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Preface

Animal-Computer Interaction (ACI) is a multidisciplinary field concerned with the design of
technology for, with, and from the perspective of all species of animals. In some cases, interactions with
technology are explicit and direct, requiring specially designed interfaces between system and user; in
others, the technology may play a hidden role, monitoring and analysing an animal’s behaviour or
changing their environment. An emphasis on animal welfare gives rise to philosophical considerations,
as well as driving new research methods and technologies.

This Special Issue shares new ideas and developments in the field of ACI, including those that
advance scientific knowledge about animals, enhance connections between species, improve the
stewardship of animals in human care, and articulate the design of systems that offer greater autonomy
to other species. This collection of articles features research with mammals, birds, fish, reptiles, and
amphibians, including wild, farmed, zoo-housed, and working contexts. The authorship represents
five continents (Europe, Asia, North America, South America, and Australia) and amply demonstrates
the potential for interesting and insightful collaborations between animal experts and technologists.

One of the themes addressed is the design of monitoring systems and environmental enrichment
opportunities for zoo-managed and farm-dwelling species, aiming to support the expression of natural
behaviours and analyse markers of well-being. Jeon et al. consider precision farming methods that use
computer vision techniques to evaluate the health and welfare of pigs, while Golfidis et al. describe
attempts to assess chicken emotions through analysing their vocalisations. French et al. offer a set of
guidelines to support the use of technology-enhanced enrichment opportunities aimed at managed
nocturnal and crepuscular species, and Vonk discusses the design of an analogue scale for zoo-housed
bears so they can express their preferences.

Research in the Special Issue informs our understanding of other species’ perceptive and cognitive
capabilities. Examples of studies that focus on this aspect include those of Goulart and Young, who
explore colour vision in zoo-housed primates, and Wood and Wood, who study how early exposure to
three-dimensional geometry relates to future object recognition in farmed chickens.

Several papers focus on the deployment of machine learning techniques to identify individuals
or species, monitor behavioural patterns, and analyse genetic markers. Wang et al. describe the
development of a system for identifying different species of fish in blurry underwater scenarios, and
Xu et al. explain their model for identifying individual endangered Amur tigers. Using a similar
approach, Zhang et al. attempt to address conflict resolution between felines and humans in China
through early animal detection, while Lund et al. compare the behavioural characteristics of two
African elephants. Thorsrud et al. investigate the potential for genomic selection in working dogs by
exploring heritable and non-heritable characteristics across a selection of breeds.

The range of topics and approaches is indicative of the wide-ranging interest in ACI across
different disciplines and areas of study. Collectively, these diverse studies converge to offer innovative
methods and deeper insights into animal technology use, paving the way for future efforts to design
more voluntary and participatory interactions that enhance the autonomy, choice and control offered
to animals in managed care. Research in this field is always challenging and ground-breaking, with
each piece of work adding to our growing pool of knowledge about the others with whom we share

our beautiful world.

Fiona French and Christopher Flynn Martin
Guest Editors
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Investigation through Animal-Computer Interaction: A
Proof-of-Concept Study for the Behavioural Experimentation of
Colour Vision in Zoo-Housed Primates

Vinicius Donisete Lima Rodrigues Goulart ! and Robert John Young 2*

Transportation Research and Environmental Modelling Laboratory—TREM, Institute of Geosciences,
Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; viniciusdonisete@gmail.com
School of Science, Engineering and Environment, Peel Building, University of Salford Manchester,
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Simple Summary: Animal-computer interactions provide an opportunity for behavioural investi-
gations. Once appropriate interfaces are established, it is possible to provide new possibilities for
improving animal welfare and experimentation. Zoos are an important repository of animals and
provide a great source of biological knowledge. By using accessible materials and with low levels of
programming, we were able to develop a safe and reliable design for testing the sensory abilities of
New World primates. The proof-of-concept for testing colour vision through a behavioural experi-
ment resulted in engagement from the tested animals and an alternative for investigating the sensory
abilities of this complex group of animals. In conclusion, we encourage the use of animal-computer

interaction frameworks to enrich and develop scientific knowledge from captive animals.

Abstract: Zoos are an important repository of animals, which have a wide range of visual systems,
providing excellent opportunities to investigate many comparative questions in sensory ecology.
However, behavioural testing must be carried out in an animal welfare-friendly manner, which is
practical for zoo staff. Here, we present a proof-of-concept study to facilitate behavioural research on
the sensory ecology of captive primates. A system consisting of a tablet computer and an automated
feeder connected wirelessly was developed and presented to captive primate species to evaluate
interactions with and without previous training. A colour stimulus, analogous to the Ishihara test,
was used to check the level of interaction with the device, supporting future studies on sensory
ecology with zoo animals. Animals were able to use the system successfully and displayed signs
of learning to discriminate between the visual stimuli presented. We identified no risk for small
primates in their interactions with the experimental setup without the presence of keepers. The
use of electronic devices should be approached with caution to prevent accidents, as a standard
practice for environmental enrichment for larger animals (e.g., spider monkeys). In the long term, the
system developed here will allow us to address complex comparative questions about the functions
of different visual systems in captive animals (i.e., dichromatic, trichromatic, etc.).

Keywords: colour vision; zoo; animal experimentation; behavioural research; sensory ecology;

animal-computer interaction; ACI; animal welfare

1. Introduction

Zoos are an important repository of animals, housing tens of thousands of different
animal species around the world and millions of individuals, providing environmental
education, aiding conservation efforts, and contributing to scientific research [1-3]. The
use of artificial elements in exhibits has received some criticism from advocates of strictly
naturalistic exhibits advocates, which may have caused reticence in the uptake of modern
technology in research [4]. Zoos have a great potential for behavioural research, but for
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pure research, such as sensory ecology, this resource is largely under-utilised. The most
obvious explanation for this is that zoos focus on conservation research, along with the
fact that zoos have many other restrictions on the type of research they will allow [5]. For
instance, a challenge faced by researchers conducting studies in zoos is the restriction on
handling animals or modifying the enclosures, which is often necessary to achieve the best
experimental design [6]. Despite the possible mischaracterization of naturalistic enclosures,
environmental enrichment devices such as touchscreen computers have not affected the zoo
visitors’ perceptions towards animal welfare [7]. Zoo-based research often faces difficulties
with small sample sizes, which can be overcome by multi-zoo studies with equipment that
is easy to adapt to different enclosures. Thus, using methods less demanding to keepers’
routines by automating data collection and animal-computer interaction experiments
shared among zoological institutions could be the answer. Furthermore, zoo-based research
should not have a negative impact on animal welfare. Given that these restrictions (i.e.,
animal welfare and keeper time) are red lines that zoos will not cross, researchers need to
develop alternative methods for conducting their research.

Computer interfaces are centred in human abilities, such as the visual system and
physical input hardware (i.e., keyboard or mouse); however, some interfaces are cross-
species, such as audio, video tracking, accelerometers, and haptic sensors [8]. This leads to
the development of interfaces appropriate for animal use. The animal-computer interaction
(ACI) is a growing field in environmental enrichment and the animal experimentation
field [9]. It can be a source of stimuli in animal enclosures, providing an enriched environ-
ment for better animal welfare [10]. Moreover, this approach can be used to experiment
and test hypotheses, thereby allowing the study of animal behaviour in animal collections
such as zoos [11].

Tablet computers are an affordable technology to investigate the sensory abilities
of different animals: their thin profile and touch interface allow an intuitive interaction
when compared to traditional computers, where mouse and keyboards comprise the main
input hardware. Therefore, there is no need to translate physical movement into virtual
movement [9]. The number of sensors present in commercially available tablets increases
the possibility of their application to address behavioural and sensory questions. For
instance, accelerometers built in the device can be used to record positional behaviour [12];
proximity sensors can trigger data loggers [13]; or the display and touch screen can be used
for stimuli presentation [14,15].

One challenge imposed by using touch screens for colour stimuli presentation is that
colour replication accuracy cannot be guaranteed. For instance, sensory ecology and vision
research usually employs no digital compression in photos taken from cameras, colour
checker cards, or colour-referenced stimuli [16,17]. Therefore, any behavioural research
should take into consideration variations in colour stimuli presented on different screen
types and proceed with calibration methods.

Colour discrimination in animals is related to the number of photoreceptors sensitive
to different wavelengths of light [18]. Vertebrates, such as the nocturnal owl monkey
(Aotus sp.), have one photoreceptor and are not able to distinguish colours (monochromats);
most mammals that have two photoreceptors are dichromats; the majority of Old World
primates are trichromats and have three photoreceptors; fishes, reptiles, and birds are
tetrachromats and have the best colour vision acuity among vertebrates [19,20]. The greatest
number of photoreceptors has been found in the mantis shrimp (Neogonodactylus oerstedii),
which has 12 photoreceptors [21]. Therefore, when using an animal-computer interface
display to perform behavioural research, it should be appropriate to the colour vision
system of the species in terms of the colour discrimination tasks involved.

New World primates have a polymorphic colour vision system [22,23]. Within the
same species, males are obligatory colour blind with a colour vision similar to a red—green
colour blind human, whereas females can be either dichromats or trichromats [24-26]. Each
phenotype has its own advantages: dichromats are best suited for vision in low light levels
and camouflage breaking, whereas trichromats outperform dichromats in detecting ripe
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food sources or detecting predators in photopic light levels [27-31]. For instance, dichromat
phenotypes under natural environmental conditions are notably more efficient at detecting
camouflaged insects, especially in low light, suggesting an ability to break camouflage
for detecting food sources and predators [32]. The trichromacy advantage conferred for
ripe fruits foraging in New World primates is supported by field studies on intake rates of
conspicuous coloured fruits favouring an trichromatic phenotype advantage conferring
nutritional benefit on fruit foraging [33]. Further studies investigating social cooperative
behaviour related to visual perception would help us understand the role of polymorphic
colour vision in New World primates.

Here, we present a proof-of-concept study concerning the realisation of behavioural
vision research in zoos. Thus, we investigated the use of commercial devices (i.e., off-the-
shelf tablet computers) and the development of a customisable feeder to be used by keepers
in zoo enclosures without causing disturbances to animal management or animal welfare.

2. Materials and Methods
2.1. Animals

A mixed group of two marmoset individuals (Callithrix geoffroyi), one male and one
female, and three titi monkeys (Plecturocebus cupreus), a pair and a young male, kept in
the same enclosure in Twycross Zoo, United Kingdom, were subjected to experimental
sessions. The experimental sessions took place in the same enclosure where the animals
were housed; the animals were free to move outdoors. There was no need for handling or
capturing the animals during the study, and, therefore, this did not occur.

A single group of three variegated spider monkeys (Ateles hybritus), two females and
one male, also housed in Twycross Zoo, were also used in the experiment. The experimental
setup was placed in an animal management area, with the animals being free to move to
their normal indoor enclosure or outdoors during the experimental session.

The animals were not deprived of food, and routine feeding and food enrichments
were maintained during this study. The experimental sessions were performed according
to the keeper’s routine husbandry sessions from December 2016 to April 2017. Each session
lasted 10 min and would have been terminated in case of any undesired circumstances
(e.g., aggression) towards the apparatus or group members.

2.2. Stimuli

The presented stimuli comprised an image composed of circles in varying sizes and
colours, comparable to the Ishihara colour blind test (i.e., pseudoisochromatic plate), which
was produced using Java code in Processing v2.2.1. Each circle had a maximum diameter of
22 pixels and a minimum diameter of 8 pixels. A white background was set, and the code
produced a random pattern where a static figure in PNG file format was placed randomly
on a canvas of 1024 x 576 pixels. The PNG file had no background, and the outline and
filling of the image were replaced by red-coloured circles. A rounded shape was used to
produce a red target (Figure 1).

An Android app was created using the MIT app inventor, where the images created
were shown on a tablet screen (Amazon Fire). If the target was touched, a clicker sound
was emitted, and the target’s position changed. If the wrong area was touched, a horn
sound was played, and the target did not change its location. The tablet had a wireless
connection to a feeder, which provided a raisin as a food reward if the right area in the
tablet’s screen was touched. A red—green colour blind human volunteer checked whether
the target was visible or not. Also, a spectrophotometer, Ocean Optics USB 2000+ VIS-NIR
(Halma plc, Amersham, UK), attached to a light source (LS-1 Tungsten Halogen light,
Ocean Optics, Halma plc, Amersham, UK), was used to collect the relative irradiance
from the tablet screen, and the colours of the target and background were compared by
calculating their JND (Just Noticeable Difference) modelling trichromatic and dichromatic
phenotypes. The tablet used did not have readily available colour calibration; therefore,
the colours selected for developing the pseudoisochromatic image used in this study
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were calibrated by programming, selecting adequate hex-codes given the validation by
volunteers and spectrophotometer measurements. Sensory analysis was performed using
R and the package Pavo [34,35].

Figure 1. A screen capture of the colour stimuli created to investigate the interaction of captive
primates with the apparatus developed to behaviourally investigate colour vision. A food reward
was provided by a feeder connected via Bluetooth when the red dots were pressed. A horn was
played by the tablet when the green dots were touched.

2.3. Apparatus

The feeder consisted of a DC motor attached to a plastic spiral that turned, pushing
the reward (raisins) from a plastic container. An Arduino UNO microcontroller board (AT-
mega328P) was connected to the DC motor using an L298N dual H-bridge DC motor driver
module. An Hm-10 Bluetooth module was also connected to the Arduino, allowing the
wireless connection to the tablet. A Kindle Fire tablet with a 7-inch screen with a resolution
of 1024 x 600 pixels and a rugged case was used (Table 1; Figures 2 and 3). A Ricoh theta
360 degrees camera in a protective case was used to film the experimental sessions.

Table 1. The components used to build a visual stimuli presentation device to behaviourally measure
colour vision.

Component Cost
Kindle Fire tablet computer, 7-inch 1024 x 600 screen, 313 g GBP 35.00
Arduino Uno microcontroller board ATmega328P GBP 17.30
DC motor-powered dispenser GBP 5.00
Bluetooth module Hm-10 GBP 6.00
L298N dual H-bridge DC motor module GBP 5.00
Rugged tablet case with screen protector GBP 15.00
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Figure 2. A schematic diagram of the automated wireless feeder used in behavioural colour
vision research.

Figure 3. Experimental apparatus during the performance of behavioural tests.

2.4. Procedure

The feeder, tablet, and camera were placed inside the marmoset/titis enclosure for
10 trials. At the start of the session, a raisin was placed on top of the correct stimuli to help
the association between the red target and the reward. No training was performed with the
marmosets and titis.

In the spider monkey enclosure, the camera and the feeder were positioned outside
the enclosure, and the keeper held the tablet, allowing the animals to touch the screen
through the mesh. The training consisted of placing the raisins on top of the target during
the first two minutes of the presentation, leaving the animals free to interact with the tablet
after the presentation. Behavioural data were collected ad libitum, reporting behaviours
expressed during interactions with the device. The time and the result of the interaction
were recorded. A total of 11 trials were performed.

The data were checked for normality, and non-parametric tests were used as we
found the data did not fulfil parametric requirements. A logistic regression was used
to evaluate the association between the tablet and the feeder. The number of sequential
interactions between the tablet and feeder occurred during the experimental session in
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the marmoset/titi enclosure. The frequency of training (only with the spider monkey
group) and the number of correct uses was checked for correlation to the accumulative time
using a Spearman’s rank correlation test. All statistics were performed in the R statistical
computing language [35].

3. Results
3.1. Stimuli

The colours suitable for a colour blind test are shown in Table 2 and Figure 4. By
averaging the target colours and background colour from the tablet screen using their
relative irradiance values, we found a colour distance of 2.8040 JND (Just Noticeable
Difference) for a trichromatic phenotype, and 0.2849 JND for a dichromat viewer. Therefore,
the target and background were not distinguishable in colour for dichromat phenotypes.

Table 2. Colour references of the pseudoisochromatic stimuli found to be undistinguishable by
di-chromatic colour vision phenotype (i.e., a red—green colour blind individual).

Colour

Hex-Colour Code CIE-Lab L CIE-Lab A CIE-Lab L

Category
Green d9CA594 66.6087 —6.3958 7.7143
Green ACB4A5 72.3152 —5.5814 6.6789
Green BBB946 73.3536 —13.7646 56.6906
Green D1D6AF 84.3514 —8.2588 18.7266
Green D7DAAA 85.7519 —8.8320 23.3500
Green E5D57D 84.8571 —6.2664 45.3062
Red EBA170 72.4431 22.2198 36.4731
Red F9BBS82 80.3436 15.6987 37.4752
Red FCCD84 85.0087 7.6967 42.4568

g 4 Background 2 | Target

E o o

= I T I T I = T I T I T

300 400 500 600 700 300 400 500 600 700

Wavelength (nm)

Figure 4. The relative irradiance of the pseudoisochromatic image taken from a commercial tablet
(Kindle Fire).

3.2. Marmosets and Titis

A total of 82.52 min of stimuli presentation were obtained from ten experimental
sessions. The device screen was sensitive to the touch of marmosets and titis (activated
also by accidental touches, such as inspections and stepping on it). Interactions with the
device lasted an average of 16 s with a range of 2 to 101 s. During the experimental session,
device interactions accounted for 24.92% of the total time. Most of the interactions in the
mixed species enclosure were performed by the marmosets (92.21%), who expelled the
titis from the testing platform. We observed an association between the tablet and the
feeder, with the animals inspecting the tablet and the feeder sequentially and looking to
the display. From the experimental sessions, we did not find marmosets and titis using the
device only to receive the rewards but also as an environmental enrichment as they were
curious about activating the feeder. Likewise, the individuals associated the tablet with the
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feeder significantly, according to a logistic regression (3 & SE = 0.001 &£ 0.0003; Z = 4.131;
p < 0.001).

3.3. Spider Monkeys

A total of 11 experimental sessions were performed, with a total interaction time of
66.68 min. All time was used by the experimental animals interacting with the device due
to a different experimental setup from titis and marmosets. We found that spider monkeys
were able to learn to use the device because they were able to receive rewards from the
feeder five times in a row (i.e., no incorrect interactions). This result suggests that the female
individual may possess trichromatic colour vision, indicating behavioural experiments
as a potential method for colour vision assessment in zoo animals. Agonistic behaviours
were observed in two experimental sessions, where the male, not being able to select
the right colour target, repelled the female from receiving the reward. No collaborative
behaviour was observed between the males and females. The number of times that the
keeper had to demonstrate and habituate the animal to use the device (i.e., training) was
negatively correlated with the cumulative time of the experiment (rs = —0.6245; N = 11;
p =0.0399). However, we found no correlation between the cumulative time and correct
use of the device (rs = —0.2535, N = 11; p = 0.4520). Overall, the experimental animals
were participative and appeared motivated to use the experimental apparatus in the
behavioural tests.

4. Discussion

The zoo staff found the device simple to use; it was easy to build and met the re-
quirements for behavioural vision research in zoos. The touch screen of the commercial
tablet with a rugged case and screen protector was reactive to the primates’ touch. Even
small primates (i.e., <500 g), such as marmosets, were able to interact and receive a reward.
Therefore, the device is a suitable alternative to expensive scientific equipment used in
some behavioural research [15]. Efforts to bridge the gap between captive and wild animal
research will provide more research opportunities and support an interdisciplinary ap-
proach [36]. For instance, research on colour vision requires the knowledge of the physical
properties of light, physiological aspects of colour vision, and implications of different
phenotypes on the sensory ecology [37-39]. Methodologies that allow us to access the
sensory abilities of animal subjects are crucial to increasing knowledge in the field.

Two major hypotheses about the importance of polymorphic colour vision for New
World primates are niche divergence and mutual benefit association [40,41]. By apply-
ing similar setups, the niche divergence could be verified by changing the stimuli type
from colour conspicuous to cryptic and analysing the behaviour demonstrated by the
different phenotypes. The mutual benefit association hypothesis could be tested by inves-
tigating collaboration among individuals in response to a given colour vision task. The
use of animal-computer interaction-based experiments with captive primates contributes
substantially to the collection of behavioural data and controlling environmental variables.

The marmosets used in this study also inhabit forest fragments in cities, are frequently
in contact with city dwellers, and are often hand-fed [42—44]; yet, they preserve many
aspects of their natural behaviour [42]. The small sample sizes that often limit the value of
research in zoos could be reduced by investigating urban animals. The portability of the
setup used in this proof-of-concept study could easily be extrapolated to research in urban
environments, which are more flexible regarding the access to animals and possibilities of
modifying the environment. The marmosets in our study were able to associate the feeder
and the tablet without assistance (training) from keepers. Thus, further studies with urban
marmosets should be investigated.

One of our main goals with this study was to verify the use of zoo enclosures as
an experimental area, having the keepers performing the experiment. Keepers have
close contact with their animals, and their interaction is relevant in designing scientific
experiments [45]. It was possible to shape the behaviour of spider monkeys with a few
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presentations of the experimental equipment. Nevertheless, preparation to perform the
research and interest from the zoo staff are critical for success. Fortunately, Twycross Zoo is
an institution interested in supporting behavioural research. Further presentations could
be performed without the keeper’s presence, as the experimental setup permits its use
without any human assistance.

As the opportunity to manipulate zoo enclosures is limited, certain precautions must
be taken to ensure the successful realisation of experiments. We found that mixed species
enclosures can lead to certain species not being able to participate in the experiments. This
should be considered in future studies concerning socially housed species. A critical aspect
of video recording is illumination. Indoor areas should be assessed regarding their light
sources, since the identification of the individual performing the behaviour is important in
behavioural studies. Keepers often have a profound knowledge of each individual animal
in their care, being able to recognise them without marking them. However, individual
animal identification might be not possible if a “‘control” researcher is used to analyse the
recordings, for instance, if a double-blind experimental design is used, where the executive
and analysis of experiments are performed by two different researchers independently.

Touch-sensitive tablet computer screens can have different colour reproduction from
the colour selected on the computer used for programming the tablet. However, we
controlled for this by selecting colours that were not visible to a dichromatic (human)
colour vision phenotype. This problem is of major concern when developing colour-based
tasks in which the colour stimuli may be altered on different screens. Despite this, it was
possible to use a commercial tablet to generate colour targets and backgrounds that are not
detectable by red—green colour blind viewers.

Unfortunately, due to time limitations, it was not possible to proceed with detailed
behavioural studies of vision, but the concept proved that a computer tablet-based system
can be used to behaviourally assess visual perception in zoo-housed primates.

5. Conclusions

The experimental design focused on the feasibility of animal-computer interaction-
based experiments with captive animals to study sensory behaviour, which is expected to
vary among the experimental subjects. We successfully tested a safe device that provided an
interactive interface for studying animal perception with little impact on keepers’ routines.
We observed learning in spider monkeys with minimal training, and marmosets showed
a significant interest in interacting with the system. Further studies can evaluate the
differences in interactions between group members and infer about perception abilities.

The interest shown for interactive devices, such as touch screens and reward mecha-
nisms, has the potential to be used as environmental enrichment in small primate enclosures.
The use of simple builds with components “off-the-shelf” can be employed securely for
small primate species. No aggressive behaviours, which could terminate the experimental
sessions, were observed, and no damaging behaviours (e.g., biting) were observed towards
the device.

Behavioural research involving the development of interfaces for interactive devices
can contribute to increasing the scientific knowledge of species biology, conciliating the
demands from animal management in zoological institutions, and providing the controlled
environment needed for experimentation.
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Simple Summary: The Amur tiger is an endangered species in the world, and effective statistics
on its individuals and population through re-identification will contribute to ecological diversity
investigation and assessment. Due to the fact that the fur texture features of the Amur tiger contain
genetic information, the main method of identifying Amur tigers is to distinguish their fur and
facial features. In summary, this paper proposes a serial multi-scale feature fusion and enhancement
network for Amur tiger re-identification, and designs a global inverted pyramid multi-scale feature
fusion module and a local dual-domain attention feature enhancement module. We aim to enhance
the learning of fine-grained features and differences in fur texture by better fusing and enhancing
global and local features. Our proposed network and module have achieved excellent results on the
public dataset of the ATRW.

Abstract: The Amur tiger is an important endangered species in the world, and its re-identification
(re-ID) plays an important role in regional biodiversity assessment and wildlife resource statistics.
This paper focuses on the task of Amur tiger re-ID based on visible light images from screenshots of
surveillance videos or camera traps, aiming to solve the problem of low accuracy caused by camera
perspective, noisy background noise, changes in motion posture, and deformation of Amur tiger
body patterns during the re-ID process. To overcome this challenge, we propose a serial multi-scale
feature fusion and enhancement re-ID network of Amur tiger for this task, in which global and local
branches are constructed. Specifically, we design a global inverted pyramid multi-scale feature fusion
method in the global branch to effectively fuse multi-scale global features and achieve high-level,
fine-grained, and deep semantic feature preservation. We also design a local dual-domain attention
feature enhancement method in the local branch, further enhancing local feature extraction and
fusion by dividing local feature blocks. Based on the above model structure, we evaluated the
effectiveness and feasibility of the model on the public dataset of the Amur Tiger Re-identification
in the Wild (ATRW), and achieved good results on mAP, Rank-1, and Rank-5, demonstrating a
certain competitiveness. In addition, since our proposed model does not require the introduction of
additional expensive annotation information and does not incorporate other pre-training modules, it
has important advantages such as strong transferability and simple training.

Keywords: Amur tiger; intelligent recognition; deep learning; double branch structure; feature

pyramid; attention mechanism

1. Introduction

Widespread distribution, low population density, unpredictable behavior patterns,
and sensitivity to interference of wildlife pose significant challenges to monitoring work for
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some animal species. Traditional wildlife investigation techniques mainly include manual
investigation, line sampling, collar tracking, and acoustic tracking using sound recording
instruments [1,2]. However, each of these methods has certain disadvantages, so scientists
strive to improve them. The Amur tiger, also known as the Siberian Tiger, is one of the
subspecies of tigers. The Amur tiger is mainly distributed in the northeastern region of
Asia and is listed as an endangered species in the Red List of Threatened Species by the
World Conservation Union. There are only just over 500 Amur tigers left in the world,
so it is crucial to strengthen the protection of the Amur tiger [3]. Moreover, the survival
and reproduction of species populations are closely related to regional biodiversity and
ecosystem functional integrity [4]. Therefore, re-evaluating the Amur tiger and its prey
resources in natural environments such as nature reserves and national parks can help to
statistically analyze the situation of Amur tiger resources and provide data reference for the
next step of protection work [5,6]. At present, the most commonly used method for the re-
ID of wild animals is manual discrimination. After receiving professional knowledge and
training, wildlife protection professionals need to screen and distinguish a large amount
of image data based on the fur pattern characteristics of the abdomen, head, neck, and
other parts of the Amur tiger [7,8]. To reduce errors, it is necessary for multiple people to
simultaneously identify and verify the recognition results, which requires a large workload,
high cost, and low efficiency.

With the continuous development and application of machine learning and deep
learning technologies, machine learning algorithms and emerging deep learning models,
such as Linear Clustering [9], Classification [10,11], Detection [12,13], and Generative
Adversarial Networks [14], are gradually being applied to the intelligent monitoring and
protection of wildlife. Research on the intelligent recognition of wildlife mainly focuses
on issues such as wildlife re-ID, species classification, population counting, and attribute
recognition [15]. In the process of wildlife re-ID, the application of computer vision-related
technologies can greatly improve recognition efficiency and accuracy. Research in this
area has gradually become popular. Currently, the main methods used are clustering
algorithms based on image hotspots [9] and convolutional neural network models based on
VGG [16], AlexNet [17], and ResNet [18]. These methods have been improved in optimizing
feature extraction, feature fusion, and incorporating prior knowledge of pose. Zheng et al.
proposed a Transformer network structure with cross-attention block (CAB) and local
awareness (CATLA Transformer) [19], which captures global information of an animal
body’s surface and local feature differences in fur, color, texture, or face, and fuse global
features and local features through CATLA Transformer. Zhang et al. proposed using
texture features as global and local features for re-ID, and proposed a pyramid feature
fusion model method to extract features from both local and global perspectives, effectively
matching entities [20]. Li et al. proposed an Amur tiger re-ID method, which introduces
precise pose parts with deep neural networks to handle the large pose variation of tigers [3].
Liu et al. proposed a Partial Pose Guided Network (PPGNet), which uses local image
features based on pose data to drive the network to extract features from the original image,
and applies it to an Amur tiger re-ID system based on automatic detection and Amur tiger
pose estimation [21]. He et al. proposed a Multi-pose Feature Fusion Network (MPFNet),
which constructs three pose modules: standing, sitting, and lying. In each module, two
parallel branches are used to extract global and local features for effective feature extraction.
Finally, the features are fused [22].

There are also some very advanced studies in the field of person re-identification
similar to the Amur tiger re-ID. Sun et al. proposed a Part-based Convolutional Baseline
(PCB) framework and an inter-block combination method with uniform partitioning to
effectively extract part-level features, and by Refined Part Pooling (RPP), closer parts are
allocated together to improve the within-part consistency of parts [23]. Sun et al. considered
the problem of partial re-ID and proposed a Visibility-aware Part Model (VPM). Through
self-supervised learning, the model perceives the features within the visible region, extracts
regional features, and compares two images within their shared regions to suppress noise
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in unshared regions. It better extracts fine-grained features of the image and reduces image
misalignment [24]. Liu et al. proposed a multi-scale Feature Enhancement (MFE) Re-ID
model and a Feature Preserving Generative Adversarial Network (FPGAN). In the MFE,
the semantic feature maps of the person’s body are segmented, and then multi-scale feature
extraction and enhancement are performed on the person’s body region. In the FPGAN, the
source domain is transferred to the target domain in an unsupervised manner, maximizing
the preservation of personal information integrity [25].

In current research, there are issues such as the need for prior knowledge and the
complexity of training large models. Although some models have been verified to have
excellent average accuracy and other indicators, and the effectiveness of model improve-
ment has been verified through ablation experiments, a large amount of reliance on prior
knowledge leads to poor model transferability, requiring staff with expertise in wildlife to
perform a large amount of dataset labeling and processing work in the early stages before
retraining the model, which has low feasibility in practical production applications. The
networks with four, six, or more branches, or which require data preprocessing through
instance segmentation models before being fed into the re-ID model, are too complex
and have problems such as large model size and a need for complex training. Therefore,
this paper proposes a serial multi-scale feature fusion and enhancement re-ID network of
Amur tigers with global inverted pyramid multi-scale feature fusion and local dual-domain
attention feature enhancement for the re-ID of Amur tiger images. Combining the re-ID
methods of the Amur tiger and fine-grained task properties, the Path Aggregation Network
(PANet) [26] feature fusion idea is introduced. A bottom-up unidirectional feature fusion
method is proposed, which uses an inverted pyramid structure for feature fusion. This
helps to better integrate high-level features with large receptive fields and rich semantic in-
formation while preserving multi-scale features. We propose a local dual-domain attention
feature enhancement method that is serially connected with the global branch to enhance
local feature extraction and fusion. Our goal is not to go beyond the SOTA model used for
re-ID, but to propose an end-to-end model that is more suitable for removing animal pose
prior knowledge and other additional attribute information, and has good transferability
and re-ID performance. Our core contributions are as follows:

e  We integrate and propose a lightweight, efficient, end-to-end network for the re-ID
task of the Amur tiger, which does not require the introduction of prior knowledge
such as posture. It can be quickly and conveniently used for the re-ID task of other
large mammals. The specific network innovation and design are as follows.

e Inorder to better extract and integrate the global information of the high-level and
low-level layers of the Amur tiger, we propose a multi-scale feature fusion method
of the global inverted pyramid. We introduce the ideas of Feature Pyramid Network
(FPN) [27] and PANet into the global branch of the model for the task of wildlife re-ID.
Improving the top-down connection method of traditional feature pyramid models
will greatly compress the problem of key deep semantic information [28].

e Inorder to deepen the feature extraction of various parts of the Amur tiger and extract
fine-grained features such as body fur texture, we introduce a serial local branch
network and design an attention module and output feature fusion method in the
local branch.

2. Materials and Methods

This section mainly introduces the dataset we use, the basic process of Amur tiger
re-ID, and the structure and details of our proposed Amur tiger re-ID network.

2.1. Dataset

To validate the effectiveness of the proposed method and model, we conducted
training, testing, and evaluation using the public dataset of the ATRW [3]. The ATRW
dataset is a dataset jointly released by Shanghai Jiao Tong University and Intel Laboratories
with the assistance of the World Wildlife Fund International (WWF) in 2019 for the detection,
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joint estimation, and re-ID tasks of the Amur tiger. The authors of this dataset collected
over 8000 video clips of 92 tigers from approximately 10 zoos in China to create the ATRW
dataset. After data organization and classification, the training dataset for the re-ID task
contains 107 tiger entities, totaling 1887 images. The test dataset contains 47 tiger entities,
with a total of 701 images. To enhance the robustness of the model and increase the number
of training samples, we performed random rotation and random occlusion enhancement
on some images in the training dataset, and set the image size H x W to 256 x 512 for
better results [21]. We reduced the influence of external factors such as shooting angle and
shooting position, and randomly divided the data into the training set Train and validation
set Val in a 7:3 ratio (Table 1). The train set we use has an average of 18 training images per
entity after data augmentation, with at least 9 training images for each entity (Figure 1).

Table 1. Training and Testing dataset used in the experiment.

Train Dataset Amur Tiger Entities Amur Tigers Original Images
Train + Val 107 75 1552 + 35
Test Dataset Amur Tiger Entities Amur Tigers Original Images
Query 47 42 701
Gallery 47 42 701

Figure 1. (a—d) are the original images of the public dataset of the ATRW, and (e,f) are examples of
data-enhanced images.

2.2. Methods
2.2.1. Serial Multi-Scale Feature Fusion and Enhancement re-ID Network of Amur Tiger

In this paper, we propose a network aimed at completing the task of Amur tiger re-ID,
which is a serial multi-scale feature fusion and enhancement re-ID network of the Amur
tiger (Figure 2). The network is mainly divided into two parts: a global branch and a
local branch, which are combined to achieve the final effect. ResNet50 is a convolutional
neural network with a depth of 50 layers, which has excellent classification performance on
ImageNet [18]. Its pre-trained model was trained on ImageNet with over 1 million images.
Therefore, our proposed re-ID network applies the backbone ResNet50 and removes the
last down-sampling layer of ResNet50 to retain a larger scale [29]. On the basis of the
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backbone, a dual-branch structure is constructed based on the feature tensor obtained from
ResNet50 layer 4 to achieve the localization of the position of the Amur tiger in the image
and fine-grained re-ID requirement. Our proposed dual branches are connected in a serial
manner, and the feature tensors obtained from the global branch output are sent to the
local branch for the next step of feature extraction and fusion (the details of the global
and local branches are in Sections 2.2.2 and 2.2.3). Finally, the feature tensors Fgjp, €
R2048x1 and Fp ooy € R248X1 for global and local branch outputs are obtained, which are
concatenated and sent to the classifier layer. Through the linear layer, they are expanded to
the corresponding number of categories.

H =256

ResNet50

\

Global Branch
Layer 1~4 Feature  Inverted Feature Pyramid module

Local Branch *

———— feature
- ——— —_
divide

Global Output Feature Local Blocks Output Feature

Output
Feature

Figure 2. Our proposed Amur tiger re-ID network structure.

2.2.2. Global Inverted Pyramid Multi-Scale Feature Fusion Method

Taking inspiration from the FPN model and the PANet model, we propose an Inverted
Feature Pyramid Module (IFPM) for global multi-scale feature fusion. We attempt to guide
the fusion of multi-scale features from coarse to fine and from low-level to high-level,
reducing the compression of deep semantic information and maximizing the retention of
high-level features, in order to construct a multi-scale feature pyramid dominated by deep
semantic information on the global feature branch.

As shown in the yellow part of Figure 3, we propose a reverse feature fusion path in
the global branch. From bottom to top, we use the features extracted from layer 1 to layer 4
in the backbone as input feature maps of the global inverted pyramid multi-scale feature
fusion module. Finally, we obtain the output feature map.

Global Branch

H =256
ResNet50

Backbone T downsample @ add

Figure 3. Principle of global inverted pyramid multi-scale feature fusion method.
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Specifically, we define C € R©*H*W to represent the features output by each layer
of ResNet50, where H x W corresponds to the spatial dimensions of the feature map,
and C denotes the number of channels. In the multi-scale feature fusion module of the
global inverted pyramid, we designed a multi-scale feature fusion connection strategy. We
utilize the features Cl c R256><32><64, Cz c R512><16><32, C3 c R1024><8><16’ and C4 c R2048><8><16
extracted from layer 1 to layer 4 in ResNet50 as input features. Starting from C;, C;
passes through the down-sampling layer based on the H x W of C; to obtain P;. After
adding P; to C, the next step of feature fusion and ReLU is performed to obtain P,.
Then, based on the H x W dimension of the upper layer of the inverted pyramid, Cs
and Cy are sequentially subjected to down-sampling, convolutional feature extraction,
fusion, concatenation, and ReLU activation to complete the feature connection and fusion
at each stage. By continuously mapping from low-level features to high-level features, P; €
RO12x16x32 p, ¢ R1024x8x16 and p; € R?2048x8%16 are obtained. P3 and C, are connected in
parallel and average pooling is performed to obtain the complete global multi-scale feature
FGlobal € RZM8*1X1 ‘maximizing the preservation of deep semantic information and better
fitting the fine-grained and deep semantic features of the Amur tiger for re-ID.

2.2.3. Local Dual-Domain Attention Feature Enhancement Method

We propose a Local Attention Enhancement Module (LAEM) based on the Convolu-
tional Block Attention Module (CBAM) [30] to enhance the feature extraction performance
of multiple local blocks in local branches (Figure 4). CBAM is an attention mechanism mod-
ule used to enhance the performance of convolutional neural networks, which improves
the model’s perception ability by introducing the mixed attention of channel attention and
spatial attention (Figure 5). Channel attention helps to enhance the feature representation
of different channels, while spatial attention helps to extract key information at different
positions in space [30].

Local Branch CBAM :
Channel Spatial
Attention Attention
Module Module
4 ReLU
e
RX—

1x1 cony ®
# MaxPooling ReLU I
—_— CBAM ===
Divide 1x1 conv Concat
— e
MaxPooling ReLU
—

—_—
1x1 conv

Global Branch Global
MaxPooling ReLU
Output Feature —— ( cBAM | —————

Figure 4. Principle of local dual-domain attention feature enhancement method.

Convolutional Block Attention Module

Channel Spatial
Attention Attention
/ Module Module
— o
Input Feature Refined Feature

Figure 5. Principle of Convolutional Block Attention Module.

The local branch of this network is different from the global branch in fusing features
at different scales. The local branch further strengthens and extracts features in different
ranges through horizontal blocking, which helps to extract and optimize local details such
as the texture and stripes of Amur tiger fur, and improves the accuracy of re-ID.
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We divide the global feature obtained from the inverted pyramid module of the global
branch into 4 blocks from left to right, each block being a local feature block € R2048x8x2
(Figure 6). In the local branch, we perform adaptive max pooling and 1 x 1 convolution
operations on each local block feature to obtain a reduced local feature representation to 512.
Then, we feed each reduced feature block into the CBAM. Channel and spatial attention
feature enhancements are applied to the local block feature, dual-domain feature represen-
tation is enhanced, and important features such as local stripes after block segmentation
are enhanced to obtain {L1 Ly, L3, L4} € R512x1x1 Finally, the four feature blocks obtained
through attention enhancement were activated using the activation function ReLU, and
then concatenated to obtain the final feature output Fy .y € R2M8%1%1 of the local branch.

Figure 6. The method of Amur tiger feature map segmentation.

2.3. Training and Reasoning

During the training process, the training dataset of Amur tiger images is input into
our proposed serial multi-scale feature fusion and enhancement re-ID network of the Amur
tiger. Through global and local branches, feature extraction and classification tasks are
carried out through the global inverted pyramid multi-scale feature fusion module and
local dual-domain attention feature enhancement module. Finally, the classifier layer is
applied for re-ID.

2.3.1. Loss Function

In probability statistics, entropy is a measure of the invariance of random variables.
Cross entropy can measure the degree of similarity and difference between two distribu-
tions and is often used in image multi-classification and other problems.

We employ the Cross-Entropy Loss, a commonly used logarithmic loss function for
multi-class classification problems, to regulate and optimize the training process of our
network. The formula is as follows:

K
Li = - Zczl yiclog(pic) (1)

2.3.2. Inference

During the inference process, when wildlife conservation workers obtain a set of
images from camera traps or surveillance videos, we can select any image as the Query
and other images as the Gallery. Then, we input the Query and Gallery into the trained
network. After feature extraction and re-ID, we can obtain the similarity ranking of all
images in the Gallery compared to the Query. After descending sorting, we obtain the most
similar entity image of the Amur tiger extracted by the Query in the Gallery. At this time,
we can determine the probability from high to low that it is the same as the Amur tiger
entity in the Query image (Figure 7).
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- Query Gallery Rank-1 Rank-5

Figure 7. The inference process for Amur tiger re-ID.

3. Results and Analysis

This section mainly introduces the experimental setup, evaluation methods, and
specific experimental results.

3.1. Experimental Setup

Our proposed model is implemented in Cuda using the PyTorch framework. The
computer and code environments in which we conducted the experiment were configured
with PyTorch, Python 3.8, and Cudall.3, and the entire training and testing process was
conducted on a server configured with an NVIDIA GeForce RTX 3090 GPU. The training
and testing sets used in the experiment are shown in Table 1. During the model training
phase, we use SGD and set the momentum to 0.9, basic learning rate to 0.002, weight decay
to 0.0005, and batch size to 16. The learning rate of the classifier layer is set to 0.02, and the
learning rate is decreased by a factor of 10 at epoch 100. The dataset was randomly erased
and underwent a total of 150 epochs of training.

3.2. Evaluation

The testing process of this task involves extracting an image from the Query dataset of
the test set and calculating the Euclidean distance between this image and all images in the
Gallery except for this image. The Euclidean distance calculation formula is as follows:

Distance = sort((A — B)-(A — B)) (2)

Sort in descending order based on the calculation results to determine whether the
image extracted by Query and other images in the Gallery are entities with the same ID
label: Lifl l

a L timage = lLgaller
F(limuge’ lgallery) - {0 lf limaie 75 liallcri (3)

The task of Amur tiger re-ID is similar to the sub-task of person re-ID in image retrieval,
so the same testing methods and evaluation indicators, such as the CMC curve and mAP,
can be used. This paper uses three indicators for re-ID evaluation: Rank-1 Accuracy, Rank-5
Accuracy, and mean average precision (mAP). Rank-1 is the probability of the first image
being retrieved hitting, and Rank-5 is the probability of the first five images being retrieved
hitting. Rank-1 can be explained using the formula shown in (4), and the calculation
method for Rank-5 is similar to this:

1 q
Rank —1 = m qezQ F(limage’ lgallery) (4)

mAP reflects the degree to which real images rank higher in sorting, and compared
to Rank-1, Rank-5, etc., it can more comprehensively measure the effectiveness of re-ID.
Therefore, this indicator is also used as the primary evaluation indicator in this paper.
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3.3. Compared with Other Advanced Methods
3.3.1. Comparison with Improved Methods Based on ResNet50

Our proposed method has achieved good results on the public dataset of ATRW
(Table 2). Compared with the comparative experimental results of the advanced person

re-ID model based on ResNet50, our proposed model has achieved better results and
significant improvements (Figures 8 and 9).

Table 2. Comparison with ResNet50 based method on ATRW test dataset.

Method mAP Rank-1 Rank-5
PCB [23] 74.5% 95.4% 98.7%
ResNet50 + Triplet Loss [29] 75.1% 92.4% 99.1%
ResNet50 + IBN [31] 75.4% 93.9% 98.4%
ResNet50 + Lifted Loss [32] 75.5% 94.2% 98.7%
ResNet50 + Circle Loss [33] 75.9% 94.2% 98.9%
Ours 78.7% 96.3% 98.9%
Comparison with Improved Methods Based on ResNet50 Comparison with Different Methods
@ Improved Methods Based on ResNet50 [ ] 96 4 @ Different Methods |
%0 @ OurMethod Our Method [ ]
95.5 4 . " :
.::j 945 g * L ]
'é ® o ﬁ 58 1 L]
g 0 ® 2
9.5 L
9.0 1
25 ® 21 ®
s 6 AP (%)77 s 66 68 n mAT’i) - “ 76 = 80
(a) (b)

Figure 8. (a,b) shows the comparison results of our proposed model experimental indicators with
other advanced models.

Cumulative Matching Characteristic (CMC) Curve

—— Query CMC (to rank 15)

Amur Tiger Re-identification Rate (%)
2
=

Figure 9. The CMC curve of our Amur tiger re-ID model.

3.3.2. Comparison with Different Improvement Methods

The model we propose is an end-to-end re-ID model that does not require additional
prior knowledge. It has good transferability and is a significant improvement compared to
Aligned-relD, which also combines global and local features. However, compared with
models PPbM-a, PPbM-b, and MPFNet, which incorporate or pre-train pose estimation
modules, it can still achieve good re-ID performance, with some indicators improved
(Table 3). We randomly selected two Query images for Amur tiger re-ID as examples
(Figure 10).
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Table 3. Comparison with different methods on the ATRW test dataset.

Method mAP Rank-1 Rank-5
Aligned-relD [3] 64.8% 81.2% 92.4%
PPbM-a [3] 74.1% 88.2% 96.4%
PPbM-b [3] 72.8% 89.4% 95.6%
MPFNet [22] 79.8% 95.4% 98.6%
Ours 78.7% 96.3% 98.9%

Query

Query

Figure 10. (a,b) are examples of the results of applying our proposed network for Amur tiger re-ID.
The number above the image shows the similarity ranking result, and the green color shows correct
re-ID.

3.4. Ablation Experiment

To verify the effectiveness of our proposed method and module, we conducted ab-
lation experiments on each part. This model chooses the classic feature extraction and
classification model ResNet50 as the backbone. Firstly, we experimentally verify the testing
performance of only the backbone. Then, we separately verify the effectiveness of adding
the proposed global inverted pyramid multi-scale feature fusion module and local feature
enhancement module. The following is a detailed description and explanation.

3.4.1. Effectiveness of the Global Inverted Pyramid Multi-Scale Feature Fusion Module and
the Local Dual-Domain Attention Feature Enhancement Module

Due to the fact that our proposed global inverted pyramid multi-scale feature fusion
module is constructed based on the ideas of FPN and PANet, we compared the experimental
results of models that only used ResNet50 and introduced FPN and PANet based on
ResNet50 (Table 4). The introduction of FPN in the backbone resulted in a 7.7% decrease in
mAP compared to only using the backbone, while our proposed IFPM method resulted
in 76.1% mAP, 96.3% Rank-1, and 98.9% Rank-5. Compared to the model introducing
FPN, mAP improved by 9.4%, while Rank-1 and Rank-5 improved by 4.6% and 1.3%,
demonstrating significant advantages in these three indicators. This result proves that, as
expected by our analysis, adopting deep semantic features to fuse global features in an
inverted pyramid shape is more suitable for the re-ID task of the Amur tiger.

Table 4. Performing ablation experiments on the ATRW test dataset to demonstrate the effectiveness

of the IFPM.
Method mAP Rank-1 Rank-5
ResNet50 74.4% 93.4% 98.4%
ResNet50 + FPN 66.7% 91.7% 97.6%
ResNet50 + IFPM (Ours) 76.1% 96.3% 98.9%
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The experimental results of fusing IFPM and LAEM dual modules showed a 2.6%
improvement in mAP compared to the model containing only IFPM modules, while the
results of Rank-1 and Rank-5 remained unchanged, demonstrating the effectiveness of the
LAEM module and the serial combination of IFPM and LAEM (Table 5).

Table 5. Performing ablation experiments on the ATRW test dataset to demonstrate the effectiveness

of the LAME.
Method mAP Rank-1 Rank-5
ResNet50 74.4% 93.4% 98.4%
ResNet50 + IFPM (Ours) 76.1% 96.3% 98.9%
ResNet50 + IFPM + LAEM (Ours) 78.7% 96.3% 98.9%

3.4.2. Effectiveness of CBAM in Local Dual-Domain Attention Feature Enhancement
Module

Due to the application of CBAM in our proposed local dual-domain attention feature
enhancement module, we compared the experimental results of models using other robust
and effective attention modules to demonstrate the optimal performance of CBAM in this
module.

The experimental results of introducing Squeeze-and-Excitation Network (SENet)
and Efficient Channel Attention (ECA) into our improved model, which incorporates
IFPM, showed a 1.7% improvement in mAP compared to the backbone, while Rank-1
and Rank-5 increased by 1.3% and 2%, respectively (Table 6). Our proposed module
incorporating CBAM improved mAP by 2.6% compared to the model incorporating SENet,
while Rank-1 and Rank-5 improved by 1.6% and 0.5%, respectively. Compared to the model
incorporating ECA, mAP improved by 2.6%, while Rank-1 and Rank-5 improved by 0.9%
and 0.5%, respectively.

Table 6. Ablation experiments on ATRW test data set prove the progressiveness of CBAM module in

the local branch.
Method mAP Rank-1 Rank-5
ResNet50 74.4% 93.4% 98.4%
ResNet50 + IFPM + SENet 76.1% 94.7% 98.4%
ResNet50 + IFPM + ECA 76.1% 95.4% 98.4%
ResNet50 + IFPM + LAEM (Ours) 78.7% 96.3% 98.9%

4. Discussion

The Amur tiger may have the problem of occupying a relatively large position and
having a relatively complex image background in the photos captured by camera traps [34].
This is because photo shooting is triggered only when the wild animals are relatively close
to the infrared camera and the infrared sensor senses their temperature [34,35]. Moreover,
due to the complex forest environment, the Amur tiger has a narrow path and a larger
target. Therefore, we propose a new serial multi-scale feature fusion and enhancement
re-ID network of Amur tiger, which extracts and learns to input Amur tiger features in
a global and local branch serial manner. We also propose a global inverted pyramid
multi-scale feature fusion method and a local dual-domain attention feature enhancement
method to learn Amur tiger images at multiple scales, more adaptable to this re-ID task.
In the model validation stage, we applied the Amur tiger re-ID dataset of the ATRW for
experimental verification. The experimental results showed that our proposed model still
has good performance without introducing other prior knowledge and complex labeling,
and the mAP and hit rate have been improved. In addition to the Amur tiger, our proposed
network is applicable to other large quadruped animals through retraining. It can be
structurally adjusted according to specific animal species and task details, without the need
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to introduce other prior knowledge, reducing the cost of early labeling and other inputs,
and has a certain degree of universality and transferability.

In summary, since our constructed model requires vertical partitioning of extracted
features in the horizontal direction, it is effective in identifying large quadruped mammals
that are mostly identified by body surfaces, such as snow leopard re-ID and leopard
species classification. However, we have not yet conducted further validation and model
fine-tuning on many other large quadruped animal datasets, and if we apply datasets of
upright animals such as monkeys, there may be issues with poor performance. Because
our proposed method requires local partitioning in the horizontal direction, and for such
animals, the key complete features may be segmented, resulting in the inability to learn
important information. Currently, however, a suitable dataset for comparative experiments
remains unavailable. This is the limitation and problem that this paper aims to address,
and further in-depth research is still needed. In the future, we will strive to create datasets
and complete research and comparative experiments on model transfer. In addition, this
paper is conducted on a public dataset where each entity has an average of 14.5 and at least
8 training images prior to data augmentation. However, in real life, there may be small and
uneven sample sizes in the dataset we obtain in the wild or in surveillance videos, which
are also issues that we need to address in the future.

5. Conclusions

The re-ID and counting of Amur tigers play an important role in studying and analyz-
ing the entity quantity and distribution of various populations, biodiversity, and individual
tracking of wild animals. Therefore, improving the mAP, Rank-1, and Rank-5 of Amur tiger
re-ID has enormous ecological significance and value. In order to improve the accuracy
and efficiency of the Amur tiger re-ID, we propose a serial multi-scale feature fusion and
enhancement re-ID network of the Amur tiger. A global inverted pyramid multi-scale
feature fusion method and a local dual-domain attention feature enhancement method
were designed for this network. Our proposed network and method have the advantages of
no prior knowledge, high efficiency, and end-to-end functionality. Through experiments on
the public dataset ATRW of Amur tiger and comparative experiments with other methods,
it has been proven that this method has good performance and will help improve the re-ID
performance of Amur tiger.
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Simple Summary: Understanding how brains work requires understanding the role of experience in
the development of core mental abilities. Here, we show that the development of one core mental
ability—object recognition—requires visual experience with the surface features of objects. We found
that when newborn chicks were raised with objects containing surface features, the chicks learned
to recognize objects across familiar and novel viewpoints. However, when chicks were raised with
line drawings of those same objects, the chicks failed to develop object recognition. These findings
shed light on the role of experience in early visual development and suggest that certain kinds of
experiences are especially important for the development of core mental abilities.

Abstract: What role does visual experience play in the development of object recognition? Prior
controlled-rearing studies suggest that newborn animals require slow and smooth visual experiences
to develop object recognition. Here, we examined whether the development of object recognition
also requires experience with the surface features of objects. We raised newborn chicks in automated
controlled-rearing chambers that contained a single virtual object, then tested their ability to recognize
that object from familiar and novel viewpoints. When chicks were reared with an object that had
surface features, the chicks developed view-invariant object recognition. In contrast, when chicks
were reared with a line drawing of an object, the chicks failed to develop object recognition. The
chicks reared with line drawings performed at chance level, despite acquiring over 100 h of visual
experience with the object. These results indicate that the development of object recognition requires
experience with the surface features of objects.

Keywords: controlled rearing; object recognition; newborn; development; line drawing; chick

1. Introduction

Mature animals have powerful object recognition abilities. For example, after just a
brief glimpse of an object, humans can recognize that object across substantial variation in
the retinal images produced by the object, due to changes in viewpoint, size, illumination,
and so forth (reviewed in [1]). However, the origins of object recognition are still not well
understood. What role does early visual experience play in the development of object
recognition? Does the development of object recognition require a specific type of visual
experience with objects?

