.
It follows that

ξλ(xn−1, xn) ≥ [r + lmin{ξλ
z(xn, xn−1), ξλ

z(xn+1, xn), ξλ
z(xn, xn), ξλ

z(xn+1, xn−1)}]ξλ(xn, xn+1)
= rξλ(xn, xn+1)

for all λ > 0 since Txn+1 = xn for all n ∈ IN, which implies ξλ(xn−1, xn) ≥ rξλ(xn, xn+1).
Hence, ξλ(xn, xn+1) ≤ 1

r ξλ(xn−1, xn), and so we have ξλ(xn, xn+1) ≤ hξλ(xn−1, xn) where
h = 1

r < 1
s since r > s. Now, we will show that xn is a ξ-Cauchy sequence.

Since ξλ(xn, xn+1) ≤ hξλ(xn−1, xn) for all n ∈ IN and all λ > 0, we have

hξλ(xn−1, xn) ≤ h(hξλ(xn−2, xn−1)) = h2ξλ(xn−2, xn−1) ≤ h3ξλ(xn−3, xn−2) ≤ · · · ≤ hnξλ(x0, x1)

which implies ξλ(xn, xn+1) ≤ hnξλ(x0, x1) for all n ∈ IN and all λ > 0.
We have

lim
n→∞

(hnξλ(Tx1, x1)) = lim
n→∞

(hnξλ(x0, x1)) = 0

since h < 1
s ≤ 1 and ξλ(Tx, x) < ∞ for all λ > 0 and all x ∈ Xξ

f in. It follows that
limn→∞ ξλ(xn, xn+1) = 0 for all λ > 0. So, for all λ > 0, we have that for all ε > 0 there
exists n0 ∈ IN such that ξλ(xn, xn+1) < ε for all n ∈ IN with n ≥ n0. Without loss
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of generality, suppose m, n ∈ IN and m > n. Observe that, for λ
m−n > 0, there exists

n λ
m−n

∈ IN such that

ξ λ
m−n

(xn, xn+1) <
ε

∑m−n
p=1 sp

for all n ≥ n λ
m−n

.
Now, we have

ξλ(xn, xm) ≤ sξ λ
m−n

(xn, xn+1) + s2ξ λ
m−n

(xn+1, xn+2) + · · ·+ sm−nξ λ
m−n

(xm−1, xm)

≤ sξ λ
m−n

(xn, xn+1) + s2hξ λ
m−n

(xn, xn+1) + s3h2ξ λ
m−n

(xn, xn+1) + · · ·+ sm−nhm−1−nξ λ
m−n

(xn, xn+1)

< sξ λ
m−n

(xn, xn+1) + s2ξ λ
m−n

(xn, xn+1) + · · ·+ sm−nξ λ
m−n

(xn, xn+1)

= [s + s2 + s3 + · · ·+ sm−n]ξ λ
m−n

(xn, xn+1)

= ∑m−n
p=1 spξ λ

m−n
(xn, xn+1)

≤ ∑m−n
p=1 sp ε

∑m−n
p=1 sp

= ε

for all m > n and all n ≥ n λ
m−n

.

Thus, we have limn→∞ ξλ(xn, xm) = 0. Since limn→∞ ξλ(xn, xm) = 0 exists and is
finite, {xn} is a ξ-Cauchy sequence. Since (Xξ

f in, ξ, s) is ξ-complete, the sequence {xn} in
Xξ

f in is ξ-convergent to z0 ∈ Xξ
f in such that

lim
n→∞

ξλ(xn, z0) = ξλ(z0, z0) = lim
n,m→∞

ξλ(xn, xm)

for all λ > 0.
Since T is onto mapping, there exists v ∈ Xξ

f in such that Tv = z0. From (1) and since
Txn+1 = xn, we have

ξλ(xn, z0) = ξλ(Txn+1, Tv) ≥ [r + lmin{ξλ
z(xn+1, Txn+1), ξλ

z(v, Tv), ξλ
z(xn+1, Tv), ξλ

z(v, Txn+1)}]ξλ(xn+1, v)

for all λ > 0 and all n ∈ IN.
By taking the limit as n → ∞ in the above inequality, we get

lim
n→∞

([r + lmin{ξλ
z(xn+1, Txn+1), ξλ

z(v, Tv), ξλ
z(xn+1, Tv), ξλ

z(v, Txn+1)}]ξλ(xn+1, v)) ≤ lim
n→∞

ξλ(xn, z0)

for all λ > 0.
It follows that

limn→∞[r + lmin{ξλ
z(xn+1, Txn+1), ξλ

z(v, Tv), ξλ
z(xn+1, Tv), ξλ

z (v, Txn+1)}] limn→∞ ξλ(xn+1, v)
≤ limn→∞ ξλ(xn, z0)

for all λ > 0.
Thus, we have 0 ≤ r limn→∞ ξλ(xn+1, v) ≤ limn→∞ ξλ(xn, z0) = 0 for all λ > 0 since

limn→∞ ξλ(xn, z0) = ξλ(z0, z0) = limn,m→∞ ξλ(xn, xm) = 0 for all λ > 0, which implies
r limn→∞ ξλ(xn+1, v) = 0 for all λ > 0. It follows that limn→∞ ξλ(xn+1, v) = 0 for all λ > 0
since r > s ≥ 1. By Proposition 3, v is unique. Also, since limn→∞ ξλ(xn, z0) = 0, z0 is
unique again from Proposition 3, that is why we have v = z0. It follows that Tz0 = z0 since
Tv = z0. Thus, z0 is a fixed point of T. Next, we prove that this fixed point z0 is unique.

Suppose that y0 is another fixed point of T such that z0 	= y0. Therefore, we have
Ty0 = y0. Thus, from (1), we have

ξλ(Tz0, Ty0) ≥ rξλ(z0, y0)

for all λ > 0, which implies ξλ(z0, y0) ≥ rξλ(z0, y0) for all λ > 0.
It follows that 0 ≥ (r− 1)ξλ(z0, y0) for all λ > 0.
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Since r > s ≥ 1, which implies r > 1, we have r − 1 > 0. That is why we have
ξλ(z0, y0) = 0 for all λ > 0. Thus, we get z0 = y0 from condition (MbML1).

If we take l = 0 in Theorem 2, then we deduce the following corollary.

Corollary 1. Let (X, ξ, s) be a modular b-metric-like space such that Xξ
f in is ξ-complete. Suppose

that the mapping T : Xξ
f in → Xξ

f in is onto and satisfies ξλ(Tx, Ty) ≥ rξλ(x, y) for all x, y ∈
Xξ

f in and all λ > 0, where r > s. Then, T has a unique fixed point.

Example 7. Let X = [0, ∞). Define the function ξ : (0, ∞)× X × X → [0, ∞] by ξλ(x, y) =
d(x,y)

λ for all λ > 0 such that d(x, y) = (x + y)2 and x, y ∈ X = [0, ∞). Then, (X, ξ, 2) is a
modular b-metric-like space such that Xξ

f in is ξ-complete since Xξ
f in = X. Let T : Xξ

f in → Xξ
f in

be defined by

Tx =

⎧⎪⎨
⎪⎩

4x, x ∈ [0, 1),
3x + 2, x ∈ [1, 2),
6x + 1, x ∈ [2, ∞).

Clearly, T is an onto mapping. Now, we consider the following cases:

∗ Let x, y ∈ [0, 1). Then, ξλ(Tx, Ty) = d(4x,4y)
λ = (4x+4y)2

λ = 16(x+y)2

λ ≥ 3(x+y)2

λ =
3ξλ(x, y) for all λ > 0.

∗ Let x, y ∈ [1, 2). Then, ξλ(Tx, Ty) = d(3x+2,3y+2)
λ = (3x+2+3y+2)2

λ = (3x+3y+4)2

λ ≥
(3x+3y)2

λ = 9(x+y)2

λ ≥ 3(x+y)2

λ = 3ξλ(x, y) for all λ > 0.

∗ Let x, y ∈ [2, ∞). Then, ξλ(Tx, Ty) = d(6x+1,6y+1)
λ = (6x+1+6y+1)2

λ = (6x+6y+2)2

λ ≥
(6x+6y)2

λ = 36(x+y)2

λ ≥ 3(x+y)2

λ = 3ξλ(x, y) for all λ > 0.

∗ Let x ∈ [0, 1) and y ∈ [1, 2). Then, ξλ(Tx, Ty) = d(4x,3y+2)
λ = (4x+3y+2)2

λ ≥ (3x+3y)2

λ =
9(x+y)2

λ ≥ 3(x+y)2

λ = 3ξλ(x, y) for all λ > 0.

∗ Let x ∈ [0, 1) and y ∈ [2, ∞). Then, ξλ(Tx, Ty) = d(4x,6y+1)
λ = (4x+6y+1)2

λ ≥ (4x+4y)2

λ =
16(x+y)2

λ ≥ 3(x+y)2

λ = 3ξλ(x, y) for all λ > 0.

∗ Let x ∈ [1, 2) and y ∈ [2, ∞). Then, ξλ(Tx, Ty) = d(3x+2,6y+1)
λ = (3x+2+6y+1)2

λ =
(3x+6y+3)2

λ ≥ (3x+3y)2

λ = 9(x+y)2

λ ≥ 3(x+y)2

λ = 3ξλ(x, y) for all λ > 0.
That is, ξλ(Tx, Ty) ≥ rξλ(x, y) for all x, y ∈ Xξ

f in and all λ > 0, where r = 3 > 2 = s.
The conditions of Corollary 1 are satisfied, and T has a unique fixed point x0 = 0.

5. An Application to an Integral Equation

In this section, we investigate the existence of a solution for an integral equation by
using Theorem 1.

Consider the following integral equation:

�(s) =
∫ L

0
ς(s, q, �(q))dq, (2)

where L > 0 and ς : [0, L]× [0, L]× IR → IR.
Let ℵ = C[0, L] be the set of all continuous real-valued functions defined on [0, L].

Consider the modular b-metric-like given as ξλ(�(s), ϕ(s)) =
maxs∈[0,L](|�(s)|+|ϕ(s)|)2

λ for all
λ > 0 and all �, ϕ ∈ ℵ. Clearly, (ℵ, ξ, 2) is modular b-metric-like space such that ℵξ

f in is
ξ-complete since ℵ = ℵξ

f in.
Let Ψ�(s) =

∫ L
0 ς(s, q, �(q))dq for all � ∈ ℵ and s ∈ [0, L]. Observe that the existence

of a solution of (2) is equivalent to the existence of a fixed point of Ψ.
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Theorem 3. Suppose that the following conditions hold. Then, considering the above, the Integral
Equation (2) has a unique solution:

(1) ς : [0, L]× [0, L]× IR → IR is continuous.
(2) There is a continuous function δ : [0, L]× [0, L]→ IR+ for all s, q ∈ [0, L] such that
|ς(s, q, �(q))|+ |ς(s, q, ϕ(q))| ≤ ϑ

1
2 δ(s, q)(|�(s)|+ |ϕ(s)|) where ϑ ∈ (0, 1).

(3) sups∈[0,L]
∫ L

0 δ(s, q)dq ≤ 1.

Proof. For all s ∈ [0, L], we have

(|Ψ�(s)|+|Ψϕ(s)|)2

λ =
(| ∫ L

0 ς(s,q,�(q))dq|+| ∫ L
0 ς(s,q,ϕ(q))dq|)2

λ

≤ (
∫ L

0 |ς(s,q,�(q))|dq+
∫ L

0 |ς(s,q,ϕ(q))|dq)2

λ

=
(
∫ L

0 |ς(s,q,�(q))|+|ς(s,q,ϕ(q))|dq)2

λ

≤ (
∫ L

0 ϑ
1
2 δ(s,q)(|�(s)|+|ϕ(s)|)dq)2

λ

=
(
∫ L

0 ϑ
1
2 δ(s,q)((|�(s)|+|ϕ(s)|)2)

1
2 dq)2

λ

=
ϑ(|�(s)|+|ϕ(s)|)2(

∫ L
0 δ(s,q)dq)2

λ

≤ ϑ(|�(s)|+|ϕ(s)|)2(sups∈[0,L]
∫ L

0 δ(s,q)dq)2

λ

≤ ϑ
(|�(s)|+|ϕ(s)|)2

λ .

Then, for all s ∈ [0, L], we have

(|Ψ�(s)|+ |Ψϕ(s)|)2

λ
≤ max

s∈[0,L]
ϑ
(|�(s)|+ |ϕ(s)|)2

λ
.

It follows that

max
s∈[0,L]

(|Ψ�(s)|+ |Ψϕ(s)|)2

λ
≤ max

s∈[0,L]
ϑ
(|�(s)|+ |ϕ(s)|)2

λ
.

Hence,

maxs∈[0,L](|Ψ�(s)|+ |Ψϕ(s)|)2

λ
≤ ϑ

maxs∈[0,L](|�(s)|+ |ϕ(s)|)2

λ
.

Thus, we have
ξλ(Ψ�(s), Ψϕ(s)) ≤ ϑξλ(�(s), ϕ(s)).

Also, observe that all conditions of Theorem 1 are satisfied. Therefore, the operator
Ψ has a unique fixed point. This means that the Integral Equation (2) has a unique
solution.

Example 8. Consider the integral equation below.

�(s) =
1
3

∫ 1

0
q�(q)dq (3)

Then, it has a solution in ℵ.
Let Ψ : ℵ → ℵ be defined by Ψ�(s) = 1

3

∫ 1
0 q�(q)dq. By setting ς(s, q, �(q)) = 1

3 q�(q)
in Theorem 3, we get

(1) ς : [0, 1]× [0, 1]× IR → IR is continuous.
(2) There is a continuous function δ(s, q) = q for all s, q ∈ [0, 1] such that
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|ς(s, q, �(q))|+ |ς(s, q, ϕ(q))| = | 13 q�(q)|+ | 13 qϕ(q)|
= 1

3 q(|�(q)|+ |ϕ(q)|)
≤ 1

2 q(|�(q)|+ |ϕ(q)|)
= ( 1

4 )
1
2 q(|�(q)|+ |ϕ(q)|)

= ϑ
1
2 δ(s, q)(|�(q)|+ |ϕ(q)|)

where ϑ = 1
4 ∈ (0, 1).

(3) sups∈[0,1]
∫ 1

0 δ(s, q)dq = sups∈[0,1]
∫ 1

0 qdq ≤ 1.
Hence, all conditions of Theorem 3 are satisfied. Therefore, the problem (3) has a solution in ℵ.

6. Conclusions

Fixed point results are important to solve many mathematical problems, such as
differential equations, integral equations, and systems of linear equations. That is why we
provided some fixed point results on a new space called a modular b-metric-like space and
an application of these results to an integral equation. Our work is useful from a theoretical
and applied perspective, as the result of this paper enables the further development of fixed
point theory and its application. Also, our results may provide motivation for researchers
to improve fixed point theory by working in this new space. New contraction mappings
can be defined on this new space; thus, different application areas can be found.
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Abstract: In this manuscript, we initiate a large class of enriched (d,Z)-Z-contractions defined on
Banach spaces and prove the existence and uniqueness of the fixed point of these contractions. We
also provide an example to support our results and give an existence condition for the uniqueness
of the solution to the integral equation. The results provided in the manuscript extend, generalize,
and modify the existence results. Our research introduces novel fixed-point results under various
contractive conditions. Furthermore, we discuss the iterated function system associated with enriched
(d,Z)-Z-contractions in Banach spaces and define the enriched Z-Hutchinson operator. A result
regarding the convergence of Krasnoselskii’s iteration method and the uniqueness of the attractor
via enriched (d,Z)-Z-contractions is also established. Our discoveries not only confirm but also
significantly build upon and broaden several established findings in the current body of literature.
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MSC: 47H10; 54H25

1. Introduction

The theory of the fixed point (FP) is an essential part of fractals and the iterated
function system (IFS). Basically, the simplest forms of fractals are the compact subsets in
Hausdorff spaces that remain unchanged under Hutchinson–Barnsley operators. The con-
cept of an iterated function system (IFS) was initiated to study fractals by Hutchinson [1]
and Barnsley [2]. IFSs are, in fact, the natural extension of the classical contraction prin-
ciple given by Banach [3] in 1922. Fractals, as an IFS, are very important due to their
applications in many fields. For example, IFSs have applications in image compression,
quantum physics, graphics, wavelet analysis, and many others areas. That is why many
computer experts and mathematicians have shown their interest in this active research area.
For example, see the work of Andres and Fišer [4], Duvall et al. [5], Kieninger [6], Barnsley
and Demko [7], Zhou et al. [8], and the references therein for deep understanding.

Over time, the concept of an IFS has been generalized in many directions. In the past
decades, many tools have been created to analyze the unique attractor (or the unique FP
of Hutchinson–Barnsley operators) of the fractals. This theory of IFS has been expanded
via generalized contractions, multifunctions, countable IFSs, and more. In particular,
Kashyap et al. [9] generalized the fractal given by Mandelbrot [10] by using the Kras-
noselskii theorem. Maślanka and Strobin [11] explored the generalized IFSs given by the
l∞-sum of a metric space (MS), and Klimek and Kosek [12] discussed the multifunctions,

Axioms 2024, 13, 562. https://doi.org/10.3390/axioms13080562 https://www.mdpi.com/journal/axioms81



Axioms 2024, 13, 562

generalized IFSs, and Cantor sets. Torre and others [13–15] studied the more general-
ized multifunctions. Khumalo et al. [16] studied generalized IFSs for shared attractors in
partial MSs.

Very recently, Rizwan et al. [17] generalized the work of Ahmad et al. [18] on fractals
with the generalized Θ-Hutchinson operator by using the enriched contraction given
by Berinde and Păcurar [19]. Prithvi and colleagues in [20–22] discussed the IFS over
generalized Kannan mappings and also gave remarks on countable IFSs via the partial
Hausdorff metric and non-conventional IFSs. Sahu et al. [23], Thangaraj et al. [24], and
Chandra and Verma [25] constructed fractals via an IFS on Kannan contractions with
different conditions. Amit et al. [26] presented the idea of IFS via non-stationary Φ-
contractions, while Verma and Priyadarshi [27] worked on general datasets and generated
a new type of fractal function. Khojasteh et al. [28] presented FP results via the notion of
a simulation function (SF) and Z-contraction. Rhoades [29] studied the continuity and
nondecreasing behavior of Φ-contractions.

Throughout the article, we represent the MS by (�̃, u), linear normed space by (�̃, || ·
||), and collection of all non-empty and compact subsets of �̃ by Λ(�̃). The distance
between an element ιo of �̃ and a subset Υo of �̃ is given by:

u(ιo, Υo) = min
�o∈Υo

u(ιo, �o),

while the distance between two subsets Υo and � of �̃ is given by:

D(Υo,�) = max
ιo∈Υo

u(ιo,�).

Using the above notions, the Hausdorff metric is given by:

∂̊(Υo,�) = max{D(Υo,�),D(�, Υo)}.

It is noted that, if �̃ is complete, then the Hausdorff space Λ(�̃) is also complete. We
used the following technical lemma and notions in our main findings.

Lemma 1 ([2]). Consider �̃ be a MS and Υo,�,C ∈ Λ(�̃). Then, the following holds:
(i) C ⊆ �⇒ supιo∈Υo u(ιo,C) ≤ supιo∈Υo u(ιo,�);
(ii) supιo∈Υo∪C u(ιo,�) = max{supιo∈Υo u(ιo,�), supιo∈C u(ιo,�)};
(iii) If {Υo

i : i = 1, 2, · · · , j} and {Ci : i = 1, 2, · · · , j} are two finite collections of subsets of �̃,
then

∂̊(
j⋃

i=1

Υo
i,

j⋃
i=1

Ci) ≤
j

max
i=1

{
∂̊(Υo

i,Ci)
}

.

Definition 1 ([2]). Consider (�̃, u) to be a complete MS and {Θ(i) : �̃ → �̃, for all i =
1, 2, · · · , j} to be a family of all continuous contraction mappings with contraction factors θi, ∀i =
1, 2, · · · , j. Then, (�̃, Θ(1), Θ(2), · · · , Θ(j)) is named as IFS.

Definition 2 ([2]). Any set Υo from Λ(�̃) is known as the attractor of the IFS if:

1: Θ(Υo) = Υo;
2: ∃ an open set � ⊆ �̃ for which � ⊆ Υo and limq→∞ Θq(C) = Υo, for any C ∈ Λ(�̃) with

C ⊆ �, where the limit is taken with respect to the Hausdorff metric ∂̊.

The primary outcome in this area was presented by Barnsley in [2], which is expressed
as follows:
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Theorem 1 ([2]). Let (�̃, Θ(1), Θ(2), · · · , Θ(j)) be an IFS with contraction factors θi, for all
i = 1, 2, · · · , j. Then, the operator Θ∗ : Λ(�̃)→ Λ(�̃), defined by

Θ∗(Z) =
j⋃

i=1

Θ(i)(Υo), ∀Υo ∈ Λ(�̃),

is also a contraction on (Λ(�̃), ∂̊), with contraction factor θ = maxj
i=1 θi. Further, Θ∗ has a

unique attractor, that is, ∃Υo∗ ∈ Λ(�̃), such that

Υo∗ = Θ∗(Υo∗) =
j⋃

i=1

Θ(i)(Υo∗),

and is obtained by Υo∗ = limq→∞ Θ∗ q(�) for any initial choice � ∈ Λ(�̃). Here, Θ∗ q(�) is
given by Θ∗ q(�) = Θ∗(Θ∗ q−1(�)).

Remark 1 ([17]). For a given normed space (�̃, || · ||), we have

1. for all Υo and � of �̃,

Υo +� := {ιo + �o : ιo ∈ Υo, �o ∈ �};

2. for any Υo ⊆ �̃, and a real number ν,

νΥo := {νιo : ιo ∈ Υo}.

Recently, Berinde and Păcurar [19] established a wide and novel class of operators
called “enriched contractions”. This class comprises Banach contractions as well as various
other nonexpansive contractions that have been introduced in the literature. They discov-
ered that each enriched contraction has a distinct FP, which can be determined using a
Krasnoselskii iteration sequence in the context of Banach spaces. Enriched contraction oper-
ators are important because they can include both Banach contractions and non-expansive
mappings. In particular, the non-expansive mappings do not always ensure the FPs, but the
enriched contraction mappings consistently demonstrated the unique FP.

Definition 3 ([19]). Let (�̃, ‖ · ‖) be a linear normed space. An operator Θ : �̃ → �̃ is known as
an enriched contraction if ∃d ≥ 0 and δ ∈ [0, d + 1) for which, for all ιo, �o ∈ �̃:

‖d(ιo − �o) + Θιo −Θ�o‖ ≤ δ‖ιo − �o‖. (1)

Lemma 2. For any mapping Θ and its average operator Θδ(ι
o) = (1− δ)ιo + δΘιo for some

δ ∈ [0, 1), the set of FPs for both mappings Θ and Θδ is the same.

Recently, Khojasteh et al. [28] presented the notion of a well-known SF as well as the
Z-contraction and its FP results, which generalize the several classical FP theorems in the
documented literature. A SF with some important examples is given by:

Definition 4 ([28]). A function Z : [0, ∞)2 → R is said to be a SF if it fulfills the conditions
listed below:

(λ1) : Z(0, 0) = 0;
(λ2) : Z(ιo, �o) < �o − ιo, ∀ιo, �o > 0;
(λ3) : for sequences {ιol}, {�o

l} ⊆ (0, ∞) satisfying liml→∞ ιol = liml→∞ �o
l > 0 implies

lim sup
l→∞

Z(ιol , �o
l) < 0.

The notation Z is used for the family of all the simulation functions Z contained in Z .
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Example 1 ([28]). Consider the mappings Zi : [0, ∞)2 → R for i = 1, 2, 3 given by:

1. Z1(ι
o, �o) = ν(�o) − π(ιo) for all ιo, �o ∈ [0, ∞), where π, ν : [0, ∞) → [0, ∞) are

the two continuous functions for which ν(ιo) = π(ιo) = 0 if and only if ιo = 0 and
ν(ιo) < ιo ≤ π(ιo) for all ιo > 0.

2. Z2(ι
o, �o) = �o − π(ιo ,�o)

ν(ιo ,�o)
for all ιo, �o ∈ [0, ∞), where π, ν : [0, ∞) → (0, ∞) are the two

continuous functions for which π(ιo, �o) > ν(ιo, �o) for all ιo, �o > 0.
3. Z3(ι

o, �o) = �o − π(�o) − ιo for all ιo, �o ∈ [0, ∞), where π : [0, ∞) → [0, ∞) is the
continuous function for which π(ιo) = 0 if and only if ιo = 0.

Then, Zi for i = 1, 2, 3 satisfies all conditions (λ1 − λ3), so these are SFs.

Khojasteh et al. [28], by using the notion of SFs, established the following definition of
Z-contraction as follows.

Definition 5 ([28]). Let (�̃, u) be a MS, Θ : �̃ → �̃ a mapping, and Z ∈ Z . Then, Θ is called a
Z-contraction via SF Z if:

Z(u(Θιo, Θ�o), u(ιo, �o)) ≥ 0 for all ιo, �o ∈ �̃. (2)

By using the notion of enriched contraction given by Berinde and Păcurar [19] and
the Z-contraction via SF by Khojasteh et al. [28], we found a large class of enriched
(d,Z)-Z-contractions and proved the existence and uniqueness of the fixed point of these
contractions in the setting of Banach spaces. We also present an example to support our
results and give an existence condition for the uniqueness of the solution of the integral
equation. Our research introduces novel FP results under various contractive conditions.
Moreover, we also discuss the IFS associated with enriched (d,Z)-Z-contractions and define
the enriched Z-Hutchinson operator in Banach spaces. The convergence of Krasnoselskii’s
iteration scheme and uniqueness of the attractor via enriched (d,Z)-Z-contractions is
also established.

2. Main Results

In the following section, we present the concept of (d,Z)-Z-contraction operators and
derive results regarding their existence and approximation of the fixed point.

Definition 6. Let (�̃, || · ||) be a normed space, Θ : �̃ → �̃ a mapping, and Z ∈ Z . Then, Θ is
called an enriched (d,Z)-Z-contraction via some Z if ∃d ∈ [0, ∞) such that

Z(
1

d + 1
||d(ιo − �o) + Θιo −Θ�o||, ||ιo − �o||) ≥ 0, ∀ιo, �o ∈ �̃. (3)

To highlight the constant d and SF Z involved in Definition (6), we call it an enriched
(d,Z)-Z-contraction on �̃. We will now establish some properties ofZ-contractions defined
in the setting of normed spaces.

Remark 2. It is noted that, if we put d = 0 in Definition (6), then we obtain Definition (5)
given by Khojasteh et al. [28]. Therefore, every Z-contraction via any Z ∈ Z is an enriched
(0,Z)-Z-contraction.

Remark 3. Note that the definition of a SF implies Z(ιo, �o) < 0, ∀ιo ≥ �o > 0. Therefore, if Θ is
a (d,Z)-Z-contraction, then

1
d + 1

||d(ιo − �o) + Θιo −Θ�o|| < ||ιo − �o||, ∀ιo, �o ∈ �̃,

or equivalently,
||Θδιo −Θδ�o|| < ||ιo − �o||, ∀ιo, �o ∈ �̃, (4)
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where δ = 1
d+1 . This shows that the transformation of Θδ is continuous. Thus, Θ being the

translation and scaling of a continuous function is also continuous. Therefore, every Z-contraction
mapping is continuous.

Initially, we present the following result, where we prove the uniqueness of the FP of
an enriched (d,Z)-Z-contraction, provided it possesses a FP.

Lemma 3. Let (�̃, || · ||) be a normed space and Θ : �̃ → �̃ be an enriched (d,Z)-Z-contraction
on �̃. The FP of Θ is unique in �̃, provided it possesses a FP.

Proof. Consider ιo ∈ �̃ be any FP of Θ. On the contrary, we suppose that �o ∈ Θ is any
other FP of Θ, with ιo 	= �o. It is to be noted that the collection of FPs of both Θ and Θδ is
the same. Thus, using (3), we obtain the following:

0 ≤ Z(
1

d + 1
||d(ιo − �o) + Θιo −Θ�o||, ||ιo − �o||) = Z(||Θδιo −Θδ�o||, ||ιo − �o||) = Z(||ιo − �o||, ||ιo − �o). (5)

In light of Remark (3), inequality (5) implies a contradiction, and this proves
our result.

Next, we show that, for any enriched (d,Z)-Z-contraction, the corresponding trans-
formation Θδ := (1− δ)I + δΘ is always asymptotically regular.

Lemma 4. Let (�̃, || · ||) be a normed space and Θ be any enriched (d,Z)-Z-contraction on �̃.
Then, the averaged operator Θδ is asymptotically regular.

Proof. Suppose any arbitrary element ιo ∈ �̃ and p ∈ N. If Θp
δ ιo = Θp−1ιo, which further

becomes Θδ�o = �o, then some �o = Θp−1
δ ιo. Then, Θq

δ�o = Θq−1
δ Θδ�o = Θq−1

δ �o = . . . =
Θδ�o = �o, ∀q ∈ N. So, for a sufficiently large q ∈ N, we obtain

||Θq
διo −Θq+1

δ ιo|| = ||Θq−p+1
δ Θp−1

δ ιo −Θq−p+2
δ Θp−1

δ ιo|| = ||Θq−p+1
δ �o −Θq−p+2

δ �o||
= ||�o − �o|| = 0.

Letting q → ∞, we obtain limq→∞ ||Θq
διo − Θq+1

δ ιo|| = 0, ∀ιo ∈ �̃. On the other

hand, consider Θq
διo 	= Θq−1

δ ιo, ∀q ∈ N. So, by using inequality (3), we obtain

0 ≤ Z(||Θq+1
δ ιo −Θq

διo||, ||Θq
διo −Θq−1

δ ιo||)
= Z

(
||ΘδΘq

διo −ΘδΘq−1
δ ιo||, ||Θq

διo −Θq−1
δ ιo||

)
< ||Θq

διo −Θq−1
δ ιo|| − ||Θq+1

δ ιo −Θq
διo||

=⇒ ||Θq+1
δ ιo −Θq

διo|| < ||Θq
διo −Θq−1

δ ιo||.

