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Preface to ”Topological Groups”

In 1900 David Hilbert presented an address at the International Congress of Mathematicians in

Paris and formulated 23 problems that influenced much of the research in the 20th century. The fifth

of these problems asked whether every locally euclidean group admits a Lie group structure. This

motivated a great amount of research on locally compact groups, culminating in the 1950s with

the work of Gleason, Iwasawa, Montgomery, Yamabe, and Zippin, which gave a positive answer

to Hilbert’s question and developed much structure theory of locally compact groups to boot.

In the 1940s, the work on the free topological groups of Markov and Graev expanded the study

of topological groups in a serious way to non-locally compact groups. In the early 21st century,

pro-Lie groups were introduced as a natural and well-behaved extension of the notions of connected

locally compact groups and compact groups focusing on their Lie theory. The Special Issue of Axioms

called “Topological Groups: Yesterday, Today, Tomorrow” was published as book in 2016 and has

had a tremendous reception. It addressed some of the significant research of this 115-year period.

A wonderful feature of the book was the inclusion of surveys and a large number of open questions.

This second volume on topological groups, called “Topological Groups: Advances, Surveys, and

Open Questions”, contains recent articles by some of the best scholars in the world on topological

groups including Taras Banakh, Michael Megrelishvili, George A. Willis, Dmitri Shakhmatov, and

O’lga V. Sipacheva, as well as a paper by the renowned scholar Saharon Shelah. A feature of the

first volume was the surveys, and we continue that tradition in this second volume with three

new surveys. These surveys are of interest, not only to the expert but also to those who are less

experienced. Particularly exciting to active researchers, especially young researchers, is the inclusion

of over three dozen open questions. This volume consists of 11 papers containing many new and

interesting results and examples across the spectrum of topological group theory and related topics.

The first paper in this book is “Separability of Topological Groups: A Survey with Open

Problems” by Arkady Leiderman and Sidney A. Morris. In recent years, Leiderman has been a leader

in the study of the separability of topological groups. This paper alone states 20 open questions and

puts them in context.

The second paper, “Categorically Closed Topological Groups”, is also a survey, this time by

Taras Banakh. This paper surveys existing and new results on topological groups that are C-closed

for various categories C of topologized semigroups. In particular, it analyzes solutions to a general

problem consisting of 45 subproblems.

The third paper is “Selective Survey on Spaces of Closed Subgroups of Topological Groups” by

Igor V. Protasov. This paper surveys the Chabauty topology and the Vietoris topology on the set of

all closed subgroups of a topological group, and in the author’s words “...is my subjective look at this

area”.

The fourth paper, “No Uncountable Polish Group Can be a Right-Angled Artin Group”, is by

Gianluca Paolini and Saharon Shelah. Generalizing results on free groups and free abelian groups,

the authors prove that the automorphism group of a countable structure cannot be an uncountable

right-angled Artin group.

The fifth paper is “Computing the Scale of an Endomorphism of a Totally Disconnected Locally

Compact Group” by George A. Willis. While a substantial amount of information about the structure

of connected locally compact groups, even almost connected locally compact groups, has been known

for over half a century, little of substance was known about totally disconnected locally compact
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groups before the deep contributions of Willis. In this paper, the scale of an endomorphism of a

totally disconnected locally compact group is defined and “the information required to compute the

scale is reviewed from the perspective of the, as yet incomplete, general theory of totally disconnected,

locally compact groups”.

The sixth paper is “Extending Characters of Fixed Point Algebras” by Stefan Wagner. Given a

dynamical system (A, G, a) with a complete commutative continuous inverse algebra A and a compact

group G, it is shown that each character of the corresponding fixed point algebra can be extended to

a character of A.

The seventh paper is “A Note on the Topological Group c 0” by Michael Megrelishvili. It is

shown that Gromov’s compactification of c 0 is not a semigroup compactification. The paper also

contextualizes three open questions.

The eighth paper is “Large Sets in Boolean and Non-Boolean Groups and Topology” by Ol’ga V.

Sipacheva. “Various notions of large sets in groups, including the classical notions of thick, syndetic,

and piecewise syndetic sets, and the new notion of vast sets in groups, are studied, with an emphasis

on the interplay between such sets in Boolean groups. Natural topologies closely related to vast sets

are considered; as a byproduct, interesting relations between vast sets and ultrafilters are revealed.”

The ninth paper is “Selectively Pseudocompact Groups without Infinite Separable

Pseudocompact Subsets” by Dmitri Shakhmatov and Vı́ctor Hugo Yañez. This paper answers

an open question by producing a ZFC example of a selectively pseudocompact (abelian) group that is

not selectively sequentially pseudocompact. This leaves open the question: is there a ZFC example of

a countably compact (abelian) group that is not selectively sequentially pseudocompact? The authors

also show that that the free precompact Boolean group of a topological sum of spaces, each of which

is either maximal or discrete, contains no infinite separable pseudocompact subsets. The authors also

state another open question.

The tenth paper is “(L)-Semigroup Sums” by John R. Martin. Noting that an (L)-semigroup S is

a compact n-manifold with connected boundary B together with a monoid structure on S such that B

is a subsemigroup of S, the author shows that no (L)-semigroup sum of dimension less than or equal

to five admits an H-space structure, and that such sums cannot be a retract of a topological group.

The eleventh and final paper is “Varieties of Coarse Spaces” by Igor Protasov. The study of

varieties of groups has its roots in the 1930s with the work of Garrett Birkoff and B.H. Neumann.

The study of varieties of topological groups began with a series of papers by Sidney A. Morris, the

first of which appeared in 1969 and resulted from research he began as an undergraduate under the

supervision of Ian D. Macdonald. This paper is a natural extension of that work. A class of coarse

spaces is called a variety if it is closed under the formation of subspaces, coarse images, and products.

The author classifies the varieties of coarse spaces and, in particular, shows that if a variety contains

an unbounded metric space then it is the variety of all coarse spaces.

Sidney A. Morris

Special Issue Editor
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Abstract: Separability is one of the basic topological properties. Most classical topological groups
and Banach spaces are separable; as examples we mention compact metric groups, matrix groups,
connected (finite-dimensional) Lie groups; and the Banach spaces C(K) for metrizable compact spaces
K; and �p, for p ≥ 1. This survey focuses on the wealth of results that have appeared in recent years
about separable topological groups. In this paper, the property of separability of topological groups is
examined in the context of taking subgroups, finite or infinite products, and quotient homomorphisms.
The open problem of Banach and Mazur, known as the Separable Quotient Problem for Banach spaces,
asks whether every Banach space has a quotient space which is a separable Banach space. This paper
records substantial results on the analogous problem for topological groups. Twenty open problems
are included in the survey.

Keywords: separable topological group; subgroup; product; isomorphic embedding; quotient group;
free topological group

1. Introduction

All topological spaces and topological groups are assumed to be Hausdorff and all topological
spaces are assumed to be infinite unless explicitly stated otherwise.

The fundamental topological operations which produce new topological groups from given
ones are:

(1) taking subgroups;
(2) taking finite or infinite products;
(3) open continuous homomorphic images = quotient images;
(4) (topological group) isomorphic embeddings.

A topological space which has a dense countable subspace is called separable.
The main aim of this survey paper is to present systematically the results concerning the behavior

of separability of topological groups with respect to the topological operations listed above and make
clear which problems are open. Much of the material is from the recent publications [1–8].

Informally speaking, this survey contributes to the manifestation of the phenomenon that the
structure of topological groups is much more sensitive to the presence of countable topological
properties than is the structure of general topological spaces.

Section 2 sketches the relevant background results about separability of general topological
spaces. Section 3 is devoted to the closed subgroups of separable topological groups and isomorphic

Axioms 2019, 8, 3; doi:10.3390/axioms8010003 www.mdpi.com/journal/axioms1
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embeddings into separable topological groups. Section 4 is devoted to the products of separable
topological groups and the products of separable topological vector spaces. Section 5 is devoted to the
separable quotient problem for general topological groups. Section 6 is devoted to the metrizable and
separable quotients of free topological groups. Section 7 deals with the question of when an abstract
group can be equipped with a separable topological group topology.

At the end of most sections we pose open problems, 20 problems in all. Throughout the paper
anything labeled as a Problem is an open problem. We also have many Questions, for which an answer
is provided.

The reader is advised to consult the monographs of Engelking [9] and Arhangel’skii and
Tkachenko [10] for any notions which are not explicitly defined in our paper.

2. Separability of Topological Spaces

The weight w(X) of a topological space X is defined as the smallest cardinal number |B|, where
B is a base of the topology on X. The density character d(X) of a topological space X is min{|A| :
A is dense in X}. Recall that if d(X) ≤ ℵ0, then we say that the space X is separable. We denote by c

the cardinality of continuum.
A topological space X is said to be hereditarily separable if X and every subspace of X is separable.

A topological space is said to be second countable if its topology has a countable base. A topological
space X is said to have a countable network if there exists a countable family B of (not necessarily open)
subsets such that each open set of X is a union of members of B.

• Any space with a countable network is hereditarily separable;
• a metrizable space is separable if and only if it is second countable;
• any continuous image of a separable space is separable;
• countable networks are preserved by continuous images.

2.1. Weight of Separable Topological Spaces

Theorem 1. (De Groot, ([11], Theorem 3.3)) If X is a separable regular space, then w(X) ≤ c. More generally,
every regular space X satisfies w(X) ≤ 2d(X), and then |X| ≤ 2w(X) ≤ 22d(X)

.

Compact dyadic spaces are defined to be continuous images of generalized Cantor cubes {0, 1}κ ,
where κ is an arbitrary cardinal number. It is well-known ([12], Theorem 10.40) that every compact
group is dyadic.

Proposition 1. (Engelking, ([13], Theorem 10)) Let κ be an infinite cardinal. A compact dyadic space K with
w(K) ≤ 2κ satisfies d(K) ≤ κ. In particular, if w(K) ≤ c, then K is separable.

2.2. Products of (Hereditarily) Separable Topological Spaces

Theorem 2. (Hewitt–Marczewski–Pondiczery, [9]) Let {Xi : i ∈ I} be a family of topological spaces and
X = ∏i∈I Xi, where |I| ≤ 2κ for some cardinal number κ ≥ ω. If d(Xi) ≤ κ for each i ∈ I, then d(X) ≤ κ.
In particular, the product of no more than c separable spaces is separable.

Remark 1. The Sorgenfrey line S is a hereditarily separable space whose square S × S has
the uncountable discrete subspace {(x,−x) : x ∈ S} as a subspace and so S × S is not
hereditarily separable.

Proposition 2 ([1]). Let X be a hereditarily separable space and Y a space with a countable network. Then the
product X ×Y is also hereditarily separable.
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2.3. Closed Embeddings into Separable Topological Spaces

Any compact space of weight not greater than c homeomorphically embeds into the separable
compact cube [0, 1]c.

A Tychonoff space X is called pseudocompact if every continuous real-valued function defined on
X is bounded. Similarly to Theorem 11 one can prove:

Proposition 3. Every Tychonoff space of weight not greater than c is homeomorphic to the closed subspace of a
separable pseudocompact space.

2.4. Separable Quotient Spaces of Topological Spaces

Assume ϕ : X → Y is a mapping such that (1) ϕ is surjective, (2) ϕ is continuous, and (3) for
U ⊆ Y, ϕ−1(U) is open in X implies that U is open in Y. In this case, the mapping ϕ is called a
quotient mapping.

Every closed mapping and every open mapping is a quotient mapping.
The majority of topological properties are not preserved by quotient mappings. For instance,

a quotient space of a metric space need not be a Hausdorff space, and a quotient space of a separable
metric space need not have a countable base.

A surjective continuous mapping ϕ : X → Y is said to be R-quotient [14] if for every real-valued
function f on Y, the composition f ◦ ϕ is continuous if and only if f is continuous. Clearly, every
quotient mapping is R-quotient, but the converse is false.

Let ϕ : X → Y be a surjective continuous mapping, where the space Y is Tychonoff. Then Y admits
the finest topology, say, σ such that the mapping ϕ : X → (Y, σ) is R-quotient. The topology σ of Y
is initial with respect to the family of real-valued functions f on Y such that the composition f ◦ ϕ is
continuous. It is easy to see that the space (Y, σ) is also Tychonoff and that σ is finer than the original
topology of Y. We say that σ is the R-quotient topology on Y (with respect to ϕ). Notice that the mapping
ϕ : X → (Y, σ) remains continuous.

Proposition 4 ([2]). Every continuous mapping of a pseudocompact space onto a first countable Tychonoff
space is R-quotient. Therefore for every pseudocompact space there exists an R-quotient mapping onto infinite
subset of the closed unit interval [0, 1]. Every locally compact space also admits an R-quotient mapping onto an
infinite subset of the closed unit interval [0, 1].

Recall that the class of Lindelöf Σ-spaces is the smallest class of topological spaces which contains
all compact and all separable metrizable topological spaces, and is closed with respect to countable
products, closed subspaces, and continuous images (see [10], Section 5.3).

Proposition 5 ([2]). For every Lindelöf Σ-space (in particular, σ-compact space) X there exists an R-quotient
mapping onto an infinite space with a countable network.

2.5. Open Problems

Problem 1 ([2]). Does there exist an R-quotient mapping from each Tychonoff space onto an infinite subspace
of [0, 1]?

Furthermore, a more particular question below is open:

Problem 2 ([2]). Does there exist an R-quotient mapping from each Lindelöf space onto an infinite separable
Tychonoff space?

3
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3. Subgroups of Separable Topological Groups

3.1. Topological Groups with a Dense Compactly Generated Subgroup

A topological group G is said to be compactly generated if it has a compact subspace K such that
the smallest subgroup of G which contains K is G itself. The topological group G is said to be finitely
generated modulo open sets if for every open set U ⊆ G, there exists a finite set F ⊂ G such that the
smallest subgroup of G which contains F ∪U is G itself.

Since every metrizable compact space is separable, it is easy to see that every metrizable
topological group which has a dense compactly generated subgroup is separable. The next theorem
says under what conditions the converse is also true.

Theorem 3 ([15]). A metrizable topological group G has a dense compactly generated subgroup if and only if it
is separable and finitely generated modulo open sets.

Corollary 1. Let G be a metrizable connected topological group. Then G is separable if and only if it has a dense
compactly generated subgroup.

Corollary 2. Let G be an additive topological group of a metrizable topological vector space. Then G is separable
if and only if it has a dense compactly generated subgroup.

3.2. Characterization of Subgroups of Separable Topological Groups

A topological group is said to be ω-narrow ([10], Section 3.4) if it can be covered by countably
many translations of every neighborhood of the identity element. It is known that every separable
topological group is ω-narrow (see [10], Corollary 3.4.8). The class of ω-narrow groups is productive
and hereditary with respect to taking arbitrary subgroups ([10], Section 3.4), so ω-narrow groups
need not be separable. In fact, an ω-narrow group G can have uncountable cellularity, i.e., there is an
uncountable family of disjoint non-empty open subsets in G (see [10], Example 5.4.13).

The following theorem characterizes the class of ω-narrow topological groups.

Theorem 4. (Guran, [16]) A topological group G is ω-narrow if and only if it is topologically isomorphic to a
subgroup of a product of second countable topological groups.

A topological group which has a local base at the identity element consisting of open subgroups
is called protodiscrete. A complete protodiscrete group is said to be prodiscrete. Protodiscrete topological
groups are exactly the totally disconnected pro-Lie groups ([17], Proposition 3.30).

Theorem 5 ([4]). A (protodiscrete abelian) topological group H is topologically isomorphic to a subgroup of a
separable (prodiscrete abelian) topological group if and only if H is ω-narrow and satisfies w(H) ≤ c.

It is natural to compare the restrictions on a given topological group G imposed by the existence
of either a topological embedding of G into a separable regular space or a topological isomorphism of
G onto a subgroup of a separable topological group.

Let us note that the first of the two classes of topological groups is strictly wider than the second
one. In order to show this, consider an arbitrary discrete group G satisfying ω < |G| ≤ c. Then G
embeds as a closed subspace into the separable space Nc [9], where N is the set of positive integers
endowed with the discrete topology. However, G does not admit a topological isomorphism onto a
subgroup of a separable topological group. Indeed, every subgroup of a separable topological group
is ω-narrow by Theorem 5. Since the discrete group G is uncountable, it fails to be ω-narrow.

The above observation makes it natural to restrict our attention to ω-narrow topological groups
when considering embeddings into separable topological groups. It turns out that in the class of

4
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ω-narrow topological groups, the difference between the two types of embeddings disappears, even if
we require an embedding to be closed.

In the next result, which complements Theorem 5, we identify a large class of topological
groups with the class of closed subgroups of separable path-connected, locally path-connected
topological groups.

Theorem 6 ([4]). The following are equivalent for an arbitrary ω-narrow topological group G:

(a) G is homeomorphic to a subspace of a separable regular space;
(b) G is topologically isomorphic to a subgroup of a separable topological group;
(c) G is topologically isomorphic to a closed subgroup of a separable path-connected, locally path-connected

topological group.

Next, we consider the following question: Let G be a separable topological group. Under what
conditions is every closed subgroup of G separable?

Historically, the first non-trivial result is due to Itzkowitz [18].

Theorem 7. Let G be a separable compact topological group. Then every closed subgroup of G is separable.

Please note that σ-compactness of G is not a sufficient condition.

Example 1. Let X be any separable compact space which contains a closed non-separable subspace Y.
The free abelian topological group A(Y) naturally embeds into A(X) as a closed subgroup. Then A(X)

is a separable σ-compact group, while A(Y) is not separable—otherwise Y would be separable (see [19],
Lemma 3.1).

Let us recall that a topological group G is called feathered if it contains a non-empty compact
subset with a countable neighborhood base in G. Equivalently, G is feathered if it contains a compact
subgroup K such that the quotient space G/K is metrizable (see [10], Section 4.3). All metrizable
groups and all locally compact groups are feathered. Notice also that the class of feathered groups is
closed under taking countable products (see [10], Proposition 4.3.13).

Theorem 8 ([4]). Let a feathered topological group G be isomorphic to a subgroup of a separable topological
group. Then G is separable.

Since the class of feathered topological groups includes both locally compact and metrizable
groups, Theorem 8 provides a generalization of the results of Comfort and Itzkowitz [19] for locally
compact groups and also well-known results for metrizable groups [20,21].

Corollary 3. If a locally compact topological group G is isomorphic to a subgroup of a separable topological
group, then G is separable.

Corollary 4. If a metrizable group G is isomorphic to a subgroup of a separable topological group, then G
is separable.

Recall that a non-empty class Ω of topological groups is said to be a variety [22–27] if it is
closed under the operations of taking subgroups, quotient groups, (arbitrary) cartesian products and
isomorphic images. Let C be a class of topological groups and let V(C) be the intersection of all
varieties containing C. Then V(C) is said to be the variety generated by C. With the help of results
from [26] Corollary 4 can be extended as follows.

5
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Corollary 5. If C is any class of separable abelian topological groups, then every metrizable group in V(C)
is separable.

It is clear that Corollary 5 would be false if the metrizability condition is deleted or replaced by
feathered or even compact.

Problem 3. Does Corollary 5 remain valid if we drop the assumption that all groups in the class C are abelian?

Remark 2 ([4]). (1) A discrete (hence locally compact and metrizable) topological group G
homeomorphic to a closed subspace of a separable Tychonoff space is not necessarily separable.
Indeed, it suffices to consider the Niemytzki plane which contains a discrete copy of the real numbers,
the X-axis. Therefore Theorem 8 and Corollaries 3 and 4 would not be valid if the group G were
assumed to be a subspace of a separable Hausdorff (or even Tychonoff) space rather than a subgroup
of a separable topological group.

(2) The separable connected pro-Lie group G = Rc contains a closed non-separable subgroup.
To see this, we consider the closed subgroup Zc of G. By a theorem of Uspenskij [28], the group
Zc contains a subgroup H of uncountable cellularity. The closure of H in G, say, K is a closed
non-separable subgroup of G. Note that the group K cannot be almost connected. (See the next
subsection for discussion of almost connected groups.)

(3) A natural question is whether a connected metrizable group must be separable if it is a
subspace of a separable Hausdorff (or regular) space. Again the answer is ‘No’. Indeed, consider an
arbitrary connected metrizable group G of weight c. For example, one can take G = C(X), the Banach
space of continuous real-valued functions on a compact space X satisfying w(X) = c, endowed with
the sup-norm topology. Since w(G) = c, the space G is homeomorphic to a subspace of the Tychonoff
cube Ic, where I = [0, 1] is the closed unit interval. Thus G embeds as a subspace in a separable regular
space, but both the density and weight of G are equal to c.

3.3. Separability of Pro-Lie Groups

Early this century Hofmann and Morris, [17,29], introduced the class of pro-Lie groups, which
consists of projective limits of finite-dimensional Lie groups and proved that it contains all compact
groups, all locally compact abelian groups, and all connected locally compact groups and is closed
under the formation of products and closed subgroups. They defined a topological group G to be
almost connected if the quotient group of G by the connected component of its identity is compact [17].
Of course all compact groups, all connected topological groups and all finite or infinite products of a
set of topological groups, each factor of which is either a connected topological group or a compact
group, are almost connected.

Below we consider topological groups which are homeomorphic to a subspace of a separable
Hausdorff space.

Theorem 9 ([4]). Let G be an almost connected pro-Lie group. If G is homeomorphic to a subspace of a separable
Hausdorff space, then G is separable.

This result can be strengthened as follows.

Theorem 10 ([4]). Let G be an ω-narrow topological group which contains a closed subgroup N such that N is
an almost connected pro-Lie group and the quotient space G/N is locally compact. If G is homeomorphic to a
subspace of a separable Hausdorff space, then G is separable.

Unlike the case of almost connected pro-Lie groups, closed subgroups of separable prodiscrete
abelian groups can fail to be separable.
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Proposition 6 ([4]). Closed subgroups of separable prodiscrete abelian groups need not be separable.

3.4. Closed Topologically Isomorphic Embeddings into Separable Topological Groups

Theorems 11 and 12 given below show that there is a wealth of separable pseudocompact
topological (abelian) groups with closed non-separable subgroups.

Theorem 11 ([4]). Every precompact topological group of weight ≤ c is topologically isomorphic to a closed
subgroup of a separable, connected, pseudocompact group H of weight ≤ c.

Here is the abelian version.

Theorem 12 ([4]). Every precompact abelian group of weight ≤ c is topologically isomorphic to a closed
subgroup of a separable, connected, pseudocompact abelian group H of weight ≤ c.

Theorem 13 ([4]). Under the Continuum Hypothesis CH, there exists a separable countably compact abelian
topological group G which contains a closed non-separable subgroup.

Problem 4. Does there exist in ZFC a separable countably compact topological group which contains a
non-separable closed subgroup?

4. Products of Separable Topological Groups/Locally Convex Spaces

4.1. Strongly Separable Topological Groups

Let us say that a topological group G is strongly separable (briefly, S-separable) if for any topological
group H such that every closed subgroup of H is separable, the product G× H has each of its closed
subgroups separable. What are the S-separable groups?

One of the main statements is the following result which can be reformulated by saying that every
separable compact group is S-separable.

Theorem 14 ([1]). Let G be a separable compact group and H be a topological group in which all closed
subgroups are separable. Then all closed subgroups of the product G× H are separable.

It is not clear to what extent one can generalize Theorem 14 by weakening the compactness
assumption on G. However by Theorem 17 some additional conditions on the groups G and/or H
have to be imposed.

The proof of Theorem 14 relies on the fact that for a compact factor G the projection G× H onto
H is a closed mapping. In the next proposition we present another situation when the projection
G× H → H turns out to be a closed mapping.

Proposition 7 ([1]). Let G be a countably compact topological group and H a separable metrizable topological
group. If all closed subgroups of G are separable, then all closed subgroups of the product G× H are separable.

Every countable group is S-separable. The theorem below unites both the compact and countable
classes of groups.

Theorem 15 ([1]). A topological group G is S-separable provided it contains a separable compact subgroup K
such that the quotient space G/K is countable.

Proposition 8 ([1]). The class of S-separable groups is closed under the operations:

(1) finite products;
(2) taking closed subgroups;

7
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(3) taking continuous homomorphic images.

4.2. Product of Two Separable Precompact/Pseudocompact Groups

Theorem 16 ([1]). Assume that 2ω1 = c. Then there exist pseudocompact abelian topological groups G and H
such that all closed subgroups of G and H are separable, but the product G× H contains a closed non-separable
σ-compact subgroup.

Recently Zhiqiang Xiao, Sánchez and Tkachenko [6] presented the first example in ZFC of
precompact (but not necessarily pseudocompact) abelian topological groups G and H with the
similar properties.

Theorem 17 ([6]). There exist precompact abelian topological groups G and H such that all closed subgroups
of G and H are separable, but the product G× H contains a closed non-separable subgroup.

Also the authors of [6] improved upon Theorem 16 by constructing, under the assumption of
2ω1 = c, a pseudocompact abelian topological group G such that every closed subgroup of G is
separable, but the square G× G contains a closed non-separable σ-compact subgroup.

Finally, the following result is obtained under the assumption of Martin’s Axiom and negation of
the Continuum Hypothesis MA&¬CH.

Theorem 18 ([6]). Assume MA&¬CH. Then there exist countably compact Boolean topological groups G
and H such that all closed subgroups of G and H are separable, but the product G × H contains a closed
non-separable subgroup.

4.3. Product of Two Separable Pseudocomplete Locally Convex Spaces

Proposition 9 ([1]). Let K be a finite-dimensional Banach space and let L be a topological vector space in which
all closed vector subspaces are separable. Then all closed vector subspaces of the product K× L are separable.

Remark 3. It is not known whether Proposition 9 remains valid for an arbitrary separable Banach
space K.

Theorem 19 ([1]). Assume that 2ω1 = c. Then there exist pseudocomplete locally convex spaces K and L such
that all closed vector subspaces of K and L are separable, but the product K× L contains a closed non-separable
σ-compact vector subspace.

4.4. Product of Continuum Many Separable Locally Convex Spaces

The classical Hewitt–Marczewski–Pondiczery Theorem 2 implies that the product of no more
than c separable topological spaces is separable. Domański [30] gave an example of a non-separable
complete locally convex space which can be embedded as a closed vector subspace of a product of c
copies of the Banach space c0. Later he extended this result in show that every product of c copies of any
infinite-dimensional Banach space has non-separable closed vector subspaces [31]. In fact, Domański
proved in [31] that if Ei, i ∈ I, with card(I) = c are separable topological vector spaces whose
completions are not q-minimal, then the product ∏i∈I Ei has a non-separable closed vector subspace.
(A topological vector space E is called q-minimal if it and all its quotient spaces are minimal, while E is
called minimal if it does not admit a strictly weaker Hausdorff topological vector space topology).

Similarly to the variety of topological groups defined earlier, a non-empty class Ω of locally
convex spaces is said to be a variety [27,32–34] if it is closed under the operations of taking subspaces,
quotient spaces, (arbitrary) cartesian products and isomorphic images. Let C be a class of locally
convex spaces, denote by V(C) the intersection of all varieties containing C. Then V(C) is said to be
the variety generated by C. We repeat that if C consists of a single object E, then V(C) is written as V(E).

8
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Theorem 20 ([3]). Let I be an index set and Ei a locally convex space for each i ∈ I. If at least c of the Ei are
not in V(R), or equivalently do not have the weak topology, then the product ∏i∈I Ei has a non-separable closed
vector subspace.

Theorem 21 ([3]). Let I be any index set and each Ei, i ∈ I, a separable locally convex space. If X is a vector
subspace of ∏i∈I Ei with Y a closed vector subspace of X such that either

(a) Y is metrizable and X/Y is separable, or
(b) Y is separable and X/Y is metrizable,

then X is separable.

Let Cp(X, E) denote the space of all continuous E-valued functions on X endowed with the
pointwise convergence topology, where E is a locally convex space. The space Cp(X, E) is a vector
subspace of EX endowed with the product topology.

Corollary 6 ([3]). Let X be a Tychonoff space. If E is a separable locally convex space, then every metrizable
vector subspace of Cp(X, E) is separable.

Proposition 10 ([3]). Let X be a Tychonoff space such that every closed vector subspace of Cp(X) is separable.
Then every closed subset F of X is a Gδ-set, that is F =

⋂∞
i=1 Ui, where each Ui is open in X.

Example 2 ([3]). Let M denote the Michael line. Then Cp(M) is a separable locally convex space
containing a non-separable closed vector subspace.

4.5. Open Problems

Problem 5 ([1]). Find the frontiers of the class of S-separable topological groups:

(a) Is every separable locally compact group S-separable?
(b) Is the abelian topological group R of all real numbers with the Euclidean topology S-separable? Does there

exist a separable metrizable group which is not S-separable?
(c) Is the free topological group on the closed unit interval [0, 1] S-separable?

The following problem arises in an attempt to generalize Proposition 7:

Problem 6 ([1]). Let G be a countably compact topological group such that all closed subgroups of G are
separable, and H a topological group with a countable network. Are the closed subgroups of G× H separable?

Denote by S the smallest class of topological groups which is generated by all compact separable
groups and all countable groups and is closed under the operations listed in (1)–(3) of Proposition 8.
It is not difficult to verify that if G ∈ S, then G contains a compact separable subgroup K such that
the quotient space G/K is countable. In the next problem we ask if this property characterizes the
groups from S:

Problem 7 ([1]). Does a topological group G belong to the class S if and only if G contains a compact separable
subgroup K such that the quotient space G/K is countable?

Problem 8 ([1]). Are Theorems 16 and 19 valid in ZFC alone?

Problem 9 ([3]). Characterize those Tychonoff spaces X such that all closed vector subspaces of Cp(X)

are separable.

9
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5. The Separable Quotient Problem for General Topological Groups

Let us begin this section with a famous unsolved problem in Banach space theory. The Separable
Quotient Problem for Banach Spaces has its roots in the 1930s and is due to Stefan Banach and
Stanisław Mazur.

Problem 10. (Separable Quotient Problem for Banach Spaces) Does every infinite-dimensional Banach
space have a quotient Banach space which is separable and infinite-dimensional?

In the literature many special cases of the Separable Quotient Problem for Banach Spaces have
been proved, for instance:

• Every infinite-dimensional reflexive Banach space has a separable infinite-dimensional quotient
Banach space (Pełczyński, 1964).

• Every Banach space C(K), where K is a compact space, has a separable infinite-dimensional
quotient Banach space (Rosenthal, 1969; Lacey, 1972).

• Every Banach dual of any infinite-dimensional Banach space, E∗, has a separable
infinite-dimensional quotient Banach space (Argyros, Dodos, Kanellopoulos, 2008).

However, the general Problem 10 remains unsolved.
Turning to locally convex spaces one can state the analogous problem.

Question 1. (Separable Quotient Problem for Locally Convex Spaces) Does every infinite-dimensional
locally convex space have a quotient locally convex space which is separable and infinite-dimensional?

• Every infinite-dimensional Fréchet space which is non-normable has the separable metrizable
topological vector space Rω as a quotient space (Eidelheit, 1936).

Please note that there are many other partial positive solutions in the literature to Problem 1
(see [35]). However, Ka̧kol, Saxon and Todd [36] answered Question 1 in the negative. Recall that
a barrel in a topological vector space is a convex, balanced, absorbing and closed set. A Hausdorff
topological vector space E is called barreled if every barrel in E is a neighborhood of the zero element.

Theorem 22 ([36]). There exists an infinite-dimensional barreled locally convex space without any quotient
space which is an infinite-dimensional separable locally convex space.

Now we formulate various natural versions of the Separable Quotient Problem(s) for Topological
Groups. Unless explicitly stated otherwise the results presented in this section are from the paper [5].

Problem 11. (Separable Quotient Problem for Topological Groups) Does every non-totally disconnected
topological group have a quotient group which is a non-trivial separable topological group?

Problem 12. (Separable Infinite Quotient Problem for Topological Groups) Does every non-totally
disconnected topological group have a quotient group which is an infinite separable topological group?

Problem 13. (Separable Metrizable Quotient Problem for Topological Groups) Does every non-totally
disconnected topological group have a quotient group which is a non-trivial separable metrizable
topological group?

Problem 14. (Separable Infinite Metrizable Quotient Problem for Topological Groups) Does every
non-totally disconnected topological group have a quotient group which is an infinite separable metrizable
topological group?

10
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It is natural to consider these questions for various prominent classes of topological groups such
as Banach spaces, locally convex spaces, compact groups, locally compact groups, pro-Lie groups,
pseudocompact groups, and precompact groups. The paper [7] provides an interesting solution for
Banach spaces.

Theorem 23 ([7]). Let E be a locally convex space (over R or C). If E has a subspace which is an
infinite-dimensional Fréchet space, then E has the (infinite separable metrizable) tubby torus group Tω as
a quotient group.

Corollary 7 ([7]). Every infinite-dimensional Fréchet space, and in particular every infinite-dimensional
Banach space, has the (infinite separable metrizable) tubby torus group Tω as a quotient group.

We denote by ϕ the complete countable infinite-dimensional locally convex space which is the
strong dual of the locally convex space Rω.

Remark 4 ([7]). There is no continuous surjective homomorphism of the separable locally convex
space ϕ onto the tubby torus Tω.

Corollary 7 suggests the following unsolved problem, a negative answer for which would
immediately yield a negative answer to the Banach-Mazur Separable Quotient Problem for Banach
Spaces, Problem 10.

Problem 15. Does every infinite-dimensional Banach space have a quotient group which is homeomorphic
to Rω?

A topological group G is said to be a SIN-group if every neighborhood of the identity of G contains
a neighborhood of the identity which is invariant under all inner automorphisms. Of course every
abelian topological group and every compact group is a SIN-group.

As we noted in Section 2 the cardinality of any regular separable topological space is not greater
than 2c. This makes the following statement interesting.

Theorem 24 ([37]). Let G be an abelian topological group or more generally a SIN-group. If G has a quotient
group which is separable, then it also has a quotient group of cardinality not greater than c.

We now consider several natural questions which are special cases of Problems 11, 12, 13, and 14.

Question 2. (Separable Quotient Problem for Locally Compact Abelian Groups) Does every infinite
locally compact abelian group have a separable quotient group which is (i) non-trivial; (ii) infinite; (iii) metrizable;
(iv) infinite metrizable?

The non-abelian version of Question 2 is:

Question 3. (Separable Quotient Problem for Locally Compact Groups) Does every non-totally
disconnected locally compact group have a separable quotient group which is (i) non-trivial; (ii) infinite;
(iii) metrizable; (iv) infinite metrizable?

As a special case of Question 3 we have:

Question 4. (Separable Quotient Problem for Compact Groups) Does every infinite compact group have
a separable quotient group which is (i) non-trivial; (ii) infinite; (iii) metrizable; (iv) infinite metrizable?

11
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5.1. Locally Compact Groups and Pro-Lie Groups

In this subsection we present a positive answer to each of Question 2 (i), (ii), (iii), and (iv) and
Question 4 (i), (ii), (iii), and (iv), and a partial answer to Question 3. Satisfying results have been
proved for pro-Lie groups. Stronger structural results have been obtained for compact abelian groups,
connected compact groups, and totally disconnected compact groups.

Theorem 25. Every non-separable compact abelian group G has a quotient group Q which is a countably
infinite product of non-trivial compact finite-dimensional Lie groups. The quotient group, Q, is therefore an
infinite separable metrizable group.

Theorem 26. Every non-separable connected compact group, G, has a quotient group, Q, which is a countably
infinite product of non-trivial compact finite-dimensional Lie groups. The quotient group, Q, is therefore an
infinite separable metrizable group.

Remark 5. No discrete group has a quotient group which is a countably infinite product of non-trivial
topological groups since every quotient of a discrete group is evidently discrete. In particular then,
a locally compact abelian group need not have a quotient group which is a countably infinite product
of non-trivial topological groups.

Theorem 27. Every non-separable connected locally compact abelian group, G, has a quotient group, Q,
which is a countably infinite product of non-trivial compact finite-dimensional Lie groups. The quotient group,
Q, is therefore an infinite separable metrizable group.

Theorem 28. Every infinite totally disconnected compact group G has a quotient group, Q, which is
homeomorphic to a countably infinite product of finite discrete topological groups. The quotient group, Q,
is thus homeomorphic to the Cantor space and therefore is an infinite separable metrizable group.

Below a positive answer to Question 4 (i), (ii), (iii), and (iv) is presented.

Theorem 29. (Separable Quotient Theorem for Compact Groups) Let G be an infinite compact group.
Then G has a quotient group which is an infinite separable metrizable (compact) group.

With the help of Theorem 29 a positive answer to Question 2 (i), (ii), (iii), and (iv) is given.

Theorem 30. (Separable Quotient Theorem for Locally Compact Abelian Groups) Let G be an infinite
locally compact abelian group. Then G has a quotient group which is an infinite separable metrizable group.

Recall that a proto-Lie group is defined in ([17], Definition 3.25) to be a topological group G for
which every neighborhood of the identity contains a closed normal subgroup N such that the quotient
group G/N is a Lie group. If G is also a complete topological group, then it is said to be a pro-Lie group.
If G is a proto-Lie group (respectively, pro-Lie group) with all the quotient Lie groups G/N discrete
then G is said to be protodiscrete (respectively, prodiscrete). It is immediately clear that if G is a proto-Lie
group which is not a Lie group, then it is not topologically simple.

Theorem 31. (Separable Quotient Theorem for Proto-Lie Groups) Let G be an infinite proto-Lie group
which is not protodiscrete; that is, G is not totally disconnected. Then G has a quotient group which is an infinite
separable metrizable (Lie) group.

Theorem 32. (Separable Quotient Theorem for σ-compact Pro-Lie groups) Let G be an infinite
σ-compact pro-Lie group. Then G has a quotient group which is an infinite separable metrizable group.

12
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Another significant generalization of Theorem 30 is Theorem 33.

Theorem 33. (Separable Quotient Theorem for Abelian Pro-Lie groups) Let G be an infinite abelian
pro-Lie group. Then G has a quotient group which is an infinite separable metrizable group.

The next theorem, which generalizes Theorem 29, provides a partial but significant answer to
Question 3.

Theorem 34. (Separable Quotient Theorem for σ-compact Locally Compact Groups) Every infinite
σ-compact locally compact group has a quotient group which is an infinite separable metrizable group.

Corollary 8. (Separable Quotient Theorem for Almost Connected Locally Compact Groups) Every
infinite almost connected locally compact group has a quotient group which is an infinite separable
metrizable group.

5.2. σ-Compact Groups, Lindelöf Σ-Groups and Pseudocompact Groups

Recall that the class of Lindelöf Σ-groups contains all σ-compact and all separable metrizable
topological groups, and is closed with respect to countable products, closed subgroups, and continuous
homomorphic images (see [10], Section 5.3).

Proposition 11. (Separable Quotient Theorem for Lindelöf Σ-groups) Let G be an infinite Lindelöf
Σ-group. Then G has a quotient group which is infinite and separable. Indeed, the topology of G is initial with
respect to the family of quotient homomorphisms onto infinite groups with a countable network.

Since every σ-compact topological group is evidently a Lindelöf Σ-group, the next result is
immediate from Proposition 11.

Corollary 9. (Separable Quotient Theorem for σ-compact Groups) Let G be an infinite σ-compact
topological group. Then G has a quotient group which is infinite and separable. Indeed, the topology of
G is initial with respect to the family of quotient homomorphisms of the group onto infinite groups with a
countable network.

Regarding Question 14, one might reasonably ask: If the topological group G has a quotient
group which is infinite and separable, does G necessarily have a quotient group which is infinite,
separable and metrizable? This question is answered negatively in the next Proposition 12.

Proposition 12. There exists a countably infinite precompact abelian group H such that every quotient group
of H is either trivial or non-metrizable.

We now consider pseudocompact groups.

Theorem 35. (Separable Quotient Theorem for Pseudocompact Groups) The topology of every infinite
pseudocompact topological group, G, is initial with respect to the family of quotient homomorphisms onto
infinite compact metrizable groups. In particular, G has a quotient group which is infinite separable compact
and metrizable.

5.3. A Precompact Topological Group Which Does Not Admit Separable Quotient Group

In this section, we show that Theorem 35 cannot be extended to precompact topological groups,
even in the weak form of the existence of nontrivial separable quotients.
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Theorem 36. There exists an uncountable dense subgroup G of the compact group Tc satisfying dim G = 0
such that every countable subgroup of G is closed in G and every uncountable subgroup of G is dense in G.
Hence every quotient group of G is either trivial or non-separable.

In fact, every power of the group G in Theorem 36 does not have non-trivial separable quotients.

Theorem 37. Let G ⊂ Tc be the group constructed in Theorem 36 and let τ ≥ 1 be a cardinal number.
Then every quotient group of Gτ is either trivial or non-separable.

A topological group is said to be a Gσ-group if it has a dense subgroup H which is the union of
a strictly increasing sequence of closed topological subgroups. Finally, we show that there exists a
Gσ-group without a nontrivial separable quotient group.

Theorem 38. For every cardinal τ ≥ c, there exists a precompact topological abelian group H satisfying
dim G = 0 and with the following properties:

(a) w(H) = τ;
(b) H =

⋃
n∈ω Hn, where H0 ⊂ H1 ⊂ H2 ⊂ · · · are proper closed subgroups of H;

(c) every quotient group of H is either trivial or non-separable.

The class of R-factorizable groups (see [10], Chapter 8) contains all pseudocompact groups as well
as σ-compact groups. We note that by Theorem 8.1.9 of [10], a locally compact group is R-factorizable
if and only if it is σ-compact. Since the group G in Theorem 36 is precompact, it is R-factorizable
according to ([10], Corollary 8.1.17).

Corollary 10. There exist infinite R-factorizable groups without non-trivial separable or metrizable quotients.

5.4. Open Problems

We note that Question 3 formulated earlier in Section 5 has not been fully answered, so we state it
now as an unsolved problem.

Problem 16. (Separable Quotient Problem for Locally Compact Groups) Does every infinite non-totally
disconnected locally compact group have a separable quotient group which is (i) non-trivial; (ii) infinite;
(iii) metrizable; (iv) infinite metrizable?

Recall that an abelian topological group G is called a reflexive topological group if the natural map
of G into its second dual group is a topological group isomorphism. The Pontryagin van-Kampen
Theorem [38] says that every locally compact abelian group is reflexive. It is also known that every
complete metrizable locally convex space, in particular every Banach space, is a reflexive topological
group ([39], Proposition 15.2). Therefore the following unsolved problem arises naturally.

Problem 17. (Separable Quotient Problem for Reflexive Topological Groups) Does every infinite
reflexive abelian topological group, G, have a separable quotient group which is (i) non-trivial; (ii) infinite;
(iii) metrizable; (iv) infinite metrizable?

Problem 18. Does there exist a precompact abelian group G as in Theorem 36 which has one of the following
additional properties:

(a) G is connected;
(b) G is Baire;
(c) G is reflexive?
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6. Quotient Groups of Free Topological Groups

Let, as usual, F(X) and A(X) denote the free topological group and the free abelian topological
group of a Tychonoff space X, respectively. A(X) is a natural quotient group of F(X), and for every X
there is a quotient mapping from A(X) onto the group of integers Z (see [10], Chapter 7).

6.1. Free Topological Groups Which Admit Second Countable Quotient Groups

A space X is called ω-bounded if the closure of every countable subset of X is compact.
Clearly, every compact space is ω-bounded, while every ω-bounded space is countably compact.

Proposition 13 ([2]). Let X be a non-scattered Tychonoff space. If X has one of the following properties (a) or
(b), then both A(X) and F(X) admit an open continuous homomorphism onto the circle group T :

(a) X is normal and countably compact;
(b) X is ω-bounded.

Proposition 14 ([2]). Let X be a scattered ω-bounded Tychonoff space. Then every quotient group of F(X) and
A(X) is either discrete and finitely generated (hence, countable) or non-metrizable.

Theorem 39 ([2]). Let X be an ω-bounded Tychonoff space. Then the following conditions are equivalent:

(a) Every metrizable quotient group of F(X) is discrete and finitely generated.
(b) Every metrizable quotient group of F(X) is finitely generated.
(c) Every metrizable quotient group of F(X) is countable.
(d) X is scattered.

Corollary 11 ([2]). Let X be either the compact space of ordinals [0, α] with the order topology or the one-point
compactification of an arbitrary discrete space. Then every metrizable quotient group of F(X) or A(X) is discrete
and finitely generated.

It turns out that free topological groups on non-pseudocompact zero-dimensional spaces do have
non-trivial metrizable quotient groups:

Proposition 15 ([2]). Let X be a non-pseudocompact zero-dimensional space. Then the groups F(X) and
A(X) admit an open continuous homomorphism onto the (countably infinite separable metrizable) discrete
group A(Z).

6.2. Free Topological Groups Which Admit Quotient Groups with a Countable Network

Proposition 16 ([2]). Let X be a locally compact or pseudocompact space. Then the groups A(X) and F(X)

admit an open continuous homomorphism onto A(S), where S is an infinite compact subspace of the closed unit
interval [0, 1], hence A(S)has a countable network.

Proposition 17 ([2]). Let X be a Lindelöf Σ-space (in particular, σ-compact space). Then the groups A(X) and
F(X) admit an open continuous homomorphism onto A(Y), where Y has a countable network, hence A(Y) also
has a countable network.

6.3. Free Topological Groups Which Admit Separable Quotient Groups

Theorem 40 ([2]). Let X be a Tychonoff space satisfying the following conditions:

(1) the closure of every countable subset of X is countable and compact;
(2) every countable compact subset of X is a retract of X.

Then every separable quotient group of F(X) is countable.
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Corollary 12 ([2]). Let X be either the space of ordinals [0, α) with the order topology or the one-point
compactification of an arbitrary discrete space. Then every separable quotient group of F(X) or A(X)

is countable.

6.4. Open Problems

Similarly to Problems 1 and 2 we can ask the following related questions.

Problem 19 ([2]). Does there exist an open continuous homomorphism of A(X) onto A(S), where X is an
arbitrary Tychonoff space and S is an infinite subspace of the closed unit interval [0, 1]?

Furthermore, a more particular question below is open:

Problem 20 ([2]). Does there exist an open continuous homomorphism of A(X) onto A(Y), where X is an
arbitrary Lindelöf space and Y is an infinite space which has a countable network?

7. Separable Group Topologies for Abelian Groups

Which abelian groups G admit a separable Hausdorff group topology? To answer the question,
the author of [8] considers three different cases:

Case 1. There is an element x ∈ G of infinite order;
Case 2. G is a bounded torsion group;
Case 3. G is an unbounded torsion group.

Theorem 41 ([8]). Let G be an abelian group with |G| ≤ 2c. Then G admits a separable, precompact, Hausdorff
group topology.

Remark 6. The “abelian” condition in Theorem 41 cannot be deleted as Shelah [40] proved that there
exist non-abelian groups which admit no non-discrete Hausdorff topological group topology. Morris
and Obraztsov ([41], Theorem L) produce an uncountable number of countably infinite groups each of
which admits no non-discrete Hausdorff topological group topology; more precisely, they identify a
continuum of pairwise non-isomorphic infinite groups, {Gi : i ∈ I}, of exponent p2, for any sufficiently
large prime p, where each proper subgroup of Gi is cyclic and each Gi does not admit any non-discrete
Hausdorff topological group topology. It is also proved in [41] that there exist non-discrete Hausdorff
topological groups G of each cardinality ℵn with no proper subgroup of the same cardinality as G.
Such groups obviously have no quotient group of smaller cardinality than that of G.

Remark 7. Yves Cornulier noticed that every abelian group G of cardinality |G| ≤ 2c embeds as a
subgroup of (Q×Q/Z)c, which is a separable Hausdorff topological group. Nevertheless, this remark
does not prove Theorem 41, because even a closed subgroup of a separable group, with the induced
topology, need not to be separable.

Yves Cornulier also kindly informed us that in sharp contrast to the abelian case, for every
uncountable cardinal τ, there exists a 2-step nilpotent group of cardinality τ that has no Hausdorff
separable group topology. So any reasonable potential generalization of Theorem 41 fails.
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Abstract: Let �C be a category whose objects are semigroups with topology and morphisms are closed
semigroup relations, in particular, continuous homomorphisms. An object X of the category �C is
called �C-closed if for each morphism Φ ⊂ X × Y in the category �C the image Φ(X) = {y ∈ Y : ∃x ∈
X (x, y) ∈ Φ} is closed in Y. In the paper we survey existing and new results on topological groups,
which are �C-closed for various categories �C of topologized semigroups.
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1. Introduction and Survey of Main Results

In this paper, we recognize topological groups which are �C-closed for some categories �C of
Hausdorff topologized semigroups.

A topologized semigroup is a topological space S endowed with an associative binary operation
S× S → S, (x, y) �→ xy. If the binary operation is (separately) continuous, then S is called a (semi)
topological semigroup. A topologized semigroup S is called powertopological if it is semitopological
and for every n ∈ N the map S → S, x �→ xn, is continuous. A topologized semigroup S is called
right− topological if for every a ∈ S the right shift S → S, x �→ xa, is continuous.

All topologized semigroups considered in this paper (except for those in Proposition 10 and Example 2)
are assumed to be Hausdorff .

Topologized semigroups are objects of many categories which differ by morphisms. The most
obvious category for morphisms has continuous homomorphisms between topologized semigroups.
A bit wider category for morphisms has partial homomorphisms, i.e., homomorphisms defined on
subsemigroups. The widest category for morphisms has semigroup relations. By a semigroup relation
between semigroups X, Y we understand a subsemigroup R ⊂ X×Y of the product semigroup X×Y.

Now we recall some standard operations on (semigroup) relations. For two (semigroup) relations
Φ ⊂ X × Y and Ψ ⊂ Y × Z their composition is the (semigroup) relation Ψ ◦Φ ⊂ X × Z defined by
Ψ ◦Φ = {(x, z) ∈ X × Z : ∃y ∈ Y (x, y) ∈ Φ, (y, z) ∈ Ψ}. For a (semigroup) relation R ⊂ X × Y its
inverse R−1 is the (semigroup) relation R−1 = {(y, x) : (x, y) ∈ R} ⊂ Y × X.

For a relation R ⊂ X × Y and subsets A ⊂ X the set R(A) = {y ∈ X : ∃a ∈ A (a, y) ∈ R} is
the image of A under the relation R. If R ⊂ X × Y is a semigroup relation between semigroups X, Y,
then for any subsemigroup A ⊂ X its image R(A) is a subsemigroup of Y. For a relation R ⊂ X ×Y
the sets R(X) and R−1(Y) are called the range and domain of R, respectively.

Semigroup relations between semigroups can be equivalently viewed as multimorphisms.
By a multimorphism between semigroups X, Y we understand a multi-valued function Φ : X � Y
such that Φ(x) ·Φ(y) ⊂ Φ(xy) for any x, y ∈ X. Observe that a multi-valued function Φ : X � Y
between semigroups is a multimorphism if and only if its graph Γ = {(x, y) ∈ X × Y : y ∈ Φ(x)} is
a subsemigroup in X ×Y. Conversely, each subsemigroup Γ ⊂ X ×Y determines a multimorphism
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Φ : X � Y, Φ : x �→ Φ(x) := {(y ∈ Y : (x, y) ∈ Γ}. In the sequel we shall identify multimorphisms
with their graphs.

A multimorphism Φ : X � Y between semigroups X, Y is called a partial homomorphism if
for each x ∈ X the set Φ(x) contains at most one point. Each partial homomorphism Φ : X � Y
can be identified with the unique function ϕ : dom(ϕ) → Y such that Φ(x) = {ϕ(x)} for each
x ∈ dom(ϕ) := Φ−1(Y). This function ϕ is a homomorphism from the subsemigroup dom(ϕ) to the
semigroup Y.

For a class C of Hausdorff topologized semigroups by c:C we denote the category whose objects
are topologized semigroups in the class C and morphisms are closed semigroup relations between the
topologized semigroups in the class C. The category c:C contains the subcategories e:C, i:C, h:C, and p:C
whose objects are topologized semigroups in the class C and morphisms are isomorphic topological
embeddings, injective continuous homomorphisms, continuous homomorphisms, and partial
continuous homomorphisms with closed domain, respectively.

In this paper, we consider some concrete instances of the following general notion.

Definition 1. Let �C be a category of topologized semigroups and their semigroup relations. A topologized
semigroup X is called �C-closed if for any morphism Φ ⊂ X × Y of the category �C the range Φ(X) is closed
in Y.

In particular, for a class C of topologized semigroups, a topologized semigroup X is called

• e:C-closed if for each isomorphic topological embedding f : X → Y ∈ C the image f (X) is
closed in Y;

• i:C-closed if for any injective continuous homomorphism f : X → Y ∈ C the image f (X) is
closed in Y;

• h:C-closed if for any continuous homomorphism f : X → Y ∈ C the image f (X) is closed in Y;
• p:C-closed if for any continuous homomorphism f : Z → Y ∈ C defined on a closed subsemigroup

Z ⊂ X the image f (Z) is closed in Y;
• c:C-closed if for any topologized semigroup Y ∈ C and any closed subsemigroup Φ ⊂ X ×Y the

range Φ(X) := {y ∈ Y : ∃x ∈ X (x, y) ∈ Φ} of Φ is closed in Y.

It is clear that for any class C of Hausdorff topologized semigroups and a topologized semigroup
X we have the implications:

c:C-closed ⇒ p:C-closed ⇒ h:C-closed ⇒ i:C-closed ⇒ e:C-closed.