Human infants are not well suited for addressing these questions because they cannot
be raised in strictly controlled environments from birth. In contrast, controlled-rearing
studies of newborn animals can directly probe the role of experience in development. By
systematically manipulating the visual experiences provided to newborn animals and
measuring the effects of those manipulations on behavioral and neural development,
controlled-rearing studies can isolate the specific experiences that drive the development
of object recognition.
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Prior controlled-rearing studies with newborn chicks have revealed two types of
experiences that are necessary for the development of object perception: slow and smooth
experiences with objects [2-5]. When newborn chicks were reared with virtual objects that
changed slowly and smoothly over time (akin to natural objects), the chicks successfully
developed object recognition, including the ability to recognize objects across novel view-
points, backgrounds, and motion speeds. Conversely, when chicks were reared with objects
that moved too quickly or non-smoothly, the chicks failed to develop object recognition.
Without slow and smooth visual experiences, newborn chicks develop inaccurate object
representations. Here, we extend these findings by examining whether the development of
object recognition also requires experience with the surface features of objects. The term
“surface features” refers to the features (e.g., color, texture, and shading) of the surfaces
between the boundaries of an object.

There are mixed perspectives on the importance of surface features in object recogni-
tion. On one hand, a large number of studies have shown that human adults can readily
recognize objects depicted in line drawings, which lack surface features such as color,
texture, and shading (e.g., [6-9]). This ability to perceive and understand line drawings
emerges early in development. For instance, infants begin showing enhanced attention to
lines that depict corners and edges in the first year of life [10], and young children use lines
to define the boundaries of objects in their first attempts to depict the world [11]. Humans
have also used line drawings to capture scenes since prehistoric times [12,13]. Furthermore,
many nonhuman animals can understand line drawings. Chimpanzees can recognize ob-
jects presented in line drawings [14,15] and pigeons can recognize line drawings of objects
that are rotated in depth, even after exposure to just a single depth orientation [16]. Even
insects appear to use line representation to some extent in biomimicry [17]. Together, these
studies indicate that the ability to understand line drawings emerges early in development
and is shared with a wide range of animals.

On the other hand, many studies provide evidence that surface features play an
important role in object recognition (e.g., [18-23]). Human adults can recognize an object
faster when the light source remains in the same location compared to when the light source
moves [21], and surface features can affect the speed and accuracy of object recognition
and object naming [24]. During their first months of life, human infants also rely on the
motion of surface features to build object representations (reviewed in [25]).

In all of the studies cited above, the subjects had acquired months to years of visual
experience with real-world objects before they were tested. Thus, these studies do not reveal
whether newborn brains can understand line drawings at the onset of vision or whether
the development of this ability requires experience with natural visual objects. The present
study distinguishes between these possibilities by testing whether newborn chicks can
recognize objects presented in line drawings at the onset of vision, in the absence of prior
visual experience with natural objects. Specifically, we contrasted the object recognition
performance of newborn chicks reared with line drawings of objects versus realistic objects
with surface features. The three experiments presented here allow for a direct test of the
importance of surface features in the development of object recognition.

Across three experiments, newborn chicks were reared in strictly controlled environ-
ments that contained no objects other than the virtual objects projected on the display walls
(input phase). For one group of chicks, the virtual object(s) contained surfaces (Surface
Feature Condition), whereas for the other group, the virtual object(s) was a line drawing
animation that lacked surfaces (Line Drawing Condition). In the test phase, we then used a
two-alternative forced-choice procedure to measure whether the chicks could recognize
their imprinted object across familiar and novel viewpoints. If chicks can recognize objects
presented in line drawings, then their performance should be high in both conditions.
Conversely, if the development of object recognition requires visual experience with the
surface features of objects, then the chicks should develop more accurate object recognition
abilities in the Surface Feature Condition than the Line Drawing Condition.
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In the first experiment, each chick was reared with a single virtual object (either with
or without surfaces) that moved through a limited 60° viewpoint range. In the second
experiment, we verified the results of Experiment 1 under different rearing and testing
conditions by rearing each chick with a single virtual object (either with or without surfaces)
that moved through a 360° viewpoint range. Finally, in the third experiment, we tested
whether our findings would extend to new 2D object shapes. Across all three experiments,
the chicks successfully recognized objects with surface features, but failed to recognize line
drawings of those same objects.

Using Automated Controlled Rearing to Study the Origins of Object Recognition

To examine the role of surface features in the development of object recognition, we
used an automated controlled-rearing method [26]. We used controlled-rearing chambers
to eliminate any exposure to real-world objects. There are two benefits to using automated
methods to probe the origins of visual intelligence. First, automation allows large amounts
of precise behavioral data to be collected from each subject. In the present study, each
chick’s behavior was recorded continuously (24/7) for up to two weeks, providing precise
measurements of their object recognition performance. Second, since computers (rather
than researchers) present the stimuli and code the behavior, automation eliminates the
possibility of experimenter error and bias [27].

We used newborn chicks as an animal model because they are an ideal model system
for studying the origins of object recognition [28]. First, newborn chicks can be raised in
strictly controlled environments immediately after hatching (e.g., environments containing
no real-world objects). As a result, it is possible to control and manipulate all of the
chicks’” visual object experiences from the onset of vision. Second, chicks imprint to
objects seen in the first few days of life and will attempt to reunite with those objects
when separated [29]. This imprinting behavior emerges spontaneously and provides a
reliable behavioral assay for measuring chicks’ object recognition abilities. Third, newborn
chicks develop high-level object recognition. For example, newborn chicks can solve the
visual binding problem, building integrated object representations with bound color—shape
features [30]. Chicks can also parse objects from complex backgrounds [31], build view-
invariant object representations [26,32], and recognize objects rapidly, within a fraction of a
second [33].

Finally, studies of chicks can also inform human development because birds and mam-
mals process sensory input using homologous cortical circuits with similar connectivity
patterns [34-37]. The cortical circuits are organized differently in birds and mammals
(nuclear vs. layered organization), but the circuits share similar cell morphology, con-
nectivity patterns of input and output neurons, gene expression, and function [34,38-40].
Architecturally, avian and mammalian brains share the same large-scale organizational
principles. Specifically, their brains are modular, small-world networks. These networks
are organized into a connective core of hub nodes that includes visual, auditory, limbic,
prefrontal, premotor, and hippocampal structures [41]. The similarities between avian and
mammalian brains suggest that controlled-rearing studies of newborn chicks can elucidate
both avian and mammalian intelligence.

2. Experiment 1

In the input phase Experiment 1, newborn chicks were reared with a single virtual
object moving through a limited 60° viewpoint range. In the test phase, we examined
whether the chicks could recognize that object across 12 different viewpoint ranges. The
chicks were either raised and tested with line drawings or with objects containing surface
features. The text describing the methods is partly adapted from [26]. The data from the
baseline (surface feature) conditions in Experiments 1, 2, and 3 were published previously
in [4,26,42]. In the present study, we directly contrasted chicks reared with line drawings of
objects versus objects with surface features.
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2.1. Materials and Methods
2.1.1. Subjects

Twenty-three domestic chicks of unknown sex were tested. We tested 11 subjects in
the Surface Feature Condition [26] and 12 subjects in the Line Drawing Condition. No
subjects were excluded from the analyses. The eggs were obtained from a local distributor
and incubated in darkness in an OVA-Easy incubator (Brinsea Products Inc., Titusville, FL,
USA). After hatching, we moved the chicks from the incubation room with the aid of night
vision goggles. Each chick was placed, singularly, in a controlled-rearing chamber.

This research was approved by The University of Southern California Institutional
Animal Care and Use Committee.

2.1.2. Controlled-Rearing Chambers

The controlled-rearing chambers (66 cm length x 42 cm width x 69 cm height) were
constructed from white, high-density plastic. Each chamber contained no real-world (solid,
bounded) objects (Figure 1A). We presented object stimuli to the chicks by projecting
animations of virtual objects on two display walls situated on opposite sides of the chamber.
The display walls were 19” liquid crystal display (LCD) monitors with 1440 x 900 pixel
resolution. We provided food and water in transparent troughs in the ground (66 cm length
x 2.5 cm width x 2.7 cm height). We fed the chicks grain because grain does not behave
like an object (i.e., a heap of grain does not maintain a solid, bounded shape). The floors
were wire mesh and supported 2.7 cm off the ground by transparent beams.

B Object 1 Object 2

Surface Features Line Drawings Surface Features Line Drawings

N

bt
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Figure 1. (A) Illustration of a controlled-rearing chamber. The chambers contained no real-world
objects. To present object stimuli to the chicks, virtual objects were projected on two display walls
situated on opposite sides of the chamber. During the input phase (1st week of life), newborn chicks
were exposed to a single virtual object either with surface features or without surface features (line
drawing). (B) Sample images of the virtual objects.

7

We embedded micro-cameras in the ceilings of the chambers to record all of the chicks
behavior (9 samples/s, 24 h/day, 7 days/week). We used automated image-based tracking
software (EthoVision XT, version 7, Noldus Information Technology, Leesburg, VA, USA) to
track their behavior throughout the experiment. This automated data collection approach
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allowed us to collect 168 trials from each chick. In total, 7728 h of video footage (14 days x
24 h/day x 23 subjects) were collected for Experiment 1.

2.1.3. Procedure

In the first week of life (input phase), newborn chicks were reared in controlled-rearing
chambers that contained a single virtual object. On average, the object measured 8 cm
(length) x 7 cm (height) and was displayed on a uniform white background. Eleven of
the chicks were imprinted to Object 1 (with Object 2 serving as the unfamiliar object), and
twelve of the chicks were imprinted to Object 2 (with Object 1 serving as the unfamiliar
object). The objects were modeled after those used in previous studies that tested for
invariant object recognition in adult rats [43].

The object moved continuously (24 frames/s), rotating through a 60° viewpoint range
about a vertical axis passing through its centroid (Figure 1B). The object only moved along
this 60° trajectory; the chicks never observed the object from any other viewpoint in the
input phase. The object switched display walls every 2 h (following a 1 min period of
darkness), appearing for an equal amount of time on the left and right display wall. In
the Surface Feature Condition, the imprinted object had realistic surface features, whereas
in the Line Drawing Condition, the imprinted object was a line drawing animation of the
object (Figure 1B, see Movie S1 for animations).

In the second week of life (test phase), the chicks received 168 test trials (24 test trials
per day). During the test trials, the imprinted object was shown on one screen and an
unfamiliar object was shown on the other screen. We expected the chicks to spend a greater
proportion of time in proximity to the object that they perceived to be their imprinted object.

For all test trials, the unfamiliar object was presented from the same viewpoint range
as the imprinted object shown during the input phase. The unfamiliar object had a similar
size, color, motion speed, and motion trajectory as the imprinted object from the input
phase. Consequently, for all of the novel viewpoint ranges, the unfamiliar object was more
similar to the imprinting stimulus (from a pixel-wise perspective) than the imprinted object
was to the imprinting stimulus (for details, see [26]). To recognize their imprinted object,
the chicks needed to generalize across large, novel, and complex changes in the object’s
appearance on the retina.

The chicks were tested across 12 viewpoint ranges (11 novel, 1 familiar). Each view-
point range was tested twice per day. The test trials lasted 20 min and were separated from
one another by 40 min rest periods. During the rest periods, the animation from the input
phase appeared on one display wall and a white screen appeared on the other display wall.
The 12 viewpoint ranges were tested 14 times each within randomized blocks over the
course of the test phase. Figure 2A illustrates how the objects were presented across the
display walls during the input phase and test phase. In the Surface Feature Condition, the
chicks were tested with objects containing surface features, whereas in the Line Drawing
Condition, the chicks were tested with line drawings of the objects. In both conditions, the
test objects moved continuously through a 60° viewpoint range.

2.2. Results

To analyze the chicks’ behavior, the image-based tracking software scored the chick
as being in proximity to an object when the chick occupied a 22 x 42 cm zone next to
the object. Then, we computed the number of test trials in which chicks preferred their
imprinted object over the unfamiliar object. The chick was rated to have preferred their
imprinted object on a trial if their object preference score was greater than 50%. The
object preference score was calculated with the formula Object Preference Score = Time by
Imprinted Object/(Time by Imprinted Object + Time by Unfamiliar Object).
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Figure 2. The experimental procedure. The schematics illustrate how the objects were presented for
sample 4 h periods during (A) Experiment 1 and (B) Experiment 2. During the input phase, chicks
were exposed to a single virtual object moving through a 60° (Experiment 1) or 360° (Experiment 2)
viewpoint range. The object appeared on one wall at a time (indicated by blue segments on the
timeline), switching walls every 2 h, after a 1 min period of darkness (black segments). During the
test trials, two virtual objects were shown simultaneously, one on each wall, for 20 min per hour (gray
segments). The illustrations below the timeline are examples of paired test objects displayed in four
of the test trials. Each test trial was followed by a 40 min rest period (blue segments). During the rest
periods, the animation from the input phase was shown on one wall, and the other wall was blank.
This figure shows the stimuli from the Surface Feature Condition. In the Line Drawing Condition,
the chicks were raised and tested with line drawings rather than objects with surface features.

The results are depicted in Figure 3. For each viewpoint range, we computed the
percentage of time the chick spent with the imprinted object versus the unfamiliar ob-
ject. Recognition performance exceeded chance level in the Surface Feature Condition
(#(10) =9.75,p < 102, Cohen’s d = 2.94), but did not exceed chance level in the Line Drawing
Condition (t(11) = 1.53, p = 0.15, Cohen’s d = 0.44).

To test whether performance differed between the Surface Feature Condition and the
Line Drawing Condition on each of the test viewpoint ranges, we first used SPSS to compute
a repeated-measures ANOVA. We used an ANOVA because we ultimately wanted to run
t-tests on every viewpoint range, which requires running an overall ANOVA first to control
the Type L error rate. We used repeated measures because the viewpoint range varied within
subjects. The repeated-measures ANOVA with the viewpoint range as a within-subjects
factor and condition (surface feature vs. line drawing) as a between-subjects factor revealed
a significant main effect of the viewpoint range (F(6.94, 145.81) = 2.73, p = 0.01, npz =0.12)
and condition (F(1,21) = 52.13, p < 0.001, npz = 0.71). The interaction was also significant
(F(6.94, 145.81) = 2.70, p = 0.01, np2 = 0.11). Recognition performance was significantly
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higher in the Surface Feature Condition than the Line Drawing Condition, both in terms of
overall recognition performance (#(21) = 7.22, p < 1076, Cohen’s d = 2.99; Figure 3A) and for
each of the 12 viewpoint ranges (all ps < 0.05, Figure 3B).
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Figure 3. Results from Experiment 1. (A) Overall object recognition performance across the test phase.
(B) Recognition performance on each of the 12 viewpoint ranges. (C) Recognition performance of each
individual subject. The graphs show the percentage of time spent with the imprinted object versus
unfamiliar object. The dashed lines indicate chance performance. Error bars denote 1 standard
error. Asterisks denote statistical significance: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
(two-tailed t-tests).

We also examined performance for each of the two imprinted objects. When the chicks
were imprinted to Object 1 (see Figure 1 for reference), performance exceeded chance level
in the Surface Feature Condition (#(4) = 6.54, p = 0.003, Cohen’s d = 2.92), but not in the
Line Drawing Condition (#(5) = 1.35, p = 0.24, Cohen’s d = —0.55). Performance was also
significantly higher in the Surface Feature Condition than the Line Drawing Condition for
Object 1 (¢(9) =7.11, p = 0.00006, Cohen’s d = 4.13). When the chicks were imprinted to Object
2, performance exceeded chance level in both the Surface Feature Condition (#(5) = 7.75,
p =0.001, Cohen’s d = 3.16) and the Line Drawing Condition (#(5) = 5.23, p = 0.003, Cohen’s
d = 2.13), although performance was significantly higher in the Surface Feature Condition
than the Line Drawing Condition (#(10) = 4.55, p = 0.001, Cohen’s d = 2.63). In general,
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newborn chicks developed superior object recognition abilities when reared with objects
containing surface features versus line drawings.

Since over 100 test trials were collected from each chick, we could also measure
each chick’s object recognition performance with high precision. As shown in Figure 3C,
all chicks in the Surface Feature Condition successfully created view-invariant object
representations (all ps < 0.0001). Conversely, only four of the twelve chicks in the Line
Drawing Condition performed above chance level in the task, and those four subjects
performed much worse than the subjects in the Surface Feature Condition.

2.3. Discussion

In Experiment 1, newborn chicks developed enhanced object recognition performance
when reared with objects containing surface features versus line drawings. Overall, the
chicks reared with the line drawings performed at chance level, despite acquiring over 100 h
of visual experience with the line drawings during the input phase. Thus, the development
of object recognition in newborn chicks requires visual experience with the surface features
of objects.

To verify this conclusion under different testing conditions, we performed a second
experiment with two key changes. First, rather than presenting the object from a 60°
viewpoint range, the object moved through a 360° viewpoint range. As a result, the chicks
were exposed to six times as many unique views of the object during the input phase.
Second, we measured each chick’s object recognition abilities with Identity Trials and
Viewpoint Trials (Figure 2B). The Identity Trials tested whether the chicks built object
representations that were selective for object identity and tolerant to changes in viewpoint.
The Viewpoint Trials tested whether the chicks built object representations that were
selective for familiar viewpoints. The Identity Trials tested the chicks” view-invariant object
recognition abilities, whereas the Viewpoint Trials tested whether the chicks could use an
image-based matching strategy to recognize their imprinted object.

3. Experiment 2
3.1. Materials and Methods

The text describing the methods is partly adapted from [4]. The methods were identical
to those used in Experiment 1, except in the following ways. First, 20 different subjects
were tested. Ten chicks were tested in the Surface Feature Condition [4] and ten chicks were
tested in the Line Drawing Condition. No subjects were excluded from the analyses. Second,
the imprinted object completed a 360° rotation every 15 s around a frontoparallel vertical
axis (see SI Movie 2 for animations). Third, the chicks were tested with Viewpoint Trials
and Identity Trials. In the Viewpoint Trials, one display wall showed familiar viewpoints
of the imprinted object (rotation around the familiar axis), whereas the other display wall
showed novel viewpoints of the imprinted object (rotation around a novel axis, Figure 2B).
If the chicks created object representations that were selective for familiar viewpoints, then
they should have preferred the imprinted object rotating around the familiar axis over the
novel axis. In the Identity Trials, one display wall showed the imprinted object rotating
around a novel axis, whereas the other display wall showed a novel object rotating around
the familiar axis (Figure 2B). Thus, to recognize their imprinted object in Identity Trials, the
chicks needed to build view-invariant representations that were selective for object identity
and tolerant to viewpoint changes.

The chicks received 24 test trials per day (168 test trials in total). Figure 2B shows
how the objects were presented on the display walls during the input phase and test phase.
In total, 6720 h of video footage (14 days x 24 h/day x 20 subjects) were collected for
Experiment 2.

3.2. Results and Discussion

The results are shown in Figure 4. An ANOVA with the within-subjects factor of
the Trial Type (Viewpoint Trials vs. Identity Trials) and the between-subjects factor of
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the condition (surface feature vs. line drawing) revealed a significant main effect of the
condition (F(1,18) = 48.55, p < 0.001, npz =0.73), reflecting higher performance in the Surface
Feature Condition. The ANOVA also showed a significant main effect of the Trial Type
(F(1,18) = 14.01, p = 0.001, np? = 0.44), reflecting higher performance in the Identity Trials.
The interaction was not significant (F(1,18) = 1.22, p = 0.29, np2 = 0.06). In the Surface
Feature Condition, performance was above chance level in the Identity Trials (one-sample
t-test, t(9) = 7.84, p < 0.001, Cohen’s d = 2.48), but not in the Viewpoint Trials (t(9) = 1.41,
p =0.19, Cohen’s d = 0.45). In the Line Drawing Condition, performance did not exceed
chance level in the Identity Trials (£(9) = 0.70, p = 0.50, Cohen’s d = 0.22) or the Viewpoint
Trials (#(9) = 2.22, p = 0.053, Cohen’s d = 0.70). Thus, when chicks were reared with an
object containing surface features, the chicks built object representations that were highly
sensitive to identity features. When chicks were reared with line drawings, they did not
show evidence for sensitivity to identity or viewpoint features.
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Figure 4. Results from Experiment 2. (A) Overall object recognition performance across the test
phase. (B) Recognition performance of each individual subject in the Identity Trials. (C) Recognition
performance of each individual subject in the Viewpoint Trials. The dashed lines indicate chance
performance. Error bars denote +1 standard error. Asterisks denote statistical significance: * p < 0.05;
**p <0.01; ** p < 0.001; *** p < 0.0001 (two-tailed ¢-tests).

We also examined performance for each of the two imprinted objects. We repeated the
ANOVA above, but with the addition of the object as a main effect. The ANOVA revealed
the same significant effects as before (significant main effects of condition and Trial Type),
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and the main effect of the object was not significant, nor were the interactions (all ps > 0.3).
When the chicks were imprinted to Object 1, performance exceeded chance level in the
Identity Trials in the Surface Feature Condition (£(3) = 4.03, p = 0.03, Cohen’s d = 2.02),
but not in the Line Drawing Condition (#(5) = 0.16, p = 0.88, Cohen’s d = 0.06). In the
Identity Trials, performance was significantly higher in the Surface Feature Condition than
the Line Drawing Condition (#(8) =3.98, p = 0.004, Cohen’s d = 2.41). Similarly, when the
chicks were imprinted to Object 2, performance exceeded chance level in the Identity Trials
in the Surface Feature Condition (#(5) = 6.44, p = 0.001, Cohen’s d = 2.63), but not in the
Line Drawing Condition (£(3) = 0.67, p = 0.55, Cohen’s d = 0.33). Again, in the Identity
Trials, performance was significantly higher in the Surface Feature Condition than the
Line Drawing Condition (#(8) = 2.68, p = 0.03, Cohen’s d = 1.64). In the Viewpoint Trials,
performance did not exceed chance level when the chicks were imprinted to Object 1 or
Object 2 in the Surface Feature Condition or the Line Drawing Condition (ps > 0.15).

As shown in Figure 4B, all of the chicks in the Surface Feature Condition exceeded
chance level in the Identity Trials (two chicks, p < 0.05; one chick, p < 0.01; seven chicks,
p < 0.0001). In contrast, recognition performance was low for all of the chicks in the Line
Drawing Condition. Only one chick exceeded chance level in the Identity Trials, while
one other chick performed significantly below chance level. As in Experiment 1, newborn
chicks developed superior object recognition abilities when reared with objects containing
surface features versus line drawings.

3.3. Measuring the Strength of the Imprinting Response in Experiments 1 and 2

To test the strength of the chicks’” imprinting response, we performed two additional
analyses. First, we examined the proportion of time that the chicks spent in proximity
to their imprinted object during the input phase. As shown in Figure 5A, the chicks in
both Experiments 1 and 2 spent the majority of their time in proximity to the imprinted
object during the input phase (Experiment 1 subjects imprinted to surface feature ob-
jects: (10) =40.47, p < 101, d = 12.20; Experiment 1 subjects imprinted to line drawings:
t(11) = 6.27, p = 0.00006, d = 1.81; Experiment 2 subjects imprinted to surface feature ob-
jects: £(9) = 20.55, p < 1078, d = 6.50; Experiment 2 subjects imprinted to line drawings:
£(9) = 10.84, p = 0.000002, d = 3.43). Thus, the chicks successfully imprinted to both the
line drawings and the objects with surface features. In both experiments, however, the
imprinting response was stronger in the Surface Feature Condition than the Line Drawing
Condition (Experiment 1: £(13.16) = 6.22, p = 0.00003, d = 2.55; Experiment 2: £(18) = 2.15,
p =0.05, d = 0.96), suggesting that the chicks imprinted less strongly to the line drawings
than to the objects with surface features.

Second, we examined the proportion of time the chicks spent with their imprinted
object during the rest periods. During the rest periods, the imprinted object was presented
on one display wall while the other display wall was blank. The rest periods therefore
provided a measure of the strength of the chick’s attachment to the imprinted object during
the test phase. As shown in Figure 5B, the chicks in both experiments spent the majority
of their time in proximity to the imprinted object during the rest periods (Experiment 1
subjects imprinted to surface feature objects: #(10) = 24.91, p < 107, d = 7.51; Experiment 1
subjects imprinted to line drawings: #(11) = 5.35, p = 0.0002, d = 1.54; Experiment 2 subjects
imprinted to surface feature objects: #(9) = 30.14, p < 107, d = 9.53; Experiment 2 subjects
imprinted to line drawings: t(9) = 7.76, p = 0.00003, d = 2.45). However, the imprinting
response was stronger in the Surface Feature Condition than the Line Drawing Condition
(Experiment 1: £(21) = 5.91, p = 0.000007, Cohen’s d = 2.50; Experiment 2: #(11.30) = 2.89,
p =0.01, Cohen’s d = 1.29), providing additional evidence that the chicks imprinted less
strongly to the line drawings than to the objects with surface features. Importantly, this
reduction in the strength of the imprinting response cannot fully explain the low recognition
performance because even the chicks that imprinted strongly to the line drawings still
built inaccurate object representations (Figure 5C). Together, these analyses suggest that
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when chicks are reared with line drawings versus objects with surface features, the chicks
develop an impaired imprinting response and build less accurate object representations.
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Figure 5. (A) Strength of the imprinting response in Experiments 1 and 2 during the input phase.
(B) Strength of the imprinting response in Experiments 1 and 2 during the rest periods of the test
phase. The dashed lines indicate chance performance. Error bars denote +-1 standard error. Asterisks
denote statistical significance: ** p < 0.01; *** p < 0.001; **** p < 0.0001 (two-tailed t-tests). The chicks
successfully imprinted to both the line drawings and the objects with surface features, and this effect
was stronger for the objects with surface features. (C) Comparison of the chicks” object recognition
performance and the strength of their imprinting response. The chicks developed enhanced object
recognition performance when reared with objects with surface features compared to line drawings,
even when the chicks imprinted to the objects at similar strengths.
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4. Experiment 3

Experiments 1 and 2 indicate that the development of object recognition requires
experience with the surface features of objects. However, there are three limitations to these
results. First, the line drawings and the objects with surface features differed in several
respects, including their color, contrast, hue homogeneity, and complexity. Thus, it is un-
clear which particular features caused the observed differences in recognition performance
across the conditions. Indeed, there is extensive evidence that color is one of the most
distinctive features encoded in imprinting (e.g., [30,44-48]), which raises the possibility
that color differences may have influenced performance across the conditions. Second,
Experiments 1 and 2 tested chicks’ recognition performance with the same two objects, so it
is unclear whether these results generalize to other objects. Third, the imprinting response
was less strong in the Line Drawing Condition than the Surface Feature Condition, poten-
tially because of the color differences across objects. Given that recognition performance
in this task is directly constrained by the strength of the imprinting response, the weaker
imprinting response in the Line Drawing Condition likely produced lower recognition
performance in the test trials.

To provide a more direct comparison of chicks’ recognition performance across condi-
tions, we performed a third experiment in which the objects in the Surface Feature and Line
Drawing Conditions were the same color (red). We also ensured that the objects did not
have shadows and regions with different luminance values (as in Experiments 1 and 2), by
using two-dimensional objects, rather than three-dimensional objects. The only difference
between the conditions was whether the objects did, or did not, have surface features
(Figure 6A).

For the Surface Feature Condition, we used the data previously reported in [42]. In
that paper, we tested whether newborn chicks can encode the transitional probabilities
(TPs) between shapes in a sequence. During the input phase, the chicks were reared
with an imprinting sequence consisting of a stream of four shapes, and the order of the
shapes was defined by the TPs within and between shape pairs. During the test phase, we
presented two types of test trials. In the shape recognition trials, one monitor showed a
sequence of familiar shapes, and the opposite monitor showed a sequence of novel shapes.
In the TP trials, both monitors showed the familiar shapes, but we manipulated the TPs
between shapes. One monitor showed a familiar TP sequence, in which the TPs between
shapes matched the imprinting sequence, and the opposite monitor showed a novel TP
sequence, in which the TPs between shapes did not match the imprinting sequence. In the
original study, we found that the chicks successfully distinguished between the sequences
in the shape recognition trials, but failed to distinguish between the sequences in the TP
trials. Here, we repeated this experiment with one crucial change: rather than presenting
sequences of shapes with surface features, we presented sequences of red line drawing
shapes (Figure 6A).

4.1. Materials and Methods

For a detailed description of the methods, see [42]. In the present study, we used a
similar design to the original study, except that the chicks were imprinted and tested with
red line drawings, rather than red objects with surface features. As in the original study,
we tested the chicks with both shape recognition and TP test trials. We tested 12 subjects
in the Surface Feature Condition [42] and 10 subjects in the Line Drawing Condition. No
subjects were excluded from the analyses.
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Figure 6. (A) Experiment 3 method. During the input phase, an imprinting sequence defined by the
transitional probabilities (TPs) within and between shape pairs appeared on one display wall at a time.
The imprinting sequence either contained shapes with surface features or line drawings of shapes.
During the test phase, we presented chicks with two-alternative forced-choice tasks. In each test trial,
one display wall showed the imprinting sequence, and the other display wall showed either the same
shapes as in the imprinting sequence but in novel orders (TP trials) or a sequence of novel shapes
(shape recognition trials). (B) Strength of the imprinting response in Experiment 3 during the input
phase. (C) Strength of the imprinting response in Experiment 3 during the rest periods of the test
phase. The chicks imprinted equally strongly across the Surface Feature and Line Drawing Conditions.
(D) Recognition performance in the Shape Recognition and Transitional Probability Conditions. The
chicks showed superior object recognition performance in the Surface Feature Condition compared
to the Line Drawing Condition. The dashed lines indicate chance performance. Error bars denote +1
standard error. Asterisks denote statistical significance: ** p < 0.01; **** p < 0.0001 (two-tailed t-tests).

4.2. Results and Discussion

We first examined the strength of the imprinting response to ensure that the chicks
imprinted equally strongly across the two conditions. As shown in Figure 6B, the chicks in
both conditions spent the majority of their time in proximity to the imprinted object during
the input phase (one-sample t-tests, Surface Feature Condition: #(11) = 12.35, p < 1077,
Cohen’s d = 3.57; Line Drawing Condition: t(11) = 18.77, p < 10~8, Cohen’s d = 5.42). Unlike
in Experiments 1 and 2, the chicks did not show a stronger imprinting response in the
Surface Feature Condition than the Line Drawing Condition (independent samples t-test,
#(22) = 0.7, p = 0.94, Cohen’s d = 0.03). Similarly, as shown in Figure 6C, the chicks in both
conditions spent the majority of their time in proximity to the imprinted object during the
rest periods (one-sample t-tests, Surface Feature Condition: #(11) = 13.06, p < 10=7, Cohen’s
d = 3.77; Line Drawing Condition: #(9) = 28.59, p < 1071%, Cohen’s d = 9.04). Unlike in
Experiments 1 and 2, the chicks did not show a stronger imprinting response during the rest
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periods in the Surface Feature Condition than the Line Drawing Condition (independent
samples t-test, #(20) =1.69, p = 0.11, Cohen’s d = 0.75). Together, these analyses show that
the chicks did not imprint more strongly in the Surface Feature Condition, allowing for a
more direct comparison of recognition performance across the conditions.

The chicks’ recognition performance is shown in Figure 6D. An ANOVA with the
within-subjects factor of the Trial Type (shape recognition vs. TP trials) and the between-
subjects factor of the condition (surface feature vs. line drawing) revealed a significant
main effect of the Trial Type (F(1,20) = 15.95, p = 0.001, np2 =0.44), a significant main effect
of the condition (F(1,20) = 4.38, p = 0.049, npz =0.18), and a significant interaction between
the Trial Type and condition (F(1,20) = 9.16, p = 0.007, np2 =0.31).

When reared with a sequence of shapes containing surface features, the chicks could re-
liably distinguish between familiar shapes and novel shapes (one-sample t-test, t(11) = 4.67,
p = 0.0007, Cohen’s d = 1.35). In contrast, when reared with a sequence of line drawing
shapes, the chicks failed to distinguish between familiar shapes and novel shapes (one-
sample t-test, t(9) = 1.30, p = 0.23, Cohen’s d = 0.41). As in the original study [42], the chicks
in both conditions failed to distinguish between the sequences based on the TPs between
shapes (Surface Feature Condition: #(11) = 0.56, p = 0.59, Cohen’s d = —0.16; Line Drawing
Condition: #(9) = 1.04, p = 0.33, Cohen’s d = 0.33).

On the individual-subject level, 8 of the 12 chicks in the Surface Feature Condition
showed a statistically significant preference for the familiar shapes (7 chicks: p < 0.0001;
1 chick: p < 0.05). In contrast, in the Line Drawing Condition, only one chick exceeded
chance level in the shape recognition trials, while one other chick performed significantly
below chance level. As in Experiments 1 and 2, newborn chicks developed superior object
recognition performance when reared with objects containing surface features versus
line drawings.

5. General Discussion

A deep understanding of object recognition requires understanding the role of visual
experience in development. Here, we reveal a set of conditions under which object recogni-
tion fails to develop in newborn animals: when a newborn’s visual experience with objects
consists solely of line drawings. When newborn chicks were reared with objects containing
surface features, the chicks developed robust view-invariant object recognition. In contrast,
when chicks were reared with line drawings of objects, the chicks failed to develop object
recognition. Notably, the chicks reared with the line drawings performed at chance level,
despite acquiring over 100 h of experience with the objects. Thus, the development of
object recognition requires visual experience with the surface features of objects.

Interestingly, the chicks reared with line drawings failed to build accurate object
representations despite being raised in environments that contained some surface features.
The walls and floor of the chamber contained surface features, as did the heaps of grain
consumed during feeding. Nevertheless, when the objects in the chicks’ visual environment
lacked surface features, the chicks failed to build accurate representations. This finding
suggests that experience with surface features per se is not sufficient for the development
of object recognition; rather, newborn visual systems need experience with the surface
features of objects.

These results add to a growing body of work mapping out the conditions under
which object recognition does, and does not, emerge in newborn animals. For instance,
studies with newborn chicks have revealed two constraints on the development of object
recognition. First, there is a “slowness constraint” on newborn vision: object recognition
emerges when newborn chicks are reared with slowly moving objects, but not quickly
moving objects [4]. When chicks are reared with quickly moving objects, their object
representations become distorted in the direction of object motion and fail to generalize
to novel viewpoints and rotation speeds. Second, there is a “smoothness constraint”
on newborn vision: object recognition emerges when newborn chicks are reared with
temporally smooth objects, but not temporally non-smooth objects [3,49]. When chicks are
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reared with temporally non-smooth objects, their object representations are less selective for
object identity. The present study extends this literature by demonstrating that experience
with slow and smooth objects is not sufficient for the development of object recognition.
The line drawings in Experiments 1-3 moved slowly and smoothly over time, but the
chicks nevertheless failed to develop object recognition. Together, these findings indicate
that the development of object recognition requires experience with naturalistic objects:
objects that have surface features and move slowly and smoothly over time.

More generally, these results build on a large body of research using animal models
to examine the mechanisms of object recognition and early visual learning. For decades,
newborn chicks have been used to characterize the effects of visual experience on the brain
(e.g., [50-52]) and to isolate the neural mechanisms that underlie imprinting (e.g., [53,54]).
Studies of chicks have also revealed predispositions that might shape early visual learning
(e.g., [55-57]). Another important animal model for studying early visual learning is
rodents. Studies of rats provide converging evidence that high-level vision is not unique
to primates. Like newborn chicks, rats can recognize objects across novel viewpoints
(e.g., [43]). Normal visual development in rats also requires experience with a slow and
smooth visual world [58], suggesting that avian and mammalian brains are subject to
common developmental constraints. Specifically, when newborn rats were reared with
frame-scrambled versions of natural movies (which preserved the natural spatial statistics
but resulted in quickly changing, temporally unstructured input), the rats developed fewer
complex cells in the primary visual cortex, the cells showed abnormally fast response
dynamics, and the cells were less likely to support stable decoding of stimulus orientation.
Thus, depriving newborn animals of slowly changing visual experiences disrupts normal
visual development in both birds and mammals, potentially reflecting a shared cortex-like
canonical circuit found across taxa [37].

Limitations of This Study and Directions for Future Research

While these results contribute to our understanding of early visual development,
there are limitations to this work that will require additional future research. First, these
chicks were reared with either one 3D object (Experiments 1 and 2) or four 2D objects
(Experiment 3). It is therefore possible that chicks could develop object recognition in
a visual world consisting solely of line drawings if there were more line drawings in
the environment and/or if those line drawings were more complex (e.g., line drawings
containing polyhedral shapes that included L, Y, and T junctures between lines). Future
studies could distinguish between these possibilities by rearing chicks in more complex
“line drawing worlds”.

Second, we used the chicks’ preference for their imprinted object as a measure of
object recognition performance. While successful performance provides evidence for object
recognition (e.g., in the Surface Feature Conditions), the absence of a preference (e.g., in
the Line Drawing Conditions) does not necessarily provide evidence for a lack of object
recognition. For instance, it is possible that the chicks in the Line Drawing Conditions
perceived the test objects as different but grouped them in the same object category. Of
course, this alternative explanation must then explain why the presence of surface features
would lead chicks to categorize objects differently from one another, whereas line drawings
would lead chicks to categorize objects together. It would be interesting for future studies
to test chicks using alternative methods (e.g., reinforcement learning) to explore whether
the present findings generalize to other object recognition tasks.

Third, these results do not reveal why surface features are necessary for the develop-
ment of object recognition. Why do newborn chicks fail to understand line drawings, when
mature animals (including birds) can readily recognize objects presented in line drawings?
One possibility is that the mechanisms underlying object recognition require patterned in-
put from natural visual objects in order to develop a receptive field structure that efficiently
recovers edges and lines. Specifically, in natural visual environments, the edges of objects
and surfaces are typically marked by discrete changes in surface attributes, and mature
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visual systems contain neurons tuned to the orientation of these contours, responding to
edges and lines [59,60]. To develop these orientation-tuned detectors, newborn brains may
require visual experience of objects with surface features.

Moreover, line drawings are impoverished compared to real objects, and the surface
features that appear on real objects may provide valuable information for building accurate
representations of an object’s three-dimensional shape. For example, the surface features
on the objects used in Experiments 1 and 2 had gradients of luminance that moved as
the object rotated, creating flow field cues for three-dimensional shape. Accordingly, it
is a possibility that experience with realistic objects is necessary to develop the ability to
recognize objects in line drawings. Future controlled-rearing experiments could test this
hypothesis directly by examining whether experience with realistic objects allows for the
development of line drawing understanding.

Ultimately, a deep mechanistic understanding of the role of experience in the devel-
opment of object recognition will require task-performing computational models that can
simulate the complex interactions between newborn brains and the visual environment.
The present results should be valuable for this enterprise because they provide precise
descriptions of how specific visual inputs relate to specific object recognition outputs in a
newborn model system. These input—-output patterns can serve as benchmarks for mea-
suring the accuracy of computational models (e.g., [61-64]). Specifically, to explain the
development of object recognition, a computational model would need to produce two
patterns. First, the model should successfully develop view-invariant object recognition
when trained with realistic objects that move slowly and smoothly over time. Second, the
model should fail to develop object recognition when trained solely with line drawings.

6. Conclusions

The present study provides evidence that the development of object recognition re-
quires experience with the surface features of objects. Newborn chicks develop enhanced
object recognition performance when reared with objects containing surface features com-
pared to line drawings. This study sheds light on how a fundamental ability emerges in
newborn animals and provides precise input-output patterns for measuring the accuracy
of task-performing computational models of visual development. Furthermore, these
insights into the role of experience in object recognition may offer valuable parallels to
understanding and potentially enhancing early visual development in human infants.
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Simple Summary: Blurry scenarios often affect the clarity of fish images, posing significant challenges
to deep learning models in terms of the accurate recognition of fish species. A method based on
deep learning with a diffusion model and an attention mechanism, DiffusionFR, is proposed herein
to improve the accuracy of fish species recognition in blurry scenarios caused by light reflections
and water ripple noise. Using a self-constructed dataset, BlurryFish, extensive experiments were
conducted and the results showed that the proposed two-stage diffusion network model can restore
the clarity of blurry fish images to some extent and the proposed learnable attention module is
effective in improving the accuracy of fish species recognition.

Abstract: Blurry scenarios, such as light reflections and water ripples, often affect the clarity and
signal-to-noise ratio of fish images, posing significant challenges for traditional deep learning models
in accurately recognizing fish species. Firstly, deep learning models rely on a large amount of
labeled data. However, it is often difficult to label data in blurry scenarios. Secondly, existing
deep learning models need to be more effective for the processing of bad, blurry, and otherwise
inadequate images, which is an essential reason for their low recognition rate. A method based
on the diffusion model and attention mechanism for fish image recognition in blurry scenarios,
DiffusionFR, is proposed to solve these problems and improve the performance of species recognition
of fish images in blurry scenarios. This paper presents the selection and application of this correcting
technique. In the method, DiffusionFR, a two-stage diffusion network model, TSD, is designed to
deblur bad, blurry, and otherwise inadequate fish scene pictures to restore clarity, and a learnable
attention module, LAM, is intended to improve the accuracy of fish recognition. In addition, a
new dataset of fish images in blurry scenarios, BlurryFish, was constructed and used to validate
the effectiveness of DiffusionFR, combining bad, blurry, and otherwise inadequate images from the
publicly available dataset Fish4Knowledge. The experimental results demonstrate that DiffusionFR
achieves outstanding performance on various datasets. On the original dataset, DiffusionFR achieved
the highest training accuracy of 97.55%, as well as a Top-1 accuracy test score of 92.02% and a Top-5
accuracy test score of 95.17%. Furthermore, on nine datasets with light reflection noise, the mean
values of training accuracy reached a peak at 96.50%, while the mean values of the Top-1 accuracy
test and Top-5 accuracy test were at their highest at 90.96% and 94.12%, respectively. Similarly, on
three datasets with water ripple noise, the mean values of training accuracy reached a peak at 95.00%,
while the mean values of the Top-1 accuracy test and Top-5 accuracy test were at their highest at
89.54% and 92.73%, respectively. These results demonstrate that the method showcases superior
accuracy and enhanced robustness in handling original datasets and datasets with light reflection
and water ripple noise.

Keywords: blurry scenarios; fish recognition; deep learning; diffusion models
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1. Introduction

Fish are vital for humans as a protein source and for maintaining marine biodiversity [1].
However, they face challenges like overfishing, habitat destruction, and climate change.

Recognition of fish species benefits animal welfare, ecological protection, and wildlife
support. Fish image recognition helps researchers understand fish behavior and improve
habitats. It also aids in accurate population counting and the monitoring [2] of wild fish
populations. Additionally, it enables rapid recognition of fish at customs and in markets,
preventing the illegal trade of endangered species.

In blurry marine scenarios, fish species recognition is challenging, requiring accu-
rate methods [3]. This contributes to surveys, population analyses, and the sustainable
utilization of fish as a biological resource.

Underwater cameras are commonly used for fish surveys [4]. Unlike other methods,
they minimize ecosystem impact and allow continuous recording of fish activity. However,
limitations include a restricted field of view and factors like water turbidity, lighting
conditions, and flow magnitude that affect image quality and recognition accuracy.

Previous research mainly focused on high-resolution fish recognition [5]. However,
practical scenarios often feature blurry images due to water quality [6], relative move-
ment [7] between the shooting device and the fish, water ripples [8], and light reflection [9].
This poses significant challenges for fish recognition in real-life situations.

In order to overcome the challenges mentioned above, a method of fish image recog-
nition in blurry scenarios based on the diffusion model and attention [10-12] mechanism,
DiffusionFR, is proposed herein. DiffusionFR offers a comprehensive set of technical solu-
tions for fish recognition in blurry scenarios. It shows the selection and application of this
correcting technique.

The main contribution list of this paper is summarized as follows:

(1) A two-stage diffusion model for fish recognition in blurry scenarios, TSD, was de-
signed to maximize the removal of bad, blurry, and otherwise inadequate effects in
fish images.

(2) Alearnable attention module, LAM, was designed to ensure that the semantic features
learned at the end of the network can distinguish fish for fine-grained recognition.

(3) A method for fish image recognition in blurry scenarios that synthesizes TSD and
LAM, DiffusionFR, was proposed to present a complete solution for fish image
recognition in blurry scenarios, and the selection and application of this correcting
technique are presented herein.

(4) A dataset of fish images in blurry scenarios, BlurryFish, was constructed and used to
validate the effectiveness of DiffusionFR, and integrated the bad, blurry, and otherwise
inadequate images from the publicly available dataset Fish4Knowledge.

The structure of this paper is as follows. In Section 2, we review the relevant works
on fish species recognition. Section 3 provides a detailed explanation of the key concepts
and methodology used in this study. This includes the main ideas behind the method,
DiffusionFR, the two-stage diffusion model (TSD), the learnable attention module (LAM),
the modified ResNet as the recognition network, the dataset, and the experimental design.
Moving on to Section 4, we present the treatment and analysis of the experimental findings.
In Section 5, we thoroughly discuss the implications and significance of the results. Finally,
in Section 6, we summarize the essential findings and draw conclusions based on the
research conducted in this paper.

2. Background

Previous studies on fish species recognition commonly used different deep neural
network architectures or employed layered and phased strategies.

Numerous studies on fish recognition have utilized various deep neural networks,
such as CNN, Tripmix-Net, DAMNet, MobileNetv3, and VGG16. Villon et al. [13] em-
ployed CNN to enhance the accuracy of coral reef fish recognition by using rule-based
techniques. They achieved a model accuracy of 94.9%, surpassing manual accuracy. Simi-
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larly, Villon et al. [14] used a convolutional neural network to analyze images from social
media, providing support in monitoring rare megafauna species. Li et al. [15] proposed
Tripmix-Net, a fish image classification model that incorporates multiscale network fusion.
Qu et al. [16] introduced DAMNet, a deep neural network with a dual-attention mecha-
nism for aquatic biological image classification. However, due to the incorporation of the
dual-attention mechanism, the DAMNet model may exhibit a relatively higher level of
complexity. Meanwhile, Alaba et al. [17] developed a model using the MobileNetv3-large
and VGG16 backbone networks for fish detection. However, their method still encounters
certain challenges, such as dealing with low-light conditions, noise, and the limitations
posed by low-resolution images.

A hierarchical and phased approach to fish target recognition refers to dividing the
recognition process into multiple phases and levels. Liang et al. [18] divided the recognition
process into multiple stages to enhance accuracy and robustness. However, their method
suffers from a high number of parameters and computational complexity, which can make the
training process extremely time-consuming. Similarly, Ben et al. [5] proposed a hierarchical
CNN classification method for automatic fish recognition in underwater environments.

In blurry scenarios [19], intelligent fish image recognition technology aims to improve
image clarity using image processing techniques. These techniques include image denois-
ing, image enhancement, and image alignment. Image denoising [20] reduces noise in
the image using filters. Image enhancement [21] improves clarity through techniques like
histogram equalization. Image alignment [22] addresses image blurring through regis-
tration. Neural heuristic video systems [23] analyze video frames automatically using
heuristic algorithms, extending image analysis to video analysis. The bilinear pooling with
poisoning detection (BPPD) module [24] utilizes bilinear pooling of convolutional neural
networks. This algorithm combines data from two networks through bilinear pooling to
achieve improved classification accuracy. Intelligent fish image recognition technology
utilizes the diffusion model to deblur images. This model enhances image quality, recovers
lost information, and improves feature extraction. As a result, it provides better inputs for
subsequent image recognition tasks, significantly improving the accuracy of fish image
recognition in blurry scenarios [25].

3. Materials and Methods
3.1. Main Ideas
Figure 1 presents the framework of the method based on the diffusion model and atten-

tion mechanism for fish image recognition in blurry scenarios, DiffusionFR. The framework
visually illustrates the selection and application of the correction technique.
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45

Bujures)

uonedddy



Animals 2024, 14, 499

The main ideas behind DiffusionFR can be summarized as follows:

(1) Two-stage diffusion (TSD): This model consists of two stages—the predictive stage
and the reconstructive stage. In the predictive stage, a U-Net structure generates
feature probability maps for the bad, blurry, and otherwise inadequate fish images.
Each pixel in the maps represents the probability of belonging to a specific class of
fish image. In the reconstructive stage, four identical modules comprising a residual
block and an up-sampling block are employed to convert the feature probability maps
into clear fish images.

(2) Learnable attention module (LAM): The attention mechanism in DiffusionFR com-
prises three processes—the computation of channel importance, the learning of chan-
nel weight distribution, and the weighted fusion of features. The computation of
channel importance involves global average pooling and two fully connected layers
with ReLU activation. The learning of channel weight distribution includes SoftMax
and the aggregation of features. Finally, the weighted fusion of features incorporates
the channel weight and performs a weighted fusion of the results.

(3) Modifying ResNet as the recognition network: In DiffusionFR, the ResNet feature
extraction network is modified by adding the LAM between each pair of adjacent stages.
This modification aims to minimize the loss of accuracy, train a more precise recognition
model, and enhance recognition accuracy for fish images in blurry scenarios.

3.2. Two-Stage Diffusion (TSD)

Recently, deep neural network-based diffusion models [26-28] have become popular
for image denoising and super-resolution. These models utilize the capabilities of deep
learning to learn image features and predict image evolution. As a result, they can quickly
and efficiently denoise and enhance images.

The proposed TSD method in this study consists of two stages: a predictive stage and
a reconstructive stage. The predictive stage detects fish image features in blurry images,
while the reconstructive stage analyzes and processes diffusion data to address errors
or deficiencies in the model. This stage significantly enhances the model’s accuracy and
reliability. The entire TSD process is visually depicted in Figure 2.
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Figure 2. Structure of two-stage diffusion (TSD), including a predictive stage and a reconstructive stage.

The predictive stage of the proposed method takes the fish image as an input and
generates a probability map, which represents the likelihood of each pixel belonging to a
specific fish species category, as an output. This probability map provides valuable insights
into the model’s classification probabilities for different fish species.

To achieve this, the predictive stage utilizes the U-Net architecture [29], as shown
in Figure 3. U-Net consists of symmetrical encoders and decoders. The encoder extracts
image features using convolution and pooling operations, encoding the input image into a
low-dimensional tensor. The decoder then reconstructs the encoder’s output into an image
of the same dimensions as the input, with each pixel containing a probability value for the
target category. To address information loss, U-Net incorporates jump connections that
connect the feature maps of the encoder and decoder. It consists of four 2D convolutional
layers and four maximum pooling layers, enabling the model to handle fish images of
varying sizes and shapes within blurry images.
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Figure 3. U-Net architecture, consisting of an encoder and a decoder.

The restoration stage is responsible for generating the final restored image. It utilizes
both the output image from the prediction stage and the input image.

The reconstructive stage is composed of four modules. Each module consists of a
Residual Block [30] and Up-Sampling Block [31]. The Residual Block addresses issues
of gradient vanishing and explosion during deep neural network training, as shown in
Figure 4. It includes two convolutional layers and a jump connection, where the input
is added directly to the output to form residuals. This helps the network capture the
mapping relationship between inputs and outputs, improving the model’s performance
and robustness. During model training, special attention is given to the error generated by
the Up-Sampling Block in the network, as shown in Equation (1).

q(xs |Xt/ XO) =N (Xs
t0

1 25 2
8i0® <f50gtsz"0 + ftsgsoz’“>’ gs;gztsg 1)

where q(xs|xt, Xo) denotes the conditional probability distribution of xs; given conditions
xt and xo, the mean part of this is a series of linear combination terms including fs, g, fts,
and g ,. In addition, fis is a ratio indicating the relative scale that maps the input variable
t to the input variable s, as shown in Equation (2), and g, is computed from the scale
parameters of the input variables t and s and is used to adjust the propagation process of
the error, as shown in Equation (3).

f(t)

fts = @ (2)

g = \/8(t) — fis’g(s)’ 3)
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Figure 4. Residual Block, consisting of Dilated Causal Conv, BatchNorm, ELU, and Dropout.

Equation (4) describes the gradual process of recovering the image from noise, as illustrated.

Xt = Vaxo + Zi—1 = Vouxo + V1 —xZ,Z ~ N(0,1) 4)

where x; denotes the image recovered at moment t, obtained by a linear combination of
the initial image xo and the previous recovery result Z; 1. This linear combination uses a
scaling factor \/&; to adjust the contribution of the initial image and the previous recovery
result. Meanwhile, the noise term Z is generated through a Gaussian distribution N (0, I).

Equation (5) represents the inverse diffusion process from the recovered image x; back
to the previously recovered result x;_1.

B¢ 1—oq

1
Xt — y —
NCTREV iy B

where the conditional probability distribution q(x¢_1|Xt, Xo) represents the conditional
probability distribution of x;_1; given conditions x; and xg, this conditional probability
distribution is represented by a Gaussian distribution where the mean part contains a linear
combination of x; and the noise term Z.

TSD implements batch normalization techniques and dropout layers to enhance the
stability, convergence, and generalization of the model.

q(xt-1/xt,x0) =N (Xt—l; f?q) ,Z ~N(0,I) (5)

3.3. Learnable Attention Module (LAM)

In this paper, we propose LAM, which is based on the channel attention mecha-
nism [32] (CAM) and depicted in Figure 5. Unlike CAM, LAM assigns weights to channels
by learning the importance of features.
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Figure 5. The framework structure of the learnable attention module (LAM).

In DiffusionFR, the LAM consists of three steps. These steps include the computation
of channel importance, learning of channel weight distribution, and weighted fusion of
features. These steps are illustrated in Figure 1.

The first step is the computation [33] of channel importance. First, the global pooling
values for each channel in the feature map F are extracted by a global average pooling
or maximum pooling operation to obtain a C-dimensional vector Z. Then, Z is processed
using a network architecture containing two fully connected layers and a ReLU activation
function to generate a C-dimensional weight assignment vector k, which stores the weight
assignments for each channel, as shown in Equation (6).
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The second step involves the learning [34] of the channel weight distribution. This dis-
tribution determines the significance of each feature map channel. To compute the channel
weights, we use the softmax function to map the values in the weight vector between
0 and 1. This ensures that the sum of all weights equals 1, representing the weight of
each channel. To gather global information about the channels, we apply a global average
pooling operation to the features, which is represented by Equation (7).

y_HXW;;XI(a' ) ()

In the formula, x; represents the ith feature map of input size H x W, and y represents
the global feature. In the softmax function, each feature vector element is mapped to a
value between 0 and 1. With this mapping, the model can determine how much each
channel contributes relative to the overall feature map.

The third step involves the weighted fusion [35] of features. Each channel in the
feature map is weighted and fused based on their assigned weights. Firstly, weights are
assigned to each channel and applied to their corresponding features. Then, the features
of all channels are proportionally weighted and fused to generate a feature map adjusted
by the attention mechanism. By incorporating the LAM, the network can dynamically
adjust the contribution of each channel, improving its robustness and generalization ability.
This attention mechanism enables the network to disregard irrelevant information (weights
close to 0) and prioritize important features essential for successful task completion.