This shows that
{
||Θq

διo −Θq−1
δ ιo||

}
is a monotonically decreasing sequence of posi-

tive real numbers. Therefore, it must be convergent. Let limq→∞ ||Θq
διo −Θq+1

δ ιo|| = s ≥ 0.
If s > 0, and as Θ is an enriched (d,Z)-Z-contraction, therefore by (Z3), we obtain

0 ≤ lim sup
q→∞

Z
(
||Θq+1

δ ιo −Θq
διo||, ||Θq

διo −Θq−1
δ ιo||

)
< 0,

which is a contradiction. This implies that s = 0. Equivalently, limq→∞ ||Θq
διo −Θq+1

δ ιo|| = 0.
Thus, Θδ is an asymptotically regular mapping on �̃.

The following result demonstrates that the Krasnoselskii sequence
{

ιoq
}

generated by
an enriched (d,Z)-Z-contraction is always bounded.
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Lemma 5. Let (�̃, || · ||) be a normed space and Θ : �̃ → �̃ be an enriched (d,Z)-Z-contraction.
Then, the Krasnoselskii sequence

{
ιoq

}
generated by Θ with initial value ιo0 ∈ ιo is a bounded

sequence, where ιoq = (1− δ)ιoq−1 + δΘιoq−1, ∀q ∈ N and δ = 1
d+1 .

Proof. For any arbitrary point ιo0 ∈ �̃, define the Krasnoselskii sequence
{

ιoq
}

given by
ιoq = (1− δ)ιoq−1 + δΘιoq−1 = Θδιoq−1, ∀q ∈ N. Assume that

{
ιoq

}
is not bounded. Then,

without loss of generality, we can suppose that ιoq+p 	= ιoq, ∀q, p ∈ N. As the sequence{
ιoq

}
is not bounded, so we must find a sub-sequence

{
ιoqk

}
such that q1 = 1 and, for each

k ∈ N, qk+1 is the minimum integer such that ||ιoqk+1 − ιoqk || > 1. Also, we obtain

||ιom − ιoqk || ≤ 1, qk ≤ m ≤ qk+1 − 1. (6)

Therefore, by utilizing inequality (6) and the triangular inequality, we have

1 < ||ιoqk+1 − ιoqk || ≤ ||ιoqk+1 − ιoqk+1−1||+ ||ιoqk+1−1 − ιoqk ||
≤ ||ιoqk+1 − ιoqk+1−1||+ 1.

Taking k → ∞ and using Lemma (4), we obtain

lim
k→∞

||ιoqk+1 − ιoqk || = 1.

By inequality (3), we conclude that ||ιoqk+1 − ιoqk || ≤ ||ιoqk+1−1 − ιoqk−1||. Therefore,
we obtain the following by the aid of triangular inequality as follows:

1 < ||ιoqk+1 − ιoqk || ≤ ||ιoqk+1−1 − ιoqk−1||
≤ ||ιoqk+1−1 − ιoqk ||+ ||ιoqk − ιoqk−1||
≤ 1 + ||ιoqk − ιoqk−1||.

Taking k → ∞ and using Lemma (4), we obtain

lim
k→∞

||ιoqk+1−1 − ιoqk−1|| = 1.

Now, since Θ is an enriched (d,Z)-Z-contraction, from condition Z3, we have

0 ≤ lim sup
k→∞

Z
(||Θδιoqk+1−1 −Θδιoqk−1||, ||ιoqk+1−1 − ιoqk−1||

)
= lim sup

k→∞
Z
(||ιoqk+1 − ιoqk ||, ||ιoqk+1−1 − ιoqk−1||

)
< 0,

which is a contradiction. This complete the proof.

In the next result, we prove the existence of the FP of an enriched (d,Z)-Z-contraction.

Theorem 2. Let (�̃, || · ||) be a Banach space and Θ : �̃ → �̃ be an enriched (d,Z)-Z-contraction.
Then, Θ has a unique FP in �̃ and, for every initial guess ιo0 ∈ �̃, the Krasnoselskii sequence{

ιoq
}

, defined by ιoq = Θδιoq−1, ∀q ∈ N, converges to the FP of Θ, where δ = 1
d+1 .

Proof. From the definition of an enriched (d,Z)-Z-contraction, we can write

Z(δ||(1
δ
− 1)(ιo − �o) + Θιo −Θ�o||, ||ιo − �o||) ≥ 0, ∀ιo, �o ∈ �̃,

or equivalently,
Z(||Θδιo −Θδ�o||, ||ιo − �o||) ≥ 0, ∀ιo, �o ∈ �̃. (7)
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Let ιo0 ∈ �̃ be an arbitrary initial point, and let
{

ιoq
}

be the Krasnoselskii sequence
defined by ιoq = Θδιoq−1 for all q ∈ N. First, we will demonstrate that the sequence

{
ιoq

}
is Cauchy. To accomplish this, take

Cq = sup
{||ιoi − ιo j|| : i, j ≥ q

}
.

Observe that the sequence
{
Cq

}
is a monotonically decreasing sequence of positive

real numbers. According to Lemma (5), the sequence
{

ιoq
}

is bounded, which implies that
Cq < ∞ for all q ∈ N. Therefore, the sequence

{
Cq

}
is monotonic and bounded, which

implies it is convergent. This means there exists a non-negative real number C ≥ 0 such
that limq→∞ Cq = C. We aim to prove that C = 0. If C > 0, then according to the definition
of Cq, for every k ∈ N, there exist indices qk and mk such that mk > qk ≥ k and

Ck − 1
k
< ||ιomk − ιoqk || ≤ Ck.

Hence,
lim
k→∞

||ιomk − ιoqk || = C. (8)

Using inequality (4) and the triangular inequality we have

||ιomk − ιoqk || = ||Θδιomk−1 −Θδιoqk−1||
< ||ιomk−1 − ιoqk−1||
< ||ιomk−1 − ιomk ||+ ||ιomk − ιoqk ||+ ||ιoqk − ιoqk−1||.

Using Lemma (4), inequality (8) and letting k → ∞ in the above inequality, we obtain

lim
k→∞

||ιomk−1 − ιoqk−1|| = C. (9)

Since Θ is an enriched (d,Z)-Z-contraction, using inequalities (4), (8), (9), and (λ3),
we have

0 ≤ lim sup
k→∞

Z
(||ιomk−1 − ιoqk−1||, ||ιomk − ιoqk ||

)
< 0,

which is a contradiction, and it proves that C = 0. So,
{

ιoq
}

is a Cauchy sequence. Since �̃
is a Banach space, there exists ιo∗ ∈ �̃ such that limn→∞ ιoq = ιo∗. Next, we prove that the
point ιo∗ will remain fixed under Θδ, and therefore it would also be the FP of Θ. Suppose
Θδιo∗ 	= ιo∗; then,

0 ≤ lim sup
q→∞

Z
(||Θδιoq −Θδιo∗||, ||ιoq − ιo∗||)

≤ lim sup
q→∞

[||ιoq − ιo∗|| − ||ιoq+1 −Θδιo∗||]
= −||ιo∗ −Θδιo∗||.

This leads to a contradiction. Thus, this shows that ||ιo∗ − Θδιo∗|| = 0, that is,
Θδιo∗ = ιo∗. Thus, ιo∗ is a FP of Θδ and so is the FP of Θ as well. Uniqueness of the
FP follows from Lemma (3).

Example 2. Let �̃ = [0, 1] be a real normed space with the norm defined by ||ιo − �o|| =
|ιo − �o|, ∀ιo, �o ∈ �̃. Then, (�̃, || · ||) is a Banach space. Define an operator Θ : �̃ → �̃
as Θ(ιo) = ιo(1−ιo)

1+ιo , ∀ιo ∈ [0, 1]. If d = 1, then δ = 1
2 . Thus, the mapping Θδ becomes

Θδιo = ιo

ιo+1 , ∀ιo ∈ �̃. Then, Θ is an enriched (d,Z)-Z-contraction, where d = 1 and

Z(ιo, �o) = �o

�o+1 − ιo, ∀ιo, �o ∈ [0, ∞). In particular, if ιo, �o ∈ �̃, then
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Z(||Θ 1
2
ιo −Θ 1

2
�o||, ||ιo − �o||) = ||ιo − �o||

1 + ||ιo − �o|| − ||Θ 1
2
ιo −Θ 1

2
�o||

=
|ιo − �o|

1 + |ιo − �o| −
∣∣∣∣ ιo

ιo + 1
− �o

�o + 1

∣∣∣∣
=

|ιo − �o|
1 + |ιo − �o| −

∣∣∣∣ |ιo − �o|
(ιo + 1)(�o + 1)

∣∣∣∣ ≥ 0.

Note that all the conditions of Theorem (2) are satisfied and hence both Θ 1
2

and Θ have a

unique FP ιo∗ = 0 ∈ �̃.

If we choose d = 0 in Theorem (2), then we obtain Theorem 2.8 in Khojasteh et al. [28]
in the setting of Banach spaces as follows.

Corollary 1. Consider a Banach space (�̃, || · ||) and an operator Θ : �̃ → �̃, which is an enriched
(0,Z)-Z-contraction. That is,

Z(||Θιo −Θ�o||, ||x− y||) ≥ 0, ∀x, y ∈ �̃.

Then, Θ has a unique FP in �̃.

In the following, we obtain some well-known and novel results in the FP theory
with an enriched-type contraction and the SFs. For example, the FP result of Berinde and
Păcurar [19] is given in terms of the SF as follows.

Corollary 2. Consider a Banach space (�̃, || · ||) with an operator Θ : �̃ → �̃ satisfying

||d(ιo − �o)−Θιo + Θ�o|| ≤ θ(d + 1)||ιo − �o||, ∀ιo, �o ∈ �̃,

where θ ∈ [0, 1) and d ∈ [0, ∞). Then, Θ has a unique FP in �̃.

Proof. Define ZE : [0, ∞)2 → R by

ZE(ι
o, �o) = θ�o − ιo, ∀�o, ιo ∈ [0, ∞).

It is clear that the mapping Θ is an enriched (d,ZE)-Z-contraction with respect to
ZE ∈ Z . Therefore, the result follows by taking Z = ZE in Theorem (2).

Next, we have the Rhoades FP theorem [29] in terms of the enriched and SFs in the
setting of normed spaces as follows.

Corollary 3. Consider a Banach space (�̃, || · ||) with an operator Θ : �̃ → �̃ satisfying

1
d + 1

||d(ιo − �o)−Θιo −Θ�o|| ≤ ||ιo − �o|| − π(||ιo − �o||), ∀ιo, �o ∈ �̃,

where π : [0, ∞)→ [0, ∞) is a lower semi-continuous function, and π−1(0) = {0}. Then, Θ has
a unique FP in �̃.

Proof. Define Zr : [0, ∞)2 → R by

Zr(ι
o, �o) = �o − π(�o)− ιo, ∀�o, ιo ∈ [0, ∞).

It is clear that the mapping Θ is an enriched (d,Zr)-Z-contraction with respect to
Zr ∈ Z . Therefore, the result follows by taking Z = Zr in Theorem (2).

Rhoades [29] studied the continuity and nondecreasing behavior of the function Φ
with limt→∞ ψ(ιo) = ∞. In Corollary (3), we changed these assumptions by the lower
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semi-continuity of Φ. Hence, our result is a proper generalization of the results given by
Rhoades [29] in the setting of Banach spaces via enriched techniques.

Corollary 4. Consider a Banach space (�̃, || · ||) with an operator Θ : �̃ → �̃ satisfying

1
d + 1

||d(ιo − �o)−Θιo −Θ�o|| ≤ π(||ιo − �o||)||ιo − �o||, ∀ιo, �o ∈ �̃,

where π : [0,+∞)→ [0, 1) is a function for which lim supιo→r+ π(ιo) < 1, for all r > 0. Then,
Θ has a unique FP.

Proof. Define Zw : [0, ∞)2 → R by

Zw(ι
o, �o) = �oπ(�o)− ιo, ∀�o, ιo ∈ [0, ∞),

and follow Theorem (2) to achieve the result.

Corollary 5. Consider a Banach space (�̃, || · ||) with an operator Θ : �̃ → �̃ satisfying

1
d + 1

||d(ιo − �o)−Θιo −Θ�o|| ≤ π(||ιo − �o||), ∀ιo, �o ∈ �̃,

where π : [0,+∞)→ [0,+∞) is an upper semi-continuous function for which π(ιo) < ιo, ∀ιo >
0 and π(0) = 0. Then, Θ has a unique FP.

Proof. Define the simulation operator Zq : [0, ∞)2 → R by

Zq(ι
o, �o) = π(�o)− ιo, ∀�o, ιo ∈ [0, ∞),

and apply Theorem (2) to complete the proof.

Corollary 6. Consider a Banach space (�̃, || · ||) with an operator Θ : �̃ → �̃ satisfying

∫ 1
d+1 ||d(ιo−�o)+Θιo−Θ�o ||

0
π(θ)dθ ≤ ||ιo − �o||, ∀ιo, �o ∈ �̃,

where π : [0, ∞)→ [0, ∞) is a function such that
∫ ε

0 π(θ)dθ exists and
∫ ε

0 π(θ)dθ > ε for each
ε > 0. Then, Θ has a unique FP in �̃.

Proof. Define Zl : [0, ∞)→ R by

Zl(ι
o, �o) = �o −

∫ ιo

0
π(θ)dθ, ∀�o, ιo ∈ [0, ∞).

Then, apply Theorem (2) to obtain the conclusion.

Enriched (d,Z)-Z-contractions and their IFSs provide advanced methods for solv-
ing complex problems in optimization, image processing, and dynamical systems. They
enable more robust algorithms, improved computational efficiency, and enhanced simu-
lation accuracy, offering better modeling and new approaches for iterative processes and
fixed points.

3. An Application

We suppose the following integral equation, ∀λ ∈ I = [a, b],

ιo(λ) = �o(λ) +
∫ b

a
J (λ, σ)z(σ, ιo(σ))dσ− (1− δ)ιo(λ), (10)
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where �o : I → R,J : I2 → R, z : I ×R→ R are continuous functions, and δ = 1
d+1 with

d ∈ [0, ∞). In the following, we prove the existence of a unique solution to the integral
Equation (10) in �̃ = C(I ,R) as an application of our previous results. For this, define a
self-mapping Θ : �̃ → �̃ by

Θιo(λ) = �o(λ) +
∫ b

a
J (λ, σ)z(σ, ιo(σ))dσ− (1− δ)ιo(λ), ∀λ ∈ I . (11)

For δ ∈ [0, 1), we obtain

Θδιo(λ) = δ�o(λ) + δ
∫ b

a
J (λ, σ)z(σ, ιo(σ))dσ, ∀λ ∈ I . (12)

Then, the existence of the FP of (11) and the existence of the solution to the integral
Equation (10) are equivalent to each other. We use the FP technique to show the existence
of the solution to (10).

We take the following norm �̃, which makes it the Banach space

||ιo − �o|| = sup
λ∈I

|ιo(λ)− �o(λ)|.

Further, we assume the following conditions to analyze the existence of the solution
of the integral Equation (10):

1. supλ∈I
∫ b

a |J (λ, σ)|dσ ≤ 1
b−a ;

2. |z(σ, ιo(σ))− z(σ, �o(σ))| ≤ 1
δ θ(||ιo − �o||), ∀ιo, �o ∈ �̃,

where θ : [0, ∞)→ [0, ∞) is a nondecreasing upper semi-continuous operator with θ(ιo) <
ιo, ∀ιo > 0 and θ(0) = 0.

Theorem 3. The solution to the integral Equation (10) is unique in �̃ if assumptions 1 and 2
are satisfied.

Proof. Consider the following ∀λ ∈ I and d ∈ [0, ∞),

1
d + 1

||d(ιo − �o) + Θιo −Θ�o|| = ||Θδιo −Θδ�o||
= sup

λ∈I
|Θδιo −Θδ�o|

= sup
λ∈I

|δ�o(λ) + δ
∫ b

a
J (λ, σ)z(σ, ιo(σ))dσ

− δ�o(λ)− δ
∫ b

a
J (λ, σ)z(σ, �o(σ))dσ|

= δ sup
λ∈I

|
∫ b

a
J (λ, σ)[z(σ, ιo(σ))− z(σ, �o(σ))]dσ|

≤ δ sup
λ∈I

∫ b

a
|J (λ, σ)[z(σ, ιo(σ))− z(σ, �o(σ))]|dσ

≤ δ sup
λ∈I

∫ b

a
|J (λ, σ)| · |z(σ, ιo(σ))− z(σ, �o(σ))|dσ

≤ θ(||ιo − �o||) · sup
λ∈I

∫ b

a
|J (λ, σ)|dσ

≤ 1
b− a

· θ(||ιo − �o||)
≤ θ(||ιo − �o||).
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Hence, all the assumptions of Corollary (5) are satisfied, so Θ has a unique FP. Equiva-
lently, the solution to the integral Equation (10) is unique in �̃.

4. Application to the Iterated Function System

In this part, we list applications of our results to the iterated functions system via
enrichment and SFs Z ∈ Z . The first result in this direction is given below.

Theorem 4. Let Θ be an enriched (d,Z)-Z-contraction on linear normed space �̃ and define the
operator Θ̃ : Λ(�̃)→ P(�̃) by Θ̃(Υo) = {Θ(ιo) : ιo ∈ Υo}, ∀Υo ∈ Λ(�̃). Then,

1. Θ̃ maps Λ(�̃) to Λ(�̃);
2. Θ̃ is also an enriched (d,Z)-Z-contraction on Λ(�̃),
where P(�̃) is the power set of �̃.

Proof. Initially, we demonstrate that Θ̃ maps elements from Λ(�̃) to Λ(�̃). Since Θ is an
enriched (d,Z)-contraction, from λ2 and inequality (4), we obtain

||d(ι
o − �o) + Θιo −Θ�o

d + 1
|| < ||ιo − �o||

=⇒ ||Θδιo −Θδ�o|| < ||ιo − �o||.

This implies that Θδ is a contractive mapping and, is therefore continuous. Thus,

Υo ∈ Λ(�̃)⇒ Θδ(Υo) ∈ Λ(�̃).

This means that Θδ sends elements from Λ(�̃) to Λ(�̃). Subsequently, the sum
of any number of compact sets and the scalar multiplication of a compact set by any
constant remain compact. Consequently, Θ̃ also maps elements from Λ(�̃) to Λ(�̃) as
Θδ(Υo) = (1− δ)Υo + δΘ̃(Υo).

Next, take Υo,� ∈ Λ(�̃). Then, from λ2 and inequality (4), we obtain

||Θδιo −Θδ�o|| < ||ιo − �o||, ∀ιo, �o ∈ �̃.

Thus,

D(Θδιo, Θδ�) = inf
�o∈�

||Θδιo −Θδ�o|| < inf
�o∈�

||ιo − �o|| = D(ιo,�). (13)

Similarly,

D(Θδ�o, ΘδΥo) < D(�o, Υo). (14)

Now, using the definition of Hausdorff metric ∂̊, (13), and (14), we obtain

∂̊(dΥo + Θ̃Υo, d�+ Θ̃�)

d + 1
= ∂̊(ΘδΥo, Θδ�) (15)

= max{ sup
ιo∈Υo

D(Θδιo, Θδ�), sup
�o∈�

D(Θδ�o, ΘδΥo)}

< max{ sup
ιo∈Υo

D(ιo,�), sup
�o∈�

D(�o, Υo)}

= ∂̊(Υo,�).

Using assumption λ2, we obtain

Z(
∂̊(dΥo + Θ̃Υo, d�+ Θ̃�)

d + 1
, ∂̊(Υo,�)) ≥ 0.

This shows that Θ̃ is an enriched (d,Z)-Z-contraction on (Λ(�̃), ∂̊).
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Definition 7. Suppose a normed space (�̃, || · ||) together with a finite class {Θ(i), i = 1, 2, · · · , j}
of enriched (d,Z)-Z-contractions. Then, the operator Y : Λ(�̃)→ Λ(�̃) defined by

Y(Υo) =
j⋃

i=1

Θ(i)(Υo), ∀Υo ∈ Λ(�̃),

is called the Z-Hutchinson contraction.

Definition 8. Consider a normed space (�̃, || · ||) with a class {Θ(i), i = 1, 2, · · · , j} of enriched
(d,Z)-Z-contractions that is said to be a Z-IFS, and it is denoted by (�̃; Θ(i), i = 1, 2, · · · , j).

Lemma 6. Let (�̃, || · ||) be a normed space together with a finite class {Θ(i), i = 1, 2, · · · , j} of
enriched (d,Z)-Z-contractions. Then, the Z-Hutchinson operator is also an enriched (d,Z)-Z-
contraction.

Proof. For some given j ∈ N with j ≥ 2, let {Θ(i) : �̃ → �̃ : i = 1, 2, . . . j} be a family of
enriched (d,Z)-Z-contractions and Υo,� ∈ Λ(�̃). Then, from Lemma 1, we obtain

∂̊(dΥo + Θ̃Υo, d�+ Θ̃�)

d + 1
= ∂̊(ΘδΥo, Θδ�)

= ∂̊(
j⋃

i=1

Θ(i)
δΥo,

j⋃
i=1

Θ(i)
δ�)

≤ max
1≤i≤j

{∂̊(Θ(i)
δΥo, Θ(i)

δ�)}

≤ ∂̊(Υo,�).

Therefore, using (λ2), we obtain

Z(
∂̊(dΥo + Θ̃Υo, d�+ Θ̃�)

d + 1
, ∂̊(Υo,�)) ≥ 0, ∀Υo,� ∈ Λ(�̃).

Accordingly, the proof is complete.

Theorem 5. Let (�̃, || · ||) be a linear normed space with a finite class {Θ(i), i = 1, 2, · · · , j} of
enriched (d,Z)-Z-contractions. Then,

1. Y also maps Λ(�̃) to itself;
2. the Z-Hutchinson operator has a unique FP, say Υo∗ ∈ Λ(�̃);
3. the sequence (Υo

q), ∀q ∈ N, and δ = 1
d+1 , as defined by Υo

q+1 = (1− δ)Υo
q + δYΥo

q,
converges to Υo∗ ∈ Λ(�̃).

Proof. Since each Θ(i) for i = 1, 2, . . . , j is an enriched (d,Z)-Z-contraction, conclusion
(1) can be directly deduced from the definition of Θ and Theorem (4). In addition, conclu-
sions (2) and (3) follow from Lemma (3) and Theorem (2).

Definition 9. An operator Θ : Λ(�̃)→ Λ(�̃), where (�̃, || · ||) is a normed space, is said to be a
generalized enriched (d,Z)-Z-Hutchinson operator or simply generalized enriched Z-Hutchinson
operator if there exists a constant d ∈ [0, ∞) and a SF Z ∈ Z such that

Z(∂̊(
dΥo + ΘΥo

d + 1
,

d�+ Θ�

d + 1
),NΘ(Υo,�) ≥ 0, Υo,� ∈ Λ(�̃), (16)
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where

NΘ(Υo,�) =max
{

∂̊(Υo,�), ∂̊

(
Υo,

dΥo + ΘΥo

d + 1

)
, ∂̊

(
�,

d�+ Θ�

d + 1

)
,

1
2

[
∂̊

(
Υo,

d�+ Θ�

d + 1

)
+ ∂̊

(
�,

dΥo + ΘΥo

d + 1

)]
,

∂̊

(
1

d + 1

[
d(dΥo + ΘΥo)

d + 1
+ Θ

(
dΥo + ΘΥo

d + 1

)]
,

dΥo + ΘΥo

d + 1

)
,

∂̊

(
1

d + 1

[
d(dΥo + ΘΥo)

d + 1
+ Θ

(
dΥo + ΘΥo

d + 1

)]
,�

)
,

∂̊

(
1

d + 1

[
d(dΥo + ΘΥo)

d + 1
+ Θ

(
dΥo + ΘΥo

d + 1

)]
,

d�+ Θ�

d + 1

)}
.

Lemma 7. Let (�̃, || · ||) be a normed space and Θ : Λ(�̃) → Λ(�̃) be a generalized enriched
(d,Z)-Z-Hutchinson operator. Then, the Krasnoselskii iteration scheme {Υo

n} obtained by Θ with
initial guess Υo

0 ∈ δ(ιo) is a bounded sequence, where Υo
q = (1− δ)Υo

q−1 + δΘΥo
q−1, ∀q ∈ N,

and δ = 1
d+1 .

Proof. By the definition of the generalized enriched (d,Z)-Z-Hutchinson operator, we
have, for ∀Υo,� ∈ Λ(�̃),

Z(∂̊(ΘδΥo, Θδ�),NΘδ
(Υo,�)) ≥ 0, (17)

where

NΘδ
(Υo,�) = max{∂̊(Υo,�), ∂̊(Υo, ΘδΥo), ∂̊(�, Θδ�),

1
2

[
∂̊(Υo, Θδ�) + ∂̊(�, ΘδΥo)

]
,

∂̊(Θ2
δΥo, ΘδΥo), ∂̊(Θ2

δΥo,�), ∂̊(Θ2
δΥo, Θδ�)}.

Let Υo
0 ∈ Λ(�̃) be any arbitrary element and generate the sequence as Υo

q+1 =
(1− δ)Υo

q + δΘΥo
q, ∀q ≥ 0. Assume that

{
Υo

q
}

is not bounded. Then, without loss of
generality, we can suppose that Υo

q+p 	= Υo
q, ∀q, p ∈ N. As the sequence

{
Υo

q
}

is not
bounded, we must find a sub-sequence

{
Υo

qk

}
such that q1 = 1 and, for each k ∈ N, qk+1 is

the minimum integer such that ∂̊(Υo
qk+1 , Υo

qk ) > 1. Also, we obtain

∂̊(Υo
m, Υo

qk ) ≤ 1, qk ≤ m ≤ qk+1 − 1. (18)

Therefore, by utilizing inequality (18) and the triangular inequality, we have

1 < ∂̊(Υo
qk+1 , Υo

qk ) ≤ ∂̊(Υo
qk+1 , Υo

qk+1−1) + ∂̊(Υo
qk+1,1 − Υo

qk )

≤ ∂̊(Υo
qk+1 , Υo

qk+1−1) + 1.

Taking k → ∞ and using Lemma (4), we obtain

lim
k→∞

∂̊(Υo
qk+1 , Υo

qk ) = 1. (19)

Substituting Υo = Υo
q and � = Υo

q+1 in the inequality (17), we obtain

0 ≤ Z(∂̊(ΘδΥo
k, ΘδΥo

k+1),NΘδ
(Υo

k, Υo
k+1)) = Z(∂̊(Υo

k+1, Υo
k+2),NΘδ

(Υo
k, Υo

k+1)),
(20)
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where

NΘδ
(Υo

k, Υo
k+1) = max

{
∂̊(Υo

k, Υo
k+1), ∂̊(Υo

k, Θδ(Υo
k)), ∂̊(Υo

k+1, Θδ(Υo
k+1))

∂̊(Υo
k, Θδ(Υo

k+1)) + ∂̊(Υo
k+1, Θδ(Υo

k))

2

∂̊
(

Θ2
δ(Υ

o
k), Θδ(Υo

k)
)

, ∂̊
(

Θ2
δ(Υ

o
k), Υo

k+1

)
, ∂̊
(

Θ2
δ(Υ

o
k), Θδ(Υo

k+1)
)}

= max
{

∂̊(Υo
k, Υo

k+1), ∂̊(Υo
k, Υo

k+1), ∂̊(Υo
k+1, Υo

k+2)

∂̊(Υo
k, Υo

k+2) + ∂̊(Υo
k+1, Υo

k+1)

2
,

∂̊(Υo
k+2, Υo

k+1), ∂̊(Υo
k+2, Υo

k+1), ∂̊(Υo
k+2, Υo

k+2)
}

≤ max

{
∂̊(Υo

k, Υo
k+1), ∂̊(Υo

k+1, Υo
k+2),

∂̊(Υo
k, Υo

k+1) + ∂̊(Υo
k+1, Υo

k+2)

2

}

= max
{

∂̊(Υo
k, Υo

k+1), ∂̊(Υo
k+1, Υo

k+2)
}

.

Therefore, using inequality (20) and λ2, we obtain

0 ≤ Z(∂̊(Υo
k+1, Υo

k+2)),NΘδ
(Υo

k, Υo
k+1))

≤ Z(∂̊(Υo
k+1, Υo

k+2)), max
{

∂̊(Υo
k, Υo

k+1), ∂̊(Υo
k+1, Υo

k+2)
}
)

< max
{

∂̊(Υo
k, Υo

k+1), ∂̊(Υo
k+1, Υo

k+2)
}
− ∂̊(Υo

k+1, Υo
k+2))

=⇒ ∂̊(Υo
k+1, Υo

k+2) < max
{

∂̊(Υo
k, Υo

k+1), ∂̊(Υo
k+1, Υo

k+2)
}

.

This implies that
∂̊(Υo

k+1, Υo
k+2) < ∂̊(Υo

k, Υo
k+1). (21)

Thus, by inequality (21), we conclude that ∂̊(Υo
qk+1 , Υo

qk ) ≤ ∂̊(Υo
qk+1−1, Υo

qk−1). Fur-
ther, using (21), (18), (19), and the triangular inequality, we have

1 < ∂̊(Υo
qk+1 , Υo

qk ) ≤ ∂̊(Υo
qk+1−1, Υo

qk−1)

≤ ∂̊(Υo
qk+1−1, �oqk ) + ∂̊(Υo

qk , Υo
qk−1)

≤ 1 + ∂̊(Υo
qk , Υo

qk−1).