In this paper, we are interested in characterizing topological groups which are e:C-, i:C-, h:C-, p:C-
or c:C-closed for the following classes of Hausdorff topologized semigroups:

• TS of all topological semigroups,
• pTS of all powertopological semigroups,
• sTS of all semitopological semigroups,
• rTS of all right-topological semigroups,

• TG of all topological groups,
• pTG of all paratopological groups,
• qTG of all quasitopological groups,
• sTG of all semitopological groups,
• rTG of all right-topological groups.

We recall that a paratopological group is a group G endowed with a topology making it a topological
semigroup. So, the inversion operation is not necessarily continuous. A quasitopological group is
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a topologized group G such that for any a, b ∈ G and n ∈ {1,−1} the map G → G, x �→ axnb,
is continuous.

The inclusion relations between the classes of topologized semigroups are described in the
following diagram (in which an arrow A→ B between classes A,B indicates that A ⊂ B).

pTG

��

TG ���� qTG �� sTG

��

�� rTG

��
TS �� pTS �� sTS �� rTS

In this paper we shall survey existing and new results related to the following general problem
(consisting of 9× 5 = 45 subproblems).

Problem 1. Given a class C ∈ {TS, pTS, sTS, rTS, TG, qTG, pTG, sTG, rTG} and a class of morphisms
f ∈ {e, i, h, p, c} detect topological groups which are f :C-closed.

For the categories e:TG and e:qTG the answer to this problem is known and is a combined result
of Raikov [1] who proved the equivalence (1)⇔ (3) and Bardyla, Gutik, Ravsky [2] who proved the
equivalence (2)⇔ (3).

Theorem 1 (Raikov, Bardyla–Gutik–Ravsky). For a topological group X the following conditions
are equivalent:

(1) X is e:TG-closed;
(2) X is e:qTG-closed;
(3) X is complete.

A topological group X is complete if it is complete in its two-sided uniformity, i.e., the uniformity,
generated by the entourages {(x, y) ∈ X × X : y ∈ xU ∩Ux} where U runs over neighborhoods of the
unit in X.

On the other hand, Gutik ([3] 2.5) answered Problem 1 for the category e:sTS:

Theorem 2 (Gutik). A topological group is compact if and only if it is e:sTS-closed.

Theorems 1 and 2 and the trivial inclusions qTG ⊃ TG ⊂ pTG ⊂ TS ⊂ pTS ⊂ sTS imply the
following diagram of implications between various �C-closedness properties of a topological group:

complete
��

��

compact
��

��

��

e:qTG-closed �� �� e:TG-closed e:pTG-closed�� e:TS-closed�� e:pTS-closed�� e:sTS-closed��
��

��

i:qTG-closed ��

��

i:TG-closed

��

i:pTG-closed

��

�� i:TS-closed

��

�� i:pTS-closed

��

�� i:sTS-closed
��

��

��
��

��

h:qTG-closed

��

�� h:TG-closed

��

h:pTG-closed

��

�� h:TS-closed

��

�� h:pTS-closed

��

�� h:sTS-closed
��

��

��
��

��

p:qTG-closed

��

�� p:TG-closed

��

p:pTG-closed

��

�� p:TS-closed

��

�� p:pTS-closed

��

�� p:sTS-closed
��

��

��
��

��

c:qTG-closed

��

�� c:TG-closed

��

c:pTG-closed

��

�� c:TS-closed

��

�� c:pTS-closed

��

�� c:sTS-closed
��

��

��
��

��
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This diagram shows that various �C-closedness properties of topological groups fill and organize
the “space” between compactness and completeness.

In fact, under different names, �C-closed topological (semi)groups have been already considered
in mathematical literature. As we have already mentioned, e:TG-closed topological groups appeared
in Raikov’s characterization [1] of complete topological groups. The study of Lie groups which are
i:TG-closed or h:TG-closed was initiated by Omori [4] in 1966 and continued by Goto [5] and currently
by Bader and Gelander [6]. e:TS-Closed and h:TS-closed topological semigroups were introduced
in 1969 by Stepp [7,8] who called them maximal and absolutely maximal semigroups, respectively.
The study of h:TG-closed, p:TG-closed and c:TG-closed topological groups (called h-complete, hereditarily
h-complete and c-compact topological groups, respectively) was initiated by Dikranjan and Tonolo [9]
and continued by Dikranjan, Uspenskij [10], see the monograph of Lukàcs [11] and survey ([12]
§4) of Dikranjan and Shakhmatov. The study of e:pTG-closed paratopological groups was initiated by
Banakh and Ravsky [13,14], who called them H-closed paratopological groups. In [2,15–17] Hausdorff
e:TS-closed (resp. h:TS-closed) topological semigroups are called (absolutely) H-closed. In [3] Gutik
studied and characterized e:sTS-closed topological groups (calling them H-closed topological groups
in the class of semitopological semigroups). The papers [18,19] are devoted to recognizing �C-closed
topological semilattices for various categories �C of topologized semigroups. In the paper [20] the
author studied �C-closedness properties in Abelian topological groups and proved the following
characterization (implying the famous Prodanov-Stoyanov Theorem on the precompactness of minimal
Abelian topological groups, see [20]).

Theorem 3 (Banakh). An Abelian topological group X is compact if and only if X is i:TG-closed.

In Corollary 7 we shall complement this theorem proving that an Abelian topological group is
compact if and only if it is e:sTG-closed.

The results of Banakh [20] and Ravsky [14] combined with Theorem 22 (proved in this paper)
imply the following characterization of Abelian topological groups which are e:pTG-, e:TS- or
e:pTS-closed.

Theorem 4 (Banakh, Ravsky). For an Abelian topological group X the following conditions are equivalent:

(1) X is e:pTG-closed;
(2) X is e:TS-closed;
(3) X is e:pTS-closed;
(4) X is complete and has compact exponent;
(5) X is complete and for every injective continuous homomorphism f : X → Y to a topological group Y the

group f (X)/ f (X) is periodic.

A group X is called periodic if each element of X has finite order. Theorem 4(4) involves the
(important) notion of a topological groups of compact exponent, which is defined as follows.

Definition 2. A topological group X has (pre)compact exponent if for some n ∈ N the set
nX := {xn : x ∈ X} has compact closure in X (resp. is totally bounded in X).

Theorems 3 and 4 and Corollary 7 imply that for Abelian groups, the diagram describing the
interplay between various �C-closedness properties collapses to the following form (containing only
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three different types of closedness: compactness, completeness, and completeness combined with
compact exponent):

complete
��

��

complete of
compact exponent

��

��

�� compact
��

��

��

e:TG-closed e:qTG-closed���� e:pTG-closed�� e:TS-closed���� e:pTS-closed���� e:sTG-closed�� e:sTS-closed����

i:TG-closed

��

i:qTG-closed

��

���� i:pTG-closed

��

���� i:TS-closed

��

���� i:pTS-closed

��

���� i:sTG-closed����
��

��

i:sTS-closed����
��

��

h:TG-closed
��

��

h:qTG-closed
��

��

���� h:pTG-closed
��

��

���� h:TS-closed
��

��

���� h:pTS-closed
��

��

���� h:sTG-closed
��

��

���� h:sTS-closed
��

��

����

p:TG-closed
��

��

p:qTG-closed
��

��

���� p:pTG-closed
��

��

���� p:TS-closed
��

��

���� p:pTS-closed
��

��

���� p:sTG-closed
��

��

���� p:sTS-closed
��

��

����

c:TG-closed
��

��

c:qTG-closed
��

��

���� c:pTG-closed
��

��

���� c:TS-closed
��

��

���� c:pTS-closed
��

��

���� c:sTG-closed
��

��

���� c:sTS-closed
��

��

����

So, the problem remains to investigate the �C-closedness properties for non-commutative
topological groups. Now we survey the principal results (known and new) addressing this complex
and difficult problem. We start with the following characterization of e:TS-closed topological groups,
proved in Section 4.

Theorem 5. A topological group X is e:TS-closed if and only if X is Weil-complete and for every continuous
homomorphism f : X → Y into a Hausdorff topological semigroup Y the complement f (X) \ f (X) is not
an ideal in the semigroup f (X).

Using Theorems 3–5 we shall prove that various �C-closedness properties have strong implications
on the structure of subgroups related to commutativity, such as the subgroups of the topological
derived series or the central series of a given topological group.

We recall that for a group G its commutator [G, G] is the subgroup generated by the set {xyx−1y−1 :
x, y ∈ G}. The topological derived series

G = G[0] ⊃ G[1] ⊃ G[2] ⊃ · · ·

of a topological group G consists of the subgroups defined by the recursive formula G[n+1] :=
[G[n], G[n]] for n ∈ ω.

A topological group G is called solvable if G[n] = {e} for some n ∈ N. The quotient group X/X[1]

is called the Abelianization of a topological group X.
The central series

{e} = Z0(G) ⊂ Z1(G) ⊂ . . .

of a (topological) group G consists of (closed) normal subgroups defined by the recursive formula

Zn+1(G) := {z ∈ G : ∀x ∈ G zxz−1x−1 ∈ Zn(G)} for n ∈ ω.

A group G is called nilpotent if G = Zn(G) for some n ∈ ω. The subgroup Z1(G) is called the
center of the group G and is denoted by Z(G).

The following theorem unifies Propositions 4 and Corollaries 6 and 9.
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Theorem 6. Let X be a topological group.

(1) If X is e:pTG-closed, then the center Z(X) has compact exponent.
(2) If X is e:TS-closed, then for any closed normal subgroup N ⊂ X the center Z(X/N) of the quotient

topological group X/N has precompact exponent.
(3) If X is i:TG-closed or e:sTS-closed, then the center Z(X) of X is compact.
(4) If X is h:TG-closed, then for any closed normal subgroup N ⊂ X the center Z(X/N) is compact;

in particular, the Abelianization X/X[1] of X is compact.

Theorem 6(3), combined with an old result of Omori ([4] Corollary 1.3), implies the following
characterization of i:TG-closed groups in the class of connected nilpotent Lie groups.

Theorem 7. A connected nilpotent Lie group X is i:TG-closed if and only if X has compact center.

Applying the statements (2) and (4) of Theorem 6 inductively, we obtain the following corollary
describing the compactness properties of some characteristic subgroups of a �C-closed topological
group (see Corollary 5, Proposition 7 and Theorem 35).

Corollary 1. Let X be a topological group.

(1) If X is e:TS-closed, then for every n ∈ ω the subgroup Zn(X) has compact exponent.
(2) If X is h:TS-closed, then for every n ∈ ω the subgroup Zn(X) is compact.
(3) If X is p:TG-closed, then for every n ∈ ω the quotient topological group X/X[n] is compact.

The three items of Corollary 1 imply the following three characterizations. The first of them
characterizes nilpotent complete group of compact exponent and is proved in Theorem 22.

Theorem 8. For a nilpotent topological group X the following conditions are equivalent:

(1) X is complete and has compact exponent;
(2) X is e:TS-closed;
(3) X is e:pTS-closed.

In Example 2 we shall observe that the discrete topological group Iso(Z) of isometries of Z is
e:TS-closed but does not have compact exponent. This shows that Theorem 8 does not generalize to
solvable groups.

Theorem 9 (Dikranjan, Uspenskij). For a nilpotent topological group X the following conditions are
equivalent:

(1) X is compact;
(2) X is h:TG-closed.

For Abelian topological groups Theorem 9 was independently proved by Zelenyuk and
Protasov ([21]).

A topological group X is called hypoabelian if for each non-trivial closed subgroup X the
commutator [X, X] is not dense in X. It is easy to see that each solvable topological group is
hypoabelian.

Theorem 10 (Dikranjan, Uspenskij). For a solvable (more generally, hypoabelian) topological group X the
following conditions are equivalent:

(1) X is compact;
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(2) X is p:TG-closed;
(3) any closed subgroup of X is h:TG-closed.

The last two theorems were proved by Dikranjan and Uspenskij in ([10] 3.9 and 3.10) (in terms of
the h-completeness, which is an alternative name for the h:TG-closedness).

The Weyl-Heisenberg group H(w0) (which is a non-compact i:TG-closed nilpotent Lie group)
shows that h:TG-closedness in Theorem 9 cannot be weakened to the i:TG-closedness (see Example 1 for
more details).

On the other hand, the solvable Lie group Iso+(C) of orientation preserving isometries of the
complex plane is h:TS-closed and not compact, which shows that the p:TG-closedness in Theorem 10(2)
cannot be replaced by the h:TG-closedness of X. This example (analyzed in details in Section 10)
answers Question 3.13 in [10] and Question 36 in [12].

Nonetheless, the p:TG-closedness of the solvable group X in Theorem 10(2) can be replaced by the
h:TG-closedness of X under the condition that the group X is balanced and MAP-solvable.

A topological group X is called balanced if for any neighborhood U ⊂ X of the unit there exists
a neighborhood V ⊂ X of the unit such that xV ⊂ Ux for all x ∈ X. A topological group X is balanced
if and only if the left and right uniformities on X coincide.

A topological group X is called maximally almost periodic (briefly MAP) if it admits a continuous
injective homomorphism h : X → K into a compact topological group K. By Theorem 37, for any
productive class C ⊃ TG of topologized semigroups, the i:C-closedness and h:C-closedness are equivalent
for MAP topological groups.

A topological group X is defined to be MAP-solvable if there exists an increasing
sequence {e} = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X of closed normal subgroups in X such that for every n < m
the quotient group Xn+1/Xn is Abelian and MAP. Since locally compact Abelian groups are MAP, each
solvable locally compact topological group is MAP-solvable.

The following theorem (proven in Section 9) nicely complements Theorem 10 of Dikranjan and
Uspenskij. Example 3 of non-compact solvable h:TS-closed Lie group Iso+(C) shows that the “balanced”
requirement cannot be removed from the conditions (2), (3).

Theorem 11. For a solvable topological group X the following conditions are equivalent:

(1) X is compact;
(2) X is balanced, locally compact, and h:TG-closed;
(3) X is balanced, MAP-solvable and h:TG-closed.

It is interesting that the proof of this theorem exploits a good piece of the descriptive set theory
(that dealing with K-analytic spaces). Also methods of descriptive set theory are used for establishing
the interplay between i:TG-closed and minimal topological groups.

We recall that a topological group X is minimal if each continuous bijective homomorphism
h : X → Y onto a topological group Y is open (equivalently, is a topological isomorphism). By the
fundamental theorem of Prodanov and Stoyanov [22], each minimal topological Abelian group is
precompact, i.e., has compact Raikov completion. Groups that are minimal in the discrete topology are
called non-topologizable. For more information on minimal topological groups we refer the reader to
the monographs [11,23] and the surveys [24,25].

The definition of minimality implies that a minimal topological group is i:TG-closed if and only if
it is e:TG-closed if and only if it is complete. In particular, each minimal complete topological group is
i:TG-closed. By Theorem 3, the converse implication holds for Abelian topological groups. It also holds
for ω-narrow topological groups of countable pseudocharacter.

Theorem 12. An ω-narrow topological group X of countable pseudocharacter is i:TG-closed if and only if X is
complete and minimal.
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A subset B ⊂ X of a topological group X is called ω-narrow if for any neighborhood U ⊂ X of the
unit there exists a countable set C ⊂ X such that B ⊂ CU ∩UC. ω-Narrow topological groups were
introduced by Guran [26] (as ℵ0-bounded groups) and play important role in the theory of topological
groups [27]. Theorem 12 will be proved in Section 5 (see Theorem 31). This theorem suggests the
following open problem.

Problem 2. Is each i:TG-closed topological group minimal?

Observe that a complete MAP topological group is minimal if and only if it is compact. So, for MAP
topological groups Problem 2 is equivalent to another intriguing open problem.

Problem 3. Is each i:TG-closed MAP topological group compact?

For ω-narrow topological groups an affirmative answer to this problem follows from Theorem 37
and the characterization of h:TG-closedness in term of total completeness and total minimality,
see Theorem 13.

Following [11], we define a topological group G to be totally complete (resp. totally minimal) if for
any closed normal subgroup H ⊂ G the quotient topological group G/H is complete (resp. minimal).
Totally minimal topological groups were introduced by Dikranjan and Prodanov in [28]. By ([11] 3.45),
each totally complete totally minimal topological group is absolutely TG-closed.

Theorem 13. An ω-narrow topological group is h:TG-closed if and only if it is totally complete and
totally minimal.

Theorem 13 will be proved in Section 6 (see Theorem 33). This theorem complements
a characterization of h:TG-closed topological groups in terms of special filters, due to Dikranjan
and Uspenskij [10] (see also [11] 4.24). Using their characterization of h:TG-closedness, Dikranjan and
Uspenskij [10] proved another characterization.

Theorem 14 (Dikranjan, Uspenskij). A balanced topological group is h:TG-closed if and only if it is c:TG-closed.

The compactness of ω-narrow i:TG-closed MAP topological groups can be also derived from the
compactness of the ω-conjucenter Zω(X) defined for any topological group X as the set of all points
z ∈ X whose conjugacy class CX(z) := {xzx−1 : x ∈ X} is ω-narrow in X.

A topological group X is defined to be ω-balanced if for any neighborhood U ⊂ X of the unit
there exists a countable family V of neighborhoods of the unit such that for any x ∈ X there exists
V ∈ V such that xVx−1 ⊂ U. It is known (and easy to see) that each ω-narrow topological group is
ω-balanced. By Katz Theorem [27], a topological group is ω-balanced if and only if it embeds into a
Tychonoff product of first-countable topological groups. The following theorem can be considered as a
step towards the solution of Problem 3.

Theorem 15. If an ω-balanced MAP topological group X is i:TG-closed, then its ω-conjucenter Zω(X)

is compact.

A topological group G is called hypercentral if for each closed normal subgroup H � G, the quotient
group G/H has non-trivial center Z(G/H). It is easy to see that each nilpotent topological group is
hypercentral. Theorem 15 implies the following characterization (see Corollary 17).

Corollary 2. A hypercentral topological group X is compact if and only if X is ω-balanced, MAP,
and i:TG-closed.
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Remark 1. Known examples of non-topologizable groups (due to Klyachko, Olshanskii, and Osin [29]) show
that the compactness does not follow from the pTS- or c:TG-closedness even for 2-generated discrete topological
groups (see Example 4).

The following diagram describes the implications between various completeness and closedness
properties of a topological group. By simple arrows we indicate the implications that hold under some
additional assumptions (written in italic near the arrow).
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The curved horizontal implications, holding under the assumption of compact exponent,
are proved in Theorems 24 and 32.

2. Completeness of Topological Groups Versus C-closedness

To discuss the completeness properties of topological groups, we need to recall some known
information related to uniformities on topological groups (see [27,30] for more details). We refer the
reader to ([31] Ch.8) for basic information on uniform spaces. Here we recall that a uniform space
(X,U ) is complete if each Cauchy filter F on X converges to some point x ∈ X. A filter on a set X is
a non-empty family of non-empty subsets of X, which is closed under finite intersections and taking
supersets. A subfamily B ⊂ F is called a base of a filter F if each set F ∈ F contains some set B ∈ B.

A filter F on a uniform space (X,U ) is Cauchy if for each entourage U ∈ U there is a set F ∈ F
such that F× F ⊂ U. A filter on a topological space X converges to a point x ∈ X if each neighborhood
of x in X belongs to the filter. A uniform space (X,U ) is compact if and only if the space is complete
and totally bounded in the sense that for every entourage U ∈ U there exists a finite subset F ⊂ X such
that X =

⋃
x∈F B(x, U) where B(x, U) := {y ∈ X : (x, y) ∈ U}.

Each topological group (X, τ) with unit e carries four natural uniformities:

• the left uniformity Ul generated by the base Bl =
{
{(x, y) ∈ X × X : y ∈ xU} : e ∈ U ∈ τ

}
;

• the right uniformity Ur generated by the base Br =
{
{(x, y) ∈ X × X : y ∈ Ux} : e ∈ U ∈ τ

}
;

• the two-sided uniformity U∨ generated by the base B∨ =
{
{(x, y) ∈ X × X : y ∈ Ux ∩ xU} : e ∈

U ∈ τ
}

;
• the Roelcke uniformity U∧ generated by the base B∧ =

{
{(x, y) ∈ X × X : y ∈ UxU} : e ∈ U ∈ τ

}
.

It is well-known (and easy to see) that a topological group X is complete in its left uniformity
if and only if it is complete in its right uniformity. Such topological groups are called Weil-complete.
A topological group is complete if it is complete in its two-sided uniformity. Since each Cauchy filter in
the two-sided uniformity is Cauchy in the left and right uniformities, each Weil-complete topological
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group is complete. For an Abelian (more generally, balanced) topological group X all four uniformities
Ul , Ur, U∨, U∧ coincide, which implies that X is Weil-complete if and only if it is complete.

An example of a complete topological group, which is not Weil-complete is the Polish group
Sym(ω) of all bijections of the discrete countable space ω (endowed with the topology of pointwise
convergence, inherited from the Tychonoff product ωω).

The completion of a topological group X by its two-sided uniformity is called the Raikov-completion
of X. It is well-known that the Raikov-completion of a topological group has a natural structure of
a topological group, which contains X as a dense subgroup. On the other hand, the completion
of a topological group X by its left (or right) uniformity carries a natural structure of a topological
semigroup, called the (left or right) Weil-completion of the topological group, see ([32] 8.45). For example,
the left Weil-completion of the Polish group Sym(ω) is the semigroup of all injective functions from
ω to ω.

So, if a topological group X is not complete, then X admits a non-closed embedding into its
Raikov-completion, which implies that it is not e:C-closed for any class C of topologized semigroups,
containing all complete topological groups. If X is not Weil-complete, then X admits a non-closed
embedding into its (left or right) Weil-completion, which implies that it is not e:C-closed for any class
C of topologized semigroups, containing all Tychonoff topological semigroups. Let us write these facts
for future references.

Theorem 16. Assume that a class C of topologized semigroups contains all Raikov-completions
(and Weil-completions) of topological groups. Each e:C-closed topological group is (Weil-)complete. In particular,
each e:TG-closed topological group is complete and each e:TS-closed topological group is Weil-complete.

We recall that a non-empty subset I of a semigroup S is called an ideal in S if IS ∪ SI ⊂ I.

Theorem 17. Assume that a topological group X admits a non-closed topological isomorphic embedding
f : X → Y into a Hausdorff semitopological semigroup Y.

(1) If X is Weil-complete, then f (X) \ f (X) is an ideal of the semigroup f (X).
(2) If X is complete, then {yn : y ∈ f (X) \ f (X), n ∈ N} ⊂ f (X) \ f (X).

Proof. To simplify notation, it will be convenient to identify X with its image f (X) in Y. Replacing Y
by the closure X̄ of X, we can assume that the group X is dense in the semigroup Y.

1. First, we assume that X is Weil-complete. Given any x ∈ X and y ∈ Y \ X, we should prove
that xy, yx ∈ Y \ X.

To derive a contradiction, assume that xy ∈ X. On the topological group X, consider the filter
F generated by the base consisting of the intersections X ∩Oy of X with neighborhoods Oy of y in Y.
The Hausdorff property of Y ensures that this filter does not converge in the Weil-complete group X
and thus is not Cauchy in the left uniformity of X. This yields an open neighborhood Ve of the unit of
the group X such that F �⊂ zVe for any set F ∈ F and any z ∈ X. Since X carries the subspace topology,
the space Y contains an open set Uxy ⊂ Y such that Uxy ∩ X = xyVe.

The separate continuity of the binary operation on Y yields an open neighborhood Ux ⊂ Y of
the point x in Y such that Uxy ⊂ Uxy. Choose any point z ∈ Ux and find a neighborhood Uy of
the point y in Y such that zUy ⊂ Uxy. Now consider the set F = X ∩ Uy ∈ F and observe that
zF ⊂ X ∩Uxy = xyVe and hence F ⊂ z−1xyVe, which contradicts the choice of Ve. This contradiction
shows that xy ∈ Y \ X.

By analogy we can prove that yx ∈ Y \ X.

2. Next, assume that X is complete. In this case we should prove that yn /∈ X for any y ∈ Y \ X
and n ∈ N. To derive a contradiction, assume that yn ∈ X for some y ∈ Y \ X and n ∈ N. On the group
X consider the filter F generated by the base X ∩Oy where Oy runs over neighborhoods of y in Y.
The filter F converges to the point y /∈ X and hence is divergent in X (by the Hausdorff property of Y).
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Since X is complete, the divergent filter F is not Cauchy in its two-sided uniformity. This allows us to
find an open neighborhood Ve ⊂ X of the unit such that F �⊂ xVe ∩Vez for any points x, z ∈ X. Choose
an open set W ⊂ Y such that W ∩ X = ynVe ∩Veyn.

By finite induction, we shall construct a sequence (xi)
n−1
i=0 of points of the group X such that

xiyn−i ∈ W for all i ∈ {1, . . . , n− 1}. To start the inductive construction, let x0 = e be the unit of the
group X. Assume that for some positive i ≤ n− 1 the point xi−1 ∈ X with xi−1yn+1−i ∈ W has been
constructed. By the separate continuity of the semigroup operation in Y, the point y has a neighborhood
Vy ⊂ Y such that xi−1Vyyn−i ∈ W. Choose any point v ∈ X ∩Vy, put xi = xi−1v ∈ X ∩Vy and observe
that xiyn−i ∈ W, which completes the inductive step.

After completing the inductive construction, we obtain a point x = xn−1 ∈ X such that xy ∈ W.
By analogy we can construct a point z ∈ X such that yz ∈ W. The separate continuity of the
binary operation in Y yields a neighborhood Vy ⊂ Y of y such that (xVy) ∪ (Vyz) ⊂ W. Then the
set F = X ∩ Vy ∈ F has the property: (xF) ∪ (Fz) ⊂ X ∩ W = ynVe ∩ Veyn which implies that
F ⊂ (x−1ynVe) ∩ (Veynz−1). However, this contradicts the choice of the neighborhood Ve.

Now we describe a construction of the ideal union of topologized semigroups, which allows us to
construct non-closed embeddings of topologized semigroups.

Let h : X → Y be a continuous homomorphism between topologized semigroups X, Y such
that Y \ h(X) is an ideal in Y and X ∩ (Y \ h(X)) = ∅. Consider the set Uh(X, Y) := X ∪ (Y \ h(X))

endowed with the semigroup operation defined by

xy =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x ∗ y if x, y ∈ X;

h(x) · y if x ∈ X and y ∈ Y \ h(X);

x · h(y) if x ∈ Y \ h(X) and y ∈ X;

x · y if x, y ∈ Y \ h(X).

Here by ∗ and · we denote the binary operations of the semigroups X and Y, respectively. The set
Uh(X, Y) is endowed with the topology consisting of the sets W ⊂ Uh(X, Y) such that

• for any x ∈ W ∩ X, some neighborhood Ux ⊂ X of x is contained in W;
• for any y ∈ W ∩ (Y \ h(X)) there exists an open neighborhood U ⊂ Y of y such that h−1(U) ∪

(U \ h(X)) ⊂ W.

This topology turns Uh(X, Y) into a topologized semigroup, which be called the ideal union of the
semigroups X and Y along the homomorphism h.

The following theorem can be derived from the definition of the ideal union.

Theorem 18. Let h : X → Y be a continuous homomorphism between topologized semigroups such that
Y \ h(X) is an ideal in Y and (Y \ h(X)) ∩ X = ∅. The topologized semigroup Uh(X, Y) has the following
properties:

(1) X is an open subsemigroup of Uh(X, Y);
(2) X is closed in Uh(X, Y) if and only if h(X) is closed in Y;
(3) If X and Y are (semi)topological semigroups, then so is the topologized semigroup Uh(X, Y);
(4) If the spaces X, Y are Hausdorff (or regular or Tychonoff), then so is the space Uh(X, Y).

We shall say that a class C of topologized semigroups is stable under taking

• topological isomorphisms if for any topological isomorphism h : X → Y between topologized
semigroups X, Y the inclusion X ∈ C implies Y ∈ C;

• closures if for any topologized semigroup Y ∈ C and a subgroup X ⊂ Y the closure X̄ of X in Y is
a topologized semigroup that belongs to the class C;
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• ideal unions if for any continuous homomorphism h : X → Y between semigroups X, Y ∈ C with
Y \ h(X) being an ideal in Y, disjoint with X, the topologized semigroup Uh(X, Y) belongs to
the class C.

Theorems 17 and 18 imply the following characterization.

Theorem 19. Assume that a class C of Hausdorff semitopological semigroups is stable under topological
isomorphisms, closures and ideal unions. A Weil-complete topological group X ∈ C is e:C-closed if and only if
for every continuous homomorphism f : X → Y into a topologized semigroup Y ∈ C the set f (X) \ f (X) is not
an ideal in f (X).

Proof. To prove the “only if” part, assume that there exits a continuous homomorphism f : X → Y
into a topologized semigroup Y ∈ C such that f (X) is dense in Y and f (X) \ f (X) is an ideal of f (X).
In particular, f (X) \ f (X) �= ∅, which means that f (X) is not closed in Y. Taking into account that
the class C is stable under closures, we conclude that f (X) is a topologized semigroup in the class C.
So, we can replace Y by f (X) and assume that the subgroup f (X) is dense in Y. Replacing Y by its
isomorphic copy, we can assume that X ∩Y = ∅. In this case we can consider the ideal sum Uf (X, Y)
and conclude that it belongs to the class C (since C is stable under ideal unions). By Theorem 18(2),
the topological group X is not closed in Uf (X, Y), which means that X is not e:C-closed.

To prove the “if” part, assume that the Weil-complete topological group X is not e:C-closed.
Then X admits a non-closed topological isomorphic embedding f : X → Y into a topologized
semigroup Y ∈ C. By Theorem 17(1), the complement f (X) \ f (X) is an ideal in f (X).

3. Topological Groups of (Pre)compact Exponent

In this section, we study topological groups of compact exponent. We shall say that a topological
group X has compact exponent (resp. finite exponent) if there exists a number n ∈ N such that the set
nX := {xn : x ∈ X} is contained is a compact (resp. finite) subset of X. A complete topological group
has compact exponent if and only if it has precompact exponent in the sense that for some n ∈ N the set
nX is precompact. A subset A of a topological group X is called precompact if for any neighborhood
U ⊂ X of the unit there exists a finite subset F ⊂ X such that A ⊂ FU ∩UF.

Lemma 1. A topological group X is precompact if and only if for any neighborhood U ⊂ X of the unit there
exists a finite subset F ⊂ X such that X = FUF.

Proof. The “only if” part is trivial. To prove the “if” part, assume that for any neighborhood U ⊂ X of
the unit there exists a finite subset F ⊂ X such that A ⊂ FUF. Given a neighborhood W = W−1 ⊂ X
of the unit, we need to find a finite subset E ⊂ X such that X = EW = WE. Choose a neighborhood
U ⊂ X of the unit such that UU−1 ⊂ W. By our assumption, there exists a finite set F ⊂ X
such that X = FUF. By ([33] 12.6), for some x, y ∈ F there exists a finite subset B ⊂ G such that
G = B(xUy)(xUy)−1. Then G = BxUU−1x−1 and hence G = EW = WE−1 for E = Bx.

The following proposition shows that our definition of a group of finite exponent is equivalent to
the standard one.

Proposition 1. A group X has finite exponent if and only if there exists n ∈ N such that for every x ∈ X the
power xn coincides with the unit of the group X.

Proof. The “if” part is trivial. To prove the “only if” part, assume that X has finite exponent and find
n ∈ N such that the set F = {xn : x ∈ X} is finite.

It follows that for every x ∈ F the powers xkn, k ∈ N, belong to the set F. So, by the Pigeonhole
Principle, xin = xjn for some numbers i < j. Consequently, for the number mx = j− i the power xnmx
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is the unit e of the group X. Then for the number m = ∏x∈F mx we have {xn2m : x ∈ X} ⊂ {xnm : x ∈
F} = {e}.

This characterization implies that being of finite exponent is a 3-space property.

Corollary 3. Let H be a normal subgroup of a group G. The group G has finite exponent if and only if H and
G/H have finite exponent.

A similar 3-space property holds also for topological groups of compact exponent. A subgroup H
of a group G is called central if H is contained in the center Z(G) = {x ∈ G : ∀g ∈ G xg = gx} of the
group G.

Proposition 2. Let Z be a closed central subgroup of a topological group X. The topological group X has
precompact exponent if and only if the topological groups Z and Y = X/Z have precompact exponent.

Proof. If the topological group X has precompact exponent, then for some n ∈ N the set nX = {xn :
n ∈ X} is precompact in X. It follows that the intersection (nX) ∩ Z ⊃ nZ is precompact in Z and the
image q(nX) = nY of nX under the quotient homomorphism q : X → X/Z = Y is precompact in the
quotient topological group Y.

The proof of the “if” part is more complicated. Assume that the topological groups Z and
Y := X/Z have precompact exponent. Then there exist natural numbers n and m such that the sets
A := nZ and B := mY are precompact. The set B contains the unit of the group Y and hence Bk ⊂ Bn

for all positive k ≤ n.
We claim that the set nmX := {xnm : x ∈ X} is precompact in X. Given any open neighborhood

U = U−1 ⊂ G of the unit, we should find a finite subset F ⊂ G such that the set nmX ⊂ FU ∩UF.
Since the set nmX is symmetric, it suffices to find F ⊂ X such that nmX ⊂ FU. Using the continuity of
the group operations, choose a neighborhood V ⊂ X of the unit such that V = V−1 and V3n+1 ⊂ U.
Let q : X → Y be the quotient homomorphism.

Claim 1. For the precompact set Bn the intersection W =
⋂

x∈q−1(Bn) xV3x−1 is a neighborhood of the
unit in X.

Proof. By the precompactness of Bn and the openness of the quotient homomorphism q : X → X/Z,
there exists a finite set F ⊂ X such that Bn ⊂ q(FV). We claim that the neighborhood W ′ =

⋂
y∈F yVy−1

is contained in xV3x−1 for any x ∈ q−1(Bn). Indeed, for any w ∈ W ′ and x ∈ q−1(Bn), we can find
y ∈ F such that q(x) ∈ q(yV) and hence x = yvz for some v ∈ V and z ∈ Z. Then w ∈ yVy−1 ⊂
xz−1v−1Vvzx−1 = xv−1Vvx−1 ⊂ xV3x−1 (here we use that z belongs to the center of the group X).

By the precompactness of the sets A, B, there exist a finite set A′ ⊂ A ⊂ Z such that A ⊂ A′V
and a finite set B′ ⊂ q−1(B) such that B ⊂ q(B′) · q(W) = q(B′W). We claim that the finite set
F = {bna : b ∈ B′, a ∈ A′} has the desired property: xmn ∈ FU for any x ∈ X.

The choice of m ensures that xm ∈ q−1(B) ⊂ q−1(q(B′W)) = B′WZ. So, we can find elements b ∈
B′, w ∈ W and z ∈ Z such that xm = bwz and hence xmn = (bwz)n = (bw)nzn ∈ (bw)n A ⊂ (bw)n A′V
(we recall that the element z ∈ Z belongs to the center of X).

Observe that (bw)n =
(

∏n
i=1 biwb−i

)
bn. For every i ≤ n the element bi belongs to q−1(Bn) and

by Claim 1, biwb−i ∈ bnV3b−n. So,

xmn ∈ (bw)n A′V =
( n

∏
i=1

biwb−i
)

bn A′V ⊂ (bnV3b−n)nbn A′V = bnV3n A′V = bn A′V3n+1 ⊂ FU.
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For complete topological groups, the precompactness of exponent is recognizable by countable
subgroups.

Proposition 3. A complete topological group X has precompact exponent if and only if each countable subgroup
of X has precompact exponent.

This proposition can be easily derived from the following (probably known) lemma.

Lemma 2. A subset A of a topological group X is precompact if and only if for each countable subgroup H ⊂ X
the intersection A ∩ H is precompact in the topological group H.

Proof. The “only if” part is trivial. To prove the “only if” part, assume that A is not precompact.
Then A ∪ A−1 is not precompact and hence there exists a neighborhood U = U−1 ⊂ X of the unit
such that A ∪ A−1 �= FU for any finite subset F ⊂ X. By Zorn’s Lemma, there exists a maximal
subset E ⊂ A ∪ A−1 which is U-separated in the sense that x /∈ yU for any distinct points x, y ∈ E.
The maximality of E guarantees that for any x ∈ A ∪ A−1 there exists y ∈ E such that x ∈ yU or
y ∈ xU (and hence x ∈ yU−1 = yU). Consequently, A ∪ A−1 = EU. The choice of U ensures that the
set E is infinite. Then we can choose any infinite countable set E0 ⊂ E and consider the countable
subgroup H generated by E0. It follows that the intersection H ∩ (A ∪ A−1) containes the infinite
U-separated set E0 and hence is not precompact in H.

4. On e:C-closed Topological Groups

In this section, we collect some results on e:C-closed topological groups for various classes C.
First, observe that Theorems 16, 17 and 19 imply the following theorem (announced as Theorem 5

in the introduction).

Theorem 20. A topological group X is e:TS-closed if and only if X is Weil-complete and for every continuous
homomorphism f : X → Y into a Hausdorff topological semigroup Y the complement f (X) \ f (X) is not an
ideal in the semigroup f (X).

We recall that a topologized semigroup X is defined to be a powertopological semigroup if it is
semitopological and for every n ∈ N the power map X → X, x �→ xn, is continuous. By pTS we denote
the class of Hausdorff powertopological semigroups.

Theorem 21. Each complete topological group X of compact exponent is e:pTS-closed.

Proof. Fix a number n ∈ N and a compact set K ⊂ X such that {xn : x ∈ X} ⊂ K. To show that
X is e:pTS-closed, assume that X is a subgroup of some Hausdorff powertopological semigroup Y.
The Hausdorff property of Y ensures that the compact set K is closed in Y. Then the continuity of the
power map p : Y → Y, p : y �→ yn, implies that the set

{y ∈ Y : yn ∈ K}

containing X is closed in Y and hence contains X̄. If X is not closed in Y, then we can find a point
y ∈ X̄ \ X and conclude that yn ∈ K ⊂ X. However, this contradicts Theorem 17(2).

Corollary 4. For a topological group X of precompact exponent the following conditions are equivalent:

(1) X is complete;
(2) X is e:TG-closed;
(3) X is e:TS-closed;
(4) X is e:pTS-closed.
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Proof. The implications (4) ⇒ (3) ⇒ (2) follow from the inclusions pTS ⊃ TS ⊃ TG, (2) ⇒ (1) and
(1)⇒ (4) follow from Theorems 16 and 21, respectively.

Proposition 4. If a topological group X is e:TS-closed, then for any closed normal subgroup N ⊂ X the center
Z(X/N) of the quotient group X/N has precompact exponent.

Proof. Let G = X/N be the quotient topological group, q : X → G be the quotient homomorphism
and Z = {z ∈ Z : ∀g ∈ G zg = gz} be the center of the group G. Assuming that Z does not have
precompact exponent, we conclude that the completion Z̄ of Z does not have compact exponent.
Applying Theorem 20, we obtain a continuous injective homomorphism f : Z̄ → Y to a topological
group Y such that the closure f (Z̄) = f (Z) of f (Z̄) in Y contains an element y such that yn /∈ f (Z̄) for
all n ∈ N.

Observe that the family τZ = {Z ∩ f−1(U) : U is open in Y} is a Hausdorff topology on Z turning
it into a topological group, which is topologically isomorphic to the topological group f (Z). Then the
completion Z̄ of the topological group (Z, τZ) contains an element z ∈ Z̄ such that zn /∈ Z for all n ∈ N.

Let TG be the topology of the topological group G. Taking into account that the subgroup Z
is central in G, we can show that the family τe = {U · V : e ∈ U ∈ TG, e ∈ V ∈ τZ} satisfies the
Pontryagin Axioms ([27] 1.3.12) and hence is a neighborhood base at the unit of some Hausdorff
group topology τ on G. The definition of this topology implies that the subgroup Z remains closed
in the topology τ and the subspace topology {U ∩ Z : U ∈ τ} on Z coincides with the topology
τZ. Then the completion Z̄ of the topological group (Z, τZ) is contained in the completion Ḡ of the
topological group (G, τ) and hence z ∈ Z̄ ⊂ Ḡ. Now consider the subsemigroup S of Ḡ, generated
by the set G ∪ {z}. Observe that {zn}n∈ω ⊂ Z̄ \ Z = Z̄ \ G. Since the group Z is central in G,
the element z commutes with all elements of G. This implies that S = {gzn : g ∈ G, n ∈ ω} and
hence S \ G = {gzn : g ∈ G, n ∈ N} is an ideal in G. Let i : G → S be the identity homomorphism.
Then for the homomorphism h = i ◦ q : X → S the complement h(X) \ h(X) = S \ G is an ideal in S.
By Theorem 20, the topological group X is not e:TS-closed. This is a desired contradiction showing that
the topological group Z(G) = Z(X/N) has precompact exponent.

We recall that for a topological group X its central series {e} = Z0(X) ⊂ Z1(X) ⊂ · · · consists of
the subgroups defined recursively as Zn+1(X) = {z ∈ X : ∀x ∈ X zxz−1x−1 ∈ Zn(X)} for n ∈ ω.

Corollary 5. If a topological group X is e:TS-closed, then for every n ∈ ω the subgroup Zn(X) has compact
exponent.

Proof. First observe that the topological group X is complete, being e:TS-closed. Then its closed
subgroups Zn(X), n ∈ ω, also are complete. So, it suffices to prove that for every n ∈ ω

the topological group Zn(X) has precompact exponent. This will be proved by induction on n.
For n = 0 the trivial group Z0(X) = {e} obviously has precompact exponent. Assume that for
some n ∈ ω we have proved that the subgroup Zn(X) has precompact exponent. By Proposition 4,
the center Z(X/Zn(X)) of the quotient topological group X/Zn(X) has precompact exponent. Since
Z(X/Zn(X)) = Zn+1(X)/Zn(X), we see that the quotient topological group Zn+1(X)/Zn(X) has
precompact exponent. By Proposition 2, the topological group Zn+1(X) has precompact exponent.

Corollary 5 implies the following characterization of e:TS-closed nilpotent topological groups
(announced in the introduction as Theorem 8).

Theorem 22. For a nilpotent topological group X the following conditions are equivalent:

(1) X is e:TS-closed;
(2) X is e:pTS-closed;
(3) X is Weil-complete and has compact exponent;
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(4) X is complete and has compact exponent.

Proof. The implications (2)⇒ (1) and (3)⇒ (4) are trivial, and (4)⇒ (2) was proved in Theorem 21.
It remains to prove that (1) ⇒ (3). So, assume that the nilpotent topological group X is e:TS-closed.
By Theorem 16, X is Weil-complete. By Corollary 5, for every n ∈ ω the subgroup Zn(X) has
compact exponent. In particular, X has compact exponent, being equal to Zn(X) for a sufficiently large
number n.

We do not know if Theorem 22 remains true for hypercentral topological groups. We recall that
a topological group X is hypercentral if for each closed normal subgroup H � X the quotient group
X/H has non-trivial center. Each nilpotent topological group is hypercentral.

Problem 4. Has each e:TS-closed hypercentral topological group compact exponent?

The following characterization of compact topological groups shows that the e:pTS-closedness of
X in Theorem 22 cannot be replaced by the e:sTS-closedness. The equivalence (1)⇔ (2) was proved
by Gutik [3].

Theorem 23. For a topological group X the following conditions are equivalent:

(1) X is compact;
(2) X is e:sTS-closed;
(3) X is e:rTG-closed.

Proof. The implication (1)⇒ (2, 3) is trivial.

To prove that (2)⇒ (1), assume that a topological group X is e:sTS-closed. Then it is e:TG-closed
and hence complete (by Theorem 16). Assuming that X is not compact, we conclude that X is not
totally bounded. So, there exists a neighborhood V ⊂ X of the unit such that X �⊂ FV ∪VF for any
finite subset F ⊂ X.

Chose any element 0 /∈ X and consider the space X0 = X ∪ {0} endowed with the Hausdorff
topology τ consisting of sets W ⊂ X0 such that W ∩ X is open in X and if 0 ∈ W, then X \W ⊂ FV
for some finite subset F ⊂ X. Extend the group operation of X to a semigroup operation on X0

letting 0x = 0 = x0 for all x ∈ X0. It is easy to see that X0 is a Hausdorff semitopological semigroup
containing X as a non-closed subgroup and witnessing that X is not e:sTS-closed.

To prove that (3)⇒ (1), assume that a topological group X is e:rTG-closed. Then it is e:TG-closed
and hence complete (by Theorem 16). Assuming that X is not compact, we conclude that X is not totally
bounded. By Lemma 2, X contains a countable subgroup which is not totally bounded. Now Lemma 3
(proved below) implies that X is not e:rTG-closed, which is a desired contradiction.

A topology τ on a group X is called right-invariant (resp. shift-invariant) if {Ux : U ∈ τ, x ∈ X} = τ

(resp. {xUy : U ∈ τ, x, y ∈ X} = τ). This is equivalent to saying that (X, τ) is a right-topological
(resp. semitopological) group.

Lemma 3. If a topological group X contains a countable subgroup Z which is not totally bounded, then the
group Z× X admits a Hausdorff right-invariant topology τ such that the subgroup {0} × X is not closed in the
right-topological group (Z× X, τ) and {0} × X is topologically isomorphic to X. Moreover, if the subgroup Z
is central in X, then (Z× X, τ) is a semitopological group.

Proof. Identify the product group Z× X with the direct sum Z⊕ X. In this case the group X ⊂ Z⊕ X
is identified with the subgroup {0} × X of the group Z× X. Let Z = {zk}k∈ω be an enumeration of
the countable subgroup Z. Since Z is not totally bounded, there exists a neighborhood W = W−1 ⊂ X
of the unit such that Z �⊂ FW3F for any finite subset F ⊂ X (see Lemma 1). Using this property of Z,
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we can inductively construct a sequence of points (xn)n∈ω of Z such that for every n ∈ ω the following
condition is satisfied:

(a) xn /∈ FnW3F−1
n where

(b) Fn = {e} ∪
{

xi1 xi2 · · · xik zε
j : k ∈ ω, n > i1 > · · · > ik, j ≤ n, ε ∈ {0, 1}

}
.

For every m ∈ ω consider the subset

Σm := {(0, e)} ∪ {(n, xi1 · · · xin) : n ∈ N, i1 > · · · > in > m} ⊂ Z× X.

On the group G := Z⊕X, consider the topology τ consisting of subsets W ⊂ G such that for every
g ∈ W there exists m ∈ ω and a neighborhood Ug ⊂ X of g such that ΣmUg ⊂ W. The definition of the
topology τ implies that for any W ∈ τ and a ∈ G the set Wa belongs to τ. So, (G, τ) is a right-topological
group. If the subgroup Z is central, then for every a ∈ G and g ∈ aW we get a−1g ∈ W, so we can find
a neighborhood U ⊂ X of a−1g and m ∈ ω such that ΣmU ⊂ W. Then Ug := aU is a neighborhood of
g in X such that ΣmUg = ΣmaU = aΣmU ⊂ aW, which means that the set aW belongs to the topology
τ and the topology τ is invariant.

Let us show that for any open set U ⊂ X and any m ∈ ω the set ΣmU belongs to the topology τ.
For every g ∈ ΣmU we can find u ∈ U and a sequence i1 > · · · in > m such that

g = xi1 · · · xin u. Choose neighborhoods Ue, U′
e ⊂ X of the unit such that uUe ⊂ U and U′

exi1 · · · xin u ⊂
xi1 · · · xin uUe. Then

Σi1U′
eg = Σi1U′

exi1 · · · xin u ⊂ Σi1 xi1 · · · xin uUe ⊂ ΣmU

and hence ΣmU ∈ τ.
Observe that for every U ⊂ X and m ∈ ω, have ΣmU ∩X = U, which implies that X is a subgroup

of the right-topological group (Z⊕ X, τ). The subgroup X is not closed in Z⊕ X as X̄ contains any
point (n, x) ∈ Z× X with n ≤ 0.

It remains to check that the right-topological semigroup (G, τ) is Hausdorff. Given any element
g = (n, x) ∈ G \ {(0, e)}, we should find a neighborhood Ue ⊂ X and m ∈ ω such that ΣmUe ∩
(ΣmUeg) = ∅. If x /∈ Z̄, then we can find a neighborhood Ue = U−1

e ⊂ X of the unit such that
UexUe ∩ Z̄ = ∅ and hence Σ0Ue ∩ (Σ0Ueg) ⊂ Z× (ZUe ∩ ZUex) = ∅.

So, we assume that x ∈ Z̄ and hence x ∈ zmW for some m ∈ ω. Choose a neighborhood
V = V−1 ⊂ W of the unit such that Vzm ⊂ zmW and if x �= e, then x /∈ V2.

We claim that ΣmV ∩ ΣmVg = ∅. Assuming that this intersection is not empty, fix an element
y ∈ ΣmV ∩ ΣmVg. The inclusion y ∈ ΣmV implies that y = (k, xi1 · · · xik v) for some numbers k ∈ N,
i1 > · · · > ik > m, and v ∈ V. On the other hand, the inclusion y ∈ ΣmVg implies that y =

(l, xj1 · · · xjl u)g for some numbers l ∈ N and j1 > · · · > jl > m and some u ∈ V. It follows that

(k, xi1 · · · xik v) = y = (l, xj1 · · · xjl u) · (n, x) = (l + n, xj1 · · · xjl ux). (1)

Let λ be the largest number ≤ 1 + min{k, l} such that ip = jp for all 1 ≤ p < λ. Three cases
are possible.

(1) λ ≤ min{k, l}. In this case the numbers iλ and jλ are well-defined and distinct. The Equality (1)
implies xiλ · · · xik v = xjλ · · · xjl ux. If iλ > jλ, then

xiλ = xjλ · · · xjl uxv−1(xiλ+1 · · · xik )
−1 ⊂ xjλ · · · xjl uzmWv−1(xiλ+1 · · · xik )

−1 ⊂
⊂ xjλ · · · xjl VzmWV−1(xiλ+1 · · · xik )

−1 ⊂ xjλ · · · xjl zmWWV−1(xiλ+1 · · · xik )
−1 ⊂ FiλW3Fiλ ,

which contradicts the choice of xiλ .
If iλ < jλ, then

xjλ = xiλ · · · xik vx−1u−1(xjλ+1 · · · xjl )
−1 ⊂ xiλ · · · xik VW−1z−1

m V−1(xjλ+1 · · · xjl )
−1 ⊂

⊂ xiλ · · · xik VW−1W−1z−1
m (xjλ+1 · · · xjl )

−1 ⊂ xiλ · · · xik W3(xjλ+1 · · · xjl zm)
−1 ⊂ FjλW3F−1

jλ
,
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which contradicts the choice of xjλ .

(2) λ = 1 + min{k, l} and k = l. In this case, Equation (1) implies that n = 0 and v = ux.
Then e �= x = vu−1 ∈ V2, which contradicts the choice of V.

(3) λ = 1 + min{k, l} and k < l. In this case, Equation (1) implies that v = xjλ · · · xjl ux and hence
xjλ = vx−1u−1(xjλ+1 · · · xjl )

−1 ⊂ VW−1z−1
m V−1(xjλ+1 · · · xjl )

−1 ⊂ VW−1W−1z−1
m (xjλ+1 · · · xjl )

−1 ⊂
W3(xjλ+1 · · · xjl zm)−1 ⊂ Fjλ W3F−1

jλ
, which contradicts the choice of xjλ .

(4) λ = 1 + min{k, l} and l < k. In this case, Equation (1) implies that xiλ · · · xik v = ux and
hence xiλ = uxv−1(xiλ+1 · · · xik )

−1 ⊂ VzmWV−1(xiλ+1 · · · xik )
−1 ⊂ zmW3(xiλ+1 · · · xil )

−1 ⊂ Fiλ W3F−1
iλ

,
which contradicts the choice of xiλ . This contradiction finishes the proof of the Hausdorff property of
the topology τ.

Lemmas 2 and 3 have two implications.

Corollary 6. Each e:sTG-closed topological group has compact center.

Corollary 7. An Abelian topological group is compact if and only if it is e:sTG-closed.

Problem 5. Is a topological group compact if it is e:sTG-closed?

5. On i:C-closed Topological Groups

In this section, we collect some results on i:C-closed topological groups for various classes C of
topologized semigroups. First we prove that for topological groups of precompact exponent, many of
such closedness properties are equivalent.

Theorem 24. For a topological group X of precompact exponent the following conditions are equivalent:

(1) X is i:TS-closed;
(2) X is i:TG-closed.

Proof. The implications (1) ⇒ (2) is trivial and follows from the inclusion TG ⊂ TS. To prove that
(2)⇒ (1), assume that X is i:TG-closed and take any continuous injective homomorphism f : X → Y
to a Hausdorff topological semigroup Y. We need to show that f (X) is closed in Y. Replacing Y by
f (X), we can assume that the group f (X) is dense in Y. We claim that Y is a topological group.

First observe that the image eY = f (eX) of the unit eX of the group X is a two-sided unit of the
semigroup Y (since the set {y ∈ Y : yeY = y = yeY} is closed in Y and contains the dense subset f (X) ).

Since the complete group X has precompact exponent, it has a compact exponent and hence for
some number n ∈ N of the set nX = {xn : x ∈ X} has compact closure K := nX. By the continuity
of h and the Hausdorff property of Y, the image f (K) is a compact closed subset of Y. Consequently,
the set Yn = {y ∈ Y : yn ∈ f (K)} is closed in Y. Taking into account that Yn contains the dense subset
f (X), we conclude that Yn = Y.