3.4. Modifying ResNet as the Recognition Network

DiffusionFR selected ResNet50 as the base network after comparing ResNet34 [36],
ResNet50 [37], and ResNet101 [38].

ResNet50 has a layered architecture that enables it to learn hierarchical representations
of input data. Lower layers capture low-level features, while higher layers capture intricate
patterns and relationships. The pooling layer reduces spatial dimensionality, improving
computational efficiency and translation invariance while mitigating overfitting. By lever-
aging ResNet50’s transfer learning, this provides a solid foundation for the probabilistic
graph generation task.

However, in images with complex backgrounds or noise, ResNet50 may unintention-
ally focus on less relevant regions, impacting model performance. To address this, an
attention mechanism is introduced to dynamically adjust feature map weights based on
different parts of the input data. This helps prioritize crucial features, enhancing accuracy
and generalization capabilities. Therefore, the DiffusionFR approach modifies ResNet50 by
incorporating LAM into the network. LAM is added between each pair of adjacent stages,
as shown in Figure 6.

3.5. Dataset

This paper introduces BlurryFish, a fish image dataset created by integrating blurred
images from the publicly available dataset Fish4Knowledge. The construction process
involved the following steps:

(1) Data Collection

The datasets used in this paper are from three sources. The first source is the publicly
available dataset Fish4Knowledge, consisting of realistically shot images. The second source
is a field-photographed dataset that prioritizes challenging scenarios like low-light condi-
tions and inclement weather to ensure representative fish images. The third source is fish
images from Internet, which we organized and classified. The dataset comprises 25 fish
species, and Figure 7 displays these species and example images.
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(2) Data Cleaning

The collected fish images underwent a cleaning process to ensure their quality and
reliability. This involved eliminating invalid samples and duplicate samples.

(3) Dataset Partition

The dataset was divided into three sets for the experiments: the training set, the vali-
dation set, and the test set. This division follows the leave-out method [39] and maintains
an 8:1:1 ratio. The goal was to ensure that all sets included pictures of the same fish species,
as well as similar scenarios and angles.

(4) Data Enhancement

The collected dataset has an interclass balance problem [40] due to the varying number
of pictures for each fish species. This can result in lower recognition accuracy for less
common fish species if the dataset is directly used for training. To address this issue, stan-
dard data enhancement methods were employed, including panning, cropping, rotating,
mirroring, flipping, and brightness adjustment. These operations generated additional
image samples, enhancing the model’s robustness, generalization ability, and recognition
accuracy for smaller fish species. Table 1 shows that the initial BlurryFish dataset con-
tained 2754 bad, blurry, and otherwise inadequate fish images. However, after applying
data enhancement techniques, the dataset expanded to 35,802 bad, blurry, and otherwise
inadequate fish images, as shown in Table 2.

(5) Data Annotation

To create valuable training and testing sets from the image dataset, each image in the
fish image dataset was labeled with associated fish species data. We utilized the graphical
interface labeling software, Labellmg (v 1.8.5), to annotate the fish images and generate XML
files. Although DiffusionFR does not impose any restrictions on the resolution and other
parameters of the dataset images, we uniformly converted the dataset to RGB images with a
resolution of 224 x 224. These images were then stored in the PASCAL VOC data format.
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Figure 6. Structure of the modified ResNet50 with the LAM added between every two neighboring stages.
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Figure 7. Fish species in the dataset. (a) Dascyllus reticulatus; (b) Neoniphon sammara; (c) Abudef-
duf vaigiensis; (d) Canthigaster valentini; (e) Pomacentrus moluccensis; (f) Zebrasoma scopas;
(g) Hemigymnus melapterus; (h) Lutjanus fulvus; (i) Scolopsis bilineata; (j) Scaridae; (k) Pempheris
vanicolensis; (1) Plectroglyphidodon dickii; (m) Zanclus cornutus; (n) Neoglyphidodon nigroris;
(o) Balistapus undulatus; (p) Siganus fuscescens; (q) Chromis chrysura; (r) Amphiprion clarkii;
(s) Chaetodon lunulatus; (t) Chaetodon trifascialis; (u) Myripristis kuntee; (v) Acanthurus nigrofus-

cus; (w) Hemigymnus fasciatus; (x) Abactochromis labrosus; and (y) Abalistes stellaris.

Table 1. Number of fish images in the BlurryFish dataset before data enhancement.

ID Name of Fish Training Set Validation Set Test Set Total
1 Dascyllus reticulatus 91 12 12 115
2 Neoniphon sammara 84 11 11 106
3 Abudefduf vaigiensis 85 10 10 105
4 Canthigaster valentini 88 11 11 110
5 Pomacentrus moluccensis 94 12 12 118
6 Zebrasoma scopas 85 11 11 107
7 Hemigymnus melapterus 84 10 10 104
8 Lutjanus fulvus 83 10 10 103
9 Scolopsis bilineata 86 11 11 108
10 Scaridae 92 11 11 114
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Table 1. Cont.

ID Name of Fish Training Set Validation Set Test Set Total
11 Pempheris vanicolensis 82 10 10 102
12 Plectroglyphidodon dickii 85 11 11 107
13 Zanclus cornutus 95 12 12 119
14 Neoglyphidodon nigroris 85 10 10 105
15 Balistapus undulatus 89 11 11 111
16 Siganus fuscescens 92 11 11 114
17 Chromis chrysura 92 12 12 116
18 Amphiprion clarkii 84 11 11 106
19 Chaetodon lunulatus 91 12 12 115
20 Chaetodon trifascialis 95 12 12 119
21 Myripristis kuntee 90 11 11 112
22 Acanthurus nigrofuscus 87 11 11 109
23 Hemigymnus fasciatus 82 10 10 102
24 Abactochromis labrosus 89 11 11 111
25 Abalistes stellaris 92 12 12 116

Total 2202 276 276 2754

Table 2. Number of fish images in the BlurryFish dataset after data enhancement.

ID Name of Fish Training Set Validation Set Test Set Total
1 Dascyllus reticulatus 1195 150 150 1495
2 Neoniphon sammara 1102 138 138 1378
3 Abudefduf vaigiensis 1093 136 136 1365
4 Canthigaster valentini 1144 143 143 1430
5 Pomacentrus moluccensis 1228 153 153 1534
6 Zebrasoma scopas 1113 139 139 1391
7 Hemigymnus melapterus 1082 135 135 1352
8 Lutjanus fulvus 1071 134 134 1339
9 Scolopsis bilineata 1124 140 140 1404
10 Scaridae 1186 148 148 1482
11 Pempheris vanicolensis 1060 133 133 1326
12 Plectroglyphidodon dickii 1113 139 139 1391
13 Zanclus cornutus 1237 155 155 1547
14 Neoglyphidodon nigroris 1093 136 136 1365
15 Balistapus undulatus 1155 144 144 1443
16 Siganus fuscescens 1186 148 148 1482
17 Chromis chrysura 1206 151 151 1508
18 Amphiprion clarkia 1102 138 138 1378
19 Chaetodon lunulatus 1195 150 150 1495

20 Chaetodon trifascialis 1237 155 155 1547
21 Muyripristis kuntee 1164 146 146 1456

22 Acanthurus nigrofuscus 1133 142 142 1417

23 Hemigymnus fasciatus 1060 133 133 1326
24 Abactochromis labrosus 1155 144 144 1443

25 Abalistes stellaris 1206 151 151 1508

Total 28,640 3581 3581 35,802

3.6. Experimental Design
3.6.1. Experimental Environment Configuration

PyTorch, a deep learning framework, was employed to evaluate DiffusionFR. The spe-

cific experimental software and hardware configurations are detailed in Table 3.

Table 3. Experimental software and hardware configurations.

Item Detail
GPU NVIDIA GeForce RTX 3060
CPU 12th Gen Intel(R) Core(TM) i5-12400 2.50 GHz
RAM 16.0 GB
Operating system Windows 11 64-bit
CUDA CUDA 11.6
Python Python 3.7.15
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3.6.2. Evaluation Indicators

To evaluate the model’s performance in classifying fish images in blurry scenarios,
accuracy and Top-k accuracy were used as evaluation metrics. The experimental data was
processed using Python code and analyzed using Excel software (12.1.0.16250).

(1) Accuracy

Accuracy is a metric that measures the proportion of correctly predicted samples
compared to the total number of instances. It is calculated using Equation (8).
TN + TP

Accuracy = TN T FP + TP £ FN X 100% (8)

where TN denotes true negative, TP denotes true positive, FP denotes false positive, and
FN denotes false negative.

(2) Top-k Accuracy

The top-k accuracy rate measures the proportion of samples where at least one of the
top-k predictions matches the true label, compared to the total number of samples. In this
study, we use Top-1 accuracy and Top-5 accuracy as model criteria. Equation (9) demonstrates
the calculation of the top-k accuracy.

Top — k Accuracy
= number of samples correctly predicted )
/the total number of samples x 100%

Here, k can be any positive integer, and it is common to have top — 1 and top — 5 accuracy
rates, which indicate the accuracy in the highest confidence prediction and the first five highest
confidence predictions, respectively.

3.6.3. Parameters of Experiments

In this section, we conduct comparative experiments for each module of DiffusionFR.
During training, the model parameters of DiffusionFR were continuously adjusted to
minimize prediction errors. This was achieved using optimization algorithms and loss
functions. After several iterations, the hyperparameters of the DiffusionFR model were
determined based on commonly used empirical values. The finalized hyperparameters can
be found in Table 4.

Table 4. Optimal hyperparameters.

Input Shape Lr Activation Function Bsalt:: Classifier =~ Optimizer Epoch

224 x 224 0.002 ReLU 32 Softmax Adam 100

3.6.4. Schemes of Experiments

(1) Comparison of Backbone Networks

DiffusionFR’s backbone network was assessed using the original dataset. The analysis
included various backbone networks such as ResNet50, VGG16, MobileNetv3, Tripmix-
Net, ResNeXt, DAMNet, ResNet34, ResNet101, EfficientNet [41], neuro-heuristic, bilinear
pooling with poisoning detection (BPPD), and CNN(r1, 12).

(2) Comparison of Attention Mechanisms

Comparative experiments were conducted to assess the impact of attention mecha-
nisms on the algorithm. The evaluated attention mechanisms included LAM, CBAM [42],
CCA [43], and SE [44].

(3) Comparison of Diffusion Models

To assess the impact of the diffusion model proposed in this paper on the final recog-
nition performance, we conducted a comparative experiment. This experiment involved
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two deblurring methods: the diffusion module proposed in this paper and the Gaussian
denoising module.

(4) Effect of Light Reflection Noise on Recognition Performance

The datasets were labeled according to the light reflection noise added. For instance,
DoE signifies the original dataset without any added noise, while Dy gEj(o represents the
dataset with light reflection noise, where the light diameter is 0.6 cm and the light intensity
is 100 Lux, added to DyEg. This naming convention is used for other datasets as well.

Nine datasets were created by categorizing the light reflection noise based on different
light diameters and intensities. These datasets are named as Dy ¢E109, Do.¢E250, Do.6E400,
D0.8E100, D0.8E250, D0.8E400, D1.0E100, D1.0E250, and D1.0E400. Table 5 provides an overview
of the data volume for the fish image dataset with added light reflection noise. An example
of this dataset is shown in Figure 8.

Table 5. Fish Dataset with Added Light Reflection Noise.

ID Name of Fish Do6E100 DosEzso DoeEsoo DosEio DosEzso DosEso D1oEioo D1oEzso  DioEaoo Total
1 Dascyllus reticulatus 115 115 115 115 115 115 115 115 115 1035
2 Neoniphon sammara 106 106 106 106 106 106 106 106 106 954
3 Abudefduf vaigiensis 105 105 105 105 105 105 105 105 105 945
4 Canthigaster valentini 110 110 110 110 110 110 110 110 110 990
5 Pomacentrus moluccensis 118 118 118 118 118 118 118 118 118 1062
6 Zebrasoma scopas 107 107 107 107 107 107 107 107 107 963
7 Hemigymnus melapterus 104 104 104 104 104 104 104 104 104 936
8 Lutjanus fulvus 103 103 103 103 103 103 103 103 103 927
9 Scolopsis bilineata 108 108 108 108 108 108 108 108 108 972
10 Scaridae 114 114 114 114 114 114 114 114 114 1026
11 Pempheris vanicolensis 102 102 102 102 102 102 102 102 102 918
12 Plectroglyphidodon dickii 107 107 107 107 107 107 107 107 107 963
13 Zanclus cornutus 119 119 119 119 119 119 119 119 119 1071
14 Neoglyphidodon nigroris 105 105 105 105 105 105 105 105 105 945
15 Balistapus undulatus 111 111 111 111 111 111 111 111 111 999
16 Siganus fuscescens 114 114 114 114 114 114 114 114 114 1026
17 Chromis chrysura 116 116 116 116 116 116 116 116 116 1044
18 Amphiprion clarkii 106 106 106 106 106 106 106 106 106 954
19 Chaetodon lunulatus 115 115 115 115 115 115 115 115 115 1035

20 Chaetodon trifascialis 119 119 119 119 119 119 119 119 119 1071

21 Muyripristis kuntee 112 112 112 112 112 112 112 112 112 1008

22 Acanthurus nigrofuscus 109 109 109 109 109 109 109 109 109 981

23 Hemigymnus fasciatus 102 102 102 102 102 102 102 102 102 918

24 Abactochromis labrosus 111 111 111 111 111 111 111 111 111 999

25 Abalistes stellaris 116 116 116 116 116 116 116 116 116 1044

Total 2754 2754 2754 2754 2754 2754 2754 2754 2754 24,786

Figure 8. Example of fish pictures with added light reflection noise. (a) DoEy; (b) Dg¢E1g0; (c)
Do.6E250; (d) Do.6E400; (€) Do.gE100; (f) Do.gE250; (8) Do.gEaoo; (h) D1.9E100; (i) D1.0E250; and (j) D1.9E400-
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We conducted a comparative analysis on datasets with light reflection noise to assess
the effectiveness of using corrected fish images for species-specific fish recognition.

(5) Effect of Water Ripple Noise on Recognition Performance

To add water ripple noise to the dataset and generate the water ripple effect, the
following steps and Equations were used. First, an empty array X of the same size as
the original image was created to store the generated water ripple effect. Next, offsets
(including offset_x and offset_y) were calculated for each pixel based on the amplitude
(A) and frequency (F) by iterating through each pixel in a loop. Then, the pixel values
corresponding to these offsets were assigned to each pixel of the empty array X, generating
the water ripple effect. Finally, the resulting water ripple effect was overlaid onto the
original image, creating the final image with water ripples. Equations involved are shown
in (10)—(14).

The offset was calculated using Equations (10) and (11).

offset_x = A *sin(2 x mx y; * F) (10)

offset_y = A * cos(2 * 7 * x; * F) (11)

where (x;,y;) denotes the coordinates of a pixel point in the image, F is the frequency of
the water ripple, and A is the amplitude of the water ripple.
The pixel assignment of array X is calculated using Equations (12) and (13).

X[xi] = (x; + offset_x)%width (12)

X[y;] = (y; + offset_y)%height (13)

where width and height are the width and height of the image, respectively.
The final image generation is calculated using Equation (14).

img_with_ripples = img + X (14)

where img denotes the original image, and img_with_ripples denotes the final image with
water ripples.

The datasets were labeled according to the water ripple noise added. For instance,
FoA signifies the original dataset without any added noise, while Fy g4A; indicates the
dataset with water ripple noise having a frequency of 0.04 and an amplitude of 2 added to
FoAy. This naming convention is used for other datasets as well.

Water ripple noise can be classified based on the frequency and amplitude of the water
ripples. Increasing the frequency and amplitude results in a higher offset and greater oscil-
lation in the generated water waves. In this study, the water ripple noise was categorized
into three groups: Fo 1Ay, FoosAs, and FyggAjg, primarily based on their frequency and
amplitude. Table 6 provides an overview of the data volume of the fish image dataset with
the addition of water ripple noise, while Figure 9 offers an illustrative example.

Table 6. Fish Dataset with Added Water Ripple Noise.

ID Name of Fish F0.04A2 F0.06A6 F0_03A10 Total
1 Dascyllus reticulatus 115 115 115 345
2 Neoniphon sammara 106 106 106 318
3 Abudefduf vaigiensis 105 105 105 315
4 Canthigaster valentini 110 110 110 330
5 Pomacentrus moluccensis 118 118 118 354
6 Zebrasoma scopas 107 107 107 321
7 Hemigymnus melapterus 104 104 104 312
8 Lutjanus fulvus 103 103 103 309
9 Scolopsis bilineata 108 108 108 324
10 Scaridae 114 114 114 342
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Table 6. Cont.

ID Name of Fish F0.04A2 F0.06A6 F0_03A10 Total
11 Pempheris vanicolensis 102 102 102 306
12 Plectroglyphidodon dickii 107 107 107 321
13 Zanclus cornutus 119 119 119 357
14 Neoglyphidodon nigroris 105 105 105 315
15 Balistapus undulatus 111 111 111 333
16 Siganus fuscescens 114 114 114 342
17 Chromis chrysura 116 116 116 348
18 Amphiprion clarkii 106 106 106 318
19 Chaetodon lunulatus 115 115 115 345
20 Chaetodon trifascialis 119 119 119 357
21 Myripristis kuntee 112 112 112 336
22 Acanthurus nigrofuscus 109 109 109 327
23 Hemigymnus fasciatus 102 102 102 306
24 Abactochromis labrosus 111 111 111 333
25 Abalistes stellaris 116 116 116 348

Total 2754 2754 2754 8262

(d)
Figure 9. Example of fish pictures with added water ripple noise. (a) FgAg; (b) Fo04Az; (¢) FoosAs;
and (d) Fo0sA10-

We conducted a comparative analysis of datasets with water ripple noise to assess the
effectiveness of using corrected fish images for species-specific fish recognition.

We conducted Experiments 1 through 5 to assess the impact of different backbone
networks, attention mechanisms, diffusion models, as well as light reflection noise and
water ripple noise on recognition performance. These experiments were evaluated using
three metrics: training accuracy, the Top-1 accuracy test, and the Top-5 accuracy test.
The objective was to comprehensively evaluate their recognition performance and analyze
the results.

4. Results
In this study, the BlurryFish dataset was used to perform comparative experiments on
the key innovations of the proposed methodology.

4.1. Comparison of Backbone Networks

This study compared and analyzed the backbone network of DiffusionFR. For example,
DiffusionFR_VGG16 refers to using VGG16 instead of ResNet50 as the backbone network
in DiffusionFR. Similar comparisons were made with other backbone networks. The results
of these comparisons can be found in Table 7.

Table 7. Accuracies of Different Feature Extraction Networks.

Model Training (%) Top-1 Test (%) Top-5 Test (%)
DiffusionFR 97.55 92.02 95.17
DiffusionFR_VGG16 91.78 86.38 89.48
DiffusionFR_MobileNetv3 93.05 87.55 90.60
DiffusionFR_Tripmix-Net 93.43 88.07 91.21
DiffusionFR_ResNeXt 94.32 88.90 91.98
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Table 7. Cont.

Model Training (%) Top-1 Test (%) Top-5 Test (%)
DiffusionFR_DAMNet 93.80 88.26 91.38
DiffusionFR_ResNet34 96.22 90.80 93.85
DiffusionFR_ResNet101 94.35 88.92 91.72

DiffusionFR_EfficientNet 96.10 90.48 93.38
DiffusionFR_neuro-heuristic 96.82 91.25 94.27
DiffusionFR_BPPD 97.02 91.49 94.63
DiffusionFR_CNN(r1, r2) 97.33 91.69 94.80

Table 7 displays the performance metrics of DiffusionFR on the original dataset.
The training accuracy is 97.55%. The corresponding Top-1 accuracy test score was 92.02%,
and the Top-5 accuracy test score was 95.17%. These values indicate that DiffusionFR
outperforms other methods in terms of accuracy. These values also demonstrate that
DiffusionFR, with ResNet50 as the chosen backbone network, has a higher potential for
achieving superior recognition performance.

4.2. Comparison of Attention Mechanisms

To evaluate the impact of the attention mechanism on the algorithm, a comparative
experiment was conducted, as shown in Table 8. The experiment compared the perfor-
mance of DiffusionFR with DiffusionFR without any attention mechanism, referred to as
DiffusionFR_noA. Furthermore, classical attention methods were used as substitutes for
LAM. For example, DiffusionFR_CBAM incorporated CBAM as the attentional method in
DiffusionFR. The results of these comparisons are presented in Table 8.

Table 8. Accuracies of Different Attention Mechanisms for LAMs.

Model Training (%) Top-1 Test (%) Top-5 Test (%)
DiffusionFR 97.55 92.02 95.17
DiffusionFR_noA 95.31 89.98 93.06
DiffusionFR_CBAM 96.50 91.10 94.22
DiffusionFR_CCA 97.03 91.52 94.57
DiffusionFR_SE 96.05 90.59 93.70

Table 8 shows that the training accuracy of DiffusionFR on the original dataset was
97.55%. The corresponding Top-1 accuracy test score was 92.02%, and the Top-5 accuracy
test score was 95.17%. It is important to note that all these metrics outperform the per-
formance of other methods. This establishes DiffusionFR as the method with the most
effective recognition capability.

4.3. Comparison of Diffusion Models

The final recognition results for the diffusion model proposed in this paper were
obtained through experiments, as presented in Table 9. This table includes the performance
of DiffusionFR, DiffusionFR_noTSD, and DiffusionFR_Gaussian. DiffusionFR_noTSD
refers to the method where the TSD was removed from the proposed method, and Diffu-
sionFR_Gaussian involves using Gaussian denoising [45] instead of the TSD. The results of
these methods are compared in Table 9.

Table 9. Accuracies of Different Diffusion Models.

Model Training (%) Top-1 Test (%) Top-5 Test (%)
DiffusionFR 97.55 92.02 95.17
DiffusionFR_noTSD 92.41 89.51 91.96
DiffusionFR_Gaussian 97.20 91.76 93.98
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Table 9 presents the performance metrics of DiffusionFR on the original dataset.
The training accuracy of DiffusionFR is recorded as 97.55%. The corresponding Top-1
accuracy test and Top-5 accuracy test scores are reported as 92.02% and 95.17%, respectively.
It is important to note that all these metrics outperform the performance of other methods.

This establishes DiffusionFR as the method with the most effective recognition capability.

4.4. Effect of Light Reflection Noise on Recognition

We performed a comparative analysis using DiffusionFR’s backbone network on
datasets with light reflection noise to evaluate the usability of corrected fish images for
species-specific fish recognition. The results of this analysis are presented in Table 10. TSD’s
effectiveness in processing fish images with light reflection noise is visually demonstrated
in Figure 10. The presence of TSD reduces the noise before deblurring, thereby preserving
critical features for accurate recognition. Additionally, TSD performs better in handling
light reflection noise compared to water ripple noise.

Table 10. Accuracies for Data with Different Light Reflection Noise Effects.

Model Indicator DoEo Do6E1o  DogE2so  DosEso  DosEiwo  DosEzso  DosEso  DioEioo  DioEaso  DioEaeo
Training (%) 97.55 97.28 97.13 96.91 96.66 96.52 96.28 96.08 95.87 95.74
DiffusionFR Top-1 Test (%) 92.02 91.78 91.58 91.34 91.14 90.95 90.75 90.56 90.37 90.19
Top-5 Test (%) 95.17 94.90 94.70 94.54 94.31 94.11 93.96 93.70 93.54 93.30
Training (%) 91.78 91.54 91.33 91.17 90.94 90.72 90.53 90.29 90.16 89.89
DiffusionFR_VGG16 Top-1 Test (%) 86.38 86.13 85.96 85.74 85.49 85.36 85.12 84.94 84.70 84.55
Top-5 Test (%) 89.48 89.20 89.02 88.82 88.67 88.40 88.20 88.06 87.86 87.64
Training (%) 93.05 92.82 92.56 92.40 92.18 91.96 91.83 91.63 91.41 91.18
DiffusionFR_MobileNetv3 Top-1 Test (%) 87.55 87.33 87.06 86.90 86.68 86.52 86.30 86.10 85.91 85.74
Top-5 Test (%) 90.60 90.37 90.15 89.93 89.75 89.56 89.36 89.12 88.93 88.72
Training (%) 93.43 93.15 92.97 92.74 92.55 92.41 92.15 91.98 91.76 91.59
DiffusionFR_Tripmix-Net Top-1 Test (%) 88.07 87.81 87.64 87.45 87.25 87.02 86.84 86.58 86.46 86.25
Top-5 Test (%) 91.21 90.92 90.71 90.52 90.37 90.11 89.92 89.78 89.52 89.35
Training (%) 94.32 94.12 93.89 93.65 93.51 93.27 93.08 9291 92.63 92.50
DiffusionFR_ResNeXt Top-1 Test (%) 88.90 88.69 88.42 88.29 88.07 87.89 87.60 87.49 87.24 87.10
Top-5 Test (%) 91.98 91.68 91.57 91.38 91.18 90.89 90.76 90.48 90.28 90.13
Training (%) 93.80 93.51 93.33 93.18 92.97 92.73 92.60 92.32 92.17 91.90
DiffusionFR_DAMNet Top-1 Test (%) 88.26 88.06 87.86 87.56 87.36 87.26 87.06 86.81 86.62 86.37
Top-5 Test (%) 91.38 91.14 90.94 90.72 90.51 90.31 90.11 89.91 89.72 89.51
Training (%) 96.22 95.98 95.76 95.55 95.36 95.13 94.96 94.76 94.57 94.40
DiffusionFR_ResNet34 Top-1 Test (%) 90.80 90.54 90.35 90.17 89.99 89.74 89.59 89.39 89.12 88.95
Top-5 Test (%) 93.85 93.63 93.44 93.20 93.02 92.81 92.61 92.36 92.24 91.98
Training (%) 94.35 94.07 93.86 93.66 93.46 93.33 93.07 92.87 92.66 92.46
DiffusionFR_ResNet101 Top-1 Test (%) 88.92 88.65 88.50 88.24 88.04 87.87 87.65 87.48 87.25 87.11
Top-5 Test (%) 91.72 91.47 91.25 91.11 90.85 90.64 90.49 90.22 90.08 89.89
Training (%) 96.10 95.86 95.61 95.37 95.25 94.94 94.80 94.63 94.43 94.23
DiffusionFR_EfficientNet Top-1 Test (%) 90.48 90.43 90.20 89.99 89.87 89.57 89.40 89.26 88.96 88.81
Top-5 Test (%) 93.38 93.52 93.32 93.03 92.87 92.63 92.48 92.20 92.10 91.87
Training (%) 96.82 96.33 96.16 95.93 95.74 95.61 95.35 95.12 94.93 94.75
DiffusionFR_neuro-heuristic Top-1 Test (%) 91.25 90.88 90.58 90.42 90.20 89.99 89.82 89.65 89.39 89.24
Top-5 Test (%) 94.27 93.98 93.71 93.57 93.31 93.21 93.05 92.77 92.59 92.31
Training (%) 97.02 96.63 96.48 96.28 96.11 96.01 95.77 95.57 95.40 95.25
DiffusionFR_BPPD Top-1 Test (%) 91.49 91.40 91.13 90.99 90.80 90.61 90.47 90.32 90.09 89.56
Top-5 Test (%) 94.63 94.33 94.08 93.97 93.73 93.66 93.52 93.27 93.11 92.86
Training (%) 97.33 96.89 96.86 96.62 96.41 96.18 96.07 95.76 95.56 95.37
DiffusionFR_CNN(r1, r2) Top-1 Test (%) 91.69 91.54 91.28 91.01 90.76 90.72 90.40 90.28 90.15 89.83
Top-5 Test (%) 94.80 94.64 94.33 94.23 93.97 93.88 93.57 93.34 93.28 92.95
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Figure 10. Comparison of images before and after TSD deblurring of light reflection noise. (a) Dy ¢E1¢0;
(b) Do 6E250; (€) Do.6Ea00; (d) Do.sE100; (€) Do.sEzs0; (£) Do.sEao0; (8) D1.0E100; (h) D1.9E2s0; and (i) D1.0E400-

In Table 10, the mean value of the training accuracy of DiffusionFR on the nine datasets
(Do.6E100, Do.6E250, Do.6E00, Do.sE100, Do.sE250, Do.sE00, D1.0E100, D1.0E250, and Dy gEs00)
with added light reflection noise was 86.85%. The mean value of the Top-1 accuracy test
was 81.87%, and the mean value of the Top-5 accuracy test was 84.71%. These values
indicate that DiffusionFR outperforms other methods in terms of accuracy. These values
also demonstrate that DiffusionFR, with ResNet50 as the chosen backbone network, has a
higher potential for achieving superior recognition performance.

4.5. Effect of Water Ripple Noise on Recognition

We conducted a comparative analysis using DiffusionFR’s backbone network on
datasets with water ripple noise to evaluate the usability of corrected fish images for
species-specific fish recognition. The results of this analysis can be found in Table 11.
Figure 11 provides a visual representation of TSD’s ability to process fish images containing
water ripple noise. TSD effectively reduces the frequency and intensity of water ripple
noise in the images before deblurring, mitigating its impact on the critical feature extraction
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capability of the DiffusionFR model. This ensures that the fish image before deblurring can
accurately show ID characters.

Table 11. Accuracies for Data with Different Water Ripple Noise Effects.

Model Indicator FUAO F0.04A2 F0.06A(, Fg.gsAm
Training (%) 97.55 95.45 95.00 94.56
DiffusionFR Top-1 Test (%) 92.02 89.96 89.55 89.10
Top-5 Test (%) 95.17 93.12 92.75 92.33
Training (%) 91.78 89.64 89.19 88.93
DiffusionFR_VGG16 Top-1 Test (%) 86.38 84.35 83.94 83.43
Top-5 Test (%) 89.48 87.32 86.96 86.58
Training (%) 93.05 91.05 90.54 90.24
DiffusionFR_MobileNetv3 Top-1 Test (%) 87.55 85.44 85.10 84.58
Top-5 Test (%) 90.60 88.53 88.11 87.77
Training (%) 93.43 91.30 90.86 90.57
DiffusionFR_Tripmix-Net Top-1 Test (%) 88.07 85.88 85.49 85.14
Top-5 Test (%) 91.21 89.19 88.73 88.39
Training (%) 94.32 92.15 91.91 91.38
DiffusionFR_ResNeXt Top-1 Test (%) 88.90 86.75 86.36 86.02
Top-5 Test (%) 91.98 89.90 89.52 89.02
Training (%) 93.80 91.76 91.37 90.91
DiffusionFR_DAMNet Top-1 Test (%) 88.26 86.14 85.76 85.39
Top-5 Test (%) 91.38 89.20 88.82 88.47
Training (%) 96.22 94.10 93.79 93.30
DiffusionFR_ResNet34 Top-1 Test (%) 90.80 88.62 88.32 87.95
Top-5 Test (%) 93.85 91.75 91.33 90.88
Training (%) 94.35 92.28 91.79 91.54
DiffusionFR_ResNet101 Top-1 Test (%) 88.92 86.77 86.51 86.04
Top-5 Test (%) 91.72 89.71 89.13 88.77
Training (%) 96.10 94.03 93.77 93.21
DiffusionFR_EfficientNet Top-1 Test (%) 90.48 88.61 88.27 87.87
Top-5 Test (%) 93.38 91.72 91.27 90.84
Training (%) 96.82 93.61 93.34 92.76
DiffusionFR_neuro-heuristic Top-1 Test (%) 91.25 88.14 87.78 87.36
Top-5 Test (%) 94.27 91.19 90.72 90.26
Training (%) 97.02 94.94 94.43 94.07
DiffusionFR_BPPD Top-1 Test (%) 91.49 89.46 89.02 88.58
Top-5 Test (%) 94.63 92.58 92.28 91.81
Training (%) 97.33 95.23 94.71 94.22
DiffusionFR_CNN(r1, r2) Top-1 Test (%) 91.69 89.64 89.28 88.85
Top-5 Test (%) 94.80 92.74 92.40 92.10

after

Figure 11. Comparison of images before and after TSD deblurring of water ripple noise. (a) Fy gsAz;

(b) Fo.06A6; (c) Fo.08A10-
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In Table 11, the mean value of the training accuracy of DiffusionFR on the three
datasets (Fg0sA2, Fo06As, and FgpgAqg) with added water ripple noise is 95.00%. The mean
value of the Top-1 accuracy test was 89.54%, and the mean value of the Top-5 accuracy test
was 92.73%. These values indicate that DiffusionFR outperforms other methods in terms of
accuracy. These values also demonstrate that DiffusionFR, with ResNet50 as the chosen
backbone network, has a higher potential for achieving superior recognition performance.

5. Discussion

Based on the analysis of Tables 7-11, we have drawn several significant conclusions.
Firstly, ResNet50 performs better than other backbone networks when selected as the back-
bone network for DiffusionFR. Compared to ResNet34 and ResNet101, the deeper network
structure of ResNet50 enables a more effective capture of intricate image features and miti-
gates the risk of gradient vanishing or explosion [46]. Additionally, ResNet50’s effective
integration of the attention mechanism and the residual network approach contribute to its
superior performance in propagating the model gradient.

Furthermore, a comparison between DiffusionFR and DiffusionFR_noA reveals that
DiffusionFR outperforms DiffusionFR_noA in terms of training accuracy and accuracy
on the test set. This indicates that DiffusionFR is capable of capturing crucial features
and achieving more accurate classification and prediction. DiffusionFR also demonstrates
superior performance compared to other standard attention methods, further validating
the effectiveness of the incorporated LAM.

Moreover, DiffusionFR exhibits remarkable results among the compared methods, achiev-
ing superior performance in terms of training accuracy and accuracy on the test set. The pro-
posed TSD approach for fish recognition in blurry scenarios proves to be highly effective.
DiffusionFR’s end-to-end integrated framework [47] for denoising and recognition surpasses
a two-stage scheme by leveraging the interrelationships between these tasks. It enhances
accuracy and stability by efficiently handling noise [48] and blur [49] information.

Additionally, the impact of light reflection noise and water ripple noise on recognition
performance is evident from the analysis. Increasing light amplitude, light diameter,
frequency, and amplitude of water ripples in the datasets leads to a decreasing trend in
the training accuracy, Top-1 test accuracy, and Top-5 test accuracy of the same backbone
network method. This highlights the significant role of light reflection and water ripples in
recognition performance and reinforces the usability of corrected fish images for species-
specific recognition even in the presence of these noise scenarios.

In comparing the neuro-heuristic analysis of video and bilinear pooling with poisoning
detection (BPPD) to the DiffusionFR method, it becomes clear that DiffusionFR outperforms
these approaches. While recent advancements in the neural network field have shown
progress, DiffusionFR exhibits superior performance, even when compared to CNN(r1, r2).

6. Conclusions

In this study, we propose a method called DiffusionFR, which combines the diffusion
model and attention mechanism to address the challenge of fish image recognition in blurry
scenarios. The approach involves deblurring fish scene pictures using a two-stage diffusion
network model, TSD, to restore clarity. Furthermore, a learnable attention module, LAM,
was incorporated to enhance the accuracy of fish recognition.

DiffusionFR achieves the highest mean values of training accuracy, Top-1 test accuracy,
and Top-5 test accuracy, at 94.91% on the original dataset. It also maintains the highest
mean values of accuracy at 94.65% on the datasets with added light reflection noise and
92.84% on the datasets with added water ripple noise.

The effectiveness of DiffusionFR is evident from its superior performance compared to
other approaches that use different backbone networks, attention mechanisms, and Gaus-
sian denoising. DiffusionFR proves to be more accurate and robust, making it applicable in
various underwater applications such as underwater photography, underwater detection,
and underwater robotics.
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Although this study successfully improves fish image recognition in blurry scenarios,
there is still room for improvement due to the complex and uncertain nature of the marine
environment. Additionally, the recognition of overlapping and occluded regions in natural
fish scenarios needs further exploration. It is essential to construct relevant datasets, refine
the network model, and conduct comprehensive studies to contribute effectively to fish
conservation and related industries in the future.
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Simple Summary: The behaviours and needs of nocturnal animals can be overlooked by humans,
potentially because of our poor night vision and diurnal waking hours. Despite certain challenges in
studying many nocturnal animals, appropriate provisions for their welfare should be supported in
both wild and managed environments. To investigate this issue and explore ways to offer technology-
enhanced welfare, husbandry practices and enrichment opportunities for nocturnal species, we
conducted a multidisciplinary workshop (Moon Jam). During the event, species experts provided
animal welfare briefs that related to specific challenges for nocturnal animals in different contexts.
Teams of participants addressed these challenges in collaborative design sessions, producing a
collection of hand-crafted models to share their ideas. An important aspect of the workshop was to
be inclusive of all the stakeholders involved, including zoo management teams, animal stewards and
zoo visitors, as well as the individual species. In this paper, we present our reflections on managed
nocturnal animal welfare, framing these within current practices and Moon Jam workshop outputs.
We contribute a set of guidelines for those involved with caring for zoo-housed nocturnal species,
emphasizing the provision of technology-enhanced husbandry and enrichment opportunities.

Abstract: This paper addresses the potential for technology to support husbandry and enrich-
ment opportunities that enhance the welfare of zoo and sanctuary-housed nocturnal and crepus-
cular species. This topic was investigated through the medium of a multidisciplinary workshop
(Moon Jam) that brought together species experts, zoo designers, Animal-Computer Interaction
researchers and post-graduate students in collaborative discussions and design sessions. We explain
the context through an examination of existing research and current practices, and report on specific
challenges raised and addressed during the Moon Jam, highlighting and discussing key themes that
emerged. Finally, we offer a set of guidelines to support the integration of technology into the design
of animal husbandry and enrichment that support wellbeing, to advance the best practices in keeping

and managing nocturnal and crepuscular animals.

Keywords: nocturnal; environmental enrichment; animal-computer interaction; collaborative design;
potto; armadillo; aye-aye; bushbaby; coral; vampire bat
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1. Introduction

Human interest in other species has motivated a significant amount of research into
their cognitive, behavioural and physical characteristics and wellbeing. Scientific endeav-
our has built a robust knowledge base describing many non-human biological traits. Some
non-human animals (hereinafter ‘animals’) have been harder for scientists to investigate in
their natural settings than others, because of their environment, lifestyle and associated
sensory perceptions. For example, dark environments, i.e., deep sea, underground and
at night [1], can be difficult to navigate and access, which may be an added challenge for
researchers to obtain relevant information. People rely on human-specific sensory modali-
ties to understand and interact with the world, which can result in information on animals
that are imperceptible to human sensory capabilities potentially being overlooked without
support by technology [2]. Moreover, researchers may require technological solutions
to facilitate a complete conceptual picture of a dark or restricted location, whereas the
inhabitants will have evolved senses that enable them to thrive in such an environment,
such as adaptive echolocation in greater mouse-eared bats (Myotis myotis) for hunting
efficiency [3]

In this paper, we focus on the lives of nocturnal species in managed environments,
considering what we know of their usual behaviours in their natural habitats, and reflecting
on what kinds of structural habitats and enrichment can encourage the expression of these
behaviours in a zoo or sanctuary setting.

Our method for investigating this topic involved holding a dedicated Moon Jam
workshop, where participants were provided briefs from nocturnal animal welfare experts
to address husbandry and enrichment challenges and were invited to respond with novel
design solutions [4]. Participants included animal experts, computer science and interaction
design researchers and postgraduates studying engineering and design disciplines. The
Moon Jam was part of a series of multidisciplinary, collaborative design workshops (zoo
jams) that provide opportunities to share skills and knowledge while discussing different
themes around animal welfare in a logical, creative and open-ended way. By bringing
together participants with diverse skills and shared interests in other species, the zoo jams
aim to expand designers’ fields of reference and lever technology in support of welfare and
enrichment goals [5]. Ultimately, the goal is to take concepts forward into action plans and
evaluate them with the intended users (animal and human stakeholders).

This paper provides contextual background and offers a discussion around key topics
that are perceived as being challenging for animal husbandry, with examples showing how
technology can support husbandry and enrichment solutions. We share briefs from the
Moon Jam to illustrate specific themes and provide topical context.

2. Background

Perhaps surprisingly, around 69% of described mammals are nocturnal, 20% diurnal,
2.5% crepuscular and 8.5% cathemeral [6]. Due to artificial light, humans are considered
facultatively cathemeral, despite activity being concentrated during the daytime [7]. Noc-
turnal species evolved to rely on senses in addition to sight. For instance, some nocturnal
mammals have more species-specific chemoreceptor genes and more complicated olfactory
organs in comparison to diurnal mammals [8], which are responsible for smell and taste.
Enhanced sensitivities may also relate to vibrations, electro-magnetic fields or air pressure.
Raising awareness of nocturnal species and their specific needs is important so that humans
learn how to co-exist with wildlife in their natural environments, as well as how to pro-
vide appropriate settings that support welfare in managed settings. This need is arguably
increasing, where human population growth may put further pressure on resources and
affect natural land use in different ways [9], for example, by reducing available habitat,
introducing new dangers and causing pollution. Pollution includes not only plastic waste
and chemical spills but also vibro-acoustic pollution, air pollution and light pollution. To
reduce negative impacts on animals” welfare as much as possible, we need to understand
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more about their lifestyles and behaviours, their modes of perception and communication
and their assorted capabilities.

The difficulty of finding or watching animals in the dark can create an additional
challenge in gaining knowledge on nocturnal species and their environmental and man-
agement needs. Fortunately, recent advances in remote sensing technology have provided
further information from both wild populations and their natural habitats and managed
animals and their artificial habitats [10]. These tools and findings can be used to optimise
natural behavioural opportunities supporting improved animal welfare.

‘Enrichment’ can loosely be defined as a practice that provides additional stimuli to
an animal with the aim of increasing its physical and /or mental wellbeing, and can be cate-
gorised into cognitive, food, physical, sensory and social forms [11]. The use of enrichment
for animals in human care is motivated by the importance of enhancing welfare through
encouraging species-specific behaviours, the need to reduce undesirable behaviours and
the duty to provide good healthcare [12]. For example, a suitable intervention might offer
foraging opportunities that practise skills used in the wild. This could occupy a significant
portion of the animal’s time budget and mental attention, while simultaneously supporting
physical objectives, i.e., body condition or weight management. Offering control and choice
(some autonomy) to animals in restricted environments has been shown to reduce stress
levels [13-15] and has other potential benefits, such as enabling the development of compe-
tence, preparing species for reintroduction to the wild and giving researchers opportunities
to investigate the animals” preferences [16]. This could lead to a better understanding of
animals’ cognitive, perceptive and physical abilities, which in turn help us to consider
their perspectives.

To further investigate this theme of nocturnal enrichment in managed environments
with visitors, we organised a multidisciplinary workshop (Moon Jam) to explore technology-
enhanced enrichment strategies for nocturnal species. We brought together a diverse group
of participants, including species experts, zoo designers, Animal-Computer Interaction
researchers and postgraduate students, to discuss some of the challenges faced by both
animals and humans.

3. Method

The workshop type used for investigating enrichment and husbandry strategies for
nocturnal animals was a zoo jam, which is characterised as a multidisciplinary, collabora-
tive design event where participants network, sharing skills and ideas. Key features of a
zoo jam are (i) to have one theme with multiple associated challenges, (ii) species-specific
briefs provided by animal experts, (iii) expert feedback on concepts, (iv) time-constrained
activities with clear goals, (v) co-crafting and presentation of rough prototypes and
(vi) open dissemination of outputs and issues raised [5].

The Moon Jam workshop [4] was held over one day in December 2023, as part of
the 10th Animal-Computer Interaction Conference [17], hosted at North Carolina State
University, USA. The main aims were (i) to explore husbandry and enrichment opportu-
nities for nocturnal species through group discussions and collaborative design sessions,
(ii) to address a series of animal welfare briefs provided by experts, by producing focused
technology-enhanced designs for husbandry and enrichment opportunities, (iii) to incor-
porate animal-centred design principles, in order to extend the reach of human design
and (iv) to maintain a multispecies, multi-stakeholder perspective throughout. Data col-
lection included participant observations, feedback from species experts and analysis of
the proposed designs. The methodology ensured a comprehensive evaluation of the effec-
tiveness of these enrichment strategies in promoting natural behaviours and improving
animal welfare.

The interdisciplinary nature of the Moon Jam was crucial for bringing together both exper-
tise in animal welfare and stewardship, in particular of nocturnal species, and expertise in using
technology as a means for developing complex systems to support behavioural management
and to offer enhanced control of the environment, applicable to both humans and animals.
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Altogether, there were 18 co-located participants, comprising 6 Animal-Computer Interaction
(ACI) researchers, 2 species experts, 10 postgrad students and 3 remote animal experts taking
part on that day, while 12 participants (postgrad students) took part in a half-day Mini-Moon-
Jam at London Metropolitan University, working with a small subset of the briefs. Some of
the briefs were general, concerning challenges that face all managed nocturnal species, such
as ways to provide appropriate lighting and access to fresh air. Others were specifically re-
lated to the following species: aye-ayes (Daubentonia madagascariensis), pottos (Perodicticus potto),
Mohol bushbabies (Galago moholi), Southern three-banded armadillos (Tolypeutes matacus), com-
mon vampire bats (Desmodus rotundus) and living coral (mixed species). We explain these
briefs, the associated workshop responses and the subsequent analyses in the discussion section
that follows. This is presented as seven key themes: (4.1) Lighting, (4.2) Natural Experiences,
(4.3) Space and Socialisation, (4.4) Foraging, (4.5) Specificity, (4.6) Multisensory Modalities and
(4.7) Stakeholders.

4. Results and Discussion

In this section, we discuss key topics relevant to nocturnal animal husbandry in
managed environments. We consider environmental conditions such as lighting and
ventilation, the importance of experiencing natural events, animal behavioural needs that
extend over 24 h, difficulties associated with enabling normal feeding behaviours and the
potential impact of visitors in a managed environment. In addition, we consider all the
stakeholders involved in a complex organisation such as a zoo, considering the educational,
entertainment, research and financial sufficiency objectives that are critical aspects of a
z00’s mandate.

Each theme is introduced through one of the briefs we received for the Moon Jam, and
then discussed through the lens of participants” concepts and reflections, with expert responses.

4.1. Lighting

The Moon Jam brief for mixed species of living coral, supplied by Greensboro Science
Centre (GSC) in Greensboro, NC 27455 (USA), exemplifies the willingness of animal
stewards to offer the best husbandry possible, as well as showing how complex it can be
to provide an appropriate environment for a species that inhabits a relatively inaccessible
location—in this case, the ocean floor.

4.1.1. Brief: Living Coral
Supplied by Lindsay Zarecky and Jessica Hoffman at GSC

Most organisms utilise a variety of external cues to fulfil their biological needs. Reef
organisms, like fish and especially corals, utilise both the solar and lunar cycle. Solar
light is key for food production while the lunar cycle is used to determine the best time to
reproduce [18].

In addition to light levels, corals are also exposed to several environmental changes
including daily tidal cycles, varying levels of light (solar and lunar) intensity, seasonal
temperature swings, food concentrations and periodic intense storm surges. How these
environmental changes impact coral health is not well understood but could play a role in
their overall health and wellbeing.

The living corals exhibit at GSC shows visitors a growing Great Barrier Reef coral
reef ecosystem that includes 30+ different species of corals, coral-friendly fish and other
invertebrates (Figure 1). The live coral exhibit is part of the “Communities Connected”
gallery, and the tank volume is 1018 gallons (3.85 cubic metres), with a filtration system,
circulation pump, heating and lighting. The substrate is crushed Aragonite gravel.
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Figure 1. Living coral exhibit at Greensboro Science Centre. Image courtesy of GSC.

Coral health and wellbeing are important to GSC for a multitude of reasons. It
is incredibly challenging to offer corals poignant enrichment. A variety of natural live
and frozen foods as well as manufactured foods are offered, but it has so far not been
possible to capitalise on bigger experiential enrichment that is created for other animals. In
addition, replicating the corals’ natural environment to a better extent could increase the
welfare and wellbeing of the corals being kept. Ultimately, the aim is to enable the corals to
reproduce in captivity, thus increasing the knowledge aquarists and scientists have of a very
fragile ecosystem.

Although coral care at GSC focuses a great deal on meeting their solar needs, there
are not yet methods to effectively meet other environmental conditions. This brief requires
teams to develop scenarios that would better mimic the environmental conditions corals
experience in the wild, such as lunar light cycles and tidal shifts, without compromising
husbandry needs and considering the visitor experience. Solutions should reference the
environmental conditions of the Great Barrier Reef since this was the original habitat of
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these types of coral, but ideally, there would be some level of flexibility to adapt to Florida
corals for the future.

4.1.2. Responses: Living Coral

Participants found this a complex challenge, but there were several suggestions that
deployed technology to address the lighting requirements of the brief. In the natural
environment, the transition from day to night and vice-versa happens gradually over
a prolonged period of dusk or dawn. Nocturnal animals may not necessarily live in a
24 h cycle of darkness, and creating natural sunlight patterns for them when they should
be asleep will help them sense what time of year it is, as well as when it is time to be
awake and asleep. In the absence of regular light exposure, such as for species living
underground, the temperature can module surface emergence behaviours [19], facilitating
an interrelationship with the circadian rhythm and photoperiod.

In managed environments, dimmer switches could be applied to the lighting systems
of managed species, although husbandry and enrichment solutions light management
should consider and value zoo staff time. A technology-mediated solution could automati-
cally imitate natural lighting for zoo-housed species by using bulbs that can fade across
different Kelvin temperatures and lux levels in order to match the qualities of the sun
over the course of a day. Additionally, the photoperiod and directionality of light should
also be considered to match natural conditions in the species” home range. Feedback from
zoo staff and species experts was positive on the theme of technology enabling gradual
dawn-dusk lighting systems and associated changes in wavelengths. This might be a
useful intervention to offer a more realistic experience to animals, which in turn from a
visitor’s perspective may provide a more engaging experience allowing the observation of
nocturnal animals across differing light periods.

In support of such an initiative, Moonshine is an example LED control system [19]
that enables users to mimic habitat-specific conditions or certain types of light pollution.
Moonshine can colour-shift LED lights to recreate natural moonlight cycles and predict
illuminance in different locations during the year. Its intended use is for field ecologists
and researchers investigating the effects of light pollution. However, at present, there
are limitations on its wavelengths at both ends of the visible spectrum, including in the
near-UV and far red, in comparison to moonlight [20], which may not be suited to nocturnal
animals utilising UV vision.

In managed environments, the effect of artificial light and what might be considered
optimum requirements for nocturnal species is beginning to be investigated [21]. The
colour wavelengths produced through light are important because they can influence
melatonin production, a hormone concerning the circadian rhythm of species by acting as a
signal to synchronise biochemical, physiological and behavioural processes, in humans [22]
and non-human species [21]. Simultaneously, light pollution in wild environments cre-
ates the need to reduce disturbance to wildlife, such as through the use of amber lights,
emitting no blue wavelengths, as opposed to traditional white lights which emit blue wave-
lengths, which may be the better choice for minimalising disruption in some nocturnal
insects [23]. Since the temporal changes around light intensity, direction and wavelength
are relatively predictable, many animals have evolved to use this information to regulate
their behaviour. This can include seasonal adaptations, such as moulting, the timing of
reproductive activities, as well as modifying food intake, activity and immune function [24].

Moreover, it is important to note that the quality of light (wavelength, intensity,
duration) may all make a difference to animals in managed settings, and that appropriate
light settings differ across species. More research is needed to understand and inform
optimum light conditions at a species level, including their elasticity to cope outside of
optimal ranges. Fortunately, through the growing application of technology in zoo research
and management of animals, there are better opportunities to investigate the lighting
conditions of nocturnal species in zoos. The use of artificial UV-B can be used to encourage
basking behaviours of species to support vitamin D production. In fact, exposure to
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appropriate UV-B is now common practice for certain animals, primarily reptiles [25],
and within callitrichid captive management [26]. Comparatively, less attention has been
given to providing artificial UV-B to many nocturnal species that may naturally receive
UV-B whilst they sleep in the wild. However, considering that the sun emits different
wavelengths all working together, it is important to think about visible and infrared light
along with the UV light. Moreover, the use of more natural full-spectrum light in managed
environments could be utilised further to promote plant growth in nocturnal exhibits,
providing more natural stimuli within indoor-only environments.

In relation to the requirement to mimic environmental conditions for mixed species
of living coral, suggestions from Moon Jam participants included adjusting the water
temperature dynamically using a system that tracked and automatically responded to open
weather data. In parallel with this, good husbandry would try and match the current flow
in the tank with live data relating to the Great Barrier Reef or Florida tides, available via
the Australian Institute of Marine Science reefs portal [27] and the National Oceanic and
Atmospheric Administration website [28]. The tank pump system could supply variations
in nutrients with different currents, so the corals could anticipate food arrival. This would
create a situation-related positive affective state in the coral, in this case, associated with
having an opportunity to feed. The inclusion of such opportunities within husbandry
practices is linked to the enhancement of animal welfare [29].

This introduces the second key theme that emerged, relating to natural experiences for
nocturnal and crepuscular animals that are housed in indoor environments and is explored
in the following section.

4.2. Natural Experiences

The Fresh Air brief relates to land animals housed indoors that in the wild might
receive information from moving air such as chemical signals from their conspecifics,
scents relating to predators and prey, indications of food and water availability, as well as
imminent changes in weather conditions.

4.2.1. Brief: Air Flow
Supplied by Jon Coe

Due to the typical need of day—night reversal systems to create an enclosed artificially
lit environment, this might affect experiences of changing environmental conditions that are
associated with outdoor air and scent sensations. Teams should think of ways to address
this, considering natural experience opportunities for managed nocturnal species.

4.2.2. Responses: Air Flow

This brief generated several possible concepts that deployed technology to enable a
simulation of environmental conditions, again, mapping these to real-world conditions in
the animals’ native habitats.

In general, all climate control could be managed using technology inside the enclosure,
dynamically influencing factors such as humidity and temperature throughout the day and
night, including providing natural gradients in microclimates. For example, artificial snow
could be used to simulate winter and might be a novel and exciting substrate that encour-
ages playful behaviour in some species. Artificial rain, mist and fog could also be provided.
Conversely, basking lamps or heat sources without light such as embedded heating cables
could be animal-triggered to create changing microclimates within enclosures.