Taking k → ∞ and using Lemma (4), we obtain

lim
k→∞

∂̊(Υo
qk+1−1, Υo

qk−1) = 1.

Now, since Θ is a generalized enriched (d,Z)-Z-Hutchinson operator, from condition
Z3, we have

0 ≤ lim sup
k→∞

Z
(

∂̊(ΘδΥo
qk+1−1, ΘδΥo

qk−1), ∂̊(Υo
qk+1−1, Υo

qk−1)
)

= lim sup
k→∞

Z
(

∂̊(Υo
qk+1 , Υo

qk ), ∂̊(Υo
qk+1−1, Υo

qk−1)
)
< 0,

which is a contradiction. This completes the proof.

Theorem 6. Let (�̃, || · ||) be Banach space and Θ : Λ(�̃) → Λ(�̃) be a generalized enriched
Z-Hutchinson operator. Then,

1. the attractor of Θ is unique, say Υo∗ ∈ Λ(�̃);
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2. the sequence (Υo
q) defined by

Υo
q+1 = (1− δ)Υo

q + δΘΥo
q, ∀q ≥ 0, (22)

converges to Υo∗ for any initial point Υo
0 ∈ Λ(�̃),

where δ = 1
d+1 .

Proof. By the definition of the generalized enriched (d,Z)-Z-Hutchinson operator, we
have, for ∀Υo,� ∈ Λ(�̃),

Z(∂̊(ΘδΥo, Θδ�),NΘδ
(Υo,�)) ≥ 0, (23)

where

NΘδ
(Υo,�) = max{∂̊(Υo,�), ∂̊(Υo, ΘδΥo), ∂̊(�, Θδ�),

1
2

[
∂̊(Υo, Θδ�) + ∂̊(�, ΘδΥo)

]
,

∂̊(Θ2
δΥo, ΘδΥo), ∂̊(Θ2

δΥo,�), ∂̊(Θ2
δΥo, Θδ�)}.

Let Υo
0 ∈ Λ(�̃) be any arbitrary element and define the sequence as given in (22).

Our aim is to show that this sequence is Cauchy. To do this, take

Cq = sup
{

∂̊(Υo
l , Υo

m) : l, m ≥ q
}

.

Observe that the sequence
{
Cq

}
is a monotonically decreasing sequence of positive

real numbers. According to Lemma (7), the sequence
{

Υo
q
}

is bounded, which implies
that Cq < ∞ for all q ∈ N. Therefore, the sequence

{
Cq

}
is monotonic and bounded, which

implies it is convergent. This means there exists a non-negative real number C ≥ 0 such
that limq→∞ Cq = C. We aim to prove that C = 0. If C > 0, then according to the definition
of Cq, for every k ∈ N, there exist indices qk and mk such that mk > qk ≥ k and

Ck − 1
k
< ∂̊(Υo

mk , Υo
qk ) ≤ Ck.

Hence,
lim
k→∞

∂̊(Υo
mk , Υo

qk ) = C. (24)

Using inequality (21) and the triangular inequality, we have

∂̊(Υo
mk , Υo

qk ) < ∂̊(Υo
mk−1, Υo

qk−1)

< ∂̊(Υo
mk−1, Υo

mk ) + ∂̊(Υo
mk , Υo

qk ) + ∂̊(Υo
qk , Υo

qk−1).

Using Lemma (4) and inequality (24) and letting k → ∞ in the above inequality,
we obtain

lim
k→∞

∂̊(Υo
mk−1, Υo

qk−1) = C. (25)

Since Θ is an enriched (d,Z)-Z-Hutchinson operator, using inequalities (21), (24), (25),
and (λ3), we therefore have

0 ≤ lim sup
k→∞

Z
(

∂̊(Υo
mk−1, Υo

qk−1), ∂̊(Υo
mk , Υo

qk )
)
< 0,

which is a contradiction and proves that C = 0. So,
{

Υo
q
}

is a Cauchy sequence. Since �̃ is
a Banach space, there exists Υo∗ ∈ �̃ such that limq→∞ Υo

q = Υo∗. Next, we show that Υo∗
is a unique FP of Θ. For this purpose, suppose to the contrary that Υo∗ is not the FP of Θ.
Thus, Υo∗ will not be the FP of Θδ. By utilizing inequality (23), we have

0 ≤ Z(∂̊(ΘδΥo
k, ΘδΥo∗),NΘδ

(Υo
k, Υo∗)), (26)
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where

NΘδ
(Υo

k, Υo∗) = max
{

∂̊
(
Υo

k, Υo∗), ∂̊(Υo
k, ΘδΥo

k), ∂̊
(
Υo∗, ΘδΥo∗) ,

∂̊(Υo
k, ΘδΥo∗) + ∂̊(Υo∗, ΘδΥo

k)

2
,

∂̊
(

Θ2
δΥo

k, ΘδΥo
k

)
, ∂̊
(

Θ2
δΥo

k, Υo∗
)

, ∂̊
(

Θ2
δΥo

k, ΘδΥo∗
)}

= max
{

∂̊
(
Υo

k, Υo∗), ∂̊(Υo
k, Υo

k+1), ∂̊
(
Υo∗, ΘδΥo∗) ,

∂̊(Υo
k, ΘδΥo∗) + ∂̊(Υo∗, Υo

k+1)

2
,

∂̊(Υo
k+2, Υo

k+1), ∂̊
(
Υo

k+2, Υo∗), ∂̊
(
Υo

k+2, ΘδΥo∗)}.

We now have the following cases:

1. If NΘδ
(Υo

k, Υo∗) = ∂̊(Υo
k, Υo∗), then using the limit as k → ∞ in (26) and λ2,

we obtain

0 ≤ Z(∂̊(Υo∗, ΘδΥo∗), ∂̊
(
Υo∗, Υo∗))

< ∂̊
(
Υo∗, Υo∗)− ∂̊(Υo∗, ΘδΥo∗)

= −∂̊(Υo∗, ΘδΥo∗),

which is a contradiction.
2. If NΘδ

(Υo
k, Υo∗) = ∂̊(Υo

k, Υo
k+1), then using the limit as k → ∞ in (26) and λ2,

we obtain

0 ≤ Z(∂̊(Υo∗, ΘδΥo∗), ∂̊
(
Υo∗, Υo∗))

< ∂̊
(
Υo∗, Υo∗)− ∂̊(Υo∗, ΘδΥo∗)

= −∂̊(Υo∗, ΘδΥo∗),

which is a contradiction.
3. If NΘδ

(Υo
k, Υo∗) = ∂̊(Υo∗, ΘδΥo∗), then using the limit as k → ∞ in (26) and λ2,

we obtain

0 ≤ Z(∂̊(Υo∗, ΘδΥo∗), ∂̊
(
Υo∗, ΘδΥo∗))

< ∂̊
(
Υo∗, ΘδΥo∗)− ∂̊

(
Υo∗, ΘδΥo∗)

= 0,

which further implies ∂̊(Υo∗, ΘδΥo∗) = 0 by the aid of λ1 and is thus a contradiction.

4. If NΘδ
(Υo

k, Υo∗) = ∂̊(Υo
k ,ΘδΥo∗)+∂̊(Υo∗ ,Υo

k+1)
2 , then using the limit as k → ∞ in (26) and

λ2, we obtain

0 ≤ Z(∂̊(Υo∗, ΘδΥo∗), ∂̊(Υo∗, ΘδΥo∗) + ∂̊(Υo∗, Υo∗)
2

)

= Z(∂̊(Υo∗, ΘδΥo∗), ∂̊(Υo∗, ΘδΥo∗)
2

)

< ∂̊
(
Υo∗, ΘδΥo∗)− ∂̊(Υo∗, ΘδΥo∗)

2

= − ∂̊(Υo∗, ΘδΥo∗)
2

,

which is a contradiction.
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5. If NΘδ
(Υo

k, Υo∗) = ∂̊(Υo
k+2, Υo

k+1), then using the limit as k → ∞ in (26) and λ2,
we get

0 ≤ Z(∂̊(Υo∗, ΘδΥo∗), ∂̊
(
Υo∗, Υo∗))

< ∂̊
(
Υo∗, Υo∗)− ∂̊(Υo∗, ΘδΥo∗)

= −∂̊(Υo∗, ΘδΥo∗),

a contradiction.
6. If NΘδ

(Υo
k, Υo∗) = ∂̊(Υo

k+2, Υo∗), then using the limit as k → ∞ in (26) and λ2,
we obtain

0 ≤ Z(∂̊(Υo∗, ΘδΥo∗), ∂̊
(
Υo∗, Υo∗))

< ∂̊
(
Υo∗, Υo∗)− ∂̊(Υo∗, ΘδΥo∗)

= −∂̊(Υo∗, ΘδΥo∗),

which is a contradiction.
7. If NΘδ

(Υo
k, Υo∗) = ∂̊(Υo

k+2, ΘδΥo∗), then using the limit as k → ∞ in (26) and λ2,
we obtain

0 ≤ Z(∂̊(Υo∗, ΘδΥo∗), ∂̊
(
Υo∗, ΘδΥo∗))

< ∂̊
(
Υo∗, ΘδΥo∗)− ∂̊(Υo∗, ΘδΥo∗)

= 0,

which further implies ∂̊(Υo∗, ΘδΥo∗) = 0 by the aid of λ1 and thus is a contradiction.

Thus, in all cases, ∂̊(ΘδΥo∗, Υo∗) = 0. This is to say, Υo∗ is the FP of Θδ and, as such,
the FP of Θ. For the purpose of uniqueness, suppose that Υo,� ∈ Λ(�̃) are two distinct
FPs of Θ. Then, from (26), we have

0 ≤ Z(∂̊(Υo,�), ∂̊(ΘδΥo, Θδ�))

≤ Z(∂̊(Υo,�), max{∂̊(Υo,�), ∂̊(Υo, ΘδΥo), ∂̊(�, Θδ�),
∂̊(Υo, Θδ�) + ∂̊(�, ΘδΥo)

2
,

∂̊(Θ2
δΥo, ΘδΥo), ∂̊(Θ2

δΥo,�), ∂̊(Θ2
δΥo, Θδ�)}

= Z(∂̊(Υo,�), ∂̊(Υo,�))

< ∂̊(Υo,�)− ∂̊(Υo,�)

= 0,

which is a contradiction to the supposition. Accordingly, the FP of Θ is unique.

Example 3. Take R as the usual Banach space || · || and a system of finite mappings {Θ(i) : R→
R, i = 3, 4, 5} by

Θ(i)(ιo) = 2− ιo − 2ιo

i
, ∀i = 3, 4, 5.

Then, for d = 1, we obtain δ = 1
2 and ∀i = 3, 4, 5,

Θ(i)
δ (ιo) = 1− ιo

i
, ∀ιo ∈ R. (27)
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Therefore, |Θ(i)
δ (ιo) − Θ(i)

δ (�o)| ≤ π|ιo − �o|, ∀ιo, �o ∈ X , where π = max{ 1
i : i =

3, 4, 5} = 1
3 . Considering Z = ZE as defined in Corollary (2) by ZE(ι

o, �o) = 1
2 �o − ιo, ∀�o, ιo ∈

[0, ∞), then we obtain for i = 3, 4, 5,

Z(||Θ(i)
δ (ιo)−Θ(i)

δ (�o)||, ||ιo − �o||) = Z(
1
i
|ιo − �o|, |ιo − �o|)

=
1
2
|ιo − �o| − 1

i
|ιo − �o|

≥ 1
2
|ιo − �o| − 1

3
|ιo − �o|

=
1
6
|ιo − �o|

⇒ ζ(||Θ(i)
δ (ιo)−Θ(i)

δ (�o)||, ||ιo − �o||) ≥ 0.

Thus, (R, Θ(i) : i = 3, 4, 5) is an IFS via the enriched (d,Z)-Z-contractions. Therefore,
the mapping Θ : Λ(R)→ Λ(R) given by

Θ(Υo) = ∪5
i=3Θ(i)(Υo), ∀Υo ∈ Λ(R)

must satisfy the following by Theorem (4):

Z(∂̊(Θ(i)
δ (Υo), Θ(i)

δ (�)), ∂̊(Υo,�)) ≥ 0, ∀Υo,� ∈ Λ(X ), ∀i = 3, 4, 5.

Therefore, by Theorem 6, Θ has a unique FP, as Θ meets all of its requirements.

The intricate construction of enriched (d,Z)-Z-contractions is essential for deriving
existence and uniqueness results because it broadens classical methods to address more
complex scenarios and offers a more profound theoretical framework. Although classical
methods may work for simpler cases, generalized contractions and their associated IFSs pro-
vide enhanced insights and solutions for more complex problems. This approach enables a
more thorough analysis and application, especially for specialized integral equations and
advanced operators such as the enriched Z-Hutchinson operator.

5. Conclusions and Future Directions

In conclusion, we introduced a wide class of enriched (d,Z)-Z-contractions defined
on Banach spaces and established the existence and uniqueness of their FPs. To validate our
findings, we gave a concrete example. In addition, we demonstrated an existence condition
confirming the uniqueness of the solution to an integral equation. Moreover, we defined
the IFS associated with enriched (d,Z)-Z-contractions in Banach spaces and defined the
enriched Z-Hutchinson operator. We also established a result on the convergence of
Krasnoselskii’s iteration method and the uniqueness of the attractor via enriched (d,Z)-Z-
contractions. As a result, our findings not only confirm but also significantly build upon
and broaden several established results.

In future work, it would be interesting to examine whether it is possible to deduce
Kannan, Chatterjea, interpolative Kannan, and interpolative Chatterjea-type contractions
and their FP results in the context of Z-type contractions via enriched techniques. Addi-
tionally, investigating the same task for cyclic contractions via enriched techniques could
provide valuable insights and further extend the applicability of enriched contractions in
various mathematical contexts.
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11. Maślanka, Ł; Strobin, F. On generalized iterated function systems defined on l∞-sum of a metric space. J. Math. Anal. Appl. 2018,

461, 1795–1832. [CrossRef]
12. Klimek, M.; Kosek, M. Generalized iterated function systems, multifunctions and Cantor sets. Ann. Pol. Math. 2009, 1, 25–41.

[CrossRef]
13. Kunze, H.E.; La Torre, D.; Vrscay, E.R. Contractive multifunctions, fixed point inclusions and iterated multifunction systems.

J. Math. Anal. Appl. 2007, 330, 159–173. [CrossRef]
14. La Torre, D. Approximating by Iterated Function Systems and Iterated Multifunction Systems. Convegozo su Metodi Matematicie

Stastici per le Assicuraziono e la Finanza 2006, 12. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=944015231e35c3388605a60fa2b7c18407247336 (accessed on 13 August 2024).

15. Torre, D.L.; Mendivil, F.; Vrscay, E.R. Iterated function systems on multifunctions. In Math Everywhere: Deterministic and Stochastic
Modelling in Biomedicine, Economics and Industry; Springer: Berlin/Heidelberg, Germany, 2007; pp. 125–138.

16. Khumalo, M.; Nazir, T.; Makhoshi, V. Generalized iterated function system for common attractors in partial metric spaces. Aims
Math. 2022, 7, 13074–13103. [CrossRef]

17. Anjum, R.; Din, M.; Zhou, M. Fractals of two types of enriched (q, θ)-Hutchinson–Barnsley operators. Chaos Solitons Fractals 2024,
181, 114589. [CrossRef]

18. Ahmad, J.; Al-Mazrooei, A.E.; Rassias, T.M. Fractals of generalized Θ-Hutchinson operator. Int. J. Nonlinear Anal. Appl. 2022, 13,
1–12.
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Abstract: After the initiation of Jachymski’s contraction principle via digraph, the area of metric fixed
point theory has attracted much attention. A number of outcomes on fixed points in the context of
graph metric space employing various types of contractions have been investigated. The aim of this
paper is to investigate some fixed point theorems for a class of nonlinear contractions in a metric
space endued with a transitive digraph. The outcomes presented herewith improve, extend and
enrich several existing results. Employing our findings, we describe the existence and uniqueness of
a singular fractional boundary value problem.
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1. Introduction

Fractional differential equations (abbreviated as FDEs) are generalisations of the ordi-
nary differential equations to an arbitrary non-integer order. In the recent past, FDEs have
been studied on account of their remarkable growth and relevance to the field of fractional
calculus. For an extensive collection on the background of FDE, we refer the readers to
consult [1–5] and the references therein. Various researchers (e.g., [6–11]) have discussed
the existence theory of FDE employing the approaches of fixed point theory. Recall that a
typical fractional BVP (abbreviation of ‘boundary value problem’) in a dependent variable
ϑ and independent variable θ can be represented by

−Dιϑ(θ) = h̄
(

θ, ϑ(θ), Dα1 ϑ(θ), Dα2 ϑ(θ), . . . , Dαr−1 ϑ(θ)
)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dαi ϑ(0) = 0, 1 ≤ i ≤ r− 1,
Dαr−1+1ϑ(0) = 0,

Dαr−1 ϑ(1) =
m−2
∑

j=1
qjDαr−1 ϑ(�j)

(1)

where

• r ∈ N, r ≥ 3 and r− 1 < ι ≤ r,
• 0 < α1 < α2 < · · · < αr−2 < αr−1 and r− 3 < αr−1 < ι− 2,
• Dι is standard Riemann–Liouville derivative,
• h̄ ∈ C

(
[0, 1]×Rr; [0, ∞)

)
,
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• qj ∈ R and 0 < �1 < �2 < · · · < �m−1 < 1 with 0 <
m−2
∑

j=1
qj�

ι−αr−1−1
j < 1.

Fixed point theory plays in metric space (in short, MS) a central role in nonlinear func-
tional analysis. Throughout the foregoing century, BCP has been expanded and generalised
by numerous authors. A common generalisation of this finding is to expand the standard
contraction to ϕ-contraction by means of a proper auxiliary function ϕ : [0, ∞)→ [0, ∞).
A variety of generalisations has been developed through effectively modifying ϕ, result-
ing in a huge number of articles on this topic. Matkowski [12] invented a new class of
ϕ-contraction that incorporated the concept of comparison functions, which has been
further studied in ([13–17]) besides several others. Quite recently, Pant [17] established
an interesting non-unique fixed point theorem enlarging the class of ϕ-contractions in a
complete metric space.

In 2008, Jachymski [18] established a very interesting approach in fixed point theory
in the setup of graph metric space. Graphs are algebraic structures that subsume the partial
ordering. The chief feature of the graphic approach is that the contraction condition is
required to hold for merely certain edges of the underlying graph. This approach gave
rise to an emerging discipline of research in metric fixed point theory, which led to the
appearance of numerous works, e.g., see [19–25]. In 2010, Bojor [19] extended the results of
Jachymski [18] to (G, ϕ)-contraction in the sense of Matkowski [12].

The intent of this manuscript is to expand the outcomes of Bojor [19] adopting the
idea of Pant [17] and to prove the fixed point theorems under the enlarged class of (G, ϕ)-
contraction in the setup of graph metric space. Employing the findings proved herewith,
we study the existence and uniqueness of positive solutions of a particular form of BVP (1),
such that the FDE remains singular.

2. Graph Metric Space

The set of real numbers (resp. natural numbers) are indicated by R (resp. N). By a
graph G, we mean the pair (V(G), E(G)), whereas V(G) (known as set of vertices) and a
set E(G) (known as set of edges) have a binary relation on V(G).

Definition 1 ([26]). A graph is named as a digraph (or, directed graph) if every edge remains an
ordered pair of vertices.

Definition 2 ([26]). The transpose of a graph G, is a graph denoted by G−1, described as

V(G−1) = V(G) and E(G−1) = {(v, u) ∈ V(G)2 : (u, v) ∈ E(G)}.

Definition 3 ([26]). Each digraph G = (V(G), E(G)) induces an undirected graph G̃, defined by

V(G̃) = V(G) and E(G̃) = E(G) ∪ E(G−1).

Definition 4 ([26]). For any two vertices v and u in the graph G, a finite sequence {v0, v1, v2, . . . vp}
of vertices is said to form a path in G from v to u of length p if v0 = v, vp = u and (vr−1, vr) ∈
E(G), ∀ r ∈ {1, 2, . . . p}.

Definition 5 ([26]). A graph G is known as connected if any two vertices of G enjoy a path. If G̃
is connected then G is referred as weakly connected.

Definition 6 ([18]). Let (V, �) be a MS and G := (V(G), E(G)) a digraph. Then the triplet
(V, �, G) called a graph MS if

• V(G) = V;
• E(G) contains all loops;
• G admits no parallel edge.
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Definition 7 ([20]). Given a graph MS (V, �, G), G is referred as a (C)-graph if for every sequence
{vn} ⊂ V having the properties: vn → v and (vn, vn+1) ∈ E(G), for every n ∈ N, ∃ a
subsequence {vnr} with (vnr , v) ∈ E(G), ∀ r ∈ N.

Definition 8 ([23]). Given a graph MS (V, �, G), a map R : V → V is named as G-edge preserving if

(v, u) ∈ E(G) =⇒ (Rv, Ru) ∈ E(G).

Definition 9 ([24]). A digraph G is referred as transitive if for all v, u, w ∈ V(G) with

(v, u) ∈ E(G) and (u, w) ∈ E(G) =⇒ (v, w) ∈ E(G).

Definition 10 ([27]). An increasing function ϕ : [0, ∞) → [0, ∞) is named as comparison
function if lim

n→∞
ϕn(t) = 0, ∀ t > 0.

For further discussions on comparison functions, we refer the monographs of Rus [27]
and Berinde [28].

Proposition 1 ([27,28]). Every comparison function ϕ verifies that ϕ(t) < t, ∀ t > 0 and
ϕ(0) = 0.

Definition 11 ([29]). A self-map R defined on a MS (V, �) is referred as

• PM (Picard mapping) if Fix(R) = {v∗} (a singleton set) and Rn(v)→ v∗, ∀ v ∈ V;
• WPM (weakly Picard mapping) if Fix(R) 	= ∅ and the sequence {Rnv} converges to a fixed

point of R, ∀ v ∈ V.

3. Main Results

Given a digraph G := (V(G), E(G)), a self-map R on V and v ∈ V(G), we adopt the
succeeding notations:

[v]G = {u ∈ V(G) : ∃ a path in G from v to u};

VR = {v ∈ V : (v, Rv) ∈ E(G)};

and
Fix(R) = {v ∈ V : R(v) = v}.

We are now going to demonstrate the following fpt in a graph MS over a class of
(G, ϕ)-contractivity condition.

Theorem 1. Let (V, �, G) be a graph MS whereas (V, �) is a complete MS and G is a transitive.
Let R : V → V be a G-edge preserving map and VR 	= ∅. Also, assume that either, R is orbitally
G-continuous, or, G is a (C)-graph. If there exists a comparison function ϕ such that

�(Rv, Ru) ≤ ϕ(�(v, u)) ∀ (v, u) ∈ E(G) with [v 	= R(v) or u 	= R(u)], (2)

then R is a WPM.

Proof. Take v0 ∈ VR so that (v0, Rv0) ∈ E(G). Construct a sequence {vn} in the follow-
ing way:

vn+1 = Rn(v0) = R(vn), ∀ n ∈ N0. (3)

Since (v0, Rv0) ∈ E(G) and R is a G-edge preserving, by easy induction, we have

(Rnv0, Rn+1v0) ∈ E(G)
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which through (3) simplifies to

(vn, vn+1) ∈ E(G) ∀ n ∈ N0. (4)

Define �n := �(vn, vn+1). If there is some n0 ∈ N0 with �n0 = 0, then by (3), we find
vn0 = vn0+1 = R(vn0); so vn0 ∈ Fix(R), unless, we have �n > 0 for every n ∈ N0. Then, we
have vn 	= vn+1 = R(vn). On implementing (4) and the contractivity condition (2), we find

�n = �(vn, vn+1) = �(Rvn−1, Rvn) ≤ ϕ(�(vn−1, vn)),

or,

�n ≤ ϕ(�n−1) ∀ n ∈ N0. (5)

Using monotonicity of ϕ in (5), we have

�n ≤ ϕ(�n−1) ≤ ϕ2(�n−2) ≤ · · · ≤ ϕn(�0),

or,

�n ≤ ϕn(�0), ∀ n ∈ N. (6)

With n → ∞ in (6) and employing the definition of ϕ, we find

lim
n→∞

�n = 0. (7)

Choose ε > 0. Then, owing to (7), we can find n ∈ N0 allows for

�n < ε− ϕ(ε). (8)

Now, we seek to verify that {vn} is Cauchy. Implementing the monotonicity of ϕ, (5)
and (8), we find

�(vn, vn+2) ≤ �(vn, vn+1) + �(vn+1, vn+2) = �n + �n+1

≤ �n + ϕ(�n)

< ε− ϕ(ε) + ϕ[ε− ϕ(ε)] ≤ ε− ϕ(ε) + ϕ(ε)

= ε.

Implementing the monotonicity of ϕ, transitivity of G, (4), (8), and the contractivity condi-
tion (2), we find

�(vn, vn+3) ≤ �(vn, vn+1) + �(vn+1, vn+3)

= �n + �(Rvn, Rvn+2)

< ε− ϕ(ε) + ϕ(�(vn, vn+2))

≤ ε− ϕ(ε) + ϕ(ε)

= ε.

By easy induction, one finds

�(vn, vn+p) < ε, ∀ p ∈ N.

It turns out that {vn} continues to be Cauchy. Through the completeness of (V, �), there

exists v ∈ V whereby vn
�−→ v.
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Suppose that R is orbitally G-continuous. Then, one finds

vn+1 = R(vn)
�−→ R(v),

leading to, in turn, R(v) = v. Therefore, v is a fixed point of R. Otherwise, if G is a (C)-
graph, then, a subsequence {vnk} of {vn} can be determined that satisfies (vnk , v) ∈ E(G)
for every k ∈ N0. By contractivity condition (2), we have

�(vnk+1, Rv) = �(Rvnk , Rv) ≤ ϕ(�(vnk , v)), ∀ k ∈ N0.

Using Proposition 1 (whether �(vnk , v) is zero or non-zero), the above inequality becomes

�(vnk+1, Rv) ≤ �(vnk , v).

Taking k → ∞ in the above inequality and using vnk

�−→ v, we get

vnk+1
�−→ R(v),

leading to, in turn, R(v) = v. Hence, v is a fixed point of R.

Next, we present the uniqueness theorem corresponding to Theorem 1.

Theorem 2. Let (V, �, G) be a graph MS whereas (V, �) is a complete MS and G is a transitive
and weakly connected. Let R : V → V be a G-edge preserving map and VR 	= ∅. Also, assume that
either, R is orbitally G-continuous, or, G is a (C)-graph. If there exists a comparison function ϕ
such that

�(Rv, Ru) ≤ ϕ(�(v, u)) ∀ (v, u) ∈ E(G),

then R is a PM.

Proof. In regard to Theorem 1, if v, u ∈ Fix(R), then, for every n ∈ N0, we find

Rn(v) = v, Rn(u) = u.

By the weak connectedness of G, there is a path {w0, w1, w2, . . . wp} between v and u, i.e.,

w0 = v, wp = u and (wr−1, wr) ∈ E(G), ∀ r ∈ {1, 2, . . . p}.

As R is G-edge preserving, we find for each 0 ≤ r ≤ p− 1 that

(Rnwr, Rnwr+1) ∈ E(G̃), ∀ n ∈ N0. (9)

The application of the triangle inequality reveals that

�(v, u) = �(Rnw0, Rnwp) ≤
p−1

∑
r=0

�(Rnwr, Rnwr+1). (10)

For every r(0 ≤ r ≤ p − 1), δr
n denotes �(Rnwr, Rnwr+1), where n ∈ N0. Now, it is

claimed that
lim

n→∞
δr

n = 0.

To substantiate this, on fixing r, assuming first that δr
n0

= 0 for some n0 ∈ N0, then,
Rn0+1(wr) = Rn0+1(wr+1). Thus, we find δr

n0+1 = �(Rn0+1wr, Rn0+1wr+1) = 0; so induc-
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tively, we find δr
n = 0 for every n ≥ n0, so that lim

n→∞
δr

n = 0. In contrast, if δr
n > 0 for every

n ∈ N0, then, by (9) and the contractivity condition (2), we get

δr
n+1 = �(Rn+1wr, Rn+1wr+1)

≤ ϕ(�(Rnwr, Rnwr+1))

= ϕ(δr
n).

Using the monotonicity of ϕ in (11), we get

δr
n ≤ ϕ(δr

n−1) ≤ ϕ2(δr
n−2) ≤ · · · ≤ ϕn(δr

0)

so that

δr
n ≤ ϕn(δr

0). (11)

If δ0 = 0, then by Proposition 1, one gets δr
n = 0 yielding thereby lim

n→∞
δn = 0. Otherwise, in

case δ0 > 0, using the limit in (11) and the property of ϕ, one gets

lim
n→∞

δr
n ≤ lim

n→∞
ϕn(δ0) = 0.

Thus in each case, one has
lim

n→∞
δr

n = 0. (12)

Further, (10) can be written as

�(v, u) = �(Rnw0, Rnwp) ≤
p−1

∑
r=0

�(Rnwr, Rnwr+1)

≤ δ0
n + δ1

n + · · ·+ δ
p−1
n

→ 0 as n → ∞

which yields that v = u, so R has a unique fixed point.

4. Applications to Fractional BVP

Consider the following fractional BVP:{
Dι

0+ϑ(θ) + h̄(θ, ϑ(θ)) = 0, ∀ θ ∈ (0, 1),
ϑ(0) = ϑ′(0) = ϑ′′(0) = 0, ϑ′′(1) = ηϑ′′(�),

(13)

along with the following assumptions:

• 3 < ι ≤ 4,
• 0 < � < 1,
• 0 < η�ι−3 < 1,
• h̄ : [0, 1]× [0, ∞)→ [0, ∞) is continuous,
• h̄ remains singular at θ = 0, which means lim

θ→0+
h̄(θ, ·) = ∞.