Now consider the compact subset Γ = {(x, y) ∈ f (K)× f (K) : xy = eY} in Y × Y. Let pr1, pr2 :
Γ → f (K) be the coordinate projections. We claim that these projections are bijective. Since f (X) is
a group, for every z ∈ f (X) there exists a unique element y ∈ f (X) with zy = eY. This implies that the
projection pr1 : Γ → f (K), pr1 : (z, y) �→ z, is injective. Given any element z ∈ f (K) find an element
x ∈ K ∩ f−1(z) and observe that x−1 ∈ K−1 = K and hence the pair (z, y) := ( f (x), f (x−1)) belongs
to Γ witnessing that the map pr1 : Γ → f (K) is surjective. Being a bijective continuous map defined
on the compact space Γ, the map pr1 : Γ → f (K) is a homeomorphism. By analogy we can prove
that the projection pr2 : Γ → f (K), pr2 : (z, y) �→ y, is a homeomorphism. Then the inversion map
i : f (K)→ f (K), i = pr2 ◦ pr−1

1 : f (K)→ f (K) is continuous.
Now consider the continuous map ī : Y → Y defined by ī(y) = yn−1 · i(yn) for y ∈ Y. This map

is well-defined since yn ∈ f (K) for all y ∈ Y. Observe that for every element y of the group f (X),
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the element ī(y) = yn−1 · i(yn) = yn−1(yn)−1 = y−1 coincides with the inverse element of y in the
group f (X). Consequently, y · ī(y) = eY = īY(y) · y for all y ∈ f (X) and by the continuity of the map ī
this equality holds for every y ∈ Y. This means that each element y of the semigroup Y has inverse ī(y)
and hence Y is a group. Moreover, the continuity of the map ī ensures that Y is a topological group.
So, f : X → Y is an injective continuous homomorphism to a topological group. Since X is i:TG-closed,
the image f (X) is closed in Y.

Theorems 22 and 24 imply the following characterization.

Corollary 8. A nilpotent topological group X is i:TS-closed if and only if X is e:TS-closed and i:TG-closed.

The above results allow us to reduce the problem of detecting i:TS-closed topological groups to
the problem of detecting i:TG-closed topological groups. So, now we establish some properties of
i:TG-closed topological groups.

Theorem 25. The center of any i:TG-closed topological group X is compact.

Proof. To derive a contradiction, assume that the center Z of an i:TG-closed topological group X is not
compact. Being i:TG-closed, the topological group X is complete and so is its closed subsemigroup Z.
By Theorem 3, the non-compact complete Abelian topological group Z is not i:TG-closed and hence
admits a non-complete weaker Hausdorff group topology τZ.

Let T be the topology of X and Te = {U ∈ T : e ∈ U}. Consider the family

τe = {V ·U : V ∈ Te, e ∈ U ∈ τZ}

of open neighborhoods of the unit in the topological group X. It can be shown that τe satisfies the
Pontryagin Axioms ([27] 1.3.12) and hence is a base of some Hausdorff group topology τ ⊂ T on X.
Observe that the topology τ induces the topology τZ on the subgroup Z, which remains closed in the
topology τ. Since the topological group (Z, τZ) is not complete, the topological group Xτ = (X, τ) is
not complete, too. Then the identity map X → X̄τ into the completion X̄τ of Xτ has non-closed image,
witnessing that the topological group X is not i:TG-closed. This is a desired contradiction, completing
the proof of the theorem.

Theorem 25 can be reversed for connected nilpotent Lie groups.

Theorem 26. A connected nilpotent Lie group X is i:TG-closed if and only if X has compact center.

Proof. The “only if” part follows from Theorem 25 and the “if” part was proved by Omori ([4]
Corollary 1.3) (see also [5] and [6] Theorem 5.1).

Example 1. An example of a non-compact connected nilpotent Lie group with compact center is the
classical Weyl-Heisenberg group H(w0) := H(R)/Z where

H(R) =

⎧⎪⎨⎪⎩
⎛⎜⎝ 1 a b

0 1 c
0 0 1

⎞⎟⎠ : a, b, c ∈ R

⎫⎪⎬⎪⎭ and Z =

⎧⎪⎨⎪⎩
⎛⎜⎝ 1 0 b

0 1 0
0 0 1

⎞⎟⎠ : b ∈ Z

⎫⎪⎬⎪⎭ .

By Theorem 26, the Weyl-Heisenberg group H(w0) is i:TG-closed. On the other hand, H(w0)

admits a continuous homomorphism onto the real line, which implies that H(w0) is not h:TG-closed.
The group H(w0) is known to be minimal, see ([25] §5), ([34] 5.5), [35]. Being minimal and non-compact,
the complete group H(w0) is not MAP.
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We recall that a topological group X is minimal if each continuous bijective homomorphism
h : X → Y to a topological group Y is a topological isomorphism. This definition implies the following
(trivial) characterization.

Proposition 5. A minimal topological group X is i:TG-closed if and only if X is e:TG-closed.

Now we characterize i:TG-closed ω-narrow topological groups which are Čech-complete or Polish.
We recall that a topological group X is ω-narrow if for any neighborhood U ⊂ X of the unit in X

there exists a countable set C ⊂ X such that X = CU. The following classical theorem of Guran [26]
(see also ([27] Theorem 3.4.23)) describes the structure of ω-narrow topological groups.

Theorem 27 (Guran). A topological group X is ω-narrow if and only if X is topologically isomorphic to
a subgroup of a Tychonoff product ∏α∈A Pα of Polish groups.

A topological group is called Čech-complete if its topological space is Čech-complete, i.e., is a
Gδ-set in its Stone-Čech compactification. By Theorem 4.3.7 [27], each Čech-complete topological
group is complete. By Theorem 4.3.20 [27], a topological group G is Čech-complete if and only if G
contains a compact subgroup K such that the left quotient space G/K = {xK : x ∈ G} is metrizable by
a complete metric.

In the subsequent proofs we shall use the following known Open Mapping Principle for ω-narrow
Čech-complete topological groups.

Theorem 28 (Open Mapping Principle, [27] Corollary 4.3.33). Each continuous surjective homomorphism
h : X → Y between ω-narrow Čech-complete topological groups is open.

Theorem 29. An ω-narrow i:TG-closed topological group X is Čech-complete if and only if it admits an injective
continuous homomorphism h : X → Y to a Čech-complete topological group Y.

Proof. The “only if” part is trivial. To prove the “if part”, assume that X admits a continuous injective
homomorphism h : X → Y to a Čech-complete topological group Y. Since X is i:TG-closed, the image
h(X) is closed in Y and hence h(X) is a Čech-complete topological group. Replacing Y by h(X), we can
assume that h(X) = Y.

We claim that the bijective homomorphism h : X → Y is open and hence is a topological
isomorphism. Given any open neighborhood U ⊂ X of the unit, we should show that its image h(U) is
a neighborhood of the unit in Y. Using Guran’s Theorem 27, we can find a continuous homomorphism
p : X → P to a Polish group P and an open neighborhood V ⊂ P of the unit such that p−1(V) ⊂ U.

Consider the injective continuous homomorphism ph : X → P × Y, ph : x �→ (p(x), h(x)).
Since the group X is ω-narrow and i:TG-closed, the image ph(X) is an ω-narrow closed subgroup of
the Čech-complete topological group P × Y. Consequently, ph(X) is an ω-narrow Čech-complete
topological group. By Theorem 28, the projection pr : ph(X) → Y, pr : (x, y) �→ y, is open.
Consequently, pr(V) ⊂ h(U) is a neighborhood of the unit in Y.

Problem 6. Assume that X is an i:TG-closed ω-narrow topological group containing a compact Gδ-subgroup K.
Is X Čech-complete?

The answer to this problem is affirmative if the compact Gδ-subgroup K ⊂ X is a singleton
(in which case the topological group X has countable pseudocharacter).

We recall that a topological space X has countable pseudocharacter if for each point x ∈ X there
exists a countable family U of open sets in X such that

⋂U = {x}. By PG we denote the class of Polish
groups, i.e., topological groups whose topological space is Polish (= separable completely metrizable).
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Theorem 30. An i:PG-closed topological group X is Polish if and only if X is ω-narrow and has
countable pseudocharacter.

Proof. The “only if” part is trivial. To prove the “if” part, assume that X is ω-narrow and has countable
pseudocharacter. Using Guran’s characterization of ω-narrow topological groups, we can show that X
admits an injective continuous homomorphism h : X → Y into a Polish group Y. By analogy with the
proof of Theorem 29, it can be shown that the homomorphism h is open and hence h is a topological
isomorphism. So, X is Polish, being topologically isomorphic to the Polish group Y.

Now we present a characterization of i:TG-closed topological groups in the class of ω-narrow
topological groups of countable pseudocharacter.

Theorem 31. For an ω-narrow topological group X of countable pseudocharacter the following conditions
are equivalent:

(1) X is Polish and minimal;
(2) X is complete and minimal;
(3) X is i:TG-closed;
(4) X is i:PG-closed.

Proof. The implications (1)⇒ (2) and (3)⇒ (4) are trivial, and (2)⇒ (3) follows from (the trivial)
Proposition 5. To prove that (4) ⇒ (1), assume that the topological group X is i:PG-closed.
By Theorem 30, the topological group X is Polish. To show that X is minimal, take any continuous
bijective homomorphism h : X → Z to a topological group Z. Observe that the topological group Z is
i:PG-closed, ω-narrow, and has countable pseudocharacter (being the continuous bijective image of
the i:PG-closed Polish group X). By Theorem 30, the topological group Z is Polish and by Theorem 28,
the homomorphism h is open and hence is a topological isomorphism. So, X is minimal.

Problem 7. Is a topological group compact if it is i:qTG-closed?

6. On h:C-closed Topological Groups

In this section, we collect some results on h:C-closed topological groups for various classes
C of topologized semigroups. First observe the following trivial characterization of h:C-closed
topological groups.

Proposition 6. Let C be a class of topological groups. A topological group X is h:C-closed if and only if for any
closed normal subgroup N ⊂ X the quotient topological group X/N is i:C-closed.

Proposition 6 and Theorem 24 implies the following characterization.

Theorem 32. For a topological group X of precompact exponent the following conditions are equivalent:

(1) X is h:TS-closed;
(2) X is h:TG-closed.

Also Theorem 25 and Proposition 6 imply:

Corollary 9. For any closed normal subgroup N of an h:TG-closed topological group X the quotient topological
group X/N has compact center Z(X/N). In particular, the Abelianization X/[X, X] of X is compact.

We recall that for a topological group X its central series {e} = Z0(X) ⊂ Z1(X) ⊂ · · · consists of
the subgroups defined recursively as Zn+1(G) = {z ∈ X : ∀x ∈ X zxz−1x−1 ∈ Zn(X)} for n ∈ ω.
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Proposition 7. If a topological group X is h:TG-closed, then for every n ∈ ω the subgroup Zn(X) is compact.

Proof. The compactness of the subgroups Zn(X) will be proved by induction on n. For n = 0 the
compactness of the trivial group Z0(X) = {e} is obvious. Assume that for some n ∈ ω we have
proved that the subgroup Zn(X) is compact. By Corollary 9, the center Z(X/Zn(X)) of the quotient
topological group X/Zn(X) is compact. Since Z(X/Zn(X)) = Zn+1(X)/Zn(X), we see that the
quotient topological group Zn+1(X)/Zn(X) is compact. By ([27] Corollary 1.5.8) (the 3-space property
of the compactness), the topological group Zn+1(X) is compact.

Proposition 7 implies the following characterization of h:TG-closed nilpotent topological groups,
first proved by Dikranjan and Uspenskij ([10] 3.9).

Corollary 10 (Dikranjan, Uspenskij). A nilpotent topological group is compact if and only if it is h:TG-closed.

We recall that a topological group X is totally minimal if for any closed normal subgroup N ⊂ X
the quotient topological group X/N is minimal. Proposition 6 and Theorem 31 imply the following
characterization.

Corollary 11. For an ω-narrow topological group X of countable pseudocharacter the following conditions
are equivalent:

(1) X is h:TG-closed;
(2) X is h:PG-closed.
(3) X is Polish and totally minimal.

In fact, the countable pseudocharacter can be removed from this corollary. Following [11],
we define a topological group X to be totally complete if for any closed normal subgroup N ⊂ X the
quotient topological group X/N is complete. It is easy to see that each h:TG-closed topological group is
totally complete. By ([11] 3.45), a topological group is h:TG-closed if it is totally complete and totally
minimal. These observations are complemented by the following characterization.

Theorem 33. For an ω-narrow topological group X the following conditions are equivalent:

(1) X is h:TG-closed;
(2) X is totally complete and totally minimal.

Proof. The implication (2)⇒ (1) was proved by Lukács ([11] 3.45). The implication (1)⇒ (2) will be
derived from the following lemma.

Lemma 4. Each ω-narrow h:TG-closed topological group X is minimal.

Proof. We should prove that each continuous bijective homomorphism f : X → Y to a topological
group Y has continuous inverse f−1 : Y → X. Since X embeds into the Tychonoff product of Polish
groups, it suffices to check that for every continuous homomorphism p : X → P to a Polish group
P the composition p ◦ f−1 : Y → P is continuous. Since X is h:TG-closed, the image p(X) is closed
in P. Replacing P by p(X), we can assume that P = p(X). Let KX = p−1(1) be the kernel of the
homomorphism p. Observe that the quotient topological group X/KX admits a bijective continuous
homomorphism p̄ : X/KX → P such that p = p̄ ◦ qX where qX : X → X/KX is the quotient
homomorphism. It follows that the quotient topological group X/KX has countable pseudocharacter.
Moreover, the topological group X/KX is ω-narrow and h:TG-closed being a continuous homomorphic
image of the ω-narrow h:TG-closed topological group X. By Corollary 11, the group X/KX is Polish
and minimal. Consequently, p̄ : X/KX → P is a topological isomorphism.
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Now we shall prove that the image KY = f (KX) of KX is closed in Y. Consider the continuous
homomorphism f p : X → Y × P, f p : x �→ ( f (x), p(x)), and observe that its image f p(X) is a closed
subgroup of Y × P by the i:TG-closedness of X. Consequently, the homomorphism p ◦ f−1 has closed
graph Γ = {(y, p ◦ f−1(y)) : y ∈ Y} = {( f (x), p(x)) : x ∈ X} = f p(X). Since the intersection
Γ ∩ (Y × {1}) is a closed subset of Y × {1} the homomorphism p ◦ f−1 has closed kernel

KY = {y ∈ Y : p ◦ f−1(y) = 1} = {y ∈ Y : (y, 1) ∈ Γ},

which coincides with f (KX). Let Y/KY be the quotient topological group and qY : Y → Y/KY be the
quotient homomorphism.

The continuous bijective homomorphism f : X → Y induces a continuous bijective
homomorphism f̂ : X/KX → Y/KY making the following diagram commutative.

X
p

��

f ��

qX
��

Y

qY
��

P X/KXp̄
��

f̂
�� Y/KY

The minimality of the Polish group X/KX guarantees that the bijective homomorphism f̂ is
a topological isomorphism, which implies that the homomorphism p̄ ◦ f̂−1 ◦ qY = p ◦ f−1 : Y → P
is continuous.

Now we are able to prove the implication (1) ⇒ (2) of Theorem 33. Given an ω-narrow
h:TG-closed topological group X and a closed normal subgroup N ⊂ X, we should check that
the quotient topological group X/N is complete and minimal. Observe that X/N is ω-narrow
and h:TG-closed (being a continuous homomorphic image of the ω-bounded h:TG-closed topological
group X). By Theorem 16, the h:TG-closed topological group X/N is complete and by Lemma 4,
it is minimal.

Remark 2. By Theorem 5.1 of [6], the class of h:TG-closed topological groups includes all quasi semi-simple
topological groups (introduced in Definition 3.2 of [6]). Applying Theorem 33, we conclude that each ω-narrow
quasi semi-simple topological group is totally minimal, which generalizes Corollary 5.3 of [6] (establishing the
total minimality of separable quasi semi-simple groups).

7. On p:C-closed Topological Groups

In this section, we collect some results on p:C-closed topological groups for various classes C of
topologized semigroups.

Theorem 34. Let C be a class of topologized semigroups, containing all Abelian topological groups.
For a topological group X the following conditions are equivalent:

(1) X is p:C-closed;
(2) each closed subsemigroup of X is h:C-closed;
(3) each closed subgroup of X is h:C-closed.

Proof. The equivalence (1) ⇔ (2) follows immediately from the definitions of p:C-closed and
h:C-closed topological groups, and (2)⇒ (3) is trivial.

To prove that (3)⇒ (2), assume that each closed subgroup of X is h:C-closed, and take any closed
subsemigroup S ⊂ X of X. We claim that S is a subgroup of X. Given any element x ∈ S, consider
the closure Z of the cyclic subgroup {xn}n∈Z. By our assumption, Z is h:C-closed and by Theorem 3,
the Abelian h:C-closed topological group Z is compact. Being a compact monothetic group, Z coincides
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with the closure of the subsemigroup {xn}n∈N and hence is contained in the closed subsemigroup S.
Then x−1 ∈ Z ⊂ S and S is a subgroup of X. By (3), S is h:C-closed.

For topological groups of precompact exponent, Theorem 32 implies the following
characterization.

Corollary 12. For any topological group X of precompact exponent the following conditions are equivalent:

(1) X is p:TG-closed;
(2) X is p:TS-closed.

An interesting property of p:TG-closed topological groups was discovered by Dikranjan and
Uspenskij ([10] 3.10). This property concerns the transfinite derived series (X[α])α of a topological
group X, which consists of the closed normal subgroups X[α] of X, defined by the transfinite
recursive formulas:

X[0] := X,

X[α+1] := [X[α], X[α]] for each ordinal α,

X[γ] :=
⋂

α<γ

X[α] for each limit ordinal γ.

The closed subgroup
X[∞] :=

⋂
α

X[α]

is called the hypocommutator of X. A topological group is called hypoabelian it its hypocommutator
is trivial.

Theorem 35 (Dikranjan, Uspenskij). For each p:TG-closed topological group X the quotient topological group
X/X[∞] is compact.

Corollary 13. A hypoabelian topological group is compact if and only if it is p:TG-closed.

Since solvable topological groups are hypoabelian, Corollary 13 implies the following
characterization of compactness of solvable topological groups.

Corollary 14. A solvable topological group X is compact if and only if it is p:TG-closed.

By ([10] 2.16), a balanced topological group is p:TG-closed if and only if it is c:TG-closed.

Problem 8. Is each balanced p:TS-closed topological group c:TS-closed?

8. On Closedness Properties of MAP Topological Groups

In this section, we establish some properties of MAP topological groups. We recall that
a topological group X is maximally almost periodic (briefly, MAP) if it admits a continuous injective
homomorphism into a compact topological group.

Theorem 36. A topological group X is compact if and only if X is p:TG-closed and MAP.

Proof. The “only if” part is trivial. To prove the “if’ part, assume that X is p:TG-closed and MAP.
Then X is complete. Assuming that X is not compact, we can apply Lemma 2 and find a non-compact
closed separable subgroup H ⊂ X. Since X is p:TG-closed, the closed subgroup H of X is h:TG-closed
and by Lemma 4, it is minimal and being complete and MAP, is compact. However, this contradicts
the choice of H.
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The notion of a MAP topological group can be generalized as follows. Let K be a class of
topologized semigroups. A topologized semigroup X is defined to be K-MAP if it admits a continuous
injective homomorphism f : X → K to some compact topologized semigroup K ∈ K. So, MAP is
equivalent to TG-MAP.

Theorem 37. Let C, K be two classes of Hausdorff topologized semigroups such that for any C ∈ C and K ∈ K
the product C× K belongs to the class C. A K-MAP topologized semigroup X is i:C-closed if and only if it is
h:C-closed.

Proof. The “if” part is trivial. To prove the “only if” part, assume that a topologized group X isK-MAP
and i:C-closed. To prove that X is h:C-closed, take any continuous homomorphism f : X → Y to
a topologized semigroup Y ∈ C. Since X is K-MAP, there exists a continuous injective homomorphism
h : X → K into a compact topologized semigroup K ∈ K. By our assumption, the topologized
semigroup Y × K belongs to the class C. Since the homomorphism f h : X → Y × K, f h : x �→
( f (x), h(x)), is continuous and injective, the image Γ = f h(X) of the i:C-closed semigroup X in the
semigroup Y × K ∈ C is closed. By ([31] 3.7.1), the projection pr : Y × K → Y is a closed map (because
of the compactness of K). Then the projection pr( f h(X)) = h(X) is closed in Y.

Since compact topological groups are balanced, each MAP topological group admits a continuous
injective homomorphism into a balanced topological group. By [27] (p. 69) a topological group X is
balanced iff each neighborhood U ⊂ X of the unit contains a neighborhood V ⊂ X of the unit which is
invariant in the sense that V = xVx−1 for all x ∈ X.

Proposition 8. Let X be an i:TG-closed topological group. For each continuous injective homomorphism
f : X → Y to a balanced topological group Y and each closed normal subgroup Z ⊂ X the image f (Z) is
closed in Y.

Proof. To derive a contradiction, assume that the image f (Z) of some closed normal subgroup Z ⊂ X
is not closed in Y. Let BX be the family of open neighborhoods of the unit in the topological group X
and BY be the family of open invariant neighborhoods of the unit in the balanced topological group Y.
It can be shown that the family

B = {V · ( f |Z)−1(W) : V ∈ BX , W ∈ BY}

satisfies the Pontryagin Axioms ([27] 1.3.12) and hence is a base of some Hausdorff group topology τ on
X. In this topology the subgroup Z is closed and is topologically isomorphic to the topological group
f (Z) which is not closed in Y and hence is not complete. Then the topological group Xτ = (X, τ)

is not complete too, and hence is not closed in its completion X̄τ . Now we see that the identity
homomorphism id : X → Xτ � X̄τ witnesses that X is not i:TG-closed. This contradiction completes
the proof.

In the proof of our next result, we shall need the (known) generalization of the Open Mapping
Principle 28 to homomorphisms between K-analytic topological groups.

We recall [36] that a topological space X is K-analytic if X = f (Z) for some continuous function
f : Z → X defined on an Fσδ-subset Z of a compact Hausdorff space C. It is clear that the continuous
image of a K-analytic space is K-analytic and the product A× C of a K-analytic space A and a compact
Hausdorff space C is K-analytic.

A topological group is called K-analytic if its topological space is K-analytic. In ([36] §I.2.10)) it was
shown that Open Mapping Principle 28 generalizes to homomorphisms defined on K-analytic groups.

Theorem 38 (K-analytic Open Mapping Principle, ([36] §I.2.10)). Each continuous homomorphism h :
X → Y from a K-analytic topological group X onto a Baire topological group Y is open.
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Theorem 38 will be used in the proof of the following lemma.

Lemma 5. Let X be an i:TG-closed MAP topological group. For a closed normal subgroup Z ⊂ X and
a continuous homomorphism h : X → Y to a topological group Y, the image h(Z) is compact if and only if h(Z)
is contained in a K-analytic subspace of Y.

Proof. The “only if” part is trivial. To prove the “if” part, assume that the image h(Z) is contained in
a K-analytic subspace A of Y.

Being MAP, the group X admits a continuous injective homomorphism f : X → K to a compact
topological group K. By Proposition 8, the image f (Z) is a compact subgroup of K.

Now consider the continuous injective homomorphism f h : X → K × Y, f h : x �→ ( f (x), h(x)).
By the i:TG-closedness, the image Γ := f h(X) is closed in K×Y. Then the space H = Γ ∩ ( f (Z)× A) is
K-analytic (as a closed subspace of the K-analytic space K× A). Observe that H = {( f (z), h(z) : z ∈ Z}
is a subgroup of X ×Y.

By the K-analytic Open Mapping Principle 38, the bijective continuous homomorphism prK :
H → f (Z), prK : (x, y) �→ x, from the K-analytic group H to the compact group f (Z) is open and
hence is a topological isomorphism. Consequently, the topological group H is compact and so is its
projection h(Z) onto Y.

We recall that a topological group is ω-balanced iff it embeds into a Tychonoff product of metrizable
topological groups.

Corollary 15. If an ω-balanced MAP topological group X is i:TG-closed, then each ω-narrow closed normal
subgroup of X is compact.

Proof. Being ω-balanced and complete, the topological group X can be identified with a closed
subgroup of a Tychonoff product ∏α∈A Mα of complete metrizable topological groups.

Fix an ω-narrow closed normal subgroup H in X and observe that for every α ∈ A the projection
prα(H) ⊂ Mα is an ω-narrow and hence separable subgroup of the metrizable topological group Mα.
Then the closure of prα(H) in the complete metrizable topological group Mα is a Polish (and hence
K-analytic) group. By Proposition 8, the group prα(H) is compact. Being a closed subgroup of the
product ∏α∈A prα(H) of compact topological groups, the topological group H is compact, too.

We recall that for a topological group X the ω-conjucenter Zω(X) of X consists of the points z ∈ X
whose conjugacy class CX(z) := {xzx−1 : x ∈ X} is ω-narrow in X. A subset A of a topological group
X is called ω-narrow if for each neighborhood U ⊂ X of the unit there exists a countable set B ⊂ X
such that A ⊂ BU ∩UB.

Theorem 39. Each i:TG-closed ω-balanced MAP topological group X has compact ω-conjucenter Zω(X).

Proof. First we prove that Zω(X) is precompact. Assuming the opposite, we can apply Lemma 2
and find a countable subgroup D ⊂ Zω(X) whose closure D̄ is not compact. By the definition of
Zω(X), each element x ∈ D has ω-narrow conjugacy class CX(x). By ([27] 5.1.19), the ω-narrow
set
⋃

x∈D CX(x) generates an ω-narrow subgroup H. It is clear that H is normal. By Corollary 15,
the closure H̄ of H is compact, which is not possible as H̄ contains the non-compact subgroup D̄.
This contradiction completes the proof of the precompactness of Zω(X). Then the closure Z̄ω(X) of
the subgroup Zω(X) in X is a compact normal subgroup of X. The normality of Z̄ω(X) guarantees
that for every z ∈ Z̄ω(X) the conjugacy class CX(z) ⊂ Z̄ω(X) is precompact and hence ω-narrow,
which means that z ∈ Zω(X). Therefore, the ω-conjucenter Zω(X) = Z̄ω(X) is compact.
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For any topological group X let us define an increasing transfinite sequence (Zα(X))α of closed
normal subgroups defined by the recursive formulas

Z0(X) = {e},

Zα+1(X) := {z ∈ X : ∀x ∈ X xzxz−1 ∈ Zα(X)} for any ordinal α and

Zβ(X) is the closure of the normal group
⋃

α<β Zβ(X) for a limit ordinal β.

The closed normal subgroup Z∞(X) =
⋃

α Zα(X) is called the hypercenter of the topological
group X. We recall that a topological group X is hypercentral if for every closed normal subgroup
N � X the quotient topological group X/N has non-trivial center Z(X/N). It is easy to see that
a topological group X is hypercentral if and only if its hypercenter equals X. It follows that a discrete
topological group is hypercentral if and only if it is hypercentral in the standard algebraic sense
([37] 364). Observe that each nilpotent topological group is hypercentral. More precisely, a group X is
nilpotent if and only if Zn(X) = X for some finite number n ∈ N.

Corollary 16. If an ω-balanced MAP topological group X is i:TG-closed, then its hypercenter Z∞(X) is
contained in the ω-conjucenter Zω(X) and hence is compact.

Proof. By Theorem 39, the ω-conjucenter Zω(X) of X is compact. By transfinite induction we shall
prove that for every ordinal α the subgroup Zα(X) is contained in Zω(X). This is trivial for α = 0.
Assume that for some ordinal α we have proved that

⋃
β<α Zβ(X) ⊂ Zω(X). If the ordinal α is

limit, then
Zα(X) =

⋃
β<α

Zβ(X) ⊂ Zω(X).

Next, assume that α = β + 1 is a successor ordinal. To prove that Zα(X) ⊂ Zω(X), take any
point z ∈ Zα(X) and observe that CX(z) = {xzx−1 : x ∈ X} ⊂ Zβ(X) ⊂ Zω(X) and hence CX(z) is
ω-narrow. So, z ∈ Zω(X) and Zα(X) ⊂ Zω(X).

By the Principle of Tranfinite Induction, the subgroup Zα(X) ⊂ Zω(X) for every ordinal
α. Then the hypercenter Z∞(X) is contained in Zω(X) and is compact, being equal to Zα(X) for
a sufficiently large ordinal α.

Corollary 17. A hypercentral topological group X is compact if and only if X is i:TG-closed, ω-balanced,
and MAP.

Problem 9. Is each h:TG-closed hypercentral MAP topological group compact?

9. The Compactness of h:TG-closed MAP-Solvable Topological Groups

In this section, we detect compact topological groups among h:TG-closed MAP-solvable topological
groups. We define a topological group X to be MAP-solvable if there exists a decreasing sequence
X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = {e} of closed normal subgroups in X such that for every n < m the
quotient group Xn/Xn+1 is Abelian and MAP. It is clear that each MAP-solvable topological group is
solvable. By the Pontryagin Duality ([27] 9.7.5) (see also [38]), each locally compact Abelian group is
MAP. This observation implies the following characterization.

Proposition 9. A locally compact topological group is MAP-solvable if and only if it is solvable.

Now we prove that balanced MAP-solvable h:TG-closed topological groups are compact. We recall
that a topological group X is called a balanced if each neighborhood U ⊂ X of the unit contains
a neighborhood V ⊂ X of the unit such that xVx−1 ⊂ U for all x ∈ X.

Theorem 40. For a solvable topological group X the following conditions are equivalent:
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(1) X is compact;
(2) X is balanced, locally compact and h:TG-closed;
(3) X is balanced, MAP-solvable and h:TG-closed.

Proof. The implication (1) ⇒ (2) is trivial and (2) ⇒ (3) follows from Proposition 9. To prove
that (3) ⇒ (1), assume that a topological group X balanced, MAP-solvable and h:TG-closed. Being
MAP-solvable, X admits a decreasing sequence of closed normal subgroups X = X0 ⊃ X2 ⊃ · · · ⊃
Xm = {e} such that for every n < m the quotient group Xn/Xn+1 is Abelian and MAP.

To prove that the group X = X/Xm is compact, it suffices to show that for every n ≤ m the
quotient group X/Xn is compact. This is trivial for n = 0. Suppose that for some n < m the group
X/Xn is compact. Assuming that the quotient group G := X/Xn+1 is not compact, we conclude that
the normal Abelian subgroup A := Xn/Xn+1 of G is not compact. The h:TG-closedness of X implies
the h:TG-closedness of the quotient group G. Then G is complete and by Lemma 2, the non-compact
closed subgroup A of X contains a countable subgroup Z whose closure Z̄ is not compact.

Claim 2. For every a ∈ A its conjugacy class CG(a) = {xax−1 : x ∈ G} is compact.

Proof. Consider the continuous map f : G → A, f : x �→ xax−1, and observe that it is constant
on cosets xA, x ∈ G. Consequently, there exists a function f̃ : G/A → A such that f = f̃ ◦ q
where q : G → G/A is a quotient homomorphism. Since the group G/A carries the quotient
topology, the continuity of f implies the continuity of f̃ . Now the compactness of the quotient group
G/A = X/Xn implies that the set f̃ (G/A) = f (G) = CG(a) is compact.

It follows that the union
⋃

z∈Z CG(z) is σ-compact and hence generates a σ-compact subgroup
H ⊂ A, which is normal in G. Then its closure H̄ is a normal closed ω-narrow subgroup in G.

Claim 3. The topological group G is balanced and MAP.

Proof. The topological group G is balanced, being a quotient group of the balanced topological
group X. Let BG be the family of all open invariant neighborhoods of the unit in the balanced group
G. To prove that X is MAP, we shall use the fact that the Abelian topological group A is MAP,
which implies that the strongest totally bounded group topology τA on A is Hausdorff. Let us observe
that for every x ∈ G the continuous automorphism A → A, a �→ xax−1, remains continuous in the
topology τA. Using this fact, it can be shown that the family

B = {UV : U ∈ BG, V ∈ τA}

satisfies the Pontryagin Axioms ([27] 1.3.12) and hence is a base of some Hausdorff group topology
τ on G. Observe that the subgroup A of (G, τ) is precompact and has compact quotient group
(G, τ)/A. Since the precompactness is a 3-space property (see [27] 1.5.8), the topological group (G, τ) is
precompact and its Raikov-completion Ḡ is compact. The identity homomorphism id : G → (G, τ) ⊂ Ḡ
witnesses that the topological group G is MAP.

Since the topological group G is balanced, MAP and h:TG-closed, we can apply Corollary 15 and
conclude that the ω-narrow closed normal subgroup H of G is compact, which is not possible as H
contains a closed non-compact subgroup Z̄. This contradiction completes the proof of the compactness
of the subgroup A = Xn/Xn+1. Now the compactness of the groups X/Xn and A = Xn/Xn+1 imply
the compactness of the quotient group X/Xn+1, see ([27] 1.5.8).

Since each discrete topological group is locally compact and balanced, Theorem 40 implies

Corollary 18. A solvable topological group is finite if and only if it is discrete and h:TG-closed.
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10. Some Counterexamples

In this section, we collect some counterexamples.
Our first example shows that Theorem 22 does not generalize to solvable (even meta-Abelian)

discrete groups. A group G is called meta-Abelian if it contains a normal Abelian subgroup H with
Abelian quotient G/H.

For an Abelian group X let X � C2 be the product X × {−1, 1} endowed with the operation
(x, u) ∗ (y, v) = (xyu, uv) for (x, u), (y, v) ∈ X × {−1, 1}. The semidirect product X � C2 is
meta-Abelian (since X × {1} is a normal Abelian subgroup of index 2 in X � C2).

By T1S we denote the family of topological semigroups X satisfying the separation axiom T1 (which
means that finite subsets in X are closed). Since TS ⊂ T1S, each T1S-closed topological semigroup
is TS-closed.

Proposition 10. For any Abelian group X the semidirect product X � C2 endowed with the discrete topology
is an e:T1S-closed MAP topological group.

Proof. First we show that the group X � C2 is MAP. By Pontryagin Duality [27] Theorem 9.7.5, the
Abelian discrete topological group X is MAP and hence admits an injective homomorphism δ : X → K
to a compact Abelian topological group K. It easy to see that the semidirect product K � C2 endowed
with the group operation (x, u) ∗ (y, v) = (xyu, uv) for (x, u), (y, v) ∈ K× C2 is a compact topological
group and the map δ2 : X � C2 → K � C2, δ2 : (x, u) �→ (δ(x), u), is an injective homomorphism
witnessing that the discrete topological group X � C2 is MAP.

To show that X � C2 is e:T1S-closed, fix a topological semigroup Y ∈ T1S containing the group
G := X � C2 as a discrete subsemigroup. Identify X with the normal subgroup X × {1} of G.
First we show that X is closed in Y. Assuming the opposite, we can find an element ŷ ∈ X̄ \ X.
Consider the element p := (e,−1) ∈ X � C2 and observe that for any element x ∈ X we get
pxp = (e,−1)(x, 1)(e,−1) = (x−1, 1) = x−1 and hence pxpx = e, where e is the unit of the groups
X ⊂ G. The closedness of the singleton {e} in Y and the continuity of the multiplication in the
semigroup Y guarantee that the set

Z = {y ∈ Y : ypyp = e}

is closed in Y and hence contains the closure of the group X in Y. In particular, ŷ ∈ X̄ ⊂ Z̄ = Z.
So, ŷpŷp = e. Since the subgroup G of Y is discrete, there exists a neighborhood Ve ⊂ Y of e such that
Ve ∩ G = {e}. By the continuity of the semigroup operation on Y, the point ŷ has a neighborhood
W ⊂ Y such that W pW p ⊂ Ve. Fix any element x ∈ W ∩ X and observe that (W ∩ X)pxp ⊂
X ∩ (W pW p) ⊂ X ∩Ve = {e}, which is not possible as the set W ∩ X is infinite and so is its right shift
(W ∩ X)pxp in the group G. This contradiction shows that the set X is closed in Y.

Next, we show that the shift Xp = X × {−1} of the set X is closed in Y. Assuming that Xp has
an accumulating point y∗ in Y, we conclude that y∗p is an accumulating point of the group X, which is
not possible as X is closed in Y. So, the sets X and Xp are closed in Y and so is their union G = X ∪ Xp,
witnessing that the group G is e:T1S-closed.

Since the isometry group Iso(Z) of Z is isomorphic to the semidirect product Z�C2, Proposition 10
implies the following fact.

Example 2. The group Iso(Z) endowed with the discrete topology is e:T1S-closed and MAP but does not have
compact exponent.

By Dikranjan-Uspenskij Theorem 9, each h:TG-closed nilpotent topological group is compact.
Our next example shows that this theorem does not generalize to solvable topological groups and thus
resolves in negative Question 3.13 in [10] and Question 36 in [12].
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Example 3. The Lie group

Iso+(C) =

{(
a b
0 1

)
: a, b ∈ C, |a| = 1

}

of orientation-preserving isometries of the complex plane is h:TS-closed and MAP-solvable but not compact and
not MAP.

Proof. The group Iso+(C) is topologically isomorphic to the semidirect product C�T of the additive
group C of complex numbers and the multiplicative group T = {z ∈ C : |z| = 1}. The semidirect
product is endowed with the group operation (x, a) · (y, b) = (x + ay, ab) for (x, a), (y, b) ∈ C�T.

It is clear that the group G := C�T is meta-Abelian (and hence solvable) and not compact. Being
solvable and locally compact, the group G is MAP-solvable (see Proposition 9). To prove that G is
h:TS-closed, take any continuous homomorphism h : G → Y to a Hausdorff topological semigroup
Y and assume that the image h(G) is not closed in Y. Replacing Y by h(G), we can assume that the
subgroup h(G) is dense in the topological semigroup Y.

Claim 4. The homomorphism h is injective.

Proof. Consider the closed normal subgroup H = h−1(h(0, 1)) of G, the quotient topological group
G/H and the quotient homomorphism q : G → G/H. It follows that h = h̃ ◦ q for some continuous
homomorphism h̃ : G/H → Y. We claim that the subgroup H is trivial. To derive a contradiction,
assume that H contains some element (x, a) �= (0, 1). Then for every (y, b) ∈ C� T the normal
subgroup H of G contains also the element (y, b)(x, a)(y, b)−1 = (y + bx, ba)(−b−1y, b−1) = (y + bx−
ay, a) and hence contains the coset C× {a}. Being a subgroup, H also contains the set (C× {a}) · (C×
{a})−1 = C× {1}. Taking into account that the quotient group G/(C× {1}) is compact, we conclude
that G/H is compact too. Consequently, h(G) = h̃(G/H) is compact and closed in the Hausdorff
space Y, which contradicts our assumption. This contradiction shows that the subgroup H is trivial
and the homomorphism h is injective.

Claim 5. The map h : G → Y is a topological embedding.

Proof. Since h is injective, the family τ = {h−1(U) : U is open in Y} is a Hausdorff topology
turning G into a paratopological group. We need to show that τ coincides with the standard locally
compact topology of the group G. Since the topology τ is weaker than the original product topology
of G = C � T, the compact set {1} × T remains compact in the topology τ. Then we can find
a neighborhood U ∈ τ of the unit (0, 1) ∈ G such that UU is disjoint with the compact set {1} ×T.

Using the compactness of the set {0} × T ⊂ G and the continuity of the multiplication in G,
find a neighborhood V ∈ τ of the unit such that {ava−1 : v ∈ V, a ∈ {0} × T} ⊂ U. We claim that
V ⊂ {(z, a) ∈ C�T : |z| ≤ 1}. Assuming the opposite, we could find an element (v, a) ∈ V with
|v| > 1.

Since |v−1| < 1 and |a| = 1, there are two complex numbers b, c ∈ T such that b + ac = v−1 ∈ C.
Observe that (bv, a) = (0, b)(v, a)(0, b−1) ∈ U and similarly (cv, a) ∈ U. Then

UU � (bv, a)(cv, a) = (bv + acv, a2) = (1, a2) ∈ {1} ×T,

which contradicts the choice of the neighborhood U. This contradiction shows that V ⊂ {(z, a) ∈
G : |z| ≤ 1} and hence V has compact closure in the spaces G and (G, τ). This means that the
paratopological group (G, τ) is locally compact and, by the Ellis Theorem ([27] 2.3.12), is a topological
group. By the Open Mapping Principle 38, the identity homomorphism G → (G, τ) is a topological
isomorphism and so is the homomorphism h : G → h(G) ⊂ Y.
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Since the topological group G is Weil-complete (being locally compact), Theorem 17 guarantees
that Y \ h(G) is an ideal of the semigroup Y. Choose any element y ∈ Y \ h(G) and observe that
for the compact subset K = h({0} × T) ⊂ h(G) ⊂ Y the compact set yKy is contained in the ideal
Y \ h(G) and hence does not intersect K. By the Hausdorff property of the topological semigroup Y
and the compactness of K, the point y has a neighborhood V ⊂ Y such that (VKV) ∩ K = ∅. Now
take any element v ∈ V ∩ h(G) and find an element (x, a) ∈ G with h(x, a) = v. Let b = −a−1 ∈ T

and observe that (x, a)(0, b)(x, a) = (x, ab)(x, a) = (x,−1)(x, a) = (0,−a). Then for the element
k = h(0, b) ∈ K we get VKV � vkv = h(0,−a) ∈ K, which contradicts the choice of the neighborhood
V. This contradiction completes the proof of the h:TS-closedness of the Lie group C�T.

By Theorem 15, the non-compact ω-narrow h:TG-closed group C�T is not MAP.

The following striking example of Klyachko, Olshanskii and Osin ([29] 2.5) shows that the
p:TS-closedness does not imply compactness even for 2-generated discrete topological groups. A group
is called 2-generated if it is generated by two elements.

Example 4 (Klyachko, Olshanskii, Osin). There exists a p:TG-closed infinite simple 2-generated discrete
topological group G of finite exponent. By Theorems 14 and 32, G is p:TS-closed and is c:TG-closed.

We do not know if the groups constructed by Klyachko, Olshanskii and Osin can be c:TS-closed.
So, we ask

Problem 10. Is each c:TS-closed topological group compact?

Finally, we present an example showing that an h:TG-closed topological group needs not be
e:TS-closed.

Example 5. The symmetric group Sym(ω) endowed with the topology of pointwise convergence has the
following properties:

(1) X is Polish, minimal, and not compact;
(2) X is complete but not Weil-complete;
(3) X is h:TG-closed;
(4) X is not e:TS-closed.

Proof. The group Sym(ω) is Polish, being a Gδ-subset of the Polish space ωω. The minimality of
the group Sym(ω) is a classical result of Gaughan [39]. Being Polish, the topological group Sym(ω)

is complete. By ([23] 7.1.3), the topological group Sym(ω) is not Weil-complete. By Theorem 16,
the topological group Sym(ω) is not e:TS-closed.

It remains to show that the topological group X = Sym(ω) is h:TG-closed. Let h : X → Y
be a continuous homomorphism to a topological group Y. By ([23] 7.1.2), the group Sym(ω) is
topologically simple, which implies that the kernel H = h−1(1) of the homomorphism h is either trivial
or coincides with X. In the second case the group h(X) is trivial and hence closed in Y. In the first
case, the homomorphism h is injective. By the minimality of X, the homomorphism h is an isomorphic
topological embedding. The completeness of X ensures that the image h(X) is closed in Y.
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For a topological group G, S(G) denotes the set of all closed subgroups of G. There are many
ways to endow S(G) with a topology related to the topology of G. Among these methods, the most
intensively studied are the Chabauty topology, rooted in Geometry of Numbers, and the Vietoris topology,
based on General Topology; both coincide if G is compact. The spaces of closed subgroups are interesting
by their own merits, but they also have some deep applications in Topological Groups and Model Theory,
Geometric Group Theory, and Dynamical Systems. This survey is my subjective look at this area.

1. Chabauty Spaces

1.1. From Minkowski to Chabauty

We recall that a lattice L in Rn is a discrete subgroup of rank n. We define min L as the length of the
shortest nonzero vector from L, and we define vol (Rn/L) as the volume of a basic parallelepiped of L.

A sequence (Lm)m∈ω of lattices in Rn converges to the lattice L if, for each m ∈ ω, one can choose a
basis a1(m), . . . , an(m) of Lm and a basis a1, . . . , an of L such that the sequence (ai(m))m∈ω converges to
ai for each i ∈ {1, . . . , n}. This convergence of lattices was introduced by H. Minkowski [1], and its usage
in Geometry of Numbers (see [2]) is based on the following theorem from K. Mahler [3].

Theorem 1. Let M be a set of lattices in Rn. Every sequence in M has a convergent subsequence if and only if
there exist two constants, C > 0 and c > 0, such that min L > c, vol (Rn \ L) < C for each L ∈ M.

What we know now is that Chabauty topology was invented by C. Chabauty in [4] in order to
extend Theorem 1 to lattices in connected Lie groups.A discrete subgroup L of a connected Lie group G is
called a lattice if the quotient space G/L is compact.

Let X be a Hausdorff locally compact space, and let exp X denote the set of all closed subsets of X.
The sets

{F ∈ exp X : F ∩ K = ∅}, {F ∈ exp X : F ∩U �= ∅},

Axioms 2018, 7, 75; doi:10.3390/axioms7040075 www.mdpi.com/journal/axioms
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where K runs over all compact subsets of X and U runs over all open subsets of X, form the subbase of
the Chabauty topology on exp X. The space exp X is compact and Hausdorff. If X is discrete, then exp X is
homeomorphic to the Cantor cube {0, 1}|X|.

We note also that a net (Fα)α∈I converges in exp X to F if and only if

• for every compact K of X such that K ∩ F = ∅, there exists β ∈ I such that Fα ∩ K = ∅ for each
α > β;

• for every x ∈ F and every neighborhood U of x, there exists γ ∈ I such that Fα ∩U �= ∅ for each
α > γ.

If G is a locally compact group, then S(G) is a closed subspace of exp G (so, S(G) is compact);
S(G) is called the Chabauty space of G.

Theorem 2. [4]. Let G be a connected unimodular Lie group. A set M of lattices in G is relatively compact in M
if and only if there exists a constant C > 0 and a neighborhood U with the identity e of G such that L ∩U = {e}
and vol (G/L) < C for each L ∈ M.

There was some technical improvement made in [5] and the paper [4], which is included in [6],
Chapter 8.

1.2. Pontryagin–Chabauty Duality

This duality was established in [7] and detailed in [8]. We use the standard abbreviation LCA
for a locally compact Abelian group. Let G be an LCA-group G∧, let denote its dual group G∧ =

Hom (G,R/Z), and let ϕ denote the canonical bijection S(G) −→ S(G∧), ϕ(X) = { f ∈ G∧ : X ⊆ ker f }.

Theorem 3. For every LCA-group G, the bijection ϕ : S(G) −→ S(G∧) is a homeomorphism.

Typically, Theorem 3 is applied to replace S(G) by S(G∧) in the case of a compact Abelian group G.
In what follows, we use the following notations: Cn is a cyclic group of order n, Cp∞ is a quasi-cyclic

(or Prüfer) p-group, Z is a discrete group of integers, Zp is the group of p-adic integers, and Qp is an
additive group of a field of p-adic numbers.

1.3. S(G) for Compact G

The following two lemmas from [9] are the basic technical tools in this area.

Lemma 1. If G, H are compact groups and ϕ : G −→ H is a continuous surjective homomorphism, then the
mapping S(G) −→ S(H), X �−→ ϕ(X) is continuous and open.

The continuity is easily deduced, but to prove the openness, we need

Lemma 2. Let G be a compact group, X ∈ S(G). Then, the following subsets form a base of the neighborhoods of
X is S(G):

NX(U, N, x1, . . . , xn) = {u−1Yu : u ∈ U, Y ∈ S(G), Y ⊆ XN, Y ∩ x1U �= ∅, . . . , Y ∩ xnU �= ∅, }

where U is a neighborhood of the identity of G, N is closed normal subgroup such that G/N is a Lie group,
and x1, . . . , xn are arbitrary elements of X, n ∈ N.
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In particular, if G is a compact Lie group, then Lemma 2 states that there is a neighborhood N of X
such that each subgroup Y ∈ N is conjugated to some subgroup of X. The Montgomery–Yang theorem
on tubes [10] (see also ([11], Theorem 5.4, Chapter 2)) plays the key role in the proof of Lemma 2.

We recall that the cellularity (or Souslin number) c(X) of a topological space X is the supremum
of cardinalities of disjoint families of open subsets of X. A topological space X is called dyadic if X is a
continuous image of some Cantor cube {0, 1}κ .

The weight w(X) of a topological space X is the minimal cardinality of the open bases of X.

Theorem 4. [9]. For every compact group G, we have c(S(G)) ≤ ℵ0. In addition, if w(G) ≤ ℵ1, then S(G)

is dyadic.

Theorem 5. [12]. Let a group G be either profinite or compact and Abelian. If w(G) > ℵ2, then the space S(G)

is not dyadic.

Theorem 6. [12]. Let G be an infinite compact Abelian group such that w(G) ≤ ℵ1. Then, the space S(G) is
homeomorphic to the Cantor cube {0, 1}w(G) if and only if S(G) has no isolated points.

An Abelian group G is called Artinian if every increasing chain of subgroups of G is finite; every such
group is isomorphic to the direct sum ⊕p∈F Cp∞ ⊕ K, where F is a finite set of primes, and K is a finite
subgroup. An Abelian group G is called minimax if G has a finitely generated subgroup N such that G/N
is Artinian.

Theorem 7. [12]. For a compact Abelian group G, the space S(G) has an isolated point if and only if the dual
group G∧ is minimax.

1.4. S(G) for LCA G

The space S(R) is homeomorphic to the segment [0, 1]. By [13], S(R2) is homeomorphic to the
sphere S4. For n ≥ 3, S(Rn) is not a topological manifold and its structure is far from understood
(see [14]).

Theorem 8. [15]. The space S(G) of an LCA-group G is connected if and only if G has a subgroup topologically
isomorphic to R.

If F is a non-solvable finite group, then S(R× F) is not connected ([8], Proposition 8.6).

Theorem 9. [8]. The space S(G) of an LCA-group G is totally disconnected if and only if G is either totally
disconnected or each element of G belongs to a compact subgroup.

Some more information on S(G) for LCA G can be found in [8] and the references therein,
particularly on the topological dimension of S(G).

By Theorems 3 and 4, c(S(G)) ≤ ℵ0 for every discrete Abelian group. We say that a topological
space X has the Shanin number ω if any uncountable family F of the non-empty open subsets of X has
an uncountable subfamily F′ such that ∩F′ �= ∅. Evidently, if a space X has the Shanin number ω,
then c(X) ≤ ℵ0. By [16], Theorem 1, for every discrete Abelian group G, the space S(G) has the Shanin
number ω. By [16], Theorem 3, for every infinite cardinal τ, there exists a solvable discrete group G such
that c(S(G)) = |G| = τ.
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1.5. S(G) as a Lattice

The set S(G) has the natural structure of a lattice with the operations ∨ and ∧, where A∧ B = A∩ B,
and A ∨ B is the smallest closed subgroup of G containing A and B. In this subsection, we formulate
some results from [17] about the interrelations between the topological and lattice structures on S(G).

For g ∈ G, < g > denotes the subgroup of G topologically generated by g. A totally disconnected
locally compact group G is called periodic if < g > is compact for each g ∈ G. In this case, π(G) denotes
the set of all prime numbers such that p ∈ π(G) if and only if g ∈ G such that < g > is topologically
isomorphic either to Cpn or to Zp; this g is called a topological p-element.

Theorem 10. For a compact group G, the following statements are equivalent:

(i) ∧ is continuous;
(ii) ∧ and ∨ are continuous;

(iii) G is the semidirect product K � P, where K is profinite with finite Sylow p-subgroups, P is Abelian profinite
and each Sylow p-subgroup of G is Zp, π(K) ∩ π(P) = ∅, and the centralizer of each Sylow p-subgroup of
G has a finite index in G.

Theorem 11. For a locally compact group G, the operation ∧ is continuous if and only if the following conditions
are satisfied:

(i) G is either discrete or periodic;
(ii) ∧ is continuous in S(H) for each compact subgroup H of G;

(iii) the centralizer of each topological p-element of G is open.

We recall that a torsion group G is layer-finite if the set {g ∈ G : gn = e} is finite for each n ∈ N.
A layer-finite group G is called thin if each Sylow p-subgroup of G is finite (equivalently, G has no
subgroup isomorphic to Cp∞ ).

Theorem 12. Let G be a locally compact group. The operations ∧ and ∨ are continuous if and only if G is periodic
and topologically isomorphic to A× B× (C � D), where C has a dense thin layer-finite subgroup; A, B, D are
Abelian with Sylow p-subgroups Cp∞ , Qp, or Zp; the sets π(A), π(B), π(G), π(D) are pairwise disjoint; and
the centralizer of each Sylow p-subgroup of G is open.

1.6. From Chabauty to Local Method

A topological group G is called topologically simple if each closed normal subgroup of G is either G or
{e}. Every topologically simple LCA-group is discrete, and either G = {e} or G is isomorphic to Cp.

Following the algebraic tradition, we say that a group G is locally nilpotent (solvable) if every finitely
generated subgroup is nilpotent (solvable).