Enriching olfaction was a more challenging problem, as it required the introduction of
new smells in the atmosphere—chemical signals that are often imperceptible to humans.
One suggestion was to install ventilation systems that drew in naturally scented air from
outside directly into the enclosure, although the use of ventilation systems is arguably
more of a welfare requirement than an enriching opportunity. Another suggestion involved
creating an external enclosure using breathable blackout fibres for the roof and parts of
the wall, allowing air to circulate but no light to penetrate. It would also be possible,
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albeit expensive, to deploy photochromic ventilated glass walls, which zoo staff could
control remotely, using an app. During the evening time, when the artificial light was
switched on, these same features would stop light pollution from the enclosure affecting the
external environment.

Since novelty is known to provoke interest in many animals, a simple low-tech idea to
stimulate olfaction was the introduction of new logs or other furnishings to an enclosure.
This would be likely to encourage fresh scent marking by some species. Another solution
for fresh air provision that relied less on technology was to build a tunnel allowing cre-
puscular animals to go outside their enclosure at dawn and enter an external compound
that was shared between different species at different times during the day or night. The
crepuscular animals would be able to smell the scents left behind by other animals as
the dew evaporated. This would also be a time before visitors arrived, so it would be
quieter, and they might be less fearful. The assumption was that as the sun rose, they
would naturally return to their dark setting indoors. This leads to the next important theme,
around the provision of space.

4.3. Space and Socialisation

This Moon Jam brief relates to the exhibiting of mixed species, providing an introduc-
tion to the advantages and challenges associated with this aspect of husbandry, and with
managing space in general. Addressing the use of space within enclosures could change
social behaviours within and between species, affording positive experiences.

4.3.1. Brief: Pottos and Bushbabies
Supplied by Laura Carrigan, London Zoo

The animals in London Zoo’s Night Zone are kept on reverse lighting so their nighttime
(when they are awake) is during human daytime, and then their daylight (when they go to bed)
is when people have left for the day. All the animals have microchips in their shoulders.

Mixed species exhibits enable the maximisation of space by linking exhibits and
providing natural enrichment for the animals, as well as offering a better experience for
visitors as there is more activity to view. In addition to housing three Moholi bushbabies
and two pottos all together, the largest exhibit in the Night Zone also includes two Malagasy
giant rats (Hypogeomys antimena) (Figure 2).

Figure 2. Male and female pottos, juvenile Moholi bushbaby and Malagasy giant jumping rat in
London Zoo Nocturnal House. Images courtesy of Laura Carrigan, London Zoo.

The enclosure is approximately 3 m (H) x 11 m (L) x 5m (W), which is about 165 cubic
metres or 5827 cubic feet, with a coir/bark chip substrate and branches/liana structures
throughout. Some of the structures are fixed, and others move when the animal uses them.
This mixed species exhibit enables the animals to have more space compared to being
housed separately, and the bushbabies have developed some form of relationship with the
female potto. However, there is one issue, which is that it is difficult to control their access
to food, so the older male bushbaby has gained weight. To try and counteract this, it is
necessary to hand feed the pottos their favourite food (insects), because if it is scattered or
placed in enrichment, the bushbabies are too quick and manage to steal everything.
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Bushbabies can jump over two metres in one leap and can cover distances in seconds,
which makes them much more agile and speedy than the other animals they live with. As
arboreal animals, they will generally spend most of their time off the ground and traverse
by jumping and running along branches. They are fed pellets, insects and gum, but they
help themselves to the pottos” vegetables as well.

By contrast, the male and female potto move slowly across branches, although if
threatened or angry, can move quickly. They cannot jump from branch to branch and will
not go down to the ground for anything. The giant rat will occasionally steal live food
that is scattered around the enclosure, but not enough to be an issue. Sometimes it is also
necessary to hand-feed her treats like nuts and avocado since if the bushbabies like it, they
will take that too.

The challenge for teams is to overcome the husbandry challenge of food provision in
a mixed species exhibit by designing a feeding device that is accessible to the pottos but
inaccessible to the bushbabies.

4.3.2. Responses: Pottos and Bushbabies

Two possible solutions were proposed: low tech and high tech. The low-tech version
took account of the fact that pottos have longer arms than bushbabies; therefore, food could
be in a space with tubular access that could only be reached by the pottos (Figure 3A).
The simplicity of this design makes it very appealing. There are few parts to break, and it
would be cheap and easy to place multiple versions around the enclosure.

Figure 3. Cardboard mock-ups of tunnel system with rotating food dispenser (A) and higher-tech
tunnel with microchip program access (B). Images from Moon Jam.

On the other hand, since the low-tech solution was purely mechanical, it would not be
able to discriminate between individuals, so could not be used for remotely monitoring
access, and it would be species specific. Also, it would not dispense food over time,
meaning that care staff would always need to be involved in provisioning. The higher tech
solution required power and electronics but had more functionality and would be flexible
for different mixed species enclosures. It could be set with a timer to dispense different food
items and could discriminate between micro-chipped individuals (Figure 3B), enabling a
clear record of which animal accessed which kind of food at what time. This solution also
used the long tunnel concept to restrict bushbaby access.

Alternatively, bushbabies could be lured to their feeding portal and held inside while
pottos had time to forage. However, this concept would be more complex to build and
potentially less practical for other exhibits. Other proposals included setting aside separate
smart-gated spaces in the enclosure for food delivery, with the gate operated by reading
animals’ microchips [30,31]. A problem with this idea was that the bushbabies could jump
nimbly through the gate when opened by a potto. Nonetheless, in general, the concept of
animal-controlled ‘smart gates’ that facilitated the animals” ability to freely access areas
within an enclosure, using a microchip-controlled system, was regarded positively by zoo
designers and staff.
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Enclosure area standards are an important benchmark, and it was noted that existing
guidelines represent minimum standards. The clear trend is to enlarge these areas in zoos
and related facilities, especially as animals can become more physically fit and intellectually
motivated. Broad advice from experts is to aim to exceed today’s standards and best prac-
tices. At the Moon Jam, the recommendation was to use space creatively and with regard to
natural behavioural patterns, aiming to maximise and optimise what was available to use
by the animal. One example was to have maximum rather than minimum branching cover
for climbing/arboreal species, thus providing a wider surface area for spreading out food
or food devices to promote exploration and foraging. In general, the more complex the
environment, the more opportunity there is to include branching routes and structures that
support species-specific mating, scent marking and social and toilet-related behaviours.

While it is possible to develop enriching features within existing enclosures, there
are many opportunities that can be offered in the design of new enclosures as well. A
single space or area might not represent the best design, although combining exhibits
can offer new challenges, as demonstrated by the mixed species enclosure housing pottos
and bushbabies. Having the choice, control and ability to move from place to place is
enriching, especially if each place offers complimentary resources. Long connections
between different accessible enclosures (trailways) can also provide interest and stimulate
exploration. The Center for Great Apes in Florida (USA) constructed one of the first of
these for their primates, and the concept has been taken up by other zoos. An ambitious
example is Philadelphia Zoo’s Big Cat Falls Trailway which allows the felids to walk over
visitors” heads as they travel to different but connected spaces [32]. It gives the animals
a rich perspective on the environment around them while protecting other species from
predation. Such features can also be popular with visitors. While these examples were
developed for diurnal species, enclosed indoor trails or flyways (either for single or mixed
species) could be developed for animals housed in large nocturnal houses.

A potential complication associated with rotating or alternating species through
enclosures is the risk of bacterial or viral transmission from one to another. Albeit, these
risks could be reduced through regular animal health faecal screening methods. In addition,
staff should wear sterile boots and gloves to clear enclosures and handle animals. In cases
where infections are confirmed, zoos may increase their biosecurity practices, which extends
to limiting the use of mixed species exhibits. This issue potentially exists within any open
enclosure, because if the carrier was a wild mouse or bird, droppings could be present in
any accessible browse.

Despite some challenges, particularly in enabling allocated food provision for species,
carefully monitored mixed species exhibits can provide food and sensory-based enrichment
without the occurrence of intra or interspecies conflict [33]. The following briefs also
incorporate food provision, with a focus on natural foraging behaviours.

4.4. Foraging

Nearly all the Moon Jam briefs are related in some part to feeding—access to food,
behavioural repertoires associated with foraging and hunting and managing change, such
as age-related conditions.

Food-based enrichment can support natural feeding opportunities and increase species-
specific behaviours in acquiring food resources. For instance, burying food or placing food
in Kong pet store toys could generally increase the frequency of digging and rooting be-
haviours. Specific examples in nocturnal species include the use of artificial termite mounds
increasing sit-and-wait predation behaviours in bushbabies [34]. Promoting foraging be-
haviour is arguably important for species to take control over their feeding experiences,
which is likely to be intrinsically connected to their wellbeing and survival. Certainly,
in the wild, predator species can incur a risk of mortality by starvation [35,36], which
may be increased without the skills to acquire food or an opportunity to express them.
If species in managed environments are to be considered for wild release programmes,
which may be a growing priority for zoo organisations and rehabilitation centres in the
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future, behaviours directly associated with a species” ability to secure food in the wild
should be strongly encouraged in managed care. As a case in point, abnormal dentition,
gouging behaviour and frequency were reported in a translocated Javan slow loris that was
later found deceased with a deformed jaw [37], indicative that these deviations in feeding
behaviours may have contributed to its mortality.

The following brief from North Carolina Zoo illustrates some of the challenges associated
with enabling natural feeding behaviours for nocturnal species kept in managed environments.

4.4.1. Brief: Common Vampire Bats
Supplied by North Carolina Zoo

North Carolina Zoo is home to a colony of 66 common vampire bats, which live in
a nocturnal cave area. The habitat is on a reverse light cycle, creating nighttime lighting
conditions for the bats during daytime hours, which encourages wakeful periods for the
bats during operating hours.

Common vampire bats are considered sanguinivores, or animals that consume only
blood. They are the only species of bat that only consumes mammalian blood, and in a
natural habitat, feed from a wide range of sleeping mammals. Using echolocation, along with
specialised scent detection, vampire bats find the warmest spots on the mammals, where
blood runs closest to the skin. The bats typically land near their prey and then walk and climb
to the best feeding location. A small hole (approximately 0.5 mm) is punctured with their
sharp teeth and the anticoagulant contained in their saliva ensures blood flow. This process
can take around 20 min but rarely wakes the prey animal. Vampire bats can consume about 2
tablespoons (35.5 mL) of blood at a time and must eat at least every other day.

At the North Carolina Zoo, vampire bats are fed harvested cow blood (Figure 4). The
blood is treated to reduce coagulation and stored in the fridge to keep it fresh. Although
this is a common management practice, it restricts how blood can be presented to bats.
First, the blood cannot be warmed before presentation, as this would reduce its quality and
duration of freshness. Second, the blood is usually placed in open dishes. These factors
both reduce the natural hunting and feeding behaviours of vampire bats.

> S
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Figure 4. Vampire bat feeding on cow’s blood. Image courtesy of the North Carolina Zoo.

The challenge for teams was to design a system for feeding that supports the expression
of the bats’ natural foraging behaviours.

4.4.2. Responses: Common Vampire Bats

The main concept from participants involved creating an artificial system for present-
ing fresh, warm blood that circulated between a set of blood bags (Figure 5). The bags
would be made from a biocompatible polymer so the bats could pierce them safely—similar
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to the natural casing used on sausages. More research would be required to test whether
the bats could smell the blood through this artificial skin and to find an appropriate method
for maintaining suitable pressure within the system.

Figure 5. Physical mock-up of compression system comprising blood bags holding cow’s blood.
Image from Moon Jam.

Animal care staff found this concept to be very creative and reflective of vampire bat
behaviour in the wild.

Food-based enrichment can form part of the overall healthcare management of animals
such as by increasing activity budgets, though these effects can differ between species [38].
For nocturnal reptiles, examples of enrichment include stimulating the olfactory senses and
associated behaviours of tongue touching, lip-licking and sniffing in leopard geckos [39].
Mimicking wild food presentation may also be important to improve food consumption,
such as manual shaking of mice to encourage a strike response in snakes. Hanging up meat
could also encourage more active and extended feeding behaviour durations, which may
be important in species prone to obesity and muscle wastage, or for species that otherwise
spend a large amount of their time in resting behaviours [40].

Visual, olfactory and auditory senses may also be stimulated through the enrichment
design (materials, size, shape, complexity). The enrichment could simply be a novel food
source and/or changes in its presentation, such as the use of live fish, which has been
demonstrated to reduce pacing in tigers [41]. Moreover, by increasing the diversity of
invertebrate food sources, different feeding behaviours can be promoted, such as digging or
object manipulation to obtain burrowing mealworms, compared with the need for running,
climbing and catching to capture locusts or crickets.

Another aim for food-based enrichment may be to help reduce undesirable or stereo-
typy behaviours, such as excessive pacing in felid species [42] or stereotypy swimming
patterns in Vietnamese pond turtles [43]. More research is needed to investigate any
physiological responses to enrichment, including food-based enrichment. Nonetheless,
preliminary evidence has identified reduced faecal corticosterone following combined
enrichment use (manipulable, sensory, and feed) in Asiatic lions [44], suggesting that in
this case, the enrichment had lowered stress hormones within a captive environment.

Notably, enrichment can be manipulated to increase the level of difficulty, depending
on whether the desired goal is to extend the duration of activity, to suit individual considera-
tions (age and health status) or to address individual response variability to enrichment [45].
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This highlights another important theme, which is the provision of specificity—solutions
for individual members of a species. As with humans, there is rarely a ‘one-size-fits-all’
answer that works for everyone.

4.5. Specificity

The next Moon Jam brief featuring food provision illustrates the potential need to
tailor husbandry practices and enrichment for a specific individual depending on their
circumstances. The challenge of attending to the welfare of a particular animal involves
learning about individual as well as species characteristics, to provide a personalised
experience for that animal. Designing enrichment for one individual can give rise to
insights pertaining to all members of that species, as well as to other animals experiencing
similar life conditions.

4.5.1. Brief: Aye-Aye
Supplied by Paige Bwye

Aye-ayes are a nocturnal lemur from Madagascar possessing unique adaptations
including their large ears, their thinner and elongated middle digits on each hand, and
their overbuilt masticatory apparatus [46], to assist specialised tree-gouging behaviour.
As percussive foragers, aye-ayes use their specialised middle digit (Figure 6A) to tap on
bark while thought to be listening to vibrations within their auditory range (Figure 6B),
indicating invertebrates inside. Once identified, they gnaw into the bark to access their
prey with their continuously growing incisors (Figure 6C). Using their middle digits, they
then excavate the prey deep within the hollow crevices. When they are not eating insects,
they also forage on the ground for seeds and fallen fruits.

(A) (B)

Figure 6. Aye-aye features—hands (A), ears (B) and teeth (C). Image courtesy of Paige Bwye.

For the purpose of the brief, the aye-aye enclosure dimensions to consider are 6 x 4 x 6
m (approx. 150 cubic metres or 1766 cubic feet), featuring horizontal and vertical branching,
elevated nest boxes and rotten logs at ground level. Aye-ayes are generally destructive
in captive environments because they can chew through strong surfaces, rendering many
enrichment materials unsuitable. Moreover, they are a socially dispersed species and typically
housed solitary in zoos.

The aye-aye used for this brief is beginning to show age-related changes, including cataracts
in both eyes (Figure 7). Although his mobility is good, he cannot see individual insects in his
environment. For this reason, it would benefit him to make his food provision easier to access
to ensure consumption, but overtime this could lead to his teeth overgrowing from reduced
gnawing opportunities. Teams were asked to apply what they had learnt about aye-ayes and
this particular individual’s background information into consideration to produce a technology-
based solution that promotes species-specific foraging and incorporates dental health (serving
as enrichment, but also as a required husbandry intervention).
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Figure 7. Aye-aye with cataracts. Image courtesy of Paige Bwye.

4.5.2. Responses: Aye-Aye

The simplest, non-technical concepts produced by teams were chew toys made from
hard hollowed wood, such as bamboo, filled with termites and sawdust, then sealed at the
ends, so the aye-aye would need to use his teeth to access the food. The lengths of wood
would be secured in a log holder. An alternative, more proactive suggestion was to use a
scented coconut shell to hold food, since the shell would be abrasive and wear down his teeth.

Teams spent a significant amount of time designing a reusable feeder that could track
bite activity. This concept used flat plates of hardwood inside a tough edible tunnel that
the aye-aye had to bite, so the tunnel was disposable, but the centre part could be refilled
(Figure 8). Insects were delivered on the plates and a sensor placed in the central section
could measure bite activity. In a situation where the aye-aye could not hear the insects, a
vibromotor would be used to simulate the sound of moving food; alternatively, it would
be possible to amplify the sounds of insects, so they were easier to find. Expert responses
identified that the use of any sensor materials would have to be inaccessible to the aye-aye
directly to prevent the consumption of non-edible material.

For species that require regular mastication good husbandry practices should seek to
provide food-based enrichment which enables gnawing, which may contribute to preven-
tative and reactive dental care. For instance, the provision of hardwood sticks resolved
malocclusions by improving molar occlusal wear in pine voles [47]. While the teams’
enrichment concepts worked towards meeting the dental health goal that was set in the
brief, the motivation to forage and feed might not have been fully stimulated if the visually
impaired aye-aye had been presented with a concealed pipe containing insects. However,
as his hearing is unimpaired, acoustic enrichment could complement food-based enrich-
ment in this scenario using technological ‘lures’ in the form of insect sounds in different
locations around his enclosure to encourage a foraging response.
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Figure 8. Two versions of a food holder—removable plate system and hollow dowel. Images from
Moon Jam.

This leads us to the next theme, which relates further to foraging solutions taking into
consideration the sensory modalities used by another nocturnal species.

4.6. Multisensory Modalities

As mentioned in the Background section, nocturnal species do not typically rely on
vision, but also use acoustic, olfactory and tactile signals, and may have the ability to
perceive their world using other sensory modalities such as sensitivity to electromagnetic
fields, humidity and air or water pressure changes. The Moon Jam brief that introduces
this topic focuses on the foraging behaviour of an armadillo.

4.6.1. Brief: Southern Three-Banded Armadillo
Supplied by Robert Kelly

The southern three-banded armadillo is a nocturnal species native to Central South
America, inhabiting savanna and dry forest. They can use their distinctively long and
powerful claws (Figure 9A) to dig through tree bark and termite mounds to forage for
insects. Like their anteater relatives, these armadillos possess long and sticky tongues
(Figure 9B), and shovel-like snouts to extract termites from small crevices and to root
around in the forest floor for other insect prey. Due to their nocturnal traits, this species
compensates for poor eyesight by being equipped with well-developed auditory and
olfactory senses.

(A)

Figure 9. Armadillo claws (A) and tongue (B). Image courtesy of Robert Kelly.

Despite being a commonly housed zoo animal, armadillos are comparatively under-
studied. They are primarily solitary but may often be housed in breeding pairs in the zoo.
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Heated nest-boxes are normally provided as sleeping quarters and refuges. Armadillos
are typically housed in reversed day-night systems to promote activity levels, although
differences amongst species exist. Variation in ambient temperature influences levels of
activity in armadillos. For example, lower air temperature in the southern three-banded
armadillo is associated with decreased activity, whereas the inverse is observed in the
six-banded armadillo (Euphractus sexcinctus), which becomes more active with decreasing
temperatures [48].

As a terrestrial species, substrate provision is an important consideration. Typically
bark chips are used which can promote natural digging and rooting behaviours. However,
this means that smaller enrichment devices can sometimes be displaced or accidentally
dug beneath the substrate. Armadillo claws are very powerful, and they can be destructive
animals—they have the potential to dig through small, discrete gaps and are strong enough
to excavate concrete, so teams should bear this in mind when considering construction
materials and device design. Being accommodated in darkened environments, and due to
their poor eyesight, armadillos may struggle to locate enrichment without some form of
olfactory cue.

An adult male southern three-banded armadillo is currently housed solitary at Amazon
World Zoo Park on the Isle of Wight (Figure 10). He occupies an enclosure of 34 cubic m (1200
cubic feet) with a coarse bark chip substrate. Logs are spaced randomly around the enclosure
with a heated nest box at either end. Due to his old age, his eyesight is very poor, and he is
particularly sensitive to loud noises and vibrations. Can teams devise an idea that promotes
foraging activity, taking his age and requirements into account?

Figure 10. Geriatric southern three-banded armadillo. Photo courtesy of Robert Kelly.

4.6.2. Responses: Southern Three-Banded Armadillo

Since armadillos spend the majority of their time underground, this concept involved
a modular raised tunnel system (Figure 11). The sections were joined with junctions, so
staff could alter the routes periodically to make it more dynamic. There would be puzzle
food boxes located at junctions, easy to fill from above. In theory, the armadillo would be
able to smell which ones had treats, using his tongue to reach the food inside the containers.
Sensors could monitor his behaviour and light up LEDs on the top of the tunnel as he
passed so that visitors knew where he was at any given moment. Another possibility would
be to build the tunnel from clear acrylic so people could watch in low light. This assumes
that if the individual cannot see very well, the tactile and physical character of the tunnel
would reassure him.
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Figure 11. Model of the armadillo investigating a tunnel system with an adjacent play tunnel. Images
from Moon Jam.

A solution to lengthening claws due to inactivity could also be to coat the architectural
flooring surface with an epoxy-bonded abrasive grit such as ‘stonhard’ flooring beneath the
bark mulch. To promote activity levels in zoo-housed armadillos and encourage animals to
engage in species-specific behaviours, husbandry and enrichment programmes have been
devised, but not consistently put into practice for a number of reasons, including complex
organisational policies, excessive caution and difficulties judging effectiveness [49]. A
comparison of the nine-banded armadillo (Dasypus novemcinctus), the Llanos long-nosed
armadillo (D. sabanicola) and the southern naked-tailed armadillo (Cabassous unicinctus)
suggests that food-based enrichment may be ineffective at changing armadillo activity
periods, but is able to reduce abnormal behaviour and increase foraging behaviour [50],
although further research using larger sample sizes is required to confirm this. Similarly,
food-based enrichment was considered ineffective at promoting activity in the six-banded
armadillo (E.sexcinctus), the large hairy armadillo (Chaetophractus villosus), and the southern
three-banded armadillo (T. matacus) [51]. Armadillos compensate for poor eyesight with
keen olfactory senses and can respond and discriminate between different scent-based
cues [52]. Thus, scent-based elements could be considered within the enrichment design.

The Moon Jam brief for the armadillo generated a lot of ideas around potential
solutions that could simultaneously engage zoo visitors. One idea involved a perforated
tunnel wall that ran adjacent to a section of his tunnel—aimed at encouraging children to
enter the darkened armadillo world, where they could both smell each other, for mutual
olfactory stimulation. However, criticism of this was that ‘parallel play” often results
in loud, disruptive behaviour by participating children, who become lost in their own
interactions, and, therefore, miss the educational value of the experience.

Other physical games included keeping completely still in a specific location for a short
duration, to trigger a display of live infrared camera footage and various acoustic games
that involved intense listening. There were also ideas for potential mobile or touchscreen
games, such as armadillo maze puzzles and ‘Spot the Armadillo’, which involved trying to
guess his location correctly as he moved along the tunnel system (when the LEDs dimmed).
The computer games were all apps that could be developed without introducing anything
novel to the armadillo enclosure, as a way of maintaining visitor engagement.

The hearing capability of armadillos is thought to be sensitive, and, currently, we have
a limited understanding of their responses to auditory stimuli in captive environments.
Therefore, acoustic enrichment would be a useful area of research to develop. Human
sound pollution presents a different challenge within managed environments. Special
design and construction materials are required to lessen external auditory disruption that
might be caused by loud zoo visitors, ventilation and pumping equipment, after-hours
concerts or occasional nearby construction projects [53-55]. Zoo-housed armadillos can
be susceptible to stressors including increased handling for education purposes [56] and
visitor presence.
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We argue that more attention should turn to understudied nocturnal species, such as
the armadillo, to ensure that husbandry and management practices to promote welfare
can be established. This involves the cooperation and collaboration of zoo staff, managers,
stewards, designers and researchers, and ideally would raise awareness of these animals
to the wider public through visitor engagement. The following theme speaks to the
importance of taking all stakeholders into account (humans and animals) when undertaking
design projects.

4.7. Stakeholders

Developing artificial habitat design solutions requires an in-depth knowledge of the
context, which in the case of zoos involves understanding the requirements and perspec-
tives of staff (managers and stewards), visitors, designers, researchers and non-human
animals. Moon Jam participants primarily focused on the animal briefs they were given,
acknowledging after the workshop that they had considered nocturnal husbandry and
enrichment goals and more-than-human aesthetics, notably sensory modalities, cognitive
and physical characteristics, and social and environmental preferences of the species in
question. In addition, they were tasked with producing a focused, feasible design that
considered context (physical, cultural, geographical, social environment, time constraints
and ease of use for human carers), logistics (skills and resources required, financial and
time implications), zoo mission statements (education, conservation and entertainment
objectives for visitors) and research potential (including design evaluation, iteration and
testing with users, and publication).

The authors concluded that the length of the Moon Jam event precluded such a detailed
analysis of the context for each brief, but that these important considerations would be part
of future plans when moving forward from conceptual design to prototyping.

In relation to zoo management, the viability of enrichment should be assessed in terms
of inputs (e.g., cost to build and maintain, including staff time) and outputs (e.g., the mea-
surable effect on the species or individual, subsequent visitor engagement, opportunities
for publicity around welfare, research dissemination and contribution to wildlife initia-
tives). The challenges, opportunities and needs of researchers can be supported through
access to technology such as infrared video, tracking and recording devices [10], as well as
developing their ideas for experimental design. Animal stewards are crucial to the success
of any project since they are the fundamental link between humans and other species;
they implement initiatives, collect data, interpret affective states and offer feedback on
systems, as well as undertaking their usual caring responsibilities. They should therefore
be included as contributors, along with animal carers, designers and researchers to any
enrichment design discussion.

As mentioned earlier, visitor engagement is critical for a number of reasons: (i) it
facilitates access to animals so that people better understand other species that share
our world; (ii) it increases the footfall required to maintain the zoo as a viable financially
independent organisation; (iii) it supports the funding of research and conservation projects
and (iv) it can indirectly contribute to advertising since people will share their experiences
on social media.

The Moon Jam brief Stop the Flashes aims to identify alternative schemes for support-
ing the visibility of nocturnal species in day—night reversal to visitors, which excludes the
use of visitors” personal flashlights.

4.7.1. Brief: Stop the Flashes

Balancing the lighting needs of visitors and nocturnal animals under day-night rever-
sal can create a challenge in managed environments which could amplify the use of visitors
using phone flashes/flashlights. In some incidents, visitors may turn on their own lights
to be able to move around more easily in dim light areas and we must acknowledge that
not all visitors” eyesight will be the same as one another. In other cases, visitors could be
tempted to use their phone lights to improve the visibility of species and proceed to take
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photos with flash, failing to understand the negative implications of such bright lights. It is
important to balance the lighting needs of the visitors for safety and experience satisfaction
whilst maintaining species’ requirements for appropriate lighting and light cycles, which
are critical for their biological rhythms, contributing to health and wellbeing.

4.7.2. Responses: Stop the Flashes

Participants drew on a combination of technological intervention and gamification
techniques to dissuade visitors from using their phones. Two main concepts were suggested,
the first of which involved installing special photochromic glass viewing windows with
controllable properties. A bright light would trigger the window to go dark, simultaneously
stopping everyone from taking photos. The use of peer pressure to stop people from being
antisocial was deemed to be more effective than notices, so this concept worked as social
engineering. This is an example of gamification techniques being deployed to manipulate
human behaviour and was supported by zoo design colleagues.

The second idea was to develop an app that visitors could install on their phones. It
would have access to the phone settings (such as location-based tracking) so it automatically
restricted flash usage when they were inside the nocturnal house, but it had exciting benefits
too. For example, visitors could access remote low-light cameras to observe animal activity
from inside the enclosure on their phones or pads.

Visitor experience could also be enhanced if humans were able to transition more
gradually from daylight to the interior of a nocturnal exhibit, by passing through a darken-
ing corridor that enabled their eyes to adjust normally. One possible solution to extending
the visitor eye adjustment time would be to organize the nocturnal species encountered,
such that the route began with the most light-tolerant species and progressed to the species
needing the darkest environments. Another way to accommodate human eye adjustment to
darkened nocturnal areas in new constructions is to locate nocturnal exhibits connected to
indoor mid-light level facilities such as reptile houses or museum areas. Visitors gradually
adjust to mid-light levels while viewing reptiles, then adapt to lower light levels viewing
nocturnal species. Returning via the mid-light reptile displays allows visitors to readjust
their vision before exiting to outdoor sunlight levels. Alternatively, staff, interactive activi-
ties, or videos could be strategically placed at the beginning of exhibits to increase visitor
time in adjustment zones. Ultimately, when nocturnal exhibits are designed to incorporate
animal welfare, theming and visitor experience, attraction ratings are likely to reflect this.
An example is the 85.2% ‘very good’ visitor rating of Singapore’s night safari, an attraction
dedicated to nocturnal species, exceeding ratings over ten other nature-based attractions in
Singapore [57].

It is also important to consider how to handle visitor expectations, so staff need to
find ways to be clever in how to offer engagement with nocturnal species whether that is
through allowing visitors to view species across artificial sunrise and sunset times when
these animals are more visible as previously discussed, by providing animal talks on these
species from a trained member of staff who is able to locate the animal, or using video
screens to show the behaviours of these animals that may or may not be live footage (such
as cameras placed in view of enrichment).

5. Guidelines for Nocturnal Enrichment

This section offers a brief overview of the technology-enabled ideas we have explored
that can support the wellbeing of nocturnal species, and some guidelines for developers.

5.1. Overview

The examples in the Moon Jam briefs (Figure 12) and associated responses in the
Discussion section have illustrated how nocturnal species rely extensively on tactile, olfac-
tory and auditory senses, are highly sensitive to variations in wavelength, intensity and
direction of light, and can perceive fluctuations in heat, humidity, pressure and direction
within the medium they inhabit (air or water) and also through their substrate and other
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environmental features. There are also other senses available to non-humans but appar-
ently undetectable by humans, such as perception of electromagnetic fields, and senses not
previously mentioned, such as taste and proprioception.

CONgERVE
EDLCATE
ENTERTAIN

CTURNAL WP

No,

Figure 12. Husbandry and enrichment design framework for nocturnal species. The purple circular
points correspond to the focal points of each species’ brief (the larger the size, the more targeted the
brief was to the consideration). Image designed by Tiff Leek.

In relation to lighting, technology can enable auto-transitions across day and night,
simulating real-world conditions. Sunlight and moonlight can be emulated, with wave-
length, angle and duration corresponding to species-specific global locations. Photochromic
glass can be controlled to achieve different effects, from masking light to masking the pres-
ence of visitors on the other side of a barrier. In these scenarios, the technology supports
both stewards and animals, by automating procedures to save human time and by using
sophisticated techniques to recreate natural experiences. Other environmental changes,
such as ocean tides and weather variability, can also be recreated using technology, to
support realistic behavioural responses from the animals involved.

Tech can also be used to sense and track animals’ use of space, through the use of radio-
frequency identification (RFID) with tagged individuals, while gated systems can limit or
permit access to certain locations. Sensors could, for example, reveal the whereabouts of
animals underground to visitors, using lights above a tunnel, or through streaming infrared
camera footage. Many species have round-the-clock behavioural needs, so cameras could
be used to monitor activity budgets over a 24 h period.

In relation to foraging, devices can release food randomly, provide specific nutrition for
particular individuals or be programmed to be triggered by both animals and humans. Tech
would also enable the development of a system that mimicked live animals, to feed warm
blood to bats, and the generation of artificial acoustic signals to lure animals to different
resources and encourage activity. Many animals have individual needs, and technology
can also be used to monitor their health, such as capturing data about bite strength or body
temperature. The Moon Jam briefs did not include nocturnal avian and reptilian species,
however, the ways in which technology can support the welfare of nocturnal species can
apply to these animal groups.

84



Animals 2024, 14, 2378

5.2. Multispecies Interaction Design

It is important to note that animals co-evolved with environmental conditions directly
affecting their welfare, by influencing their evolutionary strategies for survival and re-
production, notably feeding, social interactions and exploratory behaviour. Moreover, all
living organisms experience and make sense of their world through their sensory percep-
tions, and many have sufficient autonomy to enact choices based on what they perceive.
The opportunity to make meaningful choices within complex and manipulable artificial
habitats offers managed animals control over their life experiences, which is central to
animal welfare [58] and is, therefore, an important aspect of an enrichment plan. While
some reactions may be ‘hard-wired’ (driven by evolved instincts), others may be based
on individual preferences (e.g., favourite treats) or neurological reinforcement that has
been established through previous experience (e.g., positive or negative reactions from
conspecifics). In the wild, animals have the ability to choose between a wide range of
different resources and experiences including microclimates, light levels and many more.
They should have access to similar choices while in managed care environments.

The ability to perceive phenomena, discriminate and choose between different sen-
sorial experiences and make these decisions based on previous and immediate personal
experience is indicative of aesthetic sensibility [59,60]. This suggests that environments, re-
sources and interactions with others can be more or less pleasurable for animals, depending
on their perceptions and preferences. We therefore argue that designers should carefully
consider species-specific characteristics in relation to the aesthetics of system design when
developing new features or experiences for enclosures. This includes features such as the
smell, taste, texture, malleability, colour, shape, sound, position and interaction associated
with any device.

Games, toys and control systems with species-specific interfaces offer opportuni-
ties for cognitive and sensory stimulation to animals within managed environments, as
well as autonomy and the chance to gain competence [61]. This applies to both humans
and non-humans, providing zoo staff with interactive features they can control, visitors
with engaging apps that educate in entertaining ways, researchers with ways to investi-
gate animal preferences and capabilities and the animals with different means to learn
new skills, make relevant decisions and work for rewards (contra-freeloading) within
their enclosures.

Aside from feasibility and cost, key considerations to be made around the use of technol-
ogy are related to (1) Ethics, (2) Messaging, (3) Usability, (4) Teamwork, (5) Futureproofing,
(6) Biocentric design, (7) Evaluation and (8) Contextual relevance and broader applications.

1. Ethical issues are complex and a discussion of the many perspectives on animal
welfare and management is beyond the scope of this paper. We point to the field
of Animal-Computer Interaction, where there are many examples of literature that
defines, and projects that exemplify animal-centred design principles. Examples
include descriptions of design methodologies and frameworks that enable animals
to be involved in the design process as contributors [62] and discussions around
values beyond welfare, ergonomics or usability, such as privacy and consent [63].
Ultimately, it is the design team’s responsibility to find ways to communicate the
team’s intentions with client animals and to interpret the animal’s resulting responses.

2. Messaging relates to direct visitor-animal experiences as well as to signage and apps
for zoo visitors, which can give a powerful signal about the attitudes and priorities
of the establishment. For example, do the display techniques demonstrate human
dominance over animals and the environment, or represent humans and animals as
equally entitled residents of Earth? Could animals, apps and games be mistaken for
human children’s entertainment? Does the signage empower or trivialise human
endeavours to support animals’ lives or desires?

3. Usable systems are a fundamental requirement, whether being used by humans or
animals. For humans, technology needs to be easy to learn and use. For non-humans,
it is crucial for designers to gain a deep understanding of the species’ natural history
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and an individual animal’s personal history. With such knowledge it should be
possible to lever the animal’s usual behaviour—the affordance of the system should
include mechanisms, presentation, and aesthetic qualities. Being able to work with
prototypes is essential, so as to iteratively test designs and modify them based on the
animal’s actions and reactions.

Simplicity in design is desirable but can be hard to achieve, and it may seem easier
to rely on known technological solutions. Often, however, collaboratively working
on challenges within a multidisciplinary team can generate simple, non-technical
solutions that are cheap and easy to implement, such as the ‘potto sleeves’ that restrict
bushbaby access to treats. Teamwork offers participants ownership of the design since
everyone participates in its creation; this, in turn, is motivating for stakeholders and
facilitates future deployment.

Futureproofing involves ensuring that technological solutions do not quickly become
obsolete. It is appropriate to design flexible and adaptable systems that can easily
be maintained or adjusted, provide support for human users and be willing to make
changes as new knowledge becomes available or enclosures are updated. This concept
also applies to advocacy around welfare and enrichment, meaning that today’s ‘best
practice’ may be considered a very low threshold in the future.

It is important for humans to accept that we do not know everything about other
species. The state of knowledge we have today will inevitably be superseded in a few
years, and corresponding welfare standards and practices for managing animals will
also change. As it stands, biocentric design is the optimum approach for creating zoo
enclosures—in other words, trying to recreate the environment in which the animal
evolved, with as many of the relevant experiential features as possible. This involves
the human design team trying to ‘see the world with new eyes’, which may involve
the use of technology to expand our limited perceptions. Immersion in the umwelt
of another species is an exciting prospect that can give researchers and designers
insights that transcend their original context and facilitate the development of new
knowledge and opportunities to better understand our ecology.

Feedback from Moon Jam participants suggested that there is a lack of available
information on suitable methods for evaluating enrichment designs. Planning a
research study requires viable and specific research questions. For example, we
cannot ask: ‘Is it successful?” about a new enrichment device without first defining
our measure of ‘success’. Traditional scientific papers are heavily biased towards
collecting and interpreting quantitative data, but there is a growing appreciation of
qualitative research, particularly in the early stages of a project, for identifying and
refining problems, and later on, to collect stakeholders’ perspectives, for example.
Data does not need to represent a large population to be valid—investigating a small
sample of a species, such as those individuals housed in one zoo, can lead to a
greater understanding of that species and their needs. Mellen and MacPhee offered
a framework for environment enrichment in 2001 involving Setting goals, Planning,
Implementing, Documenting, Evaluating, and Readjusting (referred to as ‘SPIDER’).
Since then, evaluation techniques have been highlighted in the species-specific context
of cheetahs [64], lemurs [65] and lizards [66], and for training animals [67]. Alligood
and Leighty [68] discuss different trends and the UK organisation National Centre for
the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) offers a
valuable husbandry guide for researchers [69].

Finally, everything we learn about a small sample of a species housed in a zoo
will inform research and conservation projects with its wild counterparts and have
relevance to similar animals in other contexts. For example, in domestic environments,
many rodents are frequently kept as companion animals. Mice, chinchillas, rats and
hamsters are all nocturnal, very sensitive to light and noise, and usually active at night
and around dawn and dusk. They need safe places to hide since they are prey animals,
and they are highly sociable in the wild (except for Syrian hamsters). The RSPCA
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offers guidance on how best to look after rodents [70], but there is minimal legislation
to ensure that pet owners treat their animals responsibly and provide appropriate
welfare. Zoos offer an ideal opportunity to share information about nocturnal species
with the wider public. Moreover, zoos” commitment to conservation, research, visitor
education and the wellbeing of the species they house has the potential to make a
global impact in a wide range of contexts for both wild and managed animals.

6. Conclusions

The lives of nocturnal and crepuscular animals in nature and in managed care have
long been a mystery to scientific observers, caregivers and nature lovers. Their activi-
ties have been obscured from our human senses in darkness. Today, new and upgraded
technologies such as infrared and motion-activated sensors, recorders, and cameras, coor-
dinated with RFID identification, tracking and imaging systems, and Animal-Computer
Interaction programs are improving our understanding of how nocturnal species live in
their wild and managed environments and what they need to thrive. This information can
be transferred into action to support good animal welfare and public display possibilities
in captive environments. Technology-assisted husbandry and enrichment can be used as
an interdisciplinary approach to benefit the wellbeing of nocturnal species whilst simul-
taneously educating human stakeholders on species” behaviour and ecology. Managed
environments of nocturnal species may particularly benefit from artificial lighting and
cameras as resources that permit and monitor the natural circadian cycle of nocturnal
species, both when human carers are around and when they are not. Alongside technology,
the continuing acquisition of new animal knowledge from wild research, evidence-based
animal management, more detailed animal welfare assessments, and animal-centred habi-
tat design frameworks, all suggest exciting opportunities to meet the needs of nocturnal
species.

We explored some of these issues and techniques using the Moon Jam workshop pro-
cess that brought together diverse participants to discuss and reflect on real challenges for
nocturnal species housed in zoos. Workshop outcomes showed that a greater understanding
of both species and individual animal senses, needs, preferences and motivations quickly
led to testable concepts for improving nocturnal environments and offering enriching oppor-
tunities. Some were simple, such as potto arm-length sleeve feeders. Others could use exist-
ing commercial technology such as RFID smart pet gates and feeders. Still, others would re-
quire advanced technical design and testing. However, with the integration of Wi-Fi timers
and applications synchronising weather data to outlet controls, these intricate systems may
become as straightforward as downloading the appropriate app to manage all function-
alities conveniently in the palm of one’s hand. This user-friendly approach is certainly
foreseeable soon.

The use of newer technology to enhance visitor experiences was not discussed as much
in the workshop, but wearable infrared and starlight visors presently in use by the military
and hunters could be adapted for use in zoos, sanctuaries and aquariums. Live infrared
projections could reveal hidden animal activities, and now some smartphone cameras are
adapted for extreme low-light conditions. Improved nocturnal habitats and management
programs are likely to increase animals’ natural activity, with the potential for improving
both the health and wellbeing of the animals and the engagement of visitors.

In addition, rapid advancements in artificial intelligence techniques enable automated
surveillance of animals. This decreases the need for human involvement, which can be
stressful for other species, and also has the potential to offer positive welfare benefits.
Machine Learning is being widely used to enable Al systems to recognise patterns in
collections of data, therefore automating processes that previously required a human
to spend a significant amount of time undertaking observations and analysing video
recordings. Examples include (i) enhanced diagnoses of health conditions, (ii) the ability to
monitor and interpret social behaviours and group dynamics and (iii) longitudinal passive
data collection and analysis, to investigate seasonal variation. Moreover, facial or body
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recognition of individuals can enable the automation of bespoke feeding arrangements and
access to areas of an enclosure, removing the requirement to tag animals.

While managed nocturnal animals were our focus, essential knowledge we used was
gained in field studies. Continued threats to wild nocturnal species globally, namely habitat
loss and climate change, signify the growing importance of improving the lives of managed
animals such as through developing animal-centred technology to safeguard these species.
Moreover, by overcoming the current limitations of managed environments, there may be
more scope to support the foundations of zoo, sanctuary and aquarium-based breed-and-
release programs for rewilding endangered nocturnal species to suitable protected areas in
the future.
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Simple Summary: This paper presents a way to automate computer vision processes applied to
behavior recognition on closed-circuit television (CCTV) footage of two captive African elephants.
Object detection software using both Create ML and DeepLabCut was used to control the accuracy
of using such models, and those models were subsequently used to analyze seven days” worth
of nighttime footage to assess the general behavioral patterns of the elephants, showcasing the
possibility of using automated tools for behavioral analysis.

Abstract: This study investigates the possibility of using machine learning models created in DeepLab-
Cut and Create ML to automate aspects of behavioral coding and aid in behavioral analysis. Two
models with different capabilities and complexities were constructed and compared to a manually
observed control period. The accuracy of the models was assessed by comparison with manually
scoring, before being applied to seven nights of footage of the nocturnal behavior of two African
elephants (Loxodonta africana). The resulting data were used to draw conclusions regarding behavioral
differences between the two elephants and between individually observed nights, thus proving that
such models can aid researchers in behavioral analysis. The models were capable of tracking simple
behaviors with high accuracy, but had certain limitations regarding detection of complex behaviors,
such as the stereotyped behavior sway, and displayed confusion when deciding between visually
similar behaviors. Further expansion of such models may be desired to create a more capable aid
with the possibility of automating behavioral coding.

Keywords: machine learning; nocturnal behavior; computer vision; captive elephants

1. Introduction
1.1. Objectives of Wildlife Conservation

The World Association of Zoos and Aquaria (WAZA) aims to conserve endangered
species through breeding programs and exchange of captive animals. This association
requires certain standards of its members and emphasizes the importance of welfare
among captive animals [1]. Based on consistent and current research, good physical
and psychological welfare among captive animals must be maintained and therefore
associations such as this play an important role in conservation [1-4].

Because of the importance of animal welfare, it is essential to ensure that captive
animals are consistently studied in relation to their behavioral reactions to different aspects
of their captive lives, such as enclosure design, enrichment, and much more [5-8]. An
example of an animal that may require such studies to properly conserve the species is the
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African elephant (Loxodonta sp.), which has faced great declines in population size all over
Africa [5,9].

1.2. Captive Elephant Behavior and Welfare

To accommodate the welfare needs of captive elephants, normal behaviors must first
be monitored and understood [6,10,11]. Behaviors such as foraging, locomotion, social
behavior, etc., likely influence the welfare of elephants and help understand undesired
behaviors that may indicate stress [12-14]. It is important to also address the nocturnal
behavior of elephants since night behavior can differ from behaviors observed during the
day. An example of one such behavior is recumbent sleep, where the elephants lay down
and sleep, which exclusively occurs during the night [14,15]. On average, captive African
elephants lie down to sleep around two hours per night and tend to lie down more if
their bedding is comfortable [14-17]. Besides rest, feeding and atypical behaviors are the
behaviors most commonly observed in captive elephants, yet the activity level is lower at
night compared to during the day [14,18].

Atypical behaviors observed in animals kept in captivity are usually those that deviate
from the norm for their species and are not commonly observed in their natural habitat.
These behaviors are frequently regarded as signs of compromised welfare [19-22]. A
type of stereotypic behavior is characterized by the consistent and inappropriate repeti-
tion of specific movements or body postures. These actions seemingly lack any purpose
or function and appear to be coping mechanisms to reduce stress, but the exact causes
remain unclear [21-25]. Different forms of stereotypic behavior have been observed in
elephants, including whole-body movements [10,13,22,26,27]. Among whole-body move-
ments, ‘swaying’ is most common and is defined as a rhythmic side-to-side movement of
the body, typically observed while standing [12,18,22]. Consistent observations of elephants
may be helpful in handling these behaviors when they arise.

1.3. Machine Learning as a Tool for Behavioral Analysis

One widely used method for observation of animal behavior is videography [14,28],
although this method can be highly time-consuming [29-32]. Manual scoring is limited by
human capabilities, such as the observer not recognizing behavioral patterns or failing to
spot new patterns. At the same time, it is difficult to standardize the scoring of behaviors
by human observers due to subjectivity [33]. Inconsistency between different observers can
therefore not be avoided completely [31]. Furthermore, it is challenging to track multiple
animals and behaviors at the same time, despite the use of video material [29,31]. Some of
these logistical problems with behavioral analysis may be aided with the use of machine
learning [32].

Machine learning used in video and image analysis (computer vision) has been ex-
plored in recent years in application to a variety of purposes [34,35]. The use of object
detection as a machine learning tool to find and recognize a given object has been investi-
gated previously and used to recognize animals and their behaviors [32,36-38]. Tools such
as this may prove useful as a way of automating behavioral analysis in the near future,
which may reduce the workhours required of the researcher [30,32]. However, these uses
and methods are still in their infancy which necessitates further investigation of different
machine learning models, methods, and implementations [36,37,39].

DeepLabCut is a Machine Learning software that specializes in pose estimation in
video material, by using points for tracking specific body parts [40,41]. This is utilized
in behavior tracking by marking body parts of interest on a relatively small dataset of
images showing a diverse range of behaviors by the subject of interest [32]. Constructing
a DeepLabCut model capable of accurately tracking body parts of interest may allow for
automatization of behavior coding in behavioral studies [42].
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Create ML is a built-in application for iOS products with the ability to train custom
machine learning models such as object detection models with no code. Create ML models
can be trained to detect and recognize objects of interest, such as an elephant executing a
specific behavior, by annotating a relatively small and diverse dataset. This annotation can
be used in various ways, such as using the image annotation tool RectLabel for marking
boxes, polygons, or skeletons on the subject, and categorizing the behavior. This may allow
for construction of a simple model that can recognize simple behaviors with relatively
user-friendly software [43].

1.4. Aim of This Paper

This paper aims to use DeepLabCut and Create ML to construct models capable
of tracking selected body parts and classifying elephant behaviors, aiming to stream-
line and automate behavioral analysis processes, thus ultimately alleviating the work-
load of researchers and zookeepers, and standardizing behavioral coding. This study
simultaneously examines nocturnal activity of two captive African elephants with the
following hypotheses:

e  This study expects that the machine learning models can predict selected behaviors
on the same level as manual scoring;

e  This study expects that behavioral differences between the elephants and behavioral
differences between days can be demonstrated using selected computer vision models.

2. Materials and Methods
2.1. Subjects and Enclosure

The behavior of two captive female African elephants, exhibited in Aalborg Zoo,
Denmark, was examined. Both elephants were born wild in South Africa around 1982 and
relocated to Aalborg Zoo in 1985. In this study, the elephants are referred to as Subject A
and B.

The elephant enclosure consisted of an indoor area and an outdoor area. The elephants
did not have access to the outdoor enclosure at night during the examined period. The
indoor enclosure consisted of concrete floors and walls with metal wires towards the visitor
area (see Appendix A). The two elephants were able to have physical contact during the
night through metal bars between enclosures E1 and E2. Subject A had access to enclosure
E1, and a corridor attached to the enclosure (56 square meters). Subject B had access to
enclosures E2 and E3 as well as a corridor measuring a total of 116 square meters.

The elephants’ diet consisted of branches, seed grass hanging from nets in the inside
and outside enclosures, and concentrate pellets that would periodically be released into the
enclosure from a timer-automated mechanism, as a type of enrichment. Fresh fruits and
vegetables were spread around their outdoor enclosure daily, which allowed for foraging
behaviors. Foraging boxes, accessible with use of their trunks at the back wall of their
enclosure, were also opened periodically throughout each night, controlled by a timer.

2.2. Data Collection

Prior to data collection, an ethogram with selected behaviors was made. The behaviors
were determined based on similar behavioral studies of the same elephants in previous
publications, namely Bertelsen et al. (2020) and Andersen et al. (2020), and were modified
for the purpose of this study [14,44]. This ethogram was used to conduct a manual control,
using researchers experienced in behavioral coding, where the researchers were assigned a
subject each. The behaviors were coded continually on a second-by-second basis. These
scorings were used to compare manual coding with the models; see Table 1.
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Table 1. Ethogram used for behavioral coding of the two subjects, used for both manual and automatic

coding.
Behavior Description
S . The elephant is standing or walking. This behavior is the default if no other
tanding Lo .
selected behavior is taking place.

Lying down The elephant is lying down on the floor of the enclosure.
Drinking The elephant is drinking from a water bowl.
Foraging The elephant is using the foraging boxes, accessed using trunks in the holes at

the back of the enclosure.

Hay-net The elephant is using its trunk to reach the hay-net at the top of the enclosure.
Swaying The elephant is swaying from side to side for at least 5 s.

The elephant is out of view of the camera. This may also include falsely

Out of view unlabeled frames by the machine learning models.

The data were collected from the 12th to 18th of March 2024 to use for model creation,
and from the 16th to the 22nd of April 2024 for analysis purposes, using three cameras
(ABUS, 25 FPS). The three cameras were placed at the visitor viewing side facing towards
each enclosure (see Appendix A). The two elephants were observed during the night for
seven hours from 22:00 to 05:00 (DST).

2.3. Data Analysis

The analyzed days in this experiment provided data which were compared with
statistical tests using Excel (Version 2404 Build 16.0.17531.20120) and RStudio (R version
4.1.2 (1 November 2021)).

For body part tracking, DeepLabCut (version 2.3.9.) was used [32,42]. Specifically,
244 frames taken from 70 30-min videos were labelled (95% were used for training), and
no preprocessing was performed. A ResNet-50-based neural network was used with the
parameters set to 400,000 training iterations. Validation was carried out with a single shulffle,
and the test error found was 17.44 pixels, train 2.4 pixels (image size for creating the model
was 1920 by 1080). A p-cutoff of 0.5 was used to condition the x- and y-coordinates for
future analysis. DeepLabCut does not provide annotations of behavior, and it is required
of the user to manually define and interpret the coordinates of the results. In this study, the
behaviors were classified in Excel using parameters set by comparing the coordinates of
relevant body parts with the manually recorded data and videos from the control period
(April 16). Each parameter consisted of distinct coordinate limits and requirements to
fit the ethogram, resulting in frame-by-frame behavioral coding. The locations of the
selected behaviors can be seen in Appendix B. The algorithm for classifying behaviors
using DeepLabCut can be seen below in Algorithm 1.

Algorithm 1. DeepLabCut operation

Input: Video containing the subject to be tracked

. Load dataset. Load the video into DeepLabCut;

. Define keypoints. Specify keypoints of interest (body parts like head, tail, limbs);

. Annotate frames. Annotate a subset of frames manually by marking the keypoints;

. Model training. Use annotated frames to train the pose estimation model;

. Pose estimation. Apply the trained model to new video material;

. Refine model (optional). Correct predictions and retrain the model;

. Process coordinates. Extract CSV file and filter the coordinates for desired body parts;
. Classify behaviors. Set limits for each coordinate corresponding to a desired behavior and
filter frames that fulfill the criteria.

Output: Subset of data points that can be classified as a specific behavior.

I DU B WN =
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Difficulties arose with defining some of the parameters, such as ‘Drinking’, which
proved undefinable for both subjects as the label on the trunk tip was unstable. Furthermore,
no distinct parameter was definable for the behavior ‘Hay-net’ for Subject B as the foraging
box and the hay net were located at approximately the same place in the video frame.

For object detection, Create ML (version 5.0 (121.1)) was used [43]. Specifically, 370
image frames were extracted from the model creation period and annotated using bounding
boxes in RectLabel Pro (version 2023.11.19). Each frame was annotated with a selected
behavior as seen in Table 1. ‘Swaying” was not labelled for the object detection part. The
behavior ‘Standing” was labelled 232 times, ‘Foraging’ was labelled 42 times, ‘Lying down’
was labelled 39 times, ‘Drinking’ was labelled 39 times, and ‘Hay-net” was labelled 18 times.
The dataset was split into two sets, one containing images for training and one containing
images for validation. The model was trained with 6000 iterations, and the training set
had an accuracy of 95% whilst the validation set had an accuracy of 75%. Create ML
automatically classifies the behavior using bounding boxes resulting in a frame-by-frame
behavioral coding output. The algorithm for classifying behaviors using Create ML is seen
below in Algorithm 2.

Algorithm 2. Create ML operation

Input: Video containing the subject to be tracked.

1. Load dataset. Load the video into RectLabel and extract images;

2. Define bounding boxes. Specify categories of each bounding box of interest (behaviors, such
as lying down or standing);

3. Annotate frames. Annotate a subset of frames manually by drawing bounding boxes;

4. Model training. Use annotated frames to train the model;

5. Pose estimation. Apply the trained model to new video material;

6. Refine model (optional). Correct predictions and retrain the model;

7. Process coordinates. Extract CSV file containing frames annotated with behaviors.

Output: Dataset containing the predicted behaviors at all analyzed frames.