Obviously, the BVP (13) is identical to an integral equation given as under

ϑ(θ) =
∫ 1

0
G(θ, σ)h̄(σ, ϑ(σ))dσ +

ηθι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)h̄(σ, ϑ(σ))dσ (14)

where the Green function is

G(θ, σ) =

⎧⎨
⎩

θι−1(1−σ)ι−3−(θ−σ)ι−1

Γ(ι) , 0 ≤ σ ≤ θ ≤ 1,
θι−1(1−σ)ι−3

Γ(ι) , 0 ≤ θ ≤ σ ≤ 1

106



Axioms 2024, 13, 477

and the function H(θ, σ) :=
∂2G(θ, σ)

∂θ2 becomes

H(θ, σ) =

⎧⎨
⎩

(ι−1)(ι−2)
Γ(ι)

[
θι−3(1− σ)ι−3 − (θ − σ)ι−3], 0 ≤ σ ≤ θ ≤ 1,

(ι−1)(ι−2)
Γ(ι) θι−3(1− σ)ι−3, 0 ≤ θ ≤ σ ≤ 1.

As usual, Γ(·) and β(·, ·) will denote the special functions: gamma function and beta
function, respectively. Motivated by [8,9], we will determine the unique positive solution
of (13).

Proposition 2 ([9]). The functions G and H enjoy the following properties:

• G and H both are continuous;
• G(θ, σ) ≥ 0 and H(θ, σ) ≥ 0;
• G(θ, 1) = 0;
• sup

0≤θ≤1

∫ 1
0 G(θ, σ)dσ = 2

(ι−2)Γ(ι+1) ;

•
∫ 1

0 H(�, σ)dσ = �ι−3(ι−1)(1−�)
Γ(ι) .

Lemma 1. If 0 < ρ < 1, then,

sup
0≤θ≤1

∫ 1

0
G(θ, σ)σ−ρdσ =

1
Γ(ι)

(β(1− ρ, ι− 2)− β(1− ρ, ι)).

Proof. Making use of definition of G, we get

∫ 1

0
G(θ, σ)σ−ρdσ =

∫ θ

0
G(θ, σ)σ−ρdσ +

∫ 1

θ
G(θ, σ)σ−ρdσ

=
∫ θ

0

θι−1(1− σ)ι−3 − (θ − σ)ι−1

Γ(ι)
σ−ρdσ +

∫ 1

θ

θι−1(1− σ)ι−3

Γ(ι)
σ−ρdσ

=
∫ 1

0

θι−1(1− σ)ι−3

Γ(ι)
σ−ρdσ−

∫ θ

0

(θ − σ)ι−1

Γ(ι)
σ−ιdσ

=
θι−1

Γ(ι)

∫ 1

0
(1− σ)ι−3σ−ρdσ− 1

Γ(ι)

∫ θ

0
(θ − σ)ι−1σ−ρdσ

=
θι−1

Γ(ι)
β(1− ρ, ι− 2)− 1

Γ(ι)
I, (15)

where

I =
∫ θ

0
(θ − σ)ι−1σ−ρdσ =

∫ θ

0

(
1− σ

θ

)ι−1
θι−1σ−ρdσ = θθ−ρ

∫ θ

0

(
1− σ

θ

)ι−1(σ

θ

)−ρ
θdσ.

Applying the change of variables v = σ/θ so that θdv = dσ in the above integral, we find

I = θθ−ρ
∫ θ

0
(1− v)ι−1v−ρdv = θ1−ρβ(1− ρ, ι). (16)

By (15) and (16), we obtain

∫ 1

0
G(θ, σ)σ−ρdσ =

θι−1

Γ(ι)
β(1− ρ, ι− 2)− θι−ρ

Γ(ι)
β(1− ρ, ι).

Defining

φ(θ) :=
β(1− ρ, ι− 2)

Γ(ι)
θι−1 − β(1− ρ, ι)

Γ(ι)
θι−ρ
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Naturally, the function φ(θ) remains increasing on [0, 1]. Hence, we conclude

sup
0≤θ≤1

∫ 1

0
G(θ, σ)σ−ρdσ = sup

0≤θ≤1
φ(θ) = φ(1) =

1
Γ(ι)

[β(1− ρ, ι− 2)− β(1− ρ, ι)].

Lemma 2. If 0 < ρ < 1, then,

∫ 1

0
H(�, σ)σ−ρdσ =

(ι− 1(ι− 2)
Γ(ι)

(
�ι−3 − �ι−ρ−2β(1− ρ, ι− 2)

)
,

Proof. We have

∫ 1

0
H(�, σ)σ−ρdσ =

∫ �

0
H(�, σ)σ−ρdσ +

∫ 1

�
H(�, σ)σ−ρdσ

=
∫ �

0

(ι− 1)(ι− 2)
Γ(ι)

[
�ι−3(1− σ)ι−3 − (�− σ)ι−3

]
σ−ρdσ +

∫ 1

�

(ι− 1)(ι− 2)
Γ(ι)

�ι−3(1− σ)ι−3σ−ρdσ

=
∫ 1

0

(ι− 1)(ι− 2)
Γ(ι)

�ι−3(1− σ)ι−3σ−ρdσ−
∫ �

0

(ι− 1)(ι− 2)
Γ(ι)

(�− σ)ι−3σ−ρdσ

=
(ι− 1)(ι− 2)

Γ(ι)
�ι−3

∫ 1

0
(1− σ)ι−1σ−ρdσ

− (ι− 1)(ι− 2)
Γ(ι)

∫ �

0
(�− σ)ι−3σ−ρdσ

=
(ι− 1)(ι− 2)

Γ(ι)
�ι−3β(1− ρ, ι− 2)− (ι− 1)(ι− 2)

Γ(ι)

∫ �

0
(�− σ)ι−3σ−ρdσ

In keeping with the argument of the proof of Lemma 1, we conclude

∫ 1

0
H(�, σ)σ−ρdσ =

(ι− 1)(ι− 2)
Γ(ι)

�ι−3β(1− ρ, ι− 2)

− (ι− 1)(ι− 2)
Γ(ι)

�ι−ρ−2β(1− ρ, ι− 2)

=
(ι− 1)(ι− 2)

Γ(ι)
(
�ι−3 − �ι−ρ−2)β(1− ρ, ι− 2).

Remark 1. Denote

λ :=
1

Γ(ι)

[(
1 +

β(�ι−3 − �ι−ρ−2)

1− β�ι−3

)
β(1− ρ, ι− 2)− β(1− ρ, ι)

]
.

Finally, we present the main results.

Theorem 3. Let the BVP (13) satisfy the above standard assumptions. Also, assume that 0 < ρ < 1
and that θρ h̄(θ, σ) is continuous. If μ ∈ (0, 1/λ] and ϕ remains a comparison function with

σ1 ≥ σ2 ≥ 0 and 0 ≤ θ ≤ 1 =⇒ 0 ≤ θρ[h̄(θ, σ1)− h̄(θ, σ2)] ≤ μϕ(σ1 − σ2), (17)

then, BVP (13) possesses a unique solution.

Proof. Endow the following metric on C[0, 1]:

�(ϑ, μ) = sup
0≤θ≤1

|ϑ(θ)− μ(θ)|.
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Defining
V = {ϑ ∈ C[0, 1] : ϑ(θ) ≥ 0}.

Then, (V, �) forms a complete MS. On V, consider the relation

E(G) = {(ϑ, μ) ∈ V2 : ϑ(θ) ≤ μ(θ), for each θ ∈ [0, 1]}.

Clearly, G is transitive, and (V, �, G) forms a graph MS. Now, choose ϑ, μ ∈ V. Define
ω := max{ϑ, μ} ∈ V. Then, {ϑ, ω, μ} admits a path in G̃ from ϑ to μ. Thus, G remains
weakly connected.

We will verify that G is a (C)-graph. Assuming {ϑn} ⊂ V verifying ϑn → ϑ and
(ϑn, ϑn+1) ∈ E(G), ∀ n ∈ N. Then, ∀ θ ∈ [0, 1], {ϑn(θ)} is an increasing sequence in R

that converges to ϑ(θ). Hence, ∀ n ∈ N and ∀ θ ∈ [0, 1], we find ϑn(θ) ≤ ϑ(θ) so that
(ϑn, ϑ) ∈ E(G), ∀ n ∈ N.

Now, define the map R : V → V by

(Rϑ)(θ) =
∫ 1

0
G(θ, σ)h̄(σ, ϑ(σ))dσ +

ηθι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)h̄(σ, ϑ(σ))dσ. (18)

Let 0 ∈ V be zero function. Then, for every θ ∈ [0, 1], we find 0(θ) ≤ (R0)(θ), thereby
yielding (0, R0) ∈ E(G). Thus, 0 ∈ VR i.e., VR 	= ∅.

Take (ϑ, μ) ∈ E(G), thereby implying ϑ(θ) ≤ μ(θ), for each θ ∈ [0, 1]. Consequently,
we find

(Rϑ)(θ) =
∫ 1

0
G(θ, σ)h̄(σ, ϑ(σ))dσ +

ηθι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)h̄(σ, ϑ(σ))dσ.

=
∫ 1

0
G(θ, σ)σ−ρσρ h̄(x, ϑ(σ))dσ

+
ηθι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)σ−ρσρ h̄(σ, ϑ(σ))dσ

≤
∫ 1

0
G(θ, σ)σ−ρσρ h̄(σ, μ(σ))dσ

+
ηθι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)σ−ρσρ h̄(σ, μ(σ))dσ

=
∫ 1

0
G(θ, σ)h̄(σ, μ(σ))dσ +

ηι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)h̄(σ, μ(σ))dσ

= (Rμ)(θ)

yielding (Rϑ, Rμ) ∈ E(G). Hence, R is G-edge preserving.
On the other hand, for (ϑ, μ) ∈ E(G), we also have

�(Rϑ, Rμ) = sup
0≤θ≤1

|(Rϑ)(θ)− (Rμ)(θ)| = sup
0≤θ≤1

[(Rμ)(θ)− (Rϑ)(θ)]

= sup
0≤θ≤1

[∫ 1

0
G(θ, σ)(h̄(σ, μ(σ))− h̄(σ, ϑ(σ))) dσ

+
ηθι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)(h̄(σ, μ(σ))− h̄(σ, v)(σ))dσ

]

≤ sup
0≤θ≤1

∫ 1

0
G(θ, σ)σ−ρσρ[h̄(σ, μ(σ))− h̄(σ, ϑ(σ))]dσ

+
η

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)σ−ρσρ[h̄(σ, μ(σ))− h̄(σ, ϑ)(σ)]dσ

≤ sup
∫ 1

0
G(θ, σ)σ−ρμϕ(μ(σ)− ϑ(σ))dσ

+
η

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)σ−ρμϕ(μ(σ))− ϑ(σ)dσ.
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Using the monotonicity of ϕ, the above relation reduces to

�(Rϑ, Rμ) ≤ μϕ(�(ϑ, μ)) sup
0≤θ≤0

∫ 1

0
G(θ, σ)σ−ρdσ

+
η

(ι− 1)(ι− 2)(1− η�ι− 3)
μϕ(�(μ, v))

∫ 1

0
H(�, σ)σρdσ

= μϕ(�(ϑ, μ))

[
sup

0≤θ≤0

∫ 1

0
G(θ, σ)σ−ρdσ

+
η

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)σ−ρdσ

]
. (19)

Using Lemmas 1 and 2, (19) reduces to

�(Rϑ, Rμ) ≤μϕ(�(ϑ, μ))

[
1

Γ(ι)
(β(1− ρ, ι− 2)− β(1− ρι)) +

η

(ι− 1)(ι− 2)(1− η�ι−3)

× (ι− 1)(ι− 2)
Γ(ι)

(
�ι−3 − �ι−ρ−2

)]

= μϕ(�(ϑ, μ))

[
1

Γ(ι)
(β(1− ρ, ι− 2)− β(1− ρ, ι))

+
η(�ι−3 − �ι−ρ−2)

(1− η�ι−3)Γ(ι)
β(1− ρ, ι− 2)

]

= μϕ(�(ϑ, μ))

[
1

Γ(ι)

[(
1 +

η(�ι−3 − �ι−ρ−2)

1− η − η�ι−3

)
β(1− ρ, ι− 2)− β(1− ρ, ι)

]]
= μϕ(�(ϑ, μ))λ.

As 0 < μ ≤ 1/λ, the last inequality becomes

�(Rϑ, Rμ) ≤ μϕ(�(ϑ, μ))λ ≤ ϕ(�(ϑ, μ)). (20)

Thus, R verifies the contraction condition mentioned in Theorem 2. Therefore, by Theorem 2,
R is a PM. Thus, in view of (14) and (18), the unique fixed point of R will form the unique
solution of BVP (13).

Theorem 4. Along with the assertions of Theorem 3, BVP (13) owns a unique positive solution.

Proof. By Theorem 3, let w̄ ∈ V be the unique solution of BVP (13). Owing to the fact
w̄ ∈ V, we have w̄(θ) ≥ 0, ∀ θ ∈ [0, 1]. This means that w̄ is a unique nonnegative solution
of given BVP. By contradiction method, we will verify that w̄ remains a unique positive
solution of the BVP, i.e., p̄(x) > 0, for all x ∈ (0, 1). If ∃ 0 < θ∗ < 1 verifying w̄(θ∗) = 0,
then by (14), we observe that

w̄(θ∗) =
∫ 1

0
G(θ∗, σ)h̄(σ, w̄(σ))dσ +

ηθ∗ι−1

(ι− 1)(ι− 2)(1− η�ι−3)

∫ 1

0
H(�, σ)h̄(σ, x(σ))dσ = 0.

By the definition, h̄ is nonnegative. Thus in view of Proposition 2, both summands in RHS
are nonnegative. Consequently, we find

∫ 1

0
G(θ∗, σ)h̄(σ, w̄(σ))dσ = 0,

∫ 1

0
H(�, σ)h̄(σ, σ(σ))dσ = 0
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thereby implying {
G(θ∗, σ)h̄(σ, w̄(σ)) = 0, a.e. (σ),
H(�, σ)h̄(σ, w̄(σ)) = 0, a.e (σ).

(21)

Take an arbitrary κ > 0. By the singular property of h̄, we can find an ε > 0 with h̄(σ, 0) > κ,
∀ σ ∈ [0, 1] ∩ (0, ε). Note that

[0, 1] ∩ (0, ε) ⊂ {σ ∈ [0, 1] : h̄(σ, w̄(σ)) > κ}

and
ℵ([0, 1] ∩ (0, ε)) > 0,

where ℵ denotes the Lebesque measure. Hence, (21) yields that{
G(θ∗, σ) = 0, a.e. (σ),
H(�, σ) = 0, a.e. (σ)

which contradicts the fact that G(θ∗, ·) and H(�, ·) are rational functions. This completes
the proof.

5. Discussions

This article is devoted to prove some outcomes on fixed points under an expanded
class of (G, ϕ)-contraction in the setup of graph metric space. The results presented
in this article give new insights into graph metric spaces. Our findings extend, enrich,
unify, sharpen and improve a few fixed point theorems, especially due to Matkowski
[12], Pant [17], Jachymski [18] and Bojor [19]. Applying our findings, we describe the
existence of the unique positive solution of a BVP involving singular fractional differential
equations. We can prove the analogues of our results under Boyd–Wong contractions, weak
contractions, (ψ, φ)-contractions, F-contractions, Z-contractions, and similar others.
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giving error estimates for the fixed-point approximation. Afterwards, the iteration proposed by
Kirk in 1971 is considered, studying its convergence, stability, and error estimates in the context of
a quasi-normed space. The properties proved can be applied to other types of contractions, since
the self-maps defined contain many others as particular cases. For instance, if the underlying set is a
metric space, the contractions of type Kannan, Chatterjea, Zamfirescu, Ćirić, and Reich are included
in the class of contractivities studied in this paper. These findings are applied to the construction of
fractal surfaces on Banach algebras, and the definition of two-variable frames composed of fractal
mappings with values in abstract Hilbert spaces.
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1. Introduction

M. Fréchet introduced a mapping to measure what he called “l’écart des deux éléments”
(distance between two points) in his doctoral thesis [1], presented at the Faculty of Sciences
of Paris and published in Italy in 1906. The conditions of this mapping are the axioms of
a metric space. The name of metric space, however, is due to F. Hausdorff, who treated
the topic in his book “Grundzüge der Mergenlehre” of 1914 [2]. Previously, Hilbert [3] and
Riemann [4] had shaken the foundations of classical geometry, proposing new axiomatic
systems, with precedents in Gauss, Lobachevsky, and Bolyai.

Nowadays, the conditions of a mapping being a distance have been modified in
very different ways, giving rise to a great variety of distance spaces (see, for instance, the
books [5,6]).

Particularly interesting are the metrics associated with discrete mathematics, that
concerns the knowledge and control of complex systems (see [7]). As an example, one may
mention the Hamming distance, that measures the number of different bits of two code
words, and it quantifies the error of transmission [8].

In this paper, we work with a generalization of a metric space, called in the literature
the b-metric or quasi-metric space, that substitutes the triangular inequality by a more
general condition. Closely related to metric theory (that gives rise to a class of topological
spaces) is fixed-point theory, that establishes conditions for a self-map T : X → X in order
to have a fixed point. The problem of finding a fixed point is intrinsically linked to the
sought for solutions of one or several equations, since the equality x = Tx admits the form
x− Tx = 0, in the case of an underlying vector space X. Important and recent applications
of fixed-point theorems can be found in references [9,10], for instance. But these are not the
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only implications of the theory, since this area of mathematical knowledge has given rise to
modern fields of research like fractal theory and others.

The content of this paper can be summarized as follows. In Section 2, the dynamics of a
large class of contractions called (ϕ− ψ)-contractivities [11,12] is explored. Some sufficient
conditions for the existence of fixed points are proposed, and the convergence of the
Picard iterations for their approximation is studied for both cases, single- and multivalued
mappings. Some error estimates for the Picard approximation are also given. For a study
of multivalued mappings in b-metric spaces the reader may consult the reference [13].

Section 3 studies the stability of the fixed points’ (ϕ− ψ)-partial contractivities, prov-
ing that they are asymptotically stable in the case of their existence.

Section 4 analyzes the iterative algorithm for fixed-point approximation proposed
by Kirk in reference [14], when it is applied to a (ϕ− ψ)-contractivity defined on a quasi-
normed space.

The properties proved can be applied to other types of contractions, since the self-
maps considered contain many others as particular cases. For instance, if the underlaying
set is a metric space, the contractions of type Kannan, Chatterjea, Zamfirescu, Ćirić, and
Reich are included in the class of contractivities studied in this paper (see Corollary 2.2 of
reference [11]).

Section 5 considers fractal surfaces whose values lie on Banach algebras. The mappings
defining the surfaces are fixed points of an operator on a Bochner functional space. The
convergence and stability of Picard and Kirk iterations for their approximation are analyzed,
giving in both cases an estimate of the error.

Section 6 studies a particular case, where the vertical contraction is linear and bounded.
Fractal convolutions of mappings and operators are defined, and the construction of
bivariate fractal frames of the Bochner space of square-integrable mappings on a Hilbert
space is undertaken, considering fractal perturbations of standard frames in the same space.

2. Existence of Fixed Points and Convergence of Picard Iterations

In this section, we explore the dynamics of a large class of contractions [11,12]. We
provide sufficient conditions for the existence of fixed points, and the convergence of the
Picard iterations for their approximation for both single- and multivalued mappings. Some
“a priori” error estimates for the Picard approximation are also given.

Let us start with the definition of b-metric space.

Definition 1. A b-metric space X is a set endowed with a mapping d : X × X → R+ with the
following properties:

1. d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x) for any x, y ∈ X.
3. There exists s ≥ 1 such that d(x, y) ≤ s(d(x, z) + d(z, y)) for any x, y, z ∈ X.

The constant s is the index of the b-metric space, and d is called a b-metric.

Example 1. The spaces lp(R) for 0 < p < 1 are b-metric spaces of index s = 21/p with respect to
the functional

|x− y|p = (
∞

∑
i=1
|xi − yi|p)1/p.

Other examples can be found in reference [15], for instance.
Given any x0, x1, . . . xn ∈ X, where X is a b-metric space with index s, one has the

following inequality for n ≥ 2:

d(x0, xn) ≤
n−2

∑
k=0

sk+1d(xk, xk+1) + sn−1d(xn−1, xn) ≤
n−1

∑
k=0

sk+1d(xk, xk+1). (1)

The next definition can be read in reference [16].
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Definition 2. A map ϕ : R+ → R+ is called a comparison function if it satisfies the following
conditions:

• ϕ is increasing.
• ϕn(δ) tends to zero when n tends to infinity for any δ > 0.

Let X be a b-metric space. A map T : X → X such that d(Tx, Ty) ≤ ϕ(d(x, y)) for any x, y ∈ X,
where ϕ is a comparison function, is called a ϕ-contraction or a Matkowski contraction [17].

Example 2. The maps ϕ(δ) = δ/(1 + δ) and ϕ(δ) = rδ, where 0 < r < 1, are comparison
functions.

The first aim of this article is the presentation of a new concept of contractivity,
presenting maps that include the usual ϕ-contractions like a particular case, according to
the following definition [11,12].

Definition 3. Let X be a b-metric space, and T : X → X be a self-map such that for any x, y ∈ X,

d(Tx, Ty) ≤ ϕ(d(x, y)) + ψ(d(x, Tx)). (2)

If ϕ is a comparison function, ψ is positive, and ψ(0) = 0, then T is a (ϕ− ψ)-partial contractivity.
If ϕ(δ) = aδ, where 0 < a < 1, and ψ(δ) = Bδ, with B ≥ 0, T is a partial contractivity.

If ψ is the null function, we have a standard ϕ-contraction. If further ϕ(δ) = aδ, where
0 < a < 1, then T is a Banach contraction.

Example 3. Let T(x) = 1/(1 + x) be defined in X = [0,+∞). Then, T is a (ϕ − ψ)-partial
contractivity with ϕ(δ) = δ/(1 + δ) and ψ(δ) = Bδ for B ≥ 0.

Example 4. Let X = [0, 1] and T be defined as T(x) = x/4 if x ∈ [0, 1/2] and T(x) = x/6 if
x ∈ (1/2, 1]. T is a (ϕ− ψ)-partial contractivity with ϕ(δ) = δ/2 and ψ(δ) = δ.

• If x, y ∈ [0, 1
2 ], then

|Tx− Ty| = | x
4
− y

4
| ≤ 1

2
|x− y|,

|Tx− Ty| = | x
4
− y

4
| ≤ 1

2
|x− y|.

• If x, y ∈ ( 1
2 , 1], then

|Tx− Ty| = | x
6
− y

6
| ≤ 1

2
|x− y|,

|Tx− Ty| = | x
6
− y

6
| ≤ 1

2
|x− y|.

If x ∈ [0, 1/2] and y ∈ (1/2, 1],

|Tx− Ty| = | x
4
− y

6
| ≤ | x

4
|+ |y

6
| ≤ 1

3
|y− y

6
|+ 1

3
|x− x

4
|,

|Tx− Ty| ≤ 1
3
|x− y|+ 1

3
|x− y

6
|+ 1

3
|x− x

4
|,

|Tx− Ty| ≤ 1
3
|x− y|+ 2

3
|x− x

4
|+ 1

3
| x
4
− y

6
|,

and finally,

|Tx− Ty| ≤ 1
2
|x− y|+ |x− x

4
|.

In the same way,

|Tx− Ty| = | x
4
− y

6
| ≤ 1

3
|x− x

4
|+ 1

3
|y− y

6
|,
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|Tx− Ty| ≤ 1
3
|x− y|+ 1

3
|y− x

4
|+ 1

3
|y− y

6
|,

|Tx− Ty| ≤ 1
3
|x− y|+ 1

3
|y− y

6
|+ 1

3
|y
6
− x

4
|+ 1

3
|y− y

6
|,

and
|Tx− Ty| ≤ 1

2
|x− y|+ |y− y

6
|.

Remark 1. Let us note that, unlike the ϕ-contractive case, a partial contractivity need not be
continuous.

In previous articles, we proved that several well known contractivities, like Zam-
firescu or quasi-contractions, belong to the class of (ϕ− ψ)-partial contractivities, when the
constants associated satisfy some restrictions (see, for instance, [12]). The next result can be
read in Proposition 15 of the same reference.

Proposition 1. Let X be a b-metric space and T : X → X be a (ϕ− ψ)-partial contractivity. If T
has a fixed point, it is unique.

We start with a result concerning the orbit separations in the case where ψ(t) = Bt, for
B ≥ 0.

Definition 4. A functional ϕ : D ⊆ X → R, where X is a real linear space, is sublinear if

• φ(δ + δ′) ≤ φ(δ) + φ(δ′) for any δ, δ′ ∈ D such that δ + δ′ ∈ D.
• φ(λδ) ≤ λφ(δ) for any λ > 0 and δ ∈ D such that λδ ∈ D.

Example 5. The absolute value of a real number φ(δ) = |δ| is a sublinear function. In general, a
seminorm is sublinear.

Proposition 2. Let X be a b-metric space and T : X → X be a (ϕ− ψ)-partial contractivity, where
ϕ is a sublinear comparison function and ψ(t) = Bt, for B ≥ 0. Then, for all n ≥ 1,

d(Tnx, Tny) ≤ ϕn(d(x, y)) + ((ϕ + B.Id)n − ϕn)(d(x, Tx)), (3)

where Id denotes the identity map.
If Fix(T) 	= ∅ and x∗ ∈ Fix(T), then for any x, y ∈ X,

d(Tnx, Tny) ≤ s(ϕn(d(x, x∗)) + ϕn(d(y, x∗))). (4)

Consequently, limn→∞ d(Tnx, Tny) = 0.

Proof. For n = 1 the result is clear since

d(Tx, Ty) ≤ ϕ(d(x, y)) + ((ϕ + B.Id)− ϕ)(d(x, Tx)),

by definition of (ϕ− ψ)-partial contractivity. Let us assume that Formula (3) is valid for
n = k and any x, y ∈ X:

d(Tkx, Tky) ≤ ϕk(d(x, y)) + ((ϕ + B.Id)k − ϕk)(d(x, Tx)).

and let us prove it for n = k + 1. By definition of (ϕ− ψ)-partial contractivity for Tkx, Tky,

d(Tk+1x, Tk+1y) ≤ ϕ(d(Tkx, Tky)) + Bd(Tkx, Tk+1x).

Applying the subadditivity of ϕ and the inductive hypothesis in the first term of the last
sum,

ϕ(d(Tkx, Tky)) ≤ ϕk+1(d(x, y)) + ϕ((ϕ + B.Id)k − ϕk)(d(x, Tx)). (5)
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For the second summand, applying the inductive hypothesis for x and Tx, we have

Bd(Tkx, Tk+1x) ≤ Bϕk(d(x, Tx)) + B((ϕ + B.Id)k − ϕk)(d(x, Tx)) ≤ B(ϕ + BId)k(d(x, Tx)). (6)

Let us consider the map ϕ((ϕ + B.Id)k − ϕk) + B(ϕ + B.Id)k. Developing both binomials,
and bearing in mind the property of the combinatorial numbers,(

k + 1
j

)
=

(
k

j− 1

)
+

(
k
j

)
,

for k ∈ N and j = 1, . . . , k, we obtain that

ϕ((ϕ + B.Id)k − ϕk) + B(ϕ + B.Id)k = (ϕ + B.Id)k+1 − ϕk+1.

Thus, adding (5) and (6),

d(Tk+1x, Tk+1y) ≤ ϕk+1(d(x, y)) + ((ϕ + B.Id)k+1 − ϕk+1)(d(x, Tx)).

and consequently, the result.
If x∗ ∈ Fix(T), then

d(Tnx, Tny) ≤ sd(Tnx, x∗) + sd(Tny, x∗).

Applying iteratively the definition of the contractivity,

d(Tnx, Tny) ≤ sϕn(d(x, x∗)) + sϕn(d(y, x∗)).

The conditions on the comparison function ϕ imply that

d(Tnx, Tny)→ 0,

when n tends to infinity.

Remark 2. For the inequality (4), the hypotheses of sublinearity of ϕ and linearity of ψ are not
required.

Corollary 1. Let X be a b-metric space and T : X → X be a partial contractivity, that is to say,
ϕ(δ) = aδ and ψ(t) = Bt, for B ≥ 0. Then, for all n ≥ 1,

d(Tnx, Tny) ≤ and(x, y) + ((a + B)n − an)(d(x, Tx)). (7)

Consequently, d(Tnx, Tny) = O((a + B)n). If Fix(T) 	= ∅, d(Tnx, Tny) = O(an).

Proof. The rates of orbit separation are straightforward consequences of the expressions
(3) and (4).

Corollary 2. Let X be a b-metric space and T : X → X be a partial contractivity, that is to say,
ϕ(δ) = aδ and ψ(t) = Bt, for B ≥ 0. Then, for all n ≥ 1,

d(Tnx, Tn+1x) ≤ (a + B)nd(x, Tx).

If a + B < 1, T is asymptotically regular, that it to say,

lim
n→∞

d(Tnx, Tn+1x) = 0,

and all the orbits are bounded. If a + B > 1, the orbit of an element x ∈ X may be unbounded. For
B = 0 all the orbits are bounded and they are stable in the sense of Lagrange.
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Proof. It suffices to take y = Tx in the inequality (7) to obtain the inequality. The second
result comes also from the fact that if a + B < 1, T has a fixed point, it is unique (see
reference [11]), and all the orbits are convergent to the fixed point, and consequently, they
are bounded.

Remark 3. In fact, according to (3), T is asymptotically regular if there exists r ∈ R with 0 < r < 1
such that (ϕ + B.Id)(δ) ≤ rδ < 1 for any δ > 0, since substituting y = Tx into inequality (3),
d(Tnx, Tn+1x) ≤ rnd(x, Tx) and d(Tnx, Tn+1x) tends to zero when n tends to infinity.