In [18], Problem 1.76, V. Platonov asked whether there exists a non-Abelian, topologically simple,
locally compact, locally nilpotent group. Here, we present the negative answer to this question for the
locally solvable group obtained in [19].

Let G be a locally compact, locally solvable group. We take g ∈ G \ {e}, choose a compact
neighborhood U of G, and denote by F the family of all topologically finitely generated subgroups of
G containing g. We may assume that G is not topologically finitely generated, so F is directed by the
inclusion ⊂. For each F ∈ F , we choose AF, BF ∈ S(F) such that BF ⊂ AF; AF and BF are normal in F,
AF ∩U �= ∅, BF ∩U = ∅, and AF/BF is Abelian. Since S(G) is compact, we can choose two subnets
(Aα)α∈I , (Bα)α∈I of the nets (AF)F∈F , (BF)F∈I which converge to A, B ∈ S(G). Then A, B are normal
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in G, and A/B is Abelian. Moreover, x /∈ B and A ∩U �= ∅. If A �= {G}, then A is a proper normal
subgroup of G; otherwise, G/B is Abelian.

In [20], the Chabauty topology was defined on some systems of closed subgroups of a locally
compact group G. A system A of closed subgroups of G is called subnormal if

• A contains {e} and G;
• A is linearly ordered by the inclusion ⊂;
• for any subset M of A, the closure of

⋃
F∈M F ∈ A and

⋂
F∈M F ∈ A;

• whenever A and B comprise a jump in A (i.e., B ⊂ A, and no members of A lie between B and A), B
is a normal subgroup of A.

If the subgroups A, B form a jump, then A/B is called a factor of G. The system is called normal if
each A ∈ A is normal in G.

A group G is called an RN-group if G has a normal system with Abelian factors. Among the local
theorems from [20], one can find the following: if every topologically finitely generated subgroup of a
locally compact group G is an RN-group, then G is an RN-group. In particular, every locally compact,
locally solvable group is an RN-group.

In 1941 (see ([21], pp. 78–83), A.I. Mal’tsev obtained local theorems for discrete groups as applications
of the following general local theorem: if every finitely generated subsystem of an algebraic system A
satisfies some property P , which can be defined by some quasi-universal second-order formula, then A
satisfies P .

In [22], Mal’tsev’s local theorem was generalized on a topological algebraic system. The part of the
model-theoretical Compactness Theorem in Mal’tsev’s arguments employs some convergents of closed
subsets. A net (Fα)α∈I of closed subsets of a topological space X S-converges to a closed subset F if

• for every x ∈ F and every neighborhood U of x, there exists β ∈ I such that Fα ∩U �= ∅ for each
α > β;

• for every y ∈ X \ F, there exist a neighborhood V of y and a γ ∈ I such that Fα ∩ V = ∅ for each
α > γ.

Every net of closed subsets of an arbitrary (!) topological space has a convergent subnet. If X
is a Hausdorff locally compact space, then the S-convergence coincides with the convergence in the
Chabauty topology.

1.7. Spaces of Marked Groups

Let Fk be the free group of rank k, with the free generators x1, . . . , xk, and let Gk denote the set of all
normal subgroups of Fk. In the metric form, the Chabauty topology on Gk was introduced in [23] as a
reply to Gromov’s idea of the topologizations of some sets of groups [24].

Let G be a group generated by g1, . . . , gk. The bijection xi �−→ gi g1, . . . , gn can be extended to
the homomorphism f : Fk −→ G. With the correspondence G �−→ ker f , Gk is called the space marked
k-generated groups.

A couple of papers in development by [23] are aimed at understanding how large, in the topological
sense, are the well-known classes of finitely generated groups, or how a given k-generated group is
placed in Gk (see [25]). Among the applications of Gk, we mention the construction of topologizable Tarski
Monsters in [26].
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1.8. Dynamical Development

Every locally compact group G acts on the Chabauty space S(G) by the rule: (g, H) �−→ g−1Hg.
Under this action, every minimal closed invariant subset of S(G) is called a uniformly recurrent subgroup
(URS). The study of URSs was initiated by Glasner and Weiss [27] with the following observation.

Let G be a locally compact group G acting on a compact X so that is G minimal, i.e., the
orbit of each point x ∈ X is dense. We consider the mapping Stab : X −→ S(G), defined by
Stab(x) = {g ∈ G : gx = x}. Then, there is the unique URS contained in the closure of Stab(X). This URS
is called the stabilizer URS. Glasner and Weiss asked whether every URS of a locally compact group G
arises as the stabilizer URS of a minimal action of G on a compact space. This question was answered in
the affirmative in [28].

2. Vietoris Spaces

For a topological space X, the Vietoris topology on the set exp X of all closed subsets of X is defined
by the subbase of the open sets

{F ∈ exp X : F ⊆ U}, {F ∈ exp X : F ∩V �= ∅},

where U,V run over all open subsets of X.
A net (Fα)α∈I converges to F in exp X if and only if

• for each open subset U of X such that F ⊆ U, there exists β ∈ I such that Fα ⊆ U for each α > β;
• for each x ∈ F and each neighborhood V of x, there exists γ ∈ I such that Fα ∩ V �= ∅ for each

α > γ.

If X is regular, then S(G) is closed in exp G. To my knowledge, the spaces S(G), where G needs not
be compact, endowed with Vietoris topologies appeared in [29] with the characterization of LCA-groups
G such that the canonical mapping ϕ : S(G) −→ S(G∧) is a homeomorphism.

2.1. Compactness

We cannot ask for a constructive description of arbitrary topological groups G with compact space
S(G) because we know nothing about G with S(G) = 2.

Theorem 13. [30]. Let G be a locally compact group. The space S(G) is compact if and only if G is one of the
following groups:

(i) G is compact;
(ii) Cp∞

1
× . . .×Cp∞

n × K, where p1, . . . , pn are distinct prime numbers, K is finite, and each pi is not a divisor
of |K|;

(iii) Qp × K, where K is finite and p does not divide |K|.

A similar characterization of groups with compact S(G) is given in [31], provided that G has a base
of neighborhoods at the identity consisting of subgroups.

Theorem 14. [32]. Let G be a locally compact group. A closed subset F of S(G) is compact if and only if the
following conditions are satisfied:

(i) every descending chain of non-compact subgroups from F is finite;
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(ii) every closed subset F′ of F has only a finite number of non-compact subgroups maximal in F ;
(iii) if a closed subset F′ of F has no non-compact subgroups, then ∪F′ is compact.

Two corollaries: Every compact subset of S(G) consisting of non-compact subgroups is scattered;
a subset F is compact if and only if F is countably compact.

For locally compact groups with the σ-compact space S(G) (see [33]), a description of the
LCA-groups with locally compact space S(G) can be obtained in [34].

A topological group G is called inductively compact if every finite subset of G is contained in a compact
subgroup. For a group G, K(G) and IK(G) denote the sets of all compact and closed inductively compact
subgroups.

Theorem 15. [35]. For every locally compact group G, IK(G) is the closure of K(G).

Two corollaries: If G is a connected Lie group, then K(G) is closed; S(G) is a k-space for each locally
compact group G of countable weight, i.e., the topology of S(G) is uniquely determined by the family of
all compact subsets of S(G).

2.2. Metrizability and Normality

LCA-groups G with metrizable and normal space S(G) were characterized by S. Panasyuk in the
candidate thesis Normality and metrizability of the space of closed subgroups, Kyiv University, 1989.

Theorem 16. For a discrete Abelian group G, the following statements are equivalent:

(i) S(G) is metrizable;
(ii) S(G) is normal;

(iii) G has a finitely generated subgroup H such that G/H = Cp∞
1
× . . . × Cp∞

n , where p1, . . . , pn are
distinct primes.

In the general case, metrizability and normality of S(G) are not equivalent, but if G is a connected
semisimple Lie group, then S(G) is metrizable if and only if S(G) is normal if and only if G is compact
(see [36,37]). The space S(G) for every connected solvable Lie group is metrizable [36].

2.3. Some Cardinal Invariants

We remind the reader that c(X) denotes the cellularity of X.

Theorem 17. [9]. For every infinite locally compact group G, we have c(S(G)) ≤ c(G).

Theorem 18. [38]. For every locally compact group G, the following conditions are equivalent:

(i) S(G) is of countable pseudocharacter;
(ii) S(G) is of countable tightness;

(iii) S(G) is sequential;
(iv) w(G) ≤ ℵ0.

3. Other Topologizations

3.1. Bourbaki Uniformities

Let (X,U ) be a uniform space. The uniformity U induces the uniformity Ũ on the set F (X) of all
non-empty closed subsets of X which have as a base the family of sets of the form
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{(A, B) ∈ F (X)×F (X) : B ⊆ U(A), A ⊆ U(B)},

whenever U ∈ U . The uniformity Ũ was introduced in [39] (Chapter 2, § 1), and Ũ is called the Bourbaki
(sometimes, Hausdorff–Bourbaki) uniformity.

Let G be a topological group. We endow G with the left uniformity L and F(G) with the Bourbaki
uniformity L̃. We denote by L(G) and B(G) the subspaces of F (G) consisting of all subgroups and all
totally bounded subsets of G.

Theorem 19. [40]. Let G be a group with a base at the identity consisting of subgroups. The space L(G) is
compact if and only if G is totally bounded and K

⋂
G is dense in K for each closed subgroup K from the completion

of G.

In particular, if L(G) is compact, then G is totally minimal.

Theorem 20. [40]. If a group G is complete in the left uniformity, then B(G) is complete.

We recall that a topological group G is almost metrizable if each neighborhood of e contains a compact
subgroup K such that the set of all open subsets containing K have a countable base. Every metrizable
and every locally compact topological group is almost metrizable.

Theorem 21. [40]. If an almost metrizable group G is complete in the left uniformity, then F (G) is complete.

In [41], Theorem 21 is proved with the bilateral uniformity on G (and so on F (G)) in place of the
left uniformity.

3.2. Functionally Balanced Groups

For a topological group G, the set F (G) has the natural structure of a semigroup with the operation
(A, B) �−→ cl AB.

Theorem 22. [42]. For a topological group G, the following statements are equivalent:

(i) F (G) is a topological semigroup;
(ii) for every subset X of G and every neighborhood U of e, there exists a neighborhood V of e such that

VX ⊆ XU;
(iii) every bounded left uniformly continuous function on G is right uniformly continuous.

A topological group G is called balanced (or a SIN-group) if the left and right uniformities of G
coincide. A group G is called functionally balanced if G satisfies (iii) of Theorem 22. The study of
functionally balanced groups was initiated by G. Itzkowitz [43].

The equivalence of (ii) and (iii) in Theorem 22 is a criterion for a topological group to be functionally
balanced. In [44], this criterion was used to show that each almost-metrizable functionally balanced
group is balanced.

3.3. Lattice Topologies

These topologies on a complete lattice L(G) of closed subgroups are algebraically defined by the
lattice structure of L(G).
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For example, a net (Aα)α∈I in L(G) order-converges to A ∈ L(G) if there exist two nets (Bα)α∈I ,
(Cα)α∈I in L(G) such that, for each α ∈ I , Bα ⊆ Aα ⊆ Cα and ∨α∈IBα = ∧α∈ICα = A. By [45], for a
compact group G, every net in L(G) has an order-convergent subset if and only if L(G) endowed with
the Shabauty topology is a topological lattice (see Theorem 10).

More on the lattices’ topologies on L(G) in the case of a compact G can be found in [46].

3.4. Segment Topologies

Let G be a topological group; PG is the family of all subsets of G, and [G]<ω is the family of all finite
subsets of G. Each pair A,B of subsets of PG closed under finite unions defines the segment topology on
L(G) with a base consisting of the segments

[A, G \ B] = {X ∈ L(G) : A ⊆ X ⊆ G \ B}, A ∈ A, B ∈ B.

These topologies are described in [47] in the following three cases: A = B = [G]<ω; A = PG and
B = [G]<ω; A = [G]<ω, B = PG

3.5. (Σ, Θ)-Topologies

This general construction for topologizations of the set L(G) of closed subgroups of a topological
group G from [48] produces Chabauty, Vietoris, and Bourbaki topologies, along with plenty of
other topologies.

We assume that, for each H ∈ L(G), Σ(H) is some family of open subsets of G, Σ = ∪H∈L(G) Σ(H),
and the following conditions are satisfied:

• if U,V ∈ Σ(H), then U ∩ V contains some W ∈ Σ(H);
• for every U ∈ Σ(H), there exists V ∈ Σ(H) such that U ∈ Σ(K) for each K ∈ L(G), K ⊆ V ;
• ⋂

U∈Σ(H) U = H for each H ∈ L(G).

Then, the family {X ∈ L(G) : X ⊆ U}, U ∈ Σ, is a base for the Σ-topology on L(G).
Let τ denote the topology of G, and let Pτ denote the family of all subsets of τ. We assume that,

for each H ∈ L(G), Θ(H) is some subset of Pτ such that the following conditions are satisfied:

• for every α, β ∈ Θ(H), there is a γ ∈ Θ(H) such that α < γ, β < γ (α < β means that, for every
U ∈ α, there exists V ∈ β such that V ⊆ U);

• for every α ∈ Θ(H), there exists β ∈ Θ(H) such that if K ∈ L(G) and K ∩ V �= ∅ for each V ∈ β,
then α < γ for some γ ∈ Θ(K);

• for each H ∈ L(G) and every neighborhood V of x, there exists α ∈ Θ(H) such that x ∈ U, U ⊆ V
for some U ∈ α.

Then, the family {X ∈ L(G) : X ∩U �= ∅ for each U ∈ α}, where α ∈ Θ(H), H ∈ L(G), is a base
for the Θ-topology on L(G).

The upper bound of Σ- and Θ-topologies is called the (Σ, Θ)-topology.
A net (Hα)α∈I converges in (Σ, Θ)-topology to H ∈ L(G) if and only if

• for any U ∈ Σ(H), there exists β ∈ I such that Hα ⊆ U for each α > β;
• for any α ∈ Θ(H), there exists γ ∈ I such that Hα ∩ V �= ∅ for each α > γ.

In [48], one can find characterizations of G with a compact and discrete L(G) for some concrete
(Σ, Θ)-topologies.
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3.6. Hyperballeans of Groups

Let G be a discrete group. The set {Fg : g ∈ G, F ∈ [G]<ω} is a family of balls in the finitary coarse
structure on G. For definitions of coarse structures and balleans, see [49,50]. The finitary coarse structure
on G induces the coarse structure on L(G) in which {X ∈ L(G) : X ⊆ FA, A ∈ FX}, F ∈ [G]<ω is the
family of balls centered at A ∈ L(G). The set L(G) endowed with the finitary coarse structure is called a
hyperballean of G. Hyperballeans of groups, carefully studied in [51], can be considered as asymptotic
counterparts of Bourbaki uniformities.
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Abstract: We prove that if G is a Polish group and A a group admitting a system of generators whose
associated length function satisfies: (i) if 0 < k < ω, then lg(x) ≤ lg(xk); (ii) if lg(y) < k < ω and
xk = y, then x = e, then there exists a subgroup G∗ of G of size b (the bounding number) such that
G∗ is not embeddable in A. In particular, we prove that the automorphism group of a countable
structure cannot be an uncountable right-angled Artin group. This generalizes analogous results for
free and free abelian uncountable groups.

Keywords: descriptive set theory; polish group topologies; right-angled Artin groups

In a meeting in Durham in 1997, Evans asked if an uncountable free group can be realized as
the group of automorphisms of a countable structure. This was settled in the negative by Shelah [1].
Independently, in the context of descriptive set theory, Becher and Kechris [2] asked if an uncountable
Polish group can be free. This was also answered negatively by Shelah [3], generalizing the techniques
of [1]. Inspired by the question of Becher and Kechris, Solecki [4] proved that no uncountable Polish
group can be free abelian. In this paper, we give a general framework for these results, proving that no
uncountable Polish group can be a right-angled Artin group (see Definition 1). We actually prove more:

Theorem 1. Let G = (G, d) be an uncountable Polish group and A a group admitting a system of generators
whose associated length function satisfies the following conditions:

(i) if 0 < k < ω, then lg(x) ≤ lg(xk);
(ii) if lg(y) < k < ω and xk = y, then x = e.

Then G is not isomorphic to A; in fact, there exists a subgroup G∗ of G of size b (the bounding number)
such that G∗ is not embeddable in A.

After the authors proved Theorem 1, they discovered that the impossibility to endow groups A as
in Theorem 1 with a Polish group topology follows from an old important result of Dudley [5]. In fact,
Dudley’s work implies more strongly that we cannot even find a homomorphism from a Polish group
G into A. Apart from the fact that the claim about G∗ in Theorem 1 is of independent interest and not
subsumed by Dudley’s work, our focus here is on techniques; i.e., the crucial use of the Compactness
Lemma of [3]. This powerful result has a broad scope of applications, and is used by the authors in a
work in preparation [6] to deal with classes of groups not covered by Theorem 1 or Dudley’s work,
most notably the class of right-angled Coxeter groups (see Definition 1).

Proof of Theorem 1. Let ζ = (ζn)n<ω ∈ Rω be such that ζn < 2−n, for every n < ω, and
ḡ = (gn)n<ω ∈ Gω such that gn �= e and d(gn, e) < ζn, for every n < ω. Let Λ be a set of power
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b of increasing functions η ∈ ωω which is unbounded with respect to the partial order of eventual
domination. For transparency, we also assume that for every η ∈ Λ we have η(0) > 0. For η ∈ Λ,
define the following set of equations:

Γη = {xη(n)
n+1 = xngn : n < ω}.

By (3.1, [3]), for every η ∈ Λ, Γη is solvable in G. Let b̄η = (bη,n)n<ω witness it; i.e.,

b̄η ∈ Gω and
∧

n<ω

bη(n)
η,n+1 = bη,ngn.

Let G∗ be the subgroup of G generated by {gn : n < ω} ∪ {bη,n : η ∈ Λ, n < ω}. Towards
contradiction, suppose that π is an embedding of G∗ into A, and let S be a system of generators for
A whose associated length function lgS = lg satisfies conditions (i) and (ii) of the statement of the
theorem. For η ∈ Λ and n < ω, let:

π(gn) = g′n, π(bη,n) = cη,n and m∗(η) = lg(cη,0).

Now, m∗ is a function from Λ to ω and so there exists unbounded Λ1 ⊆ Λ such that for every
η ∈ Λ1 the value m∗(η) is a constant m∗. Fix such a Λ1 and m∗, and let f1, f2 ∈ ωω increasing satisfying
the following:

(1) f1(n) > lg(g′n);
(2) f2(n) = (m∗ + 1) + ∑�<n f1(�).

Claim 1. For every η ∈ Λ1, lg(cη,n) < f2(n).

Proof. By induction on n < ω. The case n = 0 is clear by the choice of f1 and f2. Let n = m + 1.
Because of assumption (i) on A, the choice of Λ1, and the choice of f1 and f2, we have:

lg(cη,n) ≤ lg(cη(m)
η,n )

= lg(cη,mg′m)
≤ lg(cη,m) + lg(g′m)
< f2(m) + f1(m)

= f2(n).

Now, by the choice of Λ1, we can find η ∈ Λ1 and n < ω such that η(n) > f2(n + 2). Notice then
that by the claim above and the choice of f1 and f2, we have:

η(n) > f2(n + 1) = f2(n) + f1(n) > lg(cη,n) + lg(g′n) ≥ lg(cη,ng′n), (1)

η(n) > f2(n + 2) ≥ f1(n + 1) > lg(g′n+1). (2)

Thus, by (1) and the fact that cη(n)
η,n+1 = cη,ng′n, using assumption (ii), we infer that cη,n+1 = e. Hence,

cη(n+1)
η,n+2 = cη,n+1g′n+1 = g′n+1.

Furthermore, if η(n+ 1) > lg(g′n+1), then again by assumption (ii), we have that cη,n+2 = e, and so

cη(n+1)
η,n+2 = g′n+1 = e, which contradicts the choice of (gn)n<ω. Hence, η(n) < η(n + 1) ≤ lg(g′n+1),

contradicting (2). It follows that the embedding π from G∗ into A cannot exist.

65



Axioms 2017, 6, 13

Definition 1. Given a graph Γ = (E, V), the right-angled Artin group A(Γ) is the group with presentation:

Ω(Γ) = 〈V | ab = ba : aEb〉.

If in the presentation Ω(Γ), we ask in addition that all the generators are involutions, then we speak of
right-angled Coxeter groups C(Γ).

Thus, for Γ, a graph with no edges (resp. a complete graph) A(Γ) is a free group (resp. a free
abelian group).

Definition 2. Let A(Γ) be a right-angled Artin group and lg its associated length function. We say that an
element g ∈ A(Γ) is cyclically reduced if it cannot be written as g = h f h−1 with lg(g) = lg( f ) + 2.

Fact 1. Let A(Γ) be a right-angled Artin group, lg its associated length function, and g ∈ A(Γ). Then:

(1) g can be written as h f h−1 with f cyclically reduced and lg(g) = lg( f ) + 2lg(h);
(2) if 0 < k < ω and f is cyclically reduced, then lg( f k) = klg( f );
(3) if 0 < k < ω and g = h f h−1 is as in (1), then lg(h f h−1)k = klg( f ) + 2lg(h).

Proof. Item (1) is proved in (Proposition on p. 38, [7]). The rest is folklore.

Corollary 1. No uncountable Polish group can be a right-angled Artin group.

Proof. By Theorem 1 it suffices to show that for every right-angled Artin group A(Γ) the associated
length function lg satisfies conditions (i) and (ii) of the theorem, but by Fact 1, this is clear.

As is well known, the automorphism group of a countable structure is naturally endowed with a
Polish topology which respects the group structure, hence:

Corollary 2. The automorphism group of a countable structure cannot be an uncountable right-angled Artin group.

As already mentioned, the situation is different for right-angled Coxeter groups; in fact, the
structure M with ω many disjoint unary predicates of size 2 is such that Aut(M) = (Z2)

ω ; i.e., Aut(M)

is the right-angled Coxeter group on Kc (a complete graph on continuum many vertices). Notice that
in this group for any a �= b ∈ Kc, we have:

(i) (ab)2 = 1;
(ii) lg(ab) = 2 < 3, (ab)3 = ab and ab �= e.
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Abstract: The scale of an endomorphism of a totally disconnected, locally compact group G is defined
and an example is presented which shows that the scale function is not always continuous with
respect to the Braconnier topology on the automorphism group of G. Methods for computing the scale,
which is a positive integer, are surveyed and illustrated by applying them in diverse cases, including
when G is compact; an automorphism group of a tree; Neretin’s group of almost automorphisms of a
tree; and a p-adic Lie group. The information required to compute the scale is reviewed from the
perspective of the, as yet incomplete, general theory of totally disconnected, locally compact groups.

Keywords: locally compact group; endomorphism; scale; tree; Neretin’s group; Thompson’s group;
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1. Introduction

Let G be a totally disconnected, locally compact (t.d.l.c.) group. A fundamental theorem about
t.d.l.c. groups, proved by van Dantzig in the 1930s, see [1] and ([2] Theorem II.7.7), asserts that G has
a base of neighbourhoods of the identity consisting of compact open subgroups. These subgroups
are important for the definition of the scale of endomorphisms α : G → G, which is a positive integer
gauging the action of α. The precise definition is given in Section 2. Computing the scale is a problem
which, as will be seen in examples, depends very much on a description of the group G and of the
endomorphism α (the examples in fact treat inner automorphisms), and one way to evaluate our
understanding of general t.d.l.c. groups is whether we can carry out this computation.

Sections 3 and 4 describe two approaches to computing the scale and use them in examples.
The first approach is the ‘spectral radius formula’ given by Rognvaldur Möller in [3], and the second
uses the structure theorem given in [4,5] for compact open subgroups at which the scale is attained.
One of the examples in Section 4 is a p-adic Lie group and it is seen that the scale may be computed
in terms of eigenvalues in the Lie algebra and minimising subgroups in terms of eigenvectors.
This observation, together with the spectral radius formula, results about the scale such as in [6],
and applications of scale techniques to answer questions about t.d.l.c. groups which are answered in
the connected case with approximation by Lie group methods [7,8], indicate that scale techniques may
substitute for Lie methods in some circumstances. Motivation for developing improved methods for
computing the scale is provided by these considerations.

Throughout the paper, End(G) will denote the monoid of continuous endomorphisms of G;
Aut(G) will be the group of automorphisms of G; and Inn(G) the group of inner automorphisms of G.

2. The Scale of an Endomorphism

The scale was defined first for inner automorphisms of a t.d.l.c. group in [4,5] and the definition
was extended to endomorphisms in [9]. For this definition, note that, if V is a compact open subgroup
of G and α a continuous endomorphism, then α(V) ∩V is an open subgroup of the compact group
α(V) and hence the index [α(V) : V ∩ α(V)] is finite.

Axioms 2017, 6, 27; doi:10.3390/axioms6040027 www.mdpi.com/journal/axioms68
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Definition 1. Let α ∈ End(G). The scale of α is the positive integer

s(α) := min {[α(V) : V ∩ α(V)] | V ≤ G compact and open} .

Any V at which the minimum is attained is minimising for α.

The scale and related concepts have been used in papers such as [7,8,10] to answer questions
concerning t.d.l.c. groups. Many applications apply results to the scale function on G induced by the
conjugation map G → Inn(G). For this scale function, we have the following, which is proved in [4].

Theorem 1. The scale function s : G → N is continuous for the group topology on G and the discrete topology
on N.

This theorem is used in [10] to answer a question of K. H. Hofmann about the structure of t.d.l.c.
groups. Ideas from the proof of the theorem have also been used to answer questions about the
Chabauty space of closed subgroups of a t.d.l.c. group in [11,12].

It is a natural question whether the scale function is continuous with respect to the group topology
with which Aut(G) is usually equipped, namely, the Braconnier topology, see [13]. That is not the case,
however, as may be seen as follows.

Example 1. Let G = (K((t))2,+) be the additive group of the 2-dimensional vector space over the field K((t))
of formal Laurent series over the finite field K and let α be the automorphism α( f , g) = (t f , t−1g). Then,
s(α) = |K|. Define, for each n ∈ Z, αn( f , g) = ( f (n), g(n)) where

f (n) =
n

∑
k=−∞

fk−1tk +
∞

∑
k=n+1

fktk and g(n) =
n−1

∑
k=−∞

gk+1tk + fntn +
∞

∑
k=n+1

gktk.

Then, it may be verified that αn → α in the Braconnier topology as n → ∞ but s(αn) = 1 for every n.

The lack of continuity of the scale might be remedied by considering the coarsest group topology,
T say, on Aut(G) finer than the Braconnier topology and for which the scale is continuous. (It has
been pointed out by Christian Rosendal that, when G is second countable, T cannot be Polish if it is
strictly finer than the Braconnier topology.) It would be desirable to have a more direct definition of
T . Even more desirable would be to have a directly defined topology on End(G) for which T is the
subspace topology on Aut(G). In analogy with the ring of operators on a normed space and its open
group of invertible operators, we might also ask whether Aut(G) open in this topology?

3. Möller’s “Spectral Radius” Formula

The scale may be calculated without finding a minimising subgroup.

Theorem 2. [Spectral radius] Let V be any compact open subgroup of G and α be in End(G). Then, the scale
of α is equal to

s(α) = lim
n→∞

[αn(V) : αn(V) ∩V]
1
n .

This formula is referred to as the “spectral radius formula” because of the similarity with the
formula of the same name for linear operators on normed spaces. It turns out that the scale of an
element x in a t.d.l.c. group G is exactly the spectral radius of the operator of translation by x on a
certain normed convolution algebra on G, see [14]. The formula was proved for automorphisms by
R. G. Möller in ([3] Theorem 7.7) and extended to endomorphisms in [9, Proposition].

The spectral radius formula is illustrated by the next two examples.
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Example 2. Let Tq+1 be the regular tree in which every vertex has valency q + 1 and let G = Aut(Tq+1). It
may be seen that G is a topological group under the topology of pointwise convergence on vertices and that for
each vertex, v, in Tq+1 the stabiliser stabG(v) is open. Since, moreover, stabG(v) isomorphic as a topological
group to the iterated wreath product Sq+1 � Sq � Sq � . . . and is therefore profinite, it follows that G is a locally
compact group. It is a totally disconnected group because, for each pair x �= y ∈ G we may choose v ∈ V(Tq+1)

with x.v �= y.v and then the sets U1 = {g ∈ G | g.v = x.v} and U2 = {g ∈ G | g.v �= x.v} are an open
partition of G with x ∈ U1 and y ∈ U2.

Every automorphism of G is inner. This may be shown, see [15], by observing that{
stabG(v) | v ∈ V(Tq+1)

}
is a set of maximal compact open subgroups of G on which each automorphism,

α say, acts, and that the tree Tq+1 may be reconstructed from this set of subgroups. The action of α on{
stabG(v) | v ∈ V(Tq+1)

}
thus induces an automorphism, xα, of Tq+1 and it may be seen that α is equal to the

inner automorphism of conjugation by xα.
Consider x ∈ G and the inner automorphism αx : g �→ xgx−1. Let U = Gv for some vertex v. As described

in [15], there are two cases: x could have finite orbits in Tq+1, in which case it is called elliptic; or x could have
infinite orbits in Tq+1, in which case it is called hyperbolic.

x is elliptic. In this case, {αn
x(U) | n ≥ 0} = {stabG(xn.v) | n ≥ 0} is finite and hence the set of indices

[αn
x(U) : αn

x(U) ∩U] is bounded. Then,

s(x) = lim
n→∞

[αn
x(U) : αn

x(U) ∩U]
1
n = 1.

x is hyperbolic. In this case, x is a translation along a geodesic path �, where a vertex w is on � if the distance
from w to x.w is a minimum. Let this minimum distance be d, so that x translates � by distance d. Let w
be the closest vertex on � to the given vertex v. Then, x.w is the closest vertex on � to x.v and the path from
v → w → x.w → x.v is the shortest path from v to x.v and has length d + 2c, where c is the distance from v
to �. Since the index [stabG(u1) : stabG(u1) ∩ stabG(u2)] is equal to (q + 1)qd(u1,u2)−1 for any two vertices u1

and u2, as may be seen by an application of the Orbit-Stabiliser Theorem, it follows that

[αn
x(U) : αn

x(U) ∩U] = [stabG(xn.v), stabG(xn.v) ∩ stabG(v)] = (q + 1)qdn+2c−1.

Hence

s(x) = lim
n→∞

(
(q + 1)qdn+2c−1

) 1
n
= qd.

Example 3. Let G = FZ, where F is a non-trivial finite group, and equip G with the product topology and the
pointwise product. Then, G is a compact group. Hence every endomorphism of G has scale 1 because G itself is a
compact subgroup invariant under the endomorphism.

Let α the shift automorphism α( f )n = fn+1. Consider the subgroup

UK =
{

f ∈ FZ | f (k) = 1F for 0 ≤ k < K
}

.

An easy calculation shows that

[αn(UK) : αn(UK) ∩UK] =

{
|F|n, if 0 ≤ n ≤ K

|F|K, if n > K
.

Hence we find, as expected, that
s(α) = lim

n→∞
|F| K

n = 1.

4. Identifying Minimising Subgroups

Minimising subgroups have a structural characterisation which may be used to calculate the scale.
Moreover, the proof of this characterisation involves a procedure for finding minimising subgroups.
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The characterisation and the procedure for finding minimising subgroups will now be described and
then illustrated in several examples.

The characterisation of minimising subgroups for α ∈ End(G) involves the following two
subgroups defined for any compact and open subgroup V of G.

V+ = {x ∈ V | ∃{xn}n∈N ⊂ V with x0 = x and xn = α(xn+1) for each n ∈ N} (1)

V− = {x ∈ V | αn(x) ∈ V for all n ∈ N} .

The sequence {xn}n∈N appearing in the definition of V+ is a “history” of x as α is iterated and
the condition for x to be in V+ is that this history is contained in V. This history need not be unique
because α need not be injective, and it is not required that all histories of x lie in V. The condition for x
to be in V− is that the “future” of x when α is iterated should lie in V.

In what follows, it is important to note that α(V+) ≥ V+. Hence,
⋃

n∈N αn(V+) is an increasing
union of subgroups of G and is therefore itself a subgroup.

Theorem 3 (The structure of minimising subgroups). Let α ∈ End(G) and V be a compact open subgroup
of G. Then, V is minimising for α if and only if

TA: V = V+V−
TB1: V++ :=

⋃
n∈N αn(V) is closed and

TB2: the sequence of integers
{
[αn+1(V+) : αn(V+)] | n ∈ N

}
is constant.

In this case, s(α) = [α(V+) : V+].

Definition 2. A subgroup V is tidy above for α, if it satisfies condition TA; tidy below if it satisfies
conditions TB1 and TB2; and is tidy if it is tidy above and below.

The condition TB2 is redundant if α is injective because it follows from the other conditions in
that case. Hence, this condition did not appear in [4], which deals with automorphisms only.

4.1. The Tidying Procedure

This section describes a three-step procedure which takes as input a general compact open
subgroup, U, and produces a subgroup tidy for α. The procedure is given effect by the following
three propositions.

Proposition 1 (Step 1). Let U ≤ G be compact and open and α ∈ End(G). Then, there is N ∈ N such that
the subgroup U−N =

⋂N
n=0 α−n(U) is tidy above for α. For this N, we have

[α(U−N) : α(U−N) ∩U−N ] ≤ [α(U) : α(U) ∩U].

Remark 1. The proof of the proposition involves forming the decreasing sequence of subgroups {Uk}k∈N, where

Uk = {u ∈ U | ∃u0, u1, . . . , uk ∈ U with un = α(un+1) for 0 ≤ n < k and u0 = u} . (2)

Then,
⋂

k∈N Uk = U+ and N is the first k such that Uk ⊂ U+(U ∩ α−1(U)). That such k exists follows
from compactness of Uk and the fact that U+(U ∩ α−1(U)) is an open neighbourhood of U+. This step involves
cutting down U to the subgroup U−N and motivates the name ‘tidy above’ for the factorisation property satisfied
by U−N.

The next two steps involve ensuring that the group is ‘tidy below’ by including in it the compact
subgroup identified in the next proposition.
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Proposition 2 (Step 2). Suppose that V ≤ G is tidy above for α and define

LV = {x ∈ G | ∃m, n ∈ N with x ∈ αm(V+) and αn(x) ∈ V−} .

Then, LV is compact and α-stable.

Local compactness of G is again important in the proof of this proposition.
The third proposition combines V with LV to form a subgroup that is tidy for α. It is not enough to

simply multiply the two subgroups because that might not be a subgroup. The subgroup generated by
V and LV might not be compact, and so that method of combining the subgroups will not work either.

Proposition 3 (Step 3). Suppose that V ≤ G is tidy above for α and define

Ṽ = {x ∈ V | xLV ⊂ LVV} and W = ṼLV .

Then W is “a compact open subgroup of G that is tidy for α” and

[α(W) : α(W) ∩W] ≤ [α(V) : α(V) ∩V].

4.2. Tidy Subgroups Are Minimising and Conversely

These three steps take a general compact open subgroup and modify it to produce a tidy subgroup.
The next result implies that this subgroup is minimising for α.

Theorem 4. The index [α(W) : α(W) ∩W] is the same for all compact open subgroups tidy for α.

To prove the claim that tidy subgroups are minimising, suppose that the compact open subgroup U
is minimising and apply the tidying procedure to U. Then, the subgroup W so produced is tidy and
[α(W) : α(W) ∩W] ≤ [α(U) : α(U) ∩U]. Since U was already minimising, we conclude that W is
minimising and hence so are all subgroups tidy for α.

That all minimising subgroups are tidy may be seen by noting that the inequalities in
Propositions 1 and 3 are equalities if and only if the group already satisfies the relevant tidiness
condition. Hence, if U is already minimising, the tidying procedure does not alter it and U is
therefore tidy.

4.3. Tidy Subgroups and the Scale in Examples

Theorem 3 and the notion of tidy subgroup will now be illustrated by using them to compute the
scale for the same automorphisms as in the previous section, as well as for some additional examples.

Example 2 (Revisited), let G = Aut(Tq+1) and α = αx be an automorphism as before. The tidying
procedure will be applied with U = stabG(v) for an arbitrary vertex v in Tq+1. For this, note that
αn

x(U) = stabG(xn.v).
Since αx is an automorphism, and is in particular injective, the subgroup Uk defined as in

Equation (2), is equal to
⋂k

j=0 αj(U) and the subgroup U+ defined as in Equation (1) is equal
to
⋂∞

j=0 αj(U). Hence, Uk is the fixator of the vertices v, x.v, . . . , xk.v and U+ is the fixator of
the vertices xn.v, n ∈ N. As before, the cases when x is elliptic and when it is hyperbolic are
treated separately.

x is elliptic. The orbit xn.v, n ∈ Z is finite and so there is k such that {v, x.v, . . . , xk.v} is equal to this
orbit. Choosing N = k, we then have that U+ = Uk and it is easily seen that U− is equal to this
subgroup as well. Hence, putting

V = Uk = stabG(v) ∩ stabG(x.v) ∩ · · · ∩ stabG(xk.v),
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we have that αx(V) = V = V+ = V−. Hence, V is tidy above. It follows that V++ = V as well and is
closed. Therefore, V is tidy for αx. Of course,

[αx(V) : αx(V) ∩V] = [V : V] = 1.

x is hyperbolic. As before, let � be the axis for x, suppose that x translates along � through distance d,
let c be the distance from v to �, and let w be the vertex on � that is closest to v. In addition, denote the
neighbour of w closest to x.v by w+ and the neighbour of w closest to x−1.v by w−.

The subgroup U itself is not tidy for αx. To see this, note that since U+ fixes all vertices xn.v
with n ≥ 0, it fixes w and w+ as well. Similarly, U− fixes w and w−. Hence U �= U+U− if v �= w
and U is not tidy above. The same conclusion holds even when v = w because, while U acts as the full
permutation group Sq+1 on the q + 1 neighbours of w, U+ and U− each fix one of the neighbours and
Sq+1 is not equal to the product of two such subgroups. We see too that, since x fixes every vertex on
the path from v to x.v, the same calculation as in the earlier discussion yields that

[αx(U) : αx(U) ∩U] = (q + 1)qd+2c−1, (3)

which is strictly greater than qd. Hence, U is not minimising.

Step 1 The subgroup U−1 = U ∩ α−1
x (U) is tidy above however. Setting V = U−1, we have that V

fixes all vertices on the path from w to x−1.w. Hence, the Tits independence property for Aut(Tq+1)

implies that V = H+H−, where H+ and H− are the fixators in V of the components S+ and S−
of Tq+1 formed when the path from w to x−1.w is deleted and containing x−1.w and w respectively.
Since H± ≤ V±, it follows that V is tidy above. The index we are interested in may be calculated to be

[αx(V) : αx(V) ∩V] =

{
(q− 1)qd+c, if v �∈ �

qd, if v ∈ �
, (4)

which is strictly less than that found in (3). However, it is not the minimum value calculated using the
spectral radius formula unless v happens to lie on �, or q = 2 and c = 1. The second and third steps of
the tidying procedure must therefore be implemented to find a minimising subgroup.

Carrying out these steps will require labelling some more vertices of Tq+1. Denote the set of q + 1
neighbours of w by N(w) and similarly for x−1.w. Recall that w+ and w− are neighbours of w on �,
and denote by wo the neighbour of w lying on the path from v to w. Then x−1.w+, x−1.w− and x−1.wo

are neighbours of x−1.w: x−1.w+ is the neighbour closest to w; x−1.w− is closest to x−2.w; and x−1.wo

lies on the path from x−1.v to x−1.w. The subgroup V found in the previous paragraph fixes all vertices
on � between w and x−1.w as well as the vertices on the paths joining v to w and x−1.v to x−1.w, that is,
all vertices on the path from v to x−1.v. In particular, V acts on N(w) by fixing wo and w− and as the
full symmetric group on N(w) \ {wo, w−}; and acts on N(x−1.w) by fixing x−1.wo and x−1.w+ and as
the full symmetric group on N(x−1.w) \ {x−1.wo, x−1.w+}.

Step 2 The definition of LV in Proposition 2 implies that y belongs to this subgroup if αn
x(y) ∈ V for

all but finitely many n. Hence, tree automorphisms in LV fix all the vertices of � and all vertices on
paths joining xn.v to � except for finitely many n. The action of LV on N(w) thus fixes w+ and w− and
permutes vertices in N(w) \ {w−, w+} arbitrarily; and its action on N(x.w) fixes x−1.w− and x−1.w+

and permutes vertices in N(x.w) \ {x−1.w+, x−1.w−} arbitrarily. That the closure of LV is compact as
claimed in Proposition 2 may be seen by observing that this closure is the fixator of all vertices on �.

Step 3 That the product LVV is not a group may be seen by considering its action on N(w). While V
and LV both fix w, we have that LV fixes w+ and w− and acts as Sym(N(w)) \ {w−, w+}) on the
remaining vertices in N(w); and V fixes wo and w− and acts as Sym(N(w)) \ {wo, w−}) on the
remaining vertices; but the product
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Sym(N(w)) \ {w−, w+})Sym(N(w) \ {wo, w−})

is not a subgroup of Sym(N(w)). In the present example, 〈LV , V〉 is compact and equal to
the fixator of the path from w to x−1.w, which is tidy for αx. We shall see, however, that the
procedure described in Proposition 3 produces a different tidy subgroup. According to this
procedure, define Ṽ = {g ∈ V | gLV ⊂ LVV}. To determine Ṽ, we apply the following lemma about
finite permutation groups to the subgroups Sym(N(w)) \ {wo, w−}) and Sym(N(w)) \ {w+, w−})
of Sym(N(w)) \ {w−}).

Lemma 1. Let Sq denote the permutation group Sq = Sym({1, 2, . . . , q}). Then,{
π ∈ stabSq(1) | πstabSq(q) ⊂ stabSq(q)stabSq(1)

}
= stabSq(1, q).

Proof. Note that no permutation in stabSq(q)stabSq(1) sends 1 to q. On the other hand, if π ∈ stabSq(1)
and does not fix q, then there is j ∈ {2, . . . , q− 1} such that π(j) = q and there is σ ∈ stabSq(q) such
that σ(1) = j. Then πσ(1) = q and is not in stabSq(q)stabSq(1).

It follows from Lemma 1 that

Ṽ ⊂
{

g ∈ V | g fixes wo, w− and w+
}
∩
{

g ∈ V | g fixes x−1.wo, x−1.w− and x−1.w+
}

.

Since elements of V fix wo, w−, x−1.w+ and x−1.wo already,

Ṽ ⊂
{

g ∈ V | g fixes w+ and x−1.w−
}

.

It is easily seen that all elements of V fixing w+ and x−1.w− belong to Ṽ. Hence Ṽ = stabV(w+)∩
stabV(x−1.w−). Then,

W = LVṼ = stabG(w+) ∩ stabG(x−1.w−),

that is, elements of W fix all vertices on the axis � between x−1.w− and w+.
To compute the scale of αx using this tidy subgroup W, observe that αx(W) fixes all vertices on �

between w− and x.w+ and αx(W) ∩W fixes all vertices between x−1.w− and x.w+. The distance on �

between x−1.w− and w− is d, and the orbit of x−1.w− under αx(W) therefore has order qd. Hence,

s(αx) = [αx(W) : αx(W) ∩W] = qd.

Regular trees are a particular type of building—see [16] for the definition—and automorphism
groups of locally finite buildings are totally disconnected, locally compact groups. The calculation
of the scale in terms of geometric data describing the building could also be carried out by a similar
approach to that used for trees.

Example 3 (Revisited), let G = FZ for some finite group F and α be the shift automorphism
as before. It has already been remarked that G is compact and invariant under α and so s(α) = 1.
When the tidying procedure is applied with U = G there is no change: in Step 1, we have N = 0 and
so V = U in the next step; in Step 2, LV = V; and in Step 3, Ṽ = V and W = V = U.

The tidying procedure will be illustrated by applying it to the compact open subgroup

UX =
{

f ∈ FZ | f (k) = 1F for all k ∈ X
}

,

where X is a finite subset of Z. When X = {0, 1, . . . , K− 1}, we recover the subgroup UK considered
previously.
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Step 1 Since α is an automorphism, the group (UX)n defined in Proposition 1 is equal to
⋂n

k=0 αk(UX)

and the number N whose existence is guaranteed by the proposition depends on X.
In the case when X = {0, 1, . . . , K− 1} the subgroup UX = UK is already tidy above and N = 0.

To see this, note that

(UK)+ =
{

f ∈ FZ | f (k) = 1F if k < K
}

and (UK)− =
{

f ∈ FZ | f (k) = 1F if k ≥ 0
}

.

In this case, we have [α(UK) : α(UK) ∩UK] = |F|.
For another case, suppose that X = {0, 1, 5, 6, 7, 8}. Then,

αn(UX) =
{

f ∈ FZ | f (k) = 1F if k ∈ X − n
}

.

Hence, α(UX) ∩UX =
{

f ∈ FZ | f (k) = 1F if k ∈ X ∪ (X − 1)
}

. In other words,

α(UX) =
{

f ∈ FZ | f (k) = 1F if k ∈ {−1, 0, 4, 5, 6, 7}
}

and

α(UX) ∩UX =
{

f ∈ FZ | f (k) = 1F if k ∈ {−1, 0, 1, 4, 5, 6, 7, 8}
}

and [α(UX) : α(UX) ∩UX ] = |F|2. Moreover,

(UX)+ =
{

f ∈ FZ | f (k) = 1F if k < 9
}

and (UK)− =
{

f ∈ FZ | f (k) = 1F if k ≥ 0
}

and (UX)+(UX)− �= UX . Similar calculations apply for (UX)1 = α(UX) ∩UX and (UX)2 = α2(UX) ∩
α(UX) ∩UX . However,

(UX)3 =
{

f ∈ FZ | f (k) = 1F if − 3 ≤ k ≤ 8
}

,

which is tidy above, and [α((UX)3) : α((UX)3) ∩ (UX)3] = |F|.
Steps 2 and 3 For any subgroup UX with X �= ∅ we have

LUX =
{

f ∈ FZ | f (k) = 1F for all but finitely many k
}

and LUX UX = G.
Lie groups over local fields are totally disconnected and locally compact as well, and the scale of

elements in such groups, that is, of inner automorphisms of the groups, was computed by H. Glöckner
in [17]. His were the first calculations of the scale for groups that went beyond the basic cases seen in
the previous examples.

Example 4. Let G be a Lie group over the field Qp of p-adic numbers. Glöckner does not use the tidying
procedure to find subgroups tidy for x (that is, for αx) but instead describes V+ and V− directly in terms of the
normal form of the Lie algebra automorphism Adx and calculates s(x) in terms of eigenvalues of Adx (in a
finite extension of Qp). This correspondence between the scale and tidy subgroups on one hand and eigenvalues
and eigenspaces on the other is evidence that scale techniques are a substitute for Lie algebra techniques when
studying t.d.l.c. groups that are not Lie groups over local fields.

The main ideas in [17] may be sketched as follows. Assume that V is tidy for x, then V++ is closed and
so is a Lie subgroup of G. Moreover, V+ is an open subgroup of V++ and s(x) = Δ(Ix), where Ix is the
automorphism of V++ induced by conjugation by x and Δ is the module function on automorphisms. The
module of this automorphism of V++ is then equal to the module of the automorphism L(Ix) induced on the Lie
algebra of V++. Glöckner then describes this Lie algebra as a subalgebra of L(G) (the Lie algebra of G) in what
he calls the contraction decomposition of Adx. This decomposition applies to any linear automorphism φ of a
finite-dimensional vector space, L, over a local field of characteristic 0, and expresses L as
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L = Lp ⊕ L0 ⊕ Lm

where

Lp :=
{

y ∈ L : φ−k(y)→ 0 as k → ∞
}

Lm :=
{

y ∈ L : φk(y)→ 0 as k → ∞
}

and

L0 :=
{

y ∈ L : {‖φk(y)‖}k∈Z is bounded
}

.

Glöckner bases this decomposition on a variation on ([18] Lemma 3.4). Applying it when L is the Lie
algebra of G and φ = Adx, he finds that Lp ⊕ L0 is a subalgebra isomorphic to the Lie algebra of V++. Using
this decomposition, Glöckner shows in ([17] Corollary 3.6) that, if G is a Lie group over a local field, K, of
characteristic 0 and x is in G, then

s(x) = ∏
|λi |≥1

|λi|,

where λi are the roots of the characteristic polynomial of Adx in a splitting field, K′, for this polynomial and | · |
is the unique extension to K′ of absolute value on K.

Glöckner thus reduces the computation of the scale to finding eigenvalues and avoids the need to find tidy
subgroups. He gives more explicit formulæ for the scale on linear algebraic groups. The formulæ and their
relation to the methods for computing the scale previously discussed may be illustrated with the case when the
group is GL(2,Qp) and the element x has the property that its characteristic polynomial splits over Qp, in which
case there is a basis for Q2

p with respect to which x has a diagonal matrix with entries λ1, λ2, the eigenvalues
of x. Consider the compact, open subgroup U = GL(2,Zp). Note that the condition that U is a group forces the
determinant of each element of U to have p-adic absolute value equal to 1.

Applying powers of αx to U yields that

αn
x(U) =

{(
a (λ1λ−1

2 )nb
(λ−1

1 λ2)
nc d

)
: a, b, c, d ∈ Zp, |ad− bc|p = 1

}

=

{(
a p−knb

pknc d

)
: a, b, c, d ∈ Zp, |ad− bc|p = 1

}
, (5)

where |λ1λ−1
2 | = pk. Thus, if k = 0, then αx(U) = U and s(αx) = s(x) = 1. Suppose that k > 0. (The case

when k < 0 is similar.) Then,

αn
x(U) ∩U =

{(
a b

pknc d

)
: a, b, c, d ∈ Zp, |ad− bc|p = |ad|p = 1

}

and it may be calculated that
[αn

x(U) : αn
x(U) ∩U] = (p + 1)pkn−1.

Hence, by Theorem 2, s(x) = limn→∞

(
(p + 1)pkn−1

) 1
n
= pk = |λ1λ−1

2 |, which is the same value as
given in the last example in ([17] Corollary 3.6).

The subgroup U is not tidy above for αx when k > 0 because, as follows from (5),

U+ =

{(
a b
0 d

)
: a, b, d ∈ Zp, |ad|p = 1

}
and U− =

{(
a 0
c d

)
: a, c, d ∈ Zp, |ad|p = 1

}

and the element u =

(
0 1
1 0

)
belongs to U but not to U+U−.
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Step 1 of the tidying procedure. The subgroup

V = U ∩ αx(U) =

{(
a b

pkc d

)
: a, b, c, d ∈ Zp, |ad|p = 1

}

may be verified to be tidy above by showing that every element of V is the product of an upper triangular and a
lower triangular matrix. Proposition 1 thus holds with N = 1 in this case.

Steps 2 and 3 It may also be verified that

V++ =

{(
a b
0 d

)
: b ∈ Qp, a, d ∈ Zp, |ad|p = 1

}
,

which is a closed subgroup of GL(2,Qp), and hence that V is also tidy below. That the tidying procedure
terminates after the first step in this case is no accident: it is shown in ([19] Theorem 3.2) that that occurs for
any automorphism α for which the contraction subgroup,

con(α) = {y ∈ G : αn(y)→ 1G as n → ∞} ,

is closed and it is shown in ([18] Theorem 3.5) that that is always so for automorphisms of p-adic Lie groups.
Glöckner has also calculated the scale in some cases for linear groups over a skew field, K, with positive

characteristic, see [20]. He shows that, if x is a diagonalisable element in GL(n, K), SL(n, K), PGL(n, K) or
PSL(n, K), then the scale is given by the same formula as in the characteristic 0 case. He does so by writing
down tidy subgroups for αx. In particular, he shows that, if the diagonal entries in x are in order of decreasing
modulus, then certain compact, open subgroups may be written as the product of their subgroup of upper
triangular matrices with their subgroup of lower triangular matrices and that this implies tidiness above.
Tidiness below is again satisfied automatically, as in the previous paragraph, because contraction subgroups for
inner automorphisms are closed.

More is known about p-adic Lie groups than for general t.d.l.c. groups but a key question remains
unanswered even for these groups. If an element x in a t.d.l.c. group satisfies that s(x) = 1 = s(x−1),
then subgroups tidy for x are normalised by x and, conversely, if U is normalised by x, then s(x) =
1 = s(x−1). A t.d.l.c. group G is uniscalar if s(x) = 1 for every x ∈ G and it is shown in [21], relying
on a result in [22], that a p-adic Lie group that is compactly generated and uniscalar has a compact,
open normal subgroup. There are uniscalar t.d.l.c. groups having no compact, open normal subgroups
which are compactly generated, see [23], and which are topologically simple, see [24]. However,
no examples are known of uniscalar t.d.l.c. groups which are topologically simple and compactly
generated, or which are topologically simple (of necessity not compactly generated) and p-adic Lie.

Another significant class of t.d.l.c. groups are the groups of almost automorphisms of trees
introduced by Yu. Neretin, [25,26], and shown to be simple by C. Kapoudjian, [27]. Neretin groups
are also studied in [28], where it is shown that they do not contain a lattice, and the notation used
here conforms with that paper. The papers [29], on abstract commensurators, and [30], on ‘germs of
automorphisms’ are also relevant. Neretin’s groups are also the inspiration for the simple groups
acting on trees recently constructed in [31].