To appraise the accuracy of the models designed with Create ML and DeepLabCut, a
control was analyzed manually from the video footage from the 16th of April and used to
compare the models’ results. To test the accuracy of the models compared to the control,
a confusion matrix was conducted. In this case, a multiple class confusion matrix was
produced and analyzed [45]. This will give insight into where the model performs well and
has a high accuracy, as well as where mistakes occur, such as when the model mislabels a
behavior. The columns of such a matrix represent the manually observed behavior of the
individual while the rows represent the predicted behavior from the models. Time budgets
and cumulative graphs were also used to further appraise the models [46]. Furthermore,
Kendall’s Coefficient of Concordance was used to measure the agreement between the
models and the control [47].

The behavioral analysis consisted of time budgets, cumulative graphs, and Kendall’s
Coefficient of Concordance between days. Time budgets were made for each elephant each
day and for the whole study period. This was carried out using the sums, transformed into
percentages, of observed time spent on each behavior, where the out of view percentage
made up the time where no behavior was observed or classified. Time budgets for each
day were used to investigate daily differences in behavior. The time budgets for the whole
study period were used to see how much time was spent on each behavior in total and to
compare the different models with the control. Kendall’s Coefficient of Concordances were
used on the data from the time budgets to analyze the similarity between the observed
behavior between different days.

Cumulative graphs were made for each behavior each day. The graphs were made
with both the manually recorded data and the model data for the control day, while the
rest of the study period only had cumulative graphs made for the Create ML model.

96



Animals 2024, 14, 2820

Comparison of methods (Subject A)

A Spearman rank correlation test was used to investigate correlations between the
subject’s ‘Lying Down’ behavior from night to night. Correlations were also used to test
the similarities between the subjects and if they exhibited similar behavioral patterns
throughout the night.

The possibility to observe the stereotypic behavior ‘Swaying’ was also examined. This
was accomplished by calculating the Euclidian distance between a given point of the trunk
root, labelled by the DeepLabCut model, and the succeeding point [48]. The distances
between the points were calculated and plotted as a cumulative graph together with the
actual cumulative time spent on the sway behavior, so that sway could be observed as
steep increases in the cumulative sum.

3. Results
3.1. Comparability of Manual and Automatic Behavioural Observations
3.1.1. A General Overview

First, the capabilities of the two machine learning models, compared to a manually
conducted analysis using an ethogram, have been displayed using time budgets, illustrated
below in Figure 1.

1% 18% 49% 1% 0% 0% 705 14 6%

Manual
1%

Manual

Comparison of methods (Subject B)

43%

41%

g

15%

1%

0% 15% 44% 31% 10% 0% 14% 36% 35%
DeeplabCut DeeplLabCut

1% 10% 44% 35% 10% 3% 19% 36%

0% 1%

0% 20% 40% 60% 80% 100% 0% 20% 40% 60%

mDrinking mHay-net mForaging = LyingDown m Standing = Out of View

Figure 1. Time budgets for Subjects A and B of the 7 h control period, comparing manual observations
with a DeepLabCut and a Create ML model. ‘Drinking’ is excluded for the DeepLabCut model.

The time budgets for both subjects, using both models, showed similar percentages
to the manual observations regarding standing and lying down with relatively small
differences. For Subject A, both models had a 10% out of view percentage. Since the
manual observations showed an out of view percentage close to zero, this indicates that
these were caused by uncertainty by the models, causing them to not label the subject. Both
models for Subject A also displayed a lower percentage for ‘Foraging’ than the manual
observations. For Subject B there were notable differences in ‘Foraging’ and ‘Hay-net’,
which is likely to be caused by the hay-net being close to the foraging boxes, thus showing
overlapping coordinates when observed by the DeepLabCut model. The Create ML model
also had a lower "Hay-net’ percentage, but contrarily a higher ‘Foraging” percentage than
the manual observations. The out of view percentage for the DeepLabCut model was
noticeably higher than the Create ML model, considering that the manual observations
showed an out of view percentage close to zero. This was likely also caused by lack of
labelling by the model. ‘Drinking” was left out of the DeepLabCut model due to limitations
in defining the parameters of this behavior, caused by a lack of consistent appropriate
labels needed to properly categorize the behavior.
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To further investigate the similarities between the machine learning models and
the manually conducted observations, cumulative graphs for each subject, showing each
behavior tracked with each method, have been constructed and displayed below in Figure 2.
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Figure 2. Graph showing the cumulative sums of each behavior for Subjects A and B during the 7 h
control period, observed manually, using Create ML and DeepLabCut. Behaviors are distinguished

by color and method.
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The cumulative graph for Subject A showed a lower sum but similar shape for ‘Lying
down’, which indicates that a period of observations of this behavior went unlabeled for
both models. ‘Standing’ had a similar shape for all methods and a very similar sum for
the DeepLabCut model, whereas the Create ML model had a higher sum. ‘Foraging’ had
similar shapes for all methods; however, the sums were generally lower for the models.
‘Hay-net” and ‘Drinking’ were difficult to distinguish clearly, due to low values.

The cumulative graph for Subject B had very similar values for ‘Lying down’ for all
methods. All methods showed similar shapes for ‘Standing’, although the sums were
lower for both models, most noticeably for the DeepLabCut model. ‘Foraging” also had
similar shapes but higher and lower sums for the Create ML model and DeepLabCut model,
respectively. ‘Hay-net” also showed a somewhat similar shape to the manual observations
for the Create ML model, but this model had a lower sum. The DeepLabCut model showed
a ‘"Hay-net’ sum close to zero, due to difficulty in defining these parameters in the enclosure.

Similarly to the time budgets, ‘Drinking’ was left out of the cumulative graphs for
the DeepLabCut model due to limitations in defining the parameters. Furthermore, the
shapes in ‘Lying down’ for both subjects seem largely different; however, this is caused by
the chosen type of cumulative graph.

3.1.2. Investigating the Reliability of Two Machine Learning Models

To investigate the reliability of the two models, Kendall’s Coefficient of Concordance
was utilized. The concordance (W-value) between the models and the control was found to
be 0.85 with a p-value of 0.026 for Subject A, and 0.90 with a p-value of 0.019 for Subject
B. This indicates a high concordance between the models that is not stochastic for both
subjects. This high concordance means that the models and the manual scoring mostly
agree on the observed behavior. However, this concordance is not perfect, so a slight
disagreement is present.

To test the accuracy of the models, a confusion matrix for the control period was
made and the models were compared to the manually observed values and normalized
(Appendix C). As seen in Tables A1-A4, both models predicted highly similar values for the
behavior ‘Lying Down’ for both subjects compared to the manually observed values. For the
DeepLabCut model, the predicted values for ‘Standing” and ‘Foraging” were highly similar
to the observed values for Subject A; but for Subject B, the model was more inaccurate.
The opposite applies for Create ML, where the model was generally most accurate for
Subject B. For the behavior ‘Hay-net’, the DeepLabCut model struggled to predict the
correct behavior for Subject A, and for Subject B the classification parameters were not
defined, and therefore no value was predicted for this behavior. The Create ML model
for the behavior ‘Hay-net’ predicted highly similar values for Subject A, but for Subject
B the behavior was often misclassified as ‘Foraging’. For the behavior ‘Drinking’, the
Create ML model often predicted the behavior as ‘Standing’ for both subjects and for the
DeepLabCut model the classification parameters were not defined and therefore no values
were predicted correctly. Finally, the predicted values by both models for out of view for
Subject B were highly similar to the observed value but it is notable that the total manually
observed value for this behavior is 17 s out of 7 h of observation time and is therefore
arguably negligible.

3.2. Using Machine Learning Models for Behavioural Analysis
3.2.1. Assessing Behavioral Differences
To analyze behavioral differences between the two subjects, two time budgets for the

total sums of each behavior for seven nights were constructed for both machine learning
models, as is seen below in Figure 3.
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Total Time Budget (Subject A) Total Time Budget (Subject B)
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Figure 3. Time budgets for the total time spent on each behavior for Subjects A and B during all
seven observed nights, for both ML models. The different colors show different behaviors.

The time budgets display some differences between the models, especially noticeable
in the out of view percentages for Subject B. ‘Standing’ and ‘Lying down’ were similar for
both models for both subjects. ‘Foraging” was similar for Subject A in both models but was
slightly higher for the Create ML model for Subject B, possibly due to the lower out of view
percentage. The DeepLabCut model did not measure the ‘Drinking” behavior for either
subject. Comparing the total time budgets for the period between the two subjects only
showed slight differences.

To further investigate the behaviors of both subjects during the observed period, the
sums of behaviors for all individual days have been shown as time budgets in Appendix D.
The time budgets for Subject A showed some variation in the behaviors, especially in
‘Foraging’. ‘Standing’ and ‘Lying down’ also varied somewhat from night to night. Subject
B also showed variation in 'Foraging’, but generally less so than Subject A. ‘Standing’
and ‘Lying down’ varied somewhat for Subject B. There was a noticeable difference in
out of view percentages for Subject B, depending on the model, with a consistently much
lower percentage for Create ML. The behavioral differences were examined further using
cumulative graphs (Appendix E).

Kendall’s Coefficient of Concordance was used to examine if the amount of time
spent on each behavior was the same each day. The analysis was conducted on the results
of both the DeepLabCut and the Create ML model. Subject A showed a concordance of
0.935 with a p-value of 4.29 x 10~ for the DeepLabCut model and 0.865 with a p-value
of 1.31 x 107 for the Create ML model. Subject B showed a concordance of 0.951 with a
p-value of 3.3 x 10~° for the DeepLabCut model and 0.869 with a p-value of 1.21 x 107>
for the Create ML model. All the concordance values were high with a significant p-value
indicating that the high concordance is not stochastic. This high concordance indicates an
agreement in the observed time a subject spends on different behaviors from day to day.
This concordance is not perfect meaning some variations are still present in the subjects’
nocturnal behavior.

Spearman’s rank correlation for the behavior ‘Lying down’ was investigated for both
models, and the analysis was split between days and individuals (Appendix F).

The analysis between days resulted in mainly positive correlations. Subject A had
correlations between 0.965 and —0.053 for DeepLabCut and 0.970 and —0.135 for Create ML.
Negative correlations were observed between the 20th and 22nd of April for DeepLabCut
and the 19th and 20th of April for Create ML. Subject B had correlations between 0.999 and
0.019 for DeepLabCut and 1.000 and 0.311 for Create ML. No negative correlations were
found for Subject B.

The analysis between the two subjects also resulted in mainly positive correlations
(Appendix G). The results of the DeepLabCut model had correlations between 0.975 and
—0.361. A single negative correlation was found between the 20th of April for Subject A
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Cumulative Distance (pixels)

30,000 40,000 50,000
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and the 19th of April for Subject B. The results of the Create ML model had correlations
between 0.977 and 0.052. No negative correlations were found for the Create ML model.

3.2.2. Investigating Further Applications of Automatic Behavioral Coding

Certain behaviors of a more complex character may potentially be assessed using
machine learning methods for behavioral coding. One such behavior is the stereotyped
behavior ‘Swaying’, which is largely relevant for elephants [14]. This behavior is difficult
to categorize simply, as has been carried out for the previously mentioned behaviors, since
swaying can happen anywhere in the frame and is primarily observable through a side-to-
side motion of the elephant’s trunk and head. To visualize this behavior using data from
the DeepLabCut model, the cumulative distance moved by the point labelled at the trunk
root of Subject B was plotted, along with the actual sway noted manually in the control
period as a cumulative graph in Figure 4.
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Figure 4. Cumulative graph of trunk root movement (red) and manually observed sway (purple)
in the control period. The left y-axis shows cumulative pixel movement; the right y-axis shows the
manually coded sway behavior in milliseconds.

As seen in the cumulative graph, a steep increase in the trunk distance appears around
01:15, which approximately matches with the manually observed sway behavior occurring
at this time. This is because a steep increase in distance moved by the trunk root will occur
as a result of the sway behavior.

4. Discussion
4.1. Performance and Limitations of the Two Machine Learning Models

Before using the two constructed machine learning models, it must first be investigated
how accurate they are compared to manually recorded observations. The concordance
test between the models showed a high agreement between the models and manual obser-
vations (W = 0.848), although there is seemingly room for improvement. The confusion
matrixes for each model compared to the manual observations also displayed high accuracy
in detecting some behaviors, such as ‘Standing” and ‘Lying down’, although with certain
challenges, such as confusing the ‘Hay-net” behavior with ‘Foraging” for Subject B. This
suggests that there may be a need for improving the parameters of classifying each behavior
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or training the models with better or more material to account for different environments,
footage qualities, and a broader range of behaviors. Mathis et al. (2018) discussed the
capabilities and limitations of DeepLabCut for various behaviors, noting similar challenges
in behavior recognition and out of view instances [32].

It must, however, be noted that the accuracy of these models is based on comparison
with manual observations, which itself has inherent problems. Manual observations are not
entirely accurate, since they may lack precision in noting the exact time a behavior takes
place, and there may be differences in how a sequence of behaviors is coded by different
researchers, which usually necessitates inter-rater reliability tests [41,49,50]. These issues
should not be present in machine learning models since a behavior is coded at the exact
frame and can be standardized across studies. The capabilities of models constructed in
both Create ML and DeepLabCut thus emphasize the potential of machine learning models
to complement and enhance traditional manual observations in behavioral studies. Further
optimization of such computer vision models may also include image processing such as
exploring different color spaces and image augmentations [51,52].

4.2. Nocturnal Behavioral Differences of the Two Subjects

The two machine learning models were used to automatically observe the two subjects
of the study, with the aim of assessing whether the nocturnal behaviors varied between
each subject and individually across each observed night. This analysis was carried out
using time budgets, cumulative graphs, and correlations.

Firstly, the total time budgets for each subject across all nights displayed only slight
differences between the subjects, most notably in foraging behavior, which might be higher
for Subject B. This slight difference is supported by the high concordance values between
the days, meaning the observed behavior only differs slightly from day to day. It is,
however, inconclusive whether Subject B generally carries out more foraging behavior, due
to the differing out of view percentages caused by the lack of confidence by the models.
With a closer look at the behavioral patterns using the cumulative graphs (Appendix E), it
does, however, appear that the two subjects have some differences. Once again, it appears
that ‘Foraging’ is generally higher for Subject B, along with ‘Drinking’. From the ‘Lying
down’ cumulative graph it also appears that sleeping patterns may be somewhat different,
since Subject A appears to wake up and walk around more commonly throughout the night,
whereas Subject B appears to be lying down for longer periods at a time. The correlations
calculated regarding the sleeping patterns compared between the two subjects also showed
some correlation, indicating that the subjects go to sleep at similar times, although this
varies each night. This shows that the two elephants differ from each other in the nocturnal
behavioral patterns; however, there do not appear to be large differences, and overall, the
subjects typically carry out somewhat similar behavioral patterns throughout the night.
This is in accordance with Bertelsen et al. (2020) which studied the same subjects and found
some personality differences displayed through behavior, but similarly the differences
were relatively small [14]. A study by Rees (2009) also found behavioral differences on an
individual basis in captive Asian elephants (Elephas maximus) [10]. This is similar to Tobler
(1992), Holdgate et al. (2016), and Schiffmann et al. (2023) who examined recumbent sleep
behavior in zoo-housed Asian and African elephants, and also found differences on an
individual basis [15,17,53].

It was investigated whether the individual subjects differed in their behavioral patterns
from night to night, using time budgets for each night, along with cumulative graphs and
correlations of their sleeping behavior. From the time budgets, both subjects appear to vary
from night to night in all behaviors. ‘Foraging’ ranges from very low percentages (1-2%) to
high percentages (18-22%), which is also apparent from the cumulative graph. This is in
accordance with the study by Finch et al. (2021) who found varying feeding behavior in
their nocturnal activity budgets for zoo-housed Asian elephants [54]. ‘Standing” and ‘Lying
down’ for both subjects also differed across nights with a range of approximately 20%
difference for both behaviors. Further investigation of sleeping patterns using Spearman
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rank correlations showed that most days had very highly correlated values, indicating
a general circadian rhythm; this is in accordance with a study by Casares et al. (2016)
that investigated cortisol levels to establish the circadian rhythm of African elephants [55].
However, some days showed much weaker correlation, suggesting differences in night-
to-night sleeping patterns caused by the elephants going to sleep at different times. This
confirms the hypothesis that computer vision models are capable of demonstrating that
the nocturnal behavioral patterns differ from night to night for both individuals, although
there is some uncertainty of exactly how much the behaviors differ, due to the out of view
percentages. This result is, however, in accordance with the studies by Rees (2009) and
Holdgate et al. (2016) who found considerable day-to-day variation in activity budgets for a
group of captive Asian elephants and for African and Asian elephants, respectively [10,15].

This study showed that the subjects were lying down approximately 35-39% of the
observed time, or just over 2.5 h until 5:00, at which point they would still be lying down,
as is seen in the cumulative graphs. This is in accordance with studies such as Holdgate
et al. (2016) and Schiffmann et al. (2023) who found that elephants in captivity generally
tend to lie down for a similar amount of time during the night; although they also note that
the elephants may not be sleeping throughout all of this time [15,17].

4.3. Other Applications of Machine Learning Models for Behavioral Coding

As was displayed in the results regarding the sway behavior, it may be difficult to
address complex behaviors, even though it may be possible through different techniques.
One such technique was displayed by plotting the distance moved by a point on the
trunk root of Subject B. The steep incline on the graph largely matches with the manually
observed sway during the night, which indicates that using such a measurement might be
useful for observing ‘Swaying’. Currently, the presentation of this behavior is, however,
primarily visual since it may provide further challenges to precisely define the parameters
capable of properly discerning when the gathered data should be categorized as sway
behavior. Other challenges related to addressing complex behaviors, such as stereotypic
and obsessive self-grooming in primates, face similar challenges since this behavior is also
classified by a consistent repetition, which a computer vision model would have difficulties
identifying on a frame-by-frame level. However, a study by Yin et al. (2024) is somewhat
successful in showing distinct motion trajectories exhibited by a variety of different animals
including tigers (Panthera tigris), bears (Ursidae), and wolves (Canis lupus), and classifying
this as stereotypic behavior by assessing repetitive patterns [56]. Tackling issues that may
arise using computer vision for behavior recognition is somewhat a case-by-case problem,
where camera settings, image processing, and other issues should be considered, in order
to fit the models appropriately to the research. However, developing such parameters and
applying them to similar machine learning model data in the future would prove useful
to quickly and accurately find stereotyped behavior to gain insight into the welfare of
individual animals.

5. Conclusions

It is apparent from this study that using machine learning models from DeepLabCut
and Create ML provides a capable tool for aiding or even replacing certain aspects of
behavioral studies. The models could detect simple behaviors with high accuracy, although
limitations were met when assessing repetitive behaviors such as ‘Swaying’. Similar
complex behaviors, such as certain stereotypic behaviors, in other animals may prove
equally challenging and the detection of it may require further work to be adequate.

Applying the models to seven nights of footage of nocturnal behavior provided general
insight into behavioral patterns and differences between the two studied subjects, as well
as differences between individually observed days. This showed that the constructed
computer vision models can effectively aid in behavioral analyses, and further expansion
and adjustments may be desired. This could potentially be achieved through exploring
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image augmentation, classification of complex behavioral patterns, or implementing such
models to be readily available as a tool for zoological gardens.

Author Contributions: Conceptualization, SM.L., ].N., EG., M.G.N., C.P. and T.H.].; methodology,
SM.L, ].N, EG. and M.G.N,; validation, SM.L., ].N., EG. and M.G.N,; formal analysis, SM.L., ].N.,
F.G. and M.G.N; investigation, SM.L., ].N., EG. and M.G.N.; data curation, SM.L., ].N., EG. and
M.G.N.; writing—original draft preparation, SM.L., ].N., EG. and M.G.N.; writing—review and edit-
ing, SM.L.,,].N., EG., M.G.N., C.P. and TH.J.; visualization, SM.L., ].N., EG. and M.G.N.; supervision,
C.P. and T.H.J. All authors have read and agreed to the published version of the manuscript.

Funding: Funding for this study was provided by the Aalborg Zoo Conservation Foundation (AZCF;
grant number 07-2024).

Institutional Review Board Statement: The Ethical Review Board was not consulted for the purposes

of this study, as this study did not interfere with the daily routines of the studied subjects, and solely
involved passive observation through video footage.

Informed Consent Statement: We obtained approval from Aalborg Zoo, and the study guarantees

all work was carried out within good animal welfare and ethical circumstances. There was no change
in daily routines for the animals of concern.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to thank the employees at Aalborg Zoo for facilitating this study,
especially Anders Rasmussen, Paw Fonager Gosmer, and Marianne (My) Eskelund Reetz. Special

thanks to Kasper Kystol Andersen for assistance with the technical aspects. Lastly, we would like to
thank Simeon Lucas Dahl for technical support.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Floor Plan of Elephant Enclosure
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Figure A1. Illustration of the elephant enclosure in Aalborg Zoo. The indoor enclosures are colored
yellow and have the enclosure names written with the dimensions. The dashed lines indicate the
outdoor enclosure and the part of the wall between enclosures E1 and E2 where the subjects can have
physical contact at night. The locations and positions of the cameras are indicated with the camera
icons. The illustration is a modification from Bertelsen et al., 2020 [14].
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Appendix B. Selected Behaviors Displayed in Subject Enclosures

Drinking Foraging box

Lying down

Figure A2. Selected behaviors displayed in the subject enclosure E1 as observed through video
monitoring. The images showcase four distinct behaviors: drinking, foraging at the box, using the
hay-net, and lying down.

Figure A3. Selected behaviors displayed in the subject enclosure E2 as observed through video

monitoring. The images showcase four distinct behaviors: drinking, foraging at the box, using the
hay-net, and lying down.
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Appendix C. Confusion Matrix Comparison of Models

Table A1. Confusion matrix produced from the manually observed values compared to the predicted
values from the DeepLabCut model for Subject A. Darker blue indicates better prediction.

Subject A Manually Observed
Behavior: Standing Lying down Foraging Drinking Hay-net Out of view

Standing 0.00016 013258  [DDO 039926
Predicted by Lying down 0.00036
DeepLabCut Foraging 0.00701

model Drinking
Hay-net 0.00005 0.16883
Out of view 0.12437 0.10567 0.02091 0.43190

Table A2. Confusion matrix produced from the manually observed values compared to the predicted
values from the DeepLabCut model for Subject B. Darker blue indicates better prediction.

Subject B Manually Observed

Behavior: Standing Lying down Foraging Drinking Hay-net Out of view
Standing 0.00170 0.10185  |JONZG200010'583390  0.18203

Predicted by  Lying down 0.02517 0.06867 0.00271

DeepLabCut Foraging 0.02384 0.14721

model Drinking
Hay-net 0.00016
Out of view 0.30763 0.00173 0.23209 0.16933 026669 |NOBIZO7ZIN

Table A3. Confusion matrix produced from the manually observed values compared to the predicted
values from the Create ML model for Subject A. Darker blue indicates better prediction.

Subject A Manually Observed
Behavior: Standing Lying down Foraging Drinking Hay-net Out of view
Standing 029061 OSSN 007534
Predicted by Lying down 0.00051
Create ML Foraging 0.00718
model Drinking 0.00038 0.07602
Hay-net 0.00051
Out of view 0.04887 0.11158 0.17825 0.07895 0.01370

Table A4. Confusion matrix produced from the manually observed values compared to the predicted
values from the Create ML model for Subject B. Darker blue indicates better prediction.

Subject B Manually Observed

Behavior: Standing Lying down Foraging Drinking Hay-net Out of view
Standing 0.00121 0.04310 0.36667 0.06907 0.29412

Predicted by  Lying down
Create ML Foraging 0.05509 0.50390
model Drinking 0.00890 0.00011
Hay-net 0.00130 0.01667 0.38559

Out of view 0.01948 0.00751 0.04144 _
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Appendix D. Time Budgets for Each Night

Time Budgets for Each Night (Subject A)
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Figure A4. Time budgets for both models across each observed night for Subject A. Each color
represents a behavior. Percentages were left out for ‘Drinking’ and “Hay-net” due to low values.
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Figure A5. Time budgets for both models across each observed night for Subject B. Each color
represents a behavior. Percentages were left out for ‘Drinking” and “Hay-net” due to low values.
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Appendix E. Cumulative Graphs for Every Behavior Each Night
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Figure A6. Cumulative graphs for every behavior for both subjects each observed night. Each
color/line type signifies the subject, and every line signifies a different night.

The ‘Standing’ behavior was roughly similar in shape and sum for each subject and
across nights, although Subject B had somewhat higher sums during several nights. ‘Lying
down” was also roughly similar for both subjects and between nights. ‘Lying down’
generally started occurring later at night but would then usually occur a lot for the rest
of the night. ‘Foraging’ occurred mostly at the beginning of the night for both subjects,
although Subject B tended to have higher sums than Subject A. ‘Foraging” shapes and
sums also varied from night to night. ‘Hay-net’ did not occur much for either individual
but generally occurred most at the beginning of the night. ‘Drinking’ similarly did not
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occur much for either individual but mostly occurred at the beginning of the night, and
furthermore displayed higher sums for Subject B.

Appendix F. Spearman Rank Correlation between Days

Table A5. DeepLabCut—Subject A. Spearman rank correlation matrix for DeepLabCut model of
Subject A, based on data collected between 16 April 2024 and 22 April 2024. The matrix displays the
pairwise correlation coefficients between the data sets corresponding to each date. The color intensity
represents the strength of the correlation, with darker green indicating higher positive correlation
and darker red indicating higher negative correlation.

16-04-2024
17-04-2024
18-04-2024
19-04-2024
20-04-2024
21-04-2024
22-04-2024

16-04-2024 17-04-2024 18-04-2024 19-04-2024 20-04-2024 21-04-2024

22-04-2024

Table A6. DeepLabCut—Subject B. Spearman rank correlation matrix for DeepLabCut model of
Subject B, based on data collected between 16 April 2024 and 22 April 2024. The matrix displays the
pairwise correlation coefficients between the data sets corresponding to each date. The color intensity

represents the strength of the correlation, with darker green indicating higher positive correlation
and darker red indicating higher negative correlation.

16-04-2024
17-04-2024
18-04-2024
19-04-2024
20-04-2024

21-04-2024 0.315
22-04-2024 0.601

16-04-2024 17-04-2024 18-04-2024 19-04-2024 20-04-2024 21-04-2024

22-04-2024

0.299 0.115 0.573

0.297 0.401 0.357 0.019

Table A7. Create ML—Subject A. Spearman rank correlation matrix for Create ML model of Subject
A, based on data collected between 16 April 2024 and 22 April 2024. The matrix displays the
pairwise correlation coefficients between the data sets corresponding to each date. The color intensity
represents the strength of the correlation, with darker green indicating higher positive correlation
and darker red indicating higher negative correlation.

16-04-2024
17-04-2024
18-04-2024
19-04-2024
20-04-2024
21-04-2024
22-04-2024

16-04-2024 17-04-2024 18-04-2024 19-04-2024 20-04-2024 21-04-2024

22-04-2024

0.222

109



Animals 2024, 14, 2820

Table A8. Create ML—Subject B. Spearman rank correlation matrix for Create ML model of Subject
B, based on data collected between 16 April 2024 and 22 April 2024. The matrix displays the
pairwise correlation coefficients between the data sets corresponding to each date. The color intensity
represents the strength of the correlation, with darker green indicating higher positive correlation
and darker red indicating higher negative correlation.

16-04-2024 17-04-2024 18-04-2024 19-04-2024 20-04-2024 21-04-2024 22-04-2024

16-04-2024
17-04-2024
18-04-2024
19-04-2024
20-04-2024
21-04-2024
22-04-2024

Appendix G. Spearman Rank Correlation between Individuals

Table A9. Spearman rank correlation matrix comparing the data between Subject A and Subject B
for the DeepLabCut model, from 16 April 2024 to 22 April 2024. The matrix presents the correlation
coefficients between corresponding dates for the two subjects. The color intensity represents the
strength of the correlation, with darker green indicating higher positive correlation and darker red
indicating higher negative correlation.

Subject B
16-04-2024 17-04-2024 18-04-2024 19-04-2024 20-04-2024 21-04-2024 22-04-2024

16-04-2024 0.476
17-04-2024

. 18-04-2024

Subject A 19.04.2024 0.407
20-04-2024 0.372 0.508 0.194 -0361 0717
21-04-2024 0.654 0.622 0.551 0.672 0.672
22-04-2024 0.203 0.068 (Jm*_ 0.197 0.224 0.474
Table A10. Spearman rank correlation matrix comparing the data between Subject A and Subject B
for the Create ML model, from 16 April 2024 to 22 April 2024. The matrix presents the correlation
coefficients between corresponding dates for the two subjects. The color intensity represents the
strength of the correlation, with darker green indicating higher positive correlation and darker red
indicating higher negative correlation.
Subject B
16-04-2024 17-04-2024 18-04-2024 19-04-2024 20-04-2024 21-04-2024 22-04-2024
TTG0R202 [ 0690

17-04-2024 0.673 0.563

. 18-04-2024

SubjectA 19042024 0532 0470
20-04-2024 0.206 0.314 0.112 0.052 0.602
2042020 | 0743 0711 [UUOSIENIIO87AT 0 078
22-04-2024 0.347 0.194 0.419 0.512 0.066 0.349 0.472
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Simple Summary: Opportunities exist to integrate computer vision systems into pork pro-
duction to enhance monitoring and decision-making, particularly in the areas of structural
soundness, lameness, and body weight prediction. These aspects are important for main-
taining herd health, optimizing productivity, and ensuring economic viability. Traditional
methods for assessing pig body weight and leg structural soundness are labor-intensive,
subjective, and often inaccurate. Computer vision offers an opportunity by providing auto-
mated, noninvasive, and precise assessments, making these tasks more efficient and reliable.
With the capability to autonomously monitor important physical traits using deep learning
models and 3D imaging techniques, computer vision systems are likely to be important
in the future of pork production. In this review, we explore the current advancements,
challenges, and future potential of computer vision in pork production systems.

Abstract: As the global demand for products from food-producing animals increases with
greater household economic capacity, there is an increased emphasis on the development
of precision technologies for monitoring the health, product production, and wellbeing
of these animals. The present review focuses on pork production. Using these systems is
advantageous for enhancing pork production efficiency when trained personnel utilize
these technologies to full capacity and have objective, automated, and uninterrupted
streams of data collection. While these systems have great potential for revolutionizing
food animal production, the nascent stage of computer vision in precision technology has
precluded its integration into traditional agricultural practices and systems. In this review
paper, there is a focus on the need to (1) evaluate the performance and effective use of
computer vision technologies to collect and evaluate reliable data from pork production
enterprises; and (2) focus on the current state of sensor-based animal management using a
data fusion approach to monitor pig health/performance. Many of these technologies are
in various stages of development; therefore, these technologies have not been integrated
into pork production or other food animal producing systems. Even though the focus of
this review article is on the utilization of these technologies in pork production systems,
these technologies are relevant in other food animal production systems, particularly dairy
and poultry production. Therefore, we describe an approach that emphasizes the important
need for computational capacity and speed, edge computing, data storage and transmission,
and maintaining connectivity in rural settings.
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1. Conventional Approaches to Visual Assessment of Pigs in
Breeding Herds

The focus of this review article is on body weight and lameness. These factors have a
large effect on the cost of pork production [1] and are aspects where initial progress can be
made using precision technologies. Feet and leg structural soundness and body weight
are important pig characteristics that require regular monitoring and evaluation to ensure
the economic viability of pork production systems; however, accurately assessing these
features is difficult. The assessment of feet and leg skeletal characteristics associated with
structural soundness is traditionally conducted by those trained in making these visual
appraisals. In an industry with a relatively large workforce turnover, this reliance can lead
to inconsistencies and inaccuracies in these evaluations [2]. Subjective visual evaluations,
though requiring minimal time to conduct, lack consistency and accuracy [1]. Similarly,
human visual appraisal of pigs for marketing estimation leads to inaccuracies [3].

1.1. Foot and Leg Structure in Sows

In pork production systems, structural soundness of the feet and legs is a major prob-
lem. Depictions of typical leg structural problems can be accessed via this link: https://i0
.wp.com/porkgateway.org/wp-content/uploads/2015/07 /2LegStructure.png (accessed
on 20 December 2024). These physical structural deficiencies will often lead to premature
culling, removing affected sows from the breeding population and causing a loss of po-
tential revenue. Research results indicate that increasing the average parity at removal
by one-tenth could increase profit in the USA swine industry by USD 15 million [2]. Pre-
mature culling is often labeled and classified as locomotion disorders, which encompass
a range of other problems, such as lameness, injuries to the sow and piglets, multiple
syndromes, and general ambulatory unsoundness [4]. Due to the subjective nature of
diagnostic techniques for assessing these problems, however, there have been numerous
studies conducted to evaluate the correlation between sow locomotion, productivity, and
mortality. The individual animal effects of locomotor dysfunctions affect the financial
viability of intensively managed food animal production systems due to the detrimental
effects on product production. These problems can also be particularly evident in [4] large
commercial poultry meat [5] and dairy milk product [6] production, where animals are
housed in confinement buildings. As with all food-producing animal systems, there are
“downstream” effects of locomotor dysfunctions on the sustainability of these enterprises
from an economic viability perspective [7].

1.2. Association Between Sow Locomotion and Mortality

The results of many studies indicate a close association between sow locomotion
and mortality rates. Sow mortalities attributed to locomotion problems vary considerably.
Estimates in studies are these mortalities range from 9% [8] to 23% [9]. It was found
that lameness or foot lesions accounted for 8.6% of sow culling from breeding herds [10].
Similar results were reported with locomotion problems being responsible for 11% and
13% of sow culling during the early production stages [11]. In some of the initial studies,
there was a focus on sow locomotion and motility, and there were similar findings with
specific physical structure indicators that could be used to predict the risk of locomotion
disorder occurrences [12]. The results from more recent studies are consistent in that sow
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longevity is an important animal welfare and economic concern for commercial swine
breeders [3,13,14]. Locomotor dysfunctions, therefore, can significantly reduce efficiency
in pork production enterprises due to increased mortality and other production-related
inefficiencies associated with locomotor problems [15,16].

1.3. Subjectivity of Structural Appraisal in Sows

Visual evaluation of the structure, frame, and gait of sows can provide important
information on the likelihood of an individual to have leg structural problems. Evaluations
are often conducted by trained farm staff, and these manual inspections are considered
standard practice in pork production enterprises. The inherent subjectivity in these assess-
ments, however, has historically been a point of contention. The importance of reliable
measurements for leg structural integrity was evident, with as many as 25% of females
being culled because of issues with their feet and legs [7]. Furthermore, farm staff experi-
ence had effects on the consistency and repeatability of the scores for sow leg structural
integrity [17,18]. Similar findings were subsequently reported, confirming the results of
these studies [19,20].

The current objective measurement procedures for evaluating sow and gilt leg integrity
need to yield data that are more quantitative. There are efforts to develop an objective
measurement method of joint angles for knee, hock, front, and rear pasterns and a rear
stance position in swine using digital imaging technology and to assess the repeatability of
the objective measurement process [21]. Based on the results from the intraclass correlation
coefficient analyses, the repeatability of the objective method used in this study to evaluate
feet and leg structural soundness ranged from 0.552 to 0.879. It was concluded that an
objective feet and leg structural soundness trait measurement could be implemented as an
alternative to subjective methods because of the repeatability of determinations and the
accuracy of joint evaluations.

The application of computer vision algorithms for evaluating images and video record-
ings of sows/gilts provides an unbiased and objective approach to assessing various in-
dicators of foot and leg integrity. The results from a recent study in which computer
vision models were developed to identify ten key body landmarks of pigs from their
side profile images and two from their rear profile images resulted in a mean average
precision (mAP) of 0.94 across all areas of the body that were evaluated [22]. Trigono-
metric formulae were developed to calculate the hock and knee angles from these body
landmarks. These automated angle measurements were validated with comparisons to
manual measurements. There was an average root mean square error (RMSE) of 4.13
deg and correlation coefficients (average r> = 0.84) different from zero, confirming the
consistency of the data when there were evaluations using the Bland—Altman procedure.
This methodology, therefore, provided a reliable method for obtaining precise leg angle
measurements, which can be valuable for refining gilt replacement criteria and ultimately
enhancing sow breeding programs.

2. Body Weight Assessment of Pigs at Time of Marketing

Efficacious and efficient determinations of pig body weight is of great value in com-
mercial swine production systems. The precise estimation of body weight influences
economic profitability margins for swine producers and serves as an important indicator
of health. For example, trends of decreasing body weight can be a potential indicator of
disease and illness in food-producing animals. Detection can be enhanced using preci-
sion technologies [23]. Body weight is associated with dietary nutrient intake which, in
turn, has biological implications for reproductive performance [24]. When body weight is
routinely monitored, data can be plotted as growth curves, which is a useful production
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approach for evaluating feed efficiency utilization and pig growth in pork production
enterprises. For these reasons, the accurate and precise estimation of animal body weight
is of multifaceted significance and is particularly important at nearly every stage of pro-
duction in pork-producing enterprises, but especially when determining optimal times for
marketing pigs.

2.1. Current Techniques for Estimating Pig Body Weight

The approaches used in commercial pork production enterprises for estimating pig
body weight are a direct measurement, using a scale, and visual estimates. The utilization
of accurately calibrated scales will result in the collection of accurate body weight data,
but this is labor-intensive and requires multiple individuals to effectively and efficiently
collect data, which can result in injury and/or stress, leading to welfare issues for both
pigs and those conducting the weighing task. Furthermore, a considerable time investment
is required to obtain individual pig body weights using a scale, where employees could
be conducting other duties instead [25]. The direct measurement technique, therefore, is
impractical for large commercial pork production enterprises. The current alternative,
using visual appraisal, has many other shortfalls. Visual estimations of pig body weight
are not only highly subjective but also lack consistency, with accuracy depending on the
experience of the farm staff [17].

2.2. Correlation Between Values for Pig Body Weight and Biometric Determinations

Historically, in numerous studies, there have been investigations of the relationship
between pig body weight and quantifiable biometrics (such as heart girth, length, and
height), with the consistent reporting of close correlations between body weight and
these biometric variables. Three techniques have been compared for obtaining pig body
biometric data: tape measure/caliper, livestock scales, and projections from 2D images
of pigs [26]. The main findings were that calipers and measuring tapes were the most
effective methods for estimating pig body weight. There are also close correlations between
values for body weight and various biometric values such as height, length, width, flank,
and girth, leading to the conclusion that the combination of biometric data can be used as
independent variables to predict body weight [27]. Interestingly, the significant limitations
reported for the utilization of biometric data in these studies were the same as those
previously described when there were pig body weight determinations using scales: the
need to immobilize the animals, inherent human measurement errors, subjectivity leading
to non-reliable data, and time constraints. Considering the large number of pigs housed in
present-day pork production enterprises, the manual collection of biometric data is not a
feasible alternative to directly measuring pig body weight using scales.

2.3. Automated Electronic Weighing Systems

An emerging alternative to manual weighing is the use of automated weighing sys-
tems. While initially expensive, these systems are a viable alternative to manual weighing
when combined with electronic identification tags, enabling individual animal tracking and
automated data management. Without such tags, the benefits of automation are reduced.
The initial findings were that a single employee could weigh as many as 100 pigs per hour
by allowing pigs to pass through automated gates that led to the automatic collection of
pig body weights [28]. There was a subsequent report that the automated approach was
reliable with greater repeatability compared to manual weighing methods [29].

While both automated weighing systems and computer vision technologies offer
promising alternatives to manual weighing in pig production, each alternative has unique
implementation considerations. Automated weighing systems, while potentially resulting
in less initial retrofitting costs than previously considered, require specific infrastructure
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modifications. Computer vision systems, even if there is reduced weight estimation ac-
curacy and precision as compared with direct weighing using a scale, have advantages
in terms of continuous, non-contact monitoring and the potential to collect additional
data on animal behavior and body condition. Further research is needed to optimize the
cost-effectiveness and practical application of both technologies, particularly in addressing
challenges such as data interpretation for actionable management decisions and minimizing
RFID tag loss when there is the utilization of automated weighing systems.

3. Computer Vision Techniques in Pig Assessment

Computer vision approaches are a promising solution for the objective collection of
data, with there being the potential for automating the evaluation of feet and leg structural
soundness and predicting pig body weight. The use of these technologies will enable
continuous, noninvasive monitoring, providing consistent and accurate assessments that
are important for effective pork production management. By automating the evaluation
of key metrics such as structural soundness and body weight, the utilization of computer
vision systems will lead to a reduction in the reliance for subjective visual assessments,
thereby improving the reliability of the data used in decision-making processes. The
application of computer vision, however, is not without challenges and requires a concerted
research effort to fully realize its potential. In subsequent sections of this review article, the
methods and application of computer vision techniques in making assessments in pork
production enterprises are explored, focusing on the importance of enhancing the precision
and efficiency of monitoring systems.

3.1. Introduction to Neural Networks

Neural networks are computational models that draw inspiration from the architecture
and function of the human brain, enabling the processing of information and pattern
recognition [30]. When well-trained neural networks are versatile, applications range from
simple linear regression to categorizing animal behavior recognition. Details regarding
what neural networks can be evaluated via information provided at this link: https://www.
ibm.com/think/topics/neural-networks (accessed on 20 December 2024). The utilization
of neural networks to detect and predict intricate patterns, particularly in complex data
sources such as images, results in well-trained neural networks with great potential in
various fields, including computer vision. By leveraging these capabilities, neural networks
can break down images into fundamental components and progressively build to more
complex representations, such as shapes and objects.

Neural networks consist of layers of interconnected nodes, referred to as neurons,
that perform mathematical calculations. In computer vision applications, data in the
form of images are passed through these layers and undergo a series of mathematical
transformations. Each neuron applies a weighted sum to the inputs, which produces
a “signal” that represents the neuron’s output at this stage. This signal is then passed
through a nonlinear activation function, with there being the resulting decision of whether
the signal should continue to propagate through the network or be deactivated. Signals
that are deactivated are zeroed out from influencing subsequent layers of the final output.
This selective process enables the network to learn from important features that activate
the function while ignoring features that do not, enabling the network to learn complex
patterns in the data. Training a neural network involves minor adjustments to the weights
of the connections to minimize the error between the predicted output and the actual
output, a process known as backpropagation. Ultimately, the final output of the network
is a prediction or classification result that aligns with the data for which the network
was trained.
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3.2. Object Detection and Feature Extraction in Computer Vision

Computer vision techniques can be utilized to extract important visual features from
images and videos. This field initially gained traction with the Deformable Parts Model
(DPM), a pioneering object detection algorithm that relies on a structured support vector
machine (SVM) rather than a neural network. The DPM represents objects as a collection of
parts, each with specific geometric relationships, and uses a “sliding window” approach
to scan the image and detect potential objects based on the alignment of these parts [31].
As the need for more efficient and faster object detection grew, the region-based convolu-
tional neural network (R-CNN) was developed. The R-CNN improved upon the DPM by
strategically assessing the “interesting” regions of an image instead of evaluating every
possible region [32]. Although the R-CNN was an improvement compared to the DPM, the
speed was inadequate for real-time applications. Subsequently, the “You Only Look Once”
(YOLO) algorithm emerged as a more practical solution.

3.3. Advent of the “You Only Look Once” (YOLO) Algorithm

The development of the YOLO algorithm marked an advancement in object detection
due to the time efficiency of detection and real-time capabilities for detection [33]. Both
YOLO and the R-CNN are object detection models. These are designed to locate and classify
objects, such as pigs or their body parts, within images and videos. The YOLO algorithm
has become a central feature when utilizing computer vision approaches, with uses ranging
from agricultural to facial recognition. The YOLO model has three main components: the
backbone, neck, and head. The backbone is responsible for extracting essential features
from the input image, the neck connects these features into a feature pyramid that enhances
the network’s capacity to detect objects at different scales, and the head produces the final
output, including the bounding boxes and class predictions.

What sets YOLO apart is “single-shot” detection capacities, which allows for evalu-
ating the entire image in one pass, predicting both the objects that are present and their
locations. This structure enables rapid object detection, resulting in YOLO being a more
effective and efficient option as compared with previously utilized methods such as the
R-CNN and DPM.

The application of the YOLO algorithm in pork production systems provides an
important opportunity to advance precision agriculture. The use of this algorithm enables
the precise collection of visual data, facilitating the objective and automated assessment
of various aspects of pig anatomy. This capability has the potential to revolutionize
animal husbandry by allowing producers to optimize feeding strategies, improve welfare
conditions, and enhance productivity. By leveraging computer vision models such as
YOLO, producers can make more informed decisions, ultimately increasing the efficiency
and efficacy of pork production systems.

3.4. Localization in Computer Vision

With the utilization of YOLO, there is more precise localization, which leads to greater
precision for the spatial location of objects within an image through boundary box and
centroid coordinates. The utilization of this process begins with overlaying the image with
randomly sized anchor boxes and the calculation of the Intersection of Union (IoU) for
each anchor box against the “ground truth” (i.e., determined from data collected manually)
annotation [33]. This allows for the determination of the confidence of each anchor box
containing a class object. The utilization of this intricate procedure leads to the assurance
that only the most statistically reliable boundary boxes are predicted, which leads to
enhancing the accuracy of a trained YOLO model.
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3.5. “Black Boxes” in Deep Learning

The utilization of CNNs has led to the efficacious estimating of pig body weight [34-36].
Convolutional neural networks (CNNs) have been proven to be highly effective in various
applications, resulting in accurate predictions for conducting tasks involving complex
visual data. A major barrier for the utilization of CNNs, however, is the “black box” nature,
which refers to the lack of transparency in how the models make decisions. This opacity
creates several challenges. First, it is difficult to pinpoint which specific features the model
is using to make predictions, raising concerns about the reliability and consistency of these
predictions across different datasets or conditions. For example, if a CNN model is trained
on a particular dataset, it may rely on features that are not universally applicable, leading
to potential inaccuracies when applied to a different dataset.

Furthermore, the inability to understand the internal workings of these models makes
troubleshooting particularly challenging. When predictions are inaccurate or when the
model fails to perform as expected, it can be difficult for scientists, clinicians, or producers
to diagnose the root cause of the problem. This lack of interpretability can be a major
barrier to the broader utilization of CNNs in practical applications, as end-users may be
hesitant to trust a system they cannot fully understand or explain.

For scientists and researchers, the “black box” nature of CNNs limits the capacity to
extract meaningful insights from the data, which is essential for advancing knowledge and
refining models. To address these issues, there is a growing interest in developing more
interpretable models or enhancing the transparency of existing CNNs using techniques
like explainable AI (XAI). With these efforts, there is an attempt to bridge the gap between
the useful predictive capabilities of CNNs and the need for definitive, understandable
decision-making processes in fields like animal husbandry and precision agriculture.

3.6. Metrics of Assessing Computer Vision Models

The performance of computer vision models, particularly in object detection and
classification tasks, is commonly evaluated using metrics that provide insight into accuracy
and reliability. Important metrics include mean average precision (mAP) [37], Intersec-
tion of Union (IoU) [38], precision, and recall [39]. Mean average precision is a widely
subscribed-to metric that combines precision (i.e., the ratio of true positive predictions to
all positive predictions) and recall (i.e., the ratio of true positive predictions to all actual
positives across various thresholds). This metric provides for an aggregated measure of a
model’s capacity to correctly identify objects, reflecting its overall performance when there
are varying extenuating circumstances. Intersection of Union (IoU) assesses the accuracy
of object localization by measuring the overlap between predicted bounding boxes and
the actual bounding boxes where data were collected manually, which are often manually
labeled. The IoU ranges from 0 to 1, where a larger IoU indicates more precise localization,
making it particularly valuable in applications where accuracy in locating objects within an
image is essential.

In traditional statistics, precision evaluations are a simpler determination of a model’s
predictive capabilities by indicating the likelihood that a positive prediction is correct. It,
however, does not account for the model’s capacity to detect all real positives (recall) or
accuracy in localization (IoU).

Ultimately, mAP and IoU together offer a nuanced assessment tailored to the unique
challenges of computer vision tasks such as object detection. While mAP reflects the
model’s overall detection performance, IoU provides a direct measure of localization
accuracy. These metrics, alongside precision and recall, provide a comprehensive toolkit
for quantitatively assessing the efficacy of computer vision models.
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4. Application of Computer Vision in Pig Assessment
4.1. Estimating Pig Body Weight

Computer vision has emerged as a promising alternative for overcoming the limita-
tions of conventional pig body weight estimation. Biometric methods for body weight
estimation in pigs have been determined to be accurate and reliable [40]. Computer vision
systems can be utilized to determine biometric measurements with precision, making these
systems candidates for integration. These systems can be specifically modified for use in
pork production enterprises and are noninvasive, automated, and allow for the collection of
objective data for determining biologically important features of food-producing animals.

4.1.1. Traditional Image Processing Techniques for Pig Body Weight

Traditional image processing techniques differ significantly from deep learning-based
methods, like YOLO and RCNN. These are designed to use manually crafted algorithms
and features to process images. By design, these are suitable for simple tasks (such as
thresholding) but are not very useful with complex “real-world” scenarios (thresholding in
varying lighting). In an early study, a traditional computer vision technique was utilized to
evaluate the dorsal pig surface, and from the data collected, there was the estimation of pig
body weight with an accuracy of 5% [41]. Similarly, when contrasting lighting conditions
were evaluated to estimate the dorsal surface area of pigs, there were predictions of pig
body weight within an accuracy of 0.9 kg [42]. Utilization of an eclipse fitting model,
and the Hough transform image extraction technique, resulted in an estimated pig body
weight to an accuracy of 96.2% with an average error of 1.23 kg [43]. Even with these
advancements, one significant limitation of these 2D image processing techniques is the
lack of a capacity to obtain a comprehensive variety of relevant biological features. For
example, in these previous studies, the dorsal images of pigs could be evaluated and
utilized for effectively determining pig width and back length, but this approach is not
effective for determining pig girth or flank measurements. Furthermore, with the use of
these techniques, there is the utilization of Euclidian distances, which are not effective at
determining geodesic features such as pig girth.

4.1.2. Three-Dimensional Computer Vision Techniques for Pig Body Weight

While 2D computer vision is important in the detection of live animals, the advent
of 3D computer vision was a transformative advancement. This technology enables the
capture of 3D geodesic data, which include important measurements such as the girth of an
animal, ultimately expanding the scope of what is possible with the precision assessment
of body weight in food-producing animals. With the use of depth imaging procedures,
there is the utilization of 3D data, a compelling alternative to relying solely on 2D images.
One pioneering utilization of depth imaging for swine-related research included mounting
an RGB depth camera on the ceiling of a pig housing facility. In this study [44], an RGB-D
computer vision system was developed for predicting the body weight of non-restrained
pigs using top-view RGB and depth images. For 38 days, images of eight pigs were
recorded via video daily using an Intel RealSense D435 camera for 3 min at six frames per
second, while ground truth weights were determined directly using a scale. Pigs were of
crossbred Yorkshire and Large White breeding and were 5 weeks of age at the initiation
of the experiment. On average, the pigs weighed 23.5 kg (SD = 7.6 kg) at the start of the
experiment and 46.7 kg (SD = 8.7 kg) at experimental cessation. Morphological features,
such as length, width, and height, were extracted using Python’s OpenCV library. By
conducting quality control evaluations, there was the removal of frames with motion blur,
distorted shapes, or non-standard positions. Linear mixed models were used to make
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predictions, achieving coefficients of determination ranging from 0.49 to 0.98, highlighting
the robustness and potential for widespread application in pork production enterprises.

In a similar study, there was the validation of the use of depth images for predicting
pig body weight [45]. A total of 772 depth images and corresponding mass measurements
were collected from 234 pigs in a grow-finish pork production facility of pigs of Landrace,
Duroc, and Yorkshire breeding. Within this group, there was an equal number of barrows
and gilts. On average, piglets weighed 27 kg (SD = 4.4 kg) at the start and 40 kg (SD = 6.5) at
the end of the experiment. Body weight was calculated from these depth images collected
from a Kinect sensor (Microsoft, Milipitas, CA, USA) and mounted on the wall above the
animal scale. Both color and depth images were acquired at approximately 1 s intervals.
Metrics were collected using a program developed in MATLAB software (version R2015b).
Using this software, a system of linear equations was developed to predict the weight
from the volume. The global equation was determined to be R? = 0.9905. These findings
indicate that depth sensors can provide an accurate and scalable solution to continuous
body weight estimation.

There was another study where there was use of photogrammetry and artificial neural
networks to estimate the body weight of Holstein cattle [46]. Body dimensions (wither
height, hip height, body length, and hip width) were captured using Canon EOS 400D
cameras (Canon, Oita, Japan) that were synchronized and calibrated to obtain 3D data.
From the resulting data, metrics on body dimensions were collected. This dataset was
divided into test and training subsets, with the most precise performing ANN having
reliable accuracy in predicting pig body weight. The correlation coefficient was 0.995 when
compared to weights obtained manually. These results indicate that photogrammetrically
derived body metrics can be a reliable method for predicting pig body weight.

The use of 3D point clouds allows for three-dimensional representations of the animal,
capturing spatial information that goes beyond two-dimensional imaging. Early research
explored the potential of 3D point cloud technology for accurate pig body weight estima-
tions. In a recent study [47], a hybrid approach was utilized, combining statistical filtering
and DBSCAN clustering for denoising point clouds. This technique mitigated bias and
improved feature extraction. The model incorporated pig dorsal body area parameters and
a CNN, achieving a mean absolute error of 12.45 kg and a mean absolute percentage error
of 5.36%. In a recent study [48], a 3D deep learning approach on point clouds collected
in a pen environment called PointNet was utilized. PointNet is a model used to process
point cloud data, which consist of points in 3D space, representing the shape and structure
of objects. With the utilization of this model, there was a coefficient of determination of
0.94 and a root mean squared error of 6.88 kg. Comparing the PointNet model results to
that of a volume-based method, there was an improved accuracy (R? = 0.94 compared with
0.75). Concurrently, ref. [49] there was the development of a non-contact model using point
cloud data from the dorsal evaluation of the pig’s anatomy, with there being an absolute
error of 11.552 kg and a relative error of 4.812%. The findings in these studies highlight the
potential of 3D point cloud technology to provide accurate and noninvasive techniques for
estimating pig body weight. Challenges with point cloud technology remain, such as the
computational requirements for processing large point cloud datasets, interference from
environmental factors such as dust and airborne particles, and the need for standardization
across different sensor systems. Nonetheless, advancements in hardware and software
have promise to improve the potential of 3D point cloud technology in food-producing
animal management.