Example 6. The (ϕ− ψ)-partial contractivity satisfying the inequality

d(Tx, Ty) ≤ ϕ(d(x, y)) + Bd(x, Tx),

for ϕ(δ) = δ/(3 + δ) and B = 1/4 is asymptotically regular, taking r = 7/12.

Proposition 3. Let X be a b-metric space and T : X → X be a (ϕ− ψ)-partial contractivity. Let
us assume that there is a fixed point x∗ ∈ X, then for all n ≥ 1

d(Tnx, x∗) ≤ ϕn(d(x, x∗)). (8)

Consequently, the Picard iterations of any x ∈ X are convergent to the fixed point and the order of
convergence is ϕn(d(x, x∗)). If ϕ(δ) = aδ for 0 < a < 1, the order of convergence is O(an).

Proof. It suffices to apply the definition of (ϕ− ψ)-partial contractivity.

In the following, we give a result of fixed-point existence for (ϕ− ψ)-partial contrac-
tivities where ψ(t) = Bt.

Theorem 1. If X is a complete b-metric space, T : X → X is a (ϕ− ψ)-partial contractivity where
ψ(δ) = Bδ, and there exists a real constant k such that 0 < k < 1 satisfying the inequality

ϕB(δ) := (ϕ + B.Id)(δ) ≤ kδ, (9)

for all δ ≥ 0, then T has a unique fixed point and Tnx tends to x∗ for any x ∈ X.

Proof. Defining the sequence xn := Tnx, x0 := x, we have

d(xn, xn+1) = d(T(xn−1), T(xn)) ≤ ϕ(d(xn−1, xn)) + Bd(xn−1, xn) = ϕB(d(xn−1, xn)),

and
d(xn, xn+1) ≤ ϕn

B(d(x0, x1)). (10)

If ϕB(δ) ≤ kδ, (xn) is a Cauchy sequence [18], and consequently, it is convergent to x∗ ∈ X,
let us see that x∗ is a fixed point of T.

d(x∗, Tx∗) ≤ sd(xn+1, x∗) + sd(Txn, x∗) ≤ sd(xn+1, x∗) + sϕ(d(xn, x∗)) + sBd(xn, Txn).

For a comparison function 0 ≤ ϕ(δ) < δ, and thus, limδ→0+ ϕ(δ) = 0. Then, all the right-
hand terms tend to zero, and consequently, x∗ = Tx∗. The uniqueness was proved in
Proposition 15 of reference [12].

Example 7. A (ϕ− ψ)-partial contractivity where ϕ(δ) = δ/(3 + δ) and ψ(t) = t/4 defined on
a complete b-metric space has a unique fixed point.

Remark 4. For the case ϕ(δ) = aδ, and 0 < a < 1, we obtain a partial contractivity, and the
sufficient conditions for the existence of fixed point are a + B < 1 and X is complete. This result
was proved in reference [11].

118



Axioms 2024, 13, 474

In the next theorem, we give an estimation of the error in the fixed-point approximation.
Considering the sequence of Picard iterations (xn) defined as xn = Tnx, it is clear, by
definition of (ϕ− ψ)-partial contractivity, that

d(xn, x∗) ≤ ϕn(d(x0, x∗)). (11)

However, it is difficult to know the distance between an element x0 and the sought fixed
point, thus we will give an error estimation in terms of d(x0, x1), a quantity easier to find.

Theorem 2. Let X be a b-metric space, and T be a (ϕ − ψ)-partial contractivity, such that
ψ(δ) = Bδ. Let us assume that the maps

φn(δ) :=
∞

∑
k=0

sk ϕn+k
B (δ) (12)

are such that φn(δ) < ∞ for all n = 1, 2, . . . . Then, if x∗ ∈ Fix(T) and xn := Tnx,

d(xn, x∗) ≤ s2φn(d(x0, x1)).

Proof. Inequality (1) implies that

d(xn, xn+j) ≤
j−2

∑
k=0

sk+1d(xn+k, xn+k+1) + sj−1d(xn+j−1, xn+j)

Then, using (10),

d(xn, xn+j) ≤ s
( j−2

∑
k=0

sk ϕn+k
B d(x0, x1)

)
+ sj−1 ϕ

n+j−1
B (d(x0, x1)). (13)

If x∗ ∈ Fix(T), then
d(xn, x∗) ≤ sd(xn, xn+j) + sd(xn+j, x∗).

Using (13) in the first term of the right-hand side,

d(xn, x∗) ≤ s2( j−2

∑
k=0

sk ϕn+k
B d(x0, x1)

)
+ sj ϕ

n+j−1
B (d(x0, x1)) + sd(xn+j, x∗).

Taking limits when j tends to infinity, the second and third terms of the right-hand side
tend to zero, due to the hypothesis of the theorem and inequality (11), respectively. Then,

d(xn, x∗) ≤ s2φn(d(x0, x1)) = s2
∞

∑
k=0

sk ϕn+k
B (d(x0, x1)).

Corollary 3. In the particular case where ϕ(δ) = aδ with 0 < a < 1, we have the following “a
priori” error estimation for partial contractivities such that (a + B)s < 1:

d(xn, x∗) ≤ s2
∞

∑
k=0

sk(a + B)n+kd(x0, x1) = s2(a + B)n d(x0, x1)

1− s(a + B)
.

In the case where B = 0, T is a Banach contraction, and the former expression generalizes the
inequality given by Bakhtin [19,20] for this type of map.

The next result concerns set-valued maps satisfying a condition of partial contrac-
tivity type. Let us start with some definitions. Given a metric space X, let us con-
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sider the set of all nonempty bounded subsets of X, B(X). Let us define the functional
D : B(X)×B(X)→ R+,

D(A, B) = sup{d(a, b) : a ∈ A, b ∈ B}.

Let us consider the distance of a point to a set d(a, B) = inf{d(a, b) : b ∈ B}.

Theorem 3. Let X be a complete b-metric space, and let τ : X → B(X) be a set-valued map.
Assume that there exist a ∈ R, 0 < a < 1, and B > 0 such that a+ B < 1, satisfying the inequality

D(τ(x), τ(y)) ≤ ad(x, y) + Bd(x, τ(x)) (14)

for any x, y ∈ X. Then, τ has a fixed point x∗ ∈ X, τ(x∗) = {x∗} and there exists a partial
contractivity T : X → X whose unique fixed point is x∗. Additionally,

d(Tnx, x∗) ≤ (a + B)nd(x, x∗)

and, if s(a + B) < 1,

d(Tnx, x∗) ≤ s2(a + B)n d(x, Tx)
1− s(a + B)

.

Proof. Let us define a map T : X → X such that Tx ∈ τ(x) and let us see that T is a partial
contractivity:

d(Tx, Ty) ≤ D(τ(x), τ(y)) ≤ ad(x, y) + Bd(x, τ(x)) ≤ ad(x, y) + Bd(x, T(x)),

for any x, y ∈ X. Consequently, T is a partial contractivity. Since a + B < 1, T has a fixed
point x∗ ∈ X. By definition of T, x∗ ∈ τ(x∗), and consequently, it is a fixed point of τ as
well. Applying the contractivity condition (14),

D(τ(x∗), τ(x∗)) ≤ ad(x∗, x∗) + Bd(x∗, τ(x∗)).

Since x∗ ∈ τ(x∗) the terms of the right-hand side are null, and τ(x∗) reduces to the single
point x∗.

The error estimate of the statement was proved in Corollary 3.

Example 8. Let us consider the closed unit ball in R, X = B(0, 1) = [−1, 1] and τ : X → B(X)
defined as τ(x) = B( x

8 , | x
8 |). Then, d(x, τ(x)) = |x− x

4 | = | 3x
4 |. The map τ fulfills the inequality

D(τ(x), τ(y)) ≤ 1
4
|x− y|+ 1

3
d(x, τ(x))

for any x, y ∈ X. The constants a, B satisfy the conditions of Theorem 3 and τ has as a unique fixed
point x = 0, since 0 ∈ τ(0) = {0} and, if x 	= 0, x does not belong to τ(x).

3. Stability of Fixed Points of a (ϕ− ψ)-Partial Contractivity

In this paragraph, we study the fixed-point stability (ϕ− ψ)-partial contractivities.
We consider (ϕ− ψ)-contractivities as described in Definition 3. Let Fix(T) denote the set
of fixed points of T. Let us remember that if a (ϕ− ψ)-partial contractivity has a fixed point,
it is unique. Let N(x∗) denote the set of neighborhoods of x∗ ∈ X.

Definition 5. Le X be a b-metric space, T : X → X and G ⊆ X. Then, G is positively invariant if
T(G) ⊆ G.

Proposition 4. If X is a b-metric space, and T is a (ϕ− ψ)-partial contractivity with a fixed point
x∗, then any (open or closed) ball centered at the fixed point x∗ is a positively invariant set.

120



Axioms 2024, 13, 474

Proof. Let x ∈ B(x∗, r) for r > 0, then applying the definition of (ϕ− ψ)-partial contractivity,

d(Tx, x∗) ≤ ϕ(d(x, x∗)) < d(x, x∗) < r,

since a comparison function satisfies the inequality ϕ(δ) < δ for all δ > 0 (see, for in-
stance, [16]). Hence, T(B(x∗, r)) ⊆ B(x∗, r).

Definition 6. Le X be a b-metric space, T : X → X and x∗ ∈ Fix(T). Then, x∗ is stable if for
any U ∈ N(x∗) if there exists V ∈ N(x∗) such that Tn(V) ⊆ U for all n ≥ 0.

If x∗ is stable and there exists V ∈ N(x∗) such that limn→∞ Tnx = x∗ for any x ∈ V, then
x∗ is asymptotically stable.

Proposition 5. Le X be a b-metric space, and T : X → X be a (ϕ− ψ)-partial contractivity such
that Fix(T) 	= ∅. Then, the Picard iterations (Tnx) converge for any x ∈ X to the fixed point with
asymptotical stability.

Proof. Let U ∈ N(x∗) and r > 0 such that B(x∗, r) ⊆ U, Then, if x ∈ B(x∗, r),

d(Tnx, x∗) ≤ ϕn(d(x, x∗)) ≤ d(x, x∗) < r.

Consequently, Tn(B(x∗, r)) ⊆ B(x∗, r) ⊆ U for all n ≥ 0, and x∗ is stable. Moreover,

d(Tnx, x∗) ≤ ϕn(d(x, x∗))→ 0,

due to the definition of the comparison function. Hence, x∗ is asymptotically stable, and it
is a global attractor, as proved previously.

4. Convergence and Stability of the Kirk Iterations

In this section, the iterative algorithm for fixed-point approximation proposed by Kirk
in reference [14] is analyzed for when it is applied to a (ϕ− ψ)-contractivity defined on a
quasi-normed space.

Definition 7. If E is a real linear space, the mapping | · |s : E× E → R+ is a quasi-norm of index
s if

1. | f |s ≥ 0; f = 0 if and only if | f |s = 0.
2. |λ f |s = |λ|| f |s.
3. There exists s ≥ 1 such that | f + g|s ≤ s(| f |s + |g|s) for any f , g ∈ E.

The space (E, | · |s) is a quasi-normed space. If E is complete with respect to the b-metric induced by
the quasi-norm, then E is a quasi-Banach space. Obviously, if s = 1 then E is a normed space.

The index of a quasi-norm is called sometimes the modulus of concavity of X.

Example 9. The spaces lp(R) for 0 < p < 1 are quasi-normed spaces of index s = 21/p with
respect to the functional

|x|p = (
∞

∑
i=1
|xi|p)1/p.

Kirk’s algorithm [14] is given by the scheme of order k:

yn+1 =
k

∑
i=0

αiTiyn, (15)

where k ∈ N, αk > 0, αi ≥ 0, for i = 1, 2, . . . , k− 1, ∑k
i=0 αi = 1, and y0 ∈ X. For k = 1, the

algorithm agrees with the Krasnoselskii method [21]. If additionally the coefficients change
at every step, one has the Mann iteration [22].
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Let us define the Kirk operator TK : X → X, where X is a quasi-normed space, as

TKx =
k

∑
i=0

αiTix.

Kirk proved that the set of fixed points of a nonexpansive mapping T in a Banach space
agrees with the set of fixed points of TK, that is to say, Fix(T) = Fix(TK). He proved also
that if Fix(T) 	= ∅ and X is uniformly convex, then TK is asymptotically regular, that is
to say,

lim
n→∞

||Tn+1
K x− Tn

Kx|| = 0.

Let us study the convergence and stability of this algorithm for the approximation of the
fixed point of a (ϕ− ψ)-partial contractivity T in a quasi-normed space.

If y0 := y ∈ X and x∗ ∈ Fix(T),

|yn+1 − x∗|s = |
k

∑
i=0

αi(Tiyn − x∗)|s ≤
k−1

∑
i=0

αisi+1|Tiyn − x∗|s + αksk|Tkyn − x∗|s.

Applying the definition of (ϕ− ψ)-partial contractivity,

|yn+1 − x∗|s ≤
k−1

∑
i=0

αisi+1 ϕi(|yn − x∗|s) + αksk ϕk(|yn − x∗|s), (16)

defining ϕ0 := Id as always. Let us assume that the map φ : R+ → R+ defined as

φ =
k−1

∑
i=0

αisi+1 ϕi + αksk ϕk. (17)

is a comparison function. In this case, we have

|yn+1 − x∗|s ≤ φ(|yn − x∗|s),

and, in general,
|yn − x∗|s ≤ φn(|y0 − x∗|s). (18)

Consequently, the Kirk iterations are convergent to the fixed point x∗ with asymptotic
stability as in the previous section. For the particular case where ϕ(δ) = aδ, assuming that

r :=
k−1

∑
i=0

αisi+1ai + αkskak < 1,

the Kirk algorithm is convergent and stable since, from (18), we have

|yn − x∗|s ≤ rn|y0 − x∗|s. (19)

The order of convergence of the iteration is O(rn). In the normed case, where s = 1, this is
always true since

r =
k

∑
i=0

αiai < 1,

due to the conditions on αi, and we have the following theorem:

Theorem 4. If X is a normed space, T : X → X is a (ϕ − ψ)-partial contractivity where
φ(δ) = aδ, 0 < a < 1, and x∗ ∈ X is a fixed point, the Kirk iteration (Tn

Kx) is convergent,
asymptotically stable and asymptotically regular for any values of αi and x ∈ X.
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Kirk proved that the iterates of his algorithm converge weakly to a fixed point of a
nonexpansive mapping, according to the next theorem [14].

Theorem 5. Let X be a uniformly convex Banach space, K be a closed, bounded, and convex subset
of X, and T : K → K be a nonexpansive mapping. Then, for x ∈ K the sequence (Tn

Kx) converges
weakly to a fixed point of T.

We give in the following a variant of this theorem.

Theorem 6. Let X be a quasi-Banach space, K be a closed and convex subset of X, and T : K → K
be a (ϕ− ψ)-contraction where ψ is the null function. Then, Fix(T) 	= ∅, Fix(T) = {x∗}, and
the Kirk iterations converge strongly to the fixed point x∗ for any x ∈ K if the map φ defined in (17)
is a comparison function.

Proof. A (ϕ− ψ)-contractivity where ψ = 0 is a nonexpansive mapping, since

||Tx− Ty|| ≤ ϕ(||x− y||) ≤ ||x− y||,

for any x, y ∈ K. But, according to the hypotheses, T is also a ϕ-contraction on a complete
b-metric space, consequently it has a single fixed point [23] and the Picard iterations are
strongly convergent to it. Due to (18), the Kirk iterations have the same properties if φ is a
comparison function.

5. Banach-Valued Fractal Surfaces

In this section, we define fractal surfaces whose values lie on Banach algebras. The
convergence and stability of Picard and Kirk iterations for their approximation are also
analyzed, giving in both cases an estimate of the error.

The mappings defining the surfaces are fixed points of an operator on the space of
bivariate p-integrable maps on a Banach algebra A, Bp(I × J,A), where I and J are real
compact intervals. For 1 ≤ p < ∞ this space is Banach with respect to the norm

| f |p = (
∫

I×J
|| f (x, y)||pdxdy)1/p,

where || · || is the norm in A. For 0 < p < 1, the space is quasi-Banach with modulus of
concavity s = 21/p−1. Consequently, in all the cases Bp(I × J,A) is a complete b-metric
space.

Let us consider partitions for the intervals I and J, x0 < x1 < . . . < xM for I =
[x0, xM], and y0 < y1 < . . . < yN for J = [y0, yN ], M, N > 1. Let us consider subin-
tervals Ii = [xi−1, xi) for i = 1, 2, . . . , M − 1, IM = [xM−1, xM] and Jj = [yj−1, yj) for
j = 1, 2, . . . , N − 1, JN = [yN−1, yN ]. Let us define the affine maps

ui(x) = cix + di, vj(y) = ejy + f j,

satisfying the conditions

ui(x0) = xi−1, ui(xM) = xi, vj(y0) = yj−1, vj(yN) = yj, (20)

for i = 1, 2, . . . , M and j = 1, 2, . . . , N. Given two maps f , g ∈ Bp(I × J,A), let us define

Fij(x, y, A) = f (ui(x), uj(y)) + Rij(x, y, A)− Rij(x, y, g(x, y)),

for (x, y) ∈ I × J and A ∈ A, with the same ranges of indexes. The case where A = R and
Rij(x, y, z) = αijz was treated in reference [24].
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Let us assume that the operator Sij : Bp(I × J,A) → Bp(I × J,A) defined for h ∈
Bp(I × J,A) as

Sij(h)(x, y) = Rij(x, y, h(x, y)) (21)

is a ϕij-contraction with respect to | · |p for i = 1, 2, . . . , M, j = 1, 2, . . . , N. It is an easy
exercise to prove that ϕ(t) := maxij{ϕij(t)} is also a comparison function.

Let us define the operator

Th(x, y) = Fij(u−1
i (x), v−1

j (y), h(u−1
i (x), v−1

j (y))),

for x ∈ Ii, and y ∈ Jj. In order to simplify the notation, let us define Hij(x, y) =

(u−1
i (x), v−1

j (y)) for any i, j and write

Th(x, y) = Fij(Hij(x, y), h ◦ Hij(x, y))) (22)

for (x, y) ∈ Ii × Jj. Let us see that T is a ϕ-contraction:

|Th−Th′|pp =
M

∑
i=1

N

∑
j=1

∫
Ii×Jj

||Rij(Hij(x, y), h ◦Hij(x, y))−Rij(Hij(x, y), h′ ◦Hij(x, y))||pdxdy.

With the change u−1
i (x) = x′, and v−1

j (y) = y′, and renaming the variables, we have

|Th− Th′|pp =
M

∑
i=1

N

∑
j=1

ciej

∫
I×J
||Rij(x, y, h(x, y))− Rij(x, y, h′(x, y))||pdxdy.

By definition of the operator Sij (21),

|Th− Th′|pp =
M

∑
i=1

N

∑
j=1

ciej

∫
I×J
||Sij(h)(x, y)− Sij(h′)(x, y)||pdxdy.

Using the fact that Sij is a ϕ-contraction,

|Th− Th′|pp =
M

∑
i=1

N

∑
j=1

ciej|Sij(h)− Sij(h′)|pp ≤
M

∑
i=1

N

∑
j=1

ciej(ϕ(|h− h′|p)p. (23)

Consequently,

|Th− Th′|p ≤ (
M

∑
i=1

N

∑
j=1

ciej)
1/p ϕ(|h− h′|p).

But ∑M
i=1 ∑N

j=1 ciej = 1 due to conditions (20), and thus,

|Th− Th′|p ≤ ϕ(|h− h′|p),

T is a ϕ-contraction, and consequently, is a (ϕ − ψ)-contractivity with ψ = 0. Since
Bp(I× J,A) is quasi-Banach, and thus, a complete b-metric space, T has a single fixed point
f ϕ ∈ Bp(I × J,A), and the Picard iterations of any point are convergent to it. The graph of
f ϕ has a fractal structure (see Theorem 5 of reference [25]). The order of convergence is

|Tnh− f ϕ|p ≤ ϕn(|h− f ϕ|p),

for any h ∈ Bp(I × J,A). In the particular case where ϕ(t) = at for 0 < a < 1, according to
Corollary 3,

|Tnh− f ϕ|p ≤ |Th− h|p
1− a

an, (24)
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for 1 ≤ p < ∞, and

|Tnh− f ϕ|p ≤ s2|Th− h|p
1− as

an (25)

for 0 < p < 1, if as < 1, with s = 21/p−1.
The fixed point f ϕ satisfies the functional equation

f ϕ(x, y) = f (x, y) + Rij(Hij(x, y), f ϕ ◦ Hij(x, y))− Rij(Hij(x, y), g ◦ Hij(x, y)), (26)

for (x, y) ∈ Ii × Jj.
Let us consider now the Kirk iteration, and the case where ϕij(δ) = aijδ. Let us define

a := maxij aij and assume that

r :=
k−1

∑
i=0

αisi+1ai + αkskak < 1. (27)

Denoting the Kirk iterates as ĥn, bearing in mind the estimation (19),

|ĥn − f ϕ|p ≤ rn|ĥ0 − f ϕ|p,

for n ≥ 0. Thus, the Kirk iterations are convergent with a rate of convergence O(rn). This is
always true in the normed case (1 ≤ p < ∞) since

r =
k

∑
i=0

αiai < 1,

due to the definition of αi.
Consequently, the Kirk iteration is convergent in the normed case for any values of

the coefficients, with asymptotic stability. Since the Kirk operator TK is also a Banach
contraction if r < 1, we obtain error estimates for Kirk iterations as well:

|Tn
Kh− f ϕ|p ≤ |TKh− h|p

1− r
rn, (28)

for 1 ≤ p < ∞, and

|Tn
Kh− f ϕ|p ≤ s2|TKh− h|p

1− rs
rn (29)

for 0 < p < 1, if rs < 1, where s = 21/p−1, and r is defined as in (27) in this second case.

6. Fractal Surfaces with Linear Vertical Contractions

Let us consider in this section the case where the vertical contraction operator Sij :
Bp(I × J,A) → Bp(I × J,A), defined as Sij(h)(x, y) = Rij(x, y, h(x, y)) (see (21)), is linear
and bounded.

We will define fractal convolutions of mappings and operators, and we will construct
bivariate fractal frames of the Hilbert space B2(I× J,A) as fractal perturbations of standard
frames in this space.

For the first part of (23), we have

|Th− Th′|p ≤
( M

∑
i=1

N

∑
j=1

ciej|Sij|pp
)1/p|h− h′|p. (30)

If

C :=
( M

∑
i=1

N

∑
j=1

ciej|Sij|pp
)1/p

< 1, (31)
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then T is a Banach contraction in a quasi-Banach space. Consequently, it has a fixed point
f ϕ that is a bivariate mapping f ϕ(x, y) whose values are in the algebra A.

Some choices for a linear operator may be Sij(g) = λij(g ◦ c), where c : I × J → I × J
and λij : R × R → R or Sij(g) = λij(g · v), with v : I × J → A, where · represents
the product in the algebra A. In the first case, for c = Id we have the classical vertical
contraction of the fractal interpolation functions.

Remark 5. Let us notice that we use the same notation for the norms of maps and linear operators
(| · |p) in order to simplify the text.

The estimation of the Picard iterations for the approximation of the fixed point f ϕ (24)
and (25) holds in this case as well, substituting a by C, and considering the hypothesis
Cs < 1 in the second error estimation (s 	= 1).

We can define the operator F ϕ : Bp(I × J,A) → Bp(I × J,A) that applies every
map into its fractal perturbation: F ϕ( f ) = f ϕ, considering the partition, functions ui, vj,
operators Sij, and mapping g ∈ Bp(I × J,A). It is an easy exercise to check that

|F ϕ( f )− f |p ≤ Cs
1− Cs

| f − g|p,

whenever Cs < 1. If, additionally, f and g are related by a linear and bounded operator L,
that is to say, g = L f , then F ϕ is linear and bounded and

|F ϕ|p ≤
(
1 +

Cs|Id−L|p
1− Cs

)
.

This operator was defined by the author and studied for single-variable real maps and
several functional spaces in reference [26].

In the case where Rij(x, y, A) = αij(x, y).A and maxij |αij|p < 1, we obtain an α-fractal
surface [24].

Modulating the distance between a mapping f (x, y) and its fractal associated f ϕ(x, y),
one can obtain fractal bases of several functional spaces (see, for instance, [25]). Given that
f ϕ is obtained by the action of two bivariate mappings f and g, it is possible to define a
binary internal operation ∗ϕ in the space Bp(I × J,A) as

f ∗ϕ g := f ϕ.

This was called in the real case the fractal convolution of f and g. This operation is linear,
that is to say,

(λ f + μ f ′) ∗ϕ (λg + μg′) = λ( f ∗ϕ g) + μ( f ′ ∗ϕ g′),

for any f , f ′, g, g′ ∈ Bp(I × J,A) and λ, μ ∈ R. It is also idempotent, that is to say,

f ∗ϕ f = f ,

for any f ∈ Bp(I × J,A). Additionally, the map P : Bp(I × J,A)×Bp(I × J,A)→ Bp(I ×
J,A) defined as P( f , g) = f ∗ϕ g is bounded. The details are similar to the real univariate
case.

Let us denote by L(Bp(I × J,A)) the space of linear and bounded operators on
Bp(I × J,A). Based on the fractal convolution of maps, it is possible to define an internal
operation in the set of operators as

(U ∗ϕ V) f = (U f ) ∗ϕ (V f ),

for any f ∈ Bp(I × J,A), and U, V ∈ L(Bp(I × J,A)). The linearity and boundedness of
U, V, and P imply that the operator is well defined.

In the following, we consider the case 1 ≤ p < ∞.
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Theorem 7. Let U, V ∈ L(Bp(I× J,A)) and let us assume that U is invertible such that |V f |p ≤
|U f |p for any f ∈ Bp(I × J,A). Then, U ∗ϕ V is invertible and

|(U ∗ϕ V)|p ≤ 1 + C
1− C

|U|p, (32)

|(U ∗ϕ V)−1|p ≤ 1 + C
1− C

|U−1|p, (33)

Proof. The proof is similar to that given in Theorem 8 of reference [25].

In the case where p = 2 and A = H is a Hilbert space, B2(I × J, H) is Hilbert as well,
with respect to the inner product:

< f , g >=
∫

I×J
< f (x, y), g(x, y) > dxdy.

In the following, we consider p = 2 and we prove that given a frame ( fm)∞
m=0 of bivariate

functions fm(x, y) ∈ H, we can construct Hilbert-valued fractal frames with two variables
of type

(U( fm) ∗ϕ V( fm))
∞
m=0.

Let us start by defining a frame in a Hilbert space.

Definition 8. A sequence ( fm)∞
m=0 ⊆ X, where X is a Hilbert space is a frame if there exist real

positive constants A, B such that

A|| f ||2 ≤
∞

∑
m=0

| < f , fm > |2 ≤ B|| f ||2, (34)

for any f ∈ X, where || · || denotes the norm associated with the inner product in X. A and B are
the bounds of the frame.

Theorem 8. Let U, V ∈ L(B2(I × J, H)) satisfy the hypotheses given in Theorem 7, and
( fm)∞

m=0 ⊆ B2(I × J, H) be a frame with bounds A, B. Then, ((U ∗ϕ V) fm)∞
m=0 is also a frame

with bounds Aϕ and Bϕ, defined as

Aϕ := A
(1 + C

1− C
)−2|U−1|−2

2

and
Bϕ := B

(1 + C
1− C

)2|U|22.

Proof. Let (U ∗ϕ V)+ be the adjoint operator of (U ∗ϕ V), and g ∈ B2(I × J, H). Applying
the frame inequalities of ( fm)∞

m=0 for f = (U ∗ϕ V)+g one obtains

A|(U ∗ϕ V)+g|22 ≤
∞

∑
m=0

| < (U ∗ϕ V)+g, fm > |22 ≤ B|(U ∗ϕ V)+g|22 ≤ B|(U ∗ϕ V)|22|g|22. (35)

Since
∞

∑
m=0

| < (U ∗ϕ V)+g, fm > |22 =
∞

∑
m=0

| < g, (U ∗ϕ V) fm > |22, (36)

using (35) and (36) one has

A|(U ∗ϕ V)+g|22 ≤
∞

∑
m=0

| < g, (U ∗ϕ V) fm > |22 ≤ B|(U ∗ϕ V)|22|g|22, (37)

127



Axioms 2024, 13, 474

and we have the right inequality for the sequence ((U ∗ϕ V) fm)∞
m=0. For Theorem 7 we

know that (U ∗ϕ V) is an invertible operator. Then,

|g|22 = |((U ∗ϕ V)+)−1 ◦ (U ∗ϕ V)+g|22 ≤ |(U ∗ϕ V)+)−1|22|(U ∗ϕ V)+g|22,

and
A|((U ∗ϕ V)+)−1|−2

2 |g|22 ≤ A|(U ∗ϕ V)+g|22.

Since |((U ∗ϕ V)+)−1|2 = |(U ∗ϕ V)−1|2 , then, by (37),

A|(U ∗ϕ V)−1|−2
2 |g|22 ≤

∞

∑
m=0

| < g, (U ∗ϕ V) fm > |22 ≤ B|(U ∗ϕ V)|22|g|22. (38)

Hence, by (32) and (33), (U( fm) ∗ϕ V( fm)) is also a frame and its bounds are Aϕ and Bϕ,
defined as

Aϕ = A
(1 + C

1− C
)−2|U−1|−2

2 ≤ A|(U ∗ϕ V)−1|−2
2

and
Bϕ = B

(1 + C
1− C

)2|U|22 ≥ B|(U ∗ϕ V)|22.