Example 5. An almost automorphism of an infinite, locally finite tree T is a bijection on the vertices
of T which preserves all but finitely many edge relations. The set of almost automorphisms forms a group
under composition of bijections. This group has two subgroups which are important for this discussion: the
group Aut(T ) of automorphisms of T ; and the group FSym(V) of finite permutations of the vertices of T . Fix a
vertex v in T and let U = stabAut(T )(v). Then, U is a compact group under the subspace topology of Aut(T )

and each almost automorphism of T commensurates some open subgroup of U to another open subgroup. Hence,
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{xV | x an almost automorphism and V an open subgroup of U}

is a sub-base of a group topology on the group of almost automorphisms of T . Since U is open in this topology,
the group of almost automorphisms is then a locally compact group. Since non-trivial elements of FSym(V)

cannot be in U, the subgroup FSym(V) is closed in this topology and is easily seen to be normal as well. (It may
be seen that FSym(V) is the quasi-centre of the group of almost automorphisms, see [32] for the definition.)
The quotient of the group of almost automorphisms by FSym(V) is therefore a locally compact group which will
be denoted by AAut(T ). It is this quotient group which will from now on be referred to as the group of almost
automorphisms of T .

Alternative but equivalent definitions of AAut(T ) are used elsewhere. For example, in [28], two almost
automorphisms of T are defined to be equivalent if they agree on the complement of some finite subtree of T
and AAut(T ) is defined to be the set of equivalence classes of almost automorphisms. Since each finite set of
vertices in T spans a finite subtree, this is the same as the equivalence relation of two almost automorphisms
agreeing modulo FSym(V). Almost automorphisms of T may be seen to be equivalent if and only if the actions
they induce on the boundary, ∂T , of the tree agree. The group AAut(T ) may thus be defined in terms of its
action on ∂T . In these terms, AAut(T ) is the full group of the action on Aut(T ) on ∂T .

Almost automorphisms of the rooted tree Tq,r, in which the root has r children and every other vertex
has q children, have been studied extensively. In this notation, Neretin’s group of almost automorphisms
is AAut(T2,2). The group AAut(Tq,r) has the Higman–Thompson group Gq,r, see [33,34], as a dense subgroup
and elements of Gq,r may be represented (non-uniquely) as pairs, (F1,F2), of finite rooted subtrees of Tq,r,
see [33] or ([35] Section 3) for example. Since the scale is continuous, it therefore suffices, in order to compute
the scale on AAut(Tq,r), to compute it for elements represented by such pairs of finite trees. This calculation
is intricate and the general case is not described in full detail here. Instead, the ideas will be illustrated by the
calculation of s(x) for one element x in G2,2 < AAut(T2,2). Note, however, that this example only displays
some of the intricacies arising in the calculation of the scale on AAut(Tq,r).

Let x be the element of G2,2 (also known as Thompson’s group V) described by the pair of trees (F1,F2) in
Figure 1. When G2,2 is embedded in AAut(T2,2), this element denotes the almost automorphism which sends the
vertices labelled 1, . . . , 6 in the tree on the left to the vertices with the corresponding labels 1′, . . . , 6′ in the tree
on the right and copies across the subtrees below each of these vertices. Thus, the subtree of F1 whose root is the
vertex on level 3 and labelled 1 is raised to a subtree with root on level 2, the subtrees with roots on level 3 and
labelled 2 and 3 are copied across to two other subtrees with roots on level 3, the subtrees with roots on level 4
and labelled 4 and 5 are raised to subtrees with roots on level 2 and 3 respectively, and the subtree with root on
level 1 and labelled 6 is lowered to a vertex on level 3.

1 2 3 4 5

6
v

F1

1′
2′ 3′

4′
5′ 6′

F2

Figure 1. Pair of trees for the element x of Thompson’s group V.

78



Axioms 2017, 6, 27

Let U = Aut(T2,2), so that U is a compact, open subgroup of AAut(T2,2), and let Ũ be the subgroup of U
consisting of all automorphisms which fix the vertices labelled 1, . . . , 6 in F1. Then, xŨx−1 is the subgroup
of U consisting of all automorphisms fixing the vertices labelled 1′, . . . , 6′ in F2. Since Ũ and xŨx−1 are both
subgroups of U, it follows that U ∩ x−1Ux ≥ Ũ. The reverse inclusion may be verified by checking cases for
automorphisms not in Ũ. For example, if u ∈ Aut(T2,2) interchanges the two vertices on level 1 of the tree, then
x−1ux maps the vertices of F1 labelled 5 and 6, whose only common ancestor is the root, to vertices which have
the vertex labelled v as a common ancestor, and no such map is an automorphism of the tree. Hence,

[xUx−1 : xUx−1 ∩U] = [U : Ũ] = 32.

That this is not the minimum possible index will be seen by applying the tidying procedure to the
subgroup U.

Step 1 It turns out that U−1 = U ∩ x−1Ux = Ũ is tidy above for x. To see this, Remark 1 tells us that

it suffices to show that Ũ1 ⊆ Ũ+Ũ−1, where Ũ1 = Ũ ∩ xŨx−1 and Ũ−1 = Ũ ∩ x−1Ũx. For this, observe
that, since Ũ is the fixator of F1 and xŨx−1 is the fixator of F2, Ũ1 is the fixator of F1 ∪ F2, see Figure 2.
Furthermore, Ũ−1 is the fixator of the tree F† shown in Figure 3 because x maps the vertices 1†,. . . , 5† to the
vertices 1,. . . , 5; and Ũ+ is the fixator of the tree V+ shown in Figure 4. (V+ includes the infinite path spanned
by the images of the vertices 4 and 5 under positive powers of x. This is explained further in the next paragraph.)
It follows that Ũ+Ũ−1 is the fixator of the tree F† ∩ V+. This intersection is equal to F1 and so Ũ+Ũ−1 = Ũ,
which certainly contains Ũ1. Therefore, Ũ is tidy above. To be consistent with the notation of Section 4.1, Ũ will
now be denoted by V.

1 2 3 4 5

4′

5′ 6′

F1 ∪ F2

Figure 2. Ũ1 is the fixator of the tree F1 ∪ F2.

1† 2† 3†
4 5

6

5†4†

F†

Figure 3. Ũ−1 is the fixator of the tree F†.
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4∗ 5∗ 4‡ 5‡ 4† 5† 4 5

6

V−

1 2 3
54

4′
5′

4′′5′′

V+

Figure 4. Trees spanned by images of 4 and 5 under powers of x.

Steps 2 and 3 It further turns out that LV ≤ V, so that V (that is Ũ) is tidy below as well. To see this,

it suffices to show that, if v ∈ V+ and xNvx−N ∈ V− for some N > 0, then v ∈ V+ ∩V−.
By definition, V+ =

⋂
n≥0 xnVx−n. As x is iterated, the vertices 4 and 5 are pushed down two levels

of T2,2 at a time and their images are at a distance 1 from a half-line descending from the vertex 6, see Figure 4.
This half-line is part of an “axis” for x that is translated down through distance 2 by x. Since V fixes the
vertices 4 and 5, the given element v ∈ V+ fixes the tree V+ shown in Figure 4.

By definition, V− =
⋂

n≤0 xnVx−n. As x is iterated, the vertices 4 and 5 are carried across the tree until
they are the children 4‡ and 5‡ of vertex 2, and then pushed down one level of T2,2 at a time, their images being
at a distance 2 from a half-line descending from the vertex 1, see Figure 4. This half-line is part of an “axis” for x
that is translated up through distance 1 by x. Since V fixes the vertices 4 and 5, V− fixes the tree V−, shown
in Figure 4, which includes this half-line and all vertices within distance 2 of it. For the particular element v,
we have that xNvx−N ∈ V− and so v fixes all vertices in V− below level N. Since v is a tree automorphism,
it follows that v fixes all vertices on the half-line descending from vertex 1. However, it does not follow that v
fixes all images of vertices 4 and 5 above level N, and that must be shown in order to prove that v ∈ V+ ∩V−.
To show this, suppose for example that v interchanges the vertices 4† and 5†. Then, xvx−1 interchanges 4
and 5, and so xvx−1 is in Aut(T2,2) \V. However, x2vx−2 interchanges 4′ and 5′ and so is not in Aut(T2,2).
Similarly, xnvx−n does not belong to Aut(T2,2) for any n ≥ 2, which contradicts that xNvx−N ∈ V−. Hence, v
fixes the vertices 4† and 5†. Similar arguments show that v fixes all images of 4 and 5 in V−, and hence that
v ∈ V−, as claimed.

Since every v ∈ V+ for which there is N ≥ 1 with xNvx−N ∈ V− must be in V+ ∩ V−, we have that
LV ≤ V and hence that V is tidy below for x. The scale of x is therefore equal to

[xVx−1 : xVx−1 ∩V] = [xŨx−1 : xŨx−1 ∩ Ũ] = 4.

Just as for automorphism groups of trees, the calculation of the scale of the non-uniscalar x ∈ AAut(T2,2)

involves identifying an ‘axis’ for x. This axis consists of two half-lines with finite trees attached, one of which
is translated through distance 2 and determines an attracting end for x, while the other is translated through
distance 1 and determines a repelling end. A dynamical description of the action of an almost automorphism may
be used in general for the calculation of the scale, although the dynamics can be more complicated as there may be
several (and different numbers of) attracting and repelling ends and the almost automorphism may permute some
of them. As seen here, the scale depends on more than just the speed with which the axis is translated towards or
away from the ends, but also on the “thickness” of the axis. A similar description of the dynamics of the action of
almost automorphisms is given in [36], which develops ideas in [37].
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5. Computing in t.d.l.c. Groups

In the examples, computing the scale of the element or automorphism of G requires a description
of the element or automorphism, a description of a compact open subgroup, U say, of G and a method
for calculating the images of U under powers of the automorphism and forming their intersections.
The different ways in which these things are done depends on the different concrete representations
of G in each case.

It is a truism that computation in a group depends on the description of the group.
The computations may be at the level of an abstract group described by a presentation or, for some
classes of groups, through a concrete representation. For example, finite groups have concrete
representations as permutations (via Cayley’s Theorem) and also as matrices (via the regular
representation). Lie groups, too, have concrete representations as groups of isometries of symmetric
spaces and also as groups of matrices (via the Lie algebra). The two types of concrete representation
that exist in the cases of finite and Lie groups might be characterised as geometric and algebraic.
They correspond to the two ways of thinking evident in synthetic and analytic geometry and perhaps
too in analogue and digital computing.

Concrete descriptions of t.d.l.c. groups fit the pattern of being geometric or algebraic only to a
more limited extent. The automorphism groups of trees in Example 2 are described in geometric terms
and the scale is calculated in these terms as well, while the p-adic Lie groups in Example 4 are described
and their scale calculated in algebraic terms. Some geometric and algebraic realisations of other t.d.l.c.
groups, and the limitations of such represenations, are sketched in the next few paragraphs.

Many t.d.l.c. groups are defined geometrically as automorphism groups of buildings,
see [15,38,39], and semisimple Lie groups over local fields. Kac-Moody groups over finite fields may also
be represented as acting on buildings. Moreover, just as is the case for finite groups and Lie groups,
every compactly generated t.d.l.c. group has a geometric representation via an action on a Cayley–Abels
graph, [40,41]. Cayley–Abels graphs are unique only up to quasi-isometry however and, although they can
be used to derive bounds on integer invariants of t.d.l.c. groups, see ([30] Proposition 4.6) and [42,43],
they do not provide an effective method for performing precise calculations of invariants such as the
scale unless the graph structure is understood in as much detail as it is for buildings. The limitation of
the Cayley–Abels geometric representation therefore is that, unlike the cases of geometries for finite and
Lie groups, it is not well understood for general t.d.l.c. groups: no such graph has been described for
Neretin’s group for example.

The limitation of algebraic realisations (strictly conceived) is that t.d.l.c. groups such as Aut(Tq+1)

and Neretin’s group do not have finite-dimensional linear representations. However, there is a possible
substitute for algebraic realisations of these groups. The calculation of the scale on Neretin’s group
illustrated in Example 5 uses an approach that is not readily characterised as geometric or algebraic.
Although the axes of translation featuring in the dynamical description of the almost automorphism
are geometric, the axes and translation distance alone do not determine the scale. The full information
required is encoded in the pair of finite trees representing the almost automorphism. This information
is combinatorial in nature and says how the almost automorphism commensurates the totally
disconnected compact group Aut(T2,2). Since abstract t.d.l.c. groups always contain a compact open,
and hence commensurated, subgroup, they may be realised concretely as groups of commensurators
quite generally, see [29,30,35]. Moreover, given any pair (G, H) such that H is a commensurated
subgroup of G, a t.d.l.c. group G̃, called the relative profinite completion, may be defined in which
the closure of H is a compact open subgroup of G̃, see [44] and the references therein. Examples of
such pairs include the group PSL(n,Z[1/p]) and its commenustared subgroup PSL(n,Z), in which
case the relative profinite completion is isomorphic to PSL(n,Qp); and the Baumslag–Solitar group
BS(m, n) := 〈a, t : tamt−1 = an〉 and commensurated subgroup 〈a〉, in which case the relative profinite
completion is described in [45].

These examples suggest that a suitable substitute for the adjoint representation might be to
represent t.d.l.c. groups concretely as commensurators. This idea is lent support by the fact that,

81



Axioms 2017, 6, 27

in p-adic Lie groups, locally normal subgroups (in the local structure theory developed in [46])
correspond to ideals in the Lie algebra, and that the scale (which is defined in terms of commensuration)
may be expressed in terms of eigenvalues. Representing general t.d.l.c. groups as commensurator
groups poses challenges comparable with those facing the use of Cayley–Abels graphs however.

A practical test of any description of a t.d.l.c. group is whether it facilitates calculation of the scale
and identification of tidy subgroups. Seeking descriptions which pass that test for more groups is a task
for further investigations. These investigations might guide a possible”classification” of topologically
simple t.d.l.c. groups in which the groups are arranged into types according to their best method of
concrete description. While linear representations largely suffice in the cases of Lie and finite groups,
that will not be the case for t.d.l.c. groups because automorphism groups of trees, Neretin’s group and
most Kac–Moody groups are not linear, and there may be many others yet to be discovered. Geometric,
linear and commensurator descriptions may all be required but it is not clear that they will suffice.

S. Smith has shown, see [47], how uncountably many simple discrete groups may be used
to produce uncountably many topologically simple, compactly generated t.d.l.c. groups. Smith’s
groups act on trees (not locally finite ones though) and so have a geometric description, modulo an
infinite discrete group, which facilitates calculation of the scale. There seems to be no reason that
there might not be other ways of constructing uncountable families of simple t.d.l.c. groups however.
These, presumably, would also be described modulo objects in some class known to be uncountable.
Arranging groups constructed in these ad hoc ways according to their method of concrete description,
and their local structure as defined in [46], may be the best that can be hoped for in the direction of
a classification.

Calculating the scale of an element of a t.d.l.c. group can use only a finite amount of information.
To calculate the scale, at least in principle, of any element in any compactly generated, topologically
simple t.d.l.c. group would, since there are uncountably many of them, entail describing the group
up to some finite approximation, or modulo information not relevant to the calculation, and then
identifying the element in it up to a finite approximation. It would ultimately be desirable to implement
this calculation in computer software. Indeed, it might be argued that such implementation would be
the benchmark of success for a theory of t.d.l.c. groups and a categorising, or sorting into types, of the
simple ones.
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1. Introduction

Let σ : P × G → P be a smooth action of a Lie group G on a manifold P. It is well-known
(see e.g., [1], Proposition 2.1) that σ induces a smooth action of G on the unital Fréchet algebra C∞(P)
of smooth functions on P defined by ασ : G× C∞(P) → C∞(P), (g, f ) �→ f ◦ σg. The corresponding
fixed point algebra is given by

C∞(P)G := { f ∈ C∞(P) : (∀g ∈ G) ασ(g, f ) = f }.

The origin of this short article is, in a manner of speaking, “commutative geometry”, namely the
question whether each character χ : C∞(P)G → C extends to a character χ̃ : C∞(P)→ C (cf. [2,3]).

One possible way to approach this problem is to classify the characters under consideration.
Indeed, it follows from ([1], Lemma A.1) that each character χ : C∞(P)→ C is an evaluation in some
point p ∈ P, that is, of the form δp : C∞(P) → C, f �→ f (p). If the action σ is additionally free and
proper, then the orbit space P/G has a unique manifold structure such that the canonical quotient map
q : P → P/G, p �→ [p] is a submersion. Moreover, in this situation, the map

Φ : C∞(P)G → C∞(P/G), f �→ ([p] �→ f (p))

is an isomorphism of unital Fréchet algebras showing that each character C∞(P)G → C is of the form
δ[p] ◦Φ for some p ∈ P which may simply be extended by δp.

In this note, however, we approach the above problem in a more systematic way. In fact, given a
dynamical system (A, G, α) with a complete commutative continuous inverse algebra (CIA) A and a
compact group G, we show that each character of the corresponding fixed point algebra

AG := {a ∈ A : (∀g ∈ G) α(g)(a) = a}

extends to a character of A (Theorem 2). Our approach is motivated by the following three facts:
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(i) Our initial question is, after all, of purely topological nature.
(ii) If P is compact, then C∞(P) is the prototype of a complete commutative CIA.

(iii) CIA’s provide a class of algebras for which characters are automatically continuous (cf. [4],
Lemma 2.3).

We would also like to mention that CIAs are naturally encountered in K-theory and
noncommutative geometry, usually as dense unital subalgebras of C∗-algebras. Finally, we point
out that a classical result for actions of finite groups can be found in ([5], Chapter 5, §2.1, Corollary 4).

2. Preliminaries and Notations

All algebras are assumed to be complex. The spectrum of an algebra A is the set ΓA :=
Homalg(A,C)\{0} (endowed with the topology of pointwise convergence on A) and its elements
are called characters. Moreover, given a compact group G, we denote by Ĝ the (countable) set of
equivalence classes of finite-dimensional irreducible representations of G. For π ∈ Ĝ we write χπ

for the function defined by G �→ C, g �→ tr(π(g)) and we put dπ := χπ(1G) for the corresponding
dimension. We also need the following well-known structure theorem for dynamical systems:

Lemma 1. ([6], [Lemma 3.2 and Theorem 4.22]). Let (A, G, α) be a dynamical system with a complete unital
locally convex algebra A and a compact group G. Furthermore, given π ∈ Ĝ and a ∈ A, let

Pπ(a) := dπ

∫
G

χπ(g) (α(g)(a)) dg,

where dg denotes the normalized Haar measure on G. Then the following assertions hold:

(a) For each π ∈ Ĝ the map Pπ : A → A is a continuous G-equivariant projection onto the G-invariant
subspace Aπ := Pπ(A). In particular, Aπ is algebraically and topologically a direct summand of A.

(b) The module direct sum Afin :=
⊕

π∈Ĝ Aπ is a dense subalgebra of A.

3. Extension Results

In this section our main results are stated and proved. We begin with some general statements on
the extendability of ideals.

Lemma 2. Let (A, G, α) be a dynamical system with a complete unital locally convex algebra A and a compact
group G. Then the following assertions hold:

(a) If I is a proper left ideal in AG, then Afin · I =
⊕

π∈Ĝ Aπ · I defines a proper left ideal in Afin that
contains I.

(b) If I is a proper closed left ideal in AG and J is the closure of Afin · I in Afin, then J is a proper closed left
ideal in Afin that contains I.

Proof. (a) We first observe that AG coincides with A1 (where 1 stands for the equivalence class of
the trivial representation). Hence I ⊆ AG is contained in Afin and thus Afin · I is the left ideal of Afin
generated by I. Using the integral formula for Pπ from Lemma 1, we see that Aπ · I ⊆ Aπ , entailing
that the sum in part (a) is direct. To see that Afin · I is proper, we assume the contrary, that is,

1A ∈ Afin · I =
⊕
π∈Ĝ

Aπ · I.

Then 1A ∈ AG implies that 1A ∈ AG · I = I, which contradicts the fact that I is a proper left ideal
of AG. We conclude that Afin · I is a proper left ideal in Afin that contains I.

(b) Part (a) and the definition of J imply that J is a closed left ideal in Afin that contains I. To see
that J is proper, we again assume the contrary, that is, 1A ∈ J. Then there exists a net (aγ)γ∈Γ in Afin · I
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such that limγ aγ = 1A and the continuity of the projection map P1 : A → A onto the fixed point
algebra AG implies that

1A = P1(1A) = P1(lim
γ

aγ) = lim
γ

P1(aγ).

Since I is closed in AG and P1(aγ) ∈ AG · I = I for all γ ∈ Γ, we conclude that 1A ∈ I.
This contradicts the fact that I is a proper ideal of AG and therefore J is a proper closed left ideal in
Afin that contains I.

Lemma 3. Let A be a topological algebra and B a dense subalgebra of A. If I is a proper closed left ideal in B,
then I is a proper closed left ideal in B = A.

Proof. It is easily seen that I is a closed left ideal in B = A. Moreover, we have I = I ∩ B. Indeed,
the inclusion “ ⊆ ” is obvious and for the other inclusion we use the fact that I is closed in B.
Consequently, if I is not proper, that is, I = A, then I = B, which yields a contradiction. Hence, I is a
proper closed left ideal in A.

We are now ready to state and prove our main extension results.

Theorem 1. (Extending ideals). Let (A, G, α) be a dynamical system with a complete unital locally convex
algebra A and a compact group G. Then each proper closed left ideal in AG is contained in a proper closed left
ideal in A.

Proof. Let I be a proper closed left ideal in AG. Then Lemma 2 (b) implies that I is contained in a
proper closed left ideal in Afin. Since Afin is a dense subalgebra of A by Lemma 1 (b), the claim is a
consequence of Lemma 3.

Theorem 2. (Extending characters). Let (A, G, α) be a dynamical system with a complete commutative CIA A
and a compact group G. Then each character χ : AG → C is continuous and extends to a continuous character
χ̃ : A → C.

Proof. Let χ : AG → C be a character. Since AG carries the structure of a CIA in its own right, it follows
from ([4], Lemma 2.3) that χ is continuous which shows that I := ker χ is a proper closed ideal in AG.
Hence, Theorem 1 implies that I is contained in a proper closed ideal in A. In particular, it is contained
in a proper maximal ideal J of A which, according to ([7], Lemma 2.2.2) and ([4], Lemma 2.3), is the
kernel of some continuous character χ̃ : A → C. Since I is a maximal ideal in the unital algebra AG and

I = I ∩ AG ⊆ J ∩ AG ⊆ AG,

we conclude that I = J ∩ AG. Therefore, the decomposition AG = I ⊕C = (J ∩ AG)⊕C finally proves
that χ̃ extends χ.

Remark 1. It is not clear how to extend Theorem 2 beyond the class of CIAs. For instance, given a non-compact
manifold P, the set C∞

c (P) of compactly supported smooth functions on P is a proper ideal in C∞(P). As such it
is contained in a proper maximal ideal in C∞(P) that cannot be closed since C∞

c (P) is dense in C∞(p). However,
in the more general situation of a complete commutative unital locally convex algebra A, a similar argument
as in the proof of Theorem 2 shows that each continuous character χ : AG → C can be extended to a character
χ̃ : A → C.

We conclude with the following two immediate corollaries.
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Corollary 1. Suppose we are in the situation of Theorem 2. Then the natural map on the level of spectra
ΓA → ΓAG , χ �→ χ|AG is surjective.

Corollary 2. Let (C∞(P), G, α) be a dynamical system with a compact manifold P and a compact group G.
Then each character χ : C∞(P)G → C extends to a character χ̃ : C∞(P)→ C.

Remark 2. Given a dynamical system (C∞(P), G, α) with a compact manifold P and a compact group G,
we would like to describe ΓC∞(P)G as a set of points associated to P and G. As already explained in the
introduction, it is not hard to see that ΓC∞(P)G is homeomorphic to P/G if G is a Lie group and α is induced
by a free and smooth action of G on P. However, even if we do not have any additional information, it is still
possible to show that the map

P/G → ΓC∞(P)G , q(p) �→ δp

is a homeomorphism (see e.g., [2], Proposition 8.7) and Corollary 2 may be used to verify its surjectivity.
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Abstract: A well-known result of Ferri and Galindo asserts that the topological group c0 is not
reflexively representable and the algebra WAP(c0) of weakly almost periodic functions does not
separate points and closed subsets. However, it is unknown if the same remains true for a larger
important algebra Tame(c0) of tame functions. Respectively, it is an open question if c0 is representable
on a Rosenthal Banach space. In the present work we show that Tame(c0) is small in a sense that
the unit sphere S and 2S cannot be separated by a tame function f ∈ Tame(c0). As an application
we show that the Gromov’s compactification of c0 is not a semigroup compactification. We discuss
some questions.

Keywords: Gromov’s compactification; group representation; matrix coefficient; semigroup
compactification; tame function

1. Introduction

Recall that for every Hausdorff topological group G the algebra WAP(G) of all weakly almost
periodic functions on G determines the universal semitopological semigroup compactification uw :
G → Gw of G. This map is a topological embedding for many groups including the locally compact
case. For some basic material about WAP(G) we refer to [1,2].

The question if uw always is a topological embedding (i.e., if WAP(G) determines the topology
of G) was raised by Ruppert [2]. This question was negatively answered in [1] by showing that the
Polish topological group G := H+[0, 1] of orientation preserving homeomorphisms of the closed unit
interval has only constant WAP functions and that every continuous representation h : G → Is(V)

(by linear isometries) on a reflexive Banach space V is trivial. The WAP triviality of H+[0, 1] was
conjectured by Pestov.

Recall also that for G := H+[0, 1] every Asplund (hence also every WAP) function is constant and
every continuous representation G → Iso(V) on an Asplund (hence also reflexive) space V must be
trivial [3]. In contrast one may show (see [4,5]) that H+[0, 1] is representable on a (separable) Rosenthal
space (a Banach space is Rosenthal if it does not contain a subspace topologically isomorphic to l1).

We have the inclusions of topological G-algebras

WAP(G) ⊂ Asp(G) ⊂ Tame(G) ⊂ RUC(G).

For details about Tame(G) and definition of Asp(G) see [5–7]. We only remark that f ∈ Tame(G)

if and only if f is a matrix coefficient of a Rosenthal representation. That is, there exist: a Rosenthal
Banach space V; a continuous homomorphism h : G → Is(V) into the topological group of all linear
isometries V → V with strong operator topology; two vectors v ∈ V; ψ ∈ V∗ (the dual of V) such that
f (g) = ψ(h(g)v) for every g ∈ G.

Similarly, it can be characterized f ∈ Asp(G) replacing Rosenthal spaces by the larger class of
Asplund spaces. A Banach space is Asplund if the dual of every separable subspace is separable.
Every reflexive space is Asplund and every Asplund is Rosenthal. A standard example of an Asplund
but nonreflexive space is just c0.

Axioms 2018, 7, 77; doi:10.3390/axioms7040077 www.mdpi.com/journal/axioms89
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Recall that c0, as an additive abelian topological group, is not representable on a reflexive Banach
space by a well-known result of Ferri and Galindo [8]. In fact, WAP(c0) separates the points but not
points and closed subsets. The group c0 admits an injective continuous homomorphism h : c0 → Is(V)

with some reflexive V but such h cannot be a topological embedding.
Presently it is an open question if every topological group (abelian, or not) G is Rosenthal

representable and if Tame(G) determines the topology of G. Note that the algebra Tame(G) appears as
an important modern tool in some new research lines in topological dynamics motivating its detailed
study [5,7].

One of the good reasons to study Tame(G) is a special role of tameness in the dynamical
Berglund-Fremlin-Talagrand dichotomy [5]; as well as direct links to Rosenthal’s l1-dychotomy. In a
sense Tame(G) is a set of all functions which are not dynamically massive.

By these reasons and since H+[0, 1] is Rosenthal representable, it seems to be an attractive concrete
question if c0 is Rosenthal representable and it is worth studying how large is Tame(c0). In the present
work we show that Tame(c0) is quite small (even for the discrete copy of c0, see Theorem 3).

Theorem 1. Tame(c0) does not separate the unit sphere S and 2S.

So, the closures of S and 2S intersect in the universal tame compactification of c0 (a fortiori,
the same is true for the universal Asplund (HNS) semigroup compactification).

Another interesting question is if c0 admits an embedding into a metrizable semigroup
compactification. Note that any metrizable semigroup compactification of H+[0, 1] is trivial.

In Section 3 we show that the Gromov’s compactification γ : c0 ↪→ P, which is metrizable (and γ

is a G-embedding), is not a semigroup compactification.

Theorem 2. Let γ : c0 ↪→ P be the Gromov’s compactification of the metric space (c0, d
1+d ), where d(x, y) :=

||x− y||. Then γ is not a semigroup compactification.

This gives an example of a naturally defined separable unital (original topology determining)
G-subalgebra of RUC(G) (for G = c0) which is not left m-introverted in the sense of [9].

2. Tame Functions on c0

Recall that a sequence fn of real-valued functions on a set X is said to be independent if there exist
real numbers a < b such that

⋂
n∈P

f−1
n (−∞, a) ∩

⋂
n∈M

f−1
n (b, ∞) �= ∅

for all finite disjoint subsets P, M of N. Every bounded independent sequence is an l1-sequence [10].
As in [6,7] we say that a bounded family F of real-valued (not necessarily continuous) functions

on a set X is a tame family if F does not contain an independent sequence.
Let G be a topological group, f : G → R be a real-valued function. For every g ∈ G define

f g : G → R as ( f g)(x) = f (gx) (for multiplicative G). Denote by RUC(G) the algebra of all bounded
right uniformly continuous functions on G. So, f ∈ RUC(G) means that f is bounded and for
every ε > 0 there exists a neighborhood U of the identity e (of the multiplicative group G) such that
| f (ux)− f (x)| < ε for every x ∈ G and u ∈ U. This algebra RUC(G) corresponds to the greatest
G-compactification G → βGG of G (with respect to the left action), greatest ambit of G.

We say that f ∈ RUC(G) is a tame function if the orbit f G := { f g}g∈G is a tame family. That is,
f G does not contain an independent sequence; notation f ∈ Tame(G).
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2.1. Proof of Theorem 1

We have to show that Tame(c0) does not separate the spheres S and 2S (where S := {x ∈ c0 :
||x|| = 1}). In fact we show the following stronger result.

Theorem 3. Let G = c0 be the additive group of the classical Banach space c0. Assume that f : c0 → R be any
(not necessarily continuous) bounded function such that{

f (x) ≤ a ∀ ||x|| = 1

b ≤ f (x) ∀ ||x|| = 2

for some pair a < b of real numbers. Then f is not a tame function on the discrete copy of the group c0.

Proof. For every n ∈ N consider the function

fn : c0 → R, x �→ f (en + x),

where en is a vector of c0 having 1 as its n-th coordinate and all other coordinates are 0. Clearly,
fn = f gn where gn = en ∈ c0. We have to check that f G is an untame family. It is enough to show that
the sequence { fn}n∈N in f G is an independent family of functions on c0. We have to show that for
every finite nonempty disjoint subsets I, J in N the intersection⋂

n∈I
f−1
n (−∞, a] ∩

⋂
n∈J

f−1
n [b, ∞)

is nonempty.
Define v = (vk)k∈N ∈ c0 as follows: vj = 1 for every j ∈ J and vk = 0 for every k /∈ J. Then

(1) v ∈ c0 and ||v|| = 1.
(2) ||ei + v|| = 1, fi(v) = f (ei + v) ≤ a for every i ∈ I.
(3) ||ej + v|| = 2, f j(v) = f (ej + v) ≥ b for every j ∈ J.

So we found v such that

v ∈
⋂
n∈I

f−1
n (−∞, a] ∩

⋂
n∈J

f−1
n [b, ∞).

Corollary 1. The bounded RUC function

f : c0 → [−1, 1], x �→ ||x||
1 + ||x||

is not tame on c0 (even on the discrete copy of the group c0).

Proof. Observe that f (S) = 1
2 , f (2S) = 2

3 and apply Theorem 3.

Theorem 3 remains true for the spheres rS and 2rS for every r > 0. In the case of Polish c0 it is
unclear if the same is true for any pair of different spheres around the zero. If, yes then this will imply
that Tame(c0) does not separate the zero and closed subsets. The following question remains open
even for any topological group [5,7].

Question 1. Is it true that Tame(c0) separates the points and closed subsets ? Is it true that Polish group c0 is
Rosenthal representable ?
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3. Gromov’s Compactification Need Not Be a Semigroup Compactification

Studying topological groups G and their dynamics we need to deal with various natural closed
unital G-subalgebras A of the algebra RUC(G). Such subalgebras lead to G-compactifications of G
(so-called G-ambits, [11]). That is we have compact G-spaces K with a dense orbit Gz ⊂ K such that
the Gelfand algebra which corresponds to the compactification G → K, g �→ gz is just A. Frequently
but not always such compactifications are the so-called semigroup compactifications, which are very
useful in topological dynamics and analysis. Compactifications of topological groups already is a
fruitful research line. See among others [12–14] and references there. In our opinion semigroup
compactifications deserve even much more attention and systematic study in the context of general
topological group theory.

A semigroup compactification of G is a pair (α, K) such that K is a compact right topological
semigroup (all right translations are continuous), and α is a continuous semigroup homomorphism
from G into K, where α(G) is dense in K and the left translation K → K, x �→ α(g)x is continuous for
every g ∈ G.

One of the most useful references about semigroup compactifications is a book of Berglund,
Junghenn and Milnes [9]. For some new directions (regarding topological groups) see also [3,4,15,16].

Question 2. Which natural compactifications of topological groups G are semigroup compactifications?
Equivalently which Banach unital G-subalgebras of RUC(G) are left m-introverted (in the sense of [9])?

Recall that left m-introversion of a subalgebra A of RUC(G) means that for every v ∈ A and every
ψ ∈ MM(A) the matrix coefficient m(v, ψ) belongs to A, where

m(v, ψ) : G → R, g �→ ψ(g−1v)

and MM(A) ⊂ A∗ denotes the spectrum (Gelfand space) of A.
It is not always easy to verify left m-introversion directly. Many natural G-compactifications

of G are semigroup compactifications. For example, it is true for the compactifications defined
by the algebras RUC(G), Tame(G), Asp(G), WAP(G). Of course, the 1-point compactification is a
semitopological semigroup compactification for any locally compact group G.

As to the counterexamples. As it was proved in [3], the subalgebra UC(G) := RUC(G) ∩ LUC(G)

of all uniformly continuous functions is not left m-introverted for G := H(C), the Polish group of
homeomorphisms of the Cantor set.

In this section we show that the Gromov’s compactification of a metrizable topological group G
need not be a semigroup compactification.

Let ρ be a bounded metric on a set X. Then the Gromov’s compactification of the metric space
(X, ρ) is a compactification γ : X → P induced by the algebra A which is generated by the bounded
set of functions

{ρz : X → R, ρz(x) = ρ(z, x)}z∈X .

Then γ always is a topological embedding. If X is separable then P is metrizable. Moreover,
if (X, ρ) admits a continuous ρ-invariant action of a topological group G then γ is a G-compactification
of X; see [17].

Here we examine the following particular case. Let G be a metrizable topological group.
Choose any left invariant metric d on G. Denote by γ : G → P the Gromov’s compactification
of the bounded metric space (G, ρ), where ρ = d

1+d .
Consider the following natural bounded RUC function

f : G → R, x �→ ||x||
1 + ||x||
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where ||x|| := d(e, x). By A f we denote the smallest closed unital G-subalgebra of RUC(G) which
contains f G = { f g : g ∈ G}. Then A f is the algebra which corresponds to the compactification γ.
Indeed, ρg−1(x) = ρ(g−1, x) = ( f g)(x) for every g, x ∈ G.

Proof of Theorem 2

We have to prove Theorem 2.

Proof. By the discussion above, the unital G-subalgebra A f of RUC(G) associated with γ is generated

by the orbit f G, where f : G → R, f (x) = ||x||
1+||x|| . Since c0 is separable the algebra A f is separable.

Hence, P is metrizable. If we assume that γ is a semigroup compactification then the separability of
A f guarantees by [4] ( Prop. 6.13) that A f ⊂ Asp(G). On the other hand, since Asp(G) ⊂ Tame(G),
and f ∈ A f we have f ∈ Tame(G). Now observe that f separates the spheres S and 2S and we get a
contradiction to Corollary 1.

Question 3. Is it true that the Polish group c0 admits a semigroup compactification α : c0 ↪→ P such that P is
metrizable and α is an embedding? What if P is first countable?

This question is closely related to the setting of this work. Indeed, by [4] (Prop. 6.13) (resp., by [4]
(Cor. 6.20)) the metrizability (first countability) of P guarantees that the corresponding algebra is a
subset of Asp(G) (resp. of Tame(G)).
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Various notions of large sets in groups and semigroups naturally arise in dynamics and
combinatorial number theory. Most familiar are those of syndetic, thick (or replete), and piecewise
syndetic sets. Apparently, the term “syndetic” was introduced by Gottschalk and Hedlund in their 1955
book [1] in the context of topological groups, although syndetic sets of integers have been studied long
before (they appear, e.g., in Khintchine’s 1934 ergodic theorem). During the past decades, large sets in
Z and in abstract semigroups have been extensively studied. It has turned out that, e.g., piecewise
syndetic sets in N have many attractive properties: they are partition regular (i.e., given any partition of
N into finitely many subsets, at least one of the subsets is piecewise syndetic), contain arbitrarily long
arithmetic progressions, and are characterized in terms of ultrafilters on N (namely, a set is piecewise
syndetic it and only if it belongs to an ultrafilter contained in the minimal two-sided ideal of βN).
Large sets of other kinds are no less interesting, and they have numerous applications to dynamics,
Ramsey theory, the ultrafilter semigroup on N, the Bohr compactification, and so on.

Quite recently Reznichenko and the author have found yet another application of large sets.
Namely, we introduced special large sets in groups, which we called vast, and applied them to
construct a discrete set with precisely one limit point in any countable nondiscrete topological group
in which the identity element has nonrapid filter of neighborhoods. Using this technique and special
features of Boolean groups, we proved, in particular, the nonexistence of a countable nondiscrete
extremally disconnected group in ZFC (see [2]).

In this paper, we study right and left thick, syndetic, piecewise syndetic, and vast sets in groups
(although they can be defined for arbitrary semigroups). Our main concern is the interplay between
such sets in Boolean groups. We also consider natural topologies closely related to vast sets, which leads
to interesting relations between vast sets and ultrafilters.

1. Basic Definitions and Notation

We use the standard notation Z for the group of integers, N for the set (or semigroup, depending
on the context) of positive integers, and ω for the set of nonnegative integers or the first infinite cardinal;
we identify cardinals with the corresponding initial ordinals. Given a set X, by |X| we denote its
cardinality, by [X]k for k ∈ N, the kth symmetric power of X (i.e., the set of all k-element subsets of X),
and by [X]<ω, the set of all finite subsets of X.

Axioms 2017, 6, 28; doi:10.3390/axioms6040028 www.mdpi.com/journal/axioms95
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Definition 1 (see [3]). Let G be a group. A set A ⊂ G is said to be

(a) right thick, or simply thick if, for every finite F ⊂ S, there exists a g ∈ G (or, equivalently, g ∈ A ([3]
Lemma 2.2)) such that Fg ⊂ A;

(b) right syndetic, or simply syndetic, if there exists a finite F ⊂ G such that G = FA;
(c) right piecewise syndetic, or simply piecewise syndetic, if there exists a finite F ⊂ G such that FA is thick.

Left thick, left syndetic, and left piecewise syndetic sets are defined by analogy; in what follows,
we consider only right versions and omit the word “right.”

Definition 2. Given a subset A of a group G, we shall refer to the least cardinality of a set F ⊂ G for which
G = FA as the syndeticity index, or simply index (by analogy with subgroups) of A in G. Thus, a set is syndetic
if and only if it is of finite index. We also define the thickness index of A as the least cardinality of F ⊂ G for
which FA is thick.

A set A ⊂ Z is syndetic if and only if the gaps between neighboring elements of A are bounded,
and B ⊂ Z is thick if and only if it contains arbitrarily long intervals of consecutive integers.
The intersection of any such sets A and B is piecewise syndetic; clearly, such a set is not necessarily
syndetic or thick (although it may as well be both syndetic and thick). The simplest general example
of a syndetic set in a group is a coset of a finite-index subgroup.

In what follows, when dealing with general groups, we use multiplicative notation, and when
dealing with Abelian ones, we use additive notation.

Given a set A in a group G, by 〈A〉 we denote the subgroup of G generated by A.
As mentioned, we are particularly interested in Boolean groups, i.e., groups in which all elements

are self-inverse. All such groups are Abelian. Moreover, any Boolean group G can be treated as a
vector space over the two-element field Z2; therefore, for some set X (basis), G can be represented
as the free Boolean group B(X) on X, i.e., as [X]<ω with zero ∅, which we denote by 0, and the
operation � of symmetric difference: A� B = (A� B) \ A ∩ B. We denote this operation treated
as the group operation on B(X) by �� ; thus, given a, b ∈ B(X) = [X]<ω, we have a �� b = a� b,
and given A, B ⊂ B(X), we have A �� B = {a �� b = a� b : a ∈ A, b ∈ B}. We identify each x ∈ X
with {x} ∈ [X]<ω = B(X); thereby, X is embedded in B(X), and the nonzero elements of B(X) are
represented by formal sums x1 �� · · · �� xn, where n ∈ N and xi ∈ X, i ≤ n. Formal sums in which all
terms are different are said to be reduced. The reduced formal sum representing a given element g of
B(X) (that is, a finite subset of X) is determined uniquely up to the order of terms: for g = {x1, . . . , xn},
this is the sum x1 �� · · · �� xn. We assume that zero is represented by the empty sum. By analogy with
the cases of free and free Abelian groups, we refer to the number of terms in the reduced formal sum
representing a given element as the length of this element. Thus, the length of each element equals
its cardinality. Given n ∈ ω, we use the standard notation Bn(X) for the set of elements of length at
most n; thus, B0(X) = {0} , B1(X) = X ∪ {0}, and B(X) =

⋃
n∈ω Bn(X). For the set of elements of

length precisely n, where n ∈ N, we use the notation B=n(X); we have B=n(X) = Bn(X) \ Bn−1(X).
For convenience, pursuing the analogy with free groups, we refer to the terms of the reduced formal
sum representing an element g of B(X) as the letters of g; thus, each g ∈ B(X) = [X]<ω is the set of
its letters.

Any free filter F on an infinite set X determines a topological space XF = X ∪ {∗} with one
nonisolated point ∗; the neighborhoods of this point are A ∪ {∗} for A ∈ F . The topology of the free
Boolean topological group B(XF ) = [X ∪ {∗}]<ω on this space, that is, the strongest group topology
that induces the topology of XF on X ∪ {∗}, is described in detail in [4]. Description II in [4] takes the
following form for XF . For each n ∈ N, we fix an arbitrary sequence Γ of neighborhoods of ∗, that is,
Γ =
(

An ∪ {∗}
)

n∈N, where An ∈ F , and set

U(Γ) =
⋃

n∈N
{x1 �� y1 �� x2 �� y2 �� · · · �� xn �� yn : xi, yi ∈ Ai ∪ {∗} for i ≤ n}.
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The sets U(Γ) form a basis of neighborhoods of zero in B(XF ). In particular, the subgroup
generated by (A∪ {∗}) �� (A∪ {∗}) (and hence the subgroup generated by A∪ {∗}) is a neighborhood
of zero for any A ∈ F . Note that B(XF ) contains the abstract free Boolean group B(X) as a subgroup.
The topology of B(XF ) induces a nondiscrete group topology on B(X); see Section 8 for details.

For the Graev free Boolean topological group (A precise definition can be found in [4]. For aestetic
reasons, instead of the standard notation BG(F ) we use BG(F ) in this paper). BG(F ) in which ∗ is
identified with zero, a basis of neighborhoods of zero is formed by sets of the form

UG(Γ) =
⋃

n∈N
{x1 �� x2 �� · · · �� xn : xi ∈ Ai for i ≤ n}.

For spaces of the form XF , the Graev free Boolean topological group is topologically isomorphic
to the free Boolean topological group (see [4]).

Clearly, for n ∈ ω, a set Y ⊂ B=2n(XF ) is a trace on B=2n(XF ) of a neighborhood of zero in
B(XF ) if and only if it contains a set of the form(

(A ∪ {∗}) �� · · · �� (A ∪ {∗})︸ ︷︷ ︸
2n times

)
∩ B=2n(XF ) = [A ∪ {∗}]2n.

The intersection of a neighborhood of zero in B(XF ) with B=k(XF ) may be empty for all odd k.
Similarly, a set Y ⊂ BG

=n(XF ) is a trace on BG
=n(XF ) of a neighborhood of zero in BG(XF ) if and only

if it contains a set of the form
(

A �� · · · �� A︸ ︷︷ ︸
n times

)
∩ BG

=n(XF ) = [A]n. The intersection of a neighborhood of

zero in BG(XF ) with BG
n (XF ) is never empty.

In what follows, we deal with rapid, κ-arrow, and Ramsey filters and ultrafilters.

Definition 3 ([5]). A filter F on ω is said to be rapid if every function ω → ω is majorized by the
increasing enumeration of some element of F , i.e., for any function a : ω → ω, there exists a strictly increasing
function b : ω → ω such that a(i) ≤ b(i) for all i and {b(i) : i ∈ ω} ∈ F .

Clearly, any filter containing a rapid filter is rapid as well; thus, the existence of rapid filters is
equivalent to that of rapid ultrafilters. Rapid ultrafilters are also known as semi-Q-point, or weak
Q-point, ultrafilters. Both the existence and nonexistence of rapid ultrafilters is consistent with ZFC
(see, e.g., [6,7]).

The notions of κ-arrow and Ramsey filters are closely related to Ramsey theory, more specifically,
to the notion of homogeneity with respect to a coloring, or partition. Given a set X and positive integers
m and n, by an m-coloring of [X]n we mean any map c : [X]n → Y of [X]n to a set Y of cardinality m.
Any such coloring determines a partition of [X]n into m disjoint pieces, each of which is assigned a
color y ∈ Y. A set A ⊂ X is said to be homogeneous with respect to c, or c-homogeneous, if c is constant
on [A]n. The celebrated Ramsey theorem (finite version) asserts that, given any positive integers k, l,
and m, there exists a positive integer N such that, for any k-coloring c : [X]l → Y, where |X| ≥ N and
|Y| = k, there exists a c-homogeneous set A ⊂ X of size m.

We consider κ-arrow and Ramsey filters on any, not necessarily countable, infinite sets.
For convenience, we require these filters to be uniform, i.e., nondegenerate in the sense that all
of their elements have the same cardinality (equal to that of the underlying set). A filter on a countable
set is uniform if and only if it is free.

Definition 4. Let κ be an infinite cardinal, and let F be a uniform filter on a set X of cardinality κ.

(i) We say that F is a Ramsey filter if, for any 2-coloring c : [X]2 → {0, 1}, there exists a c-homogeneous set
A ∈ U .
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(ii) Given an arbitrary cardinal λ ≤ κ, we say that F is a λ-arrow filter if, for any 2-coloring
c : [X]2 → {0, 1}, there exists either a set A ∈ F such that c([A]2) = {0} or a set S ⊂ X with
|S| ≥ λ such that c([S]2) = {1}.

Any filter F on X which is Ramsey or λ-arrow for λ ≥ 3 is an ultrafilter. Indeed, let S ⊂ X and
consider the coloring c : [X]2 → {0, 1} defined by

c({x, y}) =
{

0 if x, y ∈ S or x, y ∈ X \ S,

1 otherwise.

Clearly, any c-homogeneous set containing more than two points is contained entirely in S or
in X \ S; therefore, either S or X \ S belongs to F , so that F is an ultrafilter.

According to Theorem 9.6 in [8], if U is a Ramsey ultrafilter on X, then, for any n < ω and any
2-coloring c : [X]n → {0, 1}, there exists a c-homogeneous set A ∈ U .

It is easy to see that if F is λ-arrow, then, for any A ∈ F and any c : [A]2 → {0, 1}, there exists
either a set B ∈ F such that B ⊂ A and c([B]2) = {0} or a set S ⊂ A with |S| ≥ λ such that
c([S]2) = {1}.

In [9], where k-arrow ultrafilters for finite k were introduced, it was shown that the existence of a
3-arrow (ultra)filter on ω implies that of a P-point ultrafilter; therefore, the nonexistence of κ-arrow
ultrafilters for any κ ≥ 3 is consistent with ZFC (see [10]).

On the other hand, the continuum hypothesis implies the existence of k-arrow ultrafilters on ω

for any k ≤ ω. To formulate a more delicate assumption under which k-arrow ultrafilters exist, we
need more definitions. Given a free (=uniform) filter F on ω, a set B ⊂ ω is called a pseudointersection
of F if the complement A \ B is finite for all A ∈ F . The pseudointersection number p is the smallest
size of a free filter on ω which has no infinite pseudointersection. It is easy to show that ω1 ≤ p ≤ 2ω ,
so that, under the continuum hypothesis, p = 2ω. It is also consistent with ZFC that, for any regular
cardinals κ and λ such that ω1 ≤ κ ≤ λ, 2ω = λ and p = κ (see [11] Theorem 5.1). It was proved
in [9] that, under the assumption p = 2ω (which is referred to as P(c) in [9]), there exist κ-arrow
ultrafilters on ω for all κ ≤ ω. Moreover, for each k ∈ N, there exists a k-arrow ultrafilter on ω which is
not (k + 1)-arrow, and there exists an ultrafilter which is k-arrow for each k ∈ N but is not Ramsey and
hence not ω-arrow ([9] Theorems 2.1 and 4.10).

In addition to the free group topology of Boolean groups on spaces generated by filters,
we consider the Bohr topology on arbitrary abstract and topological groups. This is the weakest group
topology with respect to which all homomorphisms to compact topological groups are continuous,
or the strongest totally bounded group topology; the Bohr topology on an abstract group
(without topology) is defined as the Bohr topology on this group endowed with the discrete topology.

Finally, we need the definition of a minimal dynamical system.

Definition 5. Let G be a monoid with identity element e. A pair (X, (Tg)g∈G), where X is a topological space
and (Tg)g∈G is a family of continuous maps X → X such that Te is the identity map and Tgh = Tg ◦ Th for any
g, h ∈ G, is called a topological dynamical system. Such a system is said to be minimal if no proper closed subset
of X is Tg-invariant for all g ∈ G.

We sometimes identify sequences with their ranges.
All groups considered in this paper are assumed to be infinite, and all filters are assumed to have

empty intersection, i.e., to contain the Fréchet filter of all cofinite subsets (and hence be free).

2. Properties of Large Sets

We begin with well-known general properties of large sets defined above. Let G be a group.
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Property 1. A set A ⊂ G is thick if and only if the family {gA : g ∈ G} of all translates of A has the finite
intersection property.

Indeed, this property means that, for every finite subset F of G, there exists an h ∈ ⋂g∈F g−1 A,
and this, in turn, means that gh ∈ A for each g ∈ F, i.e., Fh ⊂ A.

Property 2. ([3] Theorem 2.4) The family of syndetic sets A set A is syndetic if and only if A intersects every
thick set, or, equivalently, if its complement G \ A is not thick.

Given a family F of subsets of a set X, the dual family F∗ is defined as
F∗ = {A ⊂ X : A ∪ B �= ∅ for any B ∈ F} (see, e.g., [12]). Thus, Property 2 says that the family of
syndetic sets is dual to that of thick sets. The next property is an obvious reformulation of this fact.

Property 3. A set A is thick if and only if A intersects every syndetic set, or, equivalently, if its complement
G \ A is not syndetic. In other words, the family of thick sets is dual to that of syndetic sets.

Property 4. ([3] Theorem 2.4) A set A is piecewise syndetic if and only if there exists a syndetic set B and a
thick set C such that A = B ∩ C.

Property 5. ([13] Theorem 4.48) A set A is thick if and only if

AβG
= {p ∈ βG : A ∈ p}

(the closure of A in the Stone–Čech compactification βG of G with the discrete topology) contains a left ideal of
the semigroup βG.

Property 6. ([13] Theorem 4.48) A set A is syndetic if and only if every left ideal of βG intersects AβG.

Property 7. The families of thick, syndetic, and piecewise syndetic sets are closed with respect to taking supersets.

Property 8. Thickness, syndeticity, and piecewise syndeticity are invariant under both left and right
translations.

Property 9. ([3] Theorem 2.5) Piecewise syndeticity is partition regular, i.e., whenever a piecewise syndetic
set is partitioned into finitely many subsets, one of these subsets is piecewise syndetic.

Property 10. ([3] Theorem 2.4) For any thick set A ⊂ G, there exists an infinite sequence B = (bn)n∈N in G
such that

FP(B) = {xn1 xn2 . . . xnk : k, n1, n2, . . . , nk ∈ N, n1 < n2 < · · · < nk}

is contained in A.

Property 11. Any IP∗-set in G, i.e., a set intersecting any infinite set of the form FP(B), is syndetic. This
immediately follows from Properties 2 and 10.

3. Vast Sets

As mentioned at the beginning of this section, in [2], Reznichenko and the author introduced a
new (Later, we have found out that similar subsets of Z had already been used in [14]: the Δ∗n-sets
considered there and n-vast subsets of Z are very much alike). class of large sets, which we called vast;
they have played the key role in our construction of nonclosed discrete subsets in topological groups.
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Definition 6. We say that a subset A of a group G is vast in G if there exists a positive integer m such that
any m-element set F in G contains a two-element subset D for which D−1D ⊂ A. The least number m with
this property is called the vastness of A.