While the findings from these results are promising, it is essential to assess the robust-
ness of models when analyzing datasets that have not been previously evaluated using this
model. Image data can vary in terms of environmental conditions, lighting, position of the
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animal, size, color, and age. For example, models trained on specific breeds or age groups
will likely not be effective when evaluating animals of other ages, e.g., as in [20], because
models are trained on specific key anatomical features. Depth data accuracy is also affected
by hardware variability, camera angles, lighting conditions, and housing environment.
These changes can potentially limit the robustness of a depth estimation model in less
controlled settings. Depth imaging technology is highly susceptible to “noise” resulting
from dust in the air, ambient lighting, and the occlusion of objects, impacting the precision
of 3D measurements collected from these types of sensors. To address these challenges,
improvements include the collection of more diverse datasets across different enterprises,
breeds, age groups, and other conditions to improve the breadth of model utilization.
Incorporating advanced filtering techniques or using more sophisticated sensors like a
multi-camera array can help reduce noise and increase the resolution of captured data. The
integration of CNN's successful 2D image tasks, with depth sensors to capture complex
3D data patterns, has recently been utilized to conduct studies with food-producing an-
imals. The results from recent studies indicate the practical efficacy of these approaches.
For example, in [50], the utilization of depth images and CNNs, enhanced with transfer
learning and model ensembling, to estimate body condition scores in dairy cows, resulted
in a relatively precise accuracy (82% within 0.25 BCS units; 97% within 0.50 units). Sim-
ilarly, an automated cow body condition scoring system using multiple 3D cameras has
been developed, along with the training of independent CNN models and combining the
estimations through ensemble modeling for significantly improved accuracy [51]. These
findings suggest that similar techniques can be effectively applied to other food-producing
animals, including swine.

4.2. Scoring of Feet and Leg Structural Soundness

Before the advent of deep learning technology, there was the evaluation of objective
and automated techniques to quantify animal leg soundness [52-55]. These studies were
initially conducted with horses and cattle but were the foundational information for a
similar assessment of pigs. Subsequently, pig-related research was conducted where there
were evaluations of sow feet and leg soundness traits using video recordings [56]. There,
however, was a small correlation between values for manually measured traits and those
obtained using automated techniques, which is indicative of the need for more precise
measurement approaches. There were also computer vision techniques evaluated to assess
the feet and leg structural soundness of pigs [57]. The results from these studies are
indicative of the fact that computer vision has potential to assess intricate details, such
as joint angles, stride lengths, and gait patterns, ultimately allowing for a more precise
assessment opportunity for physical traits, such as feet and leg soundness.

4.3. Challenges in Adopting Machine Learning Technologies

While many of the previously discussed technologies can be used without internet
connectivity, the development, testing, and refinement of machine learning models in-
volve significant computational complexity and large dataset management requirements.
Training datasets for models can range from a few gigabytes to hundreds of gigabytes, as
demonstrated by version 3.5 of the large language model (LLM) ChatGPT (OpenAl, San
Francisco, CA, USA), where there was the utilization of 570 GB of training data [58]. Beyond
connectivity, the computational infrastructure needed to train and utilize these models
requires access to specialized hardware, such as GPUs or TPUs, and robust storage systems
that are inaccessible on most rural farms. This makes deployment in these technologies
challenging unless cloud-based solutions or edge computing devices are leveraged.

122



Animals 2025, 15, 635

Edge computing, a technology that processes data locally on devices rather than
relying on centralized infrastructure, offers a promising solution by enabling real-time
data processing. This reduces dependency on high-speed internet and is particularly
advantageous in rural settings, where local devices can perform important computations
and continue to function independently from internet connectivity. By integrating cloud
computing with local deployments, farmers can benefit from a hybrid system that enhances
feasibility and functionality in rural farms. For example, the results from one study [59]
are indicative of how cloud computing can be integrated with remote sensing technologies
to optimize farming practices. This system was tested in rural agricultural settings and
addressed network and resource limitations to enhance crop yield and resource efficiency.
This integrated system highlights the feasibility of combining cloud-based and localized
systems to improve the adoption of machine learning in resource-constrained settings.

Furthermore, adopting ML technologies requires technical expertise in data manage-
ment, model training, and integration into farm workflows. Many farmers lack access
to training or resources to effectively use this software and hardware-based tools, cre-
ating a barrier to machine learning adoption on the farm. Lightweight models, such
as MobileNet [60], or techniques such as model pruning, are specifically designed for
resource-constrained settings. These approaches make ML tools more accessible and prac-
tical for farmers in rural areas. For example, MobileNet employs depthwise separable
convolutions to reduce computational complexity, resulting in less power consumption
and faster inference times when compared to traditional convolutional neural networks.
The results indicated that the quantized version of SSD-MobileNet-v2 has an inference time
of ~68.96 ms with a COCO mAP of 60.99, while the default SSD model requires greater
than 120 ms per inference with a similar mAP score [58]. This increase in speed makes
lightweight models particularly advantageous for deployment in rural settings where
computational resources are limited. Even when edge computing devices are used to
process the data locally, there are still challenges, such as maintenance, software updates,
and troubleshooting of the devices. These problems require skilled personnel, which adds
to operational costs. Furthermore, ethical considerations such as data privacy and secu-
rity remain pertinent, particularly when transmitting sensitive food animal production
unit-derived data to centralized data centers.

High-speed internet connectivity is necessary for transmitting large datasets to data
centers for model training and integration. Many food animal producers in rural areas in
the USA still lack access to advanced broadband services (100 mb/s download, 20 mb/s
upload) [61,62]. This lack of connectivity limits the adoption of technologies such as cen-
tralized cloud-based herd management and video-assisted evaluations of food-producing
animals, which require robust broadband for real-time analysis. While these techniques
have potential, the reliance on stable network connections creates barriers in rural areas
without sufficient infrastructure. To address this, offline deployment strategies, such as
preloading essential data or enabling models to inference offline [63], can ensure uninter-
rupted functionality. Lightweight ML models, such as MobileNet, further enhance this
by allowing for efficient computations on resource-constrained devices. When combined
with hybrid approaches that integrate edge and cloud computing, localized real-time
processing can be achieved while still periodically syncing with the cloud for updates
and more precise analytics. These layered solutions integrate the benefits of cloud-based
systems, lightweight models, and offline strategies, making these effective for overcoming
connectivity challenges in rural settings.
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5. Conclusions

The evolution of the pork production industry has been marked by continuous changes
and a quest for precision, objectivity, and optimization. While traditional techniques have
served the industry for centuries, the limitations of manual techniques, particularly for
pig body weight estimation and feet and leg structural soundness, have become evident.
Computer vision approaches allow for objective, automated, and noninvasive techniques
to be utilized for evaluating pigs. From trained deep learning detection models to complex
algorithms for 3D feature extraction, the advancements in computer vision procedures are
going to rapidly change the way producers assess pigs in pork production systems. As the
industry continues to evolve, there is no doubt that computer vision approaches will be
pivotal in shaping the future of pork production.

There is an opportunity to integrate computer vision technologies with walk-over-
weighing technologies for evaluating structural characteristics (e.g., structural soundness
integrity) and sow body weight changes in pork production systems. The further refine-
ment of precision technologies and access to adequate internet connectivity will enhance
technology implementation in pork production, similar to advancements in other food
animal (e.g., dairy) and food grain production systems.
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Simple Summary: The vocalisations that an animal produces could provide a window into its
emotional state. More knowledge on how emotional states are expressed in the vocalisations of
birds could even be used to improve the welfare of farmed poultry. The present study introduced
a novel device designed to trigger different emotional states in hens using different physical and
chemical stimuli. The final device was able to elicit a broad range of vocalisations without any
human interference. It was found that the hens not only actively used the device as a feeder but
also responded vocally to both positive and negative stimuli. Preliminary findings indicate that the
vocal responses of the hens vary as a function of the intensity of the emotional state they experience.
This research contributes to understanding poultry emotions and has the potential to open new
opportunities in understanding and improving their welfare in farming environments.

Abstract: Understanding the emotional states of animals is a long-standing research endeavour that
has clear applications in animal welfare. Vocalisations are emerging as a promising way to assess
both positive and negative emotional states. However, the vocal expression of emotions in birds is
a relatively unexplored research area. The goal of this study was to develop an interactive feeding
system that would elicit positive and negative emotional states, and collect recordings of the vocal
expression of these emotions without human interference. In this paper, the mechatronic design and
development of the feeder is described. Design choices were motivated by the desire for the hens
to voluntarily interact with the feeder and experience the different stimuli that were designed to
induce (1) positive low-arousal, (2) positive high-arousal, (3) negative low-arousal, and (4) negative
high-arousal states. The results showed that hens were motivated to engage with the feeder despite
the risk of receiving negative stimuli and that this motivation was sustained for at least 1 week.
The potential of using the interactive feeder to analyse chicken vocalisations related to emotional
valence and arousal is being explored, offering a novel proof of concept in animal welfare research.
Preliminary findings suggest that hens vocalised in response to all four stimulus types, with the
number of vocalisations, but not the probability of vocalising, distinguishing between low- and
high-arousal states. Thus, the proposed animal-computer interaction design has potential to be used

as an enrichment device and for future experiments on vocal emotions in birds.

Keywords: vocal emotions; animal-computer interaction; laying hens; chickens; vocalisations; birds

1. Introduction

The welfare of captive non-human animals (hereafter, animals) under human care is a
growing public concern, with both direct and indirect impacts on human health and well-
being and environmental sustainability. Recent scientific interest in the role of emotional
states in animal welfare is motivated by the idea that good welfare should not only be
characterised as a lack of negative states but also include the opportunity to experience
positive emotional states [1-3]. In short, animals should not only survive, but thrive in
environments that provide a balance between what an animal likes to do and what is
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healthy for it to do. Thus, knowing when an animal is in a positive emotional state remains
a critical and ongoing research endeavour in animal welfare sciences.

The scientific study of animal emotions is flourishing, being supported by different
conceptual frameworks. These frameworks can enable cross-species comparisons of emo-
tional states and are complemented by technological and methodological advancements
that facilitate the observation and quantification of these states [4,5]. Emotions can be
defined as internal, short-lived psychobiological states that are reactions to specific internal
or external objects or events that are biologically or ecologically relevant to an individual.
Emotions are conceptually different from moods, which are more persistent internal states
that are not necessarily triggered by a specific object or event [5]. Animal emotions can
be viewed as consisting of two dimensions: arousal and valence [4]. Arousal refers to the
intensity of the emotion while valence refers to the hedonic value of the emotion (positive
or negative). Although there is no access to animals’ subjective emotional experiences, they
are likely accompanied by changes in arousal and valence that can be measured as changes
in behaviour, cognitive processing, physiology, and neural activity [4,5].

Vocalisations are emerging as promising non-invasive measures of animal emotional
states [6]. Vocalisations are produced by almost all vertebrates and may be reliable markers
of emotions because the midbrain and limbic systems that process emotional stimuli also
play a role in vocal production [7-9]. In vertebrates, the arousal response includes elevation
of sympathetic nervous system activity, which leads to a higher respiratory rate and muscle
tension, both of which modulate acoustic features of vocalisations [10].

Research into acoustic features that distinguish vocalisations produced in positive
and negative emotional states shows that across several mammalian species, vocalisations
produced in positive emotional states tend to be shorter and have a lower fundamental
frequency (although species differences exist [6,7,11,12]). For instance, horse whinnies
produced during positive situations (social reunion) were lower pitched and shorter in du-
ration than whinnies produced during negative situations (social isolation; [13]). Similarly,
grunts, screams, and squeals of wild boars during positive situations (food anticipation
and affiliative interactions) were shorter in duration with less amplitude modulation and
lower frequency than in negative situations (agonistic interactions) [14]. Compared to
mammals, little progress has been made on the identification of vocal indicators of positive
emotions in birds. Research on vocal emotions in birds is highly concentrated on negative
emotions, with a large bias towards high-arousal calls that signal current levels of pain,
fear, or distress [6,7,15].

The aim of this study was to design a device capable of stimulating domestic layer
hens to vocalise across different levels of emotional arousal and valence. To the best of
the authors’” knowledge, no existing device has been able to induce vocalisations across all
four quadrants of the dimensional model of emotions, i.e., positive low-arousal, positive
high-arousal, negative low-arousal, and negative high-arousal emotional states. The design
was inspired by findings of two studies on vocalisations during positive emotional states in
domestic chickens, which observed variations in call types—namely food calls, fast clucks,
and gakels—based on the anticipation of rewards [16,17]. While [17] found that the peak
frequency increased with the arousal level in positively valenced situations, neither study
analysed whether the acoustic features of these calls varied between the reward and no-
reward conditions. Addressing this gap, the device is designed to explore how emotional
valence and arousal are encoded in vocalisations, offering new insights for poultry welfare
monitoring by assessing the birds” emotional states through their calls.

The ability to measure valence and arousal is essential for linking vocalisations to
specific emotional states. Given the challenge of assessing an animal’s emotional valence
due to the absence of direct non-invasive methods, lack of verbal communication, and the
inherent subjectivity in labelling emotional states, a feeder was developed to provide a
range of stimuli known to impact approach or avoid behaviours. To quantify the inten-
sity of an emotion, behavioural and physiological indicators that correlate with levels of
arousal can be measured by devices such as heart rate sensors, thermal cameras, and RGB
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cameras. Therefore, the setup should accommodate the requirements these devices need to
capture data.

Positioned within a broader research framework, the objective is to distinguish be-
tween vocalisations based on emotional valence and arousal, necessitating a system that
prompts vocal responses to both positive and negative stimuli. This paper is structured
around two main objectives: the development and testing of an interactive feeder as a novel
method for eliciting and analysing chicken vocalisations, serving as a proof of concept in
the intersection of animal welfare and technology. To this end, various automated feeder
designs are discussed while focusing on refining the optimal design to facilitate this study’s
goals. Key aspects of the feeder’s usability are investigated, such as the birds’ ability
to learn how to activate the feeder, their engagement frequency, and the consistency of
daily usage patterns. Furthermore, audio data from two trials are analysed to explore
the likelihood and frequency of vocalisations produced by hens while interacting with
the feeder. The findings presented offer preliminary insights into the potential of such
interactive devices in enhancing our understanding of animal emotional states, setting a
foundation for further exploration in this novel intersection of fields.

2. Materials and Methods
2.1. Feeder
2.1.1. Stimuli

The objective was to create a device that hens could voluntarily activate to deliver
stimuli inducing positive and negative emotional states of different arousal intensities
(low and high). Therefore, the design needed to deliver the selected stimuli in a suitable
manner. Stimuli were chosen to induce low- and high-arousal states, with each assigned as
positive or negative based on the previous literature linking these stimuli with approach
or avoid behaviours [18-23]. The rationale for using approach and avoid behaviours as
proxies of emotional valence was based on the assumption that, in general, animals will
move towards stimuli that are positive and away from stimuli that are negative. Hens are
required to initially approach the device to activate it. Upon activation, stimuli—positive or
negative—are randomly dispensed. Thus, the birds do not know whether they will receive
a positive or negative stimulus until they approach and activate the feeder. Positive stimuli
such as rice and mealworms generally encourage the birds to continue approaching the
corresponding container, whereas negative stimuli lead to avoidance behaviour.

The selected positive stimuli were food items, including mealworms and rice [18].
These choices were based on preliminary observations indicating that these foods elicited
stronger engagement compared to other options like corn and peanuts. Rice was chosen
instead of corn (which was used in [18]) because pilot data showed that when given a
choice between rice, corn, mealworms, and peanuts simultaneously, hens chose to consume
mealworms and rice first and in greater quantities when compared to corn or peanuts.
Negative stimuli included two puffs of air to the face (one every 30 s for 1 min), four puffs
of air to the face (one every 15 s for 1 min) [20,23], and quinine-coated rice derived from
1% and 4% suspensions of quinine (a bitter tasting substance) dissolved in water that was
mixed with rice [21,22]. Thus, it was assumed that mealworms and rice would trigger a
positive valence of varying arousal levels, and rice + 1% quinine and rice + 4% quinine
would trigger negative valence of varying arousal levels. Food colouring was used to make
the rice with 1% quinine green and the rice with 4% quinine blue. This was based on the
hypothesis that hens could differentiate between these conditions and learn to associate
the colours with the different levels of bitterness. To motivate consistent engagement,
the device was first intended to act as the hens’ primary source of food. The device was
designed as a feeder with the capacity to dispense 7 different types of stimuli to the hens
(Table 1).
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Table 1. List of experimental stimuli and their assigned valence and arousal conditions.

Stimulus Valence Arousal
Regular Feed - -
Mealworms Positive High
Rice Positive Low

1% Quinine Suspension Negative Low
4% Quinine Suspension Negative High
Two air puffs Negative Low
Four air puffs Negative High

In trial 1, regular feed was given 80% of the time the device was activated, and positive
and negative stimuli could each be given 10% of the time (5% for mealworms, 5% for rice,
2.5% for rice + 1% quinine, 2.5% for rice + 4% quinine, 2.5% for two air puffs, and 2.5% for
four air puffs). Hens were provided with ad libitum access to regular feed in a separate
container to ensure that they received enough food during the first few days before they
learned how to use the feeder. However, visual observations during the first few days of
trial 1 indicated that hens frequently interacted with the device even though regular feed
was available. Thus, the regular feed was left in a separate container throughout the trial.
In trial 2, the separate container with regular feed was maintained for the duration of the
trial, but the probability of positive stimuli was increased. Positive stimuli were provided
95% of the time (85% for mealworms, 10% for rice), and negative stimuli 5% of the time
(only air puffs, with 2.5% for two air puffs and 2.5% for four air puffs), to enhance the
sample size for vocal responses to positive stimuli.

2.1.2. Design Ideas

In addition to dispensing food and air pulffs, the design of the device should allow
for the measurement of arousal levels to validate the arousal level of animals at the time
of vocalisation. To non-invasively measure arousal, a thermal camera was proposed to
record the surface temperature of the head (face, eye, comb, and wattle) from a profile view,
as this has been shown to change in response to both positive and negative events and
different magnitudes of stress [23-26]. Considering all the specifications, three potential
feeder designs were conceptualised. Each design has advantages and disadvantages that
are summarised in Table 2.

Table 2. Advantages and disadvantages of the proposed design ideas.

Design Advantages Disadvantages
—  Complex mechanism for food weight
—  Good thermal camera view —  Requires six motors
Tower —  Low risk of food spilling —  Mixed uneaten food leading to waste
—  Questionable accessibility by hens
— Noneed to remove uneaten ~ —  Challenging motorised lid
Tub food construction
ube Partially tested by farmers —  Risk of disruption

Good thermal camera view

Potential blockage of air puff

Floor Rotator

No need to remove uneaten
food

Mimics natural foraging
Single motor required

Hard to disrupt

Potentially poor thermal camera view
Complex elevated platform
construction

Design 1: The tower design (Figure 1) features a central container with compartments
for different food stimuli, equipped with a sensor and air puff outlet at hen height. Upon
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activation, food is delivered from individual compartments into a central feeding area
controlled by motorised panels. After the programmed amount of food is dispensed, the
birds can eat in the feeding area for a set amount of time. Once this time has expired, a
motorised trap door on the floor of the feeding area opens, driving uneaten food in the
waste disposal container.

Dividers that separate

Feed —— 5 feed types
Storage
Speaker . ,80em
Air Puff- _
*50em
Sensor A 45cm
I __Motorized panels
: 30em that open and close
Feeding Feeding (One per feed type)
Area 15 Ar
loesh Frea Food drops into
feeding area
Waste -
Disposal Waste - Motorized trap door
C . 8em ;
ontainer Disposal (To dispose uneaten
Container

food)

Figure 1. The tower design.

The tower design has an advantage that hens remain within a limited area, which
would increase the probability of capturing usable images with a thermal camera, while
minimising the risk of spilling food. However, some practical concerns arise with this
design as it necessitates a complex mechanism to support the stored food’s weight, only
dispensing a controlled portion at a time. Additionally, it requires six motors in total: five
for various food options and one dedicated to food disposal. Lastly, the potential mixing of
uneaten food could lead to waste, and the placement of the sensor might require hens to
stretch their necks.

Design 2: The tube design (Figure 2) consists of five independent 4” PVC tubes, each
containing a specific type of food, covered by a lid. On the lid of the central tube, there is
the proximity sensor and the air puff outlet, with the speaker mounted in the central tube
itself. Each tube has its own motor—connected to the central electronics box—which lifts
the lid for the specified activation period, providing access to a distinct food stimulus.

The tube design has been partially used by farmers to feed chickens while addressing
the challenge of removing uneaten food and has been partially used by farmers to feed
chickens. It also facilitates the use of a thermal camera. The construction of the motorised
lids presents its own set of challenges, both in the intricacy of the mechanism and the need
for five distinct motors. A potential concern is the hens disrupting the stimulus delivery
process, either by intentionally spilling food or interfering with the lids” operations. Lastly,
the air puff outlet could be blocked by food.

Design 3: The floor rotator design (Figure 3) emerged from discussions with peers at
the London Metropolitan University who explore ACI concepts [27]. The proposed system—
ideally positioned on a raised platform—is designed with a multi-component structure.
The upper section features a plastic surface with five holes along with a designated area for
the interaction components, including the sensor, air puff outlet, and speaker. The lower
section is intended to be at ground level to replicate hen foraging behaviour. This part
houses five food containers for storing various food types and includes openings for wiring
that connects the top section’s components with the rest of the electronics. Between these
two sections is a rotatable disc, controlled by a stepper motor, with a single hole that aligns

132



Animals 2024, 14, 1386

with both the upper and lower sections’ openings. To access food, hens trigger the sensor
in the upper section, causing the disc to rotate and align its opening with one of the food
containers, allowing the birds to feed.

4" (10em)
o

—PVLCPipe

Speaker

Air
Puff

Sensor

Motor to open up

Tubing

&_ Air from

compressor

Lid opens up to
give food access

. Holes for
Afp L food access
Puff
Sensor

— Food containers

—Air compressor
Figure 3. The floor rotator design.

The floor rotator design also bypasses the issue of uneaten food removal, while
ensuring that there will be a low risk of spilling food. It also resembles the natural ground
foraging behaviour, making it appealing to hens. A significant benefit lies in its electronic
simplicity, anchored by a single stepper motor with some additional calibration required to
fine-tune the rotation angles. Importantly, this option guarantees that the food delivery
process would be hard to disrupt. Nevertheless, a couple of disadvantages remain, such as
potential inconsistencies in thermal recording due to varying head angles of the hens in
relation to the camera’s position, and the complexity of the elevated platform construction,
especially when considering the pen’s dimensions and flooring.
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2.1.3. Final Design

A modified version of the floor rotator design was implemented, believed to offer
compelling advantages, while also addressing some of its challenges. The device is com-
posed of two primary components: the rotatable disc and the containers. Figure 4 shows
the feeder design.

Figure 4. The proposed interactive feeder. (A) The food containers, (B) the rotating disc, (C) the

ultrasonic sensor on the side of the device, (D) metallic wheels aiding the rotation, (E) the box
containing the electronics, positioned on the bottom, and (F) the final form of the feeder with pigeon
spikes taped on the disc.

The feeder incorporates six distinct plastic containers (Figure 4A). The baseline con-
tainer, which is empty of food, is the place where the hens have access while no stimulus
is provided. As hens are anticipated to position their heads over this container when
initiating the system, the air puff outlet is located in the baseline container. The remaining
containers house the various food types. Besides these containers, the inner section of the
feeder houses the stepper motor, the speaker, and the ultrasonic sensor. The sensor was
fixed on the wall of the feeder (Figure 4B) so that system activation was triggered when a
hen approached this particular side of the feeder.

The top layer of the device is a rotatable plastic disc, with an opening that matches
the containers’ dimensions. This disc is secured to the stepper motor via a screw, ensuring
synchronised rotation between the motor and the disc. Metal wheels were added to
reduce friction (Figure 4D). The entire apparatus stands elevated on plastic legs, ensuring
hens can access the container contents easily, instead of an elevated platform (due to pen
size constraints).

The core electronic components are contained in a plastic compartment under the
feeder (Figure 4E). This compartment connects the USB, power cables, wires, and tubes that
are necessary for the air puff mechanism to the feeder. The air puff system comprises an air
compressor, a solenoid valve, and the requisite plastic tubing connecting each component.
Pigeon sticks were added to the rotating disc to prevent hens from stepping on it. (refer to
Discussion for more details).

2.1.4. Hardware Description

The embedded system comprises several essential components, including an Arduino
Mega 2560 microcontroller, a Real-Time Clock (RTC) module, an SD card reader, an ultra-
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sonic sensor, a miniature speaker, a pneumatic solenoid valve, an air compressor, a uStepper
S microcontroller, and a Nema Stepper Motor. Figure 5 provides a visual representation
of the system’s components and their interconnections. Below is a brief description of
each component:

X (e ©)
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Figure 5. System’s block diagram. Hardware components: (1) Arduino Mega, (2) Ultrasonic Sensor,

(3) Real-Time Clock, (4) miniature speaker, (5) Micro-SD card reader, (6) pneumatic solenoid valve,

(7) uStepper S stepper driver, and (8) Nema 23 stepper motor.
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Arduino Mega 2560: An open-source microcontroller board serving as the central
control unit responsible for coordinating the operation of the entire system.
HC-SR04 Ultrasonic sensor: A proximity sensor that measures distance using sound
waves. It is set to detect when a hen is within 10 cm.

DS3231 Real-Time Clock module: The Real-Time Clock (RTC) module reports feeder
activation times, measures the duration of stimuli delivery, and determines whether
the feeder should be active during the daytime or inactive during the night.
Miniature speaker: A 0.5 W miniature speaker was used to emit a pure tone sinewave
right before the offset of the stimulus presentation. It also serves to attract the attention
of the hens, encouraging them to approach the feeder, and startles their reflexes,
prompting them to withdraw their heads from the container as the disc returns to its
baseline position.

Micro-SD card reader SPI interface + Micro-SD card: Essential for data storage, it
logs the activation times of the feeder, including details like feeder ID, stimulus ID,
date, and time. Data retrieval can be achieved in various ways, such as removing the
SD card after the experiment, connecting a laptop to the Arduino via USB to view
activation logs in the Serial Monitor, or using a Bluetooth module for remote data
acquisition to minimise human presence.

Pneumatic solenoid valve: This component was integrated into the experimental
apparatus to deliver controlled air puffs. Operational control of this valve is managed
by the Arduino microcontroller, enabling the release of air stored in an air compressor.
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uStepper S stepper driver: This is a microcontroller stepper driver which is compatible
with Arduino boards. The two controllers, namely the uStepper S and the Arduino
Mega, communicate using the I2C protocol, with the Arduino acting as the leader. This
bidirectional interaction allows for the exchange of messages between the controllers.
Specifically, the Arduino Mega sends instructions specifying the desired angle for
the stepper motor, while the uStepper S responds by reporting the current angle at
which the stepper motor is positioned. This dynamic information exchange achieves
accurate and real-time control over the rotatable disc’s movements.

Nema 23 stepper motor: A Nema stepper motor is an electric motor which converts
digital input pulses from the uStepper S into precise mechanical shaft rotation in a
series of equally spaced steps. The rotation parameters such as speed, acceleration,
deceleration, and the exact angles were fine-tuned to ensure the smooth operation of
the feeder.

2.1.5. Description of Software

The software, developed in the Arduino environment, consists of two distinct files:

one tailored for the Arduino Mega board and the other for the uStepper S board. The
programme’s flowchart is illustrated in Figure 6. The basic steps of the algorithm are
described below:

Is
Daytime

YES

Object Detection
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equalto
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Stimulus Estimation

}

Data Storage

)

StartTimer

RotateDisk Activate Valve

Activ

Period
Expired

ation

Period
Expired

YES

Display Sound

)

Move diskto
baseine

Figure 6. The flowchart of the proposed algorithm.

Time check: The current time is verified to ensure that feeder operations occur only
during the daytime (8:00 AM to 10:00 PM).

Object detection: The system continuously assesses the distance measured by the
ultrasonic sensor. If an object is detected within a 10 cm range, it is interpreted as an
intention to activate the feeder.
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e  Stimulus estimation: Each stimulus type has an assigned probability. The system
generates a random number (ranging from 0.0 to 100.0) to determine the exact stimulus
to be delivered.

e Data storage: Details about the chosen stimulus, along with the timestamp of its
presentation, are recorded on the SD card.

Stimulus delivery:

Air puff: For low- or high-intensity air puffs, the Arduino activates the solenoid valve.
Food stimulus: The Arduino sends an encoded message to the uStepper S board
indicating the desired angle of rotation. The stepper motor moves the rotatable disc to
the defined angle, providing access to the specified food type.

e  Sound display: After the expiration of the opening period, a simple tone is produced
via the miniature speaker.

e  System reset: Once the stimulus delivery concludes, the stepper motor returns to its
initial position. Concurrently, the ultrasonic sensor initiates a new scanning cycle to
detect objects.

2.2. Animals and Setup

Ethical approval was obtained prior to experiments from the Ethical Committee for
Animal Experimentation at KU Leuven (project number 082/2023).

2.2.1. Animals and Housing

Four ISA brown laying hens were obtained from TRANSfarm, KU Leuven. The hens
were tested in pairs, in two separate trials. The hens were 30 weeks old at the start of trial 1
(from 7 July 2023 to 31 July 2023) and 39 weeks old at the start of trial 2 (from 12 September
2023 to 22 September 2023). For both trial 1 and trial 2, the experiments were concluded at
midday on their respective final days. Due to unforeseen technical difficulties, the device
did not deliver stimuli reliably until 24 /07; thus, for trial 1, the hens’ data were analysed
only between 24th and 31st July, which was 15 days after the feeder was first introduced
to the hens. The hens were housed in pens 2.3 x 2.3 x 0.8 m (L x W x H), with a net
covering the top of the pen, in a climate-controlled room at the Department of Biosystems,
KU Leuven animal facility. The ambient temperature was kept at 21 °C and humidity
between 60 and 70%. The daily light/dark cycle was 14 h/10 h light/dark, with lights on
between 08:00 and 22:00. The hens received ad libitum food and water in conventional
poultry feeders, access to a dust-bathing substrate, a pecking stone, an elevated perching
area for roosting, and nest boxes (2 per pair). Daily checks were conducted to ensure that
the birds had sufficient food and water and were in good health.

2.2.2. Recording Setup

In each trial, two devices were placed in the pen (Figure 7). A directional microphone
(AKG C 391 B) was set up above each device, and another omnidirectional one (AKG
SE300 B) was used to record ambient sounds within the enclosure. All microphones were
connected to a soundcard (Focusrite Clarett + 4Pre) which was then connected to a laptop
that stored audio recordings. Recordings were made continuously (24 h/day). To capture
video data, a camera was installed above the pen (Dahua DH-SD1A203T-GN). This camera
was connected to a Network Video Recorder (Dahua DHI-NVR4208-8P-4KS2) that stored
the video recordings. Recordings were made only when the lights were on (from 08:00
to 22:00).
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Figure 7. The pen and placement of recording devices.

2.3. Data Analysis
2.3.1. Feeder Usage Statistics

To investigate the number of feeder activations across experimental days and to iden-
tify potential hourly patterns, the activation logs retrieved from the SD card of each feeder
were utilised. Following each experimental trial, feeder activation data were compiled
in the form of text files. These logs contained details regarding which feeder was acti-
vated, the stimulus delivered, and the exact date and time of the activation. The text files
were transformed into CSV format to enable easier further analysis steps. Subsequently,
activation logs were processed using R software, version 4.3.2.

2.3.2. Vocalisations

One of the primary objectives of this study was to provide a proof of concept by
analysing vocalisations emitted across different experimental stimuli. While audio data
were continuously recorded, feeder activations were irregular. Thus, the initial step of
the analysis involved extracting audio that corresponded to the feeder activation logs. A
Python script facilitated the extraction of 1 min segments that include feeder activations—
spanning 5 s before to 55 s after the activation (Figure 8). For each feeder, the audio channel
from the directional microphone aimed at that feeder was utilised.

Subsequently, each segment was processed using Audacity 3.3.3 to generate its spec-
trogram. These extracted segments were then annotated to determine the onset and offset
of hen vocalisations. The times when the feeder opened and closed were also marked. This
allowed any variances in the timing of vocalisations to be explored across different stimuli.
Every segment was saved along with its respective Audacity project file and text annotation
file. A subsequent Python script was employed to generate a database, registering the
beginning and end of each vocalisation, its clarity grade, and the file in which it was located,
setting the stage for in-depth statistical analysis.

Statistical analyses on feeder usage and vocalisations were conducted using the R
Statistical language (version 4.3.0; R Core Team, 2023) on macOS 14.1, using the pack-
ages MuMIn [28], glmmTMB [29], lubridate [30], DHARMa [31], chron [32], report [33],
patchwork [34], ggplot2 [35], dplyr [36], and tidyr [37].
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Figure 8. Number of times feeders were activated in trial 1 and trial 2 across all experimental days.
Colours indicate time of day, divided into 2 h bins.

3. Results
3.1. Feeder Engagement
3.1.1. Engagement across Days

Hens activated the feeder a total of 1958 times in trial 1 (mean + SD =244.75 + 93.94
times per day) and 1311 times in trial 2 (mean + SD = 119.18 4 72.11 times per day). Across
both trials, the total number of times the birds were exposed to normal feed (Neutral)
= 1571, rice (Positive + Low Arousal) = 181, mealworms (Positive + High Arousal) = 1127,
rice + 1% quinine (Negative + Low Arousal) = 86, rice + 4% quinine (Negative + High
Arousal) = 105, two air puffs (Negative + Low Arousal) = 117, and four air puffs (Negative
+ High Arousal) = 63. Feeder engagement varied between the two trials and across days
(Figure 8). A generalised linear model with a negative binomial distribution was used to
ask whether there was a trend for feeder engagement to increase or decrease over time.
As feeder engagement and experimental day appeared to have a nonlinear relationship
in trial 2, trial 1 and trial 2 were modelled separately. For both trials, a linear regression
model was compared with a polynomial regression model, selecting the most parsimonious
model as the model with the lowest Akaike information criterion (AIC). For trial 1, it was
observed that feeder engagement did not show significant variation across days. The
model’s explanatory power was very weak (Nagelkerke’s R? = 3.15 x 10~3). The model’s
intercept, corresponding to day = 0, was at 2.90 (95% CI [2.48, 3.35], p < 0.001). The effect
of day was statistically non-significant and positive (beta = 0.02, 95% CI [-0.07, 0.12],
p = 0.640). On the other hand, feeder engagement varied by experimental day in trial
2. The model’s explanatory power was moderate (Nagelkerke’s R? = 0.19). The model’s
intercept, corresponding to day = 0, was at 1.46 (95% CI [0.61, 2.38], p < 0.001). The effect of
day [first degree] was statistically significant and positive (beta = 0.53, 95% CI [0.20, 0.84],
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p < 0.001) while the effect of day [second degree] was also statistically significant and
negative (beta = —0.05, 95% CI [—0.07, —0.02], p < 0.001).

3.1.2. Engagement within a Day

Hens interacted with the feeder throughout the day, possibly engaging more consis-
tently in the evening (6 PM-10 PM) than in the morning (8 AM-10 AM, Figure 9). To check
whether hens showed a preference for engaging with the feeder at specific times of the day,
separate negative binomial models were fitted for trial 1 and trial 2 to predict the number
of feeder activations by time (divided into 2 h bins). Model fit was evaluated using linear
or polynomial regressions with AIC. For trial 1, the model’s explanatory power was weak
(Nagelkerke’s R? = 0.04). The model’s intercept, corresponding to timebin = 0, was at 2.70
(95% CI[2.31, 3.11], p < 0.001). The effect of the timebin was statistically non-significant and
positive (beta = 0.07, 95% CI [—0.02, 0.16], p = 0.135). For trial 2, the model’s explanatory
power was substantial (Nagelkerke’s R? = 0.40). The model’s intercept, corresponding to
timebin = 8 AM, was at 2.45 (95% CI [2.28, 2.63], p < 0.001). Within this model the effect
of timebin [first degree] is statistically significant and positive (beta = 4.63, 95% CI [2.90,
6.37], p < 0.001). The effect of timebin [second degree] is statistically significant and positive
(beta =2.31, 95% CI[0.64, 4.01], p = 0.009). Thus, the hens in trial 1 did not have a preferred
time to interact with the feeder, while the hens in trial 2 preferred to interact with it more
in the evening.

Trial 1 Trial 2
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Figure 9. Number of times feeder activated at different times of the day. Time of day was divided
into 2 h bins. Dots represent an activation. Blue lines show the trend across time of day.

3.2. Vocal Activity

The results presented herein should be considered preliminary, highlighting the inter-
active feeder’s potential rather than providing definitive conclusions on emotional valence
and arousal in chicken vocalisations.
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3.2.1. Probability of Vocalising

Manual labelling of vocalisations was conducted on 930 sound files that recorded
1 min of audio after the feeder was activated. The number of files analysed for each
stimulus type were normal feed (Neutral) = 200, rice (Positive + Low Arousal) = 161, meal-
worms (Positive + High Arousal) = 277, rice + 1% quinine (Negative + Low Arousal) = 76,
rice + 4% quinine (Negative + High Arousal) = 97, two air puffs (Negative + Low Arousal)
=77, and four air puffs (Negative + High Arousal) = 42.

Opverall, it was found that the probability that hens would vocalise after activating the
feeder was 51%. This value varied depending on the type of stimulus they experienced
when activating the feeder (Figure 10). Hens were most likely to vocalise after receiving
rice (Positive + Low Arousal) and rice coated with 4% quinine (Negative + High Arousal).
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Figure 10. Probability of hens vocalising after receiving each stimulus type.

To explore whether the probability of vocalising could indicate valence or arousal,
vocal activity was pooled from the negative stimulus types quinine and air puff, and we
ran a generalised linear model with a binomial distribution. The stimulus” arousal and
valence values (dummy coded) and the interaction of arousal and valence were used as
predictors. It was found that the valence of stimuli and the interaction between arousal
and valence of stimuli influenced the probability of vocalising (Figure 11); however, the
model’s overall explanatory power with only valence, arousal, and valence xx arousal
as predictors was very weak (Tjur’s R? = 0.02). The model’s intercept, corresponding to
negative valence and low arousal, was at 0.12 (95% CI [—0.03, 0.27], p = 0.130). Within this
model, the effect of valence was statistically significant and positive (beta = 0.18, 95% CI
[0.03, 0.33], p = 0.021). The effect of arousal was statistically non-significant and negative
(beta = —0.07, 95% CI [-0.22, 0.08], p = 0.361). The valence x arousal interaction was
statistically significant and negative (beta = —0.23, 95% CI [—0.39, —0.08], p = 0.003). Post
hoc comparisons of the interaction showed that hens were 0.56 times less likely to vocalise
in low-arousal negative compared to low-arousal positive conditions (p = 0.0021, Table 3).
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Hens were also 1.83 times more likely to vocalise in high-arousal positive than low-arousal
positive conditions (p = 0.015, Table 3).
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Figure 11. Probability of vocalising in response to stimuli varying in valence and arousal. The odds
of hens vocalising was greater in positive low-arousal conditions than negative low-arousal and
positive high-arousal conditions.

Table 3. Contingency table showing the number of times hens vocalised or did not vocalise after
activating the feeder.

Condition Negative + Low  Positive + Low Negative + Positive + High
° ° Arousal Arousal High Arousal Arousal
Vocalise_Yes 85 57 66 139
Vocalise_No 68 104 73 138

The probability of vocalisations exhibiting variation across the time of day and over
experimental days was also evaluated. A generalised linear model with a binomial dis-
tribution was fitted to predict the probability of vocalising with experimental day, time
(divided into 2 h bins from 08:00-22:00), and trial number. The model’s explanatory power
was weak (Tjur’s R? = 0.08) but showed that the probability of vocalising varied depending
on the experimental day, time of day, and trial. The model’s intercept, corresponding to the
first day, timebin 8 AM, and trial 1, was at 0.36 (95% CI [0.17, 0.55], p < 0.001). Within this
model, the effect of day [first degree] was statistically significant and positive (beta = 10.66,
95% CI[6.14, 15.25], p < 0.001). The effect of day [second degree] was statistically signifi-
cant and positive (beta = 6.69, 95% CI [2.50, 10.97], p = 0.002). The effect of timebin [first
degree] was statistically significant and negative (beta = —10.38, 95% CI [-14.58, —6.23],
p <0.001). The effect of timebin [second degree] was statistically significant and negative
(beta = —8.90, 95% CI [—13.05, —4.78], p < 0.001). The effect of trial was statistically signifi-
cant and negative (beta = —0.71, 95% CI [-1.01, —0.41], p < 0.001). Thus, the probability
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of vocalising increased over experimental days and was higher in the morning and early
afternoon than in the evening (Figure 12). This indicates a possible inverse relationship
between feeder engagement and vocal activity. During the day, the hens used the feeder
less but had a greater probability of vocalising. Similarly, over experimental days, the hens
used the feeder less often but were more likely to vocalise when they did interact with it.
The probability of vocalising also varied by trial, with the hens in trial 1 having 2.13 greater
odds of vocalising than the hens in trial 2.
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Figure 12. Change in probability of vocalising over experimental days and time of day, separated for
trial 1 and trial 2. Lines show the trend across days and time of day.

3.2.2. Amount of Vocalisations

This study further investigated whether the amount of vocalisations differed depend-
ing on the stimulus that the hens received. Based on visual inspection, hens vocalised
more in response to positively valenced stimuli; however, this may have been caused by
the larger number of files in the positive conditions compared to the negative conditions
(Figure 13A). To account for the unbalanced sample sizes, a random selection of 50 times the
feeder delivered each valence and arousal combination (Positive + Low Arousal, Positive +
High Arousal, Negative + Low Arousal, Negative + High Arousal, total 200 files) was made.
The number of vocalisations made in each 1 min recording was then counted. Consecutive
vocalisations were counted as a single vocalisation if they were separated by less than 2 s
of silence. Plotting the number of vocalisations for these 50 selected files shows that hens
seem to vocalise more to negative than positive stimuli (Figure 13B).
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Figure 13. Number of vocalisations in response to the different stimuli types (A) and in response
to 50 deliveries of the four different valence and arousal combinations (B). Numeric values in (A)
indicate the number of files analysed per stimulus type.

To assess this difference statistically, the glmmTMB package was used to run a gen-
eralised linear mixed model with a Generalised Poisson distribution on the number of
vocalisations. Stimulus valence, arousal, and valence x arousal interaction were included
as fixed predictors in the model. The model’s explanatory power was weak (pseudo-R-
squared calculated with MuMIn package = 0.042). The model’s intercept, corresponding to
valence = negative and arousal = low, was at 1.37 (95%CI [1.33, 1.42, p < 0.001). Within this
model, arousal was the only significant predictor, with hens vocalising significantly more
to high- than low-arousal stimuli (beta = 0.06, 95% CI [0.02, 0.11], p = 0.001, Figure 14). The
effect of valence was statistically non-significant and negative (beta = —0.04, 95% CI [—0.08,
0.002], p = 0.065). The effect of valence x arousal was also statistically non-significant and
positive (beta = —0.02, 95% CI [-0.06, 0.02], p = 0.271).
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Figure 14. Number of vocalisations in response to stimuli with positive or negative arousal.

4. Discussion

To the best of the authors’ knowledge, the present study is the first to explore hens’
voluntary interaction with an ACI device and their vocal activity under evoked emotional
arousal and valence states. The results show that the proposed design motivated hens to
engage with the feeder frequently despite receiving both positive and negative stimuli,
and they only showed a gradual decline in interest after more than a week in one of
the trials. In trial 1, regular feed was provided upon the vast majority of activations,
with the birds engaging with the device even in those cases, suggesting that the hens’
interest was not entirely due to the presence of novel food rewards (mealworms and rice).
This finding is aligned with previous suggestions that animals have an intrinsic drive to
explore that goes beyond foraging for resources [38,39]. The engagement levels observed
in both trials highlight the ACI device’s potential as an effective environmental enrichment
tool for hens. Enrichment strategies that enhance environmental complexity and provide
opportunities for voluntary exploration have been shown to stimulate investigation and
reduce neophobia [40]. The nature of the device, which encourages hens to approach and
interact with it, is aligned with such strategies and might have beneficial effects on hens’
welfare by reducing excessive fear, enhancing cognitive capacity, and improving adaptation
skills [41].

The hens’ feathers absorbed the ultrasonic waves, leading to a situation in which a
bird could be less than 10 cm from the sensor and not trigger it. The system only triggered
when the ultrasound hit featherless areas like the hens’ legs or head. Nonetheless, the hens
quickly learned to activate the system with their head in just a day (multiple activations
were detected; Supplementary Video S1). One possible explanation for this behaviour was
that the sensor itself produces sound within the hens” audible range. Some hens even
started pecking on the sensor. However, this meant that the hens were not positioning
their head directly above the feeder’s baseline container upon feeder activation. Thus, hens
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did not receive an air puff to the face, but were startled by the loud and sudden noise of
the pulff.

The movement or sound of the disc’s rotation seemed to attract the hens’” interest.
Thus, the speaker was mostly useful for defining the onset and offset of feeder activations
in sound analysis and labelling (see Section 2.3.2), rather than attracting hens to the feeder.
Disc movement also posed a problem, as hens started stepping on the disc, which disrupted
the rotating process. Remarkably, the hens even managed to intentionally turn the disc to
reach containers with mealworms (Supplementary Video S3). Pigeon sticks taped on the
surface of the disc successfully prevented such behaviours.

The hens quickly learned how to activate the sensor to obtain preferred treats, although
there was a noticeable difference between the two trials (averaging 244 activations daily in
trial 1 and 72 in trial 2). In both trials, their usage persisted over a week, demonstrating
peaks and troughs despite the introduction of mild punishments such as air puffs and
distasteful food. The following discussion will explore how variations between the two
trials could be due to differences in the probability of reward, the inclusion of mild negative
stressors, and individual differences.

Stimuli were dispensed randomly, but with varying probabilities across trials. Trial 2,
in which mealworms were provided 85% of the time, had 33% less activations than trial 1,
in which mealworms were presented 5% of the time, and the hens’ interest seemed to
be shorter. Such results suggest faster habituation when the reward probability is high.
This aligns with the observations in [42], where it was noted that because animals have
adapted to the unpredictability inherent in their natural environments, the most effective
enrichment strategies are likely to involve rewards that are varied and unexpected. The
lower reward probability of mealworms and rice in trial 1 could have increased the hens’
effort to obtain them, thus increasing the time it took for hens to habituate to the feeder.
When that effort was minimal and mealworms were often provided in trial 2, the hens
showed decreased engagement after a week. Longer trial durations would be needed, with
higher stimulus uncertainty, to fully understand the scope of this phenomenon.

While the negative effects of distress have been widely recognised, the authors
of [43,44] introduced the concept of ‘eustress’ to describe the enhancement of the body’s
natural responses to stressors that are not disruptive to an animal’s homeostasis. Refer-
ence [45] also suggests that introducing positive stressors, which also alter the arousal of
animals but in a beneficial manner, could enhance animals’ cognitive functioning. This is
reflected in our findings, where the integration of mild, non-harmful punishments in trial 1
led to increased feeder engagement. In contrast, trial 2, without negative food stimuli, had
fewer activations. The probability of encountering negative stimuli was 10% in the first
trial and 5% in the second. Despite the startling effect of the air puffs, the hens continued
to actively use the feeders while showing high interest in consuming the mealworms, sug-
gesting that they were willing to risk being startled to acquire preferred foods. Future trials
could eliminate negative stimuli to investigate how these mild punishments contribute to
the overall interest in the device.

Distinct differences in behaviour among individual birds were observed, particularly
in terms of curiosity, inventiveness, and food preferences, which likely contributed to the
varying levels of engagement. All hens were highly motivated to consume mealworms,
but those in the first trial demonstrated a remarkable determination to access them. For
example, a hen manipulated the feeder by manually rotating the disc with her feet to access
the mealworms. This behaviour points to varying degrees of exploration and curiosity
among the birds, with some showing a heightened eagerness to interact with the feeder.
Such differences can be explained with respect to the proactive-reactive axis [46], with
proactive or bold birds showing a higher tendency to explore their environment, while
reactive or shy hens are more cautious with external objects [47].

Regarding this study’s long-term objective, data from the first two trials indicate the
device’s efficacy in eliciting vocalisations, although the probability of vocalising did not
reliably distinguish between emotional valence and arousal. Birds vocalised slightly more
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than half of the time (51%) during feeder activation. Interestingly, the daily and diurnal
patterns in feeder usage did not match the probability of vocalisations or the number of
vocalisations. The amount of vocalisations was positively related to emotional arousal,
aligning with expectations, and suggests that stimuli were effective at inducing the intended
level of arousal. Nonetheless, the measured indices, i.e., the probability of vocalising and
the number of vocalisations, were not reliable indicators of emotional valence. Further
analysis of the vocalisations’ properties would be beneficial to investigate differences across
valence states. It has been proposed [7] that the duration and the frequency distribution of
the spectrum of the calls, as well the type of the call, can help in distinguishing the valence
of animals. Other behavioural and physiological data would help to further validate that
hens” arousal levels were indeed higher or lower as anticipated by the stimuli. Moreover,
expanding this study to include a larger sample of birds would be essential for making
more definitive statements about emotional valence and arousal in chicken vocalisations.

Another unexpected finding was the inverse correlation between feeder activations
and the likelihood of vocalisations across experimental days. Staring with a relatively
high probability, perhaps due to the novelty of the environment, the hens’ engagement
increased while the probability decreased. Over the last experimental days of each trial,
the probability reached the maximum levels, while engagement was either constant or
slightly decreased. Our speculation on this interesting result is that as the hens became
familiar with the provided stimuli, they increasingly produced anticipatory calls when
facing a reward [48] and frustration-related calls when negative stimuli were provided or
when not receiving rewards [49]. Future studies should identify the call types made in
various reward and non-reward conditions and examine whether they increase over time.
The same inverse relationship was observed within experimental days, with birds being
slightly more likely to activate the feeder towards the evening, while the probability of
vocalising was at the lowest level during the same time. Natural behaviours could explain
this phenomenon, with birds being less vocally active during the evening and more active
during the day. Morning hours often include egg-laying and feeding activities [50,51],
during which hens are more likely to produce vocalisations. Analysing the spontaneous
vocal activity of hens could support this interpretation.

One potential issue with the existing setup involves the competition of birds over
access to the provided stimulus, mainly the mealworms and rice. As observed in [40],
hens can be highly competitive even when their nutritional needs are fulfilled. This
was the case mainly in trial 1 and to some extent for trial 2, where dominant hens often
monopolised access to both feeders, using them even when the subordinate hen was the one
that activated the apparatus (Supplementary Video 52). Moreover, in the absence of direct
competitive behaviours, it was observed that birds often used the feeder simultaneously.
Such events can lead to ambiguous emotional states and, consequently, vocalisations that
cannot be assigned to a single context, since one bird might enjoy the provided mealworms
while the other bird produces sounds related to frustration and negative valence. This
study did not specifically focus on identifying which bird activated the feeder or produced
a vocalisation; however, this could further enhance our understanding of individuals’
emotional states. The integration of RFID sensors, coupled with a proximity sensor to allow
only one individual to activate a feeder, might be one way to overcome this problem. This
could reduce the undesired effect of simultaneous usage but not entirely eliminate it, since
the other hen could easily try to reach the feeder’s content after the activation. Another
possible way to bypass this could be the assignment of activations and vocalisations to
individual birds, either algorithmically or by inspecting the video data.

5. Conclusions

This study introduced an interactive feeder designed to elicit vocalisations from laying
hens in different emotional valence and arousal states. The active engagement of the hens
with the feeder over several days highlights its potential as an environmental enrichment
tool. The birds showed motivation to interact with the device, which dispensed both posi-
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tive and negative stimuli, leading to a substantial collection of vocalisations. A preliminary
vocalisation analysis indicated that birds vocalised more in states of high arousal compared
to low arousal. However, the number of vocalisations did not significantly differentiate
between positive and negative valence states. This study lays the groundwork for a deeper
exploration into the emotional states of poultry using vocal expression and underscores
the potential of the presented ACI device in animal welfare research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani14091386/s1.
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Simple Summary: I trained an American black bear in human care to choose different response
buttons when presented with an image of either a highly preferred or a less preferred food item.
The bear learned to choose the appropriate response button when presented with the preferred
food item at above chance levels and differentiated between the use of the buttons appropriately.
However, she did not reach a high level of performance with the less preferred food item even after
over 1000 trials, suggesting that performing a conditional discrimination on the basis of preferences
may be challenging for black bears. However, the work presented here represents the first attempt to
train a bear to indicate her relative preferences using something like a Likert scale commonly used
with humans to indicate their preferences and could be a valuable welfare tool for animals in human
care. Similar work with gorillas suggests that bears are as capable as great apes in learning such tasks
and would also benefit from this type of technical enrichment.

Abstract: A preference scale for use by nonhuman animals would allow them to communicate their
degree of liking for individual items rather than just relative preferences between pairs of items. It
would also allow animals to report liking for images of objects that would be difficult to directly
interact with (e.g., potential mates and habitat modifications). Such scales can easily be presented
using touchscreen technology. Few zoos have used touchscreen technology for species other than
nonhuman primates. I present a description of efforts taken to create such a scale for use with a single
zoo-housed American black bear (Ursus americanus). Although the bear did not reach a high level of
proficiency with assigning preferred and non-preferred food items to categorical responses of “like”
and “dislike,” she was able to learn how to use the like and dislike buttons differentially for a single
preferred and less preferred food item and she selected the correct response button for the preferred
item at above chance levels. These data contribute to our limited understanding of black bear
cognition and suggest that conditional discriminations may be difficult for black bears. This finding
can inform continued efforts to create a simpler tool for nonhumans to communicate their preferences
to human caregivers in a more nuanced way than is currently possible. More generally, the current
study contributes to the growing body of work supporting the use of touchscreen technology for
providing enrichment to less studied species like bears.