7. Conclusions

This article delves into the concept of (ϕ − ψ)-partial contractivity, defined by the
author in previous references in the framework of b-metric and quasi-normed spaces. In
particular, it provides sufficient conditions for the existence of fixed points for these maps.
The convergence and stability of the Picard iterations for the approximation of the fixed
points are proved, giving “a priori” error estimates as well.

Kirk’s algorithm for the same purpose is analyzed, giving conditions for its conver-
gence and stability. In particular, it is proved that the method enjoys these properties if the
underlying space is a normed space and the comparison function ϕ is linear, in the case of
the existence of a fixed point. Some error estimates are also given.

The properties proved can be applied to other types of contractions, since the self-
maps considered contain many others as particular cases. For instance, if the underlying
set is a metric space, the contractions of type Kannan, Chatterjea, Zamfirescu, Ćirić, and
Reich are included in the class of contractivities studied in this paper (see Corollary 2.2 of
reference [11]).

These facts are applied to the definition of new fractal surfaces, more general than
those studied so far. The construction of fractal frames composed of bivariate mappings is
performed, belonging to very general Hilbert functional spaces.
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1. Introduction

The work referenced here [1] was the starting point of the fixed point theory of
nonexpansive maps, which is a growing field of research; see [2–7]. In particular, the
convergence of iterated Bregman projections and of the alternating algorithm were studied
in [2], fixed point theorems under Mizoguchi–Takahashi-type conditions were obtained
in [3], Ciric-type results were proved in [4], fixed point theory in modular function spaces
was discussed in [5] and cyclic contractions were analyzed in [6]. Note that the research
on nonexpansive maps in spaces with graphs is of great importance; see [8–12] and the
references mentioned therein. In particular, fixed point results on metric spaces with a
graph are obtained in [9,11], Reich-type contractions were studied in [8], hybrid methods
were studied in [10] and the convergence of fixed points in graphical spaces was considered
in [12]. In [13], D. Wardowski introduced an interesting class of mappings which contains
Banach contractions and showed the existence of fixed points for these mappings. More
precisely, we can assume that (X, ρ) is a complete metric space, τ > 0, F : (0, ∞)→ R1 is a
strictly increasing function and that T : X → X is a mapping such that for every pair of
points u, v ∈ X satisfying u 	= v,

F(ρ(T(u), T(v))) + τ ≤ F(ρ(u, v)).

Assuming two additional assumptions on F, D. Wardowski showed that the mapping
of T has a unique fixed point. In the subsequent research it was shown that these two
additional assumptions are not necessary. One of the examples of F is the function ln(·), and
in this case the Wardowski contraction is a strict contraction. Wardowski-type contractions
were studied in [14–16]. In this work, we obtain three results on the existence of a fixed point
for nonexpansive mappings in a complete metric space. Two of them are generalizations of
the result by D. Wardowski for F-contraction, while the third one is a generalization of a
recent result by S.-H. Cho for set-valued contractions [17].

Assume that (X, ρ) is a complete metric space. Let N be the set of all natural numbers.
We assume that the sum over empty set is zero. For every element x ∈ X and every real
number r > 0, set

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

For every element ξ ∈ X and each nonempty set A ⊂ X set

ρ(ξ, A) = inf{ρ(ξ, η) : η ∈ A}.

Axioms 2024, 13, 425. https://doi.org/10.3390/axioms13070425 https://www.mdpi.com/journal/axioms130
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2. The First Result

Assume that (X, ρ) is a complete metric space where ρ is a metric, K ⊂ X is a nonempty
closed set, τ > 0, and F : (0, ∞)→ R1 is an increasing function satisfying

F(t) ≤ F(s)

for each s > t > 0 and that T : K → X is an operator such that for every pair of points
x, y ∈ K satisfying x 	= y,

F(ρ(T(x), T(y))) + τ ≤ F(ρ(x, y)). (1)

Set T0(x) = x, x ∈ K.
D. Wardowski in [13] proved the existence of a fixed point of T in the case when

K = X0, assuming that F is strictly increasing. Here, we assume that F is merely increasing
in general.

Since the function F is increasing, the following proposition holds [18].

Proposition 1. There is a countable set E ⊂ (0, ∞) such that the function F is continuous at every
element z ∈ (0, ∞) \ E.

Equation (1) implies the following proposition.

Proposition 2. For every pair of elements x, y ∈ K, the relation ρ(T(x), T(y)) ≤ ρ(x, y) is true.

Theorem 1. Assume that K0 ⊂ X is a nonempty bounded set and for each integer n ≥ 1 there
is an element xn ∈ K0 for which Tn(xn) ∈ X is defined. Then, x∗ ∈ K can be found, satisfying
T(x∗) = x∗.

Proof. Fix θ ∈ K0. M0 > 0 is found, for which

ρ(z, θ) ≤ M0, z ∈ K0. (2)

Proposition 2 and (2) imply that for each n, m ∈ N,

ρ(xn, xm) ≤ 2M0,

ρ(T(xn), T(θ)) ≤ ρ(xn, θ) ≤ M0,

ρ(T(xn), θ) ≤ M0 + ρ(θ, T(θ)). (3)

Let ε ∈ (0, 1). We show that the following property holds:
(P1) There exists a natural number n0 such that for each integer n > n0 and each

integer i ∈ [n0, n), we have
ρ(Ti(xn), Ti+1(xn)) ≤ ε.

Choose an integer:

n0 > 1 + τ−1(F(2M0 + ρ(θ, T(θ)))− F(ε)). (4)

Let n > n0 be an integer. In order to prove that (P1) holds in view of Proposition 2, it
is enough to prove that

ρ(Tn0(xn), Tn0+1(xn)) ≤ ε.

Assume the contrary. Then, according to Proposition 2,

ρ(Tn0(xn), Tn0+1(xn)) ≥ ε, i = 0, . . . , n0. (5)
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Equations (1) and (5) imply that for every i ∈ {0, . . . , n0 − 1} \ {n0 − 1},

F(ρ(Ti+1(xn), Ti+2(xn))) + τ ≤ F(ρ(Ti(xn), Ti+1(xn))),

F(ρ(Tn0(xn), Tn0+1(xn))) ≤ τ(1− n0) + F(ρ(T(xn), xn)). (6)

It follows from (3), (5) and (6) that

F(ε) ≤ F(ρ(Tn0(xn), Tn0+1(xn))) ≤ τ(1− n0) + F(2M0 + ρ(θ, T(θ))),

τ(n0 − 1) ≤ F(2M0 + ρ(θ, T(θ)))− F(ε),

n0 ≤ 1 + τ−1(F(2M0 + ρ(θ, T(θ)))− F(ε)).

This contradicts inequality (4) and proves property (P1).
We show that the following property holds:
(P2) n0 ∈ N is found, such that for each triplet of integers i, n1, n2 satisfying n1, n2, i ≥ n0,

i ≤ n1, n2,
ρ(Ti(xn1), Ti(xn2)) ≤ ε.

Choose an integer:
n0 > 1 + τ−1(F(2M0)− F(ε)). (7)

Let n1, n2 ≥ n0 be integers. In view of Proposition 2, in order to show that property
(P2) holds, it is enough to show that

ρ(Tn0(xn1), Tn0(xn2)) ≤ ε.

Assume the contrary. Then,

ρ(Tn0(xn1), Tn0(xn2)) > ε. (8)

Proposition 2 and (1), (2) and (8) imply that for each i ∈ {0, . . . , n0 − 1},

ρ(Ti(xn1), Ti(xn2)) > ε,

F(ρ(Ti+1(xn1), Ti+1(xn2))) + τ ≤ F(ρ(Ti(xn1), Ti(xn2))),

F(ρ(Tn0(xn1), Tn0(xn2))) ≤ (1− n0)τ + F(ρ(xn1 , xn2))

≤ (1− n0)τ + F(2M0). (9)

According to (8) and (9),

F(ε) ≤ τ(1− n0) + F(2M0), n0 ≤ 1 + τ−1(F(2M0)− F(ε)).

This contradicts (7). Therefore, (P2) holds.
We will prove that the following property is fulfilled:
(P3) n∗ ∈ N is found, such that for each triplet i1, i2, n ∈ N satisfying n∗ ≤ i1, i2 ≤ n,

ρ(Ti1(xn), Ti2(xn)) ≤ ε.

According to Proposition 1, we may assume that F is continuous at ε. Assume that
property (P3) does not hold. Then, for any k ∈ N, there are integers ik,1, ik2 , nk for which

k ≤ ik,1 < ik,2 ≤ nk, (10)

ρ(Tik,1(xnk ), Tik,2(xnk )) > ε. (11)

In view of property (P1), we may assume that for every integer k ≥ 1,

ρ(Tik,1(xnk ), Tik,1+1(xnk )) ≤ ε. (12)
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Let k ≥ 1. According to (11) and (12),

ik,1 + 1 < ik,2

and we may assume that
ρ(Tik,1(xnk ), Tik,2−1(xnk )) ≤ ε. (13)

Equations (1) and (13) imply that

ε < ρ(Tik,1(xnk ), Tik,2(xnk ))

≤ ρ(Tik,1(xnk ), Tik,2−1(xnk )) + ρ(Tik,2−1(xnk ), Tik,2(xnk ))

≤ ε + ρ(Tik,2−1(xnk ), Tik,2(xnk )). (14)

Property (P1) and (10), (14) imply that

lim
k→∞

ρ(Tik,1(xnk ), Tik,2(xnk )) = ε. (15)

Clearly, for each k ∈ N,

ρ(Tik,1(xnk ), Tik,2(xnk )) ≤ ρ(Tik,1(xnk ), Tik,1+1(xnk ))

+ρ(Tik,1+1(xnk ), Tik,2+1(xnk )) + ρ(Tik,2(xnk ), Tik,2+1(xnk )). (16)

According to (1) and (11), for each integer k ≥ 1,

F(ρ(Tik,1+1(xnk ), Tik,2+1(xnk ))) ≤ F(ρ(Tik,1(xnk ), Tik,2(xnk )))− τ. (17)

In view of Proposition 2 and (15), we may assume that there exists

Δ = lim
k→∞

ρ(Tik,1+1(xnk ), Tik,2+1(xnk )). (18)

It follows from (15), (17) and (18) that

0 ≤ Δ ≤ ε. (19)

Property (P1) and (15), (18) and (19) imply that

Δ = ε (20)

and
ε = lim

k→∞
ρ(Tik,1+1(xnk ), Tik,2+1(xnk )). (21)

Since the function F is continuous at ε, Equations (15) and (21) imply that

F(ε) = lim
k→∞

F(ρ(Tik,1+1(xnk ), Tik,2+1(xnk )))

= lim
k→∞

F(ρ(Tik,1(xnk ), Tik,2(xnk ))).

This contradicts (17) and proves property (P3).
Let ε > 0. Property (P3) implies that there exists n0 ∈ N such that for any triplet of

integers i1, i2, n satisfying n0 ≤ i1, i2 ≤ n,

ρ(Ti1(xn), Ti2(xn)) ≤ ε/4. (22)
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Property (P2) implies that there exists a natural number m0 ≥ n0 such that for any
triplet of integers i, n1, n2 satisfying n1, n2, i ≥ m0, i ≤ nj, j = 1, 2 we have

ρ(Ti(xn1), Ti(xn2)) ≤ ε/4. (23)

Assume that integers n1, n2, i1, i2 satisfy

m0 ≤ i1 ≤ n1, m0 ≤ i2 ≤ n2. (24)

According to (22)–(24),

ρ(Ti1(xn1), Ti2(xn1)) ≤ ε/4,

ρ(Ti1(xn1), Ti2(xn2)) ≤ ε/4,

ρ(Ti1(xn1), Ti1(xn2)) ≤ ε/4, ρ(Ti2(xn1), Ti2(xn2)) ≤ ε/4.

These relations imply that

ρ(Ti1(xn1), Ti2(xn2)) ≤ ρ(Ti1(xn1), Ti2(xn1)) + ρ(Ti2(xn1), Ti2(xn2)) ≤ ε/2. (25)

Thus, we have shown that the following property holds:
For (P4), if integers i1, i2, n1, n2 satisfy (24), then (25) holds.
In view of (P4), the sequences {Tn−1(xn)}∞

n=1 and {Tn−2(xn)}∞
n=2 converge and

there exists
x∗ = lim

n→∞
Tn−1(xn) = lim

n→∞
Tn−2(xn).

In view of Proposition 2, x∗ = T(x∗). Theorem 1 is proved.

The following example illustrates Theorem 1. Assume that X is the collection of all
continuous functions on [0, 1],

ρ( f1, f2) = sup{| f1(t)− f2(t)| : t ∈ [0, 1]}, f1, f2 ∈ X,

K = { f ∈ X : f ([0, 1]) ⊂ [0, 1]}
and

T( f ) = 2−1 f + 2/3, f ∈ K.

Clearly, T is a Wardowski contraction with F(t) = ln(t), t > 0 and τ = ln(2). The
formula above defines T for all x ∈ X, but we consider T to be a mapping from K to X.
Evidently, T does not have a fixed point in T. In view of Theorem 1, n ∈ N can be found,
such that Tn(x) 	∈ K for any x ∈ K. A direct calculation shows that n = 3.

Let us consider the same mapping T with the same F and τ and

K = { f ∈ X : f ([0, 1]) ⊂ [0, 2]} ∪ { f ∈ X : f ([0, 1]) ⊂ [10, 11]}.

It is not difficult to see that
T(K) 	⊂ K

but T has a fixed point in K.

3. The Second Result

Assume that (X, ρ) is a complete metric space, T : X → 2X \ {∅}; for each x ∈ X,
the set T(x) is closed and a function

φ : [0, ∞)→ [0, ∞)
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satisfies
lim
t→0

φ(t) = 0. (26)

In [17], it was shown that the set-valued T has a fixed point if for each (x, y) ∈ X2 and
each u ∈ T(x) there is v ∈ T(y), such that

ρ(u, v) + φ(ρ(u, v)) ≤ φ(ρ(x, y)).

Examples of such mappings are considered in [17]. Here, we show that T pos-
sesses a fixed point under a weaker assumption. Namely, we assume that the following
assumption holds:

(A) For each x, y ∈ X and each u ∈ T(x),

inf{ρ(u, v) + φ(ρ(u, v)) : v ∈ T(y)} ≤ φ(x, y). (27)

Theorem 2. 1. Assume that {εi}∞
i=0 ⊂ (0, ∞),

∞

∑
i=0

εi < ∞, (28)

{xi}∞
i=0 ⊂ X, for each i ∈ N ∪ {0},

xi+1 ∈ T(xi), (29)

ρ(xi+1, xi+2) + φ(ρ(xi+1, xi+2)) ≤ φ(ρ(xi, xi+1)) + εi. (30)

(This sequence exists according to assumption (A)). Then, the sequence {xi}∞
i=0 converges to a fixed

point of T.
2. Let ε > 0. Then, δ ∈ (0, ε) can be found such that for each x0 ∈ X satisfying ρ(x0, T(x0)) < δ,

there exists x∗ ∈ B(x0, ε) such that x∗ ∈ T(x∗).

Proof. Let us prove Assertion 1. According to (30), for each integer i ≥ 0,

ρ(xi+1, xi+2) ≤ φ(ρ(xi, xi+1))− φ(ρ(xi+1, xi+2)) + εi, (31)

φ(ρ(xi+1, xi+2)) ≤ φ(ρ(xi, xi+1)) + εi, (32)

φ(ρ(xi+1, xi+2)) ≤ φ(ρ(x0, x1)) +
∞

∑
j=0

εj. (33)

Let m > n ≥ 1 be integers. In view of (30),

ρ(xn, xm) ≤
m−1

∑
i=n−1

ρ(xi+1, xi+2)

≤
m−1

∑
i=n−1

(φ(ρ(xi, xi+1))− φ(ρ(xi+1, xi+2)) + εi)

= φ(ρ(xn−1, xn))− φ(ρ(xm−1, xm)) +
m−1

∑
i=n−1

εi. (34)

We claim that there exists

lim
n→∞

φ(ρ(xn, xn+1)).

According to (33), the sequence {φ(ρ(xn, xn+1))}∞
n=0 is bounded. Let

r = lim inf
n→∞

φ(ρ(xn, xn+1)). (35)
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We claim that
lim

n→∞
φ(ρ(xn, xn+1)) = r.

Let ε > 0. According to (35), there exists a natural number n0 such that for each integer
n ≥ n0,

φ(ρ(xn, xn+1)) ≥ r− ε/8. (36)

Equations (28) and (35) imply that there exists a natural number n1 > n0 such that

∞

∑
i=n1

εi < ε/8, (37)

φ(ρ(xn1 , xn1+1)) < r + ε/8. (38)

According to (32), (37) and (38), for any integer n > n1,

φ(ρ(xn, xn+1)) ≤ φ(ρ(xn1 , xn1+1)) +
∞

∑
i=n1

εi < r + ε/8 + ε/8.

Thus, for any integer n > n1,

|φ(ρ(xn, xn+1))− r| < ε/4 (39)

and
lim

n→∞
φ(ρ(xn, xn+1)) = r. (40)

According to (34), (37) and (39), for any pair of integers m > n > n1,

ρ(xn, xm) ≤ φ(ρ(xn−1, xn))− φ(ρ(xm−1, xm)) +
∞

∑
i=n1

εi < ε.

Thus, {xn}∞
n=0 is a Cauchy sequence and there exists

x∗ = lim
n→∞

xn.

Assumption (A) and (29) imply that for any n ∈ N, there exists

vn ∈ T(x∗)

such that

ρ(xn+1, vn) + φ(ρ(xn+1, vn)) ≤ φ(ρ(xn, x∗)) + εn → 0 as n → ∞.

According to (26), (28) and (40),

lim
n→∞

ρ(xn+1, vn) = 0, lim
n→∞

vn = x∗

and x∗ ∈ T(x∗). Assertion 1 is proved.
Let us proved Assertion 2. According to (26), there exists δ ∈ (0, ε) such that for each

t ∈ [0, δ],
φ(t) < ε/4. (41)

Assume that x0 ∈ X satisfies

ρ(x0, T(x0)) < δ. (42)
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Choose {εi}∞
i=0 ⊂ (0, 1) such that

∞

∑
i=0

εi < ε/4. (43)

In view of (42), there is
x1 ∈ T(x0)

for which
ρ(x0, x1) < δ.

Assume that a sequence {xi}∞
i=2 is as in Assertion 1. Then, there exists

x∗ = lim
n→∞

xn

such that
x∗ ∈ T(x∗)

and in view of (34) and (41)–(43),

∞

∑
i=1

ρ(xi, xi+1) ≤ φ(ρ(x0, x1)) +
∞

∑
i=0

εi

≤ φ(ρ(x0, x1)) + ε/4 < ε/2,
∞

∑
i=1

ρ(xi, xi+1) < ε, ρ(x∗, x0) < ε.

Assertion 2 is proved.

Theorem 3. Assume that the function φ is bounded, ε ∈ (0, 1),

M1 > φ(t), t ∈ [0, ∞), (44)

n0 > 2 + 2ε−1M1 (45)

is an integer and that {xi}n0
i=0 ⊂ X satisfies for each integer i ∈ {0, . . . , n0 − 1},

xi+1 ∈ T(xi) (46)

and for any i ∈ {0, . . . , n0 − 2},

ρ(xi+1, xi+2) + φ(ρ(xi+1, xi+2)) ≤ φ(ρ(xi, xi+1)) + ε/2. (47)

Then, there exists j ∈ {1, . . . , n0 − 1}, for which

ρ(xj, xj+1) ≤ ε, B(xj, ε) ∩ T(xj) 	= ∅.

Proof. Assume that the theorem does not hold. Then,

ρ(xj, xj+1) > ε, j ∈ {1, . . . , n0 − 1}. (48)

According to (44), (47) and (48), for each i ∈ {0, . . . , n0 − 2},

ε < ρ(xi+1, xi+2) ≤ φ(ρ(xi, xi+1))− φ(ρ(xi+1, xi+2)) + ε/2

and

(n0 − 1)ε <
n0−2

∑
i=0

ρ(xi+1, xi+2)
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≤ 2−1ε(n0 − 1) +
n0−2

∑
i=0

φ(ρ(xi, xi+1))− φ(ρ(xi+1, xi+2))

≤ 2−1ε(n0 − 1) + φ(ρ(x0, x1)),

2−1ε(n0 − 1) ≤ M1

and
n0 ≤ 1 + 2ε−1M1.

This contradicts (45) and proves Theorem 3.

Applying Theorem 3 by induction, we can obtain the following result.

Corollary 1. Assume that the function φ is bounded, ε ∈ (0, 1),

M1 > φ(t), t ∈ [0, ∞),

n0 > 2 + 2ε−1M1

is an integer and that a sequence {xi}∞
i=0 ⊂ X satisfies for any i ∈ N ∪ {0},

xi+1 ∈ T(xi)

and
ρ(xi+1, xi+2) + φ(ρ(xi+1, xi+2)) ≤ φ(ρ(xi, xi+1)) + ε/2.

Then, there exists {nk}∞
k=1 ⊂ N such that n1 ≤ n0 and that for any k ∈ N,

1 ≤ nk+1 − nk, ρ(xnk , xnk+1) ≤ ε.

Theorem 4. Assume that the function φ is bounded, ε ∈ (0, 1), ε0 ∈ (0, ε),

M1 > φ(t), t ∈ [0, ∞),

φ(t) ≤ ε/2, t ∈ [0, ε0), (49)

n0 > 2 + 2ε−1
0 M1 (50)

is an integer,
δ = (2n0)

−1ε0 (51)

and that a sequence {xi}∞
i=0 ⊂ X satisfies for any i ∈ N ∪ {0},

xi+1 ∈ T(xi) (52)

and
ρ(xi+1, xi+2) + φ(ρ(xi+1, xi+2)) ≤ φ(ρ(xi, xi+1)) + δ. (53)

Then, ρ(xi, xi+1) ≤ ε for each integer i ≥ n0.

Proof. Corollary 1 implies that there exists {nk}∞
k=1 ⊂ N such that n1 ≤ n0 and that for

any k ∈ N,
1 ≤ nk+1 − nk ≤ n0, (54)

ρ(xnk , xnk+1) ≤ ε0. (55)

Let k ≥ 1 be an integer. According to (49), (51), (53) and (55),

nk+1

∑
i=nk

ρ(xi, xi+1) ≤
nk+1

∑
i=nk

(φ(ρ(xi, xi+1))− φ(ρ(xi+1, xi+2))) + n0δ
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and

ε > ε/2 + ε0/2 ≥ φ(ρ(xnk , xnk+1)) + n0δ ≥
nk+1

∑
i=nk+1

ρ(xi, xi+1).

This completes the proof of Theorem 4.

Our results from this section can be applied to the following problem, considered
in [17]. Assume that a < b are real numbers, X is the space C([a, b]) of all real-valued
continuous functions and that

ρ( f1, f2) = sup{| f1(t)− f2(t)| : t ∈ [a, b]}, f1, f2 ∈ X.

We consider a Fredholm-type integral inclusion:

x(τ) ∈
∫ b

a
K(τ, t, x(t))dt + f (τ), τ ∈ [a, b].

It was shown in [17] that the study of this problem is reduced to the analysis of a fixed
point problem

T(z) = {y ∈ X : y(τ) ∈
∫ b

a
K(τ, s, z(s))ds + f (τ), τ ∈ [a, b]}, z ∈ X

and that for mapping T, all the assumptions made in this section hold. Therefore, all the
results can be applied for T.

4. The Third Result

Assume that (X, ρ) is endowed with a graph G. Let V(G) be the set of its vertices,
E(G) be the set of its edges and let

(x, x) ∈ E(G), x ∈ X.

Assume that τ > 0, F : (0, ∞)→ R1 is an increasing function and that T : X → X is a
mapping such that for any (x, y) ∈ E(G) for which x 	= y,

(T(x), T(y)) ∈ E(G) and F(ρ(T(x), T(y))) + τ ≤ F(ρ(x, y)). (56)

Equation (56) implies the following proposition.

Proposition 3. For any (x, y) ∈ E(G), ρ(T(x), T(y)) ≤ ρ(x, y).

Proposition 4. Let (x, y) ∈ E(G). Then

lim
n→∞

ρ(Tn(x), Tn(y)) = 0.

Proof. We may assume that
Tn(x) 	= Tn(y)

for each integer n ≥ 0. According to (56), for any integer n ∈ N ∪ {0},

(Tn(x), Tn(y)) ∈ E(G),

F(ρ(Tn+1(x), Tn+1(y))) + τ ≤ F(ρ(Tn(x), Tn(y))),

F(ρ(Tn(x), Tn(y))) ≤ F(ρ(x, y))− nτ. (57)

Proposition 3 implies that for any n ∈ N ∪ {0},

ρ(Tn+1(x), Tn+1(y)) ≤ ρ(Tn(x), Tn(y)).
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Assume that the proposition does not hold. Then, ε > 0 can be found such that for
any integer n ≥ 0,

ε ≤ ρ(Tn(x), Tn(y)). (58)

In view of (57) and (58), for each n ∈ N ∪ {0},

F(ε) ≤ F(ρ(Tn(x), Tn(y))) ≤ F(ρ(x, y))− nτ → −∞ as n → ∞.

This contradiction proves Proposition 4.

Proposition 4 implies the following result.

Proposition 5. Let x, y ∈ X, q ∈ N, {xi}q
i=0 ⊂ X,

x0 = x, xq = y,

(xi, xi+1) ∈ E(G), i = 0, . . . , q− 1.

Then,
lim

n→∞
ρ(Tn(x), Tn(y)) = 0.

Proposition 5 implies the following result.

Theorem 5. Assume that x ∈ X and there are q ∈ N and points {yi}q
i=0 ⊂ X such that

y0 = x, yq = T(x),

(yi, yi+1) ∈ E(G), i = 0, . . . , q− 1.

Then,
lim
i→∞

ρ(Ti(x), Ti+1(x)) = 0.

Theorem 6. Assume that x ∈ X and there exist q ∈ N and {yi}q
i=0 such that

y0 = x, yq = T(x),

(yi, yi+1) ∈ E(G), i = 0, . . . , q− 1.

Assume that there exists m0 ∈ N such that the following property holds:
(P) for any pair of nonnegative integers i < j, there is

p ∈ {j, . . . , j + m0}

for which
(Ti(x), Tp(x)) ∈ E(G).

Then, the sequence {Tn(x)}∞
n=0 converges and its limit is a fixed point of T if the graph of T

is closed.

Proof. According to Theorem 5,

lim
n→∞

ρ(Tn(x), Tn+1(x)) = 0. (59)

Let ε ∈ (0, 1). We show that for all sufficiently large i, j ∈ N,

ρ(Ti(x), Tj(x)) ≤ ε.
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Since the collection of all points at which F is not continuous is countable, we may
assume that the function F is continuous at ε. Choose

δ ∈ (0, ε/4)

such that
|F(ξ)− F(ε)| ≤ τ/2 for any ξ ∈ [ε− 4δ, ε + 4δ] (60)

and set
δ0 = δ(4m0)

−1. (61)

In view of (59), there exists a natural number n0 for which

ρ(Ti(x), Ti+1(x)) ≤ δ0 for each integer i ≥ n0. (62)

Assume that
j > i ≥ n0

are integers. We show that
ρ(Ti(x), Tj(x)) ≤ ε.

Assume the contrary. Then,

ρ(Ti(x), Tj(x)) > ε. (63)

According to (61) and (62), we may assume that for any s ∈ {i, . . . , j− 1},

ρ(Ti(x), Ts(x)) ≤ ε. (64)

According to Equation (62), for any s ∈ {i + 1, . . . , i + m0},

ρ(Ti(x), Ts(x)) ≤ δ0m0 < δ < ε. (65)

According to (63) and (65),

j > i + m0, j− 1 ≥ i + m0. (66)

In view of (66),
j−m0 > i

and (P) implies that there is

p ∈ {j−m0 − 1, . . . , j− 1} (67)

for which
(Ti(x), Tp(x)) ∈ E(G). (68)

According to (67) and (68),
p ≥ i.

If
Tp(x) = Ti(x),

then according to (62) and (67),

ρ(Ti(x), Tj(x)) ≤ ∑{ρ(Ts(x), Ts+1(x)) : s ∈ {p, . . . , j− 1}} ≤ m0δ0 ≤ ε

and this contradicts (63). Therefore,

Tp(x) 	= Ti(x). (69)
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According to (56), (64), (67) and (69),

F(ρ(Ti+1(x), Tp+1(x))) + τ ≤ F(ρ(Ti(x), Tp(x))) ≤ F(ε). (70)

It follows from (60) and (70) that

ρ(Ti+1(x), Tp+1(x)) ≤ ε− 4δ. (71)

According to (61), (62), (67) and (71),

ρ(Ti(x), Tj(x)) ≤ ρ(Ti(x), Ti+1(x)) + ρ(Ti+1(x), Tp+1(x))

+ρ(Tp+1(x), Tj(x)) ≤ δ0 + ε− 4δ

+∑{ρ(Ts(x), Ts+1(x)) : s ∈ {p, . . . , j− 1} \ {p}} ≤ δ0 + ε− 4δ + m0δ0 < ε.

This contradicts (63) and proves Theorem 6.

Theorem 6 was proved under assumption (P). It holds in the following two cases.
In the first case, X is equipped with an order ≤ and (x, y) ∈ E(G) if and only if x ≤ y.
In the second case, m is a natural number Ai ⊂ X, i = 1, . . . , m are nonempty closed sets,
Am+1 = A1, ∪m

i=1 Ai = X,
T : ∪m

i=1 Ai → ∪m
i=1 Ai

and for any i ∈ {1, . . . , m}, any a ∈ Ai, any b ∈ Ai+1,

T(Ai) ⊂ Ai+1,

F(ρ(T(a), T(b))) + τ ≤ F(ρ(a, b))

and
E(G) = ∪m

i=1(Ai × Ai+1).