We shall refer to vast sets of vastness m as m-vast sets.

In a similar manner, κ-vast sets for any cardinal κ can defined.

Definition 7. Given a cardinal κ, we say that a subset A of a group G is κ-vast in G if any set S ⊂ G with
|S| = κ contains a two-element subset D for which D−1D ⊂ A.

The notions of an ω-vast and a k-vast set are very similar to but different from those of Δ∗- and
Δ∗k -sets. Δ∗-Sets were introduced and studied in [3] for arbitrary semigroups, and Δ∗k -sets with k ∈ N

were defined in [14] for the case of Z.

Definition 8. Given a finite or countable cardinal κ and a sequence (gn)n∈κ in a group G, we set

ΔI
(
(gn)n∈κ

)
= {x ∈ G : there exist m < n < κ such that x = g−1

m gn}

and
ΔD
(
(gn)n∈κ

)
= {x ∈ G : there exist m < n < κ such that x = gng−1

m }.

A subset of a group G is called a right (left) Δ∗κ-set if it intersects ΔI
(
(gn)n∈κ

)
(respectively, ΔD

(
(gn)n∈κ

)
)

for any one-to-one sequence (gn)n∈κ in G; Δ∗ω-sets are referred to as Δ∗-sets.

Remark. For any one-to-one sequence S = (gn)n∈κ in a Boolean group with zero 0, we have
ΔI(S) = ΔD(S) = (S �� S) \ {0}. Hence any κ-vast set in such a group is a right and left Δ∗κ-set. Moreover,
the only difference between Δ∗κ- and κ-vast sets in a Boolean group is in that the latter must contain 0, i.e.,
a set A in such a group is vast if and only if 0 ∈ A and A is a Δ∗κ-set.

The most obvious feature distinguishing vastness among other notions of largeness is symmetry
(vastness has no natural right and left versions). In return, translation invariance is sacrificed. Thus,
in studying vast sets, it makes sense to consider also their translates.

Clearly, a 2-vast set in a group must coincide with this group. The simplest nontrivial example of
a vast set is a subgroup of finite index n; its vastness equals n + 1 (any (n + 1)-element subset has two
elements x and y in the same coset, and both x−1y and y−1x belong to the subgroup).

It seems natural to refine the definition of vast sets by requiring A ∩ F−1F to be of prescribed size
rather than merely nontrivial. However, this (and even a formally stronger) requirement does not
introduce anything new.

Proposition 1 ([2], Proposition 1.1). For any vast set A in a group G and any positive integer n, there exists
a positive integer m such that any m-element set F in G contains an n-element subset E for which E−1E ⊂ A.

Indeed, considering the coloring c : [G]2 → {0, 1} defined by c({x, y}) = 1 ⇐⇒ x−1y, y−1x ∈ A
and applying the finite Ramsey theorem, we find a c-homogeneous set E of size n (provided that
m is large enough). If n is no smaller than the vastness of A (which we can assume without loss of
generality), then c([E]2) = {1}.

There is yet another important distinguishing feature of vast sets, namely, the finite intersection
property. Neither thick, syndetic, nor piecewise syndetic sets have this property (Indeed, the disjoint
sets of even and odd numbers are syndetic in Z, and

⋃
i≥0[22i, 22i+1) ∩Z and

⋃
i≥1[22i−1, 2i) are thick).

The following theorem is valid.

Theorem 1 ([2]). Let G be a group .
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(i) If A ⊂ G is vast, then so is A−1.
(ii) If A ⊂ B ⊂ G and A is vast, then so is B.

(iii) If A ⊂ G and B ⊂ G are vast, then so is A ∩ B.

Assertions (i) and (ii) are obvious, and (iii) follows from Proposition 1.

Proposition 2. If G is a group, S ⊂ G, and S ∩ (SS ∪ S−1S−1) = ∅, then G \ S is 3-vast.

Proof. Take any three different elements a, b, c ∈ G. We must show that the identity element e
belongs to G \ S (which is true by assumption) and either (a−1b)±1 ∈ G \ S, (b−1c)±1 ∈ G \ S,
or (c−1a)±1 ∈ G \ S. Assume that, on the contrary, (a−1b)ε ∈ S (i.e., a−1b ∈ Sε), b−1c ∈ Sδ, and c−1a ∈
Sγ for some ε, δ, γ ∈ {−1, 1}. At least two of the three numbers ε, δ, and γ are equal. Suppose for
definiteness that ε = δ. Then we have c−1a = c−1bb−1a ∈ S−εS−ε, which contradicts the assumption
S ∩ (S2 ∪ S−2) = ∅.

We see that the family of vast sets in a group resembles, in some respects, a base of neighborhoods
of the identity element for a group topology. However, as we shall see in the next section, it does
not generate a group topology even in a Boolean group: any Boolean group has a 3-vast subset
A containing no set of the form B �� B for vast B. On the other hand, many groups admit of group
topologies in which all neighborhoods of the identity element are vast; for example, such are topologies
generated by normal subgroups of finite index. A more precise statement is given in the next section.
Before turning to related questions, we consider how vast sets fit into the company of other large sets.

We begin with a comparison of vast and syndetic sets.

Proposition 3 (see [2] Proposition 1.7). Let G be any group with identity element e. Any vast set A in G
is syndetic, and its syndeticity index is less than its vastness.

Proof. Let n denote the vastness of A. Take a finite set F ⊂ G with |F| = n− 1 such that x−1y /∈ A or
y−1x /∈ A for any different x, y ∈ F. Pick any g ∈ G \ F. Since |F ∪ {g}| = n, it follows that x−1g ∈ A
and g−1x ∈ A for some x ∈ F, whence g ∈ xA, i.e., G \ F ⊂ FA. By definition, the identity element of
G belongs to A, and we finally obtain G = FA.

Examples of nonvast syndetic sets are easy to construct: any coset of a finite-index subgroup in
a group is syndetic, while only one of them (the subgroup itself) is vast. However, the existence of
syndetic sets with nonvast translates is not so obvious. An example of such a set in Z can be extracted
from [14].

Example 1. There exists a syndetic set in Z such that none of its translates is vast. This is, e.g., the set
constructed in ([14] Theorem 4.3). Namely, let C = {0, 1}Z, and let τ : C → C be the shift, i.e., the map defined
by τ( f )(n) = f (n + 1) for f ∈ C. It was proved in ([14] Theorem 4.3) that if M ⊂ C is a minimal closed
τ-invariant subset (Then the support of each f ∈ M is syndetic in Z (see, e.g., [15])). and the dynamical system
(M, (τn)n∈Z) satisfies a certain condition (Namely, is weakly mixing; see, e.g., [15]) , then the support of any
f ∈ M is syndetic but not piecewise Bohr; the latter means that it cannot be represented as the intersection
of a thick set and a set having nonempty interior in the Bohr topology on Z. Clearly, any translate of supp f
has these properties as well. On the other hand, according to Theorem II in [14], any Δ∗n-set in Z (i.e., any
set intersecting the set of differences {kj − ki : i < j ≤ n} for each n-tuple (k1, . . . , kn) of different integers)
is piecewise Bohr. Since every n-vast set is a Δ∗n-set, it follows that the translates of supp f cannot be vast.

Bearing in mind our particular interest in Boolean groups, we also give a similar example for a
Boolean group.
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Example 2. We construct a syndetic set in the Boolean group B(Z) with nonvast translates. Let S be a syndetic
set in Z all of whose translates are not Δ∗n-sets for all n (see Example 1). By definition, Z =

⋃
k≤r(sk + S) for

some r ∈ N and different s1, . . . , sr ∈ Z. We set

S′k = {x1 �� · · · �� xn : n ∈ N, xi ∈ Z for i ≤ n, xi �= xj for i �= j,

{x1, . . . , xn} ∩ {s1, . . . , sr} = {sk}, ∑
i≤n

xi ∈ 2sk + S}, k ≤ r,

and
S′ =

⋃
k≤r

S′k.

We have

sk �� S′k = {x1 �� · · · �� xn : n ∈ N, xi ∈ Z for i ≤ n, xi �= xj for i �= j,

{x1, . . . , xn} ∩ {s1, . . . , sr} = ∅, ∑
i≤n

xi ∈ sk + S}, k ≤ r.

Since
⋃

k≤r(sk + S) = Z, it follows that

⋃
k≤r

(sk �� S′) ⊂ {x1 �� · · · �� xn : n ∈ N, xi ∈ Z for i ≤ n, {x1, . . . , xn} ∩ {s1, . . . , sr} = ∅}.

Obviously, the set on the right-hand side of this inclusion is syndetic; therefore, so is S′.
Let us show that no translate of S′ is vast. Suppose that, on the contrary, k, n ∈ N, z1, . . . , zk ∈ Z,

w = z1 �� · · · �� zk, and w �� S′ is n-vast. Take any different k1, . . . , kn ∈ Z larger than the absolute values of all
elements of w (which is a finite subset of Z) and of all si, i ≤ r. We set

F = {k1, k1 �� (−k1) �� k2, k1 �� (−k1) �� k2 �� (−k2) �� k3,

. . . , k1 �� (−k1) �� k2 �� (−k2) �� · · · �� kn−1 �� (−kn−1) �� kn}.

Suppose that there exist different x, y ∈ F for which x �� y ∈ w �� S′, i.e., there exist i, j ≤ n for which
i < j and

k1 �� (−k1) �� · · · �� ki−1 �� (−ki−1) �� ki �� k1 �� (−k1) �� · · · �� kj−1 �� (−kj−1) �� kj

= ki �� ki �� (−ki) �� ki+1 �� (−ki+1) �� · · · �� kj−1 �� (−kj−1) �� kj = w �� s ∈ w �� S′,

where s is an element of S′ and hence belongs to S′l for some l ≤ r, which means, in particular, that s contains
precisely one of the letters s1, . . . , sr, namely, sl . There are no such letters among ±ki, . . . ,±kj−1, kj. Therefore,
one of the letters zm (say z1) is sl . The other letters of w do not equal ±ki, . . . ,±kj−1, kj either and, therefore,
are canceled with letters of s ∈ S′ in w + s. By the definition of the set S′ containing s, one letter of w
(namely, z1 = sl) belongs to the set {s1, . . . , sr} and the other letters do not. Since the sum (in Z) of the
integer-letters of s belongs to 2sl + S (by the definition of S′l) and sl = z1, it follows that the sum of letters
of w + s belongs to S + z1 − z2 − · · · − zk and the letter z1 is determined uniquely for the given element w.
To obtain a contradiction, it remains to recall that the translates of S (in particular, S + z1 − z2 − · · · − zk) are
not Δ∗n-sets in Z and choose k1, . . . , kn so that {kj − ki : i < j ≤ n} ∩ (S + z1 − z2 − · · · − zk) = ∅.

Example 3. There exist vast sets which are not thick and thick sets which are not vast. Indeed, as mentioned,
any proper finite-index group is vast, but it cannot be thick by the first property in the list of properties of large
sets given above.
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An example of a nonvast thick set is, e.g., any thick nonsyndetic set. In an infinite Boolean group G, such
a set can be constructed as follows. Take any basis X in G (so that G = B(X)), fix any nonsyndetic thick set
T in N (say T =

⋃
n([an, bn] ∩N), where the an and bn are numbers such that the bn − an and the an+1 − bn

increase without bound), and consider the set

A = {x1 �� · · · �� xn ∈ B(X) : n ∈ T, xi ∈ X for i ≤ n, xi �= xj for i �= j}

of all elements in B(X) whose lengths belong to T. The thickness of this set is obvious (by the same Property 1),
because the translate of A by any element g ∈ B(X) of any length l surely contains all elements whose lengths
belong to

⋃
n([an + l, bn − l] ∩N) ⊂ T and, therefore, intersects A. However, A is not vast, because it misses

all elements whose lengths belong to the set
⋃

n((bn, an+l) ∩N). The last set contains at least one even positive
integer 2k. It remains to choose different points x1, x2, . . . in X, set B = {xkn+1 �� xkn+2 · · · �� xkn+k : n ∈ ω},
and note that all nonempty elements of B �� B have length 2k. Therefore, A is disjoint from B �� B (much more
from F �� F for any finite F ⊂ B). Note that the translates of A are not vast either, because both thickness and
(non)syndeticity are translation invariant.

Proposition 4. Let G be any group with identity element e.

(i) If a set A in G is 3-vast, then (G \ A)−1(G \ A) ⊂ A.
(ii) If a set A in G is 3-vast, then either AA−1 = G or A is a subgroup of index 2.

Proof. (i) Suppose that A is a 3-vast subset of a group G with identity element e. Take any different
x, y /∈ A (if there exist no such elements, then there is nothing to prove). By definition, the set {x, y, e}
contains a two-element subset D for which D−1D ⊂ A. Clearly, D �= {x, e} and D �= {y, e}. Therefore,
x−1y ∈ A and y−1x ∈ A (and e ∈ A, too), whence (G \ A)−1(G \ A) ⊂ A.

(ii) If AA−1 �= G, then there exists a g ∈ G for which gA ∩ A = ∅. If A is, in addition, 3-vast,
then (ii) implies (gA)−1gA = A−1 A ⊂ A, which means that A is a subgroup of G. According to (i),
A is syndetic of index at most 2; in fact, its index is precisely 2, because A does not coincide with G.

4. Quotient Sets

In [3] sets of the form AA−1 or A−1 A were naturally called quotient sets. We shall refer to the
former as right quotient sets and to the latter as left quotient sets. Thus, a set in a group G is m-vast if
it intersects nontrivially the left quotient set of any m-element subset of G. Quotient sets play a very
important role in combinatorics, and their interplay with large sets is quite amazing.

First, the passage to right quotient sets annihilates the difference between syndetic and piecewise
syndetic sets.

Theorem 2 (see [3], Theorem 3.9). For each piecewise syndetic subset A of a group G, there exists a syndetic
subset B of G such that BB−1 ⊂ AA−1 and the syndeticity index of B does not exceed the thickness index of A.

Briefly, the construction of B given in [3] is as follows: we take a finite set T such that TA is
thick and, for each finite F ⊂ G, let ΦF = {ϕ ∈ TG :

⋂
x∈F x−1 ϕ(x)A �= ∅}. Then we pick ϕ∗ in the

intersection of all ΦF (which exists since the product space TG is compact) and let B = {ϕ∗(x)−1x :
x ∈ G}. Since ϕ∗(G) ⊂ T, it follows that TB = G, which means that B is syndetic and its index does
not exceed |T| = t. Moreover, for any finite F ⊂ B, there exists a g ∈ G such that Fg ⊂ A, and this
implies BB−1 ⊂ AA−1.

In Theorem 2, right quotient sets cannot be replaced by left ones: there are examples of piecewise
syndetic sets A such that A−1 A does not contain B−1B for any syndetic B. One of such examples is
provided by the following theorem.

Theorem 3. The following assertions hold.
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(i) If a subset A of a group G is syndetic of index s, then A−1 A is vast, and its vastness does not exceed s + 1.
(ii) If a subset A of an Abelian group G is piecewise syndetic of thickness index t, then A− A is vast, and its

vastness does not exceed t + 1.
(iii) There exists a group G and a thick (in particular, piecewise syndetic) set A ⊂ G such that A−1 A is not

vast and, therefore, does not contain B−1B for any syndetic set.
(iv) If a subset A of a group G is thick, then AA−1 = G.

Proof. (i) Suppose that FA = G, where F = {g1, . . . , gs}. Any (s + 1)-element subset of G has at least
two points x and y in the same “coset” gi A. We have x = gia′ and y = gia′′, where a′, a′′ ∈ A. Thus,
x−1y, y−1x ∈ A−1 A.

Assertion (ii) follows immediately from (i) and Theorem 2.
Let us prove (iii). Consider the free group G on two generators a and b and let A be the set of

all words in G whose last letter is a. Then A is thick (given any finite F ⊂ G, we have Fan ⊂ A for
sufficiently large n). Clearly, all nonidentity words in A−1 A contain a or a−1. Therefore, if F ⊂ G
consists of words of the form bn, then the intersection F−1F ∩ A−1 A is trivial, so that A−1 A is not vast.

Finally, to prove (iv), take any g ∈ G. We have A ∩ gA �= ∅ (by Property 1 in our list of properties
of large sets). This means that g ∈ AA−1.

We see that the right quotient sets AA−1 of thick sets A are utmostly large, while the left quotient
sets A−1 A may be rather small. In the Abelian case, the difference sets of all thick sets coincide with
the whole group.

It is natural to ask whether condition (i) in Theorem 3 characterizes vast sets in groups. In other
words, given any vast set A in a group, does there exist a syndetic (or, equivalently, piecewise syndetic)
set B such that B−1B ⊂ A (or BB−1 ⊂ A)? The answer is no, even for thick 3-vast sets in Boolean
groups. The idea of the following example was suggested by arguments in paper [14] and in John
Griesmer’s note [16], where the group Z was considered.

Example 4. Let G be a countable Boolean group with zero 0. Any such group can be treated as the free Boolean
group on Z. We set

A = G \ {m �� n = {m, n} : m, n ∈ Z, m < n, n−m = k3 for some k ∈ N}.

Clearly, A is thick (if F ⊂ G is finite and an element g ∈ G is sufficiently long, then all elements in the set
F �� g have more than two letters and, therefore, belong to A). Let us prove that A is 3-vast. Take any different
a, b, c ∈ G. We must show that a �� b ∈ A, b �� c ∈ A, or a �� c ∈ A. We can assume that c = 0; otherwise,
we translate a, b, and c by c, which does not affect the Boolean sums. Thus, it suffices to show that, given any
different nonzero x, y �∈ A, we have x �� y ∈ A. The condition x, y �∈ A means that x = {k, l}, where k < l
and l − k = r3 for some r ∈ Z, and y = {m, n}, where m < n and n−m = s3 for some s ∈ Z. Suppose for
definiteness that n > l or n = l and m > k. If x �� y �∈ A, then either k = m and l − n = t3 for some t ∈ N,
l = m and n− k = t3 for some t ∈ N, or l = n and m− k = t3 for some t ∈ N. In the first case, we have
l − k = l − n + n−m, i.e., r3 = t3 + s3; in the second, we have n− k = n−m + l − k, i.e., t3 = s3 + r3;
and in the third, we have l − k = n−m + m− k, i.e., r3 = s3 + t3. In any case, we obtain a contradiction with
Fermat’s theorem.

It remains to prove that there exists no syndetic (and hence no piecewise syndetic) B ⊂ G for which
B �� B ⊂ A. Consider any syndetic set B. Let F = { f1, . . . , fk} ⊂ G be a finite set for which FB = G, and let
m be the maximum absolute value of all letters of elements of F (recall that all letters are integers). To each n ∈ Z

with |n| > m we assign an element fi ∈ F for which n ∈ fi �� B; if there are several such elements, then we
choose any of them. Thereby, we divide the set of all integers with absolute value larger than m into k pieces
I1, . . . , Ik. To accomplish our goal, it suffices to show that there is a piece Ii containing two integers r and s such
that r− s = z3 for some z ∈ Z. Indeed, in this case, we have r ∈ fi �� B and s ∈ fi �� B, so that r �� s ∈ B �� B.
On the other hand, r �� s �∈ A.
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From now on, we treat the pieces I1, . . . , Ik as subsets of Z. We have Z = {−m,−m+ 1, . . . , 0, 1, . . . , m}∪
I1 ∪ · · · ∪ Ik. Since piecewise syndeticity is partition regular (see Property 9 of large sets), one of the sets Ii,
say Il, is piecewise syndetic. Therefore, by Theorem 2 , Il − Il ⊃ S− S for some syndetic set S ⊂ Z.

Let d∗(S) denote the upper Banach density of S, i.e.,

d∗(S) = lim sup
|I|→∞

|S ∩ I|
|I| ,

where I ranges over all intervals of Z. The syndeticity of S in Z implies the existence of an N ∈ N such that
every interval of integers longer than N intersects S. Clearly, we have d∗(S) ≥ 1/N. Proposition 3.19 in [15]
asserts that if X is a set in Z of positive upper Banach density and p(t) is a polynomial taking on integer values
at the integers and including 0 in its range on the integers, then there exist x, y ∈ X, x �= y, and z ∈ Z such
that x− y = p(z) (as mentioned in [15], this was proved independently by Sárközy). Thus, there exist different
x, y ∈ S and a z ∈ Z for which x− y = z3. Since S− S ⊂ Il − Il , it follows that z3 = r− s for some r, s ∈ Il ,
as desired.

5. Large Sets and Topology

In the context of topological groups, quotient sets arise again, because for each neighborhood
U of the identity element, there must exist a neighborhood V such that V−1V ⊂ U and VV−1 ⊂ U.
Thus, if we know that a group topology consists of piecewise syndetic sets, then, in view of Theorem 2,
we can assert that all open sets are syndetic, and so on. Example 4 shows that if G is any countable
Boolean topological group and all 3-vast sets are open in G, then some nonempty open sets in this
group are not piecewise syndetic. Thus, all syndetic or piecewise syndetic subsets of a group G do
not generally form a group topology. Even their quotient (difference in the Abelian case) sets are
insufficient; however, it is known that double difference sets of syndetic (and hence piecewise syndetic)
sets in Abelian groups are neighborhoods of zero in the Bohr topology (It follows, in particular, that,
given any piecewise syndetic set A in an Abelian group, there exists an infinite sequence of vast sets
A1, A2, . . . such that A1 − A1 ⊂ A + A− A− A and An+1 − An+1 ⊂ An for all n (because all Bohr
open sets are syndetic)). These and many other interesting results concerning a relationship between
Bohr open and large subsets of abstract and topological groups can be found in [17,18]. As to group
topologies in which all open sets are large, the situation is very simple.

Theorem 4. For any topological group G with identity element e, the following conditions are equivalent:

(i) all neighborhoods of e in G are piecewise syndetic;
(ii) all open sets in G are piecewise syndetic;

(iii) all neighborhoods of e in G are syndetic;
(iv) all open sets in G are syndetic;
(v) all neighborhoods of e in G are vast;

(vi) G is totally bounded.

Proof. The equivalences (i) ⇔ (ii) and (iii) ⇔ (iv) follow from the obvious translation invariance of
piecewise syndeticity and syndeticity. Theorem 2 implies (i) ⇔ (iii), Theorem 3 (i) implies (iii) ⇒ (v),
and Proposition 3 implies (v) ⇒ (iii). The implication (iii) ⇒ (i) is trivial. Finally, (vi) ⇔ (iii) by the
definition of total boundedness.

Thus, the Bohr topology on a (discrete) group is the strongest group topology in which all open
sets are syndetic (or, equivalently, piecewise syndetic, or vast).

For completeness, we also mention the following corollary of Theorem 3 and Theorem 3.12 in [3],
which relates vast sets to topological dynamics.
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Corollary 1. If G is an Abelian group with zero 0, X is a compact Hausdorff space, and (X, (Tg)g∈G) is a
minimal dynamical system, then the set {g ∈ G : U ∩ T−1

g U �= ∅} is vast for every nonempty open subset
U of X.

6. Vast and Discrete Sets in Topological Groups

As mentioned above, vast sets were introduced in [2] to construct discrete sets in
topological groups. Namely, given a countable topological group G whose identity element e has
nonrapid filter F of neighborhoods, we can construct a discrete set with precisely one limit point in
this group as follows. The nonrapidness of F means that, given any sequence (mn)n∈N of positive
integers, there exist finite sets Fn ⊂ G, n ∈ N, such that each neighborhood of e intersects some Fn in at
least mn points (see [7] Theorem 3 (3)). Thus, if we have a decreasing sequence of closed mn-vast sets
An in G such that

⋂
An = {e}, then the set

D =
⋃

n∈N
{a−1b : a �= b, a, b ∈ Fn, a−1b ∈ An}

is discrete (because e /∈ D and each g ∈ G \ {e} has a neighborhood of the form G \ An which contains
only finitely many elements of D), and e is the only limit point of D (because, given any neighborhood
U of e, we can take a neighborhood V such that V−1V ⊂ U; we have |V ∩ Fn| ≥ mn for some n,
and hence (V ∩ Fn)−1(V ∩ Fn) ∩ An �= ∅, so that U ∩ D �= ∅). It remains to, first, find a family of
closed vast sets with trivial intersection and, secondly, make it decreasing.

The former task is easy to accomplish in any topological group: by Proposition 2, in any
topological group G, the complements to open neighborhoods gU of all g ∈ G satisfying the condition
gU ∩ (U2 ∪ (U−1)2) = ∅ form a family of closed 3-vast sets with trivial intersection. In countable
topological groups, the latter task can be easily accomplished as well: the above family can be
made decreasing by using Theorem 1, according to which the family of vast sets has the finite
intersection property. Unfortunately, no similar argument applies in the uncountable case, because
countable intersections of vast sets may be very small. Thus, in Zω

2 , the intersection of the 3-vast sets
Hn = { f ∈ Zω

2 : f (n) = 0} (each of which is a subgroup of index 2 open in the product topology)
is trivial.

7. Large Sets in Boolean Groups

In the case of Boolean groups, many assertions concerning large sets can be refined. For example,
properties 10 and 11 of large sets are stated as follows.

Proposition 5. The following assertions hold.

(i) For any thick set T in a Boolean group G with zero 0 , there exists an infinite subgroup H of G for which
T ∪ {0} ⊃ H.

(ii) Any set which intersects nontrivially all infinite subgroups in a Boolean group G is syndetic.

Note that this is not so in non-Boolean groups: the set {n! : n ∈ N} intersects any infinite
subgroup in Z, but it is not syndetic, because the gaps between neighboring elements are not bounded.
The complement of this set contains no infinite subgroups, and it is thick by Property 2 of large sets.

Another specific feature of thick sets in Boolean groups is given by the following proposition.

Proposition 6. For any thick set T in a countable Boolean group G with zero 0, there exists a set A ⊂ G such
that T ∪ {0} = A �� A (and A �� A �� A �� A = G by Theorem 3 (iv)).

Proposition 6 is an immediate corollary of Lemma 4.3 in [3], which says that any thick set in a
countable Abelian group equals ΔI

(
(gn)∞

n=1
)

for some sequence (gn)∞
n=1.
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In view of Example 4, we cannot assert that the set A in this proposition is large (in whatever
sense), even for the largest (3-vast) nontrivial thick sets T.

The following statement can be considered as a partial analogue of Propositions 5 and 6 for Δ∗-
(in particular, vast) sets in Boolean groups.

Theorem 5. For any Δ∗-set A in a Boolean group G with zero 0, there exists a B ⊂ G with |B| = |A| such
that B �� B ⊂ A ∪ {0}.

Proof. First, note that |A| = |G|. Any Boolean group is algebraically free; therefore, we can assume
that G = B(X) for a set X with |X| = |A|. Let

A2 = A ∩ B=2(X) =
{
{x, y} = x �� y ∈ A : x, y ∈ X

}
be the intersection of A with the set of elements of length 2. We have |A2| = |X|, because A
must intersect nontrivially each countable set of the form Y �� Y for Y ⊂ X. Consider the coloring
c : [X]2 → {0, 1} defined by

c({x, y}) =
{

0 if {x, y} ∈ A2,

1 otherwise.

According to the well-known Erdős–Dushnik–Miller theorem κ → (κ,ℵ0)
2 (see, e.g., [19]), there exists

either an infinite set Y ⊂ X for which [Y]2 ∩ A2 = ∅ or a set Y ⊂ X of cardinality |X| for which
[Y]2 ⊂ A2. The former case cannot occur, because [Y]2 = Y �� Y in B(X), [Y]2 ⊂ B=2(X), and A is a
Δ∗-set. Thus, the latter case occurs, and we set B = Y.

We have already distinguished between vast sets and translates of syndetic sets in Boolean groups
(see Example 2). For completeness, we give the following example.

Example 5. The countable Boolean group B(Z) contains an IP∗-set (see Property 11 of large sets) which is
not a Δ∗-set. An example of such a set is constructed from the corresponding example in Z (see [15] p. 177) in
precisely the same way as Example 2.

8. Large Sets in Free Boolean Topological Groups

As shown in Section 5, given any Boolean group G, the filter of vast sets in G cannot be the
filter of neighborhoods of zero for a group topology, because not all vast and even 3-vast sets are
neighborhoods of zero in the Bohr topology. Moreover, if we fix any basis X in G, so that G = B(X),
then not all traces of 3-vast sets on the set B=2(X) of two-letter elements contain those of Bohr open
sets (see Example 4). However, there are natural group topologies on B(X) such that the topologies
which they induce on B2(X) contain those generated by n-vast sets. These are, e.g., topologies induced
on B(X) from the free Boolean topological groups B(XF ) for certain filters F on X (see Section 1).
Before proceeding to main statements, we make several general observations concerning free Boolean
topological groups on filter spaces XF .

Let X be a set, and let F be a filter on X. The free Boolean group B(X) (without topology)
is embedded in B(XF ) as a subgroup; we denote B(X) endowed with the topology induced from
B(XF ) by Bi(X) and use B(X) to denote the abstract free Boolean group on X (without topology).
Although X is discrete in XF , Bi(X) and even Bi

2(X) are not discrete: any neighborhood of zero must
contain all elements x �� y with x, y ∈ A for some A ∈ F . However, the set Bi

=2(X) is discrete. Indeed,
for any g ∈ B=2(X) and any A ∈ F , the set g �� 〈A �� ∗〉 is a neighborhood of g in B(XF ), and if
none of the two letters of g belongs to A, then this neighborhood contains no elements of B=2(X)

other than g. Note also that the Graev free Boolean group BG(XF ) (with zero ∗) treated as a set,
that is, ([X]<ω \ {∅}) ∪ {{∗}}, is a subset of B(XF ) = [X ∪ {∗}]<ω. Moreover, BG

=n(XF ) = B=n(X)

for each n > 0, and a set C ⊂ B(X) is k-vast in B(X) if and only if (C \ {∅}) ∪ {{∗}} is k-vast
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in BG(XF ) (It is also easy to see that any such set C is ≤ 2k-vast in B(XF )). These observations imply
the following proposition, which helps to better understand the meaning of the main theorems.

Proposition 7. Let n ∈ N, and let F be a filter on an infinite set X.

(i) Suppose that Y ⊂ B=2n(X) and U is a neighborhood of zero in the free group topology of B(XF ). Then Y
is dense in U ∩ B=2n(XF ) (in the topology of B(XF )) if and only if Y = U ∩ B=2n(X).

(ii) A set Y ⊂ B2(X) contains the trace on B2(X) of a neighborhood of zero in B(XF ) if and only if Y is dense
in the trace on B2(X) of such a neighborhood.

(iii) A set Y ⊂ B=2n(X) = BG
=2n(XF ) contains the trace on B=2n(X) of a neighborhood of zero in B(XF ) if

and only if Y = U ∩ BG
=2n(XF ) for a neighborhood U of zero in BG(XF ).

(iv) Let BG
even(XF ) denote the subgroup of BG(XF ) consisting of all elements of even length. This subgroup

is naturally topologically isomorphic to BG([X]2F ′), where F ′ is the filter on [X]2 generated by sets
of the form [A]2 for A ∈ F . A set Y ⊂ B(X) is a neighborhood of zero in Bi(X) if and only if
((Y \ {∅}) ∪ {{∗}}) ∩ BG

even(XF ) is a neighborhood of zero in BG
even(XF ).

Proof. (i) First, note that U ∩ B=2n(X) is dense in U ∩ B=2n(XF ). Indeed, each g ∈ U ∩ (B=2n(XF ) \
B=2n(X) has the form ∗ �� x1 �� x2 �� · · · �� x2n−1, where xi ∈ X, and for any such g, there exists an
A ∈ F such that x �� x1 �� x2 �� · · · �� x2n−1 ∈ U ∩ B=2n(X) for every x ∈ A. This proves the “if” part.
Conversely, since Bi

=2n(X) is discrete, it follows that a subset of B=2n(X) is dense in another subset
of B=2n(X) in the topology of B(XF ) if and only if these subsets coincide. Thus, if Y is dense in
U ∩ B=2n(XF ) (and hence in U ∩ Bi

=2n(X)), then Y must coincide with U ∩ B=2n(X).
Assertion (ii) follows from (i) and the observation that B2(X) = B=2(X) ∪ {0}.
Assertions (iii) and (iv) follow directly from the descriptions of the topologies of B(XF ) and

BG(XF ) given in Section 1 .

Theorem 6. Let k ∈ N, and let F be a filter on an infinite set X. Then the following assertions hold.

(i) For k �= 4, the trace of any k-vast subset of B(X) on B2(X) ⊂ B2(XF ) contains that of a neighborhood of
zero in the free group topology of B(XF ) if and only if F is a k-arrow filter.

(ii) If the trace of any 4-vast set on B2(X) contains that of a neighborhood of zero in the free group topology
of B(XF ), then F is a 4-arrow filter, and if F is a 4-arrow filter, then the trace of any 3-vast set on
B2(XF ) contains that of a neighborhood of zero in the free group topology of B(XF ).

(iii) The trace of any ω-vast set on B2(X) contains that of a neighborhood of zero in the free group topology of
B(XF ) if and only if F is an ω-arrow ultrafilter.

The proof of this theorem uses the following lemma.

Lemma 1. The following assertions hold.

(i) If k �= 4, w1, . . . , wk ∈ B(X), and wi �� wj ∈ B=2(X) for any i < j ≤ k, then there exist x1, . . . , xk ∈ X
such that wi �� wj = xi �� xj for any i < j ≤ k.

(ii) If k = 4, w1, w2, w3, w4 ∈ B(X), and wi �� wj ∈ B=2(X) for any i < j ≤ 4, then there exist either

(a) x1, x2, x3, x4 ∈ X such that wi �� wj = xi �� xj for any i < j ≤ 4 or
(b) x1, x2, x3 ∈ X such that

w1 �� w4 = w2 �� w3 = x2 �� x3,

w2 �� w4 = w1 �� w3 = x1 �� x3,

w3 �� w4 = w1 �� w3 = x1 �� x3.

(iii) If w1, w2, · · · ∈ B(X) and wi �� wj ∈ B2(X) for any i < j, then there exist x1, x2, · · · ∈ X such that
wi �� wj = xi �� xj for any i < j.

108



Axioms 2017, 6, 28

Proof. We prove the lemma by induction on k. There is nothing to prove for k = 1, and for k = 2,
assertion (i) obviously holds.

Suppose that k = 3. For some y1, y2, y3, y4 ∈ X, we have w1 �� w2 = y1 �� y2 and w2 �� w3 = y3 �� y4.
Since w1 �� w3 = w1 �� w2 �� w2 �� w3 ∈ B=2(X), it follows that either y1 = y3, y1 = y4, y2 = y3,
or y2 = y4. If y1 = y3, then w1 �� w3 = y2 �� y4 and w2 �� w3 = y1 �� y4, so that we can set x1 = y2,
x2 = y1, and x3 = y4. If y2 = y3, then w1 �� w3 = y1 �� y4 and w2 �� w3 = y2 �� y4, and we set x1 = y1,
x2 = y1, and x3 = y4. The remaining cases are treated similarly.

Suppose that k = 4 and let x1, x2, x3 ∈ X be such that wi �� wj = xi �� xj for i = 1, 2, 3. There exist
y, z ∈ X for which w1 �� w4 = y �� z. We have w2 �� w4 = w1 �� w2 �� w1 �� w4 = x1 �� x2 �� y �� z ∈ B2(X).
Therefore, either x1 = y, x2 = y, x1 = z, or x2 = z.

If x1 = y or x1 = z, then the condition in (ii) (a) holds for x4 = z in the former case and x4 = y in
the latter.

Suppose that x1 �= y and x1 �= z. Then x2 = y or x2 = z. Let x2 = y. Then w1 �� w4 = x2 �� z, and we
have w3 �� w4 = w1 �� w3 �� w1 �� w4 = x1 �� x3 �� x2 �� z ∈ B2(X), whence x3 = z (because x1, x2 �= z),
so that w1 �� w4 = x2 �� x3 = w2 �� w3, w2 �� w4 = w1 �� w2 �� w1 �� w4 = x1 �� x3 = w1 �� w3,
and w3 �� w4 = x1 �� x3 = w1 �� w3, i.e., assertion (ii) (b) holds. The case x2 = z is similar. Note for
what follows that, in both cases x2 = y and x2 = z, we have w4 = w1 �� w2 �� w3.

Let k > 4. Consider w1, w2, w3, and w4. Let x1, x2, x3 ∈ X be such that wi �� wj = xi �� xj
for i = 1, 2, 3. As previously, there exist y, z ∈ X for which w1 �� w4 = y �� z and either x1 = y, x2 = y,
x1 = z, or x2 = z.

Suppose that x1 �= y and x1 �= z; then w4 = w1 �� w2 �� w3. In this case, we consider w5

instead of w4. Again, there exist y′, z′ ∈ X for which w1 ��w5 = y �� z and either x1 = y′, x2 = y′, x1 = z′,
or x2 = z′. Since w5 �= w4, it follows that w5 �= w1 �� w2 �� w3, and we have x1 = y′ or x1 = z′. In the
former case, we set x5 = z′ and in the latter, x5 = y′. Consider again w4; recall that w1 �� w4 = y �� z.
We have wi �� w4 = w1 �� wi �� w1 �� w4 = x1 �� xi �� y �� z ∈ B=2(X) for i ∈ {2, 3, 5}. Since x2 �= x5 and
x3 �= x5, it follows that x1 = y, which contradicts the assumption.

Thus, x1 = y or x1 = z. As above, we set x4 = z in the former case and x4 = y in the latter;
then the condition in (ii) (a) holds.

Suppose that we have already found the required x1, . . . , xk−1 ∈ X for w1, . . . , wk−1. There exist
y, z ∈ X for which w1 �� wk = y �� z. We have wi �� wk = w1 �� wi �� w1 �� wk = x1 �� xi �� y �� z ∈ B=2(X)

for i ≤ k− 1. If x1 �= y and x1 �= z, then we have xi ∈ {y, z} for 2 ≤ i ≤ k− 1, which is impossible,
because k > 4. Thus, either x1 = y or x1 = z. In the former case, we set xk = z and in the latter, xk = y.
Then w1 ��wk = x1 ��wk and, for any i ≤ k− 1, wi ��wk = w1 ��wi ��w1 ��wk = x1 �� xi �� x1 �� xk = xi �� xk.

The infinite case is proved by the same inductive argument.

Proof of Theorem 6. (i) Suppose that F is a k-arrow filter on X. Let C be a k-vast set in B(X).
Consider the 2-coloring of [X]2 defined by

c({x, y}) =
{

0 if {x, y} = x �� y ∈ C,

1 otherwise.

Since F is k-arrow, there exists either an A ∈ F for which c([A]2) = {0} and hence [A]2 ⊂
C ∩ B2(XF ) or a k-element set F ⊂ X for which c([F]2) = {1} and hence [F2] ∩ C = [F2] ∩ C ∩
B=2(XF ) = ∅. The latter case cannot occur, because C is k-vast. Therefore, C ∩ B2(XF ) contains the
trace [A]2 ∪ {0} = ((A∪ {∗}) �� (A∪ {∗})) of the subgroup 〈A∪ {∗}〉, which is an open neighborhood
of zero in B(XF ).

Now suppose that k �= 4 and the trace of each k-vast set on B2(X) contains the trace on B2(X) of
a neighborhood of zero in B(XF ), i.e., a set of the form A �� A for some A ∈ F . Let us show that F

is k-arrow. Given any c : [X]2 → {0, 1}, we set

C =
{

x �� y : c({x, y}) = 1
}

and C′ = B(XF ) \ C.
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If C′ is not k-vast, then there exist w1, . . . , wk ∈ B(X) such that wi �� wj ∈ C for i < j ≤ k.
By Lemma 1 (i) we can find x1, . . . , xk ∈ X such that xi �� xj ∈ C (and hence xi �= ∗) for i < j ≤ k.
This means that, for F = {x1, . . . , xk}, we have c([F]2) = {1}. If C′ is k-vast, then, by assumption,
there exists an A ∈ F for which A �� A \ {0} ⊂ C′ ∩ B2(X) = C, which means that c([A]2) = {0}.

The same argument proves (ii); the only difference is that assertion (ii) of Lemma 1 is used instead
of (i).

The proof of (iii) is similar.

Let Rr(s) denote the least number n such that, for any r-coloring c : [X]2 → Y, where |X| ≥ n and
|Y| = r, there exists an s-element c-homogeneous set. By the finite Ramsey theorem, such a number
exists for any positive integers r and s.

Theorem 7. There exists a positive integer N (namely, N = R36(R6(3)) + 1) such that, for any uniform
ultrafilter U on a set X of infinite cardinality κ, the following conditions are equivalent:

(i) the trace of any N-vast subset of B(X) on B4(X) ⊂ B4(XU ) contains that of a neighborhood of zero in the
free group topology of B(XU );

(ii) all κ-vast sets in B(X) are neighborhoods of zero in the topology induced from the free topological
group B(XU );

(iii) U is a Ramsey ultrafilter.

Proof. Without loss of generality, we assume that X = κ.
(i) ⇒ (iii) Suppose that N is as large as we need and the trace of each N-vast set on B4(κU )

contains the trace on B4(κ) of a neighborhood of zero in B(XU ), which, in turn, contains a set of
the form (A �� A �� A �� A) ∩ B=4(κ) for some A ∈ U . Let us show that U is a Ramsey ultrafilter.
Consider any 2-coloring c : [κ]2 → {0, 1}. We set

C =
{

α1 �� α2 �� α3 �� α4 : αi ∈ κ for i ≤ 4, α1 < α2 < α3 < α4,

c({α1, α2}) �= c({α3, α4}), c({α1, α3}) �= c({α2, α4}),
c({α1, α4}) �= c({α2, α3})

}
and

C′ = B(X) \ C.

If C′ is not N-vast, then there exist w1, . . . , wN ∈ B(κ) such that wi �� wj ∈ C for i < j ≤ N.
We can assume that wN = 0 (otherwise, we translate all wi by wN). Then wi ∈ C ⊂ B4(κ), i < N.
Let wi = αi

1 �� αi
2 �� αi

3 �� αi
4 for i < N and consider the 36-coloring of all pairs {wi, wj}, i < j < N,

defined as follows. Since wi �� wj is a four-letter element, it follows that wi �� wj = β1 �� β2 �� β3 �� β4,
where βi ∈ κ. Two letters among β1, β2, β3, β4 (say β1 and β2) occur in wi and the remaining two
(β3 and β4) occur in wj. We assume that β1 < β2 and β3 < β4. Let us denote the numbers of the letters
β1 and β2 in wi (recall that the letters in wi are numbered in increasing order) by i′ and i′′, respectively,
and the numbers of the letters β3 and β4 in wj by j′ and j′′. To the pair {wi, wj}we assign the quadruple
(i′, i′′, j′, j′′). The number of all possible quadruples is 36, so that this assignment is a 36-coloring.
We choose N ≥ R36(N′)+ 1 for N′ as large as we need. Then there exist two pairs i′0, i′′0 and j′0, j′′0 and N′

elements win , where n ≤ N′ and is < it for s < t, such that i′ = i′0, i′′ = i′′0 , j′ = j′0, and j′′ = j′′0 for any
pair {wi, wj} with i, j ∈ {i1, . . . , iN′ } and i < j. Clearly, if N′ ≥ 3, then we also have j′0 = i′0 and j′′0 = i′′0 .
In the same manner, we can fix the position of the letters coming from wi and wj in the sum wi �� wj:
to each pair {wis , wit}, s, t ∈ {1, . . . , N′}, s < t, we assign the numbers of the i′0th and i′′0 th letters of wis
in wis �� wit (recall that the letters are numbered in increasing order); the positions of the letters of wit in
wis �� wit are then determined automatically. There are six possible arrangements: 1,2, 1,3, 1,4, 2,3, 2,4,
and 3,4 . Thus, we have a 6-coloring of the symmetric square of the N′-element set {wi1 , . . . , wiN′ }, and
if N′ ≥ R6(3) (which we assume), then there exists a 3-element set {wk, wl , wm} homogeneous with

110



Axioms 2017, 6, 28

respect to this coloring, i.e., such that all pairs of elements from this set are assigned the same color.
For definiteness, suppose that this is the color 1, 2; suppose also that i′0 = 1, i′′0 = 2, k < l < m,
and wt = αt

1 �� αt
2 �� αt

3 �� αt
4 for t = k, l, m. Then wk, wl , wm ∈ C, wk �� wl = αk

1 �� αk
2 �� αl

1 �� αl
2 ∈ C,

wl ��wm = αl
1 �� αl

2 �� αm
1 �� αm

2 ∈ C, and wk ��wm = αk
1 �� αk

2 �� αm
1 �� αm

2 ∈ C. By the definition of C we have
c(αk

1 �� αk
2) �= c(αl

1 �� αl
2), c(αl

1 �� αl
2) �= c(αm

1 �� αm
2 ), and c(αk

1 �� αk
2) �= c(αm

1 �� αm
2 ), which is impossible,

because c takes only two values. The cases of other colors and other numbers i′0 and i′′0 are treated in a
similar way.

Thus, C′ is N-vast and, therefore, contains (A �� A �� A �� A) ∩ B4(κ) for some A ∈ U . Take any
α ∈ A and consider the sets A′ = {β > α : c({α, β}) = {0}} and A′′ = {β > α : c({α, β}) = {1}}.
One of these sets belongs to U , because U is uniform. For definiteness, suppose that this is A′.
By Theorem 6 U is 3-arrow. Hence there exists either an A′′ ⊂ A′ for which c([A′′]2) = {0} or
β, γ, δ ∈ A′, β < γ < δ, for which c([{β, γ, δ}]2) = {1}. In the former case, we are done. In the latter
case, we have α, β, γ, δ ∈ A, α < β < γ < δ, c({β, γ}) = c({γ, δ}) = c({β, δ}) = 1, and c({α, β}) =
c({α, γ}) = c({α, δ}) = 0 (by the definition of A′). Therefore, α �� β �� γ �� δ ∈ C, which contradicts the
definition of A.

(iii) ⇒ (ii) Suppose that U is a Ramsey ultrafilter on X and C is a κ-vast set in B(X). Take any
n ∈ N and consider the coloring c : [X]2n → {0, 1} defined by

c({x1, . . . , x2n}) =
{

0 if {x1, . . . , x2n} = x1 �� · · · �� x2n ∈ C,

1 otherwise.

Since U is Ramsey, there exists either a set An ∈ U for which [A]2n ⊂ C or a set Y ⊂ X of
cardinality κ for which [Y]2n ∩ C = ∅. In the latter case, for Z = [Y]n ⊂ B(X), we have (Z �� Z) ∩ C ⊂
{0}, which contradicts C being κ-vast. Hence the former case occurs, and C ∩ B2n(X) contains the
trace [An]2n ∩ B=2n(X) of the open subgroup 〈(An ∪ {∗}) �� (An ∪ {∗})〉 of B(XF ).

Thus, for each n ∈ N, we have found A1, A2, . . . , An ∈ F such that [Ai]
2i ∩ B=2i(X) ⊂ C.

Let A =
⋂

i≤n Ai. Then A ∈ U and [A]2i ∩ B=2i(X) ⊂ C for all i ≤ n. Hence C ∩ B2n(X) contains
the trace on B2n(X) of the open subgroup 〈(A ∪ {∗}) �� (A ∪ {∗})〉 of B(XU ) (recall that 0 ∈ C).
This means that, for each n, C∩ B2n(X) is a neighborhood of zero in the topology induced from B(XU ).

If κ = ω, then B(XU ) has the inductive limit topology with respect to the decomposition
B(XU ) =

⋃
n∈ω Bn(XF ), because F is Ramsey (see [4]). Therefore, in this case, C ∩ B(X) is a

neighborhood of zero in the induced topology.
If κ > ω, then the ultrafilter U is countably complete ([8] Lemma 9.5 and Theorem 9.6),

i.e., any countable intersection of elements of U belongs to U . Hence A =
⋂

n∈N An ∈ U ,

and 〈(A ∪ {∗}) �� (A ∪ {∗})〉 ∩
(⋃

n∈ω B2n(X)
)
⊂ C. Thus, C ∩ B(X) is a neighborhood of zero in

the induced topology in this case, too.
The implication (ii) ⇒ (i) is obvious.

Theorem 6 has the following purely algebraic corollary.

Corollary 2 (p = c). Any Boolean group contains ω-vast sets which are not vast and Δ∗-sets which are Δ∗k -sets
for no k.

Proof. Theorem 4.10 of [9] asserts that if p = c, then there exists an ultrafilter U on ω which is k-arrow
for all k ∈ N but not Ramsey and, therefore, not ω-arrow ([9] Theorem 2.1). By Theorem 6 the traces of
all vast sets on B2(ω) contain those of neighborhoods of zero in B(ωU ), and there exist ω-vast sets
whose traces do not. This proves the required assertion for the countable Boolean group. The case
of a group B(X) of uncountable cardinality κ reduces to the countable case by representing B(X) as
B(κ) = B(ω)× B(κ); it suffices to note that a set of the form C× B(κ), where C ⊂ B(ω), is λ-vast in
B(ω)× B(κ) for λ ≤ ω if and only if so is C in B(ω).
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The author is unaware of where there exist ZFC examples of such sets in any groups.
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Abstract: We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC,
the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a
Boolean topological group G without infinite separable pseudocompact subsets having the following
“selective” compactness property: For each free ultrafilter p on the set N of natural numbers and every
sequence (Un) of non-empty open subsets of G, one can choose a point xn ∈ Un for all n ∈ N in such
a way that the resulting sequence (xn) has a p-limit in G; that is, {n ∈ N : xn ∈ V} ∈ p for every
neighbourhood V of x in G. In particular, G is selectively pseudocompact (strongly pseudocompact)
but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and
the first listed author. The group G above is not pseudo-ω-bounded either. Furthermore, we show
that the free precompact Boolean group of a topological sum

⊕
i∈I Xi, where each space Xi is either

maximal or discrete, contains no infinite separable pseudocompact subsets.

Keywords: pseudocompact; strongly pseudocompact; p-compact; selectively sequentially pseudocompact;
pseudo-ω-bounded; non-trivial convergent sequence; separable; free precompact Boolean group; reflexive
group; maximal space; ultrafilter space

MSC: Primary: 22A05; Secondary: 54A20, 54D30, 54H11

All topological spaces considered in this paper are assumed to be Tychonoff and all topological groups are
assumed to be Hausdorff (and thus Tychonoff as well).

As usual, N denotes the set of natural numbers, and ω denotes the first infinite cardinal. We freely
identify N with ω. The symbol βN denotes the Stone-Čech compactification of N. Recall that βN \N
can be identified with the set of all free ultrafilters on N. For sets X and Y, the symbol YX denotes the
set of all functions from X to Y.

A group, of which each element has order 2, is called a Boolean group. Every Boolean group is
abelian, so x + x = 0 holds for each element x of a Boolean group. We use Z2 to denote the unique
(Boolean) group with two elements.

1. Definitions

Let p be a free ultrafilter on N. Recall that a point x of a topological space X is a p-limit of a
sequence {xn : n ∈ N} of points of X provided that {n ∈ N : xn ∈ V} ∈ p for every neighbourhood V
of x in X [1].

The next notion is due to Angoa, Ortiz-Castillo, and Tamariz-Mascarúa [2,3].

Axioms 2018, 7, 86; doi:10.3390/axioms7040086 www.mdpi.com/journal/axioms113
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Definition 1. Let p be a free ultrafilter on N. A space X is strongly p-pseudocompact if it has the following
property: For every sequence {Un : n ∈ N} of non-empty open subsets of X, one can choose a point xn ∈ Un for
all n ∈ N in such a way that the resulting sequence {xn : n ∈ N} has a p-limit in X.

We shall also consider a weaker property.

Definition 2. A space X is selectively pseudocompact (called also strongly pseudocompact) provided
that, for every sequence {Un : n ∈ N} of non-empty open subsets of X, one can choose a point xn ∈ Un for all
n ∈ N in such a way that the resulting sequence {xn : n ∈ N} has a p-limit in X for some free ultrafilter p on
N (depending on the sequence {Un : n ∈ N} in question).

This notion was introduced by García-Ferreira and Ortiz-Castillo [4] under the name “strongly
pseudocompact.” Dorantes-Aldama and the first listed author gave a list of equivalent descriptions of
this property in ([5], Theorem 2.1) and proposed an alternative name for it, calling a space with this
property “selectively pseudocompact” ([5], Definition 2.2). This terminology was later adopted in [6].

Clearly, strongly p-pseudocompact spaces are selectively pseudocompact (strongly pseudocompact).
The following notion is due to Dorantes-Aldama and the first listed author ([5], Definition 2.3).

Definition 3. A space X is selectively sequentially pseudocompact provided that, for every sequence
{Un : n ∈ N} of non-empty open subsets of X, one can choose a point xn ∈ Un for all n ∈ N in such a way that
the resulting sequence {xn : n ∈ N} has a convergent subsequence.

Selectively sequentially pseudocompact spaces are selectively pseudocompact (strongly
pseudocompact), while the converse does not hold in general [5].

When considering the property from Definition 1 for multiple ultrafilters p simultaneously,
one could obtain two natural versions as follows:

Definition 4. Let P be a non-empty subset of βN \N. A space X is

(i) strongly P-bounded provided that, for every sequence {Un : n ∈ N} of non-empty open subsets of X,
one can choose a point xn ∈ Un for all n ∈ N in such a way that the resulting sequence {xn : n ∈ N} has
a p-limit in X for every p ∈ P;

(ii) strongly P-pseudocompact provided that X is strongly p-pseudocompact for each p ∈ P.