Keywords: black bear; Ursus americanus; conditional discrimination; welfare; rating; ranking

1. Introduction

While touchscreens are becoming increasingly common for enrichment or research
purposes in zoo-housed nonhuman primates, the number of other species provided with
this level of technical enrichment remains extremely small. Bears are widely recognized
to be highly intelligent and curious animals that could benefit from more complex and
dynamic enrichment. Although there is a paucity of work describing bears’ visual abilities,
early work suggested that black bears discriminated various hues from grey, having
difficulty with only red—green discriminations [1]. In addition, bears have been successfully
trained to make categorical discriminations between stimuli presented on touchscreens (e.g.,
brown bears, Ursus arctos, Bernstein-Kurtycz et al., personal communication; American
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black bears, [2-6]; Malayan sun bears, Helarctos malayanus [7], and polar bears, Ursus
maritimus (Jeremiasse et al., personal communication). Not only do bears appear to enjoy
the stimulation provided from interacting with trainers through touchscreen training,
the use of the computer presents researchers with novel ways to communicate with the
bears. Computers have often been used in zoological settings to provide enrichment—most
typically for nonhuman primates [8-10] but also for other species like parrots [11]—in
the form of games, puzzles, or auditory enrichment. Computer interfaces have also been
used to conduct assessments of animal well-being [9,12]. Computer interfaces can also be
used to present images of foods and other objects, which subjects can then indicate their
preferences for. For example, researchers recently presented a tablet to a Goffin’s cockatoo
(Cacatua goffiana) so that the bird could select symbols representing various items, activities,
or interactions. Their results suggested that the single cockatoo subject could use the tablet
effectively to request objects and interactions that presumably had positive effects on her
well-being [13]. The current study aimed to provide a means for a bear to symbolically
communicate preferences for the first time.

Understanding individual preferences is critical for optimizing an animal’s environ-
ment and ensuring positive welfare. Preferences can inform habitat planning, husbandry,
enrichment, and food provisioning [14]. Traditionally, preferences have been assessed
indirectly by measuring degree of engagement with different enrichment items, foods,
and environmental features etc. (e.g., [15,16]); objects that trigger different events like
sounds [10], approach, and avoidance behavior (e.g., [17]); or efforts exerted to obtain
access to space, social companions, or objects [18-20]. Preferences have been assessed more
directly with forced choice tests between pairs or groups of real objects (e.g., [21-25]) or
choices of symbols representing options like sounds [26]. These methods assess relative
preferences among pairs or groups of choices, but fail to provide a more nuanced assess-
ment of amount of liking (e.g., this object is liked to some degree compared to this item that
is liked very much). Importantly, only objects that can be safely presented for investigation
can be used in assessments involving real objects. In addition, paired-choice tests require
the repetition of multiple pairings across items, which can be time consuming and can
result in satiation when assessing preferences for foods or rewarding the individual for
their choices. I attempted to develop a novel method to assess the degree of liking for
various elements of the environment presented in pictorial form in an American black bear.
This scale would ultimately allow her, and other nonhumans, to indicate preferences for
food, enrichment, care staff, environments, sounds, and other stimuli that are not physically
present at the time of assessment. Ultimately, I wished to be able to assess preferences for
unfamiliar and previously inexperienced stimuli, such as planned habitat changes, possible
mates, or even images representing more abstract concepts such as natural environments.
Notably, preferences can be assessed in a single trial using this method once the animal un-
derstands the meaning of the end-points. I began training the bear to use such a nonverbal
animal preference scale (NAPS) using images of foods for which her relative preferences
could be determined.

In humans, preference scales are commonly encountered in product assessment,
customer satisfaction surveys, and research into attitudes, beliefs, and personality traits.
Such measures typically take the form of Likert scales [27], which allow respondents to
indicate relative preference for items or agreement with ideas. One of the advantages
of this type of scale is that respondents are able to indicate when they do not like an
item at all rather than being forced to choose between equally preferred or non-preferred
items. Rather, items are presented one at a time with a rating scale that has end-points
representing a spectrum of agreement (e.g., from “strongly dislike” to “strongly like”).
Using paired-choice tasks, an item might never be selected because it is less preferred than
the other options, but it would not be possible to determine whether this item may also
be liked rather than disliked. Preference scales have been widely adopted for research in
multiple disciplines due to their flexibility [28]. Although there has been only one other
known attempt to use such a scale with nonhumans, which I conducted concurrently with
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a bachelor group of gorillas (Gorilla gorilla gorilla, [29]), nonverbal versions have been used
with human children [30,31] and clinical patients [32]. In these cases, verbal scale endpoints
are replaced with intuitive images such as facial expressions to denote degree of liking [33],
level of pain [34,35], and mood [36]. Therefore, although admittedly more complex and
abstract relative to existing methods for assessing preferences, it seemed desirable and
feasible to adopt similar methods to train nonhumans to use such a scale.

It should be noted that even pictorial Likert scales require verbal instruction, and
a recent meta-analysis reveals that children below the age of five years cannot reliably
use self-report measures of health outcomes. Furthermore, children below eight years of
age may not be able to use a scale with more than two response options [37]. Therefore,
training nonhumans to understand the construct of a sliding scale of preferences posed
several challenges, not the least of which was deciding upon scale end points that might
intuitively reflect “dislike” and “like.” Training animals to understand task requirements
without verbal instructions is not a novel challenge, but does necessitate a prolonged period
of training prior to administering the test in contrast to the type of one-off assessments
conducted with human respondents. Second, because constructs of liking or preferences
might rely on explicit self-knowledge, use of a preference scale may depend upon a degree
of abstraction beyond the grasp of most nonhuman animals. There is no existing work that
suggests that nonhumans can accurately report on their own (or others’) preferences when
directly asked, and indeed, it has been noted that it would be difficult to learn signals of
others’ preferences when they are discordant from our own, especially inconsistently so [38].
However, as a starting point, effective use of the scale could be acquired through a simpler
process of association between items that evoke a particular visceral response (e.g., disgust,
excitement) and different operational responses (use of the different response buttons). A
process of generalization might support the appropriate use of response buttons associated
with negative and positive feelings toward novel stimuli. Thus, use of the NAPS could be
assumed to measure relative preferences for categories or objects that can be represented
physically regardless of whether the subject explicitly represents the items as “things I
dislike and things I like”.

Although stimuli to be rated could be presented in any modality perceived by the
organism, use of a touchscreen system is most suitable for visual or auditory stimuli.
Successful implementation of a visual NAPS requires that subjects understand the corre-
spondence between pictures and their real-life referents. Many species have demonstrated
picture—object correspondence (for review see [39]; e.g., in pigeons, columbidae [40]; in kea,
Nestor notabilis [41]; macaques, Macaca silenus [42]), including the black bear that is the
subject of the current study [2]. This apparently widespread ability supports the computer
touchscreen methodology used here. However, another challenge with the NAPS is that
stimuli, both in training and testing, must be subject-specific. To train subjects to use the
NAPS, it is necessary to train them to understand what the different response buttons
represent using stimuli for which the researchers already know the subject’s preference.
These buttons must be presented at the extreme ends of a spectrum (i.e., spatially) so that
responses representing intermediate levels of preference can be added later to allow a more
nuanced scale of preference. Once appropriate use of the most extreme response buttons is
established for items for which preferences are known, researchers can introduce the use of
intermediate buttons, and finally, begin assessment of preferences for novel items. Here, I
presented the bear with images of food items based on her preferences as indicated by her
care staff to train her on the use of the scale.

I conducted a simple validation of the food preferences indicated by the care staff by
presenting the bear with a set of images of preferred versus less-preferred food items on a
touchscreen in a two-alternative forced-choice task. As with gorillas tested previously [29],
it was expected that the bear would spontaneously select images of the preferred items.
As expected, the bear selected the images of preferred over less preferred foods at above
chance levels even when items belonging to the preferred and less preferred categories were
continuously changed, which was done to ensure the generalizability of the concept. Others
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have provided a similar validation of the use of pictorial stimuli to assess food preferences
in other species with many of these subjects showing generalization of choices to novel food
images within the same categories of preference (e.g., sloth bears, Melursus ursinus, [43];
lion-tailed macaques, Macaca silenus, [42]; gorillas, [18,44,45]; Japanese macaques, Macaca
fuscata, and chimpanzees, Pan troglodytes, [45]). Early work with black bears showing their
stable food preferences [15] and my own previous work with black bears making natural
category discriminations using a touch-screen (e.g., [4,6,46]) made me optimistic that this
new black bear subject would become proficient in communicating her preferences for items
presented visually using the NAPS. Furthermore, there is some existing evidence that great
apes—at least those that have received some symbolic/language training—can appropriately
use symbols representing “bad” and “good” [47], and can use pictures to communicate
desires [48] and my previous work with bears and apes suggested that they were capable of
representing similar levels of abstraction compared to great apes [3-6,46,49,50]. Ultimately, I
wished to present the task with a 5-point scale, but given the difficulties of gorillas trained
previously [29] with the use of a neutral response button, I began training the bear with only
the two extreme (non-preferred and preferred) response buttons. Had she demonstrated
proficiency with these two end-points, I would have gradually added in additional response
buttons along the spatial continuum.

2. General Method

The studies reported here were approved by the IACUC of Oakland University (Pro-
tocol #12082) and the Animal Welfare and Management Committee of the Detroit Zoologi-
cal Society.

2.1. Subject

One wild-born female American black bear (Migwan, Basel, Switzerland), age 11 years
at the beginning of the study, participated in this study when she resided at the Detroit
Zoo, Royal Oak, MI, USA. Migwan was rescued from the wild at a very young age and
rehabilitated due to injuries. She was housed individually. Although experimentally naive,
Migwan had participated in husbandry training. For example, she was target trained using
positive reinforcement, including clicker training.

2.2. Materials

All experiments were programmed in Real Practice or Inquisit 3.0 (millisecond.com)
and presented on a Panasonic CF-19 Toughbook or an Asus Aspire One Laptop projected
to a 19” VarTech Armorall capacitive touch-screen monitor. The touchscreen monitor was
affixed to the front of a rolling LCD cart. The touchscreen monitor was secured flush to
the front of the steel mesh with bungee cords to secure the screen in place so that Migwan
could touch the screen with her tongue through the gaps in the mesh. The care staff
member and researcher always tested the touchscreen from the bear’s side of the mesh
prior to letting the bear into the indoor testing habitat. The laptop sat on a shelf on the cart
behind the touchscreen (Figure 1). The experimenter stood against the back wall of the
indoor area behind the cart and did not interact with the bear during trials. The care staff
member placed the food rewards into a PVC tube affixed to the steel mesh to deliver food
rewards for correct responses without any direct contact. This staff member always stood
to the same side of the touchscreen during trials and did not direct attention to the bear or
the laptop.
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Figure 1. Experimental set-up showing Migwan peering from around the edge of the touchscreen.

Stimuli used in the experiments were non-copyrighted photographs downloaded
from various websites or images drawn in Microsoft Paint. These stimuli included images
of various foods, and two-dimensional shapes such as circles, squares, triangles, and
misshapen objects drawn in blue, yellow, red, and green. Food items used to reward correct
responses composed a minimal proportion of the bear’s daily diet (e.g., almonds, biscuits,
raisins, grapes).

2.3. General Procedure

The research took place in a non-public area of Migwan'’s indoor habitat. She partici-
pated in testing three afternoons a week at around 13:00 h between April to September in
2014 and 2016. Migwan did not participate in testing from October to March as she was
in a state of torpor during the colder months. During the spring and summer months of
2015, Migwan participated in other tasks including a picture-object correspondence test [2]
and an ambiguous cue affective bias task [3]. She also participated in a novel judgement
bias task that was conducted simultaneously from April to September 2016 [5]. Testing
took about 10-15 min each test day, and Migwan completed 4-5 sessions of testing each
day. Participation in the tasks was entirely voluntary. Testing for the day ended when
Migwan had consumed an appropriate number of rewards as determined by the care staff.
A flowchart of the experimental phases is presented in Figure 2.
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Figure 2. Flowchart of the phases of the experiment.

If Migwan selected the correct stimulus, a pleasant auditory beep was emitted, the
touchscreen turned white, and the care staff member assisting with the trials placed a
small food reward down a PVC chute affixed to the mesh. If Migwan selected an incorrect
stimulus, there was no audio feedback, the touchscreen turned black, and there was a
500 ms inter-trial interval.

2.4. Phase 1 Training

Migwan had already been trained to target and to station by her caretakers using
positive reinforcement. Prior to beginning the study, she was trained by her care staff
to station in front of the touchscreen without it being turned on. She was rewarded for
targeting to a familiar target by touching it with her nose. Once she was reliably touching
the target positioned right in front of the screen, the care staff removed the target and
rewarded Migwan for touching the blank screen with her nose. This training took a period
of approximately one week.

To train Migwan to use the touchscreen, I first presented her with a two-alternative
forced-choice task where she was presented with two stimuli drawn in Microsoft Paint: a
yellow square on a white background and a blue circle on a black background. She was
reinforced for selecting the blue circle and not reinforced for selecting the yellow square.
The idea was to create a positive association with the blue circle and not with the yellow
square so that these would be intuitive response buttons for the end-points of the scale,
with the blue circle representing “like or preferred” and the yellow square representing
“dislike or less preferred.” The two stimuli filled most of the screen. The response button
covered 80% of the stimulus so that Migwan had to touch the center of the stimulus and
could not activate it just by nudging the edge of the stimulus. She was reinforced only if
she used her tongue or nose to contact the touchscreen, not for using her paw. Migwan
participated in, on average, four sessions a day, three days a week between April and July,
2014. The stimuli were presented in 20-trial sessions with the side of the correct stimulus
(the blue circle) counterbalanced within the session.

In each trial, the stimuli appeared simultaneously and disappeared when one of them
was selected. If Migwan selected the blue circle, a tone sounded, the screen turned white,
the care staff member placed a food reward in the PVC tube affixed to the mesh, and the
next trial commenced after 500 ms. If she selected the yellow circle, there was no sound,
the screen turned black and she received no food reward. The inter-trial interval was
the same. The criterion was set to four consecutive sessions at 80% correct or better (i.e.,
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16/20 correct responses) or two consecutive sessions at 90% correct or better (i.e., 18/20
correct responses).

2.5. Food Preference Assessments

To assess a spontaneous preference for images of preferred foods, I again used a two-
alternative forced-choice procedure. Sessions included 20 trials and were identical to the
training task described above except for the stimuli used. Migwan completed 39 sessions
of this task. On each trial, a food indicated by the care staff to be preferred by Migwan was
randomly paired with beets, lettuce, or carrots (on sessions 5 and 6), which were foods
identified by care staff as being least preferred by Migwan. An image from the preferred
category was randomly paired with an image from the non-preferred category on each trial
and presented in random order. Table 1 indicates which food items were presented in each
category on each session along with the number of trials on which each food image was
presented within a session. One photo was used for each of these food types. Changes in
the food items presented were made to test the generalizability of Migwan’s preferences.
The side the non-preferred foods were presented on was counterbalanced within sessions
with the constraint that they could not appear more than three times consecutively on
the same side of the screen. Migwan was rewarded if she selected one of the presumed
preferred foods and not if she selected the presumed non-preferred foods.

Table 1. Foods presented for each session of Food Preference Assessment.

Sessions Preferred (# of Trials in Parentheses) Non-Preferred
14,7 Apples (4), Sweet Potatoes (4), Grapes (4), Kiwi (4), Oranges (4) Beets (20)
5-6 Apples (4), Sweet Potatoes (4), Grapes (4), Kiwi (4), Pear (4) Beets (8) Lettuce (8), Carrots (4)
8-10 Apples (4), Carrots (4), Grapes (4), Kiwi (4), Oranges (4) Beets (20)
11-13 Sweet Potatoes (5), Grapes (5), Kiwi (5), Pear (5) Beets (20)
14-15 Apples (5), Pineapple (5), Pear (5) Oranges (5) Beets (20)
16 Pear (5), Apples (10), Oranges (5) Beets (20)
17-18 Apples (4), Sweet Potatoes (4), Grapes (2), Strawberries (2) Pear (8) Beets (20)
19-21 Apples (5), Sweet Potatoes (5), Pear (5), Kiwi (5) Lettuce (20)
22-24 Apples (7), Sweet Potatoes (6), Pear (7) Beets (20)
25-27 Apples (5), Sweet Potatoes (5), Grapes (5), Kiwi (5) Beets (20)
28-31 Apples (4), Carrots (4), Grapes (4), Pear (4), Cantaloupe (4) Beets (20)
32 Apples (5), Orange (5), Grapes (5), Cantaloupe (5) Beets (20)
33 Grapes (7), Pineapple (6), Sweet Potato (7) Lettuce (20)
34 Grapes (4), Pineapple (4), Sweet Potato (4), Carrots (4), Kiwi (4) Beets (20)
35-36 Grapes (5), Pineapple (5), Sweet Potato (5), Kiwi (5) Beets (20)
37-39 Apples (5), Carrots (5), Pear (5) Oranges (5) Beets (20)

2.6. Phase 2 Training Continuation

I next presented Migwan with a session of 20 trials of photographs of beets paired
with the image of the blue circle (with side counterbalanced), where she was rewarded only
for touching the blue circle to reinforce the idea of the blue circle as something positive and
the beets as something not positive.

I then presented a single 20-trial session where the blue circle was paired with images
of the preferred foods. As expected, she performed at chance, choosing the blue circle only
10 times, suggesting that she perceived the blue circle as equally positive, or likely to lead
to reward, as the images of the preferred foods.

I then presented Migwan with five additional sessions of the blue circle paired with
the yellow square to ensure she was still performing at criterion with the training stimuli.

2.7. Phase 3 NAPS Training

I created a computer program in Inquisit v. 3 that presented an image of a less preferred,
or a preferred food in the center of the screen that, once touched, prompted the appearance of
a response button in the top left (yellow square) or top right (blue circle) of the screen. The
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food image remained on the screen, centered in the bottom half of the screen once the response
buttons appeared (Figure 3). Each response button took up about 30% of the top half of the
screen. These sessions consisted of 10 trials (5 with beets and 5 with grapes). Only one image
was used to represent each food type (beets for the less preferred item and grapes for the
most preferred item) and it was the same image used during the food preference assessments
described above. Migwan was trained to associate images of beets with the yellow square
response button and images of grapes with the blue circle response button. On each trial, there
was only one available response button. When Migwan selected that button, a beep sounded,
the screen turned white and the care staff member placed a food reward in the PVC chute.
The next trial began once Migwan had touched the image of the food and the subsequent
response button with her nose or tongue. Migwan completed 7 sessions of this phase.

Figure 3. Sample trials of Phase 3 NAPS with the preferred food (top) and less preferred
food (bottom).

2.8. Phase 4 NAPS Training

In Phase 4 of Training, sessions consisted of 10 trials, which were the same as above
except that both response buttons appeared simultaneously on every trial and Migwan
was rewarded only if she chose the correct one (Figure 4). Migwan completed six sessions
of this phase.

Figure 4. Trial of Phase 5 NAPS.
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2.9. Phase 5 NAPS Training

Because I had successfully trained Migwan to associate the blue circle with reward,
she was understandably reluctant to choose the yellow square even on trials when it would
have been the correct response (i.e., when beets were presented). Therefore, I trained her to
select the yellow square when beets were presented in this phase. This phase consisted of
10-trial sessions in which beets were always the food stimulus (always the same image as
used previously) and both response buttons were presented simultaneously after she had
touched the image of the beets (Figure 4). She was rewarded only for touching the yellow
square/dislike button. Criterion was set to 80% correct responding for four consecutive
sessions. Migwan received 13 sessions of this phase and then testing went on hiatus for
fall torpor.

2.10. Testing Hiatus

When I resumed testing in April 2015, I focused instead on a picture—object corre-
spondence task, which validated the use of two-dimensional images to represent objects
for Migwan to rate [2]. I also presented her with a judgement bias test to assess affect
changes across seasons [3]. In the spring of 2016, I returned to training Migwan in the
current task. I trained her in several simpler conditional discrimination tasks using simple
shapes (green triangle, red oval) rather than non-preferred and preferred foods to validate
her ability to perform a conditional discrimination, before returning to the version of the task
involving foods in the fall of 2016. Migwan learned to select a novel grey square response
button conditional on being presented with a green triangle and to select a novel purple
circle response button in response to being presented with a red oval. It took her 49 sessions
(490 trials) to reach criterion and she successfully transferred at above chance levels to different
images of the same shapes and colors as the original training stimuli. However, it took her 38
and 46 sessions to reach criterion again with the transfer shape and color stimuli, respectively.

2.11. Phase 6 NAPS Training

Having established that Migwan could learn this conditional discrimination task with
less abstract decision rules, I returned to the task of training her to respond differentially
to preferred and less preferred foods almost two years later. I presented Migwan with a
version of the NAPS in which carrots were presented as the less preferred food and grapes
were presented as the preferred food. I switched from beets to carrots as the less preferred
foods to maximize the difference in appearance of the two presented foods as both beets
and grapes were of a similar purplish color, and upon the suggestion of her care staff
who noted that Migwan no longer preferred carrots relative to other foods from her daily
diet. I verified that Migwan did not select carrots until all other foods were selected when
presented with a handful of foods from her regular diet in her water trough. I also used the
newly trained response buttons so that the dislike button was a gray square and the like
button was a purple circle within a black background to mitigate against Migwan'’s retained
preference for the blue circle as the like button. The locations of the stimuli remained the
same with the food appearing in the center of the bottom half of the screen and the dislike
button appearing on the top left and the like button appearing on the top right.

Each session consisted of 10 trials: 5 in which carrots were presented and 5 in which
grapes were presented, in random order. Both response buttons appeared simultaneously
on the screen after the food item was selected by Migwan. She was rewarded for selecting
the dislike button if carrots were shown and the like button if grapes were shown. Migwan
completed 112 sessions of this phase between 4 August and 30 September 2016 before
testing was halted. Testing took place three times a week at 13:00 h. Migwan simultaneously
participated in a novel test of judgement bias during this time [5]. Migwan moved to
another facility in 2017 and could no longer be tested.

3. Results
Analyses were conducted using SPSS v. 28. Alpha was always set to p = 0.05.
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3.1. Phase 1 Training

Migwan reached criterion in 35 sessions (approximately 700 trials with some sessions
missing some trials).

3.2. Food Preference Assessment

Initially, Migwan had a strong left side bias. She eventually met criterion with two
consecutive sessions at 90% correct by session 33 but I continued testing her with additional
minor changes to the composition of the food items and she reached criterion again with
four consecutive sessions at 90% or better by her 39th session (780 trials). Overall, she chose
the preferred foods at levels above chance determined by a one sample Wilcoxon signed
rank test (Z = 4.434, p <0.001). Her performance improved across sessions, as can be seen
in Figure 5. There was a significant difference in performance between the first and last
halves of the testing sessions, Wilcoxon, Z = —3.732, p < 0.001.
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Figure 5. Average number of trials in which preferred foods were chosen during the food prefer-
ence assessment.

3.3. Phase 2 Training Continuation

Migwan chose the blue circle 13 times on the single session in which it was paired
with beets. In the single session, in which it was paired with preferred food items, she
selected it 50% of the time. Across the five sessions in which it was paired with the yellow
square, Migwan chose it on 80% or more trials on all but a single session, where she chose
it 11 times.

3.4. Phases 3 and 4 NAPS Training

In Phase 3, only the correct response button appeared on each trial so Migwan was
100% correct on all 7 sessions. In Phase 4, Migwan chose the dislike response button only
once across six sessions, so her performance was at chance.

3.5. Phase 5 NAPS Training

On the first four sessions, Migwan chose the dislike button correctly 50% of the time.
However, by the end of 12 sessions, she had met the criterion, responding at 80% or more
for four consecutive sessions. She was accidentally given a 13th session, on which she also
scored 80% correct. Testing went on hiatus for torpor after this phase.
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3.6. Phase 6 NAPS Training

Migwan completed 112 sessions. She responded equally quickly to touch photos of
carrots (M = 2672.87, SD = 15,881.30) and grapes (M = 2596.05, SD = 18,051.841, p = 0.93
with a Wilcoxon signed ranks test).

Her average performance across all sessions was 56.61% correct, which was signifi-
cantly above chance, (binomial test, N = 64, p < 0.001). She did not reach criterion; however,
she had a run of three sessions at 80% correct between sessions 75 and 77 and she missed
meeting criterion by a single trial by the 107th session. When comparing her performance
on the first half of sessions (M = 55.36, SD = 1.33) to performance on the last half of ses-
sions (M = 57.86, SD = 1.67), she showed little improvement. A Wilcoxon signed rank test
confirmed no significant difference in performance between the first half and last half of
sessions, Z = —0.123, p = 0.092. Figure 6 shows her performance across blocks of 4 sessions
(40 trials).
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Figure 6. Performance on the Final NAPS Training Task.

Migwan’s performance on trials where carrots were shown was not significantly
different from chance, M = 0.48, SD = 0.500, binomial p = 0.488, but her performance was
significantly above chance when grapes were shown, M = 0.67, SD = 0.471, p < 0.001.

I also conducted Chi square tests of independence to test whether the food item pre-
sented on that trial was significantly associated with selection of the different response
buttons. The likelihood of choosing a particular response button was significantly asso-
ciated with the food that was shown, X? = 26.066, p < 0.001. Migwan was more likely
to choose the dislike button for carrots and the like button for grapes, as can be seen in
Figure 7.

To test whether the latencies to respond were a function of the response button
chosen (dislike, like, referred to henceforth as “response”) and correctness of the response
(henceforth “correct”), I used a generalized linear model (GLM) with a gamma distribution
and a log link function. I included response, correct, and their interaction as fixed effects
in the model. Response significantly predicted response time, X = 34.092, p < 0.001, but
correct did not, X? = 0.139, p = 0.709. However, response interacted with correct to predict
response latencies, X? = 6.918, p = 0.009. The difference in response latencies for correct
and incorrect responses was more pronounced if the dislike button was selected. In this
case, Migwan was quicker to select dislike when it was the correct response (M = 952.99,
SEM = 36.920) compared to when it was the incorrect response (M = 1082.40, SEM =
50.204). She showed the opposite pattern when choosing the like response. With the like
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response, she was faster to respond incorrectly (M = 1221.11, SEM = 45.816) than correctly
(M =1334.46, SEM = 43.864). These data appear in Figure 8.
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Figure 7. Number of Trials in which Responses were Selected for each Food in Phase Six.
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Figure 8. Response Latencies as a Function of Response and Correctness in Phase 6.

4. Discussion

I report on the first attempt to train a bear to use symbols to communicate her prefer-
ences. Members of many other species, including nonhuman primates [47,51], domestic
dogs [52], dolphins [53] parrots [54], and a cockatoo [13] have shown the ability to use sym-
bols to communicate to varying degrees. Despite lofty intentions of training a black bear to
use a touchscreen to communicate her preferences for two-dimensional stimuli, the task,
which depended upon a conditional discrimination, proved very difficult to train, as it had
been for three gorillas trained in parallel [29]. This was somewhat surprising as the bear
had previously outperformed the gorillas in two conditional discrimination tasks used to
assess judgement bias [3,5,49,50]. Furthermore, conditional discrimination tasks have been
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mastered by individuals of various species, including pigeons [55], rats [56], octopuses,
cuttlefishes [57], squirrel monkeys [58], and chimpanzees [59], so the task should not have
been beyond Migwan’s capability. Notably, the previous tasks involved associations be-
tween stimuli defined merely by shape and color and different response outcomes, whereas
the current study aimed to test associations between broad abstract categories of preferred
and less preferred foods. A construct concerning preferences is highly abstract and there is
no existing evidence that nonhumans can represent a concept of their own or others’” prefer-
ences. Because the preferences of others can inconsistently match or differ from our own, it
is likely a challenging construct for nonverbal organisms to represent [38]. However, there
is some evidence that at least three language-trained apes appropriately used lexigrams
representing “good” and “bad” and applied them in a manner that was appropriate and
consistent with their human caretakers’ notions of good and bad behaviors [47]. There
is also growing evidence that nonhuman mammals are capable of internally generating
hedonic experiences in the absence of an external stimulus [60], making the use of a Likert
scale for reporting preferences for symbolically represented aspects of their environment
feasible. Furthermore, the current study progressed only to the point of training Migwan
to associate a particular response with one preferred and one less preferred food, so should
not have been conceptually more abstract than the previous studies. Unfortunately, due
to Migwan’s move to another facility, I was unable to continue testing her. I had initially
aspired to train Migwan to use a five-point scale indicating a more nuanced sliding scale of
preferences for items for which I did not already know her preferences, but I was unable to
reach this goal.

However, there are some promising data from this project. First, Migwan did learn to
perform at above chance levels in the NAPS presenting only a single preferred and less-
preferred food item, and she missed our somewhat arbitrary criterion level of performance
by only a single trial. Thus, one could conclude that she acquired the discrimination.
However, she performed with greater accuracy when presented with an image of the
preferred food—grapes. This may not be surprising given that, in this final phase of
training, I had replaced the previously trained less preferred beets photo with a photo
of carrots. Carrots were less consistently presented as a member of the “less preferred
food” category across all of the training presented here. One of the major limitations of
this study is that I do not have data from systematic preference tests verifying the care
staff’s indication of Migwan'’s preferences, although I did conduct informal assessments by
presenting multiple food items in the water trough and I observed that Migwan did not eat
beets when presented as rewards and did not choose carrots when presented alongside
other options.

When presented with forced-choice tests of preferred versus non-preferred foods,
Migwan did not spontaneously select the images of preferred foods at above chance rates
unlike two of three gorillas [44], lion-tailed macaques [42], and two sloth bears [43] tested
in food preference assessments with images of foods. However, Migwan did choose the
preferred foods at above chance levels across all 39 sessions, and did learn to select them
to a criterion of 80% over the course of testing, suggesting that she may have formed
categories for “preferred foods” over “less preferred foods.” It is less likely that she merely
memorized which food photographs were associated with reward because I changed the
food photographs periodically. However, it is true that beets, carrots, and lettuce were the
only foods used as non-preferred foods so she may have simply learned not to select those
images. I did not have the opportunity to test generalization to other photographs or to
other preferred and less preferred foods to verify that she had formed such categories.

To further corroborate the conclusion that Migwan could learn to use the NAPS, she
showed differential use of the response buttons dependent upon which food item had been
presented on that trial, as did one of the gorillas tested in a similar procedure [29]. However,
she used the buttons more accurately when the preferred grapes were shown, and did not
clearly differentiate her use of the dislike and like buttons when the less preferred carrots
were shown. It is possible that our initial training, in which I selectively rewarded Migwan

163



Animals 2023, 13, 1554

for choosing the “like” button in order to reinforce its association with something positive,
biased Migwan to the like button even when I changed its image in the final phase of
training (the spatial location remained the same). It should be noted, though, that I did
not train the gorillas selectively with the like icons used in their training, and they also
struggled to learn this task with two of the three gorillas receiving many more trials in the
initial training phase than the 1120 trials Migwan received [29]. Furthermore, although
Migwan chose the like button more often, she did not choose it as often when it was
incorrect as she did when it was correct. It was also not the case that every error involved
inappropriate selection of the like button. Migwan also mistakenly chose the dislike button
sometimes when grapes were presented. That she was above chance overall but did
not show marked improvement across trials suggests that she had some spontaneous
understanding of the task when I resumed testing in the fall of 2016, but did not develop
an abstract conceptualization of the conditional discrimination nature of the task.

As with the gorillas who also struggled with this version of the task [29], I interrupted
training on the NAPS with preferred and less preferred foods to present what I imagine to
be a simplified conditional discrimination task using two-dimensional shapes of two colors
(a green triangle and a red oval) associated with two new response buttons. Eventually,
Migwan met a learning criterion. She met criterion more quickly with shape cues compared
to color cues, which was in contrast to the gorillas who matched the colors more accurately.
This is interesting because human children show a bias to attend to shape over color
whereas chimpanzees tested in the same relational matching task showed the opposite
bias and performed better on color matching trials [61]. These differences aside, both
Migwan and two of the gorillas were able to learn the conditional discrimination task
when presented with arbitrary shapes rather than images of food that were linked to their
own preferences, suggesting that the mechanics of the task itself are not beyond their
abilities, but that responding on the basis of their own preferences may be too abstract and
require too much training to become a practical tool for use with animals in human care.
This suggests that other procedures like token exchange [62] or the use of a progressive
ratio reward schedule [63,64] to assess motivation to obtain rewards might have greater
potential as a tool to assess animal preferences. In particular, although I had ultimately
planned to present a 5-point Likert scale with five response buttons, adding more than
two response buttons may be too challenging for nonhuman subjects [29], as human
children cannot reliably use a 3-point scale until the age of eight years according to a recent
meta-analysis [37].

Another limitation of the present study was the limited number of images used to
represent the categories of preferred and non-preferred foods. Subjects show more robust
transfer following training with a large number of exemplars representing categories,
although training with multiple exemplars may slow acquisition of a category [65]. Training
Migwan that she would not be rewarded for selecting the yellow square that represented
the dislike button slowed her acquisition of the NAPS. In future, I would instead use
images of items that held differential appeal for the like and dislike buttons. Although
Migwan did quickly (i.e., within 120 trials) reach criterion in a task where selecting this
button was always correct, she remained slightly biased toward the use of the like button
even when the less preferred food image was presented and even when the images for the
response buttons were replaced. That she did learn to use the dislike button, and to use
it more often when it was rewarded (i.e., when the less preferred carrots were presented)
indicates her flexibility in updating prior learned reward contingencies.

It is possible that presenting Migwan with other tasks in the intervening periods and
breaking from training during torpor may have interfered with her reaching criterion levels
of performance in this task. However, Migwan came very close to passing the admittedly
somewhat arbitrary criterion. Furthermore, it should be noted that Migwan'’s performance
was quite exceptional in other tasks presented to her over the same period. In fact, she
outperformed gorillas on several similar cognitive tasks [3,5,49,50]. Therefore, her ability
to perform accurately was not generally hampered by the presentation of multiple tasks
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during the same period of testing. In fact, she demonstrated remarkable flexibility in
switching between tasks.

5. Conclusions

Although this particular attempt to develop a NAPS suffered from several limitations,
it is my hope that other researchers are inspired to improve on these methods. Developing
such a tool would provide a valuable new method in which nonhumans could communicate
their degree of liking for various items in a single trial, including for things that cannot be
physically presented. The use of a NAPS, once trained, allows an assessment of stability of
preferences over time without numerous repetitions of pairs of items over many trials. This
may be especially appealing for assessing food preferences when foods cannot be presented
repeatedly due to satiety or other factors. Notably, the basic idea for the NAPS can be
extended to the presentation of auditory, olfactory, or tactile stimuli and response buttons
can be presented in other forms other than touchscreen buttons. Thus, the basic paradigm
could be easily modified to suit various species and modalities of presentation. However,
use of the touchscreen allows for random presentation of stimulus items and the recording
of both responses and latencies to respond. Both measures provided some indication here
as to how Migwan was understanding the task. Although the present study was motivated
by the desire to develop a novel welfare tool, it also provides some insight into black bear
cognition. Bears are still quite understudied with regard to their cognition. Migwan’s
performance in this study suggests that she can learn conditional discriminations, but that
black bears, similar to other nonhumans, may not represent categories that are defined
by unobservable features, such as relative preferences. Understanding such fundamental
differences in how humans and nonhumans conceptualize their worlds will allow us to
fully appreciate the uniqueness of other intelligent species and improve our abilities to
provide them with the most appropriate stimulation while they are in our care.
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Simple Summary: As agriculture and human settlements expand, conflicts between hu-
mans and animals become more frequent, resulting in resource loss and safety risks. There-
fore, accurately identifying and locating offending animals is essential. This study presents a
novel method for automatically detecting offending animals, especially in situations where
they are obscured or the images are unclear. This research focused on six types of offending
animals commonly found in northeastern China. By employing improved image processing
techniques, this study enhanced detection accuracy in complex environments. Experimental
results demonstrate that the proposed method outperforms existing techniques on the
dataset used. This new approach helps improve the accuracy of intelligent monitoring
systems, providing better technical support to minimize conflicts between humans and
animals, thus protecting agriculture and ensuring the safety of both humans and animals.

Abstract: Conflicts between humans and animals in agricultural and settlement areas have
recently increased, resulting in significant resource loss and risks to human and animal
lives. This growing issue presents a global challenge. This paper addresses the detection
and identification of offending animals, particularly in obscured or blurry nighttime images.
This article introduces Multi-Channel Coordinated Attention and Multi-Dimension Fea-
ture Aggregation (MDA-DETR). It integrates multi-scale features for enhanced detection
accuracy, employing a Multi-Channel Coordinated Attention (MCCA) mechanism to incor-
porate location, semantic, and long-range dependency information and a Multi-Dimension
Feature Aggregation Module (DFAM) for cross-scale feature aggregation. Additionally, the
VariFocal Loss function is utilized to assign pixel weights, enhancing detail focus and main-
taining accuracy. In the dataset section, this article uses a dataset from the Northeast China
Tiger and Leopard National Park, which includes images of six common offending animal
species. In the comprehensive experiments on the dataset, the mAP5) index of MDA-DETR
was 1.3%, 0.6%, 0.3%, 3%, 1.1%, and 0.5% higher than RT-DETR-r18, yolov8n, yolov9-C,
DETR, Deformable-detr, and DCA-yolov8, respectively, indicating that MDA-DETR is
superior to other advanced methods.

Keywords: object detection; RT-DETR; transformer; computer vision; attention mechanism

1. Introduction

With the rapid advancement of urbanization, human activities are increasingly en-
croaching on wildlife habitats. This has led to a rise in harmful wildlife incidents, despite
efforts to establish national parks and protected areas. Such incidents not only pose a threat
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to human health and livelihoods but also highlight the urgent need to address wildlife—
human conflicts [1]. As a result, mitigating these conflicts has become a global priority for
governments and a focus of academic research.

Traditional methods for managing wildlife-human conflicts, such as erecting physical
barriers like barbed wire or electric fences around settlements and agricultural areas,
have notable limitations. These measures can induce stress responses or even fatalities in
animals and pose potential risks to humans [2]. To overcome these challenges, there is a
growing demand for intelligent surveillance systems capable of automatically detecting
and identifying offending animals in real time.

Object detection, a fundamental yet challenging task in computer vision, involves
assigning precise bounding boxes and classification labels to objects in images. Recent
advances in deep learning, coupled with reduced hardware costs, have spurred the devel-
opment of robust object detection algorithms. Two-stage detection frameworks such as
Faster R-CNN [3,4] and R-CNN [5], as well as single-stage detectors like YOLO [6-9], have
gained prominence. Moreover, the dominance of Convolutional Neural Networks (CNNs)
in this field has recently been challenged by the rise of Transformers, which leverage atten-
tion mechanisms to boost model performance. DETR, the first Transformer-based object
detection model [10], eliminates the need for manually designed anchor frames and non-
maximal suppression (NMS). However, it faces limitations in processing speed. In 2023,
Baidu’s Flying Paddle team introduced RT-DETR, a breakthrough in object detection. This
model transitions from “dense detection” to “sparse detection”, eliminating threshold fil-
tering and NMS. It delivers an end-to-end, real-time object detection solution [11], making
it a promising tool for applications like offending animal detection.

Offending animals frequently appear near planting and breeding areas, causing dam-
age to vegetation and livestock. These activities often obscure the animals within the
damaged vegetation. Furthermore, many offending animals are nocturnal, leading to
blurry images captured by trap cameras. This study emphasizes the crucial need for
accurate detection and recognition of obscured or blurry images of offending animals.
While the RT-DETR model exhibits strong robustness and generalization, it has limitations.
The AIFI module, relying solely on a self-attention mechanism, provides rich semantic in-
formation but lacks precise positional information. Additionally, the CCFF module, despite
integrating cross-scale information, struggles with detecting targets in blurry images.

To address these limitations, this paper proposes MDA-DETR, a novel method based
on Multi-Channel Coordinated Attention and multi-scale feature aggregation, to enhance
the detection of obscured and blurry images of offending animals. Inspired by channel
attention mechanisms [12], we introduce a Multi-Channel Coordinated Attention (MCCA)
mechanism. This mechanism extracts image features along three spatial directions, captur-
ing long-range dependencies and providing precise positional information while preserving
the rich semantic information from deep networks. This significantly improves the accuracy
of detecting occluded targets.

Furthermore, inspired by the RepBiPAN module [13], we propose a Multi-Dimension
Feature Aggregation Module (DFAM). This module effectively fuses positional information
from shallow networks with semantic information from deeper networks, and aggregates
features from multiple scales. This enhances the detection accuracy of blurry images.
To reduce the overall parameter count, we incorporate the RepNCSPELAN4 module [14]
into the backbone network.

MDA-DETR was rigorously evaluated on a subset of the Northeast China Tiger and
Leopard National Park dataset [15]. Ablation experiments were conducted to assess the
performance of each component, demonstrating the superior performance of MDA-DETR
in detecting offending animals. The main contributions of this study are as follows:
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(i) Multi-Channel Coordinate Attention (MCCA) mechanism This mechanism extracts
image features along three spatial directions, integrating precise positional and long-
range dependency information while preserving the rich semantic information from
deep networks.

(i) Multi-Dimension Feature Aggregation Module (DFAM) This module effectively
fuses multi-scale feature maps, enabling the extraction of complementary and global
information.

(iii) Comparative experiments demonstrate the superiority of MDA-DETR over state-of-
the-art methods. Ablation experiments confirm the effectiveness of each key component.

2. Related Works
2.1. Transformer-Based Object Detection

Transformer is an encoder—decoder architecture based on a self-attention mechanism,
first proposed by Google and applied to Natural Language Processing (NLP), achieving
state-of-the-art (SOTA) results in various NLP tasks [16]. In 2020, Nicolas Carion et al. in-
troduced Transformer to object detection with the DETR (DEtection TRansformer) model,
simplifying the detection process by treating it as an ensemble prediction problem and
eliminating the need for manually designing components. In addition, DETR converts
the feature image output from the backbone network into a one-dimensional sequence,
enabling the model to compute correlations between each pixel and others, thus achieving
a wider receptive field than that of CNNs [17].

However, as a pioneering work, DETR has some limitations. Zhu et al. proposed
Deformable-detr [18] to address the slow training speed of Transformer in computer
vision. Its attentional module focuses only on the key sampling points, resulting in better
performance on small targets and reduced training time. In 2022, Wang et al. introduced
Anchor DETR [19], a new Transformer-based query mechanism for object detection. This
model employs a new attentional variant to predict multiple objects in a region, thus
effectively solving the problem of ‘one region, multiple objects’.

Although the Transformer-based DETR series has challenged the monopoly of CNN
in just two years, it is still no substitute for the CNN-based series of algorithms in terms of
real-time performance in industrial applications. To address this, Baidu’s team, composed
of Lv et al., proposed RT-DETR (Real-Time DEtection Transformer) in 2023 [11]. It is a real-
time end-to-end detector based on the DETR model and outperforms YOLO in real-time
object detection. Compared with yolov8, RI-DETR requires a shorter training duration,
fewer data enhancement strategies, and demonstrates stronger performance under the
same test conditions.

Most state-of-the-art Transformer methods divide images into regular grids and repre-
sent each grid region with visual tokens. However, the fixed token distribution ignores the
semantic information of different areas of the image, which leads to performance degra-
dation. To address this issue, in 2024, Wang Zeng et al. proposed the Token Clustering
Transformer (TCFormer) [20]. This method dynamically generates visual tokens based
on semantic information, allowing regions with similar semantics to be represented by
the same token, even if these regions are not adjacent. For areas containing important
details, TCFormer uses fine-grained tokens to enhance the accuracy of image understand-
ing. In the same year, Yansong Peng et al. redefined the bounding box regression task
in the DETR model and proposed the D-FINE model [21]. This model introduces Fine-
grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation
(GO-LSD) strategies, transforming the regression process from predicting fixed coordi-
nates to iteratively refining probability distributions, thus achieving higher accuracy in
object localization.
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2.2. Wildlife Object Detection

Wildlife surveys are key to nature conservation. In 2021, Delplanque et al. evaluated
the performance of three CNN algorithms: Faster-RCNN, Libra-RCNN [22], and Reti-
naNet [23]. They trained the models using an independent dataset, enabling them to detect
and identify African mammal species based on high-resolution aerial imagery. The Libra-
RCNN model [24] with the best detection results accurately detected animals in open
and sparse grasslands, reducing detection time. In 2022, Cai Qianzhou et al. proposed
a solution [25] for long-tailed data based on YOLOv4-Tiny. Their approach combined
two-stage learning and reweighting. In the first stage, the model was trained without
weighting. In the second stage, weights from the first stage were used in combination with
the reweighting method, ultimately improving the model’s accuracy for long-tailed data
acquired by trap cameras. In 2023, Roy et al. proposed the WilDect-YOLO model [26] for the
automatic detection of endangered wildlife. This model introduces residual blocks in the
backbone network and integrates DenseNet blocks to extract and retain critical feature in-
formation. Additionally, Spatial Pyramid Pooling (SPP) and an improved Path Aggregation
Network (PANet) are added to the feature fusion part, enhancing the model’s perceptual
field and preserving fine-grained local information. In 2024, Yang Wenhan et al. combined
the Swin Transformer module with a CNN to propose a method [27] for detecting wildlife
images captured by trap cameras based on YOLOV5s. The technique fuses the advantages
of both networks in the feature extraction layer, expanding the receptive field of feature
extraction and enabling the model to accurately detect animals despite severe occlusion,
low contrast with the background, and other challenges.

2.3. Offending Animal Detection

Timely detection and identification of offending animals are crucial to reducing human-—
animal conflicts. In 2018, Ram et al. proposed an automatic unsupervised elephant image
detection system [28] for human—elephant conflicts. This system acquires animal images
and presence signals from cameras and sensors, respectively. Placed near conflict-prone
areas in forest villages, the device generates a warning signal when an elephant is detected,
and then sent to a specific location via a GSM module. In 2020, Ravoor et al. designed a
cross-camera tracking system [29] for detecting jaguars, elephants, and other offending
animals. The method uses the MobileNetv2-SSD [30] model to localize the animals and the
Triplet Loss trained ResNet-50 [31] model for re-identification. The integrated model runs at
2-3 frames per second, enabling near real-time functionality. In 2022, Lee et al. proposed an
extract-append data enhancement method [32] that extracts specific objects from a limited
number of images through semantic segmentation and appends them to numerous images
with arbitrary backgrounds. The technique generates images of offending animals with
varied backgrounds, improving the model’s detection performance by enriching the dataset.
In 2023, Charles et al. developed a system [33] consisting of an Arduino, a PIR motion
sensor, an LED flash, a speaker, and an acoustic cannon to monitor a field 24 x 7 h a day.
When the PIR motion sensor detects an animal, the Arduino activates, the speaker emits a
threatening animal sound, the LED light flashes, and the system sends a text message and
a photo to the farmer within seconds of detection.

3. Materials and Methods
3.1. Dataset

This study uses the publicly available Northeast China Tiger and Leopard National
Park dataset [15]. From this dataset, six common species of offending animals in north-
eastern China—badger, black bear, leopard cat, red fox, weasel, and wild boar—were
selected. The total dataset comprises 9641 images, including 5823 daytime images and
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3818 nighttime images. The dataset was divided into training, validation, and test sets in a
7:2:1 ratio. Mosaic data augmentation was applied to the training set to enhance the dataset
(see Table 1).

Table 1. Brief information about the dataset used in this article.

Animal Total Number Number of Number of Number of Instances
of Images Nighttime Images Daytime Images

Badger 1309 921 388 1364
Black bear 1352 955 397 1413
Leopard cat 1974 1021 953 1982
Red fox 1862 983 879 1873
Weasel 1269 728 541 1296
Wild boar 1875 1215 660 2007
Total 9641 5823 3818 9935

3.2. Overall Architecture

The overall structure of MDA-DETR proposed in this paper is shown in Figure 1,
which is a Transformer-based encoding—decoding structure. First, the improved ResNet-18
backbone network is used for encoding and extracting image features. This paper acquires
three different scales of features with the resolutions: S4[M, N|, S5[4, &, s7[4, II]. Then,
the 57 deep feature images are inputted into MCCA to obtain accurate position information.
In addition, the AIFI self-attention mechanism in the RT-DETR model is retained to extract
rich semantic information. Next, the feature maps of three different scales—shallow,
intermediate, and deep—are further fused by DFAM to obtain a new feature image with
global information. Finally, the Variable Focal Loss function (VariFocal Loss) [34], GIoU loss
function [35], and L1-loss [36] are used to measure the error between the model’s prediction
results and the actual labels and to adjust the weight parameters accordingly to optimize
the overall model further.

ResNet-18 DFAM

B

9 RepNCSPELAN4 (S7)
Conv 1X1 stride=1 — Batch
Normalization — SiLU
AKConv 3 X3 stride=2 —Batch
Normalization — SiLU

7 RepC3

® Concat S4, S5 : BasicBlock
— Data flow

Decoder

Figure 1. The overall structure of MDA-DETR.

3.3. Multi-Channel Coordinate Attention (MCCA)

Generally, channel attention mechanisms play a crucial role in improving model
performance. However, traditional channel attention mechanisms focus primarily on
extracting semantic information from feature maps, often neglecting the importance of
target position [37]. In the field of detecting offending animals, obstructions often occur,
making accurate positional information critical for enhancing model predictive perfor-
mance. Inspired by channel attention mechanisms, this paper proposes the Multi-Channel
Coordinated Attention Mechanism (MCCA). It effectively extracts semantic and positional
information from feature maps through three spatial directions and captures long-range de-
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pendencies (as shown in Figure 2), ultimately improving the accuracy of detecting obscured
offending animals.
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Figure 2. The structure diagram of MCCA.

Specifically, the input image of size M x N is first decomposed into three one-
dimensional feature encoding processes. The three outputs can be expressed as follows:

1 W
Z(h) = 5 Y- x(hj)
H
Z(w) = ﬁ;ﬂ w) Q)
H_W
e

The features of H and W are then combined to obtain Zconcat = [Z(h), Z(w)]. These
combined features are then fed into a 3 x 1 convolution kernel for convolution, followed

by batch normalization and SiLU activation [38]. This process can be described as follows:

Pl = Bconv(zconcat) (2)

where Beouy () represents a series of operations, including 3 x 1 convolution, batch normal-
ization, and SiLU activation functions.

Subsequently, F; is decomposed into two separate tensors along the H and W di-
rections to obtain Flh and F{'. Upsampling and sigmoid(x) activation operations are then
performed on F;. The sigmoid(x) activation function is used here to reduce the complexity
and computational overhead of the module. This process can be described as follows:

F, = sigmoid(U(Fy)) ®3)

where U(-) denotes upsampling.

Decomposing F, into two separate attentional weights along the H and W directions
yields F} and FY for subsequent refinement of the FJ' and F{" tensors. Next, F is batch
normalized. Afterward, it is multiplied with Z(ch), which has been processed through a
1 x 1 convolution, to obtain F3. This process can be defined as follows:

F3 = F x Conv(Z(ch)) 4)

The resulting output F,;; can be written as
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Four = F}' x F* X FIl x F{' x F3 (5)

3.4. Multi-Dimension Feature Aggregation Module (DFAM)

When detecting offending animals, their rapid movements and nighttime appearances
can result in blurry images and unclear boundaries when captured by trap cameras. Uti-
lizing the MCCA module and the AIFI module, the model obtains feature images with
precise localization and rich semantic information. However, recognition accuracy for such
challenging conditions remains an issue. To leverage the complementarity and correlation
between multi-scale features, this paper proposes a multi-scale feature aggregation module
(DFAM), inspired by the RepBiPAN module, to fuse feature images from the backbone
network with those processed through MCCA and AIFI operations. Figure 1 illustrates the
overall structure of DFAM. The main contribution of DFAM is the fusion of multiple feature
images at different scales, utilizing both element-wise addition and cascading operations.
This approach enhances information at the same scale while benefiting from features at
other scales. Additionally, this paper introduces an aggregation block (Fuse) that consoli-
dates feature maps of varying sizes in the DFAM fusion path, followed by a convolution
block (RepC3) composed of multiple 1 X 1 convolutional layers. These operations enable
the model to integrate feature maps from each layer, yielding feature images with globally
essential features and improving the detection accuracy of blurry animal images. Figure 3
shows the structure of Fuse and RepC3 in DFAM.

Fuse RepC3

— |
input V\‘ output
fmiddle r L

N XRepConv

fdown

—7 input — Up-sampling —7 Conv 1X1 stride = 1 — Batch Normalization — SiLU
(3 output —  Down-sampling (7 RepBlock —* Data flow @ Add ® Concat

Figure 3. Structure of Fuse and RepC3 in DFAM.

Specifically, the Fuse module handles three inputs to the aggregation block: fy,,
fmiddier and fo,. For the shallow feature map, f,) is first processed by a 1 x 1 convolution,
followed by batch normalization and the SiLU activation function, and then undergoes
downsampling to facilitate subsequent fusion operations. This process can be expressed
as follows:

fl = D(Bgonv(fup)) (6)

lwo(+) is a series of sequential operations, including 1 x 1 convolution, batch

conv
normalization, and SiLU activation functions.

After that, the middle layer feature map f,,i441 is input into B, (+) for a convolution
operation with a 1 x 1 kernel, and the deep layer feature map f;,,, is upsampled. This

where B

process can be represented as follows:

_nl .
{ f2 = Beono (fmiddie) @)

f3 = U(fdown)

where U(-) denotes upsampling.
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Then, f1 and f; are fused using element-wise addition, and the fused feature maps are
cascaded with f1 and f3, and finally input into B/, () for a convolution operation. This
process can be defined as follows:

fout = B}onv(concat((fl +f2)/f11f2)> (8)

In the RepC3 convolutional block, the input features first undergo sequential opera-
tions to adjust the number of channels. After this, feature extraction is performed on one of
the branches using a RepBlock consisting of N RepConvs [39]. Finally, the outputs of the
dual paths are fused using element-wise addition. By employing DFAM, the model can
fuse features at three different scales and utilize cross-level features to acquire more global
and complementary information. This results in a more expressive fused feature image
that accurately detects the presence of offending animals in blurred images.

3.5. Backbone Network Improvement Strateqy

Although the images processed by MCCA and DFAM retain accurate positional
information and rich semantic information, the overall number of model parameters is
high. To address this, we use the RepNCSPELAN4 structure to replace the last layer
of the ResNet-18 backbone network. The RepNCSPELAN4 structure combines CSPNet
with gradient path planning and ELAN, extending ELAN to support GELAN for any
computational block. This design is focused on achieving lightweight inference speed and
accuracy. This optimization strategy enables the model to reduce the number of parameters
while maintaining the original accuracy.