In this case, T is called a cyclical operator [6].
Let us consider the following example [19]. Assume that X = [0, ∞), ρ(u, v) = |u− v|,

u, v ∈ [0, ∞) and that (u, v) ∈ E(G) if and only if u ≤ v and

(u, v) ∈ [0, 1]× [0, 1] ∪ ∪∞
n=1(n, n + 1]× (n, n + 1],

T(0) = 0, T(u) = 2−1u + n/2, u ∈ (n, n + 1], n = 0, 1, . . . .

It was shown in [19] that for each (u, v) ∈ E(G),

ρ(T(u), T(v)) ≤ 2−1ρ(u, v).

It is not difficult to see that T is a Wardowski contraction with F(t) = ln(t), t > 0 and
τ = ln(2).

5. Conclusions

We consider three fixed point problems, and for each of them establish the existence
of a fixed point. In the first and the third cases, we consider single-valued Wardowski type
contraction, while in the second case we study Cho-type set-valued contractions. In the
second case, we also study approximate fixed points.
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Abstract: In this manuscript, we prove numerous results concerning fixed points, common fixed
points, coincidence points, coupled coincidence points, and coupled common fixed points for (φ, Ψ)-
contractive mappings in the framework of partially ordered controlled metric spaces. Our findings
introduce a novel perspective on this mathematical context, and we illustrate the uniqueness of our
findings through various explanatory examples. Also, we apply the main result to find the existence
and uniqueness of the solution of the system of integral equations as an application.
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1. Introduction

The fixed-point (FP) theory is a pivotal branch in mathematics and has found extensive
applications across various disciplines, ranging from functional analysis and topology to
physics, economics, and beyond. The essence of FP theory is the investigation of mappings
that retain certain points during transformation, which serves as a foundational tool
for understanding equilibrium and stability in various systems. In 1993, Czerwik [1]
introduced the notion of the b-metric space (BMS) and proved the Banach contraction
principle (BCP) in the framework of the complete BMS. This pioneering work established
the groundwork for following research on endeavors in BMSs, establishing a diverse field
of study. Further, in 2019, Mlaiki et al. [2] extended this preliminary work by including
(Ω, ω)-admissible mappings and generalized quasi-contraction in the setting of BMSs,
unveiling deeper insights into the FP results. In 2019, Faraji et al. [3] delved into Geraghty-
type contractive mappings, utilizing BMSs to not only present the BCP, but also give the
solutions for nonlinear integral equations and highlighting the real-life significance of these
theoretical developments. In 2020, subsequent advancements by Abbas et al. [4] presented
the generalization of the BCP by introducing the Suzuki-type multi-valued mapping and
examining coincident and common FPs in the context of the BMS. These findings acted as
accelerators for other research efforts, resulting in a series of consequences and insights
throughout the area of the BMS, as indicated by the works [5–8].
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In 2018, Mlaiki et al. [9] incorporated controlled functions in the triangle inequality.
This novel concept paved the way for a more generalized form of the Banach FP theorem
(BFPT), offering a broader scope for applications and theoretical investigations in the FP theory.
In 2003, Ran and Reurings [10] used the notion of a partially ordered metric space, and their
formulation of the BFPT imposed contractivity conditions exclusively on elements comparable
within a partial order, as well as imposed the contractivity condition on the nonlinear map
exclusively for elements that can be compared within the partial order. Later, in 2010, Amini-
Harandi and Emami [11] investigated the existence and uniqueness of solutions for periodic
and boundary-value problems using partially ordered complete metric spaces and the Banach
contraction principle (BCP), showcasing the applicability of the FP theory in addressing
real-world problems in various domains. In 2022, Farhan et al. [12] discussed Reich-type and
(α,�)-contractions in partially ordered double controlled metric-type spaces (PODCMSs),
illuminating the solution of nonlinear fractional differential equations through a monotonic
iterative approach.

The emergence of coupled FPs (CFPs), initially introduced by Bhaskar and Laksh-
mikantham [13], was utilized to investigate and analyze the presence and exclusivity of
solutions for boundary-value problems. Further, in 2009, Lakshmikantham and Ćirić [14]
were the pioneers in introducing the concept of the coupled coincidence FP (CCFP) and
coupled common FP for nonlinear contractive mappings with a monotone property in
partially ordered complete metric spaces (POCMSs). In 2011, Choudhury et al. [15] with
their results applied a control function to extend the coupled contraction mapping the-
orem (CCMT) developed by Gnana Bhaskar and Lakshmikantham in partially ordered
metric spaces to a coupled coincidence point conclusion for two compatible mappings.
Additionally, it was assumed that the mappings satisfy a weak contractive inequality.
In 2020, Mitiku et al. [16] unified fundamental metrical FP theorems, establishing coin-
cidence points, coupled coincidences, and the CCFP for generalized (φ, ψ)-contractive
mappings in partially ordered b-metric spaces. For more on this, see the related litera-
ture [17–20]. Brzdęk et al. [21] proved a fixed point theorem and the Ulam stability in
generalized dq-metric spaces. Antón-Sancho [22,23] presented fixed points of principal E
six-bundles over a compact algebraic curve and of the automorphisms of the vector bundle
moduli space over a compact Riemann surface.

In this study, our aim is to go deeper into the realm of coincidence points, coupled
coincidences, and CCFPs within the context of generalized (φ, ψ)-contractive mappings.
These results are developed within the framework of partially ordered controlled-type
metric spaces.

2. Preliminaries

In this section, we explain some core concepts that will be helpful for the proof of our
main results.

Definition 1 ([1]). Assume a non-empty set Ω and the function s ≥ 1 to be a given real number.
A mapping Θ : Ω×Ω −→ [0, ∞) is said to be a b-metric space if the following axioms hold:

(BM1) Θ(w1, w2) = 0 if and only if w1 = w2;
(BM2) Θ(w1, w2) = Θ(w2, w1) for all w1, w2 ∈ Ω;
(BM3) Θ(w1, w3) ≤ s[(Θ(w1, w2) + Θ((w2, w3)] for all w1, w2, w3 ∈ Ω.

Then, the pair (Ω, Θ) is called a b-metric space.

Definition 2 ([20]). Consider a non-empty set Ω and α : Ω×Ω −→ [1, ∞) to be a controlled
function. Then, a mapping Θ : Ω×Ω −→ [0, ∞) is said to be a controlled metric space if the
following axioms hold:

(CM1) Θ(w1, w2) = 0 if and only if w1 = w2;
(CM2) Θ(w1, w2) = Θ(w2, w1) for all w1, w2 ∈ Ω;
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(CM3) Θ(w1, w3) ≤ α(w1, w2)Θ(w1, w2) + α(w2, w3)Θ(w2, w3) for all w1, w2, w3 ∈ Ω.

Then, the pair (Ω, Θ) is called a controlled metric space.

Definition 3 ([14]). Assume (Ω,�) to be a POS, and let g, h : Ω −→ Ω be two mappings. Then,
we have the following:

1. h is called a monotone non-decreasing sequence, if h(u) ≤ h(v), ∀ u, v ∈ Ω with u � v;
2. An element u ∈ Ω is a coincidence CFP of g and h, if g(u) = h(u) = u;
3. g and h are called commuting, if (gh)(u) = (hg)(u) ∀ u ∈ Ω;
4. g and h are compatible if any sequence (up) in Ω with

lim
p−→+∞

g(up) = lim
p−→+∞

h(up) = ŭ

for some ŭ ∈ Ω implies
lim

p−→+∞
Θ
(
hg(up), gh(up)

)
= 0;

5. A pair (g, h) of self-mappings is named weakly compatible if

hg(up) = gh(up)

when h(u) = g(u) for some u ∈ Ω;
6. h is called monotone g-non-decreasing if gu � gv =⇒ hu � hv for any u, v ∈ Ω;
7. Ω 	= ∅ is said to be a well-ordered set if every two points of it are comparable, i.e., u � v and

v � u for u, v ∈ Ω.

Definition 4 ([14]). Assume that (Ω, Θ,�) is a POS, and consider two mappings h : Ω×Ω −→
Ω and g : Ω −→ Ω such that we have the following:

1. h has the mixed g-monotone property if h is non-decreasing g-monotone in its first argument
and is non-increasing g-monotone in its second argument, that is, for any u, v ∈ Ω,

u1, u2 ∈ Ω, gu1 � gu2 =⇒ h(u1, v) � h(u2, v)

and
v1, v2 ∈ Ω, gv1 � gv2 =⇒ h(v1, u) � h(v2, u).

2. An ordered pair element (u, v) ∈ Ω×Ω is said to be a coupled coincidence point (CCP) of h
and g if the following relation holds:

h(u, v) = gu and h(v, u) = gv.

Also, if g is an identity mapping, then (u, v) is a CFP (CFP) of h.
3. An element u ∈ Ω is said to have a common FP of g and h if

h(u, u) = gu = u.

4. g and h are commutative, if

∀ u, v ∈ Ω, h(gu, gv) = g(hu, hv)

g and h are compatible if

lim
p−→+∞

Θ(g(h(un, vn)), h(gun, gvn)) = 0

and
lim

p−→+∞
Θ(g(h(vn, un)), h(gvn, gun)) = 0,
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whenever {un} and {vn} are two sequences in Ω such that, for all u, v ∈ Ω,

lim
p−→+∞

h(vn, un) = lim
p−→+∞

gun = u

and
lim

p−→+∞
h(vn, un) = lim

p−→+∞
gvn = v.

The results presented here can be utilized for the convergence of a sequence in the controlled
metric space (CMS).

Definition 5 ([16]). Assume that a function φ : [0,+∞[−→ [0,+∞[ is an altering distance
function if it satisfies the following conditions:

(a) It is continuous and non-decreasing;
(b) φ(l) = 0 if and only if l = 0.

The set of all alternating distance functions is denoted by Φ.

Example 1. Define
φ1, φ2, φ3 : [0,+∞[→ [0,+∞[

by φ1(l) = 2l, φ2(l) = 4l2, φ3(l) = 7l4. Then, they are alternating distance functions.

Here, ψ : R+ −→ R+ is ψ(l) = 0 if and only if l = 0. The set of all lower semicontinu-
ous functions is denoted by Ψ.

Assume (Ω, Θ,�, α) to be a partially ordered controlled metric space (POCMS) with
control function α and a mapping h : Ω −→ Ω. Set

M(u, v) = max

⎧⎨
⎩

Θ(v,hv)[1+Θ(u,hu)]
1+Θ(u,v) , Θ(u,hu)Θ(v,hv)

1+Θ(hu,hv) ,
Θ(u,hu)Θ(u,hv)

1+Θ(u,hv)+Θ(v,hu) , Θ(u, v)

⎫⎬
⎭ (1)

and

N(u, v) = max
{

Θ(v, hv)[1 + Θ(u, hu)]
1 + Θ(u, v)

}
. (2)

Now, we introduce the following notions.

Definition 6. If (p,�) is a partially ordered set (POS), then (Ω, Θ,�, α) is said to be a POCMS.

Definition 7. Assume (Ω, Θ,�, α) is a POCMS, then we have the following:

1. A sequence (up) is said to be convergent to a point u ∈ Ω if, for each ε > 0,

lim
p−→+∞

Θ(up, u) = 0

and written as
lim

p−→+∞
up = u;

2. (up) is said to be a Cauchy sequence if

lim
p,q−→+∞

Θ(up, uq) = 0;

3. The pair (Ω, Θ, α) is called Cauchy if each Cauchy sequence in Ω is convergent in it.

Definition 8. If Θ is a complete metric, then (Ω, Θ, α) is called a complete POCMS (CPOCMS).
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Definition 9. Assume (Ω, Θ,�, α) to be a partially ordered controlled metric space (POCMS)
with control function α and φ ∈ Φ, ψ ∈ Ψ. A self-mapping:

h : Ω −→ Ω

is called a generalized (Φ, Ψ)-contractive mapping if it satisfies the inequality given below:

φ(αΘ(hu, hv)) ≤ φ(M(u, v))− ψ(N(u, v)) (3)

for any u, v ∈ Ω with u � v.

Lemma 1. Assume (Ω, Θ,�, α) to be a POCMS with control function α and {un} and {vn} be
two sequences that are α-convergent to u and v, respectively. Then,

1
α2 Θ(u, v) ≤ lim

p−→+∞
inf Θ(up, vp) ≤ lim

p−→+∞
sup Θ(up, vp) ≤ α2Θ(u, v).

In a special case, if u = v, then
Θ(up, vp) = 0.

Additionally, for each τ ∈ Ω, we have

1
α

Θ(u, v) ≤ lim
p−→+∞

inf Θ(up, τ) ≤ lim
p−→+∞

sup Θ(up, τ) ≤ αΘ(u, v).

3. Main Results

In this section, we formulate the outcomes concerning the existence of coincidence
points, coupled coincidences, and CCFPs in the realm of generalized (φ, ψ)-contractive
mappings. These findings are developed within the specific setting of the POCMS.

Theorem 1. Assume (Ω, Θ,�, α) to be a CPOCMS with metric Θ and α : Ω×Ω −→ [1, ∞)
to be a controlled function. Assume a mapping h : Ω −→ Ω, which is an almost generalized
(φ, ψ)-contractive mapping and a continuous, non-decreasing mapping with partial order � . If
there exists a u0 ∈ Ω with u0 � hu0, then h have the FP in Ω.

Proof. Assume u0 ∈ Ω to be an arbitrary point in Ω such that u0 = hu0, then we have a
result. Assume u0 � hu0, and define the sequence {up} by up+1 = hup, for all p ≥ 0. As h
is non-decreasing, so by induction, we obtain

u0 � hu0 = u1 � . . . � un � hun = un+1 � . . . (4)

If there exists po ∈ N such that upo = upo+1, then from (4), upo is an FP of h, then we
have nothing to prove. Next, we assume that up 	= up+1 for all p ≥ 1. Since up > up−1 for
n ≥ 1 and then from the contractive condition (3), we have

φ
(
Θ
(
up, up+1

))
= φ

(
Θ
(
hup−1, up

))
≤ φ

(
αΘ

(
hup−1, up

))

≤ φ
(

M
(
up−1, up

))− ψ
(

N
(
up−1, up

))
, (5)

then, from (5), we obtain

Θ
(
up, up+1

)
= Θ

(
hup−1, hup

) ≤ 1
α

M
(
up−1, up

)
(6)

where
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M
(
up−1, up

)
= max

⎧⎪⎪⎨
⎪⎪⎩

Θ(up ,hup)[1+Θ(up−1,hup−1)]
1+Θ(up−1,up)

,
Θ(up−1,hup−1)Θ(up ,hup)

1+Θ(hup−1,hup)
,

Θ(up−1,hup−1)Θ(up−1,hup)
1+Θ(up−1,hup)+Θ(up ,hup−1)

, Θ
(
up−1, up

)
⎫⎪⎪⎬
⎪⎪⎭

= max

⎧⎪⎪⎨
⎪⎪⎩

Θ(up ,hup+1)[1+Θ(up−1,hup)]
1+Θ(up−1,up)

,
Θ(up−1,up)Θ(up ,up+1)

1+Θ(up ,up+1)
,

Θ(up−1,up)Θ(up−1,up+1)
1+Θ(up−1,up+1)+Θ(up ,up)

, Θ
(
up−1, up

)
⎫⎪⎪⎬
⎪⎪⎭

≤ max
{

Θ
(
up, up+1

)
, Θ

(
up−1, up

)}
, (7)

if
max

{
Θ
(
up, up+1

)
, Θ

(
up−1, up

)}
= Θ

(
up, up+1

)
for some p ≥ 1. So, from (6), it follows that

Θ
(
up, up+1

) ≤ 1
α

Θ
(
up, up+1

)
, (8)

a contradiction. This implies that

max
{

Θ
(
up, up+1

)
, Θ

(
up−1, up

)}
= Θ

(
up, up+1

)
for p ≥ 1. Hence, from (6), we obtain

Θ
(
up, up+1

) ≤ 1
α

Θ
(
up−1, up

)
. (9)

Since, 1
α ∈ (0, 1), then the sequence

(
up

)
is a Cauchy sequence by [6–9]. As Ω is

complete, so there exists some element ü ∈ Ω such that up −→ ü. Moreover, the continuity
of h implies that

hü = h
(

lim
p−→+∞

up

)
= lim

p−→+∞
hup = lim

p−→+∞
up+1 = ü. (10)

Hence, ü is an FP of h in Ω.

Theorem 2. Assume (Ω, Θ,�, α) to be a CPOCMS with metric Θ. Assume that a non-decreasing
sequence

{
up

} −→ ü in Ω, then up � ü for all p ∈ N, i.e., sup up = ü. Let h : Ω −→ Ω be a
non-decreasing mapping that satisfies the contractive condition (3). If there exists a u0 ∈ Ω with
u0 � hu0, then h has a fixed point in Ω.

Proof. Using the proof of the above theorem, we construct a non-decreasing Cauchy
sequence

{
up

}
, which converges to ü in Ω. So, we have up � ü for any p ∈ N, which

implies that sup up = ü.
Now, we have to prove that ü is an FP of h, i.e., hu = u. Assume that hu 	= u. Let

M
(
up, ü

)
= max

⎧⎪⎪⎨
⎪⎪⎩

Θ(ü,hü)[1+Θ(up ,hup)]
1+Θ(up ,ü)

,
Θ(up ,hup)Θ(ü,hü)

1+Θ(hup ,hü)
,

Θ(up ,hup)Θ(up ,hü)
1+Θ(up ,hü)+Θ(ü,hup)

, Θ
(
up, ü

)
⎫⎪⎪⎬
⎪⎪⎭ (11)

and

N
(
up, ü

)
= max

{
Θ(ü, hü)

[
1 + Θ

(
up, hup

)]
1 + Θ

(
up, ü

) , Θ
(
up, ü

)}
. (12)
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Letting p −→ +∞ and by utilizing

lim
p−→+∞

up = ü,

we conclude that

lim
p−→+∞

M
(
up, ü

)
= max{Θ(ü, hü), 0, 0, 0} = Θ(ü, hü), (13)

and
lim

p−→+∞
N
(
up, ü

)
= max{Θ(ü, hü), 0} = Θ(ü, hü). (14)

We know that, for all p, up � u, then from the contractive condition (3), we obtain

φ
(
Θ
(
up+1, hü

))
= φ

(
Θ
(
hup, hü

)) ≤ φ
(
αΘ

(
hup, hü

))

≤ φ
(

M
(
up, ü

))− ψ
(

N
(
up, ü

))
. (15)

Letting p −→ +∞ and using (13) and (14), we obtain

φ(Θ(ü, hü)) ≤ φ(Θ(ü, hü))− ψ(Θ(ü, hü)) < Θ(ü, hü), (16)

which is a contradiction, by the above inequality (16). Thus, hü = ü. That is, ü is an FP
of Ω.

Now, we provide the essential condition for the uniqueness of the FP in Theorems 1 and 2.

Condition 1. Every pair of elements has a lower bound or an upper bound.

The above condition states that, ∀ u, v ∈ Ω, there exist an element w ∈ Ω such that w
is comparable to u and v.

Theorem 3. In addition, the hypothesis of Theorem 1 (or Theorem 2) and Condition 1 gives the
uniqueness of an FP of h in Ω.

Proof. By applying Theorems 1 and 2, we deduce that h has a non-empty set of FPs.
Assume that u∗ and u∗∗ are two FPs of h in Ω. We want to prove that u∗ = u∗∗. Assume,
on the contrary, u∗ 	= u∗∗, then by the hypothesis, we have

φ(Θ(hu∗, hu∗∗)) ≤ φ(αΘ(hu∗, hu∗∗)) ≤ φ(M(u∗, u∗∗))− ψ(N(u∗, u∗∗)). (17)

As a consequence, we obtain

Θ(u∗, u∗∗) = Θ(hu∗, hu∗∗) ≤ 1
α

M(u∗, u∗∗) (18)

where

M(u∗, u∗∗) = max

⎧⎨
⎩

Θ(u∗∗ ,hu∗∗)[1+Θ(u∗ ,hu∗)]
1+Θ(u∗ ,u∗∗) , Θ(u∗ ,hu∗)Θ(u∗∗ ,hu∗∗)

1+Θ(hu∗ ,hu∗∗) ,
Θ(u∗ ,hu∗)Θ(u∗ ,hu∗∗)

1+Θ(u∗ ,hu∗∗)+Θ(u∗∗ ,hu∗) , Θ(u∗, u∗∗)

⎫⎬
⎭

= max

⎧⎨
⎩

Θ(u∗∗ ,u∗∗)[1+Θ(u∗ ,u∗)]
1+Θ(u∗ ,u∗∗) , Θ(u∗ ,u∗)Θ(u∗∗ ,u∗∗)

1+Θ(u∗ ,u∗∗) ,
Θ(u∗ ,u∗)Θ(u∗ ,u∗∗)

1+Θ(u∗ ,u∗∗)+Θ(u∗∗ ,u∗) , Θ(u∗, u∗∗)

⎫⎬
⎭

= max{0, 0, 0, Θ(u∗, u∗∗)} = Θ(u∗, u∗∗). (19)
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From inequality (18), we conclude that

Θ(u∗, u∗∗) ≤ 1
α

Θ(u∗, u∗∗) < Θ(u∗, u∗∗), (20)

which is a contradiction. By deduction, we obtain u∗ = u∗∗. This completes the proof.

Assume (Ω, Θ,�, α) to be a POCMS with metric Θ and controlled function α. Assume
that h, g : Ω −→ Ω are two mappings. Set

Mf (u, v) = max

⎧⎨
⎩

Θ(gv,hv)[1+Θ(gu,hu)]
1+Θ(gu,hv) , Θ(gu,hu)Θ(gv,hv)

1+Θ(hu,hv) ,
Θ(gu,hu)Θ(gu,hv)

1+Θ(gu,hv)+Θ(gv,hu) , Θ(gu, gv)

⎫⎬
⎭ (21)

and

Nf (u, v) = max
{

Θ(gv, hv)[1 + Θ(gu, hu)]
1 + Θ(gu, gv)

, Θ(gu, gv)
}

. (22)

Definition 10. Assume (Ω, Θ,�, α) to be a POCMS with metric Θ and controlled function α.
We define a generalized (φ, ψ)-contraction mapping h : Ω −→ Ω with respect to g : Ω −→ Ω
for some φ ∈ Φ and ψ ∈ Ψ. Then, we say that h : Ω −→ Ω is a generalized (φ, ψ)-contraction
mapping if the inequality below holds:

φ(αΘ(hu, hv)) ≤ φ
(

Mf (u, v)
)
− ψ

(
Nf (u, v)

)
< Θ(ü, hü) (23)

for any u, v ∈ Ω with hu � hv; also, Mf (u, v) and Nf (u, v) are already defined in
(21) and (22), respectively.

Theorem 4. Assume (Ω, Θ,�, α) to be a POCMS with metric Θ and controlled function α. We
define a generalized (φ, ψ)-contraction mapping h : Ω −→ Ω with respect to g : Ω −→ Ω; here, h
and g are continuous such that h is a monotone g-non-decreasing mapping, compatible with g and
hΩ ⊆ gΩ. If, for some uo ∈ Ω, such that guo � hp, then h and g have a coincidence point in Ω.

Proof. Using the proof of Theorem 2.2 presented in [4], consider two sequences
{

up
}

and{
vp

}
in Ω such that

vp = hup = gup+1 (24)

for all p ≥ 0, for which

guo � gu1 � . . . gup � gup+1 � . . . (25)

By using [4], we want to prove that

Θ
(
vp, vp+1

) ≤ λΘ
(
vp−1, vp

)
(26)

for all p ≥ 0; here, λ ∈
[
1, 1

α

)
. Now, by (23) and using (24) and (25), we have

φ
(
αΘ

(
vp, vp+1

))
= φ

(
αΘ

(
hvp, hvp+1

))

≤ φ
(

Mg
(
vp, vp+1

))− ψ
(

Ng
(
vp, vp+1

))
(27)

where
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Mg
(
up, up+1

)
= max

⎧⎪⎪⎨
⎪⎪⎩

Θ(gup+1,hup+1)[1+Θ(gup ,hup)]
1+Θ(gup ,gup+1)

,
Θ(gup ,hup)Θ(gup+1,hup+1)

1+Θ(hup ,hup+1)
,

Θ(gup ,hup)Θ(gup ,hup+1)
1+Θ(gup ,hup+1)+Θ(hup+1,gup)

, Θ
(

gup, gup+1
)

⎫⎪⎪⎬
⎪⎪⎭

= max

⎧⎪⎪⎨
⎪⎪⎩

Θ(vp ,vp+1)[1+Θ(vp−1,vp)]
1+Θ(vp−1,vp)

,
Θ(vp−1,vp)Θ(vp ,vp+1)

1+Θ(vp ,vp+1)
,

Θ(vp−1,vp)Θ(vp−1,vp+1)
1+Θ(vp−1,vp+1)+Θ(vp ,vp)

, Θ
(
vp−1, vp

)
⎫⎪⎪⎬
⎪⎪⎭

≤ max
{

Θ
(
vp−1, vp

)
, Θ

(
vp, vp+1

)}
and

Ng
(
up, up+1

)
= max

{
Θ
(

gup+1, hup+1
)[

1 + Θ
(

gup, hup
)]

1 + Θ
(

gup, gup+1
) , Θ

(
gup, gup+1

)}

= max

{
Θ
(
vp, vp+1

)[
1 + Θ

(
vp−1, vp

)]
1 + Θ

(
vp−1, vp

) , Θ
(
vp−1, vp

)}

= max
{

Θ
(
vp−1, vp

)
, Θ

(
vp, vp+1

)}
.

Consequently, from (27), we obtain

φ
(
αΘ

(
vp, vp+1

)) ≤ φ max
{

Θ
(
vp−1, vp

)
, Θ

(
vp, vp+1

)}− ψ
(
max

{
Θ
(
vp−1, vp

)
, Θ

(
vp, vp+1

)})
. (28)

If 0 < Θ
(
vp−1, vp

) ≤ Θ
(
vp, vp+1

)
for some p ∈ N, then, from (28), we obtain

φ
(
αΘ

(
vp, vp+1

)) ≤ φ
(
Θ
(
vp, vp+1

))− ψ
(
Θ
(
vp, vp+1

))
< φ

(
Θ
(
vp, vp+1

))
(29)

or, likewise,
αΘ

(
vp, vp+1

) ≤ Θ
(
vp, vp+1

)
, (30)

which is a contradiction. So, from (28), we conclude that

αΘ
(
vp, vp+1

) ≤ Θ
(
vp−1, vp

)
(31)

Therefore, Equation (26) holds, and λ ∈
[
1, 1

α

)
. Hence, by Equation (26) and Lemma 3.1

of [5], we deduce that {
vp

}
=

{
hup

}
=

{
gup+1

}
is a Cauchy sequence in Ω, and it converges to ü ∈ Ω. Also, as Ω is complete, so

lim
p−→+∞

hup = lim
p−→+∞

gup+1 = ü.

Hence, g and h are compatible, and we obtain

lim
p−→+∞

Θ
(

g
(
hup

)
, h

(
gup

))
= 0. (32)

Also, g and h are continuous mappings, so we have

lim
p−→+∞

g
(
hup

)
= gü, and lim

p−→+∞
h
(

gup
)
= hü. (33)

Furthermore, by using the triangular inequality and Equations (32) and (33), we obtain

1
α

Θ(hü, gü) ≤ Θ
(
hü, h

(
gup

))
+ αΘ

(
h
(

gup
)
, g

(
hup

))
+ αΘ

(
g
(
hup

)
, gü

)
(34)

152



Axioms 2024, 13, 415

Therefore, we find that
Θ(hu, gu) = 0

as p −→ +∞ in (34). Hence, u is a coincidence point of g and h in Ω.

We deduce the result below by relaxing the continuity in Theorem 4 of g and h.

Theorem 5. Consider that Ω satisfies, for any non-decreasing sequence
(

gup
) ⊂ Ω in the above

Theorem 4,
lim

p−→+∞
g
(
up

)
= gu

in gΩ, where gΩ is a closed subset of Ω, which implies that

gup � gu, gu � g(gu)

for p ∈ N. If there exists uo ∈ Ω such that guo � huo, then the weakly compatible mappings h and
g have a coincidence point in Ω. Furthermore, h and g have a common FP, if h and g commute at
their coincidence points.

Proof. As we know that the sequence:{
vp

}
=

{
hup

}
=

{
gup+1

}
,

is a Cauchy sequence, as in above Theorem 4, therefore gΩ is closed; hence, we have some
ü ∈ Ω such that

lim
p−→+∞

hup = lim
p−→+∞

gup+1 = gü.

Then, by the hypothesis, we have gup � gü for all p ∈ N. Now, we will examine that
ü is a coincidence point of h and g. By applying (23), we obtain

φ
(
αΘ

(
hvp, hu

)) ≤ φ
(

Mg
(
up, u

))− ψ
(

Ng
(
up, u

))
(35)

where

Mg
(
up, ü

)
= max

⎧⎪⎨
⎪⎩

Θ(gü,hü)[1+Θ(gup ,hup)]
1+Θ(gup ,gü)

,
Θ(gup ,hup)Θ(gü,hü)

1+Θ(hup ,hü)

,
Θ(gup ,hup)Θ(gup ,hü)

1+Θ(gup ,hü)+Θ(gü,hup)
, Θ

(
gup, gü

)
⎫⎪⎬
⎪⎭

= max{Θ(gü, gü), 0, 0, 0}
= Θ(gü, gü) as p −→ ∞

and

Ng
(
up, ü

)
= max

{
Θ(gü, hü)

[
1 + Θ

(
gup, hup

)]
1 + Θ

(
gup, gü

) , Θ
(

gup, gü
)}

= max{Θ(gü, gü), 0}
= Θ(gü, gü) as p −→ ∞.