The notion of strong P-boundedness is due to Angoa, Ortiz-Castillo, and Tamariz-Mascarúa [2,3].
To the best of our knowledge, the notion from Item (ii) of Definition 4 appears to be new.

For every non-empty subset P of βN \N, the implication

strongly P-bounded → strongly P-pseudocompact (1)

trivially holds. It is also clear that the larger the subset P of βN \N is, the stronger the corresponding
property of strong P-boundedness and strong P-pseudocompactness is.

Remark 1. (i) A sequence in a topological space X has a p-limit in X for every p ∈ βN \N if and only if its
closure in X is compact [1]. Therefore, strong (βN \N)-boundedness of a space X is easily seen to be equivalent
to the following property: For every sequence {Un : n ∈ N} of non-empty open subsets of X, there exists a
compact subset K of X which has a non-empty intersection with each Un. The spaces having this property are
called pseudo-ω-bounded in [2,3].

(ii) Infinite strongly (βN \ N)-bounded spaces contain infinite compact subsets. Indeed, an infinite
space X contains a sequence {Un : n ∈ N} of pairwise disjoint non-empty open subsets. If X is strongly
(βN \N)-bounded, then the compact subspace K of X as in Item (i) must be infinite.
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Recall that a space X is ω-bounded if every countable subset of X has compact closure in X. A space
is pseudocompact if every real-valued continuous function on it is bounded.

2. Introduction

The diagram in Figure 1 summarizes implications between notions introduced in Section 1.
The double arrow in Figure 1 denotes the implication which holds only in the class of topological

groups and fails for general topological spaces, as has been shown in [5].

compact

strongly (βN \N)-bounded ω-bounded

strongly (βN \N)-pseudo. count. compact seq. compact

strongly p-pseudo. sel. pseudo. sel. seq. pseudo.

pseudocompact

2

1

3

4

6

5

Figure 1. Implications between notions introduced in Section 1

Now we shall discuss the reversibility of arrows in Figure 1 in the class of topological groups.
In Example 1, we show that Arrow 1 is not reversible. Our Corollary 2 shows that Arrow 2 is not
reversible. In the text following ([7], Question 2.6), García-Ferreira and Tomita mention that there exist
two free ultrafilters p and q on N and a topological group G which is strongly p-pseudocompact but
not strongly q-pseudocompact; in particular, G is not strongly (βN \N)-pseudocompact. This shows
that Arrow 3 is not reversible.

Assuming Continuum Hypothesis CH, García-Ferreira and Tomita gave an example of a
selectively pseudocompact group G whose square G2 is not selectively pseudocompact [6]. Since strong
p-pseudocompactness is preserved by products [3] and implies selective pseudocompactness, G cannot
be strongly p-pseudocompact for any free ultrafilter p on N. This shows that Arrow 4 is not reversible
under CH. The reversibility of this arrow in ZFC alone remains unclear; see Question 6.

Next, we turn our attention to Arrows 5 and 6.
García-Ferreira and Tomita in [7] gave an example demonstrating that Arrow 6 is not reversible in

the class of topological groups. The authors later showed in [8] that many examples of pseudocompact
groups known in the literature fail to be selectively pseudocompact, thereby establishing relative
abundance of examples witnessing non-reversibility of Arrow 6 for topological groups.

Dorantes-Aldama and the first listed author gave a consistent example of a countably
compact (thus, selectively pseudocompact) topological group which is not selectively sequentially
pseudocompact ([5], Example 5.7), and they asked whether such an example exists in ZFC alone ([5],
Question 8.3):

Question 1. (i) Is there a ZFC example of a selectively pseudocompact (abelian) group which is not selectively
sequentially pseudocompact?

(ii) Is there a ZFC example of a countably compact (abelian) group which is not selectively sequentially
pseudocompact?
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We shall answer Item (i) of this question positively in Corollary 5, thereby showing that Arrow 5
of Figure 1 is not reversible in the class of topological groups. Moreover, an example we construct has
much stronger property than mere selective pseudocompactness; see Corollary 4 (i).

Item (ii) of Question 1 remains open.
We refer the reader to [5] for examples witnessing the non-reversibility of arrows in Figure 1

without numbers assigned to them in the class of topological groups.
The paper is organized as follows. Section 3 contains our results related to Question 1. The main

result here is Theorem 1. Corollary 2 in this section shows that the implication in Equation (1) is not
reversible for P = βN \N, even in the class of topological groups. Section 4 collects definitions of
and background material on free Boolean groups over a set and free precompact Boolean groups of
a topological space. In Section 5, we define a notion of a coherent map f and introduce a topology
on its domain so that the continuity of f with respect to this topology becomes equivalent to f being
coherent. Splitting maps are defined in Section 6. The notion of a coherent splitting map is used in the
proof of Theorem 1. The main result in this section is Theorem 2 and its Corollary 7. In Section 7, we
apply the latter to show that for every infinite subset A of the free precompact Boolean group G of an
arbitrary topological sum

⊕
k∈K Xk, where each space Xk is either discrete or maximal, one can find

a continuous group homomorphism ϕ : G → Z2 such that the set {a ∈ A : ϕ(a) = z} is infinite for
every z ∈ Z2 (Theorem 3). This result is applied to deduce that all separable pseudocompact subsets of
G as above are finite (Theorem 4). In Section 8, we discuss some connections of our results to known
results in the literature. Theorem 2 is proved in Section 9, and Section 10 is devoted to the proof of
Theorem 1. Open questions are listed in Section 11.

3. Results

The main goal of the paper is to prove the following theorem.

Theorem 1. Let κ be an infinite cardinal such that κω = κ and P be a non-empty subset of βN \ N
satisfying |P| ≤ κ. There exists a dense strongly P-pseudocompact subgroup of Zκ

2 without infinite separable
pseudocompact subsets.

The proof of this theorem is postponed until Section 10.
Let c denote the cardinality of the continuum. Applying Theorem 1 to P = βN \N and κ = 2c,

we obtain the following:

Corollary 1. There exists a dense strongly (βN \ N)-pseudocompact subgroup G of Z2c
2 without infinite

separable pseudocompact subsets.

The group G in this corollary is clearly infinite. By Remark 1 (ii), infinite strongly (βN \
N)-bounded spaces contain infinite compact subsets (and thus, also infinite separable pseudocompact
subsets). Therefore, “strong (βN \N)-pseudocompactness” of G in Corollary 1 cannot be strengthened
to its “strong (βN \N)-boundedness.” By the same reason, the topological group G from Corollary 1
witnesses the validity of the following corollary, showing that Arrow 2 in Figure 1 is not reversible,
even for topological groups.

Corollary 2. A strongly (βN \N)-pseudocompact Boolean group need not be strongly (βN \N)-bounded.

This corollary shows that the implication in Equation (1) is not reversible when P = βN \N, even
in the class of topological groups.

Given a free ultrafilter p on N, we can apply Theorem 1 to P = {p} and κ = c to obtain the
following:
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Corollary 3. For every free ultrafilter p on N, there exists a dense strongly p-pseudocompact subgroup of Zc
2

without infinite separable pseudocompact subsets.

If κ is an infinite cardinal, then every dense subset of Zκ
2 must be infinite. Since infinite selectively

sequentially pseudocompact spaces contain non-trivial convergent sequences by ([5], Proposition 3.1)
and convergent sequences are separable and pseudocompact, the topological groups from Theorem 1
and its Corollaries 1 and 3 are not selectively sequentially pseudocompact. In particular, we have the
following corollary.

Corollary 4. (i) There exists a dense strongly (βN \ N)-pseudocompact subgroup of Z2c
2 which is not

selectively sequentially pseudocompact.
(ii) For every free ultrafilter p on N, there exists a dense strongly p-pseudocompact subgroup of Zc

2 which is
not selectively sequentially pseudocompact.

As can be seen from Figure 1, the topological groups from Corollary 4 are selectively
pseudocompact. Therefore, the following particular version of Corollary 4 (ii) provides a positive
answer to Question 1 (i).

Corollary 5. There exists a selectively pseudocompact Boolean group (of weight c) which is not selectively
sequentially pseudocompact.

Our next remark clarifies the strength of the condition “without infinite separable pseudocompact
subsets” appearing in Theorem 1 and its Corollaries 1 and 3. Indeed, this remark shows that the
topological groups in these results contain no infinite subsets which belong to any of the following
classes of spaces:

• countably pseudocompact;
• countably pracompact;
• countably compact;
• compact.

Remark 2. (i) Hernández and Macario [9] say that a space X is countably pseudocompact if, for every
countable subset A of X, there exists a countable subset B of X such that A ⊆ B and B is pseudocompact.
(Here B denotes the closure of B in X.) It is immediately obvious from this definition that every infinite
countably pseudocompact space contains an infinite separable pseudocompact subset.

(ii) A space X is said to be countably pracompact if X contains a dense set Y such that every infinite subset
of Y has an accumulation point in X; see ([10], Ch. III, Sec. 4). Let X be an infinite countably pracompact
space, and let Y be its dense subspace such that every infinite subset of Y has an accumulation point in
X. Since X is infinite and Y is dense in X, the set Y must be infinite. Fix a countably infinite subset S
of Y. Then C = S is a separable space. Note that every infinite subset of S has an accumulation point in
C. Since S is dense in C, it easily follows that C is pseudocompact. We proved that an infinite countably
pracompact space contains an infinite separable pseudocompact subset.

(iii) Since countably compact spaces are countably pracompact, it follows from (ii) that every infinite countably
compact space contains an infinite separable pseudocompact subset.

(iv) Since compact spaces are countably compact, it follows from (iii) that every infinite compact space contains
an infinite separable pseudocompact subset.

Remark 3. The topological groups from Theorem 1 and all its corollaries above are (Pontryagin) reflexive.
Indeed, the topological group G from Theorem 1 has no infinite separable pseudocompact subsets, so all compact
subsets of G are finite by Remark 2 (iv). Since G is pseudocompact, it is reflexive by ([11], Theorem 2.8) (this also
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follows from ([12], Lemma 2.3 and Theorem 6.1)). Finally, the topological groups from all corollaries of Theorem 1
are obtained by application of this theorem, so they inherit their reflexivity from it.

Corollaries 1 and 3 and Figure 1 suggest the following natural question:

Question 2. Does there exist an infinite abelian (or even Boolean) strongly (βN \ N)-bounded group G
satisfying one of the following conditions:

(i) G is not selectively sequentially pseudocompact;
(ii) G does not have non-trivial convergent sequences?

Since infinite selectively sequentially pseudocompact spaces contain non-trivial convergent
sequences by ([5], Proposition 3.1), Item (ii) of this question is stronger than Item (i). By Remark 1 (ii),
Item (ii) of the question cannot be further strengthened by requiring all compact subsets of G to
be finite.

According to the double arrow in Figure 1, a positive answer to Question 2 (i) would provide
an example of a strongly (βN \ N)-bounded (abelian) group which is not ω-bounded. However,
a topological group with these properties can be easily constructed.

Example 1. Strongly (βN \N)-bounded abelian groups need not be ω-bounded. Indeed, let κ be an uncountable
cardinal, and let H be a countably infinite subgroup of the torus group T. For every h ∈ H, let ch ∈ Tκ

be the constant function from κ to T defined by ch(α) = h for all α ∈ κ. Define C = {ch : h ∈ H}.
Let D = { f ∈ Tκ : |{α ∈ κ : f (α) �= 0}| ≤ ω} be the Σ-product in Tκ , and let G be the smallest subgroup of
Tκ containing C ∪ D. Note that C is a closed subgroup of G which is not compact. Indeed, if C were compact,
its projection H on a fixed coordinate would be compact as well, and as H would be an infinite compact subgroup
of T, we would find that H = T, in contradiction to our assumption that H is countable. Since C is a countably
infinite non-compact closed subgroup of G, this shows that G is not ω-bounded. Since G has a dense ω-bounded
subgroup D, it is strongly (βN \N)-bounded.

Example 1 shows that Arrow 1 in Figure 1 is not reversible, even for topological groups.
The next remark shows that the assumption in Theorem 1 that the cardinal κ satisfies κω = κ is

essential and cannot be omitted, at least in ZFC.

Remark 4. Under the Generalized Continuum Hypothesis (GCH), if κω > κ, then every dense pseudocompact
subgroup G of Zκ

2 contains a non-trivial convergent sequence [13]. Further results in this direction can be found
in [14].

4. Free Boolean Groups B(X) and Free Precompact Boolean Groups FPB(X)

Let X be a set. The set B(X) = [X]<ω of all finite subsets of X becomes an abelian group with the
symmetric difference E + F = (E \ F) ∪ (F \ E) as its group operation + and the empty set as its zero
element. Clearly, if E, F ∈ B(X) are disjoint, then E + F = E ∪ F. Each element E of B(X) has order 2,
as E + E = 0, so B(X) is a Boolean group.

If one abuses notation by identifying an element x ∈ X with the singleton {x} ∈ B(X), then each
element E ∈ B(X) of the group B(X) admits a unique decomposition E = ∑x∈E x, so the set X can be
naturally considered as the set of generators of B(X). (Here we agree that ∑x∈∅ x = 0.)

Every map f : X → Z2 has a unique extension f̃ : B(X)→ Z2 to a homomorphism of B(X) to Z2

defined by
f̃ (E) = ∑

x∈E
f (x) for E ∈ B(X), (2)

where the sum is taken in the group Z2. Since the variety A2 of all Boolean groups is generated by
the single group Z2, the group B(X) coincides with the free group in the variety A2 over a set X [15].

118



Axioms 2018, 7, 86

Thus, B(X) is the free Boolean group over X. (Note that the trivial group is the free Boolean group over
the empty set.)

Recall that a topological group is precompact if it is a subgroup of some compact group,
or equivalently, if its completion is compact. The class of all precompact Boolean groups forms
a variety V of topological groups [16,17]. Therefore, given a topological space X, there exists the free
object FPB(X) of X in V [18,19] which we shall call the free precompact Boolean group of X.

Definition 5. Let V be the variety of all precompact Boolean groups. For a topological space X, a topological
group FPB(X) is said to be the free precompact Boolean group of X provided it satisfies two properties:

(i) FPB(X) ∈ V ,
(ii) there exists a continuous map ηX : X → FPB(X) such that

(a) FPB(X) is algebraically generated by ηX(X), and
(b) for every continuous map ϕ : X → G with G ∈ V , there exists a continuous homomorphism

ϕ̂ : FPB(X)→ G such that ϕ = ϕ̂ ◦ ηX.

A description of FPB(X) as the reflection of the free (abelian) topological group of a space X in
the class V of precompact Boolean groups can be found in ([20], Section 9). Another description for
zero-dimensional spaces X is given in Lemma 2 below. The reason why zero-dimensionality of a space
X plays such an important role can be seen from the following lemma.

Lemma 1. For a topological space X, the following conditions are equivalent:

(i) The map ηX from Item (ii) of Definition 5 is a homeomorphic embedding;
(ii) X is zero-dimensional.

Proof. (i) → (ii) Since FPB(X) ∈ V by Definition 5 (i), FPB(X) is a precompact Boolean group.
Then the completion K of FPB(X) is a compact Boolean group, so K is zero-dimensional. Since ηX(X) ⊆
FPB(X) ⊆ K, the subspace ηX(X) of K is zero-dimensional as well. Finally, since ηX(X) is
homeomorphic to X by our assumption, it follows that X is zero-dimensional.

(ii) → (i) Since X is zero-dimensional, there exists a homeomorphic embedding ϕ : X → G,
where G = Zκ

2 for a suitable cardinal κ. Let ηX and ϕ̂ be as in Definition 5 (ii). Since ϕ = ϕ̂ ◦ ηX
is an injection, so is ηX. Therefore, ηX : X → ηX(X) is a bijection, so it has its inverse map η−1

X :
ηX(X) → X. Similarly, since ϕ : X → ϕ(X) is a bijection, it has its inverse ϕ−1 : ϕ(X) → X. Now,
ϕ ◦ η−1

X = ϕ̂ ◦ ηX ◦ η−1
X = ϕ̂ �ηX(X) by Definition 5 (ii) (b), so η−1

X = ϕ−1 ◦ ϕ̂ �ηX(X). Since ϕ is a
homeomorphic embedding, its inverse ϕ−1 is continuous. Since ϕ̂ is continuous as well, so is the
composition η−1

X = ϕ−1 ◦ ϕ̂ �ηX(X). Since ηX is continuous by Definition 5 (ii), we conclude that
ηX : X → ηX(X) is a homeomorphism. We have proved that ηX : X → FPB(X) is a homeomorphic
embedding.

Lemma 2. Let X be a zero-dimensional topological space and let FX be the family of all continuous maps
f : X → Z2 from X to the group Z2 endowed with the discrete topology. Consider the initial topology
TX on B(X) with respect to the family F̃X = { f̃ : f ∈ FX} of homomorphisms; that is, the family
{ f̃−1(z) : f ∈ FX, z ∈ Z2} forms a subbase for the topology TX. Then the topological group (B(X), TX)

coincides with the free precompact Boolean group FPB(X) of X, as witnessed by the natural inclusion map of
X into B(X) (sending each x ∈ X to {x} ∈ B(X)) taken as ηX. Furthermore, TX induces on X the original
topology of X.

Proof. First, we check Items (i) and (ii) of Definition 5.
(i) Since TX is the initial topology with respect to the family F̃X consisting of homomorphisms

into the compact group Z2, it is precompact. Since B(X) is a Boolean group, we have (B(X), TX) ∈ V .
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(ii) Item (a) is clear, as ηX(X) = X algebraically generates B(X). To check Item (b), suppose that
G ∈ V and ϕ : X → G is a continuous map. It follows from G ∈ V that G is a precompact Boolean
group, so its completion K is a compact Boolean group. The standard facts of the duality theory imply
that K is topologically isomorphic to the Cartesian product Zτ

2 for some cardinal τ. Therefore, we can
identify G with a subgroup of Zτ

2 .
Let α < τ be arbitrary. Consider the projection πα : Zτ

2 → Z2 on the αth coordinate. Then the
composition map ϕα = πα ◦ ϕ : X → Z2 is continuous, so ϕα ∈ FX . Now ϕ̃α ∈ F̃X by our definition
of F̃X. Since the topology TX has the family F̃X as its subbase, it follows that the homomorphism
ϕ̃α : (B(X), TX)→ Z2 is continuous.

Let ϕ̂ : B(X) → Zτ
2 be the continuous homomorphism defined by ϕ̂(E) = (ϕ̃α(E))α<τ for

E ∈ B(X). Note that ϕ̂(x) = (ϕ̃α(x))α<τ = (ϕα(x))α<τ = (πα(ϕ(x)))α<τ = ϕ(x) for x ∈ X, as each
ϕ̃α extends ϕα. This shows that ϕ̂ �X= ϕ. Since ϕ : X → G is a homomorphism, X algebraically
generates B(X), and G is a subgroup of Zτ

2 , it follows that ϕ̂(B(X)) ⊆ G. We have defined a continuous
homomorphism ϕ̂ : (B(X), TX)→ G. Since ηX : X → B(X) is the natural inclusion map, from ϕ̂ �X= ϕ

we conclude that ϕ̂ ◦ ηX = ϕ.
It follows from (i) and (ii) that (B(X), TX) coincides with the free precompact Boolean group

FPB(X) of X, as witnessed by the natural inclusion map of X into B(X) taken as ηX. Since X is
zero-dimensional, from Lemma 1 we conclude that ηX is a homeomorphic embedding, which implies
that TX induces the original topology on X.

Definition 6. We shall say that a subspace Y of a topological space X is Z2-embedded in X provided that
every continuous map g : Y → Z2 can be extended to a continuous map f : X → Z2.

Remark 5. A clopen subset of a topological space is Z2-embedded in it.

We finish this section with the lemma which will be needed in the future proofs.

Lemma 3. Let X be a zero-dimensional space.

(i) If Y is a zero-dimensional space and ϕ : Y → X is a continuous injection, then the continuous
homomorphism ϕ̂ : FPB(Y)→ FPB(X) extending ϕ is an injection as well.

(ii) If a closed subset Y of X is Z2-embedded in X, then FPB(Y) is a closed subgroup of FPB(X).

Proof. (i) It follows from Lemma 2 that, algebraically, ϕ̂ : B(Y) → B(X) and ϕ̂ �Y= ϕ. Since ϕ is an
injection, so is ϕ̂.

(ii) By Lemma 2, we can identify FPB(X) and FPB(Y) with (B(X), TX) and (B(Y), TY),
respectively. Since B(Y) ⊆ B(X), it suffices to show that

(a) TX induces the topology TY on B(Y), and
(b) B(Y) is TX-closed in B(X).

In the proof below, we freely use notations from Lemma 2.
(a) Since Y is a subspace of X, one has { f �Y : f ∈ FX} ⊆ FY. Since Y is Z2-embedded in X,

from Definition 6 we obtain the inverse inclusion FY ⊆ { f �Y : f ∈ FX}. This establishes the equality
FY = { f �Y : f ∈ FX}, which implies (a) by definition of TX and TY.

(b) Suppose that E ∈ B(X) \ B(Y). There then exists x0 ∈ E \Y. Since E is a finite subset of X and
Y is TX-closed in X, the set F = Y ∪ (E \ {x0}) is TX-closed in X as well. Since X is zero-dimensional,
we can find a clopen subset W of X such that F ⊆ W and x0 �∈ W. Define the function f : X → Z2 by
f (W) ⊆ {0} and f (X \W) ⊆ {1}. Since W is clopen in X, we have f ∈ FX, which implies f̃ ∈ F̃X.
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Therefore, O = f̃−1(1) ∈ TX by our definition of TX. Since E \ {x0} ⊆ F ⊆ W ⊆ f−1(0) ⊆ f̃−1(0)
and x0 ∈ X \W ⊆ f−1(1) ⊆ f̃−1(1), we have

f̃ (E) = ∑
x∈E

f̃ (x) = f̃ (x0) + ∑
x∈E\{x0}

f̃ (x) = 1 + 0 = 1

by Equation (2), so E ∈ O. Since Y ⊆ W ⊆ f−1(0) ⊆ f̃−1(0), Y algebraically generates B(Y) and f̃ is a
homomorphism, we obtain f̃ (B(Y)) ⊆ {0}. This shows that O ∩ B(Y) = ∅.

We refer the reader to ([21], Section 2) for properties of free precompact (abelian) groups and [22]
for those of free precompact Boolean groups.

5. Coherent Maps

Definition 7. Given sets P ⊆ βN \N and K, define X = P× K× (ω + 1) and X∗ = P× K× {ω}.

Definition 8. Let X be a set as in Definition 7. We shall say that a map f : X → Z2 is coherent provided that

{n ∈ ω : f (p, k, n) = f (p, k, ω)} ∈ p for every p ∈ P and each k ∈ K. (3)

Note that the map f : X → Z2 is coherent if and only if f (p, k, ω) is a p-limit of the sequence
{ f (p, k, n) : n ∈ N} whenever p ∈ P and k ∈ K.

Definition 9. We introduce the topology on a set X as in Definition 7 by declaring each point of X \ X∗ to be
isolated and a basic open neighbourhood of a point (p, k, ω) ∈ X∗ to be of the form {(p, k, ω)} ∪ {(p, k, n) :
n ∈ F} for a given element F ∈ p.

Remark 6. Let X be a topological space from Definition 9.

(i) Note that Xp,k = {(p, k, n) : n ∈ ω + 1} for (p, k) ∈ P×K is a clopen subset of X, so X =
⊕

(p,k)∈P×K Xp,k
is a topological sum of Xp,k.

(ii) Since each Xp,k for (p, k) ∈ P × K is a space with a single non-isolated point, it is zero-dimensional.
It follows from this and (i) that X is zero-dimensional as well.

The straightforward verification of the following lemma is left to the reader.

Lemma 4. Let X be a set as in Definition 7. Then a map f : X → Z2 is coherent in the sense of Definition 8
if and only if it is continuous with respect to the topology on X described in Definition 9 and the discrete topology
on Z2.

We finish this section with two technical lemmas which will be needed in future proofs. The reader
can safely skip them during the first pass.

Lemma 5. Let X and X∗ be sets as in Definition 7. Then every map g : X \X∗ → Z2 admits a unique coherent
extension f : X → Z2 over X.

Proof. For fixed p ∈ P and k ∈ K, we have

{n ∈ ω : g(p, k, n) = 0} ∪ {n ∈ ω : g(p, k, n) = 1} = ω ∈ p.

Since p is an ultrafilter on ω, there exists a unique ip,k = 0, 1 such that

{n ∈ ω : g(p, k, n) = ip,k} ∈ p. (4)
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Define f (p, k, ω) = ip,k for every p ∈ P and k ∈ K. Finally, let f (p, k, n) = g(p, k, n) for all
(p, k, n) ∈ X \ X∗ = P× K×ω. It follows from this definition and Equation (4) that Equation (3) holds;
that is, f is coherent by Definition 8.

Lemma 6. Let X be a set as in Definition 7. If P′ ⊆ P, K′ ⊆ K and h ∈ B(X) \ B(P′ × K′ × (ω + 1)),
then there exists a coherent map f : X → Z2 such that f̃ (B(P′ × K′ × (ω + 1))) ⊆ {0} and f̃ (h) = 1.

Proof. Fix a finite set F ⊆ X such that h = ∑(p,k,n)∈F{(p, k, n)}. It follows from h ∈ B(X) \ B(P′ ×
K′ × (ω + 1)) that F �⊆ P′ × K′ × (ω + 1), so we can fix

(p0, k0, n0) ∈ F \ (P′ × K′ × (ω + 1)). (5)

Since F is finite, there exists m ∈ ω such that (p0, k0, n) �∈ F for all n ∈ ω with n ≥ m. Define
f : X → Z2 by

f (p, k, n) =

{
1 if p = p0, k = k0 and either n = n0 or n ≥ m
0 otherwise

for (p, k, n) ∈ X. (6)

Let p ∈ P and k ∈ K be arbitrary. If either p �= p0 or k �= k0, then f (p, k, n) = 0 for every n ∈ ω + 1
by Equation (6), so ω = {n ∈ ω : f (p, k, n) = f (p, k, ω) = 0} ∈ p. Suppose now that p = p0 and
k = k0. Then

{n ∈ ω : n ≥ m} ⊆ {n ∈ ω : f (p0, k0, n) = f (p0, k0, ω) = 1} = N

by Equation (6). Since p is a free ultrafilter on ω, we have {n ∈ ω : n ≥ m} ∈ p. This implies that
N ∈ p, and therefore, f is coherent by Definition 8.

If (p, k, n) ∈ P′ × K′ × (ω + 1), then either p �= p0 or k �= k0 by Equation (5), so f (p, k, n) = 0 by
Equation (6). Therefore, f (P′ × K′ × (ω + 1)) ⊆ {0}. Since f̃ is a homomorphism extending f , it easily
follows that f̃ (B(P′ × K′ × (ω + 1))) ⊆ {0}.

From the choice of m and Equation (6), we conclude that f (p, k, n) = 0 for all (p, k, n) ∈ F \
{(p0, k0, n0)}. Furthermore, f (p0, k0, n0) = 1 by Equation (6).

Since f̃ is a homomorphism extending f , we obtain

f̃ (h) = f̃

⎛⎝ ∑
(p,k,n)∈F

{(p, k, n)}

⎞⎠ = ∑
(p,k,n)∈F

f̃ {(p, k, n)} = ∑
(p,k,n)∈F

f (p, k, n) = f (p0, k0, n0) = 1.

This finishes the proof of our lemma.

6. Coherent Splitting Maps and Their Continuity

Definition 10. Let X be a set. We shall say that a map f : X → Z2 splits a subset A of B(X) provided that
the set {a ∈ A : f̃ (a) = i} is infinite for each i ∈ Z2, where f̃ : B(X)→ Z2 is the homomorphism defined in
Equation (2).

Clearly, a subset split by some map must be infinite. The converse also holds:

Lemma 7. For an arbitrary set X, every infinite subset of B(X) can be split by some map f : X → Z2.

This lemma is part of folklore and can be proved by a straightforward induction. It can also be
derived from ([23], Lemma 4.1).

The secondary goal of this paper is to prove the following theorem strengthening Lemma 7 by
additionally requiring the splitting map to be coherent.
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Theorem 2. If X is a set as in Definition 7, then every infinite subset of B(X) can be split by some coherent
map f : X → Z2.

This theorem constitutes the main technical tool in the proof of Theorem 1 in Section 10. The proof
of Theorem 2 is postponed until Section 9.

The next corollary provides a topological reformulation of Theorem 2.

Corollary 6. Let X be a set as in Definition 7 equipped with the topology described in Definition 9. Then for
every infinite subset A of the free precompact Boolean group FPB(X) of X, there exists a continuous
homomorphism π : FPB(X)→ Z2 such that the set {a ∈ A : π(a) = i} is infinite for each i ∈ Z2.

Proof. In this proof, we use notations from Lemma 2. The space X is zero-dimensional by Remark 6 (ii).
By Lemma 2, we can identify FPB(X) with (B(X), TX). After this identification, we can think of A
as being an infinite subset of B(X). By Theorem 2, A is split by some coherent map f : X → Z2.
By Lemma 4, f is continuous, and so f ∈ FX, which implies that π = f̃ ∈ F̃X. Since TX is
the initial topology with respect to the family F̃X, the map π is TX-continuous. Recalling our
identification of FPB(X) with (B(X), TX), we conclude that the homomorphism π : FPB(X)→ Z2 is
continuous. Since A is split by f , it follows from this and Definition 10 that π satisfies the conclusion
of our corollary.

Definition 11. For simplicity, we shall say that a topological space is elementary if it is homeomorphic to a
subspace of βN of the form N∪ {p}, where p ∈ βN \N.

Corollary 7. Let K be a non-empty set. For every k ∈ K, let Yk be either an at most countable discrete space
or an elementary space. Let Y =

⊕
k∈K Yk be the topological sum of the family {Yk : k ∈ K}. Then for every

infinite subset A of FPB(Y), there exists a continuous homomorphism h : FPB(Y) → Z2 such that the set
{a ∈ A : h(a) = i} is infinite for each i ∈ Z2.

Proof. Let P = βN \N and let X = P× K× (ω + 1) be the set as in Definition 7. We equip X with the
topology described in Definition 9. In this proof, we use notations from Remark 6 (i).

Fix a free ultrafilter q on N. Let k ∈ K. If Yk is an at most countable discrete space, then we
can fix an injection ϕk : Yk → Xq,k which will obviously be continuous. If Yk is an elementary space,
then Definition 11 allows us to identify the space Yk with the subspace N∪ {pk} of βN, for a suitable
pk ∈ βN \N. Now we can fix an injection ϕk : Yk → Xpk ,k which sends each point n ∈ N to the point
(pk, k, n) ∈ Xpk ,k and the point pk ∈ Yk to (pk, k, ω) ∈ Xpk ,k. Clearly, ϕk is a homeomorphism between
Yk and Xpk ,k.

Let ϕ : Y =
⊕

k∈K Yk → X be the map such that ϕ �Yk= ϕk for every k ∈ K. Since each ϕk is an
injection, so is ϕ. Since each ϕk is continuous, it follows from our definition of ϕ and Remark 6 (i) that
ϕ is continuous as well.

Clearly, Y is zero-dimensional, and X is zero-dimensional by Remark 6 (ii). Since ϕ : Y → X is a
continuous injection, ϕ̂ : FPB(Y)→ FPB(X) is a continuous monomorphism by Lemma 3 (i).

Let A be an infinite subset of FPB(Y). Then B = ϕ̂(A) is an infinite subset of FPB(X).
By Corollary 6, we can find a continuous homomorphism π : FPB(X) → Z2 such that the set
{b ∈ B : π(b) = i} is infinite for each i ∈ Z2. Now the composition h = π ◦ ϕ̂ : FPB(Y) → Z2 is the
desired homomorphism, as ϕ̂ �A: A → B is a one-to-one map.

7. Applications to Free Precompact Boolean Groups of Topological Sums of Maximal Spaces

Definition 12. Recall that a space is maximal if it is non-discrete, yet any strictly stronger topology on it
is discrete.
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One easily sees that every maximal space X has exactly one non-isolated point p such that the
trace of the filter of neighbourhoods of p on the set D = X \ {p} of isolated points of X is an ultrafilter
on D. In particular, X is zero-dimensional.

Clearly, elementary spaces from Definition 11 are precisely the countably infinite maximal spaces.

Lemma 8. Let X be either a discrete or a maximal topological space, and let Y be an at most countable closed
subspace of X. Then

(i) Y is either elementary or discrete, and
(ii) Y is Z2-embedded in X.

Proof. The conclusion of our lemma is trivial when X is a discrete space. Therefore, from now on we
shall assume that X is a maximal space. Let p be the non-isolated point of X. We consider two cases.

Case 1. p ∈ Y. If p is a non-isolated point in Y, then every neighbourhood of p intersects the set
Y \ {p}. By the maximality of X, we conclude that Y is a neighbourhood of p in X. This means that Y
is clopen in X, and therefore Z2-embedded in X by Remark 5. Applying maximality of X once again,
we conclude that Y is an elementary space.

Suppose now that p is an isolated point of Y. Then Y is discrete and there exists an open subset U
of X such that U ∩Y = {p}. If g : Y → Z2 is a continuous map, then the map f : X → Z2 defined by

f (x) =

⎧⎪⎨⎪⎩
g(x) if x ∈ Y \ {p}
g(p) if x ∈ U
0 otherwise

is continuous and extends g. This shows that Y is Z2-embedded in X.

Case 2. p ∈ X \Y. Since p is the only non-isolated point of X, all points of Y are isolated in X, so Y
is discrete and open in X. Since Y is also closed in X, it is clopen in X, and so Z2-embedded in X by
Remark 5.

Lemma 9. Let X =
⊕

j∈J Xj be the topological sum of a family {Xj : j ∈ J}, where each space Xj is either
discrete or maximal. Let A be an at most countable subset of FPB(X). Then there exist an at most countable
set K ⊆ J and an at most countable closed subspace Yk of Xk for each k ∈ K such that the topological sum
Y =

⊕
k∈K Yk satisfies the following conditions:

(i) each Yk is either elementary or discrete;
(ii) FPB(Y) is an at most countable closed subgroup of FPB(X);

(iii) every continuous homomorphism h : FPB(Y) → Z2 can be extended to a continuous homomorphism
ϕ : FPB(X)→ Z2;

(iv) A ⊆ FPB(Y).

Proof. Since X is zero-dimensional, Lemma 2 allows us to identify FPB(X) with (B(X), TX), so we
can view A as a subset of B(X). Since A is countable, there exists an at most countable set S ⊆ X such
that A ⊆ B(S). Since X =

⊕
j∈J Xj, we can find an at most countable set K ⊆ J, and for every k ∈ K

we can fix an at most countable subset Yk of Xk such that S ⊆ Y, where Y =
⊕

k∈K Yk. Without loss of
generality, we may assume that each Yk contains the unique non-isolated point of Xk whenever Xk is a
maximal space. This assumption means that Yk is closed in Xk for each k ∈ K.

(i) By Lemma 8, each space Yk is either elementary or discrete, and Yk is Z2-embedded in Xk.
(ii) Since Yk is a closed Z2-embedded subspace of Xk for every k ∈ K, we conclude that Y is a closed

Z2-embedded subspace of X. Therefore, FPB(Y) is a closed subgroup of FPB(X) by Lemma 3 (ii).
Since Y is zero-dimensional, Lemma 2 allows us to identify FPB(Y) with (B(Y), TY). Since Y is at
most countable, so is B(Y) and thus FPB(Y).
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(iii) Let h : FPB(Y) → Z2 be an arbitrary continuous homomorphism. Since the topology of
FPB(Y) induces the original topology of Y by Lemma 2, the restriction g = h �Y : Y → Z2 of h to Y is
continuous. Since Y is Z2-embedded in X, we can find a continuous map f : X → Z2 extending g.
Since FPB(X) coincides with (B(X), TX) and FPB(Y) coincides with (B(Y), TY), it follows that ϕ = f̃
is a continuous homomorphism from FPB(X) to Z2 whose restriction to FPB(Y) coincides with h = g̃.

(iv) Since A ⊆ B(S) and S ⊆ Y, we have A ⊆ B(S) ⊆ B(Y). Therefore, we can view A as a subset
of FPB(Y).

Theorem 3. Let X =
⊕

j∈J Xj be the topological sum of a family {Xj : j ∈ J}, where each space Xj is either
discrete or maximal. Then for every infinite subset A of FPB(X), there exists a continuous homomorphism
ϕ : FPB(X)→ Z2 such that the set {a ∈ A : ϕ(a) = i} is infinite for each i ∈ Z2.

Proof. Without loss of generality, we may assume that A is countably infinite. Applying Lemma 9 to
this A, we can obtain a subspace Y of X as in the conclusion of Lemma 9. By Item (i) of this lemma,
we can apply Corollary 7 to find a continuous homomorphism h : FPB(Y) → Z2 such that the set
{a ∈ A : h(a) = i} is infinite for each i ∈ Z2. Applying Item (iii) of Lemma 9, we can find a continuous
homomorphism ϕ : FPB(X)→ Z2 extending h. Since A ⊆ FPB(Y) by Item (iv) of Lemma 9, we have
{a ∈ A : ϕ(a) = i} = {a ∈ A : h(a) = i} for each i ∈ Z2.

Lemma 10. Let X be a topological space such that the closure of each at most countable subset of X is at most
countable. Then every separable pseudocompact subspace K of X is compact and metrizable. Moreover, if K is
infinite, then K contains a non-trivial convergent sequence.

Proof. Let K be a separable pseudocompact subset of X. Let S be an at most countable dense subset of
K. Then its closure C in X is at most countable by the assumption of our lemma. Since S is dense in K,
we have K ⊆ C. Thus, K is an at most countable pseudocompact space, so it must be compact. An at
most countable compact space is metrizable [24], so K is a metrizable compact space. The last sentence
of our lemma follows from the fact that every infinite compact metrizable space has a non-trivial
convergent sequence.

Theorem 4. Let X =
⊕

j∈J Xj be the topological sum of a family {Xj : j ∈ J}, where each space Xj is
either discrete or maximal. Let G = FPB(X) be the free precompact Boolean group of X. Then all separable
pseudocompact subsets of G are finite.

Proof. First, we check that each at most countable subset A of G = FPB(X) has at most countable
closure in G. If A is finite, then it is closed in G. Suppose now that A is infinite. Applying Lemma 9 to
this A, we can obtain a subspace Y of X as in the conclusion of Lemma 9. By Item (ii) of this lemma,
H = FPB(Y) is an at most countable closed subgroup of FPB(X) = G. Note that A ⊆ H by Item (iv)
of Lemma 9. Therefore, the closure of A in G is contained in the (at most countable) set H.

Let A be a countably infinite subset of G. Applying Theorem 3, we can find a continuous
homomorphism ϕ : G → Z2 such that the set {a ∈ A : ϕ(a) = i} is infinite for each i ∈ Z2. Since ϕ is
continuous, Ai = {a ∈ A : ϕ(a) = i} is a closed subset of A for i ∈ Z2 = {0, 1}. Since A = A0 ∪ A1 is a
partition of A into two disjoint infinite closed sets, A cannot be a convergent sequence. We have proved
that G does not contain non-trivial convergent sequences. By Lemma 10, all separable pseudocompact
subsets of G are finite.

The group G = FPB(X) in Theorem 4 is precompact, so its completion H is a compact group.
Being compact, the group H contains many non-trivial convergent sequences. Since these non-trivial
convergent sequences in H might appear already in its subgroup G, this demonstrates that Theorem 4
is not completely trivial.
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8. Discussion

The topic of this paper is related to a long-standing open problem of van Douwen about the
existence in ZFC alone of a countably compact group without non-trivial convergent sequences.
(The existence of such a group in some additional set-theoretic axioms, such as Continuum Hypothesis
(CH) or Martin’s Axiom (MA), is well-known.) Indeed, it was noted in ([5], Example 5.7) that a solution
to this problem would bring a positive solution to Question 1 (ii) and thus to the weaker Question 1 (i).

The question of the existence of pseudocompact groups without infinite compact subsets (and its weaker
version which only prohibits non-trivial convergent sequences) has been studied extensively [12–14,25,26].
For example, Galindo and Macario proved that, under a mild additional set-theoretic assumption
beyond ZFC, every pseudocompact abelian group admits a pseudocompact group topology without
infinite compact subsets [12]. Corollary 1 contributes to this topic by constructing an abelian topological
group without infinite compact subsets (in fact, even without infinite separable pseudocompact subsets)
which has a much stronger property than mere pseudocompactness.

Topological groups without infinite compact subsets play a prominent role in Pontryagin duality
theory [27] due to the fact that pseudocompact abelian groups without infinite compact subsets are
(Pontryagin) reflexive ([11], Theorem 2.8) (this also follows from ([12], Lemma 2.3 and Theorem 6.1)).
All topological groups we construct in this paper are reflexive by Remark 3.

The strongest precompact group topology on an abelian group is called its Bohr topology. It is
a classical result of Glicksberg that the Bohr topology on any abelian group does not have infinite
compact subsets [28]; see also ([29], Section 6) for an alternative proof. Since the free precompact
Boolean group FPB(X) of a topological space X is precompact, its topology TX is weaker than the
corresponding Bohr topology, so TX can have more compact subsets than the Bohr topology (in which
all compact subsets are finite). Note that, when X is discrete, then TX coincides with the Bohr topology
on FPB(X), so it does not have infinite compact subsets by Glicksberg’s result. Our Theorem 4 can
be viewed as an extension of Glicksberg’s theorem over free precompact Boolean groups FPB(X) of
spaces X very close to being discrete (indeed, maximal spaces are one step from being discrete by
Definition 12).

The idea of splitting of a given infinite subset A of a discrete abelian group G via a homomorphism
ϕ from G to some target topological group H (usually Z2 or the torus group T) is a classical technique
for producing a group topology on G without non-trivial convergent sequences. Such a splitting is
always possible, modulo natural algebraic restrictions on H and A; see [23,29,30]. However, if G is
equipped with a non-discrete group topology T , finding a T -continuous homomorphism ϕ which
splits A is a much more difficult task, and the authors are not aware of any known results in this
direction. Therefore, our Theorem 3 can be viewed as a first, albeit somewhat modest, contribution to
what is undoubtedly quite an interesting topic.

9. Proof of Theorem 2

In this section, we fix a non-empty set P ⊆ βN \N, a non-empty set K and consider sets

X = P× K× (ω + 1) and X∗ = P× K× {ω}

from Definition 7. We also fix an infinite subset A of B(X).

Lemma 11. If X∗ ∩ (
⋃

A) is finite, then some coherent map f : X → Z2 splits A.

Proof. Since J = X∗ ∩ (
⋃

A) is finite and A is infinite, there exists I ∈ [J]<ω such that the set

A′ = {a ∈ A : a ∩ X∗ = I} (7)

is infinite. Then
B = {a \ X∗ : a ∈ A′} = {a \ I : a ∈ A′} (8)
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is an infinite subset of B(X \ X∗). By Lemma 7, there exists a map g : X \ X∗ → Z2 which splits B.
Let f : X → Z2 be the unique coherent map extending g given by Lemma 5. Clearly, f̃ �B(X\X∗)= g̃.
Since B ⊆ B(X \ X∗) and g splits B, the map f splits B as well. It follows from this, Equation (8), and
Definition 10 that

{a ∈ A′ : f̃ (a \ I) = i} is infinite for every i ∈ Z2. (9)

Define j = f̃ (I). Clearly, j ∈ Z2. It follows from Equations (7) and (8) that a = (a \ I) ∪ I for every
a ∈ A′, so a = (a \ I) + I holds in B(X); therefore,

f̃ (a) = f̃ (a \ I) + f̃ (I) = f̃ (a \ I) + j for a ∈ A′, (10)

as f̃ is a homomorphism. Combining Equations (9) and (10), we conclude that {a ∈ A′ : f̃ (a) = i} is
infinite for every i ∈ Z2. Since A′ ⊆ A, the same conclusion holds when A′ is replaced by A. According
to Definition 10, this means that f splits A.

Definition 13. We denote by Q the set of all triples q = 〈Pq, Kq, f q〉, where Pq ∈ [P]<ω, Kq ∈ [K]<ω and
f q : Pq × Kq × (ω + 1) → Z2 is a coherent map. For q = 〈Pq, Kq, f q〉, r = 〈Pr, Kr, f r〉 ∈ Q, we let q ≤ r
provided that Pr ⊆ Pq, Kr ⊆ Kq, and f q extends f r.

One easily sees that (Q,≤) is a poset. Clearly, 〈∅, ∅, ∅〉 ∈ Q, so Q �= ∅.
Recall that a set D ⊆ Q is said to be dense in (Q,≤) provided that for every r ∈ Q there exists

q ∈ D such that q ≤ r.

Lemma 12. (i) For every p ∈ P, the set Cp = {q ∈ Q : p ∈ Pq} is dense in (Q,≤).
(ii) For every k ∈ K, the set Ek = {q ∈ Q : k ∈ Kq} is dense in (Q,≤).

Proof. (i) Suppose that r ∈ Q \ Cp. Then p ∈ P \ Pr. Note that the extension f q : Pq × Kq × (ω + 1)→
Z2 of f r, obtained by letting f q(p, k, n) = 0 for all k ∈ Kq = Kr and n ∈ ω + 1, is coherent. Then
q = 〈Pq, Kq, f q〉 ∈ Q. Clearly, q ∈ Cp and q ≤ r.

(ii) Suppose that r ∈ Q \ Ek. Then k ∈ K \ Kr. Define Pq = Pr and Kq = Kr ∪ {k}. Note that the
extension f q : Pq × Kq × (ω + 1) → Z2 of f r, obtained by letting f q(p, k, n) = 0 for all p ∈ Pq = Pr

and n ∈ ω + 1, is coherent. Then q = 〈Pq, Kq, f q〉 ∈ Q. Clearly, q ∈ Ek and q ≤ r.

Lemma 13. If X∗ ∩ (
⋃

A) is infinite, then for every B ∈ [A]<ω and each i ∈ Z2, the set

DB,i = {q ∈ Q : ∃a ∈ A \ B (a ⊆ Pq × Kq × (ω + 1) and f̃ q(a) = i)} (11)

is dense in (Q,≤).

Proof. Let r ∈ Q, B ∈ [A]<ω, and i ∈ Z2 be arbitrary. We need to find q ∈ Q and a ∈ A \ B such that
q ≤ r, a ⊆ Pq × Kq × (ω + 1), and f̃ q(a) = i.

Since B is finite, the intersection X∗ ∩ (
⋃

B) is also finite. Furthermore, since both Pr and Kr are
finite sets, so is the set Pr × Kr × {ω}. Therefore,

F = (X∗ ∩ (
⋃

B)) ∪ (Pr × Kr × {ω}) (12)

is a finite subset of X∗. By our hypothesis, X∗ ∩ (
⋃

A) is infinite, so there exists a ∈ A such that
(a ∩ X∗) \ F �= ∅. Fix p0 ∈ P, k0 ∈ K, and a ∈ A such that (p0, k0, ω) ∈ a \ F. It follows from this and
Equation (12) that a ∈ A \ B.

Since a is a finite subset of X = P× K × (ω + 1), there exist finite sets Pq ⊆ P and Kq ⊆ K such
that a ⊆ Pq ×Kq × (ω + 1). By Lemma 12, without loss of generality, we may also assume that Pr ⊆ Pq

and Kr ⊆ Kq.
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Let a′ = a ∩ (Pr × Kr × (ω + 1)). Then j = f̃ r(a′) ∈ Z2 is well-defined. There exists a unique
l ∈ Z2 such that j + l = i. Note that (p0, k0) ∈ (Pq × Kq) \ (Pr × Kr), so we can define a map
f q : Pq × Kq × (ω + 1)→ Z2 by

f q(p, k, n) =

⎧⎪⎨⎪⎩
f r(p, k, n) if (p, k, n) ∈ Pr × Kr × (ω + 1)
l if (p, k) = (p0, k0) and either n = ω or (p, k, n) �∈ a
0 otherwise

(13)

for all (p, k, n) ∈ Pq × Kq × (ω + 1).

Claim 1. q = 〈Pq, Kq, f q〉 ∈ Q and q ≤ r.

Proof. Since Pq ∈ [P]<ω and Kq ∈ [K]<ω by our construction, we only need to check that the map
f q : Pq × Kq × (ω + 1)→ Z2 is coherent. Let p ∈ Pq and k ∈ Kq be arbitrary. If (p, k) ∈ Pr × Kr, then

{n ∈ ω : f q(p, k, n) = f q(p, k, ω)} = {n ∈ ω : f r(p, k, n) = f r(p, k, ω)} ∈ p

by Equation (13) and coherency of f r. Suppose now that (p, k) ∈ (Pq × Kq) \ (Pr × Kr). If (p, k) �=
(p0, k0), then f q(p, k, n) = 0 for all n ∈ ω + 1 by Equation (13), so {n ∈ ω : f q(p, k, n) = f q(p, k, ω) =

0} = ω ∈ p. Finally, if (p, k) = (p0, k0), then the second line of Equation (13) implies that f q(p, k, ω) = l
and f q(p, k, n) = l for all but finitely many n ∈ ω, as the set a is finite. Therefore, {n ∈ ω : f q(p, k, n) =
f q(p, k, ω)} is a cofinite subset of ω, so it belongs to p, as p is a free ultrafilter on ω. This finishes the
check of the inclusion q ∈ Q.

Finally, note that f q extends f r by the first line of Equation (13). It follows from this, Pr ⊆ Pq,
Kr ⊆ Kq, and Definition 13 that q ≤ r.

Claim 2. f̃ q(a \ a′) = l.

Proof. Since a′ = a ∩ (Pr × Kr × (ω + 1)), we have a \ a′ ⊆ ((Pq × Kq) \ (Pr × Kr)) × (ω + 1), so
Equation (13) implies that f q(p0, k0, ω) = l and f q(p, k, n) = 0 for all (p, k, n) ∈ a \ (a′ ∪ {(p0, k0, ω)}).
Since f̃ q is a homomorphism and (p0, k0, ω) ∈ a \ a′ by our choice, this implies

f̃ q(a \ a′) = ∑
(p,k,n)∈a\a′

f̃ q({p, k, n}) = ∑
(p,k,n)∈a\a′

f q(p, k, n) = f q(p0, k0, ω) = l.

This establishes our claim.

Claim 3. q ∈ DB,i.

Proof. The only condition in Equation (11) that remains to be checked is the equality f̃ q(a) = i. Since
a′ ⊆ Pr × Kr × (ω + 1) ⊆ Pq × Kq × (ω + 1), we have f̃ q(a′) = f̃ r(a′) = j. Note that a = (a \ a′) ∪ a′,
so a = (a \ a′)+ a′. Since f̃ q is a homomorphism, f̃ q(a) = f̃ q(a \ a′)+ f̃ q(a′) = l + j = i by Claim 2.

Since r ∈ Q was chosen arbitrarily, the conclusion of our lemma follows from Claims 1 and 3.

We shall need the following folklore lemma.

Lemma 14. If D is an at most countable family of dense subsets of a non-empty poset (Q,≤), then there exists
an at most countable subset F of Q such that (F,≤) is a linearly ordered set and F∩ D �= ∅ for every D ∈ D .

Proof. Since the family D is at most countable, we can fix an enumeration D = {Dn : n ∈ N \ {0}} of
elements of D . Since Q �= ∅, there exists q0 ∈ Q. By induction on n ∈ N \ {0}, we can choose qn ∈ Dn
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such that qn ≤ qn−1; this is possible because Dn is dense in (Q,≤). Now F = {qn : n ∈ N \ {0}} is the
desired subset of Q.

Lemma 15. If P and K are at most countable sets and X∗ ∩ (
⋃

A) is infinite, then some coherent map
f : X → Z2 splits A.

Proof. By Lemmas 12 and 13, the family

D = {Cp : p ∈ P} ∪ {Ek : k ∈ K} ∪ {DB,i : B ∈ [A]<ω, i ∈ Z2}

consists of dense subsets of (Q,≤). Since P, K, and A are at most countable, so is D . By Lemma 14,
there exists a set F = {qn : n ∈ N} ⊆ Q such that q0 ≥ q1 ≥ · · · ≥ qn ≥ qn+1 ≥ . . . and F∩ D �= ∅ for
every D ∈ D .

We claim that f =
⋃{ f qn : n ∈ N} is a coherent map from X to Z2 splitting A. Since F intersects

each Cp and every Ek, the domain of f coincides with X = P× K× (ω + 1). Since each f qn is coherent
and f extends all f qn , it easily follows that f is coherent as well.

Suppose that f does not split A. Then the set B = {a ∈ A : f̃ (a) = i} must be finite for some
i ∈ Z2, so B ∈ [A]<ω and thus DB,i ∈ D . Therefore, qn ∈ DB,i for some n ∈ N. Applying Equation (11),
we can find a ∈ A \ B such that a ⊆ Pqn × Kqn × (ω + 1) and ˜f qn(a) = i. Since f qn ⊆ f , this implies
f̃ (a) = ˜f qn(a) = i. Therefore, a ∈ B by the definition of the set B, in contradiction with a ∈ A \ B.