3.6. Loss Function

The Variable Focal Loss function (VariFocal Loss) uses the IoU-aware Classification
Score (IACS) to represent the probability of target object ranking of candidate detection
frames. The loss function employs an asymmetric weighting approach to improve the
model’s classification performance by reducing the weight of negative samples and increas-
ing the weight of positive samples. This allows the model to better focus on training with
high-quality positive samples. The functional representation of VariFocal Loss is as follows:

Lo O 0g(90) + (1 -y log(1 - 9W) v >0 )
VFL = _a?(i)'y log(l — yA(l)) y(l) =0

where y() denotes the label of the sample i with positive class 1 and negative class 0. 7*)
denotes the predicted IACS for the sample i. a and §())7 represent the scalability coefficients
of the moderating loss.

Traditional object detection algorithms typically use the IoU loss function to measure
the degree of overlap between the prediction frame and the ground truth. However, when
the overlap is high, the IoU loss function suffers from the vanishing gradient problem,
making further model optimization difficult [40]. To better localize the target and reduce
the absolute error between the prediction and ground truth, the GIoU loss function and
L1-loss are introduced. Specifically, the GloU loss function introduces a penalty term on
top of the IoU loss function to measure the non-overlap between the prediction and ground
truth frames, addressing the vanishing gradient problem and enabling faster convergence.
The L1-loss, or mean absolute error (MAE), is the average of the absolute errors between
the model’s predicted and true values. Using both the GloU loss function and L1-loss
provides better supervision during model training and ensures the accuracy of its results.
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The expressions for the loss functions are as follows:

|Ac — U]

LGIOU:1—10U+ |Ac|

(10)

i — vl (11)

1=

1
Ly =—
1 Nl'

I
—

where IoU denotes the intersection ratio between the predicted and ground truth boxes,

A, represents the minimum bounding box containing both the predicted and ground truth

boxes, and U represents the union of predicted and real bounding boxes. N is the number

of samples, y; is the true value of sample i, and y:» is the predicted value of sample i.
Finally, the overall loss function for the proposed model is as follows:

L = LyrL + Lgrou + L1 (12)

4. Results
4.1. Evaluation Metrics

To evaluate the model proposed in this study, six widely used evaluation metrics in
object detection tasks were adopted: Precision, Recall, mAP5y (mean Average Precision),
mAPsg g5, parameters, and FPS (Frames Per Second). In object detection tasks, the Intersec-
tion over Union (IoU) between the predicted bounding box and the ground truth box is
generally used to assess their overlap, thereby evaluating the model’s detection accuracy
on a specific dataset. A higher IoU value indicates greater similarity between the two
boxes. If the IoU exceeds a certain threshold (commonly set at 0.5, also used in this paper),
the model is considered to have successfully detected the object, and the result is classified
as a positive example (P); otherwise, it is treated as a negative example (N). For a positive
example, if the model’s classification result is correct, it is considered a true positive (TP);
otherwise, it is regarded as a false positive (FP). If a ground truth box is not detected, it
is labeled as a false negative (FN). Based on these, Precision and Recall can be calculated
using the following formulas:

TP
P 1S7, = — 1
recision = = ~FD (13)
TP
R = — 14
ccall TP+ FN (14

However, Precision and Recall do not fully reflect the performance of an object detec-
tion model across different thresholds. When Precision increases, Recall often decreases;
conversely, when Recall increases, Precision tends to decrease. This is because the stricter
the criteria for predicting a sample as a positive example, the more likely the model is
to miss some true positive examples. On the other hand, the more lenient the criteria,
the more likely the model is to increase the number of false positives. Therefore, this study
includes two additional evaluation metrics: mAPsy and mAPsp_g5. mAPsy represents the
average precision (AP) across multiple categories at an IoU threshold of 0.5. mAP50 95
represents the average of mAP results at 10 IoU thresholds ranging from 0.5 to 0.95, with a
step size of 0.05. The higher the m AP value, the better the model’s detection performance.
The formulas for calculating AP and mAP are as follows:

N

AP =Y P(s) - AR(s) (15)
k=1
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1< ,
mAP = — ;AP(z) (16)

where P represents Precision, R represents Recall, s represents the classification confidence
of the detection box, N represents the number of discrete points, and ¢ represents the
number of categories.

For model complexity and detection speed, this study uses two metrics: Frames Per
Second (FPS) and parameters. FPS indicates the number of frames the object detection
model can process per second. The higher the FPS value, the faster the detection speed and
the better the real-time performance of the model. Parameters reflect the spatial complexity
of the model. The expression for FPS is as follows:

1000 ms

FPS = 17
S preprocess + inference + NMS 17)

where 1000 ms refers to 1000 milliseconds, preprocess refers to the time required for the prepro-
cessing stage, in ference refers to the time required for the model’s inference, and N MS refers
to the post-processing time required when the model applies Non-Maximum Suppression.

4.2. Parameter Settings

The overall model is implemented using the Pytorch framework and trained on a
Titan RTX3090 GPU. During training, the pre-trained weights of the ResNet-18 [31] on
ImageNet-1k [41] were used and trained on the public dataset used in this paper. The model
used the AdamW optimizer with a weight decay of 0.0001, an initial learning rate set to
0.0001, and a mosaic data enhancement probability of 0.5.

4.3. Comparative Experiments on Backbone Network Improvement Strategies

This paper compares the model with only the backbone network part to the one with
the RT-DETR decoder part. The results show that the improved model reduces the number
of parameters by 46.75% compared with the original model using the ResNet-18 backbone
network. Additionally, it achieves some improvement in accuracy, as shown in Table 2.

Table 2. Comparison of the improved backbone network model with the ResNet-18 backbone
network model on the dataset.

Model Parameter mAPsy % mAPs5p_95 %
ResNet-18 backbone network (RT-DETR decoder) 154 M 0.949 0.772
Improved backbone network (RT-DETR decoder) 82 M 0.959 0.78

Both the ResNet-18 backbone network and the improved backbone network do not include MCCA and DFAM.

4.4. Ablation Study

To evaluate the effectiveness of each key component in MDA-DETR, this paper con-
ducted comprehensive ablation experiments focusing on (1) the effectiveness of backbone
network improvement strategies, (2) the effectiveness of MCCA, and (3) the importance
of DFAM. During these experiments, two challenging scenarios—occlusion and blur-
ring—were selected to observe and record the performance of these key components under
different conditions, demonstrating their effectiveness in various situations.

(1) Effectiveness of Backbone Network Improvement Strategies: The backbone network
employs the RepNCSPELAN4 structure, initially enhancing the backbone’s perfor-
mance and shows improvement across four indicators compared with the model
with only the ResNet-18 backbone network (as shown in the second row of Table 3).
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®)

However, when animals are occluded, the detection accuracy is low (as shown in the
second row and fourth column of Figure 4).

Effectiveness of MCCA: This study retained only the improved backbone network and
MCCA for training and testing to demonstrate its effectiveness. The results indicate
that MCCA significantly improves all four evaluation metrics and further enhances
the accuracy of detecting occluded offending animals (as shown in the third row and
fourth column of Figure 4).

The effectiveness of DFAM. DFAM adjusts the number of channels in the feature map
generated by the AIFI module and further fuses it with the feature map generated
by the improved backbone network. To demonstrate DFAM’s effectiveness, this
study retained only DFAM and the improved backbone network for testing. Table 3
shows that adding DFAM leads to a slight decrease in recall. However, the 0.3%
decrease in recall is accompanied by a 1.2% increase in precision, making the slight
drop in recall acceptable. Furthermore, Figure 4 shows that using this module has
enhanced the accuracy of generating the minimum bounding rectangle. Particularly
when the offending animal in the image is blurry, it can more accurately locate and
identify the offending animal. Finally, by combining the three proposed improvement
methods, the model achieved a 2.9% increase in accuracy, a 3.3% increase in recall,
a 2.9% improvement in mAP5p, and a 4.7% improvement in mAPs5p g5 compared
with the original baseline. The detection performance was exceptional, proving the
effectiveness of the improvement strategy proposed in this article.

Badger 0.85

Badger 0.86

Badger 0.87

Figure 4. Comparison of ablation experiments. (The orange animal in the upper right corner of the

third column is the dataset icon.)

179



Animals 2025, 15, 259

Table 3. Ablation experiments of the three key components on the dataset constructed in this paper.

Improved Backbone Network MCCA DFAM P % R % mAPsy % mAPsy95 %

ResNet-18 backbone network (RT-DETR decoder) 0.951 0.931  0.949 0.772
v 0.957 0.94 0.959 0.78
v v 0.964 0.95 0.967 0.794
v v 0969 0.937  0.956 0.795
v v v 098 0964 0978 0.819

4.5. Comparison with Other Models

To comprehensively evaluate the performance of MDA-DETR, this paper compares it
with six state-of-the-art object detection models: RT-DETR-r18 [11], yolov8n [42], yolov9-
C [14], DETR [10], Deformable-detr [18], and DCA-yolov8 [43]. The results for all models
were generated using the official code or based on published papers.

Table 4 shows the results of comparing MDA-DETR with six state-of-the-art methods,
where the red font and blue font indicate the best and second best performance. From the
results in Table 4, it can be seen that the proposed model achieves 97.8% mAPsy metrics
on the dataset, outperforming the original RT-DETR-r18 model by 1.3%, and it is 0.6%
better than yolov8n, 0.3% better than yolov9-C, 3% better than DETR, 1.1% better than
Deformable-detr, and 0.5% better than DCA-yolov8. Overall, the model proposed in this
article outperforms other advanced methods in the detection of offending animals on the
part of the publicly available Northeast China Tiger and Leopard National Park dataset
and can better detect images of accident-prone animals.

Table 4. Comparison of MDA-DETR with 6 state-of-the-art methods.

Model P % R% mAPs) % mAPsyg_95 % Parameter FPS
RT-DETR-r18 [11] 0958 0.934 0.965 0.806 21 M 52.6
yolov8n [42] 0943  0.926 0.972 0.798 32M 76.9
yolov9-C [14] 0971 0.958 0.975 0.809 255 M 715
DETR [10] 0935 0.921 0.948 0.741 41 M 57.4
Deformable-detr [18]  0.957 0.927 0.967 0.757 40 M 59.8
DCA-yolov8 [43] 0947 0.938 0.973 0.801 11.5M 102
MDA-DETR (ours) 098 0.964 0.978 0.819 184 M 54.5

Figures 5 and 6 show the detection results of MDA-DETR and advanced methods
in different scenarios. The images selected in this article include three scenarios: animals
being occluded, only having partial animal features, and animals being blurry at night.
Among them, DETR and Deformable-detr have better performance in detecting images
with only partial animal features, but there are false detections when detecting occluded
animal images (leopard cats), and DETR also has false detections when detecting occluded
wild boars. Yolov8n and yolov9-C can effectively handle scenes with only partial animal
features and animal occlusion, but when detecting blurry animal images at night, yolov8n
has lower detection accuracy, while yolov9-C lacks comprehensive detection (badgers).
This article selects the DCA-yolov8 model, which can also detect occluded scenes, as the
comparison model. From the results, it can be seen that the MDA-DETR proposed in this
article has higher detection accuracy than DCA-ylov8 in several complex tasks. Overall,
the method proposed in this article outperforms other methods on the publicly available
dataset used. MDA-DETR not only accurately classifies the offending animal but also
accurately locates and detects the offending animal in scenes where the animal is occluded
and blurred at night.
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Figure 6. Comparison between ours and advanced methods (red fox, yellow weasel, wild boar).

5. Discussion

This study proposed MDA-DETR, a novel object detection model, to address the
challenges of detecting offending animals, particularly in obscured and blurry nighttime
images. Comprehensive evaluations on the Northeast China Tiger and Leopard National
Park dataset demonstrated that MDA-DETR significantly outperforms six state-of-the-art
models, achieving superior results in mAP50 (+1.3% to +3%) and mAP50-95 (+0.5% to
+4.7%). These results validate the effectiveness of the Multi-Channel Coordinated Attention
(MCCA) mechanism and the Multi-Dimension Feature Aggregation Module (DFAM) in
improving detection accuracy under challenging conditions.

The main findings of this research align with the initial hypothesis that incorporating
multi-scale feature aggregation and enhanced attention mechanisms would address limita-
tions in existing models. The observed improvements can be attributed to the following
factors: The MCCA mechanism effectively integrates spatial and long-range dependencies,
enhancing the accuracy of detecting occluded animals. The DFAM module fuses features
across multiple scales, providing global and complementary information to improve the de-
tection of blurry images. The use of VariFocal Loss further enhances classification accuracy
by emphasizing high-quality positive samples.

Compared with the YOLO series, DETR, and its variants, MDA-DETR demonstrates
significant advantages in handling occlusion and nighttime detection on the dataset used
in this study. While the existing YOLO and DETR series methods perform well in most
conventional object detection tasks, YOLO models tend to lose crucial information when
processing blurred images of animals at night, leading to inaccurate target localization.
Although DETR and its variants have improved target detection localization, they often fail
to correctly classify objects in complex backgrounds, especially in occlusion or cluttered
backgrounds. In contrast, MDA-DETR effectively overcomes these challenges by combining
MCCA and DFAM. By incorporating multi-scale feature fusion and integrating the image’s

181



Animals 2025, 15, 259

positional information, semantic information, and long-range dependencies, MDA-DETR
avoids detection failures caused by the loss of local features. Additionally, this multi-level
information integration enhances the model’s ability to detect occluded animals and blurred
nighttime animal images, reducing false negatives and false positives, and providing
stronger robustness.

Despite the significant advantages demonstrated by MDA-DETR, this study still has
certain limitations. First, the dataset used in this study contains only six specific species
of offending animals, which limits the model’s applicability to other species and broader
scenarios. Second, the dataset does not cover more complex environmental factors, such as
changing lighting conditions or motion blur caused by rapid movement, which can often
affect the model’s performance in detection tasks. Furthermore, although MDA-DETR
has achieved significant accuracy improvements, its computational complexity may pose
challenges for real-time deployment on edge devices.

To address these limitations, future research will focus on the following areas: Expand-
ing the dataset: Plans are in place to create a dataset that includes more animal species
and more complex environmental factors. Additionally, the use of generative models or
trap cameras will be considered to acquire the relevant images for further evaluating the
model’s performance in various scenarios, thereby enhancing its generalization ability and
applicability to a broader range of species. Optimizing the model architecture: considering
the computational complexity involved in real-time deployment, future work will explore
lighter model architectures, such as integrating more efficient attention mechanisms or
designing low-computation overhead feature extraction modules, to better suit resource-
constrained edge devices. Expanding the application scope: Future studies will further
explore the potential of MDA-DETR in a wider range of application scenarios, including
general wildlife detection and endangered species protection. By expanding its applica-
tion scope, this study wishes MDA-DETR to play a greater role in protecting ecological
environments and biodiversity.

6. Conclusions

We propose a novel model, MDA-DETR, for detecting offending animals. To better
handle scenes where animals are occluded, the MCCA module is designed to extract
semantic information from feature maps, target location information, and long-distance
dependencies. Subsequently, the DFAM module aggregates features at three different scales
to obtain global features, enhancing the accuracy of detecting offending animals in blurry
images. The data used in this study come from the Northeast Tiger and Leopard National
Park dataset. Ablation experiments on this dataset demonstrate the effectiveness of the
key components in MDA-DETR. Additionally, comprehensive comparative experimental
results on this dataset confirm the robustness and effectiveness of the MDA-DETR model.
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Simple Summary: This study aims to improve the breeding of guide dogs by using
genetic information to predict important health and behavior traits. Guide dogs need to
be healthy and attentive to effectively assist people with visual impairments. This study
compares several methods for predicting whether a dog might develop certain health
issues, such as anodontia (missing teeth), distichiasis (extra eyelashes that can irritate the
eyes), or oral papillomatosis (oral tumors caused by a virus), as well as behaviors like
high distractibility, based on their genetic makeup. Data from German Shepherds, Golden
Retrievers, Labrador Retrievers, and their crosses were analyzed to see which prediction
methods work best given different models and data parameters. The results show that
all the tested methods were similarly effective in predicting these traits. Notably, simpler
and less time-intensive methods and data collection processes perform just as well as more
complex ones. This means that dog breeders can use these genetic prediction tools without
investing in expensive technology or genetic testing. By applying these methods, breeders
can make better informed decisions when selecting dogs for breeding, focusing on those
more likely to be healthy and exhibit desirable behaviors. Ultimately, this approach can
lead to the development of healthier and more capable guide dogs, benefiting individuals
who rely on them and contributing to the overall well-being of the dog population.

Abstract: This study investigates the efficacy of various genomic prediction models—Genomic
Best Linear Unbiased Prediction (GBLUP), Random Forest (RF), Support Vector Machine
(SVM), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—in predicting
genomic breeding values (gEBVs). The phenotypic data include three binary health traits
(anodontia, distichiasis, oral papillomatosis) and one behavioral trait (distraction) in a
population of guide dogs. These traits impact the potential for success in guide dogs and
are therefore routinely characterized but were chosen based on differences in heritabil-
ity and case counts specifically to assess gEBV model performance. Utilizing a dataset
from The Seeing Eye organization, which includes German Shepherds (n = 482), Golden
Retrievers (n = 239), Labrador Retrievers (n = 1188), and Labrador and Golden Retriever
crosses (1 = 111), we assessed model performance within and across different breeds, trait
heritability, case counts, and SNP marker densities. Our results indicate that no significant
differences were found in model performance across varying heritabilities, case counts, or
SNP densities, with all models performing similarly. Given its lack of need for parameter
optimization, GBLUP was the most efficient model. Distichiasis showed the highest overall
predictive performance, likely due to its higher heritability, while anodontia and distraction
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exhibited moderate accuracy, and oral papillomatosis had the lowest accuracy, correlat-
ing with its low heritability. These findings underscore that lower density SNP datasets
can effectively construct gEBVs, suggesting that high-cost, high-density genotyping may
not always be necessary. Additionally, the similar performance of all models indicates
that simpler models like GBLUP, which requires less fine tuning, may be sufficient for
genomic prediction in canine breeding programs. The research highlights the importance
of standardized phenotypic assessments and carefully constructed reference populations
to optimize the utility of genomic selection in canine breeding programs.

Keywords: genomic prediction; breeding values; machine learning models; dog breeding;
genetic selection; genomic best linear unbiased prediction; random forest; support vector
machine; extreme gradient boosting; multilayer perceptron

1. Introduction

Modern dog breeding took shape in the mid-19th century with a focus on enhancing
phenotypic attributes and aligning them with esthetic ideals and functional roles established
by breed standards [1]. The use of phenotypes and pedigree data to track lineages allowed
breeders to direct selection toward their desired attributes. Modern updates to pedigree-
based selection allow for the quantification of estimated breeding values (EBVs). EBVs
predict the genetic potential of an individual to pass on traits to offspring by combining
pedigree and phenotypic data. Unlike tests that simply identify if an animal is a carrier
of a specific gene, EBVs provide a comprehensive assessment of an animal’s genetic
merit for quantitative traits, enabling breeders to make more informed selection decisions
and improve traits across generations. Notable successes of this technique include the
estimation of hip and elbow dysplasia breeding values in dogs, leading to improved
joint health [2-5]. However, compared to agricultural species, the implementation of
EBVs in canine breeding programs has lagged due to challenges such as smaller reference
populations, less standardized selection criteria, and limited collaboration among breeders.
This gap highlights the need for research focusing on optimizing genetic prediction methods
for dogs, which is the aim of the present study.

As these methods are refined, it is crucial to ensure that breeding decisions prioritize
the welfare of individual animals, preserve genetic diversity, and mitigate the perpetuation
of harmful traits. Overemphasis on narrowly defined breed-specific characteristics can
exacerbate existing hereditary problems, raising ethical concerns around breeding practices
that may compromise long-term health and well-being [6]. Researchers and breeders must
remain vigilant in balancing performance or esthetic goals with robust welfare standards,
including the responsible use of EBVs. By employing breeding values to identify and
minimize hereditary disorders and maintaining balanced trait selection, breeders can
harness these tools ethically and effectively to select for or against traits [7]. Though
systemic problems arise with dog breeding, through a concerted focus on health and
behavior traits, responsible breeding can avoid pitfalls that have plagued the field [8]. In
this way, the primary focus remains on safeguarding and enhancing the quality of life of
dogs while improving genomic tool development.

The introduction of genomic data-driven selection marked a transformative shift
in breeding practices for many agricultural species [9]. Genomic selection utilizes DNA
marker data to provide a more precise assessment of an individual’s genetic merit compared
to traditional pedigree-based methods. This advancement took off with the usage of single-
nucleotide polymorphisms (SNPs) for genotyping. By analyzing SNP markers and using
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them to infer regions in linkage, breeders gain deeper insights into the genetic composition
of individuals, thus improving the accuracy and efficiency of breeding decisions [10]. The
success of genomic selection has been particularly pronounced in agricultural species
like dairy cattle, where it has led to significant advancements in milk production, health,
and fertility [9,11]. One of the key benefits of genomic selection is the ability to identify
an individual’s genetic merit at birth and differentiate between littermates, reducing the
generation interval and accelerating the rate of genetic gain through selection compared
to pedigree-based methods. These agricultural examples highlight the importance of
large reference populations and consistently agreed-upon phenotypes among breeders
for selection.

Several advanced genomic prediction models, including machine learning techniques,
have been developed to leverage genomic data effectively. Machine learning models are
particularly appealing due to their ability to model complex, nonlinear relationships in
large datasets, which is advantageous in genomic prediction. Among traditional methods,
Genomic Best Linear Unbiased Prediction (GBLUP) extends the traditional Best Linear
Unbiased Prediction (BLUP) model by replacing the pedigree-based relationship matrix
with a genomic relationship matrix derived from SNP markers [12]. This approach captures
genetic relationships with greater accuracy, especially in scenarios where pedigree data are
incomplete or unavailable. GBLUP is valued for its robustness and its ability to handle
extensive datasets with numerous genetic markers, making it a widely adopted tool in
modern breeding programs.

The first of the five machine learning models tested is Random Forest (RF), which
represents a powerful model that has been previously used in genomic prediction [13-15].
This ensemble learning method constructs multiple decision trees during training and
aggregates their predictions to enhance accuracy and mitigate overfitting. RF excels in man-
aging complex interactions among multiple genes and demonstrates robustness against
overfitting. The strengths of RF may make it particularly beneficial for predicting traits
influenced by complex genetic factors. Support Vector Machine (SVM) is a machine learn-
ing technique designed for classification tasks that has been used in genomic selection
before [14,16,17]. It identifies the hyperplane that best separates different classes in a
high-dimensional space, making it well suited for genomic prediction where data dimen-
sionality is high and traits are binary. Extreme Gradient Boosting (XGB) is an advanced
implementation of gradient boosting algorithms. XGB builds models sequentially, with
each new model aiming to correct the errors of its predecessors. This approach is highly
efficient and effective at managing large, complex datasets, capturing intricate genetic
patterns and potentially improving the accuracy of breeding value predictions. XGB’s
capability to handle complex trait architectures makes it an already utilized tool in genomic
prediction [17,18]. Multilayer Perceptron (MLP) comprises neural network models inspired
by the structure and function of the human brain. MLPs consist of multiple layers of
interconnected nodes that can model complex, nonlinear relationships within the data.
Although MLPs require substantial computational resources and large datasets for training,
they have shown promise in capturing complex genetic interactions and providing accurate
predictions for traits with intricate genetic architectures [19,20].

The effectiveness of these genomic prediction models is closely tied to the quality and
quantity of the genomic data available. SNP markers are critical data points used in these
models, offering detailed insights into genetic variation across the genome. The density
of SNP markers—referring to the number of markers analyzed—can potentially impact
the accuracy of predictive models [21-23]. Generally, higher marker density improves
prediction accuracy by capturing a greater portion of the genetic variation associated
with traits. However, an excessive number of markers can lead to overfitting, where the
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model becomes too specialized to the training data and performs poorly on new data
during validation, can increase computation time, or is cost-prohibitive [24]. Therefore,
finding an optimal marker density is crucial for balancing predictive accuracy with practical
considerations such as cost and computational capacity.

The focus of this study is on specific traits that vary in their epidemiology, heritability,
and case count: anodontia, distichiasis, oral papillomatosis, and distraction. These traits
were selected to provide insight into how heritability estimates and the number of cases
can influence model performance. They also represent health and behavioral concerns with
tangible ramifications for both dogs and breeders. Preventing painful ocular irritations
(distichiasis) and health complications (anodontia and papillomatosis) helps maintain
dogs’ well-being. Ensuring reliable working performance (distraction) can also minimize
the number of dogs that need to be rehomed due to behavioral failures. Anodontia, a
congenital absence of teeth, can lead to severe oral health issues and difficulties with feeding
and has variability in presentation, cause, and severity [25]. Distichiasis, characterized
by the presence of extra eyelashes that may grow towards the eye, can cause corneal
irritation and impaired vision [26]. In other breeds, heritability has been estimated to
be high, ranging from 0.276 to 0.720, indicating a potentially strong genetic component
to the disease [27,28]. Oral papillomatosis, caused by the canine papillomavirus, results
in benign oral tumors that, while generally non-life-threatening, can cause significant
discomfort and interfere with eating [29,30]. As it is a viral infection, genetic factors may
influence susceptibility, but environmental exposure plays a significant role, suggesting
a lower heritability [29]. Distraction, a behavioral trait affecting a dog’s focus, is crucial
for guide dogs whose effectiveness depends on their attentiveness [31]. Behavioral traits
often have moderate heritability and can be more subjective in assessment but selection for
focus and non-distracted behavior has been identified as an important aspect of guide dog
breeding [32].

This study aims to compare the performance of genomic prediction models—GBLUP,
RE, SVM, XGB, and MLP—in predicting breeding values for three binary health traits
and one behavioral trait in a population of guide dogs. By evaluating these models
across different breeds—including Labrador Retrievers, Golden Retrievers, German Shep-
herds, and Labrador and Golden Retriever crosses—the research aims to illuminate model
performance under various population strategies. This includes both within-breed and
across-breed analyses and takes into account different reference population sizes. Addi-
tionally, this study assesses model performance across traits with different heritabilities
and a behavioral trait, as well as the impact of SNP marker density on predictive accuracy,
offering a deeper understanding of how different models handle breed-specific genetic
variations and trait characteristics.

The implications of this study extend beyond guide dogs, potentially influencing
breeding programs for other populations of animals with smaller reference populations
and unique characteristics that differentiate them from research conducted primarily on
agricultural species. Improved predictive accuracy can lead to healthier, more capable
working dogs and contribute to more effective and informed breeding decisions. By
addressing the challenges unique to canine breeding, such as smaller population sizes and
less standardized phenotyping, this study contributes valuable knowledge toward closing
the gap in the application of genomic selection in dogs compared to agricultural species.

2. Materials and Methods
2.1. Population

This study utilized a dataset provided by The Seeing Eye organization encompassing
the 26-year period of 1998-2024. The Seeing Eye breeds and trains guide dogs, including
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German Shepherds, Golden Retrievers, Labrador Retrievers, and Labrador and Golden Re-
triever crosses. The crosses are subsequently bred back to Labrador Retrievers. The crosses
between Labradors and Golden Retrievers were originally introduced to combine the
well-known temperament and working abilities of these breeds. Subsequent backcrossing
to Labradors was employed to maintain a consistent appearance aligned with The Seeing
Eye’s working requirements while also aiming to enrich genetic diversity. Phenotypic data
were collected during the puppy and young dog raising and training phases before their
placement with a visually impaired individual or selection for breeding. Phenotypic data
were collected by The Seeing Eye from birth until approximately 4.5 years of age. The
dataset encompasses both successful guide dogs and those identified as failures. Disease
traits were recorded by an in-house veterinary team, while behavioral traits, specifically
distractibility, were assessed by trainers. Models were run on the all-breed data, then within
the breeds of Labrador Retrievers (LRs), Golden Retrievers (GRs), and German Shepherds
(GSs) and combining the more similar breeds and crosses of Labrador Retrievers, Golden
Retrievers, and their crosses (LR/GR). Animals with incomplete phenotypic or genotypic
data were excluded from the analysis. The sample size included 2020 dogs for the health
traits and 1290 dogs for the behavioral trait.

2.2. The Seeing Eye Phenotypic Dataset

Health phenotypes were diagnosed through physical examinations conducted at spe-
cific developmental stages. These included a puppy physical around 5 weeks of age (or
slightly older if the puppy was purchased), a pre-training physical (PTP) at approximately
14-16 months, a pre-breeder physical about 3 months after the PTP, and a pre-class phys-
ical roughly 4 months after the PTP. The Seeing Eye uses a coding system with defined
diagnostic criteria for each trait to standardize health trait characterization. There are
typically five veterinarians on staff with new veterinarians trained to use the coding system.
Difficult cases are discussed amongst the team of veterinarians with an agreed upon final
diagnostic code.

Distraction was assessed through evaluations during the training period. There are
currently 31 dog trainers who are similarly trained to use a coding system with defined
criteria for standardized trait characterization. Trainer identification is recorded along with
the scoring of individual dog performance at each time point. Dogs return from puppy
raisers and start specialized training at 14-16 months of age. The mid-term blindfold
test typically occurs 6-8 weeks after the start of training, while the final blindfold test is
conducted 12-14 weeks into training. Distractibility was initially rated on a categorical scale
but was subsequently converted to a binary classification of ‘high” and ‘low” for this study
due to ninety-three percent of animals being categorized into only two groups. This avoids
overfitting the models to skewed ordinal data and allows for a more robust comparison to
be made between all binary traits. One hundred and fifteen instructors scored dogs during
the 26-year period.

For health traits, the sample consisted of 1188 Labrador Retrievers, 482 German
Shepherds, 239 Golden Retrievers, and 111 Labrador and Golden Retriever crosses. For
distraction, there were 847 Labrador Retrievers, 257 German Shepherds, 125 Golden Re-
trievers, and 61 Labrador and Golden Retriever crosses in the dataset. The case counts for
each trait are listed below (Table 1).
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Table 1. Counts of cases for the behavior and health traits by breed.

Trait Total Cases Labrador Retrievers German Shepherds Golden Retrievers ki?;tig;/gol:;l;
Distichiasis 116 18 0 93 5
Anodontia 272 193 46 17 16

Oral Papillomatosis 216 125 43 28 20
High Distractibility 588 364 126 71 27

2.3. Genotypic Data

The Seeing Eye routinely collects whole-blood samples from all their dogs for DNA
extraction and storage in their own biobank. They perform DNA extraction in house
and create genotype subsets of dogs annually. Additional archived blood samples were
extracted for this study and similarly genotyped. DNA extraction protocols in both labo-
ratories followed general Qiagen (Qiagen, Germantown, MD, USA) PureGene Extraction
protocols with in-house buffers. Quality control and quantification procedures ensured the
integrity of the extracted DNA and compliance with genotyping standards. Genotyping
was performed using three different single-nucleotide polymorphism (SNP) chips: the
EMBARK (Embark Veterinary Inc., Boston, MA, USA) panel, a 220k Illumina (Illumina Inc.,
San Diego, CA, USA) microarray chip, and a 173k Illumina chip. The markers in the panel
were mapped to CanFam 3.1 [33].

These datasets were merged, resulting in a comprehensive dataset of 239,478 SNPs
across 2176 samples, with a genotyping rate of 91.4%. The data were filtered for geno-
type call rate and sample call rate genotypes (<90%), Hardy Weinberg equilibrium
(p <1 x 107°), and minor allele frequency (<0.01) using PLINK ver 1.9 [34]. Post quality
control, 166,463 SNPs and 2176 dogs were available for imputation. Imputation was per-
formed following the method previously described in [35]. Briefly, the genotypes were
phased and imputed using a reference panel mapped to CanFam 3.1 [33] comprising
660 dogs across 157 modern breeds and village dogs, including 15 German Shepherds,
20 Golden Retrievers, and 23 Labrador Retrievers [36]. We used Beagle ver 5.2 for both
phasing and imputation [37,38]. Imputation was performed on a per-chromosome basis
using mostly default settings; however, the effective population size (1ne) was set to 200
based on previous work [39]. The imputed dataset included 10 dogs for which whole-
genome sequence data were available. The accuracy of imputation was assessed based on
genotype concordance and imputation quality scores [40]. Variants with a Beagle Dosage
R-squared (DR2) > 0.6 were retained for downstream analyses. The average genotype
concordance rate between the imputed and true genotypes post DR2 filtering was 96.2%.
The dataset was further pruned for LD, with PLINK ver 1.9 [34], using the -indep-pairwise
flag (window size of 50 SNPs, step size of 5, and r2 threshold of 0.7), resulting in a final
dataset of 1,219,623 SNPs. The dataset was then parsed to the 220 k SNPs present on
the Illumina chip and then a random 50 k further subsample. The SNP density datasets,
consisting of 1.2 million, 220 K, and 50 K SNPs, were selected to represent varying levels
of marker densities commonly used in livestock genomic prediction. The 1.2 million SNP
dataset reflects the potential of emerging, cost-effective, low-pass sequencing technologies
to capture much higher density data compared to traditional SNP chips. Both smaller
datasets correspond to existing work related to livestock, exploring similar densities” effects
on model performance.

2.4. Genomic Prediction Models

Genomic Best Linear Unbiased Prediction (GBLUP): The genomic relationship matrix
was constructed using SNP data to capture genetic relationships among individuals. Anal-
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yses and matrix construction were performed using SNP & Variation Suite v8.9.1 (Golden
Helix, Inc., Bozeman, MT, USA, www.goldenhelix.com, accessed on 6 December 2024).
Pseudo-heritability was calculated from a full-population GBLUP analysis of each trait.
The restricted maximum likelihood (REML) algorithm used was Efficient Mixed-Model
Association (EMMA).

All machine learning models were evaluated using the area under the receiver operat-
ing characteristic curve (AUROC) to optimize hyperparameters, as it allows for assessment
even with potential low sensitivity issues in overtrained data. Hyperparameters were
optimized with a random search followed by a grid search of the characteristics of the
top-performing versions of the models.

Random Forest (RF): Various hyperparameters, including n estimators, max features,
max depth, min samples split, min samples leaf, bootstrap, criterion, and class weight, were
optimized. This analysis was performed using the scikit-learn v1.5.1 Python package [32].

Support Vector Machine (SVM): Various kernel functions (linear, polynomial, radial
basis function) were tested. Model training involved optimizing hyperparameters such as
C, kernel, gamma, degree, coef0, and shrinking probability. This analysis was performed
using the scikit-learn v1.5.1 Python package [32].

Extreme Gradient Boosting (XGB): The XGB model underwent iterative training with
hyperparameter tuning focusing on n estimators, max depth, learning rate, subsample, col
sample by tree, gamma, lambda, alpha, scale pos weight, objective, and eval metric. This
analysis was performed using the XGBoost v2.1.1 Python package [41].

Multilayer Perceptron (MLP): Neural network hyperparameters, including hidden
layer sizes, activation, solver, alpha, batch size, learning rate, learning rate init, max iter, tol,
momentum, and early stopping, were optimized. This analysis was performed using the
scikit-learn v1.5.1 Python package [32].

2.5. Model Validation and Evaluation

Models were evaluated using 5-fold cross-validation, which involved partitioning the
data into five subsets, training on four subsets and validation on the remaining subset. This
ensured a comprehensive evaluation and allowed each individual to be in the validation
dataset once. Performance metrics were calculated by comparing predicted phenotypes to
true values from the run when a given individual was in the validation dataset.

AUROC Calculation: The area under the receiver operating characteristic curve (AU-
ROC) measures the ability of a model to distinguish between classes. It is calculated by
plotting the true positive rate (sensitivity) against the false positive rate (1—specificity)
at various threshold settings. The AUROC score ranges from 0 (completely incorrect) to
0.5 (no discrimination) to 1 (perfect discrimination).

MCC Calculation: The Matthews correlation coefficient (MCC) is used to assess the
quality of binary classifications, especially in the presence of imbalanced datasets. It
considers true and false positives and negatives and is calculated using Equation (1).

MCC = (TP x TN — FP x FN)//((TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)) (1)

TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. The values for the MCC
range from —1 to 1, with 0 representing a naive model.

3. Results

The traits varied in heritability among each other and when calculated from the
different breed groups and SNP densities (Figure 1). Distichiasis had the highest pseudo-
heritability calculated from the Genomic Best Linear Unbiased Prediction (GBLUP) anal-
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Breed - Data

ysis in the all-breed group (0.33-0.34) and Labrador/Golden Retriever (LR/GR) group
(0.30-0.31). Within breeds, Golden Retrievers (GRs) had a higher heritability (0.18-0.19)
than Labrador Retrievers (LRs) (0.09-0.11), and German Shepherds (GS) had no cases
present. Anodontia was similarly heritable in the all-breed, GS, LR, and LR/GR breed
groups (0.22-0.27) but had a heritability estimate of zero in the GR group, possibly due to
low case numbers. Oral papillomatosis had a low heritability of 0.04-0.06 across all groups.
Distraction was slightly more heritable among all groups (0.13-0.16) except the GR group,
which had a lower heritability. There was no difference in the pseudo-heritabilities across
the single-nucleotide polymorphism (SNP) datasets for any of the traits.

Heat Map of Psuedo-Heritability

All Breeds - 1.2 Million SNPs ; @27/ 0.05 0.14

All Breeds - 220k SNPs . 0.27 0.05 0.14

All Breeds - 50k SNPs : 0.26 0.05 0.16

GR - 1.2 Million SNPs - 0.00 0.00 0.00

GR - 220k SNPs - 0.00 0.00 0.00

GR - 50k SNPs - 0.00 0.00 0.00

GS - 1.2 Million SNPs - 0.23 0.04 0.14

GS - 220k SNPs - 0.22 0.04 0.14

GS - 50k SNPs - 0.22 0.05 0.15

LR - 1.2 Million SNPs - 0.09 0.28 0.06 0.16

LR - 220k SNPs - 0.09 0,227/ 0.06 016

LR - 50k SNPs - 0.11 0.05 0415

LR and GR - 1.2 Million SNPs 0.05 ONS]

LR and GR - 220k SNPs - 005 013

LR and GR. - 50K SHPs - 004 014
Disticlhiasis Anodlontia Oral Papilllomatosis Distra;ction

Trait

Figure 1. Heat Map of pseudo-heritability of traits for different breed datasets (all breeds (includes all
dogs regardless of breed), GR = Golden Retriever, GS = German Shepherd, LR = Labrador Retriever,
and LR/GR (includes all LRs, GRs, and LR/GR crosses)) and SNP density datasets. Heritabilities
were calculated from GBLUP analysis of each trait organized by breed and dataset.

The trait with the highest overall performance was distichiasis (Figure 2), which had
the highest heritability among the four traits assessed, ranging from 0.33-0.34 in the all-
breed group to lower values within individual breed groups (GR: 0.18-0.19; LR: 0.09-0.11).
The total number of cases included 116 dogs: 93 GR, 18 LR, 5 LR/GR, and 0 GS cases.
There was no significant difference in model performance within each breed group/SNP
dataset, but Extreme Gradient Boosting (XGB) had the highest average Matthews corre-
lation coefficient (MCC) (0.25), while GBLUP and Random Forest (RF) had the highest
area under the receiver operating characteristic curve (AUROC) across the dataset (0.81).
Comparing across breeds, the all-breed and LR/GR groups had the highest performance,
with an average MCC of 0.37 and 0.33 and AUROCs of 0.90 and 0.89, respectively. The GR
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group was next with an MCC of 0.16 but a lower AUROC of 0.63. No model was able to
perform highly among the LR group, and there were no cases among the GS group. There
was a slight decline in the average MCC as the SNP density decreased but no change in the
average AUROC.

MCC Violin Plot for Trait: Distichiasis
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Figure 2. (A) A violin plot of model performance by MCC for distichiasis. The data are parti-
tioned by SNP dataset in the rows and breed group in the columns with the models colored as
follows: GBLUP—blue, MLP—orange, RE—green, SVM—red, and XGB—purple. The red dotted
line represents the expected performance of a totally naive model with an MCC of 0. There was
no significant difference in model performance within each breed group/SNP dataset. (B) A violin
plot of model performance by AUROC for distichiasis. The data are partitioned by SNP dataset
in the rows and breed group in the columns with the models colored as follows: GBLUP—blue,
MLP—orange, RE—green, SVM—red, and XGB—purple. The red dotted line represents the expected
performance of a totally naive model with an AUROC of 0.5. There was no significant difference in
model performance within each breed group/SNP dataset.

In the case of anodontia, which had a heritability ranging from 0.22 to 0.27 in the
all-breed, GS, LR, and LR/GR breed groups but had a heritability estimate of zero in
the GR group, there was no significant difference in model performance within each
breed group/SNP dataset (Figure 3). The total number of cases of anodontia included
272 dogs, with 17 GR, 193 LR, 16 LR/GR, and 46 GS cases. Support Vector Machine (SVM)
outperformed all other models with an average MCC of 0.13 across the anodontia groups.
The lowest performing models were RF and GBLUP with average MCCs of 0.07. However,
Multilayer Perceptron (MLP) and RF had the lowest average AUROCsS of 0.62 and 0.65,
while GBLUP had the highest average AUROC of 0.68. The breed group with the highest
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average MCC was LR at 0.17, followed by LR/GR at 0.15 and the all-breed group at 0.13.
Neither the GS nor GR group had high-performing models by either metric, with the GR
group having a heritability estimate of zero and the GS group having a heritability similar

to other breeds despite lower performance. There was no change in the MCC or AUROC

across the SNP data types.
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Figure 3. (A) A violin plot of model performance by MCC for anodontia. The data are partitioned

by SNP dataset in the rows and breed group in the columns with the models colored as follows:
GBLUP—blue, MLP—orange, RF—green, SVM—red, and XGB—purple. The red dotted line repre-
sents the expected performance of a totally naive model with an MCC of 0. There was no significant

difference in model performance within each breed group/SNP dataset. (B) A violin plot of model
performance by AUROC for anodontia. The data are partitioned by SNP dataset in the rows and breed
group in the columns with the models colored as follows: GBLUP—blue, MLP—orange, RF—green,

SVM—red, and XGB—purple. The red dotted line represents the expected performance of a totally

naive model with an AUROC of 0.5. There was no significant difference in model performance within
each breed group/SNP dataset.

For oral papillomatosis, which had a low heritability of 0.04-0.06 across all groups,

there was no significant difference in model performance within each breed group/SNP
dataset (Figure 4). The total number of cases included 216 dogs, with 193 LR, 43 GS, 28 GR,
and 20 LR/GR cases. This trait exhibited the lowest average performance across all traits,
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with no standout model among any breed group by MCC or AUROC. Additionally, there

was no increase or decrease in performance between the SNP density groups.

A MCC Viglin Plot for Trait: Oral papillomatosis
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Figure 4. (A) A violin plot of model performance by MCC for oral papillomatosis. The data are

partitioned by SNP dataset in the rows and breed group in the columns with the models colored as
follows: GBLUP—blue, MLP—orange, RF—green, SVM—red, and XGB—purple. The red dotted
line represents the expected performance of a totally naive model with an MCC of 0. There was no

significant difference in model performance within each breed group/SNP dataset. (B) A violin plot

of model performance by AUROC for oral papillomatosis. The data are partitioned by SNP dataset

in the rows and breed group in the columns with the models colored as follows: GBLUP—blue,

MLP—orange, RF—green, SVM—red, and XGB—purple. The red dotted line represents the expected

performance of a totally naive model with an AUROC of 0.5. There was no significant difference in

model performance within each breed group/SNP dataset.

For the behavioral trait, distraction, which had a heritability ranging from 0.13 to
0.16 across most groups but lower in the GR group, there was no significant difference in

model performance within each breed group/SNP dataset (Figure 5). The total number
of high-distraction cases included 588, with 364 LR, 126 GS, 71 GR, and 27 LR/GR cases.
MLP had the lowest average MCC of 0.03, while RE, XGB, and GBLUP averaged at 0.12.
All models, apart from MLP, had similar AUROC scores as well. The models performed
best by MCC for the LR (0.15) and all-breed (0.13) datasets, followed by the LR/GR group
(0.11), and struggled in the GR (0.05) and GS (0.04) groups. The AUROC scores followed
the same trend, with the top three having AUROCsS of 0.58-0.60, while the lower ones
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ranged between 0.52 and 0.53. There was a slight dip in the MCC from 1.2 million SNPs to
220k SNPs, with averages decreasing from 0.11 to 0.08, but the average MCC increased to
0.09 at 50k SNPs. The AUROC also remained consistent between 0.56 and 0.57.
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Figure 5. (A) A violin plot of model performance by MCC for distraction. The data are parti-
tioned by SNP dataset in the rows and breed group in the columns with the models colored as
follows: GBLUP—blue, MLP—orange, RF—green, SVM—red, and XGB—purple. The red dotted
line represents the expected performance of a totally naive model with an MCC of 0. There was

no significant difference in model performance within each breed group/SNP dataset. (B) A violin
plot of model performance by AUROC for distraction. The data are partitioned by SNP dataset
in the rows and breed group in the columns with the models colored as follows: GBLUP—blue,
MLP—orange, RF—green, SVM—red, and XGB—purple. The red dotted line represents the expected
performance of a totally naive model with an AUROC of 0.5. There was no significant difference in

model performance within each breed group/SNP dataset.

4. Discussion

This study compared the performance of Genomic Best Linear Unbiased Prediction
(GBLUP) with several machine learning (ML) models—Random Forest (RF), Support Vector
Machine (SVM), Extreme Gradient Boosting (XGB), and Multilayer Perceptron (MLP)—in
predicting binary health traits and a behavioral trait in guide dogs. The traits analyzed
included distichiasis, anodontia, oral papillomatosis, and distractibility, demonstrating
varying degrees of predictive success across the different models and datasets. The perfor-
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mance metrics used, Matthews correlation coefficient (MCC) and area under the receiver
operating characteristic curve (AUROC), offer different perspectives on model effectiveness.
While the AUROC measures a model’s ability to distinguish between classes across all
threshold levels, the MCC provides a balanced evaluation that accounts for true and false
positives and negatives, making it particularly informative for imbalanced datasets. The
differences observed between the MCC and AUROC across traits and breed groups indicate
that the MCC may be more sensitive to class imbalance and prevalence rates, affecting the
interpretation of predictive success in different scenarios. This underscores the importance
of considering multiple performance metrics when evaluating model performance for
various traits and populations.

Machine learning approaches are continuing to be investigated with various levels
of success but continual improvement in efficiency, model architectures, and increased
research offer a promising future. For their usage in breeding values, ML approaches have
been found to perform comparably or even outperform other methods such as GBLUP
depending on specific usage and datasets [14,16,17,42]. Both an advantage and drawback
for the adoption of ML algorithms in various breeding programs is the documented diver-
sity in model performance [43]. With the variety of models and their different strengths
and weaknesses, finding a single robust model that performs well across many different
phenotypes and reference populations remains a challenge. Another avenue of ML adop-
tion includes deep learning approaches, although the “black box” nature of deep learning
algorithms can make interpreting the results in genomic datasets more difficult [44].

Additionally, environmental factors such as training, diet, and general environmental
exposure can influence health and behavior traits. The data included in this study mitigated
environmental influence on model performance by using only dogs from The Seeing Eye
which had very similar breeding, nutrition, training, and health evaluations. However,
there was still variation across the puppy raiser households which reflects the variables
affecting pet dogs. The goal of this study was to demonstrate the feasibility and value of
genomic prediction in a population with reliable phenotypes yet common environmental
exposure inside and outside of households similar to pet dogs. Identifying and incorporat-
ing environmental factors influencing traits, especially on a broader and more diversified
dataset of dogs, is an important avenue for future research and application of gEBVs.

Across the models, no single approach consistently outperformed others for any
specific data type, as the models largely overlapped in the ranges of their run scores for
both MCC and AUROC. This finding aligns with previous research that utilized GBLUP as a
benchmark, confirming its robustness [45]. Considering the lack of parameter optimization,
which reduces steps in breeding value creation, along with its high performance, GBLUP
appears to be well suited for estimating binary trait breeding values in small, closely related
populations of working dogs, as present in this study.

Additionally, there was no discernible trend of performance increase or decrease in
either the MCC or AUROC with different single-nucleotide polymorphism (SNP) densities.
This observation supports previous studies demonstrating that lower density SNP datasets
can still effectively construct breeding values in poultry and cattle [22-24]. For canine
breeding values, this suggests that lower cost SNP chips may suffice, negating the necessity
for imputation to larger datasets for binary health traits.

Distichiasis exhibited the highest overall predictive performance and pseudo-
heritability. Both GBLUP and RF models achieved the highest AUROC of 0.81, while
Extreme Gradient Boosting (XGB) obtained the highest average MCC of 0.25 across the
breed groups. Predictive accuracy varied among breeds, with the all-breed and Labrador
Retriever/Golden Retriever groups achieving AUROCsS of 0.90 and 0.89, respectively. This
is consistent with prior research highlighting a significant genetic component for distichia-
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sis, particularly in breeds such as the English Cocker Spaniel and Havanese [27,28]. The
high pseudo-heritability and model performance within the breeds in the present study
may be attributed to the close lineage of individuals exhibiting the trait. Interestingly,
while Labrador Retrievers had a lower pseudo-heritability compared to Golden Retriev-
ers, the combination of Labradors and Golden Retrievers outperformed both individual
groups based on the MCC and AUROC. Additionally, the all-breed group had the highest
pseudo-heritability and correspondingly higher scores for the MCC and AUROC. This
highlights the importance of reference population construction. The increased performance
among the mixed-breed groupings may be due in part to breed-specific markers being
used to exclude dogs from the breeds with low to no cases, which can artificially increase
the model’s performance. As such, understanding the breeds and prevalence rates can
help in identifying possible inflation in reported model performance. In smaller and highly
homogeneous breed groups, exploring breed-specific variants could further refine predic-
tions, but it also raises the risk of overfitting if the variants are limited to very few breeding
lines. While adding dogs, particularly increasing the number of cases, can increase the
external validity, introducing dogs without the uniform phenotypic and genotypic data in
the present population introduces additional variation into the theoretical dataset and may
alter internal validity.

Anodontia and distractibility displayed higher predictive performance in some breed
groupings compared to others, with Golden Retrievers showing the lowest pseudo-
heritability, MCC, and AUROC for both traits. This may be due to the fact that the Golden
Retriever group was the smallest, comprising 125 individuals in the distractibility dataset
and 239 in the health traits dataset. This follows the trend present in distichiasis, where the
Golden Retriever group had similarly lower predictive accuracy. Across all other groups,
the pseudo-heritabilities and performance metrics were similar within each trait. This
is despite the variation in group size and case counts between the Labrador Retrievers
and German Shepherds. This result may suggest that Golden Retrievers may have either
breed-specific variants that do not allow for as accurate predictions or that a threshold
of population size is needed for the model to reach a plateau in performance. Possible
explanations that may also be at play include the breed-specific variants having more
complex polygenic interactions and only being identifiable with sufficient power among
the specific population, in this case Golden Retrievers.

Conversely, oral papillomatosis offered an opportunity to investigate the effects of
model and dataset on performance for low-heritability traits. However, as none of the
models or datasets exhibited significant differences, this suggests that model selection may
have less impact on predictive performance for traits with low heritability. Consequently, a
standardized modeling approach may be sufficient for estimating breeding values in such
cases, regardless of the specific heritability of the binary health trait.

The variability in breed composition, genetic diversity, and trait expression within the
reference population illustrates the challenges inherent in constructing breeding values
for functional applications. As genomic breeding values are developed for dogs, careful
consideration must be given to the groups on which the models are trained. Working
dogs raised in a single location offer consistency and standardized phenotypes; however,
this may lead to diminished external validity due to the homogeneity of these closed
populations compared to the broader breed population.

Future directions for breeding values in dogs must address unique challenges, includ-
ing the lack of uniform selection criteria across different breeds and breeders. Standardiza-
tion suggestions have been proposed, and working dog colonies may serve as ideal testing
grounds for these approaches [46]. Additionally, the fragmented nature of dog breeding,
with many breeders working with small numbers of animals with unique selective goals,
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may pose a challenge. The lack of a large overseeing authority akin to the Council on
Dairy Cattle Breeding (CDCB) in dairy cattle to standardize breeding goals and phenotypes
and collect both phenotypic and genotypic datasets presents another significant hurdle
to standardization attempts. Although both the American Kennel Club (AKC) and the
International Working Dog Registry have the potential to fill this gap, they currently lack
large reference populations with genotypic and phenotypic data. Finally, as evidenced by
the variation in the results across breed in the present study, reference populations must
be carefully constructed with target populations in mind when attempting to construct a
functional breeding value.

Our findings demonstrate that GBLUP, along with ML models, can effectively pre-
dict both health and behavioral traits in guide dogs, suggesting that genomic estimated
breeding values (gEBVs) are valuable tools in selection programs. By enabling breeders to
make informed decisions based on genetic potential, gEBVs can accelerate genetic progress
and improve the overall health and performance of dog populations. Furthermore, our
comparative analysis revealed that no single model consistently outperformed others
across different traits and breeds, highlighting the robustness of GBLUP due to the ab-
sence of hyperparameter optimization along with the potential flexibility in model choice
depending on specific breeding objectives. These results emphasize the practicality of
incorporating gEBVs into canine breeding strategies, especially when considering traits
of varying heritabilities and prevalence. The results also provide a proof of concept for
the creation of multi-trait indices to capture the genomic influence in a series of related
traits. Despite some challenges, there remains substantial potential for improvement in
the current landscape. Advancements in validated health trait breeding values and the
development of selection indices incorporating multiple traits could significantly enhance
the utility of breeding values in dogs.

5. Conclusions

In conclusion, this study demonstrates that genomic prediction models—including
Genomic Best Linear Unbiased Prediction (GBLUP) and machine learning approaches
like Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting
(XGB), and Multilayer Perceptron (MLP)—are effective tools for predicting breeding values
for both health and behavioral traits in guide dogs. By evaluating these models across
different breeds, traits with varying heritabilities, and SNP marker densities, we found
that all models performed similarly, with no single model consistently outperforming the
others. Notably, GBLUP emerged as the most logistically efficient model for breeders to
quickly master and implement (due to the lack of hyperparameter optimization), making it
a practical choice for canine breeding programs.

These findings suggest that lower density SNP datasets are sufficient for construct-
ing accurate genomic estimated breeding values (gEBVs), potentially reducing the costs
associated with high-density genotyping. This is particularly significant for breeding
programs with limited resources. By enabling breeders to make more informed selection
decisions based on genetic potential, the incorporation of genomic prediction models
can accelerate genetic progress and improve the overall health and performance of dog
populations. Future research should focus on standardizing phenotypic assessments and
expanding reference populations to enhance the utility and applicability of genomic selec-
tion in canine breeding, bridging the gap between dogs and agricultural species in genetic
breeding practices.
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