So, Equation (35) becomes

φ

(
α lim

p−→+∞
Θ
(
hup, hu

)) ≤ φΘ(gü, hü)− ψ(Θ(gü, hü)) < φΘ(gü, hü). (36)

Consequently, we obtain

lim
p−→+∞

Θ
(
hup, hu

)
<

1
α

Θ(gü, hü). (37)
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Moreover, by the triangular inequality, we have

1
α

Θ(gü, hü) ≤ Θ
(

gü, hup
)
+ Θ

(
hup, hü

)
, (38)

then by (38) and (39), this leads to a contradiction, if gü 	= hü. Hence, gü = hü. Assume
that gü = hü = �; this mean that g and h commute at point �, then

g� = h(gü) = g(hü) = g�

and
gü = g(gü) = g�.

Then, by (36) with gü = hü and g� = h�, we obtain

φ(αΘ(hü, h�)) ≤ φ
(

Mg(ü, �)
)− ψ

(
Ng(ü, �)

)
< φ(Θ(hü, h�)) (39)

or, equivalently,
αΘ(hü, h�) ≤ Θ(hü, h�).

This contradicts the inequality, if hü 	= h�. Hence,

hü = g� = �.

The above relation shows that � is a common FP of h and g.

Definition 11. Assume (Ω, Θ,�, α) to be a POCMS with metric Θ, controlled function α, φ ∈ Φ,
and ψ ∈ Ψ. A mapping h : Ω ×Ω −→ Ω is called an almost generalized (φ, ψ)-contraction
mapping with respect to g : Ω −→ Ω such that

φ
(

αh̄Θ(h(u, v), h(u∗, v∗))
)
≤ φ(M(u, v, u∗, v∗))− ψ(N(u, v, u∗, v∗)) (40)

∀u, v, u∗, v∗ ∈ Ω and gu � gu∗ ,gv � gv∗, h̄ > 2, where

Mg(u, v, u∗, v∗) = max

⎧⎨
⎩

Θ(gu∗ ,h(u∗ ,v∗))[1+Θ(gu,h(u,v))]
1+Θ(gu,gv) , Θ(gu,h(u,v))Θ(gu∗ ,h(u∗ ,v∗))

1+Θ(h(u,v),h(u∗ ,v∗)) ,
Θ(gu,h(u,v))Θ(gu,h(u∗ ,v∗))

1+Θ(gu,h(u∗ ,v∗))+Θ(gu∗ ,h(u,v)) , Θ(gu, gu∗)

⎫⎬
⎭ (41)

and

Ng(u, v, u∗, v∗) = max
{

Θ(gu∗, h(u∗, v∗))[1 + Θ(gu, h(u, v))]
1 + Θ(gu, gv)

, Θ(gu, gu∗)
}

.

Theorem 6. Assume (Ω, Θ,�, α) to be a POCMS with metric Θ and controlled function α. A
mapping h : Ω × Ω −→ Ω is called an almost generalized (φ, ψ)-contraction mapping with
respect to g : Ω −→ Ω, and h and g are continuous functions such that h has a mixed g-monotone
property and commutes with g. Furthermore, assume that h(Ω×Ω) ⊆ g(Ω). Then, h and g have
a coupled coincidence point in Ω, if there exists an ordered pair (uo, vo) ∈ (Ω×Ω) such that
guo � h(uo, vo) and gvo � h(vo, uo).

Proof. Now, by the proof of Theorem 2.2 in [4], we can construct two sequences
{

vp
}

and{
up

}
in Ω such that gup+1 = h

(
up, vp

)
, gvp+1 = h

(
vp, up

)
, for all p ≥ 0.

Here,
{

gup
}

is a non-decreasing sequence and
{

gvp
}

is a non-increasing sequence in
Ω. Now, we replace u = up, v = vp, u∗ = up+1, v∗ = vp+1, in (40):

φ
(

αh̄Θ
(

gup+1, gup+2,
))

= φ
(

αh̄Θ
(
h
(
up, vp

)
, h

(
up+1, up+2

)))

≤ φ
(

Mg
(
up, vp, up+1, vp+1

))− ψ
(

Ng
(
up, vp, up+1, vp+1

))
(42)
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where
Mg

(
up, vp, up+1, vp+1

) ≤ max
{

Θ
(

gup, gup+1,
)
, Θ

(
gup+1, gup+2,

)}
(43)

and
Ng

(
up, vp, up+1, vp+1

)
= max

{
Θ
(

gup, gup+1,
)
, Θ

(
gup+1, gup+2,

)}
. (44)

Consequently, from (42), we have

φ
(

αh̄Θ
(

gup+1, gup+2,
))

≤ φ
(
max

{
Θ
(

gup, gup+1,
)
, Θ

(
gup+1, gup+2,

)})
(45)

−ψ
(
max

{
Θ
(

gup, gup+1,
)
, Θ

(
gup+1, gup+2,

)})
.

Likewise, we replace u = vp+1, v = up+1, u∗ = up, v∗ = vp, in (40), and we obtain

φ
(

αh̄Θ
(

gvp+1, gvp+2,
))

≤ φ
(
max

{
Θ
(

gvp, gvp+1,
)
, Θ

(
gvp+1, gvp+2,

)})

−ψ
(
max

{
Θ
(

gvp, gvp+1,
)
, Θ

(
gvp+1, gvp+2,

)})
, (46)

based on max{φ(c), φ(d)} for all c, d ∈ [0,+∞). Then, by (45) and (46), we obtain

φ
(

αh̄δp

)
≤ φ

(
max

{
Θ
(

gup, gup+1,
)
, Θ

(
gup+1, gup+2,

)
,
(

gvp, gvp+1,
)
, Θ

(
gvp+1, gvp+2,

)})

−ψ
(
max

{
Θ
(

gup, gup+1,
)
, Θ

(
gup+1, gup+2,

)
,
(

gvp, gvp+1,
)
, Θ

(
gvp+1, gvp+2,

)})
, (47)

where
δp = max

{
Θ
(

gup+1, gup+2,
)
, Θ

(
gvp+1, gvp+2,

)}
. (48)

Let us define

Γp = max
{

Θ
(

gup, gup+1,
)
, Θ

(
gup+1, gup+2,

)
,
(

gvp, gvp+1,
)
, Θ

(
gvp+1, gvp+2,

)}
, (49)

so by Equations (45)–(48), we deduce that

αh̄δp ≤ Γp. (50)

Now, we prove

δp ≤ λδp−1 ∀ p ≥ 1 where λ =
1
αh̄ ∈ [0, 1). (51)

Assume that δp = Γp, then by (50), we obtain αh̄δp ≤ δp−1, resulting in δp = 0. As
α > 0, therefore (52) is true. If

Γp = max
{

Θ
(

gup, gup+1,
)
,
(

gvp, gvp+1,
)}

,

i.e., Γp = δp−1, then (50) follows from (51).
By (50), we deduce that δp ≤ λpδo. As a result,

Θ
(

gup+1, gup+2,
) ≤ λpδo and Θ

(
gvp+1, gvp+2,

) ≤ λpδo. (52)
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Thus, according to Lemma 3.1 of [5], the sequences
{

gup
}

and
{

gvp
}

are Cauchy
sequences in Ω. We can demonstrate that h and g have a coincidence point in Ω by
applying the proof of Theorem 2.2 of [10].

Corollary 1. Assume (Ω, Θ,�, α) to be a POCMS with metric Θ and controlled function α; also,
h : Ω × Ω −→ Ω is a continuous mapping, where h satisfies the mixed monotone condition.
Assume there exist φ ∈ Φ and ψ ∈ Ψ such that

φ
(

αh̄Θ(h(u, v), h(u∗, v∗))
)
≤ φ

(
Mg(u, v, u∗, v∗)

)− ψ
(

Ng(u, v, u∗, v∗)
)
,

∀u, v, u∗, v∗ ∈ Ω and u � u∗, v � v∗, h̄ > 2, where

Mg(u, v, u∗, v∗) = max

⎧⎨
⎩

Θ(u∗ ,h(u∗ ,v∗))[1+Θ(u,h(u,v))]
1+Θ(u,v) , Θ(u,h(u,v))Θ(u∗ ,h(u∗ ,v∗))

1+Θ(h(u,v),h(u∗ ,v∗)) ,
Θ(u,h(u,v))Θ(u,h(u∗ ,v∗))

1+Θ(u,h(u∗ ,v∗))+Θ(u∗ ,h(u,v)) , Θ(u, u∗)

⎫⎬
⎭

and

Ng(u, v, u∗, v∗) = max
{

Θ(u∗, h(u∗, v∗))[1 + Θ(u, h(u, v))]
1 + Θ(u, v)

, Θ(u, u∗)
}

Then, h has a CFP in Ω, if there exists (uo, vo) ∈ Ω ×Ω such that uo � h(uo, vo) and
vo � h(vo, uo).

Proof. Choose g = Ip in Theorem 3.7; we obtain the required proof.

Corollary 2. Assume (Ω, Θ,�, α) to be a POCMS with metric Θ and controlled function α; also,
h : Ω × Ω −→ Ω is a continuous mapping, where h satisfies the mixed monotone condition.
Assume there exists ψ ∈ Ψ such that

Θ(h(u, v), h(u∗, v∗)) ≤ 1
αh̄ Mg(u, v, u∗, v∗)− 1

αh̄ ψ
(

Ng(u, v, u∗, v∗)
)

∀u, v, u∗, v∗ ∈ Ω and u � u∗, v � v∗, h̄ > 2, where

Mg(u, v, u∗, v∗) = max

⎧⎨
⎩

Θ(u∗ ,h(u∗ ,v∗))[1+Θ(u,h(u,v))]
1+Θ(u,v) , Θ(u,h(u,v))Θ(u∗ ,h(u∗ ,v∗))

1+Θ(h(u,v),h(u∗ ,v∗)) ,
Θ(u,h(u,v))Θ(u,h(u∗ ,v∗))

1+Θ(u,h(u∗ ,v∗))+Θ(u∗ ,h(u,v)) , Θ(u, u∗)

⎫⎬
⎭

and

Ng(u, v, u∗, v∗) = max
{

Θ(u∗, h(u∗, v∗))[1 + Θ(u, h(u, v))]
1 + Θ(u, v)

, Θ(u, u∗)
}

.

Then, h has a CFP in Ω, if there exists (uo, vo) ∈ Ω ×Ω such that uo � h(uo, vo) and
vo � h(vo, uo).

Theorem 7. In Theorem 6, if for all (u, v), (s, t) ∈ Ω ×Ω, there exists (a, b) ∈ Ω ×Ω such
that (h(a, b), h(b, a)) are comparable to (h(u, v), h(v, u)) and (h(s, t), h(t, s)), then h and g have
a unique CFP in Ω×Ω.

Proof. From Theorem 5, we have at least one coupled coincidence point in Ω for h and
g. Suppose that (u, v), (s, t) are two CFPs of h and g, i.e., h(u, v) = gu, h(v, u) = gv and
h(s, t) = gs, h(t, s) = gt.

Next, we have to demonstrate that gu = gs and gv = gt. By hypothesis, there
exists (a, b) ∈ Ω × Ω such that (h(a, b), h(b, a)) are comparable to (h(u, v), h(v, u)) and
(h(s, t), h(t, s)).

Assume
(h(u, v), h(v, u)) ≤ (h(a, b), h(b, a))
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and
(h(s, t), h(t, s)) ≤ (h(a, b), h(b, a)).

Assume that a∗o = a and b∗o = b, then by choosing
(
a∗1, b∗1

) ∈ Ω×Ω, as

ga∗1 = h(a∗o , b∗o ), gb∗1 = h(b∗o , a∗o ) for (p ≥ 1).

By repeating the procedure performed above, we obtain two sequences
{

ga∗p
}

and{
gb∗p

}
in Ω such that

ga∗p+1 = h
(

a∗p, b∗p
)

, gb∗p+1 = h
(

b∗p, a∗p
)

for (p ≥ 1).

In the same manner, we define a sequence
{

gup
}

,
{

gvp
}

and
{

gsp
}

,
{

gtp
}

as above
in Ω by setting uo = u, vo = v and so = s, to = t.

Additionally, we have

gup −→ h(u, v), gvp −→ h(v, u), gsp −→ h(s, t), gtp −→ h(t, s) for (p ≥ 1). (53)

As h(u, v), h(v, u) = (gu, gv) = (gu1, gv1) is comparable to (h(a∗, b∗), h(b∗, a∗)) =
(ga∗, gb∗) =

(
ga∗1, gb∗1

)
, so we obtain

(gu1, gv1) ≤ h(a∗1, b∗1).

Consequently, we determine that, through induction,

(
gup, gvp

) ≤ (
ga∗p, gb∗p

)
, for (p ≥ 1). (54)

As a result of (40), we have

φ
(

Θ
(

gu, ga∗p+1

))
≤ φ

(
αh̄Θ

(
gu, ga∗p+1

))
= φ

(
αh̄Θ

(
h(u, v), h

(
a∗p, b∗p

)))

≤ φ
(

Mg

(
u, v, a∗p, b∗p

))
− ψ

(
Ng

(
u, v, a∗p, b∗p

))
(55)

where

Mg

(
u, v, a∗p, b∗p

)
= max

⎧⎪⎨
⎪⎩

Θ(ga∗p ,h(a∗p ,b∗p))[1+Θ(gu,h(u,v))]
1+Θ(gu,ga∗p)

,
Θ(gu,h(u,v))Θ(ga∗p ,h(a∗p ,b∗p))

1+Θ(h(u,v),h(a∗p ,b∗p))
,

Θ(gu,h(u,v))Θ(gu,h(a∗p ,b∗p))
1+Θ(gu,h(a∗p ,b∗p))+Θ(ga∗p ,h(u,v))

, Θ
(

gu, ga∗p
)

⎫⎪⎬
⎪⎭

= max
{

0, 0, 0, Θ
(

gu, ga∗p
)}

= Θ
(

gu, ga∗p
)

and

Ng

(
u, v, a∗p, b∗p

)
= max

⎧⎨
⎩

Θ
(

ga∗p, h
(

a∗p, b∗p
))

[1 + Θ(gu, h(u, v))]

1 + Θ
(

gu, ga∗p
) , Θ

(
gu, ga∗p

)⎫⎬
⎭

= Θ
(

gu, ga∗p
)

.

By using (55), we have

φ
(

Θ
(

gu, ga∗p+1

))
≤ φ

(
Θ
(

gu, ga∗p
))
− ψ

(
Θ
(

gu, ga∗p
))

. (56)
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By using a similar technique, we can demonstrate that

φ
(

Θ
(

gv, gb∗p+1

))
≤ φ

(
Θ
(

gv, gb∗p
))
− ψ

(
Θ
(

gv, gb∗p
))

. (57)

We have from (57) and (58) that

φ
(

max
{

Θ
(

gu, ga∗p+1

)
, Θ

(
gv, gb∗p+1

)})
≤ φ

(
max

{
Θ
(

gu, ga∗p
)

, Θ
(

gv, gb∗p
)})

− ψ
(

max
{

Θ
(

gu, ga∗p
)

, Θ
(

gv, gb∗p
)})

< φ
(

max
{

Θ
(

gu, ga∗p
)

, Θ
(

gv, gb∗p
)})

. (58)

Consequently, we obtain, by using the property of φ,

max
{

Θ
(

gu, ga∗p+1

)
, Θ

(
gv, gb∗p+1

)}
≤ max

{
Θ
(

gu, ga∗p
)

, Θ
(

gv, gb∗p
)}

,

This demonstrates that max
{

Θ
(

gu, ga∗p
)

, Θ
(

gv, gb∗p
)}

is a decreasing sequence, and
as a result, there exists ℵ ≥ 0 such that

lim
p−→+∞

max
{

Θ
(

gu, ga∗p
)

, Θ
(

gv, gb∗p
)}

= ℵ.

By letting the upper limit in (58) be as p −→ +∞, we have

φ(ℵ) ≤ φ(ℵ)− ψ(ℵ), (59)

whereas we obtain φ(ℵ) = 0, which implies that ℵ = 0. Thus,

lim
p−→+∞

max
{

Θ
(

gu, ga∗p
)

, Θ
(

gv, gb∗p
)}

= 0.

As a result, we obtain

lim
p−→+∞

Θ
(

gu, ga∗p
)
= 0 and lim

p−→+∞
Θ
(

gv, gb∗p
)
= 0. (60)

By using a similar argument, we obtain

lim
p−→+∞

Θ
(

gs, ga∗p
)
= 0 and lim

p−→+∞
Θ
(

gt, gb∗p
)
= 0. (61)

Hence, by (60) and (61), we obtain gu = gs and gv = gt. As gu = h(u, v) and
gv = h(v, uwe), then we know that g and h are commutative, and we have

g(gu) = g(h(u, v) ) = h(gu, gv) and g(gv) = g(h(v, u) ) = h(gv, gu). (62)

Assume that gu = a∗∗ and gv = b∗∗, then (62) becomes

g(a∗∗) = h(a∗∗, b∗∗) and g(b∗∗) = h(b∗∗, a∗∗). (63)

This shows that (a∗∗, b∗∗) is a CFP of h and g. Thus, it follows that g(a∗∗) = g(s) and
g(b∗∗) = g(t), that is g(a∗∗) = a∗∗ and g(b∗∗) = b∗∗. By (63), we have

a∗∗ = g(a∗∗) = h(a∗∗, b∗∗) and b∗∗ = g(b∗∗) = h(b∗∗, a∗∗).

Hence, (a∗∗, b∗∗) is a coupled common FP of h and g.
Now, for uniqueness, assume (σ∗, σ∗∗) to be another CFP of h and g, then
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σ∗ = gσ∗ = h(σ∗, σ∗∗) and σ∗∗ = gσ∗∗ = h(σ∗∗, σ∗).

As (σ∗, σ∗∗) is another coupled FP of h and g, then we obtain gσ∗ = gu = a∗∗ and
ga∗∗ = gv = b∗∗. Hence, σ∗ = gσ∗ = ga∗∗ = a∗∗ and σ∗∗ = gσ∗∗ = gb∗∗ = b∗∗. This
completes the proof.

Theorem 8. Additionally, in the hypotheses of Theorem 6, if guo and gvo are comparable, then h
and g have a unique common fixed point in Ω.

Proof. By Theorem 6, h and g have a unique common FP (u, v) ∈ Ω. It is sufficient to
demonstrate that u = v. Then, by the hypothesis, guo and gvo are comparable. Now, we
assume that guo � gvo. So, by induction, we deduce that gup � gvp for all p ≥ 0. We take
the sequence

{
gup

}
and

{
gvp

}
from Theorem 5.

Now, by Lemma 1, we obtain

φ
(

αh̄−2Θ(u, v)
)

= φ

(
αh̄ 1

α2 Θ(u, v)
)
≤ lim

p−→+∞
sup φ

(
αh̄Θ

(
up+1, vp+1

))
= lim

p−→+∞
sup φ(αhΘ(h(up, vp), h(vp, up)))

≤ lim
p−→+∞

sup φ
(

Mg
(
up, vp, vp, up

))− lim
p−→+∞

inf ψ
(

Ng
(
up, vp, vp, up

))
≤ φ(Θ(u, v))− lim

p−→+∞
inf ψ

(
Ng

(
up, vp, vp, up

))
< φ(Θ(u, v)),

which is a contradiction. Hence, u = v, i.e., h and g have a unique common FP in Ω.

Remark 1. We know that the controlled metric space becomes a metric space when we take a
function in the triangular inequality equal to 1. Then, the condition of Jachymski’s [11] result

φ(Θ(h(u, v), h(u∗, v∗))) ≤ φ max{Θ(gu, gu∗), Θ(gv, gv∗)} − ψ max{Θ(gu, gu∗), Θ(gv, gv∗)}

is equal to
φ(Θ(h(u, v), h(u∗, v∗))) ≤ ϕ(max{Θ(gu, gu∗), Θ(gv, gv∗)}),

where φ ∈ Φ, φ ∈ Ψ, ϕ : [0,+∞) −→ [0,+∞) is continuous, and ϕ(t) < t ∀ t > 0 and
ϕ(t) = 0 iff t = 0. As a result, we generalize and expand the findings of the study by [12–16] and
several other comparable results.

Corollary 3. Assume (Ω, Θ,�, α) to be a CPOCMS with metric Θ and controlled function α;
also, h : Ω −→ Ω is a continuous non-decreasing mapping with partial order � such that there
exists uo ∈ Ω with uo � huo. Assume that

φ(αΘ(hu, hv)) ≤ φ(M(u, v))− ψ(M(u, v)). (64)

Here, the conditions upon M(u, v) and φ, ψ are similar to Theorem 1. Then, h has a unique
FP in Ω.

Proof. Setting M(u, v) = N(u, v) in a contractive condition (3) and by utilizing Theorem 1,
we obtain the proof.

Corollary 4. Assume (Ω, Θ,�, α) to be a CPOCMS with metric Θ and controlled function α;
also, h : Ω −→ Ω is a continuous non-decreasing mapping with partial order � . Now, for any
u, v ∈ Ω with partial order u � v, there exists k ∈ [0, 1) such that

Θ(hu, hv) ≤ k
α

max

⎧⎨
⎩

Θ(v,hv)[1+Θ(u,hu)]
1+Θ(u,v) , Θ(u,hu)Θ(v,hv)

1+Θ(hu,hv) ,
Θ(u,hu)Θ(u,hv)

1+Θ(u,hv)+Θ(v,hu) , Θ(u, v)

⎫⎬
⎭ (65)
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if there exists uo ∈ Ω with uo � huo, then h has a unique FP in Ω.

Proof. Take φ(t) = t and ψ(t) = (1− k)t, for all t ∈ (0,+∞) in Corollary 3

Assume Ω = {0, 1, 2, 3}. Define Θ : Ω −→ Ω and α : Ω×Ω −→ [1, ∞) to be a control
function with partial order “�”on Ω defined by

Θ(u, v) = 0 if u, v ∈ Ω & u = v

Θ(u, v) = 2 if u, v ∈ {0, 1, 2}
Θ(u, v) = 6 if u ∈ {0, 1, 2} & v = 3

Θ(u, v) = 24 if u = 2 & v = 3.

Define a mapping h : Ω −→ Ω by h(0) = h(1) = h(2) = 1 and h(3) = 2. Assume
φ(t) = t

3 and ψ(t) = t
6 for t ∈ [0, ∞+), then all conditions of Corollary 3 are fulfilled;

hence, h has a fixed point in Ω.

4. Application

In this section, we explore the existence of solutions for a set of nonlinear integral
equations by manipulating the findings established in the preceding sections.

Consider the following system of integral equations:

x(t) = L(t) +
T∫
0

K(t, r)[θ(r, x(r)) + ϑ(r, y(r))]dr

y(t) = L(t) +
T∫
0

K(t, r)[θ(r, y(r)) + ϑ(r, x(r))]dr.

Now, the system of integral equations will be examined under the following assumptions:

(i) θ, ϑ : [0.T]×R −→ R are continuous;
(ii) L : [0, T] −→ R is continuous;
(iii) K : [0, T]×R −→ [0, ∞) is continuous;
(iv) There exists a w > 0 such that, for all x, y ∈ R,

0 ≤ θ(r, y)− θ(r, x) ≤ w(y− x),

0 ≤ ϑ(r, x)− ϑ(r, y) ≤ w(y− x);

(v)

24q−43wq max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

< 1;

(vi) There exist continuous functions α∗, β∗ : [0, T] −→ R such that

α∗(t) ≤ L(t) +
T∫
0

K(t, r)[θ(r, α∗(r)) + ϑ(r, β∗(r))]dr,

β∗(t) ≤ L(t) +
T∫
0

K(t, r)[θ(r, β∗(r)) + ϑ(r, α∗(r))]dr.

Assume that  = C([0, T],!) is a space of all continuous functions defined on [0, T]
provided with the controlled metric space given by

Θ(u, v) = max
t∈[0,T]

|u(t)− v(t)|q
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for all u, v ∈  , where α = 2q−1 and q ≥ 1. Now, we endow  with partial order �
given by u � v ⇐⇒ u(t) � v(t) for all t ∈ [0, T].

It is recognized that ( , Θ,�) is regular.

Theorem 9. Considering the above-mentioned conditions (i)–(vi) and that the system of equations
have a solution  2, where  = C([0, T],!).

Proof. Now, we assume the operators:  2 −→  and � :  −→  defined by

(ξ1 , ξ2)(t) = L(t) +
T∫
0

K(t, r)[θ(r, ξ1(r)) + ϑ(r, ξ2(r))]dr

and �(ξ∗) = ξ∗ for all t ∈ [0, T], and ξ1 , ξ2 , ξ∗ ∈  . Assume ξ1 , ξ2 u, v ∈  with ξ1 � u and
ξ2 � v. Since they have a mixed monotone property, we have

(u, v) � (ξ1 , ξ2).

Alternatively,

Θ((ξ1 , ξ2), (u, v)) = max
t∈[0,T]

|(ξ1 , ξ2)(t)− (u, v)(t)|q.

Observe that, for all t ∈ [0, T] and from (iv) and the fact that for all a, b, c ≥ 0,

(a + b + c)q ≤ 22q−2aq + 22q−2bq + 22q−2cq,

we have

(|(ξ1 , ξ2 )(t)− (u, v)(t)|)q =

∣∣∣∣∣∣∣∣∣

T∫
0

K(t, r)[θ(r, ξ1 (r))− θ(r, u(r))]dr

+
T∫
0

K(t, r)[ϑ(r, ξ2 (r))− ϑ(r, v(r))]dr

∣∣∣∣∣∣∣∣∣

q

≤

⎛
⎜⎜⎜⎝
∣∣∣∣∣∣∣∣∣

T∫
0

K(t, r)[θ(r, ξ1 (r))− θ(r, u(r))]dr

+
T∫
0

K(t, r)[ϑ(r, ξ2 (r))− ϑ(r, v(r))]dr

∣∣∣∣∣∣∣∣∣

⎞
⎟⎟⎟⎠

q

≤

⎛
⎜⎜⎜⎜⎝

22q−2

∣∣∣∣∣
T∫
0

K(t, r)[θ(r, ξ1 (r))− θ(r, u(r))]dr

∣∣∣∣∣
q

+22q−2

∣∣∣∣∣
T∫
0

K(t, r)[θ(r, ξ2 (r))− θ(r, v(r))]dr

∣∣∣∣∣
q

⎞
⎟⎟⎟⎟⎠

≤ 22q−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝

T
T∫
0
|K(t, r)[θ(r, ξ1 (r))− θ(r, u(r))]|dr

⎞
⎟⎠

q

+

⎛
⎜⎝

T
T∫
0
|K(t, r)[θ(r, ξ2 (r))− θ(r, v(r))]|dr

⎞
⎟⎠

q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 22q−2 jq

⎡
⎢⎢⎢⎢⎣

(
max

r∈[0,T]
|ξ1 (r)− u(r)|

)q

+

(
max

r∈[0,T]
|ξ2 (r)− v(r)|

)q

⎤
⎥⎥⎥⎥⎦
⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

= 22q−2 jq

⎡
⎣ max

r∈[0,T]
|ξ1 (r)− u(r)|q

+ max
r∈[0,T]

|ξ2 (r)− v(r)|q
⎤
⎦
⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q
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thus

max
r∈[0,T]

((ξ1 , ξ2)(t)− (u, v)(t))q ≤ 22q−2 jq[Θ(ξ1 , u) + Θ(ξ2 , v)] max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

≤ 22q−2 jq max{Θ(ξ1 , u) + Θ(ξ2 , v)}

max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

.

Using the notion of the controlled metric space to emphasize this concept, we obtain

max
r∈[0,T]

((ξ1 , ξ2)(t)− (u, v)(t))q ≤ 22q−2 jq[Θ(ξ2 , v) + Θ(ξ1 , u) + Θ(ξ2 , v)] max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

≤ 22q−23jq max[Θ(ξ2 , v), Θ(ξ1 , u)] max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

≤ 22q−23jq max[Θ(ξ1 , u), Θ(ξ2 , v), Θ(ξ1 , u)]

max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

and

max
r∈[0,T]

((ξ2 , ξ1)(t)− (v, u)(t))q ≤ 22q−2 jq[Θ(ξ1 , u) + Θ(ξ2 , v) + Θ(ξ2 , v)] max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

≤ 22q−23jq max[Θ(ξ1 , u), Θ(ξ2 , v)] max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

.

Therefore, based on the three inequalities above, we obtain

max{Θ((ξ1 , ξ2), (u, v)), Θ((ξ2 , ξ1), (v, u))}

≤ 22q−23jq max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

max{Θ(ξ1 , u), Θ(ξ2 , v)}

≤
24q−43jq max

t∈[0,T]

(
T∫
0
|K(t, r)|dr

)q

22q−2 max{Θ(ξ1 , u), Θ(ξ2 , v)}

but from (v), we have

24q−43jq max
t∈[0,T]

⎛
⎝ T∫

0

|K(t, r)|dr

⎞
⎠

q

< 1.

This demonstrates that the operator satisfies the contractive condition seen in
Corollary 2.8 [19] with (ε = 2). Consider the functions that occur in assumption (vi) as
α∗, β∗, Next, by (vi), we obtain

α∗ � (α∗, β∗), β∗ � (α∗, β∗).
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With the help of corollary 2.8 in [19], we determine the presence of ξ1 , ξ2 ∈ Ω such that

ξ1 = (ξ1 , ξ2) and ξ2 = (ξ2 , ξ1).

5. Conclusions

In this work, we proved several concrete theorems concerning FPs, common FPs, coin-
cidence points, coupled coincidence points, and coupled common fixed points satisfying
(φ, Ψ)-contractive mappings in the context of the POCMS. Furthermore, we provided sev-
eral non-trivial examples and an application to the system of nonlinear integral equations.
This work is extendable in the framework of partially ordered double controlled metric
spaces, partially ordered fuzzy metric spaces, partially ordered intuitionistic fuzzy metric
spaces, and many others.
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