Proof of Theorem 2. Let A be an infinite subset of B(X). Choose a countably infinite subset A′ of A.
Since A′ ⊆ B(X) = [X]<ω, there exist at most countable sets P′ ⊆ P and K′ ⊆ K such that A ⊆ B(X′),
where X′ = P′ ×K′ × (ω + 1). Combining Lemmas 11 and 15, we can find a coherent map f ′ : X′ → Z2

splitting A′. Let f : X → Z2 be the extension of f ′ over X obtained by letting f take 0 everywhere on
X \ X′. Clearly, f is a coherent map which splits A′. Since A′ ⊆ A, f splits A as well.

10. Proof of Theorem 1

The following lemma is part of set-theoretic folklore. We include its proof only for convenience of
the reader.

Lemma 16. Let S and T be sets such that 1 ≤ |S| ≤ |T| and T is infinite. Then there exists an enumeration
S = {st : t ∈ T} such that |{t ∈ T : st = s}| = |T| for every s ∈ S.

Proof. Since 1 ≤ |S| ≤ |T|, we can fix a surjection f : T → S. Since T is infinite, we have |T| = |T× T|,
so we can fix a bijection θ : T → T × T. Let π : T × T → T be the projection on the first coordinate.
Define st = f ◦ π ◦ θ(t) for every t ∈ T. We claim that {st : t ∈ T} is the desired enumeration. Indeed,
let s ∈ S be arbitrary. Since f is a surjection, s = f (t0) for some t0 ∈ T. Since |{t0} × T| = |T| and θ

is a bijection, the set T′ = θ−1({t0} × T) ⊆ T satisfies |T′| = |T|. Finally, for every t ∈ T′, we have
π ◦ θ(t) ∈ π(θ(T′)) ∈ π(θ(θ−1({t0} × T))) = π({t0} × T) = {t0}, so st = f ◦ π ◦ θ(t) = f (t0) = s.

Fix a cardinal κ such that κω = κ and a set K such that |K| = κ. Let K = K0 ∪ K1 be a partition of
K into pairwise disjoint sets Ki such that |Ki| = κ for i = 0, 1.

Let P be a non-empty subset of βN \N satisfying |P| ≤ κ. Consider the set

X = P× K× (ω + 1) (14)

as in Definition 7. Note that |X| = κ by Equation (14) and our assumption on K, P, and κ.
For a set S, we denote by [S]≤ω the family of at most countable subsets of S and by [S]ω the family

of all countably infinite subsets of X.

129



Axioms 2018, 7, 86

Claim 4. (i) There exists an enumeration [B(X)]ω = {Aβ : β ∈ K0} such that |{β ∈ K0 : Aβ = A}| = κ

for every A ∈ [B(X)]ω.
(ii) There exists an enumeration [P]≤ω × [K]≤ω × B(X) = {(Pβ, Kβ, hβ) : β ∈ K1} such that |{β ∈ K1 :

Pβ = P′, Kβ = K′, hβ = h}| = κ whenever P′ ∈ [P]≤ω, K′ ∈ [K]≤ω and h ∈ B(X).

Proof. (i) Note that |B(X)| = |X<ω | = |X| = κ and |[B(X)]ω | = κω = κ = |K0| by our assumption on
κ and K0, so we can apply Lemma 16 (with S = [B(X)]ω and T = K0) to fix the desired enumeration
[B(X)]ω = {Aβ : β ∈ K0}.

(ii) Since |P| ≤ κ and |K| = |B(X)| = κ, we have |[P]≤ω × [K]≤ω × B(X)| ≤ κω = κ = |K1|, so the
existence of the desired enumeration [P]≤ω × [K]≤ω × B(X) = {(Pβ, Kβ, hβ) : β ∈ K1} follows from
Lemma 16 applied with S = [P]≤ω × [K]≤ω × B(X) and T = K1.

For every β ∈ K, we define a coherent map fβ : X → Z2 differently depending on whether β ∈ K0

or β ∈ K1.

Case 1. β ∈ K0. In this case, we use a Theorem 2 to fix a coherent map fβ : X → Z2 splitting Aβ.

Case 2. β ∈ K1. If hβ ∈ B(X) \ B(Pβ × Kβ × (ω + 1)), then we use Lemma 6 to fix a coherent map
fβ : X → Z2 such that f̃β(B(Pβ × Kβ × (ω + 1))) ⊆ {0} and f̃β(hβ) = 1; otherwise, we let fβ to be the
constant map sending X to {0} (this map is clearly coherent).

Claim 5. There exist an enumeration [K]ω = {Ik : k ∈ K} and a sequence {yk,n : n ∈ ω} ⊆ Z
Ik
2 for every

k ∈ K such that whenever I ∈ [K]ω and {yn : n ∈ ω} ⊆ ZI
2, one can find k ∈ K with Ik = I and yk,n = yn

for all n ∈ N.

Proof. Let S =
⋃{(ZI

2)
ω : I ∈ [K]ω}. (We recall that (ZI

2)
ω denotes the set of all functions from ω to

ZI
2; each such function s can be considered as a sequence {s(n) : n ∈ ω} of points of ZI

2.)
Since |(ZI

2)
ω | = c ≤ κ for every I ∈ [K]ω, we have |S| ≤ κω = κ = |K| by our assumption on

κ. Therefore, we can apply Lemma 16 with T = K to fix an enumeration S = {sk : k ∈ K} such that
{k ∈ K : sk = s} has cardinality κ for every s ∈ S.

Let k ∈ K. Then sk ∈ S, so sk ∈ (ZI
2)

ω for a unique I ∈ [K]ω; that is, sk is a function from ω to ZI
2.

We define Ik = I and yk,n = sk(n) for all n ∈ ω.
Let I ∈ [K]ω and {yn : n ∈ ω} ⊆ ZI

2 be arbitrary. Then the function s : ω → ZI
2, defined by s(n) =

yn for n ∈ ω, belongs to S. By the choice of our enumeration, the set {k ∈ K : sk = s} has cardinality κ.
In particular, there exists k ∈ K such that s = sk. Now Ik = I and yn = s(n) = sk(n) = yk,n for every
n ∈ ω.

Define
yp,k,n = yk,n for all (p, k, n) ∈ P× K×ω. (15)

For each (p, k) ∈ P× K, the sequence {yp,k,n : n ∈ ω} = {yk,n : n ∈ ω} of points of the compact

space Z
Ik
2 has a p-limit yp,k,ω ∈ Z

Ik
2 .

For each (p, k, n) ∈ X, define zp,k,n ∈ ZK
2 by

zp,k,n(β) =

{
yp,k,n(β) if β ∈ Ik
fβ(p, k, n) if β ∈ K \ Ik

for every β ∈ K. (16)

Claim 6. For every p ∈ P and each sequence {Wn : n ∈ N} of non-empty open subsets of ZK
2 , there exists

k ∈ K such that

(i) zp,k,n ∈ Wn for all n ∈ N, and
(ii) zp,k,ω is a p-limit of the sequence {zp,k,n : n ∈ N}.
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Proof. Fix p ∈ P and a sequence {Wn : n ∈ N} of non-empty open subsets of ZK
2 . Without loss

of generality, we may assume that each Wn is a basic open subset of ZK
2 ; that is, Wn = ∏β∈K Wβ,n,

where each Wβ,n is a non-empty (open) subset of Z2 and supp(Wn) = {β ∈ K : Wβ,n �= Z2} is a finite
subset of K. Then the set J =

⋃
n∈N supp(Wn) is at most countable, so we can fix a countably infinite

subset I of K containing J. For every n ∈ N, Vn = ∏β∈I Wβ,n is a non-empty subset of ZI
2, so we can

select yn ∈ Vn. By Equation (15) and Claim 5, there exists k ∈ K such that Ik = I and yp,k,n = yk,n = yn

for all n ∈ N.
(i) Fix n ∈ N. By Equation (16), we have

zp,k,n(β) = yp,k,n(β) = yn(β) ∈ Wβ,n for every β ∈ Ik = I. (17)

Since supp(Wn) ⊆ I, this implies zp,k,n ∈ Wn.
(ii) It suffices to check that zp,k,ω(β) is a p-limit of the sequence {zp,k,n(β) : n ∈ N} for every β ∈ K.

We consider two cases.

Case 1. β ∈ Ik. Since the sequence {yp,k,n : n ∈ N} ⊆ Z
Ik
2 has a p-limit yp,k,ω ∈ Z

Ik
2 , it follows that

yp,k,ω(β) is a p-limit of the sequence {yp,k,n(β) : n ∈ N}. Since β ∈ Ik, we have zp,k,ω(β) = yp,k,ω(β) by
Equation (16). Combining this with Equation (17), we obtain the desired conclusion.

Case 2. β ∈ K \ Ik. In this case, it follows from Equation (16) that zp,k,n(β) = fβ(p, k, n) for every
n ∈ ω + 1, and the conclusion follows from the fact that fβ is coherent.

Claim 7. The set
Z = {zp,k,n : (p, k, n) ∈ X} (18)

is dense in ZK
2 .

Proof. Consider an arbitrary non-empty open subset U of ZK
2 . Let Wn = U for every n ∈ N. Since

P is non-empty, we can choose p ∈ P. Let k ∈ K be as in the conclusion of Claim 6 applied to this p
and the sequence {Wn : n ∈ N}. Then zp,k,1 ∈ W1 = U. Since (p, k, 1) ∈ X by Equation (14), we obtain
zp,k,1 ∈ Z by Equation (18), so Z ∩U �= ∅.

Claim 8. Z is strongly P-pseudocompact.

Proof. By Definition 4 (ii), we need to check that Z is strongly p-pseudocompact for every p ∈ P.
Fix p ∈ P. Let {Un : n ∈ N} be a sequence of non-empty open subsets of Z. Since Z is a subspace of
ZK

2 , for every n ∈ N, there exists an open subset Wn of ZK
2 such that Un = Z ∩Wn; in particular, Wn is

non-empty. Let k ∈ K be as in the conclusion of Claim 6 applied to p and the sequence {Wn : n ∈ N}.
By Item (i) of this claim, we have zp,k,n ∈ Wn for every n ∈ N. Since (p, k, n) ∈ X by Equation (14),
zp,k,n ∈ Z by Equation (18), so zp,k,n ∈ Z ∩Wn = Un for every n ∈ N. By Item (ii) of Claim 6, zp,k,ω is a
p-limit of the sequence {zp,k,n : n ∈ N}. Since (p, k, ω) ∈ X by Equation (14), we obtain zp,k,ω ∈ Z by
Equation (18). According to Definition 1, this shows that Z is strongly p-pseudocompact.

Let G be the subgroup of ZK
2 generated by Z. Let f : X → Z ⊆ G be the map defined by

f (p, k, n) = zp,k,n for every (p, k, n) ∈ X. (19)

Since G is a Boolean group, there exists a unique homomorphism f̃ : B(X) → G extending f .
Since f (X) = Z and the latter set algebraically generates G, the homomorphism f̃ is surjective.

Claim 9. For every at most countable set A ⊆ B(X), there exists an at most countable set I ⊆ K such that

πβ ◦ f̃ (a) = f̃β(a) whenever β ∈ K \ I and a ∈ A, (20)
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where πβ : ZK
2 → Z2 is the projection on β’th coordinate.

Proof. For every a ∈ A, there exists a finite set Ea ⊆ X such that

a = ∑
(p,k,n)∈Ea

{(p, k, n)}. (21)

Since A is at most countable, so is the set

J = {k ∈ K : ∃p ∈ P ∃ n ∈ (ω + 1) (p, k, n) ∈
⋃
{Ea : a ∈ A}}. (22)

Therefore, I =
⋃

k∈J Ik is an at most countable subset of K.
Let a ∈ A and β ∈ K \ I be arbitrary. Suppose that (p, k, n) ∈ Ea. Then k ∈ J by Equation (22).

Therefore, Ik ⊆ I by our choice of I. Since β �∈ I, we conclude that β ∈ K \ Ik; thus, zp,k,n(β) = fβ(p, k, n)
by Equation (16). Since this holds for every (p, k, n) ∈ Ea and f̃β is a homomorphism, from Equations
(19) and (21) we conclude that

f̃β(a) = f̃β

⎛⎝ ∑
(p,k,n)∈Ea

{(p, k, n)}

⎞⎠ = ∑
(p,k,n)∈Ea

f̃β({(p, k, n)}) = ∑
(p,k,n)∈Ea

fβ(p, k, n) = ∑
(p,k,n)∈Ea

zp,k,n(β)

= ∑
(p,k,n)∈Ea

f (p, k, n)(β) = f̃

⎛⎝ ∑
(p,k,n)∈Ea

{(p, k, n)}

⎞⎠ (β) = f̃ (a)(β) = πβ ◦ f̃ (a).

This proves Equation (20).

Claim 10. G contains no non-trivial convergent sequences.

Proof. Consider an arbitrary countably infinite set S ⊆ G. Since f̃ : B(X)→ G is a surjection, we can
fix a countably infinite set A ⊆ B(X) such that f̃ (A) = S and f̃ �A: A → S is a bijection. Let I ⊆ K be
the set as in the conclusion of Claim 9 (applied to our A). Since A ∈ [B(X)]ω , we can apply Claim 4 (i)
to conclude that the set |{β ∈ K0 : Aβ = A}| has cardinality κ. Since |K0| = κ ≥ c > ω ≥ |I|,
there exists β ∈ K0 \ I. Then fβ splits the set A = Aβ by our choice of fβ. This means that the set
Ai = {a ∈ A : f̃β(a) = i} is infinite for both i ∈ Z2.

Let i ∈ Z2 be arbitrary. Since f̃ �A: A → S is a bijection, the set Si = f̃ (Ai) ⊆ S is infinite.
It follows from Equation (20) that πβ ◦ f̃ (a) = f̃β(a) = i for a ∈ Ai, so πβ(s) = i for s ∈ Si. Since the
map πβ is continuous, it follows that Si is a closed subset of S.

Since f̃ �A: A → S is a bijection and A = A0 ∪ A1 is a partition of A into disjoint sets Ai, it
follows that S = S0 ∪ S1 is a partition of S into disjoint sets Si. Since each Si is infinite and closed in S,
this implies that S cannot be a convergent sequence in G.

Claim 11. If P′ ∈ [P]≤ω and K′ ∈ [K]≤ω, then the subgroup HP′ ,K′ of G generated by the set

ZP′ ,K′ = {zp,k,n : p ∈ P′, k ∈ K′, n ∈ ω + 1} (23)

is closed in G.

Proof. Fix P′ ∈ [P]≤ω and K′ ∈ [K]≤ω. Note that f̃ (B(P′ × K′ × (ω + 1))) = HP′ ,K′ by Equations (19)
and (23).

Let g ∈ G \ HP′ ,K′ be arbitrary. Since f̃ is surjective, f̃ (h) = g for some h ∈ B(X). Clearly,
h �∈ B(P′ × K′ × (ω + 1)). Apply Claim 9 to at most countable subset

A = B(P′ × K′ × (ω + 1)) ∪ {h} (24)
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of B(X) to obtain at most countable set I ⊆ K as in the conclusion of this claim. Since (P′, K′, h) ∈
[P]≤ω × [K]≤ω × B(X), we can apply Claim 4 (ii) to conclude that the set K′1 = {β ∈ K1 : Pβ = P′, Kβ =

K′, hβ = h} has cardinality κ. Since |K′1| = κ ≥ c > ω ≥ |I|, there exists β ∈ K′1 \ I. Then Pβ = P′, Kβ =

K′ and hβ = h. Since hβ = h ∈ B(X) \ B(P′ × K′ × (ω + 1)) = B(X) \ B(Pβ × Kβ × (ω + 1)) by our
assumption, it follows from β ∈ K′1 ⊆ K1 and our choice of fβ that f̃β(B(P′ × K′ × (ω + 1))) ⊆ {0}
and f̃β(h) = 1. From this, β ∈ K \ I, Equations (20) and (24), we conclude that πβ ◦ f̃ (B(P′ × K′ ×
(ω + 1))) ⊆ {0} and πβ ◦ f̃ (h) = 1. Since HP′ ,K′ = f̃ (B(P′ × K′ × (ω + 1))) and g = f̃ (h), we get
πβ(HP′ ,K′) ⊆ {0} and πβ(g) = 1. Since πβ is continuous, Ug = π−1

β (1) is an open neighbourhood of g
in G disjoint from HP′ ,K′ .

For every g ∈ G \ HP′ ,K′ , we found an open neighbourhood Ug of G such that Ug ∩ HP′ ,K′ = ∅.
Therefore, HP′ ,K′ is closed in G.

Claim 12. The closure of each at most countable subset of G is at most countable.

Proof. Let S be an at most countable subset of G. Since Z algebraically generates G, from Equations
(18) and (23) we conclude that there exist P′ ∈ [P]≤ω and K′ ∈ [K]≤ω such that S ⊆ HP′ ,K′ . (Recall that
HP′ ,K′ is algebraically generated by ZP′ ,K′ .) Since HP′ ,K′ is closed in G by Claim 11, the closure of S is
contained in HP′ ,K′ . Since P′ and K′ are at most countable, so is ZP′ ,K′ and thus HP′ ,K′ as well.

Claim 13. All separable pseudocompact subsets of G are finite.

Proof. This follows from Claims 10 and 12 and Lemma 10.

Since Z ⊆ G ⊆ ZK
2 , and Z is dense in ZK

2 by Claim 7, Z is dense in G. Since Z is
strongly P-pseudocompact by Claim 8, so is G. By Claim 13, G does not contain infinite separable
pseudocompact subsets. Finally, since |K| = κ, the topological groups ZK

2 and Zκ
2 are topologically

isomorphic.

11. Further Open Questions

In this section we list natural open questions (besides Question 2) inspired by our results.
As was mentioned in Section 8, Galindo and Macario proved that, under a mild additional

set-theoretic assumption beyond ZFC, every pseudocompact abelian group admits a pseudocompact
group topology without infinite compact subsets [12]. Question 4 below asks for an analogue of their
result for other compactness-like properties listed on the left side of Figure 1, while Question 3 is
a version of Question 4 restricted to non-trivial convergent sequences. Item (iv) was excluded in
Question 4 due to Remark 1 (ii).

Question 3. Let P be one of the following properties:

(i) selectively pseudocompact;
(ii) strongly p-pseudocompact for some p ∈ βN \N;

(iii) strongly (βN \N)-pseudocompact;
(iv) strongly (βN \N)-bounded.

If an infinite abelian group admits a group topology with property P , must it also admit a group topology with
property P having no non-trivial convergent sequences?

Question 4. Let P be one of the properties (i)–(iii) from Question 3. If an infinite abelian group admits a group
topology with property P , must it also admit a group topology with property P having no infinite compact
subsets (or even without infinite separable pseudocompact subsets)?
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It makes no sense to ask Questions 3 and 4 for properties on the right side of Figure 1,
because infinite selectively sequentially pseudocompact spaces contain non-trivial convergent
sequences ([5], Proposition 3.1).

Question 5. If an abelian group admits a pseudocompact group topology, must it also admit a group topology
having one of the stronger properties (i)–(iv) listed in Question 3?

The version of Question 5 for “selective pseudocompactness” is due to García-Ferreira and Tomita ([7],
Question 2.7).

Our last question is related to the reversibility of Arrow 4 in Figure 1 in the class of topological groups.

Question 6. Does there exist a ZFC example of a selectively pseudocompact (abelian) group which is not
strongly p-pseudocompact for any free ultrafilter p on N?

An example under CH is mentioned in the text after Figure 1.
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Abstract: An (L)-semigroup S is a compact n-manifold with connected boundary B together with
a monoid structure on S such that B is a subsemigroup of S. The sum S + T of two (L)-semigroups
S and T having boundary B is the quotient space obtained from the union of S× {0} and T × {1}
by identifying the point (x, 0) in S× {0} with (x, 1) in T × {1} for each x in B. It is shown that no
(L)-semigroup sum of dimension less than or equal to five admits an H-space structure, nor does any
(L)-semigroup sum obtained from (L)-semigroups having an Abelian boundary. In particular, such
sums cannot be a retract of a topological group.
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1. Introduction

An H-space is a space X together with a continuous multiplication m : X×X → X and an identity
element e ∈ X such that m(e, x) = m(x, e) = x for all x ∈ X. If, in addition, the multiplication is
associative, then X is called a topological monoid. A space together with an associative continuous
multiplication is called a topological semigroup. A compact n-manifold S with connected boundary
B together with a topological monoid structure such that B is a subsemigroup of S is called an
(L)-semigroup in [1], p. 117. Such a topological monoid S can be considered as a mapping cylinder
MC( f ) of a quotient morphism f : X → X/N of a compact connected Lie group X where N is a
normal sphere subgroup of X (see [1–3]).

In [2], p. 315, it was shown that every commutative n-dimensional (L)-semigroup is a retract of a
compact connected Lie group, and if n ≤ 4, then every n-dimensional (L)-semigroup is a retract of a
compact connected Lie group. In this note, it is shown that the sum of two commutative (L)-semigroups
cannot be a retract of a topological group, nor can the sum of two n-dimensional (L)-semigroups if
n ≤ 5.

2. (L)-Semigroup Splitting

Let I = [0, 1] denote the unit interval endowed with the operation of multiplication of real numbers.
If f : X → Y is a mapping between compact spaces, then the mapping cylinder MC( f ) is the quotient
space obtained by taking the disjoint union of X× I and Y and identifying each point (x, 0) ∈ X× I with
f (x) ∈ Y. There are natural embeddings iX : X → MC( f ) and iY : Y → MC( f ), so X and Y may be
regarded as disjoint closed subspaces of MC( f ), and it is easy to check that iY(Y) is a strong deformation
retract of MC( f ). In the special case when Y consists of a single point v, the mapping cylinder is called
the cone over X, denoted by cone(X).

Let Sn denote the unit n-sphere in Euclidean n-space Rn. Then, in the following result of Mostert
and Shields [1], cone(Sn), n = 0, 1, 3, is homeomorphic to the unit one-ball in the real line R1, the unit
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disk E2 in the complex plane C, the unit four-ball E4 in the quaternions H, respectively, and is
considered to be a topological monoid with the inherited multiplicative structure.

Proposition 1 (Mostert and Shields [1]; also see [2,3]). Let X be a compact connected Lie group with a
closed normal subgroup N such that N is isomorphic to Sn, n = 0, 1, 3, and let f : X → X/N = Y be the
quotient morphism. Then:

(1) S = MC( f ) is a compact manifold with boundary iX(X) with S being a topological monoid
such that H(S) = iX(X) is the group of units of S with identity iX(1X) and M(S) = iY(Y) is the
minimal ideal of S with identity iY(1Y).

(2) S = MC( f ) is a locally-trivial fibre bundle over the Lie group Y = X/N as base with fibre
F = cone(N), the unit n-ball for n = 1, 2, 4.

A compact topological monoid S of the above type is called an (L)-semigroup in the literature and
S is nonorientable if N = S0 and orientable if N = Sn, n = 1, 3. (Theorem C in [1]).

Let S and T be two (L)-semigroups with boundary B, and let h : B → B be an autohomeomorphism
of B. The quotient space obtained by taking the union of S× {0} and T× {1} and identifying the point
(x, 0) in S× {0} with (h(x), 1) in T × {1} for each x ∈ B is a closed (i.e., compact without boundary)
connected n-manifold. Any manifold M obtained in this fashion is said to admit an (L)-semigroup
splitting. In the case when h is the identity mapping, we call M the sum of S and T and denote it by
S + T. If S = T, then S + S = 2S, the double of the manifold S.

A space X is said to be homogeneous if for every a, b,∈ X, there is an autohomeomorphism h of
X such that h(a) = b.

Proposition 2. If M admits an (L)-semigroup splitting, then M admits the structure of a topological monoid
iff M is a Lie group.

Proof. If M is a Lie group, then it is a topological monoid. Thus, suppose M is a topological monoid.
A finite-dimensional homogeneous compact connected monoid admits the structure of a topological
group [4]. If, in addition, it is locally contractible, then it must be a Lie group since a compact connected
group is a Lie group iff it is locally contractible [5]. Since M is a closed connected n-manifold, the
result follows.  !

Proposition 3. Let G be a compact connected Lie group. If M admits an (L)-semigroup splitting, then so does
M× G. In particular, if M is an (L)-semigroup sum, then so is M× G.

Proof. Let M, S, T, and h : B → B be defined as in the definition of an (L)-semigroup splitting.
Then, S × G and T × G are (L)-semigroups with B × G as a boundary, and the correspondence
(x, g) �→ (h(x), g) determines an autohomeomorphism of B × G. It follows that M × G admits an
(L)-semigroup splitting if M does. In the case when h = 1B, the identity mapping on B, we obtain
M× G = (S× G) + (T × G).  !

Remark 1. It is well known that the fundamental group of an H-space is Abelian and that a covering space
of an H-space admits an H-space structure (cf. p. 78 and p. 157 in [6]). According to a famous theorem of
J.F.Adams [7], the only spheres that are H-space are Sn, n = 0, 1, 3, 7, and it follows that RPn, n = 0, 1, 3, 7,
are the only real projective n-spaces, which admit H-space structures. We also remark that if a product space is
homogeneous, then it admits an H-space structure iff each factor does (Corollary 2.5 in [8]).

Proposition 4. Let B be a compact connected Abelian Lie group and let S, and T be (L)-semigroups with
boundary B. Then, the sum S + T does not admit an H-space structure.
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Proof. Let Tn denote the n-torus, which is the product of n copies of the circle group S1. In the case
when B = T1 = S1, the normal sphere subgroups are S0 and S1. For the two element subgroups S0 of S1,
the quotient morphism f :S1 → S1 / S0 yields MC( f ) = M2, the classical Möbius band (see Example
2.3(b) in [2]). When the normal subgroup of S1 is S1, the quotient morphism f :S1 → S1/ S1 = {1}
yields MC( f ) = E2, the unit disk in the complex plane C (see Example 2.3(a) in [2]). Thus, the only
two-dimensional (L)-semigroup splittings are 2E2 = S2, E2 + M2 = RP2 and 2M2 = K2, the Klein bottle.
By Remarks 1, S2 and RP2 do not admit H-spaces structures, nor does K2 since its fundamental group
Π1(K2) is not Abelian (this follows from the fact that the Abelianization of Π1(K

2) is Z⊕ Z2, the direct
sum of the integers and a cyclic group of order two (see [6], p. 135), but Π1(K

2) must contain a copy
of Π1(T

2) =Z ⊕ Z since the two-torus T2 is a double covering space of the Klein bottle K2).
It follows from Proposition 2.3 that S2× Tn, RP3× Tn, and K2× Tn, n = 1, 2, · · · , are

(L)-semigroup sums. Since E2× Tn and M2× Tn are the only (n + 2)-dimensional (L)-semigroups with
boundary B =Tn+1 (see Corollaries 7.5.4 and 7.5.5 in [1]), it follows that the (L)-semigroup sum S + T
must be one of the manifolds S2, RP2, K2, S2× Tn, RP2× Tn or K2× Tn for n = 1, 2, · · · . However
none of these manifolds admit on H-space structure since a homogeneous product space admits an
H-space structure iff each of its factors does (see Corollary 2.5 in [8]).  !

We remark that a retract of a homogeneous H-space admits an H-space structure (cf. Proposition 2.4
in [8]). Consequently, we have the following corollary.

Corollary 1. Let B be a compact connected Abelian Lie group, and let S and T be (L)-semigroups with boundary B.
Then, the sum S + T is not a retract of a topological group.

Proposition 5. If M is a manifold that admits an (L)-semigroup splitting and is either two-dimensional or
orientable and three-dimensional, then the following statements are equivalent:

(1) M is a retract of a topological group.
(2) M admits an H-space structure.
(3) M is a Lie group.

Proof. In the two-dimensional case, the collection of (L)-semigroup sums coincides with the collection
of spaces that admit (L)-semigroup splittings since the connected sum of two surfaces is independent
of the homeomorphism h used to form the connected sum. Thus, the only surfaces that admit
(L)-semigroup splittings are S2, RP2, and K2, and the result follows for surfaces.

The remark following the proof of Proposition 4 shows that (1) implies (2), and since the
topological group is a retract of itself, (3) implies (1). Thus, it suffices to show that (2) ⇒ (3).
As was noted in the proof of Proposition 4, the only orientable three-dimensional (L)-semigroup is the
solid torus E2× S1. It follows that M must be a (p, q)-lens space L(p, q) where the degenerate cases
L(0, 1) = S2× S1 and L(1, q) = S3 are included (see p. 234 in [9]). It follows from a theorem of William
Browder (p. 140 in [10]) that only L(1, q) = S3 and L(2, 1) = RP3 = SO(3) admit H-space structures.
Since each of these spaces is a Lie group, the result follows.  !

Lemma 1. Let X be a closed n-manifold, which is the total space of a locally-trivial S2 fibre bundle over a
compact Lie group G. Then, X does not admit an H-space structure.

Proof. Suppose X does admit an H-space structure, and consider the fibre bundle S2 → X → G.
This sequence extends to a fibration sequence · · ·ΩG → S2 → X → G (cf. [11], p. 409). Since
X is a (compact metric) ANR-space (see [12]), it has the homotopy type of a finite complex ([13],
Corollary 44.2), and it follows from a theorem of W.Browder ([14]) that Π2(X) = 0, where Π2(X)

denotes the second homotopy group of X. Exactness yields a surjection from Π2(ΩG) onto Π2(S
2).

An element of Π2(ΩG) mapping to a generator of Π2(S
2) is represented by a map S2 → ΩG whose
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composition with the map Ω(G)→ S2 is homotopic to the identity mapping 1S2 on S2. Consequently,
there is a homotopy retraction r : ΩG → S2 (i.e., r| S2 is homotopic to 1S2 ). Since a loop space admits
an H-space structure, we may assume that ΩG is an H-space with identity e, and we may assume that
e ∈ S2 (since ΩG is a homogeneous space when viewed as a loop group).

Define a mapping m : S2 × S2 → S2 by m(x, y) = r(xy) for x, y ∈ S2, where xy denotes the
product of x and y in the H-space ΩG. The maps S2 → S2 given by x �→ m(x, e) and x �→ m(e, x)
are homotopic to the identity mapping 1S2 , and therefore, e is a homotopy identity of S2. For CW
complexes the existence of a homotopy identity can be used as the definition of an H-space (see [11],
p. 291). Consequently, S2 admits an H-space structure, and this contradiction completes the proof of
the lemma.  !

Proposition 6. Let S = MC( f ) be an (L)-semigroup as defined in Proposition 1 where X is a compact
connected Lie group and f : X → X/N = Y is a quotient morphism with N being a closed normal subgroup of
X, which is isomorphic to S1. Then, the double 2S does not admit an H-space structure.

Proof. By Proposition 1 S = MC( f ) is a locally-trivial E2 bundle over the compact connected Lie
group Y, and it follows that its double is a locally-trivial S2 bundle over Y. Consequently, by Lemma 1,
2S does not admit an H-space structure.  !

Corollary 2. Let f : U(n) → U(n)/ZU(n) = PU(n) denote the quotient morphism where U(n) is the
unitary group, Z(U(n)) is its centre, and PU(n) is the projective unitary group. Then, if n > 1 and
S = MC( f ), the double 2S does not admit an (H)-space structure.

Proof. The elements of U(n) are the complex n × n unitary matrices, and its centre Z(U(n)) is
isomorphic to S1 since its elements are diagonal matrices equal to eiθ multiplied by the identity
matrix. It follows from Proposition 6 that 2S does not admit an H-space structure.  !

Theorem 1. No (L)-semigroup sum of dimension n ≤ 5 admits an H-space structure.

Proof. Proposition 4 shows that the result is true for all n-dimensional (L)-semigroup sums of the
form S + L where both S and L have a compact connected Abelian Lie group boundary B. Thus, we
need only consider admissible n-dimensional non-Abelian boundaries B with n = 3, 4. Hence, B must
be one of S3, S1 × S3, S1 × SO(3) and U(2) (we note that SO(3) does not qualify as an admissible
boundary for an (L)-semigroup since it does not contain normal subgroups of the form Sn, n = 0, 1, 3).

In [2], it is shown that the (L)-semigroups with boundary S3 are E4 and the four-dimensional
Möbius manifold M4 (which is homeomorphic to RP4 with the interior of a four-dimensional Euclidean
ball removed). It follows (see [2]) that the (L)-semigroups with boundaries S3, S1 × S3, S1 × SO(3)
are E4, M4, E2 × S3, M2 × S3, S1 × E4, S1 ×M4, E2 × SO(3), M2 × SO(3), and the corresponding
(L)-semigroup sums are S4, RP4, 2M4, S2 × S3, RP4 × S3, K2 × S3, S1 × S4, S1 × RP4, S1 × (2M4),
S2 × SO(3), RP2 × SO(3), K2 × SO(3). Since a retract of a homogeneous H-space admits an H-space
structure (cf. [8], Prop. 2.4), it follows that no product containing a copy of S2, S4, RP2, RP4 of K2

as a factor can admit an H-space structure. This leaves only 2M4 for consideration. However, its
fundamental group Π1(2M4) is the free product of Π1(RP

4) = Z2 with itself, which is non-Abelian, so
2M4 does not admit an H-space structure. Finally, the only five-dimensional (L)-semigroup sum with
boundary U(2) is the manifold 2U(2) in Corollary 2, which does not admit an H-space structure.  !

Corollary 3. No (L)-semigroup sum of dimension n ≤ 5 is a retract of a topological group.

Proof. It was noted above that every retract of a homogeneous H-space admits an H-space structure.
Since a topological group is an H-space, the result follows from Theorem 1.  !
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In [15], a space homeomorphic to a retract of a topological group is called a GR-space (often
referred to as a retral space in the literature). Clearly AR-spaces and topological groups themselves are
GR-spaces, and in [2], it was shown that M2 and M4 are GR-spaces. Since GR-spaces are preserved
by topological products, it follows that products of E2, E4, M2, M4, and topological groups are
GR-spaces. This will include all the (L)-semigroups mentioned in this note excluding (L)-semigroups
with boundary U(n), n ≥ 2. This suggests two questions.

(a) Is every (L)-semigroup a retract of a topological group?
(b) Does every (L)-semigroup sum fail to admit an H-space structure?

Funding: This research received no external funding.

Acknowledgments: I am very indebted to Karl H. Hofmann who introduced and explained (L)-semigroups to
me and to John Harper and Allen Hatcher for private communications involving H-spaces.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Mostert, P.S.; Shields, A.L. On the structure of semigroups on a compact manifold with boundary. Ann. Math.
1957, 65, 117–143. [CrossRef]

2. Hofmann, K.H.; Martin, J.R. Möbius manifolds, monoids, and retracts of topological groups. Semigroup Forum
2015, 90, 301–316. [CrossRef]

3. Hofmann, K.H.; Mostert, P.S. Elements of Compact Semigroups; Merrill Publishing Company: Columbus,
OH, USA, 1966.

4. Hudson, A.; Mostert, P.S. A finite-dimensional clan is a group. Ann. Math. 1963, 78, 41–46. [CrossRef]
5. Hofmann, K.H.; Kramer, L. Transitive actions of locally compact groups on locally contractible spaces.

J. Reine Angew. Math. 2015, 702, 227–243; Erratum in 2015, 702, 245–246.
6. Massey, W.S. Algebraic Topology: An Introduction; Springer-Verlag: New York, NY, USA, 1987.
7. Adams, J.F. On the non-existence of elements of Hopf invariant one. Ann. Math. 1960, 72, 20–104. [CrossRef]
8. Hofmann, K.H.; Martin, J.R. Topological Left-loops. Topol. Proc. 2012, 39, 185–194.
9. Rolfsen, D. Knots and Links; Mathematics Lecture Series 7; Publish or Perish, Inc.: Berkely, CA, USA, 1976.
10. Browder, W. The cohomology of covering spaces of H-spaces. Bull. Am. Math. Soc. 1959, 65, 140–141.

[CrossRef]
11. Hatcher, A. Algebraic Topology; Cambridge University Press: Cambridge, UK, 2002.
12. Borsuk, K. Theory of Retracts. In Monografie Matematyczne; PWN: Warsaw, Poland, 1967; Volume 44.
13. Chapman, T.A. Lectures on Hilbert Cube Manifolds; American Mathematical Soc.: Providence, RI, USA, 1976.
14. Browder, W. Torsion in H-spaces. Ann. Math. 1961, 74, 24–51. [CrossRef]
15. Hofmann, K.H.; Martin, J.R. Retracts of topological groups and compact monoids. Topol. Proc. 2014, 43,

57–67.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

140



axioms

Article

Varieties of Coarse Spaces

Igor Protasov ID

Faculty of Computer Science and Cybernetics, Kyiv University, Academic Glushkov pr. 4d, 03680 Kyiv, Ukraine;
i.v.protasov@gmail.com or do@unicyb.kiev.ua

Received: 27 March 2018; Accepted: 10 May 2018; Published: 14 May 2018

Abstract: A class M of coarse spaces is called a variety if M is closed under the formation of subspaces,
coarse images, and products. We classify the varieties of coarse spaces and, in particular, show that if
a variety M contains an unbounded metric space then M is the variety of all coarse spaces.

Keywords: coarse structure; coarse space; ballean; varieties of coarse spaces

MSC: 54E35; 08B85

1. Introduction

Following [1], we say that a family E of subsets of X × X is a coarse structure on a set X if:

• Each ε ∈ E contains the diagonal �X , �X = {(x, x) : x ∈ X};
• If ε, δ ∈ E then ε ◦ δ ∈ E and ε−1 ∈ E , where ε ◦ δ = {(x, y) : ∃z((x, z) ∈ ε, (z, y) ∈ δ)}, and

ε−1 = {(y, x) : (x, y) ∈ ε};
• And if ε ∈ E and �X ⊆ ε′ ⊆ ε then ε′ ∈ E .

Each ε ∈ E is called an entourage of the diagonal. A subset E′ ⊆ E is called a base for E if, for every
ε ∈ E there exists ε′ ∈ E ′ such that ε ⊆ ε′.

The pair (X,E) is called a coarse space. For x ∈ X and ε ∈ E , we denote B(x, ε) = {y ∈ X : (x, y) ∈ ε}
and say that B(x, ε) is a ball of radius ε around x. We note that a coarse space can be considered as an
asymptotic counterpart of a uniform topological space and can be defined in terms of balls, see [2,3].
In this case a coarse space is called a ballean.

A coarse space (X, E) is called connected if, for any x, y ∈ X, there exists ε ∈ E such that y ∈ B(x, ε).
A subset Y of X is called bounded if there exist x ∈ X and ε ∈ E such that Y ⊆ B(x, ε). The coarse
structure E = {ε ∈ X × X : �X ⊆ ε} is the unique coarse structure such that (X, E) is connected
and bounded. In what follows, all coarse spaces under consideration are assumed to be connected.

Given a coarse space (X, E), each subset Y ⊆ X has the natural coarse structure E|Y = {ε ∩ (Y ×
Y) : ε ∈ E}, where (Y, E|Y) is called a subspace of (X, E). A subset Y of X is called large (or coarsely
dense) if there exists an ε ∈ E such that X = B(Y, ε) where B(Y, ε) = ∪y∈YB(Y, ε).

Let (X, E), and (X′, E′) be coarse spaces. A mapping f : X −→ X′ is called coarse (or bornologous
in the terminology of [1]) if, for every ε ∈ E there exists an ε′ ∈ E ′ such that, for every x ∈ X, we have
f (B(x, ε)) ⊆ (B( f (x), ε′)). If f is surjective and coarse then (X′, E′) is called a coarse image of (X, E).
If f is a bijection, such that f and f−1 are coarse mappings, then f is called an asymorphism. The coarse
spaces (X, E), (X′, E′) are called coarsely equivalent if there exist large subsets Y ⊆ X, and Y′ ⊆ X such
that (Y, E|Y) and (Y′, E′|Y′) are asymorphic.

To conclude the coarse vocabulary, we take a family {(Xα, Eα) : α < κ} of coarse spaces and define
the product Pα<κ(Xα, Eα) as the set Pα<κXα endowed with the coarse structure with the base set Pα<κEα.
If εα ∈ Eα, for α < κ and x, y ∈ Pα<κXα, where x = (xα)α<κ , and y = (yα)α<κ then (x, y) ∈ (εα)α<κ if
and only if (xα, yα) ∈ εα for every α < κ.
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Let M be a class of coarse spaces closed under asymorphisms. We say that M is a variety if M
is closed under the formation of subspaces (SM ⊆ M), coarse images (QM ⊆ M), and products
(PM ⊆M).

For an infinite cardinal κ, we say that a coarse space (X, E) is κ-bounded if every subset Y ⊆ X,
such that |Y| < κ, is bounded. Additionally, we denote Mκ as the variety of all κ-bounded coarse
spaces. We denote by Msingle and Mbound the variety of singletons and the variety of all bounded
coarse spaces, respectively. Thus we have the chain of varieties:

Msingle ⊂Mbound ⊂ . . . ⊂Mκ ⊂ . . . ⊂Mω.

In Section 2, we prove that every variety of coarse spaces lies in this chain and, in Section 3,
we discuss some extensions of this result to coarse spaces endowed with additional algebraic structures.

2. Results

We recall that a family I of subsets of a set X is an ideal in the Boolean algebra PX of all subsets
of X, if I is closed under finite unions and subsets. Every ideal I defines a coarse structure with the
base {EA : A ∈ I} where EA = (A× A) ∪�X . Therefore, B(x, EA) = A if x ∈ A and B(x, EA) = {x}
if x ∈ X \ A. We denote the obtained coarse space by (X, I). For a cardinal κ, [X]<κ denotes the ideal
{Y ⊆ X : |Y| < κ}. If (X, E) is a coarse space, the family I of all bounded subsets of X is an ideal.
The coarse space (X, I) is called the companion of (X, E).

Let K be a class of coarse spaces. We say that a coarse space (X, E) is free with respect to K if,
for every (X′, E′) ∈ K every mapping f : (X, E) −→ (X′, E′) is coarse. For example, (X, [X]<κ) is free
with respect to the variety Mκ . Since (κ, [κ]<κ) ∈Mκ but (κ, [κ]<κ) /∈Mκ′ for each κ′ > κ; the inclusion
Mκ′ ⊂Mκ is strict.

Lemma 1. If a coarse space (X, E) is free with respect to a class K then (X, E) is free with respect to SK,
QK, PK.

Proof. We verify only the second statement. Let (X′, E′) ∈ K, (X′′, E′′) ∈ QK, and h : (X′, E′) −→
(X′′, E′′) be a coarse surjective mapping. We take an arbitrary f : X −→ X′′ and choose h′ : X −→ X′

such that f = hh′. Since (X, E) is free with respect to K, h′ : (X, E) −→ (X′, E′) is coarse so f is coarse
as the composition of the coarse mappings h, and h′.

Lemma 2. Let X be a set and let K be a class of coarse spaces, K �= Msingle. Then there exists a coarse structure
E on X such that (X, E) ∈ SPK and (X, E) is free with respect to K.

Proof. We take a set S of all pairwise non-asymorphic coarse spaces (X′, E′) ∈ K, such that |X′| ≤ |X|,
and enumerate all possible triplets {(Xα, Eα, fα) : α < λ}, such that (Xα, Eα) ∈ S and fα : X −→ Xα.
Then we consider the product Pα<λ(Xα, Eα) and define f : X −→ Pα<λXα by f (x) = ( fα(x))α<λ. Since
K �= Msingle, f is injective and so we can identify X with f (X) and consider the subspace (X, E) of
Pα<λ(Xα, Eα) . Clearly, (X, E) ∈ SPK.

To see that (X, E) is free with respect to K, it suffices to verify that, for each (X′, E′) ∈ S, every
mapping h : (X, E) −→ (X′, E′) is coarse. We take β < λ such that (X′, E′) = (Xβ, Eβ) and h = fβ.
Then fβ is the restriction to X of the projection prβ : Pα<λ(Xα, Eα) −→ (Xβ, Eβ). Hence, fβ is coarse.

Theorem 1. For every class K of coarse spaces, the smallest variety, Var K, containing K is QSPK.

Proof. The inclusion QSPK ⊆ K is evident. To prove the inverse inclusion, we suppose that
K �= Msingle (this case is evident) and take an arbitrary (X′, E′) ∈ Var (K). Then (X′, E′) can be
obtained from K by means of some finite sequence of operations S, P, Q. We use Lemma 2 to choose a
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coarse space (X, E) ∈ SPK, with |X| = |X′|, which is free with respect to K. By Lemma 1, any bijection
f : (X, E) −→ (X′, E′) is coarse so (X′, E′) ∈ QSPK.

Theorem 2. Let M be a variety of coarse spaces such that M �= Msingle, and M �= Mbound. Then there exists
a cardinal κ such that M = Mκ .

Proof. Since M �= Mbound and M �= Msingle, there exists a minimal cardinal κ such that M contains an
unbounded space of cardinality κ; so M ⊆Mκ .

To verify the inclusion Mκ ⊆ M, we take a coarse space (X, E) ∈ M, which is free with respect
to M, and show that (X, E) is free with respect to Mκ . We prove that (X, E) = (X, [X]<κ). If |X| < κ

then (X, E) is bounded and the statement is evident. Assume that |X| ≥ κ but (X, E) �= (X, [X]<κ).
Assume that, for every ε, ε = ε−1, the set Sε = {x ∈ X : |B(x, ε)| > 1} is bounded in (X, E). By the
choice of κ, |Sε| < κ and |B(x, ε)| = 1 for all x ∈ X \ Sε. It follows that (X, E) = (X, [X]<κ). Then there
exists an ε ∈ E such that the set Sε is unbounded in (X, E).

We choose a maximal, by inclusion, subset Y ⊂ X such that B(y, ε) ∩ B(y′, ε) = ∅ for all distinct
y, y′ ∈ Y. We observe that Y is unbounded so |Y| ≥ κ. We take an arbitrary x0 ∈ X and choose a
mapping f : X −→ X such that f (y) = x0 for each y ∈ Y and f is injective on X \ Y. Since (X, E) is
free with respect to M, the mapping f : (X, E) −→ (X, E) must be coarse. Hence, there exists an ε′ ∈ E
such that f (B(x, ε)) ⊆ B( f (x), ε′) for each x ∈ X. It follows that f (∪y∈YB(y, ε)) is bounded in (X, E).
We note that | f (∪y∈YB(y, ε))| ≥ κ so (X, E) contains a bounded subset Z such that |Z| = κ. Since
(X, E) is free with respect to M, every (X′, ε′) ∈ M is κ+-bounded and we get a contradiction with
the choice of κ. To conclude the proof, we take an arbitrary (X, E′) ∈ Mκ and note that the identity
mapping id : (X, [X]<κ) −→ (X, E′) is coarse so (X, E′) ∈M.

Remark 1. We note that Msingle is not closed under coarse equivalence because each bounded coarse space
is coarsely equivalent to a singleton. Clearly, Mbound is closed under coarse equivalence. We show that the
same is true for every variety Mκ . Let (X, E) be a coarse space, Y be a large subset of (X, E). We assume that
(Y, E|Y) ∈ Mκ but (X, E) /∈ Mκ . Then X contains an unbounded subset Z such that |Z| < κ. We choose
ε ∈ E such that ε = ε−1 and X = B(Y, E). For each z ∈ Z, we pick yz ∈ Y such that z ∈ B(yz, E).
We let Y′ = {yz ∈ Z}. Since |Y′| < κ, Y′ is bounded in (Y, E|Y). It follows that Z is bounded in (X, E),
a contradiction with the choice of Z.

We note also that every variety of coarse spaces is closed under formations of companions. For Msingle and
Mbound, this is evident. Let (X, E) ∈Mκ and I be the ideal of all bounded subsets of (X, E). Since (X, [X]<κ)

is free with respect to Mκ , the identity mapping id : (X, [X]<κ) −→ (X, E) is coarse. Hence, [X]<κ ⊆ I and
(X, E) ∈Mκ .

Remark 2. Every metric d on a set X defines a coarse structure Ed on X with the base {(x, y) : d(x, y) ≤ n},
n ∈ ω. A coarse structure E on X is called metrizable if there exists a metric d on X such that E = Ed.
By ([3], Theorem 2.1.1), E is metrizable if and only if E has a countable base. From the coarse point of view,
metric spaces are important in Asymptotic Topology, see [4].

We assume that a variety M of a coarse space contains an unbounded metric space (X, d) and show
that M = Mω. We choose a countable unbounded subset Y of X and note that (Y, d) /∈ Mκ for κ > ω so
(Y, d) ∈Mω \Mκ , and the variety generated by (X, d) is Mω.

3. Comments

1. Let G be a group with the identity e. An ideal I in PG is called a group ideal if [G]<ω ⊆ I and
AB−1 ∈ I for all A, B ∈ I .

Let X be a G-space with the action G × X −→ X, and (g, x) �−→ gx. We assume that G acts
on X transitively, take a group ideal I on G, and consider the coarse structure E(G, I , X) on X with
the bases {εA : A ∈ I , e ∈ A}, where εA = {(x, gx) : x ∈ X, g ∈ A}. Then B(x, εA) = Ax, where
Ax = {gx : g ∈ A}.
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By ([5], Theorem 1), for every coarse structure E on X, there exist a group G of permutations of
X and a group ideal I in PG such that E = E(G, I , X). Now let X = G such that G acts on X by left
shifts, x �−→ gx for g ∈ G. We denote (G, E(G, I , G)) by (G, I) and say that (G, I) is a right coarse
group. If I = [G]<ω then (G, I) is called a finitary right coarse group. In the metric form, these structures
on finitely generated groups play an important role in geometric group theory, see ([6], Chapter 4).

A group G endowed with a coarse structure E is a right coarse group if and only if, for every
ε ∈ E , there exists ε′ ∈ E such that (B(x, ε))g ⊆ B(xg, ε′) for all x, g ∈ G. For group ideals and coarse
structures on groups see ([3], Chapter 6) and [7].

2. A class M of right coarse groups is called a variety if M is closed under formation of subgroups,
coarse homomorphic images, and products.

LetK be a class of right coarse groups, and G be a group generated by a subset X ⊂ G. We say that
a right coarse group (G, I) is free with respect to K if, for every (G′, I′) ∈ K, any mapping X −→ G′

extends to the coarse homomorphism (G, I) −→ (G′, I′). Then Lemmas 1 and 2 and Theorem 1 hold
for the right coarse groups in place of coarse spaces.

Let M be a variety of right coarse groups. We take an arbitrary (G, I) ∈ M, delete the coarse
structure on G and the class M� of the groups. If (G, I) ∈M then (G,PG) ∈M. It follows that M� is a
variety of groups.

Now let G be a variety of groups different from the variety of singletons. We denote by Gbound
the variety of right coarse groups (G,PG), f orG ∈ G. For an infinite cardinal κ, we denote by Gκ , the
variety of all κ-bounded right coarse groups (G, I), for G ∈ G.

Let M be a variety of right coarse groups such that M� = G. In contrast to Theorem 2, we do not
know if M lies in the chain:

Gbound ⊂ . . . ⊂ Gκ ⊂ . . . ⊂ Gω.

If G is a group of cardinality κ and G ∈ G then (G, [G]<κ) ∈ Gκ \ Gκ′ for each κ′ > κ. Hence,
all inclusions in the above chain are strict.

3. Let Ω be a signature, A be an Ω-algebra, and E be a coarse structure on A. We say that A is a
coarse Ω-algebra if every n-ary operation from Ω is coarse, for example the mapping (A, E)n −→ (A, E).
We note that each coarse group is a right coarse group but the converse statement need not be true,
see ([3], Section 6.1).

A class M of a coarse Ω-algebra is called a variety if M is closed under formation of subalgebras,
coarse homomorphic images, and products. Given a variety M of coarse algebras, the class M� of
all Ω-algebras A, such that (A, E) ∈ M, is a variety of Ω-algebras. Let A be a variety of Ω-algebras
different from the variety of singletons. We let Abound be the variety of coarse algebras (A,PA), for
A ∈ A. For an infinite cardinal κ, we denote Aκ as the variety of all κ-bounded Ω-algebras (A, E) such
that A ∈ A, and get the chain:

Abound ⊆ . . . ⊆ Aκ ⊆ . . . ⊆ Aω,

however, we can not state that all inclusions are strict. In the case of course groups, this is because each
non-trivial variety of groups contains some Abelian group A, of cardinality κ, and the coarse group
(A, [A]<κ) is κ-bounded but not κ+-bounded.

4. A class M of topological Ω-algebras (with regular topologies) is called a variety (a wide variety) if
M is closed under formation of closed subalgebras (arbitrary subalgebras), continuous homomorphic
images, and products. Wide varieties and varieties are characterized syntactically by the limit laws [8]
and filters [9]. In our coarse case, the part of filters is played by the ideals [X]<κ .

There are only two wide varieties of topological spaces, the variety of singletons and the variety
of all topological spaces, but there are plenty of varieties of topological spaces. The variety of coarse
spaces Mκ is a twin of the varieties of topological spaces in which every subset of cardinality < κ is
compact. We note also that Gκ might be considered as a counterpart to the variety T(κ) of topological
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groups from [10], where G ∈ T(κ) if and only if each neighborhood of e contains a normal subgroup of
index strictly less then κ.

5. A class M of uniform spaces is called a variety if M is closed under formation of subspaces,
products and uniformly continuous images. For an infinite cardinal κ, a uniform space X is called
κ-bounded if X can be covered by < κ balls of arbitrary small radius. Every variety of uniform spaces
different from varieties of singletons and all spaces coincides with the variety of κ-bounded spaces for
some κ, see [11]. I thank Miroslav Hušek for this reference.